43be2238a35911e798fda75e4ba03bace76973ed
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 bool mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 bool has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 bool checked_producer : 1;
552 bool producer_is_gxx_lt_4_6 : 1;
553 bool producer_is_gcc_lt_4_3 : 1;
554 bool producer_is_icc : 1;
555 bool producer_is_icc_lt_14 : 1;
556 bool producer_is_codewarrior : 1;
557
558 /* When true, the file that we're processing is known to have
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
562 bool processing_has_namespace_info : 1;
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
565 };
566
567 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570 struct stmt_list_hash
571 {
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
576 sect_offset line_sect_off;
577 };
578
579 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582 struct type_unit_group
583 {
584 /* dwarf2read.c's main "handle" on a TU symtab.
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
589 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
590 struct dwarf2_per_cu_data per_cu;
591
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
596
597 /* The compunit symtab.
598 Type units in a group needn't all be defined in the same source file,
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
601
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618 };
619
620 /* These sections are what may appear in a (real or virtual) DWO file. */
621
622 struct dwo_sections
623 {
624 struct dwarf2_section_info abbrev;
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
627 struct dwarf2_section_info loclists;
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
634 VEC (dwarf2_section_info_def) *types;
635 };
636
637 /* CUs/TUs in DWP/DWO files. */
638
639 struct dwo_unit
640 {
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
650 struct dwarf2_section_info *section;
651
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658 };
659
660 /* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664 enum dwp_v2_section_ids
665 {
666 DW_SECT_MIN = 1
667 };
668
669 /* Data for one DWO file.
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
679
680 struct dwo_file
681 {
682 /* The DW_AT_GNU_dwo_name attribute.
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
690
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
694
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
698 struct dwo_sections sections;
699
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709 };
710
711 /* These sections are what may appear in a DWP file. */
712
713 struct dwp_sections
714 {
715 /* These are used by both DWP version 1 and 2. */
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
736 };
737
738 /* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
740
741 struct virtual_v1_dwo_sections
742 {
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
750 That is recorded here, and copied to dwo_unit.section. */
751 struct dwarf2_section_info info_or_types;
752 };
753
754 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759 struct virtual_v2_dwo_sections
760 {
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783 };
784
785 /* Contents of DWP hash tables. */
786
787 struct dwp_hash_table
788 {
789 uint32_t version, nr_columns;
790 uint32_t nr_units, nr_slots;
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802 #define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
814 };
815
816 /* Data for one DWP file. */
817
818 struct dwp_file
819 {
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
826 /* Name of the file. */
827 const char *name;
828
829 /* File format version. */
830 int version = 0;
831
832 /* The bfd. */
833 gdb_bfd_ref_ptr dbfd;
834
835 /* Section info for this file. */
836 struct dwp_sections sections {};
837
838 /* Table of CUs in the file. */
839 const struct dwp_hash_table *cus = nullptr;
840
841 /* Table of TUs in the file. */
842 const struct dwp_hash_table *tus = nullptr;
843
844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
847
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
852 };
853
854 /* This represents a '.dwz' file. */
855
856 struct dwz_file
857 {
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
863 /* A dwz file can only contain a few sections. */
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
871
872 /* The dwz's BFD. */
873 gdb_bfd_ref_ptr dwz_bfd;
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
911 };
912
913 /* Type of function passed to init_cutu_and_read_dies, et.al. */
914 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
915 const gdb_byte *info_ptr,
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
920 /* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923 enum class dir_index : unsigned int {};
924
925 /* Likewise, a 1-based file name index. */
926 enum class file_name_index : unsigned int {};
927
928 struct file_entry
929 {
930 file_entry () = default;
931
932 file_entry (const char *name_, dir_index d_index_,
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
935 d_index (d_index_),
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
942 const char *include_dir (const line_header *lh) const;
943
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
948 /* The directory index (1-based). */
949 dir_index d_index {};
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
958 /* The associated symbol table, if any. */
959 struct symtab *symtab {};
960 };
961
962 /* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965 struct line_header
966 {
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
975 void add_file_name (const char *name, dir_index d_index,
976 unsigned int mod_time, unsigned int length);
977
978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
979 is out of bounds. */
980 const char *include_dir_at (dir_index index) const
981 {
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
987 return NULL;
988 return include_dirs[vec_index];
989 }
990
991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
992 is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
1000 return NULL;
1001 return &file_names[vec_index];
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
1012 /* Offset of line number information in .debug_line section. */
1013 sect_offset sect_off {};
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1033
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
1037
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
1040
1041 /* The start and end of the statement program following this
1042 header. These point into dwarf2_per_objfile->line_buffer. */
1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
1044 };
1045
1046 typedef std::unique_ptr<line_header> line_header_up;
1047
1048 const char *
1049 file_entry::include_dir (const line_header *lh) const
1050 {
1051 return lh->include_dir_at (d_index);
1052 }
1053
1054 /* When we construct a partial symbol table entry we only
1055 need this much information. */
1056 struct partial_die_info : public allocate_on_obstack
1057 {
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
1075 /* Offset of this DIE. */
1076 const sect_offset sect_off;
1077
1078 /* DWARF-2 tag for this DIE. */
1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1080
1081 /* Assorted flags describing the data found in this DIE. */
1082 const unsigned int has_children : 1;
1083
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name = nullptr;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name = nullptr;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope = nullptr;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset sect_off;
1136 } d {};
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling = nullptr;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset {};
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
1188 };
1189
1190 /* This data structure holds the information of an abbrev. */
1191 struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201 struct attr_abbrev
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
1208 };
1209
1210 /* Size of abbrev_table.abbrev_hash_table. */
1211 #define ABBREV_HASH_SIZE 121
1212
1213 /* Top level data structure to contain an abbreviation table. */
1214
1215 struct abbrev_table
1216 {
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
1220 m_abbrevs =
1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
1242 const sect_offset sect_off;
1243
1244 /* Storage for the abbrev table. */
1245 auto_obstack abbrev_obstack;
1246
1247 private:
1248
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
1253 struct abbrev_info **m_abbrevs;
1254 };
1255
1256 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
1258 /* Attributes have a name and a value. */
1259 struct attribute
1260 {
1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
1269 union
1270 {
1271 const char *str;
1272 struct dwarf_block *blk;
1273 ULONGEST unsnd;
1274 LONGEST snd;
1275 CORE_ADDR addr;
1276 ULONGEST signature;
1277 }
1278 u;
1279 };
1280
1281 /* This data structure holds a complete die structure. */
1282 struct die_info
1283 {
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
1293
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
1300 /* Offset in .debug_info or .debug_types section. */
1301 sect_offset sect_off;
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
1306 together via their SIBLING fields. */
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
1310
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
1315 };
1316
1317 /* Get at parts of an attribute structure. */
1318
1319 #define DW_STRING(attr) ((attr)->u.str)
1320 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1321 #define DW_UNSND(attr) ((attr)->u.unsnd)
1322 #define DW_BLOCK(attr) ((attr)->u.blk)
1323 #define DW_SND(attr) ((attr)->u.snd)
1324 #define DW_ADDR(attr) ((attr)->u.addr)
1325 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1326
1327 /* Blocks are a bunch of untyped bytes. */
1328 struct dwarf_block
1329 {
1330 size_t size;
1331
1332 /* Valid only if SIZE is not zero. */
1333 const gdb_byte *data;
1334 };
1335
1336 #ifndef ATTR_ALLOC_CHUNK
1337 #define ATTR_ALLOC_CHUNK 4
1338 #endif
1339
1340 /* Allocate fields for structs, unions and enums in this size. */
1341 #ifndef DW_FIELD_ALLOC_CHUNK
1342 #define DW_FIELD_ALLOC_CHUNK 4
1343 #endif
1344
1345 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348 static int bits_per_byte = 8;
1349
1350 /* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354 struct variant_field
1355 {
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365 };
1366
1367 struct nextfield
1368 {
1369 int accessibility = 0;
1370 int virtuality = 0;
1371 /* Extra information to describe a variant or variant part. */
1372 struct variant_field variant {};
1373 struct field field {};
1374 };
1375
1376 struct fnfieldlist
1377 {
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
1380 };
1381
1382 /* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385 struct field_info
1386 {
1387 /* List of data member and baseclasses fields. */
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
1390
1391 /* Number of fields (including baseclasses). */
1392 int nfields = 0;
1393
1394 /* Set if the accesibility of one of the fields is not public. */
1395 int non_public_fields = 0;
1396
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
1400 std::vector<struct fnfieldlist> fnfieldlists;
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1404 std::vector<struct decl_field> typedef_field_list;
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
1408 std::vector<struct decl_field> nested_types_list;
1409 };
1410
1411 /* One item on the queue of compilation units to read in full symbols
1412 for. */
1413 struct dwarf2_queue_item
1414 {
1415 struct dwarf2_per_cu_data *per_cu;
1416 enum language pretend_language;
1417 struct dwarf2_queue_item *next;
1418 };
1419
1420 /* The current queue. */
1421 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
1423 /* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
1428 static int dwarf_max_cache_age = 5;
1429 static void
1430 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
1432 {
1433 fprintf_filtered (file, _("The upper bound on the age of cached "
1434 "DWARF compilation units is %s.\n"),
1435 value);
1436 }
1437 \f
1438 /* local function prototypes */
1439
1440 static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442 static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
1444 static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
1447 static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
1450 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
1455 static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1457
1458 static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 int, struct dwarf2_cu *);
1461
1462 static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
1464
1465 static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int set_addrmap, struct dwarf2_cu *cu);
1468
1469 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1470 CORE_ADDR *highpc, int set_addrmap,
1471 struct dwarf2_cu *cu);
1472
1473 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
1475
1476 static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1478 int need_pc, struct dwarf2_cu *cu);
1479
1480 static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
1482
1483 static void psymtab_to_symtab_1 (struct partial_symtab *);
1484
1485 static abbrev_table_up abbrev_table_read_table
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
1488
1489 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1490
1491 static struct partial_die_info *load_partial_dies
1492 (const struct die_reader_specs *, const gdb_byte *, int);
1493
1494 static struct partial_die_info *find_partial_die (sect_offset, int,
1495 struct dwarf2_cu *);
1496
1497 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
1500
1501 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1502
1503 static int read_1_signed_byte (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1506
1507 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1508
1509 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1510
1511 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1512 unsigned int *);
1513
1514 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static LONGEST read_checked_initial_length_and_offset
1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1518 unsigned int *, unsigned int *);
1519
1520 static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
1522 unsigned int *);
1523
1524 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1525
1526 static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
1529
1530 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1531
1532 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1533
1534 static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
1537
1538 static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
1541
1542 static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
1545
1546 static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
1548
1549 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
1553 unsigned int *);
1554
1555 static const char *read_str_index (const struct die_reader_specs *reader,
1556 ULONGEST str_index);
1557
1558 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1559
1560 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
1562
1563 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1564 unsigned int);
1565
1566 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
1569 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
1572 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1573
1574 static struct die_info *die_specification (struct die_info *die,
1575 struct dwarf2_cu **);
1576
1577 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1578 struct dwarf2_cu *cu);
1579
1580 static void dwarf_decode_lines (struct line_header *, const char *,
1581 struct dwarf2_cu *, struct partial_symtab *,
1582 CORE_ADDR, int decode_mapping);
1583
1584 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
1586
1587 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
1590
1591 static struct symbol *new_symbol (struct die_info *, struct type *,
1592 struct dwarf2_cu *, struct symbol * = NULL);
1593
1594 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_const_value_attr (const struct attribute *attr,
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
1601 struct dwarf2_cu *cu, LONGEST *value,
1602 const gdb_byte **bytes,
1603 struct dwarf2_locexpr_baton **baton);
1604
1605 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1606
1607 static int need_gnat_info (struct dwarf2_cu *);
1608
1609 static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
1611
1612 static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1622
1623 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
1625 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1626
1627 static char *typename_concat (struct obstack *obs, const char *prefix,
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
1630
1631 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1638
1639 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
1643 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
1646 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1647 values. Keep the items ordered with increasing constraints compliance. */
1648 enum pc_bounds_kind
1649 {
1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1651 PC_BOUNDS_NOT_PRESENT,
1652
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662 };
1663
1664 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
1668
1669 static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
1676 static void dwarf2_add_field (struct field_info *, struct die_info *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fields_to_type (struct field_info *,
1680 struct type *, struct dwarf2_cu *);
1681
1682 static void dwarf2_add_member_fn (struct field_info *,
1683 struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1687 struct type *,
1688 struct dwarf2_cu *);
1689
1690 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1693
1694 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1695
1696 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
1698 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1699
1700 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
1702 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
1704 static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
1707 static const char *namespace_name (struct die_info *die,
1708 int *is_anonymous, struct dwarf2_cu *);
1709
1710 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1711
1712 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1713
1714 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct die_info *read_die_and_siblings_1
1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1719 struct die_info *);
1720
1721 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
1724 struct die_info *parent);
1725
1726 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
1729
1730 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
1733
1734 static void process_die (struct die_info *, struct dwarf2_cu *);
1735
1736 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
1738
1739 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1740
1741 static const char *dwarf2_full_name (const char *name,
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
1745 static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748 static struct die_info *dwarf2_extension (struct die_info *die,
1749 struct dwarf2_cu **);
1750
1751 static const char *dwarf_tag_name (unsigned int);
1752
1753 static const char *dwarf_attr_name (unsigned int);
1754
1755 static const char *dwarf_form_name (unsigned int);
1756
1757 static const char *dwarf_bool_name (unsigned int);
1758
1759 static const char *dwarf_type_encoding_name (unsigned int);
1760
1761 static struct die_info *sibling_die (struct die_info *);
1762
1763 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765 static void dump_die_for_error (struct die_info *);
1766
1767 static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
1769
1770 /*static*/ void dump_die (struct die_info *, int max_level);
1771
1772 static void store_in_ref_table (struct die_info *,
1773 struct dwarf2_cu *);
1774
1775 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1776
1777 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1778
1779 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1780 const struct attribute *,
1781 struct dwarf2_cu **);
1782
1783 static struct die_info *follow_die_ref (struct die_info *,
1784 const struct attribute *,
1785 struct dwarf2_cu **);
1786
1787 static struct die_info *follow_die_sig (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu **);
1790
1791 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794 static struct type *get_DW_AT_signature_type (struct die_info *,
1795 const struct attribute *,
1796 struct dwarf2_cu *);
1797
1798 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1799
1800 static void read_signatured_type (struct signatured_type *);
1801
1802 static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
1806 /* memory allocation interface */
1807
1808 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1809
1810 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1811
1812 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1813
1814 static int attr_form_is_block (const struct attribute *);
1815
1816 static int attr_form_is_section_offset (const struct attribute *);
1817
1818 static int attr_form_is_constant (const struct attribute *);
1819
1820 static int attr_form_is_ref (const struct attribute *);
1821
1822 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
1824 const struct attribute *attr);
1825
1826 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1827 struct symbol *sym,
1828 struct dwarf2_cu *cu,
1829 int is_block);
1830
1831 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
1834
1835 static hashval_t partial_die_hash (const void *item);
1836
1837 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
1839 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
1842
1843 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
1846
1847 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1850
1851 static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1853
1854 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1859 enum language);
1860
1861 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
1863
1864 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
1867 static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
1870 static void dwarf2_mark (struct dwarf2_cu *);
1871
1872 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
1874 static struct type *get_die_type_at_offset (sect_offset,
1875 struct dwarf2_per_cu_data *);
1876
1877 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1878
1879 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
1882 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 /* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889 class dwarf2_queue_guard
1890 {
1891 public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919 };
1920
1921 /* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924 struct file_and_directory
1925 {
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938 };
1939
1940 static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
1942
1943 static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
1946 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947 enum class rcuh_kind { COMPILE, TYPE };
1948
1949 static const gdb_byte *read_and_check_comp_unit_head
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
1952 struct dwarf2_section_info *section,
1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1954 rcuh_kind section_kind);
1955
1956 static void init_cutu_and_read_dies
1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1958 int use_existing_cu, int keep, bool skip_partial,
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
1961 static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
1964
1965 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1966
1967 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
1969 static struct dwo_unit *lookup_dwo_unit_in_dwp
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
1972 ULONGEST signature, int is_debug_types);
1973
1974 static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1976
1977 static struct dwo_unit *lookup_dwo_comp_unit
1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1979
1980 static struct dwo_unit *lookup_dwo_type_unit
1981 (struct signatured_type *, const char *, const char *);
1982
1983 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
1985 static void free_dwo_file (struct dwo_file *);
1986
1987 /* A unique_ptr helper to free a dwo_file. */
1988
1989 struct dwo_file_deleter
1990 {
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
1995 };
1996
1997 /* A unique pointer to a dwo_file. */
1998
1999 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
2001 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2002
2003 static void check_producer (struct dwarf2_cu *cu);
2004
2005 static void free_line_header_voidp (void *arg);
2006 \f
2007 /* Various complaints about symbol reading that don't abort the process. */
2008
2009 static void
2010 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011 {
2012 complaint (_("statement list doesn't fit in .debug_line section"));
2013 }
2014
2015 static void
2016 dwarf2_debug_line_missing_file_complaint (void)
2017 {
2018 complaint (_(".debug_line section has line data without a file"));
2019 }
2020
2021 static void
2022 dwarf2_debug_line_missing_end_sequence_complaint (void)
2023 {
2024 complaint (_(".debug_line section has line "
2025 "program sequence without an end"));
2026 }
2027
2028 static void
2029 dwarf2_complex_location_expr_complaint (void)
2030 {
2031 complaint (_("location expression too complex"));
2032 }
2033
2034 static void
2035 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037 {
2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2039 arg1, arg2, arg3);
2040 }
2041
2042 static void
2043 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044 {
2045 complaint (_("debug info runs off end of %s section"
2046 " [in module %s]"),
2047 get_section_name (section),
2048 get_section_file_name (section));
2049 }
2050
2051 static void
2052 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053 {
2054 complaint (_("macro debug info contains a "
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057 }
2058
2059 static void
2060 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061 {
2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2063 arg1, arg2);
2064 }
2065
2066 /* Hash function for line_header_hash. */
2067
2068 static hashval_t
2069 line_header_hash (const struct line_header *ofs)
2070 {
2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2072 }
2073
2074 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076 static hashval_t
2077 line_header_hash_voidp (const void *item)
2078 {
2079 const struct line_header *ofs = (const struct line_header *) item;
2080
2081 return line_header_hash (ofs);
2082 }
2083
2084 /* Equality function for line_header_hash. */
2085
2086 static int
2087 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088 {
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2091
2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094 }
2095
2096 \f
2097
2098 /* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101 static CORE_ADDR
2102 attr_value_as_address (struct attribute *attr)
2103 {
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126 }
2127
2128 /* See declaration. */
2129
2130 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133 {
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141 }
2142
2143 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
2166
2167 /* Everything else should be on the objfile obstack. */
2168 }
2169
2170 /* See declaration. */
2171
2172 void
2173 dwarf2_per_objfile::free_cached_comp_units ()
2174 {
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
2181 delete per_cu->cu;
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185 }
2186
2187 /* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190 class free_cached_comp_units
2191 {
2192 public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206 private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209 };
2210
2211 /* Try to locate the sections we need for DWARF 2 debugging
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
2215
2216 int
2217 dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
2219 {
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
2227 {
2228 /* Initialize per-objfile state. */
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2233 }
2234 return (!dwarf2_per_objfile->info.is_virtual
2235 && dwarf2_per_objfile->info.s.section != NULL
2236 && !dwarf2_per_objfile->abbrev.is_virtual
2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
2238 }
2239
2240 /* Return the containing section of virtual section SECTION. */
2241
2242 static struct dwarf2_section_info *
2243 get_containing_section (const struct dwarf2_section_info *section)
2244 {
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
2247 }
2248
2249 /* Return the bfd owner of SECTION. */
2250
2251 static struct bfd *
2252 get_section_bfd_owner (const struct dwarf2_section_info *section)
2253 {
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
2259 return section->s.section->owner;
2260 }
2261
2262 /* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265 static asection *
2266 get_section_bfd_section (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section;
2274 }
2275
2276 /* Return the name of SECTION. */
2277
2278 static const char *
2279 get_section_name (const struct dwarf2_section_info *section)
2280 {
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285 }
2286
2287 /* Return the name of the file SECTION is in. */
2288
2289 static const char *
2290 get_section_file_name (const struct dwarf2_section_info *section)
2291 {
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295 }
2296
2297 /* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300 static int
2301 get_section_id (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308 }
2309
2310 /* Return the flags of SECTION.
2311 SECTION (or containing section if this is a virtual section) must exist. */
2312
2313 static int
2314 get_section_flags (const struct dwarf2_section_info *section)
2315 {
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320 }
2321
2322 /* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
2324
2325 static int
2326 section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
2328 {
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
2336 }
2337
2338 /* See declaration. */
2339
2340 void
2341 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
2343 {
2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
2345
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
2349 else if (section_is_p (sectp->name, &names.info))
2350 {
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
2353 }
2354 else if (section_is_p (sectp->name, &names.abbrev))
2355 {
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
2358 }
2359 else if (section_is_p (sectp->name, &names.line))
2360 {
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
2363 }
2364 else if (section_is_p (sectp->name, &names.loc))
2365 {
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
2368 }
2369 else if (section_is_p (sectp->name, &names.loclists))
2370 {
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
2373 }
2374 else if (section_is_p (sectp->name, &names.macinfo))
2375 {
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
2378 }
2379 else if (section_is_p (sectp->name, &names.macro))
2380 {
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
2383 }
2384 else if (section_is_p (sectp->name, &names.str))
2385 {
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
2388 }
2389 else if (section_is_p (sectp->name, &names.line_str))
2390 {
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
2393 }
2394 else if (section_is_p (sectp->name, &names.addr))
2395 {
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
2398 }
2399 else if (section_is_p (sectp->name, &names.frame))
2400 {
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.eh_frame))
2405 {
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
2408 }
2409 else if (section_is_p (sectp->name, &names.ranges))
2410 {
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
2413 }
2414 else if (section_is_p (sectp->name, &names.rnglists))
2415 {
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
2418 }
2419 else if (section_is_p (sectp->name, &names.types))
2420 {
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
2424 type_section.s.section = sectp;
2425 type_section.size = bfd_get_section_size (sectp);
2426
2427 VEC_safe_push (dwarf2_section_info_def, this->types,
2428 &type_section);
2429 }
2430 else if (section_is_p (sectp->name, &names.gdb_index))
2431 {
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
2445
2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2447 && bfd_section_vma (abfd, sectp) == 0)
2448 this->has_section_at_zero = true;
2449 }
2450
2451 /* A helper function that decides whether a section is empty,
2452 or not present. */
2453
2454 static int
2455 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2456 {
2457 if (section->is_virtual)
2458 return section->size == 0;
2459 return section->s.section == NULL || section->size == 0;
2460 }
2461
2462 /* See dwarf2read.h. */
2463
2464 void
2465 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2466 {
2467 asection *sectp;
2468 bfd *abfd;
2469 gdb_byte *buf, *retbuf;
2470
2471 if (info->readin)
2472 return;
2473 info->buffer = NULL;
2474 info->readin = 1;
2475
2476 if (dwarf2_section_empty_p (info))
2477 return;
2478
2479 sectp = get_section_bfd_section (info);
2480
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
2509 {
2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2511 return;
2512 }
2513
2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 info->buffer = buf;
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
2538 }
2539
2540 /* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547 static bfd_size_type
2548 dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550 {
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554 }
2555
2556 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2557 SECTION_NAME. */
2558
2559 void
2560 dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
2562 asection **sectp, const gdb_byte **bufp,
2563 bfd_size_type *sizep)
2564 {
2565 struct dwarf2_per_objfile *data
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
2568 struct dwarf2_section_info *info;
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
2590
2591 dwarf2_read_section (objfile, info);
2592
2593 *sectp = get_section_bfd_section (info);
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596 }
2597
2598 /* A helper function to find the sections for a .dwz file. */
2599
2600 static void
2601 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602 {
2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
2609 dwz_file->abbrev.s.section = sectp;
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
2614 dwz_file->info.s.section = sectp;
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
2619 dwz_file->str.s.section = sectp;
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
2624 dwz_file->line.s.section = sectp;
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
2629 dwz_file->macro.s.section = sectp;
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
2634 dwz_file->gdb_index.s.section = sectp;
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
2642 }
2643
2644 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
2647
2648 static struct dwz_file *
2649 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2650 {
2651 const char *filename;
2652 bfd_size_type buildid_len_arg;
2653 size_t buildid_len;
2654 bfd_byte *buildid;
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
2657 return dwarf2_per_objfile->dwz_file.get ();
2658
2659 bfd_set_error (bfd_error_no_error);
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2672
2673 buildid_len = (size_t) buildid_len_arg;
2674
2675 filename = data.get ();
2676
2677 std::string abs_storage;
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2682
2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2684 filename = abs_storage.c_str ();
2685 }
2686
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2690 if (dwz_bfd != NULL)
2691 {
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
2694 }
2695
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
2705
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
2708
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
2713 }
2714 \f
2715 /* DWARF quick_symbols_functions support. */
2716
2717 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722 struct quick_file_names
2723 {
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737 };
2738
2739 /* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742 struct dwarf2_per_cu_quick_data
2743 {
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
2751 struct compunit_symtab *compunit_symtab;
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760 };
2761
2762 /* Utility hash function for a stmt_list_hash. */
2763
2764 static hashval_t
2765 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766 {
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2771 v += to_underlying (stmt_list_hash->line_sect_off);
2772 return v;
2773 }
2774
2775 /* Utility equality function for a stmt_list_hash. */
2776
2777 static int
2778 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780 {
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
2787 return lhs->line_sect_off == rhs->line_sect_off;
2788 }
2789
2790 /* Hash function for a quick_file_names. */
2791
2792 static hashval_t
2793 hash_file_name_entry (const void *e)
2794 {
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
2797
2798 return hash_stmt_list_entry (&file_data->hash);
2799 }
2800
2801 /* Equality function for a quick_file_names. */
2802
2803 static int
2804 eq_file_name_entry (const void *a, const void *b)
2805 {
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2808
2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2810 }
2811
2812 /* Delete function for a quick_file_names. */
2813
2814 static void
2815 delete_file_name_entry (void *e)
2816 {
2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829 }
2830
2831 /* Create a quick_file_names hash table. */
2832
2833 static htab_t
2834 create_quick_file_names_table (unsigned int nr_initial_entries)
2835 {
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839 }
2840
2841 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845 static void
2846 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2847 {
2848 if (per_cu->is_debug_types)
2849 load_full_type_unit (per_cu);
2850 else
2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2852
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2857 }
2858
2859 /* Read in the symbols for PER_CU. */
2860
2861 static void
2862 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2863 {
2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2865
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
2875
2876 if (dwarf2_per_objfile->using_index
2877 ? per_cu->v.quick->compunit_symtab == NULL
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
2881 load_cu (per_cu, skip_partial);
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
2887 && per_cu->cu != NULL
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
2893 queue_and_load_all_dwo_tus (per_cu);
2894 }
2895
2896 process_queue (dwarf2_per_objfile);
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
2900 age_cached_comp_units (dwarf2_per_objfile);
2901 }
2902
2903 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2906
2907 static struct compunit_symtab *
2908 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2909 {
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
2912 gdb_assert (dwarf2_per_objfile->using_index);
2913 if (!per_cu->v.quick->compunit_symtab)
2914 {
2915 free_cached_comp_units freer (dwarf2_per_objfile);
2916 scoped_restore decrementer = increment_reading_symtab ();
2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
2918 process_cu_includes (dwarf2_per_objfile);
2919 }
2920
2921 return per_cu->v.quick->compunit_symtab;
2922 }
2923
2924 /* See declaration. */
2925
2926 dwarf2_per_cu_data *
2927 dwarf2_per_objfile::get_cutu (int index)
2928 {
2929 if (index >= this->all_comp_units.size ())
2930 {
2931 index -= this->all_comp_units.size ();
2932 gdb_assert (index < this->all_type_units.size ());
2933 return &this->all_type_units[index]->per_cu;
2934 }
2935
2936 return this->all_comp_units[index];
2937 }
2938
2939 /* See declaration. */
2940
2941 dwarf2_per_cu_data *
2942 dwarf2_per_objfile::get_cu (int index)
2943 {
2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2945
2946 return this->all_comp_units[index];
2947 }
2948
2949 /* See declaration. */
2950
2951 signatured_type *
2952 dwarf2_per_objfile::get_tu (int index)
2953 {
2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2955
2956 return this->all_type_units[index];
2957 }
2958
2959 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963 static dwarf2_per_cu_data *
2964 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968 {
2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981 }
2982
2983 /* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2985
2986 static void
2987 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
2990 int is_dwz)
2991 {
2992 for (offset_type i = 0; i < n_elements; i += 2)
2993 {
2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2999 cu_list += 2 * 8;
3000
3001 dwarf2_per_cu_data *per_cu
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3005 }
3006 }
3007
3008 /* Read the CU list from the mapped index, and use it to create all
3009 the CU objects for this objfile. */
3010
3011 static void
3012 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015 {
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
3019
3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3021 &dwarf2_per_objfile->info, 0);
3022
3023 if (dwz_elements == 0)
3024 return;
3025
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3028 &dwz->info, 1);
3029 }
3030
3031 /* Create the signatured type hash table from the index. */
3032
3033 static void
3034 create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
3039 {
3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
3041
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3044
3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3046
3047 for (offset_type i = 0; i < elements; i += 3)
3048 {
3049 struct signatured_type *sig_type;
3050 ULONGEST signature;
3051 void **slot;
3052 cu_offset type_offset_in_tu;
3053
3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3064 struct signatured_type);
3065 sig_type->signature = signature;
3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3067 sig_type->per_cu.is_debug_types = 1;
3068 sig_type->per_cu.section = section;
3069 sig_type->per_cu.sect_off = sect_off;
3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3071 sig_type->per_cu.v.quick
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
3077
3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3079 }
3080
3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
3082 }
3083
3084 /* Create the signatured type hash table from .debug_names. */
3085
3086 static void
3087 create_signatured_type_table_from_debug_names
3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092 {
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
3106 void **slot;
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139 }
3140
3141 /* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
3143
3144 static void
3145 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
3147 {
3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3150 const gdb_byte *iter, *end;
3151 struct addrmap *mutable_map;
3152 CORE_ADDR baseaddr;
3153
3154 auto_obstack temp_obstack;
3155
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
3172
3173 if (lo > hi)
3174 {
3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3176 hex_string (lo), hex_string (hi));
3177 continue;
3178 }
3179
3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3181 {
3182 complaint (_(".gdb_index address table has invalid CU number %u"),
3183 (unsigned) cu_index);
3184 continue;
3185 }
3186
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3189 addrmap_set_empty (mutable_map, lo, hi - 1,
3190 dwarf2_per_objfile->get_cu (cu_index));
3191 }
3192
3193 objfile->partial_symtabs->psymtabs_addrmap
3194 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3195 }
3196
3197 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200 static void
3201 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3202 struct dwarf2_section_info *section)
3203 {
3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3218 {
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->partial_symtabs->psymtabs_addrmap
3355 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3356 }
3357
3358 /* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
3362
3363 static bool
3364 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366 {
3367 offset_type hash;
3368 offset_type slot, step;
3369 int (*cmp) (const char *, const char *);
3370
3371 gdb::unique_xmalloc_ptr<char> without_params;
3372 if (current_language->la_language == language_cplus
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
3378
3379 if (strchr (name, '(') != NULL)
3380 {
3381 without_params = cp_remove_params (name);
3382
3383 if (without_params != NULL)
3384 name = without_params.get ();
3385 }
3386 }
3387
3388 /* Index version 4 did not support case insensitive searches. But the
3389 indices for case insensitive languages are built in lowercase, therefore
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3399
3400 for (;;)
3401 {
3402 const char *str;
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
3406 return false;
3407
3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3409 if (!cmp (name, str))
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
3412 + MAYBE_SWAP (bucket.vec));
3413 return true;
3414 }
3415
3416 slot = (slot + step) & (index->symbol_table.size () - 1);
3417 }
3418 }
3419
3420 /* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
3422 it is used for error reporting. DEPRECATED_OK is true if it is
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
3429 Returns true if all went well, false otherwise. */
3430
3431 static bool
3432 read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441 {
3442 const gdb_byte *addr = &buffer[0];
3443
3444 /* Version check. */
3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 int i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Callback types for dwarf2_read_gdb_index. */
3532
3533 typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536 typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
3540 /* Read .gdb_index. If everything went ok, initialize the "quick"
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543 static int
3544 dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3548 {
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3551 struct dwz_file *dwz;
3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
3553
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
3566 return 0;
3567
3568 /* Don't use the index if it's empty. */
3569 if (map->symbol_table.empty ())
3570 return 0;
3571
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3575 if (dwz != NULL)
3576 {
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
3602
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
3617 }
3618
3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3620
3621 dwarf2_per_objfile->index_table = std::move (map);
3622 dwarf2_per_objfile->using_index = 1;
3623 dwarf2_per_objfile->quick_file_names_table =
3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3625
3626 return 1;
3627 }
3628
3629 /* die_reader_func for dw2_get_file_names. */
3630
3631 static void
3632 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3633 const gdb_byte *info_ptr,
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
3637 {
3638 struct dwarf2_cu *cu = reader->cu;
3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
3643 struct dwarf2_per_cu_data *lh_cu;
3644 struct attribute *attr;
3645 int i;
3646 void **slot;
3647 struct quick_file_names *qfn;
3648
3649 gdb_assert (! this_cu->is_debug_types);
3650
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
3659 lh_cu = this_cu;
3660 slot = NULL;
3661
3662 line_header_up lh;
3663 sect_offset line_offset {};
3664
3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3666 if (attr)
3667 {
3668 struct quick_file_names find_entry;
3669
3670 line_offset = (sect_offset) DW_UNSND (attr);
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
3674 find_entry.hash.dwo_unit = cu->dwo_unit;
3675 find_entry.hash.line_sect_off = line_offset;
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3681 return;
3682 }
3683
3684 lh = dwarf_decode_line_header (line_offset, cu);
3685 }
3686 if (lh == NULL)
3687 {
3688 lh_cu->v.quick->no_file_data = 1;
3689 return;
3690 }
3691
3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3693 qfn->hash.dwo_unit = cu->dwo_unit;
3694 qfn->hash.line_sect_off = line_offset;
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
3697
3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3699
3700 qfn->num_file_names = lh->file_names.size ();
3701 qfn->file_names =
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3705 qfn->real_names = NULL;
3706
3707 lh_cu->v.quick->file_names = qfn;
3708 }
3709
3710 /* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713 static struct quick_file_names *
3714 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3715 {
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3720
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
3732 }
3733
3734 /* A helper for the "quick" functions which computes and caches the
3735 real path for a given file name from the line table. */
3736
3737 static const char *
3738 dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
3740 {
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3743 qfn->num_file_names, const char *);
3744
3745 if (qfn->real_names[index] == NULL)
3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3747
3748 return qfn->real_names[index];
3749 }
3750
3751 static struct symtab *
3752 dw2_find_last_source_symtab (struct objfile *objfile)
3753 {
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3758
3759 if (cust == NULL)
3760 return NULL;
3761
3762 return compunit_primary_filetab (cust);
3763 }
3764
3765 /* Traversal function for dw2_forget_cached_source_info. */
3766
3767 static int
3768 dw2_free_cached_file_names (void **slot, void *info)
3769 {
3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3771
3772 if (file_data->real_names)
3773 {
3774 int i;
3775
3776 for (i = 0; i < file_data->num_file_names; ++i)
3777 {
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
3780 }
3781 }
3782
3783 return 1;
3784 }
3785
3786 static void
3787 dw2_forget_cached_source_info (struct objfile *objfile)
3788 {
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
3794 }
3795
3796 /* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799 static int
3800 dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
3802 const char *name, const char *real_path,
3803 gdb::function_view<bool (symtab *)> callback)
3804 {
3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3806
3807 /* Don't visit already-expanded CUs. */
3808 if (per_cu->v.quick->compunit_symtab)
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
3813 dw2_instantiate_symtab (per_cu, false);
3814
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
3817 }
3818
3819 /* Implementation of the map_symtabs_matching_filename method. */
3820
3821 static bool
3822 dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
3825 {
3826 const char *name_basename = lbasename (name);
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
3829
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
3832
3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3834 {
3835 /* We only need to look at symtabs not already expanded. */
3836 if (per_cu->v.quick->compunit_symtab)
3837 continue;
3838
3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
3840 if (file_data == NULL)
3841 continue;
3842
3843 for (int j = 0; j < file_data->num_file_names; ++j)
3844 {
3845 const char *this_name = file_data->file_names[j];
3846 const char *this_real_name;
3847
3848 if (compare_filenames_for_search (this_name, name))
3849 {
3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3851 callback))
3852 return true;
3853 continue;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870
3871 if (real_path != NULL)
3872 {
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
3875 if (this_real_name != NULL
3876 && FILENAME_CMP (real_path, this_real_name) == 0)
3877 {
3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3879 callback))
3880 return true;
3881 continue;
3882 }
3883 }
3884 }
3885 }
3886
3887 return false;
3888 }
3889
3890 /* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892 struct dw2_symtab_iterator
3893 {
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
3915 };
3916
3917 /* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3920
3921 static void
3922 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928 {
3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
3934 iter->global_seen = 0;
3935
3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946 }
3947
3948 /* Return the next matching CU or NULL if there are no more. */
3949
3950 static struct dwarf2_per_cu_data *
3951 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952 {
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
3970 (dwarf2_per_objfile->index_table->version >= 7
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3973 /* Don't crash on bad data. */
3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3975 + dwarf2_per_objfile->all_type_units.size ()))
3976 {
3977 complaint (_(".gdb_index entry has bad CU index"
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3980 continue;
3981 }
3982
3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3984
3985 /* Skip if already read in. */
3986 if (per_cu->v.quick->compunit_symtab)
3987 continue;
3988
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032 }
4033
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
4037 {
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4041
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4046
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4048
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4055
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
4059
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4063
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
4070
4071 /* Keep looking through other CUs. */
4072 }
4073
4074 return stab_best;
4075 }
4076
4077 static void
4078 dw2_print_stats (struct objfile *objfile)
4079 {
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4084 int count = 0;
4085
4086 for (int i = 0; i < total; ++i)
4087 {
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4089
4090 if (!per_cu->v.quick->compunit_symtab)
4091 ++count;
4092 }
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 }
4096
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
4102 static void
4103 dw2_dump (struct objfile *objfile)
4104 {
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4118 }
4119
4120 static void
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123 {
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4126
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4129
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
4133
4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4135 dw2_instantiate_symtab (per_cu, false);
4136
4137 }
4138
4139 static void
4140 dw2_expand_all_symtabs (struct objfile *objfile)
4141 {
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4145 + dwarf2_per_objfile->all_type_units.size ());
4146
4147 for (int i = 0; i < total_units; ++i)
4148 {
4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4150
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
4157 }
4158 }
4159
4160 static void
4161 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
4163 {
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4173 {
4174 /* We only need to look at symtabs not already expanded. */
4175 if (per_cu->v.quick->compunit_symtab)
4176 continue;
4177
4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
4179 if (file_data == NULL)
4180 continue;
4181
4182 for (int j = 0; j < file_data->num_file_names; ++j)
4183 {
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
4187 {
4188 dw2_instantiate_symtab (per_cu, false);
4189 break;
4190 }
4191 }
4192 }
4193 }
4194
4195 static void
4196 dw2_map_matching_symbols (struct objfile *objfile,
4197 const char * name, domain_enum domain,
4198 int global,
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
4201 void *data, symbol_name_match_type match,
4202 symbol_compare_ftype *ordered_compare)
4203 {
4204 /* Currently unimplemented; used for Ada. The function can be called if the
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
4207 }
4208
4209 /* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232 */
4233 class gdb_index_symbol_name_matcher
4234 {
4235 public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243 private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250 };
4251
4252 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255 {
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
4268 symbol_name_matcher_ftype *name_matcher
4269 = get_symbol_name_matcher (lang, m_lookup_name);
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
4283 }
4284 }
4285
4286 bool
4287 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288 {
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294 }
4295
4296 /* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301 static std::string
4302 make_sort_after_prefix_name (const char *search_name)
4303 {
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367 }
4368
4369 /* See declaration. */
4370
4371 std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
4373 mapped_index_base::find_name_components_bounds
4374 (const lookup_name_info &lookup_name_without_params) const
4375 {
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4378
4379 const char *cplus
4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4381
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
4417 if (lookup_name_without_params.completion_mode ())
4418 {
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
4432 return end;
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
4440 return {lower, upper};
4441 }
4442
4443 /* See declaration. */
4444
4445 void
4446 mapped_index_base::build_name_components ()
4447 {
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
4464 {
4465 if (this->symbol_name_slot_invalid (idx))
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501 }
4502
4503 /* Helper for dw2_expand_symtabs_matching that works with a
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
4508 symbol's index in the mapped_index_base symbol table. */
4509
4510 static void
4511 dw2_expand_symtabs_matching_symbol
4512 (mapped_index_base &index,
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517 {
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
4540 matches.reserve (std::distance (bounds.first, bounds.second));
4541
4542 for (; bounds.first != bounds.second; ++bounds.first)
4543 {
4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4548 continue;
4549
4550 matches.push_back (bounds.first->idx);
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569 }
4570
4571 #if GDB_SELF_TEST
4572
4573 namespace selftests { namespace dw2_expand_symtabs_matching {
4574
4575 /* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579 class mock_mapped_index : public mapped_index_base
4580 {
4581 public:
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
4584 {}
4585
4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4587
4588 /* Return the number of names in the symbol table. */
4589 size_t symbol_name_count () const override
4590 {
4591 return m_symbol_table.size ();
4592 }
4593
4594 /* Get the name of the symbol at IDX in the symbol table. */
4595 const char *symbol_name_at (offset_type idx) const override
4596 {
4597 return m_symbol_table[idx];
4598 }
4599
4600 private:
4601 gdb::array_view<const char *> m_symbol_table;
4602 };
4603
4604 /* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607 static const char *
4608 string_or_null (const char *str)
4609 {
4610 return str != NULL ? str : "<null>";
4611 }
4612
4613 /* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620 static bool
4621 check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626 {
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
4650 const char *matched_name = mock_index.symbol_name_at (idx);
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664 }
4665
4666 /* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668 static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
4679
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702 #define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708 };
4709
4710 /* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
4713
4714 static bool
4715 check_find_bounds_finds (mapped_index_base &index,
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718 {
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737 }
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
4742 static void
4743 test_mapped_index_find_name_component_bounds ()
4744 {
4745 mock_mapped_index mock_index (test_symbols);
4746
4747 mock_index.build_name_components ();
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
4755 };
4756
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
4768 SELF_CHECK (check_find_bounds_finds (mock_index,
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
4774 SELF_CHECK (check_find_bounds_finds (mock_index,
4775 "\377\377", expected_syms2));
4776 }
4777 }
4778
4779 /* Test dw2_expand_symtabs_matching_symbol. */
4780
4781 static void
4782 test_dw2_expand_symtabs_matching_symbol ()
4783 {
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793 #define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
4979 SELF_CHECK (!any_mismatch);
4980
4981 #undef EXPECT
4982 #undef CHECK_MATCH
4983 }
4984
4985 static void
4986 run_test ()
4987 {
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990 }
4991
4992 }} // namespace selftests::dw2_expand_symtabs_matching
4993
4994 #endif /* GDB_SELF_TEST */
4995
4996 /* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001 static void
5002 dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006 {
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
5012 dw2_instantiate_symtab (per_cu, false);
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019 }
5020
5021 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025 static void
5026 dw2_expand_marked_cus
5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031 {
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
5034 mapped_index &index = *dwarf2_per_objfile->index_table;
5035
5036 vec = (offset_type *) (index.constant_pool
5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
5057 {
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
5063
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
5068 {
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5075 continue;
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
5083 }
5084 }
5085
5086 /* Don't crash on bad data. */
5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5088 + dwarf2_per_objfile->all_type_units.size ()))
5089 {
5090 complaint (_(".gdb_index entry has bad CU index"
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
5093 continue;
5094 }
5095
5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
5099 }
5100 }
5101
5102 /* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
5106 static void
5107 dw_expand_symtabs_matching_file_matcher
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5110 {
5111 if (file_matcher == NULL)
5112 return;
5113
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
5122
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
5125
5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5127 {
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
5148 for (int j = 0; j < file_data->num_file_names; ++j)
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
5177 *slot = file_data;
5178 }
5179 }
5180
5181 static void
5182 dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189 {
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5206 expansion_notify, kind);
5207 });
5208 }
5209
5210 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213 static struct compunit_symtab *
5214 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216 {
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236 }
5237
5238 static struct compunit_symtab *
5239 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244 {
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
5248 if (!objfile->partial_symtabs->psymtabs_addrmap)
5249 return NULL;
5250
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
5253 data = (struct dwarf2_per_cu_data *) addrmap_find
5254 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268 }
5269
5270 static void
5271 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273 {
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5290 {
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5302 {
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
5308 if (file_data == NULL)
5309 continue;
5310
5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335 }
5336
5337 static int
5338 dw2_has_symbols (struct objfile *objfile)
5339 {
5340 return 1;
5341 }
5342
5343 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344 {
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360 };
5361
5362 /* DWARF-5 debug_names reader. */
5363
5364 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367 /* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373 static bool
5374 read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378 {
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548 }
5549
5550 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553 static void
5554 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
5557 bool is_dwz)
5558 {
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
5576 dwarf2_per_cu_data *per_cu
5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5578 sect_off_prev, length);
5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583 }
5584
5585 /* Read the CU list from the mapped index, and use it to create all
5586 the CU objects for this dwarf2_per_objfile. */
5587
5588 static void
5589 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592 {
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5595
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
5598 false /* is_dwz */);
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5605 true /* is_dwz */);
5606 }
5607
5608 /* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611 static bool
5612 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5613 {
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
5621 *map))
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
5625 if (map->name_count == 0)
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5644
5645 if (map->tu_count != 0)
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5657 }
5658
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
5661
5662 dwarf2_per_objfile->debug_names_table = std::move (map);
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5666
5667 return true;
5668 }
5669
5670 /* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673 class dw2_debug_names_iterator
5674 {
5675 public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697 private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721 };
5722
5723 const char *
5724 mapped_debug_names::namei_to_name (uint32_t namei) const
5725 {
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5733 }
5734
5735 /* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739 const gdb_byte *
5740 dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742 {
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5778 "[in module %s]"),
5779 namei, map.name_count,
5780 objfile_name (map.dwarf2_per_objfile->objfile));
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797 #if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
5800 complaint (_("Wrong .debug_names hash for string at index %u "
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805 #endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821 }
5822
5823 const gdb_byte *
5824 dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826 {
5827 if (namei >= map.name_count)
5828 {
5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5830 "[in module %s]"),
5831 namei, map.name_count,
5832 objfile_name (map.dwarf2_per_objfile->objfile));
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842
5843 /* See dw2_debug_names_iterator. */
5844
5845 dwarf2_per_cu_data *
5846 dw2_debug_names_iterator::next ()
5847 {
5848 if (m_addr == NULL)
5849 return NULL;
5850
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
5867 "[in module %s]"),
5868 pulongest (abbrev), objfile_name (objfile));
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5892 dwarf_form_name (attr.form),
5893 objfile_name (objfile));
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5901 {
5902 complaint (_(".debug_names entry has bad CU index %s"
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
5909 break;
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5913 {
5914 complaint (_(".debug_names entry has bad TU index %s"
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5921 break;
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
5993 {
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
5996 {
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
6010 }
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
6024 }
6025
6026 return per_cu;
6027 }
6028
6029 static struct compunit_symtab *
6030 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
6032 {
6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
6036
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
6039 {
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
6044
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
6047
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6056
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
6060
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
6064
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
6071
6072 /* Keep looking through other CUs. */
6073 }
6074
6075 return stab_best;
6076 }
6077
6078 /* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
6081
6082 static void
6083 dw2_debug_names_dump (struct objfile *objfile)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
6095 }
6096
6097 static void
6098 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
6100 {
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
6103
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
6106 {
6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6108
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6112
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
6115 dw2_instantiate_symtab (per_cu, false);
6116 }
6117 }
6118
6119 static void
6120 dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
6134
6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6136
6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6138
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
6142 {
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
6146
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
6151 });
6152 }
6153
6154 const struct quick_symbol_functions dwarf2_debug_names_functions =
6155 {
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
6159 dw2_map_symtabs_matching_filename,
6160 dw2_debug_names_lookup_symbol,
6161 dw2_print_stats,
6162 dw2_debug_names_dump,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176 template <typename T>
6177 static gdb::array_view<const gdb_byte>
6178 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179 {
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
6192 /* dwarf2_section_info::size is a bfd_size_type, while
6193 gdb::array_view works with size_t. On 32-bit hosts, with
6194 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6195 is 32-bit. So we need an explicit narrowing conversion here.
6196 This is fine, because it's impossible to allocate or mmap an
6197 array/buffer larger than what size_t can represent. */
6198 return gdb::make_array_view (section->buffer, section->size);
6199 }
6200
6201 /* Lookup the index cache for the contents of the index associated to
6202 DWARF2_OBJ. */
6203
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6206 {
6207 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6208 if (build_id == nullptr)
6209 return {};
6210
6211 return global_index_cache.lookup_gdb_index (build_id,
6212 &dwarf2_obj->index_cache_res);
6213 }
6214
6215 /* Same as the above, but for DWZ. */
6216
6217 static gdb::array_view<const gdb_byte>
6218 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6219 {
6220 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6221 if (build_id == nullptr)
6222 return {};
6223
6224 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6225 }
6226
6227 /* See symfile.h. */
6228
6229 bool
6230 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 /* If we're about to read full symbols, don't bother with the
6236 indices. In this case we also don't care if some other debug
6237 format is making psymtabs, because they are all about to be
6238 expanded anyway. */
6239 if ((objfile->flags & OBJF_READNOW))
6240 {
6241 dwarf2_per_objfile->using_index = 1;
6242 create_all_comp_units (dwarf2_per_objfile);
6243 create_all_type_units (dwarf2_per_objfile);
6244 dwarf2_per_objfile->quick_file_names_table
6245 = create_quick_file_names_table
6246 (dwarf2_per_objfile->all_comp_units.size ());
6247
6248 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6249 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6250 {
6251 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6252
6253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6254 struct dwarf2_per_cu_quick_data);
6255 }
6256
6257 /* Return 1 so that gdb sees the "quick" functions. However,
6258 these functions will be no-ops because we will have expanded
6259 all symtabs. */
6260 *index_kind = dw_index_kind::GDB_INDEX;
6261 return true;
6262 }
6263
6264 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6265 {
6266 *index_kind = dw_index_kind::DEBUG_NAMES;
6267 return true;
6268 }
6269
6270 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6271 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6272 get_gdb_index_contents_from_section<dwz_file>))
6273 {
6274 *index_kind = dw_index_kind::GDB_INDEX;
6275 return true;
6276 }
6277
6278 /* ... otherwise, try to find the index in the index cache. */
6279 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6280 get_gdb_index_contents_from_cache,
6281 get_gdb_index_contents_from_cache_dwz))
6282 {
6283 global_index_cache.hit ();
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 global_index_cache.miss ();
6289 return false;
6290 }
6291
6292 \f
6293
6294 /* Build a partial symbol table. */
6295
6296 void
6297 dwarf2_build_psymtabs (struct objfile *objfile)
6298 {
6299 struct dwarf2_per_objfile *dwarf2_per_objfile
6300 = get_dwarf2_per_objfile (objfile);
6301
6302 init_psymbol_list (objfile, 1024);
6303
6304 TRY
6305 {
6306 /* This isn't really ideal: all the data we allocate on the
6307 objfile's obstack is still uselessly kept around. However,
6308 freeing it seems unsafe. */
6309 psymtab_discarder psymtabs (objfile);
6310 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6311 psymtabs.keep ();
6312
6313 /* (maybe) store an index in the cache. */
6314 global_index_cache.store (dwarf2_per_objfile);
6315 }
6316 CATCH (except, RETURN_MASK_ERROR)
6317 {
6318 exception_print (gdb_stderr, except);
6319 }
6320 END_CATCH
6321 }
6322
6323 /* Return the total length of the CU described by HEADER. */
6324
6325 static unsigned int
6326 get_cu_length (const struct comp_unit_head *header)
6327 {
6328 return header->initial_length_size + header->length;
6329 }
6330
6331 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6332
6333 static inline bool
6334 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6335 {
6336 sect_offset bottom = cu_header->sect_off;
6337 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6338
6339 return sect_off >= bottom && sect_off < top;
6340 }
6341
6342 /* Find the base address of the compilation unit for range lists and
6343 location lists. It will normally be specified by DW_AT_low_pc.
6344 In DWARF-3 draft 4, the base address could be overridden by
6345 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6346 compilation units with discontinuous ranges. */
6347
6348 static void
6349 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6350 {
6351 struct attribute *attr;
6352
6353 cu->base_known = 0;
6354 cu->base_address = 0;
6355
6356 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6357 if (attr)
6358 {
6359 cu->base_address = attr_value_as_address (attr);
6360 cu->base_known = 1;
6361 }
6362 else
6363 {
6364 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6365 if (attr)
6366 {
6367 cu->base_address = attr_value_as_address (attr);
6368 cu->base_known = 1;
6369 }
6370 }
6371 }
6372
6373 /* Read in the comp unit header information from the debug_info at info_ptr.
6374 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6375 NOTE: This leaves members offset, first_die_offset to be filled in
6376 by the caller. */
6377
6378 static const gdb_byte *
6379 read_comp_unit_head (struct comp_unit_head *cu_header,
6380 const gdb_byte *info_ptr,
6381 struct dwarf2_section_info *section,
6382 rcuh_kind section_kind)
6383 {
6384 int signed_addr;
6385 unsigned int bytes_read;
6386 const char *filename = get_section_file_name (section);
6387 bfd *abfd = get_section_bfd_owner (section);
6388
6389 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6390 cu_header->initial_length_size = bytes_read;
6391 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6392 info_ptr += bytes_read;
6393 cu_header->version = read_2_bytes (abfd, info_ptr);
6394 if (cu_header->version < 2 || cu_header->version > 5)
6395 error (_("Dwarf Error: wrong version in compilation unit header "
6396 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6397 cu_header->version, filename);
6398 info_ptr += 2;
6399 if (cu_header->version < 5)
6400 switch (section_kind)
6401 {
6402 case rcuh_kind::COMPILE:
6403 cu_header->unit_type = DW_UT_compile;
6404 break;
6405 case rcuh_kind::TYPE:
6406 cu_header->unit_type = DW_UT_type;
6407 break;
6408 default:
6409 internal_error (__FILE__, __LINE__,
6410 _("read_comp_unit_head: invalid section_kind"));
6411 }
6412 else
6413 {
6414 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6415 (read_1_byte (abfd, info_ptr));
6416 info_ptr += 1;
6417 switch (cu_header->unit_type)
6418 {
6419 case DW_UT_compile:
6420 if (section_kind != rcuh_kind::COMPILE)
6421 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6422 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6423 filename);
6424 break;
6425 case DW_UT_type:
6426 section_kind = rcuh_kind::TYPE;
6427 break;
6428 default:
6429 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6430 "(is %d, should be %d or %d) [in module %s]"),
6431 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6432 }
6433
6434 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6435 info_ptr += 1;
6436 }
6437 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6438 cu_header,
6439 &bytes_read);
6440 info_ptr += bytes_read;
6441 if (cu_header->version < 5)
6442 {
6443 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6444 info_ptr += 1;
6445 }
6446 signed_addr = bfd_get_sign_extend_vma (abfd);
6447 if (signed_addr < 0)
6448 internal_error (__FILE__, __LINE__,
6449 _("read_comp_unit_head: dwarf from non elf file"));
6450 cu_header->signed_addr_p = signed_addr;
6451
6452 if (section_kind == rcuh_kind::TYPE)
6453 {
6454 LONGEST type_offset;
6455
6456 cu_header->signature = read_8_bytes (abfd, info_ptr);
6457 info_ptr += 8;
6458
6459 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6460 info_ptr += bytes_read;
6461 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6462 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6463 error (_("Dwarf Error: Too big type_offset in compilation unit "
6464 "header (is %s) [in module %s]"), plongest (type_offset),
6465 filename);
6466 }
6467
6468 return info_ptr;
6469 }
6470
6471 /* Helper function that returns the proper abbrev section for
6472 THIS_CU. */
6473
6474 static struct dwarf2_section_info *
6475 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6476 {
6477 struct dwarf2_section_info *abbrev;
6478 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6479
6480 if (this_cu->is_dwz)
6481 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6482 else
6483 abbrev = &dwarf2_per_objfile->abbrev;
6484
6485 return abbrev;
6486 }
6487
6488 /* Subroutine of read_and_check_comp_unit_head and
6489 read_and_check_type_unit_head to simplify them.
6490 Perform various error checking on the header. */
6491
6492 static void
6493 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6494 struct comp_unit_head *header,
6495 struct dwarf2_section_info *section,
6496 struct dwarf2_section_info *abbrev_section)
6497 {
6498 const char *filename = get_section_file_name (section);
6499
6500 if (to_underlying (header->abbrev_sect_off)
6501 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6502 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6503 "(offset %s + 6) [in module %s]"),
6504 sect_offset_str (header->abbrev_sect_off),
6505 sect_offset_str (header->sect_off),
6506 filename);
6507
6508 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6509 avoid potential 32-bit overflow. */
6510 if (((ULONGEST) header->sect_off + get_cu_length (header))
6511 > section->size)
6512 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6513 "(offset %s + 0) [in module %s]"),
6514 header->length, sect_offset_str (header->sect_off),
6515 filename);
6516 }
6517
6518 /* Read in a CU/TU header and perform some basic error checking.
6519 The contents of the header are stored in HEADER.
6520 The result is a pointer to the start of the first DIE. */
6521
6522 static const gdb_byte *
6523 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6524 struct comp_unit_head *header,
6525 struct dwarf2_section_info *section,
6526 struct dwarf2_section_info *abbrev_section,
6527 const gdb_byte *info_ptr,
6528 rcuh_kind section_kind)
6529 {
6530 const gdb_byte *beg_of_comp_unit = info_ptr;
6531
6532 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6533
6534 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6535
6536 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6537
6538 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6539 abbrev_section);
6540
6541 return info_ptr;
6542 }
6543
6544 /* Fetch the abbreviation table offset from a comp or type unit header. */
6545
6546 static sect_offset
6547 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6548 struct dwarf2_section_info *section,
6549 sect_offset sect_off)
6550 {
6551 bfd *abfd = get_section_bfd_owner (section);
6552 const gdb_byte *info_ptr;
6553 unsigned int initial_length_size, offset_size;
6554 uint16_t version;
6555
6556 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6557 info_ptr = section->buffer + to_underlying (sect_off);
6558 read_initial_length (abfd, info_ptr, &initial_length_size);
6559 offset_size = initial_length_size == 4 ? 4 : 8;
6560 info_ptr += initial_length_size;
6561
6562 version = read_2_bytes (abfd, info_ptr);
6563 info_ptr += 2;
6564 if (version >= 5)
6565 {
6566 /* Skip unit type and address size. */
6567 info_ptr += 2;
6568 }
6569
6570 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6571 }
6572
6573 /* Allocate a new partial symtab for file named NAME and mark this new
6574 partial symtab as being an include of PST. */
6575
6576 static void
6577 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6578 struct objfile *objfile)
6579 {
6580 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6581
6582 if (!IS_ABSOLUTE_PATH (subpst->filename))
6583 {
6584 /* It shares objfile->objfile_obstack. */
6585 subpst->dirname = pst->dirname;
6586 }
6587
6588 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6589 subpst->dependencies[0] = pst;
6590 subpst->number_of_dependencies = 1;
6591
6592 subpst->read_symtab = pst->read_symtab;
6593
6594 /* No private part is necessary for include psymtabs. This property
6595 can be used to differentiate between such include psymtabs and
6596 the regular ones. */
6597 subpst->read_symtab_private = NULL;
6598 }
6599
6600 /* Read the Line Number Program data and extract the list of files
6601 included by the source file represented by PST. Build an include
6602 partial symtab for each of these included files. */
6603
6604 static void
6605 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6606 struct die_info *die,
6607 struct partial_symtab *pst)
6608 {
6609 line_header_up lh;
6610 struct attribute *attr;
6611
6612 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6613 if (attr)
6614 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6615 if (lh == NULL)
6616 return; /* No linetable, so no includes. */
6617
6618 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6619 that we pass in the raw text_low here; that is ok because we're
6620 only decoding the line table to make include partial symtabs, and
6621 so the addresses aren't really used. */
6622 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6623 pst->raw_text_low (), 1);
6624 }
6625
6626 static hashval_t
6627 hash_signatured_type (const void *item)
6628 {
6629 const struct signatured_type *sig_type
6630 = (const struct signatured_type *) item;
6631
6632 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6633 return sig_type->signature;
6634 }
6635
6636 static int
6637 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6638 {
6639 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6640 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6641
6642 return lhs->signature == rhs->signature;
6643 }
6644
6645 /* Allocate a hash table for signatured types. */
6646
6647 static htab_t
6648 allocate_signatured_type_table (struct objfile *objfile)
6649 {
6650 return htab_create_alloc_ex (41,
6651 hash_signatured_type,
6652 eq_signatured_type,
6653 NULL,
6654 &objfile->objfile_obstack,
6655 hashtab_obstack_allocate,
6656 dummy_obstack_deallocate);
6657 }
6658
6659 /* A helper function to add a signatured type CU to a table. */
6660
6661 static int
6662 add_signatured_type_cu_to_table (void **slot, void *datum)
6663 {
6664 struct signatured_type *sigt = (struct signatured_type *) *slot;
6665 std::vector<signatured_type *> *all_type_units
6666 = (std::vector<signatured_type *> *) datum;
6667
6668 all_type_units->push_back (sigt);
6669
6670 return 1;
6671 }
6672
6673 /* A helper for create_debug_types_hash_table. Read types from SECTION
6674 and fill them into TYPES_HTAB. It will process only type units,
6675 therefore DW_UT_type. */
6676
6677 static void
6678 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6679 struct dwo_file *dwo_file,
6680 dwarf2_section_info *section, htab_t &types_htab,
6681 rcuh_kind section_kind)
6682 {
6683 struct objfile *objfile = dwarf2_per_objfile->objfile;
6684 struct dwarf2_section_info *abbrev_section;
6685 bfd *abfd;
6686 const gdb_byte *info_ptr, *end_ptr;
6687
6688 abbrev_section = (dwo_file != NULL
6689 ? &dwo_file->sections.abbrev
6690 : &dwarf2_per_objfile->abbrev);
6691
6692 if (dwarf_read_debug)
6693 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6694 get_section_name (section),
6695 get_section_file_name (abbrev_section));
6696
6697 dwarf2_read_section (objfile, section);
6698 info_ptr = section->buffer;
6699
6700 if (info_ptr == NULL)
6701 return;
6702
6703 /* We can't set abfd until now because the section may be empty or
6704 not present, in which case the bfd is unknown. */
6705 abfd = get_section_bfd_owner (section);
6706
6707 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6708 because we don't need to read any dies: the signature is in the
6709 header. */
6710
6711 end_ptr = info_ptr + section->size;
6712 while (info_ptr < end_ptr)
6713 {
6714 struct signatured_type *sig_type;
6715 struct dwo_unit *dwo_tu;
6716 void **slot;
6717 const gdb_byte *ptr = info_ptr;
6718 struct comp_unit_head header;
6719 unsigned int length;
6720
6721 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6722
6723 /* Initialize it due to a false compiler warning. */
6724 header.signature = -1;
6725 header.type_cu_offset_in_tu = (cu_offset) -1;
6726
6727 /* We need to read the type's signature in order to build the hash
6728 table, but we don't need anything else just yet. */
6729
6730 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6731 abbrev_section, ptr, section_kind);
6732
6733 length = get_cu_length (&header);
6734
6735 /* Skip dummy type units. */
6736 if (ptr >= info_ptr + length
6737 || peek_abbrev_code (abfd, ptr) == 0
6738 || header.unit_type != DW_UT_type)
6739 {
6740 info_ptr += length;
6741 continue;
6742 }
6743
6744 if (types_htab == NULL)
6745 {
6746 if (dwo_file)
6747 types_htab = allocate_dwo_unit_table (objfile);
6748 else
6749 types_htab = allocate_signatured_type_table (objfile);
6750 }
6751
6752 if (dwo_file)
6753 {
6754 sig_type = NULL;
6755 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6756 struct dwo_unit);
6757 dwo_tu->dwo_file = dwo_file;
6758 dwo_tu->signature = header.signature;
6759 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6760 dwo_tu->section = section;
6761 dwo_tu->sect_off = sect_off;
6762 dwo_tu->length = length;
6763 }
6764 else
6765 {
6766 /* N.B.: type_offset is not usable if this type uses a DWO file.
6767 The real type_offset is in the DWO file. */
6768 dwo_tu = NULL;
6769 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6770 struct signatured_type);
6771 sig_type->signature = header.signature;
6772 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6773 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6774 sig_type->per_cu.is_debug_types = 1;
6775 sig_type->per_cu.section = section;
6776 sig_type->per_cu.sect_off = sect_off;
6777 sig_type->per_cu.length = length;
6778 }
6779
6780 slot = htab_find_slot (types_htab,
6781 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6782 INSERT);
6783 gdb_assert (slot != NULL);
6784 if (*slot != NULL)
6785 {
6786 sect_offset dup_sect_off;
6787
6788 if (dwo_file)
6789 {
6790 const struct dwo_unit *dup_tu
6791 = (const struct dwo_unit *) *slot;
6792
6793 dup_sect_off = dup_tu->sect_off;
6794 }
6795 else
6796 {
6797 const struct signatured_type *dup_tu
6798 = (const struct signatured_type *) *slot;
6799
6800 dup_sect_off = dup_tu->per_cu.sect_off;
6801 }
6802
6803 complaint (_("debug type entry at offset %s is duplicate to"
6804 " the entry at offset %s, signature %s"),
6805 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6806 hex_string (header.signature));
6807 }
6808 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6809
6810 if (dwarf_read_debug > 1)
6811 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6812 sect_offset_str (sect_off),
6813 hex_string (header.signature));
6814
6815 info_ptr += length;
6816 }
6817 }
6818
6819 /* Create the hash table of all entries in the .debug_types
6820 (or .debug_types.dwo) section(s).
6821 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6822 otherwise it is NULL.
6823
6824 The result is a pointer to the hash table or NULL if there are no types.
6825
6826 Note: This function processes DWO files only, not DWP files. */
6827
6828 static void
6829 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6830 struct dwo_file *dwo_file,
6831 VEC (dwarf2_section_info_def) *types,
6832 htab_t &types_htab)
6833 {
6834 int ix;
6835 struct dwarf2_section_info *section;
6836
6837 if (VEC_empty (dwarf2_section_info_def, types))
6838 return;
6839
6840 for (ix = 0;
6841 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6842 ++ix)
6843 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6844 types_htab, rcuh_kind::TYPE);
6845 }
6846
6847 /* Create the hash table of all entries in the .debug_types section,
6848 and initialize all_type_units.
6849 The result is zero if there is an error (e.g. missing .debug_types section),
6850 otherwise non-zero. */
6851
6852 static int
6853 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6854 {
6855 htab_t types_htab = NULL;
6856
6857 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6858 &dwarf2_per_objfile->info, types_htab,
6859 rcuh_kind::COMPILE);
6860 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6861 dwarf2_per_objfile->types, types_htab);
6862 if (types_htab == NULL)
6863 {
6864 dwarf2_per_objfile->signatured_types = NULL;
6865 return 0;
6866 }
6867
6868 dwarf2_per_objfile->signatured_types = types_htab;
6869
6870 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6871 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6872
6873 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6874 &dwarf2_per_objfile->all_type_units);
6875
6876 return 1;
6877 }
6878
6879 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6880 If SLOT is non-NULL, it is the entry to use in the hash table.
6881 Otherwise we find one. */
6882
6883 static struct signatured_type *
6884 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6885 void **slot)
6886 {
6887 struct objfile *objfile = dwarf2_per_objfile->objfile;
6888
6889 if (dwarf2_per_objfile->all_type_units.size ()
6890 == dwarf2_per_objfile->all_type_units.capacity ())
6891 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6892
6893 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6894 struct signatured_type);
6895
6896 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6897 sig_type->signature = sig;
6898 sig_type->per_cu.is_debug_types = 1;
6899 if (dwarf2_per_objfile->using_index)
6900 {
6901 sig_type->per_cu.v.quick =
6902 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6903 struct dwarf2_per_cu_quick_data);
6904 }
6905
6906 if (slot == NULL)
6907 {
6908 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6909 sig_type, INSERT);
6910 }
6911 gdb_assert (*slot == NULL);
6912 *slot = sig_type;
6913 /* The rest of sig_type must be filled in by the caller. */
6914 return sig_type;
6915 }
6916
6917 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6918 Fill in SIG_ENTRY with DWO_ENTRY. */
6919
6920 static void
6921 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6922 struct signatured_type *sig_entry,
6923 struct dwo_unit *dwo_entry)
6924 {
6925 /* Make sure we're not clobbering something we don't expect to. */
6926 gdb_assert (! sig_entry->per_cu.queued);
6927 gdb_assert (sig_entry->per_cu.cu == NULL);
6928 if (dwarf2_per_objfile->using_index)
6929 {
6930 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6931 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6932 }
6933 else
6934 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6935 gdb_assert (sig_entry->signature == dwo_entry->signature);
6936 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6937 gdb_assert (sig_entry->type_unit_group == NULL);
6938 gdb_assert (sig_entry->dwo_unit == NULL);
6939
6940 sig_entry->per_cu.section = dwo_entry->section;
6941 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6942 sig_entry->per_cu.length = dwo_entry->length;
6943 sig_entry->per_cu.reading_dwo_directly = 1;
6944 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6945 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6946 sig_entry->dwo_unit = dwo_entry;
6947 }
6948
6949 /* Subroutine of lookup_signatured_type.
6950 If we haven't read the TU yet, create the signatured_type data structure
6951 for a TU to be read in directly from a DWO file, bypassing the stub.
6952 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6953 using .gdb_index, then when reading a CU we want to stay in the DWO file
6954 containing that CU. Otherwise we could end up reading several other DWO
6955 files (due to comdat folding) to process the transitive closure of all the
6956 mentioned TUs, and that can be slow. The current DWO file will have every
6957 type signature that it needs.
6958 We only do this for .gdb_index because in the psymtab case we already have
6959 to read all the DWOs to build the type unit groups. */
6960
6961 static struct signatured_type *
6962 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6963 {
6964 struct dwarf2_per_objfile *dwarf2_per_objfile
6965 = cu->per_cu->dwarf2_per_objfile;
6966 struct objfile *objfile = dwarf2_per_objfile->objfile;
6967 struct dwo_file *dwo_file;
6968 struct dwo_unit find_dwo_entry, *dwo_entry;
6969 struct signatured_type find_sig_entry, *sig_entry;
6970 void **slot;
6971
6972 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6973
6974 /* If TU skeletons have been removed then we may not have read in any
6975 TUs yet. */
6976 if (dwarf2_per_objfile->signatured_types == NULL)
6977 {
6978 dwarf2_per_objfile->signatured_types
6979 = allocate_signatured_type_table (objfile);
6980 }
6981
6982 /* We only ever need to read in one copy of a signatured type.
6983 Use the global signatured_types array to do our own comdat-folding
6984 of types. If this is the first time we're reading this TU, and
6985 the TU has an entry in .gdb_index, replace the recorded data from
6986 .gdb_index with this TU. */
6987
6988 find_sig_entry.signature = sig;
6989 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6990 &find_sig_entry, INSERT);
6991 sig_entry = (struct signatured_type *) *slot;
6992
6993 /* We can get here with the TU already read, *or* in the process of being
6994 read. Don't reassign the global entry to point to this DWO if that's
6995 the case. Also note that if the TU is already being read, it may not
6996 have come from a DWO, the program may be a mix of Fission-compiled
6997 code and non-Fission-compiled code. */
6998
6999 /* Have we already tried to read this TU?
7000 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7001 needn't exist in the global table yet). */
7002 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7003 return sig_entry;
7004
7005 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7006 dwo_unit of the TU itself. */
7007 dwo_file = cu->dwo_unit->dwo_file;
7008
7009 /* Ok, this is the first time we're reading this TU. */
7010 if (dwo_file->tus == NULL)
7011 return NULL;
7012 find_dwo_entry.signature = sig;
7013 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7014 if (dwo_entry == NULL)
7015 return NULL;
7016
7017 /* If the global table doesn't have an entry for this TU, add one. */
7018 if (sig_entry == NULL)
7019 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7020
7021 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7022 sig_entry->per_cu.tu_read = 1;
7023 return sig_entry;
7024 }
7025
7026 /* Subroutine of lookup_signatured_type.
7027 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7028 then try the DWP file. If the TU stub (skeleton) has been removed then
7029 it won't be in .gdb_index. */
7030
7031 static struct signatured_type *
7032 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7033 {
7034 struct dwarf2_per_objfile *dwarf2_per_objfile
7035 = cu->per_cu->dwarf2_per_objfile;
7036 struct objfile *objfile = dwarf2_per_objfile->objfile;
7037 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7038 struct dwo_unit *dwo_entry;
7039 struct signatured_type find_sig_entry, *sig_entry;
7040 void **slot;
7041
7042 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7043 gdb_assert (dwp_file != NULL);
7044
7045 /* If TU skeletons have been removed then we may not have read in any
7046 TUs yet. */
7047 if (dwarf2_per_objfile->signatured_types == NULL)
7048 {
7049 dwarf2_per_objfile->signatured_types
7050 = allocate_signatured_type_table (objfile);
7051 }
7052
7053 find_sig_entry.signature = sig;
7054 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7055 &find_sig_entry, INSERT);
7056 sig_entry = (struct signatured_type *) *slot;
7057
7058 /* Have we already tried to read this TU?
7059 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7060 needn't exist in the global table yet). */
7061 if (sig_entry != NULL)
7062 return sig_entry;
7063
7064 if (dwp_file->tus == NULL)
7065 return NULL;
7066 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7067 sig, 1 /* is_debug_types */);
7068 if (dwo_entry == NULL)
7069 return NULL;
7070
7071 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7072 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7073
7074 return sig_entry;
7075 }
7076
7077 /* Lookup a signature based type for DW_FORM_ref_sig8.
7078 Returns NULL if signature SIG is not present in the table.
7079 It is up to the caller to complain about this. */
7080
7081 static struct signatured_type *
7082 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7083 {
7084 struct dwarf2_per_objfile *dwarf2_per_objfile
7085 = cu->per_cu->dwarf2_per_objfile;
7086
7087 if (cu->dwo_unit
7088 && dwarf2_per_objfile->using_index)
7089 {
7090 /* We're in a DWO/DWP file, and we're using .gdb_index.
7091 These cases require special processing. */
7092 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7093 return lookup_dwo_signatured_type (cu, sig);
7094 else
7095 return lookup_dwp_signatured_type (cu, sig);
7096 }
7097 else
7098 {
7099 struct signatured_type find_entry, *entry;
7100
7101 if (dwarf2_per_objfile->signatured_types == NULL)
7102 return NULL;
7103 find_entry.signature = sig;
7104 entry = ((struct signatured_type *)
7105 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7106 return entry;
7107 }
7108 }
7109 \f
7110 /* Low level DIE reading support. */
7111
7112 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7113
7114 static void
7115 init_cu_die_reader (struct die_reader_specs *reader,
7116 struct dwarf2_cu *cu,
7117 struct dwarf2_section_info *section,
7118 struct dwo_file *dwo_file,
7119 struct abbrev_table *abbrev_table)
7120 {
7121 gdb_assert (section->readin && section->buffer != NULL);
7122 reader->abfd = get_section_bfd_owner (section);
7123 reader->cu = cu;
7124 reader->dwo_file = dwo_file;
7125 reader->die_section = section;
7126 reader->buffer = section->buffer;
7127 reader->buffer_end = section->buffer + section->size;
7128 reader->comp_dir = NULL;
7129 reader->abbrev_table = abbrev_table;
7130 }
7131
7132 /* Subroutine of init_cutu_and_read_dies to simplify it.
7133 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7134 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7135 already.
7136
7137 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7138 from it to the DIE in the DWO. If NULL we are skipping the stub.
7139 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7140 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7141 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7142 STUB_COMP_DIR may be non-NULL.
7143 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7144 are filled in with the info of the DIE from the DWO file.
7145 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7146 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7147 kept around for at least as long as *RESULT_READER.
7148
7149 The result is non-zero if a valid (non-dummy) DIE was found. */
7150
7151 static int
7152 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7153 struct dwo_unit *dwo_unit,
7154 struct die_info *stub_comp_unit_die,
7155 const char *stub_comp_dir,
7156 struct die_reader_specs *result_reader,
7157 const gdb_byte **result_info_ptr,
7158 struct die_info **result_comp_unit_die,
7159 int *result_has_children,
7160 abbrev_table_up *result_dwo_abbrev_table)
7161 {
7162 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7163 struct objfile *objfile = dwarf2_per_objfile->objfile;
7164 struct dwarf2_cu *cu = this_cu->cu;
7165 bfd *abfd;
7166 const gdb_byte *begin_info_ptr, *info_ptr;
7167 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7168 int i,num_extra_attrs;
7169 struct dwarf2_section_info *dwo_abbrev_section;
7170 struct attribute *attr;
7171 struct die_info *comp_unit_die;
7172
7173 /* At most one of these may be provided. */
7174 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7175
7176 /* These attributes aren't processed until later:
7177 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7178 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7179 referenced later. However, these attributes are found in the stub
7180 which we won't have later. In order to not impose this complication
7181 on the rest of the code, we read them here and copy them to the
7182 DWO CU/TU die. */
7183
7184 stmt_list = NULL;
7185 low_pc = NULL;
7186 high_pc = NULL;
7187 ranges = NULL;
7188 comp_dir = NULL;
7189
7190 if (stub_comp_unit_die != NULL)
7191 {
7192 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7193 DWO file. */
7194 if (! this_cu->is_debug_types)
7195 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7196 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7197 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7198 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7199 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7200
7201 /* There should be a DW_AT_addr_base attribute here (if needed).
7202 We need the value before we can process DW_FORM_GNU_addr_index. */
7203 cu->addr_base = 0;
7204 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7205 if (attr)
7206 cu->addr_base = DW_UNSND (attr);
7207
7208 /* There should be a DW_AT_ranges_base attribute here (if needed).
7209 We need the value before we can process DW_AT_ranges. */
7210 cu->ranges_base = 0;
7211 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7212 if (attr)
7213 cu->ranges_base = DW_UNSND (attr);
7214 }
7215 else if (stub_comp_dir != NULL)
7216 {
7217 /* Reconstruct the comp_dir attribute to simplify the code below. */
7218 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7219 comp_dir->name = DW_AT_comp_dir;
7220 comp_dir->form = DW_FORM_string;
7221 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7222 DW_STRING (comp_dir) = stub_comp_dir;
7223 }
7224
7225 /* Set up for reading the DWO CU/TU. */
7226 cu->dwo_unit = dwo_unit;
7227 dwarf2_section_info *section = dwo_unit->section;
7228 dwarf2_read_section (objfile, section);
7229 abfd = get_section_bfd_owner (section);
7230 begin_info_ptr = info_ptr = (section->buffer
7231 + to_underlying (dwo_unit->sect_off));
7232 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7233
7234 if (this_cu->is_debug_types)
7235 {
7236 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7237
7238 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7239 &cu->header, section,
7240 dwo_abbrev_section,
7241 info_ptr, rcuh_kind::TYPE);
7242 /* This is not an assert because it can be caused by bad debug info. */
7243 if (sig_type->signature != cu->header.signature)
7244 {
7245 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7246 " TU at offset %s [in module %s]"),
7247 hex_string (sig_type->signature),
7248 hex_string (cu->header.signature),
7249 sect_offset_str (dwo_unit->sect_off),
7250 bfd_get_filename (abfd));
7251 }
7252 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7253 /* For DWOs coming from DWP files, we don't know the CU length
7254 nor the type's offset in the TU until now. */
7255 dwo_unit->length = get_cu_length (&cu->header);
7256 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7257
7258 /* Establish the type offset that can be used to lookup the type.
7259 For DWO files, we don't know it until now. */
7260 sig_type->type_offset_in_section
7261 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7262 }
7263 else
7264 {
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7267 dwo_abbrev_section,
7268 info_ptr, rcuh_kind::COMPILE);
7269 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7270 /* For DWOs coming from DWP files, we don't know the CU length
7271 until now. */
7272 dwo_unit->length = get_cu_length (&cu->header);
7273 }
7274
7275 *result_dwo_abbrev_table
7276 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7277 cu->header.abbrev_sect_off);
7278 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7279 result_dwo_abbrev_table->get ());
7280
7281 /* Read in the die, but leave space to copy over the attributes
7282 from the stub. This has the benefit of simplifying the rest of
7283 the code - all the work to maintain the illusion of a single
7284 DW_TAG_{compile,type}_unit DIE is done here. */
7285 num_extra_attrs = ((stmt_list != NULL)
7286 + (low_pc != NULL)
7287 + (high_pc != NULL)
7288 + (ranges != NULL)
7289 + (comp_dir != NULL));
7290 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7291 result_has_children, num_extra_attrs);
7292
7293 /* Copy over the attributes from the stub to the DIE we just read in. */
7294 comp_unit_die = *result_comp_unit_die;
7295 i = comp_unit_die->num_attrs;
7296 if (stmt_list != NULL)
7297 comp_unit_die->attrs[i++] = *stmt_list;
7298 if (low_pc != NULL)
7299 comp_unit_die->attrs[i++] = *low_pc;
7300 if (high_pc != NULL)
7301 comp_unit_die->attrs[i++] = *high_pc;
7302 if (ranges != NULL)
7303 comp_unit_die->attrs[i++] = *ranges;
7304 if (comp_dir != NULL)
7305 comp_unit_die->attrs[i++] = *comp_dir;
7306 comp_unit_die->num_attrs += num_extra_attrs;
7307
7308 if (dwarf_die_debug)
7309 {
7310 fprintf_unfiltered (gdb_stdlog,
7311 "Read die from %s@0x%x of %s:\n",
7312 get_section_name (section),
7313 (unsigned) (begin_info_ptr - section->buffer),
7314 bfd_get_filename (abfd));
7315 dump_die (comp_unit_die, dwarf_die_debug);
7316 }
7317
7318 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7319 TUs by skipping the stub and going directly to the entry in the DWO file.
7320 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7321 to get it via circuitous means. Blech. */
7322 if (comp_dir != NULL)
7323 result_reader->comp_dir = DW_STRING (comp_dir);
7324
7325 /* Skip dummy compilation units. */
7326 if (info_ptr >= begin_info_ptr + dwo_unit->length
7327 || peek_abbrev_code (abfd, info_ptr) == 0)
7328 return 0;
7329
7330 *result_info_ptr = info_ptr;
7331 return 1;
7332 }
7333
7334 /* Subroutine of init_cutu_and_read_dies to simplify it.
7335 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7336 Returns NULL if the specified DWO unit cannot be found. */
7337
7338 static struct dwo_unit *
7339 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7340 struct die_info *comp_unit_die)
7341 {
7342 struct dwarf2_cu *cu = this_cu->cu;
7343 ULONGEST signature;
7344 struct dwo_unit *dwo_unit;
7345 const char *comp_dir, *dwo_name;
7346
7347 gdb_assert (cu != NULL);
7348
7349 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7350 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7351 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7352
7353 if (this_cu->is_debug_types)
7354 {
7355 struct signatured_type *sig_type;
7356
7357 /* Since this_cu is the first member of struct signatured_type,
7358 we can go from a pointer to one to a pointer to the other. */
7359 sig_type = (struct signatured_type *) this_cu;
7360 signature = sig_type->signature;
7361 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7362 }
7363 else
7364 {
7365 struct attribute *attr;
7366
7367 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7368 if (! attr)
7369 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7370 " [in module %s]"),
7371 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7372 signature = DW_UNSND (attr);
7373 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7374 signature);
7375 }
7376
7377 return dwo_unit;
7378 }
7379
7380 /* Subroutine of init_cutu_and_read_dies to simplify it.
7381 See it for a description of the parameters.
7382 Read a TU directly from a DWO file, bypassing the stub. */
7383
7384 static void
7385 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7386 int use_existing_cu, int keep,
7387 die_reader_func_ftype *die_reader_func,
7388 void *data)
7389 {
7390 std::unique_ptr<dwarf2_cu> new_cu;
7391 struct signatured_type *sig_type;
7392 struct die_reader_specs reader;
7393 const gdb_byte *info_ptr;
7394 struct die_info *comp_unit_die;
7395 int has_children;
7396 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7397
7398 /* Verify we can do the following downcast, and that we have the
7399 data we need. */
7400 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7401 sig_type = (struct signatured_type *) this_cu;
7402 gdb_assert (sig_type->dwo_unit != NULL);
7403
7404 if (use_existing_cu && this_cu->cu != NULL)
7405 {
7406 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7407 /* There's no need to do the rereading_dwo_cu handling that
7408 init_cutu_and_read_dies does since we don't read the stub. */
7409 }
7410 else
7411 {
7412 /* If !use_existing_cu, this_cu->cu must be NULL. */
7413 gdb_assert (this_cu->cu == NULL);
7414 new_cu.reset (new dwarf2_cu (this_cu));
7415 }
7416
7417 /* A future optimization, if needed, would be to use an existing
7418 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7419 could share abbrev tables. */
7420
7421 /* The abbreviation table used by READER, this must live at least as long as
7422 READER. */
7423 abbrev_table_up dwo_abbrev_table;
7424
7425 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7426 NULL /* stub_comp_unit_die */,
7427 sig_type->dwo_unit->dwo_file->comp_dir,
7428 &reader, &info_ptr,
7429 &comp_unit_die, &has_children,
7430 &dwo_abbrev_table) == 0)
7431 {
7432 /* Dummy die. */
7433 return;
7434 }
7435
7436 /* All the "real" work is done here. */
7437 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7438
7439 /* This duplicates the code in init_cutu_and_read_dies,
7440 but the alternative is making the latter more complex.
7441 This function is only for the special case of using DWO files directly:
7442 no point in overly complicating the general case just to handle this. */
7443 if (new_cu != NULL && keep)
7444 {
7445 /* Link this CU into read_in_chain. */
7446 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7447 dwarf2_per_objfile->read_in_chain = this_cu;
7448 /* The chain owns it now. */
7449 new_cu.release ();
7450 }
7451 }
7452
7453 /* Initialize a CU (or TU) and read its DIEs.
7454 If the CU defers to a DWO file, read the DWO file as well.
7455
7456 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7457 Otherwise the table specified in the comp unit header is read in and used.
7458 This is an optimization for when we already have the abbrev table.
7459
7460 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7461 Otherwise, a new CU is allocated with xmalloc.
7462
7463 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7464 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7465
7466 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7467 linker) then DIE_READER_FUNC will not get called. */
7468
7469 static void
7470 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7471 struct abbrev_table *abbrev_table,
7472 int use_existing_cu, int keep,
7473 bool skip_partial,
7474 die_reader_func_ftype *die_reader_func,
7475 void *data)
7476 {
7477 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7478 struct objfile *objfile = dwarf2_per_objfile->objfile;
7479 struct dwarf2_section_info *section = this_cu->section;
7480 bfd *abfd = get_section_bfd_owner (section);
7481 struct dwarf2_cu *cu;
7482 const gdb_byte *begin_info_ptr, *info_ptr;
7483 struct die_reader_specs reader;
7484 struct die_info *comp_unit_die;
7485 int has_children;
7486 struct attribute *attr;
7487 struct signatured_type *sig_type = NULL;
7488 struct dwarf2_section_info *abbrev_section;
7489 /* Non-zero if CU currently points to a DWO file and we need to
7490 reread it. When this happens we need to reread the skeleton die
7491 before we can reread the DWO file (this only applies to CUs, not TUs). */
7492 int rereading_dwo_cu = 0;
7493
7494 if (dwarf_die_debug)
7495 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7496 this_cu->is_debug_types ? "type" : "comp",
7497 sect_offset_str (this_cu->sect_off));
7498
7499 if (use_existing_cu)
7500 gdb_assert (keep);
7501
7502 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7503 file (instead of going through the stub), short-circuit all of this. */
7504 if (this_cu->reading_dwo_directly)
7505 {
7506 /* Narrow down the scope of possibilities to have to understand. */
7507 gdb_assert (this_cu->is_debug_types);
7508 gdb_assert (abbrev_table == NULL);
7509 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7510 die_reader_func, data);
7511 return;
7512 }
7513
7514 /* This is cheap if the section is already read in. */
7515 dwarf2_read_section (objfile, section);
7516
7517 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7518
7519 abbrev_section = get_abbrev_section_for_cu (this_cu);
7520
7521 std::unique_ptr<dwarf2_cu> new_cu;
7522 if (use_existing_cu && this_cu->cu != NULL)
7523 {
7524 cu = this_cu->cu;
7525 /* If this CU is from a DWO file we need to start over, we need to
7526 refetch the attributes from the skeleton CU.
7527 This could be optimized by retrieving those attributes from when we
7528 were here the first time: the previous comp_unit_die was stored in
7529 comp_unit_obstack. But there's no data yet that we need this
7530 optimization. */
7531 if (cu->dwo_unit != NULL)
7532 rereading_dwo_cu = 1;
7533 }
7534 else
7535 {
7536 /* If !use_existing_cu, this_cu->cu must be NULL. */
7537 gdb_assert (this_cu->cu == NULL);
7538 new_cu.reset (new dwarf2_cu (this_cu));
7539 cu = new_cu.get ();
7540 }
7541
7542 /* Get the header. */
7543 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7544 {
7545 /* We already have the header, there's no need to read it in again. */
7546 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7547 }
7548 else
7549 {
7550 if (this_cu->is_debug_types)
7551 {
7552 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7553 &cu->header, section,
7554 abbrev_section, info_ptr,
7555 rcuh_kind::TYPE);
7556
7557 /* Since per_cu is the first member of struct signatured_type,
7558 we can go from a pointer to one to a pointer to the other. */
7559 sig_type = (struct signatured_type *) this_cu;
7560 gdb_assert (sig_type->signature == cu->header.signature);
7561 gdb_assert (sig_type->type_offset_in_tu
7562 == cu->header.type_cu_offset_in_tu);
7563 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7564
7565 /* LENGTH has not been set yet for type units if we're
7566 using .gdb_index. */
7567 this_cu->length = get_cu_length (&cu->header);
7568
7569 /* Establish the type offset that can be used to lookup the type. */
7570 sig_type->type_offset_in_section =
7571 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7572
7573 this_cu->dwarf_version = cu->header.version;
7574 }
7575 else
7576 {
7577 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7578 &cu->header, section,
7579 abbrev_section,
7580 info_ptr,
7581 rcuh_kind::COMPILE);
7582
7583 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7584 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7585 this_cu->dwarf_version = cu->header.version;
7586 }
7587 }
7588
7589 /* Skip dummy compilation units. */
7590 if (info_ptr >= begin_info_ptr + this_cu->length
7591 || peek_abbrev_code (abfd, info_ptr) == 0)
7592 return;
7593
7594 /* If we don't have them yet, read the abbrevs for this compilation unit.
7595 And if we need to read them now, make sure they're freed when we're
7596 done (own the table through ABBREV_TABLE_HOLDER). */
7597 abbrev_table_up abbrev_table_holder;
7598 if (abbrev_table != NULL)
7599 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7600 else
7601 {
7602 abbrev_table_holder
7603 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7604 cu->header.abbrev_sect_off);
7605 abbrev_table = abbrev_table_holder.get ();
7606 }
7607
7608 /* Read the top level CU/TU die. */
7609 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7610 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7611
7612 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7613 return;
7614
7615 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7616 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7617 table from the DWO file and pass the ownership over to us. It will be
7618 referenced from READER, so we must make sure to free it after we're done
7619 with READER.
7620
7621 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7622 DWO CU, that this test will fail (the attribute will not be present). */
7623 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7624 abbrev_table_up dwo_abbrev_table;
7625 if (attr)
7626 {
7627 struct dwo_unit *dwo_unit;
7628 struct die_info *dwo_comp_unit_die;
7629
7630 if (has_children)
7631 {
7632 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7633 " has children (offset %s) [in module %s]"),
7634 sect_offset_str (this_cu->sect_off),
7635 bfd_get_filename (abfd));
7636 }
7637 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7638 if (dwo_unit != NULL)
7639 {
7640 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7641 comp_unit_die, NULL,
7642 &reader, &info_ptr,
7643 &dwo_comp_unit_die, &has_children,
7644 &dwo_abbrev_table) == 0)
7645 {
7646 /* Dummy die. */
7647 return;
7648 }
7649 comp_unit_die = dwo_comp_unit_die;
7650 }
7651 else
7652 {
7653 /* Yikes, we couldn't find the rest of the DIE, we only have
7654 the stub. A complaint has already been logged. There's
7655 not much more we can do except pass on the stub DIE to
7656 die_reader_func. We don't want to throw an error on bad
7657 debug info. */
7658 }
7659 }
7660
7661 /* All of the above is setup for this call. Yikes. */
7662 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7663
7664 /* Done, clean up. */
7665 if (new_cu != NULL && keep)
7666 {
7667 /* Link this CU into read_in_chain. */
7668 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7669 dwarf2_per_objfile->read_in_chain = this_cu;
7670 /* The chain owns it now. */
7671 new_cu.release ();
7672 }
7673 }
7674
7675 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7676 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7677 to have already done the lookup to find the DWO file).
7678
7679 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7680 THIS_CU->is_debug_types, but nothing else.
7681
7682 We fill in THIS_CU->length.
7683
7684 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7685 linker) then DIE_READER_FUNC will not get called.
7686
7687 THIS_CU->cu is always freed when done.
7688 This is done in order to not leave THIS_CU->cu in a state where we have
7689 to care whether it refers to the "main" CU or the DWO CU. */
7690
7691 static void
7692 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7693 struct dwo_file *dwo_file,
7694 die_reader_func_ftype *die_reader_func,
7695 void *data)
7696 {
7697 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7698 struct objfile *objfile = dwarf2_per_objfile->objfile;
7699 struct dwarf2_section_info *section = this_cu->section;
7700 bfd *abfd = get_section_bfd_owner (section);
7701 struct dwarf2_section_info *abbrev_section;
7702 const gdb_byte *begin_info_ptr, *info_ptr;
7703 struct die_reader_specs reader;
7704 struct die_info *comp_unit_die;
7705 int has_children;
7706
7707 if (dwarf_die_debug)
7708 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7709 this_cu->is_debug_types ? "type" : "comp",
7710 sect_offset_str (this_cu->sect_off));
7711
7712 gdb_assert (this_cu->cu == NULL);
7713
7714 abbrev_section = (dwo_file != NULL
7715 ? &dwo_file->sections.abbrev
7716 : get_abbrev_section_for_cu (this_cu));
7717
7718 /* This is cheap if the section is already read in. */
7719 dwarf2_read_section (objfile, section);
7720
7721 struct dwarf2_cu cu (this_cu);
7722
7723 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7724 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7725 &cu.header, section,
7726 abbrev_section, info_ptr,
7727 (this_cu->is_debug_types
7728 ? rcuh_kind::TYPE
7729 : rcuh_kind::COMPILE));
7730
7731 this_cu->length = get_cu_length (&cu.header);
7732
7733 /* Skip dummy compilation units. */
7734 if (info_ptr >= begin_info_ptr + this_cu->length
7735 || peek_abbrev_code (abfd, info_ptr) == 0)
7736 return;
7737
7738 abbrev_table_up abbrev_table
7739 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7740 cu.header.abbrev_sect_off);
7741
7742 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7743 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7744
7745 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7746 }
7747
7748 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7749 does not lookup the specified DWO file.
7750 This cannot be used to read DWO files.
7751
7752 THIS_CU->cu is always freed when done.
7753 This is done in order to not leave THIS_CU->cu in a state where we have
7754 to care whether it refers to the "main" CU or the DWO CU.
7755 We can revisit this if the data shows there's a performance issue. */
7756
7757 static void
7758 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7759 die_reader_func_ftype *die_reader_func,
7760 void *data)
7761 {
7762 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7763 }
7764 \f
7765 /* Type Unit Groups.
7766
7767 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7768 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7769 so that all types coming from the same compilation (.o file) are grouped
7770 together. A future step could be to put the types in the same symtab as
7771 the CU the types ultimately came from. */
7772
7773 static hashval_t
7774 hash_type_unit_group (const void *item)
7775 {
7776 const struct type_unit_group *tu_group
7777 = (const struct type_unit_group *) item;
7778
7779 return hash_stmt_list_entry (&tu_group->hash);
7780 }
7781
7782 static int
7783 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7784 {
7785 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7786 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7787
7788 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7789 }
7790
7791 /* Allocate a hash table for type unit groups. */
7792
7793 static htab_t
7794 allocate_type_unit_groups_table (struct objfile *objfile)
7795 {
7796 return htab_create_alloc_ex (3,
7797 hash_type_unit_group,
7798 eq_type_unit_group,
7799 NULL,
7800 &objfile->objfile_obstack,
7801 hashtab_obstack_allocate,
7802 dummy_obstack_deallocate);
7803 }
7804
7805 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7806 partial symtabs. We combine several TUs per psymtab to not let the size
7807 of any one psymtab grow too big. */
7808 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7809 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7810
7811 /* Helper routine for get_type_unit_group.
7812 Create the type_unit_group object used to hold one or more TUs. */
7813
7814 static struct type_unit_group *
7815 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7816 {
7817 struct dwarf2_per_objfile *dwarf2_per_objfile
7818 = cu->per_cu->dwarf2_per_objfile;
7819 struct objfile *objfile = dwarf2_per_objfile->objfile;
7820 struct dwarf2_per_cu_data *per_cu;
7821 struct type_unit_group *tu_group;
7822
7823 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7824 struct type_unit_group);
7825 per_cu = &tu_group->per_cu;
7826 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7827
7828 if (dwarf2_per_objfile->using_index)
7829 {
7830 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7831 struct dwarf2_per_cu_quick_data);
7832 }
7833 else
7834 {
7835 unsigned int line_offset = to_underlying (line_offset_struct);
7836 struct partial_symtab *pst;
7837 std::string name;
7838
7839 /* Give the symtab a useful name for debug purposes. */
7840 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7841 name = string_printf ("<type_units_%d>",
7842 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7843 else
7844 name = string_printf ("<type_units_at_0x%x>", line_offset);
7845
7846 pst = create_partial_symtab (per_cu, name.c_str ());
7847 pst->anonymous = 1;
7848 }
7849
7850 tu_group->hash.dwo_unit = cu->dwo_unit;
7851 tu_group->hash.line_sect_off = line_offset_struct;
7852
7853 return tu_group;
7854 }
7855
7856 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7857 STMT_LIST is a DW_AT_stmt_list attribute. */
7858
7859 static struct type_unit_group *
7860 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7861 {
7862 struct dwarf2_per_objfile *dwarf2_per_objfile
7863 = cu->per_cu->dwarf2_per_objfile;
7864 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7865 struct type_unit_group *tu_group;
7866 void **slot;
7867 unsigned int line_offset;
7868 struct type_unit_group type_unit_group_for_lookup;
7869
7870 if (dwarf2_per_objfile->type_unit_groups == NULL)
7871 {
7872 dwarf2_per_objfile->type_unit_groups =
7873 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7874 }
7875
7876 /* Do we need to create a new group, or can we use an existing one? */
7877
7878 if (stmt_list)
7879 {
7880 line_offset = DW_UNSND (stmt_list);
7881 ++tu_stats->nr_symtab_sharers;
7882 }
7883 else
7884 {
7885 /* Ugh, no stmt_list. Rare, but we have to handle it.
7886 We can do various things here like create one group per TU or
7887 spread them over multiple groups to split up the expansion work.
7888 To avoid worst case scenarios (too many groups or too large groups)
7889 we, umm, group them in bunches. */
7890 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7891 | (tu_stats->nr_stmt_less_type_units
7892 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7893 ++tu_stats->nr_stmt_less_type_units;
7894 }
7895
7896 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7897 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7898 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7899 &type_unit_group_for_lookup, INSERT);
7900 if (*slot != NULL)
7901 {
7902 tu_group = (struct type_unit_group *) *slot;
7903 gdb_assert (tu_group != NULL);
7904 }
7905 else
7906 {
7907 sect_offset line_offset_struct = (sect_offset) line_offset;
7908 tu_group = create_type_unit_group (cu, line_offset_struct);
7909 *slot = tu_group;
7910 ++tu_stats->nr_symtabs;
7911 }
7912
7913 return tu_group;
7914 }
7915 \f
7916 /* Partial symbol tables. */
7917
7918 /* Create a psymtab named NAME and assign it to PER_CU.
7919
7920 The caller must fill in the following details:
7921 dirname, textlow, texthigh. */
7922
7923 static struct partial_symtab *
7924 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7925 {
7926 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7927 struct partial_symtab *pst;
7928
7929 pst = start_psymtab_common (objfile, name, 0);
7930
7931 pst->psymtabs_addrmap_supported = 1;
7932
7933 /* This is the glue that links PST into GDB's symbol API. */
7934 pst->read_symtab_private = per_cu;
7935 pst->read_symtab = dwarf2_read_symtab;
7936 per_cu->v.psymtab = pst;
7937
7938 return pst;
7939 }
7940
7941 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7942 type. */
7943
7944 struct process_psymtab_comp_unit_data
7945 {
7946 /* True if we are reading a DW_TAG_partial_unit. */
7947
7948 int want_partial_unit;
7949
7950 /* The "pretend" language that is used if the CU doesn't declare a
7951 language. */
7952
7953 enum language pretend_language;
7954 };
7955
7956 /* die_reader_func for process_psymtab_comp_unit. */
7957
7958 static void
7959 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7960 const gdb_byte *info_ptr,
7961 struct die_info *comp_unit_die,
7962 int has_children,
7963 void *data)
7964 {
7965 struct dwarf2_cu *cu = reader->cu;
7966 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7968 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7969 CORE_ADDR baseaddr;
7970 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7971 struct partial_symtab *pst;
7972 enum pc_bounds_kind cu_bounds_kind;
7973 const char *filename;
7974 struct process_psymtab_comp_unit_data *info
7975 = (struct process_psymtab_comp_unit_data *) data;
7976
7977 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7978 return;
7979
7980 gdb_assert (! per_cu->is_debug_types);
7981
7982 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7983
7984 /* Allocate a new partial symbol table structure. */
7985 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7986 if (filename == NULL)
7987 filename = "";
7988
7989 pst = create_partial_symtab (per_cu, filename);
7990
7991 /* This must be done before calling dwarf2_build_include_psymtabs. */
7992 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7993
7994 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7995
7996 dwarf2_find_base_address (comp_unit_die, cu);
7997
7998 /* Possibly set the default values of LOWPC and HIGHPC from
7999 `DW_AT_ranges'. */
8000 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8001 &best_highpc, cu, pst);
8002 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8003 {
8004 CORE_ADDR low
8005 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8006 - baseaddr);
8007 CORE_ADDR high
8008 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8009 - baseaddr - 1);
8010 /* Store the contiguous range if it is not empty; it can be
8011 empty for CUs with no code. */
8012 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8013 low, high, pst);
8014 }
8015
8016 /* Check if comp unit has_children.
8017 If so, read the rest of the partial symbols from this comp unit.
8018 If not, there's no more debug_info for this comp unit. */
8019 if (has_children)
8020 {
8021 struct partial_die_info *first_die;
8022 CORE_ADDR lowpc, highpc;
8023
8024 lowpc = ((CORE_ADDR) -1);
8025 highpc = ((CORE_ADDR) 0);
8026
8027 first_die = load_partial_dies (reader, info_ptr, 1);
8028
8029 scan_partial_symbols (first_die, &lowpc, &highpc,
8030 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8031
8032 /* If we didn't find a lowpc, set it to highpc to avoid
8033 complaints from `maint check'. */
8034 if (lowpc == ((CORE_ADDR) -1))
8035 lowpc = highpc;
8036
8037 /* If the compilation unit didn't have an explicit address range,
8038 then use the information extracted from its child dies. */
8039 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8040 {
8041 best_lowpc = lowpc;
8042 best_highpc = highpc;
8043 }
8044 }
8045 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8046 best_lowpc + baseaddr)
8047 - baseaddr);
8048 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_highpc + baseaddr)
8050 - baseaddr);
8051
8052 end_psymtab_common (objfile, pst);
8053
8054 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8055 {
8056 int i;
8057 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8058 struct dwarf2_per_cu_data *iter;
8059
8060 /* Fill in 'dependencies' here; we fill in 'users' in a
8061 post-pass. */
8062 pst->number_of_dependencies = len;
8063 pst->dependencies
8064 = objfile->partial_symtabs->allocate_dependencies (len);
8065 for (i = 0;
8066 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8067 i, iter);
8068 ++i)
8069 pst->dependencies[i] = iter->v.psymtab;
8070
8071 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8072 }
8073
8074 /* Get the list of files included in the current compilation unit,
8075 and build a psymtab for each of them. */
8076 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8077
8078 if (dwarf_read_debug)
8079 fprintf_unfiltered (gdb_stdlog,
8080 "Psymtab for %s unit @%s: %s - %s"
8081 ", %d global, %d static syms\n",
8082 per_cu->is_debug_types ? "type" : "comp",
8083 sect_offset_str (per_cu->sect_off),
8084 paddress (gdbarch, pst->text_low (objfile)),
8085 paddress (gdbarch, pst->text_high (objfile)),
8086 pst->n_global_syms, pst->n_static_syms);
8087 }
8088
8089 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8090 Process compilation unit THIS_CU for a psymtab. */
8091
8092 static void
8093 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8094 int want_partial_unit,
8095 enum language pretend_language)
8096 {
8097 /* If this compilation unit was already read in, free the
8098 cached copy in order to read it in again. This is
8099 necessary because we skipped some symbols when we first
8100 read in the compilation unit (see load_partial_dies).
8101 This problem could be avoided, but the benefit is unclear. */
8102 if (this_cu->cu != NULL)
8103 free_one_cached_comp_unit (this_cu);
8104
8105 if (this_cu->is_debug_types)
8106 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8107 build_type_psymtabs_reader, NULL);
8108 else
8109 {
8110 process_psymtab_comp_unit_data info;
8111 info.want_partial_unit = want_partial_unit;
8112 info.pretend_language = pretend_language;
8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8114 process_psymtab_comp_unit_reader, &info);
8115 }
8116
8117 /* Age out any secondary CUs. */
8118 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8119 }
8120
8121 /* Reader function for build_type_psymtabs. */
8122
8123 static void
8124 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8125 const gdb_byte *info_ptr,
8126 struct die_info *type_unit_die,
8127 int has_children,
8128 void *data)
8129 {
8130 struct dwarf2_per_objfile *dwarf2_per_objfile
8131 = reader->cu->per_cu->dwarf2_per_objfile;
8132 struct objfile *objfile = dwarf2_per_objfile->objfile;
8133 struct dwarf2_cu *cu = reader->cu;
8134 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8135 struct signatured_type *sig_type;
8136 struct type_unit_group *tu_group;
8137 struct attribute *attr;
8138 struct partial_die_info *first_die;
8139 CORE_ADDR lowpc, highpc;
8140 struct partial_symtab *pst;
8141
8142 gdb_assert (data == NULL);
8143 gdb_assert (per_cu->is_debug_types);
8144 sig_type = (struct signatured_type *) per_cu;
8145
8146 if (! has_children)
8147 return;
8148
8149 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8150 tu_group = get_type_unit_group (cu, attr);
8151
8152 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8153
8154 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8155 pst = create_partial_symtab (per_cu, "");
8156 pst->anonymous = 1;
8157
8158 first_die = load_partial_dies (reader, info_ptr, 1);
8159
8160 lowpc = (CORE_ADDR) -1;
8161 highpc = (CORE_ADDR) 0;
8162 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8163
8164 end_psymtab_common (objfile, pst);
8165 }
8166
8167 /* Struct used to sort TUs by their abbreviation table offset. */
8168
8169 struct tu_abbrev_offset
8170 {
8171 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8172 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8173 {}
8174
8175 signatured_type *sig_type;
8176 sect_offset abbrev_offset;
8177 };
8178
8179 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8180
8181 static bool
8182 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8183 const struct tu_abbrev_offset &b)
8184 {
8185 return a.abbrev_offset < b.abbrev_offset;
8186 }
8187
8188 /* Efficiently read all the type units.
8189 This does the bulk of the work for build_type_psymtabs.
8190
8191 The efficiency is because we sort TUs by the abbrev table they use and
8192 only read each abbrev table once. In one program there are 200K TUs
8193 sharing 8K abbrev tables.
8194
8195 The main purpose of this function is to support building the
8196 dwarf2_per_objfile->type_unit_groups table.
8197 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8198 can collapse the search space by grouping them by stmt_list.
8199 The savings can be significant, in the same program from above the 200K TUs
8200 share 8K stmt_list tables.
8201
8202 FUNC is expected to call get_type_unit_group, which will create the
8203 struct type_unit_group if necessary and add it to
8204 dwarf2_per_objfile->type_unit_groups. */
8205
8206 static void
8207 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8208 {
8209 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8210 abbrev_table_up abbrev_table;
8211 sect_offset abbrev_offset;
8212
8213 /* It's up to the caller to not call us multiple times. */
8214 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8215
8216 if (dwarf2_per_objfile->all_type_units.empty ())
8217 return;
8218
8219 /* TUs typically share abbrev tables, and there can be way more TUs than
8220 abbrev tables. Sort by abbrev table to reduce the number of times we
8221 read each abbrev table in.
8222 Alternatives are to punt or to maintain a cache of abbrev tables.
8223 This is simpler and efficient enough for now.
8224
8225 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8226 symtab to use). Typically TUs with the same abbrev offset have the same
8227 stmt_list value too so in practice this should work well.
8228
8229 The basic algorithm here is:
8230
8231 sort TUs by abbrev table
8232 for each TU with same abbrev table:
8233 read abbrev table if first user
8234 read TU top level DIE
8235 [IWBN if DWO skeletons had DW_AT_stmt_list]
8236 call FUNC */
8237
8238 if (dwarf_read_debug)
8239 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8240
8241 /* Sort in a separate table to maintain the order of all_type_units
8242 for .gdb_index: TU indices directly index all_type_units. */
8243 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8244 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8245
8246 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8247 sorted_by_abbrev.emplace_back
8248 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8249 sig_type->per_cu.section,
8250 sig_type->per_cu.sect_off));
8251
8252 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8253 sort_tu_by_abbrev_offset);
8254
8255 abbrev_offset = (sect_offset) ~(unsigned) 0;
8256
8257 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8258 {
8259 /* Switch to the next abbrev table if necessary. */
8260 if (abbrev_table == NULL
8261 || tu.abbrev_offset != abbrev_offset)
8262 {
8263 abbrev_offset = tu.abbrev_offset;
8264 abbrev_table =
8265 abbrev_table_read_table (dwarf2_per_objfile,
8266 &dwarf2_per_objfile->abbrev,
8267 abbrev_offset);
8268 ++tu_stats->nr_uniq_abbrev_tables;
8269 }
8270
8271 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8272 0, 0, false, build_type_psymtabs_reader, NULL);
8273 }
8274 }
8275
8276 /* Print collected type unit statistics. */
8277
8278 static void
8279 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8280 {
8281 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8282
8283 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8284 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8285 dwarf2_per_objfile->all_type_units.size ());
8286 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8287 tu_stats->nr_uniq_abbrev_tables);
8288 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8289 tu_stats->nr_symtabs);
8290 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8291 tu_stats->nr_symtab_sharers);
8292 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8293 tu_stats->nr_stmt_less_type_units);
8294 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8295 tu_stats->nr_all_type_units_reallocs);
8296 }
8297
8298 /* Traversal function for build_type_psymtabs. */
8299
8300 static int
8301 build_type_psymtab_dependencies (void **slot, void *info)
8302 {
8303 struct dwarf2_per_objfile *dwarf2_per_objfile
8304 = (struct dwarf2_per_objfile *) info;
8305 struct objfile *objfile = dwarf2_per_objfile->objfile;
8306 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8307 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8308 struct partial_symtab *pst = per_cu->v.psymtab;
8309 int len = VEC_length (sig_type_ptr, tu_group->tus);
8310 struct signatured_type *iter;
8311 int i;
8312
8313 gdb_assert (len > 0);
8314 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8315
8316 pst->number_of_dependencies = len;
8317 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8318 for (i = 0;
8319 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8320 ++i)
8321 {
8322 gdb_assert (iter->per_cu.is_debug_types);
8323 pst->dependencies[i] = iter->per_cu.v.psymtab;
8324 iter->type_unit_group = tu_group;
8325 }
8326
8327 VEC_free (sig_type_ptr, tu_group->tus);
8328
8329 return 1;
8330 }
8331
8332 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8333 Build partial symbol tables for the .debug_types comp-units. */
8334
8335 static void
8336 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8337 {
8338 if (! create_all_type_units (dwarf2_per_objfile))
8339 return;
8340
8341 build_type_psymtabs_1 (dwarf2_per_objfile);
8342 }
8343
8344 /* Traversal function for process_skeletonless_type_unit.
8345 Read a TU in a DWO file and build partial symbols for it. */
8346
8347 static int
8348 process_skeletonless_type_unit (void **slot, void *info)
8349 {
8350 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8351 struct dwarf2_per_objfile *dwarf2_per_objfile
8352 = (struct dwarf2_per_objfile *) info;
8353 struct signatured_type find_entry, *entry;
8354
8355 /* If this TU doesn't exist in the global table, add it and read it in. */
8356
8357 if (dwarf2_per_objfile->signatured_types == NULL)
8358 {
8359 dwarf2_per_objfile->signatured_types
8360 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8361 }
8362
8363 find_entry.signature = dwo_unit->signature;
8364 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8365 INSERT);
8366 /* If we've already seen this type there's nothing to do. What's happening
8367 is we're doing our own version of comdat-folding here. */
8368 if (*slot != NULL)
8369 return 1;
8370
8371 /* This does the job that create_all_type_units would have done for
8372 this TU. */
8373 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8374 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8375 *slot = entry;
8376
8377 /* This does the job that build_type_psymtabs_1 would have done. */
8378 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8379 build_type_psymtabs_reader, NULL);
8380
8381 return 1;
8382 }
8383
8384 /* Traversal function for process_skeletonless_type_units. */
8385
8386 static int
8387 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8388 {
8389 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8390
8391 if (dwo_file->tus != NULL)
8392 {
8393 htab_traverse_noresize (dwo_file->tus,
8394 process_skeletonless_type_unit, info);
8395 }
8396
8397 return 1;
8398 }
8399
8400 /* Scan all TUs of DWO files, verifying we've processed them.
8401 This is needed in case a TU was emitted without its skeleton.
8402 Note: This can't be done until we know what all the DWO files are. */
8403
8404 static void
8405 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8406 {
8407 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8408 if (get_dwp_file (dwarf2_per_objfile) == NULL
8409 && dwarf2_per_objfile->dwo_files != NULL)
8410 {
8411 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8412 process_dwo_file_for_skeletonless_type_units,
8413 dwarf2_per_objfile);
8414 }
8415 }
8416
8417 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8418
8419 static void
8420 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8421 {
8422 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8423 {
8424 struct partial_symtab *pst = per_cu->v.psymtab;
8425
8426 if (pst == NULL)
8427 continue;
8428
8429 for (int j = 0; j < pst->number_of_dependencies; ++j)
8430 {
8431 /* Set the 'user' field only if it is not already set. */
8432 if (pst->dependencies[j]->user == NULL)
8433 pst->dependencies[j]->user = pst;
8434 }
8435 }
8436 }
8437
8438 /* Build the partial symbol table by doing a quick pass through the
8439 .debug_info and .debug_abbrev sections. */
8440
8441 static void
8442 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8443 {
8444 struct objfile *objfile = dwarf2_per_objfile->objfile;
8445
8446 if (dwarf_read_debug)
8447 {
8448 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8449 objfile_name (objfile));
8450 }
8451
8452 dwarf2_per_objfile->reading_partial_symbols = 1;
8453
8454 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8455
8456 /* Any cached compilation units will be linked by the per-objfile
8457 read_in_chain. Make sure to free them when we're done. */
8458 free_cached_comp_units freer (dwarf2_per_objfile);
8459
8460 build_type_psymtabs (dwarf2_per_objfile);
8461
8462 create_all_comp_units (dwarf2_per_objfile);
8463
8464 /* Create a temporary address map on a temporary obstack. We later
8465 copy this to the final obstack. */
8466 auto_obstack temp_obstack;
8467
8468 scoped_restore save_psymtabs_addrmap
8469 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8470 addrmap_create_mutable (&temp_obstack));
8471
8472 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8473 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8474
8475 /* This has to wait until we read the CUs, we need the list of DWOs. */
8476 process_skeletonless_type_units (dwarf2_per_objfile);
8477
8478 /* Now that all TUs have been processed we can fill in the dependencies. */
8479 if (dwarf2_per_objfile->type_unit_groups != NULL)
8480 {
8481 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8482 build_type_psymtab_dependencies, dwarf2_per_objfile);
8483 }
8484
8485 if (dwarf_read_debug)
8486 print_tu_stats (dwarf2_per_objfile);
8487
8488 set_partial_user (dwarf2_per_objfile);
8489
8490 objfile->partial_symtabs->psymtabs_addrmap
8491 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8492 objfile->partial_symtabs->obstack ());
8493 /* At this point we want to keep the address map. */
8494 save_psymtabs_addrmap.release ();
8495
8496 if (dwarf_read_debug)
8497 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8498 objfile_name (objfile));
8499 }
8500
8501 /* die_reader_func for load_partial_comp_unit. */
8502
8503 static void
8504 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8505 const gdb_byte *info_ptr,
8506 struct die_info *comp_unit_die,
8507 int has_children,
8508 void *data)
8509 {
8510 struct dwarf2_cu *cu = reader->cu;
8511
8512 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8513
8514 /* Check if comp unit has_children.
8515 If so, read the rest of the partial symbols from this comp unit.
8516 If not, there's no more debug_info for this comp unit. */
8517 if (has_children)
8518 load_partial_dies (reader, info_ptr, 0);
8519 }
8520
8521 /* Load the partial DIEs for a secondary CU into memory.
8522 This is also used when rereading a primary CU with load_all_dies. */
8523
8524 static void
8525 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8526 {
8527 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8528 load_partial_comp_unit_reader, NULL);
8529 }
8530
8531 static void
8532 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8533 struct dwarf2_section_info *section,
8534 struct dwarf2_section_info *abbrev_section,
8535 unsigned int is_dwz)
8536 {
8537 const gdb_byte *info_ptr;
8538 struct objfile *objfile = dwarf2_per_objfile->objfile;
8539
8540 if (dwarf_read_debug)
8541 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8542 get_section_name (section),
8543 get_section_file_name (section));
8544
8545 dwarf2_read_section (objfile, section);
8546
8547 info_ptr = section->buffer;
8548
8549 while (info_ptr < section->buffer + section->size)
8550 {
8551 struct dwarf2_per_cu_data *this_cu;
8552
8553 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8554
8555 comp_unit_head cu_header;
8556 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8557 abbrev_section, info_ptr,
8558 rcuh_kind::COMPILE);
8559
8560 /* Save the compilation unit for later lookup. */
8561 if (cu_header.unit_type != DW_UT_type)
8562 {
8563 this_cu = XOBNEW (&objfile->objfile_obstack,
8564 struct dwarf2_per_cu_data);
8565 memset (this_cu, 0, sizeof (*this_cu));
8566 }
8567 else
8568 {
8569 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8570 struct signatured_type);
8571 memset (sig_type, 0, sizeof (*sig_type));
8572 sig_type->signature = cu_header.signature;
8573 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8574 this_cu = &sig_type->per_cu;
8575 }
8576 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8577 this_cu->sect_off = sect_off;
8578 this_cu->length = cu_header.length + cu_header.initial_length_size;
8579 this_cu->is_dwz = is_dwz;
8580 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8581 this_cu->section = section;
8582
8583 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8584
8585 info_ptr = info_ptr + this_cu->length;
8586 }
8587 }
8588
8589 /* Create a list of all compilation units in OBJFILE.
8590 This is only done for -readnow and building partial symtabs. */
8591
8592 static void
8593 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8594 {
8595 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8596 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8597 &dwarf2_per_objfile->abbrev, 0);
8598
8599 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8600 if (dwz != NULL)
8601 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8602 1);
8603 }
8604
8605 /* Process all loaded DIEs for compilation unit CU, starting at
8606 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8607 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8608 DW_AT_ranges). See the comments of add_partial_subprogram on how
8609 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8610
8611 static void
8612 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8613 CORE_ADDR *highpc, int set_addrmap,
8614 struct dwarf2_cu *cu)
8615 {
8616 struct partial_die_info *pdi;
8617
8618 /* Now, march along the PDI's, descending into ones which have
8619 interesting children but skipping the children of the other ones,
8620 until we reach the end of the compilation unit. */
8621
8622 pdi = first_die;
8623
8624 while (pdi != NULL)
8625 {
8626 pdi->fixup (cu);
8627
8628 /* Anonymous namespaces or modules have no name but have interesting
8629 children, so we need to look at them. Ditto for anonymous
8630 enums. */
8631
8632 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8633 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8634 || pdi->tag == DW_TAG_imported_unit
8635 || pdi->tag == DW_TAG_inlined_subroutine)
8636 {
8637 switch (pdi->tag)
8638 {
8639 case DW_TAG_subprogram:
8640 case DW_TAG_inlined_subroutine:
8641 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8642 break;
8643 case DW_TAG_constant:
8644 case DW_TAG_variable:
8645 case DW_TAG_typedef:
8646 case DW_TAG_union_type:
8647 if (!pdi->is_declaration)
8648 {
8649 add_partial_symbol (pdi, cu);
8650 }
8651 break;
8652 case DW_TAG_class_type:
8653 case DW_TAG_interface_type:
8654 case DW_TAG_structure_type:
8655 if (!pdi->is_declaration)
8656 {
8657 add_partial_symbol (pdi, cu);
8658 }
8659 if ((cu->language == language_rust
8660 || cu->language == language_cplus) && pdi->has_children)
8661 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8662 set_addrmap, cu);
8663 break;
8664 case DW_TAG_enumeration_type:
8665 if (!pdi->is_declaration)
8666 add_partial_enumeration (pdi, cu);
8667 break;
8668 case DW_TAG_base_type:
8669 case DW_TAG_subrange_type:
8670 /* File scope base type definitions are added to the partial
8671 symbol table. */
8672 add_partial_symbol (pdi, cu);
8673 break;
8674 case DW_TAG_namespace:
8675 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8676 break;
8677 case DW_TAG_module:
8678 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8679 break;
8680 case DW_TAG_imported_unit:
8681 {
8682 struct dwarf2_per_cu_data *per_cu;
8683
8684 /* For now we don't handle imported units in type units. */
8685 if (cu->per_cu->is_debug_types)
8686 {
8687 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8688 " supported in type units [in module %s]"),
8689 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8690 }
8691
8692 per_cu = dwarf2_find_containing_comp_unit
8693 (pdi->d.sect_off, pdi->is_dwz,
8694 cu->per_cu->dwarf2_per_objfile);
8695
8696 /* Go read the partial unit, if needed. */
8697 if (per_cu->v.psymtab == NULL)
8698 process_psymtab_comp_unit (per_cu, 1, cu->language);
8699
8700 VEC_safe_push (dwarf2_per_cu_ptr,
8701 cu->per_cu->imported_symtabs, per_cu);
8702 }
8703 break;
8704 case DW_TAG_imported_declaration:
8705 add_partial_symbol (pdi, cu);
8706 break;
8707 default:
8708 break;
8709 }
8710 }
8711
8712 /* If the die has a sibling, skip to the sibling. */
8713
8714 pdi = pdi->die_sibling;
8715 }
8716 }
8717
8718 /* Functions used to compute the fully scoped name of a partial DIE.
8719
8720 Normally, this is simple. For C++, the parent DIE's fully scoped
8721 name is concatenated with "::" and the partial DIE's name.
8722 Enumerators are an exception; they use the scope of their parent
8723 enumeration type, i.e. the name of the enumeration type is not
8724 prepended to the enumerator.
8725
8726 There are two complexities. One is DW_AT_specification; in this
8727 case "parent" means the parent of the target of the specification,
8728 instead of the direct parent of the DIE. The other is compilers
8729 which do not emit DW_TAG_namespace; in this case we try to guess
8730 the fully qualified name of structure types from their members'
8731 linkage names. This must be done using the DIE's children rather
8732 than the children of any DW_AT_specification target. We only need
8733 to do this for structures at the top level, i.e. if the target of
8734 any DW_AT_specification (if any; otherwise the DIE itself) does not
8735 have a parent. */
8736
8737 /* Compute the scope prefix associated with PDI's parent, in
8738 compilation unit CU. The result will be allocated on CU's
8739 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8740 field. NULL is returned if no prefix is necessary. */
8741 static const char *
8742 partial_die_parent_scope (struct partial_die_info *pdi,
8743 struct dwarf2_cu *cu)
8744 {
8745 const char *grandparent_scope;
8746 struct partial_die_info *parent, *real_pdi;
8747
8748 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8749 then this means the parent of the specification DIE. */
8750
8751 real_pdi = pdi;
8752 while (real_pdi->has_specification)
8753 real_pdi = find_partial_die (real_pdi->spec_offset,
8754 real_pdi->spec_is_dwz, cu);
8755
8756 parent = real_pdi->die_parent;
8757 if (parent == NULL)
8758 return NULL;
8759
8760 if (parent->scope_set)
8761 return parent->scope;
8762
8763 parent->fixup (cu);
8764
8765 grandparent_scope = partial_die_parent_scope (parent, cu);
8766
8767 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8768 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8769 Work around this problem here. */
8770 if (cu->language == language_cplus
8771 && parent->tag == DW_TAG_namespace
8772 && strcmp (parent->name, "::") == 0
8773 && grandparent_scope == NULL)
8774 {
8775 parent->scope = NULL;
8776 parent->scope_set = 1;
8777 return NULL;
8778 }
8779
8780 if (pdi->tag == DW_TAG_enumerator)
8781 /* Enumerators should not get the name of the enumeration as a prefix. */
8782 parent->scope = grandparent_scope;
8783 else if (parent->tag == DW_TAG_namespace
8784 || parent->tag == DW_TAG_module
8785 || parent->tag == DW_TAG_structure_type
8786 || parent->tag == DW_TAG_class_type
8787 || parent->tag == DW_TAG_interface_type
8788 || parent->tag == DW_TAG_union_type
8789 || parent->tag == DW_TAG_enumeration_type)
8790 {
8791 if (grandparent_scope == NULL)
8792 parent->scope = parent->name;
8793 else
8794 parent->scope = typename_concat (&cu->comp_unit_obstack,
8795 grandparent_scope,
8796 parent->name, 0, cu);
8797 }
8798 else
8799 {
8800 /* FIXME drow/2004-04-01: What should we be doing with
8801 function-local names? For partial symbols, we should probably be
8802 ignoring them. */
8803 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8804 parent->tag, sect_offset_str (pdi->sect_off));
8805 parent->scope = grandparent_scope;
8806 }
8807
8808 parent->scope_set = 1;
8809 return parent->scope;
8810 }
8811
8812 /* Return the fully scoped name associated with PDI, from compilation unit
8813 CU. The result will be allocated with malloc. */
8814
8815 static char *
8816 partial_die_full_name (struct partial_die_info *pdi,
8817 struct dwarf2_cu *cu)
8818 {
8819 const char *parent_scope;
8820
8821 /* If this is a template instantiation, we can not work out the
8822 template arguments from partial DIEs. So, unfortunately, we have
8823 to go through the full DIEs. At least any work we do building
8824 types here will be reused if full symbols are loaded later. */
8825 if (pdi->has_template_arguments)
8826 {
8827 pdi->fixup (cu);
8828
8829 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8830 {
8831 struct die_info *die;
8832 struct attribute attr;
8833 struct dwarf2_cu *ref_cu = cu;
8834
8835 /* DW_FORM_ref_addr is using section offset. */
8836 attr.name = (enum dwarf_attribute) 0;
8837 attr.form = DW_FORM_ref_addr;
8838 attr.u.unsnd = to_underlying (pdi->sect_off);
8839 die = follow_die_ref (NULL, &attr, &ref_cu);
8840
8841 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8842 }
8843 }
8844
8845 parent_scope = partial_die_parent_scope (pdi, cu);
8846 if (parent_scope == NULL)
8847 return NULL;
8848 else
8849 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8850 }
8851
8852 static void
8853 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8854 {
8855 struct dwarf2_per_objfile *dwarf2_per_objfile
8856 = cu->per_cu->dwarf2_per_objfile;
8857 struct objfile *objfile = dwarf2_per_objfile->objfile;
8858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8859 CORE_ADDR addr = 0;
8860 const char *actual_name = NULL;
8861 CORE_ADDR baseaddr;
8862 char *built_actual_name;
8863
8864 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8865
8866 built_actual_name = partial_die_full_name (pdi, cu);
8867 if (built_actual_name != NULL)
8868 actual_name = built_actual_name;
8869
8870 if (actual_name == NULL)
8871 actual_name = pdi->name;
8872
8873 switch (pdi->tag)
8874 {
8875 case DW_TAG_inlined_subroutine:
8876 case DW_TAG_subprogram:
8877 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8878 - baseaddr);
8879 if (pdi->is_external || cu->language == language_ada)
8880 {
8881 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8882 of the global scope. But in Ada, we want to be able to access
8883 nested procedures globally. So all Ada subprograms are stored
8884 in the global scope. */
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_BLOCK,
8888 SECT_OFF_TEXT (objfile),
8889 psymbol_placement::GLOBAL,
8890 addr,
8891 cu->language, objfile);
8892 }
8893 else
8894 {
8895 add_psymbol_to_list (actual_name, strlen (actual_name),
8896 built_actual_name != NULL,
8897 VAR_DOMAIN, LOC_BLOCK,
8898 SECT_OFF_TEXT (objfile),
8899 psymbol_placement::STATIC,
8900 addr, cu->language, objfile);
8901 }
8902
8903 if (pdi->main_subprogram && actual_name != NULL)
8904 set_objfile_main_name (objfile, actual_name, cu->language);
8905 break;
8906 case DW_TAG_constant:
8907 add_psymbol_to_list (actual_name, strlen (actual_name),
8908 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8909 -1, (pdi->is_external
8910 ? psymbol_placement::GLOBAL
8911 : psymbol_placement::STATIC),
8912 0, cu->language, objfile);
8913 break;
8914 case DW_TAG_variable:
8915 if (pdi->d.locdesc)
8916 addr = decode_locdesc (pdi->d.locdesc, cu);
8917
8918 if (pdi->d.locdesc
8919 && addr == 0
8920 && !dwarf2_per_objfile->has_section_at_zero)
8921 {
8922 /* A global or static variable may also have been stripped
8923 out by the linker if unused, in which case its address
8924 will be nullified; do not add such variables into partial
8925 symbol table then. */
8926 }
8927 else if (pdi->is_external)
8928 {
8929 /* Global Variable.
8930 Don't enter into the minimal symbol tables as there is
8931 a minimal symbol table entry from the ELF symbols already.
8932 Enter into partial symbol table if it has a location
8933 descriptor or a type.
8934 If the location descriptor is missing, new_symbol will create
8935 a LOC_UNRESOLVED symbol, the address of the variable will then
8936 be determined from the minimal symbol table whenever the variable
8937 is referenced.
8938 The address for the partial symbol table entry is not
8939 used by GDB, but it comes in handy for debugging partial symbol
8940 table building. */
8941
8942 if (pdi->d.locdesc || pdi->has_type)
8943 add_psymbol_to_list (actual_name, strlen (actual_name),
8944 built_actual_name != NULL,
8945 VAR_DOMAIN, LOC_STATIC,
8946 SECT_OFF_TEXT (objfile),
8947 psymbol_placement::GLOBAL,
8948 addr, cu->language, objfile);
8949 }
8950 else
8951 {
8952 int has_loc = pdi->d.locdesc != NULL;
8953
8954 /* Static Variable. Skip symbols whose value we cannot know (those
8955 without location descriptors or constant values). */
8956 if (!has_loc && !pdi->has_const_value)
8957 {
8958 xfree (built_actual_name);
8959 return;
8960 }
8961
8962 add_psymbol_to_list (actual_name, strlen (actual_name),
8963 built_actual_name != NULL,
8964 VAR_DOMAIN, LOC_STATIC,
8965 SECT_OFF_TEXT (objfile),
8966 psymbol_placement::STATIC,
8967 has_loc ? addr : 0,
8968 cu->language, objfile);
8969 }
8970 break;
8971 case DW_TAG_typedef:
8972 case DW_TAG_base_type:
8973 case DW_TAG_subrange_type:
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_TYPEDEF, -1,
8977 psymbol_placement::STATIC,
8978 0, cu->language, objfile);
8979 break;
8980 case DW_TAG_imported_declaration:
8981 case DW_TAG_namespace:
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 VAR_DOMAIN, LOC_TYPEDEF, -1,
8985 psymbol_placement::GLOBAL,
8986 0, cu->language, objfile);
8987 break;
8988 case DW_TAG_module:
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
8991 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8992 psymbol_placement::GLOBAL,
8993 0, cu->language, objfile);
8994 break;
8995 case DW_TAG_class_type:
8996 case DW_TAG_interface_type:
8997 case DW_TAG_structure_type:
8998 case DW_TAG_union_type:
8999 case DW_TAG_enumeration_type:
9000 /* Skip external references. The DWARF standard says in the section
9001 about "Structure, Union, and Class Type Entries": "An incomplete
9002 structure, union or class type is represented by a structure,
9003 union or class entry that does not have a byte size attribute
9004 and that has a DW_AT_declaration attribute." */
9005 if (!pdi->has_byte_size && pdi->is_declaration)
9006 {
9007 xfree (built_actual_name);
9008 return;
9009 }
9010
9011 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9012 static vs. global. */
9013 add_psymbol_to_list (actual_name, strlen (actual_name),
9014 built_actual_name != NULL,
9015 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9016 cu->language == language_cplus
9017 ? psymbol_placement::GLOBAL
9018 : psymbol_placement::STATIC,
9019 0, cu->language, objfile);
9020
9021 break;
9022 case DW_TAG_enumerator:
9023 add_psymbol_to_list (actual_name, strlen (actual_name),
9024 built_actual_name != NULL,
9025 VAR_DOMAIN, LOC_CONST, -1,
9026 cu->language == language_cplus
9027 ? psymbol_placement::GLOBAL
9028 : psymbol_placement::STATIC,
9029 0, cu->language, objfile);
9030 break;
9031 default:
9032 break;
9033 }
9034
9035 xfree (built_actual_name);
9036 }
9037
9038 /* Read a partial die corresponding to a namespace; also, add a symbol
9039 corresponding to that namespace to the symbol table. NAMESPACE is
9040 the name of the enclosing namespace. */
9041
9042 static void
9043 add_partial_namespace (struct partial_die_info *pdi,
9044 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9045 int set_addrmap, struct dwarf2_cu *cu)
9046 {
9047 /* Add a symbol for the namespace. */
9048
9049 add_partial_symbol (pdi, cu);
9050
9051 /* Now scan partial symbols in that namespace. */
9052
9053 if (pdi->has_children)
9054 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9055 }
9056
9057 /* Read a partial die corresponding to a Fortran module. */
9058
9059 static void
9060 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9061 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9062 {
9063 /* Add a symbol for the namespace. */
9064
9065 add_partial_symbol (pdi, cu);
9066
9067 /* Now scan partial symbols in that module. */
9068
9069 if (pdi->has_children)
9070 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9071 }
9072
9073 /* Read a partial die corresponding to a subprogram or an inlined
9074 subprogram and create a partial symbol for that subprogram.
9075 When the CU language allows it, this routine also defines a partial
9076 symbol for each nested subprogram that this subprogram contains.
9077 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9078 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9079
9080 PDI may also be a lexical block, in which case we simply search
9081 recursively for subprograms defined inside that lexical block.
9082 Again, this is only performed when the CU language allows this
9083 type of definitions. */
9084
9085 static void
9086 add_partial_subprogram (struct partial_die_info *pdi,
9087 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9088 int set_addrmap, struct dwarf2_cu *cu)
9089 {
9090 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9091 {
9092 if (pdi->has_pc_info)
9093 {
9094 if (pdi->lowpc < *lowpc)
9095 *lowpc = pdi->lowpc;
9096 if (pdi->highpc > *highpc)
9097 *highpc = pdi->highpc;
9098 if (set_addrmap)
9099 {
9100 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9101 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9102 CORE_ADDR baseaddr;
9103 CORE_ADDR this_highpc;
9104 CORE_ADDR this_lowpc;
9105
9106 baseaddr = ANOFFSET (objfile->section_offsets,
9107 SECT_OFF_TEXT (objfile));
9108 this_lowpc
9109 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9110 pdi->lowpc + baseaddr)
9111 - baseaddr);
9112 this_highpc
9113 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9114 pdi->highpc + baseaddr)
9115 - baseaddr);
9116 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9117 this_lowpc, this_highpc - 1,
9118 cu->per_cu->v.psymtab);
9119 }
9120 }
9121
9122 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9123 {
9124 if (!pdi->is_declaration)
9125 /* Ignore subprogram DIEs that do not have a name, they are
9126 illegal. Do not emit a complaint at this point, we will
9127 do so when we convert this psymtab into a symtab. */
9128 if (pdi->name)
9129 add_partial_symbol (pdi, cu);
9130 }
9131 }
9132
9133 if (! pdi->has_children)
9134 return;
9135
9136 if (cu->language == language_ada)
9137 {
9138 pdi = pdi->die_child;
9139 while (pdi != NULL)
9140 {
9141 pdi->fixup (cu);
9142 if (pdi->tag == DW_TAG_subprogram
9143 || pdi->tag == DW_TAG_inlined_subroutine
9144 || pdi->tag == DW_TAG_lexical_block)
9145 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9146 pdi = pdi->die_sibling;
9147 }
9148 }
9149 }
9150
9151 /* Read a partial die corresponding to an enumeration type. */
9152
9153 static void
9154 add_partial_enumeration (struct partial_die_info *enum_pdi,
9155 struct dwarf2_cu *cu)
9156 {
9157 struct partial_die_info *pdi;
9158
9159 if (enum_pdi->name != NULL)
9160 add_partial_symbol (enum_pdi, cu);
9161
9162 pdi = enum_pdi->die_child;
9163 while (pdi)
9164 {
9165 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9166 complaint (_("malformed enumerator DIE ignored"));
9167 else
9168 add_partial_symbol (pdi, cu);
9169 pdi = pdi->die_sibling;
9170 }
9171 }
9172
9173 /* Return the initial uleb128 in the die at INFO_PTR. */
9174
9175 static unsigned int
9176 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9177 {
9178 unsigned int bytes_read;
9179
9180 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9181 }
9182
9183 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9184 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9185
9186 Return the corresponding abbrev, or NULL if the number is zero (indicating
9187 an empty DIE). In either case *BYTES_READ will be set to the length of
9188 the initial number. */
9189
9190 static struct abbrev_info *
9191 peek_die_abbrev (const die_reader_specs &reader,
9192 const gdb_byte *info_ptr, unsigned int *bytes_read)
9193 {
9194 dwarf2_cu *cu = reader.cu;
9195 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9196 unsigned int abbrev_number
9197 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9198
9199 if (abbrev_number == 0)
9200 return NULL;
9201
9202 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9203 if (!abbrev)
9204 {
9205 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9206 " at offset %s [in module %s]"),
9207 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9208 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9209 }
9210
9211 return abbrev;
9212 }
9213
9214 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9215 Returns a pointer to the end of a series of DIEs, terminated by an empty
9216 DIE. Any children of the skipped DIEs will also be skipped. */
9217
9218 static const gdb_byte *
9219 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9220 {
9221 while (1)
9222 {
9223 unsigned int bytes_read;
9224 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9225
9226 if (abbrev == NULL)
9227 return info_ptr + bytes_read;
9228 else
9229 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9230 }
9231 }
9232
9233 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9234 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9235 abbrev corresponding to that skipped uleb128 should be passed in
9236 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9237 children. */
9238
9239 static const gdb_byte *
9240 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9241 struct abbrev_info *abbrev)
9242 {
9243 unsigned int bytes_read;
9244 struct attribute attr;
9245 bfd *abfd = reader->abfd;
9246 struct dwarf2_cu *cu = reader->cu;
9247 const gdb_byte *buffer = reader->buffer;
9248 const gdb_byte *buffer_end = reader->buffer_end;
9249 unsigned int form, i;
9250
9251 for (i = 0; i < abbrev->num_attrs; i++)
9252 {
9253 /* The only abbrev we care about is DW_AT_sibling. */
9254 if (abbrev->attrs[i].name == DW_AT_sibling)
9255 {
9256 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9257 if (attr.form == DW_FORM_ref_addr)
9258 complaint (_("ignoring absolute DW_AT_sibling"));
9259 else
9260 {
9261 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9262 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9263
9264 if (sibling_ptr < info_ptr)
9265 complaint (_("DW_AT_sibling points backwards"));
9266 else if (sibling_ptr > reader->buffer_end)
9267 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9268 else
9269 return sibling_ptr;
9270 }
9271 }
9272
9273 /* If it isn't DW_AT_sibling, skip this attribute. */
9274 form = abbrev->attrs[i].form;
9275 skip_attribute:
9276 switch (form)
9277 {
9278 case DW_FORM_ref_addr:
9279 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9280 and later it is offset sized. */
9281 if (cu->header.version == 2)
9282 info_ptr += cu->header.addr_size;
9283 else
9284 info_ptr += cu->header.offset_size;
9285 break;
9286 case DW_FORM_GNU_ref_alt:
9287 info_ptr += cu->header.offset_size;
9288 break;
9289 case DW_FORM_addr:
9290 info_ptr += cu->header.addr_size;
9291 break;
9292 case DW_FORM_data1:
9293 case DW_FORM_ref1:
9294 case DW_FORM_flag:
9295 info_ptr += 1;
9296 break;
9297 case DW_FORM_flag_present:
9298 case DW_FORM_implicit_const:
9299 break;
9300 case DW_FORM_data2:
9301 case DW_FORM_ref2:
9302 info_ptr += 2;
9303 break;
9304 case DW_FORM_data4:
9305 case DW_FORM_ref4:
9306 info_ptr += 4;
9307 break;
9308 case DW_FORM_data8:
9309 case DW_FORM_ref8:
9310 case DW_FORM_ref_sig8:
9311 info_ptr += 8;
9312 break;
9313 case DW_FORM_data16:
9314 info_ptr += 16;
9315 break;
9316 case DW_FORM_string:
9317 read_direct_string (abfd, info_ptr, &bytes_read);
9318 info_ptr += bytes_read;
9319 break;
9320 case DW_FORM_sec_offset:
9321 case DW_FORM_strp:
9322 case DW_FORM_GNU_strp_alt:
9323 info_ptr += cu->header.offset_size;
9324 break;
9325 case DW_FORM_exprloc:
9326 case DW_FORM_block:
9327 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9328 info_ptr += bytes_read;
9329 break;
9330 case DW_FORM_block1:
9331 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9332 break;
9333 case DW_FORM_block2:
9334 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9335 break;
9336 case DW_FORM_block4:
9337 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9338 break;
9339 case DW_FORM_sdata:
9340 case DW_FORM_udata:
9341 case DW_FORM_ref_udata:
9342 case DW_FORM_GNU_addr_index:
9343 case DW_FORM_GNU_str_index:
9344 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9345 break;
9346 case DW_FORM_indirect:
9347 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9348 info_ptr += bytes_read;
9349 /* We need to continue parsing from here, so just go back to
9350 the top. */
9351 goto skip_attribute;
9352
9353 default:
9354 error (_("Dwarf Error: Cannot handle %s "
9355 "in DWARF reader [in module %s]"),
9356 dwarf_form_name (form),
9357 bfd_get_filename (abfd));
9358 }
9359 }
9360
9361 if (abbrev->has_children)
9362 return skip_children (reader, info_ptr);
9363 else
9364 return info_ptr;
9365 }
9366
9367 /* Locate ORIG_PDI's sibling.
9368 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9369
9370 static const gdb_byte *
9371 locate_pdi_sibling (const struct die_reader_specs *reader,
9372 struct partial_die_info *orig_pdi,
9373 const gdb_byte *info_ptr)
9374 {
9375 /* Do we know the sibling already? */
9376
9377 if (orig_pdi->sibling)
9378 return orig_pdi->sibling;
9379
9380 /* Are there any children to deal with? */
9381
9382 if (!orig_pdi->has_children)
9383 return info_ptr;
9384
9385 /* Skip the children the long way. */
9386
9387 return skip_children (reader, info_ptr);
9388 }
9389
9390 /* Expand this partial symbol table into a full symbol table. SELF is
9391 not NULL. */
9392
9393 static void
9394 dwarf2_read_symtab (struct partial_symtab *self,
9395 struct objfile *objfile)
9396 {
9397 struct dwarf2_per_objfile *dwarf2_per_objfile
9398 = get_dwarf2_per_objfile (objfile);
9399
9400 if (self->readin)
9401 {
9402 warning (_("bug: psymtab for %s is already read in."),
9403 self->filename);
9404 }
9405 else
9406 {
9407 if (info_verbose)
9408 {
9409 printf_filtered (_("Reading in symbols for %s..."),
9410 self->filename);
9411 gdb_flush (gdb_stdout);
9412 }
9413
9414 /* If this psymtab is constructed from a debug-only objfile, the
9415 has_section_at_zero flag will not necessarily be correct. We
9416 can get the correct value for this flag by looking at the data
9417 associated with the (presumably stripped) associated objfile. */
9418 if (objfile->separate_debug_objfile_backlink)
9419 {
9420 struct dwarf2_per_objfile *dpo_backlink
9421 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9422
9423 dwarf2_per_objfile->has_section_at_zero
9424 = dpo_backlink->has_section_at_zero;
9425 }
9426
9427 dwarf2_per_objfile->reading_partial_symbols = 0;
9428
9429 psymtab_to_symtab_1 (self);
9430
9431 /* Finish up the debug error message. */
9432 if (info_verbose)
9433 printf_filtered (_("done.\n"));
9434 }
9435
9436 process_cu_includes (dwarf2_per_objfile);
9437 }
9438 \f
9439 /* Reading in full CUs. */
9440
9441 /* Add PER_CU to the queue. */
9442
9443 static void
9444 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9445 enum language pretend_language)
9446 {
9447 struct dwarf2_queue_item *item;
9448
9449 per_cu->queued = 1;
9450 item = XNEW (struct dwarf2_queue_item);
9451 item->per_cu = per_cu;
9452 item->pretend_language = pretend_language;
9453 item->next = NULL;
9454
9455 if (dwarf2_queue == NULL)
9456 dwarf2_queue = item;
9457 else
9458 dwarf2_queue_tail->next = item;
9459
9460 dwarf2_queue_tail = item;
9461 }
9462
9463 /* If PER_CU is not yet queued, add it to the queue.
9464 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9465 dependency.
9466 The result is non-zero if PER_CU was queued, otherwise the result is zero
9467 meaning either PER_CU is already queued or it is already loaded.
9468
9469 N.B. There is an invariant here that if a CU is queued then it is loaded.
9470 The caller is required to load PER_CU if we return non-zero. */
9471
9472 static int
9473 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9474 struct dwarf2_per_cu_data *per_cu,
9475 enum language pretend_language)
9476 {
9477 /* We may arrive here during partial symbol reading, if we need full
9478 DIEs to process an unusual case (e.g. template arguments). Do
9479 not queue PER_CU, just tell our caller to load its DIEs. */
9480 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9481 {
9482 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9483 return 1;
9484 return 0;
9485 }
9486
9487 /* Mark the dependence relation so that we don't flush PER_CU
9488 too early. */
9489 if (dependent_cu != NULL)
9490 dwarf2_add_dependence (dependent_cu, per_cu);
9491
9492 /* If it's already on the queue, we have nothing to do. */
9493 if (per_cu->queued)
9494 return 0;
9495
9496 /* If the compilation unit is already loaded, just mark it as
9497 used. */
9498 if (per_cu->cu != NULL)
9499 {
9500 per_cu->cu->last_used = 0;
9501 return 0;
9502 }
9503
9504 /* Add it to the queue. */
9505 queue_comp_unit (per_cu, pretend_language);
9506
9507 return 1;
9508 }
9509
9510 /* Process the queue. */
9511
9512 static void
9513 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9514 {
9515 struct dwarf2_queue_item *item, *next_item;
9516
9517 if (dwarf_read_debug)
9518 {
9519 fprintf_unfiltered (gdb_stdlog,
9520 "Expanding one or more symtabs of objfile %s ...\n",
9521 objfile_name (dwarf2_per_objfile->objfile));
9522 }
9523
9524 /* The queue starts out with one item, but following a DIE reference
9525 may load a new CU, adding it to the end of the queue. */
9526 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9527 {
9528 if ((dwarf2_per_objfile->using_index
9529 ? !item->per_cu->v.quick->compunit_symtab
9530 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9531 /* Skip dummy CUs. */
9532 && item->per_cu->cu != NULL)
9533 {
9534 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9535 unsigned int debug_print_threshold;
9536 char buf[100];
9537
9538 if (per_cu->is_debug_types)
9539 {
9540 struct signatured_type *sig_type =
9541 (struct signatured_type *) per_cu;
9542
9543 sprintf (buf, "TU %s at offset %s",
9544 hex_string (sig_type->signature),
9545 sect_offset_str (per_cu->sect_off));
9546 /* There can be 100s of TUs.
9547 Only print them in verbose mode. */
9548 debug_print_threshold = 2;
9549 }
9550 else
9551 {
9552 sprintf (buf, "CU at offset %s",
9553 sect_offset_str (per_cu->sect_off));
9554 debug_print_threshold = 1;
9555 }
9556
9557 if (dwarf_read_debug >= debug_print_threshold)
9558 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9559
9560 if (per_cu->is_debug_types)
9561 process_full_type_unit (per_cu, item->pretend_language);
9562 else
9563 process_full_comp_unit (per_cu, item->pretend_language);
9564
9565 if (dwarf_read_debug >= debug_print_threshold)
9566 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9567 }
9568
9569 item->per_cu->queued = 0;
9570 next_item = item->next;
9571 xfree (item);
9572 }
9573
9574 dwarf2_queue_tail = NULL;
9575
9576 if (dwarf_read_debug)
9577 {
9578 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9579 objfile_name (dwarf2_per_objfile->objfile));
9580 }
9581 }
9582
9583 /* Read in full symbols for PST, and anything it depends on. */
9584
9585 static void
9586 psymtab_to_symtab_1 (struct partial_symtab *pst)
9587 {
9588 struct dwarf2_per_cu_data *per_cu;
9589 int i;
9590
9591 if (pst->readin)
9592 return;
9593
9594 for (i = 0; i < pst->number_of_dependencies; i++)
9595 if (!pst->dependencies[i]->readin
9596 && pst->dependencies[i]->user == NULL)
9597 {
9598 /* Inform about additional files that need to be read in. */
9599 if (info_verbose)
9600 {
9601 /* FIXME: i18n: Need to make this a single string. */
9602 fputs_filtered (" ", gdb_stdout);
9603 wrap_here ("");
9604 fputs_filtered ("and ", gdb_stdout);
9605 wrap_here ("");
9606 printf_filtered ("%s...", pst->dependencies[i]->filename);
9607 wrap_here (""); /* Flush output. */
9608 gdb_flush (gdb_stdout);
9609 }
9610 psymtab_to_symtab_1 (pst->dependencies[i]);
9611 }
9612
9613 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9614
9615 if (per_cu == NULL)
9616 {
9617 /* It's an include file, no symbols to read for it.
9618 Everything is in the parent symtab. */
9619 pst->readin = 1;
9620 return;
9621 }
9622
9623 dw2_do_instantiate_symtab (per_cu, false);
9624 }
9625
9626 /* Trivial hash function for die_info: the hash value of a DIE
9627 is its offset in .debug_info for this objfile. */
9628
9629 static hashval_t
9630 die_hash (const void *item)
9631 {
9632 const struct die_info *die = (const struct die_info *) item;
9633
9634 return to_underlying (die->sect_off);
9635 }
9636
9637 /* Trivial comparison function for die_info structures: two DIEs
9638 are equal if they have the same offset. */
9639
9640 static int
9641 die_eq (const void *item_lhs, const void *item_rhs)
9642 {
9643 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9644 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9645
9646 return die_lhs->sect_off == die_rhs->sect_off;
9647 }
9648
9649 /* die_reader_func for load_full_comp_unit.
9650 This is identical to read_signatured_type_reader,
9651 but is kept separate for now. */
9652
9653 static void
9654 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9655 const gdb_byte *info_ptr,
9656 struct die_info *comp_unit_die,
9657 int has_children,
9658 void *data)
9659 {
9660 struct dwarf2_cu *cu = reader->cu;
9661 enum language *language_ptr = (enum language *) data;
9662
9663 gdb_assert (cu->die_hash == NULL);
9664 cu->die_hash =
9665 htab_create_alloc_ex (cu->header.length / 12,
9666 die_hash,
9667 die_eq,
9668 NULL,
9669 &cu->comp_unit_obstack,
9670 hashtab_obstack_allocate,
9671 dummy_obstack_deallocate);
9672
9673 if (has_children)
9674 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9675 &info_ptr, comp_unit_die);
9676 cu->dies = comp_unit_die;
9677 /* comp_unit_die is not stored in die_hash, no need. */
9678
9679 /* We try not to read any attributes in this function, because not
9680 all CUs needed for references have been loaded yet, and symbol
9681 table processing isn't initialized. But we have to set the CU language,
9682 or we won't be able to build types correctly.
9683 Similarly, if we do not read the producer, we can not apply
9684 producer-specific interpretation. */
9685 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9686 }
9687
9688 /* Load the DIEs associated with PER_CU into memory. */
9689
9690 static void
9691 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9692 bool skip_partial,
9693 enum language pretend_language)
9694 {
9695 gdb_assert (! this_cu->is_debug_types);
9696
9697 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9698 load_full_comp_unit_reader, &pretend_language);
9699 }
9700
9701 /* Add a DIE to the delayed physname list. */
9702
9703 static void
9704 add_to_method_list (struct type *type, int fnfield_index, int index,
9705 const char *name, struct die_info *die,
9706 struct dwarf2_cu *cu)
9707 {
9708 struct delayed_method_info mi;
9709 mi.type = type;
9710 mi.fnfield_index = fnfield_index;
9711 mi.index = index;
9712 mi.name = name;
9713 mi.die = die;
9714 cu->method_list.push_back (mi);
9715 }
9716
9717 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9718 "const" / "volatile". If so, decrements LEN by the length of the
9719 modifier and return true. Otherwise return false. */
9720
9721 template<size_t N>
9722 static bool
9723 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9724 {
9725 size_t mod_len = sizeof (mod) - 1;
9726 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9727 {
9728 len -= mod_len;
9729 return true;
9730 }
9731 return false;
9732 }
9733
9734 /* Compute the physnames of any methods on the CU's method list.
9735
9736 The computation of method physnames is delayed in order to avoid the
9737 (bad) condition that one of the method's formal parameters is of an as yet
9738 incomplete type. */
9739
9740 static void
9741 compute_delayed_physnames (struct dwarf2_cu *cu)
9742 {
9743 /* Only C++ delays computing physnames. */
9744 if (cu->method_list.empty ())
9745 return;
9746 gdb_assert (cu->language == language_cplus);
9747
9748 for (const delayed_method_info &mi : cu->method_list)
9749 {
9750 const char *physname;
9751 struct fn_fieldlist *fn_flp
9752 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9753 physname = dwarf2_physname (mi.name, mi.die, cu);
9754 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9755 = physname ? physname : "";
9756
9757 /* Since there's no tag to indicate whether a method is a
9758 const/volatile overload, extract that information out of the
9759 demangled name. */
9760 if (physname != NULL)
9761 {
9762 size_t len = strlen (physname);
9763
9764 while (1)
9765 {
9766 if (physname[len] == ')') /* shortcut */
9767 break;
9768 else if (check_modifier (physname, len, " const"))
9769 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9770 else if (check_modifier (physname, len, " volatile"))
9771 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9772 else
9773 break;
9774 }
9775 }
9776 }
9777
9778 /* The list is no longer needed. */
9779 cu->method_list.clear ();
9780 }
9781
9782 /* Go objects should be embedded in a DW_TAG_module DIE,
9783 and it's not clear if/how imported objects will appear.
9784 To keep Go support simple until that's worked out,
9785 go back through what we've read and create something usable.
9786 We could do this while processing each DIE, and feels kinda cleaner,
9787 but that way is more invasive.
9788 This is to, for example, allow the user to type "p var" or "b main"
9789 without having to specify the package name, and allow lookups
9790 of module.object to work in contexts that use the expression
9791 parser. */
9792
9793 static void
9794 fixup_go_packaging (struct dwarf2_cu *cu)
9795 {
9796 char *package_name = NULL;
9797 struct pending *list;
9798 int i;
9799
9800 for (list = *cu->builder->get_global_symbols ();
9801 list != NULL;
9802 list = list->next)
9803 {
9804 for (i = 0; i < list->nsyms; ++i)
9805 {
9806 struct symbol *sym = list->symbol[i];
9807
9808 if (SYMBOL_LANGUAGE (sym) == language_go
9809 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9810 {
9811 char *this_package_name = go_symbol_package_name (sym);
9812
9813 if (this_package_name == NULL)
9814 continue;
9815 if (package_name == NULL)
9816 package_name = this_package_name;
9817 else
9818 {
9819 struct objfile *objfile
9820 = cu->per_cu->dwarf2_per_objfile->objfile;
9821 if (strcmp (package_name, this_package_name) != 0)
9822 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9823 (symbol_symtab (sym) != NULL
9824 ? symtab_to_filename_for_display
9825 (symbol_symtab (sym))
9826 : objfile_name (objfile)),
9827 this_package_name, package_name);
9828 xfree (this_package_name);
9829 }
9830 }
9831 }
9832 }
9833
9834 if (package_name != NULL)
9835 {
9836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9837 const char *saved_package_name
9838 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9839 package_name,
9840 strlen (package_name));
9841 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9842 saved_package_name);
9843 struct symbol *sym;
9844
9845 sym = allocate_symbol (objfile);
9846 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9847 SYMBOL_SET_NAMES (sym, saved_package_name,
9848 strlen (saved_package_name), 0, objfile);
9849 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9850 e.g., "main" finds the "main" module and not C's main(). */
9851 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9852 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9853 SYMBOL_TYPE (sym) = type;
9854
9855 add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9856
9857 xfree (package_name);
9858 }
9859 }
9860
9861 /* Allocate a fully-qualified name consisting of the two parts on the
9862 obstack. */
9863
9864 static const char *
9865 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9866 {
9867 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9868 }
9869
9870 /* A helper that allocates a struct discriminant_info to attach to a
9871 union type. */
9872
9873 static struct discriminant_info *
9874 alloc_discriminant_info (struct type *type, int discriminant_index,
9875 int default_index)
9876 {
9877 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9878 gdb_assert (discriminant_index == -1
9879 || (discriminant_index >= 0
9880 && discriminant_index < TYPE_NFIELDS (type)));
9881 gdb_assert (default_index == -1
9882 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9883
9884 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9885
9886 struct discriminant_info *disc
9887 = ((struct discriminant_info *)
9888 TYPE_ZALLOC (type,
9889 offsetof (struct discriminant_info, discriminants)
9890 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9891 disc->default_index = default_index;
9892 disc->discriminant_index = discriminant_index;
9893
9894 struct dynamic_prop prop;
9895 prop.kind = PROP_UNDEFINED;
9896 prop.data.baton = disc;
9897
9898 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9899
9900 return disc;
9901 }
9902
9903 /* Some versions of rustc emitted enums in an unusual way.
9904
9905 Ordinary enums were emitted as unions. The first element of each
9906 structure in the union was named "RUST$ENUM$DISR". This element
9907 held the discriminant.
9908
9909 These versions of Rust also implemented the "non-zero"
9910 optimization. When the enum had two values, and one is empty and
9911 the other holds a pointer that cannot be zero, the pointer is used
9912 as the discriminant, with a zero value meaning the empty variant.
9913 Here, the union's first member is of the form
9914 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9915 where the fieldnos are the indices of the fields that should be
9916 traversed in order to find the field (which may be several fields deep)
9917 and the variantname is the name of the variant of the case when the
9918 field is zero.
9919
9920 This function recognizes whether TYPE is of one of these forms,
9921 and, if so, smashes it to be a variant type. */
9922
9923 static void
9924 quirk_rust_enum (struct type *type, struct objfile *objfile)
9925 {
9926 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9927
9928 /* We don't need to deal with empty enums. */
9929 if (TYPE_NFIELDS (type) == 0)
9930 return;
9931
9932 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9933 if (TYPE_NFIELDS (type) == 1
9934 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9935 {
9936 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9937
9938 /* Decode the field name to find the offset of the
9939 discriminant. */
9940 ULONGEST bit_offset = 0;
9941 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9942 while (name[0] >= '0' && name[0] <= '9')
9943 {
9944 char *tail;
9945 unsigned long index = strtoul (name, &tail, 10);
9946 name = tail;
9947 if (*name != '$'
9948 || index >= TYPE_NFIELDS (field_type)
9949 || (TYPE_FIELD_LOC_KIND (field_type, index)
9950 != FIELD_LOC_KIND_BITPOS))
9951 {
9952 complaint (_("Could not parse Rust enum encoding string \"%s\""
9953 "[in module %s]"),
9954 TYPE_FIELD_NAME (type, 0),
9955 objfile_name (objfile));
9956 return;
9957 }
9958 ++name;
9959
9960 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9961 field_type = TYPE_FIELD_TYPE (field_type, index);
9962 }
9963
9964 /* Make a union to hold the variants. */
9965 struct type *union_type = alloc_type (objfile);
9966 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9967 TYPE_NFIELDS (union_type) = 3;
9968 TYPE_FIELDS (union_type)
9969 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9970 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9971 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9972
9973 /* Put the discriminant must at index 0. */
9974 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9975 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9976 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9977 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9978
9979 /* The order of fields doesn't really matter, so put the real
9980 field at index 1 and the data-less field at index 2. */
9981 struct discriminant_info *disc
9982 = alloc_discriminant_info (union_type, 0, 1);
9983 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9984 TYPE_FIELD_NAME (union_type, 1)
9985 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9986 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9987 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9988 TYPE_FIELD_NAME (union_type, 1));
9989
9990 const char *dataless_name
9991 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9992 name);
9993 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9994 dataless_name);
9995 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9996 /* NAME points into the original discriminant name, which
9997 already has the correct lifetime. */
9998 TYPE_FIELD_NAME (union_type, 2) = name;
9999 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10000 disc->discriminants[2] = 0;
10001
10002 /* Smash this type to be a structure type. We have to do this
10003 because the type has already been recorded. */
10004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10005 TYPE_NFIELDS (type) = 1;
10006 TYPE_FIELDS (type)
10007 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10008
10009 /* Install the variant part. */
10010 TYPE_FIELD_TYPE (type, 0) = union_type;
10011 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10012 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10013 }
10014 else if (TYPE_NFIELDS (type) == 1)
10015 {
10016 /* We assume that a union with a single field is a univariant
10017 enum. */
10018 /* Smash this type to be a structure type. We have to do this
10019 because the type has already been recorded. */
10020 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10021
10022 /* Make a union to hold the variants. */
10023 struct type *union_type = alloc_type (objfile);
10024 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10025 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10026 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10027 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10028 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10029
10030 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10031 const char *variant_name
10032 = rust_last_path_segment (TYPE_NAME (field_type));
10033 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10034 TYPE_NAME (field_type)
10035 = rust_fully_qualify (&objfile->objfile_obstack,
10036 TYPE_NAME (type), variant_name);
10037
10038 /* Install the union in the outer struct type. */
10039 TYPE_NFIELDS (type) = 1;
10040 TYPE_FIELDS (type)
10041 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10042 TYPE_FIELD_TYPE (type, 0) = union_type;
10043 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10044 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10045
10046 alloc_discriminant_info (union_type, -1, 0);
10047 }
10048 else
10049 {
10050 struct type *disr_type = nullptr;
10051 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10052 {
10053 disr_type = TYPE_FIELD_TYPE (type, i);
10054
10055 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10056 {
10057 /* All fields of a true enum will be structs. */
10058 return;
10059 }
10060 else if (TYPE_NFIELDS (disr_type) == 0)
10061 {
10062 /* Could be data-less variant, so keep going. */
10063 disr_type = nullptr;
10064 }
10065 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10066 "RUST$ENUM$DISR") != 0)
10067 {
10068 /* Not a Rust enum. */
10069 return;
10070 }
10071 else
10072 {
10073 /* Found one. */
10074 break;
10075 }
10076 }
10077
10078 /* If we got here without a discriminant, then it's probably
10079 just a union. */
10080 if (disr_type == nullptr)
10081 return;
10082
10083 /* Smash this type to be a structure type. We have to do this
10084 because the type has already been recorded. */
10085 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10086
10087 /* Make a union to hold the variants. */
10088 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10089 struct type *union_type = alloc_type (objfile);
10090 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10091 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10092 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10093 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10094 TYPE_FIELDS (union_type)
10095 = (struct field *) TYPE_ZALLOC (union_type,
10096 (TYPE_NFIELDS (union_type)
10097 * sizeof (struct field)));
10098
10099 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10100 TYPE_NFIELDS (type) * sizeof (struct field));
10101
10102 /* Install the discriminant at index 0 in the union. */
10103 TYPE_FIELD (union_type, 0) = *disr_field;
10104 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10105 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10106
10107 /* Install the union in the outer struct type. */
10108 TYPE_FIELD_TYPE (type, 0) = union_type;
10109 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10110 TYPE_NFIELDS (type) = 1;
10111
10112 /* Set the size and offset of the union type. */
10113 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10114
10115 /* We need a way to find the correct discriminant given a
10116 variant name. For convenience we build a map here. */
10117 struct type *enum_type = FIELD_TYPE (*disr_field);
10118 std::unordered_map<std::string, ULONGEST> discriminant_map;
10119 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10120 {
10121 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10122 {
10123 const char *name
10124 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10125 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10126 }
10127 }
10128
10129 int n_fields = TYPE_NFIELDS (union_type);
10130 struct discriminant_info *disc
10131 = alloc_discriminant_info (union_type, 0, -1);
10132 /* Skip the discriminant here. */
10133 for (int i = 1; i < n_fields; ++i)
10134 {
10135 /* Find the final word in the name of this variant's type.
10136 That name can be used to look up the correct
10137 discriminant. */
10138 const char *variant_name
10139 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10140 i)));
10141
10142 auto iter = discriminant_map.find (variant_name);
10143 if (iter != discriminant_map.end ())
10144 disc->discriminants[i] = iter->second;
10145
10146 /* Remove the discriminant field, if it exists. */
10147 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10148 if (TYPE_NFIELDS (sub_type) > 0)
10149 {
10150 --TYPE_NFIELDS (sub_type);
10151 ++TYPE_FIELDS (sub_type);
10152 }
10153 TYPE_FIELD_NAME (union_type, i) = variant_name;
10154 TYPE_NAME (sub_type)
10155 = rust_fully_qualify (&objfile->objfile_obstack,
10156 TYPE_NAME (type), variant_name);
10157 }
10158 }
10159 }
10160
10161 /* Rewrite some Rust unions to be structures with variants parts. */
10162
10163 static void
10164 rust_union_quirks (struct dwarf2_cu *cu)
10165 {
10166 gdb_assert (cu->language == language_rust);
10167 for (type *type_ : cu->rust_unions)
10168 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10169 /* We don't need this any more. */
10170 cu->rust_unions.clear ();
10171 }
10172
10173 /* Return the symtab for PER_CU. This works properly regardless of
10174 whether we're using the index or psymtabs. */
10175
10176 static struct compunit_symtab *
10177 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10178 {
10179 return (per_cu->dwarf2_per_objfile->using_index
10180 ? per_cu->v.quick->compunit_symtab
10181 : per_cu->v.psymtab->compunit_symtab);
10182 }
10183
10184 /* A helper function for computing the list of all symbol tables
10185 included by PER_CU. */
10186
10187 static void
10188 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10189 htab_t all_children, htab_t all_type_symtabs,
10190 struct dwarf2_per_cu_data *per_cu,
10191 struct compunit_symtab *immediate_parent)
10192 {
10193 void **slot;
10194 int ix;
10195 struct compunit_symtab *cust;
10196 struct dwarf2_per_cu_data *iter;
10197
10198 slot = htab_find_slot (all_children, per_cu, INSERT);
10199 if (*slot != NULL)
10200 {
10201 /* This inclusion and its children have been processed. */
10202 return;
10203 }
10204
10205 *slot = per_cu;
10206 /* Only add a CU if it has a symbol table. */
10207 cust = get_compunit_symtab (per_cu);
10208 if (cust != NULL)
10209 {
10210 /* If this is a type unit only add its symbol table if we haven't
10211 seen it yet (type unit per_cu's can share symtabs). */
10212 if (per_cu->is_debug_types)
10213 {
10214 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10215 if (*slot == NULL)
10216 {
10217 *slot = cust;
10218 result->push_back (cust);
10219 if (cust->user == NULL)
10220 cust->user = immediate_parent;
10221 }
10222 }
10223 else
10224 {
10225 result->push_back (cust);
10226 if (cust->user == NULL)
10227 cust->user = immediate_parent;
10228 }
10229 }
10230
10231 for (ix = 0;
10232 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10233 ++ix)
10234 {
10235 recursively_compute_inclusions (result, all_children,
10236 all_type_symtabs, iter, cust);
10237 }
10238 }
10239
10240 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10241 PER_CU. */
10242
10243 static void
10244 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10245 {
10246 gdb_assert (! per_cu->is_debug_types);
10247
10248 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10249 {
10250 int ix, len;
10251 struct dwarf2_per_cu_data *per_cu_iter;
10252 std::vector<compunit_symtab *> result_symtabs;
10253 htab_t all_children, all_type_symtabs;
10254 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10255
10256 /* If we don't have a symtab, we can just skip this case. */
10257 if (cust == NULL)
10258 return;
10259
10260 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10261 NULL, xcalloc, xfree);
10262 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10263 NULL, xcalloc, xfree);
10264
10265 for (ix = 0;
10266 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10267 ix, per_cu_iter);
10268 ++ix)
10269 {
10270 recursively_compute_inclusions (&result_symtabs, all_children,
10271 all_type_symtabs, per_cu_iter,
10272 cust);
10273 }
10274
10275 /* Now we have a transitive closure of all the included symtabs. */
10276 len = result_symtabs.size ();
10277 cust->includes
10278 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10279 struct compunit_symtab *, len + 1);
10280 memcpy (cust->includes, result_symtabs.data (),
10281 len * sizeof (compunit_symtab *));
10282 cust->includes[len] = NULL;
10283
10284 htab_delete (all_children);
10285 htab_delete (all_type_symtabs);
10286 }
10287 }
10288
10289 /* Compute the 'includes' field for the symtabs of all the CUs we just
10290 read. */
10291
10292 static void
10293 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10294 {
10295 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10296 {
10297 if (! iter->is_debug_types)
10298 compute_compunit_symtab_includes (iter);
10299 }
10300
10301 dwarf2_per_objfile->just_read_cus.clear ();
10302 }
10303
10304 /* Generate full symbol information for PER_CU, whose DIEs have
10305 already been loaded into memory. */
10306
10307 static void
10308 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10309 enum language pretend_language)
10310 {
10311 struct dwarf2_cu *cu = per_cu->cu;
10312 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10313 struct objfile *objfile = dwarf2_per_objfile->objfile;
10314 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10315 CORE_ADDR lowpc, highpc;
10316 struct compunit_symtab *cust;
10317 CORE_ADDR baseaddr;
10318 struct block *static_block;
10319 CORE_ADDR addr;
10320
10321 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10322
10323 /* Clear the list here in case something was left over. */
10324 cu->method_list.clear ();
10325
10326 cu->language = pretend_language;
10327 cu->language_defn = language_def (cu->language);
10328
10329 /* Do line number decoding in read_file_scope () */
10330 process_die (cu->dies, cu);
10331
10332 /* For now fudge the Go package. */
10333 if (cu->language == language_go)
10334 fixup_go_packaging (cu);
10335
10336 /* Now that we have processed all the DIEs in the CU, all the types
10337 should be complete, and it should now be safe to compute all of the
10338 physnames. */
10339 compute_delayed_physnames (cu);
10340
10341 if (cu->language == language_rust)
10342 rust_union_quirks (cu);
10343
10344 /* Some compilers don't define a DW_AT_high_pc attribute for the
10345 compilation unit. If the DW_AT_high_pc is missing, synthesize
10346 it, by scanning the DIE's below the compilation unit. */
10347 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10348
10349 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10350 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10351
10352 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10353 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10354 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10355 addrmap to help ensure it has an accurate map of pc values belonging to
10356 this comp unit. */
10357 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10358
10359 cust = cu->builder->end_symtab_from_static_block (static_block,
10360 SECT_OFF_TEXT (objfile),
10361 0);
10362
10363 if (cust != NULL)
10364 {
10365 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10366
10367 /* Set symtab language to language from DW_AT_language. If the
10368 compilation is from a C file generated by language preprocessors, do
10369 not set the language if it was already deduced by start_subfile. */
10370 if (!(cu->language == language_c
10371 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10372 COMPUNIT_FILETABS (cust)->language = cu->language;
10373
10374 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10375 produce DW_AT_location with location lists but it can be possibly
10376 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10377 there were bugs in prologue debug info, fixed later in GCC-4.5
10378 by "unwind info for epilogues" patch (which is not directly related).
10379
10380 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10381 needed, it would be wrong due to missing DW_AT_producer there.
10382
10383 Still one can confuse GDB by using non-standard GCC compilation
10384 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10385 */
10386 if (cu->has_loclist && gcc_4_minor >= 5)
10387 cust->locations_valid = 1;
10388
10389 if (gcc_4_minor >= 5)
10390 cust->epilogue_unwind_valid = 1;
10391
10392 cust->call_site_htab = cu->call_site_htab;
10393 }
10394
10395 if (dwarf2_per_objfile->using_index)
10396 per_cu->v.quick->compunit_symtab = cust;
10397 else
10398 {
10399 struct partial_symtab *pst = per_cu->v.psymtab;
10400 pst->compunit_symtab = cust;
10401 pst->readin = 1;
10402 }
10403
10404 /* Push it for inclusion processing later. */
10405 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10406
10407 /* Not needed any more. */
10408 cu->builder.reset ();
10409 }
10410
10411 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10412 already been loaded into memory. */
10413
10414 static void
10415 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10416 enum language pretend_language)
10417 {
10418 struct dwarf2_cu *cu = per_cu->cu;
10419 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10420 struct objfile *objfile = dwarf2_per_objfile->objfile;
10421 struct compunit_symtab *cust;
10422 struct signatured_type *sig_type;
10423
10424 gdb_assert (per_cu->is_debug_types);
10425 sig_type = (struct signatured_type *) per_cu;
10426
10427 /* Clear the list here in case something was left over. */
10428 cu->method_list.clear ();
10429
10430 cu->language = pretend_language;
10431 cu->language_defn = language_def (cu->language);
10432
10433 /* The symbol tables are set up in read_type_unit_scope. */
10434 process_die (cu->dies, cu);
10435
10436 /* For now fudge the Go package. */
10437 if (cu->language == language_go)
10438 fixup_go_packaging (cu);
10439
10440 /* Now that we have processed all the DIEs in the CU, all the types
10441 should be complete, and it should now be safe to compute all of the
10442 physnames. */
10443 compute_delayed_physnames (cu);
10444
10445 if (cu->language == language_rust)
10446 rust_union_quirks (cu);
10447
10448 /* TUs share symbol tables.
10449 If this is the first TU to use this symtab, complete the construction
10450 of it with end_expandable_symtab. Otherwise, complete the addition of
10451 this TU's symbols to the existing symtab. */
10452 if (sig_type->type_unit_group->compunit_symtab == NULL)
10453 {
10454 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10455 sig_type->type_unit_group->compunit_symtab = cust;
10456
10457 if (cust != NULL)
10458 {
10459 /* Set symtab language to language from DW_AT_language. If the
10460 compilation is from a C file generated by language preprocessors,
10461 do not set the language if it was already deduced by
10462 start_subfile. */
10463 if (!(cu->language == language_c
10464 && COMPUNIT_FILETABS (cust)->language != language_c))
10465 COMPUNIT_FILETABS (cust)->language = cu->language;
10466 }
10467 }
10468 else
10469 {
10470 cu->builder->augment_type_symtab ();
10471 cust = sig_type->type_unit_group->compunit_symtab;
10472 }
10473
10474 if (dwarf2_per_objfile->using_index)
10475 per_cu->v.quick->compunit_symtab = cust;
10476 else
10477 {
10478 struct partial_symtab *pst = per_cu->v.psymtab;
10479 pst->compunit_symtab = cust;
10480 pst->readin = 1;
10481 }
10482
10483 /* Not needed any more. */
10484 cu->builder.reset ();
10485 }
10486
10487 /* Process an imported unit DIE. */
10488
10489 static void
10490 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10491 {
10492 struct attribute *attr;
10493
10494 /* For now we don't handle imported units in type units. */
10495 if (cu->per_cu->is_debug_types)
10496 {
10497 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10498 " supported in type units [in module %s]"),
10499 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10500 }
10501
10502 attr = dwarf2_attr (die, DW_AT_import, cu);
10503 if (attr != NULL)
10504 {
10505 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10506 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10507 dwarf2_per_cu_data *per_cu
10508 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10509 cu->per_cu->dwarf2_per_objfile);
10510
10511 /* If necessary, add it to the queue and load its DIEs. */
10512 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10513 load_full_comp_unit (per_cu, false, cu->language);
10514
10515 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10516 per_cu);
10517 }
10518 }
10519
10520 /* RAII object that represents a process_die scope: i.e.,
10521 starts/finishes processing a DIE. */
10522 class process_die_scope
10523 {
10524 public:
10525 process_die_scope (die_info *die, dwarf2_cu *cu)
10526 : m_die (die), m_cu (cu)
10527 {
10528 /* We should only be processing DIEs not already in process. */
10529 gdb_assert (!m_die->in_process);
10530 m_die->in_process = true;
10531 }
10532
10533 ~process_die_scope ()
10534 {
10535 m_die->in_process = false;
10536
10537 /* If we're done processing the DIE for the CU that owns the line
10538 header, we don't need the line header anymore. */
10539 if (m_cu->line_header_die_owner == m_die)
10540 {
10541 delete m_cu->line_header;
10542 m_cu->line_header = NULL;
10543 m_cu->line_header_die_owner = NULL;
10544 }
10545 }
10546
10547 private:
10548 die_info *m_die;
10549 dwarf2_cu *m_cu;
10550 };
10551
10552 /* Process a die and its children. */
10553
10554 static void
10555 process_die (struct die_info *die, struct dwarf2_cu *cu)
10556 {
10557 process_die_scope scope (die, cu);
10558
10559 switch (die->tag)
10560 {
10561 case DW_TAG_padding:
10562 break;
10563 case DW_TAG_compile_unit:
10564 case DW_TAG_partial_unit:
10565 read_file_scope (die, cu);
10566 break;
10567 case DW_TAG_type_unit:
10568 read_type_unit_scope (die, cu);
10569 break;
10570 case DW_TAG_subprogram:
10571 case DW_TAG_inlined_subroutine:
10572 read_func_scope (die, cu);
10573 break;
10574 case DW_TAG_lexical_block:
10575 case DW_TAG_try_block:
10576 case DW_TAG_catch_block:
10577 read_lexical_block_scope (die, cu);
10578 break;
10579 case DW_TAG_call_site:
10580 case DW_TAG_GNU_call_site:
10581 read_call_site_scope (die, cu);
10582 break;
10583 case DW_TAG_class_type:
10584 case DW_TAG_interface_type:
10585 case DW_TAG_structure_type:
10586 case DW_TAG_union_type:
10587 process_structure_scope (die, cu);
10588 break;
10589 case DW_TAG_enumeration_type:
10590 process_enumeration_scope (die, cu);
10591 break;
10592
10593 /* These dies have a type, but processing them does not create
10594 a symbol or recurse to process the children. Therefore we can
10595 read them on-demand through read_type_die. */
10596 case DW_TAG_subroutine_type:
10597 case DW_TAG_set_type:
10598 case DW_TAG_array_type:
10599 case DW_TAG_pointer_type:
10600 case DW_TAG_ptr_to_member_type:
10601 case DW_TAG_reference_type:
10602 case DW_TAG_rvalue_reference_type:
10603 case DW_TAG_string_type:
10604 break;
10605
10606 case DW_TAG_base_type:
10607 case DW_TAG_subrange_type:
10608 case DW_TAG_typedef:
10609 /* Add a typedef symbol for the type definition, if it has a
10610 DW_AT_name. */
10611 new_symbol (die, read_type_die (die, cu), cu);
10612 break;
10613 case DW_TAG_common_block:
10614 read_common_block (die, cu);
10615 break;
10616 case DW_TAG_common_inclusion:
10617 break;
10618 case DW_TAG_namespace:
10619 cu->processing_has_namespace_info = true;
10620 read_namespace (die, cu);
10621 break;
10622 case DW_TAG_module:
10623 cu->processing_has_namespace_info = true;
10624 read_module (die, cu);
10625 break;
10626 case DW_TAG_imported_declaration:
10627 cu->processing_has_namespace_info = true;
10628 if (read_namespace_alias (die, cu))
10629 break;
10630 /* The declaration is not a global namespace alias. */
10631 /* Fall through. */
10632 case DW_TAG_imported_module:
10633 cu->processing_has_namespace_info = true;
10634 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10635 || cu->language != language_fortran))
10636 complaint (_("Tag '%s' has unexpected children"),
10637 dwarf_tag_name (die->tag));
10638 read_import_statement (die, cu);
10639 break;
10640
10641 case DW_TAG_imported_unit:
10642 process_imported_unit_die (die, cu);
10643 break;
10644
10645 case DW_TAG_variable:
10646 read_variable (die, cu);
10647 break;
10648
10649 default:
10650 new_symbol (die, NULL, cu);
10651 break;
10652 }
10653 }
10654 \f
10655 /* DWARF name computation. */
10656
10657 /* A helper function for dwarf2_compute_name which determines whether DIE
10658 needs to have the name of the scope prepended to the name listed in the
10659 die. */
10660
10661 static int
10662 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10663 {
10664 struct attribute *attr;
10665
10666 switch (die->tag)
10667 {
10668 case DW_TAG_namespace:
10669 case DW_TAG_typedef:
10670 case DW_TAG_class_type:
10671 case DW_TAG_interface_type:
10672 case DW_TAG_structure_type:
10673 case DW_TAG_union_type:
10674 case DW_TAG_enumeration_type:
10675 case DW_TAG_enumerator:
10676 case DW_TAG_subprogram:
10677 case DW_TAG_inlined_subroutine:
10678 case DW_TAG_member:
10679 case DW_TAG_imported_declaration:
10680 return 1;
10681
10682 case DW_TAG_variable:
10683 case DW_TAG_constant:
10684 /* We only need to prefix "globally" visible variables. These include
10685 any variable marked with DW_AT_external or any variable that
10686 lives in a namespace. [Variables in anonymous namespaces
10687 require prefixing, but they are not DW_AT_external.] */
10688
10689 if (dwarf2_attr (die, DW_AT_specification, cu))
10690 {
10691 struct dwarf2_cu *spec_cu = cu;
10692
10693 return die_needs_namespace (die_specification (die, &spec_cu),
10694 spec_cu);
10695 }
10696
10697 attr = dwarf2_attr (die, DW_AT_external, cu);
10698 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10699 && die->parent->tag != DW_TAG_module)
10700 return 0;
10701 /* A variable in a lexical block of some kind does not need a
10702 namespace, even though in C++ such variables may be external
10703 and have a mangled name. */
10704 if (die->parent->tag == DW_TAG_lexical_block
10705 || die->parent->tag == DW_TAG_try_block
10706 || die->parent->tag == DW_TAG_catch_block
10707 || die->parent->tag == DW_TAG_subprogram)
10708 return 0;
10709 return 1;
10710
10711 default:
10712 return 0;
10713 }
10714 }
10715
10716 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10717 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10718 defined for the given DIE. */
10719
10720 static struct attribute *
10721 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10722 {
10723 struct attribute *attr;
10724
10725 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10726 if (attr == NULL)
10727 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10728
10729 return attr;
10730 }
10731
10732 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10733 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10734 defined for the given DIE. */
10735
10736 static const char *
10737 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10738 {
10739 const char *linkage_name;
10740
10741 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10742 if (linkage_name == NULL)
10743 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10744
10745 return linkage_name;
10746 }
10747
10748 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10749 compute the physname for the object, which include a method's:
10750 - formal parameters (C++),
10751 - receiver type (Go),
10752
10753 The term "physname" is a bit confusing.
10754 For C++, for example, it is the demangled name.
10755 For Go, for example, it's the mangled name.
10756
10757 For Ada, return the DIE's linkage name rather than the fully qualified
10758 name. PHYSNAME is ignored..
10759
10760 The result is allocated on the objfile_obstack and canonicalized. */
10761
10762 static const char *
10763 dwarf2_compute_name (const char *name,
10764 struct die_info *die, struct dwarf2_cu *cu,
10765 int physname)
10766 {
10767 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10768
10769 if (name == NULL)
10770 name = dwarf2_name (die, cu);
10771
10772 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10773 but otherwise compute it by typename_concat inside GDB.
10774 FIXME: Actually this is not really true, or at least not always true.
10775 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10776 Fortran names because there is no mangling standard. So new_symbol
10777 will set the demangled name to the result of dwarf2_full_name, and it is
10778 the demangled name that GDB uses if it exists. */
10779 if (cu->language == language_ada
10780 || (cu->language == language_fortran && physname))
10781 {
10782 /* For Ada unit, we prefer the linkage name over the name, as
10783 the former contains the exported name, which the user expects
10784 to be able to reference. Ideally, we want the user to be able
10785 to reference this entity using either natural or linkage name,
10786 but we haven't started looking at this enhancement yet. */
10787 const char *linkage_name = dw2_linkage_name (die, cu);
10788
10789 if (linkage_name != NULL)
10790 return linkage_name;
10791 }
10792
10793 /* These are the only languages we know how to qualify names in. */
10794 if (name != NULL
10795 && (cu->language == language_cplus
10796 || cu->language == language_fortran || cu->language == language_d
10797 || cu->language == language_rust))
10798 {
10799 if (die_needs_namespace (die, cu))
10800 {
10801 const char *prefix;
10802 const char *canonical_name = NULL;
10803
10804 string_file buf;
10805
10806 prefix = determine_prefix (die, cu);
10807 if (*prefix != '\0')
10808 {
10809 char *prefixed_name = typename_concat (NULL, prefix, name,
10810 physname, cu);
10811
10812 buf.puts (prefixed_name);
10813 xfree (prefixed_name);
10814 }
10815 else
10816 buf.puts (name);
10817
10818 /* Template parameters may be specified in the DIE's DW_AT_name, or
10819 as children with DW_TAG_template_type_param or
10820 DW_TAG_value_type_param. If the latter, add them to the name
10821 here. If the name already has template parameters, then
10822 skip this step; some versions of GCC emit both, and
10823 it is more efficient to use the pre-computed name.
10824
10825 Something to keep in mind about this process: it is very
10826 unlikely, or in some cases downright impossible, to produce
10827 something that will match the mangled name of a function.
10828 If the definition of the function has the same debug info,
10829 we should be able to match up with it anyway. But fallbacks
10830 using the minimal symbol, for instance to find a method
10831 implemented in a stripped copy of libstdc++, will not work.
10832 If we do not have debug info for the definition, we will have to
10833 match them up some other way.
10834
10835 When we do name matching there is a related problem with function
10836 templates; two instantiated function templates are allowed to
10837 differ only by their return types, which we do not add here. */
10838
10839 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10840 {
10841 struct attribute *attr;
10842 struct die_info *child;
10843 int first = 1;
10844
10845 die->building_fullname = 1;
10846
10847 for (child = die->child; child != NULL; child = child->sibling)
10848 {
10849 struct type *type;
10850 LONGEST value;
10851 const gdb_byte *bytes;
10852 struct dwarf2_locexpr_baton *baton;
10853 struct value *v;
10854
10855 if (child->tag != DW_TAG_template_type_param
10856 && child->tag != DW_TAG_template_value_param)
10857 continue;
10858
10859 if (first)
10860 {
10861 buf.puts ("<");
10862 first = 0;
10863 }
10864 else
10865 buf.puts (", ");
10866
10867 attr = dwarf2_attr (child, DW_AT_type, cu);
10868 if (attr == NULL)
10869 {
10870 complaint (_("template parameter missing DW_AT_type"));
10871 buf.puts ("UNKNOWN_TYPE");
10872 continue;
10873 }
10874 type = die_type (child, cu);
10875
10876 if (child->tag == DW_TAG_template_type_param)
10877 {
10878 c_print_type (type, "", &buf, -1, 0, cu->language,
10879 &type_print_raw_options);
10880 continue;
10881 }
10882
10883 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10884 if (attr == NULL)
10885 {
10886 complaint (_("template parameter missing "
10887 "DW_AT_const_value"));
10888 buf.puts ("UNKNOWN_VALUE");
10889 continue;
10890 }
10891
10892 dwarf2_const_value_attr (attr, type, name,
10893 &cu->comp_unit_obstack, cu,
10894 &value, &bytes, &baton);
10895
10896 if (TYPE_NOSIGN (type))
10897 /* GDB prints characters as NUMBER 'CHAR'. If that's
10898 changed, this can use value_print instead. */
10899 c_printchar (value, type, &buf);
10900 else
10901 {
10902 struct value_print_options opts;
10903
10904 if (baton != NULL)
10905 v = dwarf2_evaluate_loc_desc (type, NULL,
10906 baton->data,
10907 baton->size,
10908 baton->per_cu);
10909 else if (bytes != NULL)
10910 {
10911 v = allocate_value (type);
10912 memcpy (value_contents_writeable (v), bytes,
10913 TYPE_LENGTH (type));
10914 }
10915 else
10916 v = value_from_longest (type, value);
10917
10918 /* Specify decimal so that we do not depend on
10919 the radix. */
10920 get_formatted_print_options (&opts, 'd');
10921 opts.raw = 1;
10922 value_print (v, &buf, &opts);
10923 release_value (v);
10924 }
10925 }
10926
10927 die->building_fullname = 0;
10928
10929 if (!first)
10930 {
10931 /* Close the argument list, with a space if necessary
10932 (nested templates). */
10933 if (!buf.empty () && buf.string ().back () == '>')
10934 buf.puts (" >");
10935 else
10936 buf.puts (">");
10937 }
10938 }
10939
10940 /* For C++ methods, append formal parameter type
10941 information, if PHYSNAME. */
10942
10943 if (physname && die->tag == DW_TAG_subprogram
10944 && cu->language == language_cplus)
10945 {
10946 struct type *type = read_type_die (die, cu);
10947
10948 c_type_print_args (type, &buf, 1, cu->language,
10949 &type_print_raw_options);
10950
10951 if (cu->language == language_cplus)
10952 {
10953 /* Assume that an artificial first parameter is
10954 "this", but do not crash if it is not. RealView
10955 marks unnamed (and thus unused) parameters as
10956 artificial; there is no way to differentiate
10957 the two cases. */
10958 if (TYPE_NFIELDS (type) > 0
10959 && TYPE_FIELD_ARTIFICIAL (type, 0)
10960 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10961 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10962 0))))
10963 buf.puts (" const");
10964 }
10965 }
10966
10967 const std::string &intermediate_name = buf.string ();
10968
10969 if (cu->language == language_cplus)
10970 canonical_name
10971 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10972 &objfile->per_bfd->storage_obstack);
10973
10974 /* If we only computed INTERMEDIATE_NAME, or if
10975 INTERMEDIATE_NAME is already canonical, then we need to
10976 copy it to the appropriate obstack. */
10977 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10978 name = ((const char *)
10979 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10980 intermediate_name.c_str (),
10981 intermediate_name.length ()));
10982 else
10983 name = canonical_name;
10984 }
10985 }
10986
10987 return name;
10988 }
10989
10990 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10991 If scope qualifiers are appropriate they will be added. The result
10992 will be allocated on the storage_obstack, or NULL if the DIE does
10993 not have a name. NAME may either be from a previous call to
10994 dwarf2_name or NULL.
10995
10996 The output string will be canonicalized (if C++). */
10997
10998 static const char *
10999 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11000 {
11001 return dwarf2_compute_name (name, die, cu, 0);
11002 }
11003
11004 /* Construct a physname for the given DIE in CU. NAME may either be
11005 from a previous call to dwarf2_name or NULL. The result will be
11006 allocated on the objfile_objstack or NULL if the DIE does not have a
11007 name.
11008
11009 The output string will be canonicalized (if C++). */
11010
11011 static const char *
11012 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11013 {
11014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11015 const char *retval, *mangled = NULL, *canon = NULL;
11016 int need_copy = 1;
11017
11018 /* In this case dwarf2_compute_name is just a shortcut not building anything
11019 on its own. */
11020 if (!die_needs_namespace (die, cu))
11021 return dwarf2_compute_name (name, die, cu, 1);
11022
11023 mangled = dw2_linkage_name (die, cu);
11024
11025 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11026 See https://github.com/rust-lang/rust/issues/32925. */
11027 if (cu->language == language_rust && mangled != NULL
11028 && strchr (mangled, '{') != NULL)
11029 mangled = NULL;
11030
11031 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11032 has computed. */
11033 gdb::unique_xmalloc_ptr<char> demangled;
11034 if (mangled != NULL)
11035 {
11036
11037 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11038 {
11039 /* Do nothing (do not demangle the symbol name). */
11040 }
11041 else if (cu->language == language_go)
11042 {
11043 /* This is a lie, but we already lie to the caller new_symbol.
11044 new_symbol assumes we return the mangled name.
11045 This just undoes that lie until things are cleaned up. */
11046 }
11047 else
11048 {
11049 /* Use DMGL_RET_DROP for C++ template functions to suppress
11050 their return type. It is easier for GDB users to search
11051 for such functions as `name(params)' than `long name(params)'.
11052 In such case the minimal symbol names do not match the full
11053 symbol names but for template functions there is never a need
11054 to look up their definition from their declaration so
11055 the only disadvantage remains the minimal symbol variant
11056 `long name(params)' does not have the proper inferior type. */
11057 demangled.reset (gdb_demangle (mangled,
11058 (DMGL_PARAMS | DMGL_ANSI
11059 | DMGL_RET_DROP)));
11060 }
11061 if (demangled)
11062 canon = demangled.get ();
11063 else
11064 {
11065 canon = mangled;
11066 need_copy = 0;
11067 }
11068 }
11069
11070 if (canon == NULL || check_physname)
11071 {
11072 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11073
11074 if (canon != NULL && strcmp (physname, canon) != 0)
11075 {
11076 /* It may not mean a bug in GDB. The compiler could also
11077 compute DW_AT_linkage_name incorrectly. But in such case
11078 GDB would need to be bug-to-bug compatible. */
11079
11080 complaint (_("Computed physname <%s> does not match demangled <%s> "
11081 "(from linkage <%s>) - DIE at %s [in module %s]"),
11082 physname, canon, mangled, sect_offset_str (die->sect_off),
11083 objfile_name (objfile));
11084
11085 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11086 is available here - over computed PHYSNAME. It is safer
11087 against both buggy GDB and buggy compilers. */
11088
11089 retval = canon;
11090 }
11091 else
11092 {
11093 retval = physname;
11094 need_copy = 0;
11095 }
11096 }
11097 else
11098 retval = canon;
11099
11100 if (need_copy)
11101 retval = ((const char *)
11102 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11103 retval, strlen (retval)));
11104
11105 return retval;
11106 }
11107
11108 /* Inspect DIE in CU for a namespace alias. If one exists, record
11109 a new symbol for it.
11110
11111 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11112
11113 static int
11114 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11115 {
11116 struct attribute *attr;
11117
11118 /* If the die does not have a name, this is not a namespace
11119 alias. */
11120 attr = dwarf2_attr (die, DW_AT_name, cu);
11121 if (attr != NULL)
11122 {
11123 int num;
11124 struct die_info *d = die;
11125 struct dwarf2_cu *imported_cu = cu;
11126
11127 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11128 keep inspecting DIEs until we hit the underlying import. */
11129 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11130 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11131 {
11132 attr = dwarf2_attr (d, DW_AT_import, cu);
11133 if (attr == NULL)
11134 break;
11135
11136 d = follow_die_ref (d, attr, &imported_cu);
11137 if (d->tag != DW_TAG_imported_declaration)
11138 break;
11139 }
11140
11141 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11142 {
11143 complaint (_("DIE at %s has too many recursively imported "
11144 "declarations"), sect_offset_str (d->sect_off));
11145 return 0;
11146 }
11147
11148 if (attr != NULL)
11149 {
11150 struct type *type;
11151 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11152
11153 type = get_die_type_at_offset (sect_off, cu->per_cu);
11154 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11155 {
11156 /* This declaration is a global namespace alias. Add
11157 a symbol for it whose type is the aliased namespace. */
11158 new_symbol (die, type, cu);
11159 return 1;
11160 }
11161 }
11162 }
11163
11164 return 0;
11165 }
11166
11167 /* Return the using directives repository (global or local?) to use in the
11168 current context for CU.
11169
11170 For Ada, imported declarations can materialize renamings, which *may* be
11171 global. However it is impossible (for now?) in DWARF to distinguish
11172 "external" imported declarations and "static" ones. As all imported
11173 declarations seem to be static in all other languages, make them all CU-wide
11174 global only in Ada. */
11175
11176 static struct using_direct **
11177 using_directives (struct dwarf2_cu *cu)
11178 {
11179 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11180 return cu->builder->get_global_using_directives ();
11181 else
11182 return cu->builder->get_local_using_directives ();
11183 }
11184
11185 /* Read the import statement specified by the given die and record it. */
11186
11187 static void
11188 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11189 {
11190 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11191 struct attribute *import_attr;
11192 struct die_info *imported_die, *child_die;
11193 struct dwarf2_cu *imported_cu;
11194 const char *imported_name;
11195 const char *imported_name_prefix;
11196 const char *canonical_name;
11197 const char *import_alias;
11198 const char *imported_declaration = NULL;
11199 const char *import_prefix;
11200 std::vector<const char *> excludes;
11201
11202 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11203 if (import_attr == NULL)
11204 {
11205 complaint (_("Tag '%s' has no DW_AT_import"),
11206 dwarf_tag_name (die->tag));
11207 return;
11208 }
11209
11210 imported_cu = cu;
11211 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11212 imported_name = dwarf2_name (imported_die, imported_cu);
11213 if (imported_name == NULL)
11214 {
11215 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11216
11217 The import in the following code:
11218 namespace A
11219 {
11220 typedef int B;
11221 }
11222
11223 int main ()
11224 {
11225 using A::B;
11226 B b;
11227 return b;
11228 }
11229
11230 ...
11231 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11232 <52> DW_AT_decl_file : 1
11233 <53> DW_AT_decl_line : 6
11234 <54> DW_AT_import : <0x75>
11235 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11236 <59> DW_AT_name : B
11237 <5b> DW_AT_decl_file : 1
11238 <5c> DW_AT_decl_line : 2
11239 <5d> DW_AT_type : <0x6e>
11240 ...
11241 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11242 <76> DW_AT_byte_size : 4
11243 <77> DW_AT_encoding : 5 (signed)
11244
11245 imports the wrong die ( 0x75 instead of 0x58 ).
11246 This case will be ignored until the gcc bug is fixed. */
11247 return;
11248 }
11249
11250 /* Figure out the local name after import. */
11251 import_alias = dwarf2_name (die, cu);
11252
11253 /* Figure out where the statement is being imported to. */
11254 import_prefix = determine_prefix (die, cu);
11255
11256 /* Figure out what the scope of the imported die is and prepend it
11257 to the name of the imported die. */
11258 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11259
11260 if (imported_die->tag != DW_TAG_namespace
11261 && imported_die->tag != DW_TAG_module)
11262 {
11263 imported_declaration = imported_name;
11264 canonical_name = imported_name_prefix;
11265 }
11266 else if (strlen (imported_name_prefix) > 0)
11267 canonical_name = obconcat (&objfile->objfile_obstack,
11268 imported_name_prefix,
11269 (cu->language == language_d ? "." : "::"),
11270 imported_name, (char *) NULL);
11271 else
11272 canonical_name = imported_name;
11273
11274 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11275 for (child_die = die->child; child_die && child_die->tag;
11276 child_die = sibling_die (child_die))
11277 {
11278 /* DWARF-4: A Fortran use statement with a “rename list” may be
11279 represented by an imported module entry with an import attribute
11280 referring to the module and owned entries corresponding to those
11281 entities that are renamed as part of being imported. */
11282
11283 if (child_die->tag != DW_TAG_imported_declaration)
11284 {
11285 complaint (_("child DW_TAG_imported_declaration expected "
11286 "- DIE at %s [in module %s]"),
11287 sect_offset_str (child_die->sect_off),
11288 objfile_name (objfile));
11289 continue;
11290 }
11291
11292 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11293 if (import_attr == NULL)
11294 {
11295 complaint (_("Tag '%s' has no DW_AT_import"),
11296 dwarf_tag_name (child_die->tag));
11297 continue;
11298 }
11299
11300 imported_cu = cu;
11301 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11302 &imported_cu);
11303 imported_name = dwarf2_name (imported_die, imported_cu);
11304 if (imported_name == NULL)
11305 {
11306 complaint (_("child DW_TAG_imported_declaration has unknown "
11307 "imported name - DIE at %s [in module %s]"),
11308 sect_offset_str (child_die->sect_off),
11309 objfile_name (objfile));
11310 continue;
11311 }
11312
11313 excludes.push_back (imported_name);
11314
11315 process_die (child_die, cu);
11316 }
11317
11318 add_using_directive (using_directives (cu),
11319 import_prefix,
11320 canonical_name,
11321 import_alias,
11322 imported_declaration,
11323 excludes,
11324 0,
11325 &objfile->objfile_obstack);
11326 }
11327
11328 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11329 types, but gives them a size of zero. Starting with version 14,
11330 ICC is compatible with GCC. */
11331
11332 static bool
11333 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11334 {
11335 if (!cu->checked_producer)
11336 check_producer (cu);
11337
11338 return cu->producer_is_icc_lt_14;
11339 }
11340
11341 /* ICC generates a DW_AT_type for C void functions. This was observed on
11342 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11343 which says that void functions should not have a DW_AT_type. */
11344
11345 static bool
11346 producer_is_icc (struct dwarf2_cu *cu)
11347 {
11348 if (!cu->checked_producer)
11349 check_producer (cu);
11350
11351 return cu->producer_is_icc;
11352 }
11353
11354 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11355 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11356 this, it was first present in GCC release 4.3.0. */
11357
11358 static bool
11359 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11360 {
11361 if (!cu->checked_producer)
11362 check_producer (cu);
11363
11364 return cu->producer_is_gcc_lt_4_3;
11365 }
11366
11367 static file_and_directory
11368 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11369 {
11370 file_and_directory res;
11371
11372 /* Find the filename. Do not use dwarf2_name here, since the filename
11373 is not a source language identifier. */
11374 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11375 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11376
11377 if (res.comp_dir == NULL
11378 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11379 && IS_ABSOLUTE_PATH (res.name))
11380 {
11381 res.comp_dir_storage = ldirname (res.name);
11382 if (!res.comp_dir_storage.empty ())
11383 res.comp_dir = res.comp_dir_storage.c_str ();
11384 }
11385 if (res.comp_dir != NULL)
11386 {
11387 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11388 directory, get rid of it. */
11389 const char *cp = strchr (res.comp_dir, ':');
11390
11391 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11392 res.comp_dir = cp + 1;
11393 }
11394
11395 if (res.name == NULL)
11396 res.name = "<unknown>";
11397
11398 return res;
11399 }
11400
11401 /* Handle DW_AT_stmt_list for a compilation unit.
11402 DIE is the DW_TAG_compile_unit die for CU.
11403 COMP_DIR is the compilation directory. LOWPC is passed to
11404 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11405
11406 static void
11407 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11408 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11409 {
11410 struct dwarf2_per_objfile *dwarf2_per_objfile
11411 = cu->per_cu->dwarf2_per_objfile;
11412 struct objfile *objfile = dwarf2_per_objfile->objfile;
11413 struct attribute *attr;
11414 struct line_header line_header_local;
11415 hashval_t line_header_local_hash;
11416 void **slot;
11417 int decode_mapping;
11418
11419 gdb_assert (! cu->per_cu->is_debug_types);
11420
11421 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11422 if (attr == NULL)
11423 return;
11424
11425 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11426
11427 /* The line header hash table is only created if needed (it exists to
11428 prevent redundant reading of the line table for partial_units).
11429 If we're given a partial_unit, we'll need it. If we're given a
11430 compile_unit, then use the line header hash table if it's already
11431 created, but don't create one just yet. */
11432
11433 if (dwarf2_per_objfile->line_header_hash == NULL
11434 && die->tag == DW_TAG_partial_unit)
11435 {
11436 dwarf2_per_objfile->line_header_hash
11437 = htab_create_alloc_ex (127, line_header_hash_voidp,
11438 line_header_eq_voidp,
11439 free_line_header_voidp,
11440 &objfile->objfile_obstack,
11441 hashtab_obstack_allocate,
11442 dummy_obstack_deallocate);
11443 }
11444
11445 line_header_local.sect_off = line_offset;
11446 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11447 line_header_local_hash = line_header_hash (&line_header_local);
11448 if (dwarf2_per_objfile->line_header_hash != NULL)
11449 {
11450 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11451 &line_header_local,
11452 line_header_local_hash, NO_INSERT);
11453
11454 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11455 is not present in *SLOT (since if there is something in *SLOT then
11456 it will be for a partial_unit). */
11457 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11458 {
11459 gdb_assert (*slot != NULL);
11460 cu->line_header = (struct line_header *) *slot;
11461 return;
11462 }
11463 }
11464
11465 /* dwarf_decode_line_header does not yet provide sufficient information.
11466 We always have to call also dwarf_decode_lines for it. */
11467 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11468 if (lh == NULL)
11469 return;
11470
11471 cu->line_header = lh.release ();
11472 cu->line_header_die_owner = die;
11473
11474 if (dwarf2_per_objfile->line_header_hash == NULL)
11475 slot = NULL;
11476 else
11477 {
11478 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11479 &line_header_local,
11480 line_header_local_hash, INSERT);
11481 gdb_assert (slot != NULL);
11482 }
11483 if (slot != NULL && *slot == NULL)
11484 {
11485 /* This newly decoded line number information unit will be owned
11486 by line_header_hash hash table. */
11487 *slot = cu->line_header;
11488 cu->line_header_die_owner = NULL;
11489 }
11490 else
11491 {
11492 /* We cannot free any current entry in (*slot) as that struct line_header
11493 may be already used by multiple CUs. Create only temporary decoded
11494 line_header for this CU - it may happen at most once for each line
11495 number information unit. And if we're not using line_header_hash
11496 then this is what we want as well. */
11497 gdb_assert (die->tag != DW_TAG_partial_unit);
11498 }
11499 decode_mapping = (die->tag != DW_TAG_partial_unit);
11500 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11501 decode_mapping);
11502
11503 }
11504
11505 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11506
11507 static void
11508 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11509 {
11510 struct dwarf2_per_objfile *dwarf2_per_objfile
11511 = cu->per_cu->dwarf2_per_objfile;
11512 struct objfile *objfile = dwarf2_per_objfile->objfile;
11513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11514 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11515 CORE_ADDR highpc = ((CORE_ADDR) 0);
11516 struct attribute *attr;
11517 struct die_info *child_die;
11518 CORE_ADDR baseaddr;
11519
11520 prepare_one_comp_unit (cu, die, cu->language);
11521 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11522
11523 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11524
11525 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11526 from finish_block. */
11527 if (lowpc == ((CORE_ADDR) -1))
11528 lowpc = highpc;
11529 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11530
11531 file_and_directory fnd = find_file_and_directory (die, cu);
11532
11533 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11534 standardised yet. As a workaround for the language detection we fall
11535 back to the DW_AT_producer string. */
11536 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11537 cu->language = language_opencl;
11538
11539 /* Similar hack for Go. */
11540 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11541 set_cu_language (DW_LANG_Go, cu);
11542
11543 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11544
11545 /* Decode line number information if present. We do this before
11546 processing child DIEs, so that the line header table is available
11547 for DW_AT_decl_file. */
11548 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11549
11550 /* Process all dies in compilation unit. */
11551 if (die->child != NULL)
11552 {
11553 child_die = die->child;
11554 while (child_die && child_die->tag)
11555 {
11556 process_die (child_die, cu);
11557 child_die = sibling_die (child_die);
11558 }
11559 }
11560
11561 /* Decode macro information, if present. Dwarf 2 macro information
11562 refers to information in the line number info statement program
11563 header, so we can only read it if we've read the header
11564 successfully. */
11565 attr = dwarf2_attr (die, DW_AT_macros, cu);
11566 if (attr == NULL)
11567 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11568 if (attr && cu->line_header)
11569 {
11570 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11571 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11572
11573 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11574 }
11575 else
11576 {
11577 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11578 if (attr && cu->line_header)
11579 {
11580 unsigned int macro_offset = DW_UNSND (attr);
11581
11582 dwarf_decode_macros (cu, macro_offset, 0);
11583 }
11584 }
11585 }
11586
11587 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11588 Create the set of symtabs used by this TU, or if this TU is sharing
11589 symtabs with another TU and the symtabs have already been created
11590 then restore those symtabs in the line header.
11591 We don't need the pc/line-number mapping for type units. */
11592
11593 static void
11594 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11595 {
11596 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11597 struct type_unit_group *tu_group;
11598 int first_time;
11599 struct attribute *attr;
11600 unsigned int i;
11601 struct signatured_type *sig_type;
11602
11603 gdb_assert (per_cu->is_debug_types);
11604 sig_type = (struct signatured_type *) per_cu;
11605
11606 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11607
11608 /* If we're using .gdb_index (includes -readnow) then
11609 per_cu->type_unit_group may not have been set up yet. */
11610 if (sig_type->type_unit_group == NULL)
11611 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11612 tu_group = sig_type->type_unit_group;
11613
11614 /* If we've already processed this stmt_list there's no real need to
11615 do it again, we could fake it and just recreate the part we need
11616 (file name,index -> symtab mapping). If data shows this optimization
11617 is useful we can do it then. */
11618 first_time = tu_group->compunit_symtab == NULL;
11619
11620 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11621 debug info. */
11622 line_header_up lh;
11623 if (attr != NULL)
11624 {
11625 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11626 lh = dwarf_decode_line_header (line_offset, cu);
11627 }
11628 if (lh == NULL)
11629 {
11630 if (first_time)
11631 dwarf2_start_symtab (cu, "", NULL, 0);
11632 else
11633 {
11634 gdb_assert (tu_group->symtabs == NULL);
11635 gdb_assert (cu->builder == nullptr);
11636 struct compunit_symtab *cust = tu_group->compunit_symtab;
11637 cu->builder.reset (new struct buildsym_compunit
11638 (COMPUNIT_OBJFILE (cust), "",
11639 COMPUNIT_DIRNAME (cust),
11640 compunit_language (cust),
11641 0, cust));
11642 }
11643 return;
11644 }
11645
11646 cu->line_header = lh.release ();
11647 cu->line_header_die_owner = die;
11648
11649 if (first_time)
11650 {
11651 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11652
11653 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11654 still initializing it, and our caller (a few levels up)
11655 process_full_type_unit still needs to know if this is the first
11656 time. */
11657
11658 tu_group->num_symtabs = cu->line_header->file_names.size ();
11659 tu_group->symtabs = XNEWVEC (struct symtab *,
11660 cu->line_header->file_names.size ());
11661
11662 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11663 {
11664 file_entry &fe = cu->line_header->file_names[i];
11665
11666 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11667
11668 if (cu->builder->get_current_subfile ()->symtab == NULL)
11669 {
11670 /* NOTE: start_subfile will recognize when it's been
11671 passed a file it has already seen. So we can't
11672 assume there's a simple mapping from
11673 cu->line_header->file_names to subfiles, plus
11674 cu->line_header->file_names may contain dups. */
11675 cu->builder->get_current_subfile ()->symtab
11676 = allocate_symtab (cust,
11677 cu->builder->get_current_subfile ()->name);
11678 }
11679
11680 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11681 tu_group->symtabs[i] = fe.symtab;
11682 }
11683 }
11684 else
11685 {
11686 gdb_assert (cu->builder == nullptr);
11687 struct compunit_symtab *cust = tu_group->compunit_symtab;
11688 cu->builder.reset (new struct buildsym_compunit
11689 (COMPUNIT_OBJFILE (cust), "",
11690 COMPUNIT_DIRNAME (cust),
11691 compunit_language (cust),
11692 0, cust));
11693
11694 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11695 {
11696 file_entry &fe = cu->line_header->file_names[i];
11697
11698 fe.symtab = tu_group->symtabs[i];
11699 }
11700 }
11701
11702 /* The main symtab is allocated last. Type units don't have DW_AT_name
11703 so they don't have a "real" (so to speak) symtab anyway.
11704 There is later code that will assign the main symtab to all symbols
11705 that don't have one. We need to handle the case of a symbol with a
11706 missing symtab (DW_AT_decl_file) anyway. */
11707 }
11708
11709 /* Process DW_TAG_type_unit.
11710 For TUs we want to skip the first top level sibling if it's not the
11711 actual type being defined by this TU. In this case the first top
11712 level sibling is there to provide context only. */
11713
11714 static void
11715 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11716 {
11717 struct die_info *child_die;
11718
11719 prepare_one_comp_unit (cu, die, language_minimal);
11720
11721 /* Initialize (or reinitialize) the machinery for building symtabs.
11722 We do this before processing child DIEs, so that the line header table
11723 is available for DW_AT_decl_file. */
11724 setup_type_unit_groups (die, cu);
11725
11726 if (die->child != NULL)
11727 {
11728 child_die = die->child;
11729 while (child_die && child_die->tag)
11730 {
11731 process_die (child_die, cu);
11732 child_die = sibling_die (child_die);
11733 }
11734 }
11735 }
11736 \f
11737 /* DWO/DWP files.
11738
11739 http://gcc.gnu.org/wiki/DebugFission
11740 http://gcc.gnu.org/wiki/DebugFissionDWP
11741
11742 To simplify handling of both DWO files ("object" files with the DWARF info)
11743 and DWP files (a file with the DWOs packaged up into one file), we treat
11744 DWP files as having a collection of virtual DWO files. */
11745
11746 static hashval_t
11747 hash_dwo_file (const void *item)
11748 {
11749 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11750 hashval_t hash;
11751
11752 hash = htab_hash_string (dwo_file->dwo_name);
11753 if (dwo_file->comp_dir != NULL)
11754 hash += htab_hash_string (dwo_file->comp_dir);
11755 return hash;
11756 }
11757
11758 static int
11759 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11760 {
11761 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11762 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11763
11764 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11765 return 0;
11766 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11767 return lhs->comp_dir == rhs->comp_dir;
11768 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11769 }
11770
11771 /* Allocate a hash table for DWO files. */
11772
11773 static htab_t
11774 allocate_dwo_file_hash_table (struct objfile *objfile)
11775 {
11776 return htab_create_alloc_ex (41,
11777 hash_dwo_file,
11778 eq_dwo_file,
11779 NULL,
11780 &objfile->objfile_obstack,
11781 hashtab_obstack_allocate,
11782 dummy_obstack_deallocate);
11783 }
11784
11785 /* Lookup DWO file DWO_NAME. */
11786
11787 static void **
11788 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11789 const char *dwo_name,
11790 const char *comp_dir)
11791 {
11792 struct dwo_file find_entry;
11793 void **slot;
11794
11795 if (dwarf2_per_objfile->dwo_files == NULL)
11796 dwarf2_per_objfile->dwo_files
11797 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11798
11799 memset (&find_entry, 0, sizeof (find_entry));
11800 find_entry.dwo_name = dwo_name;
11801 find_entry.comp_dir = comp_dir;
11802 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11803
11804 return slot;
11805 }
11806
11807 static hashval_t
11808 hash_dwo_unit (const void *item)
11809 {
11810 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11811
11812 /* This drops the top 32 bits of the id, but is ok for a hash. */
11813 return dwo_unit->signature;
11814 }
11815
11816 static int
11817 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11818 {
11819 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11820 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11821
11822 /* The signature is assumed to be unique within the DWO file.
11823 So while object file CU dwo_id's always have the value zero,
11824 that's OK, assuming each object file DWO file has only one CU,
11825 and that's the rule for now. */
11826 return lhs->signature == rhs->signature;
11827 }
11828
11829 /* Allocate a hash table for DWO CUs,TUs.
11830 There is one of these tables for each of CUs,TUs for each DWO file. */
11831
11832 static htab_t
11833 allocate_dwo_unit_table (struct objfile *objfile)
11834 {
11835 /* Start out with a pretty small number.
11836 Generally DWO files contain only one CU and maybe some TUs. */
11837 return htab_create_alloc_ex (3,
11838 hash_dwo_unit,
11839 eq_dwo_unit,
11840 NULL,
11841 &objfile->objfile_obstack,
11842 hashtab_obstack_allocate,
11843 dummy_obstack_deallocate);
11844 }
11845
11846 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11847
11848 struct create_dwo_cu_data
11849 {
11850 struct dwo_file *dwo_file;
11851 struct dwo_unit dwo_unit;
11852 };
11853
11854 /* die_reader_func for create_dwo_cu. */
11855
11856 static void
11857 create_dwo_cu_reader (const struct die_reader_specs *reader,
11858 const gdb_byte *info_ptr,
11859 struct die_info *comp_unit_die,
11860 int has_children,
11861 void *datap)
11862 {
11863 struct dwarf2_cu *cu = reader->cu;
11864 sect_offset sect_off = cu->per_cu->sect_off;
11865 struct dwarf2_section_info *section = cu->per_cu->section;
11866 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11867 struct dwo_file *dwo_file = data->dwo_file;
11868 struct dwo_unit *dwo_unit = &data->dwo_unit;
11869 struct attribute *attr;
11870
11871 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11872 if (attr == NULL)
11873 {
11874 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11875 " its dwo_id [in module %s]"),
11876 sect_offset_str (sect_off), dwo_file->dwo_name);
11877 return;
11878 }
11879
11880 dwo_unit->dwo_file = dwo_file;
11881 dwo_unit->signature = DW_UNSND (attr);
11882 dwo_unit->section = section;
11883 dwo_unit->sect_off = sect_off;
11884 dwo_unit->length = cu->per_cu->length;
11885
11886 if (dwarf_read_debug)
11887 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11888 sect_offset_str (sect_off),
11889 hex_string (dwo_unit->signature));
11890 }
11891
11892 /* Create the dwo_units for the CUs in a DWO_FILE.
11893 Note: This function processes DWO files only, not DWP files. */
11894
11895 static void
11896 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11897 struct dwo_file &dwo_file, dwarf2_section_info &section,
11898 htab_t &cus_htab)
11899 {
11900 struct objfile *objfile = dwarf2_per_objfile->objfile;
11901 const gdb_byte *info_ptr, *end_ptr;
11902
11903 dwarf2_read_section (objfile, &section);
11904 info_ptr = section.buffer;
11905
11906 if (info_ptr == NULL)
11907 return;
11908
11909 if (dwarf_read_debug)
11910 {
11911 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11912 get_section_name (&section),
11913 get_section_file_name (&section));
11914 }
11915
11916 end_ptr = info_ptr + section.size;
11917 while (info_ptr < end_ptr)
11918 {
11919 struct dwarf2_per_cu_data per_cu;
11920 struct create_dwo_cu_data create_dwo_cu_data;
11921 struct dwo_unit *dwo_unit;
11922 void **slot;
11923 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11924
11925 memset (&create_dwo_cu_data.dwo_unit, 0,
11926 sizeof (create_dwo_cu_data.dwo_unit));
11927 memset (&per_cu, 0, sizeof (per_cu));
11928 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11929 per_cu.is_debug_types = 0;
11930 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11931 per_cu.section = &section;
11932 create_dwo_cu_data.dwo_file = &dwo_file;
11933
11934 init_cutu_and_read_dies_no_follow (
11935 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11936 info_ptr += per_cu.length;
11937
11938 // If the unit could not be parsed, skip it.
11939 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11940 continue;
11941
11942 if (cus_htab == NULL)
11943 cus_htab = allocate_dwo_unit_table (objfile);
11944
11945 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11946 *dwo_unit = create_dwo_cu_data.dwo_unit;
11947 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11948 gdb_assert (slot != NULL);
11949 if (*slot != NULL)
11950 {
11951 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11952 sect_offset dup_sect_off = dup_cu->sect_off;
11953
11954 complaint (_("debug cu entry at offset %s is duplicate to"
11955 " the entry at offset %s, signature %s"),
11956 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11957 hex_string (dwo_unit->signature));
11958 }
11959 *slot = (void *)dwo_unit;
11960 }
11961 }
11962
11963 /* DWP file .debug_{cu,tu}_index section format:
11964 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11965
11966 DWP Version 1:
11967
11968 Both index sections have the same format, and serve to map a 64-bit
11969 signature to a set of section numbers. Each section begins with a header,
11970 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11971 indexes, and a pool of 32-bit section numbers. The index sections will be
11972 aligned at 8-byte boundaries in the file.
11973
11974 The index section header consists of:
11975
11976 V, 32 bit version number
11977 -, 32 bits unused
11978 N, 32 bit number of compilation units or type units in the index
11979 M, 32 bit number of slots in the hash table
11980
11981 Numbers are recorded using the byte order of the application binary.
11982
11983 The hash table begins at offset 16 in the section, and consists of an array
11984 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11985 order of the application binary). Unused slots in the hash table are 0.
11986 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11987
11988 The parallel table begins immediately after the hash table
11989 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11990 array of 32-bit indexes (using the byte order of the application binary),
11991 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11992 table contains a 32-bit index into the pool of section numbers. For unused
11993 hash table slots, the corresponding entry in the parallel table will be 0.
11994
11995 The pool of section numbers begins immediately following the hash table
11996 (at offset 16 + 12 * M from the beginning of the section). The pool of
11997 section numbers consists of an array of 32-bit words (using the byte order
11998 of the application binary). Each item in the array is indexed starting
11999 from 0. The hash table entry provides the index of the first section
12000 number in the set. Additional section numbers in the set follow, and the
12001 set is terminated by a 0 entry (section number 0 is not used in ELF).
12002
12003 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12004 section must be the first entry in the set, and the .debug_abbrev.dwo must
12005 be the second entry. Other members of the set may follow in any order.
12006
12007 ---
12008
12009 DWP Version 2:
12010
12011 DWP Version 2 combines all the .debug_info, etc. sections into one,
12012 and the entries in the index tables are now offsets into these sections.
12013 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12014 section.
12015
12016 Index Section Contents:
12017 Header
12018 Hash Table of Signatures dwp_hash_table.hash_table
12019 Parallel Table of Indices dwp_hash_table.unit_table
12020 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12021 Table of Section Sizes dwp_hash_table.v2.sizes
12022
12023 The index section header consists of:
12024
12025 V, 32 bit version number
12026 L, 32 bit number of columns in the table of section offsets
12027 N, 32 bit number of compilation units or type units in the index
12028 M, 32 bit number of slots in the hash table
12029
12030 Numbers are recorded using the byte order of the application binary.
12031
12032 The hash table has the same format as version 1.
12033 The parallel table of indices has the same format as version 1,
12034 except that the entries are origin-1 indices into the table of sections
12035 offsets and the table of section sizes.
12036
12037 The table of offsets begins immediately following the parallel table
12038 (at offset 16 + 12 * M from the beginning of the section). The table is
12039 a two-dimensional array of 32-bit words (using the byte order of the
12040 application binary), with L columns and N+1 rows, in row-major order.
12041 Each row in the array is indexed starting from 0. The first row provides
12042 a key to the remaining rows: each column in this row provides an identifier
12043 for a debug section, and the offsets in the same column of subsequent rows
12044 refer to that section. The section identifiers are:
12045
12046 DW_SECT_INFO 1 .debug_info.dwo
12047 DW_SECT_TYPES 2 .debug_types.dwo
12048 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12049 DW_SECT_LINE 4 .debug_line.dwo
12050 DW_SECT_LOC 5 .debug_loc.dwo
12051 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12052 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12053 DW_SECT_MACRO 8 .debug_macro.dwo
12054
12055 The offsets provided by the CU and TU index sections are the base offsets
12056 for the contributions made by each CU or TU to the corresponding section
12057 in the package file. Each CU and TU header contains an abbrev_offset
12058 field, used to find the abbreviations table for that CU or TU within the
12059 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12060 be interpreted as relative to the base offset given in the index section.
12061 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12062 should be interpreted as relative to the base offset for .debug_line.dwo,
12063 and offsets into other debug sections obtained from DWARF attributes should
12064 also be interpreted as relative to the corresponding base offset.
12065
12066 The table of sizes begins immediately following the table of offsets.
12067 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12068 with L columns and N rows, in row-major order. Each row in the array is
12069 indexed starting from 1 (row 0 is shared by the two tables).
12070
12071 ---
12072
12073 Hash table lookup is handled the same in version 1 and 2:
12074
12075 We assume that N and M will not exceed 2^32 - 1.
12076 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12077
12078 Given a 64-bit compilation unit signature or a type signature S, an entry
12079 in the hash table is located as follows:
12080
12081 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12082 the low-order k bits all set to 1.
12083
12084 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12085
12086 3) If the hash table entry at index H matches the signature, use that
12087 entry. If the hash table entry at index H is unused (all zeroes),
12088 terminate the search: the signature is not present in the table.
12089
12090 4) Let H = (H + H') modulo M. Repeat at Step 3.
12091
12092 Because M > N and H' and M are relatively prime, the search is guaranteed
12093 to stop at an unused slot or find the match. */
12094
12095 /* Create a hash table to map DWO IDs to their CU/TU entry in
12096 .debug_{info,types}.dwo in DWP_FILE.
12097 Returns NULL if there isn't one.
12098 Note: This function processes DWP files only, not DWO files. */
12099
12100 static struct dwp_hash_table *
12101 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12102 struct dwp_file *dwp_file, int is_debug_types)
12103 {
12104 struct objfile *objfile = dwarf2_per_objfile->objfile;
12105 bfd *dbfd = dwp_file->dbfd.get ();
12106 const gdb_byte *index_ptr, *index_end;
12107 struct dwarf2_section_info *index;
12108 uint32_t version, nr_columns, nr_units, nr_slots;
12109 struct dwp_hash_table *htab;
12110
12111 if (is_debug_types)
12112 index = &dwp_file->sections.tu_index;
12113 else
12114 index = &dwp_file->sections.cu_index;
12115
12116 if (dwarf2_section_empty_p (index))
12117 return NULL;
12118 dwarf2_read_section (objfile, index);
12119
12120 index_ptr = index->buffer;
12121 index_end = index_ptr + index->size;
12122
12123 version = read_4_bytes (dbfd, index_ptr);
12124 index_ptr += 4;
12125 if (version == 2)
12126 nr_columns = read_4_bytes (dbfd, index_ptr);
12127 else
12128 nr_columns = 0;
12129 index_ptr += 4;
12130 nr_units = read_4_bytes (dbfd, index_ptr);
12131 index_ptr += 4;
12132 nr_slots = read_4_bytes (dbfd, index_ptr);
12133 index_ptr += 4;
12134
12135 if (version != 1 && version != 2)
12136 {
12137 error (_("Dwarf Error: unsupported DWP file version (%s)"
12138 " [in module %s]"),
12139 pulongest (version), dwp_file->name);
12140 }
12141 if (nr_slots != (nr_slots & -nr_slots))
12142 {
12143 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12144 " is not power of 2 [in module %s]"),
12145 pulongest (nr_slots), dwp_file->name);
12146 }
12147
12148 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12149 htab->version = version;
12150 htab->nr_columns = nr_columns;
12151 htab->nr_units = nr_units;
12152 htab->nr_slots = nr_slots;
12153 htab->hash_table = index_ptr;
12154 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12155
12156 /* Exit early if the table is empty. */
12157 if (nr_slots == 0 || nr_units == 0
12158 || (version == 2 && nr_columns == 0))
12159 {
12160 /* All must be zero. */
12161 if (nr_slots != 0 || nr_units != 0
12162 || (version == 2 && nr_columns != 0))
12163 {
12164 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12165 " all zero [in modules %s]"),
12166 dwp_file->name);
12167 }
12168 return htab;
12169 }
12170
12171 if (version == 1)
12172 {
12173 htab->section_pool.v1.indices =
12174 htab->unit_table + sizeof (uint32_t) * nr_slots;
12175 /* It's harder to decide whether the section is too small in v1.
12176 V1 is deprecated anyway so we punt. */
12177 }
12178 else
12179 {
12180 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12181 int *ids = htab->section_pool.v2.section_ids;
12182 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12183 /* Reverse map for error checking. */
12184 int ids_seen[DW_SECT_MAX + 1];
12185 int i;
12186
12187 if (nr_columns < 2)
12188 {
12189 error (_("Dwarf Error: bad DWP hash table, too few columns"
12190 " in section table [in module %s]"),
12191 dwp_file->name);
12192 }
12193 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12194 {
12195 error (_("Dwarf Error: bad DWP hash table, too many columns"
12196 " in section table [in module %s]"),
12197 dwp_file->name);
12198 }
12199 memset (ids, 255, sizeof_ids);
12200 memset (ids_seen, 255, sizeof (ids_seen));
12201 for (i = 0; i < nr_columns; ++i)
12202 {
12203 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12204
12205 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12206 {
12207 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12208 " in section table [in module %s]"),
12209 id, dwp_file->name);
12210 }
12211 if (ids_seen[id] != -1)
12212 {
12213 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12214 " id %d in section table [in module %s]"),
12215 id, dwp_file->name);
12216 }
12217 ids_seen[id] = i;
12218 ids[i] = id;
12219 }
12220 /* Must have exactly one info or types section. */
12221 if (((ids_seen[DW_SECT_INFO] != -1)
12222 + (ids_seen[DW_SECT_TYPES] != -1))
12223 != 1)
12224 {
12225 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12226 " DWO info/types section [in module %s]"),
12227 dwp_file->name);
12228 }
12229 /* Must have an abbrev section. */
12230 if (ids_seen[DW_SECT_ABBREV] == -1)
12231 {
12232 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12233 " section [in module %s]"),
12234 dwp_file->name);
12235 }
12236 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12237 htab->section_pool.v2.sizes =
12238 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12239 * nr_units * nr_columns);
12240 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12241 * nr_units * nr_columns))
12242 > index_end)
12243 {
12244 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12245 " [in module %s]"),
12246 dwp_file->name);
12247 }
12248 }
12249
12250 return htab;
12251 }
12252
12253 /* Update SECTIONS with the data from SECTP.
12254
12255 This function is like the other "locate" section routines that are
12256 passed to bfd_map_over_sections, but in this context the sections to
12257 read comes from the DWP V1 hash table, not the full ELF section table.
12258
12259 The result is non-zero for success, or zero if an error was found. */
12260
12261 static int
12262 locate_v1_virtual_dwo_sections (asection *sectp,
12263 struct virtual_v1_dwo_sections *sections)
12264 {
12265 const struct dwop_section_names *names = &dwop_section_names;
12266
12267 if (section_is_p (sectp->name, &names->abbrev_dwo))
12268 {
12269 /* There can be only one. */
12270 if (sections->abbrev.s.section != NULL)
12271 return 0;
12272 sections->abbrev.s.section = sectp;
12273 sections->abbrev.size = bfd_get_section_size (sectp);
12274 }
12275 else if (section_is_p (sectp->name, &names->info_dwo)
12276 || section_is_p (sectp->name, &names->types_dwo))
12277 {
12278 /* There can be only one. */
12279 if (sections->info_or_types.s.section != NULL)
12280 return 0;
12281 sections->info_or_types.s.section = sectp;
12282 sections->info_or_types.size = bfd_get_section_size (sectp);
12283 }
12284 else if (section_is_p (sectp->name, &names->line_dwo))
12285 {
12286 /* There can be only one. */
12287 if (sections->line.s.section != NULL)
12288 return 0;
12289 sections->line.s.section = sectp;
12290 sections->line.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->loc_dwo))
12293 {
12294 /* There can be only one. */
12295 if (sections->loc.s.section != NULL)
12296 return 0;
12297 sections->loc.s.section = sectp;
12298 sections->loc.size = bfd_get_section_size (sectp);
12299 }
12300 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12301 {
12302 /* There can be only one. */
12303 if (sections->macinfo.s.section != NULL)
12304 return 0;
12305 sections->macinfo.s.section = sectp;
12306 sections->macinfo.size = bfd_get_section_size (sectp);
12307 }
12308 else if (section_is_p (sectp->name, &names->macro_dwo))
12309 {
12310 /* There can be only one. */
12311 if (sections->macro.s.section != NULL)
12312 return 0;
12313 sections->macro.s.section = sectp;
12314 sections->macro.size = bfd_get_section_size (sectp);
12315 }
12316 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12317 {
12318 /* There can be only one. */
12319 if (sections->str_offsets.s.section != NULL)
12320 return 0;
12321 sections->str_offsets.s.section = sectp;
12322 sections->str_offsets.size = bfd_get_section_size (sectp);
12323 }
12324 else
12325 {
12326 /* No other kind of section is valid. */
12327 return 0;
12328 }
12329
12330 return 1;
12331 }
12332
12333 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12334 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12335 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12336 This is for DWP version 1 files. */
12337
12338 static struct dwo_unit *
12339 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12340 struct dwp_file *dwp_file,
12341 uint32_t unit_index,
12342 const char *comp_dir,
12343 ULONGEST signature, int is_debug_types)
12344 {
12345 struct objfile *objfile = dwarf2_per_objfile->objfile;
12346 const struct dwp_hash_table *dwp_htab =
12347 is_debug_types ? dwp_file->tus : dwp_file->cus;
12348 bfd *dbfd = dwp_file->dbfd.get ();
12349 const char *kind = is_debug_types ? "TU" : "CU";
12350 struct dwo_file *dwo_file;
12351 struct dwo_unit *dwo_unit;
12352 struct virtual_v1_dwo_sections sections;
12353 void **dwo_file_slot;
12354 int i;
12355
12356 gdb_assert (dwp_file->version == 1);
12357
12358 if (dwarf_read_debug)
12359 {
12360 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12361 kind,
12362 pulongest (unit_index), hex_string (signature),
12363 dwp_file->name);
12364 }
12365
12366 /* Fetch the sections of this DWO unit.
12367 Put a limit on the number of sections we look for so that bad data
12368 doesn't cause us to loop forever. */
12369
12370 #define MAX_NR_V1_DWO_SECTIONS \
12371 (1 /* .debug_info or .debug_types */ \
12372 + 1 /* .debug_abbrev */ \
12373 + 1 /* .debug_line */ \
12374 + 1 /* .debug_loc */ \
12375 + 1 /* .debug_str_offsets */ \
12376 + 1 /* .debug_macro or .debug_macinfo */ \
12377 + 1 /* trailing zero */)
12378
12379 memset (&sections, 0, sizeof (sections));
12380
12381 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12382 {
12383 asection *sectp;
12384 uint32_t section_nr =
12385 read_4_bytes (dbfd,
12386 dwp_htab->section_pool.v1.indices
12387 + (unit_index + i) * sizeof (uint32_t));
12388
12389 if (section_nr == 0)
12390 break;
12391 if (section_nr >= dwp_file->num_sections)
12392 {
12393 error (_("Dwarf Error: bad DWP hash table, section number too large"
12394 " [in module %s]"),
12395 dwp_file->name);
12396 }
12397
12398 sectp = dwp_file->elf_sections[section_nr];
12399 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12400 {
12401 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12402 " [in module %s]"),
12403 dwp_file->name);
12404 }
12405 }
12406
12407 if (i < 2
12408 || dwarf2_section_empty_p (&sections.info_or_types)
12409 || dwarf2_section_empty_p (&sections.abbrev))
12410 {
12411 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12412 " [in module %s]"),
12413 dwp_file->name);
12414 }
12415 if (i == MAX_NR_V1_DWO_SECTIONS)
12416 {
12417 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12418 " [in module %s]"),
12419 dwp_file->name);
12420 }
12421
12422 /* It's easier for the rest of the code if we fake a struct dwo_file and
12423 have dwo_unit "live" in that. At least for now.
12424
12425 The DWP file can be made up of a random collection of CUs and TUs.
12426 However, for each CU + set of TUs that came from the same original DWO
12427 file, we can combine them back into a virtual DWO file to save space
12428 (fewer struct dwo_file objects to allocate). Remember that for really
12429 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12430
12431 std::string virtual_dwo_name =
12432 string_printf ("virtual-dwo/%d-%d-%d-%d",
12433 get_section_id (&sections.abbrev),
12434 get_section_id (&sections.line),
12435 get_section_id (&sections.loc),
12436 get_section_id (&sections.str_offsets));
12437 /* Can we use an existing virtual DWO file? */
12438 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12439 virtual_dwo_name.c_str (),
12440 comp_dir);
12441 /* Create one if necessary. */
12442 if (*dwo_file_slot == NULL)
12443 {
12444 if (dwarf_read_debug)
12445 {
12446 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12447 virtual_dwo_name.c_str ());
12448 }
12449 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12450 dwo_file->dwo_name
12451 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12452 virtual_dwo_name.c_str (),
12453 virtual_dwo_name.size ());
12454 dwo_file->comp_dir = comp_dir;
12455 dwo_file->sections.abbrev = sections.abbrev;
12456 dwo_file->sections.line = sections.line;
12457 dwo_file->sections.loc = sections.loc;
12458 dwo_file->sections.macinfo = sections.macinfo;
12459 dwo_file->sections.macro = sections.macro;
12460 dwo_file->sections.str_offsets = sections.str_offsets;
12461 /* The "str" section is global to the entire DWP file. */
12462 dwo_file->sections.str = dwp_file->sections.str;
12463 /* The info or types section is assigned below to dwo_unit,
12464 there's no need to record it in dwo_file.
12465 Also, we can't simply record type sections in dwo_file because
12466 we record a pointer into the vector in dwo_unit. As we collect more
12467 types we'll grow the vector and eventually have to reallocate space
12468 for it, invalidating all copies of pointers into the previous
12469 contents. */
12470 *dwo_file_slot = dwo_file;
12471 }
12472 else
12473 {
12474 if (dwarf_read_debug)
12475 {
12476 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12477 virtual_dwo_name.c_str ());
12478 }
12479 dwo_file = (struct dwo_file *) *dwo_file_slot;
12480 }
12481
12482 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12483 dwo_unit->dwo_file = dwo_file;
12484 dwo_unit->signature = signature;
12485 dwo_unit->section =
12486 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12487 *dwo_unit->section = sections.info_or_types;
12488 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12489
12490 return dwo_unit;
12491 }
12492
12493 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12494 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12495 piece within that section used by a TU/CU, return a virtual section
12496 of just that piece. */
12497
12498 static struct dwarf2_section_info
12499 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12500 struct dwarf2_section_info *section,
12501 bfd_size_type offset, bfd_size_type size)
12502 {
12503 struct dwarf2_section_info result;
12504 asection *sectp;
12505
12506 gdb_assert (section != NULL);
12507 gdb_assert (!section->is_virtual);
12508
12509 memset (&result, 0, sizeof (result));
12510 result.s.containing_section = section;
12511 result.is_virtual = 1;
12512
12513 if (size == 0)
12514 return result;
12515
12516 sectp = get_section_bfd_section (section);
12517
12518 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12519 bounds of the real section. This is a pretty-rare event, so just
12520 flag an error (easier) instead of a warning and trying to cope. */
12521 if (sectp == NULL
12522 || offset + size > bfd_get_section_size (sectp))
12523 {
12524 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12525 " in section %s [in module %s]"),
12526 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12527 objfile_name (dwarf2_per_objfile->objfile));
12528 }
12529
12530 result.virtual_offset = offset;
12531 result.size = size;
12532 return result;
12533 }
12534
12535 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12536 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12537 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12538 This is for DWP version 2 files. */
12539
12540 static struct dwo_unit *
12541 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12542 struct dwp_file *dwp_file,
12543 uint32_t unit_index,
12544 const char *comp_dir,
12545 ULONGEST signature, int is_debug_types)
12546 {
12547 struct objfile *objfile = dwarf2_per_objfile->objfile;
12548 const struct dwp_hash_table *dwp_htab =
12549 is_debug_types ? dwp_file->tus : dwp_file->cus;
12550 bfd *dbfd = dwp_file->dbfd.get ();
12551 const char *kind = is_debug_types ? "TU" : "CU";
12552 struct dwo_file *dwo_file;
12553 struct dwo_unit *dwo_unit;
12554 struct virtual_v2_dwo_sections sections;
12555 void **dwo_file_slot;
12556 int i;
12557
12558 gdb_assert (dwp_file->version == 2);
12559
12560 if (dwarf_read_debug)
12561 {
12562 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12563 kind,
12564 pulongest (unit_index), hex_string (signature),
12565 dwp_file->name);
12566 }
12567
12568 /* Fetch the section offsets of this DWO unit. */
12569
12570 memset (&sections, 0, sizeof (sections));
12571
12572 for (i = 0; i < dwp_htab->nr_columns; ++i)
12573 {
12574 uint32_t offset = read_4_bytes (dbfd,
12575 dwp_htab->section_pool.v2.offsets
12576 + (((unit_index - 1) * dwp_htab->nr_columns
12577 + i)
12578 * sizeof (uint32_t)));
12579 uint32_t size = read_4_bytes (dbfd,
12580 dwp_htab->section_pool.v2.sizes
12581 + (((unit_index - 1) * dwp_htab->nr_columns
12582 + i)
12583 * sizeof (uint32_t)));
12584
12585 switch (dwp_htab->section_pool.v2.section_ids[i])
12586 {
12587 case DW_SECT_INFO:
12588 case DW_SECT_TYPES:
12589 sections.info_or_types_offset = offset;
12590 sections.info_or_types_size = size;
12591 break;
12592 case DW_SECT_ABBREV:
12593 sections.abbrev_offset = offset;
12594 sections.abbrev_size = size;
12595 break;
12596 case DW_SECT_LINE:
12597 sections.line_offset = offset;
12598 sections.line_size = size;
12599 break;
12600 case DW_SECT_LOC:
12601 sections.loc_offset = offset;
12602 sections.loc_size = size;
12603 break;
12604 case DW_SECT_STR_OFFSETS:
12605 sections.str_offsets_offset = offset;
12606 sections.str_offsets_size = size;
12607 break;
12608 case DW_SECT_MACINFO:
12609 sections.macinfo_offset = offset;
12610 sections.macinfo_size = size;
12611 break;
12612 case DW_SECT_MACRO:
12613 sections.macro_offset = offset;
12614 sections.macro_size = size;
12615 break;
12616 }
12617 }
12618
12619 /* It's easier for the rest of the code if we fake a struct dwo_file and
12620 have dwo_unit "live" in that. At least for now.
12621
12622 The DWP file can be made up of a random collection of CUs and TUs.
12623 However, for each CU + set of TUs that came from the same original DWO
12624 file, we can combine them back into a virtual DWO file to save space
12625 (fewer struct dwo_file objects to allocate). Remember that for really
12626 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12627
12628 std::string virtual_dwo_name =
12629 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12630 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12631 (long) (sections.line_size ? sections.line_offset : 0),
12632 (long) (sections.loc_size ? sections.loc_offset : 0),
12633 (long) (sections.str_offsets_size
12634 ? sections.str_offsets_offset : 0));
12635 /* Can we use an existing virtual DWO file? */
12636 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12637 virtual_dwo_name.c_str (),
12638 comp_dir);
12639 /* Create one if necessary. */
12640 if (*dwo_file_slot == NULL)
12641 {
12642 if (dwarf_read_debug)
12643 {
12644 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12645 virtual_dwo_name.c_str ());
12646 }
12647 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12648 dwo_file->dwo_name
12649 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12650 virtual_dwo_name.c_str (),
12651 virtual_dwo_name.size ());
12652 dwo_file->comp_dir = comp_dir;
12653 dwo_file->sections.abbrev =
12654 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12655 sections.abbrev_offset, sections.abbrev_size);
12656 dwo_file->sections.line =
12657 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12658 sections.line_offset, sections.line_size);
12659 dwo_file->sections.loc =
12660 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12661 sections.loc_offset, sections.loc_size);
12662 dwo_file->sections.macinfo =
12663 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12664 sections.macinfo_offset, sections.macinfo_size);
12665 dwo_file->sections.macro =
12666 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12667 sections.macro_offset, sections.macro_size);
12668 dwo_file->sections.str_offsets =
12669 create_dwp_v2_section (dwarf2_per_objfile,
12670 &dwp_file->sections.str_offsets,
12671 sections.str_offsets_offset,
12672 sections.str_offsets_size);
12673 /* The "str" section is global to the entire DWP file. */
12674 dwo_file->sections.str = dwp_file->sections.str;
12675 /* The info or types section is assigned below to dwo_unit,
12676 there's no need to record it in dwo_file.
12677 Also, we can't simply record type sections in dwo_file because
12678 we record a pointer into the vector in dwo_unit. As we collect more
12679 types we'll grow the vector and eventually have to reallocate space
12680 for it, invalidating all copies of pointers into the previous
12681 contents. */
12682 *dwo_file_slot = dwo_file;
12683 }
12684 else
12685 {
12686 if (dwarf_read_debug)
12687 {
12688 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12689 virtual_dwo_name.c_str ());
12690 }
12691 dwo_file = (struct dwo_file *) *dwo_file_slot;
12692 }
12693
12694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12695 dwo_unit->dwo_file = dwo_file;
12696 dwo_unit->signature = signature;
12697 dwo_unit->section =
12698 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12699 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12700 is_debug_types
12701 ? &dwp_file->sections.types
12702 : &dwp_file->sections.info,
12703 sections.info_or_types_offset,
12704 sections.info_or_types_size);
12705 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12706
12707 return dwo_unit;
12708 }
12709
12710 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12711 Returns NULL if the signature isn't found. */
12712
12713 static struct dwo_unit *
12714 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12715 struct dwp_file *dwp_file, const char *comp_dir,
12716 ULONGEST signature, int is_debug_types)
12717 {
12718 const struct dwp_hash_table *dwp_htab =
12719 is_debug_types ? dwp_file->tus : dwp_file->cus;
12720 bfd *dbfd = dwp_file->dbfd.get ();
12721 uint32_t mask = dwp_htab->nr_slots - 1;
12722 uint32_t hash = signature & mask;
12723 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12724 unsigned int i;
12725 void **slot;
12726 struct dwo_unit find_dwo_cu;
12727
12728 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12729 find_dwo_cu.signature = signature;
12730 slot = htab_find_slot (is_debug_types
12731 ? dwp_file->loaded_tus
12732 : dwp_file->loaded_cus,
12733 &find_dwo_cu, INSERT);
12734
12735 if (*slot != NULL)
12736 return (struct dwo_unit *) *slot;
12737
12738 /* Use a for loop so that we don't loop forever on bad debug info. */
12739 for (i = 0; i < dwp_htab->nr_slots; ++i)
12740 {
12741 ULONGEST signature_in_table;
12742
12743 signature_in_table =
12744 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12745 if (signature_in_table == signature)
12746 {
12747 uint32_t unit_index =
12748 read_4_bytes (dbfd,
12749 dwp_htab->unit_table + hash * sizeof (uint32_t));
12750
12751 if (dwp_file->version == 1)
12752 {
12753 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12754 dwp_file, unit_index,
12755 comp_dir, signature,
12756 is_debug_types);
12757 }
12758 else
12759 {
12760 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12761 dwp_file, unit_index,
12762 comp_dir, signature,
12763 is_debug_types);
12764 }
12765 return (struct dwo_unit *) *slot;
12766 }
12767 if (signature_in_table == 0)
12768 return NULL;
12769 hash = (hash + hash2) & mask;
12770 }
12771
12772 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12773 " [in module %s]"),
12774 dwp_file->name);
12775 }
12776
12777 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12778 Open the file specified by FILE_NAME and hand it off to BFD for
12779 preliminary analysis. Return a newly initialized bfd *, which
12780 includes a canonicalized copy of FILE_NAME.
12781 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12782 SEARCH_CWD is true if the current directory is to be searched.
12783 It will be searched before debug-file-directory.
12784 If successful, the file is added to the bfd include table of the
12785 objfile's bfd (see gdb_bfd_record_inclusion).
12786 If unable to find/open the file, return NULL.
12787 NOTE: This function is derived from symfile_bfd_open. */
12788
12789 static gdb_bfd_ref_ptr
12790 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12791 const char *file_name, int is_dwp, int search_cwd)
12792 {
12793 int desc;
12794 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12795 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12796 to debug_file_directory. */
12797 const char *search_path;
12798 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12799
12800 gdb::unique_xmalloc_ptr<char> search_path_holder;
12801 if (search_cwd)
12802 {
12803 if (*debug_file_directory != '\0')
12804 {
12805 search_path_holder.reset (concat (".", dirname_separator_string,
12806 debug_file_directory,
12807 (char *) NULL));
12808 search_path = search_path_holder.get ();
12809 }
12810 else
12811 search_path = ".";
12812 }
12813 else
12814 search_path = debug_file_directory;
12815
12816 openp_flags flags = OPF_RETURN_REALPATH;
12817 if (is_dwp)
12818 flags |= OPF_SEARCH_IN_PATH;
12819
12820 gdb::unique_xmalloc_ptr<char> absolute_name;
12821 desc = openp (search_path, flags, file_name,
12822 O_RDONLY | O_BINARY, &absolute_name);
12823 if (desc < 0)
12824 return NULL;
12825
12826 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12827 gnutarget, desc));
12828 if (sym_bfd == NULL)
12829 return NULL;
12830 bfd_set_cacheable (sym_bfd.get (), 1);
12831
12832 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12833 return NULL;
12834
12835 /* Success. Record the bfd as having been included by the objfile's bfd.
12836 This is important because things like demangled_names_hash lives in the
12837 objfile's per_bfd space and may have references to things like symbol
12838 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12839 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12840
12841 return sym_bfd;
12842 }
12843
12844 /* Try to open DWO file FILE_NAME.
12845 COMP_DIR is the DW_AT_comp_dir attribute.
12846 The result is the bfd handle of the file.
12847 If there is a problem finding or opening the file, return NULL.
12848 Upon success, the canonicalized path of the file is stored in the bfd,
12849 same as symfile_bfd_open. */
12850
12851 static gdb_bfd_ref_ptr
12852 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12853 const char *file_name, const char *comp_dir)
12854 {
12855 if (IS_ABSOLUTE_PATH (file_name))
12856 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12857 0 /*is_dwp*/, 0 /*search_cwd*/);
12858
12859 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12860
12861 if (comp_dir != NULL)
12862 {
12863 char *path_to_try = concat (comp_dir, SLASH_STRING,
12864 file_name, (char *) NULL);
12865
12866 /* NOTE: If comp_dir is a relative path, this will also try the
12867 search path, which seems useful. */
12868 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12869 path_to_try,
12870 0 /*is_dwp*/,
12871 1 /*search_cwd*/));
12872 xfree (path_to_try);
12873 if (abfd != NULL)
12874 return abfd;
12875 }
12876
12877 /* That didn't work, try debug-file-directory, which, despite its name,
12878 is a list of paths. */
12879
12880 if (*debug_file_directory == '\0')
12881 return NULL;
12882
12883 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12884 0 /*is_dwp*/, 1 /*search_cwd*/);
12885 }
12886
12887 /* This function is mapped across the sections and remembers the offset and
12888 size of each of the DWO debugging sections we are interested in. */
12889
12890 static void
12891 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12892 {
12893 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12894 const struct dwop_section_names *names = &dwop_section_names;
12895
12896 if (section_is_p (sectp->name, &names->abbrev_dwo))
12897 {
12898 dwo_sections->abbrev.s.section = sectp;
12899 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12900 }
12901 else if (section_is_p (sectp->name, &names->info_dwo))
12902 {
12903 dwo_sections->info.s.section = sectp;
12904 dwo_sections->info.size = bfd_get_section_size (sectp);
12905 }
12906 else if (section_is_p (sectp->name, &names->line_dwo))
12907 {
12908 dwo_sections->line.s.section = sectp;
12909 dwo_sections->line.size = bfd_get_section_size (sectp);
12910 }
12911 else if (section_is_p (sectp->name, &names->loc_dwo))
12912 {
12913 dwo_sections->loc.s.section = sectp;
12914 dwo_sections->loc.size = bfd_get_section_size (sectp);
12915 }
12916 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12917 {
12918 dwo_sections->macinfo.s.section = sectp;
12919 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12920 }
12921 else if (section_is_p (sectp->name, &names->macro_dwo))
12922 {
12923 dwo_sections->macro.s.section = sectp;
12924 dwo_sections->macro.size = bfd_get_section_size (sectp);
12925 }
12926 else if (section_is_p (sectp->name, &names->str_dwo))
12927 {
12928 dwo_sections->str.s.section = sectp;
12929 dwo_sections->str.size = bfd_get_section_size (sectp);
12930 }
12931 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12932 {
12933 dwo_sections->str_offsets.s.section = sectp;
12934 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12935 }
12936 else if (section_is_p (sectp->name, &names->types_dwo))
12937 {
12938 struct dwarf2_section_info type_section;
12939
12940 memset (&type_section, 0, sizeof (type_section));
12941 type_section.s.section = sectp;
12942 type_section.size = bfd_get_section_size (sectp);
12943 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12944 &type_section);
12945 }
12946 }
12947
12948 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12949 by PER_CU. This is for the non-DWP case.
12950 The result is NULL if DWO_NAME can't be found. */
12951
12952 static struct dwo_file *
12953 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12954 const char *dwo_name, const char *comp_dir)
12955 {
12956 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12957 struct objfile *objfile = dwarf2_per_objfile->objfile;
12958
12959 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12960 if (dbfd == NULL)
12961 {
12962 if (dwarf_read_debug)
12963 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12964 return NULL;
12965 }
12966
12967 /* We use a unique pointer here, despite the obstack allocation,
12968 because a dwo_file needs some cleanup if it is abandoned. */
12969 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12970 struct dwo_file));
12971 dwo_file->dwo_name = dwo_name;
12972 dwo_file->comp_dir = comp_dir;
12973 dwo_file->dbfd = dbfd.release ();
12974
12975 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12976 &dwo_file->sections);
12977
12978 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12979 dwo_file->cus);
12980
12981 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12982 dwo_file->sections.types, dwo_file->tus);
12983
12984 if (dwarf_read_debug)
12985 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12986
12987 return dwo_file.release ();
12988 }
12989
12990 /* This function is mapped across the sections and remembers the offset and
12991 size of each of the DWP debugging sections common to version 1 and 2 that
12992 we are interested in. */
12993
12994 static void
12995 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12996 void *dwp_file_ptr)
12997 {
12998 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12999 const struct dwop_section_names *names = &dwop_section_names;
13000 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13001
13002 /* Record the ELF section number for later lookup: this is what the
13003 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13004 gdb_assert (elf_section_nr < dwp_file->num_sections);
13005 dwp_file->elf_sections[elf_section_nr] = sectp;
13006
13007 /* Look for specific sections that we need. */
13008 if (section_is_p (sectp->name, &names->str_dwo))
13009 {
13010 dwp_file->sections.str.s.section = sectp;
13011 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13012 }
13013 else if (section_is_p (sectp->name, &names->cu_index))
13014 {
13015 dwp_file->sections.cu_index.s.section = sectp;
13016 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13017 }
13018 else if (section_is_p (sectp->name, &names->tu_index))
13019 {
13020 dwp_file->sections.tu_index.s.section = sectp;
13021 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13022 }
13023 }
13024
13025 /* This function is mapped across the sections and remembers the offset and
13026 size of each of the DWP version 2 debugging sections that we are interested
13027 in. This is split into a separate function because we don't know if we
13028 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13029
13030 static void
13031 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13032 {
13033 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13034 const struct dwop_section_names *names = &dwop_section_names;
13035 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13036
13037 /* Record the ELF section number for later lookup: this is what the
13038 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13039 gdb_assert (elf_section_nr < dwp_file->num_sections);
13040 dwp_file->elf_sections[elf_section_nr] = sectp;
13041
13042 /* Look for specific sections that we need. */
13043 if (section_is_p (sectp->name, &names->abbrev_dwo))
13044 {
13045 dwp_file->sections.abbrev.s.section = sectp;
13046 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13047 }
13048 else if (section_is_p (sectp->name, &names->info_dwo))
13049 {
13050 dwp_file->sections.info.s.section = sectp;
13051 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13052 }
13053 else if (section_is_p (sectp->name, &names->line_dwo))
13054 {
13055 dwp_file->sections.line.s.section = sectp;
13056 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13057 }
13058 else if (section_is_p (sectp->name, &names->loc_dwo))
13059 {
13060 dwp_file->sections.loc.s.section = sectp;
13061 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13062 }
13063 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13064 {
13065 dwp_file->sections.macinfo.s.section = sectp;
13066 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13067 }
13068 else if (section_is_p (sectp->name, &names->macro_dwo))
13069 {
13070 dwp_file->sections.macro.s.section = sectp;
13071 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13072 }
13073 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13074 {
13075 dwp_file->sections.str_offsets.s.section = sectp;
13076 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13077 }
13078 else if (section_is_p (sectp->name, &names->types_dwo))
13079 {
13080 dwp_file->sections.types.s.section = sectp;
13081 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13082 }
13083 }
13084
13085 /* Hash function for dwp_file loaded CUs/TUs. */
13086
13087 static hashval_t
13088 hash_dwp_loaded_cutus (const void *item)
13089 {
13090 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13091
13092 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13093 return dwo_unit->signature;
13094 }
13095
13096 /* Equality function for dwp_file loaded CUs/TUs. */
13097
13098 static int
13099 eq_dwp_loaded_cutus (const void *a, const void *b)
13100 {
13101 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13102 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13103
13104 return dua->signature == dub->signature;
13105 }
13106
13107 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13108
13109 static htab_t
13110 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13111 {
13112 return htab_create_alloc_ex (3,
13113 hash_dwp_loaded_cutus,
13114 eq_dwp_loaded_cutus,
13115 NULL,
13116 &objfile->objfile_obstack,
13117 hashtab_obstack_allocate,
13118 dummy_obstack_deallocate);
13119 }
13120
13121 /* Try to open DWP file FILE_NAME.
13122 The result is the bfd handle of the file.
13123 If there is a problem finding or opening the file, return NULL.
13124 Upon success, the canonicalized path of the file is stored in the bfd,
13125 same as symfile_bfd_open. */
13126
13127 static gdb_bfd_ref_ptr
13128 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13129 const char *file_name)
13130 {
13131 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13132 1 /*is_dwp*/,
13133 1 /*search_cwd*/));
13134 if (abfd != NULL)
13135 return abfd;
13136
13137 /* Work around upstream bug 15652.
13138 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13139 [Whether that's a "bug" is debatable, but it is getting in our way.]
13140 We have no real idea where the dwp file is, because gdb's realpath-ing
13141 of the executable's path may have discarded the needed info.
13142 [IWBN if the dwp file name was recorded in the executable, akin to
13143 .gnu_debuglink, but that doesn't exist yet.]
13144 Strip the directory from FILE_NAME and search again. */
13145 if (*debug_file_directory != '\0')
13146 {
13147 /* Don't implicitly search the current directory here.
13148 If the user wants to search "." to handle this case,
13149 it must be added to debug-file-directory. */
13150 return try_open_dwop_file (dwarf2_per_objfile,
13151 lbasename (file_name), 1 /*is_dwp*/,
13152 0 /*search_cwd*/);
13153 }
13154
13155 return NULL;
13156 }
13157
13158 /* Initialize the use of the DWP file for the current objfile.
13159 By convention the name of the DWP file is ${objfile}.dwp.
13160 The result is NULL if it can't be found. */
13161
13162 static std::unique_ptr<struct dwp_file>
13163 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13164 {
13165 struct objfile *objfile = dwarf2_per_objfile->objfile;
13166
13167 /* Try to find first .dwp for the binary file before any symbolic links
13168 resolving. */
13169
13170 /* If the objfile is a debug file, find the name of the real binary
13171 file and get the name of dwp file from there. */
13172 std::string dwp_name;
13173 if (objfile->separate_debug_objfile_backlink != NULL)
13174 {
13175 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13176 const char *backlink_basename = lbasename (backlink->original_name);
13177
13178 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13179 }
13180 else
13181 dwp_name = objfile->original_name;
13182
13183 dwp_name += ".dwp";
13184
13185 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13186 if (dbfd == NULL
13187 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13188 {
13189 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13190 dwp_name = objfile_name (objfile);
13191 dwp_name += ".dwp";
13192 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13193 }
13194
13195 if (dbfd == NULL)
13196 {
13197 if (dwarf_read_debug)
13198 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13199 return std::unique_ptr<dwp_file> ();
13200 }
13201
13202 const char *name = bfd_get_filename (dbfd.get ());
13203 std::unique_ptr<struct dwp_file> dwp_file
13204 (new struct dwp_file (name, std::move (dbfd)));
13205
13206 /* +1: section 0 is unused */
13207 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13208 dwp_file->elf_sections =
13209 OBSTACK_CALLOC (&objfile->objfile_obstack,
13210 dwp_file->num_sections, asection *);
13211
13212 bfd_map_over_sections (dwp_file->dbfd.get (),
13213 dwarf2_locate_common_dwp_sections,
13214 dwp_file.get ());
13215
13216 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13217 0);
13218
13219 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13220 1);
13221
13222 /* The DWP file version is stored in the hash table. Oh well. */
13223 if (dwp_file->cus && dwp_file->tus
13224 && dwp_file->cus->version != dwp_file->tus->version)
13225 {
13226 /* Technically speaking, we should try to limp along, but this is
13227 pretty bizarre. We use pulongest here because that's the established
13228 portability solution (e.g, we cannot use %u for uint32_t). */
13229 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13230 " TU version %s [in DWP file %s]"),
13231 pulongest (dwp_file->cus->version),
13232 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13233 }
13234
13235 if (dwp_file->cus)
13236 dwp_file->version = dwp_file->cus->version;
13237 else if (dwp_file->tus)
13238 dwp_file->version = dwp_file->tus->version;
13239 else
13240 dwp_file->version = 2;
13241
13242 if (dwp_file->version == 2)
13243 bfd_map_over_sections (dwp_file->dbfd.get (),
13244 dwarf2_locate_v2_dwp_sections,
13245 dwp_file.get ());
13246
13247 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13248 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13249
13250 if (dwarf_read_debug)
13251 {
13252 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13253 fprintf_unfiltered (gdb_stdlog,
13254 " %s CUs, %s TUs\n",
13255 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13256 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13257 }
13258
13259 return dwp_file;
13260 }
13261
13262 /* Wrapper around open_and_init_dwp_file, only open it once. */
13263
13264 static struct dwp_file *
13265 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13266 {
13267 if (! dwarf2_per_objfile->dwp_checked)
13268 {
13269 dwarf2_per_objfile->dwp_file
13270 = open_and_init_dwp_file (dwarf2_per_objfile);
13271 dwarf2_per_objfile->dwp_checked = 1;
13272 }
13273 return dwarf2_per_objfile->dwp_file.get ();
13274 }
13275
13276 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13277 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13278 or in the DWP file for the objfile, referenced by THIS_UNIT.
13279 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13280 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13281
13282 This is called, for example, when wanting to read a variable with a
13283 complex location. Therefore we don't want to do file i/o for every call.
13284 Therefore we don't want to look for a DWO file on every call.
13285 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13286 then we check if we've already seen DWO_NAME, and only THEN do we check
13287 for a DWO file.
13288
13289 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13290 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13291
13292 static struct dwo_unit *
13293 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13294 const char *dwo_name, const char *comp_dir,
13295 ULONGEST signature, int is_debug_types)
13296 {
13297 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13298 struct objfile *objfile = dwarf2_per_objfile->objfile;
13299 const char *kind = is_debug_types ? "TU" : "CU";
13300 void **dwo_file_slot;
13301 struct dwo_file *dwo_file;
13302 struct dwp_file *dwp_file;
13303
13304 /* First see if there's a DWP file.
13305 If we have a DWP file but didn't find the DWO inside it, don't
13306 look for the original DWO file. It makes gdb behave differently
13307 depending on whether one is debugging in the build tree. */
13308
13309 dwp_file = get_dwp_file (dwarf2_per_objfile);
13310 if (dwp_file != NULL)
13311 {
13312 const struct dwp_hash_table *dwp_htab =
13313 is_debug_types ? dwp_file->tus : dwp_file->cus;
13314
13315 if (dwp_htab != NULL)
13316 {
13317 struct dwo_unit *dwo_cutu =
13318 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13319 signature, is_debug_types);
13320
13321 if (dwo_cutu != NULL)
13322 {
13323 if (dwarf_read_debug)
13324 {
13325 fprintf_unfiltered (gdb_stdlog,
13326 "Virtual DWO %s %s found: @%s\n",
13327 kind, hex_string (signature),
13328 host_address_to_string (dwo_cutu));
13329 }
13330 return dwo_cutu;
13331 }
13332 }
13333 }
13334 else
13335 {
13336 /* No DWP file, look for the DWO file. */
13337
13338 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13339 dwo_name, comp_dir);
13340 if (*dwo_file_slot == NULL)
13341 {
13342 /* Read in the file and build a table of the CUs/TUs it contains. */
13343 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13344 }
13345 /* NOTE: This will be NULL if unable to open the file. */
13346 dwo_file = (struct dwo_file *) *dwo_file_slot;
13347
13348 if (dwo_file != NULL)
13349 {
13350 struct dwo_unit *dwo_cutu = NULL;
13351
13352 if (is_debug_types && dwo_file->tus)
13353 {
13354 struct dwo_unit find_dwo_cutu;
13355
13356 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13357 find_dwo_cutu.signature = signature;
13358 dwo_cutu
13359 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13360 }
13361 else if (!is_debug_types && dwo_file->cus)
13362 {
13363 struct dwo_unit find_dwo_cutu;
13364
13365 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13366 find_dwo_cutu.signature = signature;
13367 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13368 &find_dwo_cutu);
13369 }
13370
13371 if (dwo_cutu != NULL)
13372 {
13373 if (dwarf_read_debug)
13374 {
13375 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13376 kind, dwo_name, hex_string (signature),
13377 host_address_to_string (dwo_cutu));
13378 }
13379 return dwo_cutu;
13380 }
13381 }
13382 }
13383
13384 /* We didn't find it. This could mean a dwo_id mismatch, or
13385 someone deleted the DWO/DWP file, or the search path isn't set up
13386 correctly to find the file. */
13387
13388 if (dwarf_read_debug)
13389 {
13390 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13391 kind, dwo_name, hex_string (signature));
13392 }
13393
13394 /* This is a warning and not a complaint because it can be caused by
13395 pilot error (e.g., user accidentally deleting the DWO). */
13396 {
13397 /* Print the name of the DWP file if we looked there, helps the user
13398 better diagnose the problem. */
13399 std::string dwp_text;
13400
13401 if (dwp_file != NULL)
13402 dwp_text = string_printf (" [in DWP file %s]",
13403 lbasename (dwp_file->name));
13404
13405 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13406 " [in module %s]"),
13407 kind, dwo_name, hex_string (signature),
13408 dwp_text.c_str (),
13409 this_unit->is_debug_types ? "TU" : "CU",
13410 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13411 }
13412 return NULL;
13413 }
13414
13415 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13416 See lookup_dwo_cutu_unit for details. */
13417
13418 static struct dwo_unit *
13419 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13420 const char *dwo_name, const char *comp_dir,
13421 ULONGEST signature)
13422 {
13423 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13424 }
13425
13426 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13427 See lookup_dwo_cutu_unit for details. */
13428
13429 static struct dwo_unit *
13430 lookup_dwo_type_unit (struct signatured_type *this_tu,
13431 const char *dwo_name, const char *comp_dir)
13432 {
13433 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13434 }
13435
13436 /* Traversal function for queue_and_load_all_dwo_tus. */
13437
13438 static int
13439 queue_and_load_dwo_tu (void **slot, void *info)
13440 {
13441 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13442 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13443 ULONGEST signature = dwo_unit->signature;
13444 struct signatured_type *sig_type =
13445 lookup_dwo_signatured_type (per_cu->cu, signature);
13446
13447 if (sig_type != NULL)
13448 {
13449 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13450
13451 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13452 a real dependency of PER_CU on SIG_TYPE. That is detected later
13453 while processing PER_CU. */
13454 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13455 load_full_type_unit (sig_cu);
13456 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13457 }
13458
13459 return 1;
13460 }
13461
13462 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13463 The DWO may have the only definition of the type, though it may not be
13464 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13465 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13466
13467 static void
13468 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13469 {
13470 struct dwo_unit *dwo_unit;
13471 struct dwo_file *dwo_file;
13472
13473 gdb_assert (!per_cu->is_debug_types);
13474 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13475 gdb_assert (per_cu->cu != NULL);
13476
13477 dwo_unit = per_cu->cu->dwo_unit;
13478 gdb_assert (dwo_unit != NULL);
13479
13480 dwo_file = dwo_unit->dwo_file;
13481 if (dwo_file->tus != NULL)
13482 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13483 }
13484
13485 /* Free all resources associated with DWO_FILE.
13486 Close the DWO file and munmap the sections. */
13487
13488 static void
13489 free_dwo_file (struct dwo_file *dwo_file)
13490 {
13491 /* Note: dbfd is NULL for virtual DWO files. */
13492 gdb_bfd_unref (dwo_file->dbfd);
13493
13494 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13495 }
13496
13497 /* Traversal function for free_dwo_files. */
13498
13499 static int
13500 free_dwo_file_from_slot (void **slot, void *info)
13501 {
13502 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13503
13504 free_dwo_file (dwo_file);
13505
13506 return 1;
13507 }
13508
13509 /* Free all resources associated with DWO_FILES. */
13510
13511 static void
13512 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13513 {
13514 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13515 }
13516 \f
13517 /* Read in various DIEs. */
13518
13519 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13520 Inherit only the children of the DW_AT_abstract_origin DIE not being
13521 already referenced by DW_AT_abstract_origin from the children of the
13522 current DIE. */
13523
13524 static void
13525 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13526 {
13527 struct die_info *child_die;
13528 sect_offset *offsetp;
13529 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13530 struct die_info *origin_die;
13531 /* Iterator of the ORIGIN_DIE children. */
13532 struct die_info *origin_child_die;
13533 struct attribute *attr;
13534 struct dwarf2_cu *origin_cu;
13535 struct pending **origin_previous_list_in_scope;
13536
13537 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13538 if (!attr)
13539 return;
13540
13541 /* Note that following die references may follow to a die in a
13542 different cu. */
13543
13544 origin_cu = cu;
13545 origin_die = follow_die_ref (die, attr, &origin_cu);
13546
13547 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13548 symbols in. */
13549 origin_previous_list_in_scope = origin_cu->list_in_scope;
13550 origin_cu->list_in_scope = cu->list_in_scope;
13551
13552 if (die->tag != origin_die->tag
13553 && !(die->tag == DW_TAG_inlined_subroutine
13554 && origin_die->tag == DW_TAG_subprogram))
13555 complaint (_("DIE %s and its abstract origin %s have different tags"),
13556 sect_offset_str (die->sect_off),
13557 sect_offset_str (origin_die->sect_off));
13558
13559 std::vector<sect_offset> offsets;
13560
13561 for (child_die = die->child;
13562 child_die && child_die->tag;
13563 child_die = sibling_die (child_die))
13564 {
13565 struct die_info *child_origin_die;
13566 struct dwarf2_cu *child_origin_cu;
13567
13568 /* We are trying to process concrete instance entries:
13569 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13570 it's not relevant to our analysis here. i.e. detecting DIEs that are
13571 present in the abstract instance but not referenced in the concrete
13572 one. */
13573 if (child_die->tag == DW_TAG_call_site
13574 || child_die->tag == DW_TAG_GNU_call_site)
13575 continue;
13576
13577 /* For each CHILD_DIE, find the corresponding child of
13578 ORIGIN_DIE. If there is more than one layer of
13579 DW_AT_abstract_origin, follow them all; there shouldn't be,
13580 but GCC versions at least through 4.4 generate this (GCC PR
13581 40573). */
13582 child_origin_die = child_die;
13583 child_origin_cu = cu;
13584 while (1)
13585 {
13586 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13587 child_origin_cu);
13588 if (attr == NULL)
13589 break;
13590 child_origin_die = follow_die_ref (child_origin_die, attr,
13591 &child_origin_cu);
13592 }
13593
13594 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13595 counterpart may exist. */
13596 if (child_origin_die != child_die)
13597 {
13598 if (child_die->tag != child_origin_die->tag
13599 && !(child_die->tag == DW_TAG_inlined_subroutine
13600 && child_origin_die->tag == DW_TAG_subprogram))
13601 complaint (_("Child DIE %s and its abstract origin %s have "
13602 "different tags"),
13603 sect_offset_str (child_die->sect_off),
13604 sect_offset_str (child_origin_die->sect_off));
13605 if (child_origin_die->parent != origin_die)
13606 complaint (_("Child DIE %s and its abstract origin %s have "
13607 "different parents"),
13608 sect_offset_str (child_die->sect_off),
13609 sect_offset_str (child_origin_die->sect_off));
13610 else
13611 offsets.push_back (child_origin_die->sect_off);
13612 }
13613 }
13614 std::sort (offsets.begin (), offsets.end ());
13615 sect_offset *offsets_end = offsets.data () + offsets.size ();
13616 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13617 if (offsetp[-1] == *offsetp)
13618 complaint (_("Multiple children of DIE %s refer "
13619 "to DIE %s as their abstract origin"),
13620 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13621
13622 offsetp = offsets.data ();
13623 origin_child_die = origin_die->child;
13624 while (origin_child_die && origin_child_die->tag)
13625 {
13626 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13627 while (offsetp < offsets_end
13628 && *offsetp < origin_child_die->sect_off)
13629 offsetp++;
13630 if (offsetp >= offsets_end
13631 || *offsetp > origin_child_die->sect_off)
13632 {
13633 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13634 Check whether we're already processing ORIGIN_CHILD_DIE.
13635 This can happen with mutually referenced abstract_origins.
13636 PR 16581. */
13637 if (!origin_child_die->in_process)
13638 process_die (origin_child_die, origin_cu);
13639 }
13640 origin_child_die = sibling_die (origin_child_die);
13641 }
13642 origin_cu->list_in_scope = origin_previous_list_in_scope;
13643 }
13644
13645 static void
13646 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13647 {
13648 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13649 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13650 struct context_stack *newobj;
13651 CORE_ADDR lowpc;
13652 CORE_ADDR highpc;
13653 struct die_info *child_die;
13654 struct attribute *attr, *call_line, *call_file;
13655 const char *name;
13656 CORE_ADDR baseaddr;
13657 struct block *block;
13658 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13659 std::vector<struct symbol *> template_args;
13660 struct template_symbol *templ_func = NULL;
13661
13662 if (inlined_func)
13663 {
13664 /* If we do not have call site information, we can't show the
13665 caller of this inlined function. That's too confusing, so
13666 only use the scope for local variables. */
13667 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13668 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13669 if (call_line == NULL || call_file == NULL)
13670 {
13671 read_lexical_block_scope (die, cu);
13672 return;
13673 }
13674 }
13675
13676 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13677
13678 name = dwarf2_name (die, cu);
13679
13680 /* Ignore functions with missing or empty names. These are actually
13681 illegal according to the DWARF standard. */
13682 if (name == NULL)
13683 {
13684 complaint (_("missing name for subprogram DIE at %s"),
13685 sect_offset_str (die->sect_off));
13686 return;
13687 }
13688
13689 /* Ignore functions with missing or invalid low and high pc attributes. */
13690 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13691 <= PC_BOUNDS_INVALID)
13692 {
13693 attr = dwarf2_attr (die, DW_AT_external, cu);
13694 if (!attr || !DW_UNSND (attr))
13695 complaint (_("cannot get low and high bounds "
13696 "for subprogram DIE at %s"),
13697 sect_offset_str (die->sect_off));
13698 return;
13699 }
13700
13701 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13702 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13703
13704 /* If we have any template arguments, then we must allocate a
13705 different sort of symbol. */
13706 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13707 {
13708 if (child_die->tag == DW_TAG_template_type_param
13709 || child_die->tag == DW_TAG_template_value_param)
13710 {
13711 templ_func = allocate_template_symbol (objfile);
13712 templ_func->subclass = SYMBOL_TEMPLATE;
13713 break;
13714 }
13715 }
13716
13717 newobj = cu->builder->push_context (0, lowpc);
13718 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13719 (struct symbol *) templ_func);
13720
13721 /* If there is a location expression for DW_AT_frame_base, record
13722 it. */
13723 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13724 if (attr)
13725 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13726
13727 /* If there is a location for the static link, record it. */
13728 newobj->static_link = NULL;
13729 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13730 if (attr)
13731 {
13732 newobj->static_link
13733 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13734 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13735 }
13736
13737 cu->list_in_scope = cu->builder->get_local_symbols ();
13738
13739 if (die->child != NULL)
13740 {
13741 child_die = die->child;
13742 while (child_die && child_die->tag)
13743 {
13744 if (child_die->tag == DW_TAG_template_type_param
13745 || child_die->tag == DW_TAG_template_value_param)
13746 {
13747 struct symbol *arg = new_symbol (child_die, NULL, cu);
13748
13749 if (arg != NULL)
13750 template_args.push_back (arg);
13751 }
13752 else
13753 process_die (child_die, cu);
13754 child_die = sibling_die (child_die);
13755 }
13756 }
13757
13758 inherit_abstract_dies (die, cu);
13759
13760 /* If we have a DW_AT_specification, we might need to import using
13761 directives from the context of the specification DIE. See the
13762 comment in determine_prefix. */
13763 if (cu->language == language_cplus
13764 && dwarf2_attr (die, DW_AT_specification, cu))
13765 {
13766 struct dwarf2_cu *spec_cu = cu;
13767 struct die_info *spec_die = die_specification (die, &spec_cu);
13768
13769 while (spec_die)
13770 {
13771 child_die = spec_die->child;
13772 while (child_die && child_die->tag)
13773 {
13774 if (child_die->tag == DW_TAG_imported_module)
13775 process_die (child_die, spec_cu);
13776 child_die = sibling_die (child_die);
13777 }
13778
13779 /* In some cases, GCC generates specification DIEs that
13780 themselves contain DW_AT_specification attributes. */
13781 spec_die = die_specification (spec_die, &spec_cu);
13782 }
13783 }
13784
13785 struct context_stack cstk = cu->builder->pop_context ();
13786 /* Make a block for the local symbols within. */
13787 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13788 cstk.static_link, lowpc, highpc);
13789
13790 /* For C++, set the block's scope. */
13791 if ((cu->language == language_cplus
13792 || cu->language == language_fortran
13793 || cu->language == language_d
13794 || cu->language == language_rust)
13795 && cu->processing_has_namespace_info)
13796 block_set_scope (block, determine_prefix (die, cu),
13797 &objfile->objfile_obstack);
13798
13799 /* If we have address ranges, record them. */
13800 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13801
13802 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13803
13804 /* Attach template arguments to function. */
13805 if (!template_args.empty ())
13806 {
13807 gdb_assert (templ_func != NULL);
13808
13809 templ_func->n_template_arguments = template_args.size ();
13810 templ_func->template_arguments
13811 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13812 templ_func->n_template_arguments);
13813 memcpy (templ_func->template_arguments,
13814 template_args.data (),
13815 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13816
13817 /* Make sure that the symtab is set on the new symbols. Even
13818 though they don't appear in this symtab directly, other parts
13819 of gdb assume that symbols do, and this is reasonably
13820 true. */
13821 for (symbol *sym : template_args)
13822 symbol_set_symtab (sym, symbol_symtab (templ_func));
13823 }
13824
13825 /* In C++, we can have functions nested inside functions (e.g., when
13826 a function declares a class that has methods). This means that
13827 when we finish processing a function scope, we may need to go
13828 back to building a containing block's symbol lists. */
13829 *cu->builder->get_local_symbols () = cstk.locals;
13830 cu->builder->set_local_using_directives (cstk.local_using_directives);
13831
13832 /* If we've finished processing a top-level function, subsequent
13833 symbols go in the file symbol list. */
13834 if (cu->builder->outermost_context_p ())
13835 cu->list_in_scope = cu->builder->get_file_symbols ();
13836 }
13837
13838 /* Process all the DIES contained within a lexical block scope. Start
13839 a new scope, process the dies, and then close the scope. */
13840
13841 static void
13842 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13843 {
13844 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13846 CORE_ADDR lowpc, highpc;
13847 struct die_info *child_die;
13848 CORE_ADDR baseaddr;
13849
13850 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13851
13852 /* Ignore blocks with missing or invalid low and high pc attributes. */
13853 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13854 as multiple lexical blocks? Handling children in a sane way would
13855 be nasty. Might be easier to properly extend generic blocks to
13856 describe ranges. */
13857 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13858 {
13859 case PC_BOUNDS_NOT_PRESENT:
13860 /* DW_TAG_lexical_block has no attributes, process its children as if
13861 there was no wrapping by that DW_TAG_lexical_block.
13862 GCC does no longer produces such DWARF since GCC r224161. */
13863 for (child_die = die->child;
13864 child_die != NULL && child_die->tag;
13865 child_die = sibling_die (child_die))
13866 process_die (child_die, cu);
13867 return;
13868 case PC_BOUNDS_INVALID:
13869 return;
13870 }
13871 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13872 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13873
13874 cu->builder->push_context (0, lowpc);
13875 if (die->child != NULL)
13876 {
13877 child_die = die->child;
13878 while (child_die && child_die->tag)
13879 {
13880 process_die (child_die, cu);
13881 child_die = sibling_die (child_die);
13882 }
13883 }
13884 inherit_abstract_dies (die, cu);
13885 struct context_stack cstk = cu->builder->pop_context ();
13886
13887 if (*cu->builder->get_local_symbols () != NULL
13888 || (*cu->builder->get_local_using_directives ()) != NULL)
13889 {
13890 struct block *block
13891 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13892 cstk.start_addr, highpc);
13893
13894 /* Note that recording ranges after traversing children, as we
13895 do here, means that recording a parent's ranges entails
13896 walking across all its children's ranges as they appear in
13897 the address map, which is quadratic behavior.
13898
13899 It would be nicer to record the parent's ranges before
13900 traversing its children, simply overriding whatever you find
13901 there. But since we don't even decide whether to create a
13902 block until after we've traversed its children, that's hard
13903 to do. */
13904 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13905 }
13906 *cu->builder->get_local_symbols () = cstk.locals;
13907 cu->builder->set_local_using_directives (cstk.local_using_directives);
13908 }
13909
13910 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13911
13912 static void
13913 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13914 {
13915 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13916 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13917 CORE_ADDR pc, baseaddr;
13918 struct attribute *attr;
13919 struct call_site *call_site, call_site_local;
13920 void **slot;
13921 int nparams;
13922 struct die_info *child_die;
13923
13924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13925
13926 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13927 if (attr == NULL)
13928 {
13929 /* This was a pre-DWARF-5 GNU extension alias
13930 for DW_AT_call_return_pc. */
13931 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13932 }
13933 if (!attr)
13934 {
13935 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13936 "DIE %s [in module %s]"),
13937 sect_offset_str (die->sect_off), objfile_name (objfile));
13938 return;
13939 }
13940 pc = attr_value_as_address (attr) + baseaddr;
13941 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13942
13943 if (cu->call_site_htab == NULL)
13944 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13945 NULL, &objfile->objfile_obstack,
13946 hashtab_obstack_allocate, NULL);
13947 call_site_local.pc = pc;
13948 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13949 if (*slot != NULL)
13950 {
13951 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13952 "DIE %s [in module %s]"),
13953 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13954 objfile_name (objfile));
13955 return;
13956 }
13957
13958 /* Count parameters at the caller. */
13959
13960 nparams = 0;
13961 for (child_die = die->child; child_die && child_die->tag;
13962 child_die = sibling_die (child_die))
13963 {
13964 if (child_die->tag != DW_TAG_call_site_parameter
13965 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13966 {
13967 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13968 "DW_TAG_call_site child DIE %s [in module %s]"),
13969 child_die->tag, sect_offset_str (child_die->sect_off),
13970 objfile_name (objfile));
13971 continue;
13972 }
13973
13974 nparams++;
13975 }
13976
13977 call_site
13978 = ((struct call_site *)
13979 obstack_alloc (&objfile->objfile_obstack,
13980 sizeof (*call_site)
13981 + (sizeof (*call_site->parameter) * (nparams - 1))));
13982 *slot = call_site;
13983 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13984 call_site->pc = pc;
13985
13986 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13987 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13988 {
13989 struct die_info *func_die;
13990
13991 /* Skip also over DW_TAG_inlined_subroutine. */
13992 for (func_die = die->parent;
13993 func_die && func_die->tag != DW_TAG_subprogram
13994 && func_die->tag != DW_TAG_subroutine_type;
13995 func_die = func_die->parent);
13996
13997 /* DW_AT_call_all_calls is a superset
13998 of DW_AT_call_all_tail_calls. */
13999 if (func_die
14000 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14001 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14002 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14003 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14004 {
14005 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14006 not complete. But keep CALL_SITE for look ups via call_site_htab,
14007 both the initial caller containing the real return address PC and
14008 the final callee containing the current PC of a chain of tail
14009 calls do not need to have the tail call list complete. But any
14010 function candidate for a virtual tail call frame searched via
14011 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14012 determined unambiguously. */
14013 }
14014 else
14015 {
14016 struct type *func_type = NULL;
14017
14018 if (func_die)
14019 func_type = get_die_type (func_die, cu);
14020 if (func_type != NULL)
14021 {
14022 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14023
14024 /* Enlist this call site to the function. */
14025 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14026 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14027 }
14028 else
14029 complaint (_("Cannot find function owning DW_TAG_call_site "
14030 "DIE %s [in module %s]"),
14031 sect_offset_str (die->sect_off), objfile_name (objfile));
14032 }
14033 }
14034
14035 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14036 if (attr == NULL)
14037 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14038 if (attr == NULL)
14039 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14040 if (attr == NULL)
14041 {
14042 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14043 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14044 }
14045 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14046 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14047 /* Keep NULL DWARF_BLOCK. */;
14048 else if (attr_form_is_block (attr))
14049 {
14050 struct dwarf2_locexpr_baton *dlbaton;
14051
14052 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14053 dlbaton->data = DW_BLOCK (attr)->data;
14054 dlbaton->size = DW_BLOCK (attr)->size;
14055 dlbaton->per_cu = cu->per_cu;
14056
14057 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14058 }
14059 else if (attr_form_is_ref (attr))
14060 {
14061 struct dwarf2_cu *target_cu = cu;
14062 struct die_info *target_die;
14063
14064 target_die = follow_die_ref (die, attr, &target_cu);
14065 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14066 if (die_is_declaration (target_die, target_cu))
14067 {
14068 const char *target_physname;
14069
14070 /* Prefer the mangled name; otherwise compute the demangled one. */
14071 target_physname = dw2_linkage_name (target_die, target_cu);
14072 if (target_physname == NULL)
14073 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14074 if (target_physname == NULL)
14075 complaint (_("DW_AT_call_target target DIE has invalid "
14076 "physname, for referencing DIE %s [in module %s]"),
14077 sect_offset_str (die->sect_off), objfile_name (objfile));
14078 else
14079 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14080 }
14081 else
14082 {
14083 CORE_ADDR lowpc;
14084
14085 /* DW_AT_entry_pc should be preferred. */
14086 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14087 <= PC_BOUNDS_INVALID)
14088 complaint (_("DW_AT_call_target target DIE has invalid "
14089 "low pc, for referencing DIE %s [in module %s]"),
14090 sect_offset_str (die->sect_off), objfile_name (objfile));
14091 else
14092 {
14093 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14094 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14095 }
14096 }
14097 }
14098 else
14099 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14100 "block nor reference, for DIE %s [in module %s]"),
14101 sect_offset_str (die->sect_off), objfile_name (objfile));
14102
14103 call_site->per_cu = cu->per_cu;
14104
14105 for (child_die = die->child;
14106 child_die && child_die->tag;
14107 child_die = sibling_die (child_die))
14108 {
14109 struct call_site_parameter *parameter;
14110 struct attribute *loc, *origin;
14111
14112 if (child_die->tag != DW_TAG_call_site_parameter
14113 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14114 {
14115 /* Already printed the complaint above. */
14116 continue;
14117 }
14118
14119 gdb_assert (call_site->parameter_count < nparams);
14120 parameter = &call_site->parameter[call_site->parameter_count];
14121
14122 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14123 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14124 register is contained in DW_AT_call_value. */
14125
14126 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14127 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14128 if (origin == NULL)
14129 {
14130 /* This was a pre-DWARF-5 GNU extension alias
14131 for DW_AT_call_parameter. */
14132 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14133 }
14134 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14135 {
14136 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14137
14138 sect_offset sect_off
14139 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14140 if (!offset_in_cu_p (&cu->header, sect_off))
14141 {
14142 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14143 binding can be done only inside one CU. Such referenced DIE
14144 therefore cannot be even moved to DW_TAG_partial_unit. */
14145 complaint (_("DW_AT_call_parameter offset is not in CU for "
14146 "DW_TAG_call_site child DIE %s [in module %s]"),
14147 sect_offset_str (child_die->sect_off),
14148 objfile_name (objfile));
14149 continue;
14150 }
14151 parameter->u.param_cu_off
14152 = (cu_offset) (sect_off - cu->header.sect_off);
14153 }
14154 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14155 {
14156 complaint (_("No DW_FORM_block* DW_AT_location for "
14157 "DW_TAG_call_site child DIE %s [in module %s]"),
14158 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14159 continue;
14160 }
14161 else
14162 {
14163 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14164 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14165 if (parameter->u.dwarf_reg != -1)
14166 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14167 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14168 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14169 &parameter->u.fb_offset))
14170 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14171 else
14172 {
14173 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14174 "for DW_FORM_block* DW_AT_location is supported for "
14175 "DW_TAG_call_site child DIE %s "
14176 "[in module %s]"),
14177 sect_offset_str (child_die->sect_off),
14178 objfile_name (objfile));
14179 continue;
14180 }
14181 }
14182
14183 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14184 if (attr == NULL)
14185 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14186 if (!attr_form_is_block (attr))
14187 {
14188 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14189 "DW_TAG_call_site child DIE %s [in module %s]"),
14190 sect_offset_str (child_die->sect_off),
14191 objfile_name (objfile));
14192 continue;
14193 }
14194 parameter->value = DW_BLOCK (attr)->data;
14195 parameter->value_size = DW_BLOCK (attr)->size;
14196
14197 /* Parameters are not pre-cleared by memset above. */
14198 parameter->data_value = NULL;
14199 parameter->data_value_size = 0;
14200 call_site->parameter_count++;
14201
14202 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14203 if (attr == NULL)
14204 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14205 if (attr)
14206 {
14207 if (!attr_form_is_block (attr))
14208 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14209 "DW_TAG_call_site child DIE %s [in module %s]"),
14210 sect_offset_str (child_die->sect_off),
14211 objfile_name (objfile));
14212 else
14213 {
14214 parameter->data_value = DW_BLOCK (attr)->data;
14215 parameter->data_value_size = DW_BLOCK (attr)->size;
14216 }
14217 }
14218 }
14219 }
14220
14221 /* Helper function for read_variable. If DIE represents a virtual
14222 table, then return the type of the concrete object that is
14223 associated with the virtual table. Otherwise, return NULL. */
14224
14225 static struct type *
14226 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14227 {
14228 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14229 if (attr == NULL)
14230 return NULL;
14231
14232 /* Find the type DIE. */
14233 struct die_info *type_die = NULL;
14234 struct dwarf2_cu *type_cu = cu;
14235
14236 if (attr_form_is_ref (attr))
14237 type_die = follow_die_ref (die, attr, &type_cu);
14238 if (type_die == NULL)
14239 return NULL;
14240
14241 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14242 return NULL;
14243 return die_containing_type (type_die, type_cu);
14244 }
14245
14246 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14247
14248 static void
14249 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14250 {
14251 struct rust_vtable_symbol *storage = NULL;
14252
14253 if (cu->language == language_rust)
14254 {
14255 struct type *containing_type = rust_containing_type (die, cu);
14256
14257 if (containing_type != NULL)
14258 {
14259 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14260
14261 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14262 struct rust_vtable_symbol);
14263 initialize_objfile_symbol (storage);
14264 storage->concrete_type = containing_type;
14265 storage->subclass = SYMBOL_RUST_VTABLE;
14266 }
14267 }
14268
14269 struct symbol *res = new_symbol (die, NULL, cu, storage);
14270 struct attribute *abstract_origin
14271 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14272 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14273 if (res == NULL && loc && abstract_origin)
14274 {
14275 /* We have a variable without a name, but with a location and an abstract
14276 origin. This may be a concrete instance of an abstract variable
14277 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14278 later. */
14279 struct dwarf2_cu *origin_cu = cu;
14280 struct die_info *origin_die
14281 = follow_die_ref (die, abstract_origin, &origin_cu);
14282 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14283 dpo->abstract_to_concrete[origin_die].push_back (die);
14284 }
14285 }
14286
14287 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14288 reading .debug_rnglists.
14289 Callback's type should be:
14290 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14291 Return true if the attributes are present and valid, otherwise,
14292 return false. */
14293
14294 template <typename Callback>
14295 static bool
14296 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14297 Callback &&callback)
14298 {
14299 struct dwarf2_per_objfile *dwarf2_per_objfile
14300 = cu->per_cu->dwarf2_per_objfile;
14301 struct objfile *objfile = dwarf2_per_objfile->objfile;
14302 bfd *obfd = objfile->obfd;
14303 /* Base address selection entry. */
14304 CORE_ADDR base;
14305 int found_base;
14306 const gdb_byte *buffer;
14307 CORE_ADDR baseaddr;
14308 bool overflow = false;
14309
14310 found_base = cu->base_known;
14311 base = cu->base_address;
14312
14313 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14314 if (offset >= dwarf2_per_objfile->rnglists.size)
14315 {
14316 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14317 offset);
14318 return false;
14319 }
14320 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14321
14322 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14323
14324 while (1)
14325 {
14326 /* Initialize it due to a false compiler warning. */
14327 CORE_ADDR range_beginning = 0, range_end = 0;
14328 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14329 + dwarf2_per_objfile->rnglists.size);
14330 unsigned int bytes_read;
14331
14332 if (buffer == buf_end)
14333 {
14334 overflow = true;
14335 break;
14336 }
14337 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14338 switch (rlet)
14339 {
14340 case DW_RLE_end_of_list:
14341 break;
14342 case DW_RLE_base_address:
14343 if (buffer + cu->header.addr_size > buf_end)
14344 {
14345 overflow = true;
14346 break;
14347 }
14348 base = read_address (obfd, buffer, cu, &bytes_read);
14349 found_base = 1;
14350 buffer += bytes_read;
14351 break;
14352 case DW_RLE_start_length:
14353 if (buffer + cu->header.addr_size > buf_end)
14354 {
14355 overflow = true;
14356 break;
14357 }
14358 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14359 buffer += bytes_read;
14360 range_end = (range_beginning
14361 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14362 buffer += bytes_read;
14363 if (buffer > buf_end)
14364 {
14365 overflow = true;
14366 break;
14367 }
14368 break;
14369 case DW_RLE_offset_pair:
14370 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14371 buffer += bytes_read;
14372 if (buffer > buf_end)
14373 {
14374 overflow = true;
14375 break;
14376 }
14377 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14378 buffer += bytes_read;
14379 if (buffer > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 break;
14385 case DW_RLE_start_end:
14386 if (buffer + 2 * cu->header.addr_size > buf_end)
14387 {
14388 overflow = true;
14389 break;
14390 }
14391 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14392 buffer += bytes_read;
14393 range_end = read_address (obfd, buffer, cu, &bytes_read);
14394 buffer += bytes_read;
14395 break;
14396 default:
14397 complaint (_("Invalid .debug_rnglists data (no base address)"));
14398 return false;
14399 }
14400 if (rlet == DW_RLE_end_of_list || overflow)
14401 break;
14402 if (rlet == DW_RLE_base_address)
14403 continue;
14404
14405 if (!found_base)
14406 {
14407 /* We have no valid base address for the ranges
14408 data. */
14409 complaint (_("Invalid .debug_rnglists data (no base address)"));
14410 return false;
14411 }
14412
14413 if (range_beginning > range_end)
14414 {
14415 /* Inverted range entries are invalid. */
14416 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14417 return false;
14418 }
14419
14420 /* Empty range entries have no effect. */
14421 if (range_beginning == range_end)
14422 continue;
14423
14424 range_beginning += base;
14425 range_end += base;
14426
14427 /* A not-uncommon case of bad debug info.
14428 Don't pollute the addrmap with bad data. */
14429 if (range_beginning + baseaddr == 0
14430 && !dwarf2_per_objfile->has_section_at_zero)
14431 {
14432 complaint (_(".debug_rnglists entry has start address of zero"
14433 " [in module %s]"), objfile_name (objfile));
14434 continue;
14435 }
14436
14437 callback (range_beginning, range_end);
14438 }
14439
14440 if (overflow)
14441 {
14442 complaint (_("Offset %d is not terminated "
14443 "for DW_AT_ranges attribute"),
14444 offset);
14445 return false;
14446 }
14447
14448 return true;
14449 }
14450
14451 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14452 Callback's type should be:
14453 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14454 Return 1 if the attributes are present and valid, otherwise, return 0. */
14455
14456 template <typename Callback>
14457 static int
14458 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14459 Callback &&callback)
14460 {
14461 struct dwarf2_per_objfile *dwarf2_per_objfile
14462 = cu->per_cu->dwarf2_per_objfile;
14463 struct objfile *objfile = dwarf2_per_objfile->objfile;
14464 struct comp_unit_head *cu_header = &cu->header;
14465 bfd *obfd = objfile->obfd;
14466 unsigned int addr_size = cu_header->addr_size;
14467 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14468 /* Base address selection entry. */
14469 CORE_ADDR base;
14470 int found_base;
14471 unsigned int dummy;
14472 const gdb_byte *buffer;
14473 CORE_ADDR baseaddr;
14474
14475 if (cu_header->version >= 5)
14476 return dwarf2_rnglists_process (offset, cu, callback);
14477
14478 found_base = cu->base_known;
14479 base = cu->base_address;
14480
14481 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14482 if (offset >= dwarf2_per_objfile->ranges.size)
14483 {
14484 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14485 offset);
14486 return 0;
14487 }
14488 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14489
14490 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14491
14492 while (1)
14493 {
14494 CORE_ADDR range_beginning, range_end;
14495
14496 range_beginning = read_address (obfd, buffer, cu, &dummy);
14497 buffer += addr_size;
14498 range_end = read_address (obfd, buffer, cu, &dummy);
14499 buffer += addr_size;
14500 offset += 2 * addr_size;
14501
14502 /* An end of list marker is a pair of zero addresses. */
14503 if (range_beginning == 0 && range_end == 0)
14504 /* Found the end of list entry. */
14505 break;
14506
14507 /* Each base address selection entry is a pair of 2 values.
14508 The first is the largest possible address, the second is
14509 the base address. Check for a base address here. */
14510 if ((range_beginning & mask) == mask)
14511 {
14512 /* If we found the largest possible address, then we already
14513 have the base address in range_end. */
14514 base = range_end;
14515 found_base = 1;
14516 continue;
14517 }
14518
14519 if (!found_base)
14520 {
14521 /* We have no valid base address for the ranges
14522 data. */
14523 complaint (_("Invalid .debug_ranges data (no base address)"));
14524 return 0;
14525 }
14526
14527 if (range_beginning > range_end)
14528 {
14529 /* Inverted range entries are invalid. */
14530 complaint (_("Invalid .debug_ranges data (inverted range)"));
14531 return 0;
14532 }
14533
14534 /* Empty range entries have no effect. */
14535 if (range_beginning == range_end)
14536 continue;
14537
14538 range_beginning += base;
14539 range_end += base;
14540
14541 /* A not-uncommon case of bad debug info.
14542 Don't pollute the addrmap with bad data. */
14543 if (range_beginning + baseaddr == 0
14544 && !dwarf2_per_objfile->has_section_at_zero)
14545 {
14546 complaint (_(".debug_ranges entry has start address of zero"
14547 " [in module %s]"), objfile_name (objfile));
14548 continue;
14549 }
14550
14551 callback (range_beginning, range_end);
14552 }
14553
14554 return 1;
14555 }
14556
14557 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14558 Return 1 if the attributes are present and valid, otherwise, return 0.
14559 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14560
14561 static int
14562 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14563 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14564 struct partial_symtab *ranges_pst)
14565 {
14566 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14567 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14568 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14569 SECT_OFF_TEXT (objfile));
14570 int low_set = 0;
14571 CORE_ADDR low = 0;
14572 CORE_ADDR high = 0;
14573 int retval;
14574
14575 retval = dwarf2_ranges_process (offset, cu,
14576 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14577 {
14578 if (ranges_pst != NULL)
14579 {
14580 CORE_ADDR lowpc;
14581 CORE_ADDR highpc;
14582
14583 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14584 range_beginning + baseaddr)
14585 - baseaddr);
14586 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14587 range_end + baseaddr)
14588 - baseaddr);
14589 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14590 lowpc, highpc - 1, ranges_pst);
14591 }
14592
14593 /* FIXME: This is recording everything as a low-high
14594 segment of consecutive addresses. We should have a
14595 data structure for discontiguous block ranges
14596 instead. */
14597 if (! low_set)
14598 {
14599 low = range_beginning;
14600 high = range_end;
14601 low_set = 1;
14602 }
14603 else
14604 {
14605 if (range_beginning < low)
14606 low = range_beginning;
14607 if (range_end > high)
14608 high = range_end;
14609 }
14610 });
14611 if (!retval)
14612 return 0;
14613
14614 if (! low_set)
14615 /* If the first entry is an end-of-list marker, the range
14616 describes an empty scope, i.e. no instructions. */
14617 return 0;
14618
14619 if (low_return)
14620 *low_return = low;
14621 if (high_return)
14622 *high_return = high;
14623 return 1;
14624 }
14625
14626 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14627 definition for the return value. *LOWPC and *HIGHPC are set iff
14628 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14629
14630 static enum pc_bounds_kind
14631 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14632 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14633 struct partial_symtab *pst)
14634 {
14635 struct dwarf2_per_objfile *dwarf2_per_objfile
14636 = cu->per_cu->dwarf2_per_objfile;
14637 struct attribute *attr;
14638 struct attribute *attr_high;
14639 CORE_ADDR low = 0;
14640 CORE_ADDR high = 0;
14641 enum pc_bounds_kind ret;
14642
14643 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14644 if (attr_high)
14645 {
14646 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14647 if (attr)
14648 {
14649 low = attr_value_as_address (attr);
14650 high = attr_value_as_address (attr_high);
14651 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14652 high += low;
14653 }
14654 else
14655 /* Found high w/o low attribute. */
14656 return PC_BOUNDS_INVALID;
14657
14658 /* Found consecutive range of addresses. */
14659 ret = PC_BOUNDS_HIGH_LOW;
14660 }
14661 else
14662 {
14663 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14664 if (attr != NULL)
14665 {
14666 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14667 We take advantage of the fact that DW_AT_ranges does not appear
14668 in DW_TAG_compile_unit of DWO files. */
14669 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14670 unsigned int ranges_offset = (DW_UNSND (attr)
14671 + (need_ranges_base
14672 ? cu->ranges_base
14673 : 0));
14674
14675 /* Value of the DW_AT_ranges attribute is the offset in the
14676 .debug_ranges section. */
14677 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14678 return PC_BOUNDS_INVALID;
14679 /* Found discontinuous range of addresses. */
14680 ret = PC_BOUNDS_RANGES;
14681 }
14682 else
14683 return PC_BOUNDS_NOT_PRESENT;
14684 }
14685
14686 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14687 if (high <= low)
14688 return PC_BOUNDS_INVALID;
14689
14690 /* When using the GNU linker, .gnu.linkonce. sections are used to
14691 eliminate duplicate copies of functions and vtables and such.
14692 The linker will arbitrarily choose one and discard the others.
14693 The AT_*_pc values for such functions refer to local labels in
14694 these sections. If the section from that file was discarded, the
14695 labels are not in the output, so the relocs get a value of 0.
14696 If this is a discarded function, mark the pc bounds as invalid,
14697 so that GDB will ignore it. */
14698 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14699 return PC_BOUNDS_INVALID;
14700
14701 *lowpc = low;
14702 if (highpc)
14703 *highpc = high;
14704 return ret;
14705 }
14706
14707 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14708 its low and high PC addresses. Do nothing if these addresses could not
14709 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14710 and HIGHPC to the high address if greater than HIGHPC. */
14711
14712 static void
14713 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14714 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14715 struct dwarf2_cu *cu)
14716 {
14717 CORE_ADDR low, high;
14718 struct die_info *child = die->child;
14719
14720 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14721 {
14722 *lowpc = std::min (*lowpc, low);
14723 *highpc = std::max (*highpc, high);
14724 }
14725
14726 /* If the language does not allow nested subprograms (either inside
14727 subprograms or lexical blocks), we're done. */
14728 if (cu->language != language_ada)
14729 return;
14730
14731 /* Check all the children of the given DIE. If it contains nested
14732 subprograms, then check their pc bounds. Likewise, we need to
14733 check lexical blocks as well, as they may also contain subprogram
14734 definitions. */
14735 while (child && child->tag)
14736 {
14737 if (child->tag == DW_TAG_subprogram
14738 || child->tag == DW_TAG_lexical_block)
14739 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14740 child = sibling_die (child);
14741 }
14742 }
14743
14744 /* Get the low and high pc's represented by the scope DIE, and store
14745 them in *LOWPC and *HIGHPC. If the correct values can't be
14746 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14747
14748 static void
14749 get_scope_pc_bounds (struct die_info *die,
14750 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14751 struct dwarf2_cu *cu)
14752 {
14753 CORE_ADDR best_low = (CORE_ADDR) -1;
14754 CORE_ADDR best_high = (CORE_ADDR) 0;
14755 CORE_ADDR current_low, current_high;
14756
14757 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14758 >= PC_BOUNDS_RANGES)
14759 {
14760 best_low = current_low;
14761 best_high = current_high;
14762 }
14763 else
14764 {
14765 struct die_info *child = die->child;
14766
14767 while (child && child->tag)
14768 {
14769 switch (child->tag) {
14770 case DW_TAG_subprogram:
14771 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14772 break;
14773 case DW_TAG_namespace:
14774 case DW_TAG_module:
14775 /* FIXME: carlton/2004-01-16: Should we do this for
14776 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14777 that current GCC's always emit the DIEs corresponding
14778 to definitions of methods of classes as children of a
14779 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14780 the DIEs giving the declarations, which could be
14781 anywhere). But I don't see any reason why the
14782 standards says that they have to be there. */
14783 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14784
14785 if (current_low != ((CORE_ADDR) -1))
14786 {
14787 best_low = std::min (best_low, current_low);
14788 best_high = std::max (best_high, current_high);
14789 }
14790 break;
14791 default:
14792 /* Ignore. */
14793 break;
14794 }
14795
14796 child = sibling_die (child);
14797 }
14798 }
14799
14800 *lowpc = best_low;
14801 *highpc = best_high;
14802 }
14803
14804 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14805 in DIE. */
14806
14807 static void
14808 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14809 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14810 {
14811 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14813 struct attribute *attr;
14814 struct attribute *attr_high;
14815
14816 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14817 if (attr_high)
14818 {
14819 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14820 if (attr)
14821 {
14822 CORE_ADDR low = attr_value_as_address (attr);
14823 CORE_ADDR high = attr_value_as_address (attr_high);
14824
14825 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14826 high += low;
14827
14828 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14829 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14830 cu->builder->record_block_range (block, low, high - 1);
14831 }
14832 }
14833
14834 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14835 if (attr)
14836 {
14837 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14838 We take advantage of the fact that DW_AT_ranges does not appear
14839 in DW_TAG_compile_unit of DWO files. */
14840 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14841
14842 /* The value of the DW_AT_ranges attribute is the offset of the
14843 address range list in the .debug_ranges section. */
14844 unsigned long offset = (DW_UNSND (attr)
14845 + (need_ranges_base ? cu->ranges_base : 0));
14846
14847 std::vector<blockrange> blockvec;
14848 dwarf2_ranges_process (offset, cu,
14849 [&] (CORE_ADDR start, CORE_ADDR end)
14850 {
14851 start += baseaddr;
14852 end += baseaddr;
14853 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14854 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14855 cu->builder->record_block_range (block, start, end - 1);
14856 blockvec.emplace_back (start, end);
14857 });
14858
14859 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14860 }
14861 }
14862
14863 /* Check whether the producer field indicates either of GCC < 4.6, or the
14864 Intel C/C++ compiler, and cache the result in CU. */
14865
14866 static void
14867 check_producer (struct dwarf2_cu *cu)
14868 {
14869 int major, minor;
14870
14871 if (cu->producer == NULL)
14872 {
14873 /* For unknown compilers expect their behavior is DWARF version
14874 compliant.
14875
14876 GCC started to support .debug_types sections by -gdwarf-4 since
14877 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14878 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14879 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14880 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14881 }
14882 else if (producer_is_gcc (cu->producer, &major, &minor))
14883 {
14884 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14885 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14886 }
14887 else if (producer_is_icc (cu->producer, &major, &minor))
14888 {
14889 cu->producer_is_icc = true;
14890 cu->producer_is_icc_lt_14 = major < 14;
14891 }
14892 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14893 cu->producer_is_codewarrior = true;
14894 else
14895 {
14896 /* For other non-GCC compilers, expect their behavior is DWARF version
14897 compliant. */
14898 }
14899
14900 cu->checked_producer = true;
14901 }
14902
14903 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14904 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14905 during 4.6.0 experimental. */
14906
14907 static bool
14908 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14909 {
14910 if (!cu->checked_producer)
14911 check_producer (cu);
14912
14913 return cu->producer_is_gxx_lt_4_6;
14914 }
14915
14916
14917 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14918 with incorrect is_stmt attributes. */
14919
14920 static bool
14921 producer_is_codewarrior (struct dwarf2_cu *cu)
14922 {
14923 if (!cu->checked_producer)
14924 check_producer (cu);
14925
14926 return cu->producer_is_codewarrior;
14927 }
14928
14929 /* Return the default accessibility type if it is not overriden by
14930 DW_AT_accessibility. */
14931
14932 static enum dwarf_access_attribute
14933 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14934 {
14935 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14936 {
14937 /* The default DWARF 2 accessibility for members is public, the default
14938 accessibility for inheritance is private. */
14939
14940 if (die->tag != DW_TAG_inheritance)
14941 return DW_ACCESS_public;
14942 else
14943 return DW_ACCESS_private;
14944 }
14945 else
14946 {
14947 /* DWARF 3+ defines the default accessibility a different way. The same
14948 rules apply now for DW_TAG_inheritance as for the members and it only
14949 depends on the container kind. */
14950
14951 if (die->parent->tag == DW_TAG_class_type)
14952 return DW_ACCESS_private;
14953 else
14954 return DW_ACCESS_public;
14955 }
14956 }
14957
14958 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14959 offset. If the attribute was not found return 0, otherwise return
14960 1. If it was found but could not properly be handled, set *OFFSET
14961 to 0. */
14962
14963 static int
14964 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14965 LONGEST *offset)
14966 {
14967 struct attribute *attr;
14968
14969 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14970 if (attr != NULL)
14971 {
14972 *offset = 0;
14973
14974 /* Note that we do not check for a section offset first here.
14975 This is because DW_AT_data_member_location is new in DWARF 4,
14976 so if we see it, we can assume that a constant form is really
14977 a constant and not a section offset. */
14978 if (attr_form_is_constant (attr))
14979 *offset = dwarf2_get_attr_constant_value (attr, 0);
14980 else if (attr_form_is_section_offset (attr))
14981 dwarf2_complex_location_expr_complaint ();
14982 else if (attr_form_is_block (attr))
14983 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14984 else
14985 dwarf2_complex_location_expr_complaint ();
14986
14987 return 1;
14988 }
14989
14990 return 0;
14991 }
14992
14993 /* Add an aggregate field to the field list. */
14994
14995 static void
14996 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14997 struct dwarf2_cu *cu)
14998 {
14999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15000 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15001 struct nextfield *new_field;
15002 struct attribute *attr;
15003 struct field *fp;
15004 const char *fieldname = "";
15005
15006 if (die->tag == DW_TAG_inheritance)
15007 {
15008 fip->baseclasses.emplace_back ();
15009 new_field = &fip->baseclasses.back ();
15010 }
15011 else
15012 {
15013 fip->fields.emplace_back ();
15014 new_field = &fip->fields.back ();
15015 }
15016
15017 fip->nfields++;
15018
15019 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15020 if (attr)
15021 new_field->accessibility = DW_UNSND (attr);
15022 else
15023 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15024 if (new_field->accessibility != DW_ACCESS_public)
15025 fip->non_public_fields = 1;
15026
15027 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15028 if (attr)
15029 new_field->virtuality = DW_UNSND (attr);
15030 else
15031 new_field->virtuality = DW_VIRTUALITY_none;
15032
15033 fp = &new_field->field;
15034
15035 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15036 {
15037 LONGEST offset;
15038
15039 /* Data member other than a C++ static data member. */
15040
15041 /* Get type of field. */
15042 fp->type = die_type (die, cu);
15043
15044 SET_FIELD_BITPOS (*fp, 0);
15045
15046 /* Get bit size of field (zero if none). */
15047 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15048 if (attr)
15049 {
15050 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15051 }
15052 else
15053 {
15054 FIELD_BITSIZE (*fp) = 0;
15055 }
15056
15057 /* Get bit offset of field. */
15058 if (handle_data_member_location (die, cu, &offset))
15059 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15060 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15061 if (attr)
15062 {
15063 if (gdbarch_bits_big_endian (gdbarch))
15064 {
15065 /* For big endian bits, the DW_AT_bit_offset gives the
15066 additional bit offset from the MSB of the containing
15067 anonymous object to the MSB of the field. We don't
15068 have to do anything special since we don't need to
15069 know the size of the anonymous object. */
15070 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15071 }
15072 else
15073 {
15074 /* For little endian bits, compute the bit offset to the
15075 MSB of the anonymous object, subtract off the number of
15076 bits from the MSB of the field to the MSB of the
15077 object, and then subtract off the number of bits of
15078 the field itself. The result is the bit offset of
15079 the LSB of the field. */
15080 int anonymous_size;
15081 int bit_offset = DW_UNSND (attr);
15082
15083 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15084 if (attr)
15085 {
15086 /* The size of the anonymous object containing
15087 the bit field is explicit, so use the
15088 indicated size (in bytes). */
15089 anonymous_size = DW_UNSND (attr);
15090 }
15091 else
15092 {
15093 /* The size of the anonymous object containing
15094 the bit field must be inferred from the type
15095 attribute of the data member containing the
15096 bit field. */
15097 anonymous_size = TYPE_LENGTH (fp->type);
15098 }
15099 SET_FIELD_BITPOS (*fp,
15100 (FIELD_BITPOS (*fp)
15101 + anonymous_size * bits_per_byte
15102 - bit_offset - FIELD_BITSIZE (*fp)));
15103 }
15104 }
15105 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15106 if (attr != NULL)
15107 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15108 + dwarf2_get_attr_constant_value (attr, 0)));
15109
15110 /* Get name of field. */
15111 fieldname = dwarf2_name (die, cu);
15112 if (fieldname == NULL)
15113 fieldname = "";
15114
15115 /* The name is already allocated along with this objfile, so we don't
15116 need to duplicate it for the type. */
15117 fp->name = fieldname;
15118
15119 /* Change accessibility for artificial fields (e.g. virtual table
15120 pointer or virtual base class pointer) to private. */
15121 if (dwarf2_attr (die, DW_AT_artificial, cu))
15122 {
15123 FIELD_ARTIFICIAL (*fp) = 1;
15124 new_field->accessibility = DW_ACCESS_private;
15125 fip->non_public_fields = 1;
15126 }
15127 }
15128 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15129 {
15130 /* C++ static member. */
15131
15132 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15133 is a declaration, but all versions of G++ as of this writing
15134 (so through at least 3.2.1) incorrectly generate
15135 DW_TAG_variable tags. */
15136
15137 const char *physname;
15138
15139 /* Get name of field. */
15140 fieldname = dwarf2_name (die, cu);
15141 if (fieldname == NULL)
15142 return;
15143
15144 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15145 if (attr
15146 /* Only create a symbol if this is an external value.
15147 new_symbol checks this and puts the value in the global symbol
15148 table, which we want. If it is not external, new_symbol
15149 will try to put the value in cu->list_in_scope which is wrong. */
15150 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15151 {
15152 /* A static const member, not much different than an enum as far as
15153 we're concerned, except that we can support more types. */
15154 new_symbol (die, NULL, cu);
15155 }
15156
15157 /* Get physical name. */
15158 physname = dwarf2_physname (fieldname, die, cu);
15159
15160 /* The name is already allocated along with this objfile, so we don't
15161 need to duplicate it for the type. */
15162 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15163 FIELD_TYPE (*fp) = die_type (die, cu);
15164 FIELD_NAME (*fp) = fieldname;
15165 }
15166 else if (die->tag == DW_TAG_inheritance)
15167 {
15168 LONGEST offset;
15169
15170 /* C++ base class field. */
15171 if (handle_data_member_location (die, cu, &offset))
15172 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15173 FIELD_BITSIZE (*fp) = 0;
15174 FIELD_TYPE (*fp) = die_type (die, cu);
15175 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15176 }
15177 else if (die->tag == DW_TAG_variant_part)
15178 {
15179 /* process_structure_scope will treat this DIE as a union. */
15180 process_structure_scope (die, cu);
15181
15182 /* The variant part is relative to the start of the enclosing
15183 structure. */
15184 SET_FIELD_BITPOS (*fp, 0);
15185 fp->type = get_die_type (die, cu);
15186 fp->artificial = 1;
15187 fp->name = "<<variant>>";
15188
15189 /* Normally a DW_TAG_variant_part won't have a size, but our
15190 representation requires one, so set it to the maximum of the
15191 child sizes. */
15192 if (TYPE_LENGTH (fp->type) == 0)
15193 {
15194 unsigned max = 0;
15195 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15196 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15197 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15198 TYPE_LENGTH (fp->type) = max;
15199 }
15200 }
15201 else
15202 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15203 }
15204
15205 /* Can the type given by DIE define another type? */
15206
15207 static bool
15208 type_can_define_types (const struct die_info *die)
15209 {
15210 switch (die->tag)
15211 {
15212 case DW_TAG_typedef:
15213 case DW_TAG_class_type:
15214 case DW_TAG_structure_type:
15215 case DW_TAG_union_type:
15216 case DW_TAG_enumeration_type:
15217 return true;
15218
15219 default:
15220 return false;
15221 }
15222 }
15223
15224 /* Add a type definition defined in the scope of the FIP's class. */
15225
15226 static void
15227 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15228 struct dwarf2_cu *cu)
15229 {
15230 struct decl_field fp;
15231 memset (&fp, 0, sizeof (fp));
15232
15233 gdb_assert (type_can_define_types (die));
15234
15235 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15236 fp.name = dwarf2_name (die, cu);
15237 fp.type = read_type_die (die, cu);
15238
15239 /* Save accessibility. */
15240 enum dwarf_access_attribute accessibility;
15241 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15242 if (attr != NULL)
15243 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15244 else
15245 accessibility = dwarf2_default_access_attribute (die, cu);
15246 switch (accessibility)
15247 {
15248 case DW_ACCESS_public:
15249 /* The assumed value if neither private nor protected. */
15250 break;
15251 case DW_ACCESS_private:
15252 fp.is_private = 1;
15253 break;
15254 case DW_ACCESS_protected:
15255 fp.is_protected = 1;
15256 break;
15257 default:
15258 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15259 }
15260
15261 if (die->tag == DW_TAG_typedef)
15262 fip->typedef_field_list.push_back (fp);
15263 else
15264 fip->nested_types_list.push_back (fp);
15265 }
15266
15267 /* Create the vector of fields, and attach it to the type. */
15268
15269 static void
15270 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15271 struct dwarf2_cu *cu)
15272 {
15273 int nfields = fip->nfields;
15274
15275 /* Record the field count, allocate space for the array of fields,
15276 and create blank accessibility bitfields if necessary. */
15277 TYPE_NFIELDS (type) = nfields;
15278 TYPE_FIELDS (type) = (struct field *)
15279 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15280
15281 if (fip->non_public_fields && cu->language != language_ada)
15282 {
15283 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15284
15285 TYPE_FIELD_PRIVATE_BITS (type) =
15286 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15287 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15288
15289 TYPE_FIELD_PROTECTED_BITS (type) =
15290 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15291 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15292
15293 TYPE_FIELD_IGNORE_BITS (type) =
15294 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15295 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15296 }
15297
15298 /* If the type has baseclasses, allocate and clear a bit vector for
15299 TYPE_FIELD_VIRTUAL_BITS. */
15300 if (!fip->baseclasses.empty () && cu->language != language_ada)
15301 {
15302 int num_bytes = B_BYTES (fip->baseclasses.size ());
15303 unsigned char *pointer;
15304
15305 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15306 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15307 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15308 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15309 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15310 }
15311
15312 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15313 {
15314 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15315
15316 for (int index = 0; index < nfields; ++index)
15317 {
15318 struct nextfield &field = fip->fields[index];
15319
15320 if (field.variant.is_discriminant)
15321 di->discriminant_index = index;
15322 else if (field.variant.default_branch)
15323 di->default_index = index;
15324 else
15325 di->discriminants[index] = field.variant.discriminant_value;
15326 }
15327 }
15328
15329 /* Copy the saved-up fields into the field vector. */
15330 for (int i = 0; i < nfields; ++i)
15331 {
15332 struct nextfield &field
15333 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15334 : fip->fields[i - fip->baseclasses.size ()]);
15335
15336 TYPE_FIELD (type, i) = field.field;
15337 switch (field.accessibility)
15338 {
15339 case DW_ACCESS_private:
15340 if (cu->language != language_ada)
15341 SET_TYPE_FIELD_PRIVATE (type, i);
15342 break;
15343
15344 case DW_ACCESS_protected:
15345 if (cu->language != language_ada)
15346 SET_TYPE_FIELD_PROTECTED (type, i);
15347 break;
15348
15349 case DW_ACCESS_public:
15350 break;
15351
15352 default:
15353 /* Unknown accessibility. Complain and treat it as public. */
15354 {
15355 complaint (_("unsupported accessibility %d"),
15356 field.accessibility);
15357 }
15358 break;
15359 }
15360 if (i < fip->baseclasses.size ())
15361 {
15362 switch (field.virtuality)
15363 {
15364 case DW_VIRTUALITY_virtual:
15365 case DW_VIRTUALITY_pure_virtual:
15366 if (cu->language == language_ada)
15367 error (_("unexpected virtuality in component of Ada type"));
15368 SET_TYPE_FIELD_VIRTUAL (type, i);
15369 break;
15370 }
15371 }
15372 }
15373 }
15374
15375 /* Return true if this member function is a constructor, false
15376 otherwise. */
15377
15378 static int
15379 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15380 {
15381 const char *fieldname;
15382 const char *type_name;
15383 int len;
15384
15385 if (die->parent == NULL)
15386 return 0;
15387
15388 if (die->parent->tag != DW_TAG_structure_type
15389 && die->parent->tag != DW_TAG_union_type
15390 && die->parent->tag != DW_TAG_class_type)
15391 return 0;
15392
15393 fieldname = dwarf2_name (die, cu);
15394 type_name = dwarf2_name (die->parent, cu);
15395 if (fieldname == NULL || type_name == NULL)
15396 return 0;
15397
15398 len = strlen (fieldname);
15399 return (strncmp (fieldname, type_name, len) == 0
15400 && (type_name[len] == '\0' || type_name[len] == '<'));
15401 }
15402
15403 /* Add a member function to the proper fieldlist. */
15404
15405 static void
15406 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15407 struct type *type, struct dwarf2_cu *cu)
15408 {
15409 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15410 struct attribute *attr;
15411 int i;
15412 struct fnfieldlist *flp = nullptr;
15413 struct fn_field *fnp;
15414 const char *fieldname;
15415 struct type *this_type;
15416 enum dwarf_access_attribute accessibility;
15417
15418 if (cu->language == language_ada)
15419 error (_("unexpected member function in Ada type"));
15420
15421 /* Get name of member function. */
15422 fieldname = dwarf2_name (die, cu);
15423 if (fieldname == NULL)
15424 return;
15425
15426 /* Look up member function name in fieldlist. */
15427 for (i = 0; i < fip->fnfieldlists.size (); i++)
15428 {
15429 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15430 {
15431 flp = &fip->fnfieldlists[i];
15432 break;
15433 }
15434 }
15435
15436 /* Create a new fnfieldlist if necessary. */
15437 if (flp == nullptr)
15438 {
15439 fip->fnfieldlists.emplace_back ();
15440 flp = &fip->fnfieldlists.back ();
15441 flp->name = fieldname;
15442 i = fip->fnfieldlists.size () - 1;
15443 }
15444
15445 /* Create a new member function field and add it to the vector of
15446 fnfieldlists. */
15447 flp->fnfields.emplace_back ();
15448 fnp = &flp->fnfields.back ();
15449
15450 /* Delay processing of the physname until later. */
15451 if (cu->language == language_cplus)
15452 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15453 die, cu);
15454 else
15455 {
15456 const char *physname = dwarf2_physname (fieldname, die, cu);
15457 fnp->physname = physname ? physname : "";
15458 }
15459
15460 fnp->type = alloc_type (objfile);
15461 this_type = read_type_die (die, cu);
15462 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15463 {
15464 int nparams = TYPE_NFIELDS (this_type);
15465
15466 /* TYPE is the domain of this method, and THIS_TYPE is the type
15467 of the method itself (TYPE_CODE_METHOD). */
15468 smash_to_method_type (fnp->type, type,
15469 TYPE_TARGET_TYPE (this_type),
15470 TYPE_FIELDS (this_type),
15471 TYPE_NFIELDS (this_type),
15472 TYPE_VARARGS (this_type));
15473
15474 /* Handle static member functions.
15475 Dwarf2 has no clean way to discern C++ static and non-static
15476 member functions. G++ helps GDB by marking the first
15477 parameter for non-static member functions (which is the this
15478 pointer) as artificial. We obtain this information from
15479 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15480 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15481 fnp->voffset = VOFFSET_STATIC;
15482 }
15483 else
15484 complaint (_("member function type missing for '%s'"),
15485 dwarf2_full_name (fieldname, die, cu));
15486
15487 /* Get fcontext from DW_AT_containing_type if present. */
15488 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15489 fnp->fcontext = die_containing_type (die, cu);
15490
15491 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15492 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15493
15494 /* Get accessibility. */
15495 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15496 if (attr)
15497 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15498 else
15499 accessibility = dwarf2_default_access_attribute (die, cu);
15500 switch (accessibility)
15501 {
15502 case DW_ACCESS_private:
15503 fnp->is_private = 1;
15504 break;
15505 case DW_ACCESS_protected:
15506 fnp->is_protected = 1;
15507 break;
15508 }
15509
15510 /* Check for artificial methods. */
15511 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15512 if (attr && DW_UNSND (attr) != 0)
15513 fnp->is_artificial = 1;
15514
15515 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15516
15517 /* Get index in virtual function table if it is a virtual member
15518 function. For older versions of GCC, this is an offset in the
15519 appropriate virtual table, as specified by DW_AT_containing_type.
15520 For everyone else, it is an expression to be evaluated relative
15521 to the object address. */
15522
15523 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15524 if (attr)
15525 {
15526 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15527 {
15528 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15529 {
15530 /* Old-style GCC. */
15531 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15532 }
15533 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15534 || (DW_BLOCK (attr)->size > 1
15535 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15536 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15537 {
15538 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15539 if ((fnp->voffset % cu->header.addr_size) != 0)
15540 dwarf2_complex_location_expr_complaint ();
15541 else
15542 fnp->voffset /= cu->header.addr_size;
15543 fnp->voffset += 2;
15544 }
15545 else
15546 dwarf2_complex_location_expr_complaint ();
15547
15548 if (!fnp->fcontext)
15549 {
15550 /* If there is no `this' field and no DW_AT_containing_type,
15551 we cannot actually find a base class context for the
15552 vtable! */
15553 if (TYPE_NFIELDS (this_type) == 0
15554 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15555 {
15556 complaint (_("cannot determine context for virtual member "
15557 "function \"%s\" (offset %s)"),
15558 fieldname, sect_offset_str (die->sect_off));
15559 }
15560 else
15561 {
15562 fnp->fcontext
15563 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15564 }
15565 }
15566 }
15567 else if (attr_form_is_section_offset (attr))
15568 {
15569 dwarf2_complex_location_expr_complaint ();
15570 }
15571 else
15572 {
15573 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15574 fieldname);
15575 }
15576 }
15577 else
15578 {
15579 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15580 if (attr && DW_UNSND (attr))
15581 {
15582 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15583 complaint (_("Member function \"%s\" (offset %s) is virtual "
15584 "but the vtable offset is not specified"),
15585 fieldname, sect_offset_str (die->sect_off));
15586 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15587 TYPE_CPLUS_DYNAMIC (type) = 1;
15588 }
15589 }
15590 }
15591
15592 /* Create the vector of member function fields, and attach it to the type. */
15593
15594 static void
15595 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15596 struct dwarf2_cu *cu)
15597 {
15598 if (cu->language == language_ada)
15599 error (_("unexpected member functions in Ada type"));
15600
15601 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15602 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15603 TYPE_ALLOC (type,
15604 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15605
15606 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15607 {
15608 struct fnfieldlist &nf = fip->fnfieldlists[i];
15609 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15610
15611 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15612 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15613 fn_flp->fn_fields = (struct fn_field *)
15614 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15615
15616 for (int k = 0; k < nf.fnfields.size (); ++k)
15617 fn_flp->fn_fields[k] = nf.fnfields[k];
15618 }
15619
15620 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15621 }
15622
15623 /* Returns non-zero if NAME is the name of a vtable member in CU's
15624 language, zero otherwise. */
15625 static int
15626 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15627 {
15628 static const char vptr[] = "_vptr";
15629
15630 /* Look for the C++ form of the vtable. */
15631 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15632 return 1;
15633
15634 return 0;
15635 }
15636
15637 /* GCC outputs unnamed structures that are really pointers to member
15638 functions, with the ABI-specified layout. If TYPE describes
15639 such a structure, smash it into a member function type.
15640
15641 GCC shouldn't do this; it should just output pointer to member DIEs.
15642 This is GCC PR debug/28767. */
15643
15644 static void
15645 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15646 {
15647 struct type *pfn_type, *self_type, *new_type;
15648
15649 /* Check for a structure with no name and two children. */
15650 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15651 return;
15652
15653 /* Check for __pfn and __delta members. */
15654 if (TYPE_FIELD_NAME (type, 0) == NULL
15655 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15656 || TYPE_FIELD_NAME (type, 1) == NULL
15657 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15658 return;
15659
15660 /* Find the type of the method. */
15661 pfn_type = TYPE_FIELD_TYPE (type, 0);
15662 if (pfn_type == NULL
15663 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15664 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15665 return;
15666
15667 /* Look for the "this" argument. */
15668 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15669 if (TYPE_NFIELDS (pfn_type) == 0
15670 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15671 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15672 return;
15673
15674 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15675 new_type = alloc_type (objfile);
15676 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15677 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15678 TYPE_VARARGS (pfn_type));
15679 smash_to_methodptr_type (type, new_type);
15680 }
15681
15682 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15683 appropriate error checking and issuing complaints if there is a
15684 problem. */
15685
15686 static ULONGEST
15687 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15688 {
15689 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15690
15691 if (attr == nullptr)
15692 return 0;
15693
15694 if (!attr_form_is_constant (attr))
15695 {
15696 complaint (_("DW_AT_alignment must have constant form"
15697 " - DIE at %s [in module %s]"),
15698 sect_offset_str (die->sect_off),
15699 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15700 return 0;
15701 }
15702
15703 ULONGEST align;
15704 if (attr->form == DW_FORM_sdata)
15705 {
15706 LONGEST val = DW_SND (attr);
15707 if (val < 0)
15708 {
15709 complaint (_("DW_AT_alignment value must not be negative"
15710 " - DIE at %s [in module %s]"),
15711 sect_offset_str (die->sect_off),
15712 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15713 return 0;
15714 }
15715 align = val;
15716 }
15717 else
15718 align = DW_UNSND (attr);
15719
15720 if (align == 0)
15721 {
15722 complaint (_("DW_AT_alignment value must not be zero"
15723 " - DIE at %s [in module %s]"),
15724 sect_offset_str (die->sect_off),
15725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15726 return 0;
15727 }
15728 if ((align & (align - 1)) != 0)
15729 {
15730 complaint (_("DW_AT_alignment value must be a power of 2"
15731 " - DIE at %s [in module %s]"),
15732 sect_offset_str (die->sect_off),
15733 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15734 return 0;
15735 }
15736
15737 return align;
15738 }
15739
15740 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15741 the alignment for TYPE. */
15742
15743 static void
15744 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15745 struct type *type)
15746 {
15747 if (!set_type_align (type, get_alignment (cu, die)))
15748 complaint (_("DW_AT_alignment value too large"
15749 " - DIE at %s [in module %s]"),
15750 sect_offset_str (die->sect_off),
15751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15752 }
15753
15754 /* Called when we find the DIE that starts a structure or union scope
15755 (definition) to create a type for the structure or union. Fill in
15756 the type's name and general properties; the members will not be
15757 processed until process_structure_scope. A symbol table entry for
15758 the type will also not be done until process_structure_scope (assuming
15759 the type has a name).
15760
15761 NOTE: we need to call these functions regardless of whether or not the
15762 DIE has a DW_AT_name attribute, since it might be an anonymous
15763 structure or union. This gets the type entered into our set of
15764 user defined types. */
15765
15766 static struct type *
15767 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15768 {
15769 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15770 struct type *type;
15771 struct attribute *attr;
15772 const char *name;
15773
15774 /* If the definition of this type lives in .debug_types, read that type.
15775 Don't follow DW_AT_specification though, that will take us back up
15776 the chain and we want to go down. */
15777 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15778 if (attr)
15779 {
15780 type = get_DW_AT_signature_type (die, attr, cu);
15781
15782 /* The type's CU may not be the same as CU.
15783 Ensure TYPE is recorded with CU in die_type_hash. */
15784 return set_die_type (die, type, cu);
15785 }
15786
15787 type = alloc_type (objfile);
15788 INIT_CPLUS_SPECIFIC (type);
15789
15790 name = dwarf2_name (die, cu);
15791 if (name != NULL)
15792 {
15793 if (cu->language == language_cplus
15794 || cu->language == language_d
15795 || cu->language == language_rust)
15796 {
15797 const char *full_name = dwarf2_full_name (name, die, cu);
15798
15799 /* dwarf2_full_name might have already finished building the DIE's
15800 type. If so, there is no need to continue. */
15801 if (get_die_type (die, cu) != NULL)
15802 return get_die_type (die, cu);
15803
15804 TYPE_NAME (type) = full_name;
15805 }
15806 else
15807 {
15808 /* The name is already allocated along with this objfile, so
15809 we don't need to duplicate it for the type. */
15810 TYPE_NAME (type) = name;
15811 }
15812 }
15813
15814 if (die->tag == DW_TAG_structure_type)
15815 {
15816 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15817 }
15818 else if (die->tag == DW_TAG_union_type)
15819 {
15820 TYPE_CODE (type) = TYPE_CODE_UNION;
15821 }
15822 else if (die->tag == DW_TAG_variant_part)
15823 {
15824 TYPE_CODE (type) = TYPE_CODE_UNION;
15825 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15826 }
15827 else
15828 {
15829 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15830 }
15831
15832 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15833 TYPE_DECLARED_CLASS (type) = 1;
15834
15835 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15836 if (attr)
15837 {
15838 if (attr_form_is_constant (attr))
15839 TYPE_LENGTH (type) = DW_UNSND (attr);
15840 else
15841 {
15842 /* For the moment, dynamic type sizes are not supported
15843 by GDB's struct type. The actual size is determined
15844 on-demand when resolving the type of a given object,
15845 so set the type's length to zero for now. Otherwise,
15846 we record an expression as the length, and that expression
15847 could lead to a very large value, which could eventually
15848 lead to us trying to allocate that much memory when creating
15849 a value of that type. */
15850 TYPE_LENGTH (type) = 0;
15851 }
15852 }
15853 else
15854 {
15855 TYPE_LENGTH (type) = 0;
15856 }
15857
15858 maybe_set_alignment (cu, die, type);
15859
15860 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15861 {
15862 /* ICC<14 does not output the required DW_AT_declaration on
15863 incomplete types, but gives them a size of zero. */
15864 TYPE_STUB (type) = 1;
15865 }
15866 else
15867 TYPE_STUB_SUPPORTED (type) = 1;
15868
15869 if (die_is_declaration (die, cu))
15870 TYPE_STUB (type) = 1;
15871 else if (attr == NULL && die->child == NULL
15872 && producer_is_realview (cu->producer))
15873 /* RealView does not output the required DW_AT_declaration
15874 on incomplete types. */
15875 TYPE_STUB (type) = 1;
15876
15877 /* We need to add the type field to the die immediately so we don't
15878 infinitely recurse when dealing with pointers to the structure
15879 type within the structure itself. */
15880 set_die_type (die, type, cu);
15881
15882 /* set_die_type should be already done. */
15883 set_descriptive_type (type, die, cu);
15884
15885 return type;
15886 }
15887
15888 /* A helper for process_structure_scope that handles a single member
15889 DIE. */
15890
15891 static void
15892 handle_struct_member_die (struct die_info *child_die, struct type *type,
15893 struct field_info *fi,
15894 std::vector<struct symbol *> *template_args,
15895 struct dwarf2_cu *cu)
15896 {
15897 if (child_die->tag == DW_TAG_member
15898 || child_die->tag == DW_TAG_variable
15899 || child_die->tag == DW_TAG_variant_part)
15900 {
15901 /* NOTE: carlton/2002-11-05: A C++ static data member
15902 should be a DW_TAG_member that is a declaration, but
15903 all versions of G++ as of this writing (so through at
15904 least 3.2.1) incorrectly generate DW_TAG_variable
15905 tags for them instead. */
15906 dwarf2_add_field (fi, child_die, cu);
15907 }
15908 else if (child_die->tag == DW_TAG_subprogram)
15909 {
15910 /* Rust doesn't have member functions in the C++ sense.
15911 However, it does emit ordinary functions as children
15912 of a struct DIE. */
15913 if (cu->language == language_rust)
15914 read_func_scope (child_die, cu);
15915 else
15916 {
15917 /* C++ member function. */
15918 dwarf2_add_member_fn (fi, child_die, type, cu);
15919 }
15920 }
15921 else if (child_die->tag == DW_TAG_inheritance)
15922 {
15923 /* C++ base class field. */
15924 dwarf2_add_field (fi, child_die, cu);
15925 }
15926 else if (type_can_define_types (child_die))
15927 dwarf2_add_type_defn (fi, child_die, cu);
15928 else if (child_die->tag == DW_TAG_template_type_param
15929 || child_die->tag == DW_TAG_template_value_param)
15930 {
15931 struct symbol *arg = new_symbol (child_die, NULL, cu);
15932
15933 if (arg != NULL)
15934 template_args->push_back (arg);
15935 }
15936 else if (child_die->tag == DW_TAG_variant)
15937 {
15938 /* In a variant we want to get the discriminant and also add a
15939 field for our sole member child. */
15940 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15941
15942 for (struct die_info *variant_child = child_die->child;
15943 variant_child != NULL;
15944 variant_child = sibling_die (variant_child))
15945 {
15946 if (variant_child->tag == DW_TAG_member)
15947 {
15948 handle_struct_member_die (variant_child, type, fi,
15949 template_args, cu);
15950 /* Only handle the one. */
15951 break;
15952 }
15953 }
15954
15955 /* We don't handle this but we might as well report it if we see
15956 it. */
15957 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15958 complaint (_("DW_AT_discr_list is not supported yet"
15959 " - DIE at %s [in module %s]"),
15960 sect_offset_str (child_die->sect_off),
15961 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15962
15963 /* The first field was just added, so we can stash the
15964 discriminant there. */
15965 gdb_assert (!fi->fields.empty ());
15966 if (discr == NULL)
15967 fi->fields.back ().variant.default_branch = true;
15968 else
15969 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15970 }
15971 }
15972
15973 /* Finish creating a structure or union type, including filling in
15974 its members and creating a symbol for it. */
15975
15976 static void
15977 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15978 {
15979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15980 struct die_info *child_die;
15981 struct type *type;
15982
15983 type = get_die_type (die, cu);
15984 if (type == NULL)
15985 type = read_structure_type (die, cu);
15986
15987 /* When reading a DW_TAG_variant_part, we need to notice when we
15988 read the discriminant member, so we can record it later in the
15989 discriminant_info. */
15990 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15991 sect_offset discr_offset;
15992 bool has_template_parameters = false;
15993
15994 if (is_variant_part)
15995 {
15996 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15997 if (discr == NULL)
15998 {
15999 /* Maybe it's a univariant form, an extension we support.
16000 In this case arrange not to check the offset. */
16001 is_variant_part = false;
16002 }
16003 else if (attr_form_is_ref (discr))
16004 {
16005 struct dwarf2_cu *target_cu = cu;
16006 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16007
16008 discr_offset = target_die->sect_off;
16009 }
16010 else
16011 {
16012 complaint (_("DW_AT_discr does not have DIE reference form"
16013 " - DIE at %s [in module %s]"),
16014 sect_offset_str (die->sect_off),
16015 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16016 is_variant_part = false;
16017 }
16018 }
16019
16020 if (die->child != NULL && ! die_is_declaration (die, cu))
16021 {
16022 struct field_info fi;
16023 std::vector<struct symbol *> template_args;
16024
16025 child_die = die->child;
16026
16027 while (child_die && child_die->tag)
16028 {
16029 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16030
16031 if (is_variant_part && discr_offset == child_die->sect_off)
16032 fi.fields.back ().variant.is_discriminant = true;
16033
16034 child_die = sibling_die (child_die);
16035 }
16036
16037 /* Attach template arguments to type. */
16038 if (!template_args.empty ())
16039 {
16040 has_template_parameters = true;
16041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16042 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16043 TYPE_TEMPLATE_ARGUMENTS (type)
16044 = XOBNEWVEC (&objfile->objfile_obstack,
16045 struct symbol *,
16046 TYPE_N_TEMPLATE_ARGUMENTS (type));
16047 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16048 template_args.data (),
16049 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16050 * sizeof (struct symbol *)));
16051 }
16052
16053 /* Attach fields and member functions to the type. */
16054 if (fi.nfields)
16055 dwarf2_attach_fields_to_type (&fi, type, cu);
16056 if (!fi.fnfieldlists.empty ())
16057 {
16058 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16059
16060 /* Get the type which refers to the base class (possibly this
16061 class itself) which contains the vtable pointer for the current
16062 class from the DW_AT_containing_type attribute. This use of
16063 DW_AT_containing_type is a GNU extension. */
16064
16065 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16066 {
16067 struct type *t = die_containing_type (die, cu);
16068
16069 set_type_vptr_basetype (type, t);
16070 if (type == t)
16071 {
16072 int i;
16073
16074 /* Our own class provides vtbl ptr. */
16075 for (i = TYPE_NFIELDS (t) - 1;
16076 i >= TYPE_N_BASECLASSES (t);
16077 --i)
16078 {
16079 const char *fieldname = TYPE_FIELD_NAME (t, i);
16080
16081 if (is_vtable_name (fieldname, cu))
16082 {
16083 set_type_vptr_fieldno (type, i);
16084 break;
16085 }
16086 }
16087
16088 /* Complain if virtual function table field not found. */
16089 if (i < TYPE_N_BASECLASSES (t))
16090 complaint (_("virtual function table pointer "
16091 "not found when defining class '%s'"),
16092 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16093 }
16094 else
16095 {
16096 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16097 }
16098 }
16099 else if (cu->producer
16100 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16101 {
16102 /* The IBM XLC compiler does not provide direct indication
16103 of the containing type, but the vtable pointer is
16104 always named __vfp. */
16105
16106 int i;
16107
16108 for (i = TYPE_NFIELDS (type) - 1;
16109 i >= TYPE_N_BASECLASSES (type);
16110 --i)
16111 {
16112 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16113 {
16114 set_type_vptr_fieldno (type, i);
16115 set_type_vptr_basetype (type, type);
16116 break;
16117 }
16118 }
16119 }
16120 }
16121
16122 /* Copy fi.typedef_field_list linked list elements content into the
16123 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16124 if (!fi.typedef_field_list.empty ())
16125 {
16126 int count = fi.typedef_field_list.size ();
16127
16128 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16129 TYPE_TYPEDEF_FIELD_ARRAY (type)
16130 = ((struct decl_field *)
16131 TYPE_ALLOC (type,
16132 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16133 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16134
16135 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16136 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16137 }
16138
16139 /* Copy fi.nested_types_list linked list elements content into the
16140 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16141 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16142 {
16143 int count = fi.nested_types_list.size ();
16144
16145 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16146 TYPE_NESTED_TYPES_ARRAY (type)
16147 = ((struct decl_field *)
16148 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16149 TYPE_NESTED_TYPES_COUNT (type) = count;
16150
16151 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16152 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16153 }
16154 }
16155
16156 quirk_gcc_member_function_pointer (type, objfile);
16157 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16158 cu->rust_unions.push_back (type);
16159
16160 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16161 snapshots) has been known to create a die giving a declaration
16162 for a class that has, as a child, a die giving a definition for a
16163 nested class. So we have to process our children even if the
16164 current die is a declaration. Normally, of course, a declaration
16165 won't have any children at all. */
16166
16167 child_die = die->child;
16168
16169 while (child_die != NULL && child_die->tag)
16170 {
16171 if (child_die->tag == DW_TAG_member
16172 || child_die->tag == DW_TAG_variable
16173 || child_die->tag == DW_TAG_inheritance
16174 || child_die->tag == DW_TAG_template_value_param
16175 || child_die->tag == DW_TAG_template_type_param)
16176 {
16177 /* Do nothing. */
16178 }
16179 else
16180 process_die (child_die, cu);
16181
16182 child_die = sibling_die (child_die);
16183 }
16184
16185 /* Do not consider external references. According to the DWARF standard,
16186 these DIEs are identified by the fact that they have no byte_size
16187 attribute, and a declaration attribute. */
16188 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16189 || !die_is_declaration (die, cu))
16190 {
16191 struct symbol *sym = new_symbol (die, type, cu);
16192
16193 if (has_template_parameters)
16194 {
16195 /* Make sure that the symtab is set on the new symbols.
16196 Even though they don't appear in this symtab directly,
16197 other parts of gdb assume that symbols do, and this is
16198 reasonably true. */
16199 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16200 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16201 symbol_symtab (sym));
16202 }
16203 }
16204 }
16205
16206 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16207 update TYPE using some information only available in DIE's children. */
16208
16209 static void
16210 update_enumeration_type_from_children (struct die_info *die,
16211 struct type *type,
16212 struct dwarf2_cu *cu)
16213 {
16214 struct die_info *child_die;
16215 int unsigned_enum = 1;
16216 int flag_enum = 1;
16217 ULONGEST mask = 0;
16218
16219 auto_obstack obstack;
16220
16221 for (child_die = die->child;
16222 child_die != NULL && child_die->tag;
16223 child_die = sibling_die (child_die))
16224 {
16225 struct attribute *attr;
16226 LONGEST value;
16227 const gdb_byte *bytes;
16228 struct dwarf2_locexpr_baton *baton;
16229 const char *name;
16230
16231 if (child_die->tag != DW_TAG_enumerator)
16232 continue;
16233
16234 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16235 if (attr == NULL)
16236 continue;
16237
16238 name = dwarf2_name (child_die, cu);
16239 if (name == NULL)
16240 name = "<anonymous enumerator>";
16241
16242 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16243 &value, &bytes, &baton);
16244 if (value < 0)
16245 {
16246 unsigned_enum = 0;
16247 flag_enum = 0;
16248 }
16249 else if ((mask & value) != 0)
16250 flag_enum = 0;
16251 else
16252 mask |= value;
16253
16254 /* If we already know that the enum type is neither unsigned, nor
16255 a flag type, no need to look at the rest of the enumerates. */
16256 if (!unsigned_enum && !flag_enum)
16257 break;
16258 }
16259
16260 if (unsigned_enum)
16261 TYPE_UNSIGNED (type) = 1;
16262 if (flag_enum)
16263 TYPE_FLAG_ENUM (type) = 1;
16264 }
16265
16266 /* Given a DW_AT_enumeration_type die, set its type. We do not
16267 complete the type's fields yet, or create any symbols. */
16268
16269 static struct type *
16270 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16271 {
16272 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16273 struct type *type;
16274 struct attribute *attr;
16275 const char *name;
16276
16277 /* If the definition of this type lives in .debug_types, read that type.
16278 Don't follow DW_AT_specification though, that will take us back up
16279 the chain and we want to go down. */
16280 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16281 if (attr)
16282 {
16283 type = get_DW_AT_signature_type (die, attr, cu);
16284
16285 /* The type's CU may not be the same as CU.
16286 Ensure TYPE is recorded with CU in die_type_hash. */
16287 return set_die_type (die, type, cu);
16288 }
16289
16290 type = alloc_type (objfile);
16291
16292 TYPE_CODE (type) = TYPE_CODE_ENUM;
16293 name = dwarf2_full_name (NULL, die, cu);
16294 if (name != NULL)
16295 TYPE_NAME (type) = name;
16296
16297 attr = dwarf2_attr (die, DW_AT_type, cu);
16298 if (attr != NULL)
16299 {
16300 struct type *underlying_type = die_type (die, cu);
16301
16302 TYPE_TARGET_TYPE (type) = underlying_type;
16303 }
16304
16305 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16306 if (attr)
16307 {
16308 TYPE_LENGTH (type) = DW_UNSND (attr);
16309 }
16310 else
16311 {
16312 TYPE_LENGTH (type) = 0;
16313 }
16314
16315 maybe_set_alignment (cu, die, type);
16316
16317 /* The enumeration DIE can be incomplete. In Ada, any type can be
16318 declared as private in the package spec, and then defined only
16319 inside the package body. Such types are known as Taft Amendment
16320 Types. When another package uses such a type, an incomplete DIE
16321 may be generated by the compiler. */
16322 if (die_is_declaration (die, cu))
16323 TYPE_STUB (type) = 1;
16324
16325 /* Finish the creation of this type by using the enum's children.
16326 We must call this even when the underlying type has been provided
16327 so that we can determine if we're looking at a "flag" enum. */
16328 update_enumeration_type_from_children (die, type, cu);
16329
16330 /* If this type has an underlying type that is not a stub, then we
16331 may use its attributes. We always use the "unsigned" attribute
16332 in this situation, because ordinarily we guess whether the type
16333 is unsigned -- but the guess can be wrong and the underlying type
16334 can tell us the reality. However, we defer to a local size
16335 attribute if one exists, because this lets the compiler override
16336 the underlying type if needed. */
16337 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16338 {
16339 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16340 if (TYPE_LENGTH (type) == 0)
16341 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16342 if (TYPE_RAW_ALIGN (type) == 0
16343 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16344 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16345 }
16346
16347 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16348
16349 return set_die_type (die, type, cu);
16350 }
16351
16352 /* Given a pointer to a die which begins an enumeration, process all
16353 the dies that define the members of the enumeration, and create the
16354 symbol for the enumeration type.
16355
16356 NOTE: We reverse the order of the element list. */
16357
16358 static void
16359 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16360 {
16361 struct type *this_type;
16362
16363 this_type = get_die_type (die, cu);
16364 if (this_type == NULL)
16365 this_type = read_enumeration_type (die, cu);
16366
16367 if (die->child != NULL)
16368 {
16369 struct die_info *child_die;
16370 struct symbol *sym;
16371 struct field *fields = NULL;
16372 int num_fields = 0;
16373 const char *name;
16374
16375 child_die = die->child;
16376 while (child_die && child_die->tag)
16377 {
16378 if (child_die->tag != DW_TAG_enumerator)
16379 {
16380 process_die (child_die, cu);
16381 }
16382 else
16383 {
16384 name = dwarf2_name (child_die, cu);
16385 if (name)
16386 {
16387 sym = new_symbol (child_die, this_type, cu);
16388
16389 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16390 {
16391 fields = (struct field *)
16392 xrealloc (fields,
16393 (num_fields + DW_FIELD_ALLOC_CHUNK)
16394 * sizeof (struct field));
16395 }
16396
16397 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16398 FIELD_TYPE (fields[num_fields]) = NULL;
16399 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16400 FIELD_BITSIZE (fields[num_fields]) = 0;
16401
16402 num_fields++;
16403 }
16404 }
16405
16406 child_die = sibling_die (child_die);
16407 }
16408
16409 if (num_fields)
16410 {
16411 TYPE_NFIELDS (this_type) = num_fields;
16412 TYPE_FIELDS (this_type) = (struct field *)
16413 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16414 memcpy (TYPE_FIELDS (this_type), fields,
16415 sizeof (struct field) * num_fields);
16416 xfree (fields);
16417 }
16418 }
16419
16420 /* If we are reading an enum from a .debug_types unit, and the enum
16421 is a declaration, and the enum is not the signatured type in the
16422 unit, then we do not want to add a symbol for it. Adding a
16423 symbol would in some cases obscure the true definition of the
16424 enum, giving users an incomplete type when the definition is
16425 actually available. Note that we do not want to do this for all
16426 enums which are just declarations, because C++0x allows forward
16427 enum declarations. */
16428 if (cu->per_cu->is_debug_types
16429 && die_is_declaration (die, cu))
16430 {
16431 struct signatured_type *sig_type;
16432
16433 sig_type = (struct signatured_type *) cu->per_cu;
16434 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16435 if (sig_type->type_offset_in_section != die->sect_off)
16436 return;
16437 }
16438
16439 new_symbol (die, this_type, cu);
16440 }
16441
16442 /* Extract all information from a DW_TAG_array_type DIE and put it in
16443 the DIE's type field. For now, this only handles one dimensional
16444 arrays. */
16445
16446 static struct type *
16447 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16448 {
16449 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16450 struct die_info *child_die;
16451 struct type *type;
16452 struct type *element_type, *range_type, *index_type;
16453 struct attribute *attr;
16454 const char *name;
16455 struct dynamic_prop *byte_stride_prop = NULL;
16456 unsigned int bit_stride = 0;
16457
16458 element_type = die_type (die, cu);
16459
16460 /* The die_type call above may have already set the type for this DIE. */
16461 type = get_die_type (die, cu);
16462 if (type)
16463 return type;
16464
16465 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16466 if (attr != NULL)
16467 {
16468 int stride_ok;
16469
16470 byte_stride_prop
16471 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16472 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16473 if (!stride_ok)
16474 {
16475 complaint (_("unable to read array DW_AT_byte_stride "
16476 " - DIE at %s [in module %s]"),
16477 sect_offset_str (die->sect_off),
16478 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16479 /* Ignore this attribute. We will likely not be able to print
16480 arrays of this type correctly, but there is little we can do
16481 to help if we cannot read the attribute's value. */
16482 byte_stride_prop = NULL;
16483 }
16484 }
16485
16486 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16487 if (attr != NULL)
16488 bit_stride = DW_UNSND (attr);
16489
16490 /* Irix 6.2 native cc creates array types without children for
16491 arrays with unspecified length. */
16492 if (die->child == NULL)
16493 {
16494 index_type = objfile_type (objfile)->builtin_int;
16495 range_type = create_static_range_type (NULL, index_type, 0, -1);
16496 type = create_array_type_with_stride (NULL, element_type, range_type,
16497 byte_stride_prop, bit_stride);
16498 return set_die_type (die, type, cu);
16499 }
16500
16501 std::vector<struct type *> range_types;
16502 child_die = die->child;
16503 while (child_die && child_die->tag)
16504 {
16505 if (child_die->tag == DW_TAG_subrange_type)
16506 {
16507 struct type *child_type = read_type_die (child_die, cu);
16508
16509 if (child_type != NULL)
16510 {
16511 /* The range type was succesfully read. Save it for the
16512 array type creation. */
16513 range_types.push_back (child_type);
16514 }
16515 }
16516 child_die = sibling_die (child_die);
16517 }
16518
16519 /* Dwarf2 dimensions are output from left to right, create the
16520 necessary array types in backwards order. */
16521
16522 type = element_type;
16523
16524 if (read_array_order (die, cu) == DW_ORD_col_major)
16525 {
16526 int i = 0;
16527
16528 while (i < range_types.size ())
16529 type = create_array_type_with_stride (NULL, type, range_types[i++],
16530 byte_stride_prop, bit_stride);
16531 }
16532 else
16533 {
16534 size_t ndim = range_types.size ();
16535 while (ndim-- > 0)
16536 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16537 byte_stride_prop, bit_stride);
16538 }
16539
16540 /* Understand Dwarf2 support for vector types (like they occur on
16541 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16542 array type. This is not part of the Dwarf2/3 standard yet, but a
16543 custom vendor extension. The main difference between a regular
16544 array and the vector variant is that vectors are passed by value
16545 to functions. */
16546 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16547 if (attr)
16548 make_vector_type (type);
16549
16550 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16551 implementation may choose to implement triple vectors using this
16552 attribute. */
16553 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16554 if (attr)
16555 {
16556 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16557 TYPE_LENGTH (type) = DW_UNSND (attr);
16558 else
16559 complaint (_("DW_AT_byte_size for array type smaller "
16560 "than the total size of elements"));
16561 }
16562
16563 name = dwarf2_name (die, cu);
16564 if (name)
16565 TYPE_NAME (type) = name;
16566
16567 maybe_set_alignment (cu, die, type);
16568
16569 /* Install the type in the die. */
16570 set_die_type (die, type, cu);
16571
16572 /* set_die_type should be already done. */
16573 set_descriptive_type (type, die, cu);
16574
16575 return type;
16576 }
16577
16578 static enum dwarf_array_dim_ordering
16579 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16580 {
16581 struct attribute *attr;
16582
16583 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16584
16585 if (attr)
16586 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16587
16588 /* GNU F77 is a special case, as at 08/2004 array type info is the
16589 opposite order to the dwarf2 specification, but data is still
16590 laid out as per normal fortran.
16591
16592 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16593 version checking. */
16594
16595 if (cu->language == language_fortran
16596 && cu->producer && strstr (cu->producer, "GNU F77"))
16597 {
16598 return DW_ORD_row_major;
16599 }
16600
16601 switch (cu->language_defn->la_array_ordering)
16602 {
16603 case array_column_major:
16604 return DW_ORD_col_major;
16605 case array_row_major:
16606 default:
16607 return DW_ORD_row_major;
16608 };
16609 }
16610
16611 /* Extract all information from a DW_TAG_set_type DIE and put it in
16612 the DIE's type field. */
16613
16614 static struct type *
16615 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16616 {
16617 struct type *domain_type, *set_type;
16618 struct attribute *attr;
16619
16620 domain_type = die_type (die, cu);
16621
16622 /* The die_type call above may have already set the type for this DIE. */
16623 set_type = get_die_type (die, cu);
16624 if (set_type)
16625 return set_type;
16626
16627 set_type = create_set_type (NULL, domain_type);
16628
16629 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16630 if (attr)
16631 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16632
16633 maybe_set_alignment (cu, die, set_type);
16634
16635 return set_die_type (die, set_type, cu);
16636 }
16637
16638 /* A helper for read_common_block that creates a locexpr baton.
16639 SYM is the symbol which we are marking as computed.
16640 COMMON_DIE is the DIE for the common block.
16641 COMMON_LOC is the location expression attribute for the common
16642 block itself.
16643 MEMBER_LOC is the location expression attribute for the particular
16644 member of the common block that we are processing.
16645 CU is the CU from which the above come. */
16646
16647 static void
16648 mark_common_block_symbol_computed (struct symbol *sym,
16649 struct die_info *common_die,
16650 struct attribute *common_loc,
16651 struct attribute *member_loc,
16652 struct dwarf2_cu *cu)
16653 {
16654 struct dwarf2_per_objfile *dwarf2_per_objfile
16655 = cu->per_cu->dwarf2_per_objfile;
16656 struct objfile *objfile = dwarf2_per_objfile->objfile;
16657 struct dwarf2_locexpr_baton *baton;
16658 gdb_byte *ptr;
16659 unsigned int cu_off;
16660 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16661 LONGEST offset = 0;
16662
16663 gdb_assert (common_loc && member_loc);
16664 gdb_assert (attr_form_is_block (common_loc));
16665 gdb_assert (attr_form_is_block (member_loc)
16666 || attr_form_is_constant (member_loc));
16667
16668 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16669 baton->per_cu = cu->per_cu;
16670 gdb_assert (baton->per_cu);
16671
16672 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16673
16674 if (attr_form_is_constant (member_loc))
16675 {
16676 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16677 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16678 }
16679 else
16680 baton->size += DW_BLOCK (member_loc)->size;
16681
16682 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16683 baton->data = ptr;
16684
16685 *ptr++ = DW_OP_call4;
16686 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16687 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16688 ptr += 4;
16689
16690 if (attr_form_is_constant (member_loc))
16691 {
16692 *ptr++ = DW_OP_addr;
16693 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16694 ptr += cu->header.addr_size;
16695 }
16696 else
16697 {
16698 /* We have to copy the data here, because DW_OP_call4 will only
16699 use a DW_AT_location attribute. */
16700 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16701 ptr += DW_BLOCK (member_loc)->size;
16702 }
16703
16704 *ptr++ = DW_OP_plus;
16705 gdb_assert (ptr - baton->data == baton->size);
16706
16707 SYMBOL_LOCATION_BATON (sym) = baton;
16708 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16709 }
16710
16711 /* Create appropriate locally-scoped variables for all the
16712 DW_TAG_common_block entries. Also create a struct common_block
16713 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16714 is used to sepate the common blocks name namespace from regular
16715 variable names. */
16716
16717 static void
16718 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16719 {
16720 struct attribute *attr;
16721
16722 attr = dwarf2_attr (die, DW_AT_location, cu);
16723 if (attr)
16724 {
16725 /* Support the .debug_loc offsets. */
16726 if (attr_form_is_block (attr))
16727 {
16728 /* Ok. */
16729 }
16730 else if (attr_form_is_section_offset (attr))
16731 {
16732 dwarf2_complex_location_expr_complaint ();
16733 attr = NULL;
16734 }
16735 else
16736 {
16737 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16738 "common block member");
16739 attr = NULL;
16740 }
16741 }
16742
16743 if (die->child != NULL)
16744 {
16745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16746 struct die_info *child_die;
16747 size_t n_entries = 0, size;
16748 struct common_block *common_block;
16749 struct symbol *sym;
16750
16751 for (child_die = die->child;
16752 child_die && child_die->tag;
16753 child_die = sibling_die (child_die))
16754 ++n_entries;
16755
16756 size = (sizeof (struct common_block)
16757 + (n_entries - 1) * sizeof (struct symbol *));
16758 common_block
16759 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16760 size);
16761 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16762 common_block->n_entries = 0;
16763
16764 for (child_die = die->child;
16765 child_die && child_die->tag;
16766 child_die = sibling_die (child_die))
16767 {
16768 /* Create the symbol in the DW_TAG_common_block block in the current
16769 symbol scope. */
16770 sym = new_symbol (child_die, NULL, cu);
16771 if (sym != NULL)
16772 {
16773 struct attribute *member_loc;
16774
16775 common_block->contents[common_block->n_entries++] = sym;
16776
16777 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16778 cu);
16779 if (member_loc)
16780 {
16781 /* GDB has handled this for a long time, but it is
16782 not specified by DWARF. It seems to have been
16783 emitted by gfortran at least as recently as:
16784 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16785 complaint (_("Variable in common block has "
16786 "DW_AT_data_member_location "
16787 "- DIE at %s [in module %s]"),
16788 sect_offset_str (child_die->sect_off),
16789 objfile_name (objfile));
16790
16791 if (attr_form_is_section_offset (member_loc))
16792 dwarf2_complex_location_expr_complaint ();
16793 else if (attr_form_is_constant (member_loc)
16794 || attr_form_is_block (member_loc))
16795 {
16796 if (attr)
16797 mark_common_block_symbol_computed (sym, die, attr,
16798 member_loc, cu);
16799 }
16800 else
16801 dwarf2_complex_location_expr_complaint ();
16802 }
16803 }
16804 }
16805
16806 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16807 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16808 }
16809 }
16810
16811 /* Create a type for a C++ namespace. */
16812
16813 static struct type *
16814 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16815 {
16816 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16817 const char *previous_prefix, *name;
16818 int is_anonymous;
16819 struct type *type;
16820
16821 /* For extensions, reuse the type of the original namespace. */
16822 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16823 {
16824 struct die_info *ext_die;
16825 struct dwarf2_cu *ext_cu = cu;
16826
16827 ext_die = dwarf2_extension (die, &ext_cu);
16828 type = read_type_die (ext_die, ext_cu);
16829
16830 /* EXT_CU may not be the same as CU.
16831 Ensure TYPE is recorded with CU in die_type_hash. */
16832 return set_die_type (die, type, cu);
16833 }
16834
16835 name = namespace_name (die, &is_anonymous, cu);
16836
16837 /* Now build the name of the current namespace. */
16838
16839 previous_prefix = determine_prefix (die, cu);
16840 if (previous_prefix[0] != '\0')
16841 name = typename_concat (&objfile->objfile_obstack,
16842 previous_prefix, name, 0, cu);
16843
16844 /* Create the type. */
16845 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16846
16847 return set_die_type (die, type, cu);
16848 }
16849
16850 /* Read a namespace scope. */
16851
16852 static void
16853 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16854 {
16855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16856 int is_anonymous;
16857
16858 /* Add a symbol associated to this if we haven't seen the namespace
16859 before. Also, add a using directive if it's an anonymous
16860 namespace. */
16861
16862 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16863 {
16864 struct type *type;
16865
16866 type = read_type_die (die, cu);
16867 new_symbol (die, type, cu);
16868
16869 namespace_name (die, &is_anonymous, cu);
16870 if (is_anonymous)
16871 {
16872 const char *previous_prefix = determine_prefix (die, cu);
16873
16874 std::vector<const char *> excludes;
16875 add_using_directive (using_directives (cu),
16876 previous_prefix, TYPE_NAME (type), NULL,
16877 NULL, excludes, 0, &objfile->objfile_obstack);
16878 }
16879 }
16880
16881 if (die->child != NULL)
16882 {
16883 struct die_info *child_die = die->child;
16884
16885 while (child_die && child_die->tag)
16886 {
16887 process_die (child_die, cu);
16888 child_die = sibling_die (child_die);
16889 }
16890 }
16891 }
16892
16893 /* Read a Fortran module as type. This DIE can be only a declaration used for
16894 imported module. Still we need that type as local Fortran "use ... only"
16895 declaration imports depend on the created type in determine_prefix. */
16896
16897 static struct type *
16898 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16899 {
16900 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16901 const char *module_name;
16902 struct type *type;
16903
16904 module_name = dwarf2_name (die, cu);
16905 if (!module_name)
16906 complaint (_("DW_TAG_module has no name, offset %s"),
16907 sect_offset_str (die->sect_off));
16908 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16909
16910 return set_die_type (die, type, cu);
16911 }
16912
16913 /* Read a Fortran module. */
16914
16915 static void
16916 read_module (struct die_info *die, struct dwarf2_cu *cu)
16917 {
16918 struct die_info *child_die = die->child;
16919 struct type *type;
16920
16921 type = read_type_die (die, cu);
16922 new_symbol (die, type, cu);
16923
16924 while (child_die && child_die->tag)
16925 {
16926 process_die (child_die, cu);
16927 child_die = sibling_die (child_die);
16928 }
16929 }
16930
16931 /* Return the name of the namespace represented by DIE. Set
16932 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16933 namespace. */
16934
16935 static const char *
16936 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16937 {
16938 struct die_info *current_die;
16939 const char *name = NULL;
16940
16941 /* Loop through the extensions until we find a name. */
16942
16943 for (current_die = die;
16944 current_die != NULL;
16945 current_die = dwarf2_extension (die, &cu))
16946 {
16947 /* We don't use dwarf2_name here so that we can detect the absence
16948 of a name -> anonymous namespace. */
16949 name = dwarf2_string_attr (die, DW_AT_name, cu);
16950
16951 if (name != NULL)
16952 break;
16953 }
16954
16955 /* Is it an anonymous namespace? */
16956
16957 *is_anonymous = (name == NULL);
16958 if (*is_anonymous)
16959 name = CP_ANONYMOUS_NAMESPACE_STR;
16960
16961 return name;
16962 }
16963
16964 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16965 the user defined type vector. */
16966
16967 static struct type *
16968 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16969 {
16970 struct gdbarch *gdbarch
16971 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16972 struct comp_unit_head *cu_header = &cu->header;
16973 struct type *type;
16974 struct attribute *attr_byte_size;
16975 struct attribute *attr_address_class;
16976 int byte_size, addr_class;
16977 struct type *target_type;
16978
16979 target_type = die_type (die, cu);
16980
16981 /* The die_type call above may have already set the type for this DIE. */
16982 type = get_die_type (die, cu);
16983 if (type)
16984 return type;
16985
16986 type = lookup_pointer_type (target_type);
16987
16988 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16989 if (attr_byte_size)
16990 byte_size = DW_UNSND (attr_byte_size);
16991 else
16992 byte_size = cu_header->addr_size;
16993
16994 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16995 if (attr_address_class)
16996 addr_class = DW_UNSND (attr_address_class);
16997 else
16998 addr_class = DW_ADDR_none;
16999
17000 ULONGEST alignment = get_alignment (cu, die);
17001
17002 /* If the pointer size, alignment, or address class is different
17003 than the default, create a type variant marked as such and set
17004 the length accordingly. */
17005 if (TYPE_LENGTH (type) != byte_size
17006 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17007 && alignment != TYPE_RAW_ALIGN (type))
17008 || addr_class != DW_ADDR_none)
17009 {
17010 if (gdbarch_address_class_type_flags_p (gdbarch))
17011 {
17012 int type_flags;
17013
17014 type_flags = gdbarch_address_class_type_flags
17015 (gdbarch, byte_size, addr_class);
17016 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17017 == 0);
17018 type = make_type_with_address_space (type, type_flags);
17019 }
17020 else if (TYPE_LENGTH (type) != byte_size)
17021 {
17022 complaint (_("invalid pointer size %d"), byte_size);
17023 }
17024 else if (TYPE_RAW_ALIGN (type) != alignment)
17025 {
17026 complaint (_("Invalid DW_AT_alignment"
17027 " - DIE at %s [in module %s]"),
17028 sect_offset_str (die->sect_off),
17029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17030 }
17031 else
17032 {
17033 /* Should we also complain about unhandled address classes? */
17034 }
17035 }
17036
17037 TYPE_LENGTH (type) = byte_size;
17038 set_type_align (type, alignment);
17039 return set_die_type (die, type, cu);
17040 }
17041
17042 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17043 the user defined type vector. */
17044
17045 static struct type *
17046 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17047 {
17048 struct type *type;
17049 struct type *to_type;
17050 struct type *domain;
17051
17052 to_type = die_type (die, cu);
17053 domain = die_containing_type (die, cu);
17054
17055 /* The calls above may have already set the type for this DIE. */
17056 type = get_die_type (die, cu);
17057 if (type)
17058 return type;
17059
17060 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17061 type = lookup_methodptr_type (to_type);
17062 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17063 {
17064 struct type *new_type
17065 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17066
17067 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17068 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17069 TYPE_VARARGS (to_type));
17070 type = lookup_methodptr_type (new_type);
17071 }
17072 else
17073 type = lookup_memberptr_type (to_type, domain);
17074
17075 return set_die_type (die, type, cu);
17076 }
17077
17078 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17079 the user defined type vector. */
17080
17081 static struct type *
17082 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17083 enum type_code refcode)
17084 {
17085 struct comp_unit_head *cu_header = &cu->header;
17086 struct type *type, *target_type;
17087 struct attribute *attr;
17088
17089 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17090
17091 target_type = die_type (die, cu);
17092
17093 /* The die_type call above may have already set the type for this DIE. */
17094 type = get_die_type (die, cu);
17095 if (type)
17096 return type;
17097
17098 type = lookup_reference_type (target_type, refcode);
17099 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17100 if (attr)
17101 {
17102 TYPE_LENGTH (type) = DW_UNSND (attr);
17103 }
17104 else
17105 {
17106 TYPE_LENGTH (type) = cu_header->addr_size;
17107 }
17108 maybe_set_alignment (cu, die, type);
17109 return set_die_type (die, type, cu);
17110 }
17111
17112 /* Add the given cv-qualifiers to the element type of the array. GCC
17113 outputs DWARF type qualifiers that apply to an array, not the
17114 element type. But GDB relies on the array element type to carry
17115 the cv-qualifiers. This mimics section 6.7.3 of the C99
17116 specification. */
17117
17118 static struct type *
17119 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17120 struct type *base_type, int cnst, int voltl)
17121 {
17122 struct type *el_type, *inner_array;
17123
17124 base_type = copy_type (base_type);
17125 inner_array = base_type;
17126
17127 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17128 {
17129 TYPE_TARGET_TYPE (inner_array) =
17130 copy_type (TYPE_TARGET_TYPE (inner_array));
17131 inner_array = TYPE_TARGET_TYPE (inner_array);
17132 }
17133
17134 el_type = TYPE_TARGET_TYPE (inner_array);
17135 cnst |= TYPE_CONST (el_type);
17136 voltl |= TYPE_VOLATILE (el_type);
17137 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17138
17139 return set_die_type (die, base_type, cu);
17140 }
17141
17142 static struct type *
17143 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17144 {
17145 struct type *base_type, *cv_type;
17146
17147 base_type = die_type (die, cu);
17148
17149 /* The die_type call above may have already set the type for this DIE. */
17150 cv_type = get_die_type (die, cu);
17151 if (cv_type)
17152 return cv_type;
17153
17154 /* In case the const qualifier is applied to an array type, the element type
17155 is so qualified, not the array type (section 6.7.3 of C99). */
17156 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17157 return add_array_cv_type (die, cu, base_type, 1, 0);
17158
17159 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17160 return set_die_type (die, cv_type, cu);
17161 }
17162
17163 static struct type *
17164 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17165 {
17166 struct type *base_type, *cv_type;
17167
17168 base_type = die_type (die, cu);
17169
17170 /* The die_type call above may have already set the type for this DIE. */
17171 cv_type = get_die_type (die, cu);
17172 if (cv_type)
17173 return cv_type;
17174
17175 /* In case the volatile qualifier is applied to an array type, the
17176 element type is so qualified, not the array type (section 6.7.3
17177 of C99). */
17178 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17179 return add_array_cv_type (die, cu, base_type, 0, 1);
17180
17181 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17182 return set_die_type (die, cv_type, cu);
17183 }
17184
17185 /* Handle DW_TAG_restrict_type. */
17186
17187 static struct type *
17188 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17189 {
17190 struct type *base_type, *cv_type;
17191
17192 base_type = die_type (die, cu);
17193
17194 /* The die_type call above may have already set the type for this DIE. */
17195 cv_type = get_die_type (die, cu);
17196 if (cv_type)
17197 return cv_type;
17198
17199 cv_type = make_restrict_type (base_type);
17200 return set_die_type (die, cv_type, cu);
17201 }
17202
17203 /* Handle DW_TAG_atomic_type. */
17204
17205 static struct type *
17206 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17207 {
17208 struct type *base_type, *cv_type;
17209
17210 base_type = die_type (die, cu);
17211
17212 /* The die_type call above may have already set the type for this DIE. */
17213 cv_type = get_die_type (die, cu);
17214 if (cv_type)
17215 return cv_type;
17216
17217 cv_type = make_atomic_type (base_type);
17218 return set_die_type (die, cv_type, cu);
17219 }
17220
17221 /* Extract all information from a DW_TAG_string_type DIE and add to
17222 the user defined type vector. It isn't really a user defined type,
17223 but it behaves like one, with other DIE's using an AT_user_def_type
17224 attribute to reference it. */
17225
17226 static struct type *
17227 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17228 {
17229 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17231 struct type *type, *range_type, *index_type, *char_type;
17232 struct attribute *attr;
17233 unsigned int length;
17234
17235 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17236 if (attr)
17237 {
17238 length = DW_UNSND (attr);
17239 }
17240 else
17241 {
17242 /* Check for the DW_AT_byte_size attribute. */
17243 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17244 if (attr)
17245 {
17246 length = DW_UNSND (attr);
17247 }
17248 else
17249 {
17250 length = 1;
17251 }
17252 }
17253
17254 index_type = objfile_type (objfile)->builtin_int;
17255 range_type = create_static_range_type (NULL, index_type, 1, length);
17256 char_type = language_string_char_type (cu->language_defn, gdbarch);
17257 type = create_string_type (NULL, char_type, range_type);
17258
17259 return set_die_type (die, type, cu);
17260 }
17261
17262 /* Assuming that DIE corresponds to a function, returns nonzero
17263 if the function is prototyped. */
17264
17265 static int
17266 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17267 {
17268 struct attribute *attr;
17269
17270 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17271 if (attr && (DW_UNSND (attr) != 0))
17272 return 1;
17273
17274 /* The DWARF standard implies that the DW_AT_prototyped attribute
17275 is only meaninful for C, but the concept also extends to other
17276 languages that allow unprototyped functions (Eg: Objective C).
17277 For all other languages, assume that functions are always
17278 prototyped. */
17279 if (cu->language != language_c
17280 && cu->language != language_objc
17281 && cu->language != language_opencl)
17282 return 1;
17283
17284 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17285 prototyped and unprototyped functions; default to prototyped,
17286 since that is more common in modern code (and RealView warns
17287 about unprototyped functions). */
17288 if (producer_is_realview (cu->producer))
17289 return 1;
17290
17291 return 0;
17292 }
17293
17294 /* Handle DIES due to C code like:
17295
17296 struct foo
17297 {
17298 int (*funcp)(int a, long l);
17299 int b;
17300 };
17301
17302 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17303
17304 static struct type *
17305 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17306 {
17307 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17308 struct type *type; /* Type that this function returns. */
17309 struct type *ftype; /* Function that returns above type. */
17310 struct attribute *attr;
17311
17312 type = die_type (die, cu);
17313
17314 /* The die_type call above may have already set the type for this DIE. */
17315 ftype = get_die_type (die, cu);
17316 if (ftype)
17317 return ftype;
17318
17319 ftype = lookup_function_type (type);
17320
17321 if (prototyped_function_p (die, cu))
17322 TYPE_PROTOTYPED (ftype) = 1;
17323
17324 /* Store the calling convention in the type if it's available in
17325 the subroutine die. Otherwise set the calling convention to
17326 the default value DW_CC_normal. */
17327 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17328 if (attr)
17329 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17330 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17331 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17332 else
17333 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17334
17335 /* Record whether the function returns normally to its caller or not
17336 if the DWARF producer set that information. */
17337 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17338 if (attr && (DW_UNSND (attr) != 0))
17339 TYPE_NO_RETURN (ftype) = 1;
17340
17341 /* We need to add the subroutine type to the die immediately so
17342 we don't infinitely recurse when dealing with parameters
17343 declared as the same subroutine type. */
17344 set_die_type (die, ftype, cu);
17345
17346 if (die->child != NULL)
17347 {
17348 struct type *void_type = objfile_type (objfile)->builtin_void;
17349 struct die_info *child_die;
17350 int nparams, iparams;
17351
17352 /* Count the number of parameters.
17353 FIXME: GDB currently ignores vararg functions, but knows about
17354 vararg member functions. */
17355 nparams = 0;
17356 child_die = die->child;
17357 while (child_die && child_die->tag)
17358 {
17359 if (child_die->tag == DW_TAG_formal_parameter)
17360 nparams++;
17361 else if (child_die->tag == DW_TAG_unspecified_parameters)
17362 TYPE_VARARGS (ftype) = 1;
17363 child_die = sibling_die (child_die);
17364 }
17365
17366 /* Allocate storage for parameters and fill them in. */
17367 TYPE_NFIELDS (ftype) = nparams;
17368 TYPE_FIELDS (ftype) = (struct field *)
17369 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17370
17371 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17372 even if we error out during the parameters reading below. */
17373 for (iparams = 0; iparams < nparams; iparams++)
17374 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17375
17376 iparams = 0;
17377 child_die = die->child;
17378 while (child_die && child_die->tag)
17379 {
17380 if (child_die->tag == DW_TAG_formal_parameter)
17381 {
17382 struct type *arg_type;
17383
17384 /* DWARF version 2 has no clean way to discern C++
17385 static and non-static member functions. G++ helps
17386 GDB by marking the first parameter for non-static
17387 member functions (which is the this pointer) as
17388 artificial. We pass this information to
17389 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17390
17391 DWARF version 3 added DW_AT_object_pointer, which GCC
17392 4.5 does not yet generate. */
17393 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17394 if (attr)
17395 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17396 else
17397 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17398 arg_type = die_type (child_die, cu);
17399
17400 /* RealView does not mark THIS as const, which the testsuite
17401 expects. GCC marks THIS as const in method definitions,
17402 but not in the class specifications (GCC PR 43053). */
17403 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17404 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17405 {
17406 int is_this = 0;
17407 struct dwarf2_cu *arg_cu = cu;
17408 const char *name = dwarf2_name (child_die, cu);
17409
17410 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17411 if (attr)
17412 {
17413 /* If the compiler emits this, use it. */
17414 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17415 is_this = 1;
17416 }
17417 else if (name && strcmp (name, "this") == 0)
17418 /* Function definitions will have the argument names. */
17419 is_this = 1;
17420 else if (name == NULL && iparams == 0)
17421 /* Declarations may not have the names, so like
17422 elsewhere in GDB, assume an artificial first
17423 argument is "this". */
17424 is_this = 1;
17425
17426 if (is_this)
17427 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17428 arg_type, 0);
17429 }
17430
17431 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17432 iparams++;
17433 }
17434 child_die = sibling_die (child_die);
17435 }
17436 }
17437
17438 return ftype;
17439 }
17440
17441 static struct type *
17442 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17443 {
17444 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17445 const char *name = NULL;
17446 struct type *this_type, *target_type;
17447
17448 name = dwarf2_full_name (NULL, die, cu);
17449 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17450 TYPE_TARGET_STUB (this_type) = 1;
17451 set_die_type (die, this_type, cu);
17452 target_type = die_type (die, cu);
17453 if (target_type != this_type)
17454 TYPE_TARGET_TYPE (this_type) = target_type;
17455 else
17456 {
17457 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17458 spec and cause infinite loops in GDB. */
17459 complaint (_("Self-referential DW_TAG_typedef "
17460 "- DIE at %s [in module %s]"),
17461 sect_offset_str (die->sect_off), objfile_name (objfile));
17462 TYPE_TARGET_TYPE (this_type) = NULL;
17463 }
17464 return this_type;
17465 }
17466
17467 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17468 (which may be different from NAME) to the architecture back-end to allow
17469 it to guess the correct format if necessary. */
17470
17471 static struct type *
17472 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17473 const char *name_hint)
17474 {
17475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17476 const struct floatformat **format;
17477 struct type *type;
17478
17479 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17480 if (format)
17481 type = init_float_type (objfile, bits, name, format);
17482 else
17483 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17484
17485 return type;
17486 }
17487
17488 /* Allocate an integer type of size BITS and name NAME. */
17489
17490 static struct type *
17491 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17492 int bits, int unsigned_p, const char *name)
17493 {
17494 struct type *type;
17495
17496 /* Versions of Intel's C Compiler generate an integer type called "void"
17497 instead of using DW_TAG_unspecified_type. This has been seen on
17498 at least versions 14, 17, and 18. */
17499 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17500 && strcmp (name, "void") == 0)
17501 type = objfile_type (objfile)->builtin_void;
17502 else
17503 type = init_integer_type (objfile, bits, unsigned_p, name);
17504
17505 return type;
17506 }
17507
17508 /* Find a representation of a given base type and install
17509 it in the TYPE field of the die. */
17510
17511 static struct type *
17512 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17513 {
17514 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17515 struct type *type;
17516 struct attribute *attr;
17517 int encoding = 0, bits = 0;
17518 const char *name;
17519
17520 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17521 if (attr)
17522 {
17523 encoding = DW_UNSND (attr);
17524 }
17525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17526 if (attr)
17527 {
17528 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17529 }
17530 name = dwarf2_name (die, cu);
17531 if (!name)
17532 {
17533 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17534 }
17535
17536 switch (encoding)
17537 {
17538 case DW_ATE_address:
17539 /* Turn DW_ATE_address into a void * pointer. */
17540 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17541 type = init_pointer_type (objfile, bits, name, type);
17542 break;
17543 case DW_ATE_boolean:
17544 type = init_boolean_type (objfile, bits, 1, name);
17545 break;
17546 case DW_ATE_complex_float:
17547 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17548 type = init_complex_type (objfile, name, type);
17549 break;
17550 case DW_ATE_decimal_float:
17551 type = init_decfloat_type (objfile, bits, name);
17552 break;
17553 case DW_ATE_float:
17554 type = dwarf2_init_float_type (objfile, bits, name, name);
17555 break;
17556 case DW_ATE_signed:
17557 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17558 break;
17559 case DW_ATE_unsigned:
17560 if (cu->language == language_fortran
17561 && name
17562 && startswith (name, "character("))
17563 type = init_character_type (objfile, bits, 1, name);
17564 else
17565 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17566 break;
17567 case DW_ATE_signed_char:
17568 if (cu->language == language_ada || cu->language == language_m2
17569 || cu->language == language_pascal
17570 || cu->language == language_fortran)
17571 type = init_character_type (objfile, bits, 0, name);
17572 else
17573 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17574 break;
17575 case DW_ATE_unsigned_char:
17576 if (cu->language == language_ada || cu->language == language_m2
17577 || cu->language == language_pascal
17578 || cu->language == language_fortran
17579 || cu->language == language_rust)
17580 type = init_character_type (objfile, bits, 1, name);
17581 else
17582 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17583 break;
17584 case DW_ATE_UTF:
17585 {
17586 gdbarch *arch = get_objfile_arch (objfile);
17587
17588 if (bits == 16)
17589 type = builtin_type (arch)->builtin_char16;
17590 else if (bits == 32)
17591 type = builtin_type (arch)->builtin_char32;
17592 else
17593 {
17594 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17595 bits);
17596 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17597 }
17598 return set_die_type (die, type, cu);
17599 }
17600 break;
17601
17602 default:
17603 complaint (_("unsupported DW_AT_encoding: '%s'"),
17604 dwarf_type_encoding_name (encoding));
17605 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17606 break;
17607 }
17608
17609 if (name && strcmp (name, "char") == 0)
17610 TYPE_NOSIGN (type) = 1;
17611
17612 maybe_set_alignment (cu, die, type);
17613
17614 return set_die_type (die, type, cu);
17615 }
17616
17617 /* Parse dwarf attribute if it's a block, reference or constant and put the
17618 resulting value of the attribute into struct bound_prop.
17619 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17620
17621 static int
17622 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17623 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17624 {
17625 struct dwarf2_property_baton *baton;
17626 struct obstack *obstack
17627 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17628
17629 if (attr == NULL || prop == NULL)
17630 return 0;
17631
17632 if (attr_form_is_block (attr))
17633 {
17634 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17635 baton->referenced_type = NULL;
17636 baton->locexpr.per_cu = cu->per_cu;
17637 baton->locexpr.size = DW_BLOCK (attr)->size;
17638 baton->locexpr.data = DW_BLOCK (attr)->data;
17639 prop->data.baton = baton;
17640 prop->kind = PROP_LOCEXPR;
17641 gdb_assert (prop->data.baton != NULL);
17642 }
17643 else if (attr_form_is_ref (attr))
17644 {
17645 struct dwarf2_cu *target_cu = cu;
17646 struct die_info *target_die;
17647 struct attribute *target_attr;
17648
17649 target_die = follow_die_ref (die, attr, &target_cu);
17650 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17651 if (target_attr == NULL)
17652 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17653 target_cu);
17654 if (target_attr == NULL)
17655 return 0;
17656
17657 switch (target_attr->name)
17658 {
17659 case DW_AT_location:
17660 if (attr_form_is_section_offset (target_attr))
17661 {
17662 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17663 baton->referenced_type = die_type (target_die, target_cu);
17664 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17665 prop->data.baton = baton;
17666 prop->kind = PROP_LOCLIST;
17667 gdb_assert (prop->data.baton != NULL);
17668 }
17669 else if (attr_form_is_block (target_attr))
17670 {
17671 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17672 baton->referenced_type = die_type (target_die, target_cu);
17673 baton->locexpr.per_cu = cu->per_cu;
17674 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17675 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17676 prop->data.baton = baton;
17677 prop->kind = PROP_LOCEXPR;
17678 gdb_assert (prop->data.baton != NULL);
17679 }
17680 else
17681 {
17682 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17683 "dynamic property");
17684 return 0;
17685 }
17686 break;
17687 case DW_AT_data_member_location:
17688 {
17689 LONGEST offset;
17690
17691 if (!handle_data_member_location (target_die, target_cu,
17692 &offset))
17693 return 0;
17694
17695 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17696 baton->referenced_type = read_type_die (target_die->parent,
17697 target_cu);
17698 baton->offset_info.offset = offset;
17699 baton->offset_info.type = die_type (target_die, target_cu);
17700 prop->data.baton = baton;
17701 prop->kind = PROP_ADDR_OFFSET;
17702 break;
17703 }
17704 }
17705 }
17706 else if (attr_form_is_constant (attr))
17707 {
17708 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17709 prop->kind = PROP_CONST;
17710 }
17711 else
17712 {
17713 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17714 dwarf2_name (die, cu));
17715 return 0;
17716 }
17717
17718 return 1;
17719 }
17720
17721 /* Read the given DW_AT_subrange DIE. */
17722
17723 static struct type *
17724 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17725 {
17726 struct type *base_type, *orig_base_type;
17727 struct type *range_type;
17728 struct attribute *attr;
17729 struct dynamic_prop low, high;
17730 int low_default_is_valid;
17731 int high_bound_is_count = 0;
17732 const char *name;
17733 ULONGEST negative_mask;
17734
17735 orig_base_type = die_type (die, cu);
17736 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17737 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17738 creating the range type, but we use the result of check_typedef
17739 when examining properties of the type. */
17740 base_type = check_typedef (orig_base_type);
17741
17742 /* The die_type call above may have already set the type for this DIE. */
17743 range_type = get_die_type (die, cu);
17744 if (range_type)
17745 return range_type;
17746
17747 low.kind = PROP_CONST;
17748 high.kind = PROP_CONST;
17749 high.data.const_val = 0;
17750
17751 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17752 omitting DW_AT_lower_bound. */
17753 switch (cu->language)
17754 {
17755 case language_c:
17756 case language_cplus:
17757 low.data.const_val = 0;
17758 low_default_is_valid = 1;
17759 break;
17760 case language_fortran:
17761 low.data.const_val = 1;
17762 low_default_is_valid = 1;
17763 break;
17764 case language_d:
17765 case language_objc:
17766 case language_rust:
17767 low.data.const_val = 0;
17768 low_default_is_valid = (cu->header.version >= 4);
17769 break;
17770 case language_ada:
17771 case language_m2:
17772 case language_pascal:
17773 low.data.const_val = 1;
17774 low_default_is_valid = (cu->header.version >= 4);
17775 break;
17776 default:
17777 low.data.const_val = 0;
17778 low_default_is_valid = 0;
17779 break;
17780 }
17781
17782 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17783 if (attr)
17784 attr_to_dynamic_prop (attr, die, cu, &low);
17785 else if (!low_default_is_valid)
17786 complaint (_("Missing DW_AT_lower_bound "
17787 "- DIE at %s [in module %s]"),
17788 sect_offset_str (die->sect_off),
17789 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17790
17791 struct attribute *attr_ub, *attr_count;
17792 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17793 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17794 {
17795 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17796 if (attr_to_dynamic_prop (attr, die, cu, &high))
17797 {
17798 /* If bounds are constant do the final calculation here. */
17799 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17800 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17801 else
17802 high_bound_is_count = 1;
17803 }
17804 else
17805 {
17806 if (attr_ub != NULL)
17807 complaint (_("Unresolved DW_AT_upper_bound "
17808 "- DIE at %s [in module %s]"),
17809 sect_offset_str (die->sect_off),
17810 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17811 if (attr_count != NULL)
17812 complaint (_("Unresolved DW_AT_count "
17813 "- DIE at %s [in module %s]"),
17814 sect_offset_str (die->sect_off),
17815 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17816 }
17817
17818 }
17819
17820 /* Dwarf-2 specifications explicitly allows to create subrange types
17821 without specifying a base type.
17822 In that case, the base type must be set to the type of
17823 the lower bound, upper bound or count, in that order, if any of these
17824 three attributes references an object that has a type.
17825 If no base type is found, the Dwarf-2 specifications say that
17826 a signed integer type of size equal to the size of an address should
17827 be used.
17828 For the following C code: `extern char gdb_int [];'
17829 GCC produces an empty range DIE.
17830 FIXME: muller/2010-05-28: Possible references to object for low bound,
17831 high bound or count are not yet handled by this code. */
17832 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17833 {
17834 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17835 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17836 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17837 struct type *int_type = objfile_type (objfile)->builtin_int;
17838
17839 /* Test "int", "long int", and "long long int" objfile types,
17840 and select the first one having a size above or equal to the
17841 architecture address size. */
17842 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17843 base_type = int_type;
17844 else
17845 {
17846 int_type = objfile_type (objfile)->builtin_long;
17847 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17848 base_type = int_type;
17849 else
17850 {
17851 int_type = objfile_type (objfile)->builtin_long_long;
17852 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17853 base_type = int_type;
17854 }
17855 }
17856 }
17857
17858 /* Normally, the DWARF producers are expected to use a signed
17859 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17860 But this is unfortunately not always the case, as witnessed
17861 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17862 is used instead. To work around that ambiguity, we treat
17863 the bounds as signed, and thus sign-extend their values, when
17864 the base type is signed. */
17865 negative_mask =
17866 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17867 if (low.kind == PROP_CONST
17868 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17869 low.data.const_val |= negative_mask;
17870 if (high.kind == PROP_CONST
17871 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17872 high.data.const_val |= negative_mask;
17873
17874 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17875
17876 if (high_bound_is_count)
17877 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17878
17879 /* Ada expects an empty array on no boundary attributes. */
17880 if (attr == NULL && cu->language != language_ada)
17881 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17882
17883 name = dwarf2_name (die, cu);
17884 if (name)
17885 TYPE_NAME (range_type) = name;
17886
17887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17888 if (attr)
17889 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17890
17891 maybe_set_alignment (cu, die, range_type);
17892
17893 set_die_type (die, range_type, cu);
17894
17895 /* set_die_type should be already done. */
17896 set_descriptive_type (range_type, die, cu);
17897
17898 return range_type;
17899 }
17900
17901 static struct type *
17902 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17903 {
17904 struct type *type;
17905
17906 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17907 NULL);
17908 TYPE_NAME (type) = dwarf2_name (die, cu);
17909
17910 /* In Ada, an unspecified type is typically used when the description
17911 of the type is defered to a different unit. When encountering
17912 such a type, we treat it as a stub, and try to resolve it later on,
17913 when needed. */
17914 if (cu->language == language_ada)
17915 TYPE_STUB (type) = 1;
17916
17917 return set_die_type (die, type, cu);
17918 }
17919
17920 /* Read a single die and all its descendents. Set the die's sibling
17921 field to NULL; set other fields in the die correctly, and set all
17922 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17923 location of the info_ptr after reading all of those dies. PARENT
17924 is the parent of the die in question. */
17925
17926 static struct die_info *
17927 read_die_and_children (const struct die_reader_specs *reader,
17928 const gdb_byte *info_ptr,
17929 const gdb_byte **new_info_ptr,
17930 struct die_info *parent)
17931 {
17932 struct die_info *die;
17933 const gdb_byte *cur_ptr;
17934 int has_children;
17935
17936 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17937 if (die == NULL)
17938 {
17939 *new_info_ptr = cur_ptr;
17940 return NULL;
17941 }
17942 store_in_ref_table (die, reader->cu);
17943
17944 if (has_children)
17945 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17946 else
17947 {
17948 die->child = NULL;
17949 *new_info_ptr = cur_ptr;
17950 }
17951
17952 die->sibling = NULL;
17953 die->parent = parent;
17954 return die;
17955 }
17956
17957 /* Read a die, all of its descendents, and all of its siblings; set
17958 all of the fields of all of the dies correctly. Arguments are as
17959 in read_die_and_children. */
17960
17961 static struct die_info *
17962 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17963 const gdb_byte *info_ptr,
17964 const gdb_byte **new_info_ptr,
17965 struct die_info *parent)
17966 {
17967 struct die_info *first_die, *last_sibling;
17968 const gdb_byte *cur_ptr;
17969
17970 cur_ptr = info_ptr;
17971 first_die = last_sibling = NULL;
17972
17973 while (1)
17974 {
17975 struct die_info *die
17976 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17977
17978 if (die == NULL)
17979 {
17980 *new_info_ptr = cur_ptr;
17981 return first_die;
17982 }
17983
17984 if (!first_die)
17985 first_die = die;
17986 else
17987 last_sibling->sibling = die;
17988
17989 last_sibling = die;
17990 }
17991 }
17992
17993 /* Read a die, all of its descendents, and all of its siblings; set
17994 all of the fields of all of the dies correctly. Arguments are as
17995 in read_die_and_children.
17996 This the main entry point for reading a DIE and all its children. */
17997
17998 static struct die_info *
17999 read_die_and_siblings (const struct die_reader_specs *reader,
18000 const gdb_byte *info_ptr,
18001 const gdb_byte **new_info_ptr,
18002 struct die_info *parent)
18003 {
18004 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18005 new_info_ptr, parent);
18006
18007 if (dwarf_die_debug)
18008 {
18009 fprintf_unfiltered (gdb_stdlog,
18010 "Read die from %s@0x%x of %s:\n",
18011 get_section_name (reader->die_section),
18012 (unsigned) (info_ptr - reader->die_section->buffer),
18013 bfd_get_filename (reader->abfd));
18014 dump_die (die, dwarf_die_debug);
18015 }
18016
18017 return die;
18018 }
18019
18020 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18021 attributes.
18022 The caller is responsible for filling in the extra attributes
18023 and updating (*DIEP)->num_attrs.
18024 Set DIEP to point to a newly allocated die with its information,
18025 except for its child, sibling, and parent fields.
18026 Set HAS_CHILDREN to tell whether the die has children or not. */
18027
18028 static const gdb_byte *
18029 read_full_die_1 (const struct die_reader_specs *reader,
18030 struct die_info **diep, const gdb_byte *info_ptr,
18031 int *has_children, int num_extra_attrs)
18032 {
18033 unsigned int abbrev_number, bytes_read, i;
18034 struct abbrev_info *abbrev;
18035 struct die_info *die;
18036 struct dwarf2_cu *cu = reader->cu;
18037 bfd *abfd = reader->abfd;
18038
18039 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18040 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18041 info_ptr += bytes_read;
18042 if (!abbrev_number)
18043 {
18044 *diep = NULL;
18045 *has_children = 0;
18046 return info_ptr;
18047 }
18048
18049 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18050 if (!abbrev)
18051 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18052 abbrev_number,
18053 bfd_get_filename (abfd));
18054
18055 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18056 die->sect_off = sect_off;
18057 die->tag = abbrev->tag;
18058 die->abbrev = abbrev_number;
18059
18060 /* Make the result usable.
18061 The caller needs to update num_attrs after adding the extra
18062 attributes. */
18063 die->num_attrs = abbrev->num_attrs;
18064
18065 for (i = 0; i < abbrev->num_attrs; ++i)
18066 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18067 info_ptr);
18068
18069 *diep = die;
18070 *has_children = abbrev->has_children;
18071 return info_ptr;
18072 }
18073
18074 /* Read a die and all its attributes.
18075 Set DIEP to point to a newly allocated die with its information,
18076 except for its child, sibling, and parent fields.
18077 Set HAS_CHILDREN to tell whether the die has children or not. */
18078
18079 static const gdb_byte *
18080 read_full_die (const struct die_reader_specs *reader,
18081 struct die_info **diep, const gdb_byte *info_ptr,
18082 int *has_children)
18083 {
18084 const gdb_byte *result;
18085
18086 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18087
18088 if (dwarf_die_debug)
18089 {
18090 fprintf_unfiltered (gdb_stdlog,
18091 "Read die from %s@0x%x of %s:\n",
18092 get_section_name (reader->die_section),
18093 (unsigned) (info_ptr - reader->die_section->buffer),
18094 bfd_get_filename (reader->abfd));
18095 dump_die (*diep, dwarf_die_debug);
18096 }
18097
18098 return result;
18099 }
18100 \f
18101 /* Abbreviation tables.
18102
18103 In DWARF version 2, the description of the debugging information is
18104 stored in a separate .debug_abbrev section. Before we read any
18105 dies from a section we read in all abbreviations and install them
18106 in a hash table. */
18107
18108 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18109
18110 struct abbrev_info *
18111 abbrev_table::alloc_abbrev ()
18112 {
18113 struct abbrev_info *abbrev;
18114
18115 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18116 memset (abbrev, 0, sizeof (struct abbrev_info));
18117
18118 return abbrev;
18119 }
18120
18121 /* Add an abbreviation to the table. */
18122
18123 void
18124 abbrev_table::add_abbrev (unsigned int abbrev_number,
18125 struct abbrev_info *abbrev)
18126 {
18127 unsigned int hash_number;
18128
18129 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18130 abbrev->next = m_abbrevs[hash_number];
18131 m_abbrevs[hash_number] = abbrev;
18132 }
18133
18134 /* Look up an abbrev in the table.
18135 Returns NULL if the abbrev is not found. */
18136
18137 struct abbrev_info *
18138 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18139 {
18140 unsigned int hash_number;
18141 struct abbrev_info *abbrev;
18142
18143 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18144 abbrev = m_abbrevs[hash_number];
18145
18146 while (abbrev)
18147 {
18148 if (abbrev->number == abbrev_number)
18149 return abbrev;
18150 abbrev = abbrev->next;
18151 }
18152 return NULL;
18153 }
18154
18155 /* Read in an abbrev table. */
18156
18157 static abbrev_table_up
18158 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18159 struct dwarf2_section_info *section,
18160 sect_offset sect_off)
18161 {
18162 struct objfile *objfile = dwarf2_per_objfile->objfile;
18163 bfd *abfd = get_section_bfd_owner (section);
18164 const gdb_byte *abbrev_ptr;
18165 struct abbrev_info *cur_abbrev;
18166 unsigned int abbrev_number, bytes_read, abbrev_name;
18167 unsigned int abbrev_form;
18168 struct attr_abbrev *cur_attrs;
18169 unsigned int allocated_attrs;
18170
18171 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18172
18173 dwarf2_read_section (objfile, section);
18174 abbrev_ptr = section->buffer + to_underlying (sect_off);
18175 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18176 abbrev_ptr += bytes_read;
18177
18178 allocated_attrs = ATTR_ALLOC_CHUNK;
18179 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18180
18181 /* Loop until we reach an abbrev number of 0. */
18182 while (abbrev_number)
18183 {
18184 cur_abbrev = abbrev_table->alloc_abbrev ();
18185
18186 /* read in abbrev header */
18187 cur_abbrev->number = abbrev_number;
18188 cur_abbrev->tag
18189 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18190 abbrev_ptr += bytes_read;
18191 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18192 abbrev_ptr += 1;
18193
18194 /* now read in declarations */
18195 for (;;)
18196 {
18197 LONGEST implicit_const;
18198
18199 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18200 abbrev_ptr += bytes_read;
18201 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18202 abbrev_ptr += bytes_read;
18203 if (abbrev_form == DW_FORM_implicit_const)
18204 {
18205 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18206 &bytes_read);
18207 abbrev_ptr += bytes_read;
18208 }
18209 else
18210 {
18211 /* Initialize it due to a false compiler warning. */
18212 implicit_const = -1;
18213 }
18214
18215 if (abbrev_name == 0)
18216 break;
18217
18218 if (cur_abbrev->num_attrs == allocated_attrs)
18219 {
18220 allocated_attrs += ATTR_ALLOC_CHUNK;
18221 cur_attrs
18222 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18223 }
18224
18225 cur_attrs[cur_abbrev->num_attrs].name
18226 = (enum dwarf_attribute) abbrev_name;
18227 cur_attrs[cur_abbrev->num_attrs].form
18228 = (enum dwarf_form) abbrev_form;
18229 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18230 ++cur_abbrev->num_attrs;
18231 }
18232
18233 cur_abbrev->attrs =
18234 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18235 cur_abbrev->num_attrs);
18236 memcpy (cur_abbrev->attrs, cur_attrs,
18237 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18238
18239 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18240
18241 /* Get next abbreviation.
18242 Under Irix6 the abbreviations for a compilation unit are not
18243 always properly terminated with an abbrev number of 0.
18244 Exit loop if we encounter an abbreviation which we have
18245 already read (which means we are about to read the abbreviations
18246 for the next compile unit) or if the end of the abbreviation
18247 table is reached. */
18248 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18249 break;
18250 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18251 abbrev_ptr += bytes_read;
18252 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18253 break;
18254 }
18255
18256 xfree (cur_attrs);
18257 return abbrev_table;
18258 }
18259
18260 /* Returns nonzero if TAG represents a type that we might generate a partial
18261 symbol for. */
18262
18263 static int
18264 is_type_tag_for_partial (int tag)
18265 {
18266 switch (tag)
18267 {
18268 #if 0
18269 /* Some types that would be reasonable to generate partial symbols for,
18270 that we don't at present. */
18271 case DW_TAG_array_type:
18272 case DW_TAG_file_type:
18273 case DW_TAG_ptr_to_member_type:
18274 case DW_TAG_set_type:
18275 case DW_TAG_string_type:
18276 case DW_TAG_subroutine_type:
18277 #endif
18278 case DW_TAG_base_type:
18279 case DW_TAG_class_type:
18280 case DW_TAG_interface_type:
18281 case DW_TAG_enumeration_type:
18282 case DW_TAG_structure_type:
18283 case DW_TAG_subrange_type:
18284 case DW_TAG_typedef:
18285 case DW_TAG_union_type:
18286 return 1;
18287 default:
18288 return 0;
18289 }
18290 }
18291
18292 /* Load all DIEs that are interesting for partial symbols into memory. */
18293
18294 static struct partial_die_info *
18295 load_partial_dies (const struct die_reader_specs *reader,
18296 const gdb_byte *info_ptr, int building_psymtab)
18297 {
18298 struct dwarf2_cu *cu = reader->cu;
18299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18300 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18301 unsigned int bytes_read;
18302 unsigned int load_all = 0;
18303 int nesting_level = 1;
18304
18305 parent_die = NULL;
18306 last_die = NULL;
18307
18308 gdb_assert (cu->per_cu != NULL);
18309 if (cu->per_cu->load_all_dies)
18310 load_all = 1;
18311
18312 cu->partial_dies
18313 = htab_create_alloc_ex (cu->header.length / 12,
18314 partial_die_hash,
18315 partial_die_eq,
18316 NULL,
18317 &cu->comp_unit_obstack,
18318 hashtab_obstack_allocate,
18319 dummy_obstack_deallocate);
18320
18321 while (1)
18322 {
18323 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18324
18325 /* A NULL abbrev means the end of a series of children. */
18326 if (abbrev == NULL)
18327 {
18328 if (--nesting_level == 0)
18329 return first_die;
18330
18331 info_ptr += bytes_read;
18332 last_die = parent_die;
18333 parent_die = parent_die->die_parent;
18334 continue;
18335 }
18336
18337 /* Check for template arguments. We never save these; if
18338 they're seen, we just mark the parent, and go on our way. */
18339 if (parent_die != NULL
18340 && cu->language == language_cplus
18341 && (abbrev->tag == DW_TAG_template_type_param
18342 || abbrev->tag == DW_TAG_template_value_param))
18343 {
18344 parent_die->has_template_arguments = 1;
18345
18346 if (!load_all)
18347 {
18348 /* We don't need a partial DIE for the template argument. */
18349 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18350 continue;
18351 }
18352 }
18353
18354 /* We only recurse into c++ subprograms looking for template arguments.
18355 Skip their other children. */
18356 if (!load_all
18357 && cu->language == language_cplus
18358 && parent_die != NULL
18359 && parent_die->tag == DW_TAG_subprogram)
18360 {
18361 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18362 continue;
18363 }
18364
18365 /* Check whether this DIE is interesting enough to save. Normally
18366 we would not be interested in members here, but there may be
18367 later variables referencing them via DW_AT_specification (for
18368 static members). */
18369 if (!load_all
18370 && !is_type_tag_for_partial (abbrev->tag)
18371 && abbrev->tag != DW_TAG_constant
18372 && abbrev->tag != DW_TAG_enumerator
18373 && abbrev->tag != DW_TAG_subprogram
18374 && abbrev->tag != DW_TAG_inlined_subroutine
18375 && abbrev->tag != DW_TAG_lexical_block
18376 && abbrev->tag != DW_TAG_variable
18377 && abbrev->tag != DW_TAG_namespace
18378 && abbrev->tag != DW_TAG_module
18379 && abbrev->tag != DW_TAG_member
18380 && abbrev->tag != DW_TAG_imported_unit
18381 && abbrev->tag != DW_TAG_imported_declaration)
18382 {
18383 /* Otherwise we skip to the next sibling, if any. */
18384 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18385 continue;
18386 }
18387
18388 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18389 abbrev);
18390
18391 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18392
18393 /* This two-pass algorithm for processing partial symbols has a
18394 high cost in cache pressure. Thus, handle some simple cases
18395 here which cover the majority of C partial symbols. DIEs
18396 which neither have specification tags in them, nor could have
18397 specification tags elsewhere pointing at them, can simply be
18398 processed and discarded.
18399
18400 This segment is also optional; scan_partial_symbols and
18401 add_partial_symbol will handle these DIEs if we chain
18402 them in normally. When compilers which do not emit large
18403 quantities of duplicate debug information are more common,
18404 this code can probably be removed. */
18405
18406 /* Any complete simple types at the top level (pretty much all
18407 of them, for a language without namespaces), can be processed
18408 directly. */
18409 if (parent_die == NULL
18410 && pdi.has_specification == 0
18411 && pdi.is_declaration == 0
18412 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18413 || pdi.tag == DW_TAG_base_type
18414 || pdi.tag == DW_TAG_subrange_type))
18415 {
18416 if (building_psymtab && pdi.name != NULL)
18417 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18418 VAR_DOMAIN, LOC_TYPEDEF, -1,
18419 psymbol_placement::STATIC,
18420 0, cu->language, objfile);
18421 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18422 continue;
18423 }
18424
18425 /* The exception for DW_TAG_typedef with has_children above is
18426 a workaround of GCC PR debug/47510. In the case of this complaint
18427 type_name_or_error will error on such types later.
18428
18429 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18430 it could not find the child DIEs referenced later, this is checked
18431 above. In correct DWARF DW_TAG_typedef should have no children. */
18432
18433 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18434 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18435 "- DIE at %s [in module %s]"),
18436 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18437
18438 /* If we're at the second level, and we're an enumerator, and
18439 our parent has no specification (meaning possibly lives in a
18440 namespace elsewhere), then we can add the partial symbol now
18441 instead of queueing it. */
18442 if (pdi.tag == DW_TAG_enumerator
18443 && parent_die != NULL
18444 && parent_die->die_parent == NULL
18445 && parent_die->tag == DW_TAG_enumeration_type
18446 && parent_die->has_specification == 0)
18447 {
18448 if (pdi.name == NULL)
18449 complaint (_("malformed enumerator DIE ignored"));
18450 else if (building_psymtab)
18451 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18452 VAR_DOMAIN, LOC_CONST, -1,
18453 cu->language == language_cplus
18454 ? psymbol_placement::GLOBAL
18455 : psymbol_placement::STATIC,
18456 0, cu->language, objfile);
18457
18458 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18459 continue;
18460 }
18461
18462 struct partial_die_info *part_die
18463 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18464
18465 /* We'll save this DIE so link it in. */
18466 part_die->die_parent = parent_die;
18467 part_die->die_sibling = NULL;
18468 part_die->die_child = NULL;
18469
18470 if (last_die && last_die == parent_die)
18471 last_die->die_child = part_die;
18472 else if (last_die)
18473 last_die->die_sibling = part_die;
18474
18475 last_die = part_die;
18476
18477 if (first_die == NULL)
18478 first_die = part_die;
18479
18480 /* Maybe add the DIE to the hash table. Not all DIEs that we
18481 find interesting need to be in the hash table, because we
18482 also have the parent/sibling/child chains; only those that we
18483 might refer to by offset later during partial symbol reading.
18484
18485 For now this means things that might have be the target of a
18486 DW_AT_specification, DW_AT_abstract_origin, or
18487 DW_AT_extension. DW_AT_extension will refer only to
18488 namespaces; DW_AT_abstract_origin refers to functions (and
18489 many things under the function DIE, but we do not recurse
18490 into function DIEs during partial symbol reading) and
18491 possibly variables as well; DW_AT_specification refers to
18492 declarations. Declarations ought to have the DW_AT_declaration
18493 flag. It happens that GCC forgets to put it in sometimes, but
18494 only for functions, not for types.
18495
18496 Adding more things than necessary to the hash table is harmless
18497 except for the performance cost. Adding too few will result in
18498 wasted time in find_partial_die, when we reread the compilation
18499 unit with load_all_dies set. */
18500
18501 if (load_all
18502 || abbrev->tag == DW_TAG_constant
18503 || abbrev->tag == DW_TAG_subprogram
18504 || abbrev->tag == DW_TAG_variable
18505 || abbrev->tag == DW_TAG_namespace
18506 || part_die->is_declaration)
18507 {
18508 void **slot;
18509
18510 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18511 to_underlying (part_die->sect_off),
18512 INSERT);
18513 *slot = part_die;
18514 }
18515
18516 /* For some DIEs we want to follow their children (if any). For C
18517 we have no reason to follow the children of structures; for other
18518 languages we have to, so that we can get at method physnames
18519 to infer fully qualified class names, for DW_AT_specification,
18520 and for C++ template arguments. For C++, we also look one level
18521 inside functions to find template arguments (if the name of the
18522 function does not already contain the template arguments).
18523
18524 For Ada, we need to scan the children of subprograms and lexical
18525 blocks as well because Ada allows the definition of nested
18526 entities that could be interesting for the debugger, such as
18527 nested subprograms for instance. */
18528 if (last_die->has_children
18529 && (load_all
18530 || last_die->tag == DW_TAG_namespace
18531 || last_die->tag == DW_TAG_module
18532 || last_die->tag == DW_TAG_enumeration_type
18533 || (cu->language == language_cplus
18534 && last_die->tag == DW_TAG_subprogram
18535 && (last_die->name == NULL
18536 || strchr (last_die->name, '<') == NULL))
18537 || (cu->language != language_c
18538 && (last_die->tag == DW_TAG_class_type
18539 || last_die->tag == DW_TAG_interface_type
18540 || last_die->tag == DW_TAG_structure_type
18541 || last_die->tag == DW_TAG_union_type))
18542 || (cu->language == language_ada
18543 && (last_die->tag == DW_TAG_subprogram
18544 || last_die->tag == DW_TAG_lexical_block))))
18545 {
18546 nesting_level++;
18547 parent_die = last_die;
18548 continue;
18549 }
18550
18551 /* Otherwise we skip to the next sibling, if any. */
18552 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18553
18554 /* Back to the top, do it again. */
18555 }
18556 }
18557
18558 partial_die_info::partial_die_info (sect_offset sect_off_,
18559 struct abbrev_info *abbrev)
18560 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18561 {
18562 }
18563
18564 /* Read a minimal amount of information into the minimal die structure.
18565 INFO_PTR should point just after the initial uleb128 of a DIE. */
18566
18567 const gdb_byte *
18568 partial_die_info::read (const struct die_reader_specs *reader,
18569 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18570 {
18571 struct dwarf2_cu *cu = reader->cu;
18572 struct dwarf2_per_objfile *dwarf2_per_objfile
18573 = cu->per_cu->dwarf2_per_objfile;
18574 unsigned int i;
18575 int has_low_pc_attr = 0;
18576 int has_high_pc_attr = 0;
18577 int high_pc_relative = 0;
18578
18579 for (i = 0; i < abbrev.num_attrs; ++i)
18580 {
18581 struct attribute attr;
18582
18583 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18584
18585 /* Store the data if it is of an attribute we want to keep in a
18586 partial symbol table. */
18587 switch (attr.name)
18588 {
18589 case DW_AT_name:
18590 switch (tag)
18591 {
18592 case DW_TAG_compile_unit:
18593 case DW_TAG_partial_unit:
18594 case DW_TAG_type_unit:
18595 /* Compilation units have a DW_AT_name that is a filename, not
18596 a source language identifier. */
18597 case DW_TAG_enumeration_type:
18598 case DW_TAG_enumerator:
18599 /* These tags always have simple identifiers already; no need
18600 to canonicalize them. */
18601 name = DW_STRING (&attr);
18602 break;
18603 default:
18604 {
18605 struct objfile *objfile = dwarf2_per_objfile->objfile;
18606
18607 name
18608 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18609 &objfile->per_bfd->storage_obstack);
18610 }
18611 break;
18612 }
18613 break;
18614 case DW_AT_linkage_name:
18615 case DW_AT_MIPS_linkage_name:
18616 /* Note that both forms of linkage name might appear. We
18617 assume they will be the same, and we only store the last
18618 one we see. */
18619 if (cu->language == language_ada)
18620 name = DW_STRING (&attr);
18621 linkage_name = DW_STRING (&attr);
18622 break;
18623 case DW_AT_low_pc:
18624 has_low_pc_attr = 1;
18625 lowpc = attr_value_as_address (&attr);
18626 break;
18627 case DW_AT_high_pc:
18628 has_high_pc_attr = 1;
18629 highpc = attr_value_as_address (&attr);
18630 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18631 high_pc_relative = 1;
18632 break;
18633 case DW_AT_location:
18634 /* Support the .debug_loc offsets. */
18635 if (attr_form_is_block (&attr))
18636 {
18637 d.locdesc = DW_BLOCK (&attr);
18638 }
18639 else if (attr_form_is_section_offset (&attr))
18640 {
18641 dwarf2_complex_location_expr_complaint ();
18642 }
18643 else
18644 {
18645 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18646 "partial symbol information");
18647 }
18648 break;
18649 case DW_AT_external:
18650 is_external = DW_UNSND (&attr);
18651 break;
18652 case DW_AT_declaration:
18653 is_declaration = DW_UNSND (&attr);
18654 break;
18655 case DW_AT_type:
18656 has_type = 1;
18657 break;
18658 case DW_AT_abstract_origin:
18659 case DW_AT_specification:
18660 case DW_AT_extension:
18661 has_specification = 1;
18662 spec_offset = dwarf2_get_ref_die_offset (&attr);
18663 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18664 || cu->per_cu->is_dwz);
18665 break;
18666 case DW_AT_sibling:
18667 /* Ignore absolute siblings, they might point outside of
18668 the current compile unit. */
18669 if (attr.form == DW_FORM_ref_addr)
18670 complaint (_("ignoring absolute DW_AT_sibling"));
18671 else
18672 {
18673 const gdb_byte *buffer = reader->buffer;
18674 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18675 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18676
18677 if (sibling_ptr < info_ptr)
18678 complaint (_("DW_AT_sibling points backwards"));
18679 else if (sibling_ptr > reader->buffer_end)
18680 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18681 else
18682 sibling = sibling_ptr;
18683 }
18684 break;
18685 case DW_AT_byte_size:
18686 has_byte_size = 1;
18687 break;
18688 case DW_AT_const_value:
18689 has_const_value = 1;
18690 break;
18691 case DW_AT_calling_convention:
18692 /* DWARF doesn't provide a way to identify a program's source-level
18693 entry point. DW_AT_calling_convention attributes are only meant
18694 to describe functions' calling conventions.
18695
18696 However, because it's a necessary piece of information in
18697 Fortran, and before DWARF 4 DW_CC_program was the only
18698 piece of debugging information whose definition refers to
18699 a 'main program' at all, several compilers marked Fortran
18700 main programs with DW_CC_program --- even when those
18701 functions use the standard calling conventions.
18702
18703 Although DWARF now specifies a way to provide this
18704 information, we support this practice for backward
18705 compatibility. */
18706 if (DW_UNSND (&attr) == DW_CC_program
18707 && cu->language == language_fortran)
18708 main_subprogram = 1;
18709 break;
18710 case DW_AT_inline:
18711 if (DW_UNSND (&attr) == DW_INL_inlined
18712 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18713 may_be_inlined = 1;
18714 break;
18715
18716 case DW_AT_import:
18717 if (tag == DW_TAG_imported_unit)
18718 {
18719 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18720 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18721 || cu->per_cu->is_dwz);
18722 }
18723 break;
18724
18725 case DW_AT_main_subprogram:
18726 main_subprogram = DW_UNSND (&attr);
18727 break;
18728
18729 default:
18730 break;
18731 }
18732 }
18733
18734 if (high_pc_relative)
18735 highpc += lowpc;
18736
18737 if (has_low_pc_attr && has_high_pc_attr)
18738 {
18739 /* When using the GNU linker, .gnu.linkonce. sections are used to
18740 eliminate duplicate copies of functions and vtables and such.
18741 The linker will arbitrarily choose one and discard the others.
18742 The AT_*_pc values for such functions refer to local labels in
18743 these sections. If the section from that file was discarded, the
18744 labels are not in the output, so the relocs get a value of 0.
18745 If this is a discarded function, mark the pc bounds as invalid,
18746 so that GDB will ignore it. */
18747 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18748 {
18749 struct objfile *objfile = dwarf2_per_objfile->objfile;
18750 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18751
18752 complaint (_("DW_AT_low_pc %s is zero "
18753 "for DIE at %s [in module %s]"),
18754 paddress (gdbarch, lowpc),
18755 sect_offset_str (sect_off),
18756 objfile_name (objfile));
18757 }
18758 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18759 else if (lowpc >= highpc)
18760 {
18761 struct objfile *objfile = dwarf2_per_objfile->objfile;
18762 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18763
18764 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18765 "for DIE at %s [in module %s]"),
18766 paddress (gdbarch, lowpc),
18767 paddress (gdbarch, highpc),
18768 sect_offset_str (sect_off),
18769 objfile_name (objfile));
18770 }
18771 else
18772 has_pc_info = 1;
18773 }
18774
18775 return info_ptr;
18776 }
18777
18778 /* Find a cached partial DIE at OFFSET in CU. */
18779
18780 struct partial_die_info *
18781 dwarf2_cu::find_partial_die (sect_offset sect_off)
18782 {
18783 struct partial_die_info *lookup_die = NULL;
18784 struct partial_die_info part_die (sect_off);
18785
18786 lookup_die = ((struct partial_die_info *)
18787 htab_find_with_hash (partial_dies, &part_die,
18788 to_underlying (sect_off)));
18789
18790 return lookup_die;
18791 }
18792
18793 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18794 except in the case of .debug_types DIEs which do not reference
18795 outside their CU (they do however referencing other types via
18796 DW_FORM_ref_sig8). */
18797
18798 static struct partial_die_info *
18799 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18800 {
18801 struct dwarf2_per_objfile *dwarf2_per_objfile
18802 = cu->per_cu->dwarf2_per_objfile;
18803 struct objfile *objfile = dwarf2_per_objfile->objfile;
18804 struct dwarf2_per_cu_data *per_cu = NULL;
18805 struct partial_die_info *pd = NULL;
18806
18807 if (offset_in_dwz == cu->per_cu->is_dwz
18808 && offset_in_cu_p (&cu->header, sect_off))
18809 {
18810 pd = cu->find_partial_die (sect_off);
18811 if (pd != NULL)
18812 return pd;
18813 /* We missed recording what we needed.
18814 Load all dies and try again. */
18815 per_cu = cu->per_cu;
18816 }
18817 else
18818 {
18819 /* TUs don't reference other CUs/TUs (except via type signatures). */
18820 if (cu->per_cu->is_debug_types)
18821 {
18822 error (_("Dwarf Error: Type Unit at offset %s contains"
18823 " external reference to offset %s [in module %s].\n"),
18824 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18825 bfd_get_filename (objfile->obfd));
18826 }
18827 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18828 dwarf2_per_objfile);
18829
18830 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18831 load_partial_comp_unit (per_cu);
18832
18833 per_cu->cu->last_used = 0;
18834 pd = per_cu->cu->find_partial_die (sect_off);
18835 }
18836
18837 /* If we didn't find it, and not all dies have been loaded,
18838 load them all and try again. */
18839
18840 if (pd == NULL && per_cu->load_all_dies == 0)
18841 {
18842 per_cu->load_all_dies = 1;
18843
18844 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18845 THIS_CU->cu may already be in use. So we can't just free it and
18846 replace its DIEs with the ones we read in. Instead, we leave those
18847 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18848 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18849 set. */
18850 load_partial_comp_unit (per_cu);
18851
18852 pd = per_cu->cu->find_partial_die (sect_off);
18853 }
18854
18855 if (pd == NULL)
18856 internal_error (__FILE__, __LINE__,
18857 _("could not find partial DIE %s "
18858 "in cache [from module %s]\n"),
18859 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18860 return pd;
18861 }
18862
18863 /* See if we can figure out if the class lives in a namespace. We do
18864 this by looking for a member function; its demangled name will
18865 contain namespace info, if there is any. */
18866
18867 static void
18868 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18869 struct dwarf2_cu *cu)
18870 {
18871 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18872 what template types look like, because the demangler
18873 frequently doesn't give the same name as the debug info. We
18874 could fix this by only using the demangled name to get the
18875 prefix (but see comment in read_structure_type). */
18876
18877 struct partial_die_info *real_pdi;
18878 struct partial_die_info *child_pdi;
18879
18880 /* If this DIE (this DIE's specification, if any) has a parent, then
18881 we should not do this. We'll prepend the parent's fully qualified
18882 name when we create the partial symbol. */
18883
18884 real_pdi = struct_pdi;
18885 while (real_pdi->has_specification)
18886 real_pdi = find_partial_die (real_pdi->spec_offset,
18887 real_pdi->spec_is_dwz, cu);
18888
18889 if (real_pdi->die_parent != NULL)
18890 return;
18891
18892 for (child_pdi = struct_pdi->die_child;
18893 child_pdi != NULL;
18894 child_pdi = child_pdi->die_sibling)
18895 {
18896 if (child_pdi->tag == DW_TAG_subprogram
18897 && child_pdi->linkage_name != NULL)
18898 {
18899 char *actual_class_name
18900 = language_class_name_from_physname (cu->language_defn,
18901 child_pdi->linkage_name);
18902 if (actual_class_name != NULL)
18903 {
18904 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18905 struct_pdi->name
18906 = ((const char *)
18907 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18908 actual_class_name,
18909 strlen (actual_class_name)));
18910 xfree (actual_class_name);
18911 }
18912 break;
18913 }
18914 }
18915 }
18916
18917 void
18918 partial_die_info::fixup (struct dwarf2_cu *cu)
18919 {
18920 /* Once we've fixed up a die, there's no point in doing so again.
18921 This also avoids a memory leak if we were to call
18922 guess_partial_die_structure_name multiple times. */
18923 if (fixup_called)
18924 return;
18925
18926 /* If we found a reference attribute and the DIE has no name, try
18927 to find a name in the referred to DIE. */
18928
18929 if (name == NULL && has_specification)
18930 {
18931 struct partial_die_info *spec_die;
18932
18933 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18934
18935 spec_die->fixup (cu);
18936
18937 if (spec_die->name)
18938 {
18939 name = spec_die->name;
18940
18941 /* Copy DW_AT_external attribute if it is set. */
18942 if (spec_die->is_external)
18943 is_external = spec_die->is_external;
18944 }
18945 }
18946
18947 /* Set default names for some unnamed DIEs. */
18948
18949 if (name == NULL && tag == DW_TAG_namespace)
18950 name = CP_ANONYMOUS_NAMESPACE_STR;
18951
18952 /* If there is no parent die to provide a namespace, and there are
18953 children, see if we can determine the namespace from their linkage
18954 name. */
18955 if (cu->language == language_cplus
18956 && !VEC_empty (dwarf2_section_info_def,
18957 cu->per_cu->dwarf2_per_objfile->types)
18958 && die_parent == NULL
18959 && has_children
18960 && (tag == DW_TAG_class_type
18961 || tag == DW_TAG_structure_type
18962 || tag == DW_TAG_union_type))
18963 guess_partial_die_structure_name (this, cu);
18964
18965 /* GCC might emit a nameless struct or union that has a linkage
18966 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18967 if (name == NULL
18968 && (tag == DW_TAG_class_type
18969 || tag == DW_TAG_interface_type
18970 || tag == DW_TAG_structure_type
18971 || tag == DW_TAG_union_type)
18972 && linkage_name != NULL)
18973 {
18974 char *demangled;
18975
18976 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18977 if (demangled)
18978 {
18979 const char *base;
18980
18981 /* Strip any leading namespaces/classes, keep only the base name.
18982 DW_AT_name for named DIEs does not contain the prefixes. */
18983 base = strrchr (demangled, ':');
18984 if (base && base > demangled && base[-1] == ':')
18985 base++;
18986 else
18987 base = demangled;
18988
18989 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18990 name
18991 = ((const char *)
18992 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18993 base, strlen (base)));
18994 xfree (demangled);
18995 }
18996 }
18997
18998 fixup_called = 1;
18999 }
19000
19001 /* Read an attribute value described by an attribute form. */
19002
19003 static const gdb_byte *
19004 read_attribute_value (const struct die_reader_specs *reader,
19005 struct attribute *attr, unsigned form,
19006 LONGEST implicit_const, const gdb_byte *info_ptr)
19007 {
19008 struct dwarf2_cu *cu = reader->cu;
19009 struct dwarf2_per_objfile *dwarf2_per_objfile
19010 = cu->per_cu->dwarf2_per_objfile;
19011 struct objfile *objfile = dwarf2_per_objfile->objfile;
19012 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19013 bfd *abfd = reader->abfd;
19014 struct comp_unit_head *cu_header = &cu->header;
19015 unsigned int bytes_read;
19016 struct dwarf_block *blk;
19017
19018 attr->form = (enum dwarf_form) form;
19019 switch (form)
19020 {
19021 case DW_FORM_ref_addr:
19022 if (cu->header.version == 2)
19023 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19024 else
19025 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19026 &cu->header, &bytes_read);
19027 info_ptr += bytes_read;
19028 break;
19029 case DW_FORM_GNU_ref_alt:
19030 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19031 info_ptr += bytes_read;
19032 break;
19033 case DW_FORM_addr:
19034 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19035 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19036 info_ptr += bytes_read;
19037 break;
19038 case DW_FORM_block2:
19039 blk = dwarf_alloc_block (cu);
19040 blk->size = read_2_bytes (abfd, info_ptr);
19041 info_ptr += 2;
19042 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19043 info_ptr += blk->size;
19044 DW_BLOCK (attr) = blk;
19045 break;
19046 case DW_FORM_block4:
19047 blk = dwarf_alloc_block (cu);
19048 blk->size = read_4_bytes (abfd, info_ptr);
19049 info_ptr += 4;
19050 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19051 info_ptr += blk->size;
19052 DW_BLOCK (attr) = blk;
19053 break;
19054 case DW_FORM_data2:
19055 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19056 info_ptr += 2;
19057 break;
19058 case DW_FORM_data4:
19059 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19060 info_ptr += 4;
19061 break;
19062 case DW_FORM_data8:
19063 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19064 info_ptr += 8;
19065 break;
19066 case DW_FORM_data16:
19067 blk = dwarf_alloc_block (cu);
19068 blk->size = 16;
19069 blk->data = read_n_bytes (abfd, info_ptr, 16);
19070 info_ptr += 16;
19071 DW_BLOCK (attr) = blk;
19072 break;
19073 case DW_FORM_sec_offset:
19074 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19075 info_ptr += bytes_read;
19076 break;
19077 case DW_FORM_string:
19078 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19079 DW_STRING_IS_CANONICAL (attr) = 0;
19080 info_ptr += bytes_read;
19081 break;
19082 case DW_FORM_strp:
19083 if (!cu->per_cu->is_dwz)
19084 {
19085 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19086 abfd, info_ptr, cu_header,
19087 &bytes_read);
19088 DW_STRING_IS_CANONICAL (attr) = 0;
19089 info_ptr += bytes_read;
19090 break;
19091 }
19092 /* FALLTHROUGH */
19093 case DW_FORM_line_strp:
19094 if (!cu->per_cu->is_dwz)
19095 {
19096 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19097 abfd, info_ptr,
19098 cu_header, &bytes_read);
19099 DW_STRING_IS_CANONICAL (attr) = 0;
19100 info_ptr += bytes_read;
19101 break;
19102 }
19103 /* FALLTHROUGH */
19104 case DW_FORM_GNU_strp_alt:
19105 {
19106 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19107 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19108 &bytes_read);
19109
19110 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19111 dwz, str_offset);
19112 DW_STRING_IS_CANONICAL (attr) = 0;
19113 info_ptr += bytes_read;
19114 }
19115 break;
19116 case DW_FORM_exprloc:
19117 case DW_FORM_block:
19118 blk = dwarf_alloc_block (cu);
19119 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19120 info_ptr += bytes_read;
19121 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19122 info_ptr += blk->size;
19123 DW_BLOCK (attr) = blk;
19124 break;
19125 case DW_FORM_block1:
19126 blk = dwarf_alloc_block (cu);
19127 blk->size = read_1_byte (abfd, info_ptr);
19128 info_ptr += 1;
19129 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19130 info_ptr += blk->size;
19131 DW_BLOCK (attr) = blk;
19132 break;
19133 case DW_FORM_data1:
19134 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19135 info_ptr += 1;
19136 break;
19137 case DW_FORM_flag:
19138 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19139 info_ptr += 1;
19140 break;
19141 case DW_FORM_flag_present:
19142 DW_UNSND (attr) = 1;
19143 break;
19144 case DW_FORM_sdata:
19145 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19146 info_ptr += bytes_read;
19147 break;
19148 case DW_FORM_udata:
19149 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19150 info_ptr += bytes_read;
19151 break;
19152 case DW_FORM_ref1:
19153 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19154 + read_1_byte (abfd, info_ptr));
19155 info_ptr += 1;
19156 break;
19157 case DW_FORM_ref2:
19158 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19159 + read_2_bytes (abfd, info_ptr));
19160 info_ptr += 2;
19161 break;
19162 case DW_FORM_ref4:
19163 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19164 + read_4_bytes (abfd, info_ptr));
19165 info_ptr += 4;
19166 break;
19167 case DW_FORM_ref8:
19168 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19169 + read_8_bytes (abfd, info_ptr));
19170 info_ptr += 8;
19171 break;
19172 case DW_FORM_ref_sig8:
19173 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19174 info_ptr += 8;
19175 break;
19176 case DW_FORM_ref_udata:
19177 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19178 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19179 info_ptr += bytes_read;
19180 break;
19181 case DW_FORM_indirect:
19182 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19183 info_ptr += bytes_read;
19184 if (form == DW_FORM_implicit_const)
19185 {
19186 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19187 info_ptr += bytes_read;
19188 }
19189 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19190 info_ptr);
19191 break;
19192 case DW_FORM_implicit_const:
19193 DW_SND (attr) = implicit_const;
19194 break;
19195 case DW_FORM_GNU_addr_index:
19196 if (reader->dwo_file == NULL)
19197 {
19198 /* For now flag a hard error.
19199 Later we can turn this into a complaint. */
19200 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19201 dwarf_form_name (form),
19202 bfd_get_filename (abfd));
19203 }
19204 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19205 info_ptr += bytes_read;
19206 break;
19207 case DW_FORM_GNU_str_index:
19208 if (reader->dwo_file == NULL)
19209 {
19210 /* For now flag a hard error.
19211 Later we can turn this into a complaint if warranted. */
19212 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19213 dwarf_form_name (form),
19214 bfd_get_filename (abfd));
19215 }
19216 {
19217 ULONGEST str_index =
19218 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19219
19220 DW_STRING (attr) = read_str_index (reader, str_index);
19221 DW_STRING_IS_CANONICAL (attr) = 0;
19222 info_ptr += bytes_read;
19223 }
19224 break;
19225 default:
19226 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19227 dwarf_form_name (form),
19228 bfd_get_filename (abfd));
19229 }
19230
19231 /* Super hack. */
19232 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19233 attr->form = DW_FORM_GNU_ref_alt;
19234
19235 /* We have seen instances where the compiler tried to emit a byte
19236 size attribute of -1 which ended up being encoded as an unsigned
19237 0xffffffff. Although 0xffffffff is technically a valid size value,
19238 an object of this size seems pretty unlikely so we can relatively
19239 safely treat these cases as if the size attribute was invalid and
19240 treat them as zero by default. */
19241 if (attr->name == DW_AT_byte_size
19242 && form == DW_FORM_data4
19243 && DW_UNSND (attr) >= 0xffffffff)
19244 {
19245 complaint
19246 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19247 hex_string (DW_UNSND (attr)));
19248 DW_UNSND (attr) = 0;
19249 }
19250
19251 return info_ptr;
19252 }
19253
19254 /* Read an attribute described by an abbreviated attribute. */
19255
19256 static const gdb_byte *
19257 read_attribute (const struct die_reader_specs *reader,
19258 struct attribute *attr, struct attr_abbrev *abbrev,
19259 const gdb_byte *info_ptr)
19260 {
19261 attr->name = abbrev->name;
19262 return read_attribute_value (reader, attr, abbrev->form,
19263 abbrev->implicit_const, info_ptr);
19264 }
19265
19266 /* Read dwarf information from a buffer. */
19267
19268 static unsigned int
19269 read_1_byte (bfd *abfd, const gdb_byte *buf)
19270 {
19271 return bfd_get_8 (abfd, buf);
19272 }
19273
19274 static int
19275 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19276 {
19277 return bfd_get_signed_8 (abfd, buf);
19278 }
19279
19280 static unsigned int
19281 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19282 {
19283 return bfd_get_16 (abfd, buf);
19284 }
19285
19286 static int
19287 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19288 {
19289 return bfd_get_signed_16 (abfd, buf);
19290 }
19291
19292 static unsigned int
19293 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19294 {
19295 return bfd_get_32 (abfd, buf);
19296 }
19297
19298 static int
19299 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19300 {
19301 return bfd_get_signed_32 (abfd, buf);
19302 }
19303
19304 static ULONGEST
19305 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19306 {
19307 return bfd_get_64 (abfd, buf);
19308 }
19309
19310 static CORE_ADDR
19311 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19312 unsigned int *bytes_read)
19313 {
19314 struct comp_unit_head *cu_header = &cu->header;
19315 CORE_ADDR retval = 0;
19316
19317 if (cu_header->signed_addr_p)
19318 {
19319 switch (cu_header->addr_size)
19320 {
19321 case 2:
19322 retval = bfd_get_signed_16 (abfd, buf);
19323 break;
19324 case 4:
19325 retval = bfd_get_signed_32 (abfd, buf);
19326 break;
19327 case 8:
19328 retval = bfd_get_signed_64 (abfd, buf);
19329 break;
19330 default:
19331 internal_error (__FILE__, __LINE__,
19332 _("read_address: bad switch, signed [in module %s]"),
19333 bfd_get_filename (abfd));
19334 }
19335 }
19336 else
19337 {
19338 switch (cu_header->addr_size)
19339 {
19340 case 2:
19341 retval = bfd_get_16 (abfd, buf);
19342 break;
19343 case 4:
19344 retval = bfd_get_32 (abfd, buf);
19345 break;
19346 case 8:
19347 retval = bfd_get_64 (abfd, buf);
19348 break;
19349 default:
19350 internal_error (__FILE__, __LINE__,
19351 _("read_address: bad switch, "
19352 "unsigned [in module %s]"),
19353 bfd_get_filename (abfd));
19354 }
19355 }
19356
19357 *bytes_read = cu_header->addr_size;
19358 return retval;
19359 }
19360
19361 /* Read the initial length from a section. The (draft) DWARF 3
19362 specification allows the initial length to take up either 4 bytes
19363 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19364 bytes describe the length and all offsets will be 8 bytes in length
19365 instead of 4.
19366
19367 An older, non-standard 64-bit format is also handled by this
19368 function. The older format in question stores the initial length
19369 as an 8-byte quantity without an escape value. Lengths greater
19370 than 2^32 aren't very common which means that the initial 4 bytes
19371 is almost always zero. Since a length value of zero doesn't make
19372 sense for the 32-bit format, this initial zero can be considered to
19373 be an escape value which indicates the presence of the older 64-bit
19374 format. As written, the code can't detect (old format) lengths
19375 greater than 4GB. If it becomes necessary to handle lengths
19376 somewhat larger than 4GB, we could allow other small values (such
19377 as the non-sensical values of 1, 2, and 3) to also be used as
19378 escape values indicating the presence of the old format.
19379
19380 The value returned via bytes_read should be used to increment the
19381 relevant pointer after calling read_initial_length().
19382
19383 [ Note: read_initial_length() and read_offset() are based on the
19384 document entitled "DWARF Debugging Information Format", revision
19385 3, draft 8, dated November 19, 2001. This document was obtained
19386 from:
19387
19388 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19389
19390 This document is only a draft and is subject to change. (So beware.)
19391
19392 Details regarding the older, non-standard 64-bit format were
19393 determined empirically by examining 64-bit ELF files produced by
19394 the SGI toolchain on an IRIX 6.5 machine.
19395
19396 - Kevin, July 16, 2002
19397 ] */
19398
19399 static LONGEST
19400 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19401 {
19402 LONGEST length = bfd_get_32 (abfd, buf);
19403
19404 if (length == 0xffffffff)
19405 {
19406 length = bfd_get_64 (abfd, buf + 4);
19407 *bytes_read = 12;
19408 }
19409 else if (length == 0)
19410 {
19411 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19412 length = bfd_get_64 (abfd, buf);
19413 *bytes_read = 8;
19414 }
19415 else
19416 {
19417 *bytes_read = 4;
19418 }
19419
19420 return length;
19421 }
19422
19423 /* Cover function for read_initial_length.
19424 Returns the length of the object at BUF, and stores the size of the
19425 initial length in *BYTES_READ and stores the size that offsets will be in
19426 *OFFSET_SIZE.
19427 If the initial length size is not equivalent to that specified in
19428 CU_HEADER then issue a complaint.
19429 This is useful when reading non-comp-unit headers. */
19430
19431 static LONGEST
19432 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19433 const struct comp_unit_head *cu_header,
19434 unsigned int *bytes_read,
19435 unsigned int *offset_size)
19436 {
19437 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19438
19439 gdb_assert (cu_header->initial_length_size == 4
19440 || cu_header->initial_length_size == 8
19441 || cu_header->initial_length_size == 12);
19442
19443 if (cu_header->initial_length_size != *bytes_read)
19444 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19445
19446 *offset_size = (*bytes_read == 4) ? 4 : 8;
19447 return length;
19448 }
19449
19450 /* Read an offset from the data stream. The size of the offset is
19451 given by cu_header->offset_size. */
19452
19453 static LONGEST
19454 read_offset (bfd *abfd, const gdb_byte *buf,
19455 const struct comp_unit_head *cu_header,
19456 unsigned int *bytes_read)
19457 {
19458 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19459
19460 *bytes_read = cu_header->offset_size;
19461 return offset;
19462 }
19463
19464 /* Read an offset from the data stream. */
19465
19466 static LONGEST
19467 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19468 {
19469 LONGEST retval = 0;
19470
19471 switch (offset_size)
19472 {
19473 case 4:
19474 retval = bfd_get_32 (abfd, buf);
19475 break;
19476 case 8:
19477 retval = bfd_get_64 (abfd, buf);
19478 break;
19479 default:
19480 internal_error (__FILE__, __LINE__,
19481 _("read_offset_1: bad switch [in module %s]"),
19482 bfd_get_filename (abfd));
19483 }
19484
19485 return retval;
19486 }
19487
19488 static const gdb_byte *
19489 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19490 {
19491 /* If the size of a host char is 8 bits, we can return a pointer
19492 to the buffer, otherwise we have to copy the data to a buffer
19493 allocated on the temporary obstack. */
19494 gdb_assert (HOST_CHAR_BIT == 8);
19495 return buf;
19496 }
19497
19498 static const char *
19499 read_direct_string (bfd *abfd, const gdb_byte *buf,
19500 unsigned int *bytes_read_ptr)
19501 {
19502 /* If the size of a host char is 8 bits, we can return a pointer
19503 to the string, otherwise we have to copy the string to a buffer
19504 allocated on the temporary obstack. */
19505 gdb_assert (HOST_CHAR_BIT == 8);
19506 if (*buf == '\0')
19507 {
19508 *bytes_read_ptr = 1;
19509 return NULL;
19510 }
19511 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19512 return (const char *) buf;
19513 }
19514
19515 /* Return pointer to string at section SECT offset STR_OFFSET with error
19516 reporting strings FORM_NAME and SECT_NAME. */
19517
19518 static const char *
19519 read_indirect_string_at_offset_from (struct objfile *objfile,
19520 bfd *abfd, LONGEST str_offset,
19521 struct dwarf2_section_info *sect,
19522 const char *form_name,
19523 const char *sect_name)
19524 {
19525 dwarf2_read_section (objfile, sect);
19526 if (sect->buffer == NULL)
19527 error (_("%s used without %s section [in module %s]"),
19528 form_name, sect_name, bfd_get_filename (abfd));
19529 if (str_offset >= sect->size)
19530 error (_("%s pointing outside of %s section [in module %s]"),
19531 form_name, sect_name, bfd_get_filename (abfd));
19532 gdb_assert (HOST_CHAR_BIT == 8);
19533 if (sect->buffer[str_offset] == '\0')
19534 return NULL;
19535 return (const char *) (sect->buffer + str_offset);
19536 }
19537
19538 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19539
19540 static const char *
19541 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19542 bfd *abfd, LONGEST str_offset)
19543 {
19544 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19545 abfd, str_offset,
19546 &dwarf2_per_objfile->str,
19547 "DW_FORM_strp", ".debug_str");
19548 }
19549
19550 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19551
19552 static const char *
19553 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19554 bfd *abfd, LONGEST str_offset)
19555 {
19556 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19557 abfd, str_offset,
19558 &dwarf2_per_objfile->line_str,
19559 "DW_FORM_line_strp",
19560 ".debug_line_str");
19561 }
19562
19563 /* Read a string at offset STR_OFFSET in the .debug_str section from
19564 the .dwz file DWZ. Throw an error if the offset is too large. If
19565 the string consists of a single NUL byte, return NULL; otherwise
19566 return a pointer to the string. */
19567
19568 static const char *
19569 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19570 LONGEST str_offset)
19571 {
19572 dwarf2_read_section (objfile, &dwz->str);
19573
19574 if (dwz->str.buffer == NULL)
19575 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19576 "section [in module %s]"),
19577 bfd_get_filename (dwz->dwz_bfd));
19578 if (str_offset >= dwz->str.size)
19579 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19580 ".debug_str section [in module %s]"),
19581 bfd_get_filename (dwz->dwz_bfd));
19582 gdb_assert (HOST_CHAR_BIT == 8);
19583 if (dwz->str.buffer[str_offset] == '\0')
19584 return NULL;
19585 return (const char *) (dwz->str.buffer + str_offset);
19586 }
19587
19588 /* Return pointer to string at .debug_str offset as read from BUF.
19589 BUF is assumed to be in a compilation unit described by CU_HEADER.
19590 Return *BYTES_READ_PTR count of bytes read from BUF. */
19591
19592 static const char *
19593 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19594 const gdb_byte *buf,
19595 const struct comp_unit_head *cu_header,
19596 unsigned int *bytes_read_ptr)
19597 {
19598 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19599
19600 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19601 }
19602
19603 /* Return pointer to string at .debug_line_str offset as read from BUF.
19604 BUF is assumed to be in a compilation unit described by CU_HEADER.
19605 Return *BYTES_READ_PTR count of bytes read from BUF. */
19606
19607 static const char *
19608 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19609 bfd *abfd, const gdb_byte *buf,
19610 const struct comp_unit_head *cu_header,
19611 unsigned int *bytes_read_ptr)
19612 {
19613 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19614
19615 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19616 str_offset);
19617 }
19618
19619 ULONGEST
19620 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19621 unsigned int *bytes_read_ptr)
19622 {
19623 ULONGEST result;
19624 unsigned int num_read;
19625 int shift;
19626 unsigned char byte;
19627
19628 result = 0;
19629 shift = 0;
19630 num_read = 0;
19631 while (1)
19632 {
19633 byte = bfd_get_8 (abfd, buf);
19634 buf++;
19635 num_read++;
19636 result |= ((ULONGEST) (byte & 127) << shift);
19637 if ((byte & 128) == 0)
19638 {
19639 break;
19640 }
19641 shift += 7;
19642 }
19643 *bytes_read_ptr = num_read;
19644 return result;
19645 }
19646
19647 static LONGEST
19648 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19649 unsigned int *bytes_read_ptr)
19650 {
19651 ULONGEST result;
19652 int shift, num_read;
19653 unsigned char byte;
19654
19655 result = 0;
19656 shift = 0;
19657 num_read = 0;
19658 while (1)
19659 {
19660 byte = bfd_get_8 (abfd, buf);
19661 buf++;
19662 num_read++;
19663 result |= ((ULONGEST) (byte & 127) << shift);
19664 shift += 7;
19665 if ((byte & 128) == 0)
19666 {
19667 break;
19668 }
19669 }
19670 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19671 result |= -(((ULONGEST) 1) << shift);
19672 *bytes_read_ptr = num_read;
19673 return result;
19674 }
19675
19676 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19677 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19678 ADDR_SIZE is the size of addresses from the CU header. */
19679
19680 static CORE_ADDR
19681 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19682 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19683 {
19684 struct objfile *objfile = dwarf2_per_objfile->objfile;
19685 bfd *abfd = objfile->obfd;
19686 const gdb_byte *info_ptr;
19687
19688 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19689 if (dwarf2_per_objfile->addr.buffer == NULL)
19690 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19691 objfile_name (objfile));
19692 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19693 error (_("DW_FORM_addr_index pointing outside of "
19694 ".debug_addr section [in module %s]"),
19695 objfile_name (objfile));
19696 info_ptr = (dwarf2_per_objfile->addr.buffer
19697 + addr_base + addr_index * addr_size);
19698 if (addr_size == 4)
19699 return bfd_get_32 (abfd, info_ptr);
19700 else
19701 return bfd_get_64 (abfd, info_ptr);
19702 }
19703
19704 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19705
19706 static CORE_ADDR
19707 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19708 {
19709 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19710 cu->addr_base, cu->header.addr_size);
19711 }
19712
19713 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19714
19715 static CORE_ADDR
19716 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19717 unsigned int *bytes_read)
19718 {
19719 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19720 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19721
19722 return read_addr_index (cu, addr_index);
19723 }
19724
19725 /* Data structure to pass results from dwarf2_read_addr_index_reader
19726 back to dwarf2_read_addr_index. */
19727
19728 struct dwarf2_read_addr_index_data
19729 {
19730 ULONGEST addr_base;
19731 int addr_size;
19732 };
19733
19734 /* die_reader_func for dwarf2_read_addr_index. */
19735
19736 static void
19737 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19738 const gdb_byte *info_ptr,
19739 struct die_info *comp_unit_die,
19740 int has_children,
19741 void *data)
19742 {
19743 struct dwarf2_cu *cu = reader->cu;
19744 struct dwarf2_read_addr_index_data *aidata =
19745 (struct dwarf2_read_addr_index_data *) data;
19746
19747 aidata->addr_base = cu->addr_base;
19748 aidata->addr_size = cu->header.addr_size;
19749 }
19750
19751 /* Given an index in .debug_addr, fetch the value.
19752 NOTE: This can be called during dwarf expression evaluation,
19753 long after the debug information has been read, and thus per_cu->cu
19754 may no longer exist. */
19755
19756 CORE_ADDR
19757 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19758 unsigned int addr_index)
19759 {
19760 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19761 struct dwarf2_cu *cu = per_cu->cu;
19762 ULONGEST addr_base;
19763 int addr_size;
19764
19765 /* We need addr_base and addr_size.
19766 If we don't have PER_CU->cu, we have to get it.
19767 Nasty, but the alternative is storing the needed info in PER_CU,
19768 which at this point doesn't seem justified: it's not clear how frequently
19769 it would get used and it would increase the size of every PER_CU.
19770 Entry points like dwarf2_per_cu_addr_size do a similar thing
19771 so we're not in uncharted territory here.
19772 Alas we need to be a bit more complicated as addr_base is contained
19773 in the DIE.
19774
19775 We don't need to read the entire CU(/TU).
19776 We just need the header and top level die.
19777
19778 IWBN to use the aging mechanism to let us lazily later discard the CU.
19779 For now we skip this optimization. */
19780
19781 if (cu != NULL)
19782 {
19783 addr_base = cu->addr_base;
19784 addr_size = cu->header.addr_size;
19785 }
19786 else
19787 {
19788 struct dwarf2_read_addr_index_data aidata;
19789
19790 /* Note: We can't use init_cutu_and_read_dies_simple here,
19791 we need addr_base. */
19792 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19793 dwarf2_read_addr_index_reader, &aidata);
19794 addr_base = aidata.addr_base;
19795 addr_size = aidata.addr_size;
19796 }
19797
19798 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19799 addr_size);
19800 }
19801
19802 /* Given a DW_FORM_GNU_str_index, fetch the string.
19803 This is only used by the Fission support. */
19804
19805 static const char *
19806 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19807 {
19808 struct dwarf2_cu *cu = reader->cu;
19809 struct dwarf2_per_objfile *dwarf2_per_objfile
19810 = cu->per_cu->dwarf2_per_objfile;
19811 struct objfile *objfile = dwarf2_per_objfile->objfile;
19812 const char *objf_name = objfile_name (objfile);
19813 bfd *abfd = objfile->obfd;
19814 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19815 struct dwarf2_section_info *str_offsets_section =
19816 &reader->dwo_file->sections.str_offsets;
19817 const gdb_byte *info_ptr;
19818 ULONGEST str_offset;
19819 static const char form_name[] = "DW_FORM_GNU_str_index";
19820
19821 dwarf2_read_section (objfile, str_section);
19822 dwarf2_read_section (objfile, str_offsets_section);
19823 if (str_section->buffer == NULL)
19824 error (_("%s used without .debug_str.dwo section"
19825 " in CU at offset %s [in module %s]"),
19826 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19827 if (str_offsets_section->buffer == NULL)
19828 error (_("%s used without .debug_str_offsets.dwo section"
19829 " in CU at offset %s [in module %s]"),
19830 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19831 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19832 error (_("%s pointing outside of .debug_str_offsets.dwo"
19833 " section in CU at offset %s [in module %s]"),
19834 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19835 info_ptr = (str_offsets_section->buffer
19836 + str_index * cu->header.offset_size);
19837 if (cu->header.offset_size == 4)
19838 str_offset = bfd_get_32 (abfd, info_ptr);
19839 else
19840 str_offset = bfd_get_64 (abfd, info_ptr);
19841 if (str_offset >= str_section->size)
19842 error (_("Offset from %s pointing outside of"
19843 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19844 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19845 return (const char *) (str_section->buffer + str_offset);
19846 }
19847
19848 /* Return the length of an LEB128 number in BUF. */
19849
19850 static int
19851 leb128_size (const gdb_byte *buf)
19852 {
19853 const gdb_byte *begin = buf;
19854 gdb_byte byte;
19855
19856 while (1)
19857 {
19858 byte = *buf++;
19859 if ((byte & 128) == 0)
19860 return buf - begin;
19861 }
19862 }
19863
19864 static void
19865 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19866 {
19867 switch (lang)
19868 {
19869 case DW_LANG_C89:
19870 case DW_LANG_C99:
19871 case DW_LANG_C11:
19872 case DW_LANG_C:
19873 case DW_LANG_UPC:
19874 cu->language = language_c;
19875 break;
19876 case DW_LANG_Java:
19877 case DW_LANG_C_plus_plus:
19878 case DW_LANG_C_plus_plus_11:
19879 case DW_LANG_C_plus_plus_14:
19880 cu->language = language_cplus;
19881 break;
19882 case DW_LANG_D:
19883 cu->language = language_d;
19884 break;
19885 case DW_LANG_Fortran77:
19886 case DW_LANG_Fortran90:
19887 case DW_LANG_Fortran95:
19888 case DW_LANG_Fortran03:
19889 case DW_LANG_Fortran08:
19890 cu->language = language_fortran;
19891 break;
19892 case DW_LANG_Go:
19893 cu->language = language_go;
19894 break;
19895 case DW_LANG_Mips_Assembler:
19896 cu->language = language_asm;
19897 break;
19898 case DW_LANG_Ada83:
19899 case DW_LANG_Ada95:
19900 cu->language = language_ada;
19901 break;
19902 case DW_LANG_Modula2:
19903 cu->language = language_m2;
19904 break;
19905 case DW_LANG_Pascal83:
19906 cu->language = language_pascal;
19907 break;
19908 case DW_LANG_ObjC:
19909 cu->language = language_objc;
19910 break;
19911 case DW_LANG_Rust:
19912 case DW_LANG_Rust_old:
19913 cu->language = language_rust;
19914 break;
19915 case DW_LANG_Cobol74:
19916 case DW_LANG_Cobol85:
19917 default:
19918 cu->language = language_minimal;
19919 break;
19920 }
19921 cu->language_defn = language_def (cu->language);
19922 }
19923
19924 /* Return the named attribute or NULL if not there. */
19925
19926 static struct attribute *
19927 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19928 {
19929 for (;;)
19930 {
19931 unsigned int i;
19932 struct attribute *spec = NULL;
19933
19934 for (i = 0; i < die->num_attrs; ++i)
19935 {
19936 if (die->attrs[i].name == name)
19937 return &die->attrs[i];
19938 if (die->attrs[i].name == DW_AT_specification
19939 || die->attrs[i].name == DW_AT_abstract_origin)
19940 spec = &die->attrs[i];
19941 }
19942
19943 if (!spec)
19944 break;
19945
19946 die = follow_die_ref (die, spec, &cu);
19947 }
19948
19949 return NULL;
19950 }
19951
19952 /* Return the named attribute or NULL if not there,
19953 but do not follow DW_AT_specification, etc.
19954 This is for use in contexts where we're reading .debug_types dies.
19955 Following DW_AT_specification, DW_AT_abstract_origin will take us
19956 back up the chain, and we want to go down. */
19957
19958 static struct attribute *
19959 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19960 {
19961 unsigned int i;
19962
19963 for (i = 0; i < die->num_attrs; ++i)
19964 if (die->attrs[i].name == name)
19965 return &die->attrs[i];
19966
19967 return NULL;
19968 }
19969
19970 /* Return the string associated with a string-typed attribute, or NULL if it
19971 is either not found or is of an incorrect type. */
19972
19973 static const char *
19974 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19975 {
19976 struct attribute *attr;
19977 const char *str = NULL;
19978
19979 attr = dwarf2_attr (die, name, cu);
19980
19981 if (attr != NULL)
19982 {
19983 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19984 || attr->form == DW_FORM_string
19985 || attr->form == DW_FORM_GNU_str_index
19986 || attr->form == DW_FORM_GNU_strp_alt)
19987 str = DW_STRING (attr);
19988 else
19989 complaint (_("string type expected for attribute %s for "
19990 "DIE at %s in module %s"),
19991 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19992 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19993 }
19994
19995 return str;
19996 }
19997
19998 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19999 and holds a non-zero value. This function should only be used for
20000 DW_FORM_flag or DW_FORM_flag_present attributes. */
20001
20002 static int
20003 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20004 {
20005 struct attribute *attr = dwarf2_attr (die, name, cu);
20006
20007 return (attr && DW_UNSND (attr));
20008 }
20009
20010 static int
20011 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20012 {
20013 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20014 which value is non-zero. However, we have to be careful with
20015 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20016 (via dwarf2_flag_true_p) follows this attribute. So we may
20017 end up accidently finding a declaration attribute that belongs
20018 to a different DIE referenced by the specification attribute,
20019 even though the given DIE does not have a declaration attribute. */
20020 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20021 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20022 }
20023
20024 /* Return the die giving the specification for DIE, if there is
20025 one. *SPEC_CU is the CU containing DIE on input, and the CU
20026 containing the return value on output. If there is no
20027 specification, but there is an abstract origin, that is
20028 returned. */
20029
20030 static struct die_info *
20031 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20032 {
20033 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20034 *spec_cu);
20035
20036 if (spec_attr == NULL)
20037 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20038
20039 if (spec_attr == NULL)
20040 return NULL;
20041 else
20042 return follow_die_ref (die, spec_attr, spec_cu);
20043 }
20044
20045 /* Stub for free_line_header to match void * callback types. */
20046
20047 static void
20048 free_line_header_voidp (void *arg)
20049 {
20050 struct line_header *lh = (struct line_header *) arg;
20051
20052 delete lh;
20053 }
20054
20055 void
20056 line_header::add_include_dir (const char *include_dir)
20057 {
20058 if (dwarf_line_debug >= 2)
20059 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20060 include_dirs.size () + 1, include_dir);
20061
20062 include_dirs.push_back (include_dir);
20063 }
20064
20065 void
20066 line_header::add_file_name (const char *name,
20067 dir_index d_index,
20068 unsigned int mod_time,
20069 unsigned int length)
20070 {
20071 if (dwarf_line_debug >= 2)
20072 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20073 (unsigned) file_names.size () + 1, name);
20074
20075 file_names.emplace_back (name, d_index, mod_time, length);
20076 }
20077
20078 /* A convenience function to find the proper .debug_line section for a CU. */
20079
20080 static struct dwarf2_section_info *
20081 get_debug_line_section (struct dwarf2_cu *cu)
20082 {
20083 struct dwarf2_section_info *section;
20084 struct dwarf2_per_objfile *dwarf2_per_objfile
20085 = cu->per_cu->dwarf2_per_objfile;
20086
20087 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20088 DWO file. */
20089 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20090 section = &cu->dwo_unit->dwo_file->sections.line;
20091 else if (cu->per_cu->is_dwz)
20092 {
20093 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20094
20095 section = &dwz->line;
20096 }
20097 else
20098 section = &dwarf2_per_objfile->line;
20099
20100 return section;
20101 }
20102
20103 /* Read directory or file name entry format, starting with byte of
20104 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20105 entries count and the entries themselves in the described entry
20106 format. */
20107
20108 static void
20109 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20110 bfd *abfd, const gdb_byte **bufp,
20111 struct line_header *lh,
20112 const struct comp_unit_head *cu_header,
20113 void (*callback) (struct line_header *lh,
20114 const char *name,
20115 dir_index d_index,
20116 unsigned int mod_time,
20117 unsigned int length))
20118 {
20119 gdb_byte format_count, formati;
20120 ULONGEST data_count, datai;
20121 const gdb_byte *buf = *bufp;
20122 const gdb_byte *format_header_data;
20123 unsigned int bytes_read;
20124
20125 format_count = read_1_byte (abfd, buf);
20126 buf += 1;
20127 format_header_data = buf;
20128 for (formati = 0; formati < format_count; formati++)
20129 {
20130 read_unsigned_leb128 (abfd, buf, &bytes_read);
20131 buf += bytes_read;
20132 read_unsigned_leb128 (abfd, buf, &bytes_read);
20133 buf += bytes_read;
20134 }
20135
20136 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20137 buf += bytes_read;
20138 for (datai = 0; datai < data_count; datai++)
20139 {
20140 const gdb_byte *format = format_header_data;
20141 struct file_entry fe;
20142
20143 for (formati = 0; formati < format_count; formati++)
20144 {
20145 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20146 format += bytes_read;
20147
20148 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20149 format += bytes_read;
20150
20151 gdb::optional<const char *> string;
20152 gdb::optional<unsigned int> uint;
20153
20154 switch (form)
20155 {
20156 case DW_FORM_string:
20157 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20158 buf += bytes_read;
20159 break;
20160
20161 case DW_FORM_line_strp:
20162 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20163 abfd, buf,
20164 cu_header,
20165 &bytes_read));
20166 buf += bytes_read;
20167 break;
20168
20169 case DW_FORM_data1:
20170 uint.emplace (read_1_byte (abfd, buf));
20171 buf += 1;
20172 break;
20173
20174 case DW_FORM_data2:
20175 uint.emplace (read_2_bytes (abfd, buf));
20176 buf += 2;
20177 break;
20178
20179 case DW_FORM_data4:
20180 uint.emplace (read_4_bytes (abfd, buf));
20181 buf += 4;
20182 break;
20183
20184 case DW_FORM_data8:
20185 uint.emplace (read_8_bytes (abfd, buf));
20186 buf += 8;
20187 break;
20188
20189 case DW_FORM_udata:
20190 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20191 buf += bytes_read;
20192 break;
20193
20194 case DW_FORM_block:
20195 /* It is valid only for DW_LNCT_timestamp which is ignored by
20196 current GDB. */
20197 break;
20198 }
20199
20200 switch (content_type)
20201 {
20202 case DW_LNCT_path:
20203 if (string.has_value ())
20204 fe.name = *string;
20205 break;
20206 case DW_LNCT_directory_index:
20207 if (uint.has_value ())
20208 fe.d_index = (dir_index) *uint;
20209 break;
20210 case DW_LNCT_timestamp:
20211 if (uint.has_value ())
20212 fe.mod_time = *uint;
20213 break;
20214 case DW_LNCT_size:
20215 if (uint.has_value ())
20216 fe.length = *uint;
20217 break;
20218 case DW_LNCT_MD5:
20219 break;
20220 default:
20221 complaint (_("Unknown format content type %s"),
20222 pulongest (content_type));
20223 }
20224 }
20225
20226 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20227 }
20228
20229 *bufp = buf;
20230 }
20231
20232 /* Read the statement program header starting at OFFSET in
20233 .debug_line, or .debug_line.dwo. Return a pointer
20234 to a struct line_header, allocated using xmalloc.
20235 Returns NULL if there is a problem reading the header, e.g., if it
20236 has a version we don't understand.
20237
20238 NOTE: the strings in the include directory and file name tables of
20239 the returned object point into the dwarf line section buffer,
20240 and must not be freed. */
20241
20242 static line_header_up
20243 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20244 {
20245 const gdb_byte *line_ptr;
20246 unsigned int bytes_read, offset_size;
20247 int i;
20248 const char *cur_dir, *cur_file;
20249 struct dwarf2_section_info *section;
20250 bfd *abfd;
20251 struct dwarf2_per_objfile *dwarf2_per_objfile
20252 = cu->per_cu->dwarf2_per_objfile;
20253
20254 section = get_debug_line_section (cu);
20255 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20256 if (section->buffer == NULL)
20257 {
20258 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20259 complaint (_("missing .debug_line.dwo section"));
20260 else
20261 complaint (_("missing .debug_line section"));
20262 return 0;
20263 }
20264
20265 /* We can't do this until we know the section is non-empty.
20266 Only then do we know we have such a section. */
20267 abfd = get_section_bfd_owner (section);
20268
20269 /* Make sure that at least there's room for the total_length field.
20270 That could be 12 bytes long, but we're just going to fudge that. */
20271 if (to_underlying (sect_off) + 4 >= section->size)
20272 {
20273 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20274 return 0;
20275 }
20276
20277 line_header_up lh (new line_header ());
20278
20279 lh->sect_off = sect_off;
20280 lh->offset_in_dwz = cu->per_cu->is_dwz;
20281
20282 line_ptr = section->buffer + to_underlying (sect_off);
20283
20284 /* Read in the header. */
20285 lh->total_length =
20286 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20287 &bytes_read, &offset_size);
20288 line_ptr += bytes_read;
20289 if (line_ptr + lh->total_length > (section->buffer + section->size))
20290 {
20291 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20292 return 0;
20293 }
20294 lh->statement_program_end = line_ptr + lh->total_length;
20295 lh->version = read_2_bytes (abfd, line_ptr);
20296 line_ptr += 2;
20297 if (lh->version > 5)
20298 {
20299 /* This is a version we don't understand. The format could have
20300 changed in ways we don't handle properly so just punt. */
20301 complaint (_("unsupported version in .debug_line section"));
20302 return NULL;
20303 }
20304 if (lh->version >= 5)
20305 {
20306 gdb_byte segment_selector_size;
20307
20308 /* Skip address size. */
20309 read_1_byte (abfd, line_ptr);
20310 line_ptr += 1;
20311
20312 segment_selector_size = read_1_byte (abfd, line_ptr);
20313 line_ptr += 1;
20314 if (segment_selector_size != 0)
20315 {
20316 complaint (_("unsupported segment selector size %u "
20317 "in .debug_line section"),
20318 segment_selector_size);
20319 return NULL;
20320 }
20321 }
20322 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20323 line_ptr += offset_size;
20324 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20325 line_ptr += 1;
20326 if (lh->version >= 4)
20327 {
20328 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20329 line_ptr += 1;
20330 }
20331 else
20332 lh->maximum_ops_per_instruction = 1;
20333
20334 if (lh->maximum_ops_per_instruction == 0)
20335 {
20336 lh->maximum_ops_per_instruction = 1;
20337 complaint (_("invalid maximum_ops_per_instruction "
20338 "in `.debug_line' section"));
20339 }
20340
20341 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20342 line_ptr += 1;
20343 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20344 line_ptr += 1;
20345 lh->line_range = read_1_byte (abfd, line_ptr);
20346 line_ptr += 1;
20347 lh->opcode_base = read_1_byte (abfd, line_ptr);
20348 line_ptr += 1;
20349 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20350
20351 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20352 for (i = 1; i < lh->opcode_base; ++i)
20353 {
20354 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20355 line_ptr += 1;
20356 }
20357
20358 if (lh->version >= 5)
20359 {
20360 /* Read directory table. */
20361 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20362 &cu->header,
20363 [] (struct line_header *header, const char *name,
20364 dir_index d_index, unsigned int mod_time,
20365 unsigned int length)
20366 {
20367 header->add_include_dir (name);
20368 });
20369
20370 /* Read file name table. */
20371 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20372 &cu->header,
20373 [] (struct line_header *header, const char *name,
20374 dir_index d_index, unsigned int mod_time,
20375 unsigned int length)
20376 {
20377 header->add_file_name (name, d_index, mod_time, length);
20378 });
20379 }
20380 else
20381 {
20382 /* Read directory table. */
20383 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20384 {
20385 line_ptr += bytes_read;
20386 lh->add_include_dir (cur_dir);
20387 }
20388 line_ptr += bytes_read;
20389
20390 /* Read file name table. */
20391 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20392 {
20393 unsigned int mod_time, length;
20394 dir_index d_index;
20395
20396 line_ptr += bytes_read;
20397 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20398 line_ptr += bytes_read;
20399 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20400 line_ptr += bytes_read;
20401 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20402 line_ptr += bytes_read;
20403
20404 lh->add_file_name (cur_file, d_index, mod_time, length);
20405 }
20406 line_ptr += bytes_read;
20407 }
20408 lh->statement_program_start = line_ptr;
20409
20410 if (line_ptr > (section->buffer + section->size))
20411 complaint (_("line number info header doesn't "
20412 "fit in `.debug_line' section"));
20413
20414 return lh;
20415 }
20416
20417 /* Subroutine of dwarf_decode_lines to simplify it.
20418 Return the file name of the psymtab for included file FILE_INDEX
20419 in line header LH of PST.
20420 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20421 If space for the result is malloc'd, *NAME_HOLDER will be set.
20422 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20423
20424 static const char *
20425 psymtab_include_file_name (const struct line_header *lh, int file_index,
20426 const struct partial_symtab *pst,
20427 const char *comp_dir,
20428 gdb::unique_xmalloc_ptr<char> *name_holder)
20429 {
20430 const file_entry &fe = lh->file_names[file_index];
20431 const char *include_name = fe.name;
20432 const char *include_name_to_compare = include_name;
20433 const char *pst_filename;
20434 int file_is_pst;
20435
20436 const char *dir_name = fe.include_dir (lh);
20437
20438 gdb::unique_xmalloc_ptr<char> hold_compare;
20439 if (!IS_ABSOLUTE_PATH (include_name)
20440 && (dir_name != NULL || comp_dir != NULL))
20441 {
20442 /* Avoid creating a duplicate psymtab for PST.
20443 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20444 Before we do the comparison, however, we need to account
20445 for DIR_NAME and COMP_DIR.
20446 First prepend dir_name (if non-NULL). If we still don't
20447 have an absolute path prepend comp_dir (if non-NULL).
20448 However, the directory we record in the include-file's
20449 psymtab does not contain COMP_DIR (to match the
20450 corresponding symtab(s)).
20451
20452 Example:
20453
20454 bash$ cd /tmp
20455 bash$ gcc -g ./hello.c
20456 include_name = "hello.c"
20457 dir_name = "."
20458 DW_AT_comp_dir = comp_dir = "/tmp"
20459 DW_AT_name = "./hello.c"
20460
20461 */
20462
20463 if (dir_name != NULL)
20464 {
20465 name_holder->reset (concat (dir_name, SLASH_STRING,
20466 include_name, (char *) NULL));
20467 include_name = name_holder->get ();
20468 include_name_to_compare = include_name;
20469 }
20470 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20471 {
20472 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20473 include_name, (char *) NULL));
20474 include_name_to_compare = hold_compare.get ();
20475 }
20476 }
20477
20478 pst_filename = pst->filename;
20479 gdb::unique_xmalloc_ptr<char> copied_name;
20480 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20481 {
20482 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20483 pst_filename, (char *) NULL));
20484 pst_filename = copied_name.get ();
20485 }
20486
20487 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20488
20489 if (file_is_pst)
20490 return NULL;
20491 return include_name;
20492 }
20493
20494 /* State machine to track the state of the line number program. */
20495
20496 class lnp_state_machine
20497 {
20498 public:
20499 /* Initialize a machine state for the start of a line number
20500 program. */
20501 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20502 bool record_lines_p);
20503
20504 file_entry *current_file ()
20505 {
20506 /* lh->file_names is 0-based, but the file name numbers in the
20507 statement program are 1-based. */
20508 return m_line_header->file_name_at (m_file);
20509 }
20510
20511 /* Record the line in the state machine. END_SEQUENCE is true if
20512 we're processing the end of a sequence. */
20513 void record_line (bool end_sequence);
20514
20515 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20516 nop-out rest of the lines in this sequence. */
20517 void check_line_address (struct dwarf2_cu *cu,
20518 const gdb_byte *line_ptr,
20519 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20520
20521 void handle_set_discriminator (unsigned int discriminator)
20522 {
20523 m_discriminator = discriminator;
20524 m_line_has_non_zero_discriminator |= discriminator != 0;
20525 }
20526
20527 /* Handle DW_LNE_set_address. */
20528 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20529 {
20530 m_op_index = 0;
20531 address += baseaddr;
20532 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20533 }
20534
20535 /* Handle DW_LNS_advance_pc. */
20536 void handle_advance_pc (CORE_ADDR adjust);
20537
20538 /* Handle a special opcode. */
20539 void handle_special_opcode (unsigned char op_code);
20540
20541 /* Handle DW_LNS_advance_line. */
20542 void handle_advance_line (int line_delta)
20543 {
20544 advance_line (line_delta);
20545 }
20546
20547 /* Handle DW_LNS_set_file. */
20548 void handle_set_file (file_name_index file);
20549
20550 /* Handle DW_LNS_negate_stmt. */
20551 void handle_negate_stmt ()
20552 {
20553 m_is_stmt = !m_is_stmt;
20554 }
20555
20556 /* Handle DW_LNS_const_add_pc. */
20557 void handle_const_add_pc ();
20558
20559 /* Handle DW_LNS_fixed_advance_pc. */
20560 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20561 {
20562 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20563 m_op_index = 0;
20564 }
20565
20566 /* Handle DW_LNS_copy. */
20567 void handle_copy ()
20568 {
20569 record_line (false);
20570 m_discriminator = 0;
20571 }
20572
20573 /* Handle DW_LNE_end_sequence. */
20574 void handle_end_sequence ()
20575 {
20576 m_currently_recording_lines = true;
20577 }
20578
20579 private:
20580 /* Advance the line by LINE_DELTA. */
20581 void advance_line (int line_delta)
20582 {
20583 m_line += line_delta;
20584
20585 if (line_delta != 0)
20586 m_line_has_non_zero_discriminator = m_discriminator != 0;
20587 }
20588
20589 struct dwarf2_cu *m_cu;
20590
20591 gdbarch *m_gdbarch;
20592
20593 /* True if we're recording lines.
20594 Otherwise we're building partial symtabs and are just interested in
20595 finding include files mentioned by the line number program. */
20596 bool m_record_lines_p;
20597
20598 /* The line number header. */
20599 line_header *m_line_header;
20600
20601 /* These are part of the standard DWARF line number state machine,
20602 and initialized according to the DWARF spec. */
20603
20604 unsigned char m_op_index = 0;
20605 /* The line table index (1-based) of the current file. */
20606 file_name_index m_file = (file_name_index) 1;
20607 unsigned int m_line = 1;
20608
20609 /* These are initialized in the constructor. */
20610
20611 CORE_ADDR m_address;
20612 bool m_is_stmt;
20613 unsigned int m_discriminator;
20614
20615 /* Additional bits of state we need to track. */
20616
20617 /* The last file that we called dwarf2_start_subfile for.
20618 This is only used for TLLs. */
20619 unsigned int m_last_file = 0;
20620 /* The last file a line number was recorded for. */
20621 struct subfile *m_last_subfile = NULL;
20622
20623 /* When true, record the lines we decode. */
20624 bool m_currently_recording_lines = false;
20625
20626 /* The last line number that was recorded, used to coalesce
20627 consecutive entries for the same line. This can happen, for
20628 example, when discriminators are present. PR 17276. */
20629 unsigned int m_last_line = 0;
20630 bool m_line_has_non_zero_discriminator = false;
20631 };
20632
20633 void
20634 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20635 {
20636 CORE_ADDR addr_adj = (((m_op_index + adjust)
20637 / m_line_header->maximum_ops_per_instruction)
20638 * m_line_header->minimum_instruction_length);
20639 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20640 m_op_index = ((m_op_index + adjust)
20641 % m_line_header->maximum_ops_per_instruction);
20642 }
20643
20644 void
20645 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20646 {
20647 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20648 CORE_ADDR addr_adj = (((m_op_index
20649 + (adj_opcode / m_line_header->line_range))
20650 / m_line_header->maximum_ops_per_instruction)
20651 * m_line_header->minimum_instruction_length);
20652 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20653 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20654 % m_line_header->maximum_ops_per_instruction);
20655
20656 int line_delta = (m_line_header->line_base
20657 + (adj_opcode % m_line_header->line_range));
20658 advance_line (line_delta);
20659 record_line (false);
20660 m_discriminator = 0;
20661 }
20662
20663 void
20664 lnp_state_machine::handle_set_file (file_name_index file)
20665 {
20666 m_file = file;
20667
20668 const file_entry *fe = current_file ();
20669 if (fe == NULL)
20670 dwarf2_debug_line_missing_file_complaint ();
20671 else if (m_record_lines_p)
20672 {
20673 const char *dir = fe->include_dir (m_line_header);
20674
20675 m_last_subfile = m_cu->builder->get_current_subfile ();
20676 m_line_has_non_zero_discriminator = m_discriminator != 0;
20677 dwarf2_start_subfile (m_cu, fe->name, dir);
20678 }
20679 }
20680
20681 void
20682 lnp_state_machine::handle_const_add_pc ()
20683 {
20684 CORE_ADDR adjust
20685 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20686
20687 CORE_ADDR addr_adj
20688 = (((m_op_index + adjust)
20689 / m_line_header->maximum_ops_per_instruction)
20690 * m_line_header->minimum_instruction_length);
20691
20692 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20693 m_op_index = ((m_op_index + adjust)
20694 % m_line_header->maximum_ops_per_instruction);
20695 }
20696
20697 /* Return non-zero if we should add LINE to the line number table.
20698 LINE is the line to add, LAST_LINE is the last line that was added,
20699 LAST_SUBFILE is the subfile for LAST_LINE.
20700 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20701 had a non-zero discriminator.
20702
20703 We have to be careful in the presence of discriminators.
20704 E.g., for this line:
20705
20706 for (i = 0; i < 100000; i++);
20707
20708 clang can emit four line number entries for that one line,
20709 each with a different discriminator.
20710 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20711
20712 However, we want gdb to coalesce all four entries into one.
20713 Otherwise the user could stepi into the middle of the line and
20714 gdb would get confused about whether the pc really was in the
20715 middle of the line.
20716
20717 Things are further complicated by the fact that two consecutive
20718 line number entries for the same line is a heuristic used by gcc
20719 to denote the end of the prologue. So we can't just discard duplicate
20720 entries, we have to be selective about it. The heuristic we use is
20721 that we only collapse consecutive entries for the same line if at least
20722 one of those entries has a non-zero discriminator. PR 17276.
20723
20724 Note: Addresses in the line number state machine can never go backwards
20725 within one sequence, thus this coalescing is ok. */
20726
20727 static int
20728 dwarf_record_line_p (struct dwarf2_cu *cu,
20729 unsigned int line, unsigned int last_line,
20730 int line_has_non_zero_discriminator,
20731 struct subfile *last_subfile)
20732 {
20733 if (cu->builder->get_current_subfile () != last_subfile)
20734 return 1;
20735 if (line != last_line)
20736 return 1;
20737 /* Same line for the same file that we've seen already.
20738 As a last check, for pr 17276, only record the line if the line
20739 has never had a non-zero discriminator. */
20740 if (!line_has_non_zero_discriminator)
20741 return 1;
20742 return 0;
20743 }
20744
20745 /* Use the CU's builder to record line number LINE beginning at
20746 address ADDRESS in the line table of subfile SUBFILE. */
20747
20748 static void
20749 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20750 unsigned int line, CORE_ADDR address,
20751 struct dwarf2_cu *cu)
20752 {
20753 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20754
20755 if (dwarf_line_debug)
20756 {
20757 fprintf_unfiltered (gdb_stdlog,
20758 "Recording line %u, file %s, address %s\n",
20759 line, lbasename (subfile->name),
20760 paddress (gdbarch, address));
20761 }
20762
20763 if (cu != nullptr)
20764 cu->builder->record_line (subfile, line, addr);
20765 }
20766
20767 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20768 Mark the end of a set of line number records.
20769 The arguments are the same as for dwarf_record_line_1.
20770 If SUBFILE is NULL the request is ignored. */
20771
20772 static void
20773 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20774 CORE_ADDR address, struct dwarf2_cu *cu)
20775 {
20776 if (subfile == NULL)
20777 return;
20778
20779 if (dwarf_line_debug)
20780 {
20781 fprintf_unfiltered (gdb_stdlog,
20782 "Finishing current line, file %s, address %s\n",
20783 lbasename (subfile->name),
20784 paddress (gdbarch, address));
20785 }
20786
20787 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20788 }
20789
20790 void
20791 lnp_state_machine::record_line (bool end_sequence)
20792 {
20793 if (dwarf_line_debug)
20794 {
20795 fprintf_unfiltered (gdb_stdlog,
20796 "Processing actual line %u: file %u,"
20797 " address %s, is_stmt %u, discrim %u\n",
20798 m_line, to_underlying (m_file),
20799 paddress (m_gdbarch, m_address),
20800 m_is_stmt, m_discriminator);
20801 }
20802
20803 file_entry *fe = current_file ();
20804
20805 if (fe == NULL)
20806 dwarf2_debug_line_missing_file_complaint ();
20807 /* For now we ignore lines not starting on an instruction boundary.
20808 But not when processing end_sequence for compatibility with the
20809 previous version of the code. */
20810 else if (m_op_index == 0 || end_sequence)
20811 {
20812 fe->included_p = 1;
20813 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20814 {
20815 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20816 || end_sequence)
20817 {
20818 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20819 m_currently_recording_lines ? m_cu : nullptr);
20820 }
20821
20822 if (!end_sequence)
20823 {
20824 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20825 m_line_has_non_zero_discriminator,
20826 m_last_subfile))
20827 {
20828 dwarf_record_line_1 (m_gdbarch,
20829 m_cu->builder->get_current_subfile (),
20830 m_line, m_address,
20831 m_currently_recording_lines ? m_cu : nullptr);
20832 }
20833 m_last_subfile = m_cu->builder->get_current_subfile ();
20834 m_last_line = m_line;
20835 }
20836 }
20837 }
20838 }
20839
20840 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20841 line_header *lh, bool record_lines_p)
20842 {
20843 m_cu = cu;
20844 m_gdbarch = arch;
20845 m_record_lines_p = record_lines_p;
20846 m_line_header = lh;
20847
20848 m_currently_recording_lines = true;
20849
20850 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20851 was a line entry for it so that the backend has a chance to adjust it
20852 and also record it in case it needs it. This is currently used by MIPS
20853 code, cf. `mips_adjust_dwarf2_line'. */
20854 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20855 m_is_stmt = lh->default_is_stmt;
20856 m_discriminator = 0;
20857 }
20858
20859 void
20860 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20861 const gdb_byte *line_ptr,
20862 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20863 {
20864 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20865 the pc range of the CU. However, we restrict the test to only ADDRESS
20866 values of zero to preserve GDB's previous behaviour which is to handle
20867 the specific case of a function being GC'd by the linker. */
20868
20869 if (address == 0 && address < unrelocated_lowpc)
20870 {
20871 /* This line table is for a function which has been
20872 GCd by the linker. Ignore it. PR gdb/12528 */
20873
20874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20875 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20876
20877 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20878 line_offset, objfile_name (objfile));
20879 m_currently_recording_lines = false;
20880 /* Note: m_currently_recording_lines is left as false until we see
20881 DW_LNE_end_sequence. */
20882 }
20883 }
20884
20885 /* Subroutine of dwarf_decode_lines to simplify it.
20886 Process the line number information in LH.
20887 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20888 program in order to set included_p for every referenced header. */
20889
20890 static void
20891 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20892 const int decode_for_pst_p, CORE_ADDR lowpc)
20893 {
20894 const gdb_byte *line_ptr, *extended_end;
20895 const gdb_byte *line_end;
20896 unsigned int bytes_read, extended_len;
20897 unsigned char op_code, extended_op;
20898 CORE_ADDR baseaddr;
20899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20900 bfd *abfd = objfile->obfd;
20901 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20902 /* True if we're recording line info (as opposed to building partial
20903 symtabs and just interested in finding include files mentioned by
20904 the line number program). */
20905 bool record_lines_p = !decode_for_pst_p;
20906
20907 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20908
20909 line_ptr = lh->statement_program_start;
20910 line_end = lh->statement_program_end;
20911
20912 /* Read the statement sequences until there's nothing left. */
20913 while (line_ptr < line_end)
20914 {
20915 /* The DWARF line number program state machine. Reset the state
20916 machine at the start of each sequence. */
20917 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20918 bool end_sequence = false;
20919
20920 if (record_lines_p)
20921 {
20922 /* Start a subfile for the current file of the state
20923 machine. */
20924 const file_entry *fe = state_machine.current_file ();
20925
20926 if (fe != NULL)
20927 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20928 }
20929
20930 /* Decode the table. */
20931 while (line_ptr < line_end && !end_sequence)
20932 {
20933 op_code = read_1_byte (abfd, line_ptr);
20934 line_ptr += 1;
20935
20936 if (op_code >= lh->opcode_base)
20937 {
20938 /* Special opcode. */
20939 state_machine.handle_special_opcode (op_code);
20940 }
20941 else switch (op_code)
20942 {
20943 case DW_LNS_extended_op:
20944 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20945 &bytes_read);
20946 line_ptr += bytes_read;
20947 extended_end = line_ptr + extended_len;
20948 extended_op = read_1_byte (abfd, line_ptr);
20949 line_ptr += 1;
20950 switch (extended_op)
20951 {
20952 case DW_LNE_end_sequence:
20953 state_machine.handle_end_sequence ();
20954 end_sequence = true;
20955 break;
20956 case DW_LNE_set_address:
20957 {
20958 CORE_ADDR address
20959 = read_address (abfd, line_ptr, cu, &bytes_read);
20960 line_ptr += bytes_read;
20961
20962 state_machine.check_line_address (cu, line_ptr,
20963 lowpc - baseaddr, address);
20964 state_machine.handle_set_address (baseaddr, address);
20965 }
20966 break;
20967 case DW_LNE_define_file:
20968 {
20969 const char *cur_file;
20970 unsigned int mod_time, length;
20971 dir_index dindex;
20972
20973 cur_file = read_direct_string (abfd, line_ptr,
20974 &bytes_read);
20975 line_ptr += bytes_read;
20976 dindex = (dir_index)
20977 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20978 line_ptr += bytes_read;
20979 mod_time =
20980 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20981 line_ptr += bytes_read;
20982 length =
20983 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20984 line_ptr += bytes_read;
20985 lh->add_file_name (cur_file, dindex, mod_time, length);
20986 }
20987 break;
20988 case DW_LNE_set_discriminator:
20989 {
20990 /* The discriminator is not interesting to the
20991 debugger; just ignore it. We still need to
20992 check its value though:
20993 if there are consecutive entries for the same
20994 (non-prologue) line we want to coalesce them.
20995 PR 17276. */
20996 unsigned int discr
20997 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20998 line_ptr += bytes_read;
20999
21000 state_machine.handle_set_discriminator (discr);
21001 }
21002 break;
21003 default:
21004 complaint (_("mangled .debug_line section"));
21005 return;
21006 }
21007 /* Make sure that we parsed the extended op correctly. If e.g.
21008 we expected a different address size than the producer used,
21009 we may have read the wrong number of bytes. */
21010 if (line_ptr != extended_end)
21011 {
21012 complaint (_("mangled .debug_line section"));
21013 return;
21014 }
21015 break;
21016 case DW_LNS_copy:
21017 state_machine.handle_copy ();
21018 break;
21019 case DW_LNS_advance_pc:
21020 {
21021 CORE_ADDR adjust
21022 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21023 line_ptr += bytes_read;
21024
21025 state_machine.handle_advance_pc (adjust);
21026 }
21027 break;
21028 case DW_LNS_advance_line:
21029 {
21030 int line_delta
21031 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21032 line_ptr += bytes_read;
21033
21034 state_machine.handle_advance_line (line_delta);
21035 }
21036 break;
21037 case DW_LNS_set_file:
21038 {
21039 file_name_index file
21040 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21041 &bytes_read);
21042 line_ptr += bytes_read;
21043
21044 state_machine.handle_set_file (file);
21045 }
21046 break;
21047 case DW_LNS_set_column:
21048 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21049 line_ptr += bytes_read;
21050 break;
21051 case DW_LNS_negate_stmt:
21052 state_machine.handle_negate_stmt ();
21053 break;
21054 case DW_LNS_set_basic_block:
21055 break;
21056 /* Add to the address register of the state machine the
21057 address increment value corresponding to special opcode
21058 255. I.e., this value is scaled by the minimum
21059 instruction length since special opcode 255 would have
21060 scaled the increment. */
21061 case DW_LNS_const_add_pc:
21062 state_machine.handle_const_add_pc ();
21063 break;
21064 case DW_LNS_fixed_advance_pc:
21065 {
21066 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21067 line_ptr += 2;
21068
21069 state_machine.handle_fixed_advance_pc (addr_adj);
21070 }
21071 break;
21072 default:
21073 {
21074 /* Unknown standard opcode, ignore it. */
21075 int i;
21076
21077 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21078 {
21079 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21080 line_ptr += bytes_read;
21081 }
21082 }
21083 }
21084 }
21085
21086 if (!end_sequence)
21087 dwarf2_debug_line_missing_end_sequence_complaint ();
21088
21089 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21090 in which case we still finish recording the last line). */
21091 state_machine.record_line (true);
21092 }
21093 }
21094
21095 /* Decode the Line Number Program (LNP) for the given line_header
21096 structure and CU. The actual information extracted and the type
21097 of structures created from the LNP depends on the value of PST.
21098
21099 1. If PST is NULL, then this procedure uses the data from the program
21100 to create all necessary symbol tables, and their linetables.
21101
21102 2. If PST is not NULL, this procedure reads the program to determine
21103 the list of files included by the unit represented by PST, and
21104 builds all the associated partial symbol tables.
21105
21106 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21107 It is used for relative paths in the line table.
21108 NOTE: When processing partial symtabs (pst != NULL),
21109 comp_dir == pst->dirname.
21110
21111 NOTE: It is important that psymtabs have the same file name (via strcmp)
21112 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21113 symtab we don't use it in the name of the psymtabs we create.
21114 E.g. expand_line_sal requires this when finding psymtabs to expand.
21115 A good testcase for this is mb-inline.exp.
21116
21117 LOWPC is the lowest address in CU (or 0 if not known).
21118
21119 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21120 for its PC<->lines mapping information. Otherwise only the filename
21121 table is read in. */
21122
21123 static void
21124 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21125 struct dwarf2_cu *cu, struct partial_symtab *pst,
21126 CORE_ADDR lowpc, int decode_mapping)
21127 {
21128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21129 const int decode_for_pst_p = (pst != NULL);
21130
21131 if (decode_mapping)
21132 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21133
21134 if (decode_for_pst_p)
21135 {
21136 int file_index;
21137
21138 /* Now that we're done scanning the Line Header Program, we can
21139 create the psymtab of each included file. */
21140 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21141 if (lh->file_names[file_index].included_p == 1)
21142 {
21143 gdb::unique_xmalloc_ptr<char> name_holder;
21144 const char *include_name =
21145 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21146 &name_holder);
21147 if (include_name != NULL)
21148 dwarf2_create_include_psymtab (include_name, pst, objfile);
21149 }
21150 }
21151 else
21152 {
21153 /* Make sure a symtab is created for every file, even files
21154 which contain only variables (i.e. no code with associated
21155 line numbers). */
21156 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21157 int i;
21158
21159 for (i = 0; i < lh->file_names.size (); i++)
21160 {
21161 file_entry &fe = lh->file_names[i];
21162
21163 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21164
21165 if (cu->builder->get_current_subfile ()->symtab == NULL)
21166 {
21167 cu->builder->get_current_subfile ()->symtab
21168 = allocate_symtab (cust,
21169 cu->builder->get_current_subfile ()->name);
21170 }
21171 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21172 }
21173 }
21174 }
21175
21176 /* Start a subfile for DWARF. FILENAME is the name of the file and
21177 DIRNAME the name of the source directory which contains FILENAME
21178 or NULL if not known.
21179 This routine tries to keep line numbers from identical absolute and
21180 relative file names in a common subfile.
21181
21182 Using the `list' example from the GDB testsuite, which resides in
21183 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21184 of /srcdir/list0.c yields the following debugging information for list0.c:
21185
21186 DW_AT_name: /srcdir/list0.c
21187 DW_AT_comp_dir: /compdir
21188 files.files[0].name: list0.h
21189 files.files[0].dir: /srcdir
21190 files.files[1].name: list0.c
21191 files.files[1].dir: /srcdir
21192
21193 The line number information for list0.c has to end up in a single
21194 subfile, so that `break /srcdir/list0.c:1' works as expected.
21195 start_subfile will ensure that this happens provided that we pass the
21196 concatenation of files.files[1].dir and files.files[1].name as the
21197 subfile's name. */
21198
21199 static void
21200 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21201 const char *dirname)
21202 {
21203 char *copy = NULL;
21204
21205 /* In order not to lose the line information directory,
21206 we concatenate it to the filename when it makes sense.
21207 Note that the Dwarf3 standard says (speaking of filenames in line
21208 information): ``The directory index is ignored for file names
21209 that represent full path names''. Thus ignoring dirname in the
21210 `else' branch below isn't an issue. */
21211
21212 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21213 {
21214 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21215 filename = copy;
21216 }
21217
21218 cu->builder->start_subfile (filename);
21219
21220 if (copy != NULL)
21221 xfree (copy);
21222 }
21223
21224 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21225 buildsym_compunit constructor. */
21226
21227 static struct compunit_symtab *
21228 dwarf2_start_symtab (struct dwarf2_cu *cu,
21229 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21230 {
21231 gdb_assert (cu->builder == nullptr);
21232
21233 cu->builder.reset (new struct buildsym_compunit
21234 (cu->per_cu->dwarf2_per_objfile->objfile,
21235 name, comp_dir, cu->language, low_pc));
21236
21237 cu->list_in_scope = cu->builder->get_file_symbols ();
21238
21239 cu->builder->record_debugformat ("DWARF 2");
21240 cu->builder->record_producer (cu->producer);
21241
21242 cu->processing_has_namespace_info = false;
21243
21244 return cu->builder->get_compunit_symtab ();
21245 }
21246
21247 static void
21248 var_decode_location (struct attribute *attr, struct symbol *sym,
21249 struct dwarf2_cu *cu)
21250 {
21251 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21252 struct comp_unit_head *cu_header = &cu->header;
21253
21254 /* NOTE drow/2003-01-30: There used to be a comment and some special
21255 code here to turn a symbol with DW_AT_external and a
21256 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21257 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21258 with some versions of binutils) where shared libraries could have
21259 relocations against symbols in their debug information - the
21260 minimal symbol would have the right address, but the debug info
21261 would not. It's no longer necessary, because we will explicitly
21262 apply relocations when we read in the debug information now. */
21263
21264 /* A DW_AT_location attribute with no contents indicates that a
21265 variable has been optimized away. */
21266 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21267 {
21268 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21269 return;
21270 }
21271
21272 /* Handle one degenerate form of location expression specially, to
21273 preserve GDB's previous behavior when section offsets are
21274 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21275 then mark this symbol as LOC_STATIC. */
21276
21277 if (attr_form_is_block (attr)
21278 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21279 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21280 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21281 && (DW_BLOCK (attr)->size
21282 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21283 {
21284 unsigned int dummy;
21285
21286 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21287 SYMBOL_VALUE_ADDRESS (sym) =
21288 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21289 else
21290 SYMBOL_VALUE_ADDRESS (sym) =
21291 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21292 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21293 fixup_symbol_section (sym, objfile);
21294 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21295 SYMBOL_SECTION (sym));
21296 return;
21297 }
21298
21299 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21300 expression evaluator, and use LOC_COMPUTED only when necessary
21301 (i.e. when the value of a register or memory location is
21302 referenced, or a thread-local block, etc.). Then again, it might
21303 not be worthwhile. I'm assuming that it isn't unless performance
21304 or memory numbers show me otherwise. */
21305
21306 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21307
21308 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21309 cu->has_loclist = true;
21310 }
21311
21312 /* Given a pointer to a DWARF information entry, figure out if we need
21313 to make a symbol table entry for it, and if so, create a new entry
21314 and return a pointer to it.
21315 If TYPE is NULL, determine symbol type from the die, otherwise
21316 used the passed type.
21317 If SPACE is not NULL, use it to hold the new symbol. If it is
21318 NULL, allocate a new symbol on the objfile's obstack. */
21319
21320 static struct symbol *
21321 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21322 struct symbol *space)
21323 {
21324 struct dwarf2_per_objfile *dwarf2_per_objfile
21325 = cu->per_cu->dwarf2_per_objfile;
21326 struct objfile *objfile = dwarf2_per_objfile->objfile;
21327 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21328 struct symbol *sym = NULL;
21329 const char *name;
21330 struct attribute *attr = NULL;
21331 struct attribute *attr2 = NULL;
21332 CORE_ADDR baseaddr;
21333 struct pending **list_to_add = NULL;
21334
21335 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21336
21337 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21338
21339 name = dwarf2_name (die, cu);
21340 if (name)
21341 {
21342 const char *linkagename;
21343 int suppress_add = 0;
21344
21345 if (space)
21346 sym = space;
21347 else
21348 sym = allocate_symbol (objfile);
21349 OBJSTAT (objfile, n_syms++);
21350
21351 /* Cache this symbol's name and the name's demangled form (if any). */
21352 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21353 linkagename = dwarf2_physname (name, die, cu);
21354 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21355
21356 /* Fortran does not have mangling standard and the mangling does differ
21357 between gfortran, iFort etc. */
21358 if (cu->language == language_fortran
21359 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21360 symbol_set_demangled_name (&(sym->ginfo),
21361 dwarf2_full_name (name, die, cu),
21362 NULL);
21363
21364 /* Default assumptions.
21365 Use the passed type or decode it from the die. */
21366 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21367 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21368 if (type != NULL)
21369 SYMBOL_TYPE (sym) = type;
21370 else
21371 SYMBOL_TYPE (sym) = die_type (die, cu);
21372 attr = dwarf2_attr (die,
21373 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21374 cu);
21375 if (attr)
21376 {
21377 SYMBOL_LINE (sym) = DW_UNSND (attr);
21378 }
21379
21380 attr = dwarf2_attr (die,
21381 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21382 cu);
21383 if (attr)
21384 {
21385 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21386 struct file_entry *fe;
21387
21388 if (cu->line_header != NULL)
21389 fe = cu->line_header->file_name_at (file_index);
21390 else
21391 fe = NULL;
21392
21393 if (fe == NULL)
21394 complaint (_("file index out of range"));
21395 else
21396 symbol_set_symtab (sym, fe->symtab);
21397 }
21398
21399 switch (die->tag)
21400 {
21401 case DW_TAG_label:
21402 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21403 if (attr)
21404 {
21405 CORE_ADDR addr;
21406
21407 addr = attr_value_as_address (attr);
21408 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21409 SYMBOL_VALUE_ADDRESS (sym) = addr;
21410 }
21411 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21412 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21413 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21414 add_symbol_to_list (sym, cu->list_in_scope);
21415 break;
21416 case DW_TAG_subprogram:
21417 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21418 finish_block. */
21419 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21420 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21421 if ((attr2 && (DW_UNSND (attr2) != 0))
21422 || cu->language == language_ada)
21423 {
21424 /* Subprograms marked external are stored as a global symbol.
21425 Ada subprograms, whether marked external or not, are always
21426 stored as a global symbol, because we want to be able to
21427 access them globally. For instance, we want to be able
21428 to break on a nested subprogram without having to
21429 specify the context. */
21430 list_to_add = cu->builder->get_global_symbols ();
21431 }
21432 else
21433 {
21434 list_to_add = cu->list_in_scope;
21435 }
21436 break;
21437 case DW_TAG_inlined_subroutine:
21438 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21439 finish_block. */
21440 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21441 SYMBOL_INLINED (sym) = 1;
21442 list_to_add = cu->list_in_scope;
21443 break;
21444 case DW_TAG_template_value_param:
21445 suppress_add = 1;
21446 /* Fall through. */
21447 case DW_TAG_constant:
21448 case DW_TAG_variable:
21449 case DW_TAG_member:
21450 /* Compilation with minimal debug info may result in
21451 variables with missing type entries. Change the
21452 misleading `void' type to something sensible. */
21453 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21454 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21455
21456 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21457 /* In the case of DW_TAG_member, we should only be called for
21458 static const members. */
21459 if (die->tag == DW_TAG_member)
21460 {
21461 /* dwarf2_add_field uses die_is_declaration,
21462 so we do the same. */
21463 gdb_assert (die_is_declaration (die, cu));
21464 gdb_assert (attr);
21465 }
21466 if (attr)
21467 {
21468 dwarf2_const_value (attr, sym, cu);
21469 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21470 if (!suppress_add)
21471 {
21472 if (attr2 && (DW_UNSND (attr2) != 0))
21473 list_to_add = cu->builder->get_global_symbols ();
21474 else
21475 list_to_add = cu->list_in_scope;
21476 }
21477 break;
21478 }
21479 attr = dwarf2_attr (die, DW_AT_location, cu);
21480 if (attr)
21481 {
21482 var_decode_location (attr, sym, cu);
21483 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21484
21485 /* Fortran explicitly imports any global symbols to the local
21486 scope by DW_TAG_common_block. */
21487 if (cu->language == language_fortran && die->parent
21488 && die->parent->tag == DW_TAG_common_block)
21489 attr2 = NULL;
21490
21491 if (SYMBOL_CLASS (sym) == LOC_STATIC
21492 && SYMBOL_VALUE_ADDRESS (sym) == 0
21493 && !dwarf2_per_objfile->has_section_at_zero)
21494 {
21495 /* When a static variable is eliminated by the linker,
21496 the corresponding debug information is not stripped
21497 out, but the variable address is set to null;
21498 do not add such variables into symbol table. */
21499 }
21500 else if (attr2 && (DW_UNSND (attr2) != 0))
21501 {
21502 /* Workaround gfortran PR debug/40040 - it uses
21503 DW_AT_location for variables in -fPIC libraries which may
21504 get overriden by other libraries/executable and get
21505 a different address. Resolve it by the minimal symbol
21506 which may come from inferior's executable using copy
21507 relocation. Make this workaround only for gfortran as for
21508 other compilers GDB cannot guess the minimal symbol
21509 Fortran mangling kind. */
21510 if (cu->language == language_fortran && die->parent
21511 && die->parent->tag == DW_TAG_module
21512 && cu->producer
21513 && startswith (cu->producer, "GNU Fortran"))
21514 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21515
21516 /* A variable with DW_AT_external is never static,
21517 but it may be block-scoped. */
21518 list_to_add
21519 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21520 ? cu->builder->get_global_symbols ()
21521 : cu->list_in_scope);
21522 }
21523 else
21524 list_to_add = cu->list_in_scope;
21525 }
21526 else
21527 {
21528 /* We do not know the address of this symbol.
21529 If it is an external symbol and we have type information
21530 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21531 The address of the variable will then be determined from
21532 the minimal symbol table whenever the variable is
21533 referenced. */
21534 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21535
21536 /* Fortran explicitly imports any global symbols to the local
21537 scope by DW_TAG_common_block. */
21538 if (cu->language == language_fortran && die->parent
21539 && die->parent->tag == DW_TAG_common_block)
21540 {
21541 /* SYMBOL_CLASS doesn't matter here because
21542 read_common_block is going to reset it. */
21543 if (!suppress_add)
21544 list_to_add = cu->list_in_scope;
21545 }
21546 else if (attr2 && (DW_UNSND (attr2) != 0)
21547 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21548 {
21549 /* A variable with DW_AT_external is never static, but it
21550 may be block-scoped. */
21551 list_to_add
21552 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21553 ? cu->builder->get_global_symbols ()
21554 : cu->list_in_scope);
21555
21556 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21557 }
21558 else if (!die_is_declaration (die, cu))
21559 {
21560 /* Use the default LOC_OPTIMIZED_OUT class. */
21561 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21562 if (!suppress_add)
21563 list_to_add = cu->list_in_scope;
21564 }
21565 }
21566 break;
21567 case DW_TAG_formal_parameter:
21568 {
21569 /* If we are inside a function, mark this as an argument. If
21570 not, we might be looking at an argument to an inlined function
21571 when we do not have enough information to show inlined frames;
21572 pretend it's a local variable in that case so that the user can
21573 still see it. */
21574 struct context_stack *curr
21575 = cu->builder->get_current_context_stack ();
21576 if (curr != nullptr && curr->name != nullptr)
21577 SYMBOL_IS_ARGUMENT (sym) = 1;
21578 attr = dwarf2_attr (die, DW_AT_location, cu);
21579 if (attr)
21580 {
21581 var_decode_location (attr, sym, cu);
21582 }
21583 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21584 if (attr)
21585 {
21586 dwarf2_const_value (attr, sym, cu);
21587 }
21588
21589 list_to_add = cu->list_in_scope;
21590 }
21591 break;
21592 case DW_TAG_unspecified_parameters:
21593 /* From varargs functions; gdb doesn't seem to have any
21594 interest in this information, so just ignore it for now.
21595 (FIXME?) */
21596 break;
21597 case DW_TAG_template_type_param:
21598 suppress_add = 1;
21599 /* Fall through. */
21600 case DW_TAG_class_type:
21601 case DW_TAG_interface_type:
21602 case DW_TAG_structure_type:
21603 case DW_TAG_union_type:
21604 case DW_TAG_set_type:
21605 case DW_TAG_enumeration_type:
21606 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21607 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21608
21609 {
21610 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21611 really ever be static objects: otherwise, if you try
21612 to, say, break of a class's method and you're in a file
21613 which doesn't mention that class, it won't work unless
21614 the check for all static symbols in lookup_symbol_aux
21615 saves you. See the OtherFileClass tests in
21616 gdb.c++/namespace.exp. */
21617
21618 if (!suppress_add)
21619 {
21620 list_to_add
21621 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21622 && cu->language == language_cplus
21623 ? cu->builder->get_global_symbols ()
21624 : cu->list_in_scope);
21625
21626 /* The semantics of C++ state that "struct foo {
21627 ... }" also defines a typedef for "foo". */
21628 if (cu->language == language_cplus
21629 || cu->language == language_ada
21630 || cu->language == language_d
21631 || cu->language == language_rust)
21632 {
21633 /* The symbol's name is already allocated along
21634 with this objfile, so we don't need to
21635 duplicate it for the type. */
21636 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21637 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21638 }
21639 }
21640 }
21641 break;
21642 case DW_TAG_typedef:
21643 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21645 list_to_add = cu->list_in_scope;
21646 break;
21647 case DW_TAG_base_type:
21648 case DW_TAG_subrange_type:
21649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21650 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21651 list_to_add = cu->list_in_scope;
21652 break;
21653 case DW_TAG_enumerator:
21654 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21655 if (attr)
21656 {
21657 dwarf2_const_value (attr, sym, cu);
21658 }
21659 {
21660 /* NOTE: carlton/2003-11-10: See comment above in the
21661 DW_TAG_class_type, etc. block. */
21662
21663 list_to_add
21664 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21665 && cu->language == language_cplus
21666 ? cu->builder->get_global_symbols ()
21667 : cu->list_in_scope);
21668 }
21669 break;
21670 case DW_TAG_imported_declaration:
21671 case DW_TAG_namespace:
21672 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21673 list_to_add = cu->builder->get_global_symbols ();
21674 break;
21675 case DW_TAG_module:
21676 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21677 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21678 list_to_add = cu->builder->get_global_symbols ();
21679 break;
21680 case DW_TAG_common_block:
21681 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21682 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21683 add_symbol_to_list (sym, cu->list_in_scope);
21684 break;
21685 default:
21686 /* Not a tag we recognize. Hopefully we aren't processing
21687 trash data, but since we must specifically ignore things
21688 we don't recognize, there is nothing else we should do at
21689 this point. */
21690 complaint (_("unsupported tag: '%s'"),
21691 dwarf_tag_name (die->tag));
21692 break;
21693 }
21694
21695 if (suppress_add)
21696 {
21697 sym->hash_next = objfile->template_symbols;
21698 objfile->template_symbols = sym;
21699 list_to_add = NULL;
21700 }
21701
21702 if (list_to_add != NULL)
21703 add_symbol_to_list (sym, list_to_add);
21704
21705 /* For the benefit of old versions of GCC, check for anonymous
21706 namespaces based on the demangled name. */
21707 if (!cu->processing_has_namespace_info
21708 && cu->language == language_cplus)
21709 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21710 }
21711 return (sym);
21712 }
21713
21714 /* Given an attr with a DW_FORM_dataN value in host byte order,
21715 zero-extend it as appropriate for the symbol's type. The DWARF
21716 standard (v4) is not entirely clear about the meaning of using
21717 DW_FORM_dataN for a constant with a signed type, where the type is
21718 wider than the data. The conclusion of a discussion on the DWARF
21719 list was that this is unspecified. We choose to always zero-extend
21720 because that is the interpretation long in use by GCC. */
21721
21722 static gdb_byte *
21723 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21724 struct dwarf2_cu *cu, LONGEST *value, int bits)
21725 {
21726 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21727 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21728 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21729 LONGEST l = DW_UNSND (attr);
21730
21731 if (bits < sizeof (*value) * 8)
21732 {
21733 l &= ((LONGEST) 1 << bits) - 1;
21734 *value = l;
21735 }
21736 else if (bits == sizeof (*value) * 8)
21737 *value = l;
21738 else
21739 {
21740 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21741 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21742 return bytes;
21743 }
21744
21745 return NULL;
21746 }
21747
21748 /* Read a constant value from an attribute. Either set *VALUE, or if
21749 the value does not fit in *VALUE, set *BYTES - either already
21750 allocated on the objfile obstack, or newly allocated on OBSTACK,
21751 or, set *BATON, if we translated the constant to a location
21752 expression. */
21753
21754 static void
21755 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21756 const char *name, struct obstack *obstack,
21757 struct dwarf2_cu *cu,
21758 LONGEST *value, const gdb_byte **bytes,
21759 struct dwarf2_locexpr_baton **baton)
21760 {
21761 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21762 struct comp_unit_head *cu_header = &cu->header;
21763 struct dwarf_block *blk;
21764 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21765 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21766
21767 *value = 0;
21768 *bytes = NULL;
21769 *baton = NULL;
21770
21771 switch (attr->form)
21772 {
21773 case DW_FORM_addr:
21774 case DW_FORM_GNU_addr_index:
21775 {
21776 gdb_byte *data;
21777
21778 if (TYPE_LENGTH (type) != cu_header->addr_size)
21779 dwarf2_const_value_length_mismatch_complaint (name,
21780 cu_header->addr_size,
21781 TYPE_LENGTH (type));
21782 /* Symbols of this form are reasonably rare, so we just
21783 piggyback on the existing location code rather than writing
21784 a new implementation of symbol_computed_ops. */
21785 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21786 (*baton)->per_cu = cu->per_cu;
21787 gdb_assert ((*baton)->per_cu);
21788
21789 (*baton)->size = 2 + cu_header->addr_size;
21790 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21791 (*baton)->data = data;
21792
21793 data[0] = DW_OP_addr;
21794 store_unsigned_integer (&data[1], cu_header->addr_size,
21795 byte_order, DW_ADDR (attr));
21796 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21797 }
21798 break;
21799 case DW_FORM_string:
21800 case DW_FORM_strp:
21801 case DW_FORM_GNU_str_index:
21802 case DW_FORM_GNU_strp_alt:
21803 /* DW_STRING is already allocated on the objfile obstack, point
21804 directly to it. */
21805 *bytes = (const gdb_byte *) DW_STRING (attr);
21806 break;
21807 case DW_FORM_block1:
21808 case DW_FORM_block2:
21809 case DW_FORM_block4:
21810 case DW_FORM_block:
21811 case DW_FORM_exprloc:
21812 case DW_FORM_data16:
21813 blk = DW_BLOCK (attr);
21814 if (TYPE_LENGTH (type) != blk->size)
21815 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21816 TYPE_LENGTH (type));
21817 *bytes = blk->data;
21818 break;
21819
21820 /* The DW_AT_const_value attributes are supposed to carry the
21821 symbol's value "represented as it would be on the target
21822 architecture." By the time we get here, it's already been
21823 converted to host endianness, so we just need to sign- or
21824 zero-extend it as appropriate. */
21825 case DW_FORM_data1:
21826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21827 break;
21828 case DW_FORM_data2:
21829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21830 break;
21831 case DW_FORM_data4:
21832 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21833 break;
21834 case DW_FORM_data8:
21835 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21836 break;
21837
21838 case DW_FORM_sdata:
21839 case DW_FORM_implicit_const:
21840 *value = DW_SND (attr);
21841 break;
21842
21843 case DW_FORM_udata:
21844 *value = DW_UNSND (attr);
21845 break;
21846
21847 default:
21848 complaint (_("unsupported const value attribute form: '%s'"),
21849 dwarf_form_name (attr->form));
21850 *value = 0;
21851 break;
21852 }
21853 }
21854
21855
21856 /* Copy constant value from an attribute to a symbol. */
21857
21858 static void
21859 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21860 struct dwarf2_cu *cu)
21861 {
21862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21863 LONGEST value;
21864 const gdb_byte *bytes;
21865 struct dwarf2_locexpr_baton *baton;
21866
21867 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21868 SYMBOL_PRINT_NAME (sym),
21869 &objfile->objfile_obstack, cu,
21870 &value, &bytes, &baton);
21871
21872 if (baton != NULL)
21873 {
21874 SYMBOL_LOCATION_BATON (sym) = baton;
21875 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21876 }
21877 else if (bytes != NULL)
21878 {
21879 SYMBOL_VALUE_BYTES (sym) = bytes;
21880 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21881 }
21882 else
21883 {
21884 SYMBOL_VALUE (sym) = value;
21885 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21886 }
21887 }
21888
21889 /* Return the type of the die in question using its DW_AT_type attribute. */
21890
21891 static struct type *
21892 die_type (struct die_info *die, struct dwarf2_cu *cu)
21893 {
21894 struct attribute *type_attr;
21895
21896 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21897 if (!type_attr)
21898 {
21899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21900 /* A missing DW_AT_type represents a void type. */
21901 return objfile_type (objfile)->builtin_void;
21902 }
21903
21904 return lookup_die_type (die, type_attr, cu);
21905 }
21906
21907 /* True iff CU's producer generates GNAT Ada auxiliary information
21908 that allows to find parallel types through that information instead
21909 of having to do expensive parallel lookups by type name. */
21910
21911 static int
21912 need_gnat_info (struct dwarf2_cu *cu)
21913 {
21914 /* Assume that the Ada compiler was GNAT, which always produces
21915 the auxiliary information. */
21916 return (cu->language == language_ada);
21917 }
21918
21919 /* Return the auxiliary type of the die in question using its
21920 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21921 attribute is not present. */
21922
21923 static struct type *
21924 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21925 {
21926 struct attribute *type_attr;
21927
21928 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21929 if (!type_attr)
21930 return NULL;
21931
21932 return lookup_die_type (die, type_attr, cu);
21933 }
21934
21935 /* If DIE has a descriptive_type attribute, then set the TYPE's
21936 descriptive type accordingly. */
21937
21938 static void
21939 set_descriptive_type (struct type *type, struct die_info *die,
21940 struct dwarf2_cu *cu)
21941 {
21942 struct type *descriptive_type = die_descriptive_type (die, cu);
21943
21944 if (descriptive_type)
21945 {
21946 ALLOCATE_GNAT_AUX_TYPE (type);
21947 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21948 }
21949 }
21950
21951 /* Return the containing type of the die in question using its
21952 DW_AT_containing_type attribute. */
21953
21954 static struct type *
21955 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21956 {
21957 struct attribute *type_attr;
21958 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21959
21960 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21961 if (!type_attr)
21962 error (_("Dwarf Error: Problem turning containing type into gdb type "
21963 "[in module %s]"), objfile_name (objfile));
21964
21965 return lookup_die_type (die, type_attr, cu);
21966 }
21967
21968 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21969
21970 static struct type *
21971 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21972 {
21973 struct dwarf2_per_objfile *dwarf2_per_objfile
21974 = cu->per_cu->dwarf2_per_objfile;
21975 struct objfile *objfile = dwarf2_per_objfile->objfile;
21976 char *saved;
21977
21978 std::string message
21979 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21980 objfile_name (objfile),
21981 sect_offset_str (cu->header.sect_off),
21982 sect_offset_str (die->sect_off));
21983 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21984 message.c_str (), message.length ());
21985
21986 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21987 }
21988
21989 /* Look up the type of DIE in CU using its type attribute ATTR.
21990 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21991 DW_AT_containing_type.
21992 If there is no type substitute an error marker. */
21993
21994 static struct type *
21995 lookup_die_type (struct die_info *die, const struct attribute *attr,
21996 struct dwarf2_cu *cu)
21997 {
21998 struct dwarf2_per_objfile *dwarf2_per_objfile
21999 = cu->per_cu->dwarf2_per_objfile;
22000 struct objfile *objfile = dwarf2_per_objfile->objfile;
22001 struct type *this_type;
22002
22003 gdb_assert (attr->name == DW_AT_type
22004 || attr->name == DW_AT_GNAT_descriptive_type
22005 || attr->name == DW_AT_containing_type);
22006
22007 /* First see if we have it cached. */
22008
22009 if (attr->form == DW_FORM_GNU_ref_alt)
22010 {
22011 struct dwarf2_per_cu_data *per_cu;
22012 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22013
22014 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22015 dwarf2_per_objfile);
22016 this_type = get_die_type_at_offset (sect_off, per_cu);
22017 }
22018 else if (attr_form_is_ref (attr))
22019 {
22020 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22021
22022 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22023 }
22024 else if (attr->form == DW_FORM_ref_sig8)
22025 {
22026 ULONGEST signature = DW_SIGNATURE (attr);
22027
22028 return get_signatured_type (die, signature, cu);
22029 }
22030 else
22031 {
22032 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22033 " at %s [in module %s]"),
22034 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22035 objfile_name (objfile));
22036 return build_error_marker_type (cu, die);
22037 }
22038
22039 /* If not cached we need to read it in. */
22040
22041 if (this_type == NULL)
22042 {
22043 struct die_info *type_die = NULL;
22044 struct dwarf2_cu *type_cu = cu;
22045
22046 if (attr_form_is_ref (attr))
22047 type_die = follow_die_ref (die, attr, &type_cu);
22048 if (type_die == NULL)
22049 return build_error_marker_type (cu, die);
22050 /* If we find the type now, it's probably because the type came
22051 from an inter-CU reference and the type's CU got expanded before
22052 ours. */
22053 this_type = read_type_die (type_die, type_cu);
22054 }
22055
22056 /* If we still don't have a type use an error marker. */
22057
22058 if (this_type == NULL)
22059 return build_error_marker_type (cu, die);
22060
22061 return this_type;
22062 }
22063
22064 /* Return the type in DIE, CU.
22065 Returns NULL for invalid types.
22066
22067 This first does a lookup in die_type_hash,
22068 and only reads the die in if necessary.
22069
22070 NOTE: This can be called when reading in partial or full symbols. */
22071
22072 static struct type *
22073 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22074 {
22075 struct type *this_type;
22076
22077 this_type = get_die_type (die, cu);
22078 if (this_type)
22079 return this_type;
22080
22081 return read_type_die_1 (die, cu);
22082 }
22083
22084 /* Read the type in DIE, CU.
22085 Returns NULL for invalid types. */
22086
22087 static struct type *
22088 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22089 {
22090 struct type *this_type = NULL;
22091
22092 switch (die->tag)
22093 {
22094 case DW_TAG_class_type:
22095 case DW_TAG_interface_type:
22096 case DW_TAG_structure_type:
22097 case DW_TAG_union_type:
22098 this_type = read_structure_type (die, cu);
22099 break;
22100 case DW_TAG_enumeration_type:
22101 this_type = read_enumeration_type (die, cu);
22102 break;
22103 case DW_TAG_subprogram:
22104 case DW_TAG_subroutine_type:
22105 case DW_TAG_inlined_subroutine:
22106 this_type = read_subroutine_type (die, cu);
22107 break;
22108 case DW_TAG_array_type:
22109 this_type = read_array_type (die, cu);
22110 break;
22111 case DW_TAG_set_type:
22112 this_type = read_set_type (die, cu);
22113 break;
22114 case DW_TAG_pointer_type:
22115 this_type = read_tag_pointer_type (die, cu);
22116 break;
22117 case DW_TAG_ptr_to_member_type:
22118 this_type = read_tag_ptr_to_member_type (die, cu);
22119 break;
22120 case DW_TAG_reference_type:
22121 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22122 break;
22123 case DW_TAG_rvalue_reference_type:
22124 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22125 break;
22126 case DW_TAG_const_type:
22127 this_type = read_tag_const_type (die, cu);
22128 break;
22129 case DW_TAG_volatile_type:
22130 this_type = read_tag_volatile_type (die, cu);
22131 break;
22132 case DW_TAG_restrict_type:
22133 this_type = read_tag_restrict_type (die, cu);
22134 break;
22135 case DW_TAG_string_type:
22136 this_type = read_tag_string_type (die, cu);
22137 break;
22138 case DW_TAG_typedef:
22139 this_type = read_typedef (die, cu);
22140 break;
22141 case DW_TAG_subrange_type:
22142 this_type = read_subrange_type (die, cu);
22143 break;
22144 case DW_TAG_base_type:
22145 this_type = read_base_type (die, cu);
22146 break;
22147 case DW_TAG_unspecified_type:
22148 this_type = read_unspecified_type (die, cu);
22149 break;
22150 case DW_TAG_namespace:
22151 this_type = read_namespace_type (die, cu);
22152 break;
22153 case DW_TAG_module:
22154 this_type = read_module_type (die, cu);
22155 break;
22156 case DW_TAG_atomic_type:
22157 this_type = read_tag_atomic_type (die, cu);
22158 break;
22159 default:
22160 complaint (_("unexpected tag in read_type_die: '%s'"),
22161 dwarf_tag_name (die->tag));
22162 break;
22163 }
22164
22165 return this_type;
22166 }
22167
22168 /* See if we can figure out if the class lives in a namespace. We do
22169 this by looking for a member function; its demangled name will
22170 contain namespace info, if there is any.
22171 Return the computed name or NULL.
22172 Space for the result is allocated on the objfile's obstack.
22173 This is the full-die version of guess_partial_die_structure_name.
22174 In this case we know DIE has no useful parent. */
22175
22176 static char *
22177 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22178 {
22179 struct die_info *spec_die;
22180 struct dwarf2_cu *spec_cu;
22181 struct die_info *child;
22182 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22183
22184 spec_cu = cu;
22185 spec_die = die_specification (die, &spec_cu);
22186 if (spec_die != NULL)
22187 {
22188 die = spec_die;
22189 cu = spec_cu;
22190 }
22191
22192 for (child = die->child;
22193 child != NULL;
22194 child = child->sibling)
22195 {
22196 if (child->tag == DW_TAG_subprogram)
22197 {
22198 const char *linkage_name = dw2_linkage_name (child, cu);
22199
22200 if (linkage_name != NULL)
22201 {
22202 char *actual_name
22203 = language_class_name_from_physname (cu->language_defn,
22204 linkage_name);
22205 char *name = NULL;
22206
22207 if (actual_name != NULL)
22208 {
22209 const char *die_name = dwarf2_name (die, cu);
22210
22211 if (die_name != NULL
22212 && strcmp (die_name, actual_name) != 0)
22213 {
22214 /* Strip off the class name from the full name.
22215 We want the prefix. */
22216 int die_name_len = strlen (die_name);
22217 int actual_name_len = strlen (actual_name);
22218
22219 /* Test for '::' as a sanity check. */
22220 if (actual_name_len > die_name_len + 2
22221 && actual_name[actual_name_len
22222 - die_name_len - 1] == ':')
22223 name = (char *) obstack_copy0 (
22224 &objfile->per_bfd->storage_obstack,
22225 actual_name, actual_name_len - die_name_len - 2);
22226 }
22227 }
22228 xfree (actual_name);
22229 return name;
22230 }
22231 }
22232 }
22233
22234 return NULL;
22235 }
22236
22237 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22238 prefix part in such case. See
22239 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22240
22241 static const char *
22242 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22243 {
22244 struct attribute *attr;
22245 const char *base;
22246
22247 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22248 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22249 return NULL;
22250
22251 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22252 return NULL;
22253
22254 attr = dw2_linkage_name_attr (die, cu);
22255 if (attr == NULL || DW_STRING (attr) == NULL)
22256 return NULL;
22257
22258 /* dwarf2_name had to be already called. */
22259 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22260
22261 /* Strip the base name, keep any leading namespaces/classes. */
22262 base = strrchr (DW_STRING (attr), ':');
22263 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22264 return "";
22265
22266 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22267 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22268 DW_STRING (attr),
22269 &base[-1] - DW_STRING (attr));
22270 }
22271
22272 /* Return the name of the namespace/class that DIE is defined within,
22273 or "" if we can't tell. The caller should not xfree the result.
22274
22275 For example, if we're within the method foo() in the following
22276 code:
22277
22278 namespace N {
22279 class C {
22280 void foo () {
22281 }
22282 };
22283 }
22284
22285 then determine_prefix on foo's die will return "N::C". */
22286
22287 static const char *
22288 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22289 {
22290 struct dwarf2_per_objfile *dwarf2_per_objfile
22291 = cu->per_cu->dwarf2_per_objfile;
22292 struct die_info *parent, *spec_die;
22293 struct dwarf2_cu *spec_cu;
22294 struct type *parent_type;
22295 const char *retval;
22296
22297 if (cu->language != language_cplus
22298 && cu->language != language_fortran && cu->language != language_d
22299 && cu->language != language_rust)
22300 return "";
22301
22302 retval = anonymous_struct_prefix (die, cu);
22303 if (retval)
22304 return retval;
22305
22306 /* We have to be careful in the presence of DW_AT_specification.
22307 For example, with GCC 3.4, given the code
22308
22309 namespace N {
22310 void foo() {
22311 // Definition of N::foo.
22312 }
22313 }
22314
22315 then we'll have a tree of DIEs like this:
22316
22317 1: DW_TAG_compile_unit
22318 2: DW_TAG_namespace // N
22319 3: DW_TAG_subprogram // declaration of N::foo
22320 4: DW_TAG_subprogram // definition of N::foo
22321 DW_AT_specification // refers to die #3
22322
22323 Thus, when processing die #4, we have to pretend that we're in
22324 the context of its DW_AT_specification, namely the contex of die
22325 #3. */
22326 spec_cu = cu;
22327 spec_die = die_specification (die, &spec_cu);
22328 if (spec_die == NULL)
22329 parent = die->parent;
22330 else
22331 {
22332 parent = spec_die->parent;
22333 cu = spec_cu;
22334 }
22335
22336 if (parent == NULL)
22337 return "";
22338 else if (parent->building_fullname)
22339 {
22340 const char *name;
22341 const char *parent_name;
22342
22343 /* It has been seen on RealView 2.2 built binaries,
22344 DW_TAG_template_type_param types actually _defined_ as
22345 children of the parent class:
22346
22347 enum E {};
22348 template class <class Enum> Class{};
22349 Class<enum E> class_e;
22350
22351 1: DW_TAG_class_type (Class)
22352 2: DW_TAG_enumeration_type (E)
22353 3: DW_TAG_enumerator (enum1:0)
22354 3: DW_TAG_enumerator (enum2:1)
22355 ...
22356 2: DW_TAG_template_type_param
22357 DW_AT_type DW_FORM_ref_udata (E)
22358
22359 Besides being broken debug info, it can put GDB into an
22360 infinite loop. Consider:
22361
22362 When we're building the full name for Class<E>, we'll start
22363 at Class, and go look over its template type parameters,
22364 finding E. We'll then try to build the full name of E, and
22365 reach here. We're now trying to build the full name of E,
22366 and look over the parent DIE for containing scope. In the
22367 broken case, if we followed the parent DIE of E, we'd again
22368 find Class, and once again go look at its template type
22369 arguments, etc., etc. Simply don't consider such parent die
22370 as source-level parent of this die (it can't be, the language
22371 doesn't allow it), and break the loop here. */
22372 name = dwarf2_name (die, cu);
22373 parent_name = dwarf2_name (parent, cu);
22374 complaint (_("template param type '%s' defined within parent '%s'"),
22375 name ? name : "<unknown>",
22376 parent_name ? parent_name : "<unknown>");
22377 return "";
22378 }
22379 else
22380 switch (parent->tag)
22381 {
22382 case DW_TAG_namespace:
22383 parent_type = read_type_die (parent, cu);
22384 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22385 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22386 Work around this problem here. */
22387 if (cu->language == language_cplus
22388 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22389 return "";
22390 /* We give a name to even anonymous namespaces. */
22391 return TYPE_NAME (parent_type);
22392 case DW_TAG_class_type:
22393 case DW_TAG_interface_type:
22394 case DW_TAG_structure_type:
22395 case DW_TAG_union_type:
22396 case DW_TAG_module:
22397 parent_type = read_type_die (parent, cu);
22398 if (TYPE_NAME (parent_type) != NULL)
22399 return TYPE_NAME (parent_type);
22400 else
22401 /* An anonymous structure is only allowed non-static data
22402 members; no typedefs, no member functions, et cetera.
22403 So it does not need a prefix. */
22404 return "";
22405 case DW_TAG_compile_unit:
22406 case DW_TAG_partial_unit:
22407 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22408 if (cu->language == language_cplus
22409 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22410 && die->child != NULL
22411 && (die->tag == DW_TAG_class_type
22412 || die->tag == DW_TAG_structure_type
22413 || die->tag == DW_TAG_union_type))
22414 {
22415 char *name = guess_full_die_structure_name (die, cu);
22416 if (name != NULL)
22417 return name;
22418 }
22419 return "";
22420 case DW_TAG_enumeration_type:
22421 parent_type = read_type_die (parent, cu);
22422 if (TYPE_DECLARED_CLASS (parent_type))
22423 {
22424 if (TYPE_NAME (parent_type) != NULL)
22425 return TYPE_NAME (parent_type);
22426 return "";
22427 }
22428 /* Fall through. */
22429 default:
22430 return determine_prefix (parent, cu);
22431 }
22432 }
22433
22434 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22435 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22436 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22437 an obconcat, otherwise allocate storage for the result. The CU argument is
22438 used to determine the language and hence, the appropriate separator. */
22439
22440 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22441
22442 static char *
22443 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22444 int physname, struct dwarf2_cu *cu)
22445 {
22446 const char *lead = "";
22447 const char *sep;
22448
22449 if (suffix == NULL || suffix[0] == '\0'
22450 || prefix == NULL || prefix[0] == '\0')
22451 sep = "";
22452 else if (cu->language == language_d)
22453 {
22454 /* For D, the 'main' function could be defined in any module, but it
22455 should never be prefixed. */
22456 if (strcmp (suffix, "D main") == 0)
22457 {
22458 prefix = "";
22459 sep = "";
22460 }
22461 else
22462 sep = ".";
22463 }
22464 else if (cu->language == language_fortran && physname)
22465 {
22466 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22467 DW_AT_MIPS_linkage_name is preferred and used instead. */
22468
22469 lead = "__";
22470 sep = "_MOD_";
22471 }
22472 else
22473 sep = "::";
22474
22475 if (prefix == NULL)
22476 prefix = "";
22477 if (suffix == NULL)
22478 suffix = "";
22479
22480 if (obs == NULL)
22481 {
22482 char *retval
22483 = ((char *)
22484 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22485
22486 strcpy (retval, lead);
22487 strcat (retval, prefix);
22488 strcat (retval, sep);
22489 strcat (retval, suffix);
22490 return retval;
22491 }
22492 else
22493 {
22494 /* We have an obstack. */
22495 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22496 }
22497 }
22498
22499 /* Return sibling of die, NULL if no sibling. */
22500
22501 static struct die_info *
22502 sibling_die (struct die_info *die)
22503 {
22504 return die->sibling;
22505 }
22506
22507 /* Get name of a die, return NULL if not found. */
22508
22509 static const char *
22510 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22511 struct obstack *obstack)
22512 {
22513 if (name && cu->language == language_cplus)
22514 {
22515 std::string canon_name = cp_canonicalize_string (name);
22516
22517 if (!canon_name.empty ())
22518 {
22519 if (canon_name != name)
22520 name = (const char *) obstack_copy0 (obstack,
22521 canon_name.c_str (),
22522 canon_name.length ());
22523 }
22524 }
22525
22526 return name;
22527 }
22528
22529 /* Get name of a die, return NULL if not found.
22530 Anonymous namespaces are converted to their magic string. */
22531
22532 static const char *
22533 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22534 {
22535 struct attribute *attr;
22536 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22537
22538 attr = dwarf2_attr (die, DW_AT_name, cu);
22539 if ((!attr || !DW_STRING (attr))
22540 && die->tag != DW_TAG_namespace
22541 && die->tag != DW_TAG_class_type
22542 && die->tag != DW_TAG_interface_type
22543 && die->tag != DW_TAG_structure_type
22544 && die->tag != DW_TAG_union_type)
22545 return NULL;
22546
22547 switch (die->tag)
22548 {
22549 case DW_TAG_compile_unit:
22550 case DW_TAG_partial_unit:
22551 /* Compilation units have a DW_AT_name that is a filename, not
22552 a source language identifier. */
22553 case DW_TAG_enumeration_type:
22554 case DW_TAG_enumerator:
22555 /* These tags always have simple identifiers already; no need
22556 to canonicalize them. */
22557 return DW_STRING (attr);
22558
22559 case DW_TAG_namespace:
22560 if (attr != NULL && DW_STRING (attr) != NULL)
22561 return DW_STRING (attr);
22562 return CP_ANONYMOUS_NAMESPACE_STR;
22563
22564 case DW_TAG_class_type:
22565 case DW_TAG_interface_type:
22566 case DW_TAG_structure_type:
22567 case DW_TAG_union_type:
22568 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22569 structures or unions. These were of the form "._%d" in GCC 4.1,
22570 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22571 and GCC 4.4. We work around this problem by ignoring these. */
22572 if (attr && DW_STRING (attr)
22573 && (startswith (DW_STRING (attr), "._")
22574 || startswith (DW_STRING (attr), "<anonymous")))
22575 return NULL;
22576
22577 /* GCC might emit a nameless typedef that has a linkage name. See
22578 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22579 if (!attr || DW_STRING (attr) == NULL)
22580 {
22581 char *demangled = NULL;
22582
22583 attr = dw2_linkage_name_attr (die, cu);
22584 if (attr == NULL || DW_STRING (attr) == NULL)
22585 return NULL;
22586
22587 /* Avoid demangling DW_STRING (attr) the second time on a second
22588 call for the same DIE. */
22589 if (!DW_STRING_IS_CANONICAL (attr))
22590 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22591
22592 if (demangled)
22593 {
22594 const char *base;
22595
22596 /* FIXME: we already did this for the partial symbol... */
22597 DW_STRING (attr)
22598 = ((const char *)
22599 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22600 demangled, strlen (demangled)));
22601 DW_STRING_IS_CANONICAL (attr) = 1;
22602 xfree (demangled);
22603
22604 /* Strip any leading namespaces/classes, keep only the base name.
22605 DW_AT_name for named DIEs does not contain the prefixes. */
22606 base = strrchr (DW_STRING (attr), ':');
22607 if (base && base > DW_STRING (attr) && base[-1] == ':')
22608 return &base[1];
22609 else
22610 return DW_STRING (attr);
22611 }
22612 }
22613 break;
22614
22615 default:
22616 break;
22617 }
22618
22619 if (!DW_STRING_IS_CANONICAL (attr))
22620 {
22621 DW_STRING (attr)
22622 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22623 &objfile->per_bfd->storage_obstack);
22624 DW_STRING_IS_CANONICAL (attr) = 1;
22625 }
22626 return DW_STRING (attr);
22627 }
22628
22629 /* Return the die that this die in an extension of, or NULL if there
22630 is none. *EXT_CU is the CU containing DIE on input, and the CU
22631 containing the return value on output. */
22632
22633 static struct die_info *
22634 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22635 {
22636 struct attribute *attr;
22637
22638 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22639 if (attr == NULL)
22640 return NULL;
22641
22642 return follow_die_ref (die, attr, ext_cu);
22643 }
22644
22645 /* Convert a DIE tag into its string name. */
22646
22647 static const char *
22648 dwarf_tag_name (unsigned tag)
22649 {
22650 const char *name = get_DW_TAG_name (tag);
22651
22652 if (name == NULL)
22653 return "DW_TAG_<unknown>";
22654
22655 return name;
22656 }
22657
22658 /* Convert a DWARF attribute code into its string name. */
22659
22660 static const char *
22661 dwarf_attr_name (unsigned attr)
22662 {
22663 const char *name;
22664
22665 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22666 if (attr == DW_AT_MIPS_fde)
22667 return "DW_AT_MIPS_fde";
22668 #else
22669 if (attr == DW_AT_HP_block_index)
22670 return "DW_AT_HP_block_index";
22671 #endif
22672
22673 name = get_DW_AT_name (attr);
22674
22675 if (name == NULL)
22676 return "DW_AT_<unknown>";
22677
22678 return name;
22679 }
22680
22681 /* Convert a DWARF value form code into its string name. */
22682
22683 static const char *
22684 dwarf_form_name (unsigned form)
22685 {
22686 const char *name = get_DW_FORM_name (form);
22687
22688 if (name == NULL)
22689 return "DW_FORM_<unknown>";
22690
22691 return name;
22692 }
22693
22694 static const char *
22695 dwarf_bool_name (unsigned mybool)
22696 {
22697 if (mybool)
22698 return "TRUE";
22699 else
22700 return "FALSE";
22701 }
22702
22703 /* Convert a DWARF type code into its string name. */
22704
22705 static const char *
22706 dwarf_type_encoding_name (unsigned enc)
22707 {
22708 const char *name = get_DW_ATE_name (enc);
22709
22710 if (name == NULL)
22711 return "DW_ATE_<unknown>";
22712
22713 return name;
22714 }
22715
22716 static void
22717 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22718 {
22719 unsigned int i;
22720
22721 print_spaces (indent, f);
22722 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22723 dwarf_tag_name (die->tag), die->abbrev,
22724 sect_offset_str (die->sect_off));
22725
22726 if (die->parent != NULL)
22727 {
22728 print_spaces (indent, f);
22729 fprintf_unfiltered (f, " parent at offset: %s\n",
22730 sect_offset_str (die->parent->sect_off));
22731 }
22732
22733 print_spaces (indent, f);
22734 fprintf_unfiltered (f, " has children: %s\n",
22735 dwarf_bool_name (die->child != NULL));
22736
22737 print_spaces (indent, f);
22738 fprintf_unfiltered (f, " attributes:\n");
22739
22740 for (i = 0; i < die->num_attrs; ++i)
22741 {
22742 print_spaces (indent, f);
22743 fprintf_unfiltered (f, " %s (%s) ",
22744 dwarf_attr_name (die->attrs[i].name),
22745 dwarf_form_name (die->attrs[i].form));
22746
22747 switch (die->attrs[i].form)
22748 {
22749 case DW_FORM_addr:
22750 case DW_FORM_GNU_addr_index:
22751 fprintf_unfiltered (f, "address: ");
22752 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22753 break;
22754 case DW_FORM_block2:
22755 case DW_FORM_block4:
22756 case DW_FORM_block:
22757 case DW_FORM_block1:
22758 fprintf_unfiltered (f, "block: size %s",
22759 pulongest (DW_BLOCK (&die->attrs[i])->size));
22760 break;
22761 case DW_FORM_exprloc:
22762 fprintf_unfiltered (f, "expression: size %s",
22763 pulongest (DW_BLOCK (&die->attrs[i])->size));
22764 break;
22765 case DW_FORM_data16:
22766 fprintf_unfiltered (f, "constant of 16 bytes");
22767 break;
22768 case DW_FORM_ref_addr:
22769 fprintf_unfiltered (f, "ref address: ");
22770 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22771 break;
22772 case DW_FORM_GNU_ref_alt:
22773 fprintf_unfiltered (f, "alt ref address: ");
22774 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22775 break;
22776 case DW_FORM_ref1:
22777 case DW_FORM_ref2:
22778 case DW_FORM_ref4:
22779 case DW_FORM_ref8:
22780 case DW_FORM_ref_udata:
22781 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22782 (long) (DW_UNSND (&die->attrs[i])));
22783 break;
22784 case DW_FORM_data1:
22785 case DW_FORM_data2:
22786 case DW_FORM_data4:
22787 case DW_FORM_data8:
22788 case DW_FORM_udata:
22789 case DW_FORM_sdata:
22790 fprintf_unfiltered (f, "constant: %s",
22791 pulongest (DW_UNSND (&die->attrs[i])));
22792 break;
22793 case DW_FORM_sec_offset:
22794 fprintf_unfiltered (f, "section offset: %s",
22795 pulongest (DW_UNSND (&die->attrs[i])));
22796 break;
22797 case DW_FORM_ref_sig8:
22798 fprintf_unfiltered (f, "signature: %s",
22799 hex_string (DW_SIGNATURE (&die->attrs[i])));
22800 break;
22801 case DW_FORM_string:
22802 case DW_FORM_strp:
22803 case DW_FORM_line_strp:
22804 case DW_FORM_GNU_str_index:
22805 case DW_FORM_GNU_strp_alt:
22806 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22807 DW_STRING (&die->attrs[i])
22808 ? DW_STRING (&die->attrs[i]) : "",
22809 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22810 break;
22811 case DW_FORM_flag:
22812 if (DW_UNSND (&die->attrs[i]))
22813 fprintf_unfiltered (f, "flag: TRUE");
22814 else
22815 fprintf_unfiltered (f, "flag: FALSE");
22816 break;
22817 case DW_FORM_flag_present:
22818 fprintf_unfiltered (f, "flag: TRUE");
22819 break;
22820 case DW_FORM_indirect:
22821 /* The reader will have reduced the indirect form to
22822 the "base form" so this form should not occur. */
22823 fprintf_unfiltered (f,
22824 "unexpected attribute form: DW_FORM_indirect");
22825 break;
22826 case DW_FORM_implicit_const:
22827 fprintf_unfiltered (f, "constant: %s",
22828 plongest (DW_SND (&die->attrs[i])));
22829 break;
22830 default:
22831 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22832 die->attrs[i].form);
22833 break;
22834 }
22835 fprintf_unfiltered (f, "\n");
22836 }
22837 }
22838
22839 static void
22840 dump_die_for_error (struct die_info *die)
22841 {
22842 dump_die_shallow (gdb_stderr, 0, die);
22843 }
22844
22845 static void
22846 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22847 {
22848 int indent = level * 4;
22849
22850 gdb_assert (die != NULL);
22851
22852 if (level >= max_level)
22853 return;
22854
22855 dump_die_shallow (f, indent, die);
22856
22857 if (die->child != NULL)
22858 {
22859 print_spaces (indent, f);
22860 fprintf_unfiltered (f, " Children:");
22861 if (level + 1 < max_level)
22862 {
22863 fprintf_unfiltered (f, "\n");
22864 dump_die_1 (f, level + 1, max_level, die->child);
22865 }
22866 else
22867 {
22868 fprintf_unfiltered (f,
22869 " [not printed, max nesting level reached]\n");
22870 }
22871 }
22872
22873 if (die->sibling != NULL && level > 0)
22874 {
22875 dump_die_1 (f, level, max_level, die->sibling);
22876 }
22877 }
22878
22879 /* This is called from the pdie macro in gdbinit.in.
22880 It's not static so gcc will keep a copy callable from gdb. */
22881
22882 void
22883 dump_die (struct die_info *die, int max_level)
22884 {
22885 dump_die_1 (gdb_stdlog, 0, max_level, die);
22886 }
22887
22888 static void
22889 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22890 {
22891 void **slot;
22892
22893 slot = htab_find_slot_with_hash (cu->die_hash, die,
22894 to_underlying (die->sect_off),
22895 INSERT);
22896
22897 *slot = die;
22898 }
22899
22900 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22901 required kind. */
22902
22903 static sect_offset
22904 dwarf2_get_ref_die_offset (const struct attribute *attr)
22905 {
22906 if (attr_form_is_ref (attr))
22907 return (sect_offset) DW_UNSND (attr);
22908
22909 complaint (_("unsupported die ref attribute form: '%s'"),
22910 dwarf_form_name (attr->form));
22911 return {};
22912 }
22913
22914 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22915 * the value held by the attribute is not constant. */
22916
22917 static LONGEST
22918 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22919 {
22920 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22921 return DW_SND (attr);
22922 else if (attr->form == DW_FORM_udata
22923 || attr->form == DW_FORM_data1
22924 || attr->form == DW_FORM_data2
22925 || attr->form == DW_FORM_data4
22926 || attr->form == DW_FORM_data8)
22927 return DW_UNSND (attr);
22928 else
22929 {
22930 /* For DW_FORM_data16 see attr_form_is_constant. */
22931 complaint (_("Attribute value is not a constant (%s)"),
22932 dwarf_form_name (attr->form));
22933 return default_value;
22934 }
22935 }
22936
22937 /* Follow reference or signature attribute ATTR of SRC_DIE.
22938 On entry *REF_CU is the CU of SRC_DIE.
22939 On exit *REF_CU is the CU of the result. */
22940
22941 static struct die_info *
22942 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22943 struct dwarf2_cu **ref_cu)
22944 {
22945 struct die_info *die;
22946
22947 if (attr_form_is_ref (attr))
22948 die = follow_die_ref (src_die, attr, ref_cu);
22949 else if (attr->form == DW_FORM_ref_sig8)
22950 die = follow_die_sig (src_die, attr, ref_cu);
22951 else
22952 {
22953 dump_die_for_error (src_die);
22954 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22955 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22956 }
22957
22958 return die;
22959 }
22960
22961 /* Follow reference OFFSET.
22962 On entry *REF_CU is the CU of the source die referencing OFFSET.
22963 On exit *REF_CU is the CU of the result.
22964 Returns NULL if OFFSET is invalid. */
22965
22966 static struct die_info *
22967 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22968 struct dwarf2_cu **ref_cu)
22969 {
22970 struct die_info temp_die;
22971 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22972 struct dwarf2_per_objfile *dwarf2_per_objfile
22973 = cu->per_cu->dwarf2_per_objfile;
22974
22975 gdb_assert (cu->per_cu != NULL);
22976
22977 target_cu = cu;
22978
22979 if (cu->per_cu->is_debug_types)
22980 {
22981 /* .debug_types CUs cannot reference anything outside their CU.
22982 If they need to, they have to reference a signatured type via
22983 DW_FORM_ref_sig8. */
22984 if (!offset_in_cu_p (&cu->header, sect_off))
22985 return NULL;
22986 }
22987 else if (offset_in_dwz != cu->per_cu->is_dwz
22988 || !offset_in_cu_p (&cu->header, sect_off))
22989 {
22990 struct dwarf2_per_cu_data *per_cu;
22991
22992 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22993 dwarf2_per_objfile);
22994
22995 /* If necessary, add it to the queue and load its DIEs. */
22996 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22997 load_full_comp_unit (per_cu, false, cu->language);
22998
22999 target_cu = per_cu->cu;
23000 }
23001 else if (cu->dies == NULL)
23002 {
23003 /* We're loading full DIEs during partial symbol reading. */
23004 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23005 load_full_comp_unit (cu->per_cu, false, language_minimal);
23006 }
23007
23008 *ref_cu = target_cu;
23009 temp_die.sect_off = sect_off;
23010 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23011 &temp_die,
23012 to_underlying (sect_off));
23013 }
23014
23015 /* Follow reference attribute ATTR of SRC_DIE.
23016 On entry *REF_CU is the CU of SRC_DIE.
23017 On exit *REF_CU is the CU of the result. */
23018
23019 static struct die_info *
23020 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23021 struct dwarf2_cu **ref_cu)
23022 {
23023 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23024 struct dwarf2_cu *cu = *ref_cu;
23025 struct die_info *die;
23026
23027 die = follow_die_offset (sect_off,
23028 (attr->form == DW_FORM_GNU_ref_alt
23029 || cu->per_cu->is_dwz),
23030 ref_cu);
23031 if (!die)
23032 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23033 "at %s [in module %s]"),
23034 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23035 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23036
23037 return die;
23038 }
23039
23040 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23041 Returned value is intended for DW_OP_call*. Returned
23042 dwarf2_locexpr_baton->data has lifetime of
23043 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23044
23045 struct dwarf2_locexpr_baton
23046 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23047 struct dwarf2_per_cu_data *per_cu,
23048 CORE_ADDR (*get_frame_pc) (void *baton),
23049 void *baton, bool resolve_abstract_p)
23050 {
23051 struct dwarf2_cu *cu;
23052 struct die_info *die;
23053 struct attribute *attr;
23054 struct dwarf2_locexpr_baton retval;
23055 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23056 struct objfile *objfile = dwarf2_per_objfile->objfile;
23057
23058 if (per_cu->cu == NULL)
23059 load_cu (per_cu, false);
23060 cu = per_cu->cu;
23061 if (cu == NULL)
23062 {
23063 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23064 Instead just throw an error, not much else we can do. */
23065 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23066 sect_offset_str (sect_off), objfile_name (objfile));
23067 }
23068
23069 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23070 if (!die)
23071 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23072 sect_offset_str (sect_off), objfile_name (objfile));
23073
23074 attr = dwarf2_attr (die, DW_AT_location, cu);
23075 if (!attr && resolve_abstract_p
23076 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23077 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23078 {
23079 CORE_ADDR pc = (*get_frame_pc) (baton);
23080
23081 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23082 {
23083 if (!cand->parent
23084 || cand->parent->tag != DW_TAG_subprogram)
23085 continue;
23086
23087 CORE_ADDR pc_low, pc_high;
23088 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23089 if (pc_low == ((CORE_ADDR) -1)
23090 || !(pc_low <= pc && pc < pc_high))
23091 continue;
23092
23093 die = cand;
23094 attr = dwarf2_attr (die, DW_AT_location, cu);
23095 break;
23096 }
23097 }
23098
23099 if (!attr)
23100 {
23101 /* DWARF: "If there is no such attribute, then there is no effect.".
23102 DATA is ignored if SIZE is 0. */
23103
23104 retval.data = NULL;
23105 retval.size = 0;
23106 }
23107 else if (attr_form_is_section_offset (attr))
23108 {
23109 struct dwarf2_loclist_baton loclist_baton;
23110 CORE_ADDR pc = (*get_frame_pc) (baton);
23111 size_t size;
23112
23113 fill_in_loclist_baton (cu, &loclist_baton, attr);
23114
23115 retval.data = dwarf2_find_location_expression (&loclist_baton,
23116 &size, pc);
23117 retval.size = size;
23118 }
23119 else
23120 {
23121 if (!attr_form_is_block (attr))
23122 error (_("Dwarf Error: DIE at %s referenced in module %s "
23123 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23124 sect_offset_str (sect_off), objfile_name (objfile));
23125
23126 retval.data = DW_BLOCK (attr)->data;
23127 retval.size = DW_BLOCK (attr)->size;
23128 }
23129 retval.per_cu = cu->per_cu;
23130
23131 age_cached_comp_units (dwarf2_per_objfile);
23132
23133 return retval;
23134 }
23135
23136 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23137 offset. */
23138
23139 struct dwarf2_locexpr_baton
23140 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23141 struct dwarf2_per_cu_data *per_cu,
23142 CORE_ADDR (*get_frame_pc) (void *baton),
23143 void *baton)
23144 {
23145 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23146
23147 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23148 }
23149
23150 /* Write a constant of a given type as target-ordered bytes into
23151 OBSTACK. */
23152
23153 static const gdb_byte *
23154 write_constant_as_bytes (struct obstack *obstack,
23155 enum bfd_endian byte_order,
23156 struct type *type,
23157 ULONGEST value,
23158 LONGEST *len)
23159 {
23160 gdb_byte *result;
23161
23162 *len = TYPE_LENGTH (type);
23163 result = (gdb_byte *) obstack_alloc (obstack, *len);
23164 store_unsigned_integer (result, *len, byte_order, value);
23165
23166 return result;
23167 }
23168
23169 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23170 pointer to the constant bytes and set LEN to the length of the
23171 data. If memory is needed, allocate it on OBSTACK. If the DIE
23172 does not have a DW_AT_const_value, return NULL. */
23173
23174 const gdb_byte *
23175 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23176 struct dwarf2_per_cu_data *per_cu,
23177 struct obstack *obstack,
23178 LONGEST *len)
23179 {
23180 struct dwarf2_cu *cu;
23181 struct die_info *die;
23182 struct attribute *attr;
23183 const gdb_byte *result = NULL;
23184 struct type *type;
23185 LONGEST value;
23186 enum bfd_endian byte_order;
23187 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23188
23189 if (per_cu->cu == NULL)
23190 load_cu (per_cu, false);
23191 cu = per_cu->cu;
23192 if (cu == NULL)
23193 {
23194 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23195 Instead just throw an error, not much else we can do. */
23196 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23197 sect_offset_str (sect_off), objfile_name (objfile));
23198 }
23199
23200 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23201 if (!die)
23202 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23203 sect_offset_str (sect_off), objfile_name (objfile));
23204
23205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23206 if (attr == NULL)
23207 return NULL;
23208
23209 byte_order = (bfd_big_endian (objfile->obfd)
23210 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23211
23212 switch (attr->form)
23213 {
23214 case DW_FORM_addr:
23215 case DW_FORM_GNU_addr_index:
23216 {
23217 gdb_byte *tem;
23218
23219 *len = cu->header.addr_size;
23220 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23221 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23222 result = tem;
23223 }
23224 break;
23225 case DW_FORM_string:
23226 case DW_FORM_strp:
23227 case DW_FORM_GNU_str_index:
23228 case DW_FORM_GNU_strp_alt:
23229 /* DW_STRING is already allocated on the objfile obstack, point
23230 directly to it. */
23231 result = (const gdb_byte *) DW_STRING (attr);
23232 *len = strlen (DW_STRING (attr));
23233 break;
23234 case DW_FORM_block1:
23235 case DW_FORM_block2:
23236 case DW_FORM_block4:
23237 case DW_FORM_block:
23238 case DW_FORM_exprloc:
23239 case DW_FORM_data16:
23240 result = DW_BLOCK (attr)->data;
23241 *len = DW_BLOCK (attr)->size;
23242 break;
23243
23244 /* The DW_AT_const_value attributes are supposed to carry the
23245 symbol's value "represented as it would be on the target
23246 architecture." By the time we get here, it's already been
23247 converted to host endianness, so we just need to sign- or
23248 zero-extend it as appropriate. */
23249 case DW_FORM_data1:
23250 type = die_type (die, cu);
23251 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23252 if (result == NULL)
23253 result = write_constant_as_bytes (obstack, byte_order,
23254 type, value, len);
23255 break;
23256 case DW_FORM_data2:
23257 type = die_type (die, cu);
23258 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23259 if (result == NULL)
23260 result = write_constant_as_bytes (obstack, byte_order,
23261 type, value, len);
23262 break;
23263 case DW_FORM_data4:
23264 type = die_type (die, cu);
23265 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23266 if (result == NULL)
23267 result = write_constant_as_bytes (obstack, byte_order,
23268 type, value, len);
23269 break;
23270 case DW_FORM_data8:
23271 type = die_type (die, cu);
23272 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23273 if (result == NULL)
23274 result = write_constant_as_bytes (obstack, byte_order,
23275 type, value, len);
23276 break;
23277
23278 case DW_FORM_sdata:
23279 case DW_FORM_implicit_const:
23280 type = die_type (die, cu);
23281 result = write_constant_as_bytes (obstack, byte_order,
23282 type, DW_SND (attr), len);
23283 break;
23284
23285 case DW_FORM_udata:
23286 type = die_type (die, cu);
23287 result = write_constant_as_bytes (obstack, byte_order,
23288 type, DW_UNSND (attr), len);
23289 break;
23290
23291 default:
23292 complaint (_("unsupported const value attribute form: '%s'"),
23293 dwarf_form_name (attr->form));
23294 break;
23295 }
23296
23297 return result;
23298 }
23299
23300 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23301 valid type for this die is found. */
23302
23303 struct type *
23304 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23305 struct dwarf2_per_cu_data *per_cu)
23306 {
23307 struct dwarf2_cu *cu;
23308 struct die_info *die;
23309
23310 if (per_cu->cu == NULL)
23311 load_cu (per_cu, false);
23312 cu = per_cu->cu;
23313 if (!cu)
23314 return NULL;
23315
23316 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23317 if (!die)
23318 return NULL;
23319
23320 return die_type (die, cu);
23321 }
23322
23323 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23324 PER_CU. */
23325
23326 struct type *
23327 dwarf2_get_die_type (cu_offset die_offset,
23328 struct dwarf2_per_cu_data *per_cu)
23329 {
23330 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23331 return get_die_type_at_offset (die_offset_sect, per_cu);
23332 }
23333
23334 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23335 On entry *REF_CU is the CU of SRC_DIE.
23336 On exit *REF_CU is the CU of the result.
23337 Returns NULL if the referenced DIE isn't found. */
23338
23339 static struct die_info *
23340 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23341 struct dwarf2_cu **ref_cu)
23342 {
23343 struct die_info temp_die;
23344 struct dwarf2_cu *sig_cu;
23345 struct die_info *die;
23346
23347 /* While it might be nice to assert sig_type->type == NULL here,
23348 we can get here for DW_AT_imported_declaration where we need
23349 the DIE not the type. */
23350
23351 /* If necessary, add it to the queue and load its DIEs. */
23352
23353 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23354 read_signatured_type (sig_type);
23355
23356 sig_cu = sig_type->per_cu.cu;
23357 gdb_assert (sig_cu != NULL);
23358 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23359 temp_die.sect_off = sig_type->type_offset_in_section;
23360 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23361 to_underlying (temp_die.sect_off));
23362 if (die)
23363 {
23364 struct dwarf2_per_objfile *dwarf2_per_objfile
23365 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23366
23367 /* For .gdb_index version 7 keep track of included TUs.
23368 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23369 if (dwarf2_per_objfile->index_table != NULL
23370 && dwarf2_per_objfile->index_table->version <= 7)
23371 {
23372 VEC_safe_push (dwarf2_per_cu_ptr,
23373 (*ref_cu)->per_cu->imported_symtabs,
23374 sig_cu->per_cu);
23375 }
23376
23377 *ref_cu = sig_cu;
23378 return die;
23379 }
23380
23381 return NULL;
23382 }
23383
23384 /* Follow signatured type referenced by ATTR in SRC_DIE.
23385 On entry *REF_CU is the CU of SRC_DIE.
23386 On exit *REF_CU is the CU of the result.
23387 The result is the DIE of the type.
23388 If the referenced type cannot be found an error is thrown. */
23389
23390 static struct die_info *
23391 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23392 struct dwarf2_cu **ref_cu)
23393 {
23394 ULONGEST signature = DW_SIGNATURE (attr);
23395 struct signatured_type *sig_type;
23396 struct die_info *die;
23397
23398 gdb_assert (attr->form == DW_FORM_ref_sig8);
23399
23400 sig_type = lookup_signatured_type (*ref_cu, signature);
23401 /* sig_type will be NULL if the signatured type is missing from
23402 the debug info. */
23403 if (sig_type == NULL)
23404 {
23405 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23406 " from DIE at %s [in module %s]"),
23407 hex_string (signature), sect_offset_str (src_die->sect_off),
23408 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23409 }
23410
23411 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23412 if (die == NULL)
23413 {
23414 dump_die_for_error (src_die);
23415 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23416 " from DIE at %s [in module %s]"),
23417 hex_string (signature), sect_offset_str (src_die->sect_off),
23418 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23419 }
23420
23421 return die;
23422 }
23423
23424 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23425 reading in and processing the type unit if necessary. */
23426
23427 static struct type *
23428 get_signatured_type (struct die_info *die, ULONGEST signature,
23429 struct dwarf2_cu *cu)
23430 {
23431 struct dwarf2_per_objfile *dwarf2_per_objfile
23432 = cu->per_cu->dwarf2_per_objfile;
23433 struct signatured_type *sig_type;
23434 struct dwarf2_cu *type_cu;
23435 struct die_info *type_die;
23436 struct type *type;
23437
23438 sig_type = lookup_signatured_type (cu, signature);
23439 /* sig_type will be NULL if the signatured type is missing from
23440 the debug info. */
23441 if (sig_type == NULL)
23442 {
23443 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23444 " from DIE at %s [in module %s]"),
23445 hex_string (signature), sect_offset_str (die->sect_off),
23446 objfile_name (dwarf2_per_objfile->objfile));
23447 return build_error_marker_type (cu, die);
23448 }
23449
23450 /* If we already know the type we're done. */
23451 if (sig_type->type != NULL)
23452 return sig_type->type;
23453
23454 type_cu = cu;
23455 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23456 if (type_die != NULL)
23457 {
23458 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23459 is created. This is important, for example, because for c++ classes
23460 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23461 type = read_type_die (type_die, type_cu);
23462 if (type == NULL)
23463 {
23464 complaint (_("Dwarf Error: Cannot build signatured type %s"
23465 " referenced from DIE at %s [in module %s]"),
23466 hex_string (signature), sect_offset_str (die->sect_off),
23467 objfile_name (dwarf2_per_objfile->objfile));
23468 type = build_error_marker_type (cu, die);
23469 }
23470 }
23471 else
23472 {
23473 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23474 " from DIE at %s [in module %s]"),
23475 hex_string (signature), sect_offset_str (die->sect_off),
23476 objfile_name (dwarf2_per_objfile->objfile));
23477 type = build_error_marker_type (cu, die);
23478 }
23479 sig_type->type = type;
23480
23481 return type;
23482 }
23483
23484 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23485 reading in and processing the type unit if necessary. */
23486
23487 static struct type *
23488 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23489 struct dwarf2_cu *cu) /* ARI: editCase function */
23490 {
23491 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23492 if (attr_form_is_ref (attr))
23493 {
23494 struct dwarf2_cu *type_cu = cu;
23495 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23496
23497 return read_type_die (type_die, type_cu);
23498 }
23499 else if (attr->form == DW_FORM_ref_sig8)
23500 {
23501 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23502 }
23503 else
23504 {
23505 struct dwarf2_per_objfile *dwarf2_per_objfile
23506 = cu->per_cu->dwarf2_per_objfile;
23507
23508 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23509 " at %s [in module %s]"),
23510 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23511 objfile_name (dwarf2_per_objfile->objfile));
23512 return build_error_marker_type (cu, die);
23513 }
23514 }
23515
23516 /* Load the DIEs associated with type unit PER_CU into memory. */
23517
23518 static void
23519 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23520 {
23521 struct signatured_type *sig_type;
23522
23523 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23524 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23525
23526 /* We have the per_cu, but we need the signatured_type.
23527 Fortunately this is an easy translation. */
23528 gdb_assert (per_cu->is_debug_types);
23529 sig_type = (struct signatured_type *) per_cu;
23530
23531 gdb_assert (per_cu->cu == NULL);
23532
23533 read_signatured_type (sig_type);
23534
23535 gdb_assert (per_cu->cu != NULL);
23536 }
23537
23538 /* die_reader_func for read_signatured_type.
23539 This is identical to load_full_comp_unit_reader,
23540 but is kept separate for now. */
23541
23542 static void
23543 read_signatured_type_reader (const struct die_reader_specs *reader,
23544 const gdb_byte *info_ptr,
23545 struct die_info *comp_unit_die,
23546 int has_children,
23547 void *data)
23548 {
23549 struct dwarf2_cu *cu = reader->cu;
23550
23551 gdb_assert (cu->die_hash == NULL);
23552 cu->die_hash =
23553 htab_create_alloc_ex (cu->header.length / 12,
23554 die_hash,
23555 die_eq,
23556 NULL,
23557 &cu->comp_unit_obstack,
23558 hashtab_obstack_allocate,
23559 dummy_obstack_deallocate);
23560
23561 if (has_children)
23562 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23563 &info_ptr, comp_unit_die);
23564 cu->dies = comp_unit_die;
23565 /* comp_unit_die is not stored in die_hash, no need. */
23566
23567 /* We try not to read any attributes in this function, because not
23568 all CUs needed for references have been loaded yet, and symbol
23569 table processing isn't initialized. But we have to set the CU language,
23570 or we won't be able to build types correctly.
23571 Similarly, if we do not read the producer, we can not apply
23572 producer-specific interpretation. */
23573 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23574 }
23575
23576 /* Read in a signatured type and build its CU and DIEs.
23577 If the type is a stub for the real type in a DWO file,
23578 read in the real type from the DWO file as well. */
23579
23580 static void
23581 read_signatured_type (struct signatured_type *sig_type)
23582 {
23583 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23584
23585 gdb_assert (per_cu->is_debug_types);
23586 gdb_assert (per_cu->cu == NULL);
23587
23588 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23589 read_signatured_type_reader, NULL);
23590 sig_type->per_cu.tu_read = 1;
23591 }
23592
23593 /* Decode simple location descriptions.
23594 Given a pointer to a dwarf block that defines a location, compute
23595 the location and return the value.
23596
23597 NOTE drow/2003-11-18: This function is called in two situations
23598 now: for the address of static or global variables (partial symbols
23599 only) and for offsets into structures which are expected to be
23600 (more or less) constant. The partial symbol case should go away,
23601 and only the constant case should remain. That will let this
23602 function complain more accurately. A few special modes are allowed
23603 without complaint for global variables (for instance, global
23604 register values and thread-local values).
23605
23606 A location description containing no operations indicates that the
23607 object is optimized out. The return value is 0 for that case.
23608 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23609 callers will only want a very basic result and this can become a
23610 complaint.
23611
23612 Note that stack[0] is unused except as a default error return. */
23613
23614 static CORE_ADDR
23615 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23616 {
23617 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23618 size_t i;
23619 size_t size = blk->size;
23620 const gdb_byte *data = blk->data;
23621 CORE_ADDR stack[64];
23622 int stacki;
23623 unsigned int bytes_read, unsnd;
23624 gdb_byte op;
23625
23626 i = 0;
23627 stacki = 0;
23628 stack[stacki] = 0;
23629 stack[++stacki] = 0;
23630
23631 while (i < size)
23632 {
23633 op = data[i++];
23634 switch (op)
23635 {
23636 case DW_OP_lit0:
23637 case DW_OP_lit1:
23638 case DW_OP_lit2:
23639 case DW_OP_lit3:
23640 case DW_OP_lit4:
23641 case DW_OP_lit5:
23642 case DW_OP_lit6:
23643 case DW_OP_lit7:
23644 case DW_OP_lit8:
23645 case DW_OP_lit9:
23646 case DW_OP_lit10:
23647 case DW_OP_lit11:
23648 case DW_OP_lit12:
23649 case DW_OP_lit13:
23650 case DW_OP_lit14:
23651 case DW_OP_lit15:
23652 case DW_OP_lit16:
23653 case DW_OP_lit17:
23654 case DW_OP_lit18:
23655 case DW_OP_lit19:
23656 case DW_OP_lit20:
23657 case DW_OP_lit21:
23658 case DW_OP_lit22:
23659 case DW_OP_lit23:
23660 case DW_OP_lit24:
23661 case DW_OP_lit25:
23662 case DW_OP_lit26:
23663 case DW_OP_lit27:
23664 case DW_OP_lit28:
23665 case DW_OP_lit29:
23666 case DW_OP_lit30:
23667 case DW_OP_lit31:
23668 stack[++stacki] = op - DW_OP_lit0;
23669 break;
23670
23671 case DW_OP_reg0:
23672 case DW_OP_reg1:
23673 case DW_OP_reg2:
23674 case DW_OP_reg3:
23675 case DW_OP_reg4:
23676 case DW_OP_reg5:
23677 case DW_OP_reg6:
23678 case DW_OP_reg7:
23679 case DW_OP_reg8:
23680 case DW_OP_reg9:
23681 case DW_OP_reg10:
23682 case DW_OP_reg11:
23683 case DW_OP_reg12:
23684 case DW_OP_reg13:
23685 case DW_OP_reg14:
23686 case DW_OP_reg15:
23687 case DW_OP_reg16:
23688 case DW_OP_reg17:
23689 case DW_OP_reg18:
23690 case DW_OP_reg19:
23691 case DW_OP_reg20:
23692 case DW_OP_reg21:
23693 case DW_OP_reg22:
23694 case DW_OP_reg23:
23695 case DW_OP_reg24:
23696 case DW_OP_reg25:
23697 case DW_OP_reg26:
23698 case DW_OP_reg27:
23699 case DW_OP_reg28:
23700 case DW_OP_reg29:
23701 case DW_OP_reg30:
23702 case DW_OP_reg31:
23703 stack[++stacki] = op - DW_OP_reg0;
23704 if (i < size)
23705 dwarf2_complex_location_expr_complaint ();
23706 break;
23707
23708 case DW_OP_regx:
23709 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23710 i += bytes_read;
23711 stack[++stacki] = unsnd;
23712 if (i < size)
23713 dwarf2_complex_location_expr_complaint ();
23714 break;
23715
23716 case DW_OP_addr:
23717 stack[++stacki] = read_address (objfile->obfd, &data[i],
23718 cu, &bytes_read);
23719 i += bytes_read;
23720 break;
23721
23722 case DW_OP_const1u:
23723 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23724 i += 1;
23725 break;
23726
23727 case DW_OP_const1s:
23728 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23729 i += 1;
23730 break;
23731
23732 case DW_OP_const2u:
23733 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23734 i += 2;
23735 break;
23736
23737 case DW_OP_const2s:
23738 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23739 i += 2;
23740 break;
23741
23742 case DW_OP_const4u:
23743 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23744 i += 4;
23745 break;
23746
23747 case DW_OP_const4s:
23748 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23749 i += 4;
23750 break;
23751
23752 case DW_OP_const8u:
23753 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23754 i += 8;
23755 break;
23756
23757 case DW_OP_constu:
23758 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23759 &bytes_read);
23760 i += bytes_read;
23761 break;
23762
23763 case DW_OP_consts:
23764 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23765 i += bytes_read;
23766 break;
23767
23768 case DW_OP_dup:
23769 stack[stacki + 1] = stack[stacki];
23770 stacki++;
23771 break;
23772
23773 case DW_OP_plus:
23774 stack[stacki - 1] += stack[stacki];
23775 stacki--;
23776 break;
23777
23778 case DW_OP_plus_uconst:
23779 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23780 &bytes_read);
23781 i += bytes_read;
23782 break;
23783
23784 case DW_OP_minus:
23785 stack[stacki - 1] -= stack[stacki];
23786 stacki--;
23787 break;
23788
23789 case DW_OP_deref:
23790 /* If we're not the last op, then we definitely can't encode
23791 this using GDB's address_class enum. This is valid for partial
23792 global symbols, although the variable's address will be bogus
23793 in the psymtab. */
23794 if (i < size)
23795 dwarf2_complex_location_expr_complaint ();
23796 break;
23797
23798 case DW_OP_GNU_push_tls_address:
23799 case DW_OP_form_tls_address:
23800 /* The top of the stack has the offset from the beginning
23801 of the thread control block at which the variable is located. */
23802 /* Nothing should follow this operator, so the top of stack would
23803 be returned. */
23804 /* This is valid for partial global symbols, but the variable's
23805 address will be bogus in the psymtab. Make it always at least
23806 non-zero to not look as a variable garbage collected by linker
23807 which have DW_OP_addr 0. */
23808 if (i < size)
23809 dwarf2_complex_location_expr_complaint ();
23810 stack[stacki]++;
23811 break;
23812
23813 case DW_OP_GNU_uninit:
23814 break;
23815
23816 case DW_OP_GNU_addr_index:
23817 case DW_OP_GNU_const_index:
23818 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23819 &bytes_read);
23820 i += bytes_read;
23821 break;
23822
23823 default:
23824 {
23825 const char *name = get_DW_OP_name (op);
23826
23827 if (name)
23828 complaint (_("unsupported stack op: '%s'"),
23829 name);
23830 else
23831 complaint (_("unsupported stack op: '%02x'"),
23832 op);
23833 }
23834
23835 return (stack[stacki]);
23836 }
23837
23838 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23839 outside of the allocated space. Also enforce minimum>0. */
23840 if (stacki >= ARRAY_SIZE (stack) - 1)
23841 {
23842 complaint (_("location description stack overflow"));
23843 return 0;
23844 }
23845
23846 if (stacki <= 0)
23847 {
23848 complaint (_("location description stack underflow"));
23849 return 0;
23850 }
23851 }
23852 return (stack[stacki]);
23853 }
23854
23855 /* memory allocation interface */
23856
23857 static struct dwarf_block *
23858 dwarf_alloc_block (struct dwarf2_cu *cu)
23859 {
23860 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23861 }
23862
23863 static struct die_info *
23864 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23865 {
23866 struct die_info *die;
23867 size_t size = sizeof (struct die_info);
23868
23869 if (num_attrs > 1)
23870 size += (num_attrs - 1) * sizeof (struct attribute);
23871
23872 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23873 memset (die, 0, sizeof (struct die_info));
23874 return (die);
23875 }
23876
23877 \f
23878 /* Macro support. */
23879
23880 /* Return file name relative to the compilation directory of file number I in
23881 *LH's file name table. The result is allocated using xmalloc; the caller is
23882 responsible for freeing it. */
23883
23884 static char *
23885 file_file_name (int file, struct line_header *lh)
23886 {
23887 /* Is the file number a valid index into the line header's file name
23888 table? Remember that file numbers start with one, not zero. */
23889 if (1 <= file && file <= lh->file_names.size ())
23890 {
23891 const file_entry &fe = lh->file_names[file - 1];
23892
23893 if (!IS_ABSOLUTE_PATH (fe.name))
23894 {
23895 const char *dir = fe.include_dir (lh);
23896 if (dir != NULL)
23897 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23898 }
23899 return xstrdup (fe.name);
23900 }
23901 else
23902 {
23903 /* The compiler produced a bogus file number. We can at least
23904 record the macro definitions made in the file, even if we
23905 won't be able to find the file by name. */
23906 char fake_name[80];
23907
23908 xsnprintf (fake_name, sizeof (fake_name),
23909 "<bad macro file number %d>", file);
23910
23911 complaint (_("bad file number in macro information (%d)"),
23912 file);
23913
23914 return xstrdup (fake_name);
23915 }
23916 }
23917
23918 /* Return the full name of file number I in *LH's file name table.
23919 Use COMP_DIR as the name of the current directory of the
23920 compilation. The result is allocated using xmalloc; the caller is
23921 responsible for freeing it. */
23922 static char *
23923 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23924 {
23925 /* Is the file number a valid index into the line header's file name
23926 table? Remember that file numbers start with one, not zero. */
23927 if (1 <= file && file <= lh->file_names.size ())
23928 {
23929 char *relative = file_file_name (file, lh);
23930
23931 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23932 return relative;
23933 return reconcat (relative, comp_dir, SLASH_STRING,
23934 relative, (char *) NULL);
23935 }
23936 else
23937 return file_file_name (file, lh);
23938 }
23939
23940
23941 static struct macro_source_file *
23942 macro_start_file (struct dwarf2_cu *cu,
23943 int file, int line,
23944 struct macro_source_file *current_file,
23945 struct line_header *lh)
23946 {
23947 /* File name relative to the compilation directory of this source file. */
23948 char *file_name = file_file_name (file, lh);
23949
23950 if (! current_file)
23951 {
23952 /* Note: We don't create a macro table for this compilation unit
23953 at all until we actually get a filename. */
23954 struct macro_table *macro_table = cu->builder->get_macro_table ();
23955
23956 /* If we have no current file, then this must be the start_file
23957 directive for the compilation unit's main source file. */
23958 current_file = macro_set_main (macro_table, file_name);
23959 macro_define_special (macro_table);
23960 }
23961 else
23962 current_file = macro_include (current_file, line, file_name);
23963
23964 xfree (file_name);
23965
23966 return current_file;
23967 }
23968
23969 static const char *
23970 consume_improper_spaces (const char *p, const char *body)
23971 {
23972 if (*p == ' ')
23973 {
23974 complaint (_("macro definition contains spaces "
23975 "in formal argument list:\n`%s'"),
23976 body);
23977
23978 while (*p == ' ')
23979 p++;
23980 }
23981
23982 return p;
23983 }
23984
23985
23986 static void
23987 parse_macro_definition (struct macro_source_file *file, int line,
23988 const char *body)
23989 {
23990 const char *p;
23991
23992 /* The body string takes one of two forms. For object-like macro
23993 definitions, it should be:
23994
23995 <macro name> " " <definition>
23996
23997 For function-like macro definitions, it should be:
23998
23999 <macro name> "() " <definition>
24000 or
24001 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24002
24003 Spaces may appear only where explicitly indicated, and in the
24004 <definition>.
24005
24006 The Dwarf 2 spec says that an object-like macro's name is always
24007 followed by a space, but versions of GCC around March 2002 omit
24008 the space when the macro's definition is the empty string.
24009
24010 The Dwarf 2 spec says that there should be no spaces between the
24011 formal arguments in a function-like macro's formal argument list,
24012 but versions of GCC around March 2002 include spaces after the
24013 commas. */
24014
24015
24016 /* Find the extent of the macro name. The macro name is terminated
24017 by either a space or null character (for an object-like macro) or
24018 an opening paren (for a function-like macro). */
24019 for (p = body; *p; p++)
24020 if (*p == ' ' || *p == '(')
24021 break;
24022
24023 if (*p == ' ' || *p == '\0')
24024 {
24025 /* It's an object-like macro. */
24026 int name_len = p - body;
24027 char *name = savestring (body, name_len);
24028 const char *replacement;
24029
24030 if (*p == ' ')
24031 replacement = body + name_len + 1;
24032 else
24033 {
24034 dwarf2_macro_malformed_definition_complaint (body);
24035 replacement = body + name_len;
24036 }
24037
24038 macro_define_object (file, line, name, replacement);
24039
24040 xfree (name);
24041 }
24042 else if (*p == '(')
24043 {
24044 /* It's a function-like macro. */
24045 char *name = savestring (body, p - body);
24046 int argc = 0;
24047 int argv_size = 1;
24048 char **argv = XNEWVEC (char *, argv_size);
24049
24050 p++;
24051
24052 p = consume_improper_spaces (p, body);
24053
24054 /* Parse the formal argument list. */
24055 while (*p && *p != ')')
24056 {
24057 /* Find the extent of the current argument name. */
24058 const char *arg_start = p;
24059
24060 while (*p && *p != ',' && *p != ')' && *p != ' ')
24061 p++;
24062
24063 if (! *p || p == arg_start)
24064 dwarf2_macro_malformed_definition_complaint (body);
24065 else
24066 {
24067 /* Make sure argv has room for the new argument. */
24068 if (argc >= argv_size)
24069 {
24070 argv_size *= 2;
24071 argv = XRESIZEVEC (char *, argv, argv_size);
24072 }
24073
24074 argv[argc++] = savestring (arg_start, p - arg_start);
24075 }
24076
24077 p = consume_improper_spaces (p, body);
24078
24079 /* Consume the comma, if present. */
24080 if (*p == ',')
24081 {
24082 p++;
24083
24084 p = consume_improper_spaces (p, body);
24085 }
24086 }
24087
24088 if (*p == ')')
24089 {
24090 p++;
24091
24092 if (*p == ' ')
24093 /* Perfectly formed definition, no complaints. */
24094 macro_define_function (file, line, name,
24095 argc, (const char **) argv,
24096 p + 1);
24097 else if (*p == '\0')
24098 {
24099 /* Complain, but do define it. */
24100 dwarf2_macro_malformed_definition_complaint (body);
24101 macro_define_function (file, line, name,
24102 argc, (const char **) argv,
24103 p);
24104 }
24105 else
24106 /* Just complain. */
24107 dwarf2_macro_malformed_definition_complaint (body);
24108 }
24109 else
24110 /* Just complain. */
24111 dwarf2_macro_malformed_definition_complaint (body);
24112
24113 xfree (name);
24114 {
24115 int i;
24116
24117 for (i = 0; i < argc; i++)
24118 xfree (argv[i]);
24119 }
24120 xfree (argv);
24121 }
24122 else
24123 dwarf2_macro_malformed_definition_complaint (body);
24124 }
24125
24126 /* Skip some bytes from BYTES according to the form given in FORM.
24127 Returns the new pointer. */
24128
24129 static const gdb_byte *
24130 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24131 enum dwarf_form form,
24132 unsigned int offset_size,
24133 struct dwarf2_section_info *section)
24134 {
24135 unsigned int bytes_read;
24136
24137 switch (form)
24138 {
24139 case DW_FORM_data1:
24140 case DW_FORM_flag:
24141 ++bytes;
24142 break;
24143
24144 case DW_FORM_data2:
24145 bytes += 2;
24146 break;
24147
24148 case DW_FORM_data4:
24149 bytes += 4;
24150 break;
24151
24152 case DW_FORM_data8:
24153 bytes += 8;
24154 break;
24155
24156 case DW_FORM_data16:
24157 bytes += 16;
24158 break;
24159
24160 case DW_FORM_string:
24161 read_direct_string (abfd, bytes, &bytes_read);
24162 bytes += bytes_read;
24163 break;
24164
24165 case DW_FORM_sec_offset:
24166 case DW_FORM_strp:
24167 case DW_FORM_GNU_strp_alt:
24168 bytes += offset_size;
24169 break;
24170
24171 case DW_FORM_block:
24172 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24173 bytes += bytes_read;
24174 break;
24175
24176 case DW_FORM_block1:
24177 bytes += 1 + read_1_byte (abfd, bytes);
24178 break;
24179 case DW_FORM_block2:
24180 bytes += 2 + read_2_bytes (abfd, bytes);
24181 break;
24182 case DW_FORM_block4:
24183 bytes += 4 + read_4_bytes (abfd, bytes);
24184 break;
24185
24186 case DW_FORM_sdata:
24187 case DW_FORM_udata:
24188 case DW_FORM_GNU_addr_index:
24189 case DW_FORM_GNU_str_index:
24190 bytes = gdb_skip_leb128 (bytes, buffer_end);
24191 if (bytes == NULL)
24192 {
24193 dwarf2_section_buffer_overflow_complaint (section);
24194 return NULL;
24195 }
24196 break;
24197
24198 case DW_FORM_implicit_const:
24199 break;
24200
24201 default:
24202 {
24203 complaint (_("invalid form 0x%x in `%s'"),
24204 form, get_section_name (section));
24205 return NULL;
24206 }
24207 }
24208
24209 return bytes;
24210 }
24211
24212 /* A helper for dwarf_decode_macros that handles skipping an unknown
24213 opcode. Returns an updated pointer to the macro data buffer; or,
24214 on error, issues a complaint and returns NULL. */
24215
24216 static const gdb_byte *
24217 skip_unknown_opcode (unsigned int opcode,
24218 const gdb_byte **opcode_definitions,
24219 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24220 bfd *abfd,
24221 unsigned int offset_size,
24222 struct dwarf2_section_info *section)
24223 {
24224 unsigned int bytes_read, i;
24225 unsigned long arg;
24226 const gdb_byte *defn;
24227
24228 if (opcode_definitions[opcode] == NULL)
24229 {
24230 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24231 opcode);
24232 return NULL;
24233 }
24234
24235 defn = opcode_definitions[opcode];
24236 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24237 defn += bytes_read;
24238
24239 for (i = 0; i < arg; ++i)
24240 {
24241 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24242 (enum dwarf_form) defn[i], offset_size,
24243 section);
24244 if (mac_ptr == NULL)
24245 {
24246 /* skip_form_bytes already issued the complaint. */
24247 return NULL;
24248 }
24249 }
24250
24251 return mac_ptr;
24252 }
24253
24254 /* A helper function which parses the header of a macro section.
24255 If the macro section is the extended (for now called "GNU") type,
24256 then this updates *OFFSET_SIZE. Returns a pointer to just after
24257 the header, or issues a complaint and returns NULL on error. */
24258
24259 static const gdb_byte *
24260 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24261 bfd *abfd,
24262 const gdb_byte *mac_ptr,
24263 unsigned int *offset_size,
24264 int section_is_gnu)
24265 {
24266 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24267
24268 if (section_is_gnu)
24269 {
24270 unsigned int version, flags;
24271
24272 version = read_2_bytes (abfd, mac_ptr);
24273 if (version != 4 && version != 5)
24274 {
24275 complaint (_("unrecognized version `%d' in .debug_macro section"),
24276 version);
24277 return NULL;
24278 }
24279 mac_ptr += 2;
24280
24281 flags = read_1_byte (abfd, mac_ptr);
24282 ++mac_ptr;
24283 *offset_size = (flags & 1) ? 8 : 4;
24284
24285 if ((flags & 2) != 0)
24286 /* We don't need the line table offset. */
24287 mac_ptr += *offset_size;
24288
24289 /* Vendor opcode descriptions. */
24290 if ((flags & 4) != 0)
24291 {
24292 unsigned int i, count;
24293
24294 count = read_1_byte (abfd, mac_ptr);
24295 ++mac_ptr;
24296 for (i = 0; i < count; ++i)
24297 {
24298 unsigned int opcode, bytes_read;
24299 unsigned long arg;
24300
24301 opcode = read_1_byte (abfd, mac_ptr);
24302 ++mac_ptr;
24303 opcode_definitions[opcode] = mac_ptr;
24304 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24305 mac_ptr += bytes_read;
24306 mac_ptr += arg;
24307 }
24308 }
24309 }
24310
24311 return mac_ptr;
24312 }
24313
24314 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24315 including DW_MACRO_import. */
24316
24317 static void
24318 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24319 bfd *abfd,
24320 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24321 struct macro_source_file *current_file,
24322 struct line_header *lh,
24323 struct dwarf2_section_info *section,
24324 int section_is_gnu, int section_is_dwz,
24325 unsigned int offset_size,
24326 htab_t include_hash)
24327 {
24328 struct dwarf2_per_objfile *dwarf2_per_objfile
24329 = cu->per_cu->dwarf2_per_objfile;
24330 struct objfile *objfile = dwarf2_per_objfile->objfile;
24331 enum dwarf_macro_record_type macinfo_type;
24332 int at_commandline;
24333 const gdb_byte *opcode_definitions[256];
24334
24335 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24336 &offset_size, section_is_gnu);
24337 if (mac_ptr == NULL)
24338 {
24339 /* We already issued a complaint. */
24340 return;
24341 }
24342
24343 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24344 GDB is still reading the definitions from command line. First
24345 DW_MACINFO_start_file will need to be ignored as it was already executed
24346 to create CURRENT_FILE for the main source holding also the command line
24347 definitions. On first met DW_MACINFO_start_file this flag is reset to
24348 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24349
24350 at_commandline = 1;
24351
24352 do
24353 {
24354 /* Do we at least have room for a macinfo type byte? */
24355 if (mac_ptr >= mac_end)
24356 {
24357 dwarf2_section_buffer_overflow_complaint (section);
24358 break;
24359 }
24360
24361 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24362 mac_ptr++;
24363
24364 /* Note that we rely on the fact that the corresponding GNU and
24365 DWARF constants are the same. */
24366 DIAGNOSTIC_PUSH
24367 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24368 switch (macinfo_type)
24369 {
24370 /* A zero macinfo type indicates the end of the macro
24371 information. */
24372 case 0:
24373 break;
24374
24375 case DW_MACRO_define:
24376 case DW_MACRO_undef:
24377 case DW_MACRO_define_strp:
24378 case DW_MACRO_undef_strp:
24379 case DW_MACRO_define_sup:
24380 case DW_MACRO_undef_sup:
24381 {
24382 unsigned int bytes_read;
24383 int line;
24384 const char *body;
24385 int is_define;
24386
24387 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24388 mac_ptr += bytes_read;
24389
24390 if (macinfo_type == DW_MACRO_define
24391 || macinfo_type == DW_MACRO_undef)
24392 {
24393 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24394 mac_ptr += bytes_read;
24395 }
24396 else
24397 {
24398 LONGEST str_offset;
24399
24400 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24401 mac_ptr += offset_size;
24402
24403 if (macinfo_type == DW_MACRO_define_sup
24404 || macinfo_type == DW_MACRO_undef_sup
24405 || section_is_dwz)
24406 {
24407 struct dwz_file *dwz
24408 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24409
24410 body = read_indirect_string_from_dwz (objfile,
24411 dwz, str_offset);
24412 }
24413 else
24414 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24415 abfd, str_offset);
24416 }
24417
24418 is_define = (macinfo_type == DW_MACRO_define
24419 || macinfo_type == DW_MACRO_define_strp
24420 || macinfo_type == DW_MACRO_define_sup);
24421 if (! current_file)
24422 {
24423 /* DWARF violation as no main source is present. */
24424 complaint (_("debug info with no main source gives macro %s "
24425 "on line %d: %s"),
24426 is_define ? _("definition") : _("undefinition"),
24427 line, body);
24428 break;
24429 }
24430 if ((line == 0 && !at_commandline)
24431 || (line != 0 && at_commandline))
24432 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24433 at_commandline ? _("command-line") : _("in-file"),
24434 is_define ? _("definition") : _("undefinition"),
24435 line == 0 ? _("zero") : _("non-zero"), line, body);
24436
24437 if (is_define)
24438 parse_macro_definition (current_file, line, body);
24439 else
24440 {
24441 gdb_assert (macinfo_type == DW_MACRO_undef
24442 || macinfo_type == DW_MACRO_undef_strp
24443 || macinfo_type == DW_MACRO_undef_sup);
24444 macro_undef (current_file, line, body);
24445 }
24446 }
24447 break;
24448
24449 case DW_MACRO_start_file:
24450 {
24451 unsigned int bytes_read;
24452 int line, file;
24453
24454 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24455 mac_ptr += bytes_read;
24456 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24457 mac_ptr += bytes_read;
24458
24459 if ((line == 0 && !at_commandline)
24460 || (line != 0 && at_commandline))
24461 complaint (_("debug info gives source %d included "
24462 "from %s at %s line %d"),
24463 file, at_commandline ? _("command-line") : _("file"),
24464 line == 0 ? _("zero") : _("non-zero"), line);
24465
24466 if (at_commandline)
24467 {
24468 /* This DW_MACRO_start_file was executed in the
24469 pass one. */
24470 at_commandline = 0;
24471 }
24472 else
24473 current_file = macro_start_file (cu, file, line, current_file,
24474 lh);
24475 }
24476 break;
24477
24478 case DW_MACRO_end_file:
24479 if (! current_file)
24480 complaint (_("macro debug info has an unmatched "
24481 "`close_file' directive"));
24482 else
24483 {
24484 current_file = current_file->included_by;
24485 if (! current_file)
24486 {
24487 enum dwarf_macro_record_type next_type;
24488
24489 /* GCC circa March 2002 doesn't produce the zero
24490 type byte marking the end of the compilation
24491 unit. Complain if it's not there, but exit no
24492 matter what. */
24493
24494 /* Do we at least have room for a macinfo type byte? */
24495 if (mac_ptr >= mac_end)
24496 {
24497 dwarf2_section_buffer_overflow_complaint (section);
24498 return;
24499 }
24500
24501 /* We don't increment mac_ptr here, so this is just
24502 a look-ahead. */
24503 next_type
24504 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24505 mac_ptr);
24506 if (next_type != 0)
24507 complaint (_("no terminating 0-type entry for "
24508 "macros in `.debug_macinfo' section"));
24509
24510 return;
24511 }
24512 }
24513 break;
24514
24515 case DW_MACRO_import:
24516 case DW_MACRO_import_sup:
24517 {
24518 LONGEST offset;
24519 void **slot;
24520 bfd *include_bfd = abfd;
24521 struct dwarf2_section_info *include_section = section;
24522 const gdb_byte *include_mac_end = mac_end;
24523 int is_dwz = section_is_dwz;
24524 const gdb_byte *new_mac_ptr;
24525
24526 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24527 mac_ptr += offset_size;
24528
24529 if (macinfo_type == DW_MACRO_import_sup)
24530 {
24531 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24532
24533 dwarf2_read_section (objfile, &dwz->macro);
24534
24535 include_section = &dwz->macro;
24536 include_bfd = get_section_bfd_owner (include_section);
24537 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24538 is_dwz = 1;
24539 }
24540
24541 new_mac_ptr = include_section->buffer + offset;
24542 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24543
24544 if (*slot != NULL)
24545 {
24546 /* This has actually happened; see
24547 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24548 complaint (_("recursive DW_MACRO_import in "
24549 ".debug_macro section"));
24550 }
24551 else
24552 {
24553 *slot = (void *) new_mac_ptr;
24554
24555 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24556 include_mac_end, current_file, lh,
24557 section, section_is_gnu, is_dwz,
24558 offset_size, include_hash);
24559
24560 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24561 }
24562 }
24563 break;
24564
24565 case DW_MACINFO_vendor_ext:
24566 if (!section_is_gnu)
24567 {
24568 unsigned int bytes_read;
24569
24570 /* This reads the constant, but since we don't recognize
24571 any vendor extensions, we ignore it. */
24572 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24573 mac_ptr += bytes_read;
24574 read_direct_string (abfd, mac_ptr, &bytes_read);
24575 mac_ptr += bytes_read;
24576
24577 /* We don't recognize any vendor extensions. */
24578 break;
24579 }
24580 /* FALLTHROUGH */
24581
24582 default:
24583 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24584 mac_ptr, mac_end, abfd, offset_size,
24585 section);
24586 if (mac_ptr == NULL)
24587 return;
24588 break;
24589 }
24590 DIAGNOSTIC_POP
24591 } while (macinfo_type != 0);
24592 }
24593
24594 static void
24595 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24596 int section_is_gnu)
24597 {
24598 struct dwarf2_per_objfile *dwarf2_per_objfile
24599 = cu->per_cu->dwarf2_per_objfile;
24600 struct objfile *objfile = dwarf2_per_objfile->objfile;
24601 struct line_header *lh = cu->line_header;
24602 bfd *abfd;
24603 const gdb_byte *mac_ptr, *mac_end;
24604 struct macro_source_file *current_file = 0;
24605 enum dwarf_macro_record_type macinfo_type;
24606 unsigned int offset_size = cu->header.offset_size;
24607 const gdb_byte *opcode_definitions[256];
24608 void **slot;
24609 struct dwarf2_section_info *section;
24610 const char *section_name;
24611
24612 if (cu->dwo_unit != NULL)
24613 {
24614 if (section_is_gnu)
24615 {
24616 section = &cu->dwo_unit->dwo_file->sections.macro;
24617 section_name = ".debug_macro.dwo";
24618 }
24619 else
24620 {
24621 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24622 section_name = ".debug_macinfo.dwo";
24623 }
24624 }
24625 else
24626 {
24627 if (section_is_gnu)
24628 {
24629 section = &dwarf2_per_objfile->macro;
24630 section_name = ".debug_macro";
24631 }
24632 else
24633 {
24634 section = &dwarf2_per_objfile->macinfo;
24635 section_name = ".debug_macinfo";
24636 }
24637 }
24638
24639 dwarf2_read_section (objfile, section);
24640 if (section->buffer == NULL)
24641 {
24642 complaint (_("missing %s section"), section_name);
24643 return;
24644 }
24645 abfd = get_section_bfd_owner (section);
24646
24647 /* First pass: Find the name of the base filename.
24648 This filename is needed in order to process all macros whose definition
24649 (or undefinition) comes from the command line. These macros are defined
24650 before the first DW_MACINFO_start_file entry, and yet still need to be
24651 associated to the base file.
24652
24653 To determine the base file name, we scan the macro definitions until we
24654 reach the first DW_MACINFO_start_file entry. We then initialize
24655 CURRENT_FILE accordingly so that any macro definition found before the
24656 first DW_MACINFO_start_file can still be associated to the base file. */
24657
24658 mac_ptr = section->buffer + offset;
24659 mac_end = section->buffer + section->size;
24660
24661 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24662 &offset_size, section_is_gnu);
24663 if (mac_ptr == NULL)
24664 {
24665 /* We already issued a complaint. */
24666 return;
24667 }
24668
24669 do
24670 {
24671 /* Do we at least have room for a macinfo type byte? */
24672 if (mac_ptr >= mac_end)
24673 {
24674 /* Complaint is printed during the second pass as GDB will probably
24675 stop the first pass earlier upon finding
24676 DW_MACINFO_start_file. */
24677 break;
24678 }
24679
24680 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24681 mac_ptr++;
24682
24683 /* Note that we rely on the fact that the corresponding GNU and
24684 DWARF constants are the same. */
24685 DIAGNOSTIC_PUSH
24686 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24687 switch (macinfo_type)
24688 {
24689 /* A zero macinfo type indicates the end of the macro
24690 information. */
24691 case 0:
24692 break;
24693
24694 case DW_MACRO_define:
24695 case DW_MACRO_undef:
24696 /* Only skip the data by MAC_PTR. */
24697 {
24698 unsigned int bytes_read;
24699
24700 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24701 mac_ptr += bytes_read;
24702 read_direct_string (abfd, mac_ptr, &bytes_read);
24703 mac_ptr += bytes_read;
24704 }
24705 break;
24706
24707 case DW_MACRO_start_file:
24708 {
24709 unsigned int bytes_read;
24710 int line, file;
24711
24712 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24713 mac_ptr += bytes_read;
24714 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24715 mac_ptr += bytes_read;
24716
24717 current_file = macro_start_file (cu, file, line, current_file, lh);
24718 }
24719 break;
24720
24721 case DW_MACRO_end_file:
24722 /* No data to skip by MAC_PTR. */
24723 break;
24724
24725 case DW_MACRO_define_strp:
24726 case DW_MACRO_undef_strp:
24727 case DW_MACRO_define_sup:
24728 case DW_MACRO_undef_sup:
24729 {
24730 unsigned int bytes_read;
24731
24732 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24733 mac_ptr += bytes_read;
24734 mac_ptr += offset_size;
24735 }
24736 break;
24737
24738 case DW_MACRO_import:
24739 case DW_MACRO_import_sup:
24740 /* Note that, according to the spec, a transparent include
24741 chain cannot call DW_MACRO_start_file. So, we can just
24742 skip this opcode. */
24743 mac_ptr += offset_size;
24744 break;
24745
24746 case DW_MACINFO_vendor_ext:
24747 /* Only skip the data by MAC_PTR. */
24748 if (!section_is_gnu)
24749 {
24750 unsigned int bytes_read;
24751
24752 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24753 mac_ptr += bytes_read;
24754 read_direct_string (abfd, mac_ptr, &bytes_read);
24755 mac_ptr += bytes_read;
24756 }
24757 /* FALLTHROUGH */
24758
24759 default:
24760 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24761 mac_ptr, mac_end, abfd, offset_size,
24762 section);
24763 if (mac_ptr == NULL)
24764 return;
24765 break;
24766 }
24767 DIAGNOSTIC_POP
24768 } while (macinfo_type != 0 && current_file == NULL);
24769
24770 /* Second pass: Process all entries.
24771
24772 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24773 command-line macro definitions/undefinitions. This flag is unset when we
24774 reach the first DW_MACINFO_start_file entry. */
24775
24776 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24777 htab_eq_pointer,
24778 NULL, xcalloc, xfree));
24779 mac_ptr = section->buffer + offset;
24780 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24781 *slot = (void *) mac_ptr;
24782 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24783 current_file, lh, section,
24784 section_is_gnu, 0, offset_size,
24785 include_hash.get ());
24786 }
24787
24788 /* Check if the attribute's form is a DW_FORM_block*
24789 if so return true else false. */
24790
24791 static int
24792 attr_form_is_block (const struct attribute *attr)
24793 {
24794 return (attr == NULL ? 0 :
24795 attr->form == DW_FORM_block1
24796 || attr->form == DW_FORM_block2
24797 || attr->form == DW_FORM_block4
24798 || attr->form == DW_FORM_block
24799 || attr->form == DW_FORM_exprloc);
24800 }
24801
24802 /* Return non-zero if ATTR's value is a section offset --- classes
24803 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24804 You may use DW_UNSND (attr) to retrieve such offsets.
24805
24806 Section 7.5.4, "Attribute Encodings", explains that no attribute
24807 may have a value that belongs to more than one of these classes; it
24808 would be ambiguous if we did, because we use the same forms for all
24809 of them. */
24810
24811 static int
24812 attr_form_is_section_offset (const struct attribute *attr)
24813 {
24814 return (attr->form == DW_FORM_data4
24815 || attr->form == DW_FORM_data8
24816 || attr->form == DW_FORM_sec_offset);
24817 }
24818
24819 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24820 zero otherwise. When this function returns true, you can apply
24821 dwarf2_get_attr_constant_value to it.
24822
24823 However, note that for some attributes you must check
24824 attr_form_is_section_offset before using this test. DW_FORM_data4
24825 and DW_FORM_data8 are members of both the constant class, and of
24826 the classes that contain offsets into other debug sections
24827 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24828 that, if an attribute's can be either a constant or one of the
24829 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24830 taken as section offsets, not constants.
24831
24832 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24833 cannot handle that. */
24834
24835 static int
24836 attr_form_is_constant (const struct attribute *attr)
24837 {
24838 switch (attr->form)
24839 {
24840 case DW_FORM_sdata:
24841 case DW_FORM_udata:
24842 case DW_FORM_data1:
24843 case DW_FORM_data2:
24844 case DW_FORM_data4:
24845 case DW_FORM_data8:
24846 case DW_FORM_implicit_const:
24847 return 1;
24848 default:
24849 return 0;
24850 }
24851 }
24852
24853
24854 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24855 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24856
24857 static int
24858 attr_form_is_ref (const struct attribute *attr)
24859 {
24860 switch (attr->form)
24861 {
24862 case DW_FORM_ref_addr:
24863 case DW_FORM_ref1:
24864 case DW_FORM_ref2:
24865 case DW_FORM_ref4:
24866 case DW_FORM_ref8:
24867 case DW_FORM_ref_udata:
24868 case DW_FORM_GNU_ref_alt:
24869 return 1;
24870 default:
24871 return 0;
24872 }
24873 }
24874
24875 /* Return the .debug_loc section to use for CU.
24876 For DWO files use .debug_loc.dwo. */
24877
24878 static struct dwarf2_section_info *
24879 cu_debug_loc_section (struct dwarf2_cu *cu)
24880 {
24881 struct dwarf2_per_objfile *dwarf2_per_objfile
24882 = cu->per_cu->dwarf2_per_objfile;
24883
24884 if (cu->dwo_unit)
24885 {
24886 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24887
24888 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24889 }
24890 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24891 : &dwarf2_per_objfile->loc);
24892 }
24893
24894 /* A helper function that fills in a dwarf2_loclist_baton. */
24895
24896 static void
24897 fill_in_loclist_baton (struct dwarf2_cu *cu,
24898 struct dwarf2_loclist_baton *baton,
24899 const struct attribute *attr)
24900 {
24901 struct dwarf2_per_objfile *dwarf2_per_objfile
24902 = cu->per_cu->dwarf2_per_objfile;
24903 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24904
24905 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24906
24907 baton->per_cu = cu->per_cu;
24908 gdb_assert (baton->per_cu);
24909 /* We don't know how long the location list is, but make sure we
24910 don't run off the edge of the section. */
24911 baton->size = section->size - DW_UNSND (attr);
24912 baton->data = section->buffer + DW_UNSND (attr);
24913 baton->base_address = cu->base_address;
24914 baton->from_dwo = cu->dwo_unit != NULL;
24915 }
24916
24917 static void
24918 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24919 struct dwarf2_cu *cu, int is_block)
24920 {
24921 struct dwarf2_per_objfile *dwarf2_per_objfile
24922 = cu->per_cu->dwarf2_per_objfile;
24923 struct objfile *objfile = dwarf2_per_objfile->objfile;
24924 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24925
24926 if (attr_form_is_section_offset (attr)
24927 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24928 the section. If so, fall through to the complaint in the
24929 other branch. */
24930 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24931 {
24932 struct dwarf2_loclist_baton *baton;
24933
24934 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24935
24936 fill_in_loclist_baton (cu, baton, attr);
24937
24938 if (cu->base_known == 0)
24939 complaint (_("Location list used without "
24940 "specifying the CU base address."));
24941
24942 SYMBOL_ACLASS_INDEX (sym) = (is_block
24943 ? dwarf2_loclist_block_index
24944 : dwarf2_loclist_index);
24945 SYMBOL_LOCATION_BATON (sym) = baton;
24946 }
24947 else
24948 {
24949 struct dwarf2_locexpr_baton *baton;
24950
24951 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24952 baton->per_cu = cu->per_cu;
24953 gdb_assert (baton->per_cu);
24954
24955 if (attr_form_is_block (attr))
24956 {
24957 /* Note that we're just copying the block's data pointer
24958 here, not the actual data. We're still pointing into the
24959 info_buffer for SYM's objfile; right now we never release
24960 that buffer, but when we do clean up properly this may
24961 need to change. */
24962 baton->size = DW_BLOCK (attr)->size;
24963 baton->data = DW_BLOCK (attr)->data;
24964 }
24965 else
24966 {
24967 dwarf2_invalid_attrib_class_complaint ("location description",
24968 SYMBOL_NATURAL_NAME (sym));
24969 baton->size = 0;
24970 }
24971
24972 SYMBOL_ACLASS_INDEX (sym) = (is_block
24973 ? dwarf2_locexpr_block_index
24974 : dwarf2_locexpr_index);
24975 SYMBOL_LOCATION_BATON (sym) = baton;
24976 }
24977 }
24978
24979 /* Return the OBJFILE associated with the compilation unit CU. If CU
24980 came from a separate debuginfo file, then the master objfile is
24981 returned. */
24982
24983 struct objfile *
24984 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24985 {
24986 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24987
24988 /* Return the master objfile, so that we can report and look up the
24989 correct file containing this variable. */
24990 if (objfile->separate_debug_objfile_backlink)
24991 objfile = objfile->separate_debug_objfile_backlink;
24992
24993 return objfile;
24994 }
24995
24996 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24997 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24998 CU_HEADERP first. */
24999
25000 static const struct comp_unit_head *
25001 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25002 struct dwarf2_per_cu_data *per_cu)
25003 {
25004 const gdb_byte *info_ptr;
25005
25006 if (per_cu->cu)
25007 return &per_cu->cu->header;
25008
25009 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25010
25011 memset (cu_headerp, 0, sizeof (*cu_headerp));
25012 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25013 rcuh_kind::COMPILE);
25014
25015 return cu_headerp;
25016 }
25017
25018 /* Return the address size given in the compilation unit header for CU. */
25019
25020 int
25021 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25022 {
25023 struct comp_unit_head cu_header_local;
25024 const struct comp_unit_head *cu_headerp;
25025
25026 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25027
25028 return cu_headerp->addr_size;
25029 }
25030
25031 /* Return the offset size given in the compilation unit header for CU. */
25032
25033 int
25034 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25035 {
25036 struct comp_unit_head cu_header_local;
25037 const struct comp_unit_head *cu_headerp;
25038
25039 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25040
25041 return cu_headerp->offset_size;
25042 }
25043
25044 /* See its dwarf2loc.h declaration. */
25045
25046 int
25047 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25048 {
25049 struct comp_unit_head cu_header_local;
25050 const struct comp_unit_head *cu_headerp;
25051
25052 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25053
25054 if (cu_headerp->version == 2)
25055 return cu_headerp->addr_size;
25056 else
25057 return cu_headerp->offset_size;
25058 }
25059
25060 /* Return the text offset of the CU. The returned offset comes from
25061 this CU's objfile. If this objfile came from a separate debuginfo
25062 file, then the offset may be different from the corresponding
25063 offset in the parent objfile. */
25064
25065 CORE_ADDR
25066 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25067 {
25068 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25069
25070 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25071 }
25072
25073 /* Return DWARF version number of PER_CU. */
25074
25075 short
25076 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25077 {
25078 return per_cu->dwarf_version;
25079 }
25080
25081 /* Locate the .debug_info compilation unit from CU's objfile which contains
25082 the DIE at OFFSET. Raises an error on failure. */
25083
25084 static struct dwarf2_per_cu_data *
25085 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25086 unsigned int offset_in_dwz,
25087 struct dwarf2_per_objfile *dwarf2_per_objfile)
25088 {
25089 struct dwarf2_per_cu_data *this_cu;
25090 int low, high;
25091
25092 low = 0;
25093 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25094 while (high > low)
25095 {
25096 struct dwarf2_per_cu_data *mid_cu;
25097 int mid = low + (high - low) / 2;
25098
25099 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25100 if (mid_cu->is_dwz > offset_in_dwz
25101 || (mid_cu->is_dwz == offset_in_dwz
25102 && mid_cu->sect_off + mid_cu->length >= sect_off))
25103 high = mid;
25104 else
25105 low = mid + 1;
25106 }
25107 gdb_assert (low == high);
25108 this_cu = dwarf2_per_objfile->all_comp_units[low];
25109 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25110 {
25111 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25112 error (_("Dwarf Error: could not find partial DIE containing "
25113 "offset %s [in module %s]"),
25114 sect_offset_str (sect_off),
25115 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25116
25117 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25118 <= sect_off);
25119 return dwarf2_per_objfile->all_comp_units[low-1];
25120 }
25121 else
25122 {
25123 this_cu = dwarf2_per_objfile->all_comp_units[low];
25124 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25125 && sect_off >= this_cu->sect_off + this_cu->length)
25126 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25127 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25128 return this_cu;
25129 }
25130 }
25131
25132 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25133
25134 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25135 : per_cu (per_cu_),
25136 mark (false),
25137 has_loclist (false),
25138 checked_producer (false),
25139 producer_is_gxx_lt_4_6 (false),
25140 producer_is_gcc_lt_4_3 (false),
25141 producer_is_icc (false),
25142 producer_is_icc_lt_14 (false),
25143 producer_is_codewarrior (false),
25144 processing_has_namespace_info (false)
25145 {
25146 per_cu->cu = this;
25147 }
25148
25149 /* Destroy a dwarf2_cu. */
25150
25151 dwarf2_cu::~dwarf2_cu ()
25152 {
25153 per_cu->cu = NULL;
25154 }
25155
25156 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25157
25158 static void
25159 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25160 enum language pretend_language)
25161 {
25162 struct attribute *attr;
25163
25164 /* Set the language we're debugging. */
25165 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25166 if (attr)
25167 set_cu_language (DW_UNSND (attr), cu);
25168 else
25169 {
25170 cu->language = pretend_language;
25171 cu->language_defn = language_def (cu->language);
25172 }
25173
25174 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25175 }
25176
25177 /* Increase the age counter on each cached compilation unit, and free
25178 any that are too old. */
25179
25180 static void
25181 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25182 {
25183 struct dwarf2_per_cu_data *per_cu, **last_chain;
25184
25185 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25186 per_cu = dwarf2_per_objfile->read_in_chain;
25187 while (per_cu != NULL)
25188 {
25189 per_cu->cu->last_used ++;
25190 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25191 dwarf2_mark (per_cu->cu);
25192 per_cu = per_cu->cu->read_in_chain;
25193 }
25194
25195 per_cu = dwarf2_per_objfile->read_in_chain;
25196 last_chain = &dwarf2_per_objfile->read_in_chain;
25197 while (per_cu != NULL)
25198 {
25199 struct dwarf2_per_cu_data *next_cu;
25200
25201 next_cu = per_cu->cu->read_in_chain;
25202
25203 if (!per_cu->cu->mark)
25204 {
25205 delete per_cu->cu;
25206 *last_chain = next_cu;
25207 }
25208 else
25209 last_chain = &per_cu->cu->read_in_chain;
25210
25211 per_cu = next_cu;
25212 }
25213 }
25214
25215 /* Remove a single compilation unit from the cache. */
25216
25217 static void
25218 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25219 {
25220 struct dwarf2_per_cu_data *per_cu, **last_chain;
25221 struct dwarf2_per_objfile *dwarf2_per_objfile
25222 = target_per_cu->dwarf2_per_objfile;
25223
25224 per_cu = dwarf2_per_objfile->read_in_chain;
25225 last_chain = &dwarf2_per_objfile->read_in_chain;
25226 while (per_cu != NULL)
25227 {
25228 struct dwarf2_per_cu_data *next_cu;
25229
25230 next_cu = per_cu->cu->read_in_chain;
25231
25232 if (per_cu == target_per_cu)
25233 {
25234 delete per_cu->cu;
25235 per_cu->cu = NULL;
25236 *last_chain = next_cu;
25237 break;
25238 }
25239 else
25240 last_chain = &per_cu->cu->read_in_chain;
25241
25242 per_cu = next_cu;
25243 }
25244 }
25245
25246 /* Cleanup function for the dwarf2_per_objfile data. */
25247
25248 static void
25249 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25250 {
25251 struct dwarf2_per_objfile *dwarf2_per_objfile
25252 = static_cast<struct dwarf2_per_objfile *> (datum);
25253
25254 delete dwarf2_per_objfile;
25255 }
25256
25257 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25258 We store these in a hash table separate from the DIEs, and preserve them
25259 when the DIEs are flushed out of cache.
25260
25261 The CU "per_cu" pointer is needed because offset alone is not enough to
25262 uniquely identify the type. A file may have multiple .debug_types sections,
25263 or the type may come from a DWO file. Furthermore, while it's more logical
25264 to use per_cu->section+offset, with Fission the section with the data is in
25265 the DWO file but we don't know that section at the point we need it.
25266 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25267 because we can enter the lookup routine, get_die_type_at_offset, from
25268 outside this file, and thus won't necessarily have PER_CU->cu.
25269 Fortunately, PER_CU is stable for the life of the objfile. */
25270
25271 struct dwarf2_per_cu_offset_and_type
25272 {
25273 const struct dwarf2_per_cu_data *per_cu;
25274 sect_offset sect_off;
25275 struct type *type;
25276 };
25277
25278 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25279
25280 static hashval_t
25281 per_cu_offset_and_type_hash (const void *item)
25282 {
25283 const struct dwarf2_per_cu_offset_and_type *ofs
25284 = (const struct dwarf2_per_cu_offset_and_type *) item;
25285
25286 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25287 }
25288
25289 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25290
25291 static int
25292 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25293 {
25294 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25295 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25296 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25297 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25298
25299 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25300 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25301 }
25302
25303 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25304 table if necessary. For convenience, return TYPE.
25305
25306 The DIEs reading must have careful ordering to:
25307 * Not cause infite loops trying to read in DIEs as a prerequisite for
25308 reading current DIE.
25309 * Not trying to dereference contents of still incompletely read in types
25310 while reading in other DIEs.
25311 * Enable referencing still incompletely read in types just by a pointer to
25312 the type without accessing its fields.
25313
25314 Therefore caller should follow these rules:
25315 * Try to fetch any prerequisite types we may need to build this DIE type
25316 before building the type and calling set_die_type.
25317 * After building type call set_die_type for current DIE as soon as
25318 possible before fetching more types to complete the current type.
25319 * Make the type as complete as possible before fetching more types. */
25320
25321 static struct type *
25322 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25323 {
25324 struct dwarf2_per_objfile *dwarf2_per_objfile
25325 = cu->per_cu->dwarf2_per_objfile;
25326 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25327 struct objfile *objfile = dwarf2_per_objfile->objfile;
25328 struct attribute *attr;
25329 struct dynamic_prop prop;
25330
25331 /* For Ada types, make sure that the gnat-specific data is always
25332 initialized (if not already set). There are a few types where
25333 we should not be doing so, because the type-specific area is
25334 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25335 where the type-specific area is used to store the floatformat).
25336 But this is not a problem, because the gnat-specific information
25337 is actually not needed for these types. */
25338 if (need_gnat_info (cu)
25339 && TYPE_CODE (type) != TYPE_CODE_FUNC
25340 && TYPE_CODE (type) != TYPE_CODE_FLT
25341 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25342 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25343 && TYPE_CODE (type) != TYPE_CODE_METHOD
25344 && !HAVE_GNAT_AUX_INFO (type))
25345 INIT_GNAT_SPECIFIC (type);
25346
25347 /* Read DW_AT_allocated and set in type. */
25348 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25349 if (attr_form_is_block (attr))
25350 {
25351 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25352 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25353 }
25354 else if (attr != NULL)
25355 {
25356 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25357 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25358 sect_offset_str (die->sect_off));
25359 }
25360
25361 /* Read DW_AT_associated and set in type. */
25362 attr = dwarf2_attr (die, DW_AT_associated, cu);
25363 if (attr_form_is_block (attr))
25364 {
25365 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25366 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25367 }
25368 else if (attr != NULL)
25369 {
25370 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25371 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25372 sect_offset_str (die->sect_off));
25373 }
25374
25375 /* Read DW_AT_data_location and set in type. */
25376 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25377 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25378 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25379
25380 if (dwarf2_per_objfile->die_type_hash == NULL)
25381 {
25382 dwarf2_per_objfile->die_type_hash =
25383 htab_create_alloc_ex (127,
25384 per_cu_offset_and_type_hash,
25385 per_cu_offset_and_type_eq,
25386 NULL,
25387 &objfile->objfile_obstack,
25388 hashtab_obstack_allocate,
25389 dummy_obstack_deallocate);
25390 }
25391
25392 ofs.per_cu = cu->per_cu;
25393 ofs.sect_off = die->sect_off;
25394 ofs.type = type;
25395 slot = (struct dwarf2_per_cu_offset_and_type **)
25396 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25397 if (*slot)
25398 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25399 sect_offset_str (die->sect_off));
25400 *slot = XOBNEW (&objfile->objfile_obstack,
25401 struct dwarf2_per_cu_offset_and_type);
25402 **slot = ofs;
25403 return type;
25404 }
25405
25406 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25407 or return NULL if the die does not have a saved type. */
25408
25409 static struct type *
25410 get_die_type_at_offset (sect_offset sect_off,
25411 struct dwarf2_per_cu_data *per_cu)
25412 {
25413 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25414 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25415
25416 if (dwarf2_per_objfile->die_type_hash == NULL)
25417 return NULL;
25418
25419 ofs.per_cu = per_cu;
25420 ofs.sect_off = sect_off;
25421 slot = ((struct dwarf2_per_cu_offset_and_type *)
25422 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25423 if (slot)
25424 return slot->type;
25425 else
25426 return NULL;
25427 }
25428
25429 /* Look up the type for DIE in CU in die_type_hash,
25430 or return NULL if DIE does not have a saved type. */
25431
25432 static struct type *
25433 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25434 {
25435 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25436 }
25437
25438 /* Add a dependence relationship from CU to REF_PER_CU. */
25439
25440 static void
25441 dwarf2_add_dependence (struct dwarf2_cu *cu,
25442 struct dwarf2_per_cu_data *ref_per_cu)
25443 {
25444 void **slot;
25445
25446 if (cu->dependencies == NULL)
25447 cu->dependencies
25448 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25449 NULL, &cu->comp_unit_obstack,
25450 hashtab_obstack_allocate,
25451 dummy_obstack_deallocate);
25452
25453 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25454 if (*slot == NULL)
25455 *slot = ref_per_cu;
25456 }
25457
25458 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25459 Set the mark field in every compilation unit in the
25460 cache that we must keep because we are keeping CU. */
25461
25462 static int
25463 dwarf2_mark_helper (void **slot, void *data)
25464 {
25465 struct dwarf2_per_cu_data *per_cu;
25466
25467 per_cu = (struct dwarf2_per_cu_data *) *slot;
25468
25469 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25470 reading of the chain. As such dependencies remain valid it is not much
25471 useful to track and undo them during QUIT cleanups. */
25472 if (per_cu->cu == NULL)
25473 return 1;
25474
25475 if (per_cu->cu->mark)
25476 return 1;
25477 per_cu->cu->mark = true;
25478
25479 if (per_cu->cu->dependencies != NULL)
25480 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25481
25482 return 1;
25483 }
25484
25485 /* Set the mark field in CU and in every other compilation unit in the
25486 cache that we must keep because we are keeping CU. */
25487
25488 static void
25489 dwarf2_mark (struct dwarf2_cu *cu)
25490 {
25491 if (cu->mark)
25492 return;
25493 cu->mark = true;
25494 if (cu->dependencies != NULL)
25495 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25496 }
25497
25498 static void
25499 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25500 {
25501 while (per_cu)
25502 {
25503 per_cu->cu->mark = false;
25504 per_cu = per_cu->cu->read_in_chain;
25505 }
25506 }
25507
25508 /* Trivial hash function for partial_die_info: the hash value of a DIE
25509 is its offset in .debug_info for this objfile. */
25510
25511 static hashval_t
25512 partial_die_hash (const void *item)
25513 {
25514 const struct partial_die_info *part_die
25515 = (const struct partial_die_info *) item;
25516
25517 return to_underlying (part_die->sect_off);
25518 }
25519
25520 /* Trivial comparison function for partial_die_info structures: two DIEs
25521 are equal if they have the same offset. */
25522
25523 static int
25524 partial_die_eq (const void *item_lhs, const void *item_rhs)
25525 {
25526 const struct partial_die_info *part_die_lhs
25527 = (const struct partial_die_info *) item_lhs;
25528 const struct partial_die_info *part_die_rhs
25529 = (const struct partial_die_info *) item_rhs;
25530
25531 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25532 }
25533
25534 struct cmd_list_element *set_dwarf_cmdlist;
25535 struct cmd_list_element *show_dwarf_cmdlist;
25536
25537 static void
25538 set_dwarf_cmd (const char *args, int from_tty)
25539 {
25540 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25541 gdb_stdout);
25542 }
25543
25544 static void
25545 show_dwarf_cmd (const char *args, int from_tty)
25546 {
25547 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25548 }
25549
25550 int dwarf_always_disassemble;
25551
25552 static void
25553 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25554 struct cmd_list_element *c, const char *value)
25555 {
25556 fprintf_filtered (file,
25557 _("Whether to always disassemble "
25558 "DWARF expressions is %s.\n"),
25559 value);
25560 }
25561
25562 static void
25563 show_check_physname (struct ui_file *file, int from_tty,
25564 struct cmd_list_element *c, const char *value)
25565 {
25566 fprintf_filtered (file,
25567 _("Whether to check \"physname\" is %s.\n"),
25568 value);
25569 }
25570
25571 void
25572 _initialize_dwarf2_read (void)
25573 {
25574 dwarf2_objfile_data_key
25575 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25576
25577 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25578 Set DWARF specific variables.\n\
25579 Configure DWARF variables such as the cache size"),
25580 &set_dwarf_cmdlist, "maintenance set dwarf ",
25581 0/*allow-unknown*/, &maintenance_set_cmdlist);
25582
25583 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25584 Show DWARF specific variables\n\
25585 Show DWARF variables such as the cache size"),
25586 &show_dwarf_cmdlist, "maintenance show dwarf ",
25587 0/*allow-unknown*/, &maintenance_show_cmdlist);
25588
25589 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25590 &dwarf_max_cache_age, _("\
25591 Set the upper bound on the age of cached DWARF compilation units."), _("\
25592 Show the upper bound on the age of cached DWARF compilation units."), _("\
25593 A higher limit means that cached compilation units will be stored\n\
25594 in memory longer, and more total memory will be used. Zero disables\n\
25595 caching, which can slow down startup."),
25596 NULL,
25597 show_dwarf_max_cache_age,
25598 &set_dwarf_cmdlist,
25599 &show_dwarf_cmdlist);
25600
25601 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25602 &dwarf_always_disassemble, _("\
25603 Set whether `info address' always disassembles DWARF expressions."), _("\
25604 Show whether `info address' always disassembles DWARF expressions."), _("\
25605 When enabled, DWARF expressions are always printed in an assembly-like\n\
25606 syntax. When disabled, expressions will be printed in a more\n\
25607 conversational style, when possible."),
25608 NULL,
25609 show_dwarf_always_disassemble,
25610 &set_dwarf_cmdlist,
25611 &show_dwarf_cmdlist);
25612
25613 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25614 Set debugging of the DWARF reader."), _("\
25615 Show debugging of the DWARF reader."), _("\
25616 When enabled (non-zero), debugging messages are printed during DWARF\n\
25617 reading and symtab expansion. A value of 1 (one) provides basic\n\
25618 information. A value greater than 1 provides more verbose information."),
25619 NULL,
25620 NULL,
25621 &setdebuglist, &showdebuglist);
25622
25623 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25624 Set debugging of the DWARF DIE reader."), _("\
25625 Show debugging of the DWARF DIE reader."), _("\
25626 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25627 The value is the maximum depth to print."),
25628 NULL,
25629 NULL,
25630 &setdebuglist, &showdebuglist);
25631
25632 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25633 Set debugging of the dwarf line reader."), _("\
25634 Show debugging of the dwarf line reader."), _("\
25635 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25636 A value of 1 (one) provides basic information.\n\
25637 A value greater than 1 provides more verbose information."),
25638 NULL,
25639 NULL,
25640 &setdebuglist, &showdebuglist);
25641
25642 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25643 Set cross-checking of \"physname\" code against demangler."), _("\
25644 Show cross-checking of \"physname\" code against demangler."), _("\
25645 When enabled, GDB's internal \"physname\" code is checked against\n\
25646 the demangler."),
25647 NULL, show_check_physname,
25648 &setdebuglist, &showdebuglist);
25649
25650 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25651 no_class, &use_deprecated_index_sections, _("\
25652 Set whether to use deprecated gdb_index sections."), _("\
25653 Show whether to use deprecated gdb_index sections."), _("\
25654 When enabled, deprecated .gdb_index sections are used anyway.\n\
25655 Normally they are ignored either because of a missing feature or\n\
25656 performance issue.\n\
25657 Warning: This option must be enabled before gdb reads the file."),
25658 NULL,
25659 NULL,
25660 &setlist, &showlist);
25661
25662 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25663 &dwarf2_locexpr_funcs);
25664 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25665 &dwarf2_loclist_funcs);
25666
25667 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25668 &dwarf2_block_frame_base_locexpr_funcs);
25669 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25670 &dwarf2_block_frame_base_loclist_funcs);
25671
25672 #if GDB_SELF_TEST
25673 selftests::register_test ("dw2_expand_symtabs_matching",
25674 selftests::dw2_expand_symtabs_matching::run_test);
25675 #endif
25676 }
This page took 0.678968 seconds and 4 git commands to generate.