psymtab.c (add_psymbol_to_bcache): Remove "val" arg.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *asection;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.asection and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1528 struct dwarf2_cu *cu);
1529
1530 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1531
1532 static struct die_info *die_specification (struct die_info *die,
1533 struct dwarf2_cu **);
1534
1535 static void free_line_header (struct line_header *lh);
1536
1537 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1538 struct dwarf2_cu *cu);
1539
1540 static void dwarf_decode_lines (struct line_header *, const char *,
1541 struct dwarf2_cu *, struct partial_symtab *,
1542 CORE_ADDR, int decode_mapping);
1543
1544 static void dwarf2_start_subfile (const char *, const char *);
1545
1546 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1547 const char *, const char *,
1548 CORE_ADDR);
1549
1550 static struct symbol *new_symbol (struct die_info *, struct type *,
1551 struct dwarf2_cu *);
1552
1553 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1554 struct dwarf2_cu *, struct symbol *);
1555
1556 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1557 struct dwarf2_cu *);
1558
1559 static void dwarf2_const_value_attr (const struct attribute *attr,
1560 struct type *type,
1561 const char *name,
1562 struct obstack *obstack,
1563 struct dwarf2_cu *cu, LONGEST *value,
1564 const gdb_byte **bytes,
1565 struct dwarf2_locexpr_baton **baton);
1566
1567 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1568
1569 static int need_gnat_info (struct dwarf2_cu *);
1570
1571 static struct type *die_descriptive_type (struct die_info *,
1572 struct dwarf2_cu *);
1573
1574 static void set_descriptive_type (struct type *, struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static struct type *die_containing_type (struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1584
1585 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1586
1587 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1588
1589 static char *typename_concat (struct obstack *obs, const char *prefix,
1590 const char *suffix, int physname,
1591 struct dwarf2_cu *cu);
1592
1593 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1594
1595 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1596
1597 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1598
1599 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1600
1601 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1602
1603 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1604 struct dwarf2_cu *, struct partial_symtab *);
1605
1606 static int dwarf2_get_pc_bounds (struct die_info *,
1607 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1608 struct partial_symtab *);
1609
1610 static void get_scope_pc_bounds (struct die_info *,
1611 CORE_ADDR *, CORE_ADDR *,
1612 struct dwarf2_cu *);
1613
1614 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1615 CORE_ADDR, struct dwarf2_cu *);
1616
1617 static void dwarf2_add_field (struct field_info *, struct die_info *,
1618 struct dwarf2_cu *);
1619
1620 static void dwarf2_attach_fields_to_type (struct field_info *,
1621 struct type *, struct dwarf2_cu *);
1622
1623 static void dwarf2_add_member_fn (struct field_info *,
1624 struct die_info *, struct type *,
1625 struct dwarf2_cu *);
1626
1627 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1628 struct type *,
1629 struct dwarf2_cu *);
1630
1631 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1636
1637 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1638
1639 static struct using_direct **using_directives (enum language);
1640
1641 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1642
1643 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1644
1645 static struct type *read_module_type (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static const char *namespace_name (struct die_info *die,
1649 int *is_anonymous, struct dwarf2_cu *);
1650
1651 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1652
1653 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1654
1655 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1656 struct dwarf2_cu *);
1657
1658 static struct die_info *read_die_and_siblings_1
1659 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1660 struct die_info *);
1661
1662 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1663 const gdb_byte *info_ptr,
1664 const gdb_byte **new_info_ptr,
1665 struct die_info *parent);
1666
1667 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1668 struct die_info **, const gdb_byte *,
1669 int *, int);
1670
1671 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1672 struct die_info **, const gdb_byte *,
1673 int *);
1674
1675 static void process_die (struct die_info *, struct dwarf2_cu *);
1676
1677 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1678 struct obstack *);
1679
1680 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1681
1682 static const char *dwarf2_full_name (const char *name,
1683 struct die_info *die,
1684 struct dwarf2_cu *cu);
1685
1686 static const char *dwarf2_physname (const char *name, struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static struct die_info *dwarf2_extension (struct die_info *die,
1690 struct dwarf2_cu **);
1691
1692 static const char *dwarf_tag_name (unsigned int);
1693
1694 static const char *dwarf_attr_name (unsigned int);
1695
1696 static const char *dwarf_form_name (unsigned int);
1697
1698 static char *dwarf_bool_name (unsigned int);
1699
1700 static const char *dwarf_type_encoding_name (unsigned int);
1701
1702 static struct die_info *sibling_die (struct die_info *);
1703
1704 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1705
1706 static void dump_die_for_error (struct die_info *);
1707
1708 static void dump_die_1 (struct ui_file *, int level, int max_level,
1709 struct die_info *);
1710
1711 /*static*/ void dump_die (struct die_info *, int max_level);
1712
1713 static void store_in_ref_table (struct die_info *,
1714 struct dwarf2_cu *);
1715
1716 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1717
1718 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1719
1720 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1721 const struct attribute *,
1722 struct dwarf2_cu **);
1723
1724 static struct die_info *follow_die_ref (struct die_info *,
1725 const struct attribute *,
1726 struct dwarf2_cu **);
1727
1728 static struct die_info *follow_die_sig (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu **);
1731
1732 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1733 struct dwarf2_cu *);
1734
1735 static struct type *get_DW_AT_signature_type (struct die_info *,
1736 const struct attribute *,
1737 struct dwarf2_cu *);
1738
1739 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1740
1741 static void read_signatured_type (struct signatured_type *);
1742
1743 /* memory allocation interface */
1744
1745 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1746
1747 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1748
1749 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1750
1751 static int attr_form_is_block (const struct attribute *);
1752
1753 static int attr_form_is_section_offset (const struct attribute *);
1754
1755 static int attr_form_is_constant (const struct attribute *);
1756
1757 static int attr_form_is_ref (const struct attribute *);
1758
1759 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1760 struct dwarf2_loclist_baton *baton,
1761 const struct attribute *attr);
1762
1763 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1764 struct symbol *sym,
1765 struct dwarf2_cu *cu,
1766 int is_block);
1767
1768 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1769 const gdb_byte *info_ptr,
1770 struct abbrev_info *abbrev);
1771
1772 static void free_stack_comp_unit (void *);
1773
1774 static hashval_t partial_die_hash (const void *item);
1775
1776 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1777
1778 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1779 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1780
1781 static void init_one_comp_unit (struct dwarf2_cu *cu,
1782 struct dwarf2_per_cu_data *per_cu);
1783
1784 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1785 struct die_info *comp_unit_die,
1786 enum language pretend_language);
1787
1788 static void free_heap_comp_unit (void *);
1789
1790 static void free_cached_comp_units (void *);
1791
1792 static void age_cached_comp_units (void);
1793
1794 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1795
1796 static struct type *set_die_type (struct die_info *, struct type *,
1797 struct dwarf2_cu *);
1798
1799 static void create_all_comp_units (struct objfile *);
1800
1801 static int create_all_type_units (struct objfile *);
1802
1803 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1804 enum language);
1805
1806 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1807 enum language);
1808
1809 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1810 enum language);
1811
1812 static void dwarf2_add_dependence (struct dwarf2_cu *,
1813 struct dwarf2_per_cu_data *);
1814
1815 static void dwarf2_mark (struct dwarf2_cu *);
1816
1817 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1818
1819 static struct type *get_die_type_at_offset (sect_offset,
1820 struct dwarf2_per_cu_data *);
1821
1822 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1823
1824 static void dwarf2_release_queue (void *dummy);
1825
1826 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1827 enum language pretend_language);
1828
1829 static void process_queue (void);
1830
1831 static void find_file_and_directory (struct die_info *die,
1832 struct dwarf2_cu *cu,
1833 const char **name, const char **comp_dir);
1834
1835 static char *file_full_name (int file, struct line_header *lh,
1836 const char *comp_dir);
1837
1838 static const gdb_byte *read_and_check_comp_unit_head
1839 (struct comp_unit_head *header,
1840 struct dwarf2_section_info *section,
1841 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1842 int is_debug_types_section);
1843
1844 static void init_cutu_and_read_dies
1845 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1846 int use_existing_cu, int keep,
1847 die_reader_func_ftype *die_reader_func, void *data);
1848
1849 static void init_cutu_and_read_dies_simple
1850 (struct dwarf2_per_cu_data *this_cu,
1851 die_reader_func_ftype *die_reader_func, void *data);
1852
1853 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1854
1855 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1856
1857 static struct dwo_unit *lookup_dwo_unit_in_dwp
1858 (struct dwp_file *dwp_file, const char *comp_dir,
1859 ULONGEST signature, int is_debug_types);
1860
1861 static struct dwp_file *get_dwp_file (void);
1862
1863 static struct dwo_unit *lookup_dwo_comp_unit
1864 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1865
1866 static struct dwo_unit *lookup_dwo_type_unit
1867 (struct signatured_type *, const char *, const char *);
1868
1869 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1870
1871 static void free_dwo_file_cleanup (void *);
1872
1873 static void process_cu_includes (void);
1874
1875 static void check_producer (struct dwarf2_cu *cu);
1876
1877 static void free_line_header_voidp (void *arg);
1878 \f
1879 /* Various complaints about symbol reading that don't abort the process. */
1880
1881 static void
1882 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1883 {
1884 complaint (&symfile_complaints,
1885 _("statement list doesn't fit in .debug_line section"));
1886 }
1887
1888 static void
1889 dwarf2_debug_line_missing_file_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line data without a file"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_end_sequence_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line "
1900 "program sequence without an end"));
1901 }
1902
1903 static void
1904 dwarf2_complex_location_expr_complaint (void)
1905 {
1906 complaint (&symfile_complaints, _("location expression too complex"));
1907 }
1908
1909 static void
1910 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1911 int arg3)
1912 {
1913 complaint (&symfile_complaints,
1914 _("const value length mismatch for '%s', got %d, expected %d"),
1915 arg1, arg2, arg3);
1916 }
1917
1918 static void
1919 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1920 {
1921 complaint (&symfile_complaints,
1922 _("debug info runs off end of %s section"
1923 " [in module %s]"),
1924 get_section_name (section),
1925 get_section_file_name (section));
1926 }
1927
1928 static void
1929 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1930 {
1931 complaint (&symfile_complaints,
1932 _("macro debug info contains a "
1933 "malformed macro definition:\n`%s'"),
1934 arg1);
1935 }
1936
1937 static void
1938 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1939 {
1940 complaint (&symfile_complaints,
1941 _("invalid attribute class or form for '%s' in '%s'"),
1942 arg1, arg2);
1943 }
1944
1945 /* Hash function for line_header_hash. */
1946
1947 static hashval_t
1948 line_header_hash (const struct line_header *ofs)
1949 {
1950 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1951 }
1952
1953 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1954
1955 static hashval_t
1956 line_header_hash_voidp (const void *item)
1957 {
1958 const struct line_header *ofs = item;
1959
1960 return line_header_hash (ofs);
1961 }
1962
1963 /* Equality function for line_header_hash. */
1964
1965 static int
1966 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1967 {
1968 const struct line_header *ofs_lhs = item_lhs;
1969 const struct line_header *ofs_rhs = item_rhs;
1970
1971 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1972 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1973 }
1974
1975 \f
1976 #if WORDS_BIGENDIAN
1977
1978 /* Convert VALUE between big- and little-endian. */
1979 static offset_type
1980 byte_swap (offset_type value)
1981 {
1982 offset_type result;
1983
1984 result = (value & 0xff) << 24;
1985 result |= (value & 0xff00) << 8;
1986 result |= (value & 0xff0000) >> 8;
1987 result |= (value & 0xff000000) >> 24;
1988 return result;
1989 }
1990
1991 #define MAYBE_SWAP(V) byte_swap (V)
1992
1993 #else
1994 #define MAYBE_SWAP(V) (V)
1995 #endif /* WORDS_BIGENDIAN */
1996
1997 /* Read the given attribute value as an address, taking the attribute's
1998 form into account. */
1999
2000 static CORE_ADDR
2001 attr_value_as_address (struct attribute *attr)
2002 {
2003 CORE_ADDR addr;
2004
2005 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2006 {
2007 /* Aside from a few clearly defined exceptions, attributes that
2008 contain an address must always be in DW_FORM_addr form.
2009 Unfortunately, some compilers happen to be violating this
2010 requirement by encoding addresses using other forms, such
2011 as DW_FORM_data4 for example. For those broken compilers,
2012 we try to do our best, without any guarantee of success,
2013 to interpret the address correctly. It would also be nice
2014 to generate a complaint, but that would require us to maintain
2015 a list of legitimate cases where a non-address form is allowed,
2016 as well as update callers to pass in at least the CU's DWARF
2017 version. This is more overhead than what we're willing to
2018 expand for a pretty rare case. */
2019 addr = DW_UNSND (attr);
2020 }
2021 else
2022 addr = DW_ADDR (attr);
2023
2024 return addr;
2025 }
2026
2027 /* The suffix for an index file. */
2028 #define INDEX_SUFFIX ".gdb-index"
2029
2030 /* Try to locate the sections we need for DWARF 2 debugging
2031 information and return true if we have enough to do something.
2032 NAMES points to the dwarf2 section names, or is NULL if the standard
2033 ELF names are used. */
2034
2035 int
2036 dwarf2_has_info (struct objfile *objfile,
2037 const struct dwarf2_debug_sections *names)
2038 {
2039 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2040 if (!dwarf2_per_objfile)
2041 {
2042 /* Initialize per-objfile state. */
2043 struct dwarf2_per_objfile *data
2044 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2045
2046 memset (data, 0, sizeof (*data));
2047 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2048 dwarf2_per_objfile = data;
2049
2050 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2051 (void *) names);
2052 dwarf2_per_objfile->objfile = objfile;
2053 }
2054 return (!dwarf2_per_objfile->info.is_virtual
2055 && dwarf2_per_objfile->info.s.asection != NULL
2056 && !dwarf2_per_objfile->abbrev.is_virtual
2057 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2058 }
2059
2060 /* Return the containing section of virtual section SECTION. */
2061
2062 static struct dwarf2_section_info *
2063 get_containing_section (const struct dwarf2_section_info *section)
2064 {
2065 gdb_assert (section->is_virtual);
2066 return section->s.containing_section;
2067 }
2068
2069 /* Return the bfd owner of SECTION. */
2070
2071 static struct bfd *
2072 get_section_bfd_owner (const struct dwarf2_section_info *section)
2073 {
2074 if (section->is_virtual)
2075 {
2076 section = get_containing_section (section);
2077 gdb_assert (!section->is_virtual);
2078 }
2079 return section->s.asection->owner;
2080 }
2081
2082 /* Return the bfd section of SECTION.
2083 Returns NULL if the section is not present. */
2084
2085 static asection *
2086 get_section_bfd_section (const struct dwarf2_section_info *section)
2087 {
2088 if (section->is_virtual)
2089 {
2090 section = get_containing_section (section);
2091 gdb_assert (!section->is_virtual);
2092 }
2093 return section->s.asection;
2094 }
2095
2096 /* Return the name of SECTION. */
2097
2098 static const char *
2099 get_section_name (const struct dwarf2_section_info *section)
2100 {
2101 asection *sectp = get_section_bfd_section (section);
2102
2103 gdb_assert (sectp != NULL);
2104 return bfd_section_name (get_section_bfd_owner (section), sectp);
2105 }
2106
2107 /* Return the name of the file SECTION is in. */
2108
2109 static const char *
2110 get_section_file_name (const struct dwarf2_section_info *section)
2111 {
2112 bfd *abfd = get_section_bfd_owner (section);
2113
2114 return bfd_get_filename (abfd);
2115 }
2116
2117 /* Return the id of SECTION.
2118 Returns 0 if SECTION doesn't exist. */
2119
2120 static int
2121 get_section_id (const struct dwarf2_section_info *section)
2122 {
2123 asection *sectp = get_section_bfd_section (section);
2124
2125 if (sectp == NULL)
2126 return 0;
2127 return sectp->id;
2128 }
2129
2130 /* Return the flags of SECTION.
2131 SECTION (or containing section if this is a virtual section) must exist. */
2132
2133 static int
2134 get_section_flags (const struct dwarf2_section_info *section)
2135 {
2136 asection *sectp = get_section_bfd_section (section);
2137
2138 gdb_assert (sectp != NULL);
2139 return bfd_get_section_flags (sectp->owner, sectp);
2140 }
2141
2142 /* When loading sections, we look either for uncompressed section or for
2143 compressed section names. */
2144
2145 static int
2146 section_is_p (const char *section_name,
2147 const struct dwarf2_section_names *names)
2148 {
2149 if (names->normal != NULL
2150 && strcmp (section_name, names->normal) == 0)
2151 return 1;
2152 if (names->compressed != NULL
2153 && strcmp (section_name, names->compressed) == 0)
2154 return 1;
2155 return 0;
2156 }
2157
2158 /* This function is mapped across the sections and remembers the
2159 offset and size of each of the debugging sections we are interested
2160 in. */
2161
2162 static void
2163 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2164 {
2165 const struct dwarf2_debug_sections *names;
2166 flagword aflag = bfd_get_section_flags (abfd, sectp);
2167
2168 if (vnames == NULL)
2169 names = &dwarf2_elf_names;
2170 else
2171 names = (const struct dwarf2_debug_sections *) vnames;
2172
2173 if ((aflag & SEC_HAS_CONTENTS) == 0)
2174 {
2175 }
2176 else if (section_is_p (sectp->name, &names->info))
2177 {
2178 dwarf2_per_objfile->info.s.asection = sectp;
2179 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2180 }
2181 else if (section_is_p (sectp->name, &names->abbrev))
2182 {
2183 dwarf2_per_objfile->abbrev.s.asection = sectp;
2184 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2185 }
2186 else if (section_is_p (sectp->name, &names->line))
2187 {
2188 dwarf2_per_objfile->line.s.asection = sectp;
2189 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2190 }
2191 else if (section_is_p (sectp->name, &names->loc))
2192 {
2193 dwarf2_per_objfile->loc.s.asection = sectp;
2194 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2195 }
2196 else if (section_is_p (sectp->name, &names->macinfo))
2197 {
2198 dwarf2_per_objfile->macinfo.s.asection = sectp;
2199 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2200 }
2201 else if (section_is_p (sectp->name, &names->macro))
2202 {
2203 dwarf2_per_objfile->macro.s.asection = sectp;
2204 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2205 }
2206 else if (section_is_p (sectp->name, &names->str))
2207 {
2208 dwarf2_per_objfile->str.s.asection = sectp;
2209 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->addr))
2212 {
2213 dwarf2_per_objfile->addr.s.asection = sectp;
2214 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2215 }
2216 else if (section_is_p (sectp->name, &names->frame))
2217 {
2218 dwarf2_per_objfile->frame.s.asection = sectp;
2219 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2220 }
2221 else if (section_is_p (sectp->name, &names->eh_frame))
2222 {
2223 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2224 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2225 }
2226 else if (section_is_p (sectp->name, &names->ranges))
2227 {
2228 dwarf2_per_objfile->ranges.s.asection = sectp;
2229 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2230 }
2231 else if (section_is_p (sectp->name, &names->types))
2232 {
2233 struct dwarf2_section_info type_section;
2234
2235 memset (&type_section, 0, sizeof (type_section));
2236 type_section.s.asection = sectp;
2237 type_section.size = bfd_get_section_size (sectp);
2238
2239 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2240 &type_section);
2241 }
2242 else if (section_is_p (sectp->name, &names->gdb_index))
2243 {
2244 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2245 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2246 }
2247
2248 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2249 && bfd_section_vma (abfd, sectp) == 0)
2250 dwarf2_per_objfile->has_section_at_zero = 1;
2251 }
2252
2253 /* A helper function that decides whether a section is empty,
2254 or not present. */
2255
2256 static int
2257 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 return section->size == 0;
2261 return section->s.asection == NULL || section->size == 0;
2262 }
2263
2264 /* Read the contents of the section INFO.
2265 OBJFILE is the main object file, but not necessarily the file where
2266 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2267 of the DWO file.
2268 If the section is compressed, uncompress it before returning. */
2269
2270 static void
2271 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2272 {
2273 asection *sectp;
2274 bfd *abfd;
2275 gdb_byte *buf, *retbuf;
2276
2277 if (info->readin)
2278 return;
2279 info->buffer = NULL;
2280 info->readin = 1;
2281
2282 if (dwarf2_section_empty_p (info))
2283 return;
2284
2285 sectp = get_section_bfd_section (info);
2286
2287 /* If this is a virtual section we need to read in the real one first. */
2288 if (info->is_virtual)
2289 {
2290 struct dwarf2_section_info *containing_section =
2291 get_containing_section (info);
2292
2293 gdb_assert (sectp != NULL);
2294 if ((sectp->flags & SEC_RELOC) != 0)
2295 {
2296 error (_("Dwarf Error: DWP format V2 with relocations is not"
2297 " supported in section %s [in module %s]"),
2298 get_section_name (info), get_section_file_name (info));
2299 }
2300 dwarf2_read_section (objfile, containing_section);
2301 /* Other code should have already caught virtual sections that don't
2302 fit. */
2303 gdb_assert (info->virtual_offset + info->size
2304 <= containing_section->size);
2305 /* If the real section is empty or there was a problem reading the
2306 section we shouldn't get here. */
2307 gdb_assert (containing_section->buffer != NULL);
2308 info->buffer = containing_section->buffer + info->virtual_offset;
2309 return;
2310 }
2311
2312 /* If the section has relocations, we must read it ourselves.
2313 Otherwise we attach it to the BFD. */
2314 if ((sectp->flags & SEC_RELOC) == 0)
2315 {
2316 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2317 return;
2318 }
2319
2320 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2321 info->buffer = buf;
2322
2323 /* When debugging .o files, we may need to apply relocations; see
2324 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2325 We never compress sections in .o files, so we only need to
2326 try this when the section is not compressed. */
2327 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2328 if (retbuf != NULL)
2329 {
2330 info->buffer = retbuf;
2331 return;
2332 }
2333
2334 abfd = get_section_bfd_owner (info);
2335 gdb_assert (abfd != NULL);
2336
2337 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2338 || bfd_bread (buf, info->size, abfd) != info->size)
2339 {
2340 error (_("Dwarf Error: Can't read DWARF data"
2341 " in section %s [in module %s]"),
2342 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2343 }
2344 }
2345
2346 /* A helper function that returns the size of a section in a safe way.
2347 If you are positive that the section has been read before using the
2348 size, then it is safe to refer to the dwarf2_section_info object's
2349 "size" field directly. In other cases, you must call this
2350 function, because for compressed sections the size field is not set
2351 correctly until the section has been read. */
2352
2353 static bfd_size_type
2354 dwarf2_section_size (struct objfile *objfile,
2355 struct dwarf2_section_info *info)
2356 {
2357 if (!info->readin)
2358 dwarf2_read_section (objfile, info);
2359 return info->size;
2360 }
2361
2362 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2363 SECTION_NAME. */
2364
2365 void
2366 dwarf2_get_section_info (struct objfile *objfile,
2367 enum dwarf2_section_enum sect,
2368 asection **sectp, const gdb_byte **bufp,
2369 bfd_size_type *sizep)
2370 {
2371 struct dwarf2_per_objfile *data
2372 = objfile_data (objfile, dwarf2_objfile_data_key);
2373 struct dwarf2_section_info *info;
2374
2375 /* We may see an objfile without any DWARF, in which case we just
2376 return nothing. */
2377 if (data == NULL)
2378 {
2379 *sectp = NULL;
2380 *bufp = NULL;
2381 *sizep = 0;
2382 return;
2383 }
2384 switch (sect)
2385 {
2386 case DWARF2_DEBUG_FRAME:
2387 info = &data->frame;
2388 break;
2389 case DWARF2_EH_FRAME:
2390 info = &data->eh_frame;
2391 break;
2392 default:
2393 gdb_assert_not_reached ("unexpected section");
2394 }
2395
2396 dwarf2_read_section (objfile, info);
2397
2398 *sectp = get_section_bfd_section (info);
2399 *bufp = info->buffer;
2400 *sizep = info->size;
2401 }
2402
2403 /* A helper function to find the sections for a .dwz file. */
2404
2405 static void
2406 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2407 {
2408 struct dwz_file *dwz_file = arg;
2409
2410 /* Note that we only support the standard ELF names, because .dwz
2411 is ELF-only (at the time of writing). */
2412 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2413 {
2414 dwz_file->abbrev.s.asection = sectp;
2415 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2418 {
2419 dwz_file->info.s.asection = sectp;
2420 dwz_file->info.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2423 {
2424 dwz_file->str.s.asection = sectp;
2425 dwz_file->str.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2428 {
2429 dwz_file->line.s.asection = sectp;
2430 dwz_file->line.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2433 {
2434 dwz_file->macro.s.asection = sectp;
2435 dwz_file->macro.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2438 {
2439 dwz_file->gdb_index.s.asection = sectp;
2440 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2441 }
2442 }
2443
2444 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2445 there is no .gnu_debugaltlink section in the file. Error if there
2446 is such a section but the file cannot be found. */
2447
2448 static struct dwz_file *
2449 dwarf2_get_dwz_file (void)
2450 {
2451 bfd *dwz_bfd;
2452 char *data;
2453 struct cleanup *cleanup;
2454 const char *filename;
2455 struct dwz_file *result;
2456 bfd_size_type buildid_len_arg;
2457 size_t buildid_len;
2458 bfd_byte *buildid;
2459
2460 if (dwarf2_per_objfile->dwz_file != NULL)
2461 return dwarf2_per_objfile->dwz_file;
2462
2463 bfd_set_error (bfd_error_no_error);
2464 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2465 &buildid_len_arg, &buildid);
2466 if (data == NULL)
2467 {
2468 if (bfd_get_error () == bfd_error_no_error)
2469 return NULL;
2470 error (_("could not read '.gnu_debugaltlink' section: %s"),
2471 bfd_errmsg (bfd_get_error ()));
2472 }
2473 cleanup = make_cleanup (xfree, data);
2474 make_cleanup (xfree, buildid);
2475
2476 buildid_len = (size_t) buildid_len_arg;
2477
2478 filename = (const char *) data;
2479 if (!IS_ABSOLUTE_PATH (filename))
2480 {
2481 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2482 char *rel;
2483
2484 make_cleanup (xfree, abs);
2485 abs = ldirname (abs);
2486 make_cleanup (xfree, abs);
2487
2488 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2489 make_cleanup (xfree, rel);
2490 filename = rel;
2491 }
2492
2493 /* First try the file name given in the section. If that doesn't
2494 work, try to use the build-id instead. */
2495 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2496 if (dwz_bfd != NULL)
2497 {
2498 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2499 {
2500 gdb_bfd_unref (dwz_bfd);
2501 dwz_bfd = NULL;
2502 }
2503 }
2504
2505 if (dwz_bfd == NULL)
2506 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2507
2508 if (dwz_bfd == NULL)
2509 error (_("could not find '.gnu_debugaltlink' file for %s"),
2510 objfile_name (dwarf2_per_objfile->objfile));
2511
2512 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2513 struct dwz_file);
2514 result->dwz_bfd = dwz_bfd;
2515
2516 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2517
2518 do_cleanups (cleanup);
2519
2520 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2521 dwarf2_per_objfile->dwz_file = result;
2522 return result;
2523 }
2524 \f
2525 /* DWARF quick_symbols_functions support. */
2526
2527 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2528 unique line tables, so we maintain a separate table of all .debug_line
2529 derived entries to support the sharing.
2530 All the quick functions need is the list of file names. We discard the
2531 line_header when we're done and don't need to record it here. */
2532 struct quick_file_names
2533 {
2534 /* The data used to construct the hash key. */
2535 struct stmt_list_hash hash;
2536
2537 /* The number of entries in file_names, real_names. */
2538 unsigned int num_file_names;
2539
2540 /* The file names from the line table, after being run through
2541 file_full_name. */
2542 const char **file_names;
2543
2544 /* The file names from the line table after being run through
2545 gdb_realpath. These are computed lazily. */
2546 const char **real_names;
2547 };
2548
2549 /* When using the index (and thus not using psymtabs), each CU has an
2550 object of this type. This is used to hold information needed by
2551 the various "quick" methods. */
2552 struct dwarf2_per_cu_quick_data
2553 {
2554 /* The file table. This can be NULL if there was no file table
2555 or it's currently not read in.
2556 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2557 struct quick_file_names *file_names;
2558
2559 /* The corresponding symbol table. This is NULL if symbols for this
2560 CU have not yet been read. */
2561 struct compunit_symtab *compunit_symtab;
2562
2563 /* A temporary mark bit used when iterating over all CUs in
2564 expand_symtabs_matching. */
2565 unsigned int mark : 1;
2566
2567 /* True if we've tried to read the file table and found there isn't one.
2568 There will be no point in trying to read it again next time. */
2569 unsigned int no_file_data : 1;
2570 };
2571
2572 /* Utility hash function for a stmt_list_hash. */
2573
2574 static hashval_t
2575 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2576 {
2577 hashval_t v = 0;
2578
2579 if (stmt_list_hash->dwo_unit != NULL)
2580 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2581 v += stmt_list_hash->line_offset.sect_off;
2582 return v;
2583 }
2584
2585 /* Utility equality function for a stmt_list_hash. */
2586
2587 static int
2588 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2589 const struct stmt_list_hash *rhs)
2590 {
2591 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2592 return 0;
2593 if (lhs->dwo_unit != NULL
2594 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2595 return 0;
2596
2597 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2598 }
2599
2600 /* Hash function for a quick_file_names. */
2601
2602 static hashval_t
2603 hash_file_name_entry (const void *e)
2604 {
2605 const struct quick_file_names *file_data = e;
2606
2607 return hash_stmt_list_entry (&file_data->hash);
2608 }
2609
2610 /* Equality function for a quick_file_names. */
2611
2612 static int
2613 eq_file_name_entry (const void *a, const void *b)
2614 {
2615 const struct quick_file_names *ea = a;
2616 const struct quick_file_names *eb = b;
2617
2618 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2619 }
2620
2621 /* Delete function for a quick_file_names. */
2622
2623 static void
2624 delete_file_name_entry (void *e)
2625 {
2626 struct quick_file_names *file_data = e;
2627 int i;
2628
2629 for (i = 0; i < file_data->num_file_names; ++i)
2630 {
2631 xfree ((void*) file_data->file_names[i]);
2632 if (file_data->real_names)
2633 xfree ((void*) file_data->real_names[i]);
2634 }
2635
2636 /* The space for the struct itself lives on objfile_obstack,
2637 so we don't free it here. */
2638 }
2639
2640 /* Create a quick_file_names hash table. */
2641
2642 static htab_t
2643 create_quick_file_names_table (unsigned int nr_initial_entries)
2644 {
2645 return htab_create_alloc (nr_initial_entries,
2646 hash_file_name_entry, eq_file_name_entry,
2647 delete_file_name_entry, xcalloc, xfree);
2648 }
2649
2650 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2651 have to be created afterwards. You should call age_cached_comp_units after
2652 processing PER_CU->CU. dw2_setup must have been already called. */
2653
2654 static void
2655 load_cu (struct dwarf2_per_cu_data *per_cu)
2656 {
2657 if (per_cu->is_debug_types)
2658 load_full_type_unit (per_cu);
2659 else
2660 load_full_comp_unit (per_cu, language_minimal);
2661
2662 if (per_cu->cu == NULL)
2663 return; /* Dummy CU. */
2664
2665 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2666 }
2667
2668 /* Read in the symbols for PER_CU. */
2669
2670 static void
2671 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2672 {
2673 struct cleanup *back_to;
2674
2675 /* Skip type_unit_groups, reading the type units they contain
2676 is handled elsewhere. */
2677 if (IS_TYPE_UNIT_GROUP (per_cu))
2678 return;
2679
2680 back_to = make_cleanup (dwarf2_release_queue, NULL);
2681
2682 if (dwarf2_per_objfile->using_index
2683 ? per_cu->v.quick->compunit_symtab == NULL
2684 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2685 {
2686 queue_comp_unit (per_cu, language_minimal);
2687 load_cu (per_cu);
2688
2689 /* If we just loaded a CU from a DWO, and we're working with an index
2690 that may badly handle TUs, load all the TUs in that DWO as well.
2691 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2692 if (!per_cu->is_debug_types
2693 && per_cu->cu != NULL
2694 && per_cu->cu->dwo_unit != NULL
2695 && dwarf2_per_objfile->index_table != NULL
2696 && dwarf2_per_objfile->index_table->version <= 7
2697 /* DWP files aren't supported yet. */
2698 && get_dwp_file () == NULL)
2699 queue_and_load_all_dwo_tus (per_cu);
2700 }
2701
2702 process_queue ();
2703
2704 /* Age the cache, releasing compilation units that have not
2705 been used recently. */
2706 age_cached_comp_units ();
2707
2708 do_cleanups (back_to);
2709 }
2710
2711 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2712 the objfile from which this CU came. Returns the resulting symbol
2713 table. */
2714
2715 static struct compunit_symtab *
2716 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2717 {
2718 gdb_assert (dwarf2_per_objfile->using_index);
2719 if (!per_cu->v.quick->compunit_symtab)
2720 {
2721 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2722 increment_reading_symtab ();
2723 dw2_do_instantiate_symtab (per_cu);
2724 process_cu_includes ();
2725 do_cleanups (back_to);
2726 }
2727
2728 return per_cu->v.quick->compunit_symtab;
2729 }
2730
2731 /* Return the CU/TU given its index.
2732
2733 This is intended for loops like:
2734
2735 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2736 + dwarf2_per_objfile->n_type_units); ++i)
2737 {
2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2739
2740 ...;
2741 }
2742 */
2743
2744 static struct dwarf2_per_cu_data *
2745 dw2_get_cutu (int index)
2746 {
2747 if (index >= dwarf2_per_objfile->n_comp_units)
2748 {
2749 index -= dwarf2_per_objfile->n_comp_units;
2750 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2751 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2752 }
2753
2754 return dwarf2_per_objfile->all_comp_units[index];
2755 }
2756
2757 /* Return the CU given its index.
2758 This differs from dw2_get_cutu in that it's for when you know INDEX
2759 refers to a CU. */
2760
2761 static struct dwarf2_per_cu_data *
2762 dw2_get_cu (int index)
2763 {
2764 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2765
2766 return dwarf2_per_objfile->all_comp_units[index];
2767 }
2768
2769 /* A helper for create_cus_from_index that handles a given list of
2770 CUs. */
2771
2772 static void
2773 create_cus_from_index_list (struct objfile *objfile,
2774 const gdb_byte *cu_list, offset_type n_elements,
2775 struct dwarf2_section_info *section,
2776 int is_dwz,
2777 int base_offset)
2778 {
2779 offset_type i;
2780
2781 for (i = 0; i < n_elements; i += 2)
2782 {
2783 struct dwarf2_per_cu_data *the_cu;
2784 ULONGEST offset, length;
2785
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2788 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2789 cu_list += 2 * 8;
2790
2791 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct dwarf2_per_cu_data);
2793 the_cu->offset.sect_off = offset;
2794 the_cu->length = length;
2795 the_cu->objfile = objfile;
2796 the_cu->section = section;
2797 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2798 struct dwarf2_per_cu_quick_data);
2799 the_cu->is_dwz = is_dwz;
2800 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2801 }
2802 }
2803
2804 /* Read the CU list from the mapped index, and use it to create all
2805 the CU objects for this objfile. */
2806
2807 static void
2808 create_cus_from_index (struct objfile *objfile,
2809 const gdb_byte *cu_list, offset_type cu_list_elements,
2810 const gdb_byte *dwz_list, offset_type dwz_elements)
2811 {
2812 struct dwz_file *dwz;
2813
2814 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2815 dwarf2_per_objfile->all_comp_units
2816 = obstack_alloc (&objfile->objfile_obstack,
2817 dwarf2_per_objfile->n_comp_units
2818 * sizeof (struct dwarf2_per_cu_data *));
2819
2820 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2821 &dwarf2_per_objfile->info, 0, 0);
2822
2823 if (dwz_elements == 0)
2824 return;
2825
2826 dwz = dwarf2_get_dwz_file ();
2827 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2828 cu_list_elements / 2);
2829 }
2830
2831 /* Create the signatured type hash table from the index. */
2832
2833 static void
2834 create_signatured_type_table_from_index (struct objfile *objfile,
2835 struct dwarf2_section_info *section,
2836 const gdb_byte *bytes,
2837 offset_type elements)
2838 {
2839 offset_type i;
2840 htab_t sig_types_hash;
2841
2842 dwarf2_per_objfile->n_type_units
2843 = dwarf2_per_objfile->n_allocated_type_units
2844 = elements / 3;
2845 dwarf2_per_objfile->all_type_units
2846 = xmalloc (dwarf2_per_objfile->n_type_units
2847 * sizeof (struct signatured_type *));
2848
2849 sig_types_hash = allocate_signatured_type_table (objfile);
2850
2851 for (i = 0; i < elements; i += 3)
2852 {
2853 struct signatured_type *sig_type;
2854 ULONGEST offset, type_offset_in_tu, signature;
2855 void **slot;
2856
2857 gdb_static_assert (sizeof (ULONGEST) >= 8);
2858 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2859 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2860 BFD_ENDIAN_LITTLE);
2861 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2862 bytes += 3 * 8;
2863
2864 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct signatured_type);
2866 sig_type->signature = signature;
2867 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2868 sig_type->per_cu.is_debug_types = 1;
2869 sig_type->per_cu.section = section;
2870 sig_type->per_cu.offset.sect_off = offset;
2871 sig_type->per_cu.objfile = objfile;
2872 sig_type->per_cu.v.quick
2873 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct dwarf2_per_cu_quick_data);
2875
2876 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2877 *slot = sig_type;
2878
2879 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2880 }
2881
2882 dwarf2_per_objfile->signatured_types = sig_types_hash;
2883 }
2884
2885 /* Read the address map data from the mapped index, and use it to
2886 populate the objfile's psymtabs_addrmap. */
2887
2888 static void
2889 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2890 {
2891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2892 const gdb_byte *iter, *end;
2893 struct obstack temp_obstack;
2894 struct addrmap *mutable_map;
2895 struct cleanup *cleanup;
2896 CORE_ADDR baseaddr;
2897
2898 obstack_init (&temp_obstack);
2899 cleanup = make_cleanup_obstack_free (&temp_obstack);
2900 mutable_map = addrmap_create_mutable (&temp_obstack);
2901
2902 iter = index->address_table;
2903 end = iter + index->address_table_size;
2904
2905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2906
2907 while (iter < end)
2908 {
2909 ULONGEST hi, lo, cu_index;
2910 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2911 iter += 8;
2912 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2913 iter += 8;
2914 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2915 iter += 4;
2916
2917 if (lo > hi)
2918 {
2919 complaint (&symfile_complaints,
2920 _(".gdb_index address table has invalid range (%s - %s)"),
2921 hex_string (lo), hex_string (hi));
2922 continue;
2923 }
2924
2925 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid CU number %u"),
2929 (unsigned) cu_index);
2930 continue;
2931 }
2932
2933 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2934 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2935 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2936 }
2937
2938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2939 &objfile->objfile_obstack);
2940 do_cleanups (cleanup);
2941 }
2942
2943 /* The hash function for strings in the mapped index. This is the same as
2944 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2945 implementation. This is necessary because the hash function is tied to the
2946 format of the mapped index file. The hash values do not have to match with
2947 SYMBOL_HASH_NEXT.
2948
2949 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2950
2951 static hashval_t
2952 mapped_index_string_hash (int index_version, const void *p)
2953 {
2954 const unsigned char *str = (const unsigned char *) p;
2955 hashval_t r = 0;
2956 unsigned char c;
2957
2958 while ((c = *str++) != 0)
2959 {
2960 if (index_version >= 5)
2961 c = tolower (c);
2962 r = r * 67 + c - 113;
2963 }
2964
2965 return r;
2966 }
2967
2968 /* Find a slot in the mapped index INDEX for the object named NAME.
2969 If NAME is found, set *VEC_OUT to point to the CU vector in the
2970 constant pool and return 1. If NAME cannot be found, return 0. */
2971
2972 static int
2973 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2974 offset_type **vec_out)
2975 {
2976 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2977 offset_type hash;
2978 offset_type slot, step;
2979 int (*cmp) (const char *, const char *);
2980
2981 if (current_language->la_language == language_cplus
2982 || current_language->la_language == language_java
2983 || current_language->la_language == language_fortran
2984 || current_language->la_language == language_d)
2985 {
2986 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2987 not contain any. */
2988
2989 if (strchr (name, '(') != NULL)
2990 {
2991 char *without_params = cp_remove_params (name);
2992
2993 if (without_params != NULL)
2994 {
2995 make_cleanup (xfree, without_params);
2996 name = without_params;
2997 }
2998 }
2999 }
3000
3001 /* Index version 4 did not support case insensitive searches. But the
3002 indices for case insensitive languages are built in lowercase, therefore
3003 simulate our NAME being searched is also lowercased. */
3004 hash = mapped_index_string_hash ((index->version == 4
3005 && case_sensitivity == case_sensitive_off
3006 ? 5 : index->version),
3007 name);
3008
3009 slot = hash & (index->symbol_table_slots - 1);
3010 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3011 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3012
3013 for (;;)
3014 {
3015 /* Convert a slot number to an offset into the table. */
3016 offset_type i = 2 * slot;
3017 const char *str;
3018 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3019 {
3020 do_cleanups (back_to);
3021 return 0;
3022 }
3023
3024 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3025 if (!cmp (name, str))
3026 {
3027 *vec_out = (offset_type *) (index->constant_pool
3028 + MAYBE_SWAP (index->symbol_table[i + 1]));
3029 do_cleanups (back_to);
3030 return 1;
3031 }
3032
3033 slot = (slot + step) & (index->symbol_table_slots - 1);
3034 }
3035 }
3036
3037 /* A helper function that reads the .gdb_index from SECTION and fills
3038 in MAP. FILENAME is the name of the file containing the section;
3039 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3040 ok to use deprecated sections.
3041
3042 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3043 out parameters that are filled in with information about the CU and
3044 TU lists in the section.
3045
3046 Returns 1 if all went well, 0 otherwise. */
3047
3048 static int
3049 read_index_from_section (struct objfile *objfile,
3050 const char *filename,
3051 int deprecated_ok,
3052 struct dwarf2_section_info *section,
3053 struct mapped_index *map,
3054 const gdb_byte **cu_list,
3055 offset_type *cu_list_elements,
3056 const gdb_byte **types_list,
3057 offset_type *types_list_elements)
3058 {
3059 const gdb_byte *addr;
3060 offset_type version;
3061 offset_type *metadata;
3062 int i;
3063
3064 if (dwarf2_section_empty_p (section))
3065 return 0;
3066
3067 /* Older elfutils strip versions could keep the section in the main
3068 executable while splitting it for the separate debug info file. */
3069 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3070 return 0;
3071
3072 dwarf2_read_section (objfile, section);
3073
3074 addr = section->buffer;
3075 /* Version check. */
3076 version = MAYBE_SWAP (*(offset_type *) addr);
3077 /* Versions earlier than 3 emitted every copy of a psymbol. This
3078 causes the index to behave very poorly for certain requests. Version 3
3079 contained incomplete addrmap. So, it seems better to just ignore such
3080 indices. */
3081 if (version < 4)
3082 {
3083 static int warning_printed = 0;
3084 if (!warning_printed)
3085 {
3086 warning (_("Skipping obsolete .gdb_index section in %s."),
3087 filename);
3088 warning_printed = 1;
3089 }
3090 return 0;
3091 }
3092 /* Index version 4 uses a different hash function than index version
3093 5 and later.
3094
3095 Versions earlier than 6 did not emit psymbols for inlined
3096 functions. Using these files will cause GDB not to be able to
3097 set breakpoints on inlined functions by name, so we ignore these
3098 indices unless the user has done
3099 "set use-deprecated-index-sections on". */
3100 if (version < 6 && !deprecated_ok)
3101 {
3102 static int warning_printed = 0;
3103 if (!warning_printed)
3104 {
3105 warning (_("\
3106 Skipping deprecated .gdb_index section in %s.\n\
3107 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3108 to use the section anyway."),
3109 filename);
3110 warning_printed = 1;
3111 }
3112 return 0;
3113 }
3114 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3115 of the TU (for symbols coming from TUs),
3116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3117 Plus gold-generated indices can have duplicate entries for global symbols,
3118 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3119 These are just performance bugs, and we can't distinguish gdb-generated
3120 indices from gold-generated ones, so issue no warning here. */
3121
3122 /* Indexes with higher version than the one supported by GDB may be no
3123 longer backward compatible. */
3124 if (version > 8)
3125 return 0;
3126
3127 map->version = version;
3128 map->total_size = section->size;
3129
3130 metadata = (offset_type *) (addr + sizeof (offset_type));
3131
3132 i = 0;
3133 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3134 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3135 / 8);
3136 ++i;
3137
3138 *types_list = addr + MAYBE_SWAP (metadata[i]);
3139 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3140 - MAYBE_SWAP (metadata[i]))
3141 / 8);
3142 ++i;
3143
3144 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3145 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3146 - MAYBE_SWAP (metadata[i]));
3147 ++i;
3148
3149 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3150 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]))
3152 / (2 * sizeof (offset_type)));
3153 ++i;
3154
3155 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3156
3157 return 1;
3158 }
3159
3160
3161 /* Read the index file. If everything went ok, initialize the "quick"
3162 elements of all the CUs and return 1. Otherwise, return 0. */
3163
3164 static int
3165 dwarf2_read_index (struct objfile *objfile)
3166 {
3167 struct mapped_index local_map, *map;
3168 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3169 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3170 struct dwz_file *dwz;
3171
3172 if (!read_index_from_section (objfile, objfile_name (objfile),
3173 use_deprecated_index_sections,
3174 &dwarf2_per_objfile->gdb_index, &local_map,
3175 &cu_list, &cu_list_elements,
3176 &types_list, &types_list_elements))
3177 return 0;
3178
3179 /* Don't use the index if it's empty. */
3180 if (local_map.symbol_table_slots == 0)
3181 return 0;
3182
3183 /* If there is a .dwz file, read it so we can get its CU list as
3184 well. */
3185 dwz = dwarf2_get_dwz_file ();
3186 if (dwz != NULL)
3187 {
3188 struct mapped_index dwz_map;
3189 const gdb_byte *dwz_types_ignore;
3190 offset_type dwz_types_elements_ignore;
3191
3192 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3193 1,
3194 &dwz->gdb_index, &dwz_map,
3195 &dwz_list, &dwz_list_elements,
3196 &dwz_types_ignore,
3197 &dwz_types_elements_ignore))
3198 {
3199 warning (_("could not read '.gdb_index' section from %s; skipping"),
3200 bfd_get_filename (dwz->dwz_bfd));
3201 return 0;
3202 }
3203 }
3204
3205 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3206 dwz_list_elements);
3207
3208 if (types_list_elements)
3209 {
3210 struct dwarf2_section_info *section;
3211
3212 /* We can only handle a single .debug_types when we have an
3213 index. */
3214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3215 return 0;
3216
3217 section = VEC_index (dwarf2_section_info_def,
3218 dwarf2_per_objfile->types, 0);
3219
3220 create_signatured_type_table_from_index (objfile, section, types_list,
3221 types_list_elements);
3222 }
3223
3224 create_addrmap_from_index (objfile, &local_map);
3225
3226 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3227 *map = local_map;
3228
3229 dwarf2_per_objfile->index_table = map;
3230 dwarf2_per_objfile->using_index = 1;
3231 dwarf2_per_objfile->quick_file_names_table =
3232 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3233
3234 return 1;
3235 }
3236
3237 /* A helper for the "quick" functions which sets the global
3238 dwarf2_per_objfile according to OBJFILE. */
3239
3240 static void
3241 dw2_setup (struct objfile *objfile)
3242 {
3243 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3244 gdb_assert (dwarf2_per_objfile);
3245 }
3246
3247 /* die_reader_func for dw2_get_file_names. */
3248
3249 static void
3250 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3251 const gdb_byte *info_ptr,
3252 struct die_info *comp_unit_die,
3253 int has_children,
3254 void *data)
3255 {
3256 struct dwarf2_cu *cu = reader->cu;
3257 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3258 struct objfile *objfile = dwarf2_per_objfile->objfile;
3259 struct dwarf2_per_cu_data *lh_cu;
3260 struct line_header *lh;
3261 struct attribute *attr;
3262 int i;
3263 const char *name, *comp_dir;
3264 void **slot;
3265 struct quick_file_names *qfn;
3266 unsigned int line_offset;
3267
3268 gdb_assert (! this_cu->is_debug_types);
3269
3270 /* Our callers never want to match partial units -- instead they
3271 will match the enclosing full CU. */
3272 if (comp_unit_die->tag == DW_TAG_partial_unit)
3273 {
3274 this_cu->v.quick->no_file_data = 1;
3275 return;
3276 }
3277
3278 lh_cu = this_cu;
3279 lh = NULL;
3280 slot = NULL;
3281 line_offset = 0;
3282
3283 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3284 if (attr)
3285 {
3286 struct quick_file_names find_entry;
3287
3288 line_offset = DW_UNSND (attr);
3289
3290 /* We may have already read in this line header (TU line header sharing).
3291 If we have we're done. */
3292 find_entry.hash.dwo_unit = cu->dwo_unit;
3293 find_entry.hash.line_offset.sect_off = line_offset;
3294 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3295 &find_entry, INSERT);
3296 if (*slot != NULL)
3297 {
3298 lh_cu->v.quick->file_names = *slot;
3299 return;
3300 }
3301
3302 lh = dwarf_decode_line_header (line_offset, cu);
3303 }
3304 if (lh == NULL)
3305 {
3306 lh_cu->v.quick->no_file_data = 1;
3307 return;
3308 }
3309
3310 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3311 qfn->hash.dwo_unit = cu->dwo_unit;
3312 qfn->hash.line_offset.sect_off = line_offset;
3313 gdb_assert (slot != NULL);
3314 *slot = qfn;
3315
3316 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3317
3318 qfn->num_file_names = lh->num_file_names;
3319 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3320 lh->num_file_names * sizeof (char *));
3321 for (i = 0; i < lh->num_file_names; ++i)
3322 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3323 qfn->real_names = NULL;
3324
3325 free_line_header (lh);
3326
3327 lh_cu->v.quick->file_names = qfn;
3328 }
3329
3330 /* A helper for the "quick" functions which attempts to read the line
3331 table for THIS_CU. */
3332
3333 static struct quick_file_names *
3334 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3335 {
3336 /* This should never be called for TUs. */
3337 gdb_assert (! this_cu->is_debug_types);
3338 /* Nor type unit groups. */
3339 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3340
3341 if (this_cu->v.quick->file_names != NULL)
3342 return this_cu->v.quick->file_names;
3343 /* If we know there is no line data, no point in looking again. */
3344 if (this_cu->v.quick->no_file_data)
3345 return NULL;
3346
3347 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3348
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351 return this_cu->v.quick->file_names;
3352 }
3353
3354 /* A helper for the "quick" functions which computes and caches the
3355 real path for a given file name from the line table. */
3356
3357 static const char *
3358 dw2_get_real_path (struct objfile *objfile,
3359 struct quick_file_names *qfn, int index)
3360 {
3361 if (qfn->real_names == NULL)
3362 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3363 qfn->num_file_names, const char *);
3364
3365 if (qfn->real_names[index] == NULL)
3366 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3367
3368 return qfn->real_names[index];
3369 }
3370
3371 static struct symtab *
3372 dw2_find_last_source_symtab (struct objfile *objfile)
3373 {
3374 struct compunit_symtab *cust;
3375 int index;
3376
3377 dw2_setup (objfile);
3378 index = dwarf2_per_objfile->n_comp_units - 1;
3379 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3380 if (cust == NULL)
3381 return NULL;
3382 return compunit_primary_filetab (cust);
3383 }
3384
3385 /* Traversal function for dw2_forget_cached_source_info. */
3386
3387 static int
3388 dw2_free_cached_file_names (void **slot, void *info)
3389 {
3390 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3391
3392 if (file_data->real_names)
3393 {
3394 int i;
3395
3396 for (i = 0; i < file_data->num_file_names; ++i)
3397 {
3398 xfree ((void*) file_data->real_names[i]);
3399 file_data->real_names[i] = NULL;
3400 }
3401 }
3402
3403 return 1;
3404 }
3405
3406 static void
3407 dw2_forget_cached_source_info (struct objfile *objfile)
3408 {
3409 dw2_setup (objfile);
3410
3411 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3412 dw2_free_cached_file_names, NULL);
3413 }
3414
3415 /* Helper function for dw2_map_symtabs_matching_filename that expands
3416 the symtabs and calls the iterator. */
3417
3418 static int
3419 dw2_map_expand_apply (struct objfile *objfile,
3420 struct dwarf2_per_cu_data *per_cu,
3421 const char *name, const char *real_path,
3422 int (*callback) (struct symtab *, void *),
3423 void *data)
3424 {
3425 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3426
3427 /* Don't visit already-expanded CUs. */
3428 if (per_cu->v.quick->compunit_symtab)
3429 return 0;
3430
3431 /* This may expand more than one symtab, and we want to iterate over
3432 all of them. */
3433 dw2_instantiate_symtab (per_cu);
3434
3435 return iterate_over_some_symtabs (name, real_path, callback, data,
3436 objfile->compunit_symtabs, last_made);
3437 }
3438
3439 /* Implementation of the map_symtabs_matching_filename method. */
3440
3441 static int
3442 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3443 const char *real_path,
3444 int (*callback) (struct symtab *, void *),
3445 void *data)
3446 {
3447 int i;
3448 const char *name_basename = lbasename (name);
3449
3450 dw2_setup (objfile);
3451
3452 /* The rule is CUs specify all the files, including those used by
3453 any TU, so there's no need to scan TUs here. */
3454
3455 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3456 {
3457 int j;
3458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3459 struct quick_file_names *file_data;
3460
3461 /* We only need to look at symtabs not already expanded. */
3462 if (per_cu->v.quick->compunit_symtab)
3463 continue;
3464
3465 file_data = dw2_get_file_names (per_cu);
3466 if (file_data == NULL)
3467 continue;
3468
3469 for (j = 0; j < file_data->num_file_names; ++j)
3470 {
3471 const char *this_name = file_data->file_names[j];
3472 const char *this_real_name;
3473
3474 if (compare_filenames_for_search (this_name, name))
3475 {
3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3477 callback, data))
3478 return 1;
3479 continue;
3480 }
3481
3482 /* Before we invoke realpath, which can get expensive when many
3483 files are involved, do a quick comparison of the basenames. */
3484 if (! basenames_may_differ
3485 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3486 continue;
3487
3488 this_real_name = dw2_get_real_path (objfile, file_data, j);
3489 if (compare_filenames_for_search (this_real_name, name))
3490 {
3491 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3492 callback, data))
3493 return 1;
3494 continue;
3495 }
3496
3497 if (real_path != NULL)
3498 {
3499 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3500 gdb_assert (IS_ABSOLUTE_PATH (name));
3501 if (this_real_name != NULL
3502 && FILENAME_CMP (real_path, this_real_name) == 0)
3503 {
3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3505 callback, data))
3506 return 1;
3507 continue;
3508 }
3509 }
3510 }
3511 }
3512
3513 return 0;
3514 }
3515
3516 /* Struct used to manage iterating over all CUs looking for a symbol. */
3517
3518 struct dw2_symtab_iterator
3519 {
3520 /* The internalized form of .gdb_index. */
3521 struct mapped_index *index;
3522 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3523 int want_specific_block;
3524 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3525 Unused if !WANT_SPECIFIC_BLOCK. */
3526 int block_index;
3527 /* The kind of symbol we're looking for. */
3528 domain_enum domain;
3529 /* The list of CUs from the index entry of the symbol,
3530 or NULL if not found. */
3531 offset_type *vec;
3532 /* The next element in VEC to look at. */
3533 int next;
3534 /* The number of elements in VEC, or zero if there is no match. */
3535 int length;
3536 /* Have we seen a global version of the symbol?
3537 If so we can ignore all further global instances.
3538 This is to work around gold/15646, inefficient gold-generated
3539 indices. */
3540 int global_seen;
3541 };
3542
3543 /* Initialize the index symtab iterator ITER.
3544 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3545 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3546
3547 static void
3548 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3549 struct mapped_index *index,
3550 int want_specific_block,
3551 int block_index,
3552 domain_enum domain,
3553 const char *name)
3554 {
3555 iter->index = index;
3556 iter->want_specific_block = want_specific_block;
3557 iter->block_index = block_index;
3558 iter->domain = domain;
3559 iter->next = 0;
3560 iter->global_seen = 0;
3561
3562 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3563 iter->length = MAYBE_SWAP (*iter->vec);
3564 else
3565 {
3566 iter->vec = NULL;
3567 iter->length = 0;
3568 }
3569 }
3570
3571 /* Return the next matching CU or NULL if there are no more. */
3572
3573 static struct dwarf2_per_cu_data *
3574 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3575 {
3576 for ( ; iter->next < iter->length; ++iter->next)
3577 {
3578 offset_type cu_index_and_attrs =
3579 MAYBE_SWAP (iter->vec[iter->next + 1]);
3580 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3581 struct dwarf2_per_cu_data *per_cu;
3582 int want_static = iter->block_index != GLOBAL_BLOCK;
3583 /* This value is only valid for index versions >= 7. */
3584 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3585 gdb_index_symbol_kind symbol_kind =
3586 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3587 /* Only check the symbol attributes if they're present.
3588 Indices prior to version 7 don't record them,
3589 and indices >= 7 may elide them for certain symbols
3590 (gold does this). */
3591 int attrs_valid =
3592 (iter->index->version >= 7
3593 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3594
3595 /* Don't crash on bad data. */
3596 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3597 + dwarf2_per_objfile->n_type_units))
3598 {
3599 complaint (&symfile_complaints,
3600 _(".gdb_index entry has bad CU index"
3601 " [in module %s]"),
3602 objfile_name (dwarf2_per_objfile->objfile));
3603 continue;
3604 }
3605
3606 per_cu = dw2_get_cutu (cu_index);
3607
3608 /* Skip if already read in. */
3609 if (per_cu->v.quick->compunit_symtab)
3610 continue;
3611
3612 /* Check static vs global. */
3613 if (attrs_valid)
3614 {
3615 if (iter->want_specific_block
3616 && want_static != is_static)
3617 continue;
3618 /* Work around gold/15646. */
3619 if (!is_static && iter->global_seen)
3620 continue;
3621 if (!is_static)
3622 iter->global_seen = 1;
3623 }
3624
3625 /* Only check the symbol's kind if it has one. */
3626 if (attrs_valid)
3627 {
3628 switch (iter->domain)
3629 {
3630 case VAR_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3632 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3633 /* Some types are also in VAR_DOMAIN. */
3634 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 case STRUCT_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3639 continue;
3640 break;
3641 case LABEL_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3643 continue;
3644 break;
3645 default:
3646 break;
3647 }
3648 }
3649
3650 ++iter->next;
3651 return per_cu;
3652 }
3653
3654 return NULL;
3655 }
3656
3657 static struct compunit_symtab *
3658 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3659 const char *name, domain_enum domain)
3660 {
3661 struct compunit_symtab *stab_best = NULL;
3662 struct mapped_index *index;
3663
3664 dw2_setup (objfile);
3665
3666 index = dwarf2_per_objfile->index_table;
3667
3668 /* index is NULL if OBJF_READNOW. */
3669 if (index)
3670 {
3671 struct dw2_symtab_iterator iter;
3672 struct dwarf2_per_cu_data *per_cu;
3673
3674 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3675
3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3677 {
3678 struct symbol *sym, *with_opaque = NULL;
3679 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3681 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3682
3683 sym = block_find_symbol (block, name, domain,
3684 block_find_non_opaque_type_preferred,
3685 &with_opaque);
3686
3687 /* Some caution must be observed with overloaded functions
3688 and methods, since the index will not contain any overload
3689 information (but NAME might contain it). */
3690
3691 if (sym != NULL
3692 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3693 return stab;
3694 if (with_opaque != NULL
3695 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3696 stab_best = stab;
3697
3698 /* Keep looking through other CUs. */
3699 }
3700 }
3701
3702 return stab_best;
3703 }
3704
3705 static void
3706 dw2_print_stats (struct objfile *objfile)
3707 {
3708 int i, total, count;
3709
3710 dw2_setup (objfile);
3711 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3712 count = 0;
3713 for (i = 0; i < total; ++i)
3714 {
3715 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3716
3717 if (!per_cu->v.quick->compunit_symtab)
3718 ++count;
3719 }
3720 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3721 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3722 }
3723
3724 /* This dumps minimal information about the index.
3725 It is called via "mt print objfiles".
3726 One use is to verify .gdb_index has been loaded by the
3727 gdb.dwarf2/gdb-index.exp testcase. */
3728
3729 static void
3730 dw2_dump (struct objfile *objfile)
3731 {
3732 dw2_setup (objfile);
3733 gdb_assert (dwarf2_per_objfile->using_index);
3734 printf_filtered (".gdb_index:");
3735 if (dwarf2_per_objfile->index_table != NULL)
3736 {
3737 printf_filtered (" version %d\n",
3738 dwarf2_per_objfile->index_table->version);
3739 }
3740 else
3741 printf_filtered (" faked for \"readnow\"\n");
3742 printf_filtered ("\n");
3743 }
3744
3745 static void
3746 dw2_relocate (struct objfile *objfile,
3747 const struct section_offsets *new_offsets,
3748 const struct section_offsets *delta)
3749 {
3750 /* There's nothing to relocate here. */
3751 }
3752
3753 static void
3754 dw2_expand_symtabs_for_function (struct objfile *objfile,
3755 const char *func_name)
3756 {
3757 struct mapped_index *index;
3758
3759 dw2_setup (objfile);
3760
3761 index = dwarf2_per_objfile->index_table;
3762
3763 /* index is NULL if OBJF_READNOW. */
3764 if (index)
3765 {
3766 struct dw2_symtab_iterator iter;
3767 struct dwarf2_per_cu_data *per_cu;
3768
3769 /* Note: It doesn't matter what we pass for block_index here. */
3770 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3771 func_name);
3772
3773 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3774 dw2_instantiate_symtab (per_cu);
3775 }
3776 }
3777
3778 static void
3779 dw2_expand_all_symtabs (struct objfile *objfile)
3780 {
3781 int i;
3782
3783 dw2_setup (objfile);
3784
3785 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3786 + dwarf2_per_objfile->n_type_units); ++i)
3787 {
3788 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3789
3790 dw2_instantiate_symtab (per_cu);
3791 }
3792 }
3793
3794 static void
3795 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3796 const char *fullname)
3797 {
3798 int i;
3799
3800 dw2_setup (objfile);
3801
3802 /* We don't need to consider type units here.
3803 This is only called for examining code, e.g. expand_line_sal.
3804 There can be an order of magnitude (or more) more type units
3805 than comp units, and we avoid them if we can. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3808 {
3809 int j;
3810 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3811 struct quick_file_names *file_data;
3812
3813 /* We only need to look at symtabs not already expanded. */
3814 if (per_cu->v.quick->compunit_symtab)
3815 continue;
3816
3817 file_data = dw2_get_file_names (per_cu);
3818 if (file_data == NULL)
3819 continue;
3820
3821 for (j = 0; j < file_data->num_file_names; ++j)
3822 {
3823 const char *this_fullname = file_data->file_names[j];
3824
3825 if (filename_cmp (this_fullname, fullname) == 0)
3826 {
3827 dw2_instantiate_symtab (per_cu);
3828 break;
3829 }
3830 }
3831 }
3832 }
3833
3834 static void
3835 dw2_map_matching_symbols (struct objfile *objfile,
3836 const char * name, domain_enum domain,
3837 int global,
3838 int (*callback) (struct block *,
3839 struct symbol *, void *),
3840 void *data, symbol_compare_ftype *match,
3841 symbol_compare_ftype *ordered_compare)
3842 {
3843 /* Currently unimplemented; used for Ada. The function can be called if the
3844 current language is Ada for a non-Ada objfile using GNU index. As Ada
3845 does not look for non-Ada symbols this function should just return. */
3846 }
3847
3848 static void
3849 dw2_expand_symtabs_matching
3850 (struct objfile *objfile,
3851 expand_symtabs_file_matcher_ftype *file_matcher,
3852 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3853 expand_symtabs_exp_notify_ftype *expansion_notify,
3854 enum search_domain kind,
3855 void *data)
3856 {
3857 int i;
3858 offset_type iter;
3859 struct mapped_index *index;
3860
3861 dw2_setup (objfile);
3862
3863 /* index_table is NULL if OBJF_READNOW. */
3864 if (!dwarf2_per_objfile->index_table)
3865 return;
3866 index = dwarf2_per_objfile->index_table;
3867
3868 if (file_matcher != NULL)
3869 {
3870 struct cleanup *cleanup;
3871 htab_t visited_found, visited_not_found;
3872
3873 visited_found = htab_create_alloc (10,
3874 htab_hash_pointer, htab_eq_pointer,
3875 NULL, xcalloc, xfree);
3876 cleanup = make_cleanup_htab_delete (visited_found);
3877 visited_not_found = htab_create_alloc (10,
3878 htab_hash_pointer, htab_eq_pointer,
3879 NULL, xcalloc, xfree);
3880 make_cleanup_htab_delete (visited_not_found);
3881
3882 /* The rule is CUs specify all the files, including those used by
3883 any TU, so there's no need to scan TUs here. */
3884
3885 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3886 {
3887 int j;
3888 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3889 struct quick_file_names *file_data;
3890 void **slot;
3891
3892 QUIT;
3893
3894 per_cu->v.quick->mark = 0;
3895
3896 /* We only need to look at symtabs not already expanded. */
3897 if (per_cu->v.quick->compunit_symtab)
3898 continue;
3899
3900 file_data = dw2_get_file_names (per_cu);
3901 if (file_data == NULL)
3902 continue;
3903
3904 if (htab_find (visited_not_found, file_data) != NULL)
3905 continue;
3906 else if (htab_find (visited_found, file_data) != NULL)
3907 {
3908 per_cu->v.quick->mark = 1;
3909 continue;
3910 }
3911
3912 for (j = 0; j < file_data->num_file_names; ++j)
3913 {
3914 const char *this_real_name;
3915
3916 if (file_matcher (file_data->file_names[j], data, 0))
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
3921
3922 /* Before we invoke realpath, which can get expensive when many
3923 files are involved, do a quick comparison of the basenames. */
3924 if (!basenames_may_differ
3925 && !file_matcher (lbasename (file_data->file_names[j]),
3926 data, 1))
3927 continue;
3928
3929 this_real_name = dw2_get_real_path (objfile, file_data, j);
3930 if (file_matcher (this_real_name, data, 0))
3931 {
3932 per_cu->v.quick->mark = 1;
3933 break;
3934 }
3935 }
3936
3937 slot = htab_find_slot (per_cu->v.quick->mark
3938 ? visited_found
3939 : visited_not_found,
3940 file_data, INSERT);
3941 *slot = file_data;
3942 }
3943
3944 do_cleanups (cleanup);
3945 }
3946
3947 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3948 {
3949 offset_type idx = 2 * iter;
3950 const char *name;
3951 offset_type *vec, vec_len, vec_idx;
3952 int global_seen = 0;
3953
3954 QUIT;
3955
3956 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3957 continue;
3958
3959 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3960
3961 if (! (*symbol_matcher) (name, data))
3962 continue;
3963
3964 /* The name was matched, now expand corresponding CUs that were
3965 marked. */
3966 vec = (offset_type *) (index->constant_pool
3967 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3968 vec_len = MAYBE_SWAP (vec[0]);
3969 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3970 {
3971 struct dwarf2_per_cu_data *per_cu;
3972 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3973 /* This value is only valid for index versions >= 7. */
3974 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3975 gdb_index_symbol_kind symbol_kind =
3976 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3977 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3978 /* Only check the symbol attributes if they're present.
3979 Indices prior to version 7 don't record them,
3980 and indices >= 7 may elide them for certain symbols
3981 (gold does this). */
3982 int attrs_valid =
3983 (index->version >= 7
3984 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3985
3986 /* Work around gold/15646. */
3987 if (attrs_valid)
3988 {
3989 if (!is_static && global_seen)
3990 continue;
3991 if (!is_static)
3992 global_seen = 1;
3993 }
3994
3995 /* Only check the symbol's kind if it has one. */
3996 if (attrs_valid)
3997 {
3998 switch (kind)
3999 {
4000 case VARIABLES_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4002 continue;
4003 break;
4004 case FUNCTIONS_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4006 continue;
4007 break;
4008 case TYPES_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 default:
4013 break;
4014 }
4015 }
4016
4017 /* Don't crash on bad data. */
4018 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4019 + dwarf2_per_objfile->n_type_units))
4020 {
4021 complaint (&symfile_complaints,
4022 _(".gdb_index entry has bad CU index"
4023 " [in module %s]"), objfile_name (objfile));
4024 continue;
4025 }
4026
4027 per_cu = dw2_get_cutu (cu_index);
4028 if (file_matcher == NULL || per_cu->v.quick->mark)
4029 {
4030 int symtab_was_null =
4031 (per_cu->v.quick->compunit_symtab == NULL);
4032
4033 dw2_instantiate_symtab (per_cu);
4034
4035 if (expansion_notify != NULL
4036 && symtab_was_null
4037 && per_cu->v.quick->compunit_symtab != NULL)
4038 {
4039 expansion_notify (per_cu->v.quick->compunit_symtab,
4040 data);
4041 }
4042 }
4043 }
4044 }
4045 }
4046
4047 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4048 symtab. */
4049
4050 static struct compunit_symtab *
4051 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4052 CORE_ADDR pc)
4053 {
4054 int i;
4055
4056 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4057 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4058 return cust;
4059
4060 if (cust->includes == NULL)
4061 return NULL;
4062
4063 for (i = 0; cust->includes[i]; ++i)
4064 {
4065 struct compunit_symtab *s = cust->includes[i];
4066
4067 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4068 if (s != NULL)
4069 return s;
4070 }
4071
4072 return NULL;
4073 }
4074
4075 static struct compunit_symtab *
4076 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4077 struct bound_minimal_symbol msymbol,
4078 CORE_ADDR pc,
4079 struct obj_section *section,
4080 int warn_if_readin)
4081 {
4082 struct dwarf2_per_cu_data *data;
4083 struct compunit_symtab *result;
4084
4085 dw2_setup (objfile);
4086
4087 if (!objfile->psymtabs_addrmap)
4088 return NULL;
4089
4090 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4091 if (!data)
4092 return NULL;
4093
4094 if (warn_if_readin && data->v.quick->compunit_symtab)
4095 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4096 paddress (get_objfile_arch (objfile), pc));
4097
4098 result
4099 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4100 pc);
4101 gdb_assert (result != NULL);
4102 return result;
4103 }
4104
4105 static void
4106 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4107 void *data, int need_fullname)
4108 {
4109 int i;
4110 struct cleanup *cleanup;
4111 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4112 NULL, xcalloc, xfree);
4113
4114 cleanup = make_cleanup_htab_delete (visited);
4115 dw2_setup (objfile);
4116
4117 /* The rule is CUs specify all the files, including those used by
4118 any TU, so there's no need to scan TUs here.
4119 We can ignore file names coming from already-expanded CUs. */
4120
4121 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4122 {
4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4124
4125 if (per_cu->v.quick->compunit_symtab)
4126 {
4127 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4128 INSERT);
4129
4130 *slot = per_cu->v.quick->file_names;
4131 }
4132 }
4133
4134 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4135 {
4136 int j;
4137 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4138 struct quick_file_names *file_data;
4139 void **slot;
4140
4141 /* We only need to look at symtabs not already expanded. */
4142 if (per_cu->v.quick->compunit_symtab)
4143 continue;
4144
4145 file_data = dw2_get_file_names (per_cu);
4146 if (file_data == NULL)
4147 continue;
4148
4149 slot = htab_find_slot (visited, file_data, INSERT);
4150 if (*slot)
4151 {
4152 /* Already visited. */
4153 continue;
4154 }
4155 *slot = file_data;
4156
4157 for (j = 0; j < file_data->num_file_names; ++j)
4158 {
4159 const char *this_real_name;
4160
4161 if (need_fullname)
4162 this_real_name = dw2_get_real_path (objfile, file_data, j);
4163 else
4164 this_real_name = NULL;
4165 (*fun) (file_data->file_names[j], this_real_name, data);
4166 }
4167 }
4168
4169 do_cleanups (cleanup);
4170 }
4171
4172 static int
4173 dw2_has_symbols (struct objfile *objfile)
4174 {
4175 return 1;
4176 }
4177
4178 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4179 {
4180 dw2_has_symbols,
4181 dw2_find_last_source_symtab,
4182 dw2_forget_cached_source_info,
4183 dw2_map_symtabs_matching_filename,
4184 dw2_lookup_symbol,
4185 dw2_print_stats,
4186 dw2_dump,
4187 dw2_relocate,
4188 dw2_expand_symtabs_for_function,
4189 dw2_expand_all_symtabs,
4190 dw2_expand_symtabs_with_fullname,
4191 dw2_map_matching_symbols,
4192 dw2_expand_symtabs_matching,
4193 dw2_find_pc_sect_compunit_symtab,
4194 dw2_map_symbol_filenames
4195 };
4196
4197 /* Initialize for reading DWARF for this objfile. Return 0 if this
4198 file will use psymtabs, or 1 if using the GNU index. */
4199
4200 int
4201 dwarf2_initialize_objfile (struct objfile *objfile)
4202 {
4203 /* If we're about to read full symbols, don't bother with the
4204 indices. In this case we also don't care if some other debug
4205 format is making psymtabs, because they are all about to be
4206 expanded anyway. */
4207 if ((objfile->flags & OBJF_READNOW))
4208 {
4209 int i;
4210
4211 dwarf2_per_objfile->using_index = 1;
4212 create_all_comp_units (objfile);
4213 create_all_type_units (objfile);
4214 dwarf2_per_objfile->quick_file_names_table =
4215 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4216
4217 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4218 + dwarf2_per_objfile->n_type_units); ++i)
4219 {
4220 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4221
4222 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4223 struct dwarf2_per_cu_quick_data);
4224 }
4225
4226 /* Return 1 so that gdb sees the "quick" functions. However,
4227 these functions will be no-ops because we will have expanded
4228 all symtabs. */
4229 return 1;
4230 }
4231
4232 if (dwarf2_read_index (objfile))
4233 return 1;
4234
4235 return 0;
4236 }
4237
4238 \f
4239
4240 /* Build a partial symbol table. */
4241
4242 void
4243 dwarf2_build_psymtabs (struct objfile *objfile)
4244 {
4245
4246 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4247 {
4248 init_psymbol_list (objfile, 1024);
4249 }
4250
4251 TRY
4252 {
4253 /* This isn't really ideal: all the data we allocate on the
4254 objfile's obstack is still uselessly kept around. However,
4255 freeing it seems unsafe. */
4256 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4257
4258 dwarf2_build_psymtabs_hard (objfile);
4259 discard_cleanups (cleanups);
4260 }
4261 CATCH (except, RETURN_MASK_ERROR)
4262 {
4263 exception_print (gdb_stderr, except);
4264 }
4265 END_CATCH
4266 }
4267
4268 /* Return the total length of the CU described by HEADER. */
4269
4270 static unsigned int
4271 get_cu_length (const struct comp_unit_head *header)
4272 {
4273 return header->initial_length_size + header->length;
4274 }
4275
4276 /* Return TRUE if OFFSET is within CU_HEADER. */
4277
4278 static inline int
4279 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4280 {
4281 sect_offset bottom = { cu_header->offset.sect_off };
4282 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4283
4284 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4285 }
4286
4287 /* Find the base address of the compilation unit for range lists and
4288 location lists. It will normally be specified by DW_AT_low_pc.
4289 In DWARF-3 draft 4, the base address could be overridden by
4290 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4291 compilation units with discontinuous ranges. */
4292
4293 static void
4294 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4295 {
4296 struct attribute *attr;
4297
4298 cu->base_known = 0;
4299 cu->base_address = 0;
4300
4301 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4302 if (attr)
4303 {
4304 cu->base_address = attr_value_as_address (attr);
4305 cu->base_known = 1;
4306 }
4307 else
4308 {
4309 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4310 if (attr)
4311 {
4312 cu->base_address = attr_value_as_address (attr);
4313 cu->base_known = 1;
4314 }
4315 }
4316 }
4317
4318 /* Read in the comp unit header information from the debug_info at info_ptr.
4319 NOTE: This leaves members offset, first_die_offset to be filled in
4320 by the caller. */
4321
4322 static const gdb_byte *
4323 read_comp_unit_head (struct comp_unit_head *cu_header,
4324 const gdb_byte *info_ptr, bfd *abfd)
4325 {
4326 int signed_addr;
4327 unsigned int bytes_read;
4328
4329 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4330 cu_header->initial_length_size = bytes_read;
4331 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4332 info_ptr += bytes_read;
4333 cu_header->version = read_2_bytes (abfd, info_ptr);
4334 info_ptr += 2;
4335 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4336 &bytes_read);
4337 info_ptr += bytes_read;
4338 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4339 info_ptr += 1;
4340 signed_addr = bfd_get_sign_extend_vma (abfd);
4341 if (signed_addr < 0)
4342 internal_error (__FILE__, __LINE__,
4343 _("read_comp_unit_head: dwarf from non elf file"));
4344 cu_header->signed_addr_p = signed_addr;
4345
4346 return info_ptr;
4347 }
4348
4349 /* Helper function that returns the proper abbrev section for
4350 THIS_CU. */
4351
4352 static struct dwarf2_section_info *
4353 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4354 {
4355 struct dwarf2_section_info *abbrev;
4356
4357 if (this_cu->is_dwz)
4358 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4359 else
4360 abbrev = &dwarf2_per_objfile->abbrev;
4361
4362 return abbrev;
4363 }
4364
4365 /* Subroutine of read_and_check_comp_unit_head and
4366 read_and_check_type_unit_head to simplify them.
4367 Perform various error checking on the header. */
4368
4369 static void
4370 error_check_comp_unit_head (struct comp_unit_head *header,
4371 struct dwarf2_section_info *section,
4372 struct dwarf2_section_info *abbrev_section)
4373 {
4374 bfd *abfd = get_section_bfd_owner (section);
4375 const char *filename = get_section_file_name (section);
4376
4377 if (header->version != 2 && header->version != 3 && header->version != 4)
4378 error (_("Dwarf Error: wrong version in compilation unit header "
4379 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4380 filename);
4381
4382 if (header->abbrev_offset.sect_off
4383 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4384 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4385 "(offset 0x%lx + 6) [in module %s]"),
4386 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4387 filename);
4388
4389 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4390 avoid potential 32-bit overflow. */
4391 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4392 > section->size)
4393 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 0) [in module %s]"),
4395 (long) header->length, (long) header->offset.sect_off,
4396 filename);
4397 }
4398
4399 /* Read in a CU/TU header and perform some basic error checking.
4400 The contents of the header are stored in HEADER.
4401 The result is a pointer to the start of the first DIE. */
4402
4403 static const gdb_byte *
4404 read_and_check_comp_unit_head (struct comp_unit_head *header,
4405 struct dwarf2_section_info *section,
4406 struct dwarf2_section_info *abbrev_section,
4407 const gdb_byte *info_ptr,
4408 int is_debug_types_section)
4409 {
4410 const gdb_byte *beg_of_comp_unit = info_ptr;
4411 bfd *abfd = get_section_bfd_owner (section);
4412
4413 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4414
4415 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4416
4417 /* If we're reading a type unit, skip over the signature and
4418 type_offset fields. */
4419 if (is_debug_types_section)
4420 info_ptr += 8 /*signature*/ + header->offset_size;
4421
4422 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4423
4424 error_check_comp_unit_head (header, section, abbrev_section);
4425
4426 return info_ptr;
4427 }
4428
4429 /* Read in the types comp unit header information from .debug_types entry at
4430 types_ptr. The result is a pointer to one past the end of the header. */
4431
4432 static const gdb_byte *
4433 read_and_check_type_unit_head (struct comp_unit_head *header,
4434 struct dwarf2_section_info *section,
4435 struct dwarf2_section_info *abbrev_section,
4436 const gdb_byte *info_ptr,
4437 ULONGEST *signature,
4438 cu_offset *type_offset_in_tu)
4439 {
4440 const gdb_byte *beg_of_comp_unit = info_ptr;
4441 bfd *abfd = get_section_bfd_owner (section);
4442
4443 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4444
4445 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4446
4447 /* If we're reading a type unit, skip over the signature and
4448 type_offset fields. */
4449 if (signature != NULL)
4450 *signature = read_8_bytes (abfd, info_ptr);
4451 info_ptr += 8;
4452 if (type_offset_in_tu != NULL)
4453 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4454 header->offset_size);
4455 info_ptr += header->offset_size;
4456
4457 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4458
4459 error_check_comp_unit_head (header, section, abbrev_section);
4460
4461 return info_ptr;
4462 }
4463
4464 /* Fetch the abbreviation table offset from a comp or type unit header. */
4465
4466 static sect_offset
4467 read_abbrev_offset (struct dwarf2_section_info *section,
4468 sect_offset offset)
4469 {
4470 bfd *abfd = get_section_bfd_owner (section);
4471 const gdb_byte *info_ptr;
4472 unsigned int length, initial_length_size, offset_size;
4473 sect_offset abbrev_offset;
4474
4475 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4476 info_ptr = section->buffer + offset.sect_off;
4477 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4478 offset_size = initial_length_size == 4 ? 4 : 8;
4479 info_ptr += initial_length_size + 2 /*version*/;
4480 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4481 return abbrev_offset;
4482 }
4483
4484 /* Allocate a new partial symtab for file named NAME and mark this new
4485 partial symtab as being an include of PST. */
4486
4487 static void
4488 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4489 struct objfile *objfile)
4490 {
4491 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4492
4493 if (!IS_ABSOLUTE_PATH (subpst->filename))
4494 {
4495 /* It shares objfile->objfile_obstack. */
4496 subpst->dirname = pst->dirname;
4497 }
4498
4499 subpst->textlow = 0;
4500 subpst->texthigh = 0;
4501
4502 subpst->dependencies = (struct partial_symtab **)
4503 obstack_alloc (&objfile->objfile_obstack,
4504 sizeof (struct partial_symtab *));
4505 subpst->dependencies[0] = pst;
4506 subpst->number_of_dependencies = 1;
4507
4508 subpst->globals_offset = 0;
4509 subpst->n_global_syms = 0;
4510 subpst->statics_offset = 0;
4511 subpst->n_static_syms = 0;
4512 subpst->compunit_symtab = NULL;
4513 subpst->read_symtab = pst->read_symtab;
4514 subpst->readin = 0;
4515
4516 /* No private part is necessary for include psymtabs. This property
4517 can be used to differentiate between such include psymtabs and
4518 the regular ones. */
4519 subpst->read_symtab_private = NULL;
4520 }
4521
4522 /* Read the Line Number Program data and extract the list of files
4523 included by the source file represented by PST. Build an include
4524 partial symtab for each of these included files. */
4525
4526 static void
4527 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4528 struct die_info *die,
4529 struct partial_symtab *pst)
4530 {
4531 struct line_header *lh = NULL;
4532 struct attribute *attr;
4533
4534 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4535 if (attr)
4536 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4537 if (lh == NULL)
4538 return; /* No linetable, so no includes. */
4539
4540 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4541 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4542
4543 free_line_header (lh);
4544 }
4545
4546 static hashval_t
4547 hash_signatured_type (const void *item)
4548 {
4549 const struct signatured_type *sig_type = item;
4550
4551 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4552 return sig_type->signature;
4553 }
4554
4555 static int
4556 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4557 {
4558 const struct signatured_type *lhs = item_lhs;
4559 const struct signatured_type *rhs = item_rhs;
4560
4561 return lhs->signature == rhs->signature;
4562 }
4563
4564 /* Allocate a hash table for signatured types. */
4565
4566 static htab_t
4567 allocate_signatured_type_table (struct objfile *objfile)
4568 {
4569 return htab_create_alloc_ex (41,
4570 hash_signatured_type,
4571 eq_signatured_type,
4572 NULL,
4573 &objfile->objfile_obstack,
4574 hashtab_obstack_allocate,
4575 dummy_obstack_deallocate);
4576 }
4577
4578 /* A helper function to add a signatured type CU to a table. */
4579
4580 static int
4581 add_signatured_type_cu_to_table (void **slot, void *datum)
4582 {
4583 struct signatured_type *sigt = *slot;
4584 struct signatured_type ***datap = datum;
4585
4586 **datap = sigt;
4587 ++*datap;
4588
4589 return 1;
4590 }
4591
4592 /* Create the hash table of all entries in the .debug_types
4593 (or .debug_types.dwo) section(s).
4594 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4595 otherwise it is NULL.
4596
4597 The result is a pointer to the hash table or NULL if there are no types.
4598
4599 Note: This function processes DWO files only, not DWP files. */
4600
4601 static htab_t
4602 create_debug_types_hash_table (struct dwo_file *dwo_file,
4603 VEC (dwarf2_section_info_def) *types)
4604 {
4605 struct objfile *objfile = dwarf2_per_objfile->objfile;
4606 htab_t types_htab = NULL;
4607 int ix;
4608 struct dwarf2_section_info *section;
4609 struct dwarf2_section_info *abbrev_section;
4610
4611 if (VEC_empty (dwarf2_section_info_def, types))
4612 return NULL;
4613
4614 abbrev_section = (dwo_file != NULL
4615 ? &dwo_file->sections.abbrev
4616 : &dwarf2_per_objfile->abbrev);
4617
4618 if (dwarf_read_debug)
4619 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4620 dwo_file ? ".dwo" : "",
4621 get_section_file_name (abbrev_section));
4622
4623 for (ix = 0;
4624 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4625 ++ix)
4626 {
4627 bfd *abfd;
4628 const gdb_byte *info_ptr, *end_ptr;
4629
4630 dwarf2_read_section (objfile, section);
4631 info_ptr = section->buffer;
4632
4633 if (info_ptr == NULL)
4634 continue;
4635
4636 /* We can't set abfd until now because the section may be empty or
4637 not present, in which case the bfd is unknown. */
4638 abfd = get_section_bfd_owner (section);
4639
4640 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4641 because we don't need to read any dies: the signature is in the
4642 header. */
4643
4644 end_ptr = info_ptr + section->size;
4645 while (info_ptr < end_ptr)
4646 {
4647 sect_offset offset;
4648 cu_offset type_offset_in_tu;
4649 ULONGEST signature;
4650 struct signatured_type *sig_type;
4651 struct dwo_unit *dwo_tu;
4652 void **slot;
4653 const gdb_byte *ptr = info_ptr;
4654 struct comp_unit_head header;
4655 unsigned int length;
4656
4657 offset.sect_off = ptr - section->buffer;
4658
4659 /* We need to read the type's signature in order to build the hash
4660 table, but we don't need anything else just yet. */
4661
4662 ptr = read_and_check_type_unit_head (&header, section,
4663 abbrev_section, ptr,
4664 &signature, &type_offset_in_tu);
4665
4666 length = get_cu_length (&header);
4667
4668 /* Skip dummy type units. */
4669 if (ptr >= info_ptr + length
4670 || peek_abbrev_code (abfd, ptr) == 0)
4671 {
4672 info_ptr += length;
4673 continue;
4674 }
4675
4676 if (types_htab == NULL)
4677 {
4678 if (dwo_file)
4679 types_htab = allocate_dwo_unit_table (objfile);
4680 else
4681 types_htab = allocate_signatured_type_table (objfile);
4682 }
4683
4684 if (dwo_file)
4685 {
4686 sig_type = NULL;
4687 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4688 struct dwo_unit);
4689 dwo_tu->dwo_file = dwo_file;
4690 dwo_tu->signature = signature;
4691 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4692 dwo_tu->section = section;
4693 dwo_tu->offset = offset;
4694 dwo_tu->length = length;
4695 }
4696 else
4697 {
4698 /* N.B.: type_offset is not usable if this type uses a DWO file.
4699 The real type_offset is in the DWO file. */
4700 dwo_tu = NULL;
4701 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4702 struct signatured_type);
4703 sig_type->signature = signature;
4704 sig_type->type_offset_in_tu = type_offset_in_tu;
4705 sig_type->per_cu.objfile = objfile;
4706 sig_type->per_cu.is_debug_types = 1;
4707 sig_type->per_cu.section = section;
4708 sig_type->per_cu.offset = offset;
4709 sig_type->per_cu.length = length;
4710 }
4711
4712 slot = htab_find_slot (types_htab,
4713 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4714 INSERT);
4715 gdb_assert (slot != NULL);
4716 if (*slot != NULL)
4717 {
4718 sect_offset dup_offset;
4719
4720 if (dwo_file)
4721 {
4722 const struct dwo_unit *dup_tu = *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu = *slot;
4729
4730 dup_offset = dup_tu->per_cu.offset;
4731 }
4732
4733 complaint (&symfile_complaints,
4734 _("debug type entry at offset 0x%x is duplicate to"
4735 " the entry at offset 0x%x, signature %s"),
4736 offset.sect_off, dup_offset.sect_off,
4737 hex_string (signature));
4738 }
4739 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4740
4741 if (dwarf_read_debug > 1)
4742 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4743 offset.sect_off,
4744 hex_string (signature));
4745
4746 info_ptr += length;
4747 }
4748 }
4749
4750 return types_htab;
4751 }
4752
4753 /* Create the hash table of all entries in the .debug_types section,
4754 and initialize all_type_units.
4755 The result is zero if there is an error (e.g. missing .debug_types section),
4756 otherwise non-zero. */
4757
4758 static int
4759 create_all_type_units (struct objfile *objfile)
4760 {
4761 htab_t types_htab;
4762 struct signatured_type **iter;
4763
4764 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4765 if (types_htab == NULL)
4766 {
4767 dwarf2_per_objfile->signatured_types = NULL;
4768 return 0;
4769 }
4770
4771 dwarf2_per_objfile->signatured_types = types_htab;
4772
4773 dwarf2_per_objfile->n_type_units
4774 = dwarf2_per_objfile->n_allocated_type_units
4775 = htab_elements (types_htab);
4776 dwarf2_per_objfile->all_type_units
4777 = xmalloc (dwarf2_per_objfile->n_type_units
4778 * sizeof (struct signatured_type *));
4779 iter = &dwarf2_per_objfile->all_type_units[0];
4780 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4781 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4782 == dwarf2_per_objfile->n_type_units);
4783
4784 return 1;
4785 }
4786
4787 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4788 If SLOT is non-NULL, it is the entry to use in the hash table.
4789 Otherwise we find one. */
4790
4791 static struct signatured_type *
4792 add_type_unit (ULONGEST sig, void **slot)
4793 {
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 int n_type_units = dwarf2_per_objfile->n_type_units;
4796 struct signatured_type *sig_type;
4797
4798 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4799 ++n_type_units;
4800 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4801 {
4802 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4803 dwarf2_per_objfile->n_allocated_type_units = 1;
4804 dwarf2_per_objfile->n_allocated_type_units *= 2;
4805 dwarf2_per_objfile->all_type_units
4806 = xrealloc (dwarf2_per_objfile->all_type_units,
4807 dwarf2_per_objfile->n_allocated_type_units
4808 * sizeof (struct signatured_type *));
4809 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4810 }
4811 dwarf2_per_objfile->n_type_units = n_type_units;
4812
4813 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4814 struct signatured_type);
4815 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4816 sig_type->signature = sig;
4817 sig_type->per_cu.is_debug_types = 1;
4818 if (dwarf2_per_objfile->using_index)
4819 {
4820 sig_type->per_cu.v.quick =
4821 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct dwarf2_per_cu_quick_data);
4823 }
4824
4825 if (slot == NULL)
4826 {
4827 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4828 sig_type, INSERT);
4829 }
4830 gdb_assert (*slot == NULL);
4831 *slot = sig_type;
4832 /* The rest of sig_type must be filled in by the caller. */
4833 return sig_type;
4834 }
4835
4836 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4837 Fill in SIG_ENTRY with DWO_ENTRY. */
4838
4839 static void
4840 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4841 struct signatured_type *sig_entry,
4842 struct dwo_unit *dwo_entry)
4843 {
4844 /* Make sure we're not clobbering something we don't expect to. */
4845 gdb_assert (! sig_entry->per_cu.queued);
4846 gdb_assert (sig_entry->per_cu.cu == NULL);
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4850 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4851 }
4852 else
4853 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4854 gdb_assert (sig_entry->signature == dwo_entry->signature);
4855 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4856 gdb_assert (sig_entry->type_unit_group == NULL);
4857 gdb_assert (sig_entry->dwo_unit == NULL);
4858
4859 sig_entry->per_cu.section = dwo_entry->section;
4860 sig_entry->per_cu.offset = dwo_entry->offset;
4861 sig_entry->per_cu.length = dwo_entry->length;
4862 sig_entry->per_cu.reading_dwo_directly = 1;
4863 sig_entry->per_cu.objfile = objfile;
4864 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4865 sig_entry->dwo_unit = dwo_entry;
4866 }
4867
4868 /* Subroutine of lookup_signatured_type.
4869 If we haven't read the TU yet, create the signatured_type data structure
4870 for a TU to be read in directly from a DWO file, bypassing the stub.
4871 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4872 using .gdb_index, then when reading a CU we want to stay in the DWO file
4873 containing that CU. Otherwise we could end up reading several other DWO
4874 files (due to comdat folding) to process the transitive closure of all the
4875 mentioned TUs, and that can be slow. The current DWO file will have every
4876 type signature that it needs.
4877 We only do this for .gdb_index because in the psymtab case we already have
4878 to read all the DWOs to build the type unit groups. */
4879
4880 static struct signatured_type *
4881 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4882 {
4883 struct objfile *objfile = dwarf2_per_objfile->objfile;
4884 struct dwo_file *dwo_file;
4885 struct dwo_unit find_dwo_entry, *dwo_entry;
4886 struct signatured_type find_sig_entry, *sig_entry;
4887 void **slot;
4888
4889 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4890
4891 /* If TU skeletons have been removed then we may not have read in any
4892 TUs yet. */
4893 if (dwarf2_per_objfile->signatured_types == NULL)
4894 {
4895 dwarf2_per_objfile->signatured_types
4896 = allocate_signatured_type_table (objfile);
4897 }
4898
4899 /* We only ever need to read in one copy of a signatured type.
4900 Use the global signatured_types array to do our own comdat-folding
4901 of types. If this is the first time we're reading this TU, and
4902 the TU has an entry in .gdb_index, replace the recorded data from
4903 .gdb_index with this TU. */
4904
4905 find_sig_entry.signature = sig;
4906 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4907 &find_sig_entry, INSERT);
4908 sig_entry = *slot;
4909
4910 /* We can get here with the TU already read, *or* in the process of being
4911 read. Don't reassign the global entry to point to this DWO if that's
4912 the case. Also note that if the TU is already being read, it may not
4913 have come from a DWO, the program may be a mix of Fission-compiled
4914 code and non-Fission-compiled code. */
4915
4916 /* Have we already tried to read this TU?
4917 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4918 needn't exist in the global table yet). */
4919 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4920 return sig_entry;
4921
4922 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4923 dwo_unit of the TU itself. */
4924 dwo_file = cu->dwo_unit->dwo_file;
4925
4926 /* Ok, this is the first time we're reading this TU. */
4927 if (dwo_file->tus == NULL)
4928 return NULL;
4929 find_dwo_entry.signature = sig;
4930 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4931 if (dwo_entry == NULL)
4932 return NULL;
4933
4934 /* If the global table doesn't have an entry for this TU, add one. */
4935 if (sig_entry == NULL)
4936 sig_entry = add_type_unit (sig, slot);
4937
4938 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4939 sig_entry->per_cu.tu_read = 1;
4940 return sig_entry;
4941 }
4942
4943 /* Subroutine of lookup_signatured_type.
4944 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4945 then try the DWP file. If the TU stub (skeleton) has been removed then
4946 it won't be in .gdb_index. */
4947
4948 static struct signatured_type *
4949 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4950 {
4951 struct objfile *objfile = dwarf2_per_objfile->objfile;
4952 struct dwp_file *dwp_file = get_dwp_file ();
4953 struct dwo_unit *dwo_entry;
4954 struct signatured_type find_sig_entry, *sig_entry;
4955 void **slot;
4956
4957 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4958 gdb_assert (dwp_file != NULL);
4959
4960 /* If TU skeletons have been removed then we may not have read in any
4961 TUs yet. */
4962 if (dwarf2_per_objfile->signatured_types == NULL)
4963 {
4964 dwarf2_per_objfile->signatured_types
4965 = allocate_signatured_type_table (objfile);
4966 }
4967
4968 find_sig_entry.signature = sig;
4969 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4970 &find_sig_entry, INSERT);
4971 sig_entry = *slot;
4972
4973 /* Have we already tried to read this TU?
4974 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4975 needn't exist in the global table yet). */
4976 if (sig_entry != NULL)
4977 return sig_entry;
4978
4979 if (dwp_file->tus == NULL)
4980 return NULL;
4981 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4982 sig, 1 /* is_debug_types */);
4983 if (dwo_entry == NULL)
4984 return NULL;
4985
4986 sig_entry = add_type_unit (sig, slot);
4987 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4988
4989 return sig_entry;
4990 }
4991
4992 /* Lookup a signature based type for DW_FORM_ref_sig8.
4993 Returns NULL if signature SIG is not present in the table.
4994 It is up to the caller to complain about this. */
4995
4996 static struct signatured_type *
4997 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4998 {
4999 if (cu->dwo_unit
5000 && dwarf2_per_objfile->using_index)
5001 {
5002 /* We're in a DWO/DWP file, and we're using .gdb_index.
5003 These cases require special processing. */
5004 if (get_dwp_file () == NULL)
5005 return lookup_dwo_signatured_type (cu, sig);
5006 else
5007 return lookup_dwp_signatured_type (cu, sig);
5008 }
5009 else
5010 {
5011 struct signatured_type find_entry, *entry;
5012
5013 if (dwarf2_per_objfile->signatured_types == NULL)
5014 return NULL;
5015 find_entry.signature = sig;
5016 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5017 return entry;
5018 }
5019 }
5020 \f
5021 /* Low level DIE reading support. */
5022
5023 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5024
5025 static void
5026 init_cu_die_reader (struct die_reader_specs *reader,
5027 struct dwarf2_cu *cu,
5028 struct dwarf2_section_info *section,
5029 struct dwo_file *dwo_file)
5030 {
5031 gdb_assert (section->readin && section->buffer != NULL);
5032 reader->abfd = get_section_bfd_owner (section);
5033 reader->cu = cu;
5034 reader->dwo_file = dwo_file;
5035 reader->die_section = section;
5036 reader->buffer = section->buffer;
5037 reader->buffer_end = section->buffer + section->size;
5038 reader->comp_dir = NULL;
5039 }
5040
5041 /* Subroutine of init_cutu_and_read_dies to simplify it.
5042 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5043 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5044 already.
5045
5046 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5047 from it to the DIE in the DWO. If NULL we are skipping the stub.
5048 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5049 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5050 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5051 STUB_COMP_DIR may be non-NULL.
5052 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5053 are filled in with the info of the DIE from the DWO file.
5054 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5055 provided an abbrev table to use.
5056 The result is non-zero if a valid (non-dummy) DIE was found. */
5057
5058 static int
5059 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5060 struct dwo_unit *dwo_unit,
5061 int abbrev_table_provided,
5062 struct die_info *stub_comp_unit_die,
5063 const char *stub_comp_dir,
5064 struct die_reader_specs *result_reader,
5065 const gdb_byte **result_info_ptr,
5066 struct die_info **result_comp_unit_die,
5067 int *result_has_children)
5068 {
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070 struct dwarf2_cu *cu = this_cu->cu;
5071 struct dwarf2_section_info *section;
5072 bfd *abfd;
5073 const gdb_byte *begin_info_ptr, *info_ptr;
5074 ULONGEST signature; /* Or dwo_id. */
5075 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5076 int i,num_extra_attrs;
5077 struct dwarf2_section_info *dwo_abbrev_section;
5078 struct attribute *attr;
5079 struct die_info *comp_unit_die;
5080
5081 /* At most one of these may be provided. */
5082 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5083
5084 /* These attributes aren't processed until later:
5085 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5086 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5087 referenced later. However, these attributes are found in the stub
5088 which we won't have later. In order to not impose this complication
5089 on the rest of the code, we read them here and copy them to the
5090 DWO CU/TU die. */
5091
5092 stmt_list = NULL;
5093 low_pc = NULL;
5094 high_pc = NULL;
5095 ranges = NULL;
5096 comp_dir = NULL;
5097
5098 if (stub_comp_unit_die != NULL)
5099 {
5100 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5101 DWO file. */
5102 if (! this_cu->is_debug_types)
5103 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5104 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5105 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5106 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5107 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5108
5109 /* There should be a DW_AT_addr_base attribute here (if needed).
5110 We need the value before we can process DW_FORM_GNU_addr_index. */
5111 cu->addr_base = 0;
5112 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5113 if (attr)
5114 cu->addr_base = DW_UNSND (attr);
5115
5116 /* There should be a DW_AT_ranges_base attribute here (if needed).
5117 We need the value before we can process DW_AT_ranges. */
5118 cu->ranges_base = 0;
5119 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5120 if (attr)
5121 cu->ranges_base = DW_UNSND (attr);
5122 }
5123 else if (stub_comp_dir != NULL)
5124 {
5125 /* Reconstruct the comp_dir attribute to simplify the code below. */
5126 comp_dir = (struct attribute *)
5127 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5128 comp_dir->name = DW_AT_comp_dir;
5129 comp_dir->form = DW_FORM_string;
5130 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5131 DW_STRING (comp_dir) = stub_comp_dir;
5132 }
5133
5134 /* Set up for reading the DWO CU/TU. */
5135 cu->dwo_unit = dwo_unit;
5136 section = dwo_unit->section;
5137 dwarf2_read_section (objfile, section);
5138 abfd = get_section_bfd_owner (section);
5139 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5140 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5141 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5142
5143 if (this_cu->is_debug_types)
5144 {
5145 ULONGEST header_signature;
5146 cu_offset type_offset_in_tu;
5147 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5148
5149 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5150 dwo_abbrev_section,
5151 info_ptr,
5152 &header_signature,
5153 &type_offset_in_tu);
5154 /* This is not an assert because it can be caused by bad debug info. */
5155 if (sig_type->signature != header_signature)
5156 {
5157 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5158 " TU at offset 0x%x [in module %s]"),
5159 hex_string (sig_type->signature),
5160 hex_string (header_signature),
5161 dwo_unit->offset.sect_off,
5162 bfd_get_filename (abfd));
5163 }
5164 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5165 /* For DWOs coming from DWP files, we don't know the CU length
5166 nor the type's offset in the TU until now. */
5167 dwo_unit->length = get_cu_length (&cu->header);
5168 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5169
5170 /* Establish the type offset that can be used to lookup the type.
5171 For DWO files, we don't know it until now. */
5172 sig_type->type_offset_in_section.sect_off =
5173 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5174 }
5175 else
5176 {
5177 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr, 0);
5180 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5181 /* For DWOs coming from DWP files, we don't know the CU length
5182 until now. */
5183 dwo_unit->length = get_cu_length (&cu->header);
5184 }
5185
5186 /* Replace the CU's original abbrev table with the DWO's.
5187 Reminder: We can't read the abbrev table until we've read the header. */
5188 if (abbrev_table_provided)
5189 {
5190 /* Don't free the provided abbrev table, the caller of
5191 init_cutu_and_read_dies owns it. */
5192 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5193 /* Ensure the DWO abbrev table gets freed. */
5194 make_cleanup (dwarf2_free_abbrev_table, cu);
5195 }
5196 else
5197 {
5198 dwarf2_free_abbrev_table (cu);
5199 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5200 /* Leave any existing abbrev table cleanup as is. */
5201 }
5202
5203 /* Read in the die, but leave space to copy over the attributes
5204 from the stub. This has the benefit of simplifying the rest of
5205 the code - all the work to maintain the illusion of a single
5206 DW_TAG_{compile,type}_unit DIE is done here. */
5207 num_extra_attrs = ((stmt_list != NULL)
5208 + (low_pc != NULL)
5209 + (high_pc != NULL)
5210 + (ranges != NULL)
5211 + (comp_dir != NULL));
5212 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5213 result_has_children, num_extra_attrs);
5214
5215 /* Copy over the attributes from the stub to the DIE we just read in. */
5216 comp_unit_die = *result_comp_unit_die;
5217 i = comp_unit_die->num_attrs;
5218 if (stmt_list != NULL)
5219 comp_unit_die->attrs[i++] = *stmt_list;
5220 if (low_pc != NULL)
5221 comp_unit_die->attrs[i++] = *low_pc;
5222 if (high_pc != NULL)
5223 comp_unit_die->attrs[i++] = *high_pc;
5224 if (ranges != NULL)
5225 comp_unit_die->attrs[i++] = *ranges;
5226 if (comp_dir != NULL)
5227 comp_unit_die->attrs[i++] = *comp_dir;
5228 comp_unit_die->num_attrs += num_extra_attrs;
5229
5230 if (dwarf_die_debug)
5231 {
5232 fprintf_unfiltered (gdb_stdlog,
5233 "Read die from %s@0x%x of %s:\n",
5234 get_section_name (section),
5235 (unsigned) (begin_info_ptr - section->buffer),
5236 bfd_get_filename (abfd));
5237 dump_die (comp_unit_die, dwarf_die_debug);
5238 }
5239
5240 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5241 TUs by skipping the stub and going directly to the entry in the DWO file.
5242 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5243 to get it via circuitous means. Blech. */
5244 if (comp_dir != NULL)
5245 result_reader->comp_dir = DW_STRING (comp_dir);
5246
5247 /* Skip dummy compilation units. */
5248 if (info_ptr >= begin_info_ptr + dwo_unit->length
5249 || peek_abbrev_code (abfd, info_ptr) == 0)
5250 return 0;
5251
5252 *result_info_ptr = info_ptr;
5253 return 1;
5254 }
5255
5256 /* Subroutine of init_cutu_and_read_dies to simplify it.
5257 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5258 Returns NULL if the specified DWO unit cannot be found. */
5259
5260 static struct dwo_unit *
5261 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5262 struct die_info *comp_unit_die)
5263 {
5264 struct dwarf2_cu *cu = this_cu->cu;
5265 struct attribute *attr;
5266 ULONGEST signature;
5267 struct dwo_unit *dwo_unit;
5268 const char *comp_dir, *dwo_name;
5269
5270 gdb_assert (cu != NULL);
5271
5272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5273 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5274 gdb_assert (attr != NULL);
5275 dwo_name = DW_STRING (attr);
5276 comp_dir = NULL;
5277 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5278 if (attr)
5279 comp_dir = DW_STRING (attr);
5280
5281 if (this_cu->is_debug_types)
5282 {
5283 struct signatured_type *sig_type;
5284
5285 /* Since this_cu is the first member of struct signatured_type,
5286 we can go from a pointer to one to a pointer to the other. */
5287 sig_type = (struct signatured_type *) this_cu;
5288 signature = sig_type->signature;
5289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5290 }
5291 else
5292 {
5293 struct attribute *attr;
5294
5295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5296 if (! attr)
5297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5298 " [in module %s]"),
5299 dwo_name, objfile_name (this_cu->objfile));
5300 signature = DW_UNSND (attr);
5301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5302 signature);
5303 }
5304
5305 return dwo_unit;
5306 }
5307
5308 /* Subroutine of init_cutu_and_read_dies to simplify it.
5309 See it for a description of the parameters.
5310 Read a TU directly from a DWO file, bypassing the stub.
5311
5312 Note: This function could be a little bit simpler if we shared cleanups
5313 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5314 to do, so we keep this function self-contained. Or we could move this
5315 into our caller, but it's complex enough already. */
5316
5317 static void
5318 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5319 int use_existing_cu, int keep,
5320 die_reader_func_ftype *die_reader_func,
5321 void *data)
5322 {
5323 struct dwarf2_cu *cu;
5324 struct signatured_type *sig_type;
5325 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5326 struct die_reader_specs reader;
5327 const gdb_byte *info_ptr;
5328 struct die_info *comp_unit_die;
5329 int has_children;
5330
5331 /* Verify we can do the following downcast, and that we have the
5332 data we need. */
5333 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5334 sig_type = (struct signatured_type *) this_cu;
5335 gdb_assert (sig_type->dwo_unit != NULL);
5336
5337 cleanups = make_cleanup (null_cleanup, NULL);
5338
5339 if (use_existing_cu && this_cu->cu != NULL)
5340 {
5341 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5342 cu = this_cu->cu;
5343 /* There's no need to do the rereading_dwo_cu handling that
5344 init_cutu_and_read_dies does since we don't read the stub. */
5345 }
5346 else
5347 {
5348 /* If !use_existing_cu, this_cu->cu must be NULL. */
5349 gdb_assert (this_cu->cu == NULL);
5350 cu = xmalloc (sizeof (*cu));
5351 init_one_comp_unit (cu, this_cu);
5352 /* If an error occurs while loading, release our storage. */
5353 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5354 }
5355
5356 /* A future optimization, if needed, would be to use an existing
5357 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5358 could share abbrev tables. */
5359
5360 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5361 0 /* abbrev_table_provided */,
5362 NULL /* stub_comp_unit_die */,
5363 sig_type->dwo_unit->dwo_file->comp_dir,
5364 &reader, &info_ptr,
5365 &comp_unit_die, &has_children) == 0)
5366 {
5367 /* Dummy die. */
5368 do_cleanups (cleanups);
5369 return;
5370 }
5371
5372 /* All the "real" work is done here. */
5373 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5374
5375 /* This duplicates the code in init_cutu_and_read_dies,
5376 but the alternative is making the latter more complex.
5377 This function is only for the special case of using DWO files directly:
5378 no point in overly complicating the general case just to handle this. */
5379 if (free_cu_cleanup != NULL)
5380 {
5381 if (keep)
5382 {
5383 /* We've successfully allocated this compilation unit. Let our
5384 caller clean it up when finished with it. */
5385 discard_cleanups (free_cu_cleanup);
5386
5387 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5388 So we have to manually free the abbrev table. */
5389 dwarf2_free_abbrev_table (cu);
5390
5391 /* Link this CU into read_in_chain. */
5392 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5393 dwarf2_per_objfile->read_in_chain = this_cu;
5394 }
5395 else
5396 do_cleanups (free_cu_cleanup);
5397 }
5398
5399 do_cleanups (cleanups);
5400 }
5401
5402 /* Initialize a CU (or TU) and read its DIEs.
5403 If the CU defers to a DWO file, read the DWO file as well.
5404
5405 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5406 Otherwise the table specified in the comp unit header is read in and used.
5407 This is an optimization for when we already have the abbrev table.
5408
5409 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5410 Otherwise, a new CU is allocated with xmalloc.
5411
5412 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5413 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5414
5415 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5416 linker) then DIE_READER_FUNC will not get called. */
5417
5418 static void
5419 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5420 struct abbrev_table *abbrev_table,
5421 int use_existing_cu, int keep,
5422 die_reader_func_ftype *die_reader_func,
5423 void *data)
5424 {
5425 struct objfile *objfile = dwarf2_per_objfile->objfile;
5426 struct dwarf2_section_info *section = this_cu->section;
5427 bfd *abfd = get_section_bfd_owner (section);
5428 struct dwarf2_cu *cu;
5429 const gdb_byte *begin_info_ptr, *info_ptr;
5430 struct die_reader_specs reader;
5431 struct die_info *comp_unit_die;
5432 int has_children;
5433 struct attribute *attr;
5434 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5435 struct signatured_type *sig_type = NULL;
5436 struct dwarf2_section_info *abbrev_section;
5437 /* Non-zero if CU currently points to a DWO file and we need to
5438 reread it. When this happens we need to reread the skeleton die
5439 before we can reread the DWO file (this only applies to CUs, not TUs). */
5440 int rereading_dwo_cu = 0;
5441
5442 if (dwarf_die_debug)
5443 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5444 this_cu->is_debug_types ? "type" : "comp",
5445 this_cu->offset.sect_off);
5446
5447 if (use_existing_cu)
5448 gdb_assert (keep);
5449
5450 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5451 file (instead of going through the stub), short-circuit all of this. */
5452 if (this_cu->reading_dwo_directly)
5453 {
5454 /* Narrow down the scope of possibilities to have to understand. */
5455 gdb_assert (this_cu->is_debug_types);
5456 gdb_assert (abbrev_table == NULL);
5457 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5458 die_reader_func, data);
5459 return;
5460 }
5461
5462 cleanups = make_cleanup (null_cleanup, NULL);
5463
5464 /* This is cheap if the section is already read in. */
5465 dwarf2_read_section (objfile, section);
5466
5467 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5468
5469 abbrev_section = get_abbrev_section_for_cu (this_cu);
5470
5471 if (use_existing_cu && this_cu->cu != NULL)
5472 {
5473 cu = this_cu->cu;
5474 /* If this CU is from a DWO file we need to start over, we need to
5475 refetch the attributes from the skeleton CU.
5476 This could be optimized by retrieving those attributes from when we
5477 were here the first time: the previous comp_unit_die was stored in
5478 comp_unit_obstack. But there's no data yet that we need this
5479 optimization. */
5480 if (cu->dwo_unit != NULL)
5481 rereading_dwo_cu = 1;
5482 }
5483 else
5484 {
5485 /* If !use_existing_cu, this_cu->cu must be NULL. */
5486 gdb_assert (this_cu->cu == NULL);
5487 cu = xmalloc (sizeof (*cu));
5488 init_one_comp_unit (cu, this_cu);
5489 /* If an error occurs while loading, release our storage. */
5490 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5491 }
5492
5493 /* Get the header. */
5494 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5495 {
5496 /* We already have the header, there's no need to read it in again. */
5497 info_ptr += cu->header.first_die_offset.cu_off;
5498 }
5499 else
5500 {
5501 if (this_cu->is_debug_types)
5502 {
5503 ULONGEST signature;
5504 cu_offset type_offset_in_tu;
5505
5506 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5507 abbrev_section, info_ptr,
5508 &signature,
5509 &type_offset_in_tu);
5510
5511 /* Since per_cu is the first member of struct signatured_type,
5512 we can go from a pointer to one to a pointer to the other. */
5513 sig_type = (struct signatured_type *) this_cu;
5514 gdb_assert (sig_type->signature == signature);
5515 gdb_assert (sig_type->type_offset_in_tu.cu_off
5516 == type_offset_in_tu.cu_off);
5517 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5518
5519 /* LENGTH has not been set yet for type units if we're
5520 using .gdb_index. */
5521 this_cu->length = get_cu_length (&cu->header);
5522
5523 /* Establish the type offset that can be used to lookup the type. */
5524 sig_type->type_offset_in_section.sect_off =
5525 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5526 }
5527 else
5528 {
5529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5530 abbrev_section,
5531 info_ptr, 0);
5532
5533 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5534 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5535 }
5536 }
5537
5538 /* Skip dummy compilation units. */
5539 if (info_ptr >= begin_info_ptr + this_cu->length
5540 || peek_abbrev_code (abfd, info_ptr) == 0)
5541 {
5542 do_cleanups (cleanups);
5543 return;
5544 }
5545
5546 /* If we don't have them yet, read the abbrevs for this compilation unit.
5547 And if we need to read them now, make sure they're freed when we're
5548 done. Note that it's important that if the CU had an abbrev table
5549 on entry we don't free it when we're done: Somewhere up the call stack
5550 it may be in use. */
5551 if (abbrev_table != NULL)
5552 {
5553 gdb_assert (cu->abbrev_table == NULL);
5554 gdb_assert (cu->header.abbrev_offset.sect_off
5555 == abbrev_table->offset.sect_off);
5556 cu->abbrev_table = abbrev_table;
5557 }
5558 else if (cu->abbrev_table == NULL)
5559 {
5560 dwarf2_read_abbrevs (cu, abbrev_section);
5561 make_cleanup (dwarf2_free_abbrev_table, cu);
5562 }
5563 else if (rereading_dwo_cu)
5564 {
5565 dwarf2_free_abbrev_table (cu);
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 }
5568
5569 /* Read the top level CU/TU die. */
5570 init_cu_die_reader (&reader, cu, section, NULL);
5571 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5572
5573 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5574 from the DWO file.
5575 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5576 DWO CU, that this test will fail (the attribute will not be present). */
5577 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5578 if (attr)
5579 {
5580 struct dwo_unit *dwo_unit;
5581 struct die_info *dwo_comp_unit_die;
5582
5583 if (has_children)
5584 {
5585 complaint (&symfile_complaints,
5586 _("compilation unit with DW_AT_GNU_dwo_name"
5587 " has children (offset 0x%x) [in module %s]"),
5588 this_cu->offset.sect_off, bfd_get_filename (abfd));
5589 }
5590 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5591 if (dwo_unit != NULL)
5592 {
5593 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5594 abbrev_table != NULL,
5595 comp_unit_die, NULL,
5596 &reader, &info_ptr,
5597 &dwo_comp_unit_die, &has_children) == 0)
5598 {
5599 /* Dummy die. */
5600 do_cleanups (cleanups);
5601 return;
5602 }
5603 comp_unit_die = dwo_comp_unit_die;
5604 }
5605 else
5606 {
5607 /* Yikes, we couldn't find the rest of the DIE, we only have
5608 the stub. A complaint has already been logged. There's
5609 not much more we can do except pass on the stub DIE to
5610 die_reader_func. We don't want to throw an error on bad
5611 debug info. */
5612 }
5613 }
5614
5615 /* All of the above is setup for this call. Yikes. */
5616 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5617
5618 /* Done, clean up. */
5619 if (free_cu_cleanup != NULL)
5620 {
5621 if (keep)
5622 {
5623 /* We've successfully allocated this compilation unit. Let our
5624 caller clean it up when finished with it. */
5625 discard_cleanups (free_cu_cleanup);
5626
5627 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5628 So we have to manually free the abbrev table. */
5629 dwarf2_free_abbrev_table (cu);
5630
5631 /* Link this CU into read_in_chain. */
5632 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5633 dwarf2_per_objfile->read_in_chain = this_cu;
5634 }
5635 else
5636 do_cleanups (free_cu_cleanup);
5637 }
5638
5639 do_cleanups (cleanups);
5640 }
5641
5642 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5643 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5644 to have already done the lookup to find the DWO file).
5645
5646 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5647 THIS_CU->is_debug_types, but nothing else.
5648
5649 We fill in THIS_CU->length.
5650
5651 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5652 linker) then DIE_READER_FUNC will not get called.
5653
5654 THIS_CU->cu is always freed when done.
5655 This is done in order to not leave THIS_CU->cu in a state where we have
5656 to care whether it refers to the "main" CU or the DWO CU. */
5657
5658 static void
5659 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5660 struct dwo_file *dwo_file,
5661 die_reader_func_ftype *die_reader_func,
5662 void *data)
5663 {
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
5665 struct dwarf2_section_info *section = this_cu->section;
5666 bfd *abfd = get_section_bfd_owner (section);
5667 struct dwarf2_section_info *abbrev_section;
5668 struct dwarf2_cu cu;
5669 const gdb_byte *begin_info_ptr, *info_ptr;
5670 struct die_reader_specs reader;
5671 struct cleanup *cleanups;
5672 struct die_info *comp_unit_die;
5673 int has_children;
5674
5675 if (dwarf_die_debug)
5676 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5677 this_cu->is_debug_types ? "type" : "comp",
5678 this_cu->offset.sect_off);
5679
5680 gdb_assert (this_cu->cu == NULL);
5681
5682 abbrev_section = (dwo_file != NULL
5683 ? &dwo_file->sections.abbrev
5684 : get_abbrev_section_for_cu (this_cu));
5685
5686 /* This is cheap if the section is already read in. */
5687 dwarf2_read_section (objfile, section);
5688
5689 init_one_comp_unit (&cu, this_cu);
5690
5691 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5692
5693 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5694 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5695 abbrev_section, info_ptr,
5696 this_cu->is_debug_types);
5697
5698 this_cu->length = get_cu_length (&cu.header);
5699
5700 /* Skip dummy compilation units. */
5701 if (info_ptr >= begin_info_ptr + this_cu->length
5702 || peek_abbrev_code (abfd, info_ptr) == 0)
5703 {
5704 do_cleanups (cleanups);
5705 return;
5706 }
5707
5708 dwarf2_read_abbrevs (&cu, abbrev_section);
5709 make_cleanup (dwarf2_free_abbrev_table, &cu);
5710
5711 init_cu_die_reader (&reader, &cu, section, dwo_file);
5712 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5713
5714 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5715
5716 do_cleanups (cleanups);
5717 }
5718
5719 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5720 does not lookup the specified DWO file.
5721 This cannot be used to read DWO files.
5722
5723 THIS_CU->cu is always freed when done.
5724 This is done in order to not leave THIS_CU->cu in a state where we have
5725 to care whether it refers to the "main" CU or the DWO CU.
5726 We can revisit this if the data shows there's a performance issue. */
5727
5728 static void
5729 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5730 die_reader_func_ftype *die_reader_func,
5731 void *data)
5732 {
5733 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5734 }
5735 \f
5736 /* Type Unit Groups.
5737
5738 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5739 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5740 so that all types coming from the same compilation (.o file) are grouped
5741 together. A future step could be to put the types in the same symtab as
5742 the CU the types ultimately came from. */
5743
5744 static hashval_t
5745 hash_type_unit_group (const void *item)
5746 {
5747 const struct type_unit_group *tu_group = item;
5748
5749 return hash_stmt_list_entry (&tu_group->hash);
5750 }
5751
5752 static int
5753 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5754 {
5755 const struct type_unit_group *lhs = item_lhs;
5756 const struct type_unit_group *rhs = item_rhs;
5757
5758 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5759 }
5760
5761 /* Allocate a hash table for type unit groups. */
5762
5763 static htab_t
5764 allocate_type_unit_groups_table (void)
5765 {
5766 return htab_create_alloc_ex (3,
5767 hash_type_unit_group,
5768 eq_type_unit_group,
5769 NULL,
5770 &dwarf2_per_objfile->objfile->objfile_obstack,
5771 hashtab_obstack_allocate,
5772 dummy_obstack_deallocate);
5773 }
5774
5775 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5776 partial symtabs. We combine several TUs per psymtab to not let the size
5777 of any one psymtab grow too big. */
5778 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5779 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5780
5781 /* Helper routine for get_type_unit_group.
5782 Create the type_unit_group object used to hold one or more TUs. */
5783
5784 static struct type_unit_group *
5785 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5786 {
5787 struct objfile *objfile = dwarf2_per_objfile->objfile;
5788 struct dwarf2_per_cu_data *per_cu;
5789 struct type_unit_group *tu_group;
5790
5791 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5792 struct type_unit_group);
5793 per_cu = &tu_group->per_cu;
5794 per_cu->objfile = objfile;
5795
5796 if (dwarf2_per_objfile->using_index)
5797 {
5798 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct dwarf2_per_cu_quick_data);
5800 }
5801 else
5802 {
5803 unsigned int line_offset = line_offset_struct.sect_off;
5804 struct partial_symtab *pst;
5805 char *name;
5806
5807 /* Give the symtab a useful name for debug purposes. */
5808 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5809 name = xstrprintf ("<type_units_%d>",
5810 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5811 else
5812 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5813
5814 pst = create_partial_symtab (per_cu, name);
5815 pst->anonymous = 1;
5816
5817 xfree (name);
5818 }
5819
5820 tu_group->hash.dwo_unit = cu->dwo_unit;
5821 tu_group->hash.line_offset = line_offset_struct;
5822
5823 return tu_group;
5824 }
5825
5826 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5827 STMT_LIST is a DW_AT_stmt_list attribute. */
5828
5829 static struct type_unit_group *
5830 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5831 {
5832 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5833 struct type_unit_group *tu_group;
5834 void **slot;
5835 unsigned int line_offset;
5836 struct type_unit_group type_unit_group_for_lookup;
5837
5838 if (dwarf2_per_objfile->type_unit_groups == NULL)
5839 {
5840 dwarf2_per_objfile->type_unit_groups =
5841 allocate_type_unit_groups_table ();
5842 }
5843
5844 /* Do we need to create a new group, or can we use an existing one? */
5845
5846 if (stmt_list)
5847 {
5848 line_offset = DW_UNSND (stmt_list);
5849 ++tu_stats->nr_symtab_sharers;
5850 }
5851 else
5852 {
5853 /* Ugh, no stmt_list. Rare, but we have to handle it.
5854 We can do various things here like create one group per TU or
5855 spread them over multiple groups to split up the expansion work.
5856 To avoid worst case scenarios (too many groups or too large groups)
5857 we, umm, group them in bunches. */
5858 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5859 | (tu_stats->nr_stmt_less_type_units
5860 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5861 ++tu_stats->nr_stmt_less_type_units;
5862 }
5863
5864 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5865 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5866 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5867 &type_unit_group_for_lookup, INSERT);
5868 if (*slot != NULL)
5869 {
5870 tu_group = *slot;
5871 gdb_assert (tu_group != NULL);
5872 }
5873 else
5874 {
5875 sect_offset line_offset_struct;
5876
5877 line_offset_struct.sect_off = line_offset;
5878 tu_group = create_type_unit_group (cu, line_offset_struct);
5879 *slot = tu_group;
5880 ++tu_stats->nr_symtabs;
5881 }
5882
5883 return tu_group;
5884 }
5885 \f
5886 /* Partial symbol tables. */
5887
5888 /* Create a psymtab named NAME and assign it to PER_CU.
5889
5890 The caller must fill in the following details:
5891 dirname, textlow, texthigh. */
5892
5893 static struct partial_symtab *
5894 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5895 {
5896 struct objfile *objfile = per_cu->objfile;
5897 struct partial_symtab *pst;
5898
5899 pst = start_psymtab_common (objfile, name, 0,
5900 objfile->global_psymbols.next,
5901 objfile->static_psymbols.next);
5902
5903 pst->psymtabs_addrmap_supported = 1;
5904
5905 /* This is the glue that links PST into GDB's symbol API. */
5906 pst->read_symtab_private = per_cu;
5907 pst->read_symtab = dwarf2_read_symtab;
5908 per_cu->v.psymtab = pst;
5909
5910 return pst;
5911 }
5912
5913 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5914 type. */
5915
5916 struct process_psymtab_comp_unit_data
5917 {
5918 /* True if we are reading a DW_TAG_partial_unit. */
5919
5920 int want_partial_unit;
5921
5922 /* The "pretend" language that is used if the CU doesn't declare a
5923 language. */
5924
5925 enum language pretend_language;
5926 };
5927
5928 /* die_reader_func for process_psymtab_comp_unit. */
5929
5930 static void
5931 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5932 const gdb_byte *info_ptr,
5933 struct die_info *comp_unit_die,
5934 int has_children,
5935 void *data)
5936 {
5937 struct dwarf2_cu *cu = reader->cu;
5938 struct objfile *objfile = cu->objfile;
5939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5940 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5941 struct attribute *attr;
5942 CORE_ADDR baseaddr;
5943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5944 struct partial_symtab *pst;
5945 int has_pc_info;
5946 const char *filename;
5947 struct process_psymtab_comp_unit_data *info = data;
5948
5949 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5950 return;
5951
5952 gdb_assert (! per_cu->is_debug_types);
5953
5954 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5955
5956 cu->list_in_scope = &file_symbols;
5957
5958 /* Allocate a new partial symbol table structure. */
5959 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5960 if (attr == NULL || !DW_STRING (attr))
5961 filename = "";
5962 else
5963 filename = DW_STRING (attr);
5964
5965 pst = create_partial_symtab (per_cu, filename);
5966
5967 /* This must be done before calling dwarf2_build_include_psymtabs. */
5968 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5969 if (attr != NULL)
5970 pst->dirname = DW_STRING (attr);
5971
5972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5973
5974 dwarf2_find_base_address (comp_unit_die, cu);
5975
5976 /* Possibly set the default values of LOWPC and HIGHPC from
5977 `DW_AT_ranges'. */
5978 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5979 &best_highpc, cu, pst);
5980 if (has_pc_info == 1 && best_lowpc < best_highpc)
5981 /* Store the contiguous range if it is not empty; it can be empty for
5982 CUs with no code. */
5983 addrmap_set_empty (objfile->psymtabs_addrmap,
5984 gdbarch_adjust_dwarf2_addr (gdbarch,
5985 best_lowpc + baseaddr),
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_highpc + baseaddr) - 1,
5988 pst);
5989
5990 /* Check if comp unit has_children.
5991 If so, read the rest of the partial symbols from this comp unit.
5992 If not, there's no more debug_info for this comp unit. */
5993 if (has_children)
5994 {
5995 struct partial_die_info *first_die;
5996 CORE_ADDR lowpc, highpc;
5997
5998 lowpc = ((CORE_ADDR) -1);
5999 highpc = ((CORE_ADDR) 0);
6000
6001 first_die = load_partial_dies (reader, info_ptr, 1);
6002
6003 scan_partial_symbols (first_die, &lowpc, &highpc,
6004 ! has_pc_info, cu);
6005
6006 /* If we didn't find a lowpc, set it to highpc to avoid
6007 complaints from `maint check'. */
6008 if (lowpc == ((CORE_ADDR) -1))
6009 lowpc = highpc;
6010
6011 /* If the compilation unit didn't have an explicit address range,
6012 then use the information extracted from its child dies. */
6013 if (! has_pc_info)
6014 {
6015 best_lowpc = lowpc;
6016 best_highpc = highpc;
6017 }
6018 }
6019 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6020 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6021
6022 end_psymtab_common (objfile, pst);
6023
6024 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6025 {
6026 int i;
6027 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6028 struct dwarf2_per_cu_data *iter;
6029
6030 /* Fill in 'dependencies' here; we fill in 'users' in a
6031 post-pass. */
6032 pst->number_of_dependencies = len;
6033 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6034 len * sizeof (struct symtab *));
6035 for (i = 0;
6036 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6037 i, iter);
6038 ++i)
6039 pst->dependencies[i] = iter->v.psymtab;
6040
6041 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6042 }
6043
6044 /* Get the list of files included in the current compilation unit,
6045 and build a psymtab for each of them. */
6046 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6047
6048 if (dwarf_read_debug)
6049 {
6050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6051
6052 fprintf_unfiltered (gdb_stdlog,
6053 "Psymtab for %s unit @0x%x: %s - %s"
6054 ", %d global, %d static syms\n",
6055 per_cu->is_debug_types ? "type" : "comp",
6056 per_cu->offset.sect_off,
6057 paddress (gdbarch, pst->textlow),
6058 paddress (gdbarch, pst->texthigh),
6059 pst->n_global_syms, pst->n_static_syms);
6060 }
6061 }
6062
6063 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6064 Process compilation unit THIS_CU for a psymtab. */
6065
6066 static void
6067 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6068 int want_partial_unit,
6069 enum language pretend_language)
6070 {
6071 struct process_psymtab_comp_unit_data info;
6072
6073 /* If this compilation unit was already read in, free the
6074 cached copy in order to read it in again. This is
6075 necessary because we skipped some symbols when we first
6076 read in the compilation unit (see load_partial_dies).
6077 This problem could be avoided, but the benefit is unclear. */
6078 if (this_cu->cu != NULL)
6079 free_one_cached_comp_unit (this_cu);
6080
6081 gdb_assert (! this_cu->is_debug_types);
6082 info.want_partial_unit = want_partial_unit;
6083 info.pretend_language = pretend_language;
6084 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6085 process_psymtab_comp_unit_reader,
6086 &info);
6087
6088 /* Age out any secondary CUs. */
6089 age_cached_comp_units ();
6090 }
6091
6092 /* Reader function for build_type_psymtabs. */
6093
6094 static void
6095 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6096 const gdb_byte *info_ptr,
6097 struct die_info *type_unit_die,
6098 int has_children,
6099 void *data)
6100 {
6101 struct objfile *objfile = dwarf2_per_objfile->objfile;
6102 struct dwarf2_cu *cu = reader->cu;
6103 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6104 struct signatured_type *sig_type;
6105 struct type_unit_group *tu_group;
6106 struct attribute *attr;
6107 struct partial_die_info *first_die;
6108 CORE_ADDR lowpc, highpc;
6109 struct partial_symtab *pst;
6110
6111 gdb_assert (data == NULL);
6112 gdb_assert (per_cu->is_debug_types);
6113 sig_type = (struct signatured_type *) per_cu;
6114
6115 if (! has_children)
6116 return;
6117
6118 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6119 tu_group = get_type_unit_group (cu, attr);
6120
6121 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6122
6123 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6124 cu->list_in_scope = &file_symbols;
6125 pst = create_partial_symtab (per_cu, "");
6126 pst->anonymous = 1;
6127
6128 first_die = load_partial_dies (reader, info_ptr, 1);
6129
6130 lowpc = (CORE_ADDR) -1;
6131 highpc = (CORE_ADDR) 0;
6132 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6133
6134 end_psymtab_common (objfile, pst);
6135 }
6136
6137 /* Struct used to sort TUs by their abbreviation table offset. */
6138
6139 struct tu_abbrev_offset
6140 {
6141 struct signatured_type *sig_type;
6142 sect_offset abbrev_offset;
6143 };
6144
6145 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6146
6147 static int
6148 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6149 {
6150 const struct tu_abbrev_offset * const *a = ap;
6151 const struct tu_abbrev_offset * const *b = bp;
6152 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6153 unsigned int boff = (*b)->abbrev_offset.sect_off;
6154
6155 return (aoff > boff) - (aoff < boff);
6156 }
6157
6158 /* Efficiently read all the type units.
6159 This does the bulk of the work for build_type_psymtabs.
6160
6161 The efficiency is because we sort TUs by the abbrev table they use and
6162 only read each abbrev table once. In one program there are 200K TUs
6163 sharing 8K abbrev tables.
6164
6165 The main purpose of this function is to support building the
6166 dwarf2_per_objfile->type_unit_groups table.
6167 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6168 can collapse the search space by grouping them by stmt_list.
6169 The savings can be significant, in the same program from above the 200K TUs
6170 share 8K stmt_list tables.
6171
6172 FUNC is expected to call get_type_unit_group, which will create the
6173 struct type_unit_group if necessary and add it to
6174 dwarf2_per_objfile->type_unit_groups. */
6175
6176 static void
6177 build_type_psymtabs_1 (void)
6178 {
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6181 struct cleanup *cleanups;
6182 struct abbrev_table *abbrev_table;
6183 sect_offset abbrev_offset;
6184 struct tu_abbrev_offset *sorted_by_abbrev;
6185 struct type_unit_group **iter;
6186 int i;
6187
6188 /* It's up to the caller to not call us multiple times. */
6189 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6190
6191 if (dwarf2_per_objfile->n_type_units == 0)
6192 return;
6193
6194 /* TUs typically share abbrev tables, and there can be way more TUs than
6195 abbrev tables. Sort by abbrev table to reduce the number of times we
6196 read each abbrev table in.
6197 Alternatives are to punt or to maintain a cache of abbrev tables.
6198 This is simpler and efficient enough for now.
6199
6200 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6201 symtab to use). Typically TUs with the same abbrev offset have the same
6202 stmt_list value too so in practice this should work well.
6203
6204 The basic algorithm here is:
6205
6206 sort TUs by abbrev table
6207 for each TU with same abbrev table:
6208 read abbrev table if first user
6209 read TU top level DIE
6210 [IWBN if DWO skeletons had DW_AT_stmt_list]
6211 call FUNC */
6212
6213 if (dwarf_read_debug)
6214 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6215
6216 /* Sort in a separate table to maintain the order of all_type_units
6217 for .gdb_index: TU indices directly index all_type_units. */
6218 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6219 dwarf2_per_objfile->n_type_units);
6220 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6221 {
6222 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6223
6224 sorted_by_abbrev[i].sig_type = sig_type;
6225 sorted_by_abbrev[i].abbrev_offset =
6226 read_abbrev_offset (sig_type->per_cu.section,
6227 sig_type->per_cu.offset);
6228 }
6229 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6230 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6231 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6232
6233 abbrev_offset.sect_off = ~(unsigned) 0;
6234 abbrev_table = NULL;
6235 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6238 {
6239 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6240
6241 /* Switch to the next abbrev table if necessary. */
6242 if (abbrev_table == NULL
6243 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6244 {
6245 if (abbrev_table != NULL)
6246 {
6247 abbrev_table_free (abbrev_table);
6248 /* Reset to NULL in case abbrev_table_read_table throws
6249 an error: abbrev_table_free_cleanup will get called. */
6250 abbrev_table = NULL;
6251 }
6252 abbrev_offset = tu->abbrev_offset;
6253 abbrev_table =
6254 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6255 abbrev_offset);
6256 ++tu_stats->nr_uniq_abbrev_tables;
6257 }
6258
6259 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6260 build_type_psymtabs_reader, NULL);
6261 }
6262
6263 do_cleanups (cleanups);
6264 }
6265
6266 /* Print collected type unit statistics. */
6267
6268 static void
6269 print_tu_stats (void)
6270 {
6271 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6272
6273 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6274 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6275 dwarf2_per_objfile->n_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6277 tu_stats->nr_uniq_abbrev_tables);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6279 tu_stats->nr_symtabs);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6281 tu_stats->nr_symtab_sharers);
6282 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6283 tu_stats->nr_stmt_less_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6285 tu_stats->nr_all_type_units_reallocs);
6286 }
6287
6288 /* Traversal function for build_type_psymtabs. */
6289
6290 static int
6291 build_type_psymtab_dependencies (void **slot, void *info)
6292 {
6293 struct objfile *objfile = dwarf2_per_objfile->objfile;
6294 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6295 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6296 struct partial_symtab *pst = per_cu->v.psymtab;
6297 int len = VEC_length (sig_type_ptr, tu_group->tus);
6298 struct signatured_type *iter;
6299 int i;
6300
6301 gdb_assert (len > 0);
6302 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6303
6304 pst->number_of_dependencies = len;
6305 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6306 len * sizeof (struct psymtab *));
6307 for (i = 0;
6308 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6309 ++i)
6310 {
6311 gdb_assert (iter->per_cu.is_debug_types);
6312 pst->dependencies[i] = iter->per_cu.v.psymtab;
6313 iter->type_unit_group = tu_group;
6314 }
6315
6316 VEC_free (sig_type_ptr, tu_group->tus);
6317
6318 return 1;
6319 }
6320
6321 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6322 Build partial symbol tables for the .debug_types comp-units. */
6323
6324 static void
6325 build_type_psymtabs (struct objfile *objfile)
6326 {
6327 if (! create_all_type_units (objfile))
6328 return;
6329
6330 build_type_psymtabs_1 ();
6331 }
6332
6333 /* Traversal function for process_skeletonless_type_unit.
6334 Read a TU in a DWO file and build partial symbols for it. */
6335
6336 static int
6337 process_skeletonless_type_unit (void **slot, void *info)
6338 {
6339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6340 struct objfile *objfile = info;
6341 struct signatured_type find_entry, *entry;
6342
6343 /* If this TU doesn't exist in the global table, add it and read it in. */
6344
6345 if (dwarf2_per_objfile->signatured_types == NULL)
6346 {
6347 dwarf2_per_objfile->signatured_types
6348 = allocate_signatured_type_table (objfile);
6349 }
6350
6351 find_entry.signature = dwo_unit->signature;
6352 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6353 INSERT);
6354 /* If we've already seen this type there's nothing to do. What's happening
6355 is we're doing our own version of comdat-folding here. */
6356 if (*slot != NULL)
6357 return 1;
6358
6359 /* This does the job that create_all_type_units would have done for
6360 this TU. */
6361 entry = add_type_unit (dwo_unit->signature, slot);
6362 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6363 *slot = entry;
6364
6365 /* This does the job that build_type_psymtabs_1 would have done. */
6366 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6367 build_type_psymtabs_reader, NULL);
6368
6369 return 1;
6370 }
6371
6372 /* Traversal function for process_skeletonless_type_units. */
6373
6374 static int
6375 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6376 {
6377 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6378
6379 if (dwo_file->tus != NULL)
6380 {
6381 htab_traverse_noresize (dwo_file->tus,
6382 process_skeletonless_type_unit, info);
6383 }
6384
6385 return 1;
6386 }
6387
6388 /* Scan all TUs of DWO files, verifying we've processed them.
6389 This is needed in case a TU was emitted without its skeleton.
6390 Note: This can't be done until we know what all the DWO files are. */
6391
6392 static void
6393 process_skeletonless_type_units (struct objfile *objfile)
6394 {
6395 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6396 if (get_dwp_file () == NULL
6397 && dwarf2_per_objfile->dwo_files != NULL)
6398 {
6399 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6400 process_dwo_file_for_skeletonless_type_units,
6401 objfile);
6402 }
6403 }
6404
6405 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6406
6407 static void
6408 psymtabs_addrmap_cleanup (void *o)
6409 {
6410 struct objfile *objfile = o;
6411
6412 objfile->psymtabs_addrmap = NULL;
6413 }
6414
6415 /* Compute the 'user' field for each psymtab in OBJFILE. */
6416
6417 static void
6418 set_partial_user (struct objfile *objfile)
6419 {
6420 int i;
6421
6422 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6423 {
6424 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6425 struct partial_symtab *pst = per_cu->v.psymtab;
6426 int j;
6427
6428 if (pst == NULL)
6429 continue;
6430
6431 for (j = 0; j < pst->number_of_dependencies; ++j)
6432 {
6433 /* Set the 'user' field only if it is not already set. */
6434 if (pst->dependencies[j]->user == NULL)
6435 pst->dependencies[j]->user = pst;
6436 }
6437 }
6438 }
6439
6440 /* Build the partial symbol table by doing a quick pass through the
6441 .debug_info and .debug_abbrev sections. */
6442
6443 static void
6444 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6445 {
6446 struct cleanup *back_to, *addrmap_cleanup;
6447 struct obstack temp_obstack;
6448 int i;
6449
6450 if (dwarf_read_debug)
6451 {
6452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6453 objfile_name (objfile));
6454 }
6455
6456 dwarf2_per_objfile->reading_partial_symbols = 1;
6457
6458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6459
6460 /* Any cached compilation units will be linked by the per-objfile
6461 read_in_chain. Make sure to free them when we're done. */
6462 back_to = make_cleanup (free_cached_comp_units, NULL);
6463
6464 build_type_psymtabs (objfile);
6465
6466 create_all_comp_units (objfile);
6467
6468 /* Create a temporary address map on a temporary obstack. We later
6469 copy this to the final obstack. */
6470 obstack_init (&temp_obstack);
6471 make_cleanup_obstack_free (&temp_obstack);
6472 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6473 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6474
6475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6476 {
6477 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6478
6479 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6480 }
6481
6482 /* This has to wait until we read the CUs, we need the list of DWOs. */
6483 process_skeletonless_type_units (objfile);
6484
6485 /* Now that all TUs have been processed we can fill in the dependencies. */
6486 if (dwarf2_per_objfile->type_unit_groups != NULL)
6487 {
6488 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6489 build_type_psymtab_dependencies, NULL);
6490 }
6491
6492 if (dwarf_read_debug)
6493 print_tu_stats ();
6494
6495 set_partial_user (objfile);
6496
6497 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6498 &objfile->objfile_obstack);
6499 discard_cleanups (addrmap_cleanup);
6500
6501 do_cleanups (back_to);
6502
6503 if (dwarf_read_debug)
6504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6505 objfile_name (objfile));
6506 }
6507
6508 /* die_reader_func for load_partial_comp_unit. */
6509
6510 static void
6511 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6512 const gdb_byte *info_ptr,
6513 struct die_info *comp_unit_die,
6514 int has_children,
6515 void *data)
6516 {
6517 struct dwarf2_cu *cu = reader->cu;
6518
6519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6520
6521 /* Check if comp unit has_children.
6522 If so, read the rest of the partial symbols from this comp unit.
6523 If not, there's no more debug_info for this comp unit. */
6524 if (has_children)
6525 load_partial_dies (reader, info_ptr, 0);
6526 }
6527
6528 /* Load the partial DIEs for a secondary CU into memory.
6529 This is also used when rereading a primary CU with load_all_dies. */
6530
6531 static void
6532 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6533 {
6534 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6535 load_partial_comp_unit_reader, NULL);
6536 }
6537
6538 static void
6539 read_comp_units_from_section (struct objfile *objfile,
6540 struct dwarf2_section_info *section,
6541 unsigned int is_dwz,
6542 int *n_allocated,
6543 int *n_comp_units,
6544 struct dwarf2_per_cu_data ***all_comp_units)
6545 {
6546 const gdb_byte *info_ptr;
6547 bfd *abfd = get_section_bfd_owner (section);
6548
6549 if (dwarf_read_debug)
6550 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6551 get_section_name (section),
6552 get_section_file_name (section));
6553
6554 dwarf2_read_section (objfile, section);
6555
6556 info_ptr = section->buffer;
6557
6558 while (info_ptr < section->buffer + section->size)
6559 {
6560 unsigned int length, initial_length_size;
6561 struct dwarf2_per_cu_data *this_cu;
6562 sect_offset offset;
6563
6564 offset.sect_off = info_ptr - section->buffer;
6565
6566 /* Read just enough information to find out where the next
6567 compilation unit is. */
6568 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6569
6570 /* Save the compilation unit for later lookup. */
6571 this_cu = obstack_alloc (&objfile->objfile_obstack,
6572 sizeof (struct dwarf2_per_cu_data));
6573 memset (this_cu, 0, sizeof (*this_cu));
6574 this_cu->offset = offset;
6575 this_cu->length = length + initial_length_size;
6576 this_cu->is_dwz = is_dwz;
6577 this_cu->objfile = objfile;
6578 this_cu->section = section;
6579
6580 if (*n_comp_units == *n_allocated)
6581 {
6582 *n_allocated *= 2;
6583 *all_comp_units = xrealloc (*all_comp_units,
6584 *n_allocated
6585 * sizeof (struct dwarf2_per_cu_data *));
6586 }
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
6592 }
6593
6594 /* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597 static void
6598 create_all_comp_units (struct objfile *objfile)
6599 {
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
6603 struct dwz_file *dwz;
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = xmalloc (n_allocated
6608 * sizeof (struct dwarf2_per_cu_data *));
6609
6610 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6611 &n_allocated, &n_comp_units, &all_comp_units);
6612
6613 dwz = dwarf2_get_dwz_file ();
6614 if (dwz != NULL)
6615 read_comp_units_from_section (objfile, &dwz->info, 1,
6616 &n_allocated, &n_comp_units,
6617 &all_comp_units);
6618
6619 dwarf2_per_objfile->all_comp_units
6620 = obstack_alloc (&objfile->objfile_obstack,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6623 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6624 xfree (all_comp_units);
6625 dwarf2_per_objfile->n_comp_units = n_comp_units;
6626 }
6627
6628 /* Process all loaded DIEs for compilation unit CU, starting at
6629 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6630 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6631 DW_AT_ranges). See the comments of add_partial_subprogram on how
6632 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6633
6634 static void
6635 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6636 CORE_ADDR *highpc, int set_addrmap,
6637 struct dwarf2_cu *cu)
6638 {
6639 struct partial_die_info *pdi;
6640
6641 /* Now, march along the PDI's, descending into ones which have
6642 interesting children but skipping the children of the other ones,
6643 until we reach the end of the compilation unit. */
6644
6645 pdi = first_die;
6646
6647 while (pdi != NULL)
6648 {
6649 fixup_partial_die (pdi, cu);
6650
6651 /* Anonymous namespaces or modules have no name but have interesting
6652 children, so we need to look at them. Ditto for anonymous
6653 enums. */
6654
6655 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6656 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6657 || pdi->tag == DW_TAG_imported_unit)
6658 {
6659 switch (pdi->tag)
6660 {
6661 case DW_TAG_subprogram:
6662 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6663 break;
6664 case DW_TAG_constant:
6665 case DW_TAG_variable:
6666 case DW_TAG_typedef:
6667 case DW_TAG_union_type:
6668 if (!pdi->is_declaration)
6669 {
6670 add_partial_symbol (pdi, cu);
6671 }
6672 break;
6673 case DW_TAG_class_type:
6674 case DW_TAG_interface_type:
6675 case DW_TAG_structure_type:
6676 if (!pdi->is_declaration)
6677 {
6678 add_partial_symbol (pdi, cu);
6679 }
6680 break;
6681 case DW_TAG_enumeration_type:
6682 if (!pdi->is_declaration)
6683 add_partial_enumeration (pdi, cu);
6684 break;
6685 case DW_TAG_base_type:
6686 case DW_TAG_subrange_type:
6687 /* File scope base type definitions are added to the partial
6688 symbol table. */
6689 add_partial_symbol (pdi, cu);
6690 break;
6691 case DW_TAG_namespace:
6692 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6693 break;
6694 case DW_TAG_module:
6695 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6696 break;
6697 case DW_TAG_imported_unit:
6698 {
6699 struct dwarf2_per_cu_data *per_cu;
6700
6701 /* For now we don't handle imported units in type units. */
6702 if (cu->per_cu->is_debug_types)
6703 {
6704 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6705 " supported in type units [in module %s]"),
6706 objfile_name (cu->objfile));
6707 }
6708
6709 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6710 pdi->is_dwz,
6711 cu->objfile);
6712
6713 /* Go read the partial unit, if needed. */
6714 if (per_cu->v.psymtab == NULL)
6715 process_psymtab_comp_unit (per_cu, 1, cu->language);
6716
6717 VEC_safe_push (dwarf2_per_cu_ptr,
6718 cu->per_cu->imported_symtabs, per_cu);
6719 }
6720 break;
6721 case DW_TAG_imported_declaration:
6722 add_partial_symbol (pdi, cu);
6723 break;
6724 default:
6725 break;
6726 }
6727 }
6728
6729 /* If the die has a sibling, skip to the sibling. */
6730
6731 pdi = pdi->die_sibling;
6732 }
6733 }
6734
6735 /* Functions used to compute the fully scoped name of a partial DIE.
6736
6737 Normally, this is simple. For C++, the parent DIE's fully scoped
6738 name is concatenated with "::" and the partial DIE's name. For
6739 Java, the same thing occurs except that "." is used instead of "::".
6740 Enumerators are an exception; they use the scope of their parent
6741 enumeration type, i.e. the name of the enumeration type is not
6742 prepended to the enumerator.
6743
6744 There are two complexities. One is DW_AT_specification; in this
6745 case "parent" means the parent of the target of the specification,
6746 instead of the direct parent of the DIE. The other is compilers
6747 which do not emit DW_TAG_namespace; in this case we try to guess
6748 the fully qualified name of structure types from their members'
6749 linkage names. This must be done using the DIE's children rather
6750 than the children of any DW_AT_specification target. We only need
6751 to do this for structures at the top level, i.e. if the target of
6752 any DW_AT_specification (if any; otherwise the DIE itself) does not
6753 have a parent. */
6754
6755 /* Compute the scope prefix associated with PDI's parent, in
6756 compilation unit CU. The result will be allocated on CU's
6757 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6758 field. NULL is returned if no prefix is necessary. */
6759 static const char *
6760 partial_die_parent_scope (struct partial_die_info *pdi,
6761 struct dwarf2_cu *cu)
6762 {
6763 const char *grandparent_scope;
6764 struct partial_die_info *parent, *real_pdi;
6765
6766 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6767 then this means the parent of the specification DIE. */
6768
6769 real_pdi = pdi;
6770 while (real_pdi->has_specification)
6771 real_pdi = find_partial_die (real_pdi->spec_offset,
6772 real_pdi->spec_is_dwz, cu);
6773
6774 parent = real_pdi->die_parent;
6775 if (parent == NULL)
6776 return NULL;
6777
6778 if (parent->scope_set)
6779 return parent->scope;
6780
6781 fixup_partial_die (parent, cu);
6782
6783 grandparent_scope = partial_die_parent_scope (parent, cu);
6784
6785 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6786 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6787 Work around this problem here. */
6788 if (cu->language == language_cplus
6789 && parent->tag == DW_TAG_namespace
6790 && strcmp (parent->name, "::") == 0
6791 && grandparent_scope == NULL)
6792 {
6793 parent->scope = NULL;
6794 parent->scope_set = 1;
6795 return NULL;
6796 }
6797
6798 if (pdi->tag == DW_TAG_enumerator)
6799 /* Enumerators should not get the name of the enumeration as a prefix. */
6800 parent->scope = grandparent_scope;
6801 else if (parent->tag == DW_TAG_namespace
6802 || parent->tag == DW_TAG_module
6803 || parent->tag == DW_TAG_structure_type
6804 || parent->tag == DW_TAG_class_type
6805 || parent->tag == DW_TAG_interface_type
6806 || parent->tag == DW_TAG_union_type
6807 || parent->tag == DW_TAG_enumeration_type)
6808 {
6809 if (grandparent_scope == NULL)
6810 parent->scope = parent->name;
6811 else
6812 parent->scope = typename_concat (&cu->comp_unit_obstack,
6813 grandparent_scope,
6814 parent->name, 0, cu);
6815 }
6816 else
6817 {
6818 /* FIXME drow/2004-04-01: What should we be doing with
6819 function-local names? For partial symbols, we should probably be
6820 ignoring them. */
6821 complaint (&symfile_complaints,
6822 _("unhandled containing DIE tag %d for DIE at %d"),
6823 parent->tag, pdi->offset.sect_off);
6824 parent->scope = grandparent_scope;
6825 }
6826
6827 parent->scope_set = 1;
6828 return parent->scope;
6829 }
6830
6831 /* Return the fully scoped name associated with PDI, from compilation unit
6832 CU. The result will be allocated with malloc. */
6833
6834 static char *
6835 partial_die_full_name (struct partial_die_info *pdi,
6836 struct dwarf2_cu *cu)
6837 {
6838 const char *parent_scope;
6839
6840 /* If this is a template instantiation, we can not work out the
6841 template arguments from partial DIEs. So, unfortunately, we have
6842 to go through the full DIEs. At least any work we do building
6843 types here will be reused if full symbols are loaded later. */
6844 if (pdi->has_template_arguments)
6845 {
6846 fixup_partial_die (pdi, cu);
6847
6848 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6849 {
6850 struct die_info *die;
6851 struct attribute attr;
6852 struct dwarf2_cu *ref_cu = cu;
6853
6854 /* DW_FORM_ref_addr is using section offset. */
6855 attr.name = 0;
6856 attr.form = DW_FORM_ref_addr;
6857 attr.u.unsnd = pdi->offset.sect_off;
6858 die = follow_die_ref (NULL, &attr, &ref_cu);
6859
6860 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6861 }
6862 }
6863
6864 parent_scope = partial_die_parent_scope (pdi, cu);
6865 if (parent_scope == NULL)
6866 return NULL;
6867 else
6868 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6869 }
6870
6871 static void
6872 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6873 {
6874 struct objfile *objfile = cu->objfile;
6875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6876 CORE_ADDR addr = 0;
6877 const char *actual_name = NULL;
6878 CORE_ADDR baseaddr;
6879 char *built_actual_name;
6880
6881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6882
6883 built_actual_name = partial_die_full_name (pdi, cu);
6884 if (built_actual_name != NULL)
6885 actual_name = built_actual_name;
6886
6887 if (actual_name == NULL)
6888 actual_name = pdi->name;
6889
6890 switch (pdi->tag)
6891 {
6892 case DW_TAG_subprogram:
6893 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6894 if (pdi->is_external || cu->language == language_ada)
6895 {
6896 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6897 of the global scope. But in Ada, we want to be able to access
6898 nested procedures globally. So all Ada subprograms are stored
6899 in the global scope. */
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6901 objfile); */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6911 objfile); */
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_BLOCK,
6915 &objfile->static_psymbols,
6916 addr, cu->language, objfile);
6917 }
6918 break;
6919 case DW_TAG_constant:
6920 {
6921 struct psymbol_allocation_list *list;
6922
6923 if (pdi->is_external)
6924 list = &objfile->global_psymbols;
6925 else
6926 list = &objfile->static_psymbols;
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6929 list, 0, cu->language, objfile);
6930 }
6931 break;
6932 case DW_TAG_variable:
6933 if (pdi->d.locdesc)
6934 addr = decode_locdesc (pdi->d.locdesc, cu);
6935
6936 if (pdi->d.locdesc
6937 && addr == 0
6938 && !dwarf2_per_objfile->has_section_at_zero)
6939 {
6940 /* A global or static variable may also have been stripped
6941 out by the linker if unused, in which case its address
6942 will be nullified; do not add such variables into partial
6943 symbol table then. */
6944 }
6945 else if (pdi->is_external)
6946 {
6947 /* Global Variable.
6948 Don't enter into the minimal symbol tables as there is
6949 a minimal symbol table entry from the ELF symbols already.
6950 Enter into partial symbol table if it has a location
6951 descriptor or a type.
6952 If the location descriptor is missing, new_symbol will create
6953 a LOC_UNRESOLVED symbol, the address of the variable will then
6954 be determined from the minimal symbol table whenever the variable
6955 is referenced.
6956 The address for the partial symbol table entry is not
6957 used by GDB, but it comes in handy for debugging partial symbol
6958 table building. */
6959
6960 if (pdi->d.locdesc || pdi->has_type)
6961 add_psymbol_to_list (actual_name, strlen (actual_name),
6962 built_actual_name != NULL,
6963 VAR_DOMAIN, LOC_STATIC,
6964 &objfile->global_psymbols,
6965 addr + baseaddr,
6966 cu->language, objfile);
6967 }
6968 else
6969 {
6970 int has_loc = pdi->d.locdesc != NULL;
6971
6972 /* Static Variable. Skip symbols whose value we cannot know (those
6973 without location descriptors or constant values). */
6974 if (!has_loc && !pdi->has_const_value)
6975 {
6976 xfree (built_actual_name);
6977 return;
6978 }
6979
6980 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6981 mst_file_data, objfile); */
6982 add_psymbol_to_list (actual_name, strlen (actual_name),
6983 built_actual_name != NULL,
6984 VAR_DOMAIN, LOC_STATIC,
6985 &objfile->static_psymbols,
6986 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6987 cu->language, objfile);
6988 }
6989 break;
6990 case DW_TAG_typedef:
6991 case DW_TAG_base_type:
6992 case DW_TAG_subrange_type:
6993 add_psymbol_to_list (actual_name, strlen (actual_name),
6994 built_actual_name != NULL,
6995 VAR_DOMAIN, LOC_TYPEDEF,
6996 &objfile->static_psymbols,
6997 0, cu->language, objfile);
6998 break;
6999 case DW_TAG_imported_declaration:
7000 case DW_TAG_namespace:
7001 add_psymbol_to_list (actual_name, strlen (actual_name),
7002 built_actual_name != NULL,
7003 VAR_DOMAIN, LOC_TYPEDEF,
7004 &objfile->global_psymbols,
7005 0, cu->language, objfile);
7006 break;
7007 case DW_TAG_module:
7008 add_psymbol_to_list (actual_name, strlen (actual_name),
7009 built_actual_name != NULL,
7010 MODULE_DOMAIN, LOC_TYPEDEF,
7011 &objfile->global_psymbols,
7012 0, cu->language, objfile);
7013 break;
7014 case DW_TAG_class_type:
7015 case DW_TAG_interface_type:
7016 case DW_TAG_structure_type:
7017 case DW_TAG_union_type:
7018 case DW_TAG_enumeration_type:
7019 /* Skip external references. The DWARF standard says in the section
7020 about "Structure, Union, and Class Type Entries": "An incomplete
7021 structure, union or class type is represented by a structure,
7022 union or class entry that does not have a byte size attribute
7023 and that has a DW_AT_declaration attribute." */
7024 if (!pdi->has_byte_size && pdi->is_declaration)
7025 {
7026 xfree (built_actual_name);
7027 return;
7028 }
7029
7030 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7031 static vs. global. */
7032 add_psymbol_to_list (actual_name, strlen (actual_name),
7033 built_actual_name != NULL,
7034 STRUCT_DOMAIN, LOC_TYPEDEF,
7035 (cu->language == language_cplus
7036 || cu->language == language_java)
7037 ? &objfile->global_psymbols
7038 : &objfile->static_psymbols,
7039 0, cu->language, objfile);
7040
7041 break;
7042 case DW_TAG_enumerator:
7043 add_psymbol_to_list (actual_name, strlen (actual_name),
7044 built_actual_name != NULL,
7045 VAR_DOMAIN, LOC_CONST,
7046 (cu->language == language_cplus
7047 || cu->language == language_java)
7048 ? &objfile->global_psymbols
7049 : &objfile->static_psymbols,
7050 0, cu->language, objfile);
7051 break;
7052 default:
7053 break;
7054 }
7055
7056 xfree (built_actual_name);
7057 }
7058
7059 /* Read a partial die corresponding to a namespace; also, add a symbol
7060 corresponding to that namespace to the symbol table. NAMESPACE is
7061 the name of the enclosing namespace. */
7062
7063 static void
7064 add_partial_namespace (struct partial_die_info *pdi,
7065 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7066 int set_addrmap, struct dwarf2_cu *cu)
7067 {
7068 /* Add a symbol for the namespace. */
7069
7070 add_partial_symbol (pdi, cu);
7071
7072 /* Now scan partial symbols in that namespace. */
7073
7074 if (pdi->has_children)
7075 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7076 }
7077
7078 /* Read a partial die corresponding to a Fortran module. */
7079
7080 static void
7081 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7082 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7083 {
7084 /* Add a symbol for the namespace. */
7085
7086 add_partial_symbol (pdi, cu);
7087
7088 /* Now scan partial symbols in that module. */
7089
7090 if (pdi->has_children)
7091 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7092 }
7093
7094 /* Read a partial die corresponding to a subprogram and create a partial
7095 symbol for that subprogram. When the CU language allows it, this
7096 routine also defines a partial symbol for each nested subprogram
7097 that this subprogram contains. If SET_ADDRMAP is true, record the
7098 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7099 and highest PC values found in PDI.
7100
7101 PDI may also be a lexical block, in which case we simply search
7102 recursively for subprograms defined inside that lexical block.
7103 Again, this is only performed when the CU language allows this
7104 type of definitions. */
7105
7106 static void
7107 add_partial_subprogram (struct partial_die_info *pdi,
7108 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7109 int set_addrmap, struct dwarf2_cu *cu)
7110 {
7111 if (pdi->tag == DW_TAG_subprogram)
7112 {
7113 if (pdi->has_pc_info)
7114 {
7115 if (pdi->lowpc < *lowpc)
7116 *lowpc = pdi->lowpc;
7117 if (pdi->highpc > *highpc)
7118 *highpc = pdi->highpc;
7119 if (set_addrmap)
7120 {
7121 struct objfile *objfile = cu->objfile;
7122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7123 CORE_ADDR baseaddr;
7124 CORE_ADDR highpc;
7125 CORE_ADDR lowpc;
7126
7127 baseaddr = ANOFFSET (objfile->section_offsets,
7128 SECT_OFF_TEXT (objfile));
7129 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7130 pdi->lowpc + baseaddr);
7131 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7132 pdi->highpc + baseaddr);
7133 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7134 cu->per_cu->v.psymtab);
7135 }
7136 }
7137
7138 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7139 {
7140 if (!pdi->is_declaration)
7141 /* Ignore subprogram DIEs that do not have a name, they are
7142 illegal. Do not emit a complaint at this point, we will
7143 do so when we convert this psymtab into a symtab. */
7144 if (pdi->name)
7145 add_partial_symbol (pdi, cu);
7146 }
7147 }
7148
7149 if (! pdi->has_children)
7150 return;
7151
7152 if (cu->language == language_ada)
7153 {
7154 pdi = pdi->die_child;
7155 while (pdi != NULL)
7156 {
7157 fixup_partial_die (pdi, cu);
7158 if (pdi->tag == DW_TAG_subprogram
7159 || pdi->tag == DW_TAG_lexical_block)
7160 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7161 pdi = pdi->die_sibling;
7162 }
7163 }
7164 }
7165
7166 /* Read a partial die corresponding to an enumeration type. */
7167
7168 static void
7169 add_partial_enumeration (struct partial_die_info *enum_pdi,
7170 struct dwarf2_cu *cu)
7171 {
7172 struct partial_die_info *pdi;
7173
7174 if (enum_pdi->name != NULL)
7175 add_partial_symbol (enum_pdi, cu);
7176
7177 pdi = enum_pdi->die_child;
7178 while (pdi)
7179 {
7180 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7181 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7182 else
7183 add_partial_symbol (pdi, cu);
7184 pdi = pdi->die_sibling;
7185 }
7186 }
7187
7188 /* Return the initial uleb128 in the die at INFO_PTR. */
7189
7190 static unsigned int
7191 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7192 {
7193 unsigned int bytes_read;
7194
7195 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7196 }
7197
7198 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7199 Return the corresponding abbrev, or NULL if the number is zero (indicating
7200 an empty DIE). In either case *BYTES_READ will be set to the length of
7201 the initial number. */
7202
7203 static struct abbrev_info *
7204 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7205 struct dwarf2_cu *cu)
7206 {
7207 bfd *abfd = cu->objfile->obfd;
7208 unsigned int abbrev_number;
7209 struct abbrev_info *abbrev;
7210
7211 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7212
7213 if (abbrev_number == 0)
7214 return NULL;
7215
7216 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7217 if (!abbrev)
7218 {
7219 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7220 " at offset 0x%x [in module %s]"),
7221 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7222 cu->header.offset.sect_off, bfd_get_filename (abfd));
7223 }
7224
7225 return abbrev;
7226 }
7227
7228 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7229 Returns a pointer to the end of a series of DIEs, terminated by an empty
7230 DIE. Any children of the skipped DIEs will also be skipped. */
7231
7232 static const gdb_byte *
7233 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7234 {
7235 struct dwarf2_cu *cu = reader->cu;
7236 struct abbrev_info *abbrev;
7237 unsigned int bytes_read;
7238
7239 while (1)
7240 {
7241 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7242 if (abbrev == NULL)
7243 return info_ptr + bytes_read;
7244 else
7245 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7246 }
7247 }
7248
7249 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7250 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7251 abbrev corresponding to that skipped uleb128 should be passed in
7252 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7253 children. */
7254
7255 static const gdb_byte *
7256 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7257 struct abbrev_info *abbrev)
7258 {
7259 unsigned int bytes_read;
7260 struct attribute attr;
7261 bfd *abfd = reader->abfd;
7262 struct dwarf2_cu *cu = reader->cu;
7263 const gdb_byte *buffer = reader->buffer;
7264 const gdb_byte *buffer_end = reader->buffer_end;
7265 const gdb_byte *start_info_ptr = info_ptr;
7266 unsigned int form, i;
7267
7268 for (i = 0; i < abbrev->num_attrs; i++)
7269 {
7270 /* The only abbrev we care about is DW_AT_sibling. */
7271 if (abbrev->attrs[i].name == DW_AT_sibling)
7272 {
7273 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7274 if (attr.form == DW_FORM_ref_addr)
7275 complaint (&symfile_complaints,
7276 _("ignoring absolute DW_AT_sibling"));
7277 else
7278 {
7279 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7280 const gdb_byte *sibling_ptr = buffer + off;
7281
7282 if (sibling_ptr < info_ptr)
7283 complaint (&symfile_complaints,
7284 _("DW_AT_sibling points backwards"));
7285 else if (sibling_ptr > reader->buffer_end)
7286 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7287 else
7288 return sibling_ptr;
7289 }
7290 }
7291
7292 /* If it isn't DW_AT_sibling, skip this attribute. */
7293 form = abbrev->attrs[i].form;
7294 skip_attribute:
7295 switch (form)
7296 {
7297 case DW_FORM_ref_addr:
7298 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7299 and later it is offset sized. */
7300 if (cu->header.version == 2)
7301 info_ptr += cu->header.addr_size;
7302 else
7303 info_ptr += cu->header.offset_size;
7304 break;
7305 case DW_FORM_GNU_ref_alt:
7306 info_ptr += cu->header.offset_size;
7307 break;
7308 case DW_FORM_addr:
7309 info_ptr += cu->header.addr_size;
7310 break;
7311 case DW_FORM_data1:
7312 case DW_FORM_ref1:
7313 case DW_FORM_flag:
7314 info_ptr += 1;
7315 break;
7316 case DW_FORM_flag_present:
7317 break;
7318 case DW_FORM_data2:
7319 case DW_FORM_ref2:
7320 info_ptr += 2;
7321 break;
7322 case DW_FORM_data4:
7323 case DW_FORM_ref4:
7324 info_ptr += 4;
7325 break;
7326 case DW_FORM_data8:
7327 case DW_FORM_ref8:
7328 case DW_FORM_ref_sig8:
7329 info_ptr += 8;
7330 break;
7331 case DW_FORM_string:
7332 read_direct_string (abfd, info_ptr, &bytes_read);
7333 info_ptr += bytes_read;
7334 break;
7335 case DW_FORM_sec_offset:
7336 case DW_FORM_strp:
7337 case DW_FORM_GNU_strp_alt:
7338 info_ptr += cu->header.offset_size;
7339 break;
7340 case DW_FORM_exprloc:
7341 case DW_FORM_block:
7342 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7343 info_ptr += bytes_read;
7344 break;
7345 case DW_FORM_block1:
7346 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7347 break;
7348 case DW_FORM_block2:
7349 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7350 break;
7351 case DW_FORM_block4:
7352 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7353 break;
7354 case DW_FORM_sdata:
7355 case DW_FORM_udata:
7356 case DW_FORM_ref_udata:
7357 case DW_FORM_GNU_addr_index:
7358 case DW_FORM_GNU_str_index:
7359 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7360 break;
7361 case DW_FORM_indirect:
7362 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7363 info_ptr += bytes_read;
7364 /* We need to continue parsing from here, so just go back to
7365 the top. */
7366 goto skip_attribute;
7367
7368 default:
7369 error (_("Dwarf Error: Cannot handle %s "
7370 "in DWARF reader [in module %s]"),
7371 dwarf_form_name (form),
7372 bfd_get_filename (abfd));
7373 }
7374 }
7375
7376 if (abbrev->has_children)
7377 return skip_children (reader, info_ptr);
7378 else
7379 return info_ptr;
7380 }
7381
7382 /* Locate ORIG_PDI's sibling.
7383 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7384
7385 static const gdb_byte *
7386 locate_pdi_sibling (const struct die_reader_specs *reader,
7387 struct partial_die_info *orig_pdi,
7388 const gdb_byte *info_ptr)
7389 {
7390 /* Do we know the sibling already? */
7391
7392 if (orig_pdi->sibling)
7393 return orig_pdi->sibling;
7394
7395 /* Are there any children to deal with? */
7396
7397 if (!orig_pdi->has_children)
7398 return info_ptr;
7399
7400 /* Skip the children the long way. */
7401
7402 return skip_children (reader, info_ptr);
7403 }
7404
7405 /* Expand this partial symbol table into a full symbol table. SELF is
7406 not NULL. */
7407
7408 static void
7409 dwarf2_read_symtab (struct partial_symtab *self,
7410 struct objfile *objfile)
7411 {
7412 if (self->readin)
7413 {
7414 warning (_("bug: psymtab for %s is already read in."),
7415 self->filename);
7416 }
7417 else
7418 {
7419 if (info_verbose)
7420 {
7421 printf_filtered (_("Reading in symbols for %s..."),
7422 self->filename);
7423 gdb_flush (gdb_stdout);
7424 }
7425
7426 /* Restore our global data. */
7427 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7428
7429 /* If this psymtab is constructed from a debug-only objfile, the
7430 has_section_at_zero flag will not necessarily be correct. We
7431 can get the correct value for this flag by looking at the data
7432 associated with the (presumably stripped) associated objfile. */
7433 if (objfile->separate_debug_objfile_backlink)
7434 {
7435 struct dwarf2_per_objfile *dpo_backlink
7436 = objfile_data (objfile->separate_debug_objfile_backlink,
7437 dwarf2_objfile_data_key);
7438
7439 dwarf2_per_objfile->has_section_at_zero
7440 = dpo_backlink->has_section_at_zero;
7441 }
7442
7443 dwarf2_per_objfile->reading_partial_symbols = 0;
7444
7445 psymtab_to_symtab_1 (self);
7446
7447 /* Finish up the debug error message. */
7448 if (info_verbose)
7449 printf_filtered (_("done.\n"));
7450 }
7451
7452 process_cu_includes ();
7453 }
7454 \f
7455 /* Reading in full CUs. */
7456
7457 /* Add PER_CU to the queue. */
7458
7459 static void
7460 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7461 enum language pretend_language)
7462 {
7463 struct dwarf2_queue_item *item;
7464
7465 per_cu->queued = 1;
7466 item = xmalloc (sizeof (*item));
7467 item->per_cu = per_cu;
7468 item->pretend_language = pretend_language;
7469 item->next = NULL;
7470
7471 if (dwarf2_queue == NULL)
7472 dwarf2_queue = item;
7473 else
7474 dwarf2_queue_tail->next = item;
7475
7476 dwarf2_queue_tail = item;
7477 }
7478
7479 /* If PER_CU is not yet queued, add it to the queue.
7480 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7481 dependency.
7482 The result is non-zero if PER_CU was queued, otherwise the result is zero
7483 meaning either PER_CU is already queued or it is already loaded.
7484
7485 N.B. There is an invariant here that if a CU is queued then it is loaded.
7486 The caller is required to load PER_CU if we return non-zero. */
7487
7488 static int
7489 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7490 struct dwarf2_per_cu_data *per_cu,
7491 enum language pretend_language)
7492 {
7493 /* We may arrive here during partial symbol reading, if we need full
7494 DIEs to process an unusual case (e.g. template arguments). Do
7495 not queue PER_CU, just tell our caller to load its DIEs. */
7496 if (dwarf2_per_objfile->reading_partial_symbols)
7497 {
7498 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7499 return 1;
7500 return 0;
7501 }
7502
7503 /* Mark the dependence relation so that we don't flush PER_CU
7504 too early. */
7505 if (dependent_cu != NULL)
7506 dwarf2_add_dependence (dependent_cu, per_cu);
7507
7508 /* If it's already on the queue, we have nothing to do. */
7509 if (per_cu->queued)
7510 return 0;
7511
7512 /* If the compilation unit is already loaded, just mark it as
7513 used. */
7514 if (per_cu->cu != NULL)
7515 {
7516 per_cu->cu->last_used = 0;
7517 return 0;
7518 }
7519
7520 /* Add it to the queue. */
7521 queue_comp_unit (per_cu, pretend_language);
7522
7523 return 1;
7524 }
7525
7526 /* Process the queue. */
7527
7528 static void
7529 process_queue (void)
7530 {
7531 struct dwarf2_queue_item *item, *next_item;
7532
7533 if (dwarf_read_debug)
7534 {
7535 fprintf_unfiltered (gdb_stdlog,
7536 "Expanding one or more symtabs of objfile %s ...\n",
7537 objfile_name (dwarf2_per_objfile->objfile));
7538 }
7539
7540 /* The queue starts out with one item, but following a DIE reference
7541 may load a new CU, adding it to the end of the queue. */
7542 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7543 {
7544 if ((dwarf2_per_objfile->using_index
7545 ? !item->per_cu->v.quick->compunit_symtab
7546 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7547 /* Skip dummy CUs. */
7548 && item->per_cu->cu != NULL)
7549 {
7550 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7551 unsigned int debug_print_threshold;
7552 char buf[100];
7553
7554 if (per_cu->is_debug_types)
7555 {
7556 struct signatured_type *sig_type =
7557 (struct signatured_type *) per_cu;
7558
7559 sprintf (buf, "TU %s at offset 0x%x",
7560 hex_string (sig_type->signature),
7561 per_cu->offset.sect_off);
7562 /* There can be 100s of TUs.
7563 Only print them in verbose mode. */
7564 debug_print_threshold = 2;
7565 }
7566 else
7567 {
7568 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7569 debug_print_threshold = 1;
7570 }
7571
7572 if (dwarf_read_debug >= debug_print_threshold)
7573 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7574
7575 if (per_cu->is_debug_types)
7576 process_full_type_unit (per_cu, item->pretend_language);
7577 else
7578 process_full_comp_unit (per_cu, item->pretend_language);
7579
7580 if (dwarf_read_debug >= debug_print_threshold)
7581 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7582 }
7583
7584 item->per_cu->queued = 0;
7585 next_item = item->next;
7586 xfree (item);
7587 }
7588
7589 dwarf2_queue_tail = NULL;
7590
7591 if (dwarf_read_debug)
7592 {
7593 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7594 objfile_name (dwarf2_per_objfile->objfile));
7595 }
7596 }
7597
7598 /* Free all allocated queue entries. This function only releases anything if
7599 an error was thrown; if the queue was processed then it would have been
7600 freed as we went along. */
7601
7602 static void
7603 dwarf2_release_queue (void *dummy)
7604 {
7605 struct dwarf2_queue_item *item, *last;
7606
7607 item = dwarf2_queue;
7608 while (item)
7609 {
7610 /* Anything still marked queued is likely to be in an
7611 inconsistent state, so discard it. */
7612 if (item->per_cu->queued)
7613 {
7614 if (item->per_cu->cu != NULL)
7615 free_one_cached_comp_unit (item->per_cu);
7616 item->per_cu->queued = 0;
7617 }
7618
7619 last = item;
7620 item = item->next;
7621 xfree (last);
7622 }
7623
7624 dwarf2_queue = dwarf2_queue_tail = NULL;
7625 }
7626
7627 /* Read in full symbols for PST, and anything it depends on. */
7628
7629 static void
7630 psymtab_to_symtab_1 (struct partial_symtab *pst)
7631 {
7632 struct dwarf2_per_cu_data *per_cu;
7633 int i;
7634
7635 if (pst->readin)
7636 return;
7637
7638 for (i = 0; i < pst->number_of_dependencies; i++)
7639 if (!pst->dependencies[i]->readin
7640 && pst->dependencies[i]->user == NULL)
7641 {
7642 /* Inform about additional files that need to be read in. */
7643 if (info_verbose)
7644 {
7645 /* FIXME: i18n: Need to make this a single string. */
7646 fputs_filtered (" ", gdb_stdout);
7647 wrap_here ("");
7648 fputs_filtered ("and ", gdb_stdout);
7649 wrap_here ("");
7650 printf_filtered ("%s...", pst->dependencies[i]->filename);
7651 wrap_here (""); /* Flush output. */
7652 gdb_flush (gdb_stdout);
7653 }
7654 psymtab_to_symtab_1 (pst->dependencies[i]);
7655 }
7656
7657 per_cu = pst->read_symtab_private;
7658
7659 if (per_cu == NULL)
7660 {
7661 /* It's an include file, no symbols to read for it.
7662 Everything is in the parent symtab. */
7663 pst->readin = 1;
7664 return;
7665 }
7666
7667 dw2_do_instantiate_symtab (per_cu);
7668 }
7669
7670 /* Trivial hash function for die_info: the hash value of a DIE
7671 is its offset in .debug_info for this objfile. */
7672
7673 static hashval_t
7674 die_hash (const void *item)
7675 {
7676 const struct die_info *die = item;
7677
7678 return die->offset.sect_off;
7679 }
7680
7681 /* Trivial comparison function for die_info structures: two DIEs
7682 are equal if they have the same offset. */
7683
7684 static int
7685 die_eq (const void *item_lhs, const void *item_rhs)
7686 {
7687 const struct die_info *die_lhs = item_lhs;
7688 const struct die_info *die_rhs = item_rhs;
7689
7690 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7691 }
7692
7693 /* die_reader_func for load_full_comp_unit.
7694 This is identical to read_signatured_type_reader,
7695 but is kept separate for now. */
7696
7697 static void
7698 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7699 const gdb_byte *info_ptr,
7700 struct die_info *comp_unit_die,
7701 int has_children,
7702 void *data)
7703 {
7704 struct dwarf2_cu *cu = reader->cu;
7705 enum language *language_ptr = data;
7706
7707 gdb_assert (cu->die_hash == NULL);
7708 cu->die_hash =
7709 htab_create_alloc_ex (cu->header.length / 12,
7710 die_hash,
7711 die_eq,
7712 NULL,
7713 &cu->comp_unit_obstack,
7714 hashtab_obstack_allocate,
7715 dummy_obstack_deallocate);
7716
7717 if (has_children)
7718 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7719 &info_ptr, comp_unit_die);
7720 cu->dies = comp_unit_die;
7721 /* comp_unit_die is not stored in die_hash, no need. */
7722
7723 /* We try not to read any attributes in this function, because not
7724 all CUs needed for references have been loaded yet, and symbol
7725 table processing isn't initialized. But we have to set the CU language,
7726 or we won't be able to build types correctly.
7727 Similarly, if we do not read the producer, we can not apply
7728 producer-specific interpretation. */
7729 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7730 }
7731
7732 /* Load the DIEs associated with PER_CU into memory. */
7733
7734 static void
7735 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7736 enum language pretend_language)
7737 {
7738 gdb_assert (! this_cu->is_debug_types);
7739
7740 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7741 load_full_comp_unit_reader, &pretend_language);
7742 }
7743
7744 /* Add a DIE to the delayed physname list. */
7745
7746 static void
7747 add_to_method_list (struct type *type, int fnfield_index, int index,
7748 const char *name, struct die_info *die,
7749 struct dwarf2_cu *cu)
7750 {
7751 struct delayed_method_info mi;
7752 mi.type = type;
7753 mi.fnfield_index = fnfield_index;
7754 mi.index = index;
7755 mi.name = name;
7756 mi.die = die;
7757 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7758 }
7759
7760 /* A cleanup for freeing the delayed method list. */
7761
7762 static void
7763 free_delayed_list (void *ptr)
7764 {
7765 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7766 if (cu->method_list != NULL)
7767 {
7768 VEC_free (delayed_method_info, cu->method_list);
7769 cu->method_list = NULL;
7770 }
7771 }
7772
7773 /* Compute the physnames of any methods on the CU's method list.
7774
7775 The computation of method physnames is delayed in order to avoid the
7776 (bad) condition that one of the method's formal parameters is of an as yet
7777 incomplete type. */
7778
7779 static void
7780 compute_delayed_physnames (struct dwarf2_cu *cu)
7781 {
7782 int i;
7783 struct delayed_method_info *mi;
7784 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7785 {
7786 const char *physname;
7787 struct fn_fieldlist *fn_flp
7788 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7789 physname = dwarf2_physname (mi->name, mi->die, cu);
7790 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7791 = physname ? physname : "";
7792 }
7793 }
7794
7795 /* Go objects should be embedded in a DW_TAG_module DIE,
7796 and it's not clear if/how imported objects will appear.
7797 To keep Go support simple until that's worked out,
7798 go back through what we've read and create something usable.
7799 We could do this while processing each DIE, and feels kinda cleaner,
7800 but that way is more invasive.
7801 This is to, for example, allow the user to type "p var" or "b main"
7802 without having to specify the package name, and allow lookups
7803 of module.object to work in contexts that use the expression
7804 parser. */
7805
7806 static void
7807 fixup_go_packaging (struct dwarf2_cu *cu)
7808 {
7809 char *package_name = NULL;
7810 struct pending *list;
7811 int i;
7812
7813 for (list = global_symbols; list != NULL; list = list->next)
7814 {
7815 for (i = 0; i < list->nsyms; ++i)
7816 {
7817 struct symbol *sym = list->symbol[i];
7818
7819 if (SYMBOL_LANGUAGE (sym) == language_go
7820 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7821 {
7822 char *this_package_name = go_symbol_package_name (sym);
7823
7824 if (this_package_name == NULL)
7825 continue;
7826 if (package_name == NULL)
7827 package_name = this_package_name;
7828 else
7829 {
7830 if (strcmp (package_name, this_package_name) != 0)
7831 complaint (&symfile_complaints,
7832 _("Symtab %s has objects from two different Go packages: %s and %s"),
7833 (symbol_symtab (sym) != NULL
7834 ? symtab_to_filename_for_display
7835 (symbol_symtab (sym))
7836 : objfile_name (cu->objfile)),
7837 this_package_name, package_name);
7838 xfree (this_package_name);
7839 }
7840 }
7841 }
7842 }
7843
7844 if (package_name != NULL)
7845 {
7846 struct objfile *objfile = cu->objfile;
7847 const char *saved_package_name
7848 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7849 package_name,
7850 strlen (package_name));
7851 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7852 saved_package_name, objfile);
7853 struct symbol *sym;
7854
7855 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7856
7857 sym = allocate_symbol (objfile);
7858 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7859 SYMBOL_SET_NAMES (sym, saved_package_name,
7860 strlen (saved_package_name), 0, objfile);
7861 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7862 e.g., "main" finds the "main" module and not C's main(). */
7863 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7864 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7865 SYMBOL_TYPE (sym) = type;
7866
7867 add_symbol_to_list (sym, &global_symbols);
7868
7869 xfree (package_name);
7870 }
7871 }
7872
7873 /* Return the symtab for PER_CU. This works properly regardless of
7874 whether we're using the index or psymtabs. */
7875
7876 static struct compunit_symtab *
7877 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7878 {
7879 return (dwarf2_per_objfile->using_index
7880 ? per_cu->v.quick->compunit_symtab
7881 : per_cu->v.psymtab->compunit_symtab);
7882 }
7883
7884 /* A helper function for computing the list of all symbol tables
7885 included by PER_CU. */
7886
7887 static void
7888 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7889 htab_t all_children, htab_t all_type_symtabs,
7890 struct dwarf2_per_cu_data *per_cu,
7891 struct compunit_symtab *immediate_parent)
7892 {
7893 void **slot;
7894 int ix;
7895 struct compunit_symtab *cust;
7896 struct dwarf2_per_cu_data *iter;
7897
7898 slot = htab_find_slot (all_children, per_cu, INSERT);
7899 if (*slot != NULL)
7900 {
7901 /* This inclusion and its children have been processed. */
7902 return;
7903 }
7904
7905 *slot = per_cu;
7906 /* Only add a CU if it has a symbol table. */
7907 cust = get_compunit_symtab (per_cu);
7908 if (cust != NULL)
7909 {
7910 /* If this is a type unit only add its symbol table if we haven't
7911 seen it yet (type unit per_cu's can share symtabs). */
7912 if (per_cu->is_debug_types)
7913 {
7914 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7915 if (*slot == NULL)
7916 {
7917 *slot = cust;
7918 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7919 if (cust->user == NULL)
7920 cust->user = immediate_parent;
7921 }
7922 }
7923 else
7924 {
7925 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7926 if (cust->user == NULL)
7927 cust->user = immediate_parent;
7928 }
7929 }
7930
7931 for (ix = 0;
7932 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7933 ++ix)
7934 {
7935 recursively_compute_inclusions (result, all_children,
7936 all_type_symtabs, iter, cust);
7937 }
7938 }
7939
7940 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7941 PER_CU. */
7942
7943 static void
7944 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7945 {
7946 gdb_assert (! per_cu->is_debug_types);
7947
7948 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7949 {
7950 int ix, len;
7951 struct dwarf2_per_cu_data *per_cu_iter;
7952 struct compunit_symtab *compunit_symtab_iter;
7953 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7954 htab_t all_children, all_type_symtabs;
7955 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7956
7957 /* If we don't have a symtab, we can just skip this case. */
7958 if (cust == NULL)
7959 return;
7960
7961 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7962 NULL, xcalloc, xfree);
7963 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7964 NULL, xcalloc, xfree);
7965
7966 for (ix = 0;
7967 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7968 ix, per_cu_iter);
7969 ++ix)
7970 {
7971 recursively_compute_inclusions (&result_symtabs, all_children,
7972 all_type_symtabs, per_cu_iter,
7973 cust);
7974 }
7975
7976 /* Now we have a transitive closure of all the included symtabs. */
7977 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7978 cust->includes
7979 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7980 (len + 1) * sizeof (struct compunit_symtab *));
7981 for (ix = 0;
7982 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7983 compunit_symtab_iter);
7984 ++ix)
7985 cust->includes[ix] = compunit_symtab_iter;
7986 cust->includes[len] = NULL;
7987
7988 VEC_free (compunit_symtab_ptr, result_symtabs);
7989 htab_delete (all_children);
7990 htab_delete (all_type_symtabs);
7991 }
7992 }
7993
7994 /* Compute the 'includes' field for the symtabs of all the CUs we just
7995 read. */
7996
7997 static void
7998 process_cu_includes (void)
7999 {
8000 int ix;
8001 struct dwarf2_per_cu_data *iter;
8002
8003 for (ix = 0;
8004 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8005 ix, iter);
8006 ++ix)
8007 {
8008 if (! iter->is_debug_types)
8009 compute_compunit_symtab_includes (iter);
8010 }
8011
8012 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8013 }
8014
8015 /* Generate full symbol information for PER_CU, whose DIEs have
8016 already been loaded into memory. */
8017
8018 static void
8019 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8020 enum language pretend_language)
8021 {
8022 struct dwarf2_cu *cu = per_cu->cu;
8023 struct objfile *objfile = per_cu->objfile;
8024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8025 CORE_ADDR lowpc, highpc;
8026 struct compunit_symtab *cust;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 CORE_ADDR baseaddr;
8029 struct block *static_block;
8030 CORE_ADDR addr;
8031
8032 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8033
8034 buildsym_init ();
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037
8038 cu->list_in_scope = &file_symbols;
8039
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8042
8043 /* Do line number decoding in read_file_scope () */
8044 process_die (cu->dies, cu);
8045
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8049
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8052 physnames. */
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8055
8056 /* Some compilers don't define a DW_AT_high_pc attribute for the
8057 compilation unit. If the DW_AT_high_pc is missing, synthesize
8058 it, by scanning the DIE's below the compilation unit. */
8059 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8060
8061 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8062 static_block = end_symtab_get_static_block (addr, 0, 1);
8063
8064 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8065 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8066 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8067 addrmap to help ensure it has an accurate map of pc values belonging to
8068 this comp unit. */
8069 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8070
8071 cust = end_symtab_from_static_block (static_block,
8072 SECT_OFF_TEXT (objfile), 0);
8073
8074 if (cust != NULL)
8075 {
8076 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8077
8078 /* Set symtab language to language from DW_AT_language. If the
8079 compilation is from a C file generated by language preprocessors, do
8080 not set the language if it was already deduced by start_subfile. */
8081 if (!(cu->language == language_c
8082 && COMPUNIT_FILETABS (cust)->language != language_c))
8083 COMPUNIT_FILETABS (cust)->language = cu->language;
8084
8085 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8086 produce DW_AT_location with location lists but it can be possibly
8087 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8088 there were bugs in prologue debug info, fixed later in GCC-4.5
8089 by "unwind info for epilogues" patch (which is not directly related).
8090
8091 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8092 needed, it would be wrong due to missing DW_AT_producer there.
8093
8094 Still one can confuse GDB by using non-standard GCC compilation
8095 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8096 */
8097 if (cu->has_loclist && gcc_4_minor >= 5)
8098 cust->locations_valid = 1;
8099
8100 if (gcc_4_minor >= 5)
8101 cust->epilogue_unwind_valid = 1;
8102
8103 cust->call_site_htab = cu->call_site_htab;
8104 }
8105
8106 if (dwarf2_per_objfile->using_index)
8107 per_cu->v.quick->compunit_symtab = cust;
8108 else
8109 {
8110 struct partial_symtab *pst = per_cu->v.psymtab;
8111 pst->compunit_symtab = cust;
8112 pst->readin = 1;
8113 }
8114
8115 /* Push it for inclusion processing later. */
8116 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8117
8118 do_cleanups (back_to);
8119 }
8120
8121 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8122 already been loaded into memory. */
8123
8124 static void
8125 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8126 enum language pretend_language)
8127 {
8128 struct dwarf2_cu *cu = per_cu->cu;
8129 struct objfile *objfile = per_cu->objfile;
8130 struct compunit_symtab *cust;
8131 struct cleanup *back_to, *delayed_list_cleanup;
8132 struct signatured_type *sig_type;
8133
8134 gdb_assert (per_cu->is_debug_types);
8135 sig_type = (struct signatured_type *) per_cu;
8136
8137 buildsym_init ();
8138 back_to = make_cleanup (really_free_pendings, NULL);
8139 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8140
8141 cu->list_in_scope = &file_symbols;
8142
8143 cu->language = pretend_language;
8144 cu->language_defn = language_def (cu->language);
8145
8146 /* The symbol tables are set up in read_type_unit_scope. */
8147 process_die (cu->dies, cu);
8148
8149 /* For now fudge the Go package. */
8150 if (cu->language == language_go)
8151 fixup_go_packaging (cu);
8152
8153 /* Now that we have processed all the DIEs in the CU, all the types
8154 should be complete, and it should now be safe to compute all of the
8155 physnames. */
8156 compute_delayed_physnames (cu);
8157 do_cleanups (delayed_list_cleanup);
8158
8159 /* TUs share symbol tables.
8160 If this is the first TU to use this symtab, complete the construction
8161 of it with end_expandable_symtab. Otherwise, complete the addition of
8162 this TU's symbols to the existing symtab. */
8163 if (sig_type->type_unit_group->compunit_symtab == NULL)
8164 {
8165 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8166 sig_type->type_unit_group->compunit_symtab = cust;
8167
8168 if (cust != NULL)
8169 {
8170 /* Set symtab language to language from DW_AT_language. If the
8171 compilation is from a C file generated by language preprocessors,
8172 do not set the language if it was already deduced by
8173 start_subfile. */
8174 if (!(cu->language == language_c
8175 && COMPUNIT_FILETABS (cust)->language != language_c))
8176 COMPUNIT_FILETABS (cust)->language = cu->language;
8177 }
8178 }
8179 else
8180 {
8181 augment_type_symtab ();
8182 cust = sig_type->type_unit_group->compunit_symtab;
8183 }
8184
8185 if (dwarf2_per_objfile->using_index)
8186 per_cu->v.quick->compunit_symtab = cust;
8187 else
8188 {
8189 struct partial_symtab *pst = per_cu->v.psymtab;
8190 pst->compunit_symtab = cust;
8191 pst->readin = 1;
8192 }
8193
8194 do_cleanups (back_to);
8195 }
8196
8197 /* Process an imported unit DIE. */
8198
8199 static void
8200 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8201 {
8202 struct attribute *attr;
8203
8204 /* For now we don't handle imported units in type units. */
8205 if (cu->per_cu->is_debug_types)
8206 {
8207 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8208 " supported in type units [in module %s]"),
8209 objfile_name (cu->objfile));
8210 }
8211
8212 attr = dwarf2_attr (die, DW_AT_import, cu);
8213 if (attr != NULL)
8214 {
8215 struct dwarf2_per_cu_data *per_cu;
8216 struct symtab *imported_symtab;
8217 sect_offset offset;
8218 int is_dwz;
8219
8220 offset = dwarf2_get_ref_die_offset (attr);
8221 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8222 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8223
8224 /* If necessary, add it to the queue and load its DIEs. */
8225 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8226 load_full_comp_unit (per_cu, cu->language);
8227
8228 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8229 per_cu);
8230 }
8231 }
8232
8233 /* Reset the in_process bit of a die. */
8234
8235 static void
8236 reset_die_in_process (void *arg)
8237 {
8238 struct die_info *die = arg;
8239
8240 die->in_process = 0;
8241 }
8242
8243 /* Process a die and its children. */
8244
8245 static void
8246 process_die (struct die_info *die, struct dwarf2_cu *cu)
8247 {
8248 struct cleanup *in_process;
8249
8250 /* We should only be processing those not already in process. */
8251 gdb_assert (!die->in_process);
8252
8253 die->in_process = 1;
8254 in_process = make_cleanup (reset_die_in_process,die);
8255
8256 switch (die->tag)
8257 {
8258 case DW_TAG_padding:
8259 break;
8260 case DW_TAG_compile_unit:
8261 case DW_TAG_partial_unit:
8262 read_file_scope (die, cu);
8263 break;
8264 case DW_TAG_type_unit:
8265 read_type_unit_scope (die, cu);
8266 break;
8267 case DW_TAG_subprogram:
8268 case DW_TAG_inlined_subroutine:
8269 read_func_scope (die, cu);
8270 break;
8271 case DW_TAG_lexical_block:
8272 case DW_TAG_try_block:
8273 case DW_TAG_catch_block:
8274 read_lexical_block_scope (die, cu);
8275 break;
8276 case DW_TAG_GNU_call_site:
8277 read_call_site_scope (die, cu);
8278 break;
8279 case DW_TAG_class_type:
8280 case DW_TAG_interface_type:
8281 case DW_TAG_structure_type:
8282 case DW_TAG_union_type:
8283 process_structure_scope (die, cu);
8284 break;
8285 case DW_TAG_enumeration_type:
8286 process_enumeration_scope (die, cu);
8287 break;
8288
8289 /* These dies have a type, but processing them does not create
8290 a symbol or recurse to process the children. Therefore we can
8291 read them on-demand through read_type_die. */
8292 case DW_TAG_subroutine_type:
8293 case DW_TAG_set_type:
8294 case DW_TAG_array_type:
8295 case DW_TAG_pointer_type:
8296 case DW_TAG_ptr_to_member_type:
8297 case DW_TAG_reference_type:
8298 case DW_TAG_string_type:
8299 break;
8300
8301 case DW_TAG_base_type:
8302 case DW_TAG_subrange_type:
8303 case DW_TAG_typedef:
8304 /* Add a typedef symbol for the type definition, if it has a
8305 DW_AT_name. */
8306 new_symbol (die, read_type_die (die, cu), cu);
8307 break;
8308 case DW_TAG_common_block:
8309 read_common_block (die, cu);
8310 break;
8311 case DW_TAG_common_inclusion:
8312 break;
8313 case DW_TAG_namespace:
8314 cu->processing_has_namespace_info = 1;
8315 read_namespace (die, cu);
8316 break;
8317 case DW_TAG_module:
8318 cu->processing_has_namespace_info = 1;
8319 read_module (die, cu);
8320 break;
8321 case DW_TAG_imported_declaration:
8322 cu->processing_has_namespace_info = 1;
8323 if (read_namespace_alias (die, cu))
8324 break;
8325 /* The declaration is not a global namespace alias: fall through. */
8326 case DW_TAG_imported_module:
8327 cu->processing_has_namespace_info = 1;
8328 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8329 || cu->language != language_fortran))
8330 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8331 dwarf_tag_name (die->tag));
8332 read_import_statement (die, cu);
8333 break;
8334
8335 case DW_TAG_imported_unit:
8336 process_imported_unit_die (die, cu);
8337 break;
8338
8339 default:
8340 new_symbol (die, NULL, cu);
8341 break;
8342 }
8343
8344 do_cleanups (in_process);
8345 }
8346 \f
8347 /* DWARF name computation. */
8348
8349 /* A helper function for dwarf2_compute_name which determines whether DIE
8350 needs to have the name of the scope prepended to the name listed in the
8351 die. */
8352
8353 static int
8354 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8355 {
8356 struct attribute *attr;
8357
8358 switch (die->tag)
8359 {
8360 case DW_TAG_namespace:
8361 case DW_TAG_typedef:
8362 case DW_TAG_class_type:
8363 case DW_TAG_interface_type:
8364 case DW_TAG_structure_type:
8365 case DW_TAG_union_type:
8366 case DW_TAG_enumeration_type:
8367 case DW_TAG_enumerator:
8368 case DW_TAG_subprogram:
8369 case DW_TAG_inlined_subroutine:
8370 case DW_TAG_member:
8371 case DW_TAG_imported_declaration:
8372 return 1;
8373
8374 case DW_TAG_variable:
8375 case DW_TAG_constant:
8376 /* We only need to prefix "globally" visible variables. These include
8377 any variable marked with DW_AT_external or any variable that
8378 lives in a namespace. [Variables in anonymous namespaces
8379 require prefixing, but they are not DW_AT_external.] */
8380
8381 if (dwarf2_attr (die, DW_AT_specification, cu))
8382 {
8383 struct dwarf2_cu *spec_cu = cu;
8384
8385 return die_needs_namespace (die_specification (die, &spec_cu),
8386 spec_cu);
8387 }
8388
8389 attr = dwarf2_attr (die, DW_AT_external, cu);
8390 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8391 && die->parent->tag != DW_TAG_module)
8392 return 0;
8393 /* A variable in a lexical block of some kind does not need a
8394 namespace, even though in C++ such variables may be external
8395 and have a mangled name. */
8396 if (die->parent->tag == DW_TAG_lexical_block
8397 || die->parent->tag == DW_TAG_try_block
8398 || die->parent->tag == DW_TAG_catch_block
8399 || die->parent->tag == DW_TAG_subprogram)
8400 return 0;
8401 return 1;
8402
8403 default:
8404 return 0;
8405 }
8406 }
8407
8408 /* Retrieve the last character from a mem_file. */
8409
8410 static void
8411 do_ui_file_peek_last (void *object, const char *buffer, long length)
8412 {
8413 char *last_char_p = (char *) object;
8414
8415 if (length > 0)
8416 *last_char_p = buffer[length - 1];
8417 }
8418
8419 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8420 compute the physname for the object, which include a method's:
8421 - formal parameters (C++/Java),
8422 - receiver type (Go),
8423 - return type (Java).
8424
8425 The term "physname" is a bit confusing.
8426 For C++, for example, it is the demangled name.
8427 For Go, for example, it's the mangled name.
8428
8429 For Ada, return the DIE's linkage name rather than the fully qualified
8430 name. PHYSNAME is ignored..
8431
8432 The result is allocated on the objfile_obstack and canonicalized. */
8433
8434 static const char *
8435 dwarf2_compute_name (const char *name,
8436 struct die_info *die, struct dwarf2_cu *cu,
8437 int physname)
8438 {
8439 struct objfile *objfile = cu->objfile;
8440
8441 if (name == NULL)
8442 name = dwarf2_name (die, cu);
8443
8444 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8445 compute it by typename_concat inside GDB. */
8446 if (cu->language == language_ada
8447 || (cu->language == language_fortran && physname))
8448 {
8449 /* For Ada unit, we prefer the linkage name over the name, as
8450 the former contains the exported name, which the user expects
8451 to be able to reference. Ideally, we want the user to be able
8452 to reference this entity using either natural or linkage name,
8453 but we haven't started looking at this enhancement yet. */
8454 struct attribute *attr;
8455
8456 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8457 if (attr == NULL)
8458 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8459 if (attr && DW_STRING (attr))
8460 return DW_STRING (attr);
8461 }
8462
8463 /* These are the only languages we know how to qualify names in. */
8464 if (name != NULL
8465 && (cu->language == language_cplus || cu->language == language_java
8466 || cu->language == language_fortran || cu->language == language_d))
8467 {
8468 if (die_needs_namespace (die, cu))
8469 {
8470 long length;
8471 const char *prefix;
8472 struct ui_file *buf;
8473 char *intermediate_name;
8474 const char *canonical_name = NULL;
8475
8476 prefix = determine_prefix (die, cu);
8477 buf = mem_fileopen ();
8478 if (*prefix != '\0')
8479 {
8480 char *prefixed_name = typename_concat (NULL, prefix, name,
8481 physname, cu);
8482
8483 fputs_unfiltered (prefixed_name, buf);
8484 xfree (prefixed_name);
8485 }
8486 else
8487 fputs_unfiltered (name, buf);
8488
8489 /* Template parameters may be specified in the DIE's DW_AT_name, or
8490 as children with DW_TAG_template_type_param or
8491 DW_TAG_value_type_param. If the latter, add them to the name
8492 here. If the name already has template parameters, then
8493 skip this step; some versions of GCC emit both, and
8494 it is more efficient to use the pre-computed name.
8495
8496 Something to keep in mind about this process: it is very
8497 unlikely, or in some cases downright impossible, to produce
8498 something that will match the mangled name of a function.
8499 If the definition of the function has the same debug info,
8500 we should be able to match up with it anyway. But fallbacks
8501 using the minimal symbol, for instance to find a method
8502 implemented in a stripped copy of libstdc++, will not work.
8503 If we do not have debug info for the definition, we will have to
8504 match them up some other way.
8505
8506 When we do name matching there is a related problem with function
8507 templates; two instantiated function templates are allowed to
8508 differ only by their return types, which we do not add here. */
8509
8510 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8511 {
8512 struct attribute *attr;
8513 struct die_info *child;
8514 int first = 1;
8515
8516 die->building_fullname = 1;
8517
8518 for (child = die->child; child != NULL; child = child->sibling)
8519 {
8520 struct type *type;
8521 LONGEST value;
8522 const gdb_byte *bytes;
8523 struct dwarf2_locexpr_baton *baton;
8524 struct value *v;
8525
8526 if (child->tag != DW_TAG_template_type_param
8527 && child->tag != DW_TAG_template_value_param)
8528 continue;
8529
8530 if (first)
8531 {
8532 fputs_unfiltered ("<", buf);
8533 first = 0;
8534 }
8535 else
8536 fputs_unfiltered (", ", buf);
8537
8538 attr = dwarf2_attr (child, DW_AT_type, cu);
8539 if (attr == NULL)
8540 {
8541 complaint (&symfile_complaints,
8542 _("template parameter missing DW_AT_type"));
8543 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8544 continue;
8545 }
8546 type = die_type (child, cu);
8547
8548 if (child->tag == DW_TAG_template_type_param)
8549 {
8550 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8551 continue;
8552 }
8553
8554 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing "
8559 "DW_AT_const_value"));
8560 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8561 continue;
8562 }
8563
8564 dwarf2_const_value_attr (attr, type, name,
8565 &cu->comp_unit_obstack, cu,
8566 &value, &bytes, &baton);
8567
8568 if (TYPE_NOSIGN (type))
8569 /* GDB prints characters as NUMBER 'CHAR'. If that's
8570 changed, this can use value_print instead. */
8571 c_printchar (value, type, buf);
8572 else
8573 {
8574 struct value_print_options opts;
8575
8576 if (baton != NULL)
8577 v = dwarf2_evaluate_loc_desc (type, NULL,
8578 baton->data,
8579 baton->size,
8580 baton->per_cu);
8581 else if (bytes != NULL)
8582 {
8583 v = allocate_value (type);
8584 memcpy (value_contents_writeable (v), bytes,
8585 TYPE_LENGTH (type));
8586 }
8587 else
8588 v = value_from_longest (type, value);
8589
8590 /* Specify decimal so that we do not depend on
8591 the radix. */
8592 get_formatted_print_options (&opts, 'd');
8593 opts.raw = 1;
8594 value_print (v, buf, &opts);
8595 release_value (v);
8596 value_free (v);
8597 }
8598 }
8599
8600 die->building_fullname = 0;
8601
8602 if (!first)
8603 {
8604 /* Close the argument list, with a space if necessary
8605 (nested templates). */
8606 char last_char = '\0';
8607 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8608 if (last_char == '>')
8609 fputs_unfiltered (" >", buf);
8610 else
8611 fputs_unfiltered (">", buf);
8612 }
8613 }
8614
8615 /* For Java and C++ methods, append formal parameter type
8616 information, if PHYSNAME. */
8617
8618 if (physname && die->tag == DW_TAG_subprogram
8619 && (cu->language == language_cplus
8620 || cu->language == language_java))
8621 {
8622 struct type *type = read_type_die (die, cu);
8623
8624 c_type_print_args (type, buf, 1, cu->language,
8625 &type_print_raw_options);
8626
8627 if (cu->language == language_java)
8628 {
8629 /* For java, we must append the return type to method
8630 names. */
8631 if (die->tag == DW_TAG_subprogram)
8632 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8633 0, 0, &type_print_raw_options);
8634 }
8635 else if (cu->language == language_cplus)
8636 {
8637 /* Assume that an artificial first parameter is
8638 "this", but do not crash if it is not. RealView
8639 marks unnamed (and thus unused) parameters as
8640 artificial; there is no way to differentiate
8641 the two cases. */
8642 if (TYPE_NFIELDS (type) > 0
8643 && TYPE_FIELD_ARTIFICIAL (type, 0)
8644 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8645 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8646 0))))
8647 fputs_unfiltered (" const", buf);
8648 }
8649 }
8650
8651 intermediate_name = ui_file_xstrdup (buf, &length);
8652 ui_file_delete (buf);
8653
8654 if (cu->language == language_cplus)
8655 canonical_name
8656 = dwarf2_canonicalize_name (intermediate_name, cu,
8657 &objfile->per_bfd->storage_obstack);
8658
8659 /* If we only computed INTERMEDIATE_NAME, or if
8660 INTERMEDIATE_NAME is already canonical, then we need to
8661 copy it to the appropriate obstack. */
8662 if (canonical_name == NULL || canonical_name == intermediate_name)
8663 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8664 intermediate_name,
8665 strlen (intermediate_name));
8666 else
8667 name = canonical_name;
8668
8669 xfree (intermediate_name);
8670 }
8671 }
8672
8673 return name;
8674 }
8675
8676 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8677 If scope qualifiers are appropriate they will be added. The result
8678 will be allocated on the storage_obstack, or NULL if the DIE does
8679 not have a name. NAME may either be from a previous call to
8680 dwarf2_name or NULL.
8681
8682 The output string will be canonicalized (if C++/Java). */
8683
8684 static const char *
8685 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8686 {
8687 return dwarf2_compute_name (name, die, cu, 0);
8688 }
8689
8690 /* Construct a physname for the given DIE in CU. NAME may either be
8691 from a previous call to dwarf2_name or NULL. The result will be
8692 allocated on the objfile_objstack or NULL if the DIE does not have a
8693 name.
8694
8695 The output string will be canonicalized (if C++/Java). */
8696
8697 static const char *
8698 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8699 {
8700 struct objfile *objfile = cu->objfile;
8701 struct attribute *attr;
8702 const char *retval, *mangled = NULL, *canon = NULL;
8703 struct cleanup *back_to;
8704 int need_copy = 1;
8705
8706 /* In this case dwarf2_compute_name is just a shortcut not building anything
8707 on its own. */
8708 if (!die_needs_namespace (die, cu))
8709 return dwarf2_compute_name (name, die, cu, 1);
8710
8711 back_to = make_cleanup (null_cleanup, NULL);
8712
8713 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8714 if (!attr)
8715 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8716
8717 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8718 has computed. */
8719 if (attr && DW_STRING (attr))
8720 {
8721 char *demangled;
8722
8723 mangled = DW_STRING (attr);
8724
8725 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8726 type. It is easier for GDB users to search for such functions as
8727 `name(params)' than `long name(params)'. In such case the minimal
8728 symbol names do not match the full symbol names but for template
8729 functions there is never a need to look up their definition from their
8730 declaration so the only disadvantage remains the minimal symbol
8731 variant `long name(params)' does not have the proper inferior type.
8732 */
8733
8734 if (cu->language == language_go)
8735 {
8736 /* This is a lie, but we already lie to the caller new_symbol_full.
8737 new_symbol_full assumes we return the mangled name.
8738 This just undoes that lie until things are cleaned up. */
8739 demangled = NULL;
8740 }
8741 else
8742 {
8743 demangled = gdb_demangle (mangled,
8744 (DMGL_PARAMS | DMGL_ANSI
8745 | (cu->language == language_java
8746 ? DMGL_JAVA | DMGL_RET_POSTFIX
8747 : DMGL_RET_DROP)));
8748 }
8749 if (demangled)
8750 {
8751 make_cleanup (xfree, demangled);
8752 canon = demangled;
8753 }
8754 else
8755 {
8756 canon = mangled;
8757 need_copy = 0;
8758 }
8759 }
8760
8761 if (canon == NULL || check_physname)
8762 {
8763 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8764
8765 if (canon != NULL && strcmp (physname, canon) != 0)
8766 {
8767 /* It may not mean a bug in GDB. The compiler could also
8768 compute DW_AT_linkage_name incorrectly. But in such case
8769 GDB would need to be bug-to-bug compatible. */
8770
8771 complaint (&symfile_complaints,
8772 _("Computed physname <%s> does not match demangled <%s> "
8773 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8774 physname, canon, mangled, die->offset.sect_off,
8775 objfile_name (objfile));
8776
8777 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8778 is available here - over computed PHYSNAME. It is safer
8779 against both buggy GDB and buggy compilers. */
8780
8781 retval = canon;
8782 }
8783 else
8784 {
8785 retval = physname;
8786 need_copy = 0;
8787 }
8788 }
8789 else
8790 retval = canon;
8791
8792 if (need_copy)
8793 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8794 retval, strlen (retval));
8795
8796 do_cleanups (back_to);
8797 return retval;
8798 }
8799
8800 /* Inspect DIE in CU for a namespace alias. If one exists, record
8801 a new symbol for it.
8802
8803 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8804
8805 static int
8806 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8807 {
8808 struct attribute *attr;
8809
8810 /* If the die does not have a name, this is not a namespace
8811 alias. */
8812 attr = dwarf2_attr (die, DW_AT_name, cu);
8813 if (attr != NULL)
8814 {
8815 int num;
8816 struct die_info *d = die;
8817 struct dwarf2_cu *imported_cu = cu;
8818
8819 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8820 keep inspecting DIEs until we hit the underlying import. */
8821 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8822 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8823 {
8824 attr = dwarf2_attr (d, DW_AT_import, cu);
8825 if (attr == NULL)
8826 break;
8827
8828 d = follow_die_ref (d, attr, &imported_cu);
8829 if (d->tag != DW_TAG_imported_declaration)
8830 break;
8831 }
8832
8833 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8834 {
8835 complaint (&symfile_complaints,
8836 _("DIE at 0x%x has too many recursively imported "
8837 "declarations"), d->offset.sect_off);
8838 return 0;
8839 }
8840
8841 if (attr != NULL)
8842 {
8843 struct type *type;
8844 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8845
8846 type = get_die_type_at_offset (offset, cu->per_cu);
8847 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8848 {
8849 /* This declaration is a global namespace alias. Add
8850 a symbol for it whose type is the aliased namespace. */
8851 new_symbol (die, type, cu);
8852 return 1;
8853 }
8854 }
8855 }
8856
8857 return 0;
8858 }
8859
8860 /* Return the using directives repository (global or local?) to use in the
8861 current context for LANGUAGE.
8862
8863 For Ada, imported declarations can materialize renamings, which *may* be
8864 global. However it is impossible (for now?) in DWARF to distinguish
8865 "external" imported declarations and "static" ones. As all imported
8866 declarations seem to be static in all other languages, make them all CU-wide
8867 global only in Ada. */
8868
8869 static struct using_direct **
8870 using_directives (enum language language)
8871 {
8872 if (language == language_ada && context_stack_depth == 0)
8873 return &global_using_directives;
8874 else
8875 return &local_using_directives;
8876 }
8877
8878 /* Read the import statement specified by the given die and record it. */
8879
8880 static void
8881 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8882 {
8883 struct objfile *objfile = cu->objfile;
8884 struct attribute *import_attr;
8885 struct die_info *imported_die, *child_die;
8886 struct dwarf2_cu *imported_cu;
8887 const char *imported_name;
8888 const char *imported_name_prefix;
8889 const char *canonical_name;
8890 const char *import_alias;
8891 const char *imported_declaration = NULL;
8892 const char *import_prefix;
8893 VEC (const_char_ptr) *excludes = NULL;
8894 struct cleanup *cleanups;
8895
8896 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8897 if (import_attr == NULL)
8898 {
8899 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8900 dwarf_tag_name (die->tag));
8901 return;
8902 }
8903
8904 imported_cu = cu;
8905 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8906 imported_name = dwarf2_name (imported_die, imported_cu);
8907 if (imported_name == NULL)
8908 {
8909 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8910
8911 The import in the following code:
8912 namespace A
8913 {
8914 typedef int B;
8915 }
8916
8917 int main ()
8918 {
8919 using A::B;
8920 B b;
8921 return b;
8922 }
8923
8924 ...
8925 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8926 <52> DW_AT_decl_file : 1
8927 <53> DW_AT_decl_line : 6
8928 <54> DW_AT_import : <0x75>
8929 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8930 <59> DW_AT_name : B
8931 <5b> DW_AT_decl_file : 1
8932 <5c> DW_AT_decl_line : 2
8933 <5d> DW_AT_type : <0x6e>
8934 ...
8935 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8936 <76> DW_AT_byte_size : 4
8937 <77> DW_AT_encoding : 5 (signed)
8938
8939 imports the wrong die ( 0x75 instead of 0x58 ).
8940 This case will be ignored until the gcc bug is fixed. */
8941 return;
8942 }
8943
8944 /* Figure out the local name after import. */
8945 import_alias = dwarf2_name (die, cu);
8946
8947 /* Figure out where the statement is being imported to. */
8948 import_prefix = determine_prefix (die, cu);
8949
8950 /* Figure out what the scope of the imported die is and prepend it
8951 to the name of the imported die. */
8952 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8953
8954 if (imported_die->tag != DW_TAG_namespace
8955 && imported_die->tag != DW_TAG_module)
8956 {
8957 imported_declaration = imported_name;
8958 canonical_name = imported_name_prefix;
8959 }
8960 else if (strlen (imported_name_prefix) > 0)
8961 canonical_name = obconcat (&objfile->objfile_obstack,
8962 imported_name_prefix,
8963 (cu->language == language_d ? "." : "::"),
8964 imported_name, (char *) NULL);
8965 else
8966 canonical_name = imported_name;
8967
8968 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8969
8970 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8971 for (child_die = die->child; child_die && child_die->tag;
8972 child_die = sibling_die (child_die))
8973 {
8974 /* DWARF-4: A Fortran use statement with a “rename list” may be
8975 represented by an imported module entry with an import attribute
8976 referring to the module and owned entries corresponding to those
8977 entities that are renamed as part of being imported. */
8978
8979 if (child_die->tag != DW_TAG_imported_declaration)
8980 {
8981 complaint (&symfile_complaints,
8982 _("child DW_TAG_imported_declaration expected "
8983 "- DIE at 0x%x [in module %s]"),
8984 child_die->offset.sect_off, objfile_name (objfile));
8985 continue;
8986 }
8987
8988 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8989 if (import_attr == NULL)
8990 {
8991 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8992 dwarf_tag_name (child_die->tag));
8993 continue;
8994 }
8995
8996 imported_cu = cu;
8997 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8998 &imported_cu);
8999 imported_name = dwarf2_name (imported_die, imported_cu);
9000 if (imported_name == NULL)
9001 {
9002 complaint (&symfile_complaints,
9003 _("child DW_TAG_imported_declaration has unknown "
9004 "imported name - DIE at 0x%x [in module %s]"),
9005 child_die->offset.sect_off, objfile_name (objfile));
9006 continue;
9007 }
9008
9009 VEC_safe_push (const_char_ptr, excludes, imported_name);
9010
9011 process_die (child_die, cu);
9012 }
9013
9014 add_using_directive (using_directives (cu->language),
9015 import_prefix,
9016 canonical_name,
9017 import_alias,
9018 imported_declaration,
9019 excludes,
9020 0,
9021 &objfile->objfile_obstack);
9022
9023 do_cleanups (cleanups);
9024 }
9025
9026 /* Cleanup function for handle_DW_AT_stmt_list. */
9027
9028 static void
9029 free_cu_line_header (void *arg)
9030 {
9031 struct dwarf2_cu *cu = arg;
9032
9033 free_line_header (cu->line_header);
9034 cu->line_header = NULL;
9035 }
9036
9037 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9038 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9039 this, it was first present in GCC release 4.3.0. */
9040
9041 static int
9042 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9043 {
9044 if (!cu->checked_producer)
9045 check_producer (cu);
9046
9047 return cu->producer_is_gcc_lt_4_3;
9048 }
9049
9050 static void
9051 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9052 const char **name, const char **comp_dir)
9053 {
9054 struct attribute *attr;
9055
9056 *name = NULL;
9057 *comp_dir = NULL;
9058
9059 /* Find the filename. Do not use dwarf2_name here, since the filename
9060 is not a source language identifier. */
9061 attr = dwarf2_attr (die, DW_AT_name, cu);
9062 if (attr)
9063 {
9064 *name = DW_STRING (attr);
9065 }
9066
9067 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9068 if (attr)
9069 *comp_dir = DW_STRING (attr);
9070 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9071 && IS_ABSOLUTE_PATH (*name))
9072 {
9073 char *d = ldirname (*name);
9074
9075 *comp_dir = d;
9076 if (d != NULL)
9077 make_cleanup (xfree, d);
9078 }
9079 if (*comp_dir != NULL)
9080 {
9081 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9082 directory, get rid of it. */
9083 char *cp = strchr (*comp_dir, ':');
9084
9085 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9086 *comp_dir = cp + 1;
9087 }
9088
9089 if (*name == NULL)
9090 *name = "<unknown>";
9091 }
9092
9093 /* Handle DW_AT_stmt_list for a compilation unit.
9094 DIE is the DW_TAG_compile_unit die for CU.
9095 COMP_DIR is the compilation directory. LOWPC is passed to
9096 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9097
9098 static void
9099 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9100 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9101 {
9102 struct objfile *objfile = dwarf2_per_objfile->objfile;
9103 struct attribute *attr;
9104 unsigned int line_offset;
9105 struct line_header line_header_local;
9106 hashval_t line_header_local_hash;
9107 unsigned u;
9108 void **slot;
9109 int decode_mapping;
9110
9111 gdb_assert (! cu->per_cu->is_debug_types);
9112
9113 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9114 if (attr == NULL)
9115 return;
9116
9117 line_offset = DW_UNSND (attr);
9118
9119 /* The line header hash table is only created if needed (it exists to
9120 prevent redundant reading of the line table for partial_units).
9121 If we're given a partial_unit, we'll need it. If we're given a
9122 compile_unit, then use the line header hash table if it's already
9123 created, but don't create one just yet. */
9124
9125 if (dwarf2_per_objfile->line_header_hash == NULL
9126 && die->tag == DW_TAG_partial_unit)
9127 {
9128 dwarf2_per_objfile->line_header_hash
9129 = htab_create_alloc_ex (127, line_header_hash_voidp,
9130 line_header_eq_voidp,
9131 free_line_header_voidp,
9132 &objfile->objfile_obstack,
9133 hashtab_obstack_allocate,
9134 dummy_obstack_deallocate);
9135 }
9136
9137 line_header_local.offset.sect_off = line_offset;
9138 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9139 line_header_local_hash = line_header_hash (&line_header_local);
9140 if (dwarf2_per_objfile->line_header_hash != NULL)
9141 {
9142 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9143 &line_header_local,
9144 line_header_local_hash, NO_INSERT);
9145
9146 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9147 is not present in *SLOT (since if there is something in *SLOT then
9148 it will be for a partial_unit). */
9149 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9150 {
9151 gdb_assert (*slot != NULL);
9152 cu->line_header = *slot;
9153 return;
9154 }
9155 }
9156
9157 /* dwarf_decode_line_header does not yet provide sufficient information.
9158 We always have to call also dwarf_decode_lines for it. */
9159 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9160 if (cu->line_header == NULL)
9161 return;
9162
9163 if (dwarf2_per_objfile->line_header_hash == NULL)
9164 slot = NULL;
9165 else
9166 {
9167 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9168 &line_header_local,
9169 line_header_local_hash, INSERT);
9170 gdb_assert (slot != NULL);
9171 }
9172 if (slot != NULL && *slot == NULL)
9173 {
9174 /* This newly decoded line number information unit will be owned
9175 by line_header_hash hash table. */
9176 *slot = cu->line_header;
9177 }
9178 else
9179 {
9180 /* We cannot free any current entry in (*slot) as that struct line_header
9181 may be already used by multiple CUs. Create only temporary decoded
9182 line_header for this CU - it may happen at most once for each line
9183 number information unit. And if we're not using line_header_hash
9184 then this is what we want as well. */
9185 gdb_assert (die->tag != DW_TAG_partial_unit);
9186 make_cleanup (free_cu_line_header, cu);
9187 }
9188 decode_mapping = (die->tag != DW_TAG_partial_unit);
9189 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9190 decode_mapping);
9191 }
9192
9193 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9194
9195 static void
9196 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9197 {
9198 struct objfile *objfile = dwarf2_per_objfile->objfile;
9199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9200 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9201 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9202 CORE_ADDR highpc = ((CORE_ADDR) 0);
9203 struct attribute *attr;
9204 const char *name = NULL;
9205 const char *comp_dir = NULL;
9206 struct die_info *child_die;
9207 bfd *abfd = objfile->obfd;
9208 CORE_ADDR baseaddr;
9209
9210 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9211
9212 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9213
9214 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9215 from finish_block. */
9216 if (lowpc == ((CORE_ADDR) -1))
9217 lowpc = highpc;
9218 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9219
9220 find_file_and_directory (die, cu, &name, &comp_dir);
9221
9222 prepare_one_comp_unit (cu, die, cu->language);
9223
9224 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9225 standardised yet. As a workaround for the language detection we fall
9226 back to the DW_AT_producer string. */
9227 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9228 cu->language = language_opencl;
9229
9230 /* Similar hack for Go. */
9231 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9232 set_cu_language (DW_LANG_Go, cu);
9233
9234 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9235
9236 /* Decode line number information if present. We do this before
9237 processing child DIEs, so that the line header table is available
9238 for DW_AT_decl_file. */
9239 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9240
9241 /* Process all dies in compilation unit. */
9242 if (die->child != NULL)
9243 {
9244 child_die = die->child;
9245 while (child_die && child_die->tag)
9246 {
9247 process_die (child_die, cu);
9248 child_die = sibling_die (child_die);
9249 }
9250 }
9251
9252 /* Decode macro information, if present. Dwarf 2 macro information
9253 refers to information in the line number info statement program
9254 header, so we can only read it if we've read the header
9255 successfully. */
9256 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9257 if (attr && cu->line_header)
9258 {
9259 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9260 complaint (&symfile_complaints,
9261 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9262
9263 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9264 }
9265 else
9266 {
9267 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9268 if (attr && cu->line_header)
9269 {
9270 unsigned int macro_offset = DW_UNSND (attr);
9271
9272 dwarf_decode_macros (cu, macro_offset, 0);
9273 }
9274 }
9275
9276 do_cleanups (back_to);
9277 }
9278
9279 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9280 Create the set of symtabs used by this TU, or if this TU is sharing
9281 symtabs with another TU and the symtabs have already been created
9282 then restore those symtabs in the line header.
9283 We don't need the pc/line-number mapping for type units. */
9284
9285 static void
9286 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9287 {
9288 struct objfile *objfile = dwarf2_per_objfile->objfile;
9289 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9290 struct type_unit_group *tu_group;
9291 int first_time;
9292 struct line_header *lh;
9293 struct attribute *attr;
9294 unsigned int i, line_offset;
9295 struct signatured_type *sig_type;
9296
9297 gdb_assert (per_cu->is_debug_types);
9298 sig_type = (struct signatured_type *) per_cu;
9299
9300 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9301
9302 /* If we're using .gdb_index (includes -readnow) then
9303 per_cu->type_unit_group may not have been set up yet. */
9304 if (sig_type->type_unit_group == NULL)
9305 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9306 tu_group = sig_type->type_unit_group;
9307
9308 /* If we've already processed this stmt_list there's no real need to
9309 do it again, we could fake it and just recreate the part we need
9310 (file name,index -> symtab mapping). If data shows this optimization
9311 is useful we can do it then. */
9312 first_time = tu_group->compunit_symtab == NULL;
9313
9314 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9315 debug info. */
9316 lh = NULL;
9317 if (attr != NULL)
9318 {
9319 line_offset = DW_UNSND (attr);
9320 lh = dwarf_decode_line_header (line_offset, cu);
9321 }
9322 if (lh == NULL)
9323 {
9324 if (first_time)
9325 dwarf2_start_symtab (cu, "", NULL, 0);
9326 else
9327 {
9328 gdb_assert (tu_group->symtabs == NULL);
9329 restart_symtab (tu_group->compunit_symtab, "", 0);
9330 }
9331 return;
9332 }
9333
9334 cu->line_header = lh;
9335 make_cleanup (free_cu_line_header, cu);
9336
9337 if (first_time)
9338 {
9339 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9340
9341 tu_group->num_symtabs = lh->num_file_names;
9342 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9343
9344 for (i = 0; i < lh->num_file_names; ++i)
9345 {
9346 const char *dir = NULL;
9347 struct file_entry *fe = &lh->file_names[i];
9348
9349 if (fe->dir_index && lh->include_dirs != NULL)
9350 dir = lh->include_dirs[fe->dir_index - 1];
9351 dwarf2_start_subfile (fe->name, dir);
9352
9353 if (current_subfile->symtab == NULL)
9354 {
9355 /* NOTE: start_subfile will recognize when it's been passed
9356 a file it has already seen. So we can't assume there's a
9357 simple mapping from lh->file_names to subfiles, plus
9358 lh->file_names may contain dups. */
9359 current_subfile->symtab
9360 = allocate_symtab (cust, current_subfile->name);
9361 }
9362
9363 fe->symtab = current_subfile->symtab;
9364 tu_group->symtabs[i] = fe->symtab;
9365 }
9366 }
9367 else
9368 {
9369 restart_symtab (tu_group->compunit_symtab, "", 0);
9370
9371 for (i = 0; i < lh->num_file_names; ++i)
9372 {
9373 struct file_entry *fe = &lh->file_names[i];
9374
9375 fe->symtab = tu_group->symtabs[i];
9376 }
9377 }
9378
9379 /* The main symtab is allocated last. Type units don't have DW_AT_name
9380 so they don't have a "real" (so to speak) symtab anyway.
9381 There is later code that will assign the main symtab to all symbols
9382 that don't have one. We need to handle the case of a symbol with a
9383 missing symtab (DW_AT_decl_file) anyway. */
9384 }
9385
9386 /* Process DW_TAG_type_unit.
9387 For TUs we want to skip the first top level sibling if it's not the
9388 actual type being defined by this TU. In this case the first top
9389 level sibling is there to provide context only. */
9390
9391 static void
9392 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9393 {
9394 struct die_info *child_die;
9395
9396 prepare_one_comp_unit (cu, die, language_minimal);
9397
9398 /* Initialize (or reinitialize) the machinery for building symtabs.
9399 We do this before processing child DIEs, so that the line header table
9400 is available for DW_AT_decl_file. */
9401 setup_type_unit_groups (die, cu);
9402
9403 if (die->child != NULL)
9404 {
9405 child_die = die->child;
9406 while (child_die && child_die->tag)
9407 {
9408 process_die (child_die, cu);
9409 child_die = sibling_die (child_die);
9410 }
9411 }
9412 }
9413 \f
9414 /* DWO/DWP files.
9415
9416 http://gcc.gnu.org/wiki/DebugFission
9417 http://gcc.gnu.org/wiki/DebugFissionDWP
9418
9419 To simplify handling of both DWO files ("object" files with the DWARF info)
9420 and DWP files (a file with the DWOs packaged up into one file), we treat
9421 DWP files as having a collection of virtual DWO files. */
9422
9423 static hashval_t
9424 hash_dwo_file (const void *item)
9425 {
9426 const struct dwo_file *dwo_file = item;
9427 hashval_t hash;
9428
9429 hash = htab_hash_string (dwo_file->dwo_name);
9430 if (dwo_file->comp_dir != NULL)
9431 hash += htab_hash_string (dwo_file->comp_dir);
9432 return hash;
9433 }
9434
9435 static int
9436 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9437 {
9438 const struct dwo_file *lhs = item_lhs;
9439 const struct dwo_file *rhs = item_rhs;
9440
9441 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9442 return 0;
9443 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9444 return lhs->comp_dir == rhs->comp_dir;
9445 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9446 }
9447
9448 /* Allocate a hash table for DWO files. */
9449
9450 static htab_t
9451 allocate_dwo_file_hash_table (void)
9452 {
9453 struct objfile *objfile = dwarf2_per_objfile->objfile;
9454
9455 return htab_create_alloc_ex (41,
9456 hash_dwo_file,
9457 eq_dwo_file,
9458 NULL,
9459 &objfile->objfile_obstack,
9460 hashtab_obstack_allocate,
9461 dummy_obstack_deallocate);
9462 }
9463
9464 /* Lookup DWO file DWO_NAME. */
9465
9466 static void **
9467 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9468 {
9469 struct dwo_file find_entry;
9470 void **slot;
9471
9472 if (dwarf2_per_objfile->dwo_files == NULL)
9473 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9474
9475 memset (&find_entry, 0, sizeof (find_entry));
9476 find_entry.dwo_name = dwo_name;
9477 find_entry.comp_dir = comp_dir;
9478 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9479
9480 return slot;
9481 }
9482
9483 static hashval_t
9484 hash_dwo_unit (const void *item)
9485 {
9486 const struct dwo_unit *dwo_unit = item;
9487
9488 /* This drops the top 32 bits of the id, but is ok for a hash. */
9489 return dwo_unit->signature;
9490 }
9491
9492 static int
9493 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9494 {
9495 const struct dwo_unit *lhs = item_lhs;
9496 const struct dwo_unit *rhs = item_rhs;
9497
9498 /* The signature is assumed to be unique within the DWO file.
9499 So while object file CU dwo_id's always have the value zero,
9500 that's OK, assuming each object file DWO file has only one CU,
9501 and that's the rule for now. */
9502 return lhs->signature == rhs->signature;
9503 }
9504
9505 /* Allocate a hash table for DWO CUs,TUs.
9506 There is one of these tables for each of CUs,TUs for each DWO file. */
9507
9508 static htab_t
9509 allocate_dwo_unit_table (struct objfile *objfile)
9510 {
9511 /* Start out with a pretty small number.
9512 Generally DWO files contain only one CU and maybe some TUs. */
9513 return htab_create_alloc_ex (3,
9514 hash_dwo_unit,
9515 eq_dwo_unit,
9516 NULL,
9517 &objfile->objfile_obstack,
9518 hashtab_obstack_allocate,
9519 dummy_obstack_deallocate);
9520 }
9521
9522 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9523
9524 struct create_dwo_cu_data
9525 {
9526 struct dwo_file *dwo_file;
9527 struct dwo_unit dwo_unit;
9528 };
9529
9530 /* die_reader_func for create_dwo_cu. */
9531
9532 static void
9533 create_dwo_cu_reader (const struct die_reader_specs *reader,
9534 const gdb_byte *info_ptr,
9535 struct die_info *comp_unit_die,
9536 int has_children,
9537 void *datap)
9538 {
9539 struct dwarf2_cu *cu = reader->cu;
9540 struct objfile *objfile = dwarf2_per_objfile->objfile;
9541 sect_offset offset = cu->per_cu->offset;
9542 struct dwarf2_section_info *section = cu->per_cu->section;
9543 struct create_dwo_cu_data *data = datap;
9544 struct dwo_file *dwo_file = data->dwo_file;
9545 struct dwo_unit *dwo_unit = &data->dwo_unit;
9546 struct attribute *attr;
9547
9548 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9549 if (attr == NULL)
9550 {
9551 complaint (&symfile_complaints,
9552 _("Dwarf Error: debug entry at offset 0x%x is missing"
9553 " its dwo_id [in module %s]"),
9554 offset.sect_off, dwo_file->dwo_name);
9555 return;
9556 }
9557
9558 dwo_unit->dwo_file = dwo_file;
9559 dwo_unit->signature = DW_UNSND (attr);
9560 dwo_unit->section = section;
9561 dwo_unit->offset = offset;
9562 dwo_unit->length = cu->per_cu->length;
9563
9564 if (dwarf_read_debug)
9565 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9566 offset.sect_off, hex_string (dwo_unit->signature));
9567 }
9568
9569 /* Create the dwo_unit for the lone CU in DWO_FILE.
9570 Note: This function processes DWO files only, not DWP files. */
9571
9572 static struct dwo_unit *
9573 create_dwo_cu (struct dwo_file *dwo_file)
9574 {
9575 struct objfile *objfile = dwarf2_per_objfile->objfile;
9576 struct dwarf2_section_info *section = &dwo_file->sections.info;
9577 bfd *abfd;
9578 htab_t cu_htab;
9579 const gdb_byte *info_ptr, *end_ptr;
9580 struct create_dwo_cu_data create_dwo_cu_data;
9581 struct dwo_unit *dwo_unit;
9582
9583 dwarf2_read_section (objfile, section);
9584 info_ptr = section->buffer;
9585
9586 if (info_ptr == NULL)
9587 return NULL;
9588
9589 /* We can't set abfd until now because the section may be empty or
9590 not present, in which case section->asection will be NULL. */
9591 abfd = get_section_bfd_owner (section);
9592
9593 if (dwarf_read_debug)
9594 {
9595 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9596 get_section_name (section),
9597 get_section_file_name (section));
9598 }
9599
9600 create_dwo_cu_data.dwo_file = dwo_file;
9601 dwo_unit = NULL;
9602
9603 end_ptr = info_ptr + section->size;
9604 while (info_ptr < end_ptr)
9605 {
9606 struct dwarf2_per_cu_data per_cu;
9607
9608 memset (&create_dwo_cu_data.dwo_unit, 0,
9609 sizeof (create_dwo_cu_data.dwo_unit));
9610 memset (&per_cu, 0, sizeof (per_cu));
9611 per_cu.objfile = objfile;
9612 per_cu.is_debug_types = 0;
9613 per_cu.offset.sect_off = info_ptr - section->buffer;
9614 per_cu.section = section;
9615
9616 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9617 create_dwo_cu_reader,
9618 &create_dwo_cu_data);
9619
9620 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9621 {
9622 /* If we've already found one, complain. We only support one
9623 because having more than one requires hacking the dwo_name of
9624 each to match, which is highly unlikely to happen. */
9625 if (dwo_unit != NULL)
9626 {
9627 complaint (&symfile_complaints,
9628 _("Multiple CUs in DWO file %s [in module %s]"),
9629 dwo_file->dwo_name, objfile_name (objfile));
9630 break;
9631 }
9632
9633 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9634 *dwo_unit = create_dwo_cu_data.dwo_unit;
9635 }
9636
9637 info_ptr += per_cu.length;
9638 }
9639
9640 return dwo_unit;
9641 }
9642
9643 /* DWP file .debug_{cu,tu}_index section format:
9644 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9645
9646 DWP Version 1:
9647
9648 Both index sections have the same format, and serve to map a 64-bit
9649 signature to a set of section numbers. Each section begins with a header,
9650 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9651 indexes, and a pool of 32-bit section numbers. The index sections will be
9652 aligned at 8-byte boundaries in the file.
9653
9654 The index section header consists of:
9655
9656 V, 32 bit version number
9657 -, 32 bits unused
9658 N, 32 bit number of compilation units or type units in the index
9659 M, 32 bit number of slots in the hash table
9660
9661 Numbers are recorded using the byte order of the application binary.
9662
9663 The hash table begins at offset 16 in the section, and consists of an array
9664 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9665 order of the application binary). Unused slots in the hash table are 0.
9666 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9667
9668 The parallel table begins immediately after the hash table
9669 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9670 array of 32-bit indexes (using the byte order of the application binary),
9671 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9672 table contains a 32-bit index into the pool of section numbers. For unused
9673 hash table slots, the corresponding entry in the parallel table will be 0.
9674
9675 The pool of section numbers begins immediately following the hash table
9676 (at offset 16 + 12 * M from the beginning of the section). The pool of
9677 section numbers consists of an array of 32-bit words (using the byte order
9678 of the application binary). Each item in the array is indexed starting
9679 from 0. The hash table entry provides the index of the first section
9680 number in the set. Additional section numbers in the set follow, and the
9681 set is terminated by a 0 entry (section number 0 is not used in ELF).
9682
9683 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9684 section must be the first entry in the set, and the .debug_abbrev.dwo must
9685 be the second entry. Other members of the set may follow in any order.
9686
9687 ---
9688
9689 DWP Version 2:
9690
9691 DWP Version 2 combines all the .debug_info, etc. sections into one,
9692 and the entries in the index tables are now offsets into these sections.
9693 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9694 section.
9695
9696 Index Section Contents:
9697 Header
9698 Hash Table of Signatures dwp_hash_table.hash_table
9699 Parallel Table of Indices dwp_hash_table.unit_table
9700 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9701 Table of Section Sizes dwp_hash_table.v2.sizes
9702
9703 The index section header consists of:
9704
9705 V, 32 bit version number
9706 L, 32 bit number of columns in the table of section offsets
9707 N, 32 bit number of compilation units or type units in the index
9708 M, 32 bit number of slots in the hash table
9709
9710 Numbers are recorded using the byte order of the application binary.
9711
9712 The hash table has the same format as version 1.
9713 The parallel table of indices has the same format as version 1,
9714 except that the entries are origin-1 indices into the table of sections
9715 offsets and the table of section sizes.
9716
9717 The table of offsets begins immediately following the parallel table
9718 (at offset 16 + 12 * M from the beginning of the section). The table is
9719 a two-dimensional array of 32-bit words (using the byte order of the
9720 application binary), with L columns and N+1 rows, in row-major order.
9721 Each row in the array is indexed starting from 0. The first row provides
9722 a key to the remaining rows: each column in this row provides an identifier
9723 for a debug section, and the offsets in the same column of subsequent rows
9724 refer to that section. The section identifiers are:
9725
9726 DW_SECT_INFO 1 .debug_info.dwo
9727 DW_SECT_TYPES 2 .debug_types.dwo
9728 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9729 DW_SECT_LINE 4 .debug_line.dwo
9730 DW_SECT_LOC 5 .debug_loc.dwo
9731 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9732 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9733 DW_SECT_MACRO 8 .debug_macro.dwo
9734
9735 The offsets provided by the CU and TU index sections are the base offsets
9736 for the contributions made by each CU or TU to the corresponding section
9737 in the package file. Each CU and TU header contains an abbrev_offset
9738 field, used to find the abbreviations table for that CU or TU within the
9739 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9740 be interpreted as relative to the base offset given in the index section.
9741 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9742 should be interpreted as relative to the base offset for .debug_line.dwo,
9743 and offsets into other debug sections obtained from DWARF attributes should
9744 also be interpreted as relative to the corresponding base offset.
9745
9746 The table of sizes begins immediately following the table of offsets.
9747 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9748 with L columns and N rows, in row-major order. Each row in the array is
9749 indexed starting from 1 (row 0 is shared by the two tables).
9750
9751 ---
9752
9753 Hash table lookup is handled the same in version 1 and 2:
9754
9755 We assume that N and M will not exceed 2^32 - 1.
9756 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9757
9758 Given a 64-bit compilation unit signature or a type signature S, an entry
9759 in the hash table is located as follows:
9760
9761 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9762 the low-order k bits all set to 1.
9763
9764 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9765
9766 3) If the hash table entry at index H matches the signature, use that
9767 entry. If the hash table entry at index H is unused (all zeroes),
9768 terminate the search: the signature is not present in the table.
9769
9770 4) Let H = (H + H') modulo M. Repeat at Step 3.
9771
9772 Because M > N and H' and M are relatively prime, the search is guaranteed
9773 to stop at an unused slot or find the match. */
9774
9775 /* Create a hash table to map DWO IDs to their CU/TU entry in
9776 .debug_{info,types}.dwo in DWP_FILE.
9777 Returns NULL if there isn't one.
9778 Note: This function processes DWP files only, not DWO files. */
9779
9780 static struct dwp_hash_table *
9781 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9782 {
9783 struct objfile *objfile = dwarf2_per_objfile->objfile;
9784 bfd *dbfd = dwp_file->dbfd;
9785 const gdb_byte *index_ptr, *index_end;
9786 struct dwarf2_section_info *index;
9787 uint32_t version, nr_columns, nr_units, nr_slots;
9788 struct dwp_hash_table *htab;
9789
9790 if (is_debug_types)
9791 index = &dwp_file->sections.tu_index;
9792 else
9793 index = &dwp_file->sections.cu_index;
9794
9795 if (dwarf2_section_empty_p (index))
9796 return NULL;
9797 dwarf2_read_section (objfile, index);
9798
9799 index_ptr = index->buffer;
9800 index_end = index_ptr + index->size;
9801
9802 version = read_4_bytes (dbfd, index_ptr);
9803 index_ptr += 4;
9804 if (version == 2)
9805 nr_columns = read_4_bytes (dbfd, index_ptr);
9806 else
9807 nr_columns = 0;
9808 index_ptr += 4;
9809 nr_units = read_4_bytes (dbfd, index_ptr);
9810 index_ptr += 4;
9811 nr_slots = read_4_bytes (dbfd, index_ptr);
9812 index_ptr += 4;
9813
9814 if (version != 1 && version != 2)
9815 {
9816 error (_("Dwarf Error: unsupported DWP file version (%s)"
9817 " [in module %s]"),
9818 pulongest (version), dwp_file->name);
9819 }
9820 if (nr_slots != (nr_slots & -nr_slots))
9821 {
9822 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9823 " is not power of 2 [in module %s]"),
9824 pulongest (nr_slots), dwp_file->name);
9825 }
9826
9827 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9828 htab->version = version;
9829 htab->nr_columns = nr_columns;
9830 htab->nr_units = nr_units;
9831 htab->nr_slots = nr_slots;
9832 htab->hash_table = index_ptr;
9833 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9834
9835 /* Exit early if the table is empty. */
9836 if (nr_slots == 0 || nr_units == 0
9837 || (version == 2 && nr_columns == 0))
9838 {
9839 /* All must be zero. */
9840 if (nr_slots != 0 || nr_units != 0
9841 || (version == 2 && nr_columns != 0))
9842 {
9843 complaint (&symfile_complaints,
9844 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9845 " all zero [in modules %s]"),
9846 dwp_file->name);
9847 }
9848 return htab;
9849 }
9850
9851 if (version == 1)
9852 {
9853 htab->section_pool.v1.indices =
9854 htab->unit_table + sizeof (uint32_t) * nr_slots;
9855 /* It's harder to decide whether the section is too small in v1.
9856 V1 is deprecated anyway so we punt. */
9857 }
9858 else
9859 {
9860 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9861 int *ids = htab->section_pool.v2.section_ids;
9862 /* Reverse map for error checking. */
9863 int ids_seen[DW_SECT_MAX + 1];
9864 int i;
9865
9866 if (nr_columns < 2)
9867 {
9868 error (_("Dwarf Error: bad DWP hash table, too few columns"
9869 " in section table [in module %s]"),
9870 dwp_file->name);
9871 }
9872 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9873 {
9874 error (_("Dwarf Error: bad DWP hash table, too many columns"
9875 " in section table [in module %s]"),
9876 dwp_file->name);
9877 }
9878 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9880 for (i = 0; i < nr_columns; ++i)
9881 {
9882 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9883
9884 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9885 {
9886 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9887 " in section table [in module %s]"),
9888 id, dwp_file->name);
9889 }
9890 if (ids_seen[id] != -1)
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9893 " id %d in section table [in module %s]"),
9894 id, dwp_file->name);
9895 }
9896 ids_seen[id] = i;
9897 ids[i] = id;
9898 }
9899 /* Must have exactly one info or types section. */
9900 if (((ids_seen[DW_SECT_INFO] != -1)
9901 + (ids_seen[DW_SECT_TYPES] != -1))
9902 != 1)
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9905 " DWO info/types section [in module %s]"),
9906 dwp_file->name);
9907 }
9908 /* Must have an abbrev section. */
9909 if (ids_seen[DW_SECT_ABBREV] == -1)
9910 {
9911 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9912 " section [in module %s]"),
9913 dwp_file->name);
9914 }
9915 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9916 htab->section_pool.v2.sizes =
9917 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9918 * nr_units * nr_columns);
9919 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9920 * nr_units * nr_columns))
9921 > index_end)
9922 {
9923 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9924 " [in module %s]"),
9925 dwp_file->name);
9926 }
9927 }
9928
9929 return htab;
9930 }
9931
9932 /* Update SECTIONS with the data from SECTP.
9933
9934 This function is like the other "locate" section routines that are
9935 passed to bfd_map_over_sections, but in this context the sections to
9936 read comes from the DWP V1 hash table, not the full ELF section table.
9937
9938 The result is non-zero for success, or zero if an error was found. */
9939
9940 static int
9941 locate_v1_virtual_dwo_sections (asection *sectp,
9942 struct virtual_v1_dwo_sections *sections)
9943 {
9944 const struct dwop_section_names *names = &dwop_section_names;
9945
9946 if (section_is_p (sectp->name, &names->abbrev_dwo))
9947 {
9948 /* There can be only one. */
9949 if (sections->abbrev.s.asection != NULL)
9950 return 0;
9951 sections->abbrev.s.asection = sectp;
9952 sections->abbrev.size = bfd_get_section_size (sectp);
9953 }
9954 else if (section_is_p (sectp->name, &names->info_dwo)
9955 || section_is_p (sectp->name, &names->types_dwo))
9956 {
9957 /* There can be only one. */
9958 if (sections->info_or_types.s.asection != NULL)
9959 return 0;
9960 sections->info_or_types.s.asection = sectp;
9961 sections->info_or_types.size = bfd_get_section_size (sectp);
9962 }
9963 else if (section_is_p (sectp->name, &names->line_dwo))
9964 {
9965 /* There can be only one. */
9966 if (sections->line.s.asection != NULL)
9967 return 0;
9968 sections->line.s.asection = sectp;
9969 sections->line.size = bfd_get_section_size (sectp);
9970 }
9971 else if (section_is_p (sectp->name, &names->loc_dwo))
9972 {
9973 /* There can be only one. */
9974 if (sections->loc.s.asection != NULL)
9975 return 0;
9976 sections->loc.s.asection = sectp;
9977 sections->loc.size = bfd_get_section_size (sectp);
9978 }
9979 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9980 {
9981 /* There can be only one. */
9982 if (sections->macinfo.s.asection != NULL)
9983 return 0;
9984 sections->macinfo.s.asection = sectp;
9985 sections->macinfo.size = bfd_get_section_size (sectp);
9986 }
9987 else if (section_is_p (sectp->name, &names->macro_dwo))
9988 {
9989 /* There can be only one. */
9990 if (sections->macro.s.asection != NULL)
9991 return 0;
9992 sections->macro.s.asection = sectp;
9993 sections->macro.size = bfd_get_section_size (sectp);
9994 }
9995 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9996 {
9997 /* There can be only one. */
9998 if (sections->str_offsets.s.asection != NULL)
9999 return 0;
10000 sections->str_offsets.s.asection = sectp;
10001 sections->str_offsets.size = bfd_get_section_size (sectp);
10002 }
10003 else
10004 {
10005 /* No other kind of section is valid. */
10006 return 0;
10007 }
10008
10009 return 1;
10010 }
10011
10012 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10013 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10014 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10015 This is for DWP version 1 files. */
10016
10017 static struct dwo_unit *
10018 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10019 uint32_t unit_index,
10020 const char *comp_dir,
10021 ULONGEST signature, int is_debug_types)
10022 {
10023 struct objfile *objfile = dwarf2_per_objfile->objfile;
10024 const struct dwp_hash_table *dwp_htab =
10025 is_debug_types ? dwp_file->tus : dwp_file->cus;
10026 bfd *dbfd = dwp_file->dbfd;
10027 const char *kind = is_debug_types ? "TU" : "CU";
10028 struct dwo_file *dwo_file;
10029 struct dwo_unit *dwo_unit;
10030 struct virtual_v1_dwo_sections sections;
10031 void **dwo_file_slot;
10032 char *virtual_dwo_name;
10033 struct dwarf2_section_info *cutu;
10034 struct cleanup *cleanups;
10035 int i;
10036
10037 gdb_assert (dwp_file->version == 1);
10038
10039 if (dwarf_read_debug)
10040 {
10041 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10042 kind,
10043 pulongest (unit_index), hex_string (signature),
10044 dwp_file->name);
10045 }
10046
10047 /* Fetch the sections of this DWO unit.
10048 Put a limit on the number of sections we look for so that bad data
10049 doesn't cause us to loop forever. */
10050
10051 #define MAX_NR_V1_DWO_SECTIONS \
10052 (1 /* .debug_info or .debug_types */ \
10053 + 1 /* .debug_abbrev */ \
10054 + 1 /* .debug_line */ \
10055 + 1 /* .debug_loc */ \
10056 + 1 /* .debug_str_offsets */ \
10057 + 1 /* .debug_macro or .debug_macinfo */ \
10058 + 1 /* trailing zero */)
10059
10060 memset (&sections, 0, sizeof (sections));
10061 cleanups = make_cleanup (null_cleanup, 0);
10062
10063 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10064 {
10065 asection *sectp;
10066 uint32_t section_nr =
10067 read_4_bytes (dbfd,
10068 dwp_htab->section_pool.v1.indices
10069 + (unit_index + i) * sizeof (uint32_t));
10070
10071 if (section_nr == 0)
10072 break;
10073 if (section_nr >= dwp_file->num_sections)
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, section number too large"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079
10080 sectp = dwp_file->elf_sections[section_nr];
10081 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10082 {
10083 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10084 " [in module %s]"),
10085 dwp_file->name);
10086 }
10087 }
10088
10089 if (i < 2
10090 || dwarf2_section_empty_p (&sections.info_or_types)
10091 || dwarf2_section_empty_p (&sections.abbrev))
10092 {
10093 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10094 " [in module %s]"),
10095 dwp_file->name);
10096 }
10097 if (i == MAX_NR_V1_DWO_SECTIONS)
10098 {
10099 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10100 " [in module %s]"),
10101 dwp_file->name);
10102 }
10103
10104 /* It's easier for the rest of the code if we fake a struct dwo_file and
10105 have dwo_unit "live" in that. At least for now.
10106
10107 The DWP file can be made up of a random collection of CUs and TUs.
10108 However, for each CU + set of TUs that came from the same original DWO
10109 file, we can combine them back into a virtual DWO file to save space
10110 (fewer struct dwo_file objects to allocate). Remember that for really
10111 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10112
10113 virtual_dwo_name =
10114 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10115 get_section_id (&sections.abbrev),
10116 get_section_id (&sections.line),
10117 get_section_id (&sections.loc),
10118 get_section_id (&sections.str_offsets));
10119 make_cleanup (xfree, virtual_dwo_name);
10120 /* Can we use an existing virtual DWO file? */
10121 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10122 /* Create one if necessary. */
10123 if (*dwo_file_slot == NULL)
10124 {
10125 if (dwarf_read_debug)
10126 {
10127 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10128 virtual_dwo_name);
10129 }
10130 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10131 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
10143 /* The info or types section is assigned below to dwo_unit,
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
10154 if (dwarf_read_debug)
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
10159 dwo_file = *dwo_file_slot;
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
10166 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10167 sizeof (struct dwarf2_section_info));
10168 *dwo_unit->section = sections.info_or_types;
10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10170
10171 return dwo_unit;
10172 }
10173
10174 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179 static struct dwarf2_section_info
10180 create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182 {
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215 }
10216
10217 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222 static struct dwo_unit *
10223 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227 {
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
10244 if (dwarf_read_debug)
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
10326 if (dwarf_read_debug)
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10332 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10333 virtual_dwo_name,
10334 strlen (virtual_dwo_name));
10335 dwo_file->comp_dir = comp_dir;
10336 dwo_file->sections.abbrev =
10337 create_dwp_v2_section (&dwp_file->sections.abbrev,
10338 sections.abbrev_offset, sections.abbrev_size);
10339 dwo_file->sections.line =
10340 create_dwp_v2_section (&dwp_file->sections.line,
10341 sections.line_offset, sections.line_size);
10342 dwo_file->sections.loc =
10343 create_dwp_v2_section (&dwp_file->sections.loc,
10344 sections.loc_offset, sections.loc_size);
10345 dwo_file->sections.macinfo =
10346 create_dwp_v2_section (&dwp_file->sections.macinfo,
10347 sections.macinfo_offset, sections.macinfo_size);
10348 dwo_file->sections.macro =
10349 create_dwp_v2_section (&dwp_file->sections.macro,
10350 sections.macro_offset, sections.macro_size);
10351 dwo_file->sections.str_offsets =
10352 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10353 sections.str_offsets_offset,
10354 sections.str_offsets_size);
10355 /* The "str" section is global to the entire DWP file. */
10356 dwo_file->sections.str = dwp_file->sections.str;
10357 /* The info or types section is assigned below to dwo_unit,
10358 there's no need to record it in dwo_file.
10359 Also, we can't simply record type sections in dwo_file because
10360 we record a pointer into the vector in dwo_unit. As we collect more
10361 types we'll grow the vector and eventually have to reallocate space
10362 for it, invalidating all copies of pointers into the previous
10363 contents. */
10364 *dwo_file_slot = dwo_file;
10365 }
10366 else
10367 {
10368 if (dwarf_read_debug)
10369 {
10370 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10371 virtual_dwo_name);
10372 }
10373 dwo_file = *dwo_file_slot;
10374 }
10375 do_cleanups (cleanups);
10376
10377 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10378 dwo_unit->dwo_file = dwo_file;
10379 dwo_unit->signature = signature;
10380 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10381 sizeof (struct dwarf2_section_info));
10382 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10383 ? &dwp_file->sections.types
10384 : &dwp_file->sections.info,
10385 sections.info_or_types_offset,
10386 sections.info_or_types_size);
10387 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10388
10389 return dwo_unit;
10390 }
10391
10392 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10393 Returns NULL if the signature isn't found. */
10394
10395 static struct dwo_unit *
10396 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10397 ULONGEST signature, int is_debug_types)
10398 {
10399 const struct dwp_hash_table *dwp_htab =
10400 is_debug_types ? dwp_file->tus : dwp_file->cus;
10401 bfd *dbfd = dwp_file->dbfd;
10402 uint32_t mask = dwp_htab->nr_slots - 1;
10403 uint32_t hash = signature & mask;
10404 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10405 unsigned int i;
10406 void **slot;
10407 struct dwo_unit find_dwo_cu, *dwo_cu;
10408
10409 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10410 find_dwo_cu.signature = signature;
10411 slot = htab_find_slot (is_debug_types
10412 ? dwp_file->loaded_tus
10413 : dwp_file->loaded_cus,
10414 &find_dwo_cu, INSERT);
10415
10416 if (*slot != NULL)
10417 return *slot;
10418
10419 /* Use a for loop so that we don't loop forever on bad debug info. */
10420 for (i = 0; i < dwp_htab->nr_slots; ++i)
10421 {
10422 ULONGEST signature_in_table;
10423
10424 signature_in_table =
10425 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10426 if (signature_in_table == signature)
10427 {
10428 uint32_t unit_index =
10429 read_4_bytes (dbfd,
10430 dwp_htab->unit_table + hash * sizeof (uint32_t));
10431
10432 if (dwp_file->version == 1)
10433 {
10434 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10435 comp_dir, signature,
10436 is_debug_types);
10437 }
10438 else
10439 {
10440 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10441 comp_dir, signature,
10442 is_debug_types);
10443 }
10444 return *slot;
10445 }
10446 if (signature_in_table == 0)
10447 return NULL;
10448 hash = (hash + hash2) & mask;
10449 }
10450
10451 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10452 " [in module %s]"),
10453 dwp_file->name);
10454 }
10455
10456 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10457 Open the file specified by FILE_NAME and hand it off to BFD for
10458 preliminary analysis. Return a newly initialized bfd *, which
10459 includes a canonicalized copy of FILE_NAME.
10460 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10461 SEARCH_CWD is true if the current directory is to be searched.
10462 It will be searched before debug-file-directory.
10463 If successful, the file is added to the bfd include table of the
10464 objfile's bfd (see gdb_bfd_record_inclusion).
10465 If unable to find/open the file, return NULL.
10466 NOTE: This function is derived from symfile_bfd_open. */
10467
10468 static bfd *
10469 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10470 {
10471 bfd *sym_bfd;
10472 int desc, flags;
10473 char *absolute_name;
10474 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10475 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10476 to debug_file_directory. */
10477 char *search_path;
10478 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10479
10480 if (search_cwd)
10481 {
10482 if (*debug_file_directory != '\0')
10483 search_path = concat (".", dirname_separator_string,
10484 debug_file_directory, NULL);
10485 else
10486 search_path = xstrdup (".");
10487 }
10488 else
10489 search_path = xstrdup (debug_file_directory);
10490
10491 flags = OPF_RETURN_REALPATH;
10492 if (is_dwp)
10493 flags |= OPF_SEARCH_IN_PATH;
10494 desc = openp (search_path, flags, file_name,
10495 O_RDONLY | O_BINARY, &absolute_name);
10496 xfree (search_path);
10497 if (desc < 0)
10498 return NULL;
10499
10500 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10501 xfree (absolute_name);
10502 if (sym_bfd == NULL)
10503 return NULL;
10504 bfd_set_cacheable (sym_bfd, 1);
10505
10506 if (!bfd_check_format (sym_bfd, bfd_object))
10507 {
10508 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10509 return NULL;
10510 }
10511
10512 /* Success. Record the bfd as having been included by the objfile's bfd.
10513 This is important because things like demangled_names_hash lives in the
10514 objfile's per_bfd space and may have references to things like symbol
10515 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10516 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10517
10518 return sym_bfd;
10519 }
10520
10521 /* Try to open DWO file FILE_NAME.
10522 COMP_DIR is the DW_AT_comp_dir attribute.
10523 The result is the bfd handle of the file.
10524 If there is a problem finding or opening the file, return NULL.
10525 Upon success, the canonicalized path of the file is stored in the bfd,
10526 same as symfile_bfd_open. */
10527
10528 static bfd *
10529 open_dwo_file (const char *file_name, const char *comp_dir)
10530 {
10531 bfd *abfd;
10532
10533 if (IS_ABSOLUTE_PATH (file_name))
10534 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10535
10536 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10537
10538 if (comp_dir != NULL)
10539 {
10540 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10541
10542 /* NOTE: If comp_dir is a relative path, this will also try the
10543 search path, which seems useful. */
10544 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10545 xfree (path_to_try);
10546 if (abfd != NULL)
10547 return abfd;
10548 }
10549
10550 /* That didn't work, try debug-file-directory, which, despite its name,
10551 is a list of paths. */
10552
10553 if (*debug_file_directory == '\0')
10554 return NULL;
10555
10556 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10557 }
10558
10559 /* This function is mapped across the sections and remembers the offset and
10560 size of each of the DWO debugging sections we are interested in. */
10561
10562 static void
10563 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10564 {
10565 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10566 const struct dwop_section_names *names = &dwop_section_names;
10567
10568 if (section_is_p (sectp->name, &names->abbrev_dwo))
10569 {
10570 dwo_sections->abbrev.s.asection = sectp;
10571 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10572 }
10573 else if (section_is_p (sectp->name, &names->info_dwo))
10574 {
10575 dwo_sections->info.s.asection = sectp;
10576 dwo_sections->info.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->line_dwo))
10579 {
10580 dwo_sections->line.s.asection = sectp;
10581 dwo_sections->line.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->loc_dwo))
10584 {
10585 dwo_sections->loc.s.asection = sectp;
10586 dwo_sections->loc.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10589 {
10590 dwo_sections->macinfo.s.asection = sectp;
10591 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10592 }
10593 else if (section_is_p (sectp->name, &names->macro_dwo))
10594 {
10595 dwo_sections->macro.s.asection = sectp;
10596 dwo_sections->macro.size = bfd_get_section_size (sectp);
10597 }
10598 else if (section_is_p (sectp->name, &names->str_dwo))
10599 {
10600 dwo_sections->str.s.asection = sectp;
10601 dwo_sections->str.size = bfd_get_section_size (sectp);
10602 }
10603 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10604 {
10605 dwo_sections->str_offsets.s.asection = sectp;
10606 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10607 }
10608 else if (section_is_p (sectp->name, &names->types_dwo))
10609 {
10610 struct dwarf2_section_info type_section;
10611
10612 memset (&type_section, 0, sizeof (type_section));
10613 type_section.s.asection = sectp;
10614 type_section.size = bfd_get_section_size (sectp);
10615 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10616 &type_section);
10617 }
10618 }
10619
10620 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10621 by PER_CU. This is for the non-DWP case.
10622 The result is NULL if DWO_NAME can't be found. */
10623
10624 static struct dwo_file *
10625 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10626 const char *dwo_name, const char *comp_dir)
10627 {
10628 struct objfile *objfile = dwarf2_per_objfile->objfile;
10629 struct dwo_file *dwo_file;
10630 bfd *dbfd;
10631 struct cleanup *cleanups;
10632
10633 dbfd = open_dwo_file (dwo_name, comp_dir);
10634 if (dbfd == NULL)
10635 {
10636 if (dwarf_read_debug)
10637 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10638 return NULL;
10639 }
10640 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10641 dwo_file->dwo_name = dwo_name;
10642 dwo_file->comp_dir = comp_dir;
10643 dwo_file->dbfd = dbfd;
10644
10645 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10646
10647 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10648
10649 dwo_file->cu = create_dwo_cu (dwo_file);
10650
10651 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10652 dwo_file->sections.types);
10653
10654 discard_cleanups (cleanups);
10655
10656 if (dwarf_read_debug)
10657 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10658
10659 return dwo_file;
10660 }
10661
10662 /* This function is mapped across the sections and remembers the offset and
10663 size of each of the DWP debugging sections common to version 1 and 2 that
10664 we are interested in. */
10665
10666 static void
10667 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10668 void *dwp_file_ptr)
10669 {
10670 struct dwp_file *dwp_file = dwp_file_ptr;
10671 const struct dwop_section_names *names = &dwop_section_names;
10672 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10673
10674 /* Record the ELF section number for later lookup: this is what the
10675 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10676 gdb_assert (elf_section_nr < dwp_file->num_sections);
10677 dwp_file->elf_sections[elf_section_nr] = sectp;
10678
10679 /* Look for specific sections that we need. */
10680 if (section_is_p (sectp->name, &names->str_dwo))
10681 {
10682 dwp_file->sections.str.s.asection = sectp;
10683 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10684 }
10685 else if (section_is_p (sectp->name, &names->cu_index))
10686 {
10687 dwp_file->sections.cu_index.s.asection = sectp;
10688 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10689 }
10690 else if (section_is_p (sectp->name, &names->tu_index))
10691 {
10692 dwp_file->sections.tu_index.s.asection = sectp;
10693 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10694 }
10695 }
10696
10697 /* This function is mapped across the sections and remembers the offset and
10698 size of each of the DWP version 2 debugging sections that we are interested
10699 in. This is split into a separate function because we don't know if we
10700 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10701
10702 static void
10703 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10704 {
10705 struct dwp_file *dwp_file = dwp_file_ptr;
10706 const struct dwop_section_names *names = &dwop_section_names;
10707 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10708
10709 /* Record the ELF section number for later lookup: this is what the
10710 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10711 gdb_assert (elf_section_nr < dwp_file->num_sections);
10712 dwp_file->elf_sections[elf_section_nr] = sectp;
10713
10714 /* Look for specific sections that we need. */
10715 if (section_is_p (sectp->name, &names->abbrev_dwo))
10716 {
10717 dwp_file->sections.abbrev.s.asection = sectp;
10718 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10719 }
10720 else if (section_is_p (sectp->name, &names->info_dwo))
10721 {
10722 dwp_file->sections.info.s.asection = sectp;
10723 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->line_dwo))
10726 {
10727 dwp_file->sections.line.s.asection = sectp;
10728 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->loc_dwo))
10731 {
10732 dwp_file->sections.loc.s.asection = sectp;
10733 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10734 }
10735 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10736 {
10737 dwp_file->sections.macinfo.s.asection = sectp;
10738 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10739 }
10740 else if (section_is_p (sectp->name, &names->macro_dwo))
10741 {
10742 dwp_file->sections.macro.s.asection = sectp;
10743 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10744 }
10745 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10746 {
10747 dwp_file->sections.str_offsets.s.asection = sectp;
10748 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10749 }
10750 else if (section_is_p (sectp->name, &names->types_dwo))
10751 {
10752 dwp_file->sections.types.s.asection = sectp;
10753 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10754 }
10755 }
10756
10757 /* Hash function for dwp_file loaded CUs/TUs. */
10758
10759 static hashval_t
10760 hash_dwp_loaded_cutus (const void *item)
10761 {
10762 const struct dwo_unit *dwo_unit = item;
10763
10764 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10765 return dwo_unit->signature;
10766 }
10767
10768 /* Equality function for dwp_file loaded CUs/TUs. */
10769
10770 static int
10771 eq_dwp_loaded_cutus (const void *a, const void *b)
10772 {
10773 const struct dwo_unit *dua = a;
10774 const struct dwo_unit *dub = b;
10775
10776 return dua->signature == dub->signature;
10777 }
10778
10779 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10780
10781 static htab_t
10782 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10783 {
10784 return htab_create_alloc_ex (3,
10785 hash_dwp_loaded_cutus,
10786 eq_dwp_loaded_cutus,
10787 NULL,
10788 &objfile->objfile_obstack,
10789 hashtab_obstack_allocate,
10790 dummy_obstack_deallocate);
10791 }
10792
10793 /* Try to open DWP file FILE_NAME.
10794 The result is the bfd handle of the file.
10795 If there is a problem finding or opening the file, return NULL.
10796 Upon success, the canonicalized path of the file is stored in the bfd,
10797 same as symfile_bfd_open. */
10798
10799 static bfd *
10800 open_dwp_file (const char *file_name)
10801 {
10802 bfd *abfd;
10803
10804 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10805 if (abfd != NULL)
10806 return abfd;
10807
10808 /* Work around upstream bug 15652.
10809 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10810 [Whether that's a "bug" is debatable, but it is getting in our way.]
10811 We have no real idea where the dwp file is, because gdb's realpath-ing
10812 of the executable's path may have discarded the needed info.
10813 [IWBN if the dwp file name was recorded in the executable, akin to
10814 .gnu_debuglink, but that doesn't exist yet.]
10815 Strip the directory from FILE_NAME and search again. */
10816 if (*debug_file_directory != '\0')
10817 {
10818 /* Don't implicitly search the current directory here.
10819 If the user wants to search "." to handle this case,
10820 it must be added to debug-file-directory. */
10821 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10822 0 /*search_cwd*/);
10823 }
10824
10825 return NULL;
10826 }
10827
10828 /* Initialize the use of the DWP file for the current objfile.
10829 By convention the name of the DWP file is ${objfile}.dwp.
10830 The result is NULL if it can't be found. */
10831
10832 static struct dwp_file *
10833 open_and_init_dwp_file (void)
10834 {
10835 struct objfile *objfile = dwarf2_per_objfile->objfile;
10836 struct dwp_file *dwp_file;
10837 char *dwp_name;
10838 bfd *dbfd;
10839 struct cleanup *cleanups;
10840
10841 /* Try to find first .dwp for the binary file before any symbolic links
10842 resolving. */
10843 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10844 cleanups = make_cleanup (xfree, dwp_name);
10845
10846 dbfd = open_dwp_file (dwp_name);
10847 if (dbfd == NULL
10848 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10849 {
10850 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10851 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10852 make_cleanup (xfree, dwp_name);
10853 dbfd = open_dwp_file (dwp_name);
10854 }
10855
10856 if (dbfd == NULL)
10857 {
10858 if (dwarf_read_debug)
10859 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10860 do_cleanups (cleanups);
10861 return NULL;
10862 }
10863 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10864 dwp_file->name = bfd_get_filename (dbfd);
10865 dwp_file->dbfd = dbfd;
10866 do_cleanups (cleanups);
10867
10868 /* +1: section 0 is unused */
10869 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10870 dwp_file->elf_sections =
10871 OBSTACK_CALLOC (&objfile->objfile_obstack,
10872 dwp_file->num_sections, asection *);
10873
10874 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10875
10876 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10877
10878 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10879
10880 /* The DWP file version is stored in the hash table. Oh well. */
10881 if (dwp_file->cus->version != dwp_file->tus->version)
10882 {
10883 /* Technically speaking, we should try to limp along, but this is
10884 pretty bizarre. We use pulongest here because that's the established
10885 portability solution (e.g, we cannot use %u for uint32_t). */
10886 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10887 " TU version %s [in DWP file %s]"),
10888 pulongest (dwp_file->cus->version),
10889 pulongest (dwp_file->tus->version), dwp_name);
10890 }
10891 dwp_file->version = dwp_file->cus->version;
10892
10893 if (dwp_file->version == 2)
10894 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10895
10896 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10897 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10898
10899 if (dwarf_read_debug)
10900 {
10901 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10902 fprintf_unfiltered (gdb_stdlog,
10903 " %s CUs, %s TUs\n",
10904 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10905 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10906 }
10907
10908 return dwp_file;
10909 }
10910
10911 /* Wrapper around open_and_init_dwp_file, only open it once. */
10912
10913 static struct dwp_file *
10914 get_dwp_file (void)
10915 {
10916 if (! dwarf2_per_objfile->dwp_checked)
10917 {
10918 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10919 dwarf2_per_objfile->dwp_checked = 1;
10920 }
10921 return dwarf2_per_objfile->dwp_file;
10922 }
10923
10924 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10925 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10926 or in the DWP file for the objfile, referenced by THIS_UNIT.
10927 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10928 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10929
10930 This is called, for example, when wanting to read a variable with a
10931 complex location. Therefore we don't want to do file i/o for every call.
10932 Therefore we don't want to look for a DWO file on every call.
10933 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10934 then we check if we've already seen DWO_NAME, and only THEN do we check
10935 for a DWO file.
10936
10937 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10938 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10939
10940 static struct dwo_unit *
10941 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10942 const char *dwo_name, const char *comp_dir,
10943 ULONGEST signature, int is_debug_types)
10944 {
10945 struct objfile *objfile = dwarf2_per_objfile->objfile;
10946 const char *kind = is_debug_types ? "TU" : "CU";
10947 void **dwo_file_slot;
10948 struct dwo_file *dwo_file;
10949 struct dwp_file *dwp_file;
10950
10951 /* First see if there's a DWP file.
10952 If we have a DWP file but didn't find the DWO inside it, don't
10953 look for the original DWO file. It makes gdb behave differently
10954 depending on whether one is debugging in the build tree. */
10955
10956 dwp_file = get_dwp_file ();
10957 if (dwp_file != NULL)
10958 {
10959 const struct dwp_hash_table *dwp_htab =
10960 is_debug_types ? dwp_file->tus : dwp_file->cus;
10961
10962 if (dwp_htab != NULL)
10963 {
10964 struct dwo_unit *dwo_cutu =
10965 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10966 signature, is_debug_types);
10967
10968 if (dwo_cutu != NULL)
10969 {
10970 if (dwarf_read_debug)
10971 {
10972 fprintf_unfiltered (gdb_stdlog,
10973 "Virtual DWO %s %s found: @%s\n",
10974 kind, hex_string (signature),
10975 host_address_to_string (dwo_cutu));
10976 }
10977 return dwo_cutu;
10978 }
10979 }
10980 }
10981 else
10982 {
10983 /* No DWP file, look for the DWO file. */
10984
10985 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10986 if (*dwo_file_slot == NULL)
10987 {
10988 /* Read in the file and build a table of the CUs/TUs it contains. */
10989 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10990 }
10991 /* NOTE: This will be NULL if unable to open the file. */
10992 dwo_file = *dwo_file_slot;
10993
10994 if (dwo_file != NULL)
10995 {
10996 struct dwo_unit *dwo_cutu = NULL;
10997
10998 if (is_debug_types && dwo_file->tus)
10999 {
11000 struct dwo_unit find_dwo_cutu;
11001
11002 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11003 find_dwo_cutu.signature = signature;
11004 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
11005 }
11006 else if (!is_debug_types && dwo_file->cu)
11007 {
11008 if (signature == dwo_file->cu->signature)
11009 dwo_cutu = dwo_file->cu;
11010 }
11011
11012 if (dwo_cutu != NULL)
11013 {
11014 if (dwarf_read_debug)
11015 {
11016 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11017 kind, dwo_name, hex_string (signature),
11018 host_address_to_string (dwo_cutu));
11019 }
11020 return dwo_cutu;
11021 }
11022 }
11023 }
11024
11025 /* We didn't find it. This could mean a dwo_id mismatch, or
11026 someone deleted the DWO/DWP file, or the search path isn't set up
11027 correctly to find the file. */
11028
11029 if (dwarf_read_debug)
11030 {
11031 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11032 kind, dwo_name, hex_string (signature));
11033 }
11034
11035 /* This is a warning and not a complaint because it can be caused by
11036 pilot error (e.g., user accidentally deleting the DWO). */
11037 {
11038 /* Print the name of the DWP file if we looked there, helps the user
11039 better diagnose the problem. */
11040 char *dwp_text = NULL;
11041 struct cleanup *cleanups;
11042
11043 if (dwp_file != NULL)
11044 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11045 cleanups = make_cleanup (xfree, dwp_text);
11046
11047 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11048 " [in module %s]"),
11049 kind, dwo_name, hex_string (signature),
11050 dwp_text != NULL ? dwp_text : "",
11051 this_unit->is_debug_types ? "TU" : "CU",
11052 this_unit->offset.sect_off, objfile_name (objfile));
11053
11054 do_cleanups (cleanups);
11055 }
11056 return NULL;
11057 }
11058
11059 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11060 See lookup_dwo_cutu_unit for details. */
11061
11062 static struct dwo_unit *
11063 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11064 const char *dwo_name, const char *comp_dir,
11065 ULONGEST signature)
11066 {
11067 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11068 }
11069
11070 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11071 See lookup_dwo_cutu_unit for details. */
11072
11073 static struct dwo_unit *
11074 lookup_dwo_type_unit (struct signatured_type *this_tu,
11075 const char *dwo_name, const char *comp_dir)
11076 {
11077 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11078 }
11079
11080 /* Traversal function for queue_and_load_all_dwo_tus. */
11081
11082 static int
11083 queue_and_load_dwo_tu (void **slot, void *info)
11084 {
11085 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11086 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11087 ULONGEST signature = dwo_unit->signature;
11088 struct signatured_type *sig_type =
11089 lookup_dwo_signatured_type (per_cu->cu, signature);
11090
11091 if (sig_type != NULL)
11092 {
11093 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11094
11095 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11096 a real dependency of PER_CU on SIG_TYPE. That is detected later
11097 while processing PER_CU. */
11098 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11099 load_full_type_unit (sig_cu);
11100 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11101 }
11102
11103 return 1;
11104 }
11105
11106 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11107 The DWO may have the only definition of the type, though it may not be
11108 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11109 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11110
11111 static void
11112 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11113 {
11114 struct dwo_unit *dwo_unit;
11115 struct dwo_file *dwo_file;
11116
11117 gdb_assert (!per_cu->is_debug_types);
11118 gdb_assert (get_dwp_file () == NULL);
11119 gdb_assert (per_cu->cu != NULL);
11120
11121 dwo_unit = per_cu->cu->dwo_unit;
11122 gdb_assert (dwo_unit != NULL);
11123
11124 dwo_file = dwo_unit->dwo_file;
11125 if (dwo_file->tus != NULL)
11126 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11127 }
11128
11129 /* Free all resources associated with DWO_FILE.
11130 Close the DWO file and munmap the sections.
11131 All memory should be on the objfile obstack. */
11132
11133 static void
11134 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11135 {
11136 int ix;
11137 struct dwarf2_section_info *section;
11138
11139 /* Note: dbfd is NULL for virtual DWO files. */
11140 gdb_bfd_unref (dwo_file->dbfd);
11141
11142 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11143 }
11144
11145 /* Wrapper for free_dwo_file for use in cleanups. */
11146
11147 static void
11148 free_dwo_file_cleanup (void *arg)
11149 {
11150 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11151 struct objfile *objfile = dwarf2_per_objfile->objfile;
11152
11153 free_dwo_file (dwo_file, objfile);
11154 }
11155
11156 /* Traversal function for free_dwo_files. */
11157
11158 static int
11159 free_dwo_file_from_slot (void **slot, void *info)
11160 {
11161 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11162 struct objfile *objfile = (struct objfile *) info;
11163
11164 free_dwo_file (dwo_file, objfile);
11165
11166 return 1;
11167 }
11168
11169 /* Free all resources associated with DWO_FILES. */
11170
11171 static void
11172 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11173 {
11174 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11175 }
11176 \f
11177 /* Read in various DIEs. */
11178
11179 /* qsort helper for inherit_abstract_dies. */
11180
11181 static int
11182 unsigned_int_compar (const void *ap, const void *bp)
11183 {
11184 unsigned int a = *(unsigned int *) ap;
11185 unsigned int b = *(unsigned int *) bp;
11186
11187 return (a > b) - (b > a);
11188 }
11189
11190 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11191 Inherit only the children of the DW_AT_abstract_origin DIE not being
11192 already referenced by DW_AT_abstract_origin from the children of the
11193 current DIE. */
11194
11195 static void
11196 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11197 {
11198 struct die_info *child_die;
11199 unsigned die_children_count;
11200 /* CU offsets which were referenced by children of the current DIE. */
11201 sect_offset *offsets;
11202 sect_offset *offsets_end, *offsetp;
11203 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11204 struct die_info *origin_die;
11205 /* Iterator of the ORIGIN_DIE children. */
11206 struct die_info *origin_child_die;
11207 struct cleanup *cleanups;
11208 struct attribute *attr;
11209 struct dwarf2_cu *origin_cu;
11210 struct pending **origin_previous_list_in_scope;
11211
11212 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11213 if (!attr)
11214 return;
11215
11216 /* Note that following die references may follow to a die in a
11217 different cu. */
11218
11219 origin_cu = cu;
11220 origin_die = follow_die_ref (die, attr, &origin_cu);
11221
11222 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11223 symbols in. */
11224 origin_previous_list_in_scope = origin_cu->list_in_scope;
11225 origin_cu->list_in_scope = cu->list_in_scope;
11226
11227 if (die->tag != origin_die->tag
11228 && !(die->tag == DW_TAG_inlined_subroutine
11229 && origin_die->tag == DW_TAG_subprogram))
11230 complaint (&symfile_complaints,
11231 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11232 die->offset.sect_off, origin_die->offset.sect_off);
11233
11234 child_die = die->child;
11235 die_children_count = 0;
11236 while (child_die && child_die->tag)
11237 {
11238 child_die = sibling_die (child_die);
11239 die_children_count++;
11240 }
11241 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11242 cleanups = make_cleanup (xfree, offsets);
11243
11244 offsets_end = offsets;
11245 for (child_die = die->child;
11246 child_die && child_die->tag;
11247 child_die = sibling_die (child_die))
11248 {
11249 struct die_info *child_origin_die;
11250 struct dwarf2_cu *child_origin_cu;
11251
11252 /* We are trying to process concrete instance entries:
11253 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11254 it's not relevant to our analysis here. i.e. detecting DIEs that are
11255 present in the abstract instance but not referenced in the concrete
11256 one. */
11257 if (child_die->tag == DW_TAG_GNU_call_site)
11258 continue;
11259
11260 /* For each CHILD_DIE, find the corresponding child of
11261 ORIGIN_DIE. If there is more than one layer of
11262 DW_AT_abstract_origin, follow them all; there shouldn't be,
11263 but GCC versions at least through 4.4 generate this (GCC PR
11264 40573). */
11265 child_origin_die = child_die;
11266 child_origin_cu = cu;
11267 while (1)
11268 {
11269 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11270 child_origin_cu);
11271 if (attr == NULL)
11272 break;
11273 child_origin_die = follow_die_ref (child_origin_die, attr,
11274 &child_origin_cu);
11275 }
11276
11277 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11278 counterpart may exist. */
11279 if (child_origin_die != child_die)
11280 {
11281 if (child_die->tag != child_origin_die->tag
11282 && !(child_die->tag == DW_TAG_inlined_subroutine
11283 && child_origin_die->tag == DW_TAG_subprogram))
11284 complaint (&symfile_complaints,
11285 _("Child DIE 0x%x and its abstract origin 0x%x have "
11286 "different tags"), child_die->offset.sect_off,
11287 child_origin_die->offset.sect_off);
11288 if (child_origin_die->parent != origin_die)
11289 complaint (&symfile_complaints,
11290 _("Child DIE 0x%x and its abstract origin 0x%x have "
11291 "different parents"), child_die->offset.sect_off,
11292 child_origin_die->offset.sect_off);
11293 else
11294 *offsets_end++ = child_origin_die->offset;
11295 }
11296 }
11297 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11298 unsigned_int_compar);
11299 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11300 if (offsetp[-1].sect_off == offsetp->sect_off)
11301 complaint (&symfile_complaints,
11302 _("Multiple children of DIE 0x%x refer "
11303 "to DIE 0x%x as their abstract origin"),
11304 die->offset.sect_off, offsetp->sect_off);
11305
11306 offsetp = offsets;
11307 origin_child_die = origin_die->child;
11308 while (origin_child_die && origin_child_die->tag)
11309 {
11310 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11311 while (offsetp < offsets_end
11312 && offsetp->sect_off < origin_child_die->offset.sect_off)
11313 offsetp++;
11314 if (offsetp >= offsets_end
11315 || offsetp->sect_off > origin_child_die->offset.sect_off)
11316 {
11317 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11318 Check whether we're already processing ORIGIN_CHILD_DIE.
11319 This can happen with mutually referenced abstract_origins.
11320 PR 16581. */
11321 if (!origin_child_die->in_process)
11322 process_die (origin_child_die, origin_cu);
11323 }
11324 origin_child_die = sibling_die (origin_child_die);
11325 }
11326 origin_cu->list_in_scope = origin_previous_list_in_scope;
11327
11328 do_cleanups (cleanups);
11329 }
11330
11331 static void
11332 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11333 {
11334 struct objfile *objfile = cu->objfile;
11335 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11336 struct context_stack *newobj;
11337 CORE_ADDR lowpc;
11338 CORE_ADDR highpc;
11339 struct die_info *child_die;
11340 struct attribute *attr, *call_line, *call_file;
11341 const char *name;
11342 CORE_ADDR baseaddr;
11343 struct block *block;
11344 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11345 VEC (symbolp) *template_args = NULL;
11346 struct template_symbol *templ_func = NULL;
11347
11348 if (inlined_func)
11349 {
11350 /* If we do not have call site information, we can't show the
11351 caller of this inlined function. That's too confusing, so
11352 only use the scope for local variables. */
11353 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11354 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11355 if (call_line == NULL || call_file == NULL)
11356 {
11357 read_lexical_block_scope (die, cu);
11358 return;
11359 }
11360 }
11361
11362 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11363
11364 name = dwarf2_name (die, cu);
11365
11366 /* Ignore functions with missing or empty names. These are actually
11367 illegal according to the DWARF standard. */
11368 if (name == NULL)
11369 {
11370 complaint (&symfile_complaints,
11371 _("missing name for subprogram DIE at %d"),
11372 die->offset.sect_off);
11373 return;
11374 }
11375
11376 /* Ignore functions with missing or invalid low and high pc attributes. */
11377 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11378 {
11379 attr = dwarf2_attr (die, DW_AT_external, cu);
11380 if (!attr || !DW_UNSND (attr))
11381 complaint (&symfile_complaints,
11382 _("cannot get low and high bounds "
11383 "for subprogram DIE at %d"),
11384 die->offset.sect_off);
11385 return;
11386 }
11387
11388 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11389 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11390
11391 /* If we have any template arguments, then we must allocate a
11392 different sort of symbol. */
11393 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11394 {
11395 if (child_die->tag == DW_TAG_template_type_param
11396 || child_die->tag == DW_TAG_template_value_param)
11397 {
11398 templ_func = allocate_template_symbol (objfile);
11399 templ_func->base.is_cplus_template_function = 1;
11400 break;
11401 }
11402 }
11403
11404 newobj = push_context (0, lowpc);
11405 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11406 (struct symbol *) templ_func);
11407
11408 /* If there is a location expression for DW_AT_frame_base, record
11409 it. */
11410 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11411 if (attr)
11412 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11413
11414 cu->list_in_scope = &local_symbols;
11415
11416 if (die->child != NULL)
11417 {
11418 child_die = die->child;
11419 while (child_die && child_die->tag)
11420 {
11421 if (child_die->tag == DW_TAG_template_type_param
11422 || child_die->tag == DW_TAG_template_value_param)
11423 {
11424 struct symbol *arg = new_symbol (child_die, NULL, cu);
11425
11426 if (arg != NULL)
11427 VEC_safe_push (symbolp, template_args, arg);
11428 }
11429 else
11430 process_die (child_die, cu);
11431 child_die = sibling_die (child_die);
11432 }
11433 }
11434
11435 inherit_abstract_dies (die, cu);
11436
11437 /* If we have a DW_AT_specification, we might need to import using
11438 directives from the context of the specification DIE. See the
11439 comment in determine_prefix. */
11440 if (cu->language == language_cplus
11441 && dwarf2_attr (die, DW_AT_specification, cu))
11442 {
11443 struct dwarf2_cu *spec_cu = cu;
11444 struct die_info *spec_die = die_specification (die, &spec_cu);
11445
11446 while (spec_die)
11447 {
11448 child_die = spec_die->child;
11449 while (child_die && child_die->tag)
11450 {
11451 if (child_die->tag == DW_TAG_imported_module)
11452 process_die (child_die, spec_cu);
11453 child_die = sibling_die (child_die);
11454 }
11455
11456 /* In some cases, GCC generates specification DIEs that
11457 themselves contain DW_AT_specification attributes. */
11458 spec_die = die_specification (spec_die, &spec_cu);
11459 }
11460 }
11461
11462 newobj = pop_context ();
11463 /* Make a block for the local symbols within. */
11464 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11465 lowpc, highpc);
11466
11467 /* For C++, set the block's scope. */
11468 if ((cu->language == language_cplus
11469 || cu->language == language_fortran
11470 || cu->language == language_d)
11471 && cu->processing_has_namespace_info)
11472 block_set_scope (block, determine_prefix (die, cu),
11473 &objfile->objfile_obstack);
11474
11475 /* If we have address ranges, record them. */
11476 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11477
11478 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11479
11480 /* Attach template arguments to function. */
11481 if (! VEC_empty (symbolp, template_args))
11482 {
11483 gdb_assert (templ_func != NULL);
11484
11485 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11486 templ_func->template_arguments
11487 = obstack_alloc (&objfile->objfile_obstack,
11488 (templ_func->n_template_arguments
11489 * sizeof (struct symbol *)));
11490 memcpy (templ_func->template_arguments,
11491 VEC_address (symbolp, template_args),
11492 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11493 VEC_free (symbolp, template_args);
11494 }
11495
11496 /* In C++, we can have functions nested inside functions (e.g., when
11497 a function declares a class that has methods). This means that
11498 when we finish processing a function scope, we may need to go
11499 back to building a containing block's symbol lists. */
11500 local_symbols = newobj->locals;
11501 local_using_directives = newobj->local_using_directives;
11502
11503 /* If we've finished processing a top-level function, subsequent
11504 symbols go in the file symbol list. */
11505 if (outermost_context_p ())
11506 cu->list_in_scope = &file_symbols;
11507 }
11508
11509 /* Process all the DIES contained within a lexical block scope. Start
11510 a new scope, process the dies, and then close the scope. */
11511
11512 static void
11513 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11514 {
11515 struct objfile *objfile = cu->objfile;
11516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11517 struct context_stack *newobj;
11518 CORE_ADDR lowpc, highpc;
11519 struct die_info *child_die;
11520 CORE_ADDR baseaddr;
11521
11522 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11523
11524 /* Ignore blocks with missing or invalid low and high pc attributes. */
11525 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11526 as multiple lexical blocks? Handling children in a sane way would
11527 be nasty. Might be easier to properly extend generic blocks to
11528 describe ranges. */
11529 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11530 return;
11531 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11532 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11533
11534 push_context (0, lowpc);
11535 if (die->child != NULL)
11536 {
11537 child_die = die->child;
11538 while (child_die && child_die->tag)
11539 {
11540 process_die (child_die, cu);
11541 child_die = sibling_die (child_die);
11542 }
11543 }
11544 inherit_abstract_dies (die, cu);
11545 newobj = pop_context ();
11546
11547 if (local_symbols != NULL || local_using_directives != NULL)
11548 {
11549 struct block *block
11550 = finish_block (0, &local_symbols, newobj->old_blocks,
11551 newobj->start_addr, highpc);
11552
11553 /* Note that recording ranges after traversing children, as we
11554 do here, means that recording a parent's ranges entails
11555 walking across all its children's ranges as they appear in
11556 the address map, which is quadratic behavior.
11557
11558 It would be nicer to record the parent's ranges before
11559 traversing its children, simply overriding whatever you find
11560 there. But since we don't even decide whether to create a
11561 block until after we've traversed its children, that's hard
11562 to do. */
11563 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11564 }
11565 local_symbols = newobj->locals;
11566 local_using_directives = newobj->local_using_directives;
11567 }
11568
11569 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11570
11571 static void
11572 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11573 {
11574 struct objfile *objfile = cu->objfile;
11575 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11576 CORE_ADDR pc, baseaddr;
11577 struct attribute *attr;
11578 struct call_site *call_site, call_site_local;
11579 void **slot;
11580 int nparams;
11581 struct die_info *child_die;
11582
11583 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11584
11585 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11586 if (!attr)
11587 {
11588 complaint (&symfile_complaints,
11589 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11590 "DIE 0x%x [in module %s]"),
11591 die->offset.sect_off, objfile_name (objfile));
11592 return;
11593 }
11594 pc = attr_value_as_address (attr) + baseaddr;
11595 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11596
11597 if (cu->call_site_htab == NULL)
11598 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11599 NULL, &objfile->objfile_obstack,
11600 hashtab_obstack_allocate, NULL);
11601 call_site_local.pc = pc;
11602 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11603 if (*slot != NULL)
11604 {
11605 complaint (&symfile_complaints,
11606 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11607 "DIE 0x%x [in module %s]"),
11608 paddress (gdbarch, pc), die->offset.sect_off,
11609 objfile_name (objfile));
11610 return;
11611 }
11612
11613 /* Count parameters at the caller. */
11614
11615 nparams = 0;
11616 for (child_die = die->child; child_die && child_die->tag;
11617 child_die = sibling_die (child_die))
11618 {
11619 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11620 {
11621 complaint (&symfile_complaints,
11622 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11623 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11624 child_die->tag, child_die->offset.sect_off,
11625 objfile_name (objfile));
11626 continue;
11627 }
11628
11629 nparams++;
11630 }
11631
11632 call_site = obstack_alloc (&objfile->objfile_obstack,
11633 (sizeof (*call_site)
11634 + (sizeof (*call_site->parameter)
11635 * (nparams - 1))));
11636 *slot = call_site;
11637 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11638 call_site->pc = pc;
11639
11640 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11641 {
11642 struct die_info *func_die;
11643
11644 /* Skip also over DW_TAG_inlined_subroutine. */
11645 for (func_die = die->parent;
11646 func_die && func_die->tag != DW_TAG_subprogram
11647 && func_die->tag != DW_TAG_subroutine_type;
11648 func_die = func_die->parent);
11649
11650 /* DW_AT_GNU_all_call_sites is a superset
11651 of DW_AT_GNU_all_tail_call_sites. */
11652 if (func_die
11653 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11654 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11655 {
11656 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11657 not complete. But keep CALL_SITE for look ups via call_site_htab,
11658 both the initial caller containing the real return address PC and
11659 the final callee containing the current PC of a chain of tail
11660 calls do not need to have the tail call list complete. But any
11661 function candidate for a virtual tail call frame searched via
11662 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11663 determined unambiguously. */
11664 }
11665 else
11666 {
11667 struct type *func_type = NULL;
11668
11669 if (func_die)
11670 func_type = get_die_type (func_die, cu);
11671 if (func_type != NULL)
11672 {
11673 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11674
11675 /* Enlist this call site to the function. */
11676 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11677 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11678 }
11679 else
11680 complaint (&symfile_complaints,
11681 _("Cannot find function owning DW_TAG_GNU_call_site "
11682 "DIE 0x%x [in module %s]"),
11683 die->offset.sect_off, objfile_name (objfile));
11684 }
11685 }
11686
11687 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11688 if (attr == NULL)
11689 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11690 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11691 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11692 /* Keep NULL DWARF_BLOCK. */;
11693 else if (attr_form_is_block (attr))
11694 {
11695 struct dwarf2_locexpr_baton *dlbaton;
11696
11697 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11698 dlbaton->data = DW_BLOCK (attr)->data;
11699 dlbaton->size = DW_BLOCK (attr)->size;
11700 dlbaton->per_cu = cu->per_cu;
11701
11702 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11703 }
11704 else if (attr_form_is_ref (attr))
11705 {
11706 struct dwarf2_cu *target_cu = cu;
11707 struct die_info *target_die;
11708
11709 target_die = follow_die_ref (die, attr, &target_cu);
11710 gdb_assert (target_cu->objfile == objfile);
11711 if (die_is_declaration (target_die, target_cu))
11712 {
11713 const char *target_physname = NULL;
11714 struct attribute *target_attr;
11715
11716 /* Prefer the mangled name; otherwise compute the demangled one. */
11717 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11718 if (target_attr == NULL)
11719 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11720 target_cu);
11721 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11722 target_physname = DW_STRING (target_attr);
11723 else
11724 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11725 if (target_physname == NULL)
11726 complaint (&symfile_complaints,
11727 _("DW_AT_GNU_call_site_target target DIE has invalid "
11728 "physname, for referencing DIE 0x%x [in module %s]"),
11729 die->offset.sect_off, objfile_name (objfile));
11730 else
11731 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11732 }
11733 else
11734 {
11735 CORE_ADDR lowpc;
11736
11737 /* DW_AT_entry_pc should be preferred. */
11738 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11739 complaint (&symfile_complaints,
11740 _("DW_AT_GNU_call_site_target target DIE has invalid "
11741 "low pc, for referencing DIE 0x%x [in module %s]"),
11742 die->offset.sect_off, objfile_name (objfile));
11743 else
11744 {
11745 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11746 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11747 }
11748 }
11749 }
11750 else
11751 complaint (&symfile_complaints,
11752 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11753 "block nor reference, for DIE 0x%x [in module %s]"),
11754 die->offset.sect_off, objfile_name (objfile));
11755
11756 call_site->per_cu = cu->per_cu;
11757
11758 for (child_die = die->child;
11759 child_die && child_die->tag;
11760 child_die = sibling_die (child_die))
11761 {
11762 struct call_site_parameter *parameter;
11763 struct attribute *loc, *origin;
11764
11765 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11766 {
11767 /* Already printed the complaint above. */
11768 continue;
11769 }
11770
11771 gdb_assert (call_site->parameter_count < nparams);
11772 parameter = &call_site->parameter[call_site->parameter_count];
11773
11774 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11775 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11776 register is contained in DW_AT_GNU_call_site_value. */
11777
11778 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11779 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11780 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11781 {
11782 sect_offset offset;
11783
11784 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11785 offset = dwarf2_get_ref_die_offset (origin);
11786 if (!offset_in_cu_p (&cu->header, offset))
11787 {
11788 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11789 binding can be done only inside one CU. Such referenced DIE
11790 therefore cannot be even moved to DW_TAG_partial_unit. */
11791 complaint (&symfile_complaints,
11792 _("DW_AT_abstract_origin offset is not in CU for "
11793 "DW_TAG_GNU_call_site child DIE 0x%x "
11794 "[in module %s]"),
11795 child_die->offset.sect_off, objfile_name (objfile));
11796 continue;
11797 }
11798 parameter->u.param_offset.cu_off = (offset.sect_off
11799 - cu->header.offset.sect_off);
11800 }
11801 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11802 {
11803 complaint (&symfile_complaints,
11804 _("No DW_FORM_block* DW_AT_location for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11806 child_die->offset.sect_off, objfile_name (objfile));
11807 continue;
11808 }
11809 else
11810 {
11811 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11812 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11813 if (parameter->u.dwarf_reg != -1)
11814 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11815 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11816 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11817 &parameter->u.fb_offset))
11818 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11819 else
11820 {
11821 complaint (&symfile_complaints,
11822 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11823 "for DW_FORM_block* DW_AT_location is supported for "
11824 "DW_TAG_GNU_call_site child DIE 0x%x "
11825 "[in module %s]"),
11826 child_die->offset.sect_off, objfile_name (objfile));
11827 continue;
11828 }
11829 }
11830
11831 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11832 if (!attr_form_is_block (attr))
11833 {
11834 complaint (&symfile_complaints,
11835 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11837 child_die->offset.sect_off, objfile_name (objfile));
11838 continue;
11839 }
11840 parameter->value = DW_BLOCK (attr)->data;
11841 parameter->value_size = DW_BLOCK (attr)->size;
11842
11843 /* Parameters are not pre-cleared by memset above. */
11844 parameter->data_value = NULL;
11845 parameter->data_value_size = 0;
11846 call_site->parameter_count++;
11847
11848 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11849 if (attr)
11850 {
11851 if (!attr_form_is_block (attr))
11852 complaint (&symfile_complaints,
11853 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11854 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11855 child_die->offset.sect_off, objfile_name (objfile));
11856 else
11857 {
11858 parameter->data_value = DW_BLOCK (attr)->data;
11859 parameter->data_value_size = DW_BLOCK (attr)->size;
11860 }
11861 }
11862 }
11863 }
11864
11865 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11866 Return 1 if the attributes are present and valid, otherwise, return 0.
11867 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11868
11869 static int
11870 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11871 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11872 struct partial_symtab *ranges_pst)
11873 {
11874 struct objfile *objfile = cu->objfile;
11875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11876 struct comp_unit_head *cu_header = &cu->header;
11877 bfd *obfd = objfile->obfd;
11878 unsigned int addr_size = cu_header->addr_size;
11879 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11880 /* Base address selection entry. */
11881 CORE_ADDR base;
11882 int found_base;
11883 unsigned int dummy;
11884 const gdb_byte *buffer;
11885 CORE_ADDR marker;
11886 int low_set;
11887 CORE_ADDR low = 0;
11888 CORE_ADDR high = 0;
11889 CORE_ADDR baseaddr;
11890
11891 found_base = cu->base_known;
11892 base = cu->base_address;
11893
11894 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11895 if (offset >= dwarf2_per_objfile->ranges.size)
11896 {
11897 complaint (&symfile_complaints,
11898 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11899 offset);
11900 return 0;
11901 }
11902 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11903
11904 /* Read in the largest possible address. */
11905 marker = read_address (obfd, buffer, cu, &dummy);
11906 if ((marker & mask) == mask)
11907 {
11908 /* If we found the largest possible address, then
11909 read the base address. */
11910 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11911 buffer += 2 * addr_size;
11912 offset += 2 * addr_size;
11913 found_base = 1;
11914 }
11915
11916 low_set = 0;
11917
11918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11919
11920 while (1)
11921 {
11922 CORE_ADDR range_beginning, range_end;
11923
11924 range_beginning = read_address (obfd, buffer, cu, &dummy);
11925 buffer += addr_size;
11926 range_end = read_address (obfd, buffer, cu, &dummy);
11927 buffer += addr_size;
11928 offset += 2 * addr_size;
11929
11930 /* An end of list marker is a pair of zero addresses. */
11931 if (range_beginning == 0 && range_end == 0)
11932 /* Found the end of list entry. */
11933 break;
11934
11935 /* Each base address selection entry is a pair of 2 values.
11936 The first is the largest possible address, the second is
11937 the base address. Check for a base address here. */
11938 if ((range_beginning & mask) == mask)
11939 {
11940 /* If we found the largest possible address, then
11941 read the base address. */
11942 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11943 found_base = 1;
11944 continue;
11945 }
11946
11947 if (!found_base)
11948 {
11949 /* We have no valid base address for the ranges
11950 data. */
11951 complaint (&symfile_complaints,
11952 _("Invalid .debug_ranges data (no base address)"));
11953 return 0;
11954 }
11955
11956 if (range_beginning > range_end)
11957 {
11958 /* Inverted range entries are invalid. */
11959 complaint (&symfile_complaints,
11960 _("Invalid .debug_ranges data (inverted range)"));
11961 return 0;
11962 }
11963
11964 /* Empty range entries have no effect. */
11965 if (range_beginning == range_end)
11966 continue;
11967
11968 range_beginning += base;
11969 range_end += base;
11970
11971 /* A not-uncommon case of bad debug info.
11972 Don't pollute the addrmap with bad data. */
11973 if (range_beginning + baseaddr == 0
11974 && !dwarf2_per_objfile->has_section_at_zero)
11975 {
11976 complaint (&symfile_complaints,
11977 _(".debug_ranges entry has start address of zero"
11978 " [in module %s]"), objfile_name (objfile));
11979 continue;
11980 }
11981
11982 if (ranges_pst != NULL)
11983 {
11984 CORE_ADDR lowpc;
11985 CORE_ADDR highpc;
11986
11987 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11988 range_beginning + baseaddr);
11989 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11990 range_end + baseaddr);
11991 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11992 ranges_pst);
11993 }
11994
11995 /* FIXME: This is recording everything as a low-high
11996 segment of consecutive addresses. We should have a
11997 data structure for discontiguous block ranges
11998 instead. */
11999 if (! low_set)
12000 {
12001 low = range_beginning;
12002 high = range_end;
12003 low_set = 1;
12004 }
12005 else
12006 {
12007 if (range_beginning < low)
12008 low = range_beginning;
12009 if (range_end > high)
12010 high = range_end;
12011 }
12012 }
12013
12014 if (! low_set)
12015 /* If the first entry is an end-of-list marker, the range
12016 describes an empty scope, i.e. no instructions. */
12017 return 0;
12018
12019 if (low_return)
12020 *low_return = low;
12021 if (high_return)
12022 *high_return = high;
12023 return 1;
12024 }
12025
12026 /* Get low and high pc attributes from a die. Return 1 if the attributes
12027 are present and valid, otherwise, return 0. Return -1 if the range is
12028 discontinuous, i.e. derived from DW_AT_ranges information. */
12029
12030 static int
12031 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12032 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12033 struct partial_symtab *pst)
12034 {
12035 struct attribute *attr;
12036 struct attribute *attr_high;
12037 CORE_ADDR low = 0;
12038 CORE_ADDR high = 0;
12039 int ret = 0;
12040
12041 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12042 if (attr_high)
12043 {
12044 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12045 if (attr)
12046 {
12047 low = attr_value_as_address (attr);
12048 high = attr_value_as_address (attr_high);
12049 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12050 high += low;
12051 }
12052 else
12053 /* Found high w/o low attribute. */
12054 return 0;
12055
12056 /* Found consecutive range of addresses. */
12057 ret = 1;
12058 }
12059 else
12060 {
12061 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12062 if (attr != NULL)
12063 {
12064 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12065 We take advantage of the fact that DW_AT_ranges does not appear
12066 in DW_TAG_compile_unit of DWO files. */
12067 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12068 unsigned int ranges_offset = (DW_UNSND (attr)
12069 + (need_ranges_base
12070 ? cu->ranges_base
12071 : 0));
12072
12073 /* Value of the DW_AT_ranges attribute is the offset in the
12074 .debug_ranges section. */
12075 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12076 return 0;
12077 /* Found discontinuous range of addresses. */
12078 ret = -1;
12079 }
12080 }
12081
12082 /* read_partial_die has also the strict LOW < HIGH requirement. */
12083 if (high <= low)
12084 return 0;
12085
12086 /* When using the GNU linker, .gnu.linkonce. sections are used to
12087 eliminate duplicate copies of functions and vtables and such.
12088 The linker will arbitrarily choose one and discard the others.
12089 The AT_*_pc values for such functions refer to local labels in
12090 these sections. If the section from that file was discarded, the
12091 labels are not in the output, so the relocs get a value of 0.
12092 If this is a discarded function, mark the pc bounds as invalid,
12093 so that GDB will ignore it. */
12094 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12095 return 0;
12096
12097 *lowpc = low;
12098 if (highpc)
12099 *highpc = high;
12100 return ret;
12101 }
12102
12103 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12104 its low and high PC addresses. Do nothing if these addresses could not
12105 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12106 and HIGHPC to the high address if greater than HIGHPC. */
12107
12108 static void
12109 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12110 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12111 struct dwarf2_cu *cu)
12112 {
12113 CORE_ADDR low, high;
12114 struct die_info *child = die->child;
12115
12116 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12117 {
12118 *lowpc = min (*lowpc, low);
12119 *highpc = max (*highpc, high);
12120 }
12121
12122 /* If the language does not allow nested subprograms (either inside
12123 subprograms or lexical blocks), we're done. */
12124 if (cu->language != language_ada)
12125 return;
12126
12127 /* Check all the children of the given DIE. If it contains nested
12128 subprograms, then check their pc bounds. Likewise, we need to
12129 check lexical blocks as well, as they may also contain subprogram
12130 definitions. */
12131 while (child && child->tag)
12132 {
12133 if (child->tag == DW_TAG_subprogram
12134 || child->tag == DW_TAG_lexical_block)
12135 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12136 child = sibling_die (child);
12137 }
12138 }
12139
12140 /* Get the low and high pc's represented by the scope DIE, and store
12141 them in *LOWPC and *HIGHPC. If the correct values can't be
12142 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12143
12144 static void
12145 get_scope_pc_bounds (struct die_info *die,
12146 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12147 struct dwarf2_cu *cu)
12148 {
12149 CORE_ADDR best_low = (CORE_ADDR) -1;
12150 CORE_ADDR best_high = (CORE_ADDR) 0;
12151 CORE_ADDR current_low, current_high;
12152
12153 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12154 {
12155 best_low = current_low;
12156 best_high = current_high;
12157 }
12158 else
12159 {
12160 struct die_info *child = die->child;
12161
12162 while (child && child->tag)
12163 {
12164 switch (child->tag) {
12165 case DW_TAG_subprogram:
12166 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12167 break;
12168 case DW_TAG_namespace:
12169 case DW_TAG_module:
12170 /* FIXME: carlton/2004-01-16: Should we do this for
12171 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12172 that current GCC's always emit the DIEs corresponding
12173 to definitions of methods of classes as children of a
12174 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12175 the DIEs giving the declarations, which could be
12176 anywhere). But I don't see any reason why the
12177 standards says that they have to be there. */
12178 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12179
12180 if (current_low != ((CORE_ADDR) -1))
12181 {
12182 best_low = min (best_low, current_low);
12183 best_high = max (best_high, current_high);
12184 }
12185 break;
12186 default:
12187 /* Ignore. */
12188 break;
12189 }
12190
12191 child = sibling_die (child);
12192 }
12193 }
12194
12195 *lowpc = best_low;
12196 *highpc = best_high;
12197 }
12198
12199 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12200 in DIE. */
12201
12202 static void
12203 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12204 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12205 {
12206 struct objfile *objfile = cu->objfile;
12207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12208 struct attribute *attr;
12209 struct attribute *attr_high;
12210
12211 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12212 if (attr_high)
12213 {
12214 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12215 if (attr)
12216 {
12217 CORE_ADDR low = attr_value_as_address (attr);
12218 CORE_ADDR high = attr_value_as_address (attr_high);
12219
12220 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12221 high += low;
12222
12223 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12224 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12225 record_block_range (block, low, high - 1);
12226 }
12227 }
12228
12229 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12230 if (attr)
12231 {
12232 bfd *obfd = objfile->obfd;
12233 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12234 We take advantage of the fact that DW_AT_ranges does not appear
12235 in DW_TAG_compile_unit of DWO files. */
12236 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12237
12238 /* The value of the DW_AT_ranges attribute is the offset of the
12239 address range list in the .debug_ranges section. */
12240 unsigned long offset = (DW_UNSND (attr)
12241 + (need_ranges_base ? cu->ranges_base : 0));
12242 const gdb_byte *buffer;
12243
12244 /* For some target architectures, but not others, the
12245 read_address function sign-extends the addresses it returns.
12246 To recognize base address selection entries, we need a
12247 mask. */
12248 unsigned int addr_size = cu->header.addr_size;
12249 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12250
12251 /* The base address, to which the next pair is relative. Note
12252 that this 'base' is a DWARF concept: most entries in a range
12253 list are relative, to reduce the number of relocs against the
12254 debugging information. This is separate from this function's
12255 'baseaddr' argument, which GDB uses to relocate debugging
12256 information from a shared library based on the address at
12257 which the library was loaded. */
12258 CORE_ADDR base = cu->base_address;
12259 int base_known = cu->base_known;
12260
12261 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12262 if (offset >= dwarf2_per_objfile->ranges.size)
12263 {
12264 complaint (&symfile_complaints,
12265 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12266 offset);
12267 return;
12268 }
12269 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12270
12271 for (;;)
12272 {
12273 unsigned int bytes_read;
12274 CORE_ADDR start, end;
12275
12276 start = read_address (obfd, buffer, cu, &bytes_read);
12277 buffer += bytes_read;
12278 end = read_address (obfd, buffer, cu, &bytes_read);
12279 buffer += bytes_read;
12280
12281 /* Did we find the end of the range list? */
12282 if (start == 0 && end == 0)
12283 break;
12284
12285 /* Did we find a base address selection entry? */
12286 else if ((start & base_select_mask) == base_select_mask)
12287 {
12288 base = end;
12289 base_known = 1;
12290 }
12291
12292 /* We found an ordinary address range. */
12293 else
12294 {
12295 if (!base_known)
12296 {
12297 complaint (&symfile_complaints,
12298 _("Invalid .debug_ranges data "
12299 "(no base address)"));
12300 return;
12301 }
12302
12303 if (start > end)
12304 {
12305 /* Inverted range entries are invalid. */
12306 complaint (&symfile_complaints,
12307 _("Invalid .debug_ranges data "
12308 "(inverted range)"));
12309 return;
12310 }
12311
12312 /* Empty range entries have no effect. */
12313 if (start == end)
12314 continue;
12315
12316 start += base + baseaddr;
12317 end += base + baseaddr;
12318
12319 /* A not-uncommon case of bad debug info.
12320 Don't pollute the addrmap with bad data. */
12321 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12322 {
12323 complaint (&symfile_complaints,
12324 _(".debug_ranges entry has start address of zero"
12325 " [in module %s]"), objfile_name (objfile));
12326 continue;
12327 }
12328
12329 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12330 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12331 record_block_range (block, start, end - 1);
12332 }
12333 }
12334 }
12335 }
12336
12337 /* Check whether the producer field indicates either of GCC < 4.6, or the
12338 Intel C/C++ compiler, and cache the result in CU. */
12339
12340 static void
12341 check_producer (struct dwarf2_cu *cu)
12342 {
12343 const char *cs;
12344 int major, minor;
12345
12346 if (cu->producer == NULL)
12347 {
12348 /* For unknown compilers expect their behavior is DWARF version
12349 compliant.
12350
12351 GCC started to support .debug_types sections by -gdwarf-4 since
12352 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12353 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12354 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12355 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12356 }
12357 else if (producer_is_gcc (cu->producer, &major, &minor))
12358 {
12359 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12360 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12361 }
12362 else if (startswith (cu->producer, "Intel(R) C"))
12363 cu->producer_is_icc = 1;
12364 else
12365 {
12366 /* For other non-GCC compilers, expect their behavior is DWARF version
12367 compliant. */
12368 }
12369
12370 cu->checked_producer = 1;
12371 }
12372
12373 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12374 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12375 during 4.6.0 experimental. */
12376
12377 static int
12378 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12379 {
12380 if (!cu->checked_producer)
12381 check_producer (cu);
12382
12383 return cu->producer_is_gxx_lt_4_6;
12384 }
12385
12386 /* Return the default accessibility type if it is not overriden by
12387 DW_AT_accessibility. */
12388
12389 static enum dwarf_access_attribute
12390 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12391 {
12392 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12393 {
12394 /* The default DWARF 2 accessibility for members is public, the default
12395 accessibility for inheritance is private. */
12396
12397 if (die->tag != DW_TAG_inheritance)
12398 return DW_ACCESS_public;
12399 else
12400 return DW_ACCESS_private;
12401 }
12402 else
12403 {
12404 /* DWARF 3+ defines the default accessibility a different way. The same
12405 rules apply now for DW_TAG_inheritance as for the members and it only
12406 depends on the container kind. */
12407
12408 if (die->parent->tag == DW_TAG_class_type)
12409 return DW_ACCESS_private;
12410 else
12411 return DW_ACCESS_public;
12412 }
12413 }
12414
12415 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12416 offset. If the attribute was not found return 0, otherwise return
12417 1. If it was found but could not properly be handled, set *OFFSET
12418 to 0. */
12419
12420 static int
12421 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12422 LONGEST *offset)
12423 {
12424 struct attribute *attr;
12425
12426 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12427 if (attr != NULL)
12428 {
12429 *offset = 0;
12430
12431 /* Note that we do not check for a section offset first here.
12432 This is because DW_AT_data_member_location is new in DWARF 4,
12433 so if we see it, we can assume that a constant form is really
12434 a constant and not a section offset. */
12435 if (attr_form_is_constant (attr))
12436 *offset = dwarf2_get_attr_constant_value (attr, 0);
12437 else if (attr_form_is_section_offset (attr))
12438 dwarf2_complex_location_expr_complaint ();
12439 else if (attr_form_is_block (attr))
12440 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12441 else
12442 dwarf2_complex_location_expr_complaint ();
12443
12444 return 1;
12445 }
12446
12447 return 0;
12448 }
12449
12450 /* Add an aggregate field to the field list. */
12451
12452 static void
12453 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12454 struct dwarf2_cu *cu)
12455 {
12456 struct objfile *objfile = cu->objfile;
12457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12458 struct nextfield *new_field;
12459 struct attribute *attr;
12460 struct field *fp;
12461 const char *fieldname = "";
12462
12463 /* Allocate a new field list entry and link it in. */
12464 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12465 make_cleanup (xfree, new_field);
12466 memset (new_field, 0, sizeof (struct nextfield));
12467
12468 if (die->tag == DW_TAG_inheritance)
12469 {
12470 new_field->next = fip->baseclasses;
12471 fip->baseclasses = new_field;
12472 }
12473 else
12474 {
12475 new_field->next = fip->fields;
12476 fip->fields = new_field;
12477 }
12478 fip->nfields++;
12479
12480 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12481 if (attr)
12482 new_field->accessibility = DW_UNSND (attr);
12483 else
12484 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12485 if (new_field->accessibility != DW_ACCESS_public)
12486 fip->non_public_fields = 1;
12487
12488 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12489 if (attr)
12490 new_field->virtuality = DW_UNSND (attr);
12491 else
12492 new_field->virtuality = DW_VIRTUALITY_none;
12493
12494 fp = &new_field->field;
12495
12496 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12497 {
12498 LONGEST offset;
12499
12500 /* Data member other than a C++ static data member. */
12501
12502 /* Get type of field. */
12503 fp->type = die_type (die, cu);
12504
12505 SET_FIELD_BITPOS (*fp, 0);
12506
12507 /* Get bit size of field (zero if none). */
12508 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12509 if (attr)
12510 {
12511 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12512 }
12513 else
12514 {
12515 FIELD_BITSIZE (*fp) = 0;
12516 }
12517
12518 /* Get bit offset of field. */
12519 if (handle_data_member_location (die, cu, &offset))
12520 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12521 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12522 if (attr)
12523 {
12524 if (gdbarch_bits_big_endian (gdbarch))
12525 {
12526 /* For big endian bits, the DW_AT_bit_offset gives the
12527 additional bit offset from the MSB of the containing
12528 anonymous object to the MSB of the field. We don't
12529 have to do anything special since we don't need to
12530 know the size of the anonymous object. */
12531 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12532 }
12533 else
12534 {
12535 /* For little endian bits, compute the bit offset to the
12536 MSB of the anonymous object, subtract off the number of
12537 bits from the MSB of the field to the MSB of the
12538 object, and then subtract off the number of bits of
12539 the field itself. The result is the bit offset of
12540 the LSB of the field. */
12541 int anonymous_size;
12542 int bit_offset = DW_UNSND (attr);
12543
12544 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12545 if (attr)
12546 {
12547 /* The size of the anonymous object containing
12548 the bit field is explicit, so use the
12549 indicated size (in bytes). */
12550 anonymous_size = DW_UNSND (attr);
12551 }
12552 else
12553 {
12554 /* The size of the anonymous object containing
12555 the bit field must be inferred from the type
12556 attribute of the data member containing the
12557 bit field. */
12558 anonymous_size = TYPE_LENGTH (fp->type);
12559 }
12560 SET_FIELD_BITPOS (*fp,
12561 (FIELD_BITPOS (*fp)
12562 + anonymous_size * bits_per_byte
12563 - bit_offset - FIELD_BITSIZE (*fp)));
12564 }
12565 }
12566
12567 /* Get name of field. */
12568 fieldname = dwarf2_name (die, cu);
12569 if (fieldname == NULL)
12570 fieldname = "";
12571
12572 /* The name is already allocated along with this objfile, so we don't
12573 need to duplicate it for the type. */
12574 fp->name = fieldname;
12575
12576 /* Change accessibility for artificial fields (e.g. virtual table
12577 pointer or virtual base class pointer) to private. */
12578 if (dwarf2_attr (die, DW_AT_artificial, cu))
12579 {
12580 FIELD_ARTIFICIAL (*fp) = 1;
12581 new_field->accessibility = DW_ACCESS_private;
12582 fip->non_public_fields = 1;
12583 }
12584 }
12585 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12586 {
12587 /* C++ static member. */
12588
12589 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12590 is a declaration, but all versions of G++ as of this writing
12591 (so through at least 3.2.1) incorrectly generate
12592 DW_TAG_variable tags. */
12593
12594 const char *physname;
12595
12596 /* Get name of field. */
12597 fieldname = dwarf2_name (die, cu);
12598 if (fieldname == NULL)
12599 return;
12600
12601 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12602 if (attr
12603 /* Only create a symbol if this is an external value.
12604 new_symbol checks this and puts the value in the global symbol
12605 table, which we want. If it is not external, new_symbol
12606 will try to put the value in cu->list_in_scope which is wrong. */
12607 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12608 {
12609 /* A static const member, not much different than an enum as far as
12610 we're concerned, except that we can support more types. */
12611 new_symbol (die, NULL, cu);
12612 }
12613
12614 /* Get physical name. */
12615 physname = dwarf2_physname (fieldname, die, cu);
12616
12617 /* The name is already allocated along with this objfile, so we don't
12618 need to duplicate it for the type. */
12619 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12620 FIELD_TYPE (*fp) = die_type (die, cu);
12621 FIELD_NAME (*fp) = fieldname;
12622 }
12623 else if (die->tag == DW_TAG_inheritance)
12624 {
12625 LONGEST offset;
12626
12627 /* C++ base class field. */
12628 if (handle_data_member_location (die, cu, &offset))
12629 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12630 FIELD_BITSIZE (*fp) = 0;
12631 FIELD_TYPE (*fp) = die_type (die, cu);
12632 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12633 fip->nbaseclasses++;
12634 }
12635 }
12636
12637 /* Add a typedef defined in the scope of the FIP's class. */
12638
12639 static void
12640 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12641 struct dwarf2_cu *cu)
12642 {
12643 struct objfile *objfile = cu->objfile;
12644 struct typedef_field_list *new_field;
12645 struct attribute *attr;
12646 struct typedef_field *fp;
12647 char *fieldname = "";
12648
12649 /* Allocate a new field list entry and link it in. */
12650 new_field = xzalloc (sizeof (*new_field));
12651 make_cleanup (xfree, new_field);
12652
12653 gdb_assert (die->tag == DW_TAG_typedef);
12654
12655 fp = &new_field->field;
12656
12657 /* Get name of field. */
12658 fp->name = dwarf2_name (die, cu);
12659 if (fp->name == NULL)
12660 return;
12661
12662 fp->type = read_type_die (die, cu);
12663
12664 new_field->next = fip->typedef_field_list;
12665 fip->typedef_field_list = new_field;
12666 fip->typedef_field_list_count++;
12667 }
12668
12669 /* Create the vector of fields, and attach it to the type. */
12670
12671 static void
12672 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12673 struct dwarf2_cu *cu)
12674 {
12675 int nfields = fip->nfields;
12676
12677 /* Record the field count, allocate space for the array of fields,
12678 and create blank accessibility bitfields if necessary. */
12679 TYPE_NFIELDS (type) = nfields;
12680 TYPE_FIELDS (type) = (struct field *)
12681 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12682 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12683
12684 if (fip->non_public_fields && cu->language != language_ada)
12685 {
12686 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12687
12688 TYPE_FIELD_PRIVATE_BITS (type) =
12689 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12690 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12691
12692 TYPE_FIELD_PROTECTED_BITS (type) =
12693 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12694 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12695
12696 TYPE_FIELD_IGNORE_BITS (type) =
12697 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12698 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12699 }
12700
12701 /* If the type has baseclasses, allocate and clear a bit vector for
12702 TYPE_FIELD_VIRTUAL_BITS. */
12703 if (fip->nbaseclasses && cu->language != language_ada)
12704 {
12705 int num_bytes = B_BYTES (fip->nbaseclasses);
12706 unsigned char *pointer;
12707
12708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12709 pointer = TYPE_ALLOC (type, num_bytes);
12710 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12711 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12712 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12713 }
12714
12715 /* Copy the saved-up fields into the field vector. Start from the head of
12716 the list, adding to the tail of the field array, so that they end up in
12717 the same order in the array in which they were added to the list. */
12718 while (nfields-- > 0)
12719 {
12720 struct nextfield *fieldp;
12721
12722 if (fip->fields)
12723 {
12724 fieldp = fip->fields;
12725 fip->fields = fieldp->next;
12726 }
12727 else
12728 {
12729 fieldp = fip->baseclasses;
12730 fip->baseclasses = fieldp->next;
12731 }
12732
12733 TYPE_FIELD (type, nfields) = fieldp->field;
12734 switch (fieldp->accessibility)
12735 {
12736 case DW_ACCESS_private:
12737 if (cu->language != language_ada)
12738 SET_TYPE_FIELD_PRIVATE (type, nfields);
12739 break;
12740
12741 case DW_ACCESS_protected:
12742 if (cu->language != language_ada)
12743 SET_TYPE_FIELD_PROTECTED (type, nfields);
12744 break;
12745
12746 case DW_ACCESS_public:
12747 break;
12748
12749 default:
12750 /* Unknown accessibility. Complain and treat it as public. */
12751 {
12752 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12753 fieldp->accessibility);
12754 }
12755 break;
12756 }
12757 if (nfields < fip->nbaseclasses)
12758 {
12759 switch (fieldp->virtuality)
12760 {
12761 case DW_VIRTUALITY_virtual:
12762 case DW_VIRTUALITY_pure_virtual:
12763 if (cu->language == language_ada)
12764 error (_("unexpected virtuality in component of Ada type"));
12765 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12766 break;
12767 }
12768 }
12769 }
12770 }
12771
12772 /* Return true if this member function is a constructor, false
12773 otherwise. */
12774
12775 static int
12776 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12777 {
12778 const char *fieldname;
12779 const char *type_name;
12780 int len;
12781
12782 if (die->parent == NULL)
12783 return 0;
12784
12785 if (die->parent->tag != DW_TAG_structure_type
12786 && die->parent->tag != DW_TAG_union_type
12787 && die->parent->tag != DW_TAG_class_type)
12788 return 0;
12789
12790 fieldname = dwarf2_name (die, cu);
12791 type_name = dwarf2_name (die->parent, cu);
12792 if (fieldname == NULL || type_name == NULL)
12793 return 0;
12794
12795 len = strlen (fieldname);
12796 return (strncmp (fieldname, type_name, len) == 0
12797 && (type_name[len] == '\0' || type_name[len] == '<'));
12798 }
12799
12800 /* Add a member function to the proper fieldlist. */
12801
12802 static void
12803 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12804 struct type *type, struct dwarf2_cu *cu)
12805 {
12806 struct objfile *objfile = cu->objfile;
12807 struct attribute *attr;
12808 struct fnfieldlist *flp;
12809 int i;
12810 struct fn_field *fnp;
12811 const char *fieldname;
12812 struct nextfnfield *new_fnfield;
12813 struct type *this_type;
12814 enum dwarf_access_attribute accessibility;
12815
12816 if (cu->language == language_ada)
12817 error (_("unexpected member function in Ada type"));
12818
12819 /* Get name of member function. */
12820 fieldname = dwarf2_name (die, cu);
12821 if (fieldname == NULL)
12822 return;
12823
12824 /* Look up member function name in fieldlist. */
12825 for (i = 0; i < fip->nfnfields; i++)
12826 {
12827 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12828 break;
12829 }
12830
12831 /* Create new list element if necessary. */
12832 if (i < fip->nfnfields)
12833 flp = &fip->fnfieldlists[i];
12834 else
12835 {
12836 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12837 {
12838 fip->fnfieldlists = (struct fnfieldlist *)
12839 xrealloc (fip->fnfieldlists,
12840 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12841 * sizeof (struct fnfieldlist));
12842 if (fip->nfnfields == 0)
12843 make_cleanup (free_current_contents, &fip->fnfieldlists);
12844 }
12845 flp = &fip->fnfieldlists[fip->nfnfields];
12846 flp->name = fieldname;
12847 flp->length = 0;
12848 flp->head = NULL;
12849 i = fip->nfnfields++;
12850 }
12851
12852 /* Create a new member function field and chain it to the field list
12853 entry. */
12854 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12855 make_cleanup (xfree, new_fnfield);
12856 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12857 new_fnfield->next = flp->head;
12858 flp->head = new_fnfield;
12859 flp->length++;
12860
12861 /* Fill in the member function field info. */
12862 fnp = &new_fnfield->fnfield;
12863
12864 /* Delay processing of the physname until later. */
12865 if (cu->language == language_cplus || cu->language == language_java)
12866 {
12867 add_to_method_list (type, i, flp->length - 1, fieldname,
12868 die, cu);
12869 }
12870 else
12871 {
12872 const char *physname = dwarf2_physname (fieldname, die, cu);
12873 fnp->physname = physname ? physname : "";
12874 }
12875
12876 fnp->type = alloc_type (objfile);
12877 this_type = read_type_die (die, cu);
12878 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12879 {
12880 int nparams = TYPE_NFIELDS (this_type);
12881
12882 /* TYPE is the domain of this method, and THIS_TYPE is the type
12883 of the method itself (TYPE_CODE_METHOD). */
12884 smash_to_method_type (fnp->type, type,
12885 TYPE_TARGET_TYPE (this_type),
12886 TYPE_FIELDS (this_type),
12887 TYPE_NFIELDS (this_type),
12888 TYPE_VARARGS (this_type));
12889
12890 /* Handle static member functions.
12891 Dwarf2 has no clean way to discern C++ static and non-static
12892 member functions. G++ helps GDB by marking the first
12893 parameter for non-static member functions (which is the this
12894 pointer) as artificial. We obtain this information from
12895 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12896 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12897 fnp->voffset = VOFFSET_STATIC;
12898 }
12899 else
12900 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12901 dwarf2_full_name (fieldname, die, cu));
12902
12903 /* Get fcontext from DW_AT_containing_type if present. */
12904 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12905 fnp->fcontext = die_containing_type (die, cu);
12906
12907 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12908 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12909
12910 /* Get accessibility. */
12911 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12912 if (attr)
12913 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12914 else
12915 accessibility = dwarf2_default_access_attribute (die, cu);
12916 switch (accessibility)
12917 {
12918 case DW_ACCESS_private:
12919 fnp->is_private = 1;
12920 break;
12921 case DW_ACCESS_protected:
12922 fnp->is_protected = 1;
12923 break;
12924 }
12925
12926 /* Check for artificial methods. */
12927 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12928 if (attr && DW_UNSND (attr) != 0)
12929 fnp->is_artificial = 1;
12930
12931 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12932
12933 /* Get index in virtual function table if it is a virtual member
12934 function. For older versions of GCC, this is an offset in the
12935 appropriate virtual table, as specified by DW_AT_containing_type.
12936 For everyone else, it is an expression to be evaluated relative
12937 to the object address. */
12938
12939 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12940 if (attr)
12941 {
12942 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12943 {
12944 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12945 {
12946 /* Old-style GCC. */
12947 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12948 }
12949 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12950 || (DW_BLOCK (attr)->size > 1
12951 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12952 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12953 {
12954 struct dwarf_block blk;
12955 int offset;
12956
12957 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12958 ? 1 : 2);
12959 blk.size = DW_BLOCK (attr)->size - offset;
12960 blk.data = DW_BLOCK (attr)->data + offset;
12961 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12962 if ((fnp->voffset % cu->header.addr_size) != 0)
12963 dwarf2_complex_location_expr_complaint ();
12964 else
12965 fnp->voffset /= cu->header.addr_size;
12966 fnp->voffset += 2;
12967 }
12968 else
12969 dwarf2_complex_location_expr_complaint ();
12970
12971 if (!fnp->fcontext)
12972 {
12973 /* If there is no `this' field and no DW_AT_containing_type,
12974 we cannot actually find a base class context for the
12975 vtable! */
12976 if (TYPE_NFIELDS (this_type) == 0
12977 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12978 {
12979 complaint (&symfile_complaints,
12980 _("cannot determine context for virtual member "
12981 "function \"%s\" (offset %d)"),
12982 fieldname, die->offset.sect_off);
12983 }
12984 else
12985 {
12986 fnp->fcontext
12987 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12988 }
12989 }
12990 }
12991 else if (attr_form_is_section_offset (attr))
12992 {
12993 dwarf2_complex_location_expr_complaint ();
12994 }
12995 else
12996 {
12997 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12998 fieldname);
12999 }
13000 }
13001 else
13002 {
13003 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13004 if (attr && DW_UNSND (attr))
13005 {
13006 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13007 complaint (&symfile_complaints,
13008 _("Member function \"%s\" (offset %d) is virtual "
13009 "but the vtable offset is not specified"),
13010 fieldname, die->offset.sect_off);
13011 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13012 TYPE_CPLUS_DYNAMIC (type) = 1;
13013 }
13014 }
13015 }
13016
13017 /* Create the vector of member function fields, and attach it to the type. */
13018
13019 static void
13020 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13021 struct dwarf2_cu *cu)
13022 {
13023 struct fnfieldlist *flp;
13024 int i;
13025
13026 if (cu->language == language_ada)
13027 error (_("unexpected member functions in Ada type"));
13028
13029 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13030 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13031 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13032
13033 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13034 {
13035 struct nextfnfield *nfp = flp->head;
13036 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13037 int k;
13038
13039 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13040 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13041 fn_flp->fn_fields = (struct fn_field *)
13042 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13043 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13044 fn_flp->fn_fields[k] = nfp->fnfield;
13045 }
13046
13047 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13048 }
13049
13050 /* Returns non-zero if NAME is the name of a vtable member in CU's
13051 language, zero otherwise. */
13052 static int
13053 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13054 {
13055 static const char vptr[] = "_vptr";
13056 static const char vtable[] = "vtable";
13057
13058 /* Look for the C++ and Java forms of the vtable. */
13059 if ((cu->language == language_java
13060 && startswith (name, vtable))
13061 || (startswith (name, vptr)
13062 && is_cplus_marker (name[sizeof (vptr) - 1])))
13063 return 1;
13064
13065 return 0;
13066 }
13067
13068 /* GCC outputs unnamed structures that are really pointers to member
13069 functions, with the ABI-specified layout. If TYPE describes
13070 such a structure, smash it into a member function type.
13071
13072 GCC shouldn't do this; it should just output pointer to member DIEs.
13073 This is GCC PR debug/28767. */
13074
13075 static void
13076 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13077 {
13078 struct type *pfn_type, *self_type, *new_type;
13079
13080 /* Check for a structure with no name and two children. */
13081 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13082 return;
13083
13084 /* Check for __pfn and __delta members. */
13085 if (TYPE_FIELD_NAME (type, 0) == NULL
13086 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13087 || TYPE_FIELD_NAME (type, 1) == NULL
13088 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13089 return;
13090
13091 /* Find the type of the method. */
13092 pfn_type = TYPE_FIELD_TYPE (type, 0);
13093 if (pfn_type == NULL
13094 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13095 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13096 return;
13097
13098 /* Look for the "this" argument. */
13099 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13100 if (TYPE_NFIELDS (pfn_type) == 0
13101 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13102 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13103 return;
13104
13105 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13106 new_type = alloc_type (objfile);
13107 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13108 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13109 TYPE_VARARGS (pfn_type));
13110 smash_to_methodptr_type (type, new_type);
13111 }
13112
13113 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13114 (icc). */
13115
13116 static int
13117 producer_is_icc (struct dwarf2_cu *cu)
13118 {
13119 if (!cu->checked_producer)
13120 check_producer (cu);
13121
13122 return cu->producer_is_icc;
13123 }
13124
13125 /* Called when we find the DIE that starts a structure or union scope
13126 (definition) to create a type for the structure or union. Fill in
13127 the type's name and general properties; the members will not be
13128 processed until process_structure_scope. A symbol table entry for
13129 the type will also not be done until process_structure_scope (assuming
13130 the type has a name).
13131
13132 NOTE: we need to call these functions regardless of whether or not the
13133 DIE has a DW_AT_name attribute, since it might be an anonymous
13134 structure or union. This gets the type entered into our set of
13135 user defined types. */
13136
13137 static struct type *
13138 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13139 {
13140 struct objfile *objfile = cu->objfile;
13141 struct type *type;
13142 struct attribute *attr;
13143 const char *name;
13144
13145 /* If the definition of this type lives in .debug_types, read that type.
13146 Don't follow DW_AT_specification though, that will take us back up
13147 the chain and we want to go down. */
13148 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13149 if (attr)
13150 {
13151 type = get_DW_AT_signature_type (die, attr, cu);
13152
13153 /* The type's CU may not be the same as CU.
13154 Ensure TYPE is recorded with CU in die_type_hash. */
13155 return set_die_type (die, type, cu);
13156 }
13157
13158 type = alloc_type (objfile);
13159 INIT_CPLUS_SPECIFIC (type);
13160
13161 name = dwarf2_name (die, cu);
13162 if (name != NULL)
13163 {
13164 if (cu->language == language_cplus
13165 || cu->language == language_java
13166 || cu->language == language_d)
13167 {
13168 const char *full_name = dwarf2_full_name (name, die, cu);
13169
13170 /* dwarf2_full_name might have already finished building the DIE's
13171 type. If so, there is no need to continue. */
13172 if (get_die_type (die, cu) != NULL)
13173 return get_die_type (die, cu);
13174
13175 TYPE_TAG_NAME (type) = full_name;
13176 if (die->tag == DW_TAG_structure_type
13177 || die->tag == DW_TAG_class_type)
13178 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13179 }
13180 else
13181 {
13182 /* The name is already allocated along with this objfile, so
13183 we don't need to duplicate it for the type. */
13184 TYPE_TAG_NAME (type) = name;
13185 if (die->tag == DW_TAG_class_type)
13186 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13187 }
13188 }
13189
13190 if (die->tag == DW_TAG_structure_type)
13191 {
13192 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13193 }
13194 else if (die->tag == DW_TAG_union_type)
13195 {
13196 TYPE_CODE (type) = TYPE_CODE_UNION;
13197 }
13198 else
13199 {
13200 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13201 }
13202
13203 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13204 TYPE_DECLARED_CLASS (type) = 1;
13205
13206 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13207 if (attr)
13208 {
13209 TYPE_LENGTH (type) = DW_UNSND (attr);
13210 }
13211 else
13212 {
13213 TYPE_LENGTH (type) = 0;
13214 }
13215
13216 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13217 {
13218 /* ICC does not output the required DW_AT_declaration
13219 on incomplete types, but gives them a size of zero. */
13220 TYPE_STUB (type) = 1;
13221 }
13222 else
13223 TYPE_STUB_SUPPORTED (type) = 1;
13224
13225 if (die_is_declaration (die, cu))
13226 TYPE_STUB (type) = 1;
13227 else if (attr == NULL && die->child == NULL
13228 && producer_is_realview (cu->producer))
13229 /* RealView does not output the required DW_AT_declaration
13230 on incomplete types. */
13231 TYPE_STUB (type) = 1;
13232
13233 /* We need to add the type field to the die immediately so we don't
13234 infinitely recurse when dealing with pointers to the structure
13235 type within the structure itself. */
13236 set_die_type (die, type, cu);
13237
13238 /* set_die_type should be already done. */
13239 set_descriptive_type (type, die, cu);
13240
13241 return type;
13242 }
13243
13244 /* Finish creating a structure or union type, including filling in
13245 its members and creating a symbol for it. */
13246
13247 static void
13248 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13249 {
13250 struct objfile *objfile = cu->objfile;
13251 struct die_info *child_die;
13252 struct type *type;
13253
13254 type = get_die_type (die, cu);
13255 if (type == NULL)
13256 type = read_structure_type (die, cu);
13257
13258 if (die->child != NULL && ! die_is_declaration (die, cu))
13259 {
13260 struct field_info fi;
13261 VEC (symbolp) *template_args = NULL;
13262 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13263
13264 memset (&fi, 0, sizeof (struct field_info));
13265
13266 child_die = die->child;
13267
13268 while (child_die && child_die->tag)
13269 {
13270 if (child_die->tag == DW_TAG_member
13271 || child_die->tag == DW_TAG_variable)
13272 {
13273 /* NOTE: carlton/2002-11-05: A C++ static data member
13274 should be a DW_TAG_member that is a declaration, but
13275 all versions of G++ as of this writing (so through at
13276 least 3.2.1) incorrectly generate DW_TAG_variable
13277 tags for them instead. */
13278 dwarf2_add_field (&fi, child_die, cu);
13279 }
13280 else if (child_die->tag == DW_TAG_subprogram)
13281 {
13282 /* C++ member function. */
13283 dwarf2_add_member_fn (&fi, child_die, type, cu);
13284 }
13285 else if (child_die->tag == DW_TAG_inheritance)
13286 {
13287 /* C++ base class field. */
13288 dwarf2_add_field (&fi, child_die, cu);
13289 }
13290 else if (child_die->tag == DW_TAG_typedef)
13291 dwarf2_add_typedef (&fi, child_die, cu);
13292 else if (child_die->tag == DW_TAG_template_type_param
13293 || child_die->tag == DW_TAG_template_value_param)
13294 {
13295 struct symbol *arg = new_symbol (child_die, NULL, cu);
13296
13297 if (arg != NULL)
13298 VEC_safe_push (symbolp, template_args, arg);
13299 }
13300
13301 child_die = sibling_die (child_die);
13302 }
13303
13304 /* Attach template arguments to type. */
13305 if (! VEC_empty (symbolp, template_args))
13306 {
13307 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13308 TYPE_N_TEMPLATE_ARGUMENTS (type)
13309 = VEC_length (symbolp, template_args);
13310 TYPE_TEMPLATE_ARGUMENTS (type)
13311 = obstack_alloc (&objfile->objfile_obstack,
13312 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13313 * sizeof (struct symbol *)));
13314 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13315 VEC_address (symbolp, template_args),
13316 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13317 * sizeof (struct symbol *)));
13318 VEC_free (symbolp, template_args);
13319 }
13320
13321 /* Attach fields and member functions to the type. */
13322 if (fi.nfields)
13323 dwarf2_attach_fields_to_type (&fi, type, cu);
13324 if (fi.nfnfields)
13325 {
13326 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13327
13328 /* Get the type which refers to the base class (possibly this
13329 class itself) which contains the vtable pointer for the current
13330 class from the DW_AT_containing_type attribute. This use of
13331 DW_AT_containing_type is a GNU extension. */
13332
13333 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13334 {
13335 struct type *t = die_containing_type (die, cu);
13336
13337 set_type_vptr_basetype (type, t);
13338 if (type == t)
13339 {
13340 int i;
13341
13342 /* Our own class provides vtbl ptr. */
13343 for (i = TYPE_NFIELDS (t) - 1;
13344 i >= TYPE_N_BASECLASSES (t);
13345 --i)
13346 {
13347 const char *fieldname = TYPE_FIELD_NAME (t, i);
13348
13349 if (is_vtable_name (fieldname, cu))
13350 {
13351 set_type_vptr_fieldno (type, i);
13352 break;
13353 }
13354 }
13355
13356 /* Complain if virtual function table field not found. */
13357 if (i < TYPE_N_BASECLASSES (t))
13358 complaint (&symfile_complaints,
13359 _("virtual function table pointer "
13360 "not found when defining class '%s'"),
13361 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13362 "");
13363 }
13364 else
13365 {
13366 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13367 }
13368 }
13369 else if (cu->producer
13370 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13371 {
13372 /* The IBM XLC compiler does not provide direct indication
13373 of the containing type, but the vtable pointer is
13374 always named __vfp. */
13375
13376 int i;
13377
13378 for (i = TYPE_NFIELDS (type) - 1;
13379 i >= TYPE_N_BASECLASSES (type);
13380 --i)
13381 {
13382 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13383 {
13384 set_type_vptr_fieldno (type, i);
13385 set_type_vptr_basetype (type, type);
13386 break;
13387 }
13388 }
13389 }
13390 }
13391
13392 /* Copy fi.typedef_field_list linked list elements content into the
13393 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13394 if (fi.typedef_field_list)
13395 {
13396 int i = fi.typedef_field_list_count;
13397
13398 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13399 TYPE_TYPEDEF_FIELD_ARRAY (type)
13400 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13401 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13402
13403 /* Reverse the list order to keep the debug info elements order. */
13404 while (--i >= 0)
13405 {
13406 struct typedef_field *dest, *src;
13407
13408 dest = &TYPE_TYPEDEF_FIELD (type, i);
13409 src = &fi.typedef_field_list->field;
13410 fi.typedef_field_list = fi.typedef_field_list->next;
13411 *dest = *src;
13412 }
13413 }
13414
13415 do_cleanups (back_to);
13416
13417 if (HAVE_CPLUS_STRUCT (type))
13418 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13419 }
13420
13421 quirk_gcc_member_function_pointer (type, objfile);
13422
13423 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13424 snapshots) has been known to create a die giving a declaration
13425 for a class that has, as a child, a die giving a definition for a
13426 nested class. So we have to process our children even if the
13427 current die is a declaration. Normally, of course, a declaration
13428 won't have any children at all. */
13429
13430 child_die = die->child;
13431
13432 while (child_die != NULL && child_die->tag)
13433 {
13434 if (child_die->tag == DW_TAG_member
13435 || child_die->tag == DW_TAG_variable
13436 || child_die->tag == DW_TAG_inheritance
13437 || child_die->tag == DW_TAG_template_value_param
13438 || child_die->tag == DW_TAG_template_type_param)
13439 {
13440 /* Do nothing. */
13441 }
13442 else
13443 process_die (child_die, cu);
13444
13445 child_die = sibling_die (child_die);
13446 }
13447
13448 /* Do not consider external references. According to the DWARF standard,
13449 these DIEs are identified by the fact that they have no byte_size
13450 attribute, and a declaration attribute. */
13451 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13452 || !die_is_declaration (die, cu))
13453 new_symbol (die, type, cu);
13454 }
13455
13456 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13457 update TYPE using some information only available in DIE's children. */
13458
13459 static void
13460 update_enumeration_type_from_children (struct die_info *die,
13461 struct type *type,
13462 struct dwarf2_cu *cu)
13463 {
13464 struct obstack obstack;
13465 struct die_info *child_die;
13466 int unsigned_enum = 1;
13467 int flag_enum = 1;
13468 ULONGEST mask = 0;
13469 struct cleanup *old_chain;
13470
13471 obstack_init (&obstack);
13472 old_chain = make_cleanup_obstack_free (&obstack);
13473
13474 for (child_die = die->child;
13475 child_die != NULL && child_die->tag;
13476 child_die = sibling_die (child_die))
13477 {
13478 struct attribute *attr;
13479 LONGEST value;
13480 const gdb_byte *bytes;
13481 struct dwarf2_locexpr_baton *baton;
13482 const char *name;
13483
13484 if (child_die->tag != DW_TAG_enumerator)
13485 continue;
13486
13487 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13488 if (attr == NULL)
13489 continue;
13490
13491 name = dwarf2_name (child_die, cu);
13492 if (name == NULL)
13493 name = "<anonymous enumerator>";
13494
13495 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13496 &value, &bytes, &baton);
13497 if (value < 0)
13498 {
13499 unsigned_enum = 0;
13500 flag_enum = 0;
13501 }
13502 else if ((mask & value) != 0)
13503 flag_enum = 0;
13504 else
13505 mask |= value;
13506
13507 /* If we already know that the enum type is neither unsigned, nor
13508 a flag type, no need to look at the rest of the enumerates. */
13509 if (!unsigned_enum && !flag_enum)
13510 break;
13511 }
13512
13513 if (unsigned_enum)
13514 TYPE_UNSIGNED (type) = 1;
13515 if (flag_enum)
13516 TYPE_FLAG_ENUM (type) = 1;
13517
13518 do_cleanups (old_chain);
13519 }
13520
13521 /* Given a DW_AT_enumeration_type die, set its type. We do not
13522 complete the type's fields yet, or create any symbols. */
13523
13524 static struct type *
13525 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13526 {
13527 struct objfile *objfile = cu->objfile;
13528 struct type *type;
13529 struct attribute *attr;
13530 const char *name;
13531
13532 /* If the definition of this type lives in .debug_types, read that type.
13533 Don't follow DW_AT_specification though, that will take us back up
13534 the chain and we want to go down. */
13535 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13536 if (attr)
13537 {
13538 type = get_DW_AT_signature_type (die, attr, cu);
13539
13540 /* The type's CU may not be the same as CU.
13541 Ensure TYPE is recorded with CU in die_type_hash. */
13542 return set_die_type (die, type, cu);
13543 }
13544
13545 type = alloc_type (objfile);
13546
13547 TYPE_CODE (type) = TYPE_CODE_ENUM;
13548 name = dwarf2_full_name (NULL, die, cu);
13549 if (name != NULL)
13550 TYPE_TAG_NAME (type) = name;
13551
13552 attr = dwarf2_attr (die, DW_AT_type, cu);
13553 if (attr != NULL)
13554 {
13555 struct type *underlying_type = die_type (die, cu);
13556
13557 TYPE_TARGET_TYPE (type) = underlying_type;
13558 }
13559
13560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13561 if (attr)
13562 {
13563 TYPE_LENGTH (type) = DW_UNSND (attr);
13564 }
13565 else
13566 {
13567 TYPE_LENGTH (type) = 0;
13568 }
13569
13570 /* The enumeration DIE can be incomplete. In Ada, any type can be
13571 declared as private in the package spec, and then defined only
13572 inside the package body. Such types are known as Taft Amendment
13573 Types. When another package uses such a type, an incomplete DIE
13574 may be generated by the compiler. */
13575 if (die_is_declaration (die, cu))
13576 TYPE_STUB (type) = 1;
13577
13578 /* Finish the creation of this type by using the enum's children.
13579 We must call this even when the underlying type has been provided
13580 so that we can determine if we're looking at a "flag" enum. */
13581 update_enumeration_type_from_children (die, type, cu);
13582
13583 /* If this type has an underlying type that is not a stub, then we
13584 may use its attributes. We always use the "unsigned" attribute
13585 in this situation, because ordinarily we guess whether the type
13586 is unsigned -- but the guess can be wrong and the underlying type
13587 can tell us the reality. However, we defer to a local size
13588 attribute if one exists, because this lets the compiler override
13589 the underlying type if needed. */
13590 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13591 {
13592 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13593 if (TYPE_LENGTH (type) == 0)
13594 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13595 }
13596
13597 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13598
13599 return set_die_type (die, type, cu);
13600 }
13601
13602 /* Given a pointer to a die which begins an enumeration, process all
13603 the dies that define the members of the enumeration, and create the
13604 symbol for the enumeration type.
13605
13606 NOTE: We reverse the order of the element list. */
13607
13608 static void
13609 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13610 {
13611 struct type *this_type;
13612
13613 this_type = get_die_type (die, cu);
13614 if (this_type == NULL)
13615 this_type = read_enumeration_type (die, cu);
13616
13617 if (die->child != NULL)
13618 {
13619 struct die_info *child_die;
13620 struct symbol *sym;
13621 struct field *fields = NULL;
13622 int num_fields = 0;
13623 const char *name;
13624
13625 child_die = die->child;
13626 while (child_die && child_die->tag)
13627 {
13628 if (child_die->tag != DW_TAG_enumerator)
13629 {
13630 process_die (child_die, cu);
13631 }
13632 else
13633 {
13634 name = dwarf2_name (child_die, cu);
13635 if (name)
13636 {
13637 sym = new_symbol (child_die, this_type, cu);
13638
13639 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13640 {
13641 fields = (struct field *)
13642 xrealloc (fields,
13643 (num_fields + DW_FIELD_ALLOC_CHUNK)
13644 * sizeof (struct field));
13645 }
13646
13647 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13648 FIELD_TYPE (fields[num_fields]) = NULL;
13649 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13650 FIELD_BITSIZE (fields[num_fields]) = 0;
13651
13652 num_fields++;
13653 }
13654 }
13655
13656 child_die = sibling_die (child_die);
13657 }
13658
13659 if (num_fields)
13660 {
13661 TYPE_NFIELDS (this_type) = num_fields;
13662 TYPE_FIELDS (this_type) = (struct field *)
13663 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13664 memcpy (TYPE_FIELDS (this_type), fields,
13665 sizeof (struct field) * num_fields);
13666 xfree (fields);
13667 }
13668 }
13669
13670 /* If we are reading an enum from a .debug_types unit, and the enum
13671 is a declaration, and the enum is not the signatured type in the
13672 unit, then we do not want to add a symbol for it. Adding a
13673 symbol would in some cases obscure the true definition of the
13674 enum, giving users an incomplete type when the definition is
13675 actually available. Note that we do not want to do this for all
13676 enums which are just declarations, because C++0x allows forward
13677 enum declarations. */
13678 if (cu->per_cu->is_debug_types
13679 && die_is_declaration (die, cu))
13680 {
13681 struct signatured_type *sig_type;
13682
13683 sig_type = (struct signatured_type *) cu->per_cu;
13684 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13685 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13686 return;
13687 }
13688
13689 new_symbol (die, this_type, cu);
13690 }
13691
13692 /* Extract all information from a DW_TAG_array_type DIE and put it in
13693 the DIE's type field. For now, this only handles one dimensional
13694 arrays. */
13695
13696 static struct type *
13697 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13698 {
13699 struct objfile *objfile = cu->objfile;
13700 struct die_info *child_die;
13701 struct type *type;
13702 struct type *element_type, *range_type, *index_type;
13703 struct type **range_types = NULL;
13704 struct attribute *attr;
13705 int ndim = 0;
13706 struct cleanup *back_to;
13707 const char *name;
13708 unsigned int bit_stride = 0;
13709
13710 element_type = die_type (die, cu);
13711
13712 /* The die_type call above may have already set the type for this DIE. */
13713 type = get_die_type (die, cu);
13714 if (type)
13715 return type;
13716
13717 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13718 if (attr != NULL)
13719 bit_stride = DW_UNSND (attr) * 8;
13720
13721 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13722 if (attr != NULL)
13723 bit_stride = DW_UNSND (attr);
13724
13725 /* Irix 6.2 native cc creates array types without children for
13726 arrays with unspecified length. */
13727 if (die->child == NULL)
13728 {
13729 index_type = objfile_type (objfile)->builtin_int;
13730 range_type = create_static_range_type (NULL, index_type, 0, -1);
13731 type = create_array_type_with_stride (NULL, element_type, range_type,
13732 bit_stride);
13733 return set_die_type (die, type, cu);
13734 }
13735
13736 back_to = make_cleanup (null_cleanup, NULL);
13737 child_die = die->child;
13738 while (child_die && child_die->tag)
13739 {
13740 if (child_die->tag == DW_TAG_subrange_type)
13741 {
13742 struct type *child_type = read_type_die (child_die, cu);
13743
13744 if (child_type != NULL)
13745 {
13746 /* The range type was succesfully read. Save it for the
13747 array type creation. */
13748 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13749 {
13750 range_types = (struct type **)
13751 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13752 * sizeof (struct type *));
13753 if (ndim == 0)
13754 make_cleanup (free_current_contents, &range_types);
13755 }
13756 range_types[ndim++] = child_type;
13757 }
13758 }
13759 child_die = sibling_die (child_die);
13760 }
13761
13762 /* Dwarf2 dimensions are output from left to right, create the
13763 necessary array types in backwards order. */
13764
13765 type = element_type;
13766
13767 if (read_array_order (die, cu) == DW_ORD_col_major)
13768 {
13769 int i = 0;
13770
13771 while (i < ndim)
13772 type = create_array_type_with_stride (NULL, type, range_types[i++],
13773 bit_stride);
13774 }
13775 else
13776 {
13777 while (ndim-- > 0)
13778 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13779 bit_stride);
13780 }
13781
13782 /* Understand Dwarf2 support for vector types (like they occur on
13783 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13784 array type. This is not part of the Dwarf2/3 standard yet, but a
13785 custom vendor extension. The main difference between a regular
13786 array and the vector variant is that vectors are passed by value
13787 to functions. */
13788 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13789 if (attr)
13790 make_vector_type (type);
13791
13792 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13793 implementation may choose to implement triple vectors using this
13794 attribute. */
13795 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13796 if (attr)
13797 {
13798 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13799 TYPE_LENGTH (type) = DW_UNSND (attr);
13800 else
13801 complaint (&symfile_complaints,
13802 _("DW_AT_byte_size for array type smaller "
13803 "than the total size of elements"));
13804 }
13805
13806 name = dwarf2_name (die, cu);
13807 if (name)
13808 TYPE_NAME (type) = name;
13809
13810 /* Install the type in the die. */
13811 set_die_type (die, type, cu);
13812
13813 /* set_die_type should be already done. */
13814 set_descriptive_type (type, die, cu);
13815
13816 do_cleanups (back_to);
13817
13818 return type;
13819 }
13820
13821 static enum dwarf_array_dim_ordering
13822 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13823 {
13824 struct attribute *attr;
13825
13826 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13827
13828 if (attr)
13829 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13830
13831 /* GNU F77 is a special case, as at 08/2004 array type info is the
13832 opposite order to the dwarf2 specification, but data is still
13833 laid out as per normal fortran.
13834
13835 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13836 version checking. */
13837
13838 if (cu->language == language_fortran
13839 && cu->producer && strstr (cu->producer, "GNU F77"))
13840 {
13841 return DW_ORD_row_major;
13842 }
13843
13844 switch (cu->language_defn->la_array_ordering)
13845 {
13846 case array_column_major:
13847 return DW_ORD_col_major;
13848 case array_row_major:
13849 default:
13850 return DW_ORD_row_major;
13851 };
13852 }
13853
13854 /* Extract all information from a DW_TAG_set_type DIE and put it in
13855 the DIE's type field. */
13856
13857 static struct type *
13858 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13859 {
13860 struct type *domain_type, *set_type;
13861 struct attribute *attr;
13862
13863 domain_type = die_type (die, cu);
13864
13865 /* The die_type call above may have already set the type for this DIE. */
13866 set_type = get_die_type (die, cu);
13867 if (set_type)
13868 return set_type;
13869
13870 set_type = create_set_type (NULL, domain_type);
13871
13872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13873 if (attr)
13874 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13875
13876 return set_die_type (die, set_type, cu);
13877 }
13878
13879 /* A helper for read_common_block that creates a locexpr baton.
13880 SYM is the symbol which we are marking as computed.
13881 COMMON_DIE is the DIE for the common block.
13882 COMMON_LOC is the location expression attribute for the common
13883 block itself.
13884 MEMBER_LOC is the location expression attribute for the particular
13885 member of the common block that we are processing.
13886 CU is the CU from which the above come. */
13887
13888 static void
13889 mark_common_block_symbol_computed (struct symbol *sym,
13890 struct die_info *common_die,
13891 struct attribute *common_loc,
13892 struct attribute *member_loc,
13893 struct dwarf2_cu *cu)
13894 {
13895 struct objfile *objfile = dwarf2_per_objfile->objfile;
13896 struct dwarf2_locexpr_baton *baton;
13897 gdb_byte *ptr;
13898 unsigned int cu_off;
13899 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13900 LONGEST offset = 0;
13901
13902 gdb_assert (common_loc && member_loc);
13903 gdb_assert (attr_form_is_block (common_loc));
13904 gdb_assert (attr_form_is_block (member_loc)
13905 || attr_form_is_constant (member_loc));
13906
13907 baton = obstack_alloc (&objfile->objfile_obstack,
13908 sizeof (struct dwarf2_locexpr_baton));
13909 baton->per_cu = cu->per_cu;
13910 gdb_assert (baton->per_cu);
13911
13912 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13913
13914 if (attr_form_is_constant (member_loc))
13915 {
13916 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13917 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13918 }
13919 else
13920 baton->size += DW_BLOCK (member_loc)->size;
13921
13922 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13923 baton->data = ptr;
13924
13925 *ptr++ = DW_OP_call4;
13926 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13927 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13928 ptr += 4;
13929
13930 if (attr_form_is_constant (member_loc))
13931 {
13932 *ptr++ = DW_OP_addr;
13933 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13934 ptr += cu->header.addr_size;
13935 }
13936 else
13937 {
13938 /* We have to copy the data here, because DW_OP_call4 will only
13939 use a DW_AT_location attribute. */
13940 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13941 ptr += DW_BLOCK (member_loc)->size;
13942 }
13943
13944 *ptr++ = DW_OP_plus;
13945 gdb_assert (ptr - baton->data == baton->size);
13946
13947 SYMBOL_LOCATION_BATON (sym) = baton;
13948 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13949 }
13950
13951 /* Create appropriate locally-scoped variables for all the
13952 DW_TAG_common_block entries. Also create a struct common_block
13953 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13954 is used to sepate the common blocks name namespace from regular
13955 variable names. */
13956
13957 static void
13958 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13959 {
13960 struct attribute *attr;
13961
13962 attr = dwarf2_attr (die, DW_AT_location, cu);
13963 if (attr)
13964 {
13965 /* Support the .debug_loc offsets. */
13966 if (attr_form_is_block (attr))
13967 {
13968 /* Ok. */
13969 }
13970 else if (attr_form_is_section_offset (attr))
13971 {
13972 dwarf2_complex_location_expr_complaint ();
13973 attr = NULL;
13974 }
13975 else
13976 {
13977 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13978 "common block member");
13979 attr = NULL;
13980 }
13981 }
13982
13983 if (die->child != NULL)
13984 {
13985 struct objfile *objfile = cu->objfile;
13986 struct die_info *child_die;
13987 size_t n_entries = 0, size;
13988 struct common_block *common_block;
13989 struct symbol *sym;
13990
13991 for (child_die = die->child;
13992 child_die && child_die->tag;
13993 child_die = sibling_die (child_die))
13994 ++n_entries;
13995
13996 size = (sizeof (struct common_block)
13997 + (n_entries - 1) * sizeof (struct symbol *));
13998 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13999 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14000 common_block->n_entries = 0;
14001
14002 for (child_die = die->child;
14003 child_die && child_die->tag;
14004 child_die = sibling_die (child_die))
14005 {
14006 /* Create the symbol in the DW_TAG_common_block block in the current
14007 symbol scope. */
14008 sym = new_symbol (child_die, NULL, cu);
14009 if (sym != NULL)
14010 {
14011 struct attribute *member_loc;
14012
14013 common_block->contents[common_block->n_entries++] = sym;
14014
14015 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14016 cu);
14017 if (member_loc)
14018 {
14019 /* GDB has handled this for a long time, but it is
14020 not specified by DWARF. It seems to have been
14021 emitted by gfortran at least as recently as:
14022 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14023 complaint (&symfile_complaints,
14024 _("Variable in common block has "
14025 "DW_AT_data_member_location "
14026 "- DIE at 0x%x [in module %s]"),
14027 child_die->offset.sect_off,
14028 objfile_name (cu->objfile));
14029
14030 if (attr_form_is_section_offset (member_loc))
14031 dwarf2_complex_location_expr_complaint ();
14032 else if (attr_form_is_constant (member_loc)
14033 || attr_form_is_block (member_loc))
14034 {
14035 if (attr)
14036 mark_common_block_symbol_computed (sym, die, attr,
14037 member_loc, cu);
14038 }
14039 else
14040 dwarf2_complex_location_expr_complaint ();
14041 }
14042 }
14043 }
14044
14045 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14046 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14047 }
14048 }
14049
14050 /* Create a type for a C++ namespace. */
14051
14052 static struct type *
14053 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14054 {
14055 struct objfile *objfile = cu->objfile;
14056 const char *previous_prefix, *name;
14057 int is_anonymous;
14058 struct type *type;
14059
14060 /* For extensions, reuse the type of the original namespace. */
14061 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14062 {
14063 struct die_info *ext_die;
14064 struct dwarf2_cu *ext_cu = cu;
14065
14066 ext_die = dwarf2_extension (die, &ext_cu);
14067 type = read_type_die (ext_die, ext_cu);
14068
14069 /* EXT_CU may not be the same as CU.
14070 Ensure TYPE is recorded with CU in die_type_hash. */
14071 return set_die_type (die, type, cu);
14072 }
14073
14074 name = namespace_name (die, &is_anonymous, cu);
14075
14076 /* Now build the name of the current namespace. */
14077
14078 previous_prefix = determine_prefix (die, cu);
14079 if (previous_prefix[0] != '\0')
14080 name = typename_concat (&objfile->objfile_obstack,
14081 previous_prefix, name, 0, cu);
14082
14083 /* Create the type. */
14084 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14085 objfile);
14086 TYPE_NAME (type) = name;
14087 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14088
14089 return set_die_type (die, type, cu);
14090 }
14091
14092 /* Read a namespace scope. */
14093
14094 static void
14095 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14096 {
14097 struct objfile *objfile = cu->objfile;
14098 int is_anonymous;
14099
14100 /* Add a symbol associated to this if we haven't seen the namespace
14101 before. Also, add a using directive if it's an anonymous
14102 namespace. */
14103
14104 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14105 {
14106 struct type *type;
14107
14108 type = read_type_die (die, cu);
14109 new_symbol (die, type, cu);
14110
14111 namespace_name (die, &is_anonymous, cu);
14112 if (is_anonymous)
14113 {
14114 const char *previous_prefix = determine_prefix (die, cu);
14115
14116 add_using_directive (using_directives (cu->language),
14117 previous_prefix, TYPE_NAME (type), NULL,
14118 NULL, NULL, 0, &objfile->objfile_obstack);
14119 }
14120 }
14121
14122 if (die->child != NULL)
14123 {
14124 struct die_info *child_die = die->child;
14125
14126 while (child_die && child_die->tag)
14127 {
14128 process_die (child_die, cu);
14129 child_die = sibling_die (child_die);
14130 }
14131 }
14132 }
14133
14134 /* Read a Fortran module as type. This DIE can be only a declaration used for
14135 imported module. Still we need that type as local Fortran "use ... only"
14136 declaration imports depend on the created type in determine_prefix. */
14137
14138 static struct type *
14139 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14140 {
14141 struct objfile *objfile = cu->objfile;
14142 const char *module_name;
14143 struct type *type;
14144
14145 module_name = dwarf2_name (die, cu);
14146 if (!module_name)
14147 complaint (&symfile_complaints,
14148 _("DW_TAG_module has no name, offset 0x%x"),
14149 die->offset.sect_off);
14150 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14151
14152 /* determine_prefix uses TYPE_TAG_NAME. */
14153 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14154
14155 return set_die_type (die, type, cu);
14156 }
14157
14158 /* Read a Fortran module. */
14159
14160 static void
14161 read_module (struct die_info *die, struct dwarf2_cu *cu)
14162 {
14163 struct die_info *child_die = die->child;
14164 struct type *type;
14165
14166 type = read_type_die (die, cu);
14167 new_symbol (die, type, cu);
14168
14169 while (child_die && child_die->tag)
14170 {
14171 process_die (child_die, cu);
14172 child_die = sibling_die (child_die);
14173 }
14174 }
14175
14176 /* Return the name of the namespace represented by DIE. Set
14177 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14178 namespace. */
14179
14180 static const char *
14181 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14182 {
14183 struct die_info *current_die;
14184 const char *name = NULL;
14185
14186 /* Loop through the extensions until we find a name. */
14187
14188 for (current_die = die;
14189 current_die != NULL;
14190 current_die = dwarf2_extension (die, &cu))
14191 {
14192 /* We don't use dwarf2_name here so that we can detect the absence
14193 of a name -> anonymous namespace. */
14194 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14195
14196 if (attr != NULL)
14197 name = DW_STRING (attr);
14198 if (name != NULL)
14199 break;
14200 }
14201
14202 /* Is it an anonymous namespace? */
14203
14204 *is_anonymous = (name == NULL);
14205 if (*is_anonymous)
14206 name = CP_ANONYMOUS_NAMESPACE_STR;
14207
14208 return name;
14209 }
14210
14211 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14212 the user defined type vector. */
14213
14214 static struct type *
14215 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14216 {
14217 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14218 struct comp_unit_head *cu_header = &cu->header;
14219 struct type *type;
14220 struct attribute *attr_byte_size;
14221 struct attribute *attr_address_class;
14222 int byte_size, addr_class;
14223 struct type *target_type;
14224
14225 target_type = die_type (die, cu);
14226
14227 /* The die_type call above may have already set the type for this DIE. */
14228 type = get_die_type (die, cu);
14229 if (type)
14230 return type;
14231
14232 type = lookup_pointer_type (target_type);
14233
14234 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14235 if (attr_byte_size)
14236 byte_size = DW_UNSND (attr_byte_size);
14237 else
14238 byte_size = cu_header->addr_size;
14239
14240 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14241 if (attr_address_class)
14242 addr_class = DW_UNSND (attr_address_class);
14243 else
14244 addr_class = DW_ADDR_none;
14245
14246 /* If the pointer size or address class is different than the
14247 default, create a type variant marked as such and set the
14248 length accordingly. */
14249 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14250 {
14251 if (gdbarch_address_class_type_flags_p (gdbarch))
14252 {
14253 int type_flags;
14254
14255 type_flags = gdbarch_address_class_type_flags
14256 (gdbarch, byte_size, addr_class);
14257 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14258 == 0);
14259 type = make_type_with_address_space (type, type_flags);
14260 }
14261 else if (TYPE_LENGTH (type) != byte_size)
14262 {
14263 complaint (&symfile_complaints,
14264 _("invalid pointer size %d"), byte_size);
14265 }
14266 else
14267 {
14268 /* Should we also complain about unhandled address classes? */
14269 }
14270 }
14271
14272 TYPE_LENGTH (type) = byte_size;
14273 return set_die_type (die, type, cu);
14274 }
14275
14276 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14277 the user defined type vector. */
14278
14279 static struct type *
14280 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14281 {
14282 struct type *type;
14283 struct type *to_type;
14284 struct type *domain;
14285
14286 to_type = die_type (die, cu);
14287 domain = die_containing_type (die, cu);
14288
14289 /* The calls above may have already set the type for this DIE. */
14290 type = get_die_type (die, cu);
14291 if (type)
14292 return type;
14293
14294 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14295 type = lookup_methodptr_type (to_type);
14296 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14297 {
14298 struct type *new_type = alloc_type (cu->objfile);
14299
14300 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14301 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14302 TYPE_VARARGS (to_type));
14303 type = lookup_methodptr_type (new_type);
14304 }
14305 else
14306 type = lookup_memberptr_type (to_type, domain);
14307
14308 return set_die_type (die, type, cu);
14309 }
14310
14311 /* Extract all information from a DW_TAG_reference_type DIE and add to
14312 the user defined type vector. */
14313
14314 static struct type *
14315 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14316 {
14317 struct comp_unit_head *cu_header = &cu->header;
14318 struct type *type, *target_type;
14319 struct attribute *attr;
14320
14321 target_type = die_type (die, cu);
14322
14323 /* The die_type call above may have already set the type for this DIE. */
14324 type = get_die_type (die, cu);
14325 if (type)
14326 return type;
14327
14328 type = lookup_reference_type (target_type);
14329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14330 if (attr)
14331 {
14332 TYPE_LENGTH (type) = DW_UNSND (attr);
14333 }
14334 else
14335 {
14336 TYPE_LENGTH (type) = cu_header->addr_size;
14337 }
14338 return set_die_type (die, type, cu);
14339 }
14340
14341 /* Add the given cv-qualifiers to the element type of the array. GCC
14342 outputs DWARF type qualifiers that apply to an array, not the
14343 element type. But GDB relies on the array element type to carry
14344 the cv-qualifiers. This mimics section 6.7.3 of the C99
14345 specification. */
14346
14347 static struct type *
14348 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14349 struct type *base_type, int cnst, int voltl)
14350 {
14351 struct type *el_type, *inner_array;
14352
14353 base_type = copy_type (base_type);
14354 inner_array = base_type;
14355
14356 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14357 {
14358 TYPE_TARGET_TYPE (inner_array) =
14359 copy_type (TYPE_TARGET_TYPE (inner_array));
14360 inner_array = TYPE_TARGET_TYPE (inner_array);
14361 }
14362
14363 el_type = TYPE_TARGET_TYPE (inner_array);
14364 cnst |= TYPE_CONST (el_type);
14365 voltl |= TYPE_VOLATILE (el_type);
14366 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14367
14368 return set_die_type (die, base_type, cu);
14369 }
14370
14371 static struct type *
14372 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14373 {
14374 struct type *base_type, *cv_type;
14375
14376 base_type = die_type (die, cu);
14377
14378 /* The die_type call above may have already set the type for this DIE. */
14379 cv_type = get_die_type (die, cu);
14380 if (cv_type)
14381 return cv_type;
14382
14383 /* In case the const qualifier is applied to an array type, the element type
14384 is so qualified, not the array type (section 6.7.3 of C99). */
14385 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14386 return add_array_cv_type (die, cu, base_type, 1, 0);
14387
14388 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14389 return set_die_type (die, cv_type, cu);
14390 }
14391
14392 static struct type *
14393 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14394 {
14395 struct type *base_type, *cv_type;
14396
14397 base_type = die_type (die, cu);
14398
14399 /* The die_type call above may have already set the type for this DIE. */
14400 cv_type = get_die_type (die, cu);
14401 if (cv_type)
14402 return cv_type;
14403
14404 /* In case the volatile qualifier is applied to an array type, the
14405 element type is so qualified, not the array type (section 6.7.3
14406 of C99). */
14407 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14408 return add_array_cv_type (die, cu, base_type, 0, 1);
14409
14410 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14411 return set_die_type (die, cv_type, cu);
14412 }
14413
14414 /* Handle DW_TAG_restrict_type. */
14415
14416 static struct type *
14417 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14418 {
14419 struct type *base_type, *cv_type;
14420
14421 base_type = die_type (die, cu);
14422
14423 /* The die_type call above may have already set the type for this DIE. */
14424 cv_type = get_die_type (die, cu);
14425 if (cv_type)
14426 return cv_type;
14427
14428 cv_type = make_restrict_type (base_type);
14429 return set_die_type (die, cv_type, cu);
14430 }
14431
14432 /* Handle DW_TAG_atomic_type. */
14433
14434 static struct type *
14435 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14436 {
14437 struct type *base_type, *cv_type;
14438
14439 base_type = die_type (die, cu);
14440
14441 /* The die_type call above may have already set the type for this DIE. */
14442 cv_type = get_die_type (die, cu);
14443 if (cv_type)
14444 return cv_type;
14445
14446 cv_type = make_atomic_type (base_type);
14447 return set_die_type (die, cv_type, cu);
14448 }
14449
14450 /* Extract all information from a DW_TAG_string_type DIE and add to
14451 the user defined type vector. It isn't really a user defined type,
14452 but it behaves like one, with other DIE's using an AT_user_def_type
14453 attribute to reference it. */
14454
14455 static struct type *
14456 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14457 {
14458 struct objfile *objfile = cu->objfile;
14459 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14460 struct type *type, *range_type, *index_type, *char_type;
14461 struct attribute *attr;
14462 unsigned int length;
14463
14464 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14465 if (attr)
14466 {
14467 length = DW_UNSND (attr);
14468 }
14469 else
14470 {
14471 /* Check for the DW_AT_byte_size attribute. */
14472 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14473 if (attr)
14474 {
14475 length = DW_UNSND (attr);
14476 }
14477 else
14478 {
14479 length = 1;
14480 }
14481 }
14482
14483 index_type = objfile_type (objfile)->builtin_int;
14484 range_type = create_static_range_type (NULL, index_type, 1, length);
14485 char_type = language_string_char_type (cu->language_defn, gdbarch);
14486 type = create_string_type (NULL, char_type, range_type);
14487
14488 return set_die_type (die, type, cu);
14489 }
14490
14491 /* Assuming that DIE corresponds to a function, returns nonzero
14492 if the function is prototyped. */
14493
14494 static int
14495 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14496 {
14497 struct attribute *attr;
14498
14499 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14500 if (attr && (DW_UNSND (attr) != 0))
14501 return 1;
14502
14503 /* The DWARF standard implies that the DW_AT_prototyped attribute
14504 is only meaninful for C, but the concept also extends to other
14505 languages that allow unprototyped functions (Eg: Objective C).
14506 For all other languages, assume that functions are always
14507 prototyped. */
14508 if (cu->language != language_c
14509 && cu->language != language_objc
14510 && cu->language != language_opencl)
14511 return 1;
14512
14513 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14514 prototyped and unprototyped functions; default to prototyped,
14515 since that is more common in modern code (and RealView warns
14516 about unprototyped functions). */
14517 if (producer_is_realview (cu->producer))
14518 return 1;
14519
14520 return 0;
14521 }
14522
14523 /* Handle DIES due to C code like:
14524
14525 struct foo
14526 {
14527 int (*funcp)(int a, long l);
14528 int b;
14529 };
14530
14531 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14532
14533 static struct type *
14534 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14535 {
14536 struct objfile *objfile = cu->objfile;
14537 struct type *type; /* Type that this function returns. */
14538 struct type *ftype; /* Function that returns above type. */
14539 struct attribute *attr;
14540
14541 type = die_type (die, cu);
14542
14543 /* The die_type call above may have already set the type for this DIE. */
14544 ftype = get_die_type (die, cu);
14545 if (ftype)
14546 return ftype;
14547
14548 ftype = lookup_function_type (type);
14549
14550 if (prototyped_function_p (die, cu))
14551 TYPE_PROTOTYPED (ftype) = 1;
14552
14553 /* Store the calling convention in the type if it's available in
14554 the subroutine die. Otherwise set the calling convention to
14555 the default value DW_CC_normal. */
14556 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14557 if (attr)
14558 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14559 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14560 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14561 else
14562 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14563
14564 /* Record whether the function returns normally to its caller or not
14565 if the DWARF producer set that information. */
14566 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14567 if (attr && (DW_UNSND (attr) != 0))
14568 TYPE_NO_RETURN (ftype) = 1;
14569
14570 /* We need to add the subroutine type to the die immediately so
14571 we don't infinitely recurse when dealing with parameters
14572 declared as the same subroutine type. */
14573 set_die_type (die, ftype, cu);
14574
14575 if (die->child != NULL)
14576 {
14577 struct type *void_type = objfile_type (objfile)->builtin_void;
14578 struct die_info *child_die;
14579 int nparams, iparams;
14580
14581 /* Count the number of parameters.
14582 FIXME: GDB currently ignores vararg functions, but knows about
14583 vararg member functions. */
14584 nparams = 0;
14585 child_die = die->child;
14586 while (child_die && child_die->tag)
14587 {
14588 if (child_die->tag == DW_TAG_formal_parameter)
14589 nparams++;
14590 else if (child_die->tag == DW_TAG_unspecified_parameters)
14591 TYPE_VARARGS (ftype) = 1;
14592 child_die = sibling_die (child_die);
14593 }
14594
14595 /* Allocate storage for parameters and fill them in. */
14596 TYPE_NFIELDS (ftype) = nparams;
14597 TYPE_FIELDS (ftype) = (struct field *)
14598 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14599
14600 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14601 even if we error out during the parameters reading below. */
14602 for (iparams = 0; iparams < nparams; iparams++)
14603 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14604
14605 iparams = 0;
14606 child_die = die->child;
14607 while (child_die && child_die->tag)
14608 {
14609 if (child_die->tag == DW_TAG_formal_parameter)
14610 {
14611 struct type *arg_type;
14612
14613 /* DWARF version 2 has no clean way to discern C++
14614 static and non-static member functions. G++ helps
14615 GDB by marking the first parameter for non-static
14616 member functions (which is the this pointer) as
14617 artificial. We pass this information to
14618 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14619
14620 DWARF version 3 added DW_AT_object_pointer, which GCC
14621 4.5 does not yet generate. */
14622 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14623 if (attr)
14624 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14625 else
14626 {
14627 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14628
14629 /* GCC/43521: In java, the formal parameter
14630 "this" is sometimes not marked with DW_AT_artificial. */
14631 if (cu->language == language_java)
14632 {
14633 const char *name = dwarf2_name (child_die, cu);
14634
14635 if (name && !strcmp (name, "this"))
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14637 }
14638 }
14639 arg_type = die_type (child_die, cu);
14640
14641 /* RealView does not mark THIS as const, which the testsuite
14642 expects. GCC marks THIS as const in method definitions,
14643 but not in the class specifications (GCC PR 43053). */
14644 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14645 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14646 {
14647 int is_this = 0;
14648 struct dwarf2_cu *arg_cu = cu;
14649 const char *name = dwarf2_name (child_die, cu);
14650
14651 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14652 if (attr)
14653 {
14654 /* If the compiler emits this, use it. */
14655 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14656 is_this = 1;
14657 }
14658 else if (name && strcmp (name, "this") == 0)
14659 /* Function definitions will have the argument names. */
14660 is_this = 1;
14661 else if (name == NULL && iparams == 0)
14662 /* Declarations may not have the names, so like
14663 elsewhere in GDB, assume an artificial first
14664 argument is "this". */
14665 is_this = 1;
14666
14667 if (is_this)
14668 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14669 arg_type, 0);
14670 }
14671
14672 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14673 iparams++;
14674 }
14675 child_die = sibling_die (child_die);
14676 }
14677 }
14678
14679 return ftype;
14680 }
14681
14682 static struct type *
14683 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14684 {
14685 struct objfile *objfile = cu->objfile;
14686 const char *name = NULL;
14687 struct type *this_type, *target_type;
14688
14689 name = dwarf2_full_name (NULL, die, cu);
14690 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14691 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14692 TYPE_NAME (this_type) = name;
14693 set_die_type (die, this_type, cu);
14694 target_type = die_type (die, cu);
14695 if (target_type != this_type)
14696 TYPE_TARGET_TYPE (this_type) = target_type;
14697 else
14698 {
14699 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14700 spec and cause infinite loops in GDB. */
14701 complaint (&symfile_complaints,
14702 _("Self-referential DW_TAG_typedef "
14703 "- DIE at 0x%x [in module %s]"),
14704 die->offset.sect_off, objfile_name (objfile));
14705 TYPE_TARGET_TYPE (this_type) = NULL;
14706 }
14707 return this_type;
14708 }
14709
14710 /* Find a representation of a given base type and install
14711 it in the TYPE field of the die. */
14712
14713 static struct type *
14714 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14715 {
14716 struct objfile *objfile = cu->objfile;
14717 struct type *type;
14718 struct attribute *attr;
14719 int encoding = 0, size = 0;
14720 const char *name;
14721 enum type_code code = TYPE_CODE_INT;
14722 int type_flags = 0;
14723 struct type *target_type = NULL;
14724
14725 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14726 if (attr)
14727 {
14728 encoding = DW_UNSND (attr);
14729 }
14730 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14731 if (attr)
14732 {
14733 size = DW_UNSND (attr);
14734 }
14735 name = dwarf2_name (die, cu);
14736 if (!name)
14737 {
14738 complaint (&symfile_complaints,
14739 _("DW_AT_name missing from DW_TAG_base_type"));
14740 }
14741
14742 switch (encoding)
14743 {
14744 case DW_ATE_address:
14745 /* Turn DW_ATE_address into a void * pointer. */
14746 code = TYPE_CODE_PTR;
14747 type_flags |= TYPE_FLAG_UNSIGNED;
14748 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14749 break;
14750 case DW_ATE_boolean:
14751 code = TYPE_CODE_BOOL;
14752 type_flags |= TYPE_FLAG_UNSIGNED;
14753 break;
14754 case DW_ATE_complex_float:
14755 code = TYPE_CODE_COMPLEX;
14756 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14757 break;
14758 case DW_ATE_decimal_float:
14759 code = TYPE_CODE_DECFLOAT;
14760 break;
14761 case DW_ATE_float:
14762 code = TYPE_CODE_FLT;
14763 break;
14764 case DW_ATE_signed:
14765 break;
14766 case DW_ATE_unsigned:
14767 type_flags |= TYPE_FLAG_UNSIGNED;
14768 if (cu->language == language_fortran
14769 && name
14770 && startswith (name, "character("))
14771 code = TYPE_CODE_CHAR;
14772 break;
14773 case DW_ATE_signed_char:
14774 if (cu->language == language_ada || cu->language == language_m2
14775 || cu->language == language_pascal
14776 || cu->language == language_fortran)
14777 code = TYPE_CODE_CHAR;
14778 break;
14779 case DW_ATE_unsigned_char:
14780 if (cu->language == language_ada || cu->language == language_m2
14781 || cu->language == language_pascal
14782 || cu->language == language_fortran)
14783 code = TYPE_CODE_CHAR;
14784 type_flags |= TYPE_FLAG_UNSIGNED;
14785 break;
14786 case DW_ATE_UTF:
14787 /* We just treat this as an integer and then recognize the
14788 type by name elsewhere. */
14789 break;
14790
14791 default:
14792 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14793 dwarf_type_encoding_name (encoding));
14794 break;
14795 }
14796
14797 type = init_type (code, size, type_flags, NULL, objfile);
14798 TYPE_NAME (type) = name;
14799 TYPE_TARGET_TYPE (type) = target_type;
14800
14801 if (name && strcmp (name, "char") == 0)
14802 TYPE_NOSIGN (type) = 1;
14803
14804 return set_die_type (die, type, cu);
14805 }
14806
14807 /* Parse dwarf attribute if it's a block, reference or constant and put the
14808 resulting value of the attribute into struct bound_prop.
14809 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14810
14811 static int
14812 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14813 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14814 {
14815 struct dwarf2_property_baton *baton;
14816 struct obstack *obstack = &cu->objfile->objfile_obstack;
14817
14818 if (attr == NULL || prop == NULL)
14819 return 0;
14820
14821 if (attr_form_is_block (attr))
14822 {
14823 baton = obstack_alloc (obstack, sizeof (*baton));
14824 baton->referenced_type = NULL;
14825 baton->locexpr.per_cu = cu->per_cu;
14826 baton->locexpr.size = DW_BLOCK (attr)->size;
14827 baton->locexpr.data = DW_BLOCK (attr)->data;
14828 prop->data.baton = baton;
14829 prop->kind = PROP_LOCEXPR;
14830 gdb_assert (prop->data.baton != NULL);
14831 }
14832 else if (attr_form_is_ref (attr))
14833 {
14834 struct dwarf2_cu *target_cu = cu;
14835 struct die_info *target_die;
14836 struct attribute *target_attr;
14837
14838 target_die = follow_die_ref (die, attr, &target_cu);
14839 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14840 if (target_attr == NULL)
14841 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14842 target_cu);
14843 if (target_attr == NULL)
14844 return 0;
14845
14846 switch (target_attr->name)
14847 {
14848 case DW_AT_location:
14849 if (attr_form_is_section_offset (target_attr))
14850 {
14851 baton = obstack_alloc (obstack, sizeof (*baton));
14852 baton->referenced_type = die_type (target_die, target_cu);
14853 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14854 prop->data.baton = baton;
14855 prop->kind = PROP_LOCLIST;
14856 gdb_assert (prop->data.baton != NULL);
14857 }
14858 else if (attr_form_is_block (target_attr))
14859 {
14860 baton = obstack_alloc (obstack, sizeof (*baton));
14861 baton->referenced_type = die_type (target_die, target_cu);
14862 baton->locexpr.per_cu = cu->per_cu;
14863 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14864 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14865 prop->data.baton = baton;
14866 prop->kind = PROP_LOCEXPR;
14867 gdb_assert (prop->data.baton != NULL);
14868 }
14869 else
14870 {
14871 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14872 "dynamic property");
14873 return 0;
14874 }
14875 break;
14876 case DW_AT_data_member_location:
14877 {
14878 LONGEST offset;
14879
14880 if (!handle_data_member_location (target_die, target_cu,
14881 &offset))
14882 return 0;
14883
14884 baton = obstack_alloc (obstack, sizeof (*baton));
14885 baton->referenced_type = read_type_die (target_die->parent,
14886 target_cu);
14887 baton->offset_info.offset = offset;
14888 baton->offset_info.type = die_type (target_die, target_cu);
14889 prop->data.baton = baton;
14890 prop->kind = PROP_ADDR_OFFSET;
14891 break;
14892 }
14893 }
14894 }
14895 else if (attr_form_is_constant (attr))
14896 {
14897 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14898 prop->kind = PROP_CONST;
14899 }
14900 else
14901 {
14902 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14903 dwarf2_name (die, cu));
14904 return 0;
14905 }
14906
14907 return 1;
14908 }
14909
14910 /* Read the given DW_AT_subrange DIE. */
14911
14912 static struct type *
14913 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14914 {
14915 struct type *base_type, *orig_base_type;
14916 struct type *range_type;
14917 struct attribute *attr;
14918 struct dynamic_prop low, high;
14919 int low_default_is_valid;
14920 int high_bound_is_count = 0;
14921 const char *name;
14922 LONGEST negative_mask;
14923
14924 orig_base_type = die_type (die, cu);
14925 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14926 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14927 creating the range type, but we use the result of check_typedef
14928 when examining properties of the type. */
14929 base_type = check_typedef (orig_base_type);
14930
14931 /* The die_type call above may have already set the type for this DIE. */
14932 range_type = get_die_type (die, cu);
14933 if (range_type)
14934 return range_type;
14935
14936 low.kind = PROP_CONST;
14937 high.kind = PROP_CONST;
14938 high.data.const_val = 0;
14939
14940 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14941 omitting DW_AT_lower_bound. */
14942 switch (cu->language)
14943 {
14944 case language_c:
14945 case language_cplus:
14946 low.data.const_val = 0;
14947 low_default_is_valid = 1;
14948 break;
14949 case language_fortran:
14950 low.data.const_val = 1;
14951 low_default_is_valid = 1;
14952 break;
14953 case language_d:
14954 case language_java:
14955 case language_objc:
14956 low.data.const_val = 0;
14957 low_default_is_valid = (cu->header.version >= 4);
14958 break;
14959 case language_ada:
14960 case language_m2:
14961 case language_pascal:
14962 low.data.const_val = 1;
14963 low_default_is_valid = (cu->header.version >= 4);
14964 break;
14965 default:
14966 low.data.const_val = 0;
14967 low_default_is_valid = 0;
14968 break;
14969 }
14970
14971 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14972 if (attr)
14973 attr_to_dynamic_prop (attr, die, cu, &low);
14974 else if (!low_default_is_valid)
14975 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14976 "- DIE at 0x%x [in module %s]"),
14977 die->offset.sect_off, objfile_name (cu->objfile));
14978
14979 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14980 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14981 {
14982 attr = dwarf2_attr (die, DW_AT_count, cu);
14983 if (attr_to_dynamic_prop (attr, die, cu, &high))
14984 {
14985 /* If bounds are constant do the final calculation here. */
14986 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14987 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14988 else
14989 high_bound_is_count = 1;
14990 }
14991 }
14992
14993 /* Dwarf-2 specifications explicitly allows to create subrange types
14994 without specifying a base type.
14995 In that case, the base type must be set to the type of
14996 the lower bound, upper bound or count, in that order, if any of these
14997 three attributes references an object that has a type.
14998 If no base type is found, the Dwarf-2 specifications say that
14999 a signed integer type of size equal to the size of an address should
15000 be used.
15001 For the following C code: `extern char gdb_int [];'
15002 GCC produces an empty range DIE.
15003 FIXME: muller/2010-05-28: Possible references to object for low bound,
15004 high bound or count are not yet handled by this code. */
15005 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15006 {
15007 struct objfile *objfile = cu->objfile;
15008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15009 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15010 struct type *int_type = objfile_type (objfile)->builtin_int;
15011
15012 /* Test "int", "long int", and "long long int" objfile types,
15013 and select the first one having a size above or equal to the
15014 architecture address size. */
15015 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15016 base_type = int_type;
15017 else
15018 {
15019 int_type = objfile_type (objfile)->builtin_long;
15020 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15021 base_type = int_type;
15022 else
15023 {
15024 int_type = objfile_type (objfile)->builtin_long_long;
15025 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15026 base_type = int_type;
15027 }
15028 }
15029 }
15030
15031 /* Normally, the DWARF producers are expected to use a signed
15032 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15033 But this is unfortunately not always the case, as witnessed
15034 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15035 is used instead. To work around that ambiguity, we treat
15036 the bounds as signed, and thus sign-extend their values, when
15037 the base type is signed. */
15038 negative_mask =
15039 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15040 if (low.kind == PROP_CONST
15041 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15042 low.data.const_val |= negative_mask;
15043 if (high.kind == PROP_CONST
15044 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15045 high.data.const_val |= negative_mask;
15046
15047 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15048
15049 if (high_bound_is_count)
15050 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15051
15052 /* Ada expects an empty array on no boundary attributes. */
15053 if (attr == NULL && cu->language != language_ada)
15054 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15055
15056 name = dwarf2_name (die, cu);
15057 if (name)
15058 TYPE_NAME (range_type) = name;
15059
15060 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15061 if (attr)
15062 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15063
15064 set_die_type (die, range_type, cu);
15065
15066 /* set_die_type should be already done. */
15067 set_descriptive_type (range_type, die, cu);
15068
15069 return range_type;
15070 }
15071
15072 static struct type *
15073 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15074 {
15075 struct type *type;
15076
15077 /* For now, we only support the C meaning of an unspecified type: void. */
15078
15079 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15080 TYPE_NAME (type) = dwarf2_name (die, cu);
15081
15082 return set_die_type (die, type, cu);
15083 }
15084
15085 /* Read a single die and all its descendents. Set the die's sibling
15086 field to NULL; set other fields in the die correctly, and set all
15087 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15088 location of the info_ptr after reading all of those dies. PARENT
15089 is the parent of the die in question. */
15090
15091 static struct die_info *
15092 read_die_and_children (const struct die_reader_specs *reader,
15093 const gdb_byte *info_ptr,
15094 const gdb_byte **new_info_ptr,
15095 struct die_info *parent)
15096 {
15097 struct die_info *die;
15098 const gdb_byte *cur_ptr;
15099 int has_children;
15100
15101 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15102 if (die == NULL)
15103 {
15104 *new_info_ptr = cur_ptr;
15105 return NULL;
15106 }
15107 store_in_ref_table (die, reader->cu);
15108
15109 if (has_children)
15110 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15111 else
15112 {
15113 die->child = NULL;
15114 *new_info_ptr = cur_ptr;
15115 }
15116
15117 die->sibling = NULL;
15118 die->parent = parent;
15119 return die;
15120 }
15121
15122 /* Read a die, all of its descendents, and all of its siblings; set
15123 all of the fields of all of the dies correctly. Arguments are as
15124 in read_die_and_children. */
15125
15126 static struct die_info *
15127 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15128 const gdb_byte *info_ptr,
15129 const gdb_byte **new_info_ptr,
15130 struct die_info *parent)
15131 {
15132 struct die_info *first_die, *last_sibling;
15133 const gdb_byte *cur_ptr;
15134
15135 cur_ptr = info_ptr;
15136 first_die = last_sibling = NULL;
15137
15138 while (1)
15139 {
15140 struct die_info *die
15141 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15142
15143 if (die == NULL)
15144 {
15145 *new_info_ptr = cur_ptr;
15146 return first_die;
15147 }
15148
15149 if (!first_die)
15150 first_die = die;
15151 else
15152 last_sibling->sibling = die;
15153
15154 last_sibling = die;
15155 }
15156 }
15157
15158 /* Read a die, all of its descendents, and all of its siblings; set
15159 all of the fields of all of the dies correctly. Arguments are as
15160 in read_die_and_children.
15161 This the main entry point for reading a DIE and all its children. */
15162
15163 static struct die_info *
15164 read_die_and_siblings (const struct die_reader_specs *reader,
15165 const gdb_byte *info_ptr,
15166 const gdb_byte **new_info_ptr,
15167 struct die_info *parent)
15168 {
15169 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15170 new_info_ptr, parent);
15171
15172 if (dwarf_die_debug)
15173 {
15174 fprintf_unfiltered (gdb_stdlog,
15175 "Read die from %s@0x%x of %s:\n",
15176 get_section_name (reader->die_section),
15177 (unsigned) (info_ptr - reader->die_section->buffer),
15178 bfd_get_filename (reader->abfd));
15179 dump_die (die, dwarf_die_debug);
15180 }
15181
15182 return die;
15183 }
15184
15185 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15186 attributes.
15187 The caller is responsible for filling in the extra attributes
15188 and updating (*DIEP)->num_attrs.
15189 Set DIEP to point to a newly allocated die with its information,
15190 except for its child, sibling, and parent fields.
15191 Set HAS_CHILDREN to tell whether the die has children or not. */
15192
15193 static const gdb_byte *
15194 read_full_die_1 (const struct die_reader_specs *reader,
15195 struct die_info **diep, const gdb_byte *info_ptr,
15196 int *has_children, int num_extra_attrs)
15197 {
15198 unsigned int abbrev_number, bytes_read, i;
15199 sect_offset offset;
15200 struct abbrev_info *abbrev;
15201 struct die_info *die;
15202 struct dwarf2_cu *cu = reader->cu;
15203 bfd *abfd = reader->abfd;
15204
15205 offset.sect_off = info_ptr - reader->buffer;
15206 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15207 info_ptr += bytes_read;
15208 if (!abbrev_number)
15209 {
15210 *diep = NULL;
15211 *has_children = 0;
15212 return info_ptr;
15213 }
15214
15215 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15216 if (!abbrev)
15217 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15218 abbrev_number,
15219 bfd_get_filename (abfd));
15220
15221 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15222 die->offset = offset;
15223 die->tag = abbrev->tag;
15224 die->abbrev = abbrev_number;
15225
15226 /* Make the result usable.
15227 The caller needs to update num_attrs after adding the extra
15228 attributes. */
15229 die->num_attrs = abbrev->num_attrs;
15230
15231 for (i = 0; i < abbrev->num_attrs; ++i)
15232 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15233 info_ptr);
15234
15235 *diep = die;
15236 *has_children = abbrev->has_children;
15237 return info_ptr;
15238 }
15239
15240 /* Read a die and all its attributes.
15241 Set DIEP to point to a newly allocated die with its information,
15242 except for its child, sibling, and parent fields.
15243 Set HAS_CHILDREN to tell whether the die has children or not. */
15244
15245 static const gdb_byte *
15246 read_full_die (const struct die_reader_specs *reader,
15247 struct die_info **diep, const gdb_byte *info_ptr,
15248 int *has_children)
15249 {
15250 const gdb_byte *result;
15251
15252 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15253
15254 if (dwarf_die_debug)
15255 {
15256 fprintf_unfiltered (gdb_stdlog,
15257 "Read die from %s@0x%x of %s:\n",
15258 get_section_name (reader->die_section),
15259 (unsigned) (info_ptr - reader->die_section->buffer),
15260 bfd_get_filename (reader->abfd));
15261 dump_die (*diep, dwarf_die_debug);
15262 }
15263
15264 return result;
15265 }
15266 \f
15267 /* Abbreviation tables.
15268
15269 In DWARF version 2, the description of the debugging information is
15270 stored in a separate .debug_abbrev section. Before we read any
15271 dies from a section we read in all abbreviations and install them
15272 in a hash table. */
15273
15274 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15275
15276 static struct abbrev_info *
15277 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15278 {
15279 struct abbrev_info *abbrev;
15280
15281 abbrev = (struct abbrev_info *)
15282 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15283 memset (abbrev, 0, sizeof (struct abbrev_info));
15284 return abbrev;
15285 }
15286
15287 /* Add an abbreviation to the table. */
15288
15289 static void
15290 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15291 unsigned int abbrev_number,
15292 struct abbrev_info *abbrev)
15293 {
15294 unsigned int hash_number;
15295
15296 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15297 abbrev->next = abbrev_table->abbrevs[hash_number];
15298 abbrev_table->abbrevs[hash_number] = abbrev;
15299 }
15300
15301 /* Look up an abbrev in the table.
15302 Returns NULL if the abbrev is not found. */
15303
15304 static struct abbrev_info *
15305 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15306 unsigned int abbrev_number)
15307 {
15308 unsigned int hash_number;
15309 struct abbrev_info *abbrev;
15310
15311 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15312 abbrev = abbrev_table->abbrevs[hash_number];
15313
15314 while (abbrev)
15315 {
15316 if (abbrev->number == abbrev_number)
15317 return abbrev;
15318 abbrev = abbrev->next;
15319 }
15320 return NULL;
15321 }
15322
15323 /* Read in an abbrev table. */
15324
15325 static struct abbrev_table *
15326 abbrev_table_read_table (struct dwarf2_section_info *section,
15327 sect_offset offset)
15328 {
15329 struct objfile *objfile = dwarf2_per_objfile->objfile;
15330 bfd *abfd = get_section_bfd_owner (section);
15331 struct abbrev_table *abbrev_table;
15332 const gdb_byte *abbrev_ptr;
15333 struct abbrev_info *cur_abbrev;
15334 unsigned int abbrev_number, bytes_read, abbrev_name;
15335 unsigned int abbrev_form;
15336 struct attr_abbrev *cur_attrs;
15337 unsigned int allocated_attrs;
15338
15339 abbrev_table = XNEW (struct abbrev_table);
15340 abbrev_table->offset = offset;
15341 obstack_init (&abbrev_table->abbrev_obstack);
15342 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15343 (ABBREV_HASH_SIZE
15344 * sizeof (struct abbrev_info *)));
15345 memset (abbrev_table->abbrevs, 0,
15346 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15347
15348 dwarf2_read_section (objfile, section);
15349 abbrev_ptr = section->buffer + offset.sect_off;
15350 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15351 abbrev_ptr += bytes_read;
15352
15353 allocated_attrs = ATTR_ALLOC_CHUNK;
15354 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15355
15356 /* Loop until we reach an abbrev number of 0. */
15357 while (abbrev_number)
15358 {
15359 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15360
15361 /* read in abbrev header */
15362 cur_abbrev->number = abbrev_number;
15363 cur_abbrev->tag
15364 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15365 abbrev_ptr += bytes_read;
15366 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15367 abbrev_ptr += 1;
15368
15369 /* now read in declarations */
15370 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15371 abbrev_ptr += bytes_read;
15372 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15373 abbrev_ptr += bytes_read;
15374 while (abbrev_name)
15375 {
15376 if (cur_abbrev->num_attrs == allocated_attrs)
15377 {
15378 allocated_attrs += ATTR_ALLOC_CHUNK;
15379 cur_attrs
15380 = xrealloc (cur_attrs, (allocated_attrs
15381 * sizeof (struct attr_abbrev)));
15382 }
15383
15384 cur_attrs[cur_abbrev->num_attrs].name
15385 = (enum dwarf_attribute) abbrev_name;
15386 cur_attrs[cur_abbrev->num_attrs++].form
15387 = (enum dwarf_form) abbrev_form;
15388 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15389 abbrev_ptr += bytes_read;
15390 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15391 abbrev_ptr += bytes_read;
15392 }
15393
15394 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15395 (cur_abbrev->num_attrs
15396 * sizeof (struct attr_abbrev)));
15397 memcpy (cur_abbrev->attrs, cur_attrs,
15398 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15399
15400 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15401
15402 /* Get next abbreviation.
15403 Under Irix6 the abbreviations for a compilation unit are not
15404 always properly terminated with an abbrev number of 0.
15405 Exit loop if we encounter an abbreviation which we have
15406 already read (which means we are about to read the abbreviations
15407 for the next compile unit) or if the end of the abbreviation
15408 table is reached. */
15409 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15410 break;
15411 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15412 abbrev_ptr += bytes_read;
15413 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15414 break;
15415 }
15416
15417 xfree (cur_attrs);
15418 return abbrev_table;
15419 }
15420
15421 /* Free the resources held by ABBREV_TABLE. */
15422
15423 static void
15424 abbrev_table_free (struct abbrev_table *abbrev_table)
15425 {
15426 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15427 xfree (abbrev_table);
15428 }
15429
15430 /* Same as abbrev_table_free but as a cleanup.
15431 We pass in a pointer to the pointer to the table so that we can
15432 set the pointer to NULL when we're done. It also simplifies
15433 build_type_psymtabs_1. */
15434
15435 static void
15436 abbrev_table_free_cleanup (void *table_ptr)
15437 {
15438 struct abbrev_table **abbrev_table_ptr = table_ptr;
15439
15440 if (*abbrev_table_ptr != NULL)
15441 abbrev_table_free (*abbrev_table_ptr);
15442 *abbrev_table_ptr = NULL;
15443 }
15444
15445 /* Read the abbrev table for CU from ABBREV_SECTION. */
15446
15447 static void
15448 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15449 struct dwarf2_section_info *abbrev_section)
15450 {
15451 cu->abbrev_table =
15452 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15453 }
15454
15455 /* Release the memory used by the abbrev table for a compilation unit. */
15456
15457 static void
15458 dwarf2_free_abbrev_table (void *ptr_to_cu)
15459 {
15460 struct dwarf2_cu *cu = ptr_to_cu;
15461
15462 if (cu->abbrev_table != NULL)
15463 abbrev_table_free (cu->abbrev_table);
15464 /* Set this to NULL so that we SEGV if we try to read it later,
15465 and also because free_comp_unit verifies this is NULL. */
15466 cu->abbrev_table = NULL;
15467 }
15468 \f
15469 /* Returns nonzero if TAG represents a type that we might generate a partial
15470 symbol for. */
15471
15472 static int
15473 is_type_tag_for_partial (int tag)
15474 {
15475 switch (tag)
15476 {
15477 #if 0
15478 /* Some types that would be reasonable to generate partial symbols for,
15479 that we don't at present. */
15480 case DW_TAG_array_type:
15481 case DW_TAG_file_type:
15482 case DW_TAG_ptr_to_member_type:
15483 case DW_TAG_set_type:
15484 case DW_TAG_string_type:
15485 case DW_TAG_subroutine_type:
15486 #endif
15487 case DW_TAG_base_type:
15488 case DW_TAG_class_type:
15489 case DW_TAG_interface_type:
15490 case DW_TAG_enumeration_type:
15491 case DW_TAG_structure_type:
15492 case DW_TAG_subrange_type:
15493 case DW_TAG_typedef:
15494 case DW_TAG_union_type:
15495 return 1;
15496 default:
15497 return 0;
15498 }
15499 }
15500
15501 /* Load all DIEs that are interesting for partial symbols into memory. */
15502
15503 static struct partial_die_info *
15504 load_partial_dies (const struct die_reader_specs *reader,
15505 const gdb_byte *info_ptr, int building_psymtab)
15506 {
15507 struct dwarf2_cu *cu = reader->cu;
15508 struct objfile *objfile = cu->objfile;
15509 struct partial_die_info *part_die;
15510 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15511 struct abbrev_info *abbrev;
15512 unsigned int bytes_read;
15513 unsigned int load_all = 0;
15514 int nesting_level = 1;
15515
15516 parent_die = NULL;
15517 last_die = NULL;
15518
15519 gdb_assert (cu->per_cu != NULL);
15520 if (cu->per_cu->load_all_dies)
15521 load_all = 1;
15522
15523 cu->partial_dies
15524 = htab_create_alloc_ex (cu->header.length / 12,
15525 partial_die_hash,
15526 partial_die_eq,
15527 NULL,
15528 &cu->comp_unit_obstack,
15529 hashtab_obstack_allocate,
15530 dummy_obstack_deallocate);
15531
15532 part_die = obstack_alloc (&cu->comp_unit_obstack,
15533 sizeof (struct partial_die_info));
15534
15535 while (1)
15536 {
15537 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15538
15539 /* A NULL abbrev means the end of a series of children. */
15540 if (abbrev == NULL)
15541 {
15542 if (--nesting_level == 0)
15543 {
15544 /* PART_DIE was probably the last thing allocated on the
15545 comp_unit_obstack, so we could call obstack_free
15546 here. We don't do that because the waste is small,
15547 and will be cleaned up when we're done with this
15548 compilation unit. This way, we're also more robust
15549 against other users of the comp_unit_obstack. */
15550 return first_die;
15551 }
15552 info_ptr += bytes_read;
15553 last_die = parent_die;
15554 parent_die = parent_die->die_parent;
15555 continue;
15556 }
15557
15558 /* Check for template arguments. We never save these; if
15559 they're seen, we just mark the parent, and go on our way. */
15560 if (parent_die != NULL
15561 && cu->language == language_cplus
15562 && (abbrev->tag == DW_TAG_template_type_param
15563 || abbrev->tag == DW_TAG_template_value_param))
15564 {
15565 parent_die->has_template_arguments = 1;
15566
15567 if (!load_all)
15568 {
15569 /* We don't need a partial DIE for the template argument. */
15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15571 continue;
15572 }
15573 }
15574
15575 /* We only recurse into c++ subprograms looking for template arguments.
15576 Skip their other children. */
15577 if (!load_all
15578 && cu->language == language_cplus
15579 && parent_die != NULL
15580 && parent_die->tag == DW_TAG_subprogram)
15581 {
15582 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15583 continue;
15584 }
15585
15586 /* Check whether this DIE is interesting enough to save. Normally
15587 we would not be interested in members here, but there may be
15588 later variables referencing them via DW_AT_specification (for
15589 static members). */
15590 if (!load_all
15591 && !is_type_tag_for_partial (abbrev->tag)
15592 && abbrev->tag != DW_TAG_constant
15593 && abbrev->tag != DW_TAG_enumerator
15594 && abbrev->tag != DW_TAG_subprogram
15595 && abbrev->tag != DW_TAG_lexical_block
15596 && abbrev->tag != DW_TAG_variable
15597 && abbrev->tag != DW_TAG_namespace
15598 && abbrev->tag != DW_TAG_module
15599 && abbrev->tag != DW_TAG_member
15600 && abbrev->tag != DW_TAG_imported_unit
15601 && abbrev->tag != DW_TAG_imported_declaration)
15602 {
15603 /* Otherwise we skip to the next sibling, if any. */
15604 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15605 continue;
15606 }
15607
15608 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15609 info_ptr);
15610
15611 /* This two-pass algorithm for processing partial symbols has a
15612 high cost in cache pressure. Thus, handle some simple cases
15613 here which cover the majority of C partial symbols. DIEs
15614 which neither have specification tags in them, nor could have
15615 specification tags elsewhere pointing at them, can simply be
15616 processed and discarded.
15617
15618 This segment is also optional; scan_partial_symbols and
15619 add_partial_symbol will handle these DIEs if we chain
15620 them in normally. When compilers which do not emit large
15621 quantities of duplicate debug information are more common,
15622 this code can probably be removed. */
15623
15624 /* Any complete simple types at the top level (pretty much all
15625 of them, for a language without namespaces), can be processed
15626 directly. */
15627 if (parent_die == NULL
15628 && part_die->has_specification == 0
15629 && part_die->is_declaration == 0
15630 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15631 || part_die->tag == DW_TAG_base_type
15632 || part_die->tag == DW_TAG_subrange_type))
15633 {
15634 if (building_psymtab && part_die->name != NULL)
15635 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15636 VAR_DOMAIN, LOC_TYPEDEF,
15637 &objfile->static_psymbols,
15638 0, cu->language, objfile);
15639 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15640 continue;
15641 }
15642
15643 /* The exception for DW_TAG_typedef with has_children above is
15644 a workaround of GCC PR debug/47510. In the case of this complaint
15645 type_name_no_tag_or_error will error on such types later.
15646
15647 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15648 it could not find the child DIEs referenced later, this is checked
15649 above. In correct DWARF DW_TAG_typedef should have no children. */
15650
15651 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15652 complaint (&symfile_complaints,
15653 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15654 "- DIE at 0x%x [in module %s]"),
15655 part_die->offset.sect_off, objfile_name (objfile));
15656
15657 /* If we're at the second level, and we're an enumerator, and
15658 our parent has no specification (meaning possibly lives in a
15659 namespace elsewhere), then we can add the partial symbol now
15660 instead of queueing it. */
15661 if (part_die->tag == DW_TAG_enumerator
15662 && parent_die != NULL
15663 && parent_die->die_parent == NULL
15664 && parent_die->tag == DW_TAG_enumeration_type
15665 && parent_die->has_specification == 0)
15666 {
15667 if (part_die->name == NULL)
15668 complaint (&symfile_complaints,
15669 _("malformed enumerator DIE ignored"));
15670 else if (building_psymtab)
15671 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15672 VAR_DOMAIN, LOC_CONST,
15673 (cu->language == language_cplus
15674 || cu->language == language_java)
15675 ? &objfile->global_psymbols
15676 : &objfile->static_psymbols,
15677 0, cu->language, objfile);
15678
15679 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15680 continue;
15681 }
15682
15683 /* We'll save this DIE so link it in. */
15684 part_die->die_parent = parent_die;
15685 part_die->die_sibling = NULL;
15686 part_die->die_child = NULL;
15687
15688 if (last_die && last_die == parent_die)
15689 last_die->die_child = part_die;
15690 else if (last_die)
15691 last_die->die_sibling = part_die;
15692
15693 last_die = part_die;
15694
15695 if (first_die == NULL)
15696 first_die = part_die;
15697
15698 /* Maybe add the DIE to the hash table. Not all DIEs that we
15699 find interesting need to be in the hash table, because we
15700 also have the parent/sibling/child chains; only those that we
15701 might refer to by offset later during partial symbol reading.
15702
15703 For now this means things that might have be the target of a
15704 DW_AT_specification, DW_AT_abstract_origin, or
15705 DW_AT_extension. DW_AT_extension will refer only to
15706 namespaces; DW_AT_abstract_origin refers to functions (and
15707 many things under the function DIE, but we do not recurse
15708 into function DIEs during partial symbol reading) and
15709 possibly variables as well; DW_AT_specification refers to
15710 declarations. Declarations ought to have the DW_AT_declaration
15711 flag. It happens that GCC forgets to put it in sometimes, but
15712 only for functions, not for types.
15713
15714 Adding more things than necessary to the hash table is harmless
15715 except for the performance cost. Adding too few will result in
15716 wasted time in find_partial_die, when we reread the compilation
15717 unit with load_all_dies set. */
15718
15719 if (load_all
15720 || abbrev->tag == DW_TAG_constant
15721 || abbrev->tag == DW_TAG_subprogram
15722 || abbrev->tag == DW_TAG_variable
15723 || abbrev->tag == DW_TAG_namespace
15724 || part_die->is_declaration)
15725 {
15726 void **slot;
15727
15728 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15729 part_die->offset.sect_off, INSERT);
15730 *slot = part_die;
15731 }
15732
15733 part_die = obstack_alloc (&cu->comp_unit_obstack,
15734 sizeof (struct partial_die_info));
15735
15736 /* For some DIEs we want to follow their children (if any). For C
15737 we have no reason to follow the children of structures; for other
15738 languages we have to, so that we can get at method physnames
15739 to infer fully qualified class names, for DW_AT_specification,
15740 and for C++ template arguments. For C++, we also look one level
15741 inside functions to find template arguments (if the name of the
15742 function does not already contain the template arguments).
15743
15744 For Ada, we need to scan the children of subprograms and lexical
15745 blocks as well because Ada allows the definition of nested
15746 entities that could be interesting for the debugger, such as
15747 nested subprograms for instance. */
15748 if (last_die->has_children
15749 && (load_all
15750 || last_die->tag == DW_TAG_namespace
15751 || last_die->tag == DW_TAG_module
15752 || last_die->tag == DW_TAG_enumeration_type
15753 || (cu->language == language_cplus
15754 && last_die->tag == DW_TAG_subprogram
15755 && (last_die->name == NULL
15756 || strchr (last_die->name, '<') == NULL))
15757 || (cu->language != language_c
15758 && (last_die->tag == DW_TAG_class_type
15759 || last_die->tag == DW_TAG_interface_type
15760 || last_die->tag == DW_TAG_structure_type
15761 || last_die->tag == DW_TAG_union_type))
15762 || (cu->language == language_ada
15763 && (last_die->tag == DW_TAG_subprogram
15764 || last_die->tag == DW_TAG_lexical_block))))
15765 {
15766 nesting_level++;
15767 parent_die = last_die;
15768 continue;
15769 }
15770
15771 /* Otherwise we skip to the next sibling, if any. */
15772 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15773
15774 /* Back to the top, do it again. */
15775 }
15776 }
15777
15778 /* Read a minimal amount of information into the minimal die structure. */
15779
15780 static const gdb_byte *
15781 read_partial_die (const struct die_reader_specs *reader,
15782 struct partial_die_info *part_die,
15783 struct abbrev_info *abbrev, unsigned int abbrev_len,
15784 const gdb_byte *info_ptr)
15785 {
15786 struct dwarf2_cu *cu = reader->cu;
15787 struct objfile *objfile = cu->objfile;
15788 const gdb_byte *buffer = reader->buffer;
15789 unsigned int i;
15790 struct attribute attr;
15791 int has_low_pc_attr = 0;
15792 int has_high_pc_attr = 0;
15793 int high_pc_relative = 0;
15794
15795 memset (part_die, 0, sizeof (struct partial_die_info));
15796
15797 part_die->offset.sect_off = info_ptr - buffer;
15798
15799 info_ptr += abbrev_len;
15800
15801 if (abbrev == NULL)
15802 return info_ptr;
15803
15804 part_die->tag = abbrev->tag;
15805 part_die->has_children = abbrev->has_children;
15806
15807 for (i = 0; i < abbrev->num_attrs; ++i)
15808 {
15809 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15810
15811 /* Store the data if it is of an attribute we want to keep in a
15812 partial symbol table. */
15813 switch (attr.name)
15814 {
15815 case DW_AT_name:
15816 switch (part_die->tag)
15817 {
15818 case DW_TAG_compile_unit:
15819 case DW_TAG_partial_unit:
15820 case DW_TAG_type_unit:
15821 /* Compilation units have a DW_AT_name that is a filename, not
15822 a source language identifier. */
15823 case DW_TAG_enumeration_type:
15824 case DW_TAG_enumerator:
15825 /* These tags always have simple identifiers already; no need
15826 to canonicalize them. */
15827 part_die->name = DW_STRING (&attr);
15828 break;
15829 default:
15830 part_die->name
15831 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15832 &objfile->per_bfd->storage_obstack);
15833 break;
15834 }
15835 break;
15836 case DW_AT_linkage_name:
15837 case DW_AT_MIPS_linkage_name:
15838 /* Note that both forms of linkage name might appear. We
15839 assume they will be the same, and we only store the last
15840 one we see. */
15841 if (cu->language == language_ada)
15842 part_die->name = DW_STRING (&attr);
15843 part_die->linkage_name = DW_STRING (&attr);
15844 break;
15845 case DW_AT_low_pc:
15846 has_low_pc_attr = 1;
15847 part_die->lowpc = attr_value_as_address (&attr);
15848 break;
15849 case DW_AT_high_pc:
15850 has_high_pc_attr = 1;
15851 part_die->highpc = attr_value_as_address (&attr);
15852 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15853 high_pc_relative = 1;
15854 break;
15855 case DW_AT_location:
15856 /* Support the .debug_loc offsets. */
15857 if (attr_form_is_block (&attr))
15858 {
15859 part_die->d.locdesc = DW_BLOCK (&attr);
15860 }
15861 else if (attr_form_is_section_offset (&attr))
15862 {
15863 dwarf2_complex_location_expr_complaint ();
15864 }
15865 else
15866 {
15867 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15868 "partial symbol information");
15869 }
15870 break;
15871 case DW_AT_external:
15872 part_die->is_external = DW_UNSND (&attr);
15873 break;
15874 case DW_AT_declaration:
15875 part_die->is_declaration = DW_UNSND (&attr);
15876 break;
15877 case DW_AT_type:
15878 part_die->has_type = 1;
15879 break;
15880 case DW_AT_abstract_origin:
15881 case DW_AT_specification:
15882 case DW_AT_extension:
15883 part_die->has_specification = 1;
15884 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15885 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15886 || cu->per_cu->is_dwz);
15887 break;
15888 case DW_AT_sibling:
15889 /* Ignore absolute siblings, they might point outside of
15890 the current compile unit. */
15891 if (attr.form == DW_FORM_ref_addr)
15892 complaint (&symfile_complaints,
15893 _("ignoring absolute DW_AT_sibling"));
15894 else
15895 {
15896 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15897 const gdb_byte *sibling_ptr = buffer + off;
15898
15899 if (sibling_ptr < info_ptr)
15900 complaint (&symfile_complaints,
15901 _("DW_AT_sibling points backwards"));
15902 else if (sibling_ptr > reader->buffer_end)
15903 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15904 else
15905 part_die->sibling = sibling_ptr;
15906 }
15907 break;
15908 case DW_AT_byte_size:
15909 part_die->has_byte_size = 1;
15910 break;
15911 case DW_AT_const_value:
15912 part_die->has_const_value = 1;
15913 break;
15914 case DW_AT_calling_convention:
15915 /* DWARF doesn't provide a way to identify a program's source-level
15916 entry point. DW_AT_calling_convention attributes are only meant
15917 to describe functions' calling conventions.
15918
15919 However, because it's a necessary piece of information in
15920 Fortran, and because DW_CC_program is the only piece of debugging
15921 information whose definition refers to a 'main program' at all,
15922 several compilers have begun marking Fortran main programs with
15923 DW_CC_program --- even when those functions use the standard
15924 calling conventions.
15925
15926 So until DWARF specifies a way to provide this information and
15927 compilers pick up the new representation, we'll support this
15928 practice. */
15929 if (DW_UNSND (&attr) == DW_CC_program
15930 && cu->language == language_fortran)
15931 set_objfile_main_name (objfile, part_die->name, language_fortran);
15932 break;
15933 case DW_AT_inline:
15934 if (DW_UNSND (&attr) == DW_INL_inlined
15935 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15936 part_die->may_be_inlined = 1;
15937 break;
15938
15939 case DW_AT_import:
15940 if (part_die->tag == DW_TAG_imported_unit)
15941 {
15942 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15943 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15944 || cu->per_cu->is_dwz);
15945 }
15946 break;
15947
15948 default:
15949 break;
15950 }
15951 }
15952
15953 if (high_pc_relative)
15954 part_die->highpc += part_die->lowpc;
15955
15956 if (has_low_pc_attr && has_high_pc_attr)
15957 {
15958 /* When using the GNU linker, .gnu.linkonce. sections are used to
15959 eliminate duplicate copies of functions and vtables and such.
15960 The linker will arbitrarily choose one and discard the others.
15961 The AT_*_pc values for such functions refer to local labels in
15962 these sections. If the section from that file was discarded, the
15963 labels are not in the output, so the relocs get a value of 0.
15964 If this is a discarded function, mark the pc bounds as invalid,
15965 so that GDB will ignore it. */
15966 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15967 {
15968 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15969
15970 complaint (&symfile_complaints,
15971 _("DW_AT_low_pc %s is zero "
15972 "for DIE at 0x%x [in module %s]"),
15973 paddress (gdbarch, part_die->lowpc),
15974 part_die->offset.sect_off, objfile_name (objfile));
15975 }
15976 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15977 else if (part_die->lowpc >= part_die->highpc)
15978 {
15979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15980
15981 complaint (&symfile_complaints,
15982 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15983 "for DIE at 0x%x [in module %s]"),
15984 paddress (gdbarch, part_die->lowpc),
15985 paddress (gdbarch, part_die->highpc),
15986 part_die->offset.sect_off, objfile_name (objfile));
15987 }
15988 else
15989 part_die->has_pc_info = 1;
15990 }
15991
15992 return info_ptr;
15993 }
15994
15995 /* Find a cached partial DIE at OFFSET in CU. */
15996
15997 static struct partial_die_info *
15998 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15999 {
16000 struct partial_die_info *lookup_die = NULL;
16001 struct partial_die_info part_die;
16002
16003 part_die.offset = offset;
16004 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
16005 offset.sect_off);
16006
16007 return lookup_die;
16008 }
16009
16010 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16011 except in the case of .debug_types DIEs which do not reference
16012 outside their CU (they do however referencing other types via
16013 DW_FORM_ref_sig8). */
16014
16015 static struct partial_die_info *
16016 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16017 {
16018 struct objfile *objfile = cu->objfile;
16019 struct dwarf2_per_cu_data *per_cu = NULL;
16020 struct partial_die_info *pd = NULL;
16021
16022 if (offset_in_dwz == cu->per_cu->is_dwz
16023 && offset_in_cu_p (&cu->header, offset))
16024 {
16025 pd = find_partial_die_in_comp_unit (offset, cu);
16026 if (pd != NULL)
16027 return pd;
16028 /* We missed recording what we needed.
16029 Load all dies and try again. */
16030 per_cu = cu->per_cu;
16031 }
16032 else
16033 {
16034 /* TUs don't reference other CUs/TUs (except via type signatures). */
16035 if (cu->per_cu->is_debug_types)
16036 {
16037 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16038 " external reference to offset 0x%lx [in module %s].\n"),
16039 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16040 bfd_get_filename (objfile->obfd));
16041 }
16042 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16043 objfile);
16044
16045 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16046 load_partial_comp_unit (per_cu);
16047
16048 per_cu->cu->last_used = 0;
16049 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16050 }
16051
16052 /* If we didn't find it, and not all dies have been loaded,
16053 load them all and try again. */
16054
16055 if (pd == NULL && per_cu->load_all_dies == 0)
16056 {
16057 per_cu->load_all_dies = 1;
16058
16059 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16060 THIS_CU->cu may already be in use. So we can't just free it and
16061 replace its DIEs with the ones we read in. Instead, we leave those
16062 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16063 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16064 set. */
16065 load_partial_comp_unit (per_cu);
16066
16067 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16068 }
16069
16070 if (pd == NULL)
16071 internal_error (__FILE__, __LINE__,
16072 _("could not find partial DIE 0x%x "
16073 "in cache [from module %s]\n"),
16074 offset.sect_off, bfd_get_filename (objfile->obfd));
16075 return pd;
16076 }
16077
16078 /* See if we can figure out if the class lives in a namespace. We do
16079 this by looking for a member function; its demangled name will
16080 contain namespace info, if there is any. */
16081
16082 static void
16083 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16084 struct dwarf2_cu *cu)
16085 {
16086 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16087 what template types look like, because the demangler
16088 frequently doesn't give the same name as the debug info. We
16089 could fix this by only using the demangled name to get the
16090 prefix (but see comment in read_structure_type). */
16091
16092 struct partial_die_info *real_pdi;
16093 struct partial_die_info *child_pdi;
16094
16095 /* If this DIE (this DIE's specification, if any) has a parent, then
16096 we should not do this. We'll prepend the parent's fully qualified
16097 name when we create the partial symbol. */
16098
16099 real_pdi = struct_pdi;
16100 while (real_pdi->has_specification)
16101 real_pdi = find_partial_die (real_pdi->spec_offset,
16102 real_pdi->spec_is_dwz, cu);
16103
16104 if (real_pdi->die_parent != NULL)
16105 return;
16106
16107 for (child_pdi = struct_pdi->die_child;
16108 child_pdi != NULL;
16109 child_pdi = child_pdi->die_sibling)
16110 {
16111 if (child_pdi->tag == DW_TAG_subprogram
16112 && child_pdi->linkage_name != NULL)
16113 {
16114 char *actual_class_name
16115 = language_class_name_from_physname (cu->language_defn,
16116 child_pdi->linkage_name);
16117 if (actual_class_name != NULL)
16118 {
16119 struct_pdi->name
16120 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16121 actual_class_name,
16122 strlen (actual_class_name));
16123 xfree (actual_class_name);
16124 }
16125 break;
16126 }
16127 }
16128 }
16129
16130 /* Adjust PART_DIE before generating a symbol for it. This function
16131 may set the is_external flag or change the DIE's name. */
16132
16133 static void
16134 fixup_partial_die (struct partial_die_info *part_die,
16135 struct dwarf2_cu *cu)
16136 {
16137 /* Once we've fixed up a die, there's no point in doing so again.
16138 This also avoids a memory leak if we were to call
16139 guess_partial_die_structure_name multiple times. */
16140 if (part_die->fixup_called)
16141 return;
16142
16143 /* If we found a reference attribute and the DIE has no name, try
16144 to find a name in the referred to DIE. */
16145
16146 if (part_die->name == NULL && part_die->has_specification)
16147 {
16148 struct partial_die_info *spec_die;
16149
16150 spec_die = find_partial_die (part_die->spec_offset,
16151 part_die->spec_is_dwz, cu);
16152
16153 fixup_partial_die (spec_die, cu);
16154
16155 if (spec_die->name)
16156 {
16157 part_die->name = spec_die->name;
16158
16159 /* Copy DW_AT_external attribute if it is set. */
16160 if (spec_die->is_external)
16161 part_die->is_external = spec_die->is_external;
16162 }
16163 }
16164
16165 /* Set default names for some unnamed DIEs. */
16166
16167 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16168 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16169
16170 /* If there is no parent die to provide a namespace, and there are
16171 children, see if we can determine the namespace from their linkage
16172 name. */
16173 if (cu->language == language_cplus
16174 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16175 && part_die->die_parent == NULL
16176 && part_die->has_children
16177 && (part_die->tag == DW_TAG_class_type
16178 || part_die->tag == DW_TAG_structure_type
16179 || part_die->tag == DW_TAG_union_type))
16180 guess_partial_die_structure_name (part_die, cu);
16181
16182 /* GCC might emit a nameless struct or union that has a linkage
16183 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16184 if (part_die->name == NULL
16185 && (part_die->tag == DW_TAG_class_type
16186 || part_die->tag == DW_TAG_interface_type
16187 || part_die->tag == DW_TAG_structure_type
16188 || part_die->tag == DW_TAG_union_type)
16189 && part_die->linkage_name != NULL)
16190 {
16191 char *demangled;
16192
16193 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16194 if (demangled)
16195 {
16196 const char *base;
16197
16198 /* Strip any leading namespaces/classes, keep only the base name.
16199 DW_AT_name for named DIEs does not contain the prefixes. */
16200 base = strrchr (demangled, ':');
16201 if (base && base > demangled && base[-1] == ':')
16202 base++;
16203 else
16204 base = demangled;
16205
16206 part_die->name
16207 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16208 base, strlen (base));
16209 xfree (demangled);
16210 }
16211 }
16212
16213 part_die->fixup_called = 1;
16214 }
16215
16216 /* Read an attribute value described by an attribute form. */
16217
16218 static const gdb_byte *
16219 read_attribute_value (const struct die_reader_specs *reader,
16220 struct attribute *attr, unsigned form,
16221 const gdb_byte *info_ptr)
16222 {
16223 struct dwarf2_cu *cu = reader->cu;
16224 struct objfile *objfile = cu->objfile;
16225 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16226 bfd *abfd = reader->abfd;
16227 struct comp_unit_head *cu_header = &cu->header;
16228 unsigned int bytes_read;
16229 struct dwarf_block *blk;
16230
16231 attr->form = (enum dwarf_form) form;
16232 switch (form)
16233 {
16234 case DW_FORM_ref_addr:
16235 if (cu->header.version == 2)
16236 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16237 else
16238 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16239 &cu->header, &bytes_read);
16240 info_ptr += bytes_read;
16241 break;
16242 case DW_FORM_GNU_ref_alt:
16243 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16244 info_ptr += bytes_read;
16245 break;
16246 case DW_FORM_addr:
16247 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16248 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16249 info_ptr += bytes_read;
16250 break;
16251 case DW_FORM_block2:
16252 blk = dwarf_alloc_block (cu);
16253 blk->size = read_2_bytes (abfd, info_ptr);
16254 info_ptr += 2;
16255 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16256 info_ptr += blk->size;
16257 DW_BLOCK (attr) = blk;
16258 break;
16259 case DW_FORM_block4:
16260 blk = dwarf_alloc_block (cu);
16261 blk->size = read_4_bytes (abfd, info_ptr);
16262 info_ptr += 4;
16263 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16264 info_ptr += blk->size;
16265 DW_BLOCK (attr) = blk;
16266 break;
16267 case DW_FORM_data2:
16268 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16269 info_ptr += 2;
16270 break;
16271 case DW_FORM_data4:
16272 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16273 info_ptr += 4;
16274 break;
16275 case DW_FORM_data8:
16276 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16277 info_ptr += 8;
16278 break;
16279 case DW_FORM_sec_offset:
16280 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16281 info_ptr += bytes_read;
16282 break;
16283 case DW_FORM_string:
16284 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16285 DW_STRING_IS_CANONICAL (attr) = 0;
16286 info_ptr += bytes_read;
16287 break;
16288 case DW_FORM_strp:
16289 if (!cu->per_cu->is_dwz)
16290 {
16291 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16292 &bytes_read);
16293 DW_STRING_IS_CANONICAL (attr) = 0;
16294 info_ptr += bytes_read;
16295 break;
16296 }
16297 /* FALLTHROUGH */
16298 case DW_FORM_GNU_strp_alt:
16299 {
16300 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16301 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16302 &bytes_read);
16303
16304 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16305 DW_STRING_IS_CANONICAL (attr) = 0;
16306 info_ptr += bytes_read;
16307 }
16308 break;
16309 case DW_FORM_exprloc:
16310 case DW_FORM_block:
16311 blk = dwarf_alloc_block (cu);
16312 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16313 info_ptr += bytes_read;
16314 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16315 info_ptr += blk->size;
16316 DW_BLOCK (attr) = blk;
16317 break;
16318 case DW_FORM_block1:
16319 blk = dwarf_alloc_block (cu);
16320 blk->size = read_1_byte (abfd, info_ptr);
16321 info_ptr += 1;
16322 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16323 info_ptr += blk->size;
16324 DW_BLOCK (attr) = blk;
16325 break;
16326 case DW_FORM_data1:
16327 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16328 info_ptr += 1;
16329 break;
16330 case DW_FORM_flag:
16331 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16332 info_ptr += 1;
16333 break;
16334 case DW_FORM_flag_present:
16335 DW_UNSND (attr) = 1;
16336 break;
16337 case DW_FORM_sdata:
16338 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16339 info_ptr += bytes_read;
16340 break;
16341 case DW_FORM_udata:
16342 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16343 info_ptr += bytes_read;
16344 break;
16345 case DW_FORM_ref1:
16346 DW_UNSND (attr) = (cu->header.offset.sect_off
16347 + read_1_byte (abfd, info_ptr));
16348 info_ptr += 1;
16349 break;
16350 case DW_FORM_ref2:
16351 DW_UNSND (attr) = (cu->header.offset.sect_off
16352 + read_2_bytes (abfd, info_ptr));
16353 info_ptr += 2;
16354 break;
16355 case DW_FORM_ref4:
16356 DW_UNSND (attr) = (cu->header.offset.sect_off
16357 + read_4_bytes (abfd, info_ptr));
16358 info_ptr += 4;
16359 break;
16360 case DW_FORM_ref8:
16361 DW_UNSND (attr) = (cu->header.offset.sect_off
16362 + read_8_bytes (abfd, info_ptr));
16363 info_ptr += 8;
16364 break;
16365 case DW_FORM_ref_sig8:
16366 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16367 info_ptr += 8;
16368 break;
16369 case DW_FORM_ref_udata:
16370 DW_UNSND (attr) = (cu->header.offset.sect_off
16371 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16372 info_ptr += bytes_read;
16373 break;
16374 case DW_FORM_indirect:
16375 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16376 info_ptr += bytes_read;
16377 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16378 break;
16379 case DW_FORM_GNU_addr_index:
16380 if (reader->dwo_file == NULL)
16381 {
16382 /* For now flag a hard error.
16383 Later we can turn this into a complaint. */
16384 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16385 dwarf_form_name (form),
16386 bfd_get_filename (abfd));
16387 }
16388 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16389 info_ptr += bytes_read;
16390 break;
16391 case DW_FORM_GNU_str_index:
16392 if (reader->dwo_file == NULL)
16393 {
16394 /* For now flag a hard error.
16395 Later we can turn this into a complaint if warranted. */
16396 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16397 dwarf_form_name (form),
16398 bfd_get_filename (abfd));
16399 }
16400 {
16401 ULONGEST str_index =
16402 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16403
16404 DW_STRING (attr) = read_str_index (reader, str_index);
16405 DW_STRING_IS_CANONICAL (attr) = 0;
16406 info_ptr += bytes_read;
16407 }
16408 break;
16409 default:
16410 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16411 dwarf_form_name (form),
16412 bfd_get_filename (abfd));
16413 }
16414
16415 /* Super hack. */
16416 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16417 attr->form = DW_FORM_GNU_ref_alt;
16418
16419 /* We have seen instances where the compiler tried to emit a byte
16420 size attribute of -1 which ended up being encoded as an unsigned
16421 0xffffffff. Although 0xffffffff is technically a valid size value,
16422 an object of this size seems pretty unlikely so we can relatively
16423 safely treat these cases as if the size attribute was invalid and
16424 treat them as zero by default. */
16425 if (attr->name == DW_AT_byte_size
16426 && form == DW_FORM_data4
16427 && DW_UNSND (attr) >= 0xffffffff)
16428 {
16429 complaint
16430 (&symfile_complaints,
16431 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16432 hex_string (DW_UNSND (attr)));
16433 DW_UNSND (attr) = 0;
16434 }
16435
16436 return info_ptr;
16437 }
16438
16439 /* Read an attribute described by an abbreviated attribute. */
16440
16441 static const gdb_byte *
16442 read_attribute (const struct die_reader_specs *reader,
16443 struct attribute *attr, struct attr_abbrev *abbrev,
16444 const gdb_byte *info_ptr)
16445 {
16446 attr->name = abbrev->name;
16447 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16448 }
16449
16450 /* Read dwarf information from a buffer. */
16451
16452 static unsigned int
16453 read_1_byte (bfd *abfd, const gdb_byte *buf)
16454 {
16455 return bfd_get_8 (abfd, buf);
16456 }
16457
16458 static int
16459 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16460 {
16461 return bfd_get_signed_8 (abfd, buf);
16462 }
16463
16464 static unsigned int
16465 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16466 {
16467 return bfd_get_16 (abfd, buf);
16468 }
16469
16470 static int
16471 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16472 {
16473 return bfd_get_signed_16 (abfd, buf);
16474 }
16475
16476 static unsigned int
16477 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16478 {
16479 return bfd_get_32 (abfd, buf);
16480 }
16481
16482 static int
16483 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16484 {
16485 return bfd_get_signed_32 (abfd, buf);
16486 }
16487
16488 static ULONGEST
16489 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16490 {
16491 return bfd_get_64 (abfd, buf);
16492 }
16493
16494 static CORE_ADDR
16495 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16496 unsigned int *bytes_read)
16497 {
16498 struct comp_unit_head *cu_header = &cu->header;
16499 CORE_ADDR retval = 0;
16500
16501 if (cu_header->signed_addr_p)
16502 {
16503 switch (cu_header->addr_size)
16504 {
16505 case 2:
16506 retval = bfd_get_signed_16 (abfd, buf);
16507 break;
16508 case 4:
16509 retval = bfd_get_signed_32 (abfd, buf);
16510 break;
16511 case 8:
16512 retval = bfd_get_signed_64 (abfd, buf);
16513 break;
16514 default:
16515 internal_error (__FILE__, __LINE__,
16516 _("read_address: bad switch, signed [in module %s]"),
16517 bfd_get_filename (abfd));
16518 }
16519 }
16520 else
16521 {
16522 switch (cu_header->addr_size)
16523 {
16524 case 2:
16525 retval = bfd_get_16 (abfd, buf);
16526 break;
16527 case 4:
16528 retval = bfd_get_32 (abfd, buf);
16529 break;
16530 case 8:
16531 retval = bfd_get_64 (abfd, buf);
16532 break;
16533 default:
16534 internal_error (__FILE__, __LINE__,
16535 _("read_address: bad switch, "
16536 "unsigned [in module %s]"),
16537 bfd_get_filename (abfd));
16538 }
16539 }
16540
16541 *bytes_read = cu_header->addr_size;
16542 return retval;
16543 }
16544
16545 /* Read the initial length from a section. The (draft) DWARF 3
16546 specification allows the initial length to take up either 4 bytes
16547 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16548 bytes describe the length and all offsets will be 8 bytes in length
16549 instead of 4.
16550
16551 An older, non-standard 64-bit format is also handled by this
16552 function. The older format in question stores the initial length
16553 as an 8-byte quantity without an escape value. Lengths greater
16554 than 2^32 aren't very common which means that the initial 4 bytes
16555 is almost always zero. Since a length value of zero doesn't make
16556 sense for the 32-bit format, this initial zero can be considered to
16557 be an escape value which indicates the presence of the older 64-bit
16558 format. As written, the code can't detect (old format) lengths
16559 greater than 4GB. If it becomes necessary to handle lengths
16560 somewhat larger than 4GB, we could allow other small values (such
16561 as the non-sensical values of 1, 2, and 3) to also be used as
16562 escape values indicating the presence of the old format.
16563
16564 The value returned via bytes_read should be used to increment the
16565 relevant pointer after calling read_initial_length().
16566
16567 [ Note: read_initial_length() and read_offset() are based on the
16568 document entitled "DWARF Debugging Information Format", revision
16569 3, draft 8, dated November 19, 2001. This document was obtained
16570 from:
16571
16572 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16573
16574 This document is only a draft and is subject to change. (So beware.)
16575
16576 Details regarding the older, non-standard 64-bit format were
16577 determined empirically by examining 64-bit ELF files produced by
16578 the SGI toolchain on an IRIX 6.5 machine.
16579
16580 - Kevin, July 16, 2002
16581 ] */
16582
16583 static LONGEST
16584 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16585 {
16586 LONGEST length = bfd_get_32 (abfd, buf);
16587
16588 if (length == 0xffffffff)
16589 {
16590 length = bfd_get_64 (abfd, buf + 4);
16591 *bytes_read = 12;
16592 }
16593 else if (length == 0)
16594 {
16595 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16596 length = bfd_get_64 (abfd, buf);
16597 *bytes_read = 8;
16598 }
16599 else
16600 {
16601 *bytes_read = 4;
16602 }
16603
16604 return length;
16605 }
16606
16607 /* Cover function for read_initial_length.
16608 Returns the length of the object at BUF, and stores the size of the
16609 initial length in *BYTES_READ and stores the size that offsets will be in
16610 *OFFSET_SIZE.
16611 If the initial length size is not equivalent to that specified in
16612 CU_HEADER then issue a complaint.
16613 This is useful when reading non-comp-unit headers. */
16614
16615 static LONGEST
16616 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16617 const struct comp_unit_head *cu_header,
16618 unsigned int *bytes_read,
16619 unsigned int *offset_size)
16620 {
16621 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16622
16623 gdb_assert (cu_header->initial_length_size == 4
16624 || cu_header->initial_length_size == 8
16625 || cu_header->initial_length_size == 12);
16626
16627 if (cu_header->initial_length_size != *bytes_read)
16628 complaint (&symfile_complaints,
16629 _("intermixed 32-bit and 64-bit DWARF sections"));
16630
16631 *offset_size = (*bytes_read == 4) ? 4 : 8;
16632 return length;
16633 }
16634
16635 /* Read an offset from the data stream. The size of the offset is
16636 given by cu_header->offset_size. */
16637
16638 static LONGEST
16639 read_offset (bfd *abfd, const gdb_byte *buf,
16640 const struct comp_unit_head *cu_header,
16641 unsigned int *bytes_read)
16642 {
16643 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16644
16645 *bytes_read = cu_header->offset_size;
16646 return offset;
16647 }
16648
16649 /* Read an offset from the data stream. */
16650
16651 static LONGEST
16652 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16653 {
16654 LONGEST retval = 0;
16655
16656 switch (offset_size)
16657 {
16658 case 4:
16659 retval = bfd_get_32 (abfd, buf);
16660 break;
16661 case 8:
16662 retval = bfd_get_64 (abfd, buf);
16663 break;
16664 default:
16665 internal_error (__FILE__, __LINE__,
16666 _("read_offset_1: bad switch [in module %s]"),
16667 bfd_get_filename (abfd));
16668 }
16669
16670 return retval;
16671 }
16672
16673 static const gdb_byte *
16674 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16675 {
16676 /* If the size of a host char is 8 bits, we can return a pointer
16677 to the buffer, otherwise we have to copy the data to a buffer
16678 allocated on the temporary obstack. */
16679 gdb_assert (HOST_CHAR_BIT == 8);
16680 return buf;
16681 }
16682
16683 static const char *
16684 read_direct_string (bfd *abfd, const gdb_byte *buf,
16685 unsigned int *bytes_read_ptr)
16686 {
16687 /* If the size of a host char is 8 bits, we can return a pointer
16688 to the string, otherwise we have to copy the string to a buffer
16689 allocated on the temporary obstack. */
16690 gdb_assert (HOST_CHAR_BIT == 8);
16691 if (*buf == '\0')
16692 {
16693 *bytes_read_ptr = 1;
16694 return NULL;
16695 }
16696 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16697 return (const char *) buf;
16698 }
16699
16700 static const char *
16701 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16702 {
16703 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16704 if (dwarf2_per_objfile->str.buffer == NULL)
16705 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16706 bfd_get_filename (abfd));
16707 if (str_offset >= dwarf2_per_objfile->str.size)
16708 error (_("DW_FORM_strp pointing outside of "
16709 ".debug_str section [in module %s]"),
16710 bfd_get_filename (abfd));
16711 gdb_assert (HOST_CHAR_BIT == 8);
16712 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16713 return NULL;
16714 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16715 }
16716
16717 /* Read a string at offset STR_OFFSET in the .debug_str section from
16718 the .dwz file DWZ. Throw an error if the offset is too large. If
16719 the string consists of a single NUL byte, return NULL; otherwise
16720 return a pointer to the string. */
16721
16722 static const char *
16723 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16724 {
16725 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16726
16727 if (dwz->str.buffer == NULL)
16728 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16729 "section [in module %s]"),
16730 bfd_get_filename (dwz->dwz_bfd));
16731 if (str_offset >= dwz->str.size)
16732 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16733 ".debug_str section [in module %s]"),
16734 bfd_get_filename (dwz->dwz_bfd));
16735 gdb_assert (HOST_CHAR_BIT == 8);
16736 if (dwz->str.buffer[str_offset] == '\0')
16737 return NULL;
16738 return (const char *) (dwz->str.buffer + str_offset);
16739 }
16740
16741 static const char *
16742 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16743 const struct comp_unit_head *cu_header,
16744 unsigned int *bytes_read_ptr)
16745 {
16746 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16747
16748 return read_indirect_string_at_offset (abfd, str_offset);
16749 }
16750
16751 static ULONGEST
16752 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16753 unsigned int *bytes_read_ptr)
16754 {
16755 ULONGEST result;
16756 unsigned int num_read;
16757 int i, shift;
16758 unsigned char byte;
16759
16760 result = 0;
16761 shift = 0;
16762 num_read = 0;
16763 i = 0;
16764 while (1)
16765 {
16766 byte = bfd_get_8 (abfd, buf);
16767 buf++;
16768 num_read++;
16769 result |= ((ULONGEST) (byte & 127) << shift);
16770 if ((byte & 128) == 0)
16771 {
16772 break;
16773 }
16774 shift += 7;
16775 }
16776 *bytes_read_ptr = num_read;
16777 return result;
16778 }
16779
16780 static LONGEST
16781 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16782 unsigned int *bytes_read_ptr)
16783 {
16784 LONGEST result;
16785 int i, shift, num_read;
16786 unsigned char byte;
16787
16788 result = 0;
16789 shift = 0;
16790 num_read = 0;
16791 i = 0;
16792 while (1)
16793 {
16794 byte = bfd_get_8 (abfd, buf);
16795 buf++;
16796 num_read++;
16797 result |= ((LONGEST) (byte & 127) << shift);
16798 shift += 7;
16799 if ((byte & 128) == 0)
16800 {
16801 break;
16802 }
16803 }
16804 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16805 result |= -(((LONGEST) 1) << shift);
16806 *bytes_read_ptr = num_read;
16807 return result;
16808 }
16809
16810 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16811 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16812 ADDR_SIZE is the size of addresses from the CU header. */
16813
16814 static CORE_ADDR
16815 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16816 {
16817 struct objfile *objfile = dwarf2_per_objfile->objfile;
16818 bfd *abfd = objfile->obfd;
16819 const gdb_byte *info_ptr;
16820
16821 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16822 if (dwarf2_per_objfile->addr.buffer == NULL)
16823 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16824 objfile_name (objfile));
16825 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16826 error (_("DW_FORM_addr_index pointing outside of "
16827 ".debug_addr section [in module %s]"),
16828 objfile_name (objfile));
16829 info_ptr = (dwarf2_per_objfile->addr.buffer
16830 + addr_base + addr_index * addr_size);
16831 if (addr_size == 4)
16832 return bfd_get_32 (abfd, info_ptr);
16833 else
16834 return bfd_get_64 (abfd, info_ptr);
16835 }
16836
16837 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16838
16839 static CORE_ADDR
16840 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16841 {
16842 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16843 }
16844
16845 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16846
16847 static CORE_ADDR
16848 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16849 unsigned int *bytes_read)
16850 {
16851 bfd *abfd = cu->objfile->obfd;
16852 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16853
16854 return read_addr_index (cu, addr_index);
16855 }
16856
16857 /* Data structure to pass results from dwarf2_read_addr_index_reader
16858 back to dwarf2_read_addr_index. */
16859
16860 struct dwarf2_read_addr_index_data
16861 {
16862 ULONGEST addr_base;
16863 int addr_size;
16864 };
16865
16866 /* die_reader_func for dwarf2_read_addr_index. */
16867
16868 static void
16869 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16870 const gdb_byte *info_ptr,
16871 struct die_info *comp_unit_die,
16872 int has_children,
16873 void *data)
16874 {
16875 struct dwarf2_cu *cu = reader->cu;
16876 struct dwarf2_read_addr_index_data *aidata =
16877 (struct dwarf2_read_addr_index_data *) data;
16878
16879 aidata->addr_base = cu->addr_base;
16880 aidata->addr_size = cu->header.addr_size;
16881 }
16882
16883 /* Given an index in .debug_addr, fetch the value.
16884 NOTE: This can be called during dwarf expression evaluation,
16885 long after the debug information has been read, and thus per_cu->cu
16886 may no longer exist. */
16887
16888 CORE_ADDR
16889 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16890 unsigned int addr_index)
16891 {
16892 struct objfile *objfile = per_cu->objfile;
16893 struct dwarf2_cu *cu = per_cu->cu;
16894 ULONGEST addr_base;
16895 int addr_size;
16896
16897 /* This is intended to be called from outside this file. */
16898 dw2_setup (objfile);
16899
16900 /* We need addr_base and addr_size.
16901 If we don't have PER_CU->cu, we have to get it.
16902 Nasty, but the alternative is storing the needed info in PER_CU,
16903 which at this point doesn't seem justified: it's not clear how frequently
16904 it would get used and it would increase the size of every PER_CU.
16905 Entry points like dwarf2_per_cu_addr_size do a similar thing
16906 so we're not in uncharted territory here.
16907 Alas we need to be a bit more complicated as addr_base is contained
16908 in the DIE.
16909
16910 We don't need to read the entire CU(/TU).
16911 We just need the header and top level die.
16912
16913 IWBN to use the aging mechanism to let us lazily later discard the CU.
16914 For now we skip this optimization. */
16915
16916 if (cu != NULL)
16917 {
16918 addr_base = cu->addr_base;
16919 addr_size = cu->header.addr_size;
16920 }
16921 else
16922 {
16923 struct dwarf2_read_addr_index_data aidata;
16924
16925 /* Note: We can't use init_cutu_and_read_dies_simple here,
16926 we need addr_base. */
16927 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16928 dwarf2_read_addr_index_reader, &aidata);
16929 addr_base = aidata.addr_base;
16930 addr_size = aidata.addr_size;
16931 }
16932
16933 return read_addr_index_1 (addr_index, addr_base, addr_size);
16934 }
16935
16936 /* Given a DW_FORM_GNU_str_index, fetch the string.
16937 This is only used by the Fission support. */
16938
16939 static const char *
16940 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16941 {
16942 struct objfile *objfile = dwarf2_per_objfile->objfile;
16943 const char *objf_name = objfile_name (objfile);
16944 bfd *abfd = objfile->obfd;
16945 struct dwarf2_cu *cu = reader->cu;
16946 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16947 struct dwarf2_section_info *str_offsets_section =
16948 &reader->dwo_file->sections.str_offsets;
16949 const gdb_byte *info_ptr;
16950 ULONGEST str_offset;
16951 static const char form_name[] = "DW_FORM_GNU_str_index";
16952
16953 dwarf2_read_section (objfile, str_section);
16954 dwarf2_read_section (objfile, str_offsets_section);
16955 if (str_section->buffer == NULL)
16956 error (_("%s used without .debug_str.dwo section"
16957 " in CU at offset 0x%lx [in module %s]"),
16958 form_name, (long) cu->header.offset.sect_off, objf_name);
16959 if (str_offsets_section->buffer == NULL)
16960 error (_("%s used without .debug_str_offsets.dwo section"
16961 " in CU at offset 0x%lx [in module %s]"),
16962 form_name, (long) cu->header.offset.sect_off, objf_name);
16963 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16964 error (_("%s pointing outside of .debug_str_offsets.dwo"
16965 " section in CU at offset 0x%lx [in module %s]"),
16966 form_name, (long) cu->header.offset.sect_off, objf_name);
16967 info_ptr = (str_offsets_section->buffer
16968 + str_index * cu->header.offset_size);
16969 if (cu->header.offset_size == 4)
16970 str_offset = bfd_get_32 (abfd, info_ptr);
16971 else
16972 str_offset = bfd_get_64 (abfd, info_ptr);
16973 if (str_offset >= str_section->size)
16974 error (_("Offset from %s pointing outside of"
16975 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16976 form_name, (long) cu->header.offset.sect_off, objf_name);
16977 return (const char *) (str_section->buffer + str_offset);
16978 }
16979
16980 /* Return the length of an LEB128 number in BUF. */
16981
16982 static int
16983 leb128_size (const gdb_byte *buf)
16984 {
16985 const gdb_byte *begin = buf;
16986 gdb_byte byte;
16987
16988 while (1)
16989 {
16990 byte = *buf++;
16991 if ((byte & 128) == 0)
16992 return buf - begin;
16993 }
16994 }
16995
16996 static void
16997 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16998 {
16999 switch (lang)
17000 {
17001 case DW_LANG_C89:
17002 case DW_LANG_C99:
17003 case DW_LANG_C11:
17004 case DW_LANG_C:
17005 case DW_LANG_UPC:
17006 cu->language = language_c;
17007 break;
17008 case DW_LANG_C_plus_plus:
17009 case DW_LANG_C_plus_plus_11:
17010 case DW_LANG_C_plus_plus_14:
17011 cu->language = language_cplus;
17012 break;
17013 case DW_LANG_D:
17014 cu->language = language_d;
17015 break;
17016 case DW_LANG_Fortran77:
17017 case DW_LANG_Fortran90:
17018 case DW_LANG_Fortran95:
17019 case DW_LANG_Fortran03:
17020 case DW_LANG_Fortran08:
17021 cu->language = language_fortran;
17022 break;
17023 case DW_LANG_Go:
17024 cu->language = language_go;
17025 break;
17026 case DW_LANG_Mips_Assembler:
17027 cu->language = language_asm;
17028 break;
17029 case DW_LANG_Java:
17030 cu->language = language_java;
17031 break;
17032 case DW_LANG_Ada83:
17033 case DW_LANG_Ada95:
17034 cu->language = language_ada;
17035 break;
17036 case DW_LANG_Modula2:
17037 cu->language = language_m2;
17038 break;
17039 case DW_LANG_Pascal83:
17040 cu->language = language_pascal;
17041 break;
17042 case DW_LANG_ObjC:
17043 cu->language = language_objc;
17044 break;
17045 case DW_LANG_Cobol74:
17046 case DW_LANG_Cobol85:
17047 default:
17048 cu->language = language_minimal;
17049 break;
17050 }
17051 cu->language_defn = language_def (cu->language);
17052 }
17053
17054 /* Return the named attribute or NULL if not there. */
17055
17056 static struct attribute *
17057 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17058 {
17059 for (;;)
17060 {
17061 unsigned int i;
17062 struct attribute *spec = NULL;
17063
17064 for (i = 0; i < die->num_attrs; ++i)
17065 {
17066 if (die->attrs[i].name == name)
17067 return &die->attrs[i];
17068 if (die->attrs[i].name == DW_AT_specification
17069 || die->attrs[i].name == DW_AT_abstract_origin)
17070 spec = &die->attrs[i];
17071 }
17072
17073 if (!spec)
17074 break;
17075
17076 die = follow_die_ref (die, spec, &cu);
17077 }
17078
17079 return NULL;
17080 }
17081
17082 /* Return the named attribute or NULL if not there,
17083 but do not follow DW_AT_specification, etc.
17084 This is for use in contexts where we're reading .debug_types dies.
17085 Following DW_AT_specification, DW_AT_abstract_origin will take us
17086 back up the chain, and we want to go down. */
17087
17088 static struct attribute *
17089 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17090 {
17091 unsigned int i;
17092
17093 for (i = 0; i < die->num_attrs; ++i)
17094 if (die->attrs[i].name == name)
17095 return &die->attrs[i];
17096
17097 return NULL;
17098 }
17099
17100 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17101 and holds a non-zero value. This function should only be used for
17102 DW_FORM_flag or DW_FORM_flag_present attributes. */
17103
17104 static int
17105 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17106 {
17107 struct attribute *attr = dwarf2_attr (die, name, cu);
17108
17109 return (attr && DW_UNSND (attr));
17110 }
17111
17112 static int
17113 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17114 {
17115 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17116 which value is non-zero. However, we have to be careful with
17117 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17118 (via dwarf2_flag_true_p) follows this attribute. So we may
17119 end up accidently finding a declaration attribute that belongs
17120 to a different DIE referenced by the specification attribute,
17121 even though the given DIE does not have a declaration attribute. */
17122 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17123 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17124 }
17125
17126 /* Return the die giving the specification for DIE, if there is
17127 one. *SPEC_CU is the CU containing DIE on input, and the CU
17128 containing the return value on output. If there is no
17129 specification, but there is an abstract origin, that is
17130 returned. */
17131
17132 static struct die_info *
17133 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17134 {
17135 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17136 *spec_cu);
17137
17138 if (spec_attr == NULL)
17139 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17140
17141 if (spec_attr == NULL)
17142 return NULL;
17143 else
17144 return follow_die_ref (die, spec_attr, spec_cu);
17145 }
17146
17147 /* Free the line_header structure *LH, and any arrays and strings it
17148 refers to.
17149 NOTE: This is also used as a "cleanup" function. */
17150
17151 static void
17152 free_line_header (struct line_header *lh)
17153 {
17154 if (lh->standard_opcode_lengths)
17155 xfree (lh->standard_opcode_lengths);
17156
17157 /* Remember that all the lh->file_names[i].name pointers are
17158 pointers into debug_line_buffer, and don't need to be freed. */
17159 if (lh->file_names)
17160 xfree (lh->file_names);
17161
17162 /* Similarly for the include directory names. */
17163 if (lh->include_dirs)
17164 xfree (lh->include_dirs);
17165
17166 xfree (lh);
17167 }
17168
17169 /* Stub for free_line_header to match void * callback types. */
17170
17171 static void
17172 free_line_header_voidp (void *arg)
17173 {
17174 struct line_header *lh = arg;
17175
17176 free_line_header (lh);
17177 }
17178
17179 /* Add an entry to LH's include directory table. */
17180
17181 static void
17182 add_include_dir (struct line_header *lh, const char *include_dir)
17183 {
17184 if (dwarf_line_debug >= 2)
17185 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17186 lh->num_include_dirs + 1, include_dir);
17187
17188 /* Grow the array if necessary. */
17189 if (lh->include_dirs_size == 0)
17190 {
17191 lh->include_dirs_size = 1; /* for testing */
17192 lh->include_dirs = xmalloc (lh->include_dirs_size
17193 * sizeof (*lh->include_dirs));
17194 }
17195 else if (lh->num_include_dirs >= lh->include_dirs_size)
17196 {
17197 lh->include_dirs_size *= 2;
17198 lh->include_dirs = xrealloc (lh->include_dirs,
17199 (lh->include_dirs_size
17200 * sizeof (*lh->include_dirs)));
17201 }
17202
17203 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17204 }
17205
17206 /* Add an entry to LH's file name table. */
17207
17208 static void
17209 add_file_name (struct line_header *lh,
17210 const char *name,
17211 unsigned int dir_index,
17212 unsigned int mod_time,
17213 unsigned int length)
17214 {
17215 struct file_entry *fe;
17216
17217 if (dwarf_line_debug >= 2)
17218 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17219 lh->num_file_names + 1, name);
17220
17221 /* Grow the array if necessary. */
17222 if (lh->file_names_size == 0)
17223 {
17224 lh->file_names_size = 1; /* for testing */
17225 lh->file_names = xmalloc (lh->file_names_size
17226 * sizeof (*lh->file_names));
17227 }
17228 else if (lh->num_file_names >= lh->file_names_size)
17229 {
17230 lh->file_names_size *= 2;
17231 lh->file_names = xrealloc (lh->file_names,
17232 (lh->file_names_size
17233 * sizeof (*lh->file_names)));
17234 }
17235
17236 fe = &lh->file_names[lh->num_file_names++];
17237 fe->name = name;
17238 fe->dir_index = dir_index;
17239 fe->mod_time = mod_time;
17240 fe->length = length;
17241 fe->included_p = 0;
17242 fe->symtab = NULL;
17243 }
17244
17245 /* A convenience function to find the proper .debug_line section for a CU. */
17246
17247 static struct dwarf2_section_info *
17248 get_debug_line_section (struct dwarf2_cu *cu)
17249 {
17250 struct dwarf2_section_info *section;
17251
17252 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17253 DWO file. */
17254 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17255 section = &cu->dwo_unit->dwo_file->sections.line;
17256 else if (cu->per_cu->is_dwz)
17257 {
17258 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17259
17260 section = &dwz->line;
17261 }
17262 else
17263 section = &dwarf2_per_objfile->line;
17264
17265 return section;
17266 }
17267
17268 /* Read the statement program header starting at OFFSET in
17269 .debug_line, or .debug_line.dwo. Return a pointer
17270 to a struct line_header, allocated using xmalloc.
17271 Returns NULL if there is a problem reading the header, e.g., if it
17272 has a version we don't understand.
17273
17274 NOTE: the strings in the include directory and file name tables of
17275 the returned object point into the dwarf line section buffer,
17276 and must not be freed. */
17277
17278 static struct line_header *
17279 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17280 {
17281 struct cleanup *back_to;
17282 struct line_header *lh;
17283 const gdb_byte *line_ptr;
17284 unsigned int bytes_read, offset_size;
17285 int i;
17286 const char *cur_dir, *cur_file;
17287 struct dwarf2_section_info *section;
17288 bfd *abfd;
17289
17290 section = get_debug_line_section (cu);
17291 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17292 if (section->buffer == NULL)
17293 {
17294 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17295 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17296 else
17297 complaint (&symfile_complaints, _("missing .debug_line section"));
17298 return 0;
17299 }
17300
17301 /* We can't do this until we know the section is non-empty.
17302 Only then do we know we have such a section. */
17303 abfd = get_section_bfd_owner (section);
17304
17305 /* Make sure that at least there's room for the total_length field.
17306 That could be 12 bytes long, but we're just going to fudge that. */
17307 if (offset + 4 >= section->size)
17308 {
17309 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17310 return 0;
17311 }
17312
17313 lh = xmalloc (sizeof (*lh));
17314 memset (lh, 0, sizeof (*lh));
17315 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17316 (void *) lh);
17317
17318 lh->offset.sect_off = offset;
17319 lh->offset_in_dwz = cu->per_cu->is_dwz;
17320
17321 line_ptr = section->buffer + offset;
17322
17323 /* Read in the header. */
17324 lh->total_length =
17325 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17326 &bytes_read, &offset_size);
17327 line_ptr += bytes_read;
17328 if (line_ptr + lh->total_length > (section->buffer + section->size))
17329 {
17330 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17331 do_cleanups (back_to);
17332 return 0;
17333 }
17334 lh->statement_program_end = line_ptr + lh->total_length;
17335 lh->version = read_2_bytes (abfd, line_ptr);
17336 line_ptr += 2;
17337 if (lh->version > 4)
17338 {
17339 /* This is a version we don't understand. The format could have
17340 changed in ways we don't handle properly so just punt. */
17341 complaint (&symfile_complaints,
17342 _("unsupported version in .debug_line section"));
17343 return NULL;
17344 }
17345 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17346 line_ptr += offset_size;
17347 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17348 line_ptr += 1;
17349 if (lh->version >= 4)
17350 {
17351 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17352 line_ptr += 1;
17353 }
17354 else
17355 lh->maximum_ops_per_instruction = 1;
17356
17357 if (lh->maximum_ops_per_instruction == 0)
17358 {
17359 lh->maximum_ops_per_instruction = 1;
17360 complaint (&symfile_complaints,
17361 _("invalid maximum_ops_per_instruction "
17362 "in `.debug_line' section"));
17363 }
17364
17365 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17366 line_ptr += 1;
17367 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17368 line_ptr += 1;
17369 lh->line_range = read_1_byte (abfd, line_ptr);
17370 line_ptr += 1;
17371 lh->opcode_base = read_1_byte (abfd, line_ptr);
17372 line_ptr += 1;
17373 lh->standard_opcode_lengths
17374 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17375
17376 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17377 for (i = 1; i < lh->opcode_base; ++i)
17378 {
17379 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17380 line_ptr += 1;
17381 }
17382
17383 /* Read directory table. */
17384 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17385 {
17386 line_ptr += bytes_read;
17387 add_include_dir (lh, cur_dir);
17388 }
17389 line_ptr += bytes_read;
17390
17391 /* Read file name table. */
17392 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17393 {
17394 unsigned int dir_index, mod_time, length;
17395
17396 line_ptr += bytes_read;
17397 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17398 line_ptr += bytes_read;
17399 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17400 line_ptr += bytes_read;
17401 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17402 line_ptr += bytes_read;
17403
17404 add_file_name (lh, cur_file, dir_index, mod_time, length);
17405 }
17406 line_ptr += bytes_read;
17407 lh->statement_program_start = line_ptr;
17408
17409 if (line_ptr > (section->buffer + section->size))
17410 complaint (&symfile_complaints,
17411 _("line number info header doesn't "
17412 "fit in `.debug_line' section"));
17413
17414 discard_cleanups (back_to);
17415 return lh;
17416 }
17417
17418 /* Subroutine of dwarf_decode_lines to simplify it.
17419 Return the file name of the psymtab for included file FILE_INDEX
17420 in line header LH of PST.
17421 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17422 If space for the result is malloc'd, it will be freed by a cleanup.
17423 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17424
17425 The function creates dangling cleanup registration. */
17426
17427 static const char *
17428 psymtab_include_file_name (const struct line_header *lh, int file_index,
17429 const struct partial_symtab *pst,
17430 const char *comp_dir)
17431 {
17432 const struct file_entry fe = lh->file_names [file_index];
17433 const char *include_name = fe.name;
17434 const char *include_name_to_compare = include_name;
17435 const char *dir_name = NULL;
17436 const char *pst_filename;
17437 char *copied_name = NULL;
17438 int file_is_pst;
17439
17440 if (fe.dir_index && lh->include_dirs != NULL)
17441 dir_name = lh->include_dirs[fe.dir_index - 1];
17442
17443 if (!IS_ABSOLUTE_PATH (include_name)
17444 && (dir_name != NULL || comp_dir != NULL))
17445 {
17446 /* Avoid creating a duplicate psymtab for PST.
17447 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17448 Before we do the comparison, however, we need to account
17449 for DIR_NAME and COMP_DIR.
17450 First prepend dir_name (if non-NULL). If we still don't
17451 have an absolute path prepend comp_dir (if non-NULL).
17452 However, the directory we record in the include-file's
17453 psymtab does not contain COMP_DIR (to match the
17454 corresponding symtab(s)).
17455
17456 Example:
17457
17458 bash$ cd /tmp
17459 bash$ gcc -g ./hello.c
17460 include_name = "hello.c"
17461 dir_name = "."
17462 DW_AT_comp_dir = comp_dir = "/tmp"
17463 DW_AT_name = "./hello.c"
17464
17465 */
17466
17467 if (dir_name != NULL)
17468 {
17469 char *tem = concat (dir_name, SLASH_STRING,
17470 include_name, (char *)NULL);
17471
17472 make_cleanup (xfree, tem);
17473 include_name = tem;
17474 include_name_to_compare = include_name;
17475 }
17476 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17477 {
17478 char *tem = concat (comp_dir, SLASH_STRING,
17479 include_name, (char *)NULL);
17480
17481 make_cleanup (xfree, tem);
17482 include_name_to_compare = tem;
17483 }
17484 }
17485
17486 pst_filename = pst->filename;
17487 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17488 {
17489 copied_name = concat (pst->dirname, SLASH_STRING,
17490 pst_filename, (char *)NULL);
17491 pst_filename = copied_name;
17492 }
17493
17494 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17495
17496 if (copied_name != NULL)
17497 xfree (copied_name);
17498
17499 if (file_is_pst)
17500 return NULL;
17501 return include_name;
17502 }
17503
17504 /* State machine to track the state of the line number program. */
17505
17506 typedef struct
17507 {
17508 /* These are part of the standard DWARF line number state machine. */
17509
17510 unsigned char op_index;
17511 unsigned int file;
17512 unsigned int line;
17513 CORE_ADDR address;
17514 int is_stmt;
17515 unsigned int discriminator;
17516
17517 /* Additional bits of state we need to track. */
17518
17519 /* The last file that we called dwarf2_start_subfile for.
17520 This is only used for TLLs. */
17521 unsigned int last_file;
17522 /* The last file a line number was recorded for. */
17523 struct subfile *last_subfile;
17524
17525 /* The function to call to record a line. */
17526 record_line_ftype *record_line;
17527
17528 /* The last line number that was recorded, used to coalesce
17529 consecutive entries for the same line. This can happen, for
17530 example, when discriminators are present. PR 17276. */
17531 unsigned int last_line;
17532 int line_has_non_zero_discriminator;
17533 } lnp_state_machine;
17534
17535 /* There's a lot of static state to pass to dwarf_record_line.
17536 This keeps it all together. */
17537
17538 typedef struct
17539 {
17540 /* The gdbarch. */
17541 struct gdbarch *gdbarch;
17542
17543 /* The line number header. */
17544 struct line_header *line_header;
17545
17546 /* Non-zero if we're recording lines.
17547 Otherwise we're building partial symtabs and are just interested in
17548 finding include files mentioned by the line number program. */
17549 int record_lines_p;
17550 } lnp_reader_state;
17551
17552 /* Ignore this record_line request. */
17553
17554 static void
17555 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17556 {
17557 return;
17558 }
17559
17560 /* Return non-zero if we should add LINE to the line number table.
17561 LINE is the line to add, LAST_LINE is the last line that was added,
17562 LAST_SUBFILE is the subfile for LAST_LINE.
17563 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17564 had a non-zero discriminator.
17565
17566 We have to be careful in the presence of discriminators.
17567 E.g., for this line:
17568
17569 for (i = 0; i < 100000; i++);
17570
17571 clang can emit four line number entries for that one line,
17572 each with a different discriminator.
17573 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17574
17575 However, we want gdb to coalesce all four entries into one.
17576 Otherwise the user could stepi into the middle of the line and
17577 gdb would get confused about whether the pc really was in the
17578 middle of the line.
17579
17580 Things are further complicated by the fact that two consecutive
17581 line number entries for the same line is a heuristic used by gcc
17582 to denote the end of the prologue. So we can't just discard duplicate
17583 entries, we have to be selective about it. The heuristic we use is
17584 that we only collapse consecutive entries for the same line if at least
17585 one of those entries has a non-zero discriminator. PR 17276.
17586
17587 Note: Addresses in the line number state machine can never go backwards
17588 within one sequence, thus this coalescing is ok. */
17589
17590 static int
17591 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17592 int line_has_non_zero_discriminator,
17593 struct subfile *last_subfile)
17594 {
17595 if (current_subfile != last_subfile)
17596 return 1;
17597 if (line != last_line)
17598 return 1;
17599 /* Same line for the same file that we've seen already.
17600 As a last check, for pr 17276, only record the line if the line
17601 has never had a non-zero discriminator. */
17602 if (!line_has_non_zero_discriminator)
17603 return 1;
17604 return 0;
17605 }
17606
17607 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17608 in the line table of subfile SUBFILE. */
17609
17610 static void
17611 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17612 unsigned int line, CORE_ADDR address,
17613 record_line_ftype p_record_line)
17614 {
17615 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17616
17617 if (dwarf_line_debug)
17618 {
17619 fprintf_unfiltered (gdb_stdlog,
17620 "Recording line %u, file %s, address %s\n",
17621 line, lbasename (subfile->name),
17622 paddress (gdbarch, address));
17623 }
17624
17625 (*p_record_line) (subfile, line, addr);
17626 }
17627
17628 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17629 Mark the end of a set of line number records.
17630 The arguments are the same as for dwarf_record_line_1.
17631 If SUBFILE is NULL the request is ignored. */
17632
17633 static void
17634 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17635 CORE_ADDR address, record_line_ftype p_record_line)
17636 {
17637 if (subfile == NULL)
17638 return;
17639
17640 if (dwarf_line_debug)
17641 {
17642 fprintf_unfiltered (gdb_stdlog,
17643 "Finishing current line, file %s, address %s\n",
17644 lbasename (subfile->name),
17645 paddress (gdbarch, address));
17646 }
17647
17648 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17649 }
17650
17651 /* Record the line in STATE.
17652 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17653
17654 static void
17655 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17656 int end_sequence)
17657 {
17658 const struct line_header *lh = reader->line_header;
17659 unsigned int file, line, discriminator;
17660 int is_stmt;
17661
17662 file = state->file;
17663 line = state->line;
17664 is_stmt = state->is_stmt;
17665 discriminator = state->discriminator;
17666
17667 if (dwarf_line_debug)
17668 {
17669 fprintf_unfiltered (gdb_stdlog,
17670 "Processing actual line %u: file %u,"
17671 " address %s, is_stmt %u, discrim %u\n",
17672 line, file,
17673 paddress (reader->gdbarch, state->address),
17674 is_stmt, discriminator);
17675 }
17676
17677 if (file == 0 || file - 1 >= lh->num_file_names)
17678 dwarf2_debug_line_missing_file_complaint ();
17679 /* For now we ignore lines not starting on an instruction boundary.
17680 But not when processing end_sequence for compatibility with the
17681 previous version of the code. */
17682 else if (state->op_index == 0 || end_sequence)
17683 {
17684 lh->file_names[file - 1].included_p = 1;
17685 if (reader->record_lines_p && is_stmt)
17686 {
17687 if (state->last_subfile != current_subfile || end_sequence)
17688 {
17689 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17690 state->address, state->record_line);
17691 }
17692
17693 if (!end_sequence)
17694 {
17695 if (dwarf_record_line_p (line, state->last_line,
17696 state->line_has_non_zero_discriminator,
17697 state->last_subfile))
17698 {
17699 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17700 line, state->address,
17701 state->record_line);
17702 }
17703 state->last_subfile = current_subfile;
17704 state->last_line = line;
17705 }
17706 }
17707 }
17708 }
17709
17710 /* Initialize STATE for the start of a line number program. */
17711
17712 static void
17713 init_lnp_state_machine (lnp_state_machine *state,
17714 const lnp_reader_state *reader)
17715 {
17716 memset (state, 0, sizeof (*state));
17717
17718 /* Just starting, there is no "last file". */
17719 state->last_file = 0;
17720 state->last_subfile = NULL;
17721
17722 state->record_line = record_line;
17723
17724 state->last_line = 0;
17725 state->line_has_non_zero_discriminator = 0;
17726
17727 /* Initialize these according to the DWARF spec. */
17728 state->op_index = 0;
17729 state->file = 1;
17730 state->line = 1;
17731 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17732 was a line entry for it so that the backend has a chance to adjust it
17733 and also record it in case it needs it. This is currently used by MIPS
17734 code, cf. `mips_adjust_dwarf2_line'. */
17735 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17736 state->is_stmt = reader->line_header->default_is_stmt;
17737 state->discriminator = 0;
17738 }
17739
17740 /* Check address and if invalid nop-out the rest of the lines in this
17741 sequence. */
17742
17743 static void
17744 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17745 const gdb_byte *line_ptr,
17746 CORE_ADDR lowpc, CORE_ADDR address)
17747 {
17748 /* If address < lowpc then it's not a usable value, it's outside the
17749 pc range of the CU. However, we restrict the test to only address
17750 values of zero to preserve GDB's previous behaviour which is to
17751 handle the specific case of a function being GC'd by the linker. */
17752
17753 if (address == 0 && address < lowpc)
17754 {
17755 /* This line table is for a function which has been
17756 GCd by the linker. Ignore it. PR gdb/12528 */
17757
17758 struct objfile *objfile = cu->objfile;
17759 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17760
17761 complaint (&symfile_complaints,
17762 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17763 line_offset, objfile_name (objfile));
17764 state->record_line = noop_record_line;
17765 /* Note: sm.record_line is left as noop_record_line
17766 until we see DW_LNE_end_sequence. */
17767 }
17768 }
17769
17770 /* Subroutine of dwarf_decode_lines to simplify it.
17771 Process the line number information in LH.
17772 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17773 program in order to set included_p for every referenced header. */
17774
17775 static void
17776 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17777 const int decode_for_pst_p, CORE_ADDR lowpc)
17778 {
17779 const gdb_byte *line_ptr, *extended_end;
17780 const gdb_byte *line_end;
17781 unsigned int bytes_read, extended_len;
17782 unsigned char op_code, extended_op;
17783 CORE_ADDR baseaddr;
17784 struct objfile *objfile = cu->objfile;
17785 bfd *abfd = objfile->obfd;
17786 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17787 /* Non-zero if we're recording line info (as opposed to building partial
17788 symtabs). */
17789 int record_lines_p = !decode_for_pst_p;
17790 /* A collection of things we need to pass to dwarf_record_line. */
17791 lnp_reader_state reader_state;
17792
17793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17794
17795 line_ptr = lh->statement_program_start;
17796 line_end = lh->statement_program_end;
17797
17798 reader_state.gdbarch = gdbarch;
17799 reader_state.line_header = lh;
17800 reader_state.record_lines_p = record_lines_p;
17801
17802 /* Read the statement sequences until there's nothing left. */
17803 while (line_ptr < line_end)
17804 {
17805 /* The DWARF line number program state machine. */
17806 lnp_state_machine state_machine;
17807 int end_sequence = 0;
17808
17809 /* Reset the state machine at the start of each sequence. */
17810 init_lnp_state_machine (&state_machine, &reader_state);
17811
17812 if (record_lines_p && lh->num_file_names >= state_machine.file)
17813 {
17814 /* Start a subfile for the current file of the state machine. */
17815 /* lh->include_dirs and lh->file_names are 0-based, but the
17816 directory and file name numbers in the statement program
17817 are 1-based. */
17818 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17819 const char *dir = NULL;
17820
17821 if (fe->dir_index && lh->include_dirs != NULL)
17822 dir = lh->include_dirs[fe->dir_index - 1];
17823
17824 dwarf2_start_subfile (fe->name, dir);
17825 }
17826
17827 /* Decode the table. */
17828 while (line_ptr < line_end && !end_sequence)
17829 {
17830 op_code = read_1_byte (abfd, line_ptr);
17831 line_ptr += 1;
17832
17833 if (op_code >= lh->opcode_base)
17834 {
17835 /* Special opcode. */
17836 unsigned char adj_opcode;
17837 CORE_ADDR addr_adj;
17838 int line_delta;
17839
17840 adj_opcode = op_code - lh->opcode_base;
17841 addr_adj = (((state_machine.op_index
17842 + (adj_opcode / lh->line_range))
17843 / lh->maximum_ops_per_instruction)
17844 * lh->minimum_instruction_length);
17845 state_machine.address
17846 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17847 state_machine.op_index = ((state_machine.op_index
17848 + (adj_opcode / lh->line_range))
17849 % lh->maximum_ops_per_instruction);
17850 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17851 state_machine.line += line_delta;
17852 if (line_delta != 0)
17853 state_machine.line_has_non_zero_discriminator
17854 = state_machine.discriminator != 0;
17855
17856 dwarf_record_line (&reader_state, &state_machine, 0);
17857 state_machine.discriminator = 0;
17858 }
17859 else switch (op_code)
17860 {
17861 case DW_LNS_extended_op:
17862 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17863 &bytes_read);
17864 line_ptr += bytes_read;
17865 extended_end = line_ptr + extended_len;
17866 extended_op = read_1_byte (abfd, line_ptr);
17867 line_ptr += 1;
17868 switch (extended_op)
17869 {
17870 case DW_LNE_end_sequence:
17871 state_machine.record_line = record_line;
17872 end_sequence = 1;
17873 break;
17874 case DW_LNE_set_address:
17875 {
17876 CORE_ADDR address
17877 = read_address (abfd, line_ptr, cu, &bytes_read);
17878
17879 line_ptr += bytes_read;
17880 check_line_address (cu, &state_machine, line_ptr,
17881 lowpc, address);
17882 state_machine.op_index = 0;
17883 address += baseaddr;
17884 state_machine.address
17885 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17886 }
17887 break;
17888 case DW_LNE_define_file:
17889 {
17890 const char *cur_file;
17891 unsigned int dir_index, mod_time, length;
17892
17893 cur_file = read_direct_string (abfd, line_ptr,
17894 &bytes_read);
17895 line_ptr += bytes_read;
17896 dir_index =
17897 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17898 line_ptr += bytes_read;
17899 mod_time =
17900 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17901 line_ptr += bytes_read;
17902 length =
17903 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17904 line_ptr += bytes_read;
17905 add_file_name (lh, cur_file, dir_index, mod_time, length);
17906 }
17907 break;
17908 case DW_LNE_set_discriminator:
17909 /* The discriminator is not interesting to the debugger;
17910 just ignore it. We still need to check its value though:
17911 if there are consecutive entries for the same
17912 (non-prologue) line we want to coalesce them.
17913 PR 17276. */
17914 state_machine.discriminator
17915 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17916 state_machine.line_has_non_zero_discriminator
17917 |= state_machine.discriminator != 0;
17918 line_ptr += bytes_read;
17919 break;
17920 default:
17921 complaint (&symfile_complaints,
17922 _("mangled .debug_line section"));
17923 return;
17924 }
17925 /* Make sure that we parsed the extended op correctly. If e.g.
17926 we expected a different address size than the producer used,
17927 we may have read the wrong number of bytes. */
17928 if (line_ptr != extended_end)
17929 {
17930 complaint (&symfile_complaints,
17931 _("mangled .debug_line section"));
17932 return;
17933 }
17934 break;
17935 case DW_LNS_copy:
17936 dwarf_record_line (&reader_state, &state_machine, 0);
17937 state_machine.discriminator = 0;
17938 break;
17939 case DW_LNS_advance_pc:
17940 {
17941 CORE_ADDR adjust
17942 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17943 CORE_ADDR addr_adj;
17944
17945 addr_adj = (((state_machine.op_index + adjust)
17946 / lh->maximum_ops_per_instruction)
17947 * lh->minimum_instruction_length);
17948 state_machine.address
17949 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17950 state_machine.op_index = ((state_machine.op_index + adjust)
17951 % lh->maximum_ops_per_instruction);
17952 line_ptr += bytes_read;
17953 }
17954 break;
17955 case DW_LNS_advance_line:
17956 {
17957 int line_delta
17958 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17959
17960 state_machine.line += line_delta;
17961 if (line_delta != 0)
17962 state_machine.line_has_non_zero_discriminator
17963 = state_machine.discriminator != 0;
17964 line_ptr += bytes_read;
17965 }
17966 break;
17967 case DW_LNS_set_file:
17968 {
17969 /* The arrays lh->include_dirs and lh->file_names are
17970 0-based, but the directory and file name numbers in
17971 the statement program are 1-based. */
17972 struct file_entry *fe;
17973 const char *dir = NULL;
17974
17975 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17976 &bytes_read);
17977 line_ptr += bytes_read;
17978 if (state_machine.file == 0
17979 || state_machine.file - 1 >= lh->num_file_names)
17980 dwarf2_debug_line_missing_file_complaint ();
17981 else
17982 {
17983 fe = &lh->file_names[state_machine.file - 1];
17984 if (fe->dir_index && lh->include_dirs != NULL)
17985 dir = lh->include_dirs[fe->dir_index - 1];
17986 if (record_lines_p)
17987 {
17988 state_machine.last_subfile = current_subfile;
17989 state_machine.line_has_non_zero_discriminator
17990 = state_machine.discriminator != 0;
17991 dwarf2_start_subfile (fe->name, dir);
17992 }
17993 }
17994 }
17995 break;
17996 case DW_LNS_set_column:
17997 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17998 line_ptr += bytes_read;
17999 break;
18000 case DW_LNS_negate_stmt:
18001 state_machine.is_stmt = (!state_machine.is_stmt);
18002 break;
18003 case DW_LNS_set_basic_block:
18004 break;
18005 /* Add to the address register of the state machine the
18006 address increment value corresponding to special opcode
18007 255. I.e., this value is scaled by the minimum
18008 instruction length since special opcode 255 would have
18009 scaled the increment. */
18010 case DW_LNS_const_add_pc:
18011 {
18012 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18013 CORE_ADDR addr_adj;
18014
18015 addr_adj = (((state_machine.op_index + adjust)
18016 / lh->maximum_ops_per_instruction)
18017 * lh->minimum_instruction_length);
18018 state_machine.address
18019 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18020 state_machine.op_index = ((state_machine.op_index + adjust)
18021 % lh->maximum_ops_per_instruction);
18022 }
18023 break;
18024 case DW_LNS_fixed_advance_pc:
18025 {
18026 CORE_ADDR addr_adj;
18027
18028 addr_adj = read_2_bytes (abfd, line_ptr);
18029 state_machine.address
18030 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18031 state_machine.op_index = 0;
18032 line_ptr += 2;
18033 }
18034 break;
18035 default:
18036 {
18037 /* Unknown standard opcode, ignore it. */
18038 int i;
18039
18040 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18041 {
18042 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18043 line_ptr += bytes_read;
18044 }
18045 }
18046 }
18047 }
18048
18049 if (!end_sequence)
18050 dwarf2_debug_line_missing_end_sequence_complaint ();
18051
18052 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18053 in which case we still finish recording the last line). */
18054 dwarf_record_line (&reader_state, &state_machine, 1);
18055 }
18056 }
18057
18058 /* Decode the Line Number Program (LNP) for the given line_header
18059 structure and CU. The actual information extracted and the type
18060 of structures created from the LNP depends on the value of PST.
18061
18062 1. If PST is NULL, then this procedure uses the data from the program
18063 to create all necessary symbol tables, and their linetables.
18064
18065 2. If PST is not NULL, this procedure reads the program to determine
18066 the list of files included by the unit represented by PST, and
18067 builds all the associated partial symbol tables.
18068
18069 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18070 It is used for relative paths in the line table.
18071 NOTE: When processing partial symtabs (pst != NULL),
18072 comp_dir == pst->dirname.
18073
18074 NOTE: It is important that psymtabs have the same file name (via strcmp)
18075 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18076 symtab we don't use it in the name of the psymtabs we create.
18077 E.g. expand_line_sal requires this when finding psymtabs to expand.
18078 A good testcase for this is mb-inline.exp.
18079
18080 LOWPC is the lowest address in CU (or 0 if not known).
18081
18082 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18083 for its PC<->lines mapping information. Otherwise only the filename
18084 table is read in. */
18085
18086 static void
18087 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18088 struct dwarf2_cu *cu, struct partial_symtab *pst,
18089 CORE_ADDR lowpc, int decode_mapping)
18090 {
18091 struct objfile *objfile = cu->objfile;
18092 const int decode_for_pst_p = (pst != NULL);
18093
18094 if (decode_mapping)
18095 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18096
18097 if (decode_for_pst_p)
18098 {
18099 int file_index;
18100
18101 /* Now that we're done scanning the Line Header Program, we can
18102 create the psymtab of each included file. */
18103 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18104 if (lh->file_names[file_index].included_p == 1)
18105 {
18106 const char *include_name =
18107 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18108 if (include_name != NULL)
18109 dwarf2_create_include_psymtab (include_name, pst, objfile);
18110 }
18111 }
18112 else
18113 {
18114 /* Make sure a symtab is created for every file, even files
18115 which contain only variables (i.e. no code with associated
18116 line numbers). */
18117 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18118 int i;
18119
18120 for (i = 0; i < lh->num_file_names; i++)
18121 {
18122 const char *dir = NULL;
18123 struct file_entry *fe;
18124
18125 fe = &lh->file_names[i];
18126 if (fe->dir_index && lh->include_dirs != NULL)
18127 dir = lh->include_dirs[fe->dir_index - 1];
18128 dwarf2_start_subfile (fe->name, dir);
18129
18130 if (current_subfile->symtab == NULL)
18131 {
18132 current_subfile->symtab
18133 = allocate_symtab (cust, current_subfile->name);
18134 }
18135 fe->symtab = current_subfile->symtab;
18136 }
18137 }
18138 }
18139
18140 /* Start a subfile for DWARF. FILENAME is the name of the file and
18141 DIRNAME the name of the source directory which contains FILENAME
18142 or NULL if not known.
18143 This routine tries to keep line numbers from identical absolute and
18144 relative file names in a common subfile.
18145
18146 Using the `list' example from the GDB testsuite, which resides in
18147 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18148 of /srcdir/list0.c yields the following debugging information for list0.c:
18149
18150 DW_AT_name: /srcdir/list0.c
18151 DW_AT_comp_dir: /compdir
18152 files.files[0].name: list0.h
18153 files.files[0].dir: /srcdir
18154 files.files[1].name: list0.c
18155 files.files[1].dir: /srcdir
18156
18157 The line number information for list0.c has to end up in a single
18158 subfile, so that `break /srcdir/list0.c:1' works as expected.
18159 start_subfile will ensure that this happens provided that we pass the
18160 concatenation of files.files[1].dir and files.files[1].name as the
18161 subfile's name. */
18162
18163 static void
18164 dwarf2_start_subfile (const char *filename, const char *dirname)
18165 {
18166 char *copy = NULL;
18167
18168 /* In order not to lose the line information directory,
18169 we concatenate it to the filename when it makes sense.
18170 Note that the Dwarf3 standard says (speaking of filenames in line
18171 information): ``The directory index is ignored for file names
18172 that represent full path names''. Thus ignoring dirname in the
18173 `else' branch below isn't an issue. */
18174
18175 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18176 {
18177 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18178 filename = copy;
18179 }
18180
18181 start_subfile (filename);
18182
18183 if (copy != NULL)
18184 xfree (copy);
18185 }
18186
18187 /* Start a symtab for DWARF.
18188 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18189
18190 static struct compunit_symtab *
18191 dwarf2_start_symtab (struct dwarf2_cu *cu,
18192 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18193 {
18194 struct compunit_symtab *cust
18195 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18196
18197 record_debugformat ("DWARF 2");
18198 record_producer (cu->producer);
18199
18200 /* We assume that we're processing GCC output. */
18201 processing_gcc_compilation = 2;
18202
18203 cu->processing_has_namespace_info = 0;
18204
18205 return cust;
18206 }
18207
18208 static void
18209 var_decode_location (struct attribute *attr, struct symbol *sym,
18210 struct dwarf2_cu *cu)
18211 {
18212 struct objfile *objfile = cu->objfile;
18213 struct comp_unit_head *cu_header = &cu->header;
18214
18215 /* NOTE drow/2003-01-30: There used to be a comment and some special
18216 code here to turn a symbol with DW_AT_external and a
18217 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18218 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18219 with some versions of binutils) where shared libraries could have
18220 relocations against symbols in their debug information - the
18221 minimal symbol would have the right address, but the debug info
18222 would not. It's no longer necessary, because we will explicitly
18223 apply relocations when we read in the debug information now. */
18224
18225 /* A DW_AT_location attribute with no contents indicates that a
18226 variable has been optimized away. */
18227 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18228 {
18229 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18230 return;
18231 }
18232
18233 /* Handle one degenerate form of location expression specially, to
18234 preserve GDB's previous behavior when section offsets are
18235 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18236 then mark this symbol as LOC_STATIC. */
18237
18238 if (attr_form_is_block (attr)
18239 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18240 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18241 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18242 && (DW_BLOCK (attr)->size
18243 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18244 {
18245 unsigned int dummy;
18246
18247 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18248 SYMBOL_VALUE_ADDRESS (sym) =
18249 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18250 else
18251 SYMBOL_VALUE_ADDRESS (sym) =
18252 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18253 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18254 fixup_symbol_section (sym, objfile);
18255 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18256 SYMBOL_SECTION (sym));
18257 return;
18258 }
18259
18260 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18261 expression evaluator, and use LOC_COMPUTED only when necessary
18262 (i.e. when the value of a register or memory location is
18263 referenced, or a thread-local block, etc.). Then again, it might
18264 not be worthwhile. I'm assuming that it isn't unless performance
18265 or memory numbers show me otherwise. */
18266
18267 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18268
18269 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18270 cu->has_loclist = 1;
18271 }
18272
18273 /* Given a pointer to a DWARF information entry, figure out if we need
18274 to make a symbol table entry for it, and if so, create a new entry
18275 and return a pointer to it.
18276 If TYPE is NULL, determine symbol type from the die, otherwise
18277 used the passed type.
18278 If SPACE is not NULL, use it to hold the new symbol. If it is
18279 NULL, allocate a new symbol on the objfile's obstack. */
18280
18281 static struct symbol *
18282 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18283 struct symbol *space)
18284 {
18285 struct objfile *objfile = cu->objfile;
18286 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18287 struct symbol *sym = NULL;
18288 const char *name;
18289 struct attribute *attr = NULL;
18290 struct attribute *attr2 = NULL;
18291 CORE_ADDR baseaddr;
18292 struct pending **list_to_add = NULL;
18293
18294 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18295
18296 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18297
18298 name = dwarf2_name (die, cu);
18299 if (name)
18300 {
18301 const char *linkagename;
18302 int suppress_add = 0;
18303
18304 if (space)
18305 sym = space;
18306 else
18307 sym = allocate_symbol (objfile);
18308 OBJSTAT (objfile, n_syms++);
18309
18310 /* Cache this symbol's name and the name's demangled form (if any). */
18311 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18312 linkagename = dwarf2_physname (name, die, cu);
18313 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18314
18315 /* Fortran does not have mangling standard and the mangling does differ
18316 between gfortran, iFort etc. */
18317 if (cu->language == language_fortran
18318 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18319 symbol_set_demangled_name (&(sym->ginfo),
18320 dwarf2_full_name (name, die, cu),
18321 NULL);
18322
18323 /* Default assumptions.
18324 Use the passed type or decode it from the die. */
18325 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18326 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18327 if (type != NULL)
18328 SYMBOL_TYPE (sym) = type;
18329 else
18330 SYMBOL_TYPE (sym) = die_type (die, cu);
18331 attr = dwarf2_attr (die,
18332 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18333 cu);
18334 if (attr)
18335 {
18336 SYMBOL_LINE (sym) = DW_UNSND (attr);
18337 }
18338
18339 attr = dwarf2_attr (die,
18340 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18341 cu);
18342 if (attr)
18343 {
18344 int file_index = DW_UNSND (attr);
18345
18346 if (cu->line_header == NULL
18347 || file_index > cu->line_header->num_file_names)
18348 complaint (&symfile_complaints,
18349 _("file index out of range"));
18350 else if (file_index > 0)
18351 {
18352 struct file_entry *fe;
18353
18354 fe = &cu->line_header->file_names[file_index - 1];
18355 symbol_set_symtab (sym, fe->symtab);
18356 }
18357 }
18358
18359 switch (die->tag)
18360 {
18361 case DW_TAG_label:
18362 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18363 if (attr)
18364 {
18365 CORE_ADDR addr;
18366
18367 addr = attr_value_as_address (attr);
18368 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18369 SYMBOL_VALUE_ADDRESS (sym) = addr;
18370 }
18371 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18372 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18373 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18374 add_symbol_to_list (sym, cu->list_in_scope);
18375 break;
18376 case DW_TAG_subprogram:
18377 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18378 finish_block. */
18379 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18380 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18381 if ((attr2 && (DW_UNSND (attr2) != 0))
18382 || cu->language == language_ada)
18383 {
18384 /* Subprograms marked external are stored as a global symbol.
18385 Ada subprograms, whether marked external or not, are always
18386 stored as a global symbol, because we want to be able to
18387 access them globally. For instance, we want to be able
18388 to break on a nested subprogram without having to
18389 specify the context. */
18390 list_to_add = &global_symbols;
18391 }
18392 else
18393 {
18394 list_to_add = cu->list_in_scope;
18395 }
18396 break;
18397 case DW_TAG_inlined_subroutine:
18398 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18399 finish_block. */
18400 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18401 SYMBOL_INLINED (sym) = 1;
18402 list_to_add = cu->list_in_scope;
18403 break;
18404 case DW_TAG_template_value_param:
18405 suppress_add = 1;
18406 /* Fall through. */
18407 case DW_TAG_constant:
18408 case DW_TAG_variable:
18409 case DW_TAG_member:
18410 /* Compilation with minimal debug info may result in
18411 variables with missing type entries. Change the
18412 misleading `void' type to something sensible. */
18413 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18414 SYMBOL_TYPE (sym)
18415 = objfile_type (objfile)->nodebug_data_symbol;
18416
18417 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18418 /* In the case of DW_TAG_member, we should only be called for
18419 static const members. */
18420 if (die->tag == DW_TAG_member)
18421 {
18422 /* dwarf2_add_field uses die_is_declaration,
18423 so we do the same. */
18424 gdb_assert (die_is_declaration (die, cu));
18425 gdb_assert (attr);
18426 }
18427 if (attr)
18428 {
18429 dwarf2_const_value (attr, sym, cu);
18430 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18431 if (!suppress_add)
18432 {
18433 if (attr2 && (DW_UNSND (attr2) != 0))
18434 list_to_add = &global_symbols;
18435 else
18436 list_to_add = cu->list_in_scope;
18437 }
18438 break;
18439 }
18440 attr = dwarf2_attr (die, DW_AT_location, cu);
18441 if (attr)
18442 {
18443 var_decode_location (attr, sym, cu);
18444 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18445
18446 /* Fortran explicitly imports any global symbols to the local
18447 scope by DW_TAG_common_block. */
18448 if (cu->language == language_fortran && die->parent
18449 && die->parent->tag == DW_TAG_common_block)
18450 attr2 = NULL;
18451
18452 if (SYMBOL_CLASS (sym) == LOC_STATIC
18453 && SYMBOL_VALUE_ADDRESS (sym) == 0
18454 && !dwarf2_per_objfile->has_section_at_zero)
18455 {
18456 /* When a static variable is eliminated by the linker,
18457 the corresponding debug information is not stripped
18458 out, but the variable address is set to null;
18459 do not add such variables into symbol table. */
18460 }
18461 else if (attr2 && (DW_UNSND (attr2) != 0))
18462 {
18463 /* Workaround gfortran PR debug/40040 - it uses
18464 DW_AT_location for variables in -fPIC libraries which may
18465 get overriden by other libraries/executable and get
18466 a different address. Resolve it by the minimal symbol
18467 which may come from inferior's executable using copy
18468 relocation. Make this workaround only for gfortran as for
18469 other compilers GDB cannot guess the minimal symbol
18470 Fortran mangling kind. */
18471 if (cu->language == language_fortran && die->parent
18472 && die->parent->tag == DW_TAG_module
18473 && cu->producer
18474 && startswith (cu->producer, "GNU Fortran "))
18475 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18476
18477 /* A variable with DW_AT_external is never static,
18478 but it may be block-scoped. */
18479 list_to_add = (cu->list_in_scope == &file_symbols
18480 ? &global_symbols : cu->list_in_scope);
18481 }
18482 else
18483 list_to_add = cu->list_in_scope;
18484 }
18485 else
18486 {
18487 /* We do not know the address of this symbol.
18488 If it is an external symbol and we have type information
18489 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18490 The address of the variable will then be determined from
18491 the minimal symbol table whenever the variable is
18492 referenced. */
18493 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18494
18495 /* Fortran explicitly imports any global symbols to the local
18496 scope by DW_TAG_common_block. */
18497 if (cu->language == language_fortran && die->parent
18498 && die->parent->tag == DW_TAG_common_block)
18499 {
18500 /* SYMBOL_CLASS doesn't matter here because
18501 read_common_block is going to reset it. */
18502 if (!suppress_add)
18503 list_to_add = cu->list_in_scope;
18504 }
18505 else if (attr2 && (DW_UNSND (attr2) != 0)
18506 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18507 {
18508 /* A variable with DW_AT_external is never static, but it
18509 may be block-scoped. */
18510 list_to_add = (cu->list_in_scope == &file_symbols
18511 ? &global_symbols : cu->list_in_scope);
18512
18513 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18514 }
18515 else if (!die_is_declaration (die, cu))
18516 {
18517 /* Use the default LOC_OPTIMIZED_OUT class. */
18518 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18519 if (!suppress_add)
18520 list_to_add = cu->list_in_scope;
18521 }
18522 }
18523 break;
18524 case DW_TAG_formal_parameter:
18525 /* If we are inside a function, mark this as an argument. If
18526 not, we might be looking at an argument to an inlined function
18527 when we do not have enough information to show inlined frames;
18528 pretend it's a local variable in that case so that the user can
18529 still see it. */
18530 if (context_stack_depth > 0
18531 && context_stack[context_stack_depth - 1].name != NULL)
18532 SYMBOL_IS_ARGUMENT (sym) = 1;
18533 attr = dwarf2_attr (die, DW_AT_location, cu);
18534 if (attr)
18535 {
18536 var_decode_location (attr, sym, cu);
18537 }
18538 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18539 if (attr)
18540 {
18541 dwarf2_const_value (attr, sym, cu);
18542 }
18543
18544 list_to_add = cu->list_in_scope;
18545 break;
18546 case DW_TAG_unspecified_parameters:
18547 /* From varargs functions; gdb doesn't seem to have any
18548 interest in this information, so just ignore it for now.
18549 (FIXME?) */
18550 break;
18551 case DW_TAG_template_type_param:
18552 suppress_add = 1;
18553 /* Fall through. */
18554 case DW_TAG_class_type:
18555 case DW_TAG_interface_type:
18556 case DW_TAG_structure_type:
18557 case DW_TAG_union_type:
18558 case DW_TAG_set_type:
18559 case DW_TAG_enumeration_type:
18560 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18561 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18562
18563 {
18564 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18565 really ever be static objects: otherwise, if you try
18566 to, say, break of a class's method and you're in a file
18567 which doesn't mention that class, it won't work unless
18568 the check for all static symbols in lookup_symbol_aux
18569 saves you. See the OtherFileClass tests in
18570 gdb.c++/namespace.exp. */
18571
18572 if (!suppress_add)
18573 {
18574 list_to_add = (cu->list_in_scope == &file_symbols
18575 && (cu->language == language_cplus
18576 || cu->language == language_java)
18577 ? &global_symbols : cu->list_in_scope);
18578
18579 /* The semantics of C++ state that "struct foo {
18580 ... }" also defines a typedef for "foo". A Java
18581 class declaration also defines a typedef for the
18582 class. */
18583 if (cu->language == language_cplus
18584 || cu->language == language_java
18585 || cu->language == language_ada
18586 || cu->language == language_d)
18587 {
18588 /* The symbol's name is already allocated along
18589 with this objfile, so we don't need to
18590 duplicate it for the type. */
18591 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18592 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18593 }
18594 }
18595 }
18596 break;
18597 case DW_TAG_typedef:
18598 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18599 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18600 list_to_add = cu->list_in_scope;
18601 break;
18602 case DW_TAG_base_type:
18603 case DW_TAG_subrange_type:
18604 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18605 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18606 list_to_add = cu->list_in_scope;
18607 break;
18608 case DW_TAG_enumerator:
18609 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18610 if (attr)
18611 {
18612 dwarf2_const_value (attr, sym, cu);
18613 }
18614 {
18615 /* NOTE: carlton/2003-11-10: See comment above in the
18616 DW_TAG_class_type, etc. block. */
18617
18618 list_to_add = (cu->list_in_scope == &file_symbols
18619 && (cu->language == language_cplus
18620 || cu->language == language_java)
18621 ? &global_symbols : cu->list_in_scope);
18622 }
18623 break;
18624 case DW_TAG_imported_declaration:
18625 case DW_TAG_namespace:
18626 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18627 list_to_add = &global_symbols;
18628 break;
18629 case DW_TAG_module:
18630 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18631 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18632 list_to_add = &global_symbols;
18633 break;
18634 case DW_TAG_common_block:
18635 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18636 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18637 add_symbol_to_list (sym, cu->list_in_scope);
18638 break;
18639 default:
18640 /* Not a tag we recognize. Hopefully we aren't processing
18641 trash data, but since we must specifically ignore things
18642 we don't recognize, there is nothing else we should do at
18643 this point. */
18644 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18645 dwarf_tag_name (die->tag));
18646 break;
18647 }
18648
18649 if (suppress_add)
18650 {
18651 sym->hash_next = objfile->template_symbols;
18652 objfile->template_symbols = sym;
18653 list_to_add = NULL;
18654 }
18655
18656 if (list_to_add != NULL)
18657 add_symbol_to_list (sym, list_to_add);
18658
18659 /* For the benefit of old versions of GCC, check for anonymous
18660 namespaces based on the demangled name. */
18661 if (!cu->processing_has_namespace_info
18662 && cu->language == language_cplus)
18663 cp_scan_for_anonymous_namespaces (sym, objfile);
18664 }
18665 return (sym);
18666 }
18667
18668 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18669
18670 static struct symbol *
18671 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18672 {
18673 return new_symbol_full (die, type, cu, NULL);
18674 }
18675
18676 /* Given an attr with a DW_FORM_dataN value in host byte order,
18677 zero-extend it as appropriate for the symbol's type. The DWARF
18678 standard (v4) is not entirely clear about the meaning of using
18679 DW_FORM_dataN for a constant with a signed type, where the type is
18680 wider than the data. The conclusion of a discussion on the DWARF
18681 list was that this is unspecified. We choose to always zero-extend
18682 because that is the interpretation long in use by GCC. */
18683
18684 static gdb_byte *
18685 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18686 struct dwarf2_cu *cu, LONGEST *value, int bits)
18687 {
18688 struct objfile *objfile = cu->objfile;
18689 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18690 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18691 LONGEST l = DW_UNSND (attr);
18692
18693 if (bits < sizeof (*value) * 8)
18694 {
18695 l &= ((LONGEST) 1 << bits) - 1;
18696 *value = l;
18697 }
18698 else if (bits == sizeof (*value) * 8)
18699 *value = l;
18700 else
18701 {
18702 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18703 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18704 return bytes;
18705 }
18706
18707 return NULL;
18708 }
18709
18710 /* Read a constant value from an attribute. Either set *VALUE, or if
18711 the value does not fit in *VALUE, set *BYTES - either already
18712 allocated on the objfile obstack, or newly allocated on OBSTACK,
18713 or, set *BATON, if we translated the constant to a location
18714 expression. */
18715
18716 static void
18717 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18718 const char *name, struct obstack *obstack,
18719 struct dwarf2_cu *cu,
18720 LONGEST *value, const gdb_byte **bytes,
18721 struct dwarf2_locexpr_baton **baton)
18722 {
18723 struct objfile *objfile = cu->objfile;
18724 struct comp_unit_head *cu_header = &cu->header;
18725 struct dwarf_block *blk;
18726 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18727 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18728
18729 *value = 0;
18730 *bytes = NULL;
18731 *baton = NULL;
18732
18733 switch (attr->form)
18734 {
18735 case DW_FORM_addr:
18736 case DW_FORM_GNU_addr_index:
18737 {
18738 gdb_byte *data;
18739
18740 if (TYPE_LENGTH (type) != cu_header->addr_size)
18741 dwarf2_const_value_length_mismatch_complaint (name,
18742 cu_header->addr_size,
18743 TYPE_LENGTH (type));
18744 /* Symbols of this form are reasonably rare, so we just
18745 piggyback on the existing location code rather than writing
18746 a new implementation of symbol_computed_ops. */
18747 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18748 (*baton)->per_cu = cu->per_cu;
18749 gdb_assert ((*baton)->per_cu);
18750
18751 (*baton)->size = 2 + cu_header->addr_size;
18752 data = obstack_alloc (obstack, (*baton)->size);
18753 (*baton)->data = data;
18754
18755 data[0] = DW_OP_addr;
18756 store_unsigned_integer (&data[1], cu_header->addr_size,
18757 byte_order, DW_ADDR (attr));
18758 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18759 }
18760 break;
18761 case DW_FORM_string:
18762 case DW_FORM_strp:
18763 case DW_FORM_GNU_str_index:
18764 case DW_FORM_GNU_strp_alt:
18765 /* DW_STRING is already allocated on the objfile obstack, point
18766 directly to it. */
18767 *bytes = (const gdb_byte *) DW_STRING (attr);
18768 break;
18769 case DW_FORM_block1:
18770 case DW_FORM_block2:
18771 case DW_FORM_block4:
18772 case DW_FORM_block:
18773 case DW_FORM_exprloc:
18774 blk = DW_BLOCK (attr);
18775 if (TYPE_LENGTH (type) != blk->size)
18776 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18777 TYPE_LENGTH (type));
18778 *bytes = blk->data;
18779 break;
18780
18781 /* The DW_AT_const_value attributes are supposed to carry the
18782 symbol's value "represented as it would be on the target
18783 architecture." By the time we get here, it's already been
18784 converted to host endianness, so we just need to sign- or
18785 zero-extend it as appropriate. */
18786 case DW_FORM_data1:
18787 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18788 break;
18789 case DW_FORM_data2:
18790 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18791 break;
18792 case DW_FORM_data4:
18793 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18794 break;
18795 case DW_FORM_data8:
18796 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18797 break;
18798
18799 case DW_FORM_sdata:
18800 *value = DW_SND (attr);
18801 break;
18802
18803 case DW_FORM_udata:
18804 *value = DW_UNSND (attr);
18805 break;
18806
18807 default:
18808 complaint (&symfile_complaints,
18809 _("unsupported const value attribute form: '%s'"),
18810 dwarf_form_name (attr->form));
18811 *value = 0;
18812 break;
18813 }
18814 }
18815
18816
18817 /* Copy constant value from an attribute to a symbol. */
18818
18819 static void
18820 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18821 struct dwarf2_cu *cu)
18822 {
18823 struct objfile *objfile = cu->objfile;
18824 struct comp_unit_head *cu_header = &cu->header;
18825 LONGEST value;
18826 const gdb_byte *bytes;
18827 struct dwarf2_locexpr_baton *baton;
18828
18829 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18830 SYMBOL_PRINT_NAME (sym),
18831 &objfile->objfile_obstack, cu,
18832 &value, &bytes, &baton);
18833
18834 if (baton != NULL)
18835 {
18836 SYMBOL_LOCATION_BATON (sym) = baton;
18837 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18838 }
18839 else if (bytes != NULL)
18840 {
18841 SYMBOL_VALUE_BYTES (sym) = bytes;
18842 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18843 }
18844 else
18845 {
18846 SYMBOL_VALUE (sym) = value;
18847 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18848 }
18849 }
18850
18851 /* Return the type of the die in question using its DW_AT_type attribute. */
18852
18853 static struct type *
18854 die_type (struct die_info *die, struct dwarf2_cu *cu)
18855 {
18856 struct attribute *type_attr;
18857
18858 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18859 if (!type_attr)
18860 {
18861 /* A missing DW_AT_type represents a void type. */
18862 return objfile_type (cu->objfile)->builtin_void;
18863 }
18864
18865 return lookup_die_type (die, type_attr, cu);
18866 }
18867
18868 /* True iff CU's producer generates GNAT Ada auxiliary information
18869 that allows to find parallel types through that information instead
18870 of having to do expensive parallel lookups by type name. */
18871
18872 static int
18873 need_gnat_info (struct dwarf2_cu *cu)
18874 {
18875 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18876 of GNAT produces this auxiliary information, without any indication
18877 that it is produced. Part of enhancing the FSF version of GNAT
18878 to produce that information will be to put in place an indicator
18879 that we can use in order to determine whether the descriptive type
18880 info is available or not. One suggestion that has been made is
18881 to use a new attribute, attached to the CU die. For now, assume
18882 that the descriptive type info is not available. */
18883 return 0;
18884 }
18885
18886 /* Return the auxiliary type of the die in question using its
18887 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18888 attribute is not present. */
18889
18890 static struct type *
18891 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18892 {
18893 struct attribute *type_attr;
18894
18895 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18896 if (!type_attr)
18897 return NULL;
18898
18899 return lookup_die_type (die, type_attr, cu);
18900 }
18901
18902 /* If DIE has a descriptive_type attribute, then set the TYPE's
18903 descriptive type accordingly. */
18904
18905 static void
18906 set_descriptive_type (struct type *type, struct die_info *die,
18907 struct dwarf2_cu *cu)
18908 {
18909 struct type *descriptive_type = die_descriptive_type (die, cu);
18910
18911 if (descriptive_type)
18912 {
18913 ALLOCATE_GNAT_AUX_TYPE (type);
18914 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18915 }
18916 }
18917
18918 /* Return the containing type of the die in question using its
18919 DW_AT_containing_type attribute. */
18920
18921 static struct type *
18922 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18923 {
18924 struct attribute *type_attr;
18925
18926 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18927 if (!type_attr)
18928 error (_("Dwarf Error: Problem turning containing type into gdb type "
18929 "[in module %s]"), objfile_name (cu->objfile));
18930
18931 return lookup_die_type (die, type_attr, cu);
18932 }
18933
18934 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18935
18936 static struct type *
18937 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18938 {
18939 struct objfile *objfile = dwarf2_per_objfile->objfile;
18940 char *message, *saved;
18941
18942 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18943 objfile_name (objfile),
18944 cu->header.offset.sect_off,
18945 die->offset.sect_off);
18946 saved = obstack_copy0 (&objfile->objfile_obstack,
18947 message, strlen (message));
18948 xfree (message);
18949
18950 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18951 }
18952
18953 /* Look up the type of DIE in CU using its type attribute ATTR.
18954 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18955 DW_AT_containing_type.
18956 If there is no type substitute an error marker. */
18957
18958 static struct type *
18959 lookup_die_type (struct die_info *die, const struct attribute *attr,
18960 struct dwarf2_cu *cu)
18961 {
18962 struct objfile *objfile = cu->objfile;
18963 struct type *this_type;
18964
18965 gdb_assert (attr->name == DW_AT_type
18966 || attr->name == DW_AT_GNAT_descriptive_type
18967 || attr->name == DW_AT_containing_type);
18968
18969 /* First see if we have it cached. */
18970
18971 if (attr->form == DW_FORM_GNU_ref_alt)
18972 {
18973 struct dwarf2_per_cu_data *per_cu;
18974 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18975
18976 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18977 this_type = get_die_type_at_offset (offset, per_cu);
18978 }
18979 else if (attr_form_is_ref (attr))
18980 {
18981 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18982
18983 this_type = get_die_type_at_offset (offset, cu->per_cu);
18984 }
18985 else if (attr->form == DW_FORM_ref_sig8)
18986 {
18987 ULONGEST signature = DW_SIGNATURE (attr);
18988
18989 return get_signatured_type (die, signature, cu);
18990 }
18991 else
18992 {
18993 complaint (&symfile_complaints,
18994 _("Dwarf Error: Bad type attribute %s in DIE"
18995 " at 0x%x [in module %s]"),
18996 dwarf_attr_name (attr->name), die->offset.sect_off,
18997 objfile_name (objfile));
18998 return build_error_marker_type (cu, die);
18999 }
19000
19001 /* If not cached we need to read it in. */
19002
19003 if (this_type == NULL)
19004 {
19005 struct die_info *type_die = NULL;
19006 struct dwarf2_cu *type_cu = cu;
19007
19008 if (attr_form_is_ref (attr))
19009 type_die = follow_die_ref (die, attr, &type_cu);
19010 if (type_die == NULL)
19011 return build_error_marker_type (cu, die);
19012 /* If we find the type now, it's probably because the type came
19013 from an inter-CU reference and the type's CU got expanded before
19014 ours. */
19015 this_type = read_type_die (type_die, type_cu);
19016 }
19017
19018 /* If we still don't have a type use an error marker. */
19019
19020 if (this_type == NULL)
19021 return build_error_marker_type (cu, die);
19022
19023 return this_type;
19024 }
19025
19026 /* Return the type in DIE, CU.
19027 Returns NULL for invalid types.
19028
19029 This first does a lookup in die_type_hash,
19030 and only reads the die in if necessary.
19031
19032 NOTE: This can be called when reading in partial or full symbols. */
19033
19034 static struct type *
19035 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19036 {
19037 struct type *this_type;
19038
19039 this_type = get_die_type (die, cu);
19040 if (this_type)
19041 return this_type;
19042
19043 return read_type_die_1 (die, cu);
19044 }
19045
19046 /* Read the type in DIE, CU.
19047 Returns NULL for invalid types. */
19048
19049 static struct type *
19050 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19051 {
19052 struct type *this_type = NULL;
19053
19054 switch (die->tag)
19055 {
19056 case DW_TAG_class_type:
19057 case DW_TAG_interface_type:
19058 case DW_TAG_structure_type:
19059 case DW_TAG_union_type:
19060 this_type = read_structure_type (die, cu);
19061 break;
19062 case DW_TAG_enumeration_type:
19063 this_type = read_enumeration_type (die, cu);
19064 break;
19065 case DW_TAG_subprogram:
19066 case DW_TAG_subroutine_type:
19067 case DW_TAG_inlined_subroutine:
19068 this_type = read_subroutine_type (die, cu);
19069 break;
19070 case DW_TAG_array_type:
19071 this_type = read_array_type (die, cu);
19072 break;
19073 case DW_TAG_set_type:
19074 this_type = read_set_type (die, cu);
19075 break;
19076 case DW_TAG_pointer_type:
19077 this_type = read_tag_pointer_type (die, cu);
19078 break;
19079 case DW_TAG_ptr_to_member_type:
19080 this_type = read_tag_ptr_to_member_type (die, cu);
19081 break;
19082 case DW_TAG_reference_type:
19083 this_type = read_tag_reference_type (die, cu);
19084 break;
19085 case DW_TAG_const_type:
19086 this_type = read_tag_const_type (die, cu);
19087 break;
19088 case DW_TAG_volatile_type:
19089 this_type = read_tag_volatile_type (die, cu);
19090 break;
19091 case DW_TAG_restrict_type:
19092 this_type = read_tag_restrict_type (die, cu);
19093 break;
19094 case DW_TAG_string_type:
19095 this_type = read_tag_string_type (die, cu);
19096 break;
19097 case DW_TAG_typedef:
19098 this_type = read_typedef (die, cu);
19099 break;
19100 case DW_TAG_subrange_type:
19101 this_type = read_subrange_type (die, cu);
19102 break;
19103 case DW_TAG_base_type:
19104 this_type = read_base_type (die, cu);
19105 break;
19106 case DW_TAG_unspecified_type:
19107 this_type = read_unspecified_type (die, cu);
19108 break;
19109 case DW_TAG_namespace:
19110 this_type = read_namespace_type (die, cu);
19111 break;
19112 case DW_TAG_module:
19113 this_type = read_module_type (die, cu);
19114 break;
19115 case DW_TAG_atomic_type:
19116 this_type = read_tag_atomic_type (die, cu);
19117 break;
19118 default:
19119 complaint (&symfile_complaints,
19120 _("unexpected tag in read_type_die: '%s'"),
19121 dwarf_tag_name (die->tag));
19122 break;
19123 }
19124
19125 return this_type;
19126 }
19127
19128 /* See if we can figure out if the class lives in a namespace. We do
19129 this by looking for a member function; its demangled name will
19130 contain namespace info, if there is any.
19131 Return the computed name or NULL.
19132 Space for the result is allocated on the objfile's obstack.
19133 This is the full-die version of guess_partial_die_structure_name.
19134 In this case we know DIE has no useful parent. */
19135
19136 static char *
19137 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19138 {
19139 struct die_info *spec_die;
19140 struct dwarf2_cu *spec_cu;
19141 struct die_info *child;
19142
19143 spec_cu = cu;
19144 spec_die = die_specification (die, &spec_cu);
19145 if (spec_die != NULL)
19146 {
19147 die = spec_die;
19148 cu = spec_cu;
19149 }
19150
19151 for (child = die->child;
19152 child != NULL;
19153 child = child->sibling)
19154 {
19155 if (child->tag == DW_TAG_subprogram)
19156 {
19157 struct attribute *attr;
19158
19159 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
19160 if (attr == NULL)
19161 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19162 if (attr != NULL)
19163 {
19164 char *actual_name
19165 = language_class_name_from_physname (cu->language_defn,
19166 DW_STRING (attr));
19167 char *name = NULL;
19168
19169 if (actual_name != NULL)
19170 {
19171 const char *die_name = dwarf2_name (die, cu);
19172
19173 if (die_name != NULL
19174 && strcmp (die_name, actual_name) != 0)
19175 {
19176 /* Strip off the class name from the full name.
19177 We want the prefix. */
19178 int die_name_len = strlen (die_name);
19179 int actual_name_len = strlen (actual_name);
19180
19181 /* Test for '::' as a sanity check. */
19182 if (actual_name_len > die_name_len + 2
19183 && actual_name[actual_name_len
19184 - die_name_len - 1] == ':')
19185 name =
19186 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19187 actual_name,
19188 actual_name_len - die_name_len - 2);
19189 }
19190 }
19191 xfree (actual_name);
19192 return name;
19193 }
19194 }
19195 }
19196
19197 return NULL;
19198 }
19199
19200 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19201 prefix part in such case. See
19202 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19203
19204 static char *
19205 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19206 {
19207 struct attribute *attr;
19208 char *base;
19209
19210 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19211 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19212 return NULL;
19213
19214 attr = dwarf2_attr (die, DW_AT_name, cu);
19215 if (attr != NULL && DW_STRING (attr) != NULL)
19216 return NULL;
19217
19218 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19219 if (attr == NULL)
19220 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19221 if (attr == NULL || DW_STRING (attr) == NULL)
19222 return NULL;
19223
19224 /* dwarf2_name had to be already called. */
19225 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19226
19227 /* Strip the base name, keep any leading namespaces/classes. */
19228 base = strrchr (DW_STRING (attr), ':');
19229 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19230 return "";
19231
19232 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19233 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19234 }
19235
19236 /* Return the name of the namespace/class that DIE is defined within,
19237 or "" if we can't tell. The caller should not xfree the result.
19238
19239 For example, if we're within the method foo() in the following
19240 code:
19241
19242 namespace N {
19243 class C {
19244 void foo () {
19245 }
19246 };
19247 }
19248
19249 then determine_prefix on foo's die will return "N::C". */
19250
19251 static const char *
19252 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19253 {
19254 struct die_info *parent, *spec_die;
19255 struct dwarf2_cu *spec_cu;
19256 struct type *parent_type;
19257 char *retval;
19258
19259 if (cu->language != language_cplus && cu->language != language_java
19260 && cu->language != language_fortran && cu->language != language_d)
19261 return "";
19262
19263 retval = anonymous_struct_prefix (die, cu);
19264 if (retval)
19265 return retval;
19266
19267 /* We have to be careful in the presence of DW_AT_specification.
19268 For example, with GCC 3.4, given the code
19269
19270 namespace N {
19271 void foo() {
19272 // Definition of N::foo.
19273 }
19274 }
19275
19276 then we'll have a tree of DIEs like this:
19277
19278 1: DW_TAG_compile_unit
19279 2: DW_TAG_namespace // N
19280 3: DW_TAG_subprogram // declaration of N::foo
19281 4: DW_TAG_subprogram // definition of N::foo
19282 DW_AT_specification // refers to die #3
19283
19284 Thus, when processing die #4, we have to pretend that we're in
19285 the context of its DW_AT_specification, namely the contex of die
19286 #3. */
19287 spec_cu = cu;
19288 spec_die = die_specification (die, &spec_cu);
19289 if (spec_die == NULL)
19290 parent = die->parent;
19291 else
19292 {
19293 parent = spec_die->parent;
19294 cu = spec_cu;
19295 }
19296
19297 if (parent == NULL)
19298 return "";
19299 else if (parent->building_fullname)
19300 {
19301 const char *name;
19302 const char *parent_name;
19303
19304 /* It has been seen on RealView 2.2 built binaries,
19305 DW_TAG_template_type_param types actually _defined_ as
19306 children of the parent class:
19307
19308 enum E {};
19309 template class <class Enum> Class{};
19310 Class<enum E> class_e;
19311
19312 1: DW_TAG_class_type (Class)
19313 2: DW_TAG_enumeration_type (E)
19314 3: DW_TAG_enumerator (enum1:0)
19315 3: DW_TAG_enumerator (enum2:1)
19316 ...
19317 2: DW_TAG_template_type_param
19318 DW_AT_type DW_FORM_ref_udata (E)
19319
19320 Besides being broken debug info, it can put GDB into an
19321 infinite loop. Consider:
19322
19323 When we're building the full name for Class<E>, we'll start
19324 at Class, and go look over its template type parameters,
19325 finding E. We'll then try to build the full name of E, and
19326 reach here. We're now trying to build the full name of E,
19327 and look over the parent DIE for containing scope. In the
19328 broken case, if we followed the parent DIE of E, we'd again
19329 find Class, and once again go look at its template type
19330 arguments, etc., etc. Simply don't consider such parent die
19331 as source-level parent of this die (it can't be, the language
19332 doesn't allow it), and break the loop here. */
19333 name = dwarf2_name (die, cu);
19334 parent_name = dwarf2_name (parent, cu);
19335 complaint (&symfile_complaints,
19336 _("template param type '%s' defined within parent '%s'"),
19337 name ? name : "<unknown>",
19338 parent_name ? parent_name : "<unknown>");
19339 return "";
19340 }
19341 else
19342 switch (parent->tag)
19343 {
19344 case DW_TAG_namespace:
19345 parent_type = read_type_die (parent, cu);
19346 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19347 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19348 Work around this problem here. */
19349 if (cu->language == language_cplus
19350 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19351 return "";
19352 /* We give a name to even anonymous namespaces. */
19353 return TYPE_TAG_NAME (parent_type);
19354 case DW_TAG_class_type:
19355 case DW_TAG_interface_type:
19356 case DW_TAG_structure_type:
19357 case DW_TAG_union_type:
19358 case DW_TAG_module:
19359 parent_type = read_type_die (parent, cu);
19360 if (TYPE_TAG_NAME (parent_type) != NULL)
19361 return TYPE_TAG_NAME (parent_type);
19362 else
19363 /* An anonymous structure is only allowed non-static data
19364 members; no typedefs, no member functions, et cetera.
19365 So it does not need a prefix. */
19366 return "";
19367 case DW_TAG_compile_unit:
19368 case DW_TAG_partial_unit:
19369 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19370 if (cu->language == language_cplus
19371 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19372 && die->child != NULL
19373 && (die->tag == DW_TAG_class_type
19374 || die->tag == DW_TAG_structure_type
19375 || die->tag == DW_TAG_union_type))
19376 {
19377 char *name = guess_full_die_structure_name (die, cu);
19378 if (name != NULL)
19379 return name;
19380 }
19381 return "";
19382 case DW_TAG_enumeration_type:
19383 parent_type = read_type_die (parent, cu);
19384 if (TYPE_DECLARED_CLASS (parent_type))
19385 {
19386 if (TYPE_TAG_NAME (parent_type) != NULL)
19387 return TYPE_TAG_NAME (parent_type);
19388 return "";
19389 }
19390 /* Fall through. */
19391 default:
19392 return determine_prefix (parent, cu);
19393 }
19394 }
19395
19396 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19397 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19398 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19399 an obconcat, otherwise allocate storage for the result. The CU argument is
19400 used to determine the language and hence, the appropriate separator. */
19401
19402 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19403
19404 static char *
19405 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19406 int physname, struct dwarf2_cu *cu)
19407 {
19408 const char *lead = "";
19409 const char *sep;
19410
19411 if (suffix == NULL || suffix[0] == '\0'
19412 || prefix == NULL || prefix[0] == '\0')
19413 sep = "";
19414 else if (cu->language == language_java)
19415 sep = ".";
19416 else if (cu->language == language_d)
19417 {
19418 /* For D, the 'main' function could be defined in any module, but it
19419 should never be prefixed. */
19420 if (strcmp (suffix, "D main") == 0)
19421 {
19422 prefix = "";
19423 sep = "";
19424 }
19425 else
19426 sep = ".";
19427 }
19428 else if (cu->language == language_fortran && physname)
19429 {
19430 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19431 DW_AT_MIPS_linkage_name is preferred and used instead. */
19432
19433 lead = "__";
19434 sep = "_MOD_";
19435 }
19436 else
19437 sep = "::";
19438
19439 if (prefix == NULL)
19440 prefix = "";
19441 if (suffix == NULL)
19442 suffix = "";
19443
19444 if (obs == NULL)
19445 {
19446 char *retval
19447 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19448
19449 strcpy (retval, lead);
19450 strcat (retval, prefix);
19451 strcat (retval, sep);
19452 strcat (retval, suffix);
19453 return retval;
19454 }
19455 else
19456 {
19457 /* We have an obstack. */
19458 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19459 }
19460 }
19461
19462 /* Return sibling of die, NULL if no sibling. */
19463
19464 static struct die_info *
19465 sibling_die (struct die_info *die)
19466 {
19467 return die->sibling;
19468 }
19469
19470 /* Get name of a die, return NULL if not found. */
19471
19472 static const char *
19473 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19474 struct obstack *obstack)
19475 {
19476 if (name && cu->language == language_cplus)
19477 {
19478 char *canon_name = cp_canonicalize_string (name);
19479
19480 if (canon_name != NULL)
19481 {
19482 if (strcmp (canon_name, name) != 0)
19483 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19484 xfree (canon_name);
19485 }
19486 }
19487
19488 return name;
19489 }
19490
19491 /* Get name of a die, return NULL if not found.
19492 Anonymous namespaces are converted to their magic string. */
19493
19494 static const char *
19495 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19496 {
19497 struct attribute *attr;
19498
19499 attr = dwarf2_attr (die, DW_AT_name, cu);
19500 if ((!attr || !DW_STRING (attr))
19501 && die->tag != DW_TAG_namespace
19502 && die->tag != DW_TAG_class_type
19503 && die->tag != DW_TAG_interface_type
19504 && die->tag != DW_TAG_structure_type
19505 && die->tag != DW_TAG_union_type)
19506 return NULL;
19507
19508 switch (die->tag)
19509 {
19510 case DW_TAG_compile_unit:
19511 case DW_TAG_partial_unit:
19512 /* Compilation units have a DW_AT_name that is a filename, not
19513 a source language identifier. */
19514 case DW_TAG_enumeration_type:
19515 case DW_TAG_enumerator:
19516 /* These tags always have simple identifiers already; no need
19517 to canonicalize them. */
19518 return DW_STRING (attr);
19519
19520 case DW_TAG_namespace:
19521 if (attr != NULL && DW_STRING (attr) != NULL)
19522 return DW_STRING (attr);
19523 return CP_ANONYMOUS_NAMESPACE_STR;
19524
19525 case DW_TAG_subprogram:
19526 /* Java constructors will all be named "<init>", so return
19527 the class name when we see this special case. */
19528 if (cu->language == language_java
19529 && DW_STRING (attr) != NULL
19530 && strcmp (DW_STRING (attr), "<init>") == 0)
19531 {
19532 struct dwarf2_cu *spec_cu = cu;
19533 struct die_info *spec_die;
19534
19535 /* GCJ will output '<init>' for Java constructor names.
19536 For this special case, return the name of the parent class. */
19537
19538 /* GCJ may output subprogram DIEs with AT_specification set.
19539 If so, use the name of the specified DIE. */
19540 spec_die = die_specification (die, &spec_cu);
19541 if (spec_die != NULL)
19542 return dwarf2_name (spec_die, spec_cu);
19543
19544 do
19545 {
19546 die = die->parent;
19547 if (die->tag == DW_TAG_class_type)
19548 return dwarf2_name (die, cu);
19549 }
19550 while (die->tag != DW_TAG_compile_unit
19551 && die->tag != DW_TAG_partial_unit);
19552 }
19553 break;
19554
19555 case DW_TAG_class_type:
19556 case DW_TAG_interface_type:
19557 case DW_TAG_structure_type:
19558 case DW_TAG_union_type:
19559 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19560 structures or unions. These were of the form "._%d" in GCC 4.1,
19561 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19562 and GCC 4.4. We work around this problem by ignoring these. */
19563 if (attr && DW_STRING (attr)
19564 && (startswith (DW_STRING (attr), "._")
19565 || startswith (DW_STRING (attr), "<anonymous")))
19566 return NULL;
19567
19568 /* GCC might emit a nameless typedef that has a linkage name. See
19569 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19570 if (!attr || DW_STRING (attr) == NULL)
19571 {
19572 char *demangled = NULL;
19573
19574 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19575 if (attr == NULL)
19576 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19577
19578 if (attr == NULL || DW_STRING (attr) == NULL)
19579 return NULL;
19580
19581 /* Avoid demangling DW_STRING (attr) the second time on a second
19582 call for the same DIE. */
19583 if (!DW_STRING_IS_CANONICAL (attr))
19584 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19585
19586 if (demangled)
19587 {
19588 char *base;
19589
19590 /* FIXME: we already did this for the partial symbol... */
19591 DW_STRING (attr)
19592 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19593 demangled, strlen (demangled));
19594 DW_STRING_IS_CANONICAL (attr) = 1;
19595 xfree (demangled);
19596
19597 /* Strip any leading namespaces/classes, keep only the base name.
19598 DW_AT_name for named DIEs does not contain the prefixes. */
19599 base = strrchr (DW_STRING (attr), ':');
19600 if (base && base > DW_STRING (attr) && base[-1] == ':')
19601 return &base[1];
19602 else
19603 return DW_STRING (attr);
19604 }
19605 }
19606 break;
19607
19608 default:
19609 break;
19610 }
19611
19612 if (!DW_STRING_IS_CANONICAL (attr))
19613 {
19614 DW_STRING (attr)
19615 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19616 &cu->objfile->per_bfd->storage_obstack);
19617 DW_STRING_IS_CANONICAL (attr) = 1;
19618 }
19619 return DW_STRING (attr);
19620 }
19621
19622 /* Return the die that this die in an extension of, or NULL if there
19623 is none. *EXT_CU is the CU containing DIE on input, and the CU
19624 containing the return value on output. */
19625
19626 static struct die_info *
19627 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19628 {
19629 struct attribute *attr;
19630
19631 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19632 if (attr == NULL)
19633 return NULL;
19634
19635 return follow_die_ref (die, attr, ext_cu);
19636 }
19637
19638 /* Convert a DIE tag into its string name. */
19639
19640 static const char *
19641 dwarf_tag_name (unsigned tag)
19642 {
19643 const char *name = get_DW_TAG_name (tag);
19644
19645 if (name == NULL)
19646 return "DW_TAG_<unknown>";
19647
19648 return name;
19649 }
19650
19651 /* Convert a DWARF attribute code into its string name. */
19652
19653 static const char *
19654 dwarf_attr_name (unsigned attr)
19655 {
19656 const char *name;
19657
19658 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19659 if (attr == DW_AT_MIPS_fde)
19660 return "DW_AT_MIPS_fde";
19661 #else
19662 if (attr == DW_AT_HP_block_index)
19663 return "DW_AT_HP_block_index";
19664 #endif
19665
19666 name = get_DW_AT_name (attr);
19667
19668 if (name == NULL)
19669 return "DW_AT_<unknown>";
19670
19671 return name;
19672 }
19673
19674 /* Convert a DWARF value form code into its string name. */
19675
19676 static const char *
19677 dwarf_form_name (unsigned form)
19678 {
19679 const char *name = get_DW_FORM_name (form);
19680
19681 if (name == NULL)
19682 return "DW_FORM_<unknown>";
19683
19684 return name;
19685 }
19686
19687 static char *
19688 dwarf_bool_name (unsigned mybool)
19689 {
19690 if (mybool)
19691 return "TRUE";
19692 else
19693 return "FALSE";
19694 }
19695
19696 /* Convert a DWARF type code into its string name. */
19697
19698 static const char *
19699 dwarf_type_encoding_name (unsigned enc)
19700 {
19701 const char *name = get_DW_ATE_name (enc);
19702
19703 if (name == NULL)
19704 return "DW_ATE_<unknown>";
19705
19706 return name;
19707 }
19708
19709 static void
19710 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19711 {
19712 unsigned int i;
19713
19714 print_spaces (indent, f);
19715 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19716 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19717
19718 if (die->parent != NULL)
19719 {
19720 print_spaces (indent, f);
19721 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19722 die->parent->offset.sect_off);
19723 }
19724
19725 print_spaces (indent, f);
19726 fprintf_unfiltered (f, " has children: %s\n",
19727 dwarf_bool_name (die->child != NULL));
19728
19729 print_spaces (indent, f);
19730 fprintf_unfiltered (f, " attributes:\n");
19731
19732 for (i = 0; i < die->num_attrs; ++i)
19733 {
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, " %s (%s) ",
19736 dwarf_attr_name (die->attrs[i].name),
19737 dwarf_form_name (die->attrs[i].form));
19738
19739 switch (die->attrs[i].form)
19740 {
19741 case DW_FORM_addr:
19742 case DW_FORM_GNU_addr_index:
19743 fprintf_unfiltered (f, "address: ");
19744 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19745 break;
19746 case DW_FORM_block2:
19747 case DW_FORM_block4:
19748 case DW_FORM_block:
19749 case DW_FORM_block1:
19750 fprintf_unfiltered (f, "block: size %s",
19751 pulongest (DW_BLOCK (&die->attrs[i])->size));
19752 break;
19753 case DW_FORM_exprloc:
19754 fprintf_unfiltered (f, "expression: size %s",
19755 pulongest (DW_BLOCK (&die->attrs[i])->size));
19756 break;
19757 case DW_FORM_ref_addr:
19758 fprintf_unfiltered (f, "ref address: ");
19759 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19760 break;
19761 case DW_FORM_GNU_ref_alt:
19762 fprintf_unfiltered (f, "alt ref address: ");
19763 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19764 break;
19765 case DW_FORM_ref1:
19766 case DW_FORM_ref2:
19767 case DW_FORM_ref4:
19768 case DW_FORM_ref8:
19769 case DW_FORM_ref_udata:
19770 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19771 (long) (DW_UNSND (&die->attrs[i])));
19772 break;
19773 case DW_FORM_data1:
19774 case DW_FORM_data2:
19775 case DW_FORM_data4:
19776 case DW_FORM_data8:
19777 case DW_FORM_udata:
19778 case DW_FORM_sdata:
19779 fprintf_unfiltered (f, "constant: %s",
19780 pulongest (DW_UNSND (&die->attrs[i])));
19781 break;
19782 case DW_FORM_sec_offset:
19783 fprintf_unfiltered (f, "section offset: %s",
19784 pulongest (DW_UNSND (&die->attrs[i])));
19785 break;
19786 case DW_FORM_ref_sig8:
19787 fprintf_unfiltered (f, "signature: %s",
19788 hex_string (DW_SIGNATURE (&die->attrs[i])));
19789 break;
19790 case DW_FORM_string:
19791 case DW_FORM_strp:
19792 case DW_FORM_GNU_str_index:
19793 case DW_FORM_GNU_strp_alt:
19794 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19795 DW_STRING (&die->attrs[i])
19796 ? DW_STRING (&die->attrs[i]) : "",
19797 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19798 break;
19799 case DW_FORM_flag:
19800 if (DW_UNSND (&die->attrs[i]))
19801 fprintf_unfiltered (f, "flag: TRUE");
19802 else
19803 fprintf_unfiltered (f, "flag: FALSE");
19804 break;
19805 case DW_FORM_flag_present:
19806 fprintf_unfiltered (f, "flag: TRUE");
19807 break;
19808 case DW_FORM_indirect:
19809 /* The reader will have reduced the indirect form to
19810 the "base form" so this form should not occur. */
19811 fprintf_unfiltered (f,
19812 "unexpected attribute form: DW_FORM_indirect");
19813 break;
19814 default:
19815 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19816 die->attrs[i].form);
19817 break;
19818 }
19819 fprintf_unfiltered (f, "\n");
19820 }
19821 }
19822
19823 static void
19824 dump_die_for_error (struct die_info *die)
19825 {
19826 dump_die_shallow (gdb_stderr, 0, die);
19827 }
19828
19829 static void
19830 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19831 {
19832 int indent = level * 4;
19833
19834 gdb_assert (die != NULL);
19835
19836 if (level >= max_level)
19837 return;
19838
19839 dump_die_shallow (f, indent, die);
19840
19841 if (die->child != NULL)
19842 {
19843 print_spaces (indent, f);
19844 fprintf_unfiltered (f, " Children:");
19845 if (level + 1 < max_level)
19846 {
19847 fprintf_unfiltered (f, "\n");
19848 dump_die_1 (f, level + 1, max_level, die->child);
19849 }
19850 else
19851 {
19852 fprintf_unfiltered (f,
19853 " [not printed, max nesting level reached]\n");
19854 }
19855 }
19856
19857 if (die->sibling != NULL && level > 0)
19858 {
19859 dump_die_1 (f, level, max_level, die->sibling);
19860 }
19861 }
19862
19863 /* This is called from the pdie macro in gdbinit.in.
19864 It's not static so gcc will keep a copy callable from gdb. */
19865
19866 void
19867 dump_die (struct die_info *die, int max_level)
19868 {
19869 dump_die_1 (gdb_stdlog, 0, max_level, die);
19870 }
19871
19872 static void
19873 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19874 {
19875 void **slot;
19876
19877 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19878 INSERT);
19879
19880 *slot = die;
19881 }
19882
19883 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19884 required kind. */
19885
19886 static sect_offset
19887 dwarf2_get_ref_die_offset (const struct attribute *attr)
19888 {
19889 sect_offset retval = { DW_UNSND (attr) };
19890
19891 if (attr_form_is_ref (attr))
19892 return retval;
19893
19894 retval.sect_off = 0;
19895 complaint (&symfile_complaints,
19896 _("unsupported die ref attribute form: '%s'"),
19897 dwarf_form_name (attr->form));
19898 return retval;
19899 }
19900
19901 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19902 * the value held by the attribute is not constant. */
19903
19904 static LONGEST
19905 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19906 {
19907 if (attr->form == DW_FORM_sdata)
19908 return DW_SND (attr);
19909 else if (attr->form == DW_FORM_udata
19910 || attr->form == DW_FORM_data1
19911 || attr->form == DW_FORM_data2
19912 || attr->form == DW_FORM_data4
19913 || attr->form == DW_FORM_data8)
19914 return DW_UNSND (attr);
19915 else
19916 {
19917 complaint (&symfile_complaints,
19918 _("Attribute value is not a constant (%s)"),
19919 dwarf_form_name (attr->form));
19920 return default_value;
19921 }
19922 }
19923
19924 /* Follow reference or signature attribute ATTR of SRC_DIE.
19925 On entry *REF_CU is the CU of SRC_DIE.
19926 On exit *REF_CU is the CU of the result. */
19927
19928 static struct die_info *
19929 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19930 struct dwarf2_cu **ref_cu)
19931 {
19932 struct die_info *die;
19933
19934 if (attr_form_is_ref (attr))
19935 die = follow_die_ref (src_die, attr, ref_cu);
19936 else if (attr->form == DW_FORM_ref_sig8)
19937 die = follow_die_sig (src_die, attr, ref_cu);
19938 else
19939 {
19940 dump_die_for_error (src_die);
19941 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19942 objfile_name ((*ref_cu)->objfile));
19943 }
19944
19945 return die;
19946 }
19947
19948 /* Follow reference OFFSET.
19949 On entry *REF_CU is the CU of the source die referencing OFFSET.
19950 On exit *REF_CU is the CU of the result.
19951 Returns NULL if OFFSET is invalid. */
19952
19953 static struct die_info *
19954 follow_die_offset (sect_offset offset, int offset_in_dwz,
19955 struct dwarf2_cu **ref_cu)
19956 {
19957 struct die_info temp_die;
19958 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19959
19960 gdb_assert (cu->per_cu != NULL);
19961
19962 target_cu = cu;
19963
19964 if (cu->per_cu->is_debug_types)
19965 {
19966 /* .debug_types CUs cannot reference anything outside their CU.
19967 If they need to, they have to reference a signatured type via
19968 DW_FORM_ref_sig8. */
19969 if (! offset_in_cu_p (&cu->header, offset))
19970 return NULL;
19971 }
19972 else if (offset_in_dwz != cu->per_cu->is_dwz
19973 || ! offset_in_cu_p (&cu->header, offset))
19974 {
19975 struct dwarf2_per_cu_data *per_cu;
19976
19977 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19978 cu->objfile);
19979
19980 /* If necessary, add it to the queue and load its DIEs. */
19981 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19982 load_full_comp_unit (per_cu, cu->language);
19983
19984 target_cu = per_cu->cu;
19985 }
19986 else if (cu->dies == NULL)
19987 {
19988 /* We're loading full DIEs during partial symbol reading. */
19989 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19990 load_full_comp_unit (cu->per_cu, language_minimal);
19991 }
19992
19993 *ref_cu = target_cu;
19994 temp_die.offset = offset;
19995 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19996 }
19997
19998 /* Follow reference attribute ATTR of SRC_DIE.
19999 On entry *REF_CU is the CU of SRC_DIE.
20000 On exit *REF_CU is the CU of the result. */
20001
20002 static struct die_info *
20003 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20004 struct dwarf2_cu **ref_cu)
20005 {
20006 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20007 struct dwarf2_cu *cu = *ref_cu;
20008 struct die_info *die;
20009
20010 die = follow_die_offset (offset,
20011 (attr->form == DW_FORM_GNU_ref_alt
20012 || cu->per_cu->is_dwz),
20013 ref_cu);
20014 if (!die)
20015 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20016 "at 0x%x [in module %s]"),
20017 offset.sect_off, src_die->offset.sect_off,
20018 objfile_name (cu->objfile));
20019
20020 return die;
20021 }
20022
20023 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20024 Returned value is intended for DW_OP_call*. Returned
20025 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20026
20027 struct dwarf2_locexpr_baton
20028 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20029 struct dwarf2_per_cu_data *per_cu,
20030 CORE_ADDR (*get_frame_pc) (void *baton),
20031 void *baton)
20032 {
20033 struct dwarf2_cu *cu;
20034 struct die_info *die;
20035 struct attribute *attr;
20036 struct dwarf2_locexpr_baton retval;
20037
20038 dw2_setup (per_cu->objfile);
20039
20040 if (per_cu->cu == NULL)
20041 load_cu (per_cu);
20042 cu = per_cu->cu;
20043 if (cu == NULL)
20044 {
20045 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20046 Instead just throw an error, not much else we can do. */
20047 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20048 offset.sect_off, objfile_name (per_cu->objfile));
20049 }
20050
20051 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20052 if (!die)
20053 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20054 offset.sect_off, objfile_name (per_cu->objfile));
20055
20056 attr = dwarf2_attr (die, DW_AT_location, cu);
20057 if (!attr)
20058 {
20059 /* DWARF: "If there is no such attribute, then there is no effect.".
20060 DATA is ignored if SIZE is 0. */
20061
20062 retval.data = NULL;
20063 retval.size = 0;
20064 }
20065 else if (attr_form_is_section_offset (attr))
20066 {
20067 struct dwarf2_loclist_baton loclist_baton;
20068 CORE_ADDR pc = (*get_frame_pc) (baton);
20069 size_t size;
20070
20071 fill_in_loclist_baton (cu, &loclist_baton, attr);
20072
20073 retval.data = dwarf2_find_location_expression (&loclist_baton,
20074 &size, pc);
20075 retval.size = size;
20076 }
20077 else
20078 {
20079 if (!attr_form_is_block (attr))
20080 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20081 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20082 offset.sect_off, objfile_name (per_cu->objfile));
20083
20084 retval.data = DW_BLOCK (attr)->data;
20085 retval.size = DW_BLOCK (attr)->size;
20086 }
20087 retval.per_cu = cu->per_cu;
20088
20089 age_cached_comp_units ();
20090
20091 return retval;
20092 }
20093
20094 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20095 offset. */
20096
20097 struct dwarf2_locexpr_baton
20098 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20099 struct dwarf2_per_cu_data *per_cu,
20100 CORE_ADDR (*get_frame_pc) (void *baton),
20101 void *baton)
20102 {
20103 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20104
20105 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20106 }
20107
20108 /* Write a constant of a given type as target-ordered bytes into
20109 OBSTACK. */
20110
20111 static const gdb_byte *
20112 write_constant_as_bytes (struct obstack *obstack,
20113 enum bfd_endian byte_order,
20114 struct type *type,
20115 ULONGEST value,
20116 LONGEST *len)
20117 {
20118 gdb_byte *result;
20119
20120 *len = TYPE_LENGTH (type);
20121 result = obstack_alloc (obstack, *len);
20122 store_unsigned_integer (result, *len, byte_order, value);
20123
20124 return result;
20125 }
20126
20127 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20128 pointer to the constant bytes and set LEN to the length of the
20129 data. If memory is needed, allocate it on OBSTACK. If the DIE
20130 does not have a DW_AT_const_value, return NULL. */
20131
20132 const gdb_byte *
20133 dwarf2_fetch_constant_bytes (sect_offset offset,
20134 struct dwarf2_per_cu_data *per_cu,
20135 struct obstack *obstack,
20136 LONGEST *len)
20137 {
20138 struct dwarf2_cu *cu;
20139 struct die_info *die;
20140 struct attribute *attr;
20141 const gdb_byte *result = NULL;
20142 struct type *type;
20143 LONGEST value;
20144 enum bfd_endian byte_order;
20145
20146 dw2_setup (per_cu->objfile);
20147
20148 if (per_cu->cu == NULL)
20149 load_cu (per_cu);
20150 cu = per_cu->cu;
20151 if (cu == NULL)
20152 {
20153 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20154 Instead just throw an error, not much else we can do. */
20155 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20156 offset.sect_off, objfile_name (per_cu->objfile));
20157 }
20158
20159 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20160 if (!die)
20161 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20162 offset.sect_off, objfile_name (per_cu->objfile));
20163
20164
20165 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20166 if (attr == NULL)
20167 return NULL;
20168
20169 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20170 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20171
20172 switch (attr->form)
20173 {
20174 case DW_FORM_addr:
20175 case DW_FORM_GNU_addr_index:
20176 {
20177 gdb_byte *tem;
20178
20179 *len = cu->header.addr_size;
20180 tem = obstack_alloc (obstack, *len);
20181 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20182 result = tem;
20183 }
20184 break;
20185 case DW_FORM_string:
20186 case DW_FORM_strp:
20187 case DW_FORM_GNU_str_index:
20188 case DW_FORM_GNU_strp_alt:
20189 /* DW_STRING is already allocated on the objfile obstack, point
20190 directly to it. */
20191 result = (const gdb_byte *) DW_STRING (attr);
20192 *len = strlen (DW_STRING (attr));
20193 break;
20194 case DW_FORM_block1:
20195 case DW_FORM_block2:
20196 case DW_FORM_block4:
20197 case DW_FORM_block:
20198 case DW_FORM_exprloc:
20199 result = DW_BLOCK (attr)->data;
20200 *len = DW_BLOCK (attr)->size;
20201 break;
20202
20203 /* The DW_AT_const_value attributes are supposed to carry the
20204 symbol's value "represented as it would be on the target
20205 architecture." By the time we get here, it's already been
20206 converted to host endianness, so we just need to sign- or
20207 zero-extend it as appropriate. */
20208 case DW_FORM_data1:
20209 type = die_type (die, cu);
20210 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20211 if (result == NULL)
20212 result = write_constant_as_bytes (obstack, byte_order,
20213 type, value, len);
20214 break;
20215 case DW_FORM_data2:
20216 type = die_type (die, cu);
20217 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20218 if (result == NULL)
20219 result = write_constant_as_bytes (obstack, byte_order,
20220 type, value, len);
20221 break;
20222 case DW_FORM_data4:
20223 type = die_type (die, cu);
20224 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20225 if (result == NULL)
20226 result = write_constant_as_bytes (obstack, byte_order,
20227 type, value, len);
20228 break;
20229 case DW_FORM_data8:
20230 type = die_type (die, cu);
20231 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20232 if (result == NULL)
20233 result = write_constant_as_bytes (obstack, byte_order,
20234 type, value, len);
20235 break;
20236
20237 case DW_FORM_sdata:
20238 type = die_type (die, cu);
20239 result = write_constant_as_bytes (obstack, byte_order,
20240 type, DW_SND (attr), len);
20241 break;
20242
20243 case DW_FORM_udata:
20244 type = die_type (die, cu);
20245 result = write_constant_as_bytes (obstack, byte_order,
20246 type, DW_UNSND (attr), len);
20247 break;
20248
20249 default:
20250 complaint (&symfile_complaints,
20251 _("unsupported const value attribute form: '%s'"),
20252 dwarf_form_name (attr->form));
20253 break;
20254 }
20255
20256 return result;
20257 }
20258
20259 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20260 PER_CU. */
20261
20262 struct type *
20263 dwarf2_get_die_type (cu_offset die_offset,
20264 struct dwarf2_per_cu_data *per_cu)
20265 {
20266 sect_offset die_offset_sect;
20267
20268 dw2_setup (per_cu->objfile);
20269
20270 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20271 return get_die_type_at_offset (die_offset_sect, per_cu);
20272 }
20273
20274 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20275 On entry *REF_CU is the CU of SRC_DIE.
20276 On exit *REF_CU is the CU of the result.
20277 Returns NULL if the referenced DIE isn't found. */
20278
20279 static struct die_info *
20280 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20281 struct dwarf2_cu **ref_cu)
20282 {
20283 struct objfile *objfile = (*ref_cu)->objfile;
20284 struct die_info temp_die;
20285 struct dwarf2_cu *sig_cu;
20286 struct die_info *die;
20287
20288 /* While it might be nice to assert sig_type->type == NULL here,
20289 we can get here for DW_AT_imported_declaration where we need
20290 the DIE not the type. */
20291
20292 /* If necessary, add it to the queue and load its DIEs. */
20293
20294 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20295 read_signatured_type (sig_type);
20296
20297 sig_cu = sig_type->per_cu.cu;
20298 gdb_assert (sig_cu != NULL);
20299 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20300 temp_die.offset = sig_type->type_offset_in_section;
20301 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20302 temp_die.offset.sect_off);
20303 if (die)
20304 {
20305 /* For .gdb_index version 7 keep track of included TUs.
20306 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20307 if (dwarf2_per_objfile->index_table != NULL
20308 && dwarf2_per_objfile->index_table->version <= 7)
20309 {
20310 VEC_safe_push (dwarf2_per_cu_ptr,
20311 (*ref_cu)->per_cu->imported_symtabs,
20312 sig_cu->per_cu);
20313 }
20314
20315 *ref_cu = sig_cu;
20316 return die;
20317 }
20318
20319 return NULL;
20320 }
20321
20322 /* Follow signatured type referenced by ATTR in SRC_DIE.
20323 On entry *REF_CU is the CU of SRC_DIE.
20324 On exit *REF_CU is the CU of the result.
20325 The result is the DIE of the type.
20326 If the referenced type cannot be found an error is thrown. */
20327
20328 static struct die_info *
20329 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20330 struct dwarf2_cu **ref_cu)
20331 {
20332 ULONGEST signature = DW_SIGNATURE (attr);
20333 struct signatured_type *sig_type;
20334 struct die_info *die;
20335
20336 gdb_assert (attr->form == DW_FORM_ref_sig8);
20337
20338 sig_type = lookup_signatured_type (*ref_cu, signature);
20339 /* sig_type will be NULL if the signatured type is missing from
20340 the debug info. */
20341 if (sig_type == NULL)
20342 {
20343 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20344 " from DIE at 0x%x [in module %s]"),
20345 hex_string (signature), src_die->offset.sect_off,
20346 objfile_name ((*ref_cu)->objfile));
20347 }
20348
20349 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20350 if (die == NULL)
20351 {
20352 dump_die_for_error (src_die);
20353 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20354 " from DIE at 0x%x [in module %s]"),
20355 hex_string (signature), src_die->offset.sect_off,
20356 objfile_name ((*ref_cu)->objfile));
20357 }
20358
20359 return die;
20360 }
20361
20362 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20363 reading in and processing the type unit if necessary. */
20364
20365 static struct type *
20366 get_signatured_type (struct die_info *die, ULONGEST signature,
20367 struct dwarf2_cu *cu)
20368 {
20369 struct signatured_type *sig_type;
20370 struct dwarf2_cu *type_cu;
20371 struct die_info *type_die;
20372 struct type *type;
20373
20374 sig_type = lookup_signatured_type (cu, signature);
20375 /* sig_type will be NULL if the signatured type is missing from
20376 the debug info. */
20377 if (sig_type == NULL)
20378 {
20379 complaint (&symfile_complaints,
20380 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20381 " from DIE at 0x%x [in module %s]"),
20382 hex_string (signature), die->offset.sect_off,
20383 objfile_name (dwarf2_per_objfile->objfile));
20384 return build_error_marker_type (cu, die);
20385 }
20386
20387 /* If we already know the type we're done. */
20388 if (sig_type->type != NULL)
20389 return sig_type->type;
20390
20391 type_cu = cu;
20392 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20393 if (type_die != NULL)
20394 {
20395 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20396 is created. This is important, for example, because for c++ classes
20397 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20398 type = read_type_die (type_die, type_cu);
20399 if (type == NULL)
20400 {
20401 complaint (&symfile_complaints,
20402 _("Dwarf Error: Cannot build signatured type %s"
20403 " referenced from DIE at 0x%x [in module %s]"),
20404 hex_string (signature), die->offset.sect_off,
20405 objfile_name (dwarf2_per_objfile->objfile));
20406 type = build_error_marker_type (cu, die);
20407 }
20408 }
20409 else
20410 {
20411 complaint (&symfile_complaints,
20412 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20413 " from DIE at 0x%x [in module %s]"),
20414 hex_string (signature), die->offset.sect_off,
20415 objfile_name (dwarf2_per_objfile->objfile));
20416 type = build_error_marker_type (cu, die);
20417 }
20418 sig_type->type = type;
20419
20420 return type;
20421 }
20422
20423 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20424 reading in and processing the type unit if necessary. */
20425
20426 static struct type *
20427 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20428 struct dwarf2_cu *cu) /* ARI: editCase function */
20429 {
20430 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20431 if (attr_form_is_ref (attr))
20432 {
20433 struct dwarf2_cu *type_cu = cu;
20434 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20435
20436 return read_type_die (type_die, type_cu);
20437 }
20438 else if (attr->form == DW_FORM_ref_sig8)
20439 {
20440 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20441 }
20442 else
20443 {
20444 complaint (&symfile_complaints,
20445 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20446 " at 0x%x [in module %s]"),
20447 dwarf_form_name (attr->form), die->offset.sect_off,
20448 objfile_name (dwarf2_per_objfile->objfile));
20449 return build_error_marker_type (cu, die);
20450 }
20451 }
20452
20453 /* Load the DIEs associated with type unit PER_CU into memory. */
20454
20455 static void
20456 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20457 {
20458 struct signatured_type *sig_type;
20459
20460 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20461 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20462
20463 /* We have the per_cu, but we need the signatured_type.
20464 Fortunately this is an easy translation. */
20465 gdb_assert (per_cu->is_debug_types);
20466 sig_type = (struct signatured_type *) per_cu;
20467
20468 gdb_assert (per_cu->cu == NULL);
20469
20470 read_signatured_type (sig_type);
20471
20472 gdb_assert (per_cu->cu != NULL);
20473 }
20474
20475 /* die_reader_func for read_signatured_type.
20476 This is identical to load_full_comp_unit_reader,
20477 but is kept separate for now. */
20478
20479 static void
20480 read_signatured_type_reader (const struct die_reader_specs *reader,
20481 const gdb_byte *info_ptr,
20482 struct die_info *comp_unit_die,
20483 int has_children,
20484 void *data)
20485 {
20486 struct dwarf2_cu *cu = reader->cu;
20487
20488 gdb_assert (cu->die_hash == NULL);
20489 cu->die_hash =
20490 htab_create_alloc_ex (cu->header.length / 12,
20491 die_hash,
20492 die_eq,
20493 NULL,
20494 &cu->comp_unit_obstack,
20495 hashtab_obstack_allocate,
20496 dummy_obstack_deallocate);
20497
20498 if (has_children)
20499 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20500 &info_ptr, comp_unit_die);
20501 cu->dies = comp_unit_die;
20502 /* comp_unit_die is not stored in die_hash, no need. */
20503
20504 /* We try not to read any attributes in this function, because not
20505 all CUs needed for references have been loaded yet, and symbol
20506 table processing isn't initialized. But we have to set the CU language,
20507 or we won't be able to build types correctly.
20508 Similarly, if we do not read the producer, we can not apply
20509 producer-specific interpretation. */
20510 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20511 }
20512
20513 /* Read in a signatured type and build its CU and DIEs.
20514 If the type is a stub for the real type in a DWO file,
20515 read in the real type from the DWO file as well. */
20516
20517 static void
20518 read_signatured_type (struct signatured_type *sig_type)
20519 {
20520 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20521
20522 gdb_assert (per_cu->is_debug_types);
20523 gdb_assert (per_cu->cu == NULL);
20524
20525 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20526 read_signatured_type_reader, NULL);
20527 sig_type->per_cu.tu_read = 1;
20528 }
20529
20530 /* Decode simple location descriptions.
20531 Given a pointer to a dwarf block that defines a location, compute
20532 the location and return the value.
20533
20534 NOTE drow/2003-11-18: This function is called in two situations
20535 now: for the address of static or global variables (partial symbols
20536 only) and for offsets into structures which are expected to be
20537 (more or less) constant. The partial symbol case should go away,
20538 and only the constant case should remain. That will let this
20539 function complain more accurately. A few special modes are allowed
20540 without complaint for global variables (for instance, global
20541 register values and thread-local values).
20542
20543 A location description containing no operations indicates that the
20544 object is optimized out. The return value is 0 for that case.
20545 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20546 callers will only want a very basic result and this can become a
20547 complaint.
20548
20549 Note that stack[0] is unused except as a default error return. */
20550
20551 static CORE_ADDR
20552 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20553 {
20554 struct objfile *objfile = cu->objfile;
20555 size_t i;
20556 size_t size = blk->size;
20557 const gdb_byte *data = blk->data;
20558 CORE_ADDR stack[64];
20559 int stacki;
20560 unsigned int bytes_read, unsnd;
20561 gdb_byte op;
20562
20563 i = 0;
20564 stacki = 0;
20565 stack[stacki] = 0;
20566 stack[++stacki] = 0;
20567
20568 while (i < size)
20569 {
20570 op = data[i++];
20571 switch (op)
20572 {
20573 case DW_OP_lit0:
20574 case DW_OP_lit1:
20575 case DW_OP_lit2:
20576 case DW_OP_lit3:
20577 case DW_OP_lit4:
20578 case DW_OP_lit5:
20579 case DW_OP_lit6:
20580 case DW_OP_lit7:
20581 case DW_OP_lit8:
20582 case DW_OP_lit9:
20583 case DW_OP_lit10:
20584 case DW_OP_lit11:
20585 case DW_OP_lit12:
20586 case DW_OP_lit13:
20587 case DW_OP_lit14:
20588 case DW_OP_lit15:
20589 case DW_OP_lit16:
20590 case DW_OP_lit17:
20591 case DW_OP_lit18:
20592 case DW_OP_lit19:
20593 case DW_OP_lit20:
20594 case DW_OP_lit21:
20595 case DW_OP_lit22:
20596 case DW_OP_lit23:
20597 case DW_OP_lit24:
20598 case DW_OP_lit25:
20599 case DW_OP_lit26:
20600 case DW_OP_lit27:
20601 case DW_OP_lit28:
20602 case DW_OP_lit29:
20603 case DW_OP_lit30:
20604 case DW_OP_lit31:
20605 stack[++stacki] = op - DW_OP_lit0;
20606 break;
20607
20608 case DW_OP_reg0:
20609 case DW_OP_reg1:
20610 case DW_OP_reg2:
20611 case DW_OP_reg3:
20612 case DW_OP_reg4:
20613 case DW_OP_reg5:
20614 case DW_OP_reg6:
20615 case DW_OP_reg7:
20616 case DW_OP_reg8:
20617 case DW_OP_reg9:
20618 case DW_OP_reg10:
20619 case DW_OP_reg11:
20620 case DW_OP_reg12:
20621 case DW_OP_reg13:
20622 case DW_OP_reg14:
20623 case DW_OP_reg15:
20624 case DW_OP_reg16:
20625 case DW_OP_reg17:
20626 case DW_OP_reg18:
20627 case DW_OP_reg19:
20628 case DW_OP_reg20:
20629 case DW_OP_reg21:
20630 case DW_OP_reg22:
20631 case DW_OP_reg23:
20632 case DW_OP_reg24:
20633 case DW_OP_reg25:
20634 case DW_OP_reg26:
20635 case DW_OP_reg27:
20636 case DW_OP_reg28:
20637 case DW_OP_reg29:
20638 case DW_OP_reg30:
20639 case DW_OP_reg31:
20640 stack[++stacki] = op - DW_OP_reg0;
20641 if (i < size)
20642 dwarf2_complex_location_expr_complaint ();
20643 break;
20644
20645 case DW_OP_regx:
20646 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20647 i += bytes_read;
20648 stack[++stacki] = unsnd;
20649 if (i < size)
20650 dwarf2_complex_location_expr_complaint ();
20651 break;
20652
20653 case DW_OP_addr:
20654 stack[++stacki] = read_address (objfile->obfd, &data[i],
20655 cu, &bytes_read);
20656 i += bytes_read;
20657 break;
20658
20659 case DW_OP_const1u:
20660 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20661 i += 1;
20662 break;
20663
20664 case DW_OP_const1s:
20665 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20666 i += 1;
20667 break;
20668
20669 case DW_OP_const2u:
20670 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20671 i += 2;
20672 break;
20673
20674 case DW_OP_const2s:
20675 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20676 i += 2;
20677 break;
20678
20679 case DW_OP_const4u:
20680 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20681 i += 4;
20682 break;
20683
20684 case DW_OP_const4s:
20685 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20686 i += 4;
20687 break;
20688
20689 case DW_OP_const8u:
20690 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20691 i += 8;
20692 break;
20693
20694 case DW_OP_constu:
20695 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20696 &bytes_read);
20697 i += bytes_read;
20698 break;
20699
20700 case DW_OP_consts:
20701 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20702 i += bytes_read;
20703 break;
20704
20705 case DW_OP_dup:
20706 stack[stacki + 1] = stack[stacki];
20707 stacki++;
20708 break;
20709
20710 case DW_OP_plus:
20711 stack[stacki - 1] += stack[stacki];
20712 stacki--;
20713 break;
20714
20715 case DW_OP_plus_uconst:
20716 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20717 &bytes_read);
20718 i += bytes_read;
20719 break;
20720
20721 case DW_OP_minus:
20722 stack[stacki - 1] -= stack[stacki];
20723 stacki--;
20724 break;
20725
20726 case DW_OP_deref:
20727 /* If we're not the last op, then we definitely can't encode
20728 this using GDB's address_class enum. This is valid for partial
20729 global symbols, although the variable's address will be bogus
20730 in the psymtab. */
20731 if (i < size)
20732 dwarf2_complex_location_expr_complaint ();
20733 break;
20734
20735 case DW_OP_GNU_push_tls_address:
20736 /* The top of the stack has the offset from the beginning
20737 of the thread control block at which the variable is located. */
20738 /* Nothing should follow this operator, so the top of stack would
20739 be returned. */
20740 /* This is valid for partial global symbols, but the variable's
20741 address will be bogus in the psymtab. Make it always at least
20742 non-zero to not look as a variable garbage collected by linker
20743 which have DW_OP_addr 0. */
20744 if (i < size)
20745 dwarf2_complex_location_expr_complaint ();
20746 stack[stacki]++;
20747 break;
20748
20749 case DW_OP_GNU_uninit:
20750 break;
20751
20752 case DW_OP_GNU_addr_index:
20753 case DW_OP_GNU_const_index:
20754 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20755 &bytes_read);
20756 i += bytes_read;
20757 break;
20758
20759 default:
20760 {
20761 const char *name = get_DW_OP_name (op);
20762
20763 if (name)
20764 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20765 name);
20766 else
20767 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20768 op);
20769 }
20770
20771 return (stack[stacki]);
20772 }
20773
20774 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20775 outside of the allocated space. Also enforce minimum>0. */
20776 if (stacki >= ARRAY_SIZE (stack) - 1)
20777 {
20778 complaint (&symfile_complaints,
20779 _("location description stack overflow"));
20780 return 0;
20781 }
20782
20783 if (stacki <= 0)
20784 {
20785 complaint (&symfile_complaints,
20786 _("location description stack underflow"));
20787 return 0;
20788 }
20789 }
20790 return (stack[stacki]);
20791 }
20792
20793 /* memory allocation interface */
20794
20795 static struct dwarf_block *
20796 dwarf_alloc_block (struct dwarf2_cu *cu)
20797 {
20798 struct dwarf_block *blk;
20799
20800 blk = (struct dwarf_block *)
20801 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20802 return (blk);
20803 }
20804
20805 static struct die_info *
20806 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20807 {
20808 struct die_info *die;
20809 size_t size = sizeof (struct die_info);
20810
20811 if (num_attrs > 1)
20812 size += (num_attrs - 1) * sizeof (struct attribute);
20813
20814 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20815 memset (die, 0, sizeof (struct die_info));
20816 return (die);
20817 }
20818
20819 \f
20820 /* Macro support. */
20821
20822 /* Return file name relative to the compilation directory of file number I in
20823 *LH's file name table. The result is allocated using xmalloc; the caller is
20824 responsible for freeing it. */
20825
20826 static char *
20827 file_file_name (int file, struct line_header *lh)
20828 {
20829 /* Is the file number a valid index into the line header's file name
20830 table? Remember that file numbers start with one, not zero. */
20831 if (1 <= file && file <= lh->num_file_names)
20832 {
20833 struct file_entry *fe = &lh->file_names[file - 1];
20834
20835 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20836 || lh->include_dirs == NULL)
20837 return xstrdup (fe->name);
20838 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20839 fe->name, NULL);
20840 }
20841 else
20842 {
20843 /* The compiler produced a bogus file number. We can at least
20844 record the macro definitions made in the file, even if we
20845 won't be able to find the file by name. */
20846 char fake_name[80];
20847
20848 xsnprintf (fake_name, sizeof (fake_name),
20849 "<bad macro file number %d>", file);
20850
20851 complaint (&symfile_complaints,
20852 _("bad file number in macro information (%d)"),
20853 file);
20854
20855 return xstrdup (fake_name);
20856 }
20857 }
20858
20859 /* Return the full name of file number I in *LH's file name table.
20860 Use COMP_DIR as the name of the current directory of the
20861 compilation. The result is allocated using xmalloc; the caller is
20862 responsible for freeing it. */
20863 static char *
20864 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20865 {
20866 /* Is the file number a valid index into the line header's file name
20867 table? Remember that file numbers start with one, not zero. */
20868 if (1 <= file && file <= lh->num_file_names)
20869 {
20870 char *relative = file_file_name (file, lh);
20871
20872 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20873 return relative;
20874 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20875 }
20876 else
20877 return file_file_name (file, lh);
20878 }
20879
20880
20881 static struct macro_source_file *
20882 macro_start_file (int file, int line,
20883 struct macro_source_file *current_file,
20884 struct line_header *lh)
20885 {
20886 /* File name relative to the compilation directory of this source file. */
20887 char *file_name = file_file_name (file, lh);
20888
20889 if (! current_file)
20890 {
20891 /* Note: We don't create a macro table for this compilation unit
20892 at all until we actually get a filename. */
20893 struct macro_table *macro_table = get_macro_table ();
20894
20895 /* If we have no current file, then this must be the start_file
20896 directive for the compilation unit's main source file. */
20897 current_file = macro_set_main (macro_table, file_name);
20898 macro_define_special (macro_table);
20899 }
20900 else
20901 current_file = macro_include (current_file, line, file_name);
20902
20903 xfree (file_name);
20904
20905 return current_file;
20906 }
20907
20908
20909 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20910 followed by a null byte. */
20911 static char *
20912 copy_string (const char *buf, int len)
20913 {
20914 char *s = xmalloc (len + 1);
20915
20916 memcpy (s, buf, len);
20917 s[len] = '\0';
20918 return s;
20919 }
20920
20921
20922 static const char *
20923 consume_improper_spaces (const char *p, const char *body)
20924 {
20925 if (*p == ' ')
20926 {
20927 complaint (&symfile_complaints,
20928 _("macro definition contains spaces "
20929 "in formal argument list:\n`%s'"),
20930 body);
20931
20932 while (*p == ' ')
20933 p++;
20934 }
20935
20936 return p;
20937 }
20938
20939
20940 static void
20941 parse_macro_definition (struct macro_source_file *file, int line,
20942 const char *body)
20943 {
20944 const char *p;
20945
20946 /* The body string takes one of two forms. For object-like macro
20947 definitions, it should be:
20948
20949 <macro name> " " <definition>
20950
20951 For function-like macro definitions, it should be:
20952
20953 <macro name> "() " <definition>
20954 or
20955 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20956
20957 Spaces may appear only where explicitly indicated, and in the
20958 <definition>.
20959
20960 The Dwarf 2 spec says that an object-like macro's name is always
20961 followed by a space, but versions of GCC around March 2002 omit
20962 the space when the macro's definition is the empty string.
20963
20964 The Dwarf 2 spec says that there should be no spaces between the
20965 formal arguments in a function-like macro's formal argument list,
20966 but versions of GCC around March 2002 include spaces after the
20967 commas. */
20968
20969
20970 /* Find the extent of the macro name. The macro name is terminated
20971 by either a space or null character (for an object-like macro) or
20972 an opening paren (for a function-like macro). */
20973 for (p = body; *p; p++)
20974 if (*p == ' ' || *p == '(')
20975 break;
20976
20977 if (*p == ' ' || *p == '\0')
20978 {
20979 /* It's an object-like macro. */
20980 int name_len = p - body;
20981 char *name = copy_string (body, name_len);
20982 const char *replacement;
20983
20984 if (*p == ' ')
20985 replacement = body + name_len + 1;
20986 else
20987 {
20988 dwarf2_macro_malformed_definition_complaint (body);
20989 replacement = body + name_len;
20990 }
20991
20992 macro_define_object (file, line, name, replacement);
20993
20994 xfree (name);
20995 }
20996 else if (*p == '(')
20997 {
20998 /* It's a function-like macro. */
20999 char *name = copy_string (body, p - body);
21000 int argc = 0;
21001 int argv_size = 1;
21002 char **argv = xmalloc (argv_size * sizeof (*argv));
21003
21004 p++;
21005
21006 p = consume_improper_spaces (p, body);
21007
21008 /* Parse the formal argument list. */
21009 while (*p && *p != ')')
21010 {
21011 /* Find the extent of the current argument name. */
21012 const char *arg_start = p;
21013
21014 while (*p && *p != ',' && *p != ')' && *p != ' ')
21015 p++;
21016
21017 if (! *p || p == arg_start)
21018 dwarf2_macro_malformed_definition_complaint (body);
21019 else
21020 {
21021 /* Make sure argv has room for the new argument. */
21022 if (argc >= argv_size)
21023 {
21024 argv_size *= 2;
21025 argv = xrealloc (argv, argv_size * sizeof (*argv));
21026 }
21027
21028 argv[argc++] = copy_string (arg_start, p - arg_start);
21029 }
21030
21031 p = consume_improper_spaces (p, body);
21032
21033 /* Consume the comma, if present. */
21034 if (*p == ',')
21035 {
21036 p++;
21037
21038 p = consume_improper_spaces (p, body);
21039 }
21040 }
21041
21042 if (*p == ')')
21043 {
21044 p++;
21045
21046 if (*p == ' ')
21047 /* Perfectly formed definition, no complaints. */
21048 macro_define_function (file, line, name,
21049 argc, (const char **) argv,
21050 p + 1);
21051 else if (*p == '\0')
21052 {
21053 /* Complain, but do define it. */
21054 dwarf2_macro_malformed_definition_complaint (body);
21055 macro_define_function (file, line, name,
21056 argc, (const char **) argv,
21057 p);
21058 }
21059 else
21060 /* Just complain. */
21061 dwarf2_macro_malformed_definition_complaint (body);
21062 }
21063 else
21064 /* Just complain. */
21065 dwarf2_macro_malformed_definition_complaint (body);
21066
21067 xfree (name);
21068 {
21069 int i;
21070
21071 for (i = 0; i < argc; i++)
21072 xfree (argv[i]);
21073 }
21074 xfree (argv);
21075 }
21076 else
21077 dwarf2_macro_malformed_definition_complaint (body);
21078 }
21079
21080 /* Skip some bytes from BYTES according to the form given in FORM.
21081 Returns the new pointer. */
21082
21083 static const gdb_byte *
21084 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21085 enum dwarf_form form,
21086 unsigned int offset_size,
21087 struct dwarf2_section_info *section)
21088 {
21089 unsigned int bytes_read;
21090
21091 switch (form)
21092 {
21093 case DW_FORM_data1:
21094 case DW_FORM_flag:
21095 ++bytes;
21096 break;
21097
21098 case DW_FORM_data2:
21099 bytes += 2;
21100 break;
21101
21102 case DW_FORM_data4:
21103 bytes += 4;
21104 break;
21105
21106 case DW_FORM_data8:
21107 bytes += 8;
21108 break;
21109
21110 case DW_FORM_string:
21111 read_direct_string (abfd, bytes, &bytes_read);
21112 bytes += bytes_read;
21113 break;
21114
21115 case DW_FORM_sec_offset:
21116 case DW_FORM_strp:
21117 case DW_FORM_GNU_strp_alt:
21118 bytes += offset_size;
21119 break;
21120
21121 case DW_FORM_block:
21122 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21123 bytes += bytes_read;
21124 break;
21125
21126 case DW_FORM_block1:
21127 bytes += 1 + read_1_byte (abfd, bytes);
21128 break;
21129 case DW_FORM_block2:
21130 bytes += 2 + read_2_bytes (abfd, bytes);
21131 break;
21132 case DW_FORM_block4:
21133 bytes += 4 + read_4_bytes (abfd, bytes);
21134 break;
21135
21136 case DW_FORM_sdata:
21137 case DW_FORM_udata:
21138 case DW_FORM_GNU_addr_index:
21139 case DW_FORM_GNU_str_index:
21140 bytes = gdb_skip_leb128 (bytes, buffer_end);
21141 if (bytes == NULL)
21142 {
21143 dwarf2_section_buffer_overflow_complaint (section);
21144 return NULL;
21145 }
21146 break;
21147
21148 default:
21149 {
21150 complain:
21151 complaint (&symfile_complaints,
21152 _("invalid form 0x%x in `%s'"),
21153 form, get_section_name (section));
21154 return NULL;
21155 }
21156 }
21157
21158 return bytes;
21159 }
21160
21161 /* A helper for dwarf_decode_macros that handles skipping an unknown
21162 opcode. Returns an updated pointer to the macro data buffer; or,
21163 on error, issues a complaint and returns NULL. */
21164
21165 static const gdb_byte *
21166 skip_unknown_opcode (unsigned int opcode,
21167 const gdb_byte **opcode_definitions,
21168 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21169 bfd *abfd,
21170 unsigned int offset_size,
21171 struct dwarf2_section_info *section)
21172 {
21173 unsigned int bytes_read, i;
21174 unsigned long arg;
21175 const gdb_byte *defn;
21176
21177 if (opcode_definitions[opcode] == NULL)
21178 {
21179 complaint (&symfile_complaints,
21180 _("unrecognized DW_MACFINO opcode 0x%x"),
21181 opcode);
21182 return NULL;
21183 }
21184
21185 defn = opcode_definitions[opcode];
21186 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21187 defn += bytes_read;
21188
21189 for (i = 0; i < arg; ++i)
21190 {
21191 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21192 (enum dwarf_form) defn[i], offset_size,
21193 section);
21194 if (mac_ptr == NULL)
21195 {
21196 /* skip_form_bytes already issued the complaint. */
21197 return NULL;
21198 }
21199 }
21200
21201 return mac_ptr;
21202 }
21203
21204 /* A helper function which parses the header of a macro section.
21205 If the macro section is the extended (for now called "GNU") type,
21206 then this updates *OFFSET_SIZE. Returns a pointer to just after
21207 the header, or issues a complaint and returns NULL on error. */
21208
21209 static const gdb_byte *
21210 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21211 bfd *abfd,
21212 const gdb_byte *mac_ptr,
21213 unsigned int *offset_size,
21214 int section_is_gnu)
21215 {
21216 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21217
21218 if (section_is_gnu)
21219 {
21220 unsigned int version, flags;
21221
21222 version = read_2_bytes (abfd, mac_ptr);
21223 if (version != 4)
21224 {
21225 complaint (&symfile_complaints,
21226 _("unrecognized version `%d' in .debug_macro section"),
21227 version);
21228 return NULL;
21229 }
21230 mac_ptr += 2;
21231
21232 flags = read_1_byte (abfd, mac_ptr);
21233 ++mac_ptr;
21234 *offset_size = (flags & 1) ? 8 : 4;
21235
21236 if ((flags & 2) != 0)
21237 /* We don't need the line table offset. */
21238 mac_ptr += *offset_size;
21239
21240 /* Vendor opcode descriptions. */
21241 if ((flags & 4) != 0)
21242 {
21243 unsigned int i, count;
21244
21245 count = read_1_byte (abfd, mac_ptr);
21246 ++mac_ptr;
21247 for (i = 0; i < count; ++i)
21248 {
21249 unsigned int opcode, bytes_read;
21250 unsigned long arg;
21251
21252 opcode = read_1_byte (abfd, mac_ptr);
21253 ++mac_ptr;
21254 opcode_definitions[opcode] = mac_ptr;
21255 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21256 mac_ptr += bytes_read;
21257 mac_ptr += arg;
21258 }
21259 }
21260 }
21261
21262 return mac_ptr;
21263 }
21264
21265 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21266 including DW_MACRO_GNU_transparent_include. */
21267
21268 static void
21269 dwarf_decode_macro_bytes (bfd *abfd,
21270 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21271 struct macro_source_file *current_file,
21272 struct line_header *lh,
21273 struct dwarf2_section_info *section,
21274 int section_is_gnu, int section_is_dwz,
21275 unsigned int offset_size,
21276 htab_t include_hash)
21277 {
21278 struct objfile *objfile = dwarf2_per_objfile->objfile;
21279 enum dwarf_macro_record_type macinfo_type;
21280 int at_commandline;
21281 const gdb_byte *opcode_definitions[256];
21282
21283 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21284 &offset_size, section_is_gnu);
21285 if (mac_ptr == NULL)
21286 {
21287 /* We already issued a complaint. */
21288 return;
21289 }
21290
21291 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21292 GDB is still reading the definitions from command line. First
21293 DW_MACINFO_start_file will need to be ignored as it was already executed
21294 to create CURRENT_FILE for the main source holding also the command line
21295 definitions. On first met DW_MACINFO_start_file this flag is reset to
21296 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21297
21298 at_commandline = 1;
21299
21300 do
21301 {
21302 /* Do we at least have room for a macinfo type byte? */
21303 if (mac_ptr >= mac_end)
21304 {
21305 dwarf2_section_buffer_overflow_complaint (section);
21306 break;
21307 }
21308
21309 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21310 mac_ptr++;
21311
21312 /* Note that we rely on the fact that the corresponding GNU and
21313 DWARF constants are the same. */
21314 switch (macinfo_type)
21315 {
21316 /* A zero macinfo type indicates the end of the macro
21317 information. */
21318 case 0:
21319 break;
21320
21321 case DW_MACRO_GNU_define:
21322 case DW_MACRO_GNU_undef:
21323 case DW_MACRO_GNU_define_indirect:
21324 case DW_MACRO_GNU_undef_indirect:
21325 case DW_MACRO_GNU_define_indirect_alt:
21326 case DW_MACRO_GNU_undef_indirect_alt:
21327 {
21328 unsigned int bytes_read;
21329 int line;
21330 const char *body;
21331 int is_define;
21332
21333 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21334 mac_ptr += bytes_read;
21335
21336 if (macinfo_type == DW_MACRO_GNU_define
21337 || macinfo_type == DW_MACRO_GNU_undef)
21338 {
21339 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21340 mac_ptr += bytes_read;
21341 }
21342 else
21343 {
21344 LONGEST str_offset;
21345
21346 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21347 mac_ptr += offset_size;
21348
21349 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21350 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21351 || section_is_dwz)
21352 {
21353 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21354
21355 body = read_indirect_string_from_dwz (dwz, str_offset);
21356 }
21357 else
21358 body = read_indirect_string_at_offset (abfd, str_offset);
21359 }
21360
21361 is_define = (macinfo_type == DW_MACRO_GNU_define
21362 || macinfo_type == DW_MACRO_GNU_define_indirect
21363 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21364 if (! current_file)
21365 {
21366 /* DWARF violation as no main source is present. */
21367 complaint (&symfile_complaints,
21368 _("debug info with no main source gives macro %s "
21369 "on line %d: %s"),
21370 is_define ? _("definition") : _("undefinition"),
21371 line, body);
21372 break;
21373 }
21374 if ((line == 0 && !at_commandline)
21375 || (line != 0 && at_commandline))
21376 complaint (&symfile_complaints,
21377 _("debug info gives %s macro %s with %s line %d: %s"),
21378 at_commandline ? _("command-line") : _("in-file"),
21379 is_define ? _("definition") : _("undefinition"),
21380 line == 0 ? _("zero") : _("non-zero"), line, body);
21381
21382 if (is_define)
21383 parse_macro_definition (current_file, line, body);
21384 else
21385 {
21386 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21387 || macinfo_type == DW_MACRO_GNU_undef_indirect
21388 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21389 macro_undef (current_file, line, body);
21390 }
21391 }
21392 break;
21393
21394 case DW_MACRO_GNU_start_file:
21395 {
21396 unsigned int bytes_read;
21397 int line, file;
21398
21399 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21400 mac_ptr += bytes_read;
21401 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21402 mac_ptr += bytes_read;
21403
21404 if ((line == 0 && !at_commandline)
21405 || (line != 0 && at_commandline))
21406 complaint (&symfile_complaints,
21407 _("debug info gives source %d included "
21408 "from %s at %s line %d"),
21409 file, at_commandline ? _("command-line") : _("file"),
21410 line == 0 ? _("zero") : _("non-zero"), line);
21411
21412 if (at_commandline)
21413 {
21414 /* This DW_MACRO_GNU_start_file was executed in the
21415 pass one. */
21416 at_commandline = 0;
21417 }
21418 else
21419 current_file = macro_start_file (file, line, current_file, lh);
21420 }
21421 break;
21422
21423 case DW_MACRO_GNU_end_file:
21424 if (! current_file)
21425 complaint (&symfile_complaints,
21426 _("macro debug info has an unmatched "
21427 "`close_file' directive"));
21428 else
21429 {
21430 current_file = current_file->included_by;
21431 if (! current_file)
21432 {
21433 enum dwarf_macro_record_type next_type;
21434
21435 /* GCC circa March 2002 doesn't produce the zero
21436 type byte marking the end of the compilation
21437 unit. Complain if it's not there, but exit no
21438 matter what. */
21439
21440 /* Do we at least have room for a macinfo type byte? */
21441 if (mac_ptr >= mac_end)
21442 {
21443 dwarf2_section_buffer_overflow_complaint (section);
21444 return;
21445 }
21446
21447 /* We don't increment mac_ptr here, so this is just
21448 a look-ahead. */
21449 next_type
21450 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21451 mac_ptr);
21452 if (next_type != 0)
21453 complaint (&symfile_complaints,
21454 _("no terminating 0-type entry for "
21455 "macros in `.debug_macinfo' section"));
21456
21457 return;
21458 }
21459 }
21460 break;
21461
21462 case DW_MACRO_GNU_transparent_include:
21463 case DW_MACRO_GNU_transparent_include_alt:
21464 {
21465 LONGEST offset;
21466 void **slot;
21467 bfd *include_bfd = abfd;
21468 struct dwarf2_section_info *include_section = section;
21469 struct dwarf2_section_info alt_section;
21470 const gdb_byte *include_mac_end = mac_end;
21471 int is_dwz = section_is_dwz;
21472 const gdb_byte *new_mac_ptr;
21473
21474 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21475 mac_ptr += offset_size;
21476
21477 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21478 {
21479 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21480
21481 dwarf2_read_section (objfile, &dwz->macro);
21482
21483 include_section = &dwz->macro;
21484 include_bfd = get_section_bfd_owner (include_section);
21485 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21486 is_dwz = 1;
21487 }
21488
21489 new_mac_ptr = include_section->buffer + offset;
21490 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21491
21492 if (*slot != NULL)
21493 {
21494 /* This has actually happened; see
21495 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21496 complaint (&symfile_complaints,
21497 _("recursive DW_MACRO_GNU_transparent_include in "
21498 ".debug_macro section"));
21499 }
21500 else
21501 {
21502 *slot = (void *) new_mac_ptr;
21503
21504 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21505 include_mac_end, current_file, lh,
21506 section, section_is_gnu, is_dwz,
21507 offset_size, include_hash);
21508
21509 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21510 }
21511 }
21512 break;
21513
21514 case DW_MACINFO_vendor_ext:
21515 if (!section_is_gnu)
21516 {
21517 unsigned int bytes_read;
21518 int constant;
21519
21520 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21521 mac_ptr += bytes_read;
21522 read_direct_string (abfd, mac_ptr, &bytes_read);
21523 mac_ptr += bytes_read;
21524
21525 /* We don't recognize any vendor extensions. */
21526 break;
21527 }
21528 /* FALLTHROUGH */
21529
21530 default:
21531 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21532 mac_ptr, mac_end, abfd, offset_size,
21533 section);
21534 if (mac_ptr == NULL)
21535 return;
21536 break;
21537 }
21538 } while (macinfo_type != 0);
21539 }
21540
21541 static void
21542 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21543 int section_is_gnu)
21544 {
21545 struct objfile *objfile = dwarf2_per_objfile->objfile;
21546 struct line_header *lh = cu->line_header;
21547 bfd *abfd;
21548 const gdb_byte *mac_ptr, *mac_end;
21549 struct macro_source_file *current_file = 0;
21550 enum dwarf_macro_record_type macinfo_type;
21551 unsigned int offset_size = cu->header.offset_size;
21552 const gdb_byte *opcode_definitions[256];
21553 struct cleanup *cleanup;
21554 htab_t include_hash;
21555 void **slot;
21556 struct dwarf2_section_info *section;
21557 const char *section_name;
21558
21559 if (cu->dwo_unit != NULL)
21560 {
21561 if (section_is_gnu)
21562 {
21563 section = &cu->dwo_unit->dwo_file->sections.macro;
21564 section_name = ".debug_macro.dwo";
21565 }
21566 else
21567 {
21568 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21569 section_name = ".debug_macinfo.dwo";
21570 }
21571 }
21572 else
21573 {
21574 if (section_is_gnu)
21575 {
21576 section = &dwarf2_per_objfile->macro;
21577 section_name = ".debug_macro";
21578 }
21579 else
21580 {
21581 section = &dwarf2_per_objfile->macinfo;
21582 section_name = ".debug_macinfo";
21583 }
21584 }
21585
21586 dwarf2_read_section (objfile, section);
21587 if (section->buffer == NULL)
21588 {
21589 complaint (&symfile_complaints, _("missing %s section"), section_name);
21590 return;
21591 }
21592 abfd = get_section_bfd_owner (section);
21593
21594 /* First pass: Find the name of the base filename.
21595 This filename is needed in order to process all macros whose definition
21596 (or undefinition) comes from the command line. These macros are defined
21597 before the first DW_MACINFO_start_file entry, and yet still need to be
21598 associated to the base file.
21599
21600 To determine the base file name, we scan the macro definitions until we
21601 reach the first DW_MACINFO_start_file entry. We then initialize
21602 CURRENT_FILE accordingly so that any macro definition found before the
21603 first DW_MACINFO_start_file can still be associated to the base file. */
21604
21605 mac_ptr = section->buffer + offset;
21606 mac_end = section->buffer + section->size;
21607
21608 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21609 &offset_size, section_is_gnu);
21610 if (mac_ptr == NULL)
21611 {
21612 /* We already issued a complaint. */
21613 return;
21614 }
21615
21616 do
21617 {
21618 /* Do we at least have room for a macinfo type byte? */
21619 if (mac_ptr >= mac_end)
21620 {
21621 /* Complaint is printed during the second pass as GDB will probably
21622 stop the first pass earlier upon finding
21623 DW_MACINFO_start_file. */
21624 break;
21625 }
21626
21627 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21628 mac_ptr++;
21629
21630 /* Note that we rely on the fact that the corresponding GNU and
21631 DWARF constants are the same. */
21632 switch (macinfo_type)
21633 {
21634 /* A zero macinfo type indicates the end of the macro
21635 information. */
21636 case 0:
21637 break;
21638
21639 case DW_MACRO_GNU_define:
21640 case DW_MACRO_GNU_undef:
21641 /* Only skip the data by MAC_PTR. */
21642 {
21643 unsigned int bytes_read;
21644
21645 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21646 mac_ptr += bytes_read;
21647 read_direct_string (abfd, mac_ptr, &bytes_read);
21648 mac_ptr += bytes_read;
21649 }
21650 break;
21651
21652 case DW_MACRO_GNU_start_file:
21653 {
21654 unsigned int bytes_read;
21655 int line, file;
21656
21657 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21658 mac_ptr += bytes_read;
21659 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21660 mac_ptr += bytes_read;
21661
21662 current_file = macro_start_file (file, line, current_file, lh);
21663 }
21664 break;
21665
21666 case DW_MACRO_GNU_end_file:
21667 /* No data to skip by MAC_PTR. */
21668 break;
21669
21670 case DW_MACRO_GNU_define_indirect:
21671 case DW_MACRO_GNU_undef_indirect:
21672 case DW_MACRO_GNU_define_indirect_alt:
21673 case DW_MACRO_GNU_undef_indirect_alt:
21674 {
21675 unsigned int bytes_read;
21676
21677 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21678 mac_ptr += bytes_read;
21679 mac_ptr += offset_size;
21680 }
21681 break;
21682
21683 case DW_MACRO_GNU_transparent_include:
21684 case DW_MACRO_GNU_transparent_include_alt:
21685 /* Note that, according to the spec, a transparent include
21686 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21687 skip this opcode. */
21688 mac_ptr += offset_size;
21689 break;
21690
21691 case DW_MACINFO_vendor_ext:
21692 /* Only skip the data by MAC_PTR. */
21693 if (!section_is_gnu)
21694 {
21695 unsigned int bytes_read;
21696
21697 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21698 mac_ptr += bytes_read;
21699 read_direct_string (abfd, mac_ptr, &bytes_read);
21700 mac_ptr += bytes_read;
21701 }
21702 /* FALLTHROUGH */
21703
21704 default:
21705 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21706 mac_ptr, mac_end, abfd, offset_size,
21707 section);
21708 if (mac_ptr == NULL)
21709 return;
21710 break;
21711 }
21712 } while (macinfo_type != 0 && current_file == NULL);
21713
21714 /* Second pass: Process all entries.
21715
21716 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21717 command-line macro definitions/undefinitions. This flag is unset when we
21718 reach the first DW_MACINFO_start_file entry. */
21719
21720 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21721 NULL, xcalloc, xfree);
21722 cleanup = make_cleanup_htab_delete (include_hash);
21723 mac_ptr = section->buffer + offset;
21724 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21725 *slot = (void *) mac_ptr;
21726 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21727 current_file, lh, section,
21728 section_is_gnu, 0, offset_size, include_hash);
21729 do_cleanups (cleanup);
21730 }
21731
21732 /* Check if the attribute's form is a DW_FORM_block*
21733 if so return true else false. */
21734
21735 static int
21736 attr_form_is_block (const struct attribute *attr)
21737 {
21738 return (attr == NULL ? 0 :
21739 attr->form == DW_FORM_block1
21740 || attr->form == DW_FORM_block2
21741 || attr->form == DW_FORM_block4
21742 || attr->form == DW_FORM_block
21743 || attr->form == DW_FORM_exprloc);
21744 }
21745
21746 /* Return non-zero if ATTR's value is a section offset --- classes
21747 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21748 You may use DW_UNSND (attr) to retrieve such offsets.
21749
21750 Section 7.5.4, "Attribute Encodings", explains that no attribute
21751 may have a value that belongs to more than one of these classes; it
21752 would be ambiguous if we did, because we use the same forms for all
21753 of them. */
21754
21755 static int
21756 attr_form_is_section_offset (const struct attribute *attr)
21757 {
21758 return (attr->form == DW_FORM_data4
21759 || attr->form == DW_FORM_data8
21760 || attr->form == DW_FORM_sec_offset);
21761 }
21762
21763 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21764 zero otherwise. When this function returns true, you can apply
21765 dwarf2_get_attr_constant_value to it.
21766
21767 However, note that for some attributes you must check
21768 attr_form_is_section_offset before using this test. DW_FORM_data4
21769 and DW_FORM_data8 are members of both the constant class, and of
21770 the classes that contain offsets into other debug sections
21771 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21772 that, if an attribute's can be either a constant or one of the
21773 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21774 taken as section offsets, not constants. */
21775
21776 static int
21777 attr_form_is_constant (const struct attribute *attr)
21778 {
21779 switch (attr->form)
21780 {
21781 case DW_FORM_sdata:
21782 case DW_FORM_udata:
21783 case DW_FORM_data1:
21784 case DW_FORM_data2:
21785 case DW_FORM_data4:
21786 case DW_FORM_data8:
21787 return 1;
21788 default:
21789 return 0;
21790 }
21791 }
21792
21793
21794 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21795 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21796
21797 static int
21798 attr_form_is_ref (const struct attribute *attr)
21799 {
21800 switch (attr->form)
21801 {
21802 case DW_FORM_ref_addr:
21803 case DW_FORM_ref1:
21804 case DW_FORM_ref2:
21805 case DW_FORM_ref4:
21806 case DW_FORM_ref8:
21807 case DW_FORM_ref_udata:
21808 case DW_FORM_GNU_ref_alt:
21809 return 1;
21810 default:
21811 return 0;
21812 }
21813 }
21814
21815 /* Return the .debug_loc section to use for CU.
21816 For DWO files use .debug_loc.dwo. */
21817
21818 static struct dwarf2_section_info *
21819 cu_debug_loc_section (struct dwarf2_cu *cu)
21820 {
21821 if (cu->dwo_unit)
21822 return &cu->dwo_unit->dwo_file->sections.loc;
21823 return &dwarf2_per_objfile->loc;
21824 }
21825
21826 /* A helper function that fills in a dwarf2_loclist_baton. */
21827
21828 static void
21829 fill_in_loclist_baton (struct dwarf2_cu *cu,
21830 struct dwarf2_loclist_baton *baton,
21831 const struct attribute *attr)
21832 {
21833 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21834
21835 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21836
21837 baton->per_cu = cu->per_cu;
21838 gdb_assert (baton->per_cu);
21839 /* We don't know how long the location list is, but make sure we
21840 don't run off the edge of the section. */
21841 baton->size = section->size - DW_UNSND (attr);
21842 baton->data = section->buffer + DW_UNSND (attr);
21843 baton->base_address = cu->base_address;
21844 baton->from_dwo = cu->dwo_unit != NULL;
21845 }
21846
21847 static void
21848 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21849 struct dwarf2_cu *cu, int is_block)
21850 {
21851 struct objfile *objfile = dwarf2_per_objfile->objfile;
21852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21853
21854 if (attr_form_is_section_offset (attr)
21855 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21856 the section. If so, fall through to the complaint in the
21857 other branch. */
21858 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21859 {
21860 struct dwarf2_loclist_baton *baton;
21861
21862 baton = obstack_alloc (&objfile->objfile_obstack,
21863 sizeof (struct dwarf2_loclist_baton));
21864
21865 fill_in_loclist_baton (cu, baton, attr);
21866
21867 if (cu->base_known == 0)
21868 complaint (&symfile_complaints,
21869 _("Location list used without "
21870 "specifying the CU base address."));
21871
21872 SYMBOL_ACLASS_INDEX (sym) = (is_block
21873 ? dwarf2_loclist_block_index
21874 : dwarf2_loclist_index);
21875 SYMBOL_LOCATION_BATON (sym) = baton;
21876 }
21877 else
21878 {
21879 struct dwarf2_locexpr_baton *baton;
21880
21881 baton = obstack_alloc (&objfile->objfile_obstack,
21882 sizeof (struct dwarf2_locexpr_baton));
21883 baton->per_cu = cu->per_cu;
21884 gdb_assert (baton->per_cu);
21885
21886 if (attr_form_is_block (attr))
21887 {
21888 /* Note that we're just copying the block's data pointer
21889 here, not the actual data. We're still pointing into the
21890 info_buffer for SYM's objfile; right now we never release
21891 that buffer, but when we do clean up properly this may
21892 need to change. */
21893 baton->size = DW_BLOCK (attr)->size;
21894 baton->data = DW_BLOCK (attr)->data;
21895 }
21896 else
21897 {
21898 dwarf2_invalid_attrib_class_complaint ("location description",
21899 SYMBOL_NATURAL_NAME (sym));
21900 baton->size = 0;
21901 }
21902
21903 SYMBOL_ACLASS_INDEX (sym) = (is_block
21904 ? dwarf2_locexpr_block_index
21905 : dwarf2_locexpr_index);
21906 SYMBOL_LOCATION_BATON (sym) = baton;
21907 }
21908 }
21909
21910 /* Return the OBJFILE associated with the compilation unit CU. If CU
21911 came from a separate debuginfo file, then the master objfile is
21912 returned. */
21913
21914 struct objfile *
21915 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21916 {
21917 struct objfile *objfile = per_cu->objfile;
21918
21919 /* Return the master objfile, so that we can report and look up the
21920 correct file containing this variable. */
21921 if (objfile->separate_debug_objfile_backlink)
21922 objfile = objfile->separate_debug_objfile_backlink;
21923
21924 return objfile;
21925 }
21926
21927 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21928 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21929 CU_HEADERP first. */
21930
21931 static const struct comp_unit_head *
21932 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21933 struct dwarf2_per_cu_data *per_cu)
21934 {
21935 const gdb_byte *info_ptr;
21936
21937 if (per_cu->cu)
21938 return &per_cu->cu->header;
21939
21940 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21941
21942 memset (cu_headerp, 0, sizeof (*cu_headerp));
21943 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21944
21945 return cu_headerp;
21946 }
21947
21948 /* Return the address size given in the compilation unit header for CU. */
21949
21950 int
21951 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21952 {
21953 struct comp_unit_head cu_header_local;
21954 const struct comp_unit_head *cu_headerp;
21955
21956 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21957
21958 return cu_headerp->addr_size;
21959 }
21960
21961 /* Return the offset size given in the compilation unit header for CU. */
21962
21963 int
21964 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21965 {
21966 struct comp_unit_head cu_header_local;
21967 const struct comp_unit_head *cu_headerp;
21968
21969 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21970
21971 return cu_headerp->offset_size;
21972 }
21973
21974 /* See its dwarf2loc.h declaration. */
21975
21976 int
21977 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21978 {
21979 struct comp_unit_head cu_header_local;
21980 const struct comp_unit_head *cu_headerp;
21981
21982 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21983
21984 if (cu_headerp->version == 2)
21985 return cu_headerp->addr_size;
21986 else
21987 return cu_headerp->offset_size;
21988 }
21989
21990 /* Return the text offset of the CU. The returned offset comes from
21991 this CU's objfile. If this objfile came from a separate debuginfo
21992 file, then the offset may be different from the corresponding
21993 offset in the parent objfile. */
21994
21995 CORE_ADDR
21996 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21997 {
21998 struct objfile *objfile = per_cu->objfile;
21999
22000 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22001 }
22002
22003 /* Locate the .debug_info compilation unit from CU's objfile which contains
22004 the DIE at OFFSET. Raises an error on failure. */
22005
22006 static struct dwarf2_per_cu_data *
22007 dwarf2_find_containing_comp_unit (sect_offset offset,
22008 unsigned int offset_in_dwz,
22009 struct objfile *objfile)
22010 {
22011 struct dwarf2_per_cu_data *this_cu;
22012 int low, high;
22013 const sect_offset *cu_off;
22014
22015 low = 0;
22016 high = dwarf2_per_objfile->n_comp_units - 1;
22017 while (high > low)
22018 {
22019 struct dwarf2_per_cu_data *mid_cu;
22020 int mid = low + (high - low) / 2;
22021
22022 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22023 cu_off = &mid_cu->offset;
22024 if (mid_cu->is_dwz > offset_in_dwz
22025 || (mid_cu->is_dwz == offset_in_dwz
22026 && cu_off->sect_off >= offset.sect_off))
22027 high = mid;
22028 else
22029 low = mid + 1;
22030 }
22031 gdb_assert (low == high);
22032 this_cu = dwarf2_per_objfile->all_comp_units[low];
22033 cu_off = &this_cu->offset;
22034 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22035 {
22036 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22037 error (_("Dwarf Error: could not find partial DIE containing "
22038 "offset 0x%lx [in module %s]"),
22039 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22040
22041 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22042 <= offset.sect_off);
22043 return dwarf2_per_objfile->all_comp_units[low-1];
22044 }
22045 else
22046 {
22047 this_cu = dwarf2_per_objfile->all_comp_units[low];
22048 if (low == dwarf2_per_objfile->n_comp_units - 1
22049 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22050 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22051 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22052 return this_cu;
22053 }
22054 }
22055
22056 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22057
22058 static void
22059 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22060 {
22061 memset (cu, 0, sizeof (*cu));
22062 per_cu->cu = cu;
22063 cu->per_cu = per_cu;
22064 cu->objfile = per_cu->objfile;
22065 obstack_init (&cu->comp_unit_obstack);
22066 }
22067
22068 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22069
22070 static void
22071 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22072 enum language pretend_language)
22073 {
22074 struct attribute *attr;
22075
22076 /* Set the language we're debugging. */
22077 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22078 if (attr)
22079 set_cu_language (DW_UNSND (attr), cu);
22080 else
22081 {
22082 cu->language = pretend_language;
22083 cu->language_defn = language_def (cu->language);
22084 }
22085
22086 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
22087 if (attr)
22088 cu->producer = DW_STRING (attr);
22089 }
22090
22091 /* Release one cached compilation unit, CU. We unlink it from the tree
22092 of compilation units, but we don't remove it from the read_in_chain;
22093 the caller is responsible for that.
22094 NOTE: DATA is a void * because this function is also used as a
22095 cleanup routine. */
22096
22097 static void
22098 free_heap_comp_unit (void *data)
22099 {
22100 struct dwarf2_cu *cu = data;
22101
22102 gdb_assert (cu->per_cu != NULL);
22103 cu->per_cu->cu = NULL;
22104 cu->per_cu = NULL;
22105
22106 obstack_free (&cu->comp_unit_obstack, NULL);
22107
22108 xfree (cu);
22109 }
22110
22111 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22112 when we're finished with it. We can't free the pointer itself, but be
22113 sure to unlink it from the cache. Also release any associated storage. */
22114
22115 static void
22116 free_stack_comp_unit (void *data)
22117 {
22118 struct dwarf2_cu *cu = data;
22119
22120 gdb_assert (cu->per_cu != NULL);
22121 cu->per_cu->cu = NULL;
22122 cu->per_cu = NULL;
22123
22124 obstack_free (&cu->comp_unit_obstack, NULL);
22125 cu->partial_dies = NULL;
22126 }
22127
22128 /* Free all cached compilation units. */
22129
22130 static void
22131 free_cached_comp_units (void *data)
22132 {
22133 struct dwarf2_per_cu_data *per_cu, **last_chain;
22134
22135 per_cu = dwarf2_per_objfile->read_in_chain;
22136 last_chain = &dwarf2_per_objfile->read_in_chain;
22137 while (per_cu != NULL)
22138 {
22139 struct dwarf2_per_cu_data *next_cu;
22140
22141 next_cu = per_cu->cu->read_in_chain;
22142
22143 free_heap_comp_unit (per_cu->cu);
22144 *last_chain = next_cu;
22145
22146 per_cu = next_cu;
22147 }
22148 }
22149
22150 /* Increase the age counter on each cached compilation unit, and free
22151 any that are too old. */
22152
22153 static void
22154 age_cached_comp_units (void)
22155 {
22156 struct dwarf2_per_cu_data *per_cu, **last_chain;
22157
22158 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22159 per_cu = dwarf2_per_objfile->read_in_chain;
22160 while (per_cu != NULL)
22161 {
22162 per_cu->cu->last_used ++;
22163 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22164 dwarf2_mark (per_cu->cu);
22165 per_cu = per_cu->cu->read_in_chain;
22166 }
22167
22168 per_cu = dwarf2_per_objfile->read_in_chain;
22169 last_chain = &dwarf2_per_objfile->read_in_chain;
22170 while (per_cu != NULL)
22171 {
22172 struct dwarf2_per_cu_data *next_cu;
22173
22174 next_cu = per_cu->cu->read_in_chain;
22175
22176 if (!per_cu->cu->mark)
22177 {
22178 free_heap_comp_unit (per_cu->cu);
22179 *last_chain = next_cu;
22180 }
22181 else
22182 last_chain = &per_cu->cu->read_in_chain;
22183
22184 per_cu = next_cu;
22185 }
22186 }
22187
22188 /* Remove a single compilation unit from the cache. */
22189
22190 static void
22191 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22192 {
22193 struct dwarf2_per_cu_data *per_cu, **last_chain;
22194
22195 per_cu = dwarf2_per_objfile->read_in_chain;
22196 last_chain = &dwarf2_per_objfile->read_in_chain;
22197 while (per_cu != NULL)
22198 {
22199 struct dwarf2_per_cu_data *next_cu;
22200
22201 next_cu = per_cu->cu->read_in_chain;
22202
22203 if (per_cu == target_per_cu)
22204 {
22205 free_heap_comp_unit (per_cu->cu);
22206 per_cu->cu = NULL;
22207 *last_chain = next_cu;
22208 break;
22209 }
22210 else
22211 last_chain = &per_cu->cu->read_in_chain;
22212
22213 per_cu = next_cu;
22214 }
22215 }
22216
22217 /* Release all extra memory associated with OBJFILE. */
22218
22219 void
22220 dwarf2_free_objfile (struct objfile *objfile)
22221 {
22222 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22223
22224 if (dwarf2_per_objfile == NULL)
22225 return;
22226
22227 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22228 free_cached_comp_units (NULL);
22229
22230 if (dwarf2_per_objfile->quick_file_names_table)
22231 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22232
22233 if (dwarf2_per_objfile->line_header_hash)
22234 htab_delete (dwarf2_per_objfile->line_header_hash);
22235
22236 /* Everything else should be on the objfile obstack. */
22237 }
22238
22239 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22240 We store these in a hash table separate from the DIEs, and preserve them
22241 when the DIEs are flushed out of cache.
22242
22243 The CU "per_cu" pointer is needed because offset alone is not enough to
22244 uniquely identify the type. A file may have multiple .debug_types sections,
22245 or the type may come from a DWO file. Furthermore, while it's more logical
22246 to use per_cu->section+offset, with Fission the section with the data is in
22247 the DWO file but we don't know that section at the point we need it.
22248 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22249 because we can enter the lookup routine, get_die_type_at_offset, from
22250 outside this file, and thus won't necessarily have PER_CU->cu.
22251 Fortunately, PER_CU is stable for the life of the objfile. */
22252
22253 struct dwarf2_per_cu_offset_and_type
22254 {
22255 const struct dwarf2_per_cu_data *per_cu;
22256 sect_offset offset;
22257 struct type *type;
22258 };
22259
22260 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22261
22262 static hashval_t
22263 per_cu_offset_and_type_hash (const void *item)
22264 {
22265 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22266
22267 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22268 }
22269
22270 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22271
22272 static int
22273 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22274 {
22275 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22276 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22277
22278 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22279 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22280 }
22281
22282 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22283 table if necessary. For convenience, return TYPE.
22284
22285 The DIEs reading must have careful ordering to:
22286 * Not cause infite loops trying to read in DIEs as a prerequisite for
22287 reading current DIE.
22288 * Not trying to dereference contents of still incompletely read in types
22289 while reading in other DIEs.
22290 * Enable referencing still incompletely read in types just by a pointer to
22291 the type without accessing its fields.
22292
22293 Therefore caller should follow these rules:
22294 * Try to fetch any prerequisite types we may need to build this DIE type
22295 before building the type and calling set_die_type.
22296 * After building type call set_die_type for current DIE as soon as
22297 possible before fetching more types to complete the current type.
22298 * Make the type as complete as possible before fetching more types. */
22299
22300 static struct type *
22301 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22302 {
22303 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22304 struct objfile *objfile = cu->objfile;
22305 struct attribute *attr;
22306 struct dynamic_prop prop;
22307
22308 /* For Ada types, make sure that the gnat-specific data is always
22309 initialized (if not already set). There are a few types where
22310 we should not be doing so, because the type-specific area is
22311 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22312 where the type-specific area is used to store the floatformat).
22313 But this is not a problem, because the gnat-specific information
22314 is actually not needed for these types. */
22315 if (need_gnat_info (cu)
22316 && TYPE_CODE (type) != TYPE_CODE_FUNC
22317 && TYPE_CODE (type) != TYPE_CODE_FLT
22318 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22319 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22320 && TYPE_CODE (type) != TYPE_CODE_METHOD
22321 && !HAVE_GNAT_AUX_INFO (type))
22322 INIT_GNAT_SPECIFIC (type);
22323
22324 /* Read DW_AT_data_location and set in type. */
22325 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22326 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22327 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22328
22329 if (dwarf2_per_objfile->die_type_hash == NULL)
22330 {
22331 dwarf2_per_objfile->die_type_hash =
22332 htab_create_alloc_ex (127,
22333 per_cu_offset_and_type_hash,
22334 per_cu_offset_and_type_eq,
22335 NULL,
22336 &objfile->objfile_obstack,
22337 hashtab_obstack_allocate,
22338 dummy_obstack_deallocate);
22339 }
22340
22341 ofs.per_cu = cu->per_cu;
22342 ofs.offset = die->offset;
22343 ofs.type = type;
22344 slot = (struct dwarf2_per_cu_offset_and_type **)
22345 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22346 if (*slot)
22347 complaint (&symfile_complaints,
22348 _("A problem internal to GDB: DIE 0x%x has type already set"),
22349 die->offset.sect_off);
22350 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22351 **slot = ofs;
22352 return type;
22353 }
22354
22355 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22356 or return NULL if the die does not have a saved type. */
22357
22358 static struct type *
22359 get_die_type_at_offset (sect_offset offset,
22360 struct dwarf2_per_cu_data *per_cu)
22361 {
22362 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22363
22364 if (dwarf2_per_objfile->die_type_hash == NULL)
22365 return NULL;
22366
22367 ofs.per_cu = per_cu;
22368 ofs.offset = offset;
22369 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22370 if (slot)
22371 return slot->type;
22372 else
22373 return NULL;
22374 }
22375
22376 /* Look up the type for DIE in CU in die_type_hash,
22377 or return NULL if DIE does not have a saved type. */
22378
22379 static struct type *
22380 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22381 {
22382 return get_die_type_at_offset (die->offset, cu->per_cu);
22383 }
22384
22385 /* Add a dependence relationship from CU to REF_PER_CU. */
22386
22387 static void
22388 dwarf2_add_dependence (struct dwarf2_cu *cu,
22389 struct dwarf2_per_cu_data *ref_per_cu)
22390 {
22391 void **slot;
22392
22393 if (cu->dependencies == NULL)
22394 cu->dependencies
22395 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22396 NULL, &cu->comp_unit_obstack,
22397 hashtab_obstack_allocate,
22398 dummy_obstack_deallocate);
22399
22400 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22401 if (*slot == NULL)
22402 *slot = ref_per_cu;
22403 }
22404
22405 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22406 Set the mark field in every compilation unit in the
22407 cache that we must keep because we are keeping CU. */
22408
22409 static int
22410 dwarf2_mark_helper (void **slot, void *data)
22411 {
22412 struct dwarf2_per_cu_data *per_cu;
22413
22414 per_cu = (struct dwarf2_per_cu_data *) *slot;
22415
22416 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22417 reading of the chain. As such dependencies remain valid it is not much
22418 useful to track and undo them during QUIT cleanups. */
22419 if (per_cu->cu == NULL)
22420 return 1;
22421
22422 if (per_cu->cu->mark)
22423 return 1;
22424 per_cu->cu->mark = 1;
22425
22426 if (per_cu->cu->dependencies != NULL)
22427 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22428
22429 return 1;
22430 }
22431
22432 /* Set the mark field in CU and in every other compilation unit in the
22433 cache that we must keep because we are keeping CU. */
22434
22435 static void
22436 dwarf2_mark (struct dwarf2_cu *cu)
22437 {
22438 if (cu->mark)
22439 return;
22440 cu->mark = 1;
22441 if (cu->dependencies != NULL)
22442 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22443 }
22444
22445 static void
22446 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22447 {
22448 while (per_cu)
22449 {
22450 per_cu->cu->mark = 0;
22451 per_cu = per_cu->cu->read_in_chain;
22452 }
22453 }
22454
22455 /* Trivial hash function for partial_die_info: the hash value of a DIE
22456 is its offset in .debug_info for this objfile. */
22457
22458 static hashval_t
22459 partial_die_hash (const void *item)
22460 {
22461 const struct partial_die_info *part_die = item;
22462
22463 return part_die->offset.sect_off;
22464 }
22465
22466 /* Trivial comparison function for partial_die_info structures: two DIEs
22467 are equal if they have the same offset. */
22468
22469 static int
22470 partial_die_eq (const void *item_lhs, const void *item_rhs)
22471 {
22472 const struct partial_die_info *part_die_lhs = item_lhs;
22473 const struct partial_die_info *part_die_rhs = item_rhs;
22474
22475 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22476 }
22477
22478 static struct cmd_list_element *set_dwarf_cmdlist;
22479 static struct cmd_list_element *show_dwarf_cmdlist;
22480
22481 static void
22482 set_dwarf_cmd (char *args, int from_tty)
22483 {
22484 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22485 gdb_stdout);
22486 }
22487
22488 static void
22489 show_dwarf_cmd (char *args, int from_tty)
22490 {
22491 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22492 }
22493
22494 /* Free data associated with OBJFILE, if necessary. */
22495
22496 static void
22497 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22498 {
22499 struct dwarf2_per_objfile *data = d;
22500 int ix;
22501
22502 /* Make sure we don't accidentally use dwarf2_per_objfile while
22503 cleaning up. */
22504 dwarf2_per_objfile = NULL;
22505
22506 for (ix = 0; ix < data->n_comp_units; ++ix)
22507 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22508
22509 for (ix = 0; ix < data->n_type_units; ++ix)
22510 VEC_free (dwarf2_per_cu_ptr,
22511 data->all_type_units[ix]->per_cu.imported_symtabs);
22512 xfree (data->all_type_units);
22513
22514 VEC_free (dwarf2_section_info_def, data->types);
22515
22516 if (data->dwo_files)
22517 free_dwo_files (data->dwo_files, objfile);
22518 if (data->dwp_file)
22519 gdb_bfd_unref (data->dwp_file->dbfd);
22520
22521 if (data->dwz_file && data->dwz_file->dwz_bfd)
22522 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22523 }
22524
22525 \f
22526 /* The "save gdb-index" command. */
22527
22528 /* The contents of the hash table we create when building the string
22529 table. */
22530 struct strtab_entry
22531 {
22532 offset_type offset;
22533 const char *str;
22534 };
22535
22536 /* Hash function for a strtab_entry.
22537
22538 Function is used only during write_hash_table so no index format backward
22539 compatibility is needed. */
22540
22541 static hashval_t
22542 hash_strtab_entry (const void *e)
22543 {
22544 const struct strtab_entry *entry = e;
22545 return mapped_index_string_hash (INT_MAX, entry->str);
22546 }
22547
22548 /* Equality function for a strtab_entry. */
22549
22550 static int
22551 eq_strtab_entry (const void *a, const void *b)
22552 {
22553 const struct strtab_entry *ea = a;
22554 const struct strtab_entry *eb = b;
22555 return !strcmp (ea->str, eb->str);
22556 }
22557
22558 /* Create a strtab_entry hash table. */
22559
22560 static htab_t
22561 create_strtab (void)
22562 {
22563 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22564 xfree, xcalloc, xfree);
22565 }
22566
22567 /* Add a string to the constant pool. Return the string's offset in
22568 host order. */
22569
22570 static offset_type
22571 add_string (htab_t table, struct obstack *cpool, const char *str)
22572 {
22573 void **slot;
22574 struct strtab_entry entry;
22575 struct strtab_entry *result;
22576
22577 entry.str = str;
22578 slot = htab_find_slot (table, &entry, INSERT);
22579 if (*slot)
22580 result = *slot;
22581 else
22582 {
22583 result = XNEW (struct strtab_entry);
22584 result->offset = obstack_object_size (cpool);
22585 result->str = str;
22586 obstack_grow_str0 (cpool, str);
22587 *slot = result;
22588 }
22589 return result->offset;
22590 }
22591
22592 /* An entry in the symbol table. */
22593 struct symtab_index_entry
22594 {
22595 /* The name of the symbol. */
22596 const char *name;
22597 /* The offset of the name in the constant pool. */
22598 offset_type index_offset;
22599 /* A sorted vector of the indices of all the CUs that hold an object
22600 of this name. */
22601 VEC (offset_type) *cu_indices;
22602 };
22603
22604 /* The symbol table. This is a power-of-2-sized hash table. */
22605 struct mapped_symtab
22606 {
22607 offset_type n_elements;
22608 offset_type size;
22609 struct symtab_index_entry **data;
22610 };
22611
22612 /* Hash function for a symtab_index_entry. */
22613
22614 static hashval_t
22615 hash_symtab_entry (const void *e)
22616 {
22617 const struct symtab_index_entry *entry = e;
22618 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22619 sizeof (offset_type) * VEC_length (offset_type,
22620 entry->cu_indices),
22621 0);
22622 }
22623
22624 /* Equality function for a symtab_index_entry. */
22625
22626 static int
22627 eq_symtab_entry (const void *a, const void *b)
22628 {
22629 const struct symtab_index_entry *ea = a;
22630 const struct symtab_index_entry *eb = b;
22631 int len = VEC_length (offset_type, ea->cu_indices);
22632 if (len != VEC_length (offset_type, eb->cu_indices))
22633 return 0;
22634 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22635 VEC_address (offset_type, eb->cu_indices),
22636 sizeof (offset_type) * len);
22637 }
22638
22639 /* Destroy a symtab_index_entry. */
22640
22641 static void
22642 delete_symtab_entry (void *p)
22643 {
22644 struct symtab_index_entry *entry = p;
22645 VEC_free (offset_type, entry->cu_indices);
22646 xfree (entry);
22647 }
22648
22649 /* Create a hash table holding symtab_index_entry objects. */
22650
22651 static htab_t
22652 create_symbol_hash_table (void)
22653 {
22654 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22655 delete_symtab_entry, xcalloc, xfree);
22656 }
22657
22658 /* Create a new mapped symtab object. */
22659
22660 static struct mapped_symtab *
22661 create_mapped_symtab (void)
22662 {
22663 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22664 symtab->n_elements = 0;
22665 symtab->size = 1024;
22666 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22667 return symtab;
22668 }
22669
22670 /* Destroy a mapped_symtab. */
22671
22672 static void
22673 cleanup_mapped_symtab (void *p)
22674 {
22675 struct mapped_symtab *symtab = p;
22676 /* The contents of the array are freed when the other hash table is
22677 destroyed. */
22678 xfree (symtab->data);
22679 xfree (symtab);
22680 }
22681
22682 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22683 the slot.
22684
22685 Function is used only during write_hash_table so no index format backward
22686 compatibility is needed. */
22687
22688 static struct symtab_index_entry **
22689 find_slot (struct mapped_symtab *symtab, const char *name)
22690 {
22691 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22692
22693 index = hash & (symtab->size - 1);
22694 step = ((hash * 17) & (symtab->size - 1)) | 1;
22695
22696 for (;;)
22697 {
22698 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22699 return &symtab->data[index];
22700 index = (index + step) & (symtab->size - 1);
22701 }
22702 }
22703
22704 /* Expand SYMTAB's hash table. */
22705
22706 static void
22707 hash_expand (struct mapped_symtab *symtab)
22708 {
22709 offset_type old_size = symtab->size;
22710 offset_type i;
22711 struct symtab_index_entry **old_entries = symtab->data;
22712
22713 symtab->size *= 2;
22714 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22715
22716 for (i = 0; i < old_size; ++i)
22717 {
22718 if (old_entries[i])
22719 {
22720 struct symtab_index_entry **slot = find_slot (symtab,
22721 old_entries[i]->name);
22722 *slot = old_entries[i];
22723 }
22724 }
22725
22726 xfree (old_entries);
22727 }
22728
22729 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22730 CU_INDEX is the index of the CU in which the symbol appears.
22731 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22732
22733 static void
22734 add_index_entry (struct mapped_symtab *symtab, const char *name,
22735 int is_static, gdb_index_symbol_kind kind,
22736 offset_type cu_index)
22737 {
22738 struct symtab_index_entry **slot;
22739 offset_type cu_index_and_attrs;
22740
22741 ++symtab->n_elements;
22742 if (4 * symtab->n_elements / 3 >= symtab->size)
22743 hash_expand (symtab);
22744
22745 slot = find_slot (symtab, name);
22746 if (!*slot)
22747 {
22748 *slot = XNEW (struct symtab_index_entry);
22749 (*slot)->name = name;
22750 /* index_offset is set later. */
22751 (*slot)->cu_indices = NULL;
22752 }
22753
22754 cu_index_and_attrs = 0;
22755 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22756 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22757 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22758
22759 /* We don't want to record an index value twice as we want to avoid the
22760 duplication.
22761 We process all global symbols and then all static symbols
22762 (which would allow us to avoid the duplication by only having to check
22763 the last entry pushed), but a symbol could have multiple kinds in one CU.
22764 To keep things simple we don't worry about the duplication here and
22765 sort and uniqufy the list after we've processed all symbols. */
22766 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22767 }
22768
22769 /* qsort helper routine for uniquify_cu_indices. */
22770
22771 static int
22772 offset_type_compare (const void *ap, const void *bp)
22773 {
22774 offset_type a = *(offset_type *) ap;
22775 offset_type b = *(offset_type *) bp;
22776
22777 return (a > b) - (b > a);
22778 }
22779
22780 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22781
22782 static void
22783 uniquify_cu_indices (struct mapped_symtab *symtab)
22784 {
22785 int i;
22786
22787 for (i = 0; i < symtab->size; ++i)
22788 {
22789 struct symtab_index_entry *entry = symtab->data[i];
22790
22791 if (entry
22792 && entry->cu_indices != NULL)
22793 {
22794 unsigned int next_to_insert, next_to_check;
22795 offset_type last_value;
22796
22797 qsort (VEC_address (offset_type, entry->cu_indices),
22798 VEC_length (offset_type, entry->cu_indices),
22799 sizeof (offset_type), offset_type_compare);
22800
22801 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22802 next_to_insert = 1;
22803 for (next_to_check = 1;
22804 next_to_check < VEC_length (offset_type, entry->cu_indices);
22805 ++next_to_check)
22806 {
22807 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22808 != last_value)
22809 {
22810 last_value = VEC_index (offset_type, entry->cu_indices,
22811 next_to_check);
22812 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22813 last_value);
22814 ++next_to_insert;
22815 }
22816 }
22817 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22818 }
22819 }
22820 }
22821
22822 /* Add a vector of indices to the constant pool. */
22823
22824 static offset_type
22825 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22826 struct symtab_index_entry *entry)
22827 {
22828 void **slot;
22829
22830 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22831 if (!*slot)
22832 {
22833 offset_type len = VEC_length (offset_type, entry->cu_indices);
22834 offset_type val = MAYBE_SWAP (len);
22835 offset_type iter;
22836 int i;
22837
22838 *slot = entry;
22839 entry->index_offset = obstack_object_size (cpool);
22840
22841 obstack_grow (cpool, &val, sizeof (val));
22842 for (i = 0;
22843 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22844 ++i)
22845 {
22846 val = MAYBE_SWAP (iter);
22847 obstack_grow (cpool, &val, sizeof (val));
22848 }
22849 }
22850 else
22851 {
22852 struct symtab_index_entry *old_entry = *slot;
22853 entry->index_offset = old_entry->index_offset;
22854 entry = old_entry;
22855 }
22856 return entry->index_offset;
22857 }
22858
22859 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22860 constant pool entries going into the obstack CPOOL. */
22861
22862 static void
22863 write_hash_table (struct mapped_symtab *symtab,
22864 struct obstack *output, struct obstack *cpool)
22865 {
22866 offset_type i;
22867 htab_t symbol_hash_table;
22868 htab_t str_table;
22869
22870 symbol_hash_table = create_symbol_hash_table ();
22871 str_table = create_strtab ();
22872
22873 /* We add all the index vectors to the constant pool first, to
22874 ensure alignment is ok. */
22875 for (i = 0; i < symtab->size; ++i)
22876 {
22877 if (symtab->data[i])
22878 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22879 }
22880
22881 /* Now write out the hash table. */
22882 for (i = 0; i < symtab->size; ++i)
22883 {
22884 offset_type str_off, vec_off;
22885
22886 if (symtab->data[i])
22887 {
22888 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22889 vec_off = symtab->data[i]->index_offset;
22890 }
22891 else
22892 {
22893 /* While 0 is a valid constant pool index, it is not valid
22894 to have 0 for both offsets. */
22895 str_off = 0;
22896 vec_off = 0;
22897 }
22898
22899 str_off = MAYBE_SWAP (str_off);
22900 vec_off = MAYBE_SWAP (vec_off);
22901
22902 obstack_grow (output, &str_off, sizeof (str_off));
22903 obstack_grow (output, &vec_off, sizeof (vec_off));
22904 }
22905
22906 htab_delete (str_table);
22907 htab_delete (symbol_hash_table);
22908 }
22909
22910 /* Struct to map psymtab to CU index in the index file. */
22911 struct psymtab_cu_index_map
22912 {
22913 struct partial_symtab *psymtab;
22914 unsigned int cu_index;
22915 };
22916
22917 static hashval_t
22918 hash_psymtab_cu_index (const void *item)
22919 {
22920 const struct psymtab_cu_index_map *map = item;
22921
22922 return htab_hash_pointer (map->psymtab);
22923 }
22924
22925 static int
22926 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22927 {
22928 const struct psymtab_cu_index_map *lhs = item_lhs;
22929 const struct psymtab_cu_index_map *rhs = item_rhs;
22930
22931 return lhs->psymtab == rhs->psymtab;
22932 }
22933
22934 /* Helper struct for building the address table. */
22935 struct addrmap_index_data
22936 {
22937 struct objfile *objfile;
22938 struct obstack *addr_obstack;
22939 htab_t cu_index_htab;
22940
22941 /* Non-zero if the previous_* fields are valid.
22942 We can't write an entry until we see the next entry (since it is only then
22943 that we know the end of the entry). */
22944 int previous_valid;
22945 /* Index of the CU in the table of all CUs in the index file. */
22946 unsigned int previous_cu_index;
22947 /* Start address of the CU. */
22948 CORE_ADDR previous_cu_start;
22949 };
22950
22951 /* Write an address entry to OBSTACK. */
22952
22953 static void
22954 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22955 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22956 {
22957 offset_type cu_index_to_write;
22958 gdb_byte addr[8];
22959 CORE_ADDR baseaddr;
22960
22961 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22962
22963 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22964 obstack_grow (obstack, addr, 8);
22965 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22966 obstack_grow (obstack, addr, 8);
22967 cu_index_to_write = MAYBE_SWAP (cu_index);
22968 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22969 }
22970
22971 /* Worker function for traversing an addrmap to build the address table. */
22972
22973 static int
22974 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22975 {
22976 struct addrmap_index_data *data = datap;
22977 struct partial_symtab *pst = obj;
22978
22979 if (data->previous_valid)
22980 add_address_entry (data->objfile, data->addr_obstack,
22981 data->previous_cu_start, start_addr,
22982 data->previous_cu_index);
22983
22984 data->previous_cu_start = start_addr;
22985 if (pst != NULL)
22986 {
22987 struct psymtab_cu_index_map find_map, *map;
22988 find_map.psymtab = pst;
22989 map = htab_find (data->cu_index_htab, &find_map);
22990 gdb_assert (map != NULL);
22991 data->previous_cu_index = map->cu_index;
22992 data->previous_valid = 1;
22993 }
22994 else
22995 data->previous_valid = 0;
22996
22997 return 0;
22998 }
22999
23000 /* Write OBJFILE's address map to OBSTACK.
23001 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23002 in the index file. */
23003
23004 static void
23005 write_address_map (struct objfile *objfile, struct obstack *obstack,
23006 htab_t cu_index_htab)
23007 {
23008 struct addrmap_index_data addrmap_index_data;
23009
23010 /* When writing the address table, we have to cope with the fact that
23011 the addrmap iterator only provides the start of a region; we have to
23012 wait until the next invocation to get the start of the next region. */
23013
23014 addrmap_index_data.objfile = objfile;
23015 addrmap_index_data.addr_obstack = obstack;
23016 addrmap_index_data.cu_index_htab = cu_index_htab;
23017 addrmap_index_data.previous_valid = 0;
23018
23019 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23020 &addrmap_index_data);
23021
23022 /* It's highly unlikely the last entry (end address = 0xff...ff)
23023 is valid, but we should still handle it.
23024 The end address is recorded as the start of the next region, but that
23025 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23026 anyway. */
23027 if (addrmap_index_data.previous_valid)
23028 add_address_entry (objfile, obstack,
23029 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23030 addrmap_index_data.previous_cu_index);
23031 }
23032
23033 /* Return the symbol kind of PSYM. */
23034
23035 static gdb_index_symbol_kind
23036 symbol_kind (struct partial_symbol *psym)
23037 {
23038 domain_enum domain = PSYMBOL_DOMAIN (psym);
23039 enum address_class aclass = PSYMBOL_CLASS (psym);
23040
23041 switch (domain)
23042 {
23043 case VAR_DOMAIN:
23044 switch (aclass)
23045 {
23046 case LOC_BLOCK:
23047 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23048 case LOC_TYPEDEF:
23049 return GDB_INDEX_SYMBOL_KIND_TYPE;
23050 case LOC_COMPUTED:
23051 case LOC_CONST_BYTES:
23052 case LOC_OPTIMIZED_OUT:
23053 case LOC_STATIC:
23054 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23055 case LOC_CONST:
23056 /* Note: It's currently impossible to recognize psyms as enum values
23057 short of reading the type info. For now punt. */
23058 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23059 default:
23060 /* There are other LOC_FOO values that one might want to classify
23061 as variables, but dwarf2read.c doesn't currently use them. */
23062 return GDB_INDEX_SYMBOL_KIND_OTHER;
23063 }
23064 case STRUCT_DOMAIN:
23065 return GDB_INDEX_SYMBOL_KIND_TYPE;
23066 default:
23067 return GDB_INDEX_SYMBOL_KIND_OTHER;
23068 }
23069 }
23070
23071 /* Add a list of partial symbols to SYMTAB. */
23072
23073 static void
23074 write_psymbols (struct mapped_symtab *symtab,
23075 htab_t psyms_seen,
23076 struct partial_symbol **psymp,
23077 int count,
23078 offset_type cu_index,
23079 int is_static)
23080 {
23081 for (; count-- > 0; ++psymp)
23082 {
23083 struct partial_symbol *psym = *psymp;
23084 void **slot;
23085
23086 if (SYMBOL_LANGUAGE (psym) == language_ada)
23087 error (_("Ada is not currently supported by the index"));
23088
23089 /* Only add a given psymbol once. */
23090 slot = htab_find_slot (psyms_seen, psym, INSERT);
23091 if (!*slot)
23092 {
23093 gdb_index_symbol_kind kind = symbol_kind (psym);
23094
23095 *slot = psym;
23096 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23097 is_static, kind, cu_index);
23098 }
23099 }
23100 }
23101
23102 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23103 exception if there is an error. */
23104
23105 static void
23106 write_obstack (FILE *file, struct obstack *obstack)
23107 {
23108 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23109 file)
23110 != obstack_object_size (obstack))
23111 error (_("couldn't data write to file"));
23112 }
23113
23114 /* Unlink a file if the argument is not NULL. */
23115
23116 static void
23117 unlink_if_set (void *p)
23118 {
23119 char **filename = p;
23120 if (*filename)
23121 unlink (*filename);
23122 }
23123
23124 /* A helper struct used when iterating over debug_types. */
23125 struct signatured_type_index_data
23126 {
23127 struct objfile *objfile;
23128 struct mapped_symtab *symtab;
23129 struct obstack *types_list;
23130 htab_t psyms_seen;
23131 int cu_index;
23132 };
23133
23134 /* A helper function that writes a single signatured_type to an
23135 obstack. */
23136
23137 static int
23138 write_one_signatured_type (void **slot, void *d)
23139 {
23140 struct signatured_type_index_data *info = d;
23141 struct signatured_type *entry = (struct signatured_type *) *slot;
23142 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23143 gdb_byte val[8];
23144
23145 write_psymbols (info->symtab,
23146 info->psyms_seen,
23147 info->objfile->global_psymbols.list
23148 + psymtab->globals_offset,
23149 psymtab->n_global_syms, info->cu_index,
23150 0);
23151 write_psymbols (info->symtab,
23152 info->psyms_seen,
23153 info->objfile->static_psymbols.list
23154 + psymtab->statics_offset,
23155 psymtab->n_static_syms, info->cu_index,
23156 1);
23157
23158 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23159 entry->per_cu.offset.sect_off);
23160 obstack_grow (info->types_list, val, 8);
23161 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23162 entry->type_offset_in_tu.cu_off);
23163 obstack_grow (info->types_list, val, 8);
23164 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23165 obstack_grow (info->types_list, val, 8);
23166
23167 ++info->cu_index;
23168
23169 return 1;
23170 }
23171
23172 /* Recurse into all "included" dependencies and write their symbols as
23173 if they appeared in this psymtab. */
23174
23175 static void
23176 recursively_write_psymbols (struct objfile *objfile,
23177 struct partial_symtab *psymtab,
23178 struct mapped_symtab *symtab,
23179 htab_t psyms_seen,
23180 offset_type cu_index)
23181 {
23182 int i;
23183
23184 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23185 if (psymtab->dependencies[i]->user != NULL)
23186 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23187 symtab, psyms_seen, cu_index);
23188
23189 write_psymbols (symtab,
23190 psyms_seen,
23191 objfile->global_psymbols.list + psymtab->globals_offset,
23192 psymtab->n_global_syms, cu_index,
23193 0);
23194 write_psymbols (symtab,
23195 psyms_seen,
23196 objfile->static_psymbols.list + psymtab->statics_offset,
23197 psymtab->n_static_syms, cu_index,
23198 1);
23199 }
23200
23201 /* Create an index file for OBJFILE in the directory DIR. */
23202
23203 static void
23204 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23205 {
23206 struct cleanup *cleanup;
23207 char *filename, *cleanup_filename;
23208 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23209 struct obstack cu_list, types_cu_list;
23210 int i;
23211 FILE *out_file;
23212 struct mapped_symtab *symtab;
23213 offset_type val, size_of_contents, total_len;
23214 struct stat st;
23215 htab_t psyms_seen;
23216 htab_t cu_index_htab;
23217 struct psymtab_cu_index_map *psymtab_cu_index_map;
23218
23219 if (dwarf2_per_objfile->using_index)
23220 error (_("Cannot use an index to create the index"));
23221
23222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23223 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23224
23225 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23226 return;
23227
23228 if (stat (objfile_name (objfile), &st) < 0)
23229 perror_with_name (objfile_name (objfile));
23230
23231 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23232 INDEX_SUFFIX, (char *) NULL);
23233 cleanup = make_cleanup (xfree, filename);
23234
23235 out_file = gdb_fopen_cloexec (filename, "wb");
23236 if (!out_file)
23237 error (_("Can't open `%s' for writing"), filename);
23238
23239 cleanup_filename = filename;
23240 make_cleanup (unlink_if_set, &cleanup_filename);
23241
23242 symtab = create_mapped_symtab ();
23243 make_cleanup (cleanup_mapped_symtab, symtab);
23244
23245 obstack_init (&addr_obstack);
23246 make_cleanup_obstack_free (&addr_obstack);
23247
23248 obstack_init (&cu_list);
23249 make_cleanup_obstack_free (&cu_list);
23250
23251 obstack_init (&types_cu_list);
23252 make_cleanup_obstack_free (&types_cu_list);
23253
23254 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23255 NULL, xcalloc, xfree);
23256 make_cleanup_htab_delete (psyms_seen);
23257
23258 /* While we're scanning CU's create a table that maps a psymtab pointer
23259 (which is what addrmap records) to its index (which is what is recorded
23260 in the index file). This will later be needed to write the address
23261 table. */
23262 cu_index_htab = htab_create_alloc (100,
23263 hash_psymtab_cu_index,
23264 eq_psymtab_cu_index,
23265 NULL, xcalloc, xfree);
23266 make_cleanup_htab_delete (cu_index_htab);
23267 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23268 xmalloc (sizeof (struct psymtab_cu_index_map)
23269 * dwarf2_per_objfile->n_comp_units);
23270 make_cleanup (xfree, psymtab_cu_index_map);
23271
23272 /* The CU list is already sorted, so we don't need to do additional
23273 work here. Also, the debug_types entries do not appear in
23274 all_comp_units, but only in their own hash table. */
23275 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23276 {
23277 struct dwarf2_per_cu_data *per_cu
23278 = dwarf2_per_objfile->all_comp_units[i];
23279 struct partial_symtab *psymtab = per_cu->v.psymtab;
23280 gdb_byte val[8];
23281 struct psymtab_cu_index_map *map;
23282 void **slot;
23283
23284 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23285 It may be referenced from a local scope but in such case it does not
23286 need to be present in .gdb_index. */
23287 if (psymtab == NULL)
23288 continue;
23289
23290 if (psymtab->user == NULL)
23291 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23292
23293 map = &psymtab_cu_index_map[i];
23294 map->psymtab = psymtab;
23295 map->cu_index = i;
23296 slot = htab_find_slot (cu_index_htab, map, INSERT);
23297 gdb_assert (slot != NULL);
23298 gdb_assert (*slot == NULL);
23299 *slot = map;
23300
23301 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23302 per_cu->offset.sect_off);
23303 obstack_grow (&cu_list, val, 8);
23304 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23305 obstack_grow (&cu_list, val, 8);
23306 }
23307
23308 /* Dump the address map. */
23309 write_address_map (objfile, &addr_obstack, cu_index_htab);
23310
23311 /* Write out the .debug_type entries, if any. */
23312 if (dwarf2_per_objfile->signatured_types)
23313 {
23314 struct signatured_type_index_data sig_data;
23315
23316 sig_data.objfile = objfile;
23317 sig_data.symtab = symtab;
23318 sig_data.types_list = &types_cu_list;
23319 sig_data.psyms_seen = psyms_seen;
23320 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23321 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23322 write_one_signatured_type, &sig_data);
23323 }
23324
23325 /* Now that we've processed all symbols we can shrink their cu_indices
23326 lists. */
23327 uniquify_cu_indices (symtab);
23328
23329 obstack_init (&constant_pool);
23330 make_cleanup_obstack_free (&constant_pool);
23331 obstack_init (&symtab_obstack);
23332 make_cleanup_obstack_free (&symtab_obstack);
23333 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23334
23335 obstack_init (&contents);
23336 make_cleanup_obstack_free (&contents);
23337 size_of_contents = 6 * sizeof (offset_type);
23338 total_len = size_of_contents;
23339
23340 /* The version number. */
23341 val = MAYBE_SWAP (8);
23342 obstack_grow (&contents, &val, sizeof (val));
23343
23344 /* The offset of the CU list from the start of the file. */
23345 val = MAYBE_SWAP (total_len);
23346 obstack_grow (&contents, &val, sizeof (val));
23347 total_len += obstack_object_size (&cu_list);
23348
23349 /* The offset of the types CU list from the start of the file. */
23350 val = MAYBE_SWAP (total_len);
23351 obstack_grow (&contents, &val, sizeof (val));
23352 total_len += obstack_object_size (&types_cu_list);
23353
23354 /* The offset of the address table from the start of the file. */
23355 val = MAYBE_SWAP (total_len);
23356 obstack_grow (&contents, &val, sizeof (val));
23357 total_len += obstack_object_size (&addr_obstack);
23358
23359 /* The offset of the symbol table from the start of the file. */
23360 val = MAYBE_SWAP (total_len);
23361 obstack_grow (&contents, &val, sizeof (val));
23362 total_len += obstack_object_size (&symtab_obstack);
23363
23364 /* The offset of the constant pool from the start of the file. */
23365 val = MAYBE_SWAP (total_len);
23366 obstack_grow (&contents, &val, sizeof (val));
23367 total_len += obstack_object_size (&constant_pool);
23368
23369 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23370
23371 write_obstack (out_file, &contents);
23372 write_obstack (out_file, &cu_list);
23373 write_obstack (out_file, &types_cu_list);
23374 write_obstack (out_file, &addr_obstack);
23375 write_obstack (out_file, &symtab_obstack);
23376 write_obstack (out_file, &constant_pool);
23377
23378 fclose (out_file);
23379
23380 /* We want to keep the file, so we set cleanup_filename to NULL
23381 here. See unlink_if_set. */
23382 cleanup_filename = NULL;
23383
23384 do_cleanups (cleanup);
23385 }
23386
23387 /* Implementation of the `save gdb-index' command.
23388
23389 Note that the file format used by this command is documented in the
23390 GDB manual. Any changes here must be documented there. */
23391
23392 static void
23393 save_gdb_index_command (char *arg, int from_tty)
23394 {
23395 struct objfile *objfile;
23396
23397 if (!arg || !*arg)
23398 error (_("usage: save gdb-index DIRECTORY"));
23399
23400 ALL_OBJFILES (objfile)
23401 {
23402 struct stat st;
23403
23404 /* If the objfile does not correspond to an actual file, skip it. */
23405 if (stat (objfile_name (objfile), &st) < 0)
23406 continue;
23407
23408 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23409 if (dwarf2_per_objfile)
23410 {
23411
23412 TRY
23413 {
23414 write_psymtabs_to_index (objfile, arg);
23415 }
23416 CATCH (except, RETURN_MASK_ERROR)
23417 {
23418 exception_fprintf (gdb_stderr, except,
23419 _("Error while writing index for `%s': "),
23420 objfile_name (objfile));
23421 }
23422 END_CATCH
23423 }
23424 }
23425 }
23426
23427 \f
23428
23429 int dwarf_always_disassemble;
23430
23431 static void
23432 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23433 struct cmd_list_element *c, const char *value)
23434 {
23435 fprintf_filtered (file,
23436 _("Whether to always disassemble "
23437 "DWARF expressions is %s.\n"),
23438 value);
23439 }
23440
23441 static void
23442 show_check_physname (struct ui_file *file, int from_tty,
23443 struct cmd_list_element *c, const char *value)
23444 {
23445 fprintf_filtered (file,
23446 _("Whether to check \"physname\" is %s.\n"),
23447 value);
23448 }
23449
23450 void _initialize_dwarf2_read (void);
23451
23452 void
23453 _initialize_dwarf2_read (void)
23454 {
23455 struct cmd_list_element *c;
23456
23457 dwarf2_objfile_data_key
23458 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23459
23460 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23461 Set DWARF specific variables.\n\
23462 Configure DWARF variables such as the cache size"),
23463 &set_dwarf_cmdlist, "maintenance set dwarf ",
23464 0/*allow-unknown*/, &maintenance_set_cmdlist);
23465
23466 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23467 Show DWARF specific variables\n\
23468 Show DWARF variables such as the cache size"),
23469 &show_dwarf_cmdlist, "maintenance show dwarf ",
23470 0/*allow-unknown*/, &maintenance_show_cmdlist);
23471
23472 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23473 &dwarf_max_cache_age, _("\
23474 Set the upper bound on the age of cached DWARF compilation units."), _("\
23475 Show the upper bound on the age of cached DWARF compilation units."), _("\
23476 A higher limit means that cached compilation units will be stored\n\
23477 in memory longer, and more total memory will be used. Zero disables\n\
23478 caching, which can slow down startup."),
23479 NULL,
23480 show_dwarf_max_cache_age,
23481 &set_dwarf_cmdlist,
23482 &show_dwarf_cmdlist);
23483
23484 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23485 &dwarf_always_disassemble, _("\
23486 Set whether `info address' always disassembles DWARF expressions."), _("\
23487 Show whether `info address' always disassembles DWARF expressions."), _("\
23488 When enabled, DWARF expressions are always printed in an assembly-like\n\
23489 syntax. When disabled, expressions will be printed in a more\n\
23490 conversational style, when possible."),
23491 NULL,
23492 show_dwarf_always_disassemble,
23493 &set_dwarf_cmdlist,
23494 &show_dwarf_cmdlist);
23495
23496 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23497 Set debugging of the DWARF reader."), _("\
23498 Show debugging of the DWARF reader."), _("\
23499 When enabled (non-zero), debugging messages are printed during DWARF\n\
23500 reading and symtab expansion. A value of 1 (one) provides basic\n\
23501 information. A value greater than 1 provides more verbose information."),
23502 NULL,
23503 NULL,
23504 &setdebuglist, &showdebuglist);
23505
23506 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23507 Set debugging of the DWARF DIE reader."), _("\
23508 Show debugging of the DWARF DIE reader."), _("\
23509 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23510 The value is the maximum depth to print."),
23511 NULL,
23512 NULL,
23513 &setdebuglist, &showdebuglist);
23514
23515 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23516 Set debugging of the dwarf line reader."), _("\
23517 Show debugging of the dwarf line reader."), _("\
23518 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23519 A value of 1 (one) provides basic information.\n\
23520 A value greater than 1 provides more verbose information."),
23521 NULL,
23522 NULL,
23523 &setdebuglist, &showdebuglist);
23524
23525 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23526 Set cross-checking of \"physname\" code against demangler."), _("\
23527 Show cross-checking of \"physname\" code against demangler."), _("\
23528 When enabled, GDB's internal \"physname\" code is checked against\n\
23529 the demangler."),
23530 NULL, show_check_physname,
23531 &setdebuglist, &showdebuglist);
23532
23533 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23534 no_class, &use_deprecated_index_sections, _("\
23535 Set whether to use deprecated gdb_index sections."), _("\
23536 Show whether to use deprecated gdb_index sections."), _("\
23537 When enabled, deprecated .gdb_index sections are used anyway.\n\
23538 Normally they are ignored either because of a missing feature or\n\
23539 performance issue.\n\
23540 Warning: This option must be enabled before gdb reads the file."),
23541 NULL,
23542 NULL,
23543 &setlist, &showlist);
23544
23545 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23546 _("\
23547 Save a gdb-index file.\n\
23548 Usage: save gdb-index DIRECTORY"),
23549 &save_cmdlist);
23550 set_cmd_completer (c, filename_completer);
23551
23552 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23553 &dwarf2_locexpr_funcs);
23554 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23555 &dwarf2_loclist_funcs);
23556
23557 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23558 &dwarf2_block_frame_base_locexpr_funcs);
23559 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23560 &dwarf2_block_frame_base_loclist_funcs);
23561 }
This page took 0.918144 seconds and 4 git commands to generate.