AArch64: Add MOVPRFX tests and update testsuite
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
555
556 /* When set, the file that we're processing is known to have
557 debugging info for C++ namespaces. GCC 3.3.x did not produce
558 this information, but later versions do. */
559
560 unsigned int processing_has_namespace_info : 1;
561
562 struct partial_die_info *find_partial_die (sect_offset sect_off);
563 };
564
565 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
566 This includes type_unit_group and quick_file_names. */
567
568 struct stmt_list_hash
569 {
570 /* The DWO unit this table is from or NULL if there is none. */
571 struct dwo_unit *dwo_unit;
572
573 /* Offset in .debug_line or .debug_line.dwo. */
574 sect_offset line_sect_off;
575 };
576
577 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
578 an object of this type. */
579
580 struct type_unit_group
581 {
582 /* dwarf2read.c's main "handle" on a TU symtab.
583 To simplify things we create an artificial CU that "includes" all the
584 type units using this stmt_list so that the rest of the code still has
585 a "per_cu" handle on the symtab.
586 This PER_CU is recognized by having no section. */
587 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
588 struct dwarf2_per_cu_data per_cu;
589
590 /* The TUs that share this DW_AT_stmt_list entry.
591 This is added to while parsing type units to build partial symtabs,
592 and is deleted afterwards and not used again. */
593 VEC (sig_type_ptr) *tus;
594
595 /* The compunit symtab.
596 Type units in a group needn't all be defined in the same source file,
597 so we create an essentially anonymous symtab as the compunit symtab. */
598 struct compunit_symtab *compunit_symtab;
599
600 /* The data used to construct the hash key. */
601 struct stmt_list_hash hash;
602
603 /* The number of symtabs from the line header.
604 The value here must match line_header.num_file_names. */
605 unsigned int num_symtabs;
606
607 /* The symbol tables for this TU (obtained from the files listed in
608 DW_AT_stmt_list).
609 WARNING: The order of entries here must match the order of entries
610 in the line header. After the first TU using this type_unit_group, the
611 line header for the subsequent TUs is recreated from this. This is done
612 because we need to use the same symtabs for each TU using the same
613 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
614 there's no guarantee the line header doesn't have duplicate entries. */
615 struct symtab **symtabs;
616 };
617
618 /* These sections are what may appear in a (real or virtual) DWO file. */
619
620 struct dwo_sections
621 {
622 struct dwarf2_section_info abbrev;
623 struct dwarf2_section_info line;
624 struct dwarf2_section_info loc;
625 struct dwarf2_section_info loclists;
626 struct dwarf2_section_info macinfo;
627 struct dwarf2_section_info macro;
628 struct dwarf2_section_info str;
629 struct dwarf2_section_info str_offsets;
630 /* In the case of a virtual DWO file, these two are unused. */
631 struct dwarf2_section_info info;
632 VEC (dwarf2_section_info_def) *types;
633 };
634
635 /* CUs/TUs in DWP/DWO files. */
636
637 struct dwo_unit
638 {
639 /* Backlink to the containing struct dwo_file. */
640 struct dwo_file *dwo_file;
641
642 /* The "id" that distinguishes this CU/TU.
643 .debug_info calls this "dwo_id", .debug_types calls this "signature".
644 Since signatures came first, we stick with it for consistency. */
645 ULONGEST signature;
646
647 /* The section this CU/TU lives in, in the DWO file. */
648 struct dwarf2_section_info *section;
649
650 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
651 sect_offset sect_off;
652 unsigned int length;
653
654 /* For types, offset in the type's DIE of the type defined by this TU. */
655 cu_offset type_offset_in_tu;
656 };
657
658 /* include/dwarf2.h defines the DWP section codes.
659 It defines a max value but it doesn't define a min value, which we
660 use for error checking, so provide one. */
661
662 enum dwp_v2_section_ids
663 {
664 DW_SECT_MIN = 1
665 };
666
667 /* Data for one DWO file.
668
669 This includes virtual DWO files (a virtual DWO file is a DWO file as it
670 appears in a DWP file). DWP files don't really have DWO files per se -
671 comdat folding of types "loses" the DWO file they came from, and from
672 a high level view DWP files appear to contain a mass of random types.
673 However, to maintain consistency with the non-DWP case we pretend DWP
674 files contain virtual DWO files, and we assign each TU with one virtual
675 DWO file (generally based on the line and abbrev section offsets -
676 a heuristic that seems to work in practice). */
677
678 struct dwo_file
679 {
680 /* The DW_AT_GNU_dwo_name attribute.
681 For virtual DWO files the name is constructed from the section offsets
682 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
683 from related CU+TUs. */
684 const char *dwo_name;
685
686 /* The DW_AT_comp_dir attribute. */
687 const char *comp_dir;
688
689 /* The bfd, when the file is open. Otherwise this is NULL.
690 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
691 bfd *dbfd;
692
693 /* The sections that make up this DWO file.
694 Remember that for virtual DWO files in DWP V2, these are virtual
695 sections (for lack of a better name). */
696 struct dwo_sections sections;
697
698 /* The CUs in the file.
699 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
700 an extension to handle LLVM's Link Time Optimization output (where
701 multiple source files may be compiled into a single object/dwo pair). */
702 htab_t cus;
703
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
706 htab_t tus;
707 };
708
709 /* These sections are what may appear in a DWP file. */
710
711 struct dwp_sections
712 {
713 /* These are used by both DWP version 1 and 2. */
714 struct dwarf2_section_info str;
715 struct dwarf2_section_info cu_index;
716 struct dwarf2_section_info tu_index;
717
718 /* These are only used by DWP version 2 files.
719 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
720 sections are referenced by section number, and are not recorded here.
721 In DWP version 2 there is at most one copy of all these sections, each
722 section being (effectively) comprised of the concatenation of all of the
723 individual sections that exist in the version 1 format.
724 To keep the code simple we treat each of these concatenated pieces as a
725 section itself (a virtual section?). */
726 struct dwarf2_section_info abbrev;
727 struct dwarf2_section_info info;
728 struct dwarf2_section_info line;
729 struct dwarf2_section_info loc;
730 struct dwarf2_section_info macinfo;
731 struct dwarf2_section_info macro;
732 struct dwarf2_section_info str_offsets;
733 struct dwarf2_section_info types;
734 };
735
736 /* These sections are what may appear in a virtual DWO file in DWP version 1.
737 A virtual DWO file is a DWO file as it appears in a DWP file. */
738
739 struct virtual_v1_dwo_sections
740 {
741 struct dwarf2_section_info abbrev;
742 struct dwarf2_section_info line;
743 struct dwarf2_section_info loc;
744 struct dwarf2_section_info macinfo;
745 struct dwarf2_section_info macro;
746 struct dwarf2_section_info str_offsets;
747 /* Each DWP hash table entry records one CU or one TU.
748 That is recorded here, and copied to dwo_unit.section. */
749 struct dwarf2_section_info info_or_types;
750 };
751
752 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
753 In version 2, the sections of the DWO files are concatenated together
754 and stored in one section of that name. Thus each ELF section contains
755 several "virtual" sections. */
756
757 struct virtual_v2_dwo_sections
758 {
759 bfd_size_type abbrev_offset;
760 bfd_size_type abbrev_size;
761
762 bfd_size_type line_offset;
763 bfd_size_type line_size;
764
765 bfd_size_type loc_offset;
766 bfd_size_type loc_size;
767
768 bfd_size_type macinfo_offset;
769 bfd_size_type macinfo_size;
770
771 bfd_size_type macro_offset;
772 bfd_size_type macro_size;
773
774 bfd_size_type str_offsets_offset;
775 bfd_size_type str_offsets_size;
776
777 /* Each DWP hash table entry records one CU or one TU.
778 That is recorded here, and copied to dwo_unit.section. */
779 bfd_size_type info_or_types_offset;
780 bfd_size_type info_or_types_size;
781 };
782
783 /* Contents of DWP hash tables. */
784
785 struct dwp_hash_table
786 {
787 uint32_t version, nr_columns;
788 uint32_t nr_units, nr_slots;
789 const gdb_byte *hash_table, *unit_table;
790 union
791 {
792 struct
793 {
794 const gdb_byte *indices;
795 } v1;
796 struct
797 {
798 /* This is indexed by column number and gives the id of the section
799 in that column. */
800 #define MAX_NR_V2_DWO_SECTIONS \
801 (1 /* .debug_info or .debug_types */ \
802 + 1 /* .debug_abbrev */ \
803 + 1 /* .debug_line */ \
804 + 1 /* .debug_loc */ \
805 + 1 /* .debug_str_offsets */ \
806 + 1 /* .debug_macro or .debug_macinfo */)
807 int section_ids[MAX_NR_V2_DWO_SECTIONS];
808 const gdb_byte *offsets;
809 const gdb_byte *sizes;
810 } v2;
811 } section_pool;
812 };
813
814 /* Data for one DWP file. */
815
816 struct dwp_file
817 {
818 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
819 : name (name_),
820 dbfd (std::move (abfd))
821 {
822 }
823
824 /* Name of the file. */
825 const char *name;
826
827 /* File format version. */
828 int version = 0;
829
830 /* The bfd. */
831 gdb_bfd_ref_ptr dbfd;
832
833 /* Section info for this file. */
834 struct dwp_sections sections {};
835
836 /* Table of CUs in the file. */
837 const struct dwp_hash_table *cus = nullptr;
838
839 /* Table of TUs in the file. */
840 const struct dwp_hash_table *tus = nullptr;
841
842 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
843 htab_t loaded_cus {};
844 htab_t loaded_tus {};
845
846 /* Table to map ELF section numbers to their sections.
847 This is only needed for the DWP V1 file format. */
848 unsigned int num_sections = 0;
849 asection **elf_sections = nullptr;
850 };
851
852 /* This represents a '.dwz' file. */
853
854 struct dwz_file
855 {
856 dwz_file (gdb_bfd_ref_ptr &&bfd)
857 : dwz_bfd (std::move (bfd))
858 {
859 }
860
861 /* A dwz file can only contain a few sections. */
862 struct dwarf2_section_info abbrev {};
863 struct dwarf2_section_info info {};
864 struct dwarf2_section_info str {};
865 struct dwarf2_section_info line {};
866 struct dwarf2_section_info macro {};
867 struct dwarf2_section_info gdb_index {};
868 struct dwarf2_section_info debug_names {};
869
870 /* The dwz's BFD. */
871 gdb_bfd_ref_ptr dwz_bfd;
872
873 /* If we loaded the index from an external file, this contains the
874 resources associated to the open file, memory mapping, etc. */
875 std::unique_ptr<index_cache_resource> index_cache_res;
876 };
877
878 /* Struct used to pass misc. parameters to read_die_and_children, et
879 al. which are used for both .debug_info and .debug_types dies.
880 All parameters here are unchanging for the life of the call. This
881 struct exists to abstract away the constant parameters of die reading. */
882
883 struct die_reader_specs
884 {
885 /* The bfd of die_section. */
886 bfd* abfd;
887
888 /* The CU of the DIE we are parsing. */
889 struct dwarf2_cu *cu;
890
891 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
892 struct dwo_file *dwo_file;
893
894 /* The section the die comes from.
895 This is either .debug_info or .debug_types, or the .dwo variants. */
896 struct dwarf2_section_info *die_section;
897
898 /* die_section->buffer. */
899 const gdb_byte *buffer;
900
901 /* The end of the buffer. */
902 const gdb_byte *buffer_end;
903
904 /* The value of the DW_AT_comp_dir attribute. */
905 const char *comp_dir;
906
907 /* The abbreviation table to use when reading the DIEs. */
908 struct abbrev_table *abbrev_table;
909 };
910
911 /* Type of function passed to init_cutu_and_read_dies, et.al. */
912 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
913 const gdb_byte *info_ptr,
914 struct die_info *comp_unit_die,
915 int has_children,
916 void *data);
917
918 /* A 1-based directory index. This is a strong typedef to prevent
919 accidentally using a directory index as a 0-based index into an
920 array/vector. */
921 enum class dir_index : unsigned int {};
922
923 /* Likewise, a 1-based file name index. */
924 enum class file_name_index : unsigned int {};
925
926 struct file_entry
927 {
928 file_entry () = default;
929
930 file_entry (const char *name_, dir_index d_index_,
931 unsigned int mod_time_, unsigned int length_)
932 : name (name_),
933 d_index (d_index_),
934 mod_time (mod_time_),
935 length (length_)
936 {}
937
938 /* Return the include directory at D_INDEX stored in LH. Returns
939 NULL if D_INDEX is out of bounds. */
940 const char *include_dir (const line_header *lh) const;
941
942 /* The file name. Note this is an observing pointer. The memory is
943 owned by debug_line_buffer. */
944 const char *name {};
945
946 /* The directory index (1-based). */
947 dir_index d_index {};
948
949 unsigned int mod_time {};
950
951 unsigned int length {};
952
953 /* True if referenced by the Line Number Program. */
954 bool included_p {};
955
956 /* The associated symbol table, if any. */
957 struct symtab *symtab {};
958 };
959
960 /* The line number information for a compilation unit (found in the
961 .debug_line section) begins with a "statement program header",
962 which contains the following information. */
963 struct line_header
964 {
965 line_header ()
966 : offset_in_dwz {}
967 {}
968
969 /* Add an entry to the include directory table. */
970 void add_include_dir (const char *include_dir);
971
972 /* Add an entry to the file name table. */
973 void add_file_name (const char *name, dir_index d_index,
974 unsigned int mod_time, unsigned int length);
975
976 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
977 is out of bounds. */
978 const char *include_dir_at (dir_index index) const
979 {
980 /* Convert directory index number (1-based) to vector index
981 (0-based). */
982 size_t vec_index = to_underlying (index) - 1;
983
984 if (vec_index >= include_dirs.size ())
985 return NULL;
986 return include_dirs[vec_index];
987 }
988
989 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
990 is out of bounds. */
991 file_entry *file_name_at (file_name_index index)
992 {
993 /* Convert file name index number (1-based) to vector index
994 (0-based). */
995 size_t vec_index = to_underlying (index) - 1;
996
997 if (vec_index >= file_names.size ())
998 return NULL;
999 return &file_names[vec_index];
1000 }
1001
1002 /* Const version of the above. */
1003 const file_entry *file_name_at (unsigned int index) const
1004 {
1005 if (index >= file_names.size ())
1006 return NULL;
1007 return &file_names[index];
1008 }
1009
1010 /* Offset of line number information in .debug_line section. */
1011 sect_offset sect_off {};
1012
1013 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1014 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1015
1016 unsigned int total_length {};
1017 unsigned short version {};
1018 unsigned int header_length {};
1019 unsigned char minimum_instruction_length {};
1020 unsigned char maximum_ops_per_instruction {};
1021 unsigned char default_is_stmt {};
1022 int line_base {};
1023 unsigned char line_range {};
1024 unsigned char opcode_base {};
1025
1026 /* standard_opcode_lengths[i] is the number of operands for the
1027 standard opcode whose value is i. This means that
1028 standard_opcode_lengths[0] is unused, and the last meaningful
1029 element is standard_opcode_lengths[opcode_base - 1]. */
1030 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1031
1032 /* The include_directories table. Note these are observing
1033 pointers. The memory is owned by debug_line_buffer. */
1034 std::vector<const char *> include_dirs;
1035
1036 /* The file_names table. */
1037 std::vector<file_entry> file_names;
1038
1039 /* The start and end of the statement program following this
1040 header. These point into dwarf2_per_objfile->line_buffer. */
1041 const gdb_byte *statement_program_start {}, *statement_program_end {};
1042 };
1043
1044 typedef std::unique_ptr<line_header> line_header_up;
1045
1046 const char *
1047 file_entry::include_dir (const line_header *lh) const
1048 {
1049 return lh->include_dir_at (d_index);
1050 }
1051
1052 /* When we construct a partial symbol table entry we only
1053 need this much information. */
1054 struct partial_die_info : public allocate_on_obstack
1055 {
1056 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1057
1058 /* Disable assign but still keep copy ctor, which is needed
1059 load_partial_dies. */
1060 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1061
1062 /* Adjust the partial die before generating a symbol for it. This
1063 function may set the is_external flag or change the DIE's
1064 name. */
1065 void fixup (struct dwarf2_cu *cu);
1066
1067 /* Read a minimal amount of information into the minimal die
1068 structure. */
1069 const gdb_byte *read (const struct die_reader_specs *reader,
1070 const struct abbrev_info &abbrev,
1071 const gdb_byte *info_ptr);
1072
1073 /* Offset of this DIE. */
1074 const sect_offset sect_off;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 const unsigned int has_children : 1;
1081
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1088
1089 /* This DIE has been marked DW_AT_main_subprogram. */
1090 unsigned int main_subprogram : 1;
1091
1092 /* Flag set if the SCOPE field of this structure has been
1093 computed. */
1094 unsigned int scope_set : 1;
1095
1096 /* Flag set if the DIE has a byte_size attribute. */
1097 unsigned int has_byte_size : 1;
1098
1099 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1100 unsigned int has_const_value : 1;
1101
1102 /* Flag set if any of the DIE's children are template arguments. */
1103 unsigned int has_template_arguments : 1;
1104
1105 /* Flag set if fixup has been called on this die. */
1106 unsigned int fixup_called : 1;
1107
1108 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1109 unsigned int is_dwz : 1;
1110
1111 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1112 unsigned int spec_is_dwz : 1;
1113
1114 /* The name of this DIE. Normally the value of DW_AT_name, but
1115 sometimes a default name for unnamed DIEs. */
1116 const char *name = nullptr;
1117
1118 /* The linkage name, if present. */
1119 const char *linkage_name = nullptr;
1120
1121 /* The scope to prepend to our children. This is generally
1122 allocated on the comp_unit_obstack, so will disappear
1123 when this compilation unit leaves the cache. */
1124 const char *scope = nullptr;
1125
1126 /* Some data associated with the partial DIE. The tag determines
1127 which field is live. */
1128 union
1129 {
1130 /* The location description associated with this DIE, if any. */
1131 struct dwarf_block *locdesc;
1132 /* The offset of an import, for DW_TAG_imported_unit. */
1133 sect_offset sect_off;
1134 } d {};
1135
1136 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1137 CORE_ADDR lowpc = 0;
1138 CORE_ADDR highpc = 0;
1139
1140 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1141 DW_AT_sibling, if any. */
1142 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1143 could return DW_AT_sibling values to its caller load_partial_dies. */
1144 const gdb_byte *sibling = nullptr;
1145
1146 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1147 DW_AT_specification (or DW_AT_abstract_origin or
1148 DW_AT_extension). */
1149 sect_offset spec_offset {};
1150
1151 /* Pointers to this DIE's parent, first child, and next sibling,
1152 if any. */
1153 struct partial_die_info *die_parent = nullptr;
1154 struct partial_die_info *die_child = nullptr;
1155 struct partial_die_info *die_sibling = nullptr;
1156
1157 friend struct partial_die_info *
1158 dwarf2_cu::find_partial_die (sect_offset sect_off);
1159
1160 private:
1161 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1162 partial_die_info (sect_offset sect_off)
1163 : partial_die_info (sect_off, DW_TAG_padding, 0)
1164 {
1165 }
1166
1167 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1168 int has_children_)
1169 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1170 {
1171 is_external = 0;
1172 is_declaration = 0;
1173 has_type = 0;
1174 has_specification = 0;
1175 has_pc_info = 0;
1176 may_be_inlined = 0;
1177 main_subprogram = 0;
1178 scope_set = 0;
1179 has_byte_size = 0;
1180 has_const_value = 0;
1181 has_template_arguments = 0;
1182 fixup_called = 0;
1183 is_dwz = 0;
1184 spec_is_dwz = 0;
1185 }
1186 };
1187
1188 /* This data structure holds the information of an abbrev. */
1189 struct abbrev_info
1190 {
1191 unsigned int number; /* number identifying abbrev */
1192 enum dwarf_tag tag; /* dwarf tag */
1193 unsigned short has_children; /* boolean */
1194 unsigned short num_attrs; /* number of attributes */
1195 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1196 struct abbrev_info *next; /* next in chain */
1197 };
1198
1199 struct attr_abbrev
1200 {
1201 ENUM_BITFIELD(dwarf_attribute) name : 16;
1202 ENUM_BITFIELD(dwarf_form) form : 16;
1203
1204 /* It is valid only if FORM is DW_FORM_implicit_const. */
1205 LONGEST implicit_const;
1206 };
1207
1208 /* Size of abbrev_table.abbrev_hash_table. */
1209 #define ABBREV_HASH_SIZE 121
1210
1211 /* Top level data structure to contain an abbreviation table. */
1212
1213 struct abbrev_table
1214 {
1215 explicit abbrev_table (sect_offset off)
1216 : sect_off (off)
1217 {
1218 m_abbrevs =
1219 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1220 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1221 }
1222
1223 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1224
1225 /* Allocate space for a struct abbrev_info object in
1226 ABBREV_TABLE. */
1227 struct abbrev_info *alloc_abbrev ();
1228
1229 /* Add an abbreviation to the table. */
1230 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1231
1232 /* Look up an abbrev in the table.
1233 Returns NULL if the abbrev is not found. */
1234
1235 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1236
1237
1238 /* Where the abbrev table came from.
1239 This is used as a sanity check when the table is used. */
1240 const sect_offset sect_off;
1241
1242 /* Storage for the abbrev table. */
1243 auto_obstack abbrev_obstack;
1244
1245 private:
1246
1247 /* Hash table of abbrevs.
1248 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1249 It could be statically allocated, but the previous code didn't so we
1250 don't either. */
1251 struct abbrev_info **m_abbrevs;
1252 };
1253
1254 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1255
1256 /* Attributes have a name and a value. */
1257 struct attribute
1258 {
1259 ENUM_BITFIELD(dwarf_attribute) name : 16;
1260 ENUM_BITFIELD(dwarf_form) form : 15;
1261
1262 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1263 field should be in u.str (existing only for DW_STRING) but it is kept
1264 here for better struct attribute alignment. */
1265 unsigned int string_is_canonical : 1;
1266
1267 union
1268 {
1269 const char *str;
1270 struct dwarf_block *blk;
1271 ULONGEST unsnd;
1272 LONGEST snd;
1273 CORE_ADDR addr;
1274 ULONGEST signature;
1275 }
1276 u;
1277 };
1278
1279 /* This data structure holds a complete die structure. */
1280 struct die_info
1281 {
1282 /* DWARF-2 tag for this DIE. */
1283 ENUM_BITFIELD(dwarf_tag) tag : 16;
1284
1285 /* Number of attributes */
1286 unsigned char num_attrs;
1287
1288 /* True if we're presently building the full type name for the
1289 type derived from this DIE. */
1290 unsigned char building_fullname : 1;
1291
1292 /* True if this die is in process. PR 16581. */
1293 unsigned char in_process : 1;
1294
1295 /* Abbrev number */
1296 unsigned int abbrev;
1297
1298 /* Offset in .debug_info or .debug_types section. */
1299 sect_offset sect_off;
1300
1301 /* The dies in a compilation unit form an n-ary tree. PARENT
1302 points to this die's parent; CHILD points to the first child of
1303 this node; and all the children of a given node are chained
1304 together via their SIBLING fields. */
1305 struct die_info *child; /* Its first child, if any. */
1306 struct die_info *sibling; /* Its next sibling, if any. */
1307 struct die_info *parent; /* Its parent, if any. */
1308
1309 /* An array of attributes, with NUM_ATTRS elements. There may be
1310 zero, but it's not common and zero-sized arrays are not
1311 sufficiently portable C. */
1312 struct attribute attrs[1];
1313 };
1314
1315 /* Get at parts of an attribute structure. */
1316
1317 #define DW_STRING(attr) ((attr)->u.str)
1318 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1319 #define DW_UNSND(attr) ((attr)->u.unsnd)
1320 #define DW_BLOCK(attr) ((attr)->u.blk)
1321 #define DW_SND(attr) ((attr)->u.snd)
1322 #define DW_ADDR(attr) ((attr)->u.addr)
1323 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1324
1325 /* Blocks are a bunch of untyped bytes. */
1326 struct dwarf_block
1327 {
1328 size_t size;
1329
1330 /* Valid only if SIZE is not zero. */
1331 const gdb_byte *data;
1332 };
1333
1334 #ifndef ATTR_ALLOC_CHUNK
1335 #define ATTR_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* Allocate fields for structs, unions and enums in this size. */
1339 #ifndef DW_FIELD_ALLOC_CHUNK
1340 #define DW_FIELD_ALLOC_CHUNK 4
1341 #endif
1342
1343 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1344 but this would require a corresponding change in unpack_field_as_long
1345 and friends. */
1346 static int bits_per_byte = 8;
1347
1348 /* When reading a variant or variant part, we track a bit more
1349 information about the field, and store it in an object of this
1350 type. */
1351
1352 struct variant_field
1353 {
1354 /* If we see a DW_TAG_variant, then this will be the discriminant
1355 value. */
1356 ULONGEST discriminant_value;
1357 /* If we see a DW_TAG_variant, then this will be set if this is the
1358 default branch. */
1359 bool default_branch;
1360 /* While reading a DW_TAG_variant_part, this will be set if this
1361 field is the discriminant. */
1362 bool is_discriminant;
1363 };
1364
1365 struct nextfield
1366 {
1367 int accessibility = 0;
1368 int virtuality = 0;
1369 /* Extra information to describe a variant or variant part. */
1370 struct variant_field variant {};
1371 struct field field {};
1372 };
1373
1374 struct fnfieldlist
1375 {
1376 const char *name = nullptr;
1377 std::vector<struct fn_field> fnfields;
1378 };
1379
1380 /* The routines that read and process dies for a C struct or C++ class
1381 pass lists of data member fields and lists of member function fields
1382 in an instance of a field_info structure, as defined below. */
1383 struct field_info
1384 {
1385 /* List of data member and baseclasses fields. */
1386 std::vector<struct nextfield> fields;
1387 std::vector<struct nextfield> baseclasses;
1388
1389 /* Number of fields (including baseclasses). */
1390 int nfields = 0;
1391
1392 /* Set if the accesibility of one of the fields is not public. */
1393 int non_public_fields = 0;
1394
1395 /* Member function fieldlist array, contains name of possibly overloaded
1396 member function, number of overloaded member functions and a pointer
1397 to the head of the member function field chain. */
1398 std::vector<struct fnfieldlist> fnfieldlists;
1399
1400 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1401 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1402 std::vector<struct decl_field> typedef_field_list;
1403
1404 /* Nested types defined by this class and the number of elements in this
1405 list. */
1406 std::vector<struct decl_field> nested_types_list;
1407 };
1408
1409 /* One item on the queue of compilation units to read in full symbols
1410 for. */
1411 struct dwarf2_queue_item
1412 {
1413 struct dwarf2_per_cu_data *per_cu;
1414 enum language pretend_language;
1415 struct dwarf2_queue_item *next;
1416 };
1417
1418 /* The current queue. */
1419 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1420
1421 /* Loaded secondary compilation units are kept in memory until they
1422 have not been referenced for the processing of this many
1423 compilation units. Set this to zero to disable caching. Cache
1424 sizes of up to at least twenty will improve startup time for
1425 typical inter-CU-reference binaries, at an obvious memory cost. */
1426 static int dwarf_max_cache_age = 5;
1427 static void
1428 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1429 struct cmd_list_element *c, const char *value)
1430 {
1431 fprintf_filtered (file, _("The upper bound on the age of cached "
1432 "DWARF compilation units is %s.\n"),
1433 value);
1434 }
1435 \f
1436 /* local function prototypes */
1437
1438 static const char *get_section_name (const struct dwarf2_section_info *);
1439
1440 static const char *get_section_file_name (const struct dwarf2_section_info *);
1441
1442 static void dwarf2_find_base_address (struct die_info *die,
1443 struct dwarf2_cu *cu);
1444
1445 static struct partial_symtab *create_partial_symtab
1446 (struct dwarf2_per_cu_data *per_cu, const char *name);
1447
1448 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1449 const gdb_byte *info_ptr,
1450 struct die_info *type_unit_die,
1451 int has_children, void *data);
1452
1453 static void dwarf2_build_psymtabs_hard
1454 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1455
1456 static void scan_partial_symbols (struct partial_die_info *,
1457 CORE_ADDR *, CORE_ADDR *,
1458 int, struct dwarf2_cu *);
1459
1460 static void add_partial_symbol (struct partial_die_info *,
1461 struct dwarf2_cu *);
1462
1463 static void add_partial_namespace (struct partial_die_info *pdi,
1464 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1465 int set_addrmap, struct dwarf2_cu *cu);
1466
1467 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1468 CORE_ADDR *highpc, int set_addrmap,
1469 struct dwarf2_cu *cu);
1470
1471 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1472 struct dwarf2_cu *cu);
1473
1474 static void add_partial_subprogram (struct partial_die_info *pdi,
1475 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1476 int need_pc, struct dwarf2_cu *cu);
1477
1478 static void dwarf2_read_symtab (struct partial_symtab *,
1479 struct objfile *);
1480
1481 static void psymtab_to_symtab_1 (struct partial_symtab *);
1482
1483 static abbrev_table_up abbrev_table_read_table
1484 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1485 sect_offset);
1486
1487 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1488
1489 static struct partial_die_info *load_partial_dies
1490 (const struct die_reader_specs *, const gdb_byte *, int);
1491
1492 static struct partial_die_info *find_partial_die (sect_offset, int,
1493 struct dwarf2_cu *);
1494
1495 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1496 struct attribute *, struct attr_abbrev *,
1497 const gdb_byte *);
1498
1499 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1500
1501 static int read_1_signed_byte (bfd *, const gdb_byte *);
1502
1503 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1506
1507 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1508
1509 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1510 unsigned int *);
1511
1512 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1513
1514 static LONGEST read_checked_initial_length_and_offset
1515 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1516 unsigned int *, unsigned int *);
1517
1518 static LONGEST read_offset (bfd *, const gdb_byte *,
1519 const struct comp_unit_head *,
1520 unsigned int *);
1521
1522 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1523
1524 static sect_offset read_abbrev_offset
1525 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1526 struct dwarf2_section_info *, sect_offset);
1527
1528 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1529
1530 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1531
1532 static const char *read_indirect_string
1533 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1534 const struct comp_unit_head *, unsigned int *);
1535
1536 static const char *read_indirect_line_string
1537 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1538 const struct comp_unit_head *, unsigned int *);
1539
1540 static const char *read_indirect_string_at_offset
1541 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1542 LONGEST str_offset);
1543
1544 static const char *read_indirect_string_from_dwz
1545 (struct objfile *objfile, struct dwz_file *, LONGEST);
1546
1547 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1548
1549 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1550 const gdb_byte *,
1551 unsigned int *);
1552
1553 static const char *read_str_index (const struct die_reader_specs *reader,
1554 ULONGEST str_index);
1555
1556 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1557
1558 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1559 struct dwarf2_cu *);
1560
1561 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1562 unsigned int);
1563
1564 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1565 struct dwarf2_cu *cu);
1566
1567 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1568 struct dwarf2_cu *cu);
1569
1570 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1571
1572 static struct die_info *die_specification (struct die_info *die,
1573 struct dwarf2_cu **);
1574
1575 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1576 struct dwarf2_cu *cu);
1577
1578 static void dwarf_decode_lines (struct line_header *, const char *,
1579 struct dwarf2_cu *, struct partial_symtab *,
1580 CORE_ADDR, int decode_mapping);
1581
1582 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1583 const char *);
1584
1585 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1586 const char *, const char *,
1587 CORE_ADDR);
1588
1589 static struct symbol *new_symbol (struct die_info *, struct type *,
1590 struct dwarf2_cu *, struct symbol * = NULL);
1591
1592 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1593 struct dwarf2_cu *);
1594
1595 static void dwarf2_const_value_attr (const struct attribute *attr,
1596 struct type *type,
1597 const char *name,
1598 struct obstack *obstack,
1599 struct dwarf2_cu *cu, LONGEST *value,
1600 const gdb_byte **bytes,
1601 struct dwarf2_locexpr_baton **baton);
1602
1603 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1604
1605 static int need_gnat_info (struct dwarf2_cu *);
1606
1607 static struct type *die_descriptive_type (struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void set_descriptive_type (struct type *, struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static struct type *die_containing_type (struct die_info *,
1614 struct dwarf2_cu *);
1615
1616 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1617 struct dwarf2_cu *);
1618
1619 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1620
1621 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1622
1623 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1624
1625 static char *typename_concat (struct obstack *obs, const char *prefix,
1626 const char *suffix, int physname,
1627 struct dwarf2_cu *cu);
1628
1629 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1630
1631 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1638
1639 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1642 struct dwarf2_cu *, struct partial_symtab *);
1643
1644 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1645 values. Keep the items ordered with increasing constraints compliance. */
1646 enum pc_bounds_kind
1647 {
1648 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1649 PC_BOUNDS_NOT_PRESENT,
1650
1651 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1652 were present but they do not form a valid range of PC addresses. */
1653 PC_BOUNDS_INVALID,
1654
1655 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1656 PC_BOUNDS_RANGES,
1657
1658 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1659 PC_BOUNDS_HIGH_LOW,
1660 };
1661
1662 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *,
1665 struct partial_symtab *);
1666
1667 static void get_scope_pc_bounds (struct die_info *,
1668 CORE_ADDR *, CORE_ADDR *,
1669 struct dwarf2_cu *);
1670
1671 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1672 CORE_ADDR, struct dwarf2_cu *);
1673
1674 static void dwarf2_add_field (struct field_info *, struct die_info *,
1675 struct dwarf2_cu *);
1676
1677 static void dwarf2_attach_fields_to_type (struct field_info *,
1678 struct type *, struct dwarf2_cu *);
1679
1680 static void dwarf2_add_member_fn (struct field_info *,
1681 struct die_info *, struct type *,
1682 struct dwarf2_cu *);
1683
1684 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1685 struct type *,
1686 struct dwarf2_cu *);
1687
1688 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1689
1690 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1693
1694 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1695
1696 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1697
1698 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1699
1700 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1701
1702 static struct type *read_module_type (struct die_info *die,
1703 struct dwarf2_cu *cu);
1704
1705 static const char *namespace_name (struct die_info *die,
1706 int *is_anonymous, struct dwarf2_cu *);
1707
1708 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1709
1710 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1711
1712 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1713 struct dwarf2_cu *);
1714
1715 static struct die_info *read_die_and_siblings_1
1716 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1717 struct die_info *);
1718
1719 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1720 const gdb_byte *info_ptr,
1721 const gdb_byte **new_info_ptr,
1722 struct die_info *parent);
1723
1724 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1725 struct die_info **, const gdb_byte *,
1726 int *, int);
1727
1728 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1729 struct die_info **, const gdb_byte *,
1730 int *);
1731
1732 static void process_die (struct die_info *, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1735 struct obstack *);
1736
1737 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1738
1739 static const char *dwarf2_full_name (const char *name,
1740 struct die_info *die,
1741 struct dwarf2_cu *cu);
1742
1743 static const char *dwarf2_physname (const char *name, struct die_info *die,
1744 struct dwarf2_cu *cu);
1745
1746 static struct die_info *dwarf2_extension (struct die_info *die,
1747 struct dwarf2_cu **);
1748
1749 static const char *dwarf_tag_name (unsigned int);
1750
1751 static const char *dwarf_attr_name (unsigned int);
1752
1753 static const char *dwarf_form_name (unsigned int);
1754
1755 static const char *dwarf_bool_name (unsigned int);
1756
1757 static const char *dwarf_type_encoding_name (unsigned int);
1758
1759 static struct die_info *sibling_die (struct die_info *);
1760
1761 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1762
1763 static void dump_die_for_error (struct die_info *);
1764
1765 static void dump_die_1 (struct ui_file *, int level, int max_level,
1766 struct die_info *);
1767
1768 /*static*/ void dump_die (struct die_info *, int max_level);
1769
1770 static void store_in_ref_table (struct die_info *,
1771 struct dwarf2_cu *);
1772
1773 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1774
1775 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1776
1777 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1778 const struct attribute *,
1779 struct dwarf2_cu **);
1780
1781 static struct die_info *follow_die_ref (struct die_info *,
1782 const struct attribute *,
1783 struct dwarf2_cu **);
1784
1785 static struct die_info *follow_die_sig (struct die_info *,
1786 const struct attribute *,
1787 struct dwarf2_cu **);
1788
1789 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1790 struct dwarf2_cu *);
1791
1792 static struct type *get_DW_AT_signature_type (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu *);
1795
1796 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1797
1798 static void read_signatured_type (struct signatured_type *);
1799
1800 static int attr_to_dynamic_prop (const struct attribute *attr,
1801 struct die_info *die, struct dwarf2_cu *cu,
1802 struct dynamic_prop *prop);
1803
1804 /* memory allocation interface */
1805
1806 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1807
1808 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1809
1810 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1811
1812 static int attr_form_is_block (const struct attribute *);
1813
1814 static int attr_form_is_section_offset (const struct attribute *);
1815
1816 static int attr_form_is_constant (const struct attribute *);
1817
1818 static int attr_form_is_ref (const struct attribute *);
1819
1820 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1821 struct dwarf2_loclist_baton *baton,
1822 const struct attribute *attr);
1823
1824 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1825 struct symbol *sym,
1826 struct dwarf2_cu *cu,
1827 int is_block);
1828
1829 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1830 const gdb_byte *info_ptr,
1831 struct abbrev_info *abbrev);
1832
1833 static hashval_t partial_die_hash (const void *item);
1834
1835 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1836
1837 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1838 (sect_offset sect_off, unsigned int offset_in_dwz,
1839 struct dwarf2_per_objfile *dwarf2_per_objfile);
1840
1841 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1842 struct die_info *comp_unit_die,
1843 enum language pretend_language);
1844
1845 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1846
1847 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1848
1849 static struct type *set_die_type (struct die_info *, struct type *,
1850 struct dwarf2_cu *);
1851
1852 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1853
1854 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1857 enum language);
1858
1859 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
1861
1862 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
1865 static void dwarf2_add_dependence (struct dwarf2_cu *,
1866 struct dwarf2_per_cu_data *);
1867
1868 static void dwarf2_mark (struct dwarf2_cu *);
1869
1870 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1871
1872 static struct type *get_die_type_at_offset (sect_offset,
1873 struct dwarf2_per_cu_data *);
1874
1875 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1876
1877 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1878 enum language pretend_language);
1879
1880 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 /* Class, the destructor of which frees all allocated queue entries. This
1883 will only have work to do if an error was thrown while processing the
1884 dwarf. If no error was thrown then the queue entries should have all
1885 been processed, and freed, as we went along. */
1886
1887 class dwarf2_queue_guard
1888 {
1889 public:
1890 dwarf2_queue_guard () = default;
1891
1892 /* Free any entries remaining on the queue. There should only be
1893 entries left if we hit an error while processing the dwarf. */
1894 ~dwarf2_queue_guard ()
1895 {
1896 struct dwarf2_queue_item *item, *last;
1897
1898 item = dwarf2_queue;
1899 while (item)
1900 {
1901 /* Anything still marked queued is likely to be in an
1902 inconsistent state, so discard it. */
1903 if (item->per_cu->queued)
1904 {
1905 if (item->per_cu->cu != NULL)
1906 free_one_cached_comp_unit (item->per_cu);
1907 item->per_cu->queued = 0;
1908 }
1909
1910 last = item;
1911 item = item->next;
1912 xfree (last);
1913 }
1914
1915 dwarf2_queue = dwarf2_queue_tail = NULL;
1916 }
1917 };
1918
1919 /* The return type of find_file_and_directory. Note, the enclosed
1920 string pointers are only valid while this object is valid. */
1921
1922 struct file_and_directory
1923 {
1924 /* The filename. This is never NULL. */
1925 const char *name;
1926
1927 /* The compilation directory. NULL if not known. If we needed to
1928 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1929 points directly to the DW_AT_comp_dir string attribute owned by
1930 the obstack that owns the DIE. */
1931 const char *comp_dir;
1932
1933 /* If we needed to build a new string for comp_dir, this is what
1934 owns the storage. */
1935 std::string comp_dir_storage;
1936 };
1937
1938 static file_and_directory find_file_and_directory (struct die_info *die,
1939 struct dwarf2_cu *cu);
1940
1941 static char *file_full_name (int file, struct line_header *lh,
1942 const char *comp_dir);
1943
1944 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1945 enum class rcuh_kind { COMPILE, TYPE };
1946
1947 static const gdb_byte *read_and_check_comp_unit_head
1948 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1949 struct comp_unit_head *header,
1950 struct dwarf2_section_info *section,
1951 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1952 rcuh_kind section_kind);
1953
1954 static void init_cutu_and_read_dies
1955 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1956 int use_existing_cu, int keep, bool skip_partial,
1957 die_reader_func_ftype *die_reader_func, void *data);
1958
1959 static void init_cutu_and_read_dies_simple
1960 (struct dwarf2_per_cu_data *this_cu,
1961 die_reader_func_ftype *die_reader_func, void *data);
1962
1963 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1964
1965 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1966
1967 static struct dwo_unit *lookup_dwo_unit_in_dwp
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1969 struct dwp_file *dwp_file, const char *comp_dir,
1970 ULONGEST signature, int is_debug_types);
1971
1972 static struct dwp_file *get_dwp_file
1973 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1974
1975 static struct dwo_unit *lookup_dwo_comp_unit
1976 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1977
1978 static struct dwo_unit *lookup_dwo_type_unit
1979 (struct signatured_type *, const char *, const char *);
1980
1981 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1982
1983 static void free_dwo_file (struct dwo_file *);
1984
1985 /* A unique_ptr helper to free a dwo_file. */
1986
1987 struct dwo_file_deleter
1988 {
1989 void operator() (struct dwo_file *df) const
1990 {
1991 free_dwo_file (df);
1992 }
1993 };
1994
1995 /* A unique pointer to a dwo_file. */
1996
1997 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1998
1999 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2000
2001 static void check_producer (struct dwarf2_cu *cu);
2002
2003 static void free_line_header_voidp (void *arg);
2004 \f
2005 /* Various complaints about symbol reading that don't abort the process. */
2006
2007 static void
2008 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2009 {
2010 complaint (_("statement list doesn't fit in .debug_line section"));
2011 }
2012
2013 static void
2014 dwarf2_debug_line_missing_file_complaint (void)
2015 {
2016 complaint (_(".debug_line section has line data without a file"));
2017 }
2018
2019 static void
2020 dwarf2_debug_line_missing_end_sequence_complaint (void)
2021 {
2022 complaint (_(".debug_line section has line "
2023 "program sequence without an end"));
2024 }
2025
2026 static void
2027 dwarf2_complex_location_expr_complaint (void)
2028 {
2029 complaint (_("location expression too complex"));
2030 }
2031
2032 static void
2033 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2034 int arg3)
2035 {
2036 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2037 arg1, arg2, arg3);
2038 }
2039
2040 static void
2041 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2042 {
2043 complaint (_("debug info runs off end of %s section"
2044 " [in module %s]"),
2045 get_section_name (section),
2046 get_section_file_name (section));
2047 }
2048
2049 static void
2050 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2051 {
2052 complaint (_("macro debug info contains a "
2053 "malformed macro definition:\n`%s'"),
2054 arg1);
2055 }
2056
2057 static void
2058 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2059 {
2060 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2061 arg1, arg2);
2062 }
2063
2064 /* Hash function for line_header_hash. */
2065
2066 static hashval_t
2067 line_header_hash (const struct line_header *ofs)
2068 {
2069 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2070 }
2071
2072 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2073
2074 static hashval_t
2075 line_header_hash_voidp (const void *item)
2076 {
2077 const struct line_header *ofs = (const struct line_header *) item;
2078
2079 return line_header_hash (ofs);
2080 }
2081
2082 /* Equality function for line_header_hash. */
2083
2084 static int
2085 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2086 {
2087 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2088 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2089
2090 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2091 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2092 }
2093
2094 \f
2095
2096 /* Read the given attribute value as an address, taking the attribute's
2097 form into account. */
2098
2099 static CORE_ADDR
2100 attr_value_as_address (struct attribute *attr)
2101 {
2102 CORE_ADDR addr;
2103
2104 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131 {
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139 }
2140
2141 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2142
2143 dwarf2_per_objfile::~dwarf2_per_objfile ()
2144 {
2145 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2146 free_cached_comp_units ();
2147
2148 if (quick_file_names_table)
2149 htab_delete (quick_file_names_table);
2150
2151 if (line_header_hash)
2152 htab_delete (line_header_hash);
2153
2154 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2155 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2156
2157 for (signatured_type *sig_type : all_type_units)
2158 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2159
2160 VEC_free (dwarf2_section_info_def, types);
2161
2162 if (dwo_files != NULL)
2163 free_dwo_files (dwo_files, objfile);
2164
2165 /* Everything else should be on the objfile obstack. */
2166 }
2167
2168 /* See declaration. */
2169
2170 void
2171 dwarf2_per_objfile::free_cached_comp_units ()
2172 {
2173 dwarf2_per_cu_data *per_cu = read_in_chain;
2174 dwarf2_per_cu_data **last_chain = &read_in_chain;
2175 while (per_cu != NULL)
2176 {
2177 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2178
2179 delete per_cu->cu;
2180 *last_chain = next_cu;
2181 per_cu = next_cu;
2182 }
2183 }
2184
2185 /* A helper class that calls free_cached_comp_units on
2186 destruction. */
2187
2188 class free_cached_comp_units
2189 {
2190 public:
2191
2192 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2193 : m_per_objfile (per_objfile)
2194 {
2195 }
2196
2197 ~free_cached_comp_units ()
2198 {
2199 m_per_objfile->free_cached_comp_units ();
2200 }
2201
2202 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2203
2204 private:
2205
2206 dwarf2_per_objfile *m_per_objfile;
2207 };
2208
2209 /* Try to locate the sections we need for DWARF 2 debugging
2210 information and return true if we have enough to do something.
2211 NAMES points to the dwarf2 section names, or is NULL if the standard
2212 ELF names are used. */
2213
2214 int
2215 dwarf2_has_info (struct objfile *objfile,
2216 const struct dwarf2_debug_sections *names)
2217 {
2218 if (objfile->flags & OBJF_READNEVER)
2219 return 0;
2220
2221 struct dwarf2_per_objfile *dwarf2_per_objfile
2222 = get_dwarf2_per_objfile (objfile);
2223
2224 if (dwarf2_per_objfile == NULL)
2225 {
2226 /* Initialize per-objfile state. */
2227 dwarf2_per_objfile
2228 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2229 names);
2230 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2231 }
2232 return (!dwarf2_per_objfile->info.is_virtual
2233 && dwarf2_per_objfile->info.s.section != NULL
2234 && !dwarf2_per_objfile->abbrev.is_virtual
2235 && dwarf2_per_objfile->abbrev.s.section != NULL);
2236 }
2237
2238 /* Return the containing section of virtual section SECTION. */
2239
2240 static struct dwarf2_section_info *
2241 get_containing_section (const struct dwarf2_section_info *section)
2242 {
2243 gdb_assert (section->is_virtual);
2244 return section->s.containing_section;
2245 }
2246
2247 /* Return the bfd owner of SECTION. */
2248
2249 static struct bfd *
2250 get_section_bfd_owner (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 {
2254 section = get_containing_section (section);
2255 gdb_assert (!section->is_virtual);
2256 }
2257 return section->s.section->owner;
2258 }
2259
2260 /* Return the bfd section of SECTION.
2261 Returns NULL if the section is not present. */
2262
2263 static asection *
2264 get_section_bfd_section (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 {
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2270 }
2271 return section->s.section;
2272 }
2273
2274 /* Return the name of SECTION. */
2275
2276 static const char *
2277 get_section_name (const struct dwarf2_section_info *section)
2278 {
2279 asection *sectp = get_section_bfd_section (section);
2280
2281 gdb_assert (sectp != NULL);
2282 return bfd_section_name (get_section_bfd_owner (section), sectp);
2283 }
2284
2285 /* Return the name of the file SECTION is in. */
2286
2287 static const char *
2288 get_section_file_name (const struct dwarf2_section_info *section)
2289 {
2290 bfd *abfd = get_section_bfd_owner (section);
2291
2292 return bfd_get_filename (abfd);
2293 }
2294
2295 /* Return the id of SECTION.
2296 Returns 0 if SECTION doesn't exist. */
2297
2298 static int
2299 get_section_id (const struct dwarf2_section_info *section)
2300 {
2301 asection *sectp = get_section_bfd_section (section);
2302
2303 if (sectp == NULL)
2304 return 0;
2305 return sectp->id;
2306 }
2307
2308 /* Return the flags of SECTION.
2309 SECTION (or containing section if this is a virtual section) must exist. */
2310
2311 static int
2312 get_section_flags (const struct dwarf2_section_info *section)
2313 {
2314 asection *sectp = get_section_bfd_section (section);
2315
2316 gdb_assert (sectp != NULL);
2317 return bfd_get_section_flags (sectp->owner, sectp);
2318 }
2319
2320 /* When loading sections, we look either for uncompressed section or for
2321 compressed section names. */
2322
2323 static int
2324 section_is_p (const char *section_name,
2325 const struct dwarf2_section_names *names)
2326 {
2327 if (names->normal != NULL
2328 && strcmp (section_name, names->normal) == 0)
2329 return 1;
2330 if (names->compressed != NULL
2331 && strcmp (section_name, names->compressed) == 0)
2332 return 1;
2333 return 0;
2334 }
2335
2336 /* See declaration. */
2337
2338 void
2339 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2340 const dwarf2_debug_sections &names)
2341 {
2342 flagword aflag = bfd_get_section_flags (abfd, sectp);
2343
2344 if ((aflag & SEC_HAS_CONTENTS) == 0)
2345 {
2346 }
2347 else if (section_is_p (sectp->name, &names.info))
2348 {
2349 this->info.s.section = sectp;
2350 this->info.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.abbrev))
2353 {
2354 this->abbrev.s.section = sectp;
2355 this->abbrev.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.line))
2358 {
2359 this->line.s.section = sectp;
2360 this->line.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loc))
2363 {
2364 this->loc.s.section = sectp;
2365 this->loc.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.loclists))
2368 {
2369 this->loclists.s.section = sectp;
2370 this->loclists.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macinfo))
2373 {
2374 this->macinfo.s.section = sectp;
2375 this->macinfo.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.macro))
2378 {
2379 this->macro.s.section = sectp;
2380 this->macro.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.str))
2383 {
2384 this->str.s.section = sectp;
2385 this->str.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.line_str))
2388 {
2389 this->line_str.s.section = sectp;
2390 this->line_str.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.addr))
2393 {
2394 this->addr.s.section = sectp;
2395 this->addr.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.frame))
2398 {
2399 this->frame.s.section = sectp;
2400 this->frame.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.eh_frame))
2403 {
2404 this->eh_frame.s.section = sectp;
2405 this->eh_frame.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.ranges))
2408 {
2409 this->ranges.s.section = sectp;
2410 this->ranges.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.rnglists))
2413 {
2414 this->rnglists.s.section = sectp;
2415 this->rnglists.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.types))
2418 {
2419 struct dwarf2_section_info type_section;
2420
2421 memset (&type_section, 0, sizeof (type_section));
2422 type_section.s.section = sectp;
2423 type_section.size = bfd_get_section_size (sectp);
2424
2425 VEC_safe_push (dwarf2_section_info_def, this->types,
2426 &type_section);
2427 }
2428 else if (section_is_p (sectp->name, &names.gdb_index))
2429 {
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.debug_names))
2434 {
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2439 {
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_get_section_size (sectp);
2442 }
2443
2444 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2445 && bfd_section_vma (abfd, sectp) == 0)
2446 this->has_section_at_zero = true;
2447 }
2448
2449 /* A helper function that decides whether a section is empty,
2450 or not present. */
2451
2452 static int
2453 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2454 {
2455 if (section->is_virtual)
2456 return section->size == 0;
2457 return section->s.section == NULL || section->size == 0;
2458 }
2459
2460 /* See dwarf2read.h. */
2461
2462 void
2463 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2464 {
2465 asection *sectp;
2466 bfd *abfd;
2467 gdb_byte *buf, *retbuf;
2468
2469 if (info->readin)
2470 return;
2471 info->buffer = NULL;
2472 info->readin = 1;
2473
2474 if (dwarf2_section_empty_p (info))
2475 return;
2476
2477 sectp = get_section_bfd_section (info);
2478
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2481 {
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2484
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2487 {
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2491 }
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2494 fit. */
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2501 return;
2502 }
2503
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
2507 {
2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2509 return;
2510 }
2511
2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2513 info->buffer = buf;
2514
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2520 if (retbuf != NULL)
2521 {
2522 info->buffer = retbuf;
2523 return;
2524 }
2525
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2528
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
2531 {
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2535 }
2536 }
2537
2538 /* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2544
2545 static bfd_size_type
2546 dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2548 {
2549 if (!info->readin)
2550 dwarf2_read_section (objfile, info);
2551 return info->size;
2552 }
2553
2554 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2555 SECTION_NAME. */
2556
2557 void
2558 dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
2560 asection **sectp, const gdb_byte **bufp,
2561 bfd_size_type *sizep)
2562 {
2563 struct dwarf2_per_objfile *data
2564 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2565 dwarf2_objfile_data_key);
2566 struct dwarf2_section_info *info;
2567
2568 /* We may see an objfile without any DWARF, in which case we just
2569 return nothing. */
2570 if (data == NULL)
2571 {
2572 *sectp = NULL;
2573 *bufp = NULL;
2574 *sizep = 0;
2575 return;
2576 }
2577 switch (sect)
2578 {
2579 case DWARF2_DEBUG_FRAME:
2580 info = &data->frame;
2581 break;
2582 case DWARF2_EH_FRAME:
2583 info = &data->eh_frame;
2584 break;
2585 default:
2586 gdb_assert_not_reached ("unexpected section");
2587 }
2588
2589 dwarf2_read_section (objfile, info);
2590
2591 *sectp = get_section_bfd_section (info);
2592 *bufp = info->buffer;
2593 *sizep = info->size;
2594 }
2595
2596 /* A helper function to find the sections for a .dwz file. */
2597
2598 static void
2599 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2600 {
2601 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2602
2603 /* Note that we only support the standard ELF names, because .dwz
2604 is ELF-only (at the time of writing). */
2605 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2606 {
2607 dwz_file->abbrev.s.section = sectp;
2608 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2611 {
2612 dwz_file->info.s.section = sectp;
2613 dwz_file->info.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2616 {
2617 dwz_file->str.s.section = sectp;
2618 dwz_file->str.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2621 {
2622 dwz_file->line.s.section = sectp;
2623 dwz_file->line.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2626 {
2627 dwz_file->macro.s.section = sectp;
2628 dwz_file->macro.size = bfd_get_section_size (sectp);
2629 }
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2631 {
2632 dwz_file->gdb_index.s.section = sectp;
2633 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2634 }
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2636 {
2637 dwz_file->debug_names.s.section = sectp;
2638 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2639 }
2640 }
2641
2642 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2643 there is no .gnu_debugaltlink section in the file. Error if there
2644 is such a section but the file cannot be found. */
2645
2646 static struct dwz_file *
2647 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2648 {
2649 const char *filename;
2650 bfd_size_type buildid_len_arg;
2651 size_t buildid_len;
2652 bfd_byte *buildid;
2653
2654 if (dwarf2_per_objfile->dwz_file != NULL)
2655 return dwarf2_per_objfile->dwz_file.get ();
2656
2657 bfd_set_error (bfd_error_no_error);
2658 gdb::unique_xmalloc_ptr<char> data
2659 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2660 &buildid_len_arg, &buildid));
2661 if (data == NULL)
2662 {
2663 if (bfd_get_error () == bfd_error_no_error)
2664 return NULL;
2665 error (_("could not read '.gnu_debugaltlink' section: %s"),
2666 bfd_errmsg (bfd_get_error ()));
2667 }
2668
2669 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2670
2671 buildid_len = (size_t) buildid_len_arg;
2672
2673 filename = data.get ();
2674
2675 std::string abs_storage;
2676 if (!IS_ABSOLUTE_PATH (filename))
2677 {
2678 gdb::unique_xmalloc_ptr<char> abs
2679 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2680
2681 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2682 filename = abs_storage.c_str ();
2683 }
2684
2685 /* First try the file name given in the section. If that doesn't
2686 work, try to use the build-id instead. */
2687 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2688 if (dwz_bfd != NULL)
2689 {
2690 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2691 dwz_bfd.release ();
2692 }
2693
2694 if (dwz_bfd == NULL)
2695 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2696
2697 if (dwz_bfd == NULL)
2698 error (_("could not find '.gnu_debugaltlink' file for %s"),
2699 objfile_name (dwarf2_per_objfile->objfile));
2700
2701 std::unique_ptr<struct dwz_file> result
2702 (new struct dwz_file (std::move (dwz_bfd)));
2703
2704 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2705 result.get ());
2706
2707 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2708 result->dwz_bfd.get ());
2709 dwarf2_per_objfile->dwz_file = std::move (result);
2710 return dwarf2_per_objfile->dwz_file.get ();
2711 }
2712 \f
2713 /* DWARF quick_symbols_functions support. */
2714
2715 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2716 unique line tables, so we maintain a separate table of all .debug_line
2717 derived entries to support the sharing.
2718 All the quick functions need is the list of file names. We discard the
2719 line_header when we're done and don't need to record it here. */
2720 struct quick_file_names
2721 {
2722 /* The data used to construct the hash key. */
2723 struct stmt_list_hash hash;
2724
2725 /* The number of entries in file_names, real_names. */
2726 unsigned int num_file_names;
2727
2728 /* The file names from the line table, after being run through
2729 file_full_name. */
2730 const char **file_names;
2731
2732 /* The file names from the line table after being run through
2733 gdb_realpath. These are computed lazily. */
2734 const char **real_names;
2735 };
2736
2737 /* When using the index (and thus not using psymtabs), each CU has an
2738 object of this type. This is used to hold information needed by
2739 the various "quick" methods. */
2740 struct dwarf2_per_cu_quick_data
2741 {
2742 /* The file table. This can be NULL if there was no file table
2743 or it's currently not read in.
2744 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2745 struct quick_file_names *file_names;
2746
2747 /* The corresponding symbol table. This is NULL if symbols for this
2748 CU have not yet been read. */
2749 struct compunit_symtab *compunit_symtab;
2750
2751 /* A temporary mark bit used when iterating over all CUs in
2752 expand_symtabs_matching. */
2753 unsigned int mark : 1;
2754
2755 /* True if we've tried to read the file table and found there isn't one.
2756 There will be no point in trying to read it again next time. */
2757 unsigned int no_file_data : 1;
2758 };
2759
2760 /* Utility hash function for a stmt_list_hash. */
2761
2762 static hashval_t
2763 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2764 {
2765 hashval_t v = 0;
2766
2767 if (stmt_list_hash->dwo_unit != NULL)
2768 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2769 v += to_underlying (stmt_list_hash->line_sect_off);
2770 return v;
2771 }
2772
2773 /* Utility equality function for a stmt_list_hash. */
2774
2775 static int
2776 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2777 const struct stmt_list_hash *rhs)
2778 {
2779 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2780 return 0;
2781 if (lhs->dwo_unit != NULL
2782 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2783 return 0;
2784
2785 return lhs->line_sect_off == rhs->line_sect_off;
2786 }
2787
2788 /* Hash function for a quick_file_names. */
2789
2790 static hashval_t
2791 hash_file_name_entry (const void *e)
2792 {
2793 const struct quick_file_names *file_data
2794 = (const struct quick_file_names *) e;
2795
2796 return hash_stmt_list_entry (&file_data->hash);
2797 }
2798
2799 /* Equality function for a quick_file_names. */
2800
2801 static int
2802 eq_file_name_entry (const void *a, const void *b)
2803 {
2804 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2805 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2806
2807 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2808 }
2809
2810 /* Delete function for a quick_file_names. */
2811
2812 static void
2813 delete_file_name_entry (void *e)
2814 {
2815 struct quick_file_names *file_data = (struct quick_file_names *) e;
2816 int i;
2817
2818 for (i = 0; i < file_data->num_file_names; ++i)
2819 {
2820 xfree ((void*) file_data->file_names[i]);
2821 if (file_data->real_names)
2822 xfree ((void*) file_data->real_names[i]);
2823 }
2824
2825 /* The space for the struct itself lives on objfile_obstack,
2826 so we don't free it here. */
2827 }
2828
2829 /* Create a quick_file_names hash table. */
2830
2831 static htab_t
2832 create_quick_file_names_table (unsigned int nr_initial_entries)
2833 {
2834 return htab_create_alloc (nr_initial_entries,
2835 hash_file_name_entry, eq_file_name_entry,
2836 delete_file_name_entry, xcalloc, xfree);
2837 }
2838
2839 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2840 have to be created afterwards. You should call age_cached_comp_units after
2841 processing PER_CU->CU. dw2_setup must have been already called. */
2842
2843 static void
2844 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2845 {
2846 if (per_cu->is_debug_types)
2847 load_full_type_unit (per_cu);
2848 else
2849 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2850
2851 if (per_cu->cu == NULL)
2852 return; /* Dummy CU. */
2853
2854 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2855 }
2856
2857 /* Read in the symbols for PER_CU. */
2858
2859 static void
2860 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2861 {
2862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2863
2864 /* Skip type_unit_groups, reading the type units they contain
2865 is handled elsewhere. */
2866 if (IS_TYPE_UNIT_GROUP (per_cu))
2867 return;
2868
2869 /* The destructor of dwarf2_queue_guard frees any entries left on
2870 the queue. After this point we're guaranteed to leave this function
2871 with the dwarf queue empty. */
2872 dwarf2_queue_guard q_guard;
2873
2874 if (dwarf2_per_objfile->using_index
2875 ? per_cu->v.quick->compunit_symtab == NULL
2876 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2877 {
2878 queue_comp_unit (per_cu, language_minimal);
2879 load_cu (per_cu, skip_partial);
2880
2881 /* If we just loaded a CU from a DWO, and we're working with an index
2882 that may badly handle TUs, load all the TUs in that DWO as well.
2883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2884 if (!per_cu->is_debug_types
2885 && per_cu->cu != NULL
2886 && per_cu->cu->dwo_unit != NULL
2887 && dwarf2_per_objfile->index_table != NULL
2888 && dwarf2_per_objfile->index_table->version <= 7
2889 /* DWP files aren't supported yet. */
2890 && get_dwp_file (dwarf2_per_objfile) == NULL)
2891 queue_and_load_all_dwo_tus (per_cu);
2892 }
2893
2894 process_queue (dwarf2_per_objfile);
2895
2896 /* Age the cache, releasing compilation units that have not
2897 been used recently. */
2898 age_cached_comp_units (dwarf2_per_objfile);
2899 }
2900
2901 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2902 the objfile from which this CU came. Returns the resulting symbol
2903 table. */
2904
2905 static struct compunit_symtab *
2906 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2907 {
2908 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2909
2910 gdb_assert (dwarf2_per_objfile->using_index);
2911 if (!per_cu->v.quick->compunit_symtab)
2912 {
2913 free_cached_comp_units freer (dwarf2_per_objfile);
2914 scoped_restore decrementer = increment_reading_symtab ();
2915 dw2_do_instantiate_symtab (per_cu, skip_partial);
2916 process_cu_includes (dwarf2_per_objfile);
2917 }
2918
2919 return per_cu->v.quick->compunit_symtab;
2920 }
2921
2922 /* See declaration. */
2923
2924 dwarf2_per_cu_data *
2925 dwarf2_per_objfile::get_cutu (int index)
2926 {
2927 if (index >= this->all_comp_units.size ())
2928 {
2929 index -= this->all_comp_units.size ();
2930 gdb_assert (index < this->all_type_units.size ());
2931 return &this->all_type_units[index]->per_cu;
2932 }
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 dwarf2_per_cu_data *
2940 dwarf2_per_objfile::get_cu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2943
2944 return this->all_comp_units[index];
2945 }
2946
2947 /* See declaration. */
2948
2949 signatured_type *
2950 dwarf2_per_objfile::get_tu (int index)
2951 {
2952 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2953
2954 return this->all_type_units[index];
2955 }
2956
2957 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2958 objfile_obstack, and constructed with the specified field
2959 values. */
2960
2961 static dwarf2_per_cu_data *
2962 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2963 struct dwarf2_section_info *section,
2964 int is_dwz,
2965 sect_offset sect_off, ULONGEST length)
2966 {
2967 struct objfile *objfile = dwarf2_per_objfile->objfile;
2968 dwarf2_per_cu_data *the_cu
2969 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_data);
2971 the_cu->sect_off = sect_off;
2972 the_cu->length = length;
2973 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2974 the_cu->section = section;
2975 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2976 struct dwarf2_per_cu_quick_data);
2977 the_cu->is_dwz = is_dwz;
2978 return the_cu;
2979 }
2980
2981 /* A helper for create_cus_from_index that handles a given list of
2982 CUs. */
2983
2984 static void
2985 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2986 const gdb_byte *cu_list, offset_type n_elements,
2987 struct dwarf2_section_info *section,
2988 int is_dwz)
2989 {
2990 for (offset_type i = 0; i < n_elements; i += 2)
2991 {
2992 gdb_static_assert (sizeof (ULONGEST) >= 8);
2993
2994 sect_offset sect_off
2995 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2996 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2997 cu_list += 2 * 8;
2998
2999 dwarf2_per_cu_data *per_cu
3000 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3001 sect_off, length);
3002 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3003 }
3004 }
3005
3006 /* Read the CU list from the mapped index, and use it to create all
3007 the CU objects for this objfile. */
3008
3009 static void
3010 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3011 const gdb_byte *cu_list, offset_type cu_list_elements,
3012 const gdb_byte *dwz_list, offset_type dwz_elements)
3013 {
3014 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3015 dwarf2_per_objfile->all_comp_units.reserve
3016 ((cu_list_elements + dwz_elements) / 2);
3017
3018 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3019 &dwarf2_per_objfile->info, 0);
3020
3021 if (dwz_elements == 0)
3022 return;
3023
3024 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3025 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3026 &dwz->info, 1);
3027 }
3028
3029 /* Create the signatured type hash table from the index. */
3030
3031 static void
3032 create_signatured_type_table_from_index
3033 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3034 struct dwarf2_section_info *section,
3035 const gdb_byte *bytes,
3036 offset_type elements)
3037 {
3038 struct objfile *objfile = dwarf2_per_objfile->objfile;
3039
3040 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3041 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3042
3043 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3044
3045 for (offset_type i = 0; i < elements; i += 3)
3046 {
3047 struct signatured_type *sig_type;
3048 ULONGEST signature;
3049 void **slot;
3050 cu_offset type_offset_in_tu;
3051
3052 gdb_static_assert (sizeof (ULONGEST) >= 8);
3053 sect_offset sect_off
3054 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3055 type_offset_in_tu
3056 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3057 BFD_ENDIAN_LITTLE);
3058 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3059 bytes += 3 * 8;
3060
3061 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3062 struct signatured_type);
3063 sig_type->signature = signature;
3064 sig_type->type_offset_in_tu = type_offset_in_tu;
3065 sig_type->per_cu.is_debug_types = 1;
3066 sig_type->per_cu.section = section;
3067 sig_type->per_cu.sect_off = sect_off;
3068 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3069 sig_type->per_cu.v.quick
3070 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3071 struct dwarf2_per_cu_quick_data);
3072
3073 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3074 *slot = sig_type;
3075
3076 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3077 }
3078
3079 dwarf2_per_objfile->signatured_types = sig_types_hash;
3080 }
3081
3082 /* Create the signatured type hash table from .debug_names. */
3083
3084 static void
3085 create_signatured_type_table_from_debug_names
3086 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3087 const mapped_debug_names &map,
3088 struct dwarf2_section_info *section,
3089 struct dwarf2_section_info *abbrev_section)
3090 {
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092
3093 dwarf2_read_section (objfile, section);
3094 dwarf2_read_section (objfile, abbrev_section);
3095
3096 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3097 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3098
3099 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3100
3101 for (uint32_t i = 0; i < map.tu_count; ++i)
3102 {
3103 struct signatured_type *sig_type;
3104 void **slot;
3105
3106 sect_offset sect_off
3107 = (sect_offset) (extract_unsigned_integer
3108 (map.tu_table_reordered + i * map.offset_size,
3109 map.offset_size,
3110 map.dwarf5_byte_order));
3111
3112 comp_unit_head cu_header;
3113 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3114 abbrev_section,
3115 section->buffer + to_underlying (sect_off),
3116 rcuh_kind::TYPE);
3117
3118 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3119 struct signatured_type);
3120 sig_type->signature = cu_header.signature;
3121 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3122 sig_type->per_cu.is_debug_types = 1;
3123 sig_type->per_cu.section = section;
3124 sig_type->per_cu.sect_off = sect_off;
3125 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3126 sig_type->per_cu.v.quick
3127 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3128 struct dwarf2_per_cu_quick_data);
3129
3130 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3131 *slot = sig_type;
3132
3133 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3134 }
3135
3136 dwarf2_per_objfile->signatured_types = sig_types_hash;
3137 }
3138
3139 /* Read the address map data from the mapped index, and use it to
3140 populate the objfile's psymtabs_addrmap. */
3141
3142 static void
3143 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3144 struct mapped_index *index)
3145 {
3146 struct objfile *objfile = dwarf2_per_objfile->objfile;
3147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3148 const gdb_byte *iter, *end;
3149 struct addrmap *mutable_map;
3150 CORE_ADDR baseaddr;
3151
3152 auto_obstack temp_obstack;
3153
3154 mutable_map = addrmap_create_mutable (&temp_obstack);
3155
3156 iter = index->address_table.data ();
3157 end = iter + index->address_table.size ();
3158
3159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3160
3161 while (iter < end)
3162 {
3163 ULONGEST hi, lo, cu_index;
3164 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3165 iter += 8;
3166 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3169 iter += 4;
3170
3171 if (lo > hi)
3172 {
3173 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3174 hex_string (lo), hex_string (hi));
3175 continue;
3176 }
3177
3178 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3179 {
3180 complaint (_(".gdb_index address table has invalid CU number %u"),
3181 (unsigned) cu_index);
3182 continue;
3183 }
3184
3185 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3186 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3187 addrmap_set_empty (mutable_map, lo, hi - 1,
3188 dwarf2_per_objfile->get_cu (cu_index));
3189 }
3190
3191 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3192 &objfile->objfile_obstack);
3193 }
3194
3195 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3196 populate the objfile's psymtabs_addrmap. */
3197
3198 static void
3199 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3200 struct dwarf2_section_info *section)
3201 {
3202 struct objfile *objfile = dwarf2_per_objfile->objfile;
3203 bfd *abfd = objfile->obfd;
3204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3205 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3206 SECT_OFF_TEXT (objfile));
3207
3208 auto_obstack temp_obstack;
3209 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3210
3211 std::unordered_map<sect_offset,
3212 dwarf2_per_cu_data *,
3213 gdb::hash_enum<sect_offset>>
3214 debug_info_offset_to_per_cu;
3215 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3216 {
3217 const auto insertpair
3218 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3219 if (!insertpair.second)
3220 {
3221 warning (_("Section .debug_aranges in %s has duplicate "
3222 "debug_info_offset %s, ignoring .debug_aranges."),
3223 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3224 return;
3225 }
3226 }
3227
3228 dwarf2_read_section (objfile, section);
3229
3230 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3231
3232 const gdb_byte *addr = section->buffer;
3233
3234 while (addr < section->buffer + section->size)
3235 {
3236 const gdb_byte *const entry_addr = addr;
3237 unsigned int bytes_read;
3238
3239 const LONGEST entry_length = read_initial_length (abfd, addr,
3240 &bytes_read);
3241 addr += bytes_read;
3242
3243 const gdb_byte *const entry_end = addr + entry_length;
3244 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3245 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3246 if (addr + entry_length > section->buffer + section->size)
3247 {
3248 warning (_("Section .debug_aranges in %s entry at offset %zu "
3249 "length %s exceeds section length %s, "
3250 "ignoring .debug_aranges."),
3251 objfile_name (objfile), entry_addr - section->buffer,
3252 plongest (bytes_read + entry_length),
3253 pulongest (section->size));
3254 return;
3255 }
3256
3257 /* The version number. */
3258 const uint16_t version = read_2_bytes (abfd, addr);
3259 addr += 2;
3260 if (version != 2)
3261 {
3262 warning (_("Section .debug_aranges in %s entry at offset %zu "
3263 "has unsupported version %d, ignoring .debug_aranges."),
3264 objfile_name (objfile), entry_addr - section->buffer,
3265 version);
3266 return;
3267 }
3268
3269 const uint64_t debug_info_offset
3270 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3271 addr += offset_size;
3272 const auto per_cu_it
3273 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3274 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3275 {
3276 warning (_("Section .debug_aranges in %s entry at offset %zu "
3277 "debug_info_offset %s does not exists, "
3278 "ignoring .debug_aranges."),
3279 objfile_name (objfile), entry_addr - section->buffer,
3280 pulongest (debug_info_offset));
3281 return;
3282 }
3283 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3284
3285 const uint8_t address_size = *addr++;
3286 if (address_size < 1 || address_size > 8)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "address_size %u is invalid, ignoring .debug_aranges."),
3290 objfile_name (objfile), entry_addr - section->buffer,
3291 address_size);
3292 return;
3293 }
3294
3295 const uint8_t segment_selector_size = *addr++;
3296 if (segment_selector_size != 0)
3297 {
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "segment_selector_size %u is not supported, "
3300 "ignoring .debug_aranges."),
3301 objfile_name (objfile), entry_addr - section->buffer,
3302 segment_selector_size);
3303 return;
3304 }
3305
3306 /* Must pad to an alignment boundary that is twice the address
3307 size. It is undocumented by the DWARF standard but GCC does
3308 use it. */
3309 for (size_t padding = ((-(addr - section->buffer))
3310 & (2 * address_size - 1));
3311 padding > 0; padding--)
3312 if (*addr++ != 0)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "padding is not zero, ignoring .debug_aranges."),
3316 objfile_name (objfile), entry_addr - section->buffer);
3317 return;
3318 }
3319
3320 for (;;)
3321 {
3322 if (addr + 2 * address_size > entry_end)
3323 {
3324 warning (_("Section .debug_aranges in %s entry at offset %zu "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile), entry_addr - section->buffer);
3328 return;
3329 }
3330 ULONGEST start = extract_unsigned_integer (addr, address_size,
3331 dwarf5_byte_order);
3332 addr += address_size;
3333 ULONGEST length = extract_unsigned_integer (addr, address_size,
3334 dwarf5_byte_order);
3335 addr += address_size;
3336 if (start == 0 && length == 0)
3337 break;
3338 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3339 {
3340 /* Symbol was eliminated due to a COMDAT group. */
3341 continue;
3342 }
3343 ULONGEST end = start + length;
3344 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3345 - baseaddr);
3346 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3347 - baseaddr);
3348 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3349 }
3350 }
3351
3352 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3353 &objfile->objfile_obstack);
3354 }
3355
3356 /* Find a slot in the mapped index INDEX for the object named NAME.
3357 If NAME is found, set *VEC_OUT to point to the CU vector in the
3358 constant pool and return true. If NAME cannot be found, return
3359 false. */
3360
3361 static bool
3362 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3363 offset_type **vec_out)
3364 {
3365 offset_type hash;
3366 offset_type slot, step;
3367 int (*cmp) (const char *, const char *);
3368
3369 gdb::unique_xmalloc_ptr<char> without_params;
3370 if (current_language->la_language == language_cplus
3371 || current_language->la_language == language_fortran
3372 || current_language->la_language == language_d)
3373 {
3374 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3375 not contain any. */
3376
3377 if (strchr (name, '(') != NULL)
3378 {
3379 without_params = cp_remove_params (name);
3380
3381 if (without_params != NULL)
3382 name = without_params.get ();
3383 }
3384 }
3385
3386 /* Index version 4 did not support case insensitive searches. But the
3387 indices for case insensitive languages are built in lowercase, therefore
3388 simulate our NAME being searched is also lowercased. */
3389 hash = mapped_index_string_hash ((index->version == 4
3390 && case_sensitivity == case_sensitive_off
3391 ? 5 : index->version),
3392 name);
3393
3394 slot = hash & (index->symbol_table.size () - 1);
3395 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3396 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3397
3398 for (;;)
3399 {
3400 const char *str;
3401
3402 const auto &bucket = index->symbol_table[slot];
3403 if (bucket.name == 0 && bucket.vec == 0)
3404 return false;
3405
3406 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3407 if (!cmp (name, str))
3408 {
3409 *vec_out = (offset_type *) (index->constant_pool
3410 + MAYBE_SWAP (bucket.vec));
3411 return true;
3412 }
3413
3414 slot = (slot + step) & (index->symbol_table.size () - 1);
3415 }
3416 }
3417
3418 /* A helper function that reads the .gdb_index from BUFFER and fills
3419 in MAP. FILENAME is the name of the file containing the data;
3420 it is used for error reporting. DEPRECATED_OK is true if it is
3421 ok to use deprecated sections.
3422
3423 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3424 out parameters that are filled in with information about the CU and
3425 TU lists in the section.
3426
3427 Returns true if all went well, false otherwise. */
3428
3429 static bool
3430 read_gdb_index_from_buffer (struct objfile *objfile,
3431 const char *filename,
3432 bool deprecated_ok,
3433 gdb::array_view<const gdb_byte> buffer,
3434 struct mapped_index *map,
3435 const gdb_byte **cu_list,
3436 offset_type *cu_list_elements,
3437 const gdb_byte **types_list,
3438 offset_type *types_list_elements)
3439 {
3440 const gdb_byte *addr = &buffer[0];
3441
3442 /* Version check. */
3443 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3444 /* Versions earlier than 3 emitted every copy of a psymbol. This
3445 causes the index to behave very poorly for certain requests. Version 3
3446 contained incomplete addrmap. So, it seems better to just ignore such
3447 indices. */
3448 if (version < 4)
3449 {
3450 static int warning_printed = 0;
3451 if (!warning_printed)
3452 {
3453 warning (_("Skipping obsolete .gdb_index section in %s."),
3454 filename);
3455 warning_printed = 1;
3456 }
3457 return 0;
3458 }
3459 /* Index version 4 uses a different hash function than index version
3460 5 and later.
3461
3462 Versions earlier than 6 did not emit psymbols for inlined
3463 functions. Using these files will cause GDB not to be able to
3464 set breakpoints on inlined functions by name, so we ignore these
3465 indices unless the user has done
3466 "set use-deprecated-index-sections on". */
3467 if (version < 6 && !deprecated_ok)
3468 {
3469 static int warning_printed = 0;
3470 if (!warning_printed)
3471 {
3472 warning (_("\
3473 Skipping deprecated .gdb_index section in %s.\n\
3474 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3475 to use the section anyway."),
3476 filename);
3477 warning_printed = 1;
3478 }
3479 return 0;
3480 }
3481 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3482 of the TU (for symbols coming from TUs),
3483 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3484 Plus gold-generated indices can have duplicate entries for global symbols,
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3486 These are just performance bugs, and we can't distinguish gdb-generated
3487 indices from gold-generated ones, so issue no warning here. */
3488
3489 /* Indexes with higher version than the one supported by GDB may be no
3490 longer backward compatible. */
3491 if (version > 8)
3492 return 0;
3493
3494 map->version = version;
3495
3496 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3497
3498 int i = 0;
3499 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3500 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3501 / 8);
3502 ++i;
3503
3504 *types_list = addr + MAYBE_SWAP (metadata[i]);
3505 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3506 - MAYBE_SWAP (metadata[i]))
3507 / 8);
3508 ++i;
3509
3510 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3511 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3512 map->address_table
3513 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3514 ++i;
3515
3516 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3517 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3518 map->symbol_table
3519 = gdb::array_view<mapped_index::symbol_table_slot>
3520 ((mapped_index::symbol_table_slot *) symbol_table,
3521 (mapped_index::symbol_table_slot *) symbol_table_end);
3522
3523 ++i;
3524 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3525
3526 return 1;
3527 }
3528
3529 /* Callback types for dwarf2_read_gdb_index. */
3530
3531 typedef gdb::function_view
3532 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3533 get_gdb_index_contents_ftype;
3534 typedef gdb::function_view
3535 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3536 get_gdb_index_contents_dwz_ftype;
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_gdb_index
3543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3544 get_gdb_index_contents_ftype get_gdb_index_contents,
3545 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3546 {
3547 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3548 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3549 struct dwz_file *dwz;
3550 struct objfile *objfile = dwarf2_per_objfile->objfile;
3551
3552 gdb::array_view<const gdb_byte> main_index_contents
3553 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3554
3555 if (main_index_contents.empty ())
3556 return 0;
3557
3558 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3559 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3560 use_deprecated_index_sections,
3561 main_index_contents, map.get (), &cu_list,
3562 &cu_list_elements, &types_list,
3563 &types_list_elements))
3564 return 0;
3565
3566 /* Don't use the index if it's empty. */
3567 if (map->symbol_table.empty ())
3568 return 0;
3569
3570 /* If there is a .dwz file, read it so we can get its CU list as
3571 well. */
3572 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3573 if (dwz != NULL)
3574 {
3575 struct mapped_index dwz_map;
3576 const gdb_byte *dwz_types_ignore;
3577 offset_type dwz_types_elements_ignore;
3578
3579 gdb::array_view<const gdb_byte> dwz_index_content
3580 = get_gdb_index_contents_dwz (objfile, dwz);
3581
3582 if (dwz_index_content.empty ())
3583 return 0;
3584
3585 if (!read_gdb_index_from_buffer (objfile,
3586 bfd_get_filename (dwz->dwz_bfd), 1,
3587 dwz_index_content, &dwz_map,
3588 &dwz_list, &dwz_list_elements,
3589 &dwz_types_ignore,
3590 &dwz_types_elements_ignore))
3591 {
3592 warning (_("could not read '.gdb_index' section from %s; skipping"),
3593 bfd_get_filename (dwz->dwz_bfd));
3594 return 0;
3595 }
3596 }
3597
3598 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3599 dwz_list, dwz_list_elements);
3600
3601 if (types_list_elements)
3602 {
3603 struct dwarf2_section_info *section;
3604
3605 /* We can only handle a single .debug_types when we have an
3606 index. */
3607 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3608 return 0;
3609
3610 section = VEC_index (dwarf2_section_info_def,
3611 dwarf2_per_objfile->types, 0);
3612
3613 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3614 types_list, types_list_elements);
3615 }
3616
3617 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3618
3619 dwarf2_per_objfile->index_table = std::move (map);
3620 dwarf2_per_objfile->using_index = 1;
3621 dwarf2_per_objfile->quick_file_names_table =
3622 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3623
3624 return 1;
3625 }
3626
3627 /* die_reader_func for dw2_get_file_names. */
3628
3629 static void
3630 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3631 const gdb_byte *info_ptr,
3632 struct die_info *comp_unit_die,
3633 int has_children,
3634 void *data)
3635 {
3636 struct dwarf2_cu *cu = reader->cu;
3637 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3638 struct dwarf2_per_objfile *dwarf2_per_objfile
3639 = cu->per_cu->dwarf2_per_objfile;
3640 struct objfile *objfile = dwarf2_per_objfile->objfile;
3641 struct dwarf2_per_cu_data *lh_cu;
3642 struct attribute *attr;
3643 int i;
3644 void **slot;
3645 struct quick_file_names *qfn;
3646
3647 gdb_assert (! this_cu->is_debug_types);
3648
3649 /* Our callers never want to match partial units -- instead they
3650 will match the enclosing full CU. */
3651 if (comp_unit_die->tag == DW_TAG_partial_unit)
3652 {
3653 this_cu->v.quick->no_file_data = 1;
3654 return;
3655 }
3656
3657 lh_cu = this_cu;
3658 slot = NULL;
3659
3660 line_header_up lh;
3661 sect_offset line_offset {};
3662
3663 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3664 if (attr)
3665 {
3666 struct quick_file_names find_entry;
3667
3668 line_offset = (sect_offset) DW_UNSND (attr);
3669
3670 /* We may have already read in this line header (TU line header sharing).
3671 If we have we're done. */
3672 find_entry.hash.dwo_unit = cu->dwo_unit;
3673 find_entry.hash.line_sect_off = line_offset;
3674 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3675 &find_entry, INSERT);
3676 if (*slot != NULL)
3677 {
3678 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3679 return;
3680 }
3681
3682 lh = dwarf_decode_line_header (line_offset, cu);
3683 }
3684 if (lh == NULL)
3685 {
3686 lh_cu->v.quick->no_file_data = 1;
3687 return;
3688 }
3689
3690 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3691 qfn->hash.dwo_unit = cu->dwo_unit;
3692 qfn->hash.line_sect_off = line_offset;
3693 gdb_assert (slot != NULL);
3694 *slot = qfn;
3695
3696 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3697
3698 qfn->num_file_names = lh->file_names.size ();
3699 qfn->file_names =
3700 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3701 for (i = 0; i < lh->file_names.size (); ++i)
3702 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3703 qfn->real_names = NULL;
3704
3705 lh_cu->v.quick->file_names = qfn;
3706 }
3707
3708 /* A helper for the "quick" functions which attempts to read the line
3709 table for THIS_CU. */
3710
3711 static struct quick_file_names *
3712 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3713 {
3714 /* This should never be called for TUs. */
3715 gdb_assert (! this_cu->is_debug_types);
3716 /* Nor type unit groups. */
3717 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3718
3719 if (this_cu->v.quick->file_names != NULL)
3720 return this_cu->v.quick->file_names;
3721 /* If we know there is no line data, no point in looking again. */
3722 if (this_cu->v.quick->no_file_data)
3723 return NULL;
3724
3725 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3726
3727 if (this_cu->v.quick->no_file_data)
3728 return NULL;
3729 return this_cu->v.quick->file_names;
3730 }
3731
3732 /* A helper for the "quick" functions which computes and caches the
3733 real path for a given file name from the line table. */
3734
3735 static const char *
3736 dw2_get_real_path (struct objfile *objfile,
3737 struct quick_file_names *qfn, int index)
3738 {
3739 if (qfn->real_names == NULL)
3740 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3741 qfn->num_file_names, const char *);
3742
3743 if (qfn->real_names[index] == NULL)
3744 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3745
3746 return qfn->real_names[index];
3747 }
3748
3749 static struct symtab *
3750 dw2_find_last_source_symtab (struct objfile *objfile)
3751 {
3752 struct dwarf2_per_objfile *dwarf2_per_objfile
3753 = get_dwarf2_per_objfile (objfile);
3754 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3755 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3756
3757 if (cust == NULL)
3758 return NULL;
3759
3760 return compunit_primary_filetab (cust);
3761 }
3762
3763 /* Traversal function for dw2_forget_cached_source_info. */
3764
3765 static int
3766 dw2_free_cached_file_names (void **slot, void *info)
3767 {
3768 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3769
3770 if (file_data->real_names)
3771 {
3772 int i;
3773
3774 for (i = 0; i < file_data->num_file_names; ++i)
3775 {
3776 xfree ((void*) file_data->real_names[i]);
3777 file_data->real_names[i] = NULL;
3778 }
3779 }
3780
3781 return 1;
3782 }
3783
3784 static void
3785 dw2_forget_cached_source_info (struct objfile *objfile)
3786 {
3787 struct dwarf2_per_objfile *dwarf2_per_objfile
3788 = get_dwarf2_per_objfile (objfile);
3789
3790 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3791 dw2_free_cached_file_names, NULL);
3792 }
3793
3794 /* Helper function for dw2_map_symtabs_matching_filename that expands
3795 the symtabs and calls the iterator. */
3796
3797 static int
3798 dw2_map_expand_apply (struct objfile *objfile,
3799 struct dwarf2_per_cu_data *per_cu,
3800 const char *name, const char *real_path,
3801 gdb::function_view<bool (symtab *)> callback)
3802 {
3803 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3804
3805 /* Don't visit already-expanded CUs. */
3806 if (per_cu->v.quick->compunit_symtab)
3807 return 0;
3808
3809 /* This may expand more than one symtab, and we want to iterate over
3810 all of them. */
3811 dw2_instantiate_symtab (per_cu, false);
3812
3813 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3814 last_made, callback);
3815 }
3816
3817 /* Implementation of the map_symtabs_matching_filename method. */
3818
3819 static bool
3820 dw2_map_symtabs_matching_filename
3821 (struct objfile *objfile, const char *name, const char *real_path,
3822 gdb::function_view<bool (symtab *)> callback)
3823 {
3824 const char *name_basename = lbasename (name);
3825 struct dwarf2_per_objfile *dwarf2_per_objfile
3826 = get_dwarf2_per_objfile (objfile);
3827
3828 /* The rule is CUs specify all the files, including those used by
3829 any TU, so there's no need to scan TUs here. */
3830
3831 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3832 {
3833 /* We only need to look at symtabs not already expanded. */
3834 if (per_cu->v.quick->compunit_symtab)
3835 continue;
3836
3837 quick_file_names *file_data = dw2_get_file_names (per_cu);
3838 if (file_data == NULL)
3839 continue;
3840
3841 for (int j = 0; j < file_data->num_file_names; ++j)
3842 {
3843 const char *this_name = file_data->file_names[j];
3844 const char *this_real_name;
3845
3846 if (compare_filenames_for_search (this_name, name))
3847 {
3848 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3849 callback))
3850 return true;
3851 continue;
3852 }
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (! basenames_may_differ
3857 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3858 continue;
3859
3860 this_real_name = dw2_get_real_path (objfile, file_data, j);
3861 if (compare_filenames_for_search (this_real_name, name))
3862 {
3863 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3864 callback))
3865 return true;
3866 continue;
3867 }
3868
3869 if (real_path != NULL)
3870 {
3871 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3872 gdb_assert (IS_ABSOLUTE_PATH (name));
3873 if (this_real_name != NULL
3874 && FILENAME_CMP (real_path, this_real_name) == 0)
3875 {
3876 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3877 callback))
3878 return true;
3879 continue;
3880 }
3881 }
3882 }
3883 }
3884
3885 return false;
3886 }
3887
3888 /* Struct used to manage iterating over all CUs looking for a symbol. */
3889
3890 struct dw2_symtab_iterator
3891 {
3892 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3893 struct dwarf2_per_objfile *dwarf2_per_objfile;
3894 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3895 int want_specific_block;
3896 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3897 Unused if !WANT_SPECIFIC_BLOCK. */
3898 int block_index;
3899 /* The kind of symbol we're looking for. */
3900 domain_enum domain;
3901 /* The list of CUs from the index entry of the symbol,
3902 or NULL if not found. */
3903 offset_type *vec;
3904 /* The next element in VEC to look at. */
3905 int next;
3906 /* The number of elements in VEC, or zero if there is no match. */
3907 int length;
3908 /* Have we seen a global version of the symbol?
3909 If so we can ignore all further global instances.
3910 This is to work around gold/15646, inefficient gold-generated
3911 indices. */
3912 int global_seen;
3913 };
3914
3915 /* Initialize the index symtab iterator ITER.
3916 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3917 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3918
3919 static void
3920 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
3922 int want_specific_block,
3923 int block_index,
3924 domain_enum domain,
3925 const char *name)
3926 {
3927 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3928 iter->want_specific_block = want_specific_block;
3929 iter->block_index = block_index;
3930 iter->domain = domain;
3931 iter->next = 0;
3932 iter->global_seen = 0;
3933
3934 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3935
3936 /* index is NULL if OBJF_READNOW. */
3937 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3938 iter->length = MAYBE_SWAP (*iter->vec);
3939 else
3940 {
3941 iter->vec = NULL;
3942 iter->length = 0;
3943 }
3944 }
3945
3946 /* Return the next matching CU or NULL if there are no more. */
3947
3948 static struct dwarf2_per_cu_data *
3949 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3950 {
3951 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3952
3953 for ( ; iter->next < iter->length; ++iter->next)
3954 {
3955 offset_type cu_index_and_attrs =
3956 MAYBE_SWAP (iter->vec[iter->next + 1]);
3957 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3958 int want_static = iter->block_index != GLOBAL_BLOCK;
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 /* Only check the symbol attributes if they're present.
3964 Indices prior to version 7 don't record them,
3965 and indices >= 7 may elide them for certain symbols
3966 (gold does this). */
3967 int attrs_valid =
3968 (dwarf2_per_objfile->index_table->version >= 7
3969 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3970
3971 /* Don't crash on bad data. */
3972 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3973 + dwarf2_per_objfile->all_type_units.size ()))
3974 {
3975 complaint (_(".gdb_index entry has bad CU index"
3976 " [in module %s]"),
3977 objfile_name (dwarf2_per_objfile->objfile));
3978 continue;
3979 }
3980
3981 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3982
3983 /* Skip if already read in. */
3984 if (per_cu->v.quick->compunit_symtab)
3985 continue;
3986
3987 /* Check static vs global. */
3988 if (attrs_valid)
3989 {
3990 if (iter->want_specific_block
3991 && want_static != is_static)
3992 continue;
3993 /* Work around gold/15646. */
3994 if (!is_static && iter->global_seen)
3995 continue;
3996 if (!is_static)
3997 iter->global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (iter->domain)
4004 {
4005 case VAR_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4007 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4008 /* Some types are also in VAR_DOMAIN. */
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 case STRUCT_DOMAIN:
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4014 continue;
4015 break;
4016 case LABEL_DOMAIN:
4017 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4018 continue;
4019 break;
4020 default:
4021 break;
4022 }
4023 }
4024
4025 ++iter->next;
4026 return per_cu;
4027 }
4028
4029 return NULL;
4030 }
4031
4032 static struct compunit_symtab *
4033 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4034 const char *name, domain_enum domain)
4035 {
4036 struct compunit_symtab *stab_best = NULL;
4037 struct dwarf2_per_objfile *dwarf2_per_objfile
4038 = get_dwarf2_per_objfile (objfile);
4039
4040 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4041
4042 struct dw2_symtab_iterator iter;
4043 struct dwarf2_per_cu_data *per_cu;
4044
4045 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4046
4047 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4048 {
4049 struct symbol *sym, *with_opaque = NULL;
4050 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4051 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4052 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4053
4054 sym = block_find_symbol (block, name, domain,
4055 block_find_non_opaque_type_preferred,
4056 &with_opaque);
4057
4058 /* Some caution must be observed with overloaded functions
4059 and methods, since the index will not contain any overload
4060 information (but NAME might contain it). */
4061
4062 if (sym != NULL
4063 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4064 return stab;
4065 if (with_opaque != NULL
4066 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4067 stab_best = stab;
4068
4069 /* Keep looking through other CUs. */
4070 }
4071
4072 return stab_best;
4073 }
4074
4075 static void
4076 dw2_print_stats (struct objfile *objfile)
4077 {
4078 struct dwarf2_per_objfile *dwarf2_per_objfile
4079 = get_dwarf2_per_objfile (objfile);
4080 int total = (dwarf2_per_objfile->all_comp_units.size ()
4081 + dwarf2_per_objfile->all_type_units.size ());
4082 int count = 0;
4083
4084 for (int i = 0; i < total; ++i)
4085 {
4086 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4087
4088 if (!per_cu->v.quick->compunit_symtab)
4089 ++count;
4090 }
4091 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4092 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4093 }
4094
4095 /* This dumps minimal information about the index.
4096 It is called via "mt print objfiles".
4097 One use is to verify .gdb_index has been loaded by the
4098 gdb.dwarf2/gdb-index.exp testcase. */
4099
4100 static void
4101 dw2_dump (struct objfile *objfile)
4102 {
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4105
4106 gdb_assert (dwarf2_per_objfile->using_index);
4107 printf_filtered (".gdb_index:");
4108 if (dwarf2_per_objfile->index_table != NULL)
4109 {
4110 printf_filtered (" version %d\n",
4111 dwarf2_per_objfile->index_table->version);
4112 }
4113 else
4114 printf_filtered (" faked for \"readnow\"\n");
4115 printf_filtered ("\n");
4116 }
4117
4118 static void
4119 dw2_expand_symtabs_for_function (struct objfile *objfile,
4120 const char *func_name)
4121 {
4122 struct dwarf2_per_objfile *dwarf2_per_objfile
4123 = get_dwarf2_per_objfile (objfile);
4124
4125 struct dw2_symtab_iterator iter;
4126 struct dwarf2_per_cu_data *per_cu;
4127
4128 /* Note: It doesn't matter what we pass for block_index here. */
4129 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4130 func_name);
4131
4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4133 dw2_instantiate_symtab (per_cu, false);
4134
4135 }
4136
4137 static void
4138 dw2_expand_all_symtabs (struct objfile *objfile)
4139 {
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4143 + dwarf2_per_objfile->all_type_units.size ());
4144
4145 for (int i = 0; i < total_units; ++i)
4146 {
4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4148
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
4155 }
4156 }
4157
4158 static void
4159 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
4161 {
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
4164
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4169
4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4171 {
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4174 continue;
4175
4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4178 continue;
4179
4180 for (int j = 0; j < file_data->num_file_names; ++j)
4181 {
4182 const char *this_fullname = file_data->file_names[j];
4183
4184 if (filename_cmp (this_fullname, fullname) == 0)
4185 {
4186 dw2_instantiate_symtab (per_cu, false);
4187 break;
4188 }
4189 }
4190 }
4191 }
4192
4193 static void
4194 dw2_map_matching_symbols (struct objfile *objfile,
4195 const char * name, domain_enum domain,
4196 int global,
4197 int (*callback) (struct block *,
4198 struct symbol *, void *),
4199 void *data, symbol_name_match_type match,
4200 symbol_compare_ftype *ordered_compare)
4201 {
4202 /* Currently unimplemented; used for Ada. The function can be called if the
4203 current language is Ada for a non-Ada objfile using GNU index. As Ada
4204 does not look for non-Ada symbols this function should just return. */
4205 }
4206
4207 /* Symbol name matcher for .gdb_index names.
4208
4209 Symbol names in .gdb_index have a few particularities:
4210
4211 - There's no indication of which is the language of each symbol.
4212
4213 Since each language has its own symbol name matching algorithm,
4214 and we don't know which language is the right one, we must match
4215 each symbol against all languages. This would be a potential
4216 performance problem if it were not mitigated by the
4217 mapped_index::name_components lookup table, which significantly
4218 reduces the number of times we need to call into this matcher,
4219 making it a non-issue.
4220
4221 - Symbol names in the index have no overload (parameter)
4222 information. I.e., in C++, "foo(int)" and "foo(long)" both
4223 appear as "foo" in the index, for example.
4224
4225 This means that the lookup names passed to the symbol name
4226 matcher functions must have no parameter information either
4227 because (e.g.) symbol search name "foo" does not match
4228 lookup-name "foo(int)" [while swapping search name for lookup
4229 name would match].
4230 */
4231 class gdb_index_symbol_name_matcher
4232 {
4233 public:
4234 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4235 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4236
4237 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4238 Returns true if any matcher matches. */
4239 bool matches (const char *symbol_name);
4240
4241 private:
4242 /* A reference to the lookup name we're matching against. */
4243 const lookup_name_info &m_lookup_name;
4244
4245 /* A vector holding all the different symbol name matchers, for all
4246 languages. */
4247 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4248 };
4249
4250 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4251 (const lookup_name_info &lookup_name)
4252 : m_lookup_name (lookup_name)
4253 {
4254 /* Prepare the vector of comparison functions upfront, to avoid
4255 doing the same work for each symbol. Care is taken to avoid
4256 matching with the same matcher more than once if/when multiple
4257 languages use the same matcher function. */
4258 auto &matchers = m_symbol_name_matcher_funcs;
4259 matchers.reserve (nr_languages);
4260
4261 matchers.push_back (default_symbol_name_matcher);
4262
4263 for (int i = 0; i < nr_languages; i++)
4264 {
4265 const language_defn *lang = language_def ((enum language) i);
4266 symbol_name_matcher_ftype *name_matcher
4267 = get_symbol_name_matcher (lang, m_lookup_name);
4268
4269 /* Don't insert the same comparison routine more than once.
4270 Note that we do this linear walk instead of a seemingly
4271 cheaper sorted insert, or use a std::set or something like
4272 that, because relative order of function addresses is not
4273 stable. This is not a problem in practice because the number
4274 of supported languages is low, and the cost here is tiny
4275 compared to the number of searches we'll do afterwards using
4276 this object. */
4277 if (name_matcher != default_symbol_name_matcher
4278 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4279 == matchers.end ()))
4280 matchers.push_back (name_matcher);
4281 }
4282 }
4283
4284 bool
4285 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4286 {
4287 for (auto matches_name : m_symbol_name_matcher_funcs)
4288 if (matches_name (symbol_name, m_lookup_name, NULL))
4289 return true;
4290
4291 return false;
4292 }
4293
4294 /* Starting from a search name, return the string that finds the upper
4295 bound of all strings that start with SEARCH_NAME in a sorted name
4296 list. Returns the empty string to indicate that the upper bound is
4297 the end of the list. */
4298
4299 static std::string
4300 make_sort_after_prefix_name (const char *search_name)
4301 {
4302 /* When looking to complete "func", we find the upper bound of all
4303 symbols that start with "func" by looking for where we'd insert
4304 the closest string that would follow "func" in lexicographical
4305 order. Usually, that's "func"-with-last-character-incremented,
4306 i.e. "fund". Mind non-ASCII characters, though. Usually those
4307 will be UTF-8 multi-byte sequences, but we can't be certain.
4308 Especially mind the 0xff character, which is a valid character in
4309 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4310 rule out compilers allowing it in identifiers. Note that
4311 conveniently, strcmp/strcasecmp are specified to compare
4312 characters interpreted as unsigned char. So what we do is treat
4313 the whole string as a base 256 number composed of a sequence of
4314 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4315 to 0, and carries 1 to the following more-significant position.
4316 If the very first character in SEARCH_NAME ends up incremented
4317 and carries/overflows, then the upper bound is the end of the
4318 list. The string after the empty string is also the empty
4319 string.
4320
4321 Some examples of this operation:
4322
4323 SEARCH_NAME => "+1" RESULT
4324
4325 "abc" => "abd"
4326 "ab\xff" => "ac"
4327 "\xff" "a" "\xff" => "\xff" "b"
4328 "\xff" => ""
4329 "\xff\xff" => ""
4330 "" => ""
4331
4332 Then, with these symbols for example:
4333
4334 func
4335 func1
4336 fund
4337
4338 completing "func" looks for symbols between "func" and
4339 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4340 which finds "func" and "func1", but not "fund".
4341
4342 And with:
4343
4344 funcÿ (Latin1 'ÿ' [0xff])
4345 funcÿ1
4346 fund
4347
4348 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4349 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4350
4351 And with:
4352
4353 ÿÿ (Latin1 'ÿ' [0xff])
4354 ÿÿ1
4355
4356 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4357 the end of the list.
4358 */
4359 std::string after = search_name;
4360 while (!after.empty () && (unsigned char) after.back () == 0xff)
4361 after.pop_back ();
4362 if (!after.empty ())
4363 after.back () = (unsigned char) after.back () + 1;
4364 return after;
4365 }
4366
4367 /* See declaration. */
4368
4369 std::pair<std::vector<name_component>::const_iterator,
4370 std::vector<name_component>::const_iterator>
4371 mapped_index_base::find_name_components_bounds
4372 (const lookup_name_info &lookup_name_without_params) const
4373 {
4374 auto *name_cmp
4375 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4376
4377 const char *cplus
4378 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4379
4380 /* Comparison function object for lower_bound that matches against a
4381 given symbol name. */
4382 auto lookup_compare_lower = [&] (const name_component &elem,
4383 const char *name)
4384 {
4385 const char *elem_qualified = this->symbol_name_at (elem.idx);
4386 const char *elem_name = elem_qualified + elem.name_offset;
4387 return name_cmp (elem_name, name) < 0;
4388 };
4389
4390 /* Comparison function object for upper_bound that matches against a
4391 given symbol name. */
4392 auto lookup_compare_upper = [&] (const char *name,
4393 const name_component &elem)
4394 {
4395 const char *elem_qualified = this->symbol_name_at (elem.idx);
4396 const char *elem_name = elem_qualified + elem.name_offset;
4397 return name_cmp (name, elem_name) < 0;
4398 };
4399
4400 auto begin = this->name_components.begin ();
4401 auto end = this->name_components.end ();
4402
4403 /* Find the lower bound. */
4404 auto lower = [&] ()
4405 {
4406 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4407 return begin;
4408 else
4409 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4410 } ();
4411
4412 /* Find the upper bound. */
4413 auto upper = [&] ()
4414 {
4415 if (lookup_name_without_params.completion_mode ())
4416 {
4417 /* In completion mode, we want UPPER to point past all
4418 symbols names that have the same prefix. I.e., with
4419 these symbols, and completing "func":
4420
4421 function << lower bound
4422 function1
4423 other_function << upper bound
4424
4425 We find the upper bound by looking for the insertion
4426 point of "func"-with-last-character-incremented,
4427 i.e. "fund". */
4428 std::string after = make_sort_after_prefix_name (cplus);
4429 if (after.empty ())
4430 return end;
4431 return std::lower_bound (lower, end, after.c_str (),
4432 lookup_compare_lower);
4433 }
4434 else
4435 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4436 } ();
4437
4438 return {lower, upper};
4439 }
4440
4441 /* See declaration. */
4442
4443 void
4444 mapped_index_base::build_name_components ()
4445 {
4446 if (!this->name_components.empty ())
4447 return;
4448
4449 this->name_components_casing = case_sensitivity;
4450 auto *name_cmp
4451 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4452
4453 /* The code below only knows how to break apart components of C++
4454 symbol names (and other languages that use '::' as
4455 namespace/module separator). If we add support for wild matching
4456 to some language that uses some other operator (E.g., Ada, Go and
4457 D use '.'), then we'll need to try splitting the symbol name
4458 according to that language too. Note that Ada does support wild
4459 matching, but doesn't currently support .gdb_index. */
4460 auto count = this->symbol_name_count ();
4461 for (offset_type idx = 0; idx < count; idx++)
4462 {
4463 if (this->symbol_name_slot_invalid (idx))
4464 continue;
4465
4466 const char *name = this->symbol_name_at (idx);
4467
4468 /* Add each name component to the name component table. */
4469 unsigned int previous_len = 0;
4470 for (unsigned int current_len = cp_find_first_component (name);
4471 name[current_len] != '\0';
4472 current_len += cp_find_first_component (name + current_len))
4473 {
4474 gdb_assert (name[current_len] == ':');
4475 this->name_components.push_back ({previous_len, idx});
4476 /* Skip the '::'. */
4477 current_len += 2;
4478 previous_len = current_len;
4479 }
4480 this->name_components.push_back ({previous_len, idx});
4481 }
4482
4483 /* Sort name_components elements by name. */
4484 auto name_comp_compare = [&] (const name_component &left,
4485 const name_component &right)
4486 {
4487 const char *left_qualified = this->symbol_name_at (left.idx);
4488 const char *right_qualified = this->symbol_name_at (right.idx);
4489
4490 const char *left_name = left_qualified + left.name_offset;
4491 const char *right_name = right_qualified + right.name_offset;
4492
4493 return name_cmp (left_name, right_name) < 0;
4494 };
4495
4496 std::sort (this->name_components.begin (),
4497 this->name_components.end (),
4498 name_comp_compare);
4499 }
4500
4501 /* Helper for dw2_expand_symtabs_matching that works with a
4502 mapped_index_base instead of the containing objfile. This is split
4503 to a separate function in order to be able to unit test the
4504 name_components matching using a mock mapped_index_base. For each
4505 symbol name that matches, calls MATCH_CALLBACK, passing it the
4506 symbol's index in the mapped_index_base symbol table. */
4507
4508 static void
4509 dw2_expand_symtabs_matching_symbol
4510 (mapped_index_base &index,
4511 const lookup_name_info &lookup_name_in,
4512 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4513 enum search_domain kind,
4514 gdb::function_view<void (offset_type)> match_callback)
4515 {
4516 lookup_name_info lookup_name_without_params
4517 = lookup_name_in.make_ignore_params ();
4518 gdb_index_symbol_name_matcher lookup_name_matcher
4519 (lookup_name_without_params);
4520
4521 /* Build the symbol name component sorted vector, if we haven't
4522 yet. */
4523 index.build_name_components ();
4524
4525 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4526
4527 /* Now for each symbol name in range, check to see if we have a name
4528 match, and if so, call the MATCH_CALLBACK callback. */
4529
4530 /* The same symbol may appear more than once in the range though.
4531 E.g., if we're looking for symbols that complete "w", and we have
4532 a symbol named "w1::w2", we'll find the two name components for
4533 that same symbol in the range. To be sure we only call the
4534 callback once per symbol, we first collect the symbol name
4535 indexes that matched in a temporary vector and ignore
4536 duplicates. */
4537 std::vector<offset_type> matches;
4538 matches.reserve (std::distance (bounds.first, bounds.second));
4539
4540 for (; bounds.first != bounds.second; ++bounds.first)
4541 {
4542 const char *qualified = index.symbol_name_at (bounds.first->idx);
4543
4544 if (!lookup_name_matcher.matches (qualified)
4545 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4546 continue;
4547
4548 matches.push_back (bounds.first->idx);
4549 }
4550
4551 std::sort (matches.begin (), matches.end ());
4552
4553 /* Finally call the callback, once per match. */
4554 ULONGEST prev = -1;
4555 for (offset_type idx : matches)
4556 {
4557 if (prev != idx)
4558 {
4559 match_callback (idx);
4560 prev = idx;
4561 }
4562 }
4563
4564 /* Above we use a type wider than idx's for 'prev', since 0 and
4565 (offset_type)-1 are both possible values. */
4566 static_assert (sizeof (prev) > sizeof (offset_type), "");
4567 }
4568
4569 #if GDB_SELF_TEST
4570
4571 namespace selftests { namespace dw2_expand_symtabs_matching {
4572
4573 /* A mock .gdb_index/.debug_names-like name index table, enough to
4574 exercise dw2_expand_symtabs_matching_symbol, which works with the
4575 mapped_index_base interface. Builds an index from the symbol list
4576 passed as parameter to the constructor. */
4577 class mock_mapped_index : public mapped_index_base
4578 {
4579 public:
4580 mock_mapped_index (gdb::array_view<const char *> symbols)
4581 : m_symbol_table (symbols)
4582 {}
4583
4584 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4585
4586 /* Return the number of names in the symbol table. */
4587 size_t symbol_name_count () const override
4588 {
4589 return m_symbol_table.size ();
4590 }
4591
4592 /* Get the name of the symbol at IDX in the symbol table. */
4593 const char *symbol_name_at (offset_type idx) const override
4594 {
4595 return m_symbol_table[idx];
4596 }
4597
4598 private:
4599 gdb::array_view<const char *> m_symbol_table;
4600 };
4601
4602 /* Convenience function that converts a NULL pointer to a "<null>"
4603 string, to pass to print routines. */
4604
4605 static const char *
4606 string_or_null (const char *str)
4607 {
4608 return str != NULL ? str : "<null>";
4609 }
4610
4611 /* Check if a lookup_name_info built from
4612 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4613 index. EXPECTED_LIST is the list of expected matches, in expected
4614 matching order. If no match expected, then an empty list is
4615 specified. Returns true on success. On failure prints a warning
4616 indicating the file:line that failed, and returns false. */
4617
4618 static bool
4619 check_match (const char *file, int line,
4620 mock_mapped_index &mock_index,
4621 const char *name, symbol_name_match_type match_type,
4622 bool completion_mode,
4623 std::initializer_list<const char *> expected_list)
4624 {
4625 lookup_name_info lookup_name (name, match_type, completion_mode);
4626
4627 bool matched = true;
4628
4629 auto mismatch = [&] (const char *expected_str,
4630 const char *got)
4631 {
4632 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4633 "expected=\"%s\", got=\"%s\"\n"),
4634 file, line,
4635 (match_type == symbol_name_match_type::FULL
4636 ? "FULL" : "WILD"),
4637 name, string_or_null (expected_str), string_or_null (got));
4638 matched = false;
4639 };
4640
4641 auto expected_it = expected_list.begin ();
4642 auto expected_end = expected_list.end ();
4643
4644 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4645 NULL, ALL_DOMAIN,
4646 [&] (offset_type idx)
4647 {
4648 const char *matched_name = mock_index.symbol_name_at (idx);
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651
4652 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4653 mismatch (expected_str, matched_name);
4654 });
4655
4656 const char *expected_str
4657 = expected_it == expected_end ? NULL : *expected_it++;
4658 if (expected_str != NULL)
4659 mismatch (expected_str, NULL);
4660
4661 return matched;
4662 }
4663
4664 /* The symbols added to the mock mapped_index for testing (in
4665 canonical form). */
4666 static const char *test_symbols[] = {
4667 "function",
4668 "std::bar",
4669 "std::zfunction",
4670 "std::zfunction2",
4671 "w1::w2",
4672 "ns::foo<char*>",
4673 "ns::foo<int>",
4674 "ns::foo<long>",
4675 "ns2::tmpl<int>::foo2",
4676 "(anonymous namespace)::A::B::C",
4677
4678 /* These are used to check that the increment-last-char in the
4679 matching algorithm for completion doesn't match "t1_fund" when
4680 completing "t1_func". */
4681 "t1_func",
4682 "t1_func1",
4683 "t1_fund",
4684 "t1_fund1",
4685
4686 /* A UTF-8 name with multi-byte sequences to make sure that
4687 cp-name-parser understands this as a single identifier ("função"
4688 is "function" in PT). */
4689 u8"u8função",
4690
4691 /* \377 (0xff) is Latin1 'ÿ'. */
4692 "yfunc\377",
4693
4694 /* \377 (0xff) is Latin1 'ÿ'. */
4695 "\377",
4696 "\377\377123",
4697
4698 /* A name with all sorts of complications. Starts with "z" to make
4699 it easier for the completion tests below. */
4700 #define Z_SYM_NAME \
4701 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4702 "::tuple<(anonymous namespace)::ui*, " \
4703 "std::default_delete<(anonymous namespace)::ui>, void>"
4704
4705 Z_SYM_NAME
4706 };
4707
4708 /* Returns true if the mapped_index_base::find_name_component_bounds
4709 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4710 in completion mode. */
4711
4712 static bool
4713 check_find_bounds_finds (mapped_index_base &index,
4714 const char *search_name,
4715 gdb::array_view<const char *> expected_syms)
4716 {
4717 lookup_name_info lookup_name (search_name,
4718 symbol_name_match_type::FULL, true);
4719
4720 auto bounds = index.find_name_components_bounds (lookup_name);
4721
4722 size_t distance = std::distance (bounds.first, bounds.second);
4723 if (distance != expected_syms.size ())
4724 return false;
4725
4726 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4727 {
4728 auto nc_elem = bounds.first + exp_elem;
4729 const char *qualified = index.symbol_name_at (nc_elem->idx);
4730 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4731 return false;
4732 }
4733
4734 return true;
4735 }
4736
4737 /* Test the lower-level mapped_index::find_name_component_bounds
4738 method. */
4739
4740 static void
4741 test_mapped_index_find_name_component_bounds ()
4742 {
4743 mock_mapped_index mock_index (test_symbols);
4744
4745 mock_index.build_name_components ();
4746
4747 /* Test the lower-level mapped_index::find_name_component_bounds
4748 method in completion mode. */
4749 {
4750 static const char *expected_syms[] = {
4751 "t1_func",
4752 "t1_func1",
4753 };
4754
4755 SELF_CHECK (check_find_bounds_finds (mock_index,
4756 "t1_func", expected_syms));
4757 }
4758
4759 /* Check that the increment-last-char in the name matching algorithm
4760 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4761 {
4762 static const char *expected_syms1[] = {
4763 "\377",
4764 "\377\377123",
4765 };
4766 SELF_CHECK (check_find_bounds_finds (mock_index,
4767 "\377", expected_syms1));
4768
4769 static const char *expected_syms2[] = {
4770 "\377\377123",
4771 };
4772 SELF_CHECK (check_find_bounds_finds (mock_index,
4773 "\377\377", expected_syms2));
4774 }
4775 }
4776
4777 /* Test dw2_expand_symtabs_matching_symbol. */
4778
4779 static void
4780 test_dw2_expand_symtabs_matching_symbol ()
4781 {
4782 mock_mapped_index mock_index (test_symbols);
4783
4784 /* We let all tests run until the end even if some fails, for debug
4785 convenience. */
4786 bool any_mismatch = false;
4787
4788 /* Create the expected symbols list (an initializer_list). Needed
4789 because lists have commas, and we need to pass them to CHECK,
4790 which is a macro. */
4791 #define EXPECT(...) { __VA_ARGS__ }
4792
4793 /* Wrapper for check_match that passes down the current
4794 __FILE__/__LINE__. */
4795 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4796 any_mismatch |= !check_match (__FILE__, __LINE__, \
4797 mock_index, \
4798 NAME, MATCH_TYPE, COMPLETION_MODE, \
4799 EXPECTED_LIST)
4800
4801 /* Identity checks. */
4802 for (const char *sym : test_symbols)
4803 {
4804 /* Should be able to match all existing symbols. */
4805 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4806 EXPECT (sym));
4807
4808 /* Should be able to match all existing symbols with
4809 parameters. */
4810 std::string with_params = std::string (sym) + "(int)";
4811 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4812 EXPECT (sym));
4813
4814 /* Should be able to match all existing symbols with
4815 parameters and qualifiers. */
4816 with_params = std::string (sym) + " ( int ) const";
4817 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4818 EXPECT (sym));
4819
4820 /* This should really find sym, but cp-name-parser.y doesn't
4821 know about lvalue/rvalue qualifiers yet. */
4822 with_params = std::string (sym) + " ( int ) &&";
4823 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4824 {});
4825 }
4826
4827 /* Check that the name matching algorithm for completion doesn't get
4828 confused with Latin1 'ÿ' / 0xff. */
4829 {
4830 static const char str[] = "\377";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("\377", "\377\377123"));
4833 }
4834
4835 /* Check that the increment-last-char in the matching algorithm for
4836 completion doesn't match "t1_fund" when completing "t1_func". */
4837 {
4838 static const char str[] = "t1_func";
4839 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4840 EXPECT ("t1_func", "t1_func1"));
4841 }
4842
4843 /* Check that completion mode works at each prefix of the expected
4844 symbol name. */
4845 {
4846 static const char str[] = "function(int)";
4847 size_t len = strlen (str);
4848 std::string lookup;
4849
4850 for (size_t i = 1; i < len; i++)
4851 {
4852 lookup.assign (str, i);
4853 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4854 EXPECT ("function"));
4855 }
4856 }
4857
4858 /* While "w" is a prefix of both components, the match function
4859 should still only be called once. */
4860 {
4861 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4862 EXPECT ("w1::w2"));
4863 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4864 EXPECT ("w1::w2"));
4865 }
4866
4867 /* Same, with a "complicated" symbol. */
4868 {
4869 static const char str[] = Z_SYM_NAME;
4870 size_t len = strlen (str);
4871 std::string lookup;
4872
4873 for (size_t i = 1; i < len; i++)
4874 {
4875 lookup.assign (str, i);
4876 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4877 EXPECT (Z_SYM_NAME));
4878 }
4879 }
4880
4881 /* In FULL mode, an incomplete symbol doesn't match. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4884 {});
4885 }
4886
4887 /* A complete symbol with parameters matches any overload, since the
4888 index has no overload info. */
4889 {
4890 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4891 EXPECT ("std::zfunction", "std::zfunction2"));
4892 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 }
4897
4898 /* Check that whitespace is ignored appropriately. A symbol with a
4899 template argument list. */
4900 {
4901 static const char expected[] = "ns::foo<int>";
4902 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4903 EXPECT (expected));
4904 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4905 EXPECT (expected));
4906 }
4907
4908 /* Check that whitespace is ignored appropriately. A symbol with a
4909 template argument list that includes a pointer. */
4910 {
4911 static const char expected[] = "ns::foo<char*>";
4912 /* Try both completion and non-completion modes. */
4913 static const bool completion_mode[2] = {false, true};
4914 for (size_t i = 0; i < 2; i++)
4915 {
4916 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
4918 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
4920
4921 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4922 completion_mode[i], EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4924 completion_mode[i], EXPECT (expected));
4925 }
4926 }
4927
4928 {
4929 /* Check method qualifiers are ignored. */
4930 static const char expected[] = "ns::foo<char*>";
4931 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4932 symbol_name_match_type::FULL, true, EXPECT (expected));
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("foo < char * > ( int ) const",
4936 symbol_name_match_type::WILD, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) &&",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 }
4940
4941 /* Test lookup names that don't match anything. */
4942 {
4943 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4944 {});
4945
4946 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4947 {});
4948 }
4949
4950 /* Some wild matching tests, exercising "(anonymous namespace)",
4951 which should not be confused with a parameter list. */
4952 {
4953 static const char *syms[] = {
4954 "A::B::C",
4955 "B::C",
4956 "C",
4957 "A :: B :: C ( int )",
4958 "B :: C ( int )",
4959 "C ( int )",
4960 };
4961
4962 for (const char *s : syms)
4963 {
4964 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4965 EXPECT ("(anonymous namespace)::A::B::C"));
4966 }
4967 }
4968
4969 {
4970 static const char expected[] = "ns2::tmpl<int>::foo2";
4971 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4972 EXPECT (expected));
4973 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 }
4976
4977 SELF_CHECK (!any_mismatch);
4978
4979 #undef EXPECT
4980 #undef CHECK_MATCH
4981 }
4982
4983 static void
4984 run_test ()
4985 {
4986 test_mapped_index_find_name_component_bounds ();
4987 test_dw2_expand_symtabs_matching_symbol ();
4988 }
4989
4990 }} // namespace selftests::dw2_expand_symtabs_matching
4991
4992 #endif /* GDB_SELF_TEST */
4993
4994 /* If FILE_MATCHER is NULL or if PER_CU has
4995 dwarf2_per_cu_quick_data::MARK set (see
4996 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4997 EXPANSION_NOTIFY on it. */
4998
4999 static void
5000 dw2_expand_symtabs_matching_one
5001 (struct dwarf2_per_cu_data *per_cu,
5002 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5003 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5004 {
5005 if (file_matcher == NULL || per_cu->v.quick->mark)
5006 {
5007 bool symtab_was_null
5008 = (per_cu->v.quick->compunit_symtab == NULL);
5009
5010 dw2_instantiate_symtab (per_cu, false);
5011
5012 if (expansion_notify != NULL
5013 && symtab_was_null
5014 && per_cu->v.quick->compunit_symtab != NULL)
5015 expansion_notify (per_cu->v.quick->compunit_symtab);
5016 }
5017 }
5018
5019 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5020 matched, to expand corresponding CUs that were marked. IDX is the
5021 index of the symbol name that matched. */
5022
5023 static void
5024 dw2_expand_marked_cus
5025 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5026 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5027 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5028 search_domain kind)
5029 {
5030 offset_type *vec, vec_len, vec_idx;
5031 bool global_seen = false;
5032 mapped_index &index = *dwarf2_per_objfile->index_table;
5033
5034 vec = (offset_type *) (index.constant_pool
5035 + MAYBE_SWAP (index.symbol_table[idx].vec));
5036 vec_len = MAYBE_SWAP (vec[0]);
5037 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5038 {
5039 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5040 /* This value is only valid for index versions >= 7. */
5041 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5042 gdb_index_symbol_kind symbol_kind =
5043 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5044 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5045 /* Only check the symbol attributes if they're present.
5046 Indices prior to version 7 don't record them,
5047 and indices >= 7 may elide them for certain symbols
5048 (gold does this). */
5049 int attrs_valid =
5050 (index.version >= 7
5051 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5052
5053 /* Work around gold/15646. */
5054 if (attrs_valid)
5055 {
5056 if (!is_static && global_seen)
5057 continue;
5058 if (!is_static)
5059 global_seen = true;
5060 }
5061
5062 /* Only check the symbol's kind if it has one. */
5063 if (attrs_valid)
5064 {
5065 switch (kind)
5066 {
5067 case VARIABLES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5069 continue;
5070 break;
5071 case FUNCTIONS_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5073 continue;
5074 break;
5075 case TYPES_DOMAIN:
5076 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5077 continue;
5078 break;
5079 default:
5080 break;
5081 }
5082 }
5083
5084 /* Don't crash on bad data. */
5085 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5086 + dwarf2_per_objfile->all_type_units.size ()))
5087 {
5088 complaint (_(".gdb_index entry has bad CU index"
5089 " [in module %s]"),
5090 objfile_name (dwarf2_per_objfile->objfile));
5091 continue;
5092 }
5093
5094 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5095 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5096 expansion_notify);
5097 }
5098 }
5099
5100 /* If FILE_MATCHER is non-NULL, set all the
5101 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5102 that match FILE_MATCHER. */
5103
5104 static void
5105 dw_expand_symtabs_matching_file_matcher
5106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5108 {
5109 if (file_matcher == NULL)
5110 return;
5111
5112 objfile *const objfile = dwarf2_per_objfile->objfile;
5113
5114 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5115 htab_eq_pointer,
5116 NULL, xcalloc, xfree));
5117 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5118 htab_eq_pointer,
5119 NULL, xcalloc, xfree));
5120
5121 /* The rule is CUs specify all the files, including those used by
5122 any TU, so there's no need to scan TUs here. */
5123
5124 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5125 {
5126 QUIT;
5127
5128 per_cu->v.quick->mark = 0;
5129
5130 /* We only need to look at symtabs not already expanded. */
5131 if (per_cu->v.quick->compunit_symtab)
5132 continue;
5133
5134 quick_file_names *file_data = dw2_get_file_names (per_cu);
5135 if (file_data == NULL)
5136 continue;
5137
5138 if (htab_find (visited_not_found.get (), file_data) != NULL)
5139 continue;
5140 else if (htab_find (visited_found.get (), file_data) != NULL)
5141 {
5142 per_cu->v.quick->mark = 1;
5143 continue;
5144 }
5145
5146 for (int j = 0; j < file_data->num_file_names; ++j)
5147 {
5148 const char *this_real_name;
5149
5150 if (file_matcher (file_data->file_names[j], false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155
5156 /* Before we invoke realpath, which can get expensive when many
5157 files are involved, do a quick comparison of the basenames. */
5158 if (!basenames_may_differ
5159 && !file_matcher (lbasename (file_data->file_names[j]),
5160 true))
5161 continue;
5162
5163 this_real_name = dw2_get_real_path (objfile, file_data, j);
5164 if (file_matcher (this_real_name, false))
5165 {
5166 per_cu->v.quick->mark = 1;
5167 break;
5168 }
5169 }
5170
5171 void **slot = htab_find_slot (per_cu->v.quick->mark
5172 ? visited_found.get ()
5173 : visited_not_found.get (),
5174 file_data, INSERT);
5175 *slot = file_data;
5176 }
5177 }
5178
5179 static void
5180 dw2_expand_symtabs_matching
5181 (struct objfile *objfile,
5182 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5183 const lookup_name_info &lookup_name,
5184 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5185 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5186 enum search_domain kind)
5187 {
5188 struct dwarf2_per_objfile *dwarf2_per_objfile
5189 = get_dwarf2_per_objfile (objfile);
5190
5191 /* index_table is NULL if OBJF_READNOW. */
5192 if (!dwarf2_per_objfile->index_table)
5193 return;
5194
5195 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5196
5197 mapped_index &index = *dwarf2_per_objfile->index_table;
5198
5199 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5200 symbol_matcher,
5201 kind, [&] (offset_type idx)
5202 {
5203 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5204 expansion_notify, kind);
5205 });
5206 }
5207
5208 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5209 symtab. */
5210
5211 static struct compunit_symtab *
5212 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5213 CORE_ADDR pc)
5214 {
5215 int i;
5216
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5219 return cust;
5220
5221 if (cust->includes == NULL)
5222 return NULL;
5223
5224 for (i = 0; cust->includes[i]; ++i)
5225 {
5226 struct compunit_symtab *s = cust->includes[i];
5227
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5229 if (s != NULL)
5230 return s;
5231 }
5232
5233 return NULL;
5234 }
5235
5236 static struct compunit_symtab *
5237 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5239 CORE_ADDR pc,
5240 struct obj_section *section,
5241 int warn_if_readin)
5242 {
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5245
5246 if (!objfile->psymtabs_addrmap)
5247 return NULL;
5248
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
5251 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5252 pc - baseaddr);
5253 if (!data)
5254 return NULL;
5255
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5259
5260 result
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5262 false),
5263 pc);
5264 gdb_assert (result != NULL);
5265 return result;
5266 }
5267
5268 static void
5269 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5271 {
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
5274
5275 if (!dwarf2_per_objfile->filenames_cache)
5276 {
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5278
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5282
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5286
5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5288 {
5289 if (per_cu->v.quick->compunit_symtab)
5290 {
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5293 INSERT);
5294
5295 *slot = per_cu->v.quick->file_names;
5296 }
5297 }
5298
5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5300 {
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5303 continue;
5304
5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
5306 if (file_data == NULL)
5307 continue;
5308
5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5310 if (*slot)
5311 {
5312 /* Already visited. */
5313 continue;
5314 }
5315 *slot = file_data;
5316
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5318 {
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5321 }
5322 }
5323 }
5324
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5326 {
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5328
5329 if (need_fullname)
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5332 });
5333 }
5334
5335 static int
5336 dw2_has_symbols (struct objfile *objfile)
5337 {
5338 return 1;
5339 }
5340
5341 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5342 {
5343 dw2_has_symbols,
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5347 dw2_lookup_symbol,
5348 dw2_print_stats,
5349 dw2_dump,
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5356 NULL,
5357 dw2_map_symbol_filenames
5358 };
5359
5360 /* DWARF-5 debug_names reader. */
5361
5362 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5364
5365 /* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5368
5369 Returns true if all went well, false otherwise. */
5370
5371 static bool
5372 read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5376 {
5377 if (dwarf2_section_empty_p (section))
5378 return false;
5379
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5383 return false;
5384
5385 dwarf2_read_section (objfile, section);
5386
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5388
5389 const gdb_byte *addr = section->buffer;
5390
5391 bfd *const abfd = get_section_bfd_owner (section);
5392
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5395 addr += bytes_read;
5396
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5400 {
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5406 return false;
5407 }
5408
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (version != 5)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5416 filename, version);
5417 return false;
5418 }
5419
5420 /* Padding. */
5421 uint16_t padding = read_2_bytes (abfd, addr);
5422 addr += 2;
5423 if (padding != 0)
5424 {
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5427 filename, padding);
5428 return false;
5429 }
5430
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434
5435 /* local_type_unit_count - The number of TUs in the local TU
5436 list. */
5437 map.tu_count = read_4_bytes (abfd, addr);
5438 addr += 4;
5439
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5441 list. */
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5443 addr += 4;
5444 if (foreign_tu_count != 0)
5445 {
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5449 return false;
5450 }
5451
5452 /* bucket_count - The number of hash buckets in the hash lookup
5453 table. */
5454 map.bucket_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5462 table. */
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5476
5477 /* List of CUs */
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5480
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5484
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5490
5491 /* Name Table */
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496
5497 const gdb_byte *abbrev_table_start = addr;
5498 for (;;)
5499 {
5500 unsigned int bytes_read;
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5656 }
5657
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5660
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5665
5666 return true;
5667 }
5668
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672 class dw2_debug_names_iterator
5673 {
5674 public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720 };
5721
5722 const char *
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5724 {
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5732 }
5733
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738 const gdb_byte *
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741 {
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804 #endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820 }
5821
5822 const gdb_byte *
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825 {
5826 if (namei >= map.name_count)
5827 {
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5829 "[in module %s]"),
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840 }
5841
5842 /* See dw2_debug_names_iterator. */
5843
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5846 {
5847 if (m_addr == NULL)
5848 return NULL;
5849
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5866 "[in module %s]"),
5867 pulongest (abbrev), objfile_name (objfile));
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad CU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5908 break;
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5912 {
5913 complaint (_(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6168 NULL,
6169 dw2_map_symbol_filenames
6170 };
6171
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178 {
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 return {section->buffer, section->size};
6192 }
6193
6194 /* Lookup the index cache for the contents of the index associated to
6195 DWARF2_OBJ. */
6196
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6199 {
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6206 }
6207
6208 /* Same as the above, but for DWZ. */
6209
6210 static gdb::array_view<const gdb_byte>
6211 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6212 {
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6215 return {};
6216
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6218 }
6219
6220 /* See symfile.h. */
6221
6222 bool
6223 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6224 {
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6227
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6231 expanded anyway. */
6232 if ((objfile->flags & OBJF_READNOW))
6233 {
6234 dwarf2_per_objfile->using_index = 1;
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
6240
6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6243 {
6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6245
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
6248 }
6249
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6252 all symtabs. */
6253 *index_kind = dw_index_kind::GDB_INDEX;
6254 return true;
6255 }
6256
6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6258 {
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6260 return true;
6261 }
6262
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
6270
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6275 {
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6278 return true;
6279 }
6280
6281 global_index_cache.miss ();
6282 return false;
6283 }
6284
6285 \f
6286
6287 /* Build a partial symbol table. */
6288
6289 void
6290 dwarf2_build_psymtabs (struct objfile *objfile)
6291 {
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
6294
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
6298
6299 TRY
6300 {
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
6304 psymtab_discarder psymtabs (objfile);
6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6306 psymtabs.keep ();
6307
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
6310 }
6311 CATCH (except, RETURN_MASK_ERROR)
6312 {
6313 exception_print (gdb_stderr, except);
6314 }
6315 END_CATCH
6316 }
6317
6318 /* Return the total length of the CU described by HEADER. */
6319
6320 static unsigned int
6321 get_cu_length (const struct comp_unit_head *header)
6322 {
6323 return header->initial_length_size + header->length;
6324 }
6325
6326 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6327
6328 static inline bool
6329 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6330 {
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6333
6334 return sect_off >= bottom && sect_off < top;
6335 }
6336
6337 /* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6342
6343 static void
6344 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6345 {
6346 struct attribute *attr;
6347
6348 cu->base_known = 0;
6349 cu->base_address = 0;
6350
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6352 if (attr)
6353 {
6354 cu->base_address = attr_value_as_address (attr);
6355 cu->base_known = 1;
6356 }
6357 else
6358 {
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6360 if (attr)
6361 {
6362 cu->base_address = attr_value_as_address (attr);
6363 cu->base_known = 1;
6364 }
6365 }
6366 }
6367
6368 /* Read in the comp unit header information from the debug_info at info_ptr.
6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6371 by the caller. */
6372
6373 static const gdb_byte *
6374 read_comp_unit_head (struct comp_unit_head *cu_header,
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
6378 {
6379 int signed_addr;
6380 unsigned int bytes_read;
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
6383
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6387 info_ptr += bytes_read;
6388 cu_header->version = read_2_bytes (abfd, info_ptr);
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
6393 info_ptr += 2;
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6396 {
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6399 break;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6402 break;
6403 default:
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6406 }
6407 else
6408 {
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6411 info_ptr += 1;
6412 switch (cu_header->unit_type)
6413 {
6414 case DW_UT_compile:
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6418 filename);
6419 break;
6420 case DW_UT_type:
6421 section_kind = rcuh_kind::TYPE;
6422 break;
6423 default:
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6427 }
6428
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6430 info_ptr += 1;
6431 }
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6433 cu_header,
6434 &bytes_read);
6435 info_ptr += bytes_read;
6436 if (cu_header->version < 5)
6437 {
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6439 info_ptr += 1;
6440 }
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
6443 internal_error (__FILE__, __LINE__,
6444 _("read_comp_unit_head: dwarf from non elf file"));
6445 cu_header->signed_addr_p = signed_addr;
6446
6447 if (section_kind == rcuh_kind::TYPE)
6448 {
6449 LONGEST type_offset;
6450
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6452 info_ptr += 8;
6453
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
6463 return info_ptr;
6464 }
6465
6466 /* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471 {
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6474
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481 }
6482
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487 static void
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6492 {
6493 const char *filename = get_section_file_name (section);
6494
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6501 filename);
6502
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6506 > section->size)
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6510 filename);
6511 }
6512
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6516
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6524 {
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6526
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6528
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6530
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6532
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
6535
6536 return info_ptr;
6537 }
6538
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541 static sect_offset
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6545 {
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6549 uint16_t version;
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6566 }
6567
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571 static void
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6574 {
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6587
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
6592 subpst->compunit_symtab = NULL;
6593 subpst->read_symtab = pst->read_symtab;
6594 subpst->readin = 0;
6595
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
6598 the regular ones. */
6599 subpst->read_symtab_private = NULL;
6600 }
6601
6602 /* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
6604 partial symtab for each of these included files. */
6605
6606 static void
6607 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6608 struct die_info *die,
6609 struct partial_symtab *pst)
6610 {
6611 line_header_up lh;
6612 struct attribute *attr;
6613
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6615 if (attr)
6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6617 if (lh == NULL)
6618 return; /* No linetable, so no includes. */
6619
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6625 pst->raw_text_low (), 1);
6626 }
6627
6628 static hashval_t
6629 hash_signatured_type (const void *item)
6630 {
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
6633
6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6635 return sig_type->signature;
6636 }
6637
6638 static int
6639 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6640 {
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6643
6644 return lhs->signature == rhs->signature;
6645 }
6646
6647 /* Allocate a hash table for signatured types. */
6648
6649 static htab_t
6650 allocate_signatured_type_table (struct objfile *objfile)
6651 {
6652 return htab_create_alloc_ex (41,
6653 hash_signatured_type,
6654 eq_signatured_type,
6655 NULL,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6659 }
6660
6661 /* A helper function to add a signatured type CU to a table. */
6662
6663 static int
6664 add_signatured_type_cu_to_table (void **slot, void *datum)
6665 {
6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
6669
6670 all_type_units->push_back (sigt);
6671
6672 return 1;
6673 }
6674
6675 /* A helper for create_debug_types_hash_table. Read types from SECTION
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
6678
6679 static void
6680 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
6684 {
6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
6686 struct dwarf2_section_info *abbrev_section;
6687 bfd *abfd;
6688 const gdb_byte *info_ptr, *end_ptr;
6689
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6693
6694 if (dwarf_read_debug)
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
6697 get_section_file_name (abbrev_section));
6698
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
6701
6702 if (info_ptr == NULL)
6703 return;
6704
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
6708
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6711 header. */
6712
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6715 {
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6718 void **slot;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
6722
6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6724
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
6727 header.type_cu_offset_in_tu = (cu_offset) -1;
6728
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
6731
6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6733 abbrev_section, ptr, section_kind);
6734
6735 length = get_cu_length (&header);
6736
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
6741 {
6742 info_ptr += length;
6743 continue;
6744 }
6745
6746 if (types_htab == NULL)
6747 {
6748 if (dwo_file)
6749 types_htab = allocate_dwo_unit_table (objfile);
6750 else
6751 types_htab = allocate_signatured_type_table (objfile);
6752 }
6753
6754 if (dwo_file)
6755 {
6756 sig_type = NULL;
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct dwo_unit);
6759 dwo_tu->dwo_file = dwo_file;
6760 dwo_tu->signature = header.signature;
6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6762 dwo_tu->section = section;
6763 dwo_tu->sect_off = sect_off;
6764 dwo_tu->length = length;
6765 }
6766 else
6767 {
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6770 dwo_tu = NULL;
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
6773 sig_type->signature = header.signature;
6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
6778 sig_type->per_cu.sect_off = sect_off;
6779 sig_type->per_cu.length = length;
6780 }
6781
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6784 INSERT);
6785 gdb_assert (slot != NULL);
6786 if (*slot != NULL)
6787 {
6788 sect_offset dup_sect_off;
6789
6790 if (dwo_file)
6791 {
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6794
6795 dup_sect_off = dup_tu->sect_off;
6796 }
6797 else
6798 {
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6801
6802 dup_sect_off = dup_tu->per_cu.sect_off;
6803 }
6804
6805 complaint (_("debug type entry at offset %s is duplicate to"
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6808 hex_string (header.signature));
6809 }
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6811
6812 if (dwarf_read_debug > 1)
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
6815 hex_string (header.signature));
6816
6817 info_ptr += length;
6818 }
6819 }
6820
6821 /* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
6825
6826 The result is a pointer to the hash table or NULL if there are no types.
6827
6828 Note: This function processes DWO files only, not DWP files. */
6829
6830 static void
6831 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
6833 VEC (dwarf2_section_info_def) *types,
6834 htab_t &types_htab)
6835 {
6836 int ix;
6837 struct dwarf2_section_info *section;
6838
6839 if (VEC_empty (dwarf2_section_info_def, types))
6840 return;
6841
6842 for (ix = 0;
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6844 ++ix)
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
6847 }
6848
6849 /* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6853
6854 static int
6855 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6856 {
6857 htab_t types_htab = NULL;
6858
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
6861 rcuh_kind::COMPILE);
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
6864 if (types_htab == NULL)
6865 {
6866 dwarf2_per_objfile->signatured_types = NULL;
6867 return 0;
6868 }
6869
6870 dwarf2_per_objfile->signatured_types = types_htab;
6871
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6874
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
6877
6878 return 1;
6879 }
6880
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6888 {
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6894
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6897
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6902 {
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6906 }
6907
6908 if (slot == NULL)
6909 {
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6911 sig_type, INSERT);
6912 }
6913 gdb_assert (*slot == NULL);
6914 *slot = sig_type;
6915 /* The rest of sig_type must be filled in by the caller. */
6916 return sig_type;
6917 }
6918
6919 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6921
6922 static void
6923 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6926 {
6927 /* Make sure we're not clobbering something we don't expect to. */
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6934 }
6935 else
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6939 gdb_assert (sig_entry->type_unit_group == NULL);
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6941
6942 sig_entry->per_cu.section = dwo_entry->section;
6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6949 }
6950
6951 /* Subroutine of lookup_signatured_type.
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6962
6963 static struct signatured_type *
6964 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6965 {
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6972 void **slot;
6973
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6975
6976 /* If TU skeletons have been removed then we may not have read in any
6977 TUs yet. */
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6979 {
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6982 }
6983
6984 /* We only ever need to read in one copy of a signatured type.
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
6989
6990 find_sig_entry.signature = sig;
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
6993 sig_entry = (struct signatured_type *) *slot;
6994
6995 /* We can get here with the TU already read, *or* in the process of being
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7000
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7005 return sig_entry;
7006
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7010
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7013 return NULL;
7014 find_dwo_entry.signature = sig;
7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7016 if (dwo_entry == NULL)
7017 return NULL;
7018
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7022
7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7024 sig_entry->per_cu.tu_read = 1;
7025 return sig_entry;
7026 }
7027
7028 /* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
7032
7033 static struct signatured_type *
7034 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7035 {
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
7042 void **slot;
7043
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
7058 sig_entry = (struct signatured_type *) *slot;
7059
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7064 return sig_entry;
7065
7066 if (dwp_file->tus == NULL)
7067 return NULL;
7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7069 sig, 1 /* is_debug_types */);
7070 if (dwo_entry == NULL)
7071 return NULL;
7072
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7075
7076 return sig_entry;
7077 }
7078
7079 /* Lookup a signature based type for DW_FORM_ref_sig8.
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
7082
7083 static struct signatured_type *
7084 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
7088
7089 if (cu->dwo_unit
7090 && dwarf2_per_objfile->using_index)
7091 {
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7095 return lookup_dwo_signatured_type (cu, sig);
7096 else
7097 return lookup_dwp_signatured_type (cu, sig);
7098 }
7099 else
7100 {
7101 struct signatured_type find_entry, *entry;
7102
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7104 return NULL;
7105 find_entry.signature = sig;
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7108 return entry;
7109 }
7110 }
7111 \f
7112 /* Low level DIE reading support. */
7113
7114 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7115
7116 static void
7117 init_cu_die_reader (struct die_reader_specs *reader,
7118 struct dwarf2_cu *cu,
7119 struct dwarf2_section_info *section,
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
7122 {
7123 gdb_assert (section->readin && section->buffer != NULL);
7124 reader->abfd = get_section_bfd_owner (section);
7125 reader->cu = cu;
7126 reader->dwo_file = dwo_file;
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
7129 reader->buffer_end = section->buffer + section->size;
7130 reader->comp_dir = NULL;
7131 reader->abbrev_table = abbrev_table;
7132 }
7133
7134 /* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7137 already.
7138
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7150
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7152
7153 static int
7154 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
7156 struct die_info *stub_comp_unit_die,
7157 const char *stub_comp_dir,
7158 struct die_reader_specs *result_reader,
7159 const gdb_byte **result_info_ptr,
7160 struct die_info **result_comp_unit_die,
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
7163 {
7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
7167 bfd *abfd;
7168 const gdb_byte *begin_info_ptr, *info_ptr;
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7174
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7177
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7184 DWO CU/TU die. */
7185
7186 stmt_list = NULL;
7187 low_pc = NULL;
7188 high_pc = NULL;
7189 ranges = NULL;
7190 comp_dir = NULL;
7191
7192 if (stub_comp_unit_die != NULL)
7193 {
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7195 DWO file. */
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7202
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7205 cu->addr_base = 0;
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7207 if (attr)
7208 cu->addr_base = DW_UNSND (attr);
7209
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7214 if (attr)
7215 cu->ranges_base = DW_UNSND (attr);
7216 }
7217 else if (stub_comp_dir != NULL)
7218 {
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7225 }
7226
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
7229 dwarf2_section_info *section = dwo_unit->section;
7230 dwarf2_read_section (objfile, section);
7231 abfd = get_section_bfd_owner (section);
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7235
7236 if (this_cu->is_debug_types)
7237 {
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7239
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
7242 dwo_abbrev_section,
7243 info_ptr, rcuh_kind::TYPE);
7244 /* This is not an assert because it can be caused by bad debug info. */
7245 if (sig_type->signature != cu->header.signature)
7246 {
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7248 " TU at offset %s [in module %s]"),
7249 hex_string (sig_type->signature),
7250 hex_string (cu->header.signature),
7251 sect_offset_str (dwo_unit->sect_off),
7252 bfd_get_filename (abfd));
7253 }
7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7259
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7264 }
7265 else
7266 {
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
7269 dwo_abbrev_section,
7270 info_ptr, rcuh_kind::COMPILE);
7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7272 /* For DWOs coming from DWP files, we don't know the CU length
7273 until now. */
7274 dwo_unit->length = get_cu_length (&cu->header);
7275 }
7276
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
7282
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7288 + (low_pc != NULL)
7289 + (high_pc != NULL)
7290 + (ranges != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7294
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7300 if (low_pc != NULL)
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7304 if (ranges != NULL)
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7309
7310 if (dwarf_die_debug)
7311 {
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
7314 get_section_name (section),
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
7317 dump_die (comp_unit_die, dwarf_die_debug);
7318 }
7319
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7326
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7330 return 0;
7331
7332 *result_info_ptr = info_ptr;
7333 return 1;
7334 }
7335
7336 /* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7338 Returns NULL if the specified DWO unit cannot be found. */
7339
7340 static struct dwo_unit *
7341 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7343 {
7344 struct dwarf2_cu *cu = this_cu->cu;
7345 ULONGEST signature;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
7349 gdb_assert (cu != NULL);
7350
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7364 }
7365 else
7366 {
7367 struct attribute *attr;
7368
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (! attr)
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7372 " [in module %s]"),
7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7376 signature);
7377 }
7378
7379 return dwo_unit;
7380 }
7381
7382 /* Subroutine of init_cutu_and_read_dies to simplify it.
7383 See it for a description of the parameters.
7384 Read a TU directly from a DWO file, bypassing the stub. */
7385
7386 static void
7387 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
7389 die_reader_func_ftype *die_reader_func,
7390 void *data)
7391 {
7392 std::unique_ptr<dwarf2_cu> new_cu;
7393 struct signatured_type *sig_type;
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7397 int has_children;
7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7399
7400 /* Verify we can do the following downcast, and that we have the
7401 data we need. */
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7405
7406 if (use_existing_cu && this_cu->cu != NULL)
7407 {
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7411 }
7412 else
7413 {
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
7416 new_cu.reset (new dwarf2_cu (this_cu));
7417 }
7418
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
7422
7423 /* The abbreviation table used by READER, this must live at least as long as
7424 READER. */
7425 abbrev_table_up dwo_abbrev_table;
7426
7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7430 &reader, &info_ptr,
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
7433 {
7434 /* Dummy die. */
7435 return;
7436 }
7437
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7440
7441 /* This duplicates the code in init_cutu_and_read_dies,
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
7445 if (new_cu != NULL && keep)
7446 {
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7451 new_cu.release ();
7452 }
7453 }
7454
7455 /* Initialize a CU (or TU) and read its DIEs.
7456 If the CU defers to a DWO file, read the DWO file as well.
7457
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7461
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7464
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7467
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7469 linker) then DIE_READER_FUNC will not get called. */
7470
7471 static void
7472 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7473 struct abbrev_table *abbrev_table,
7474 int use_existing_cu, int keep,
7475 bool skip_partial,
7476 die_reader_func_ftype *die_reader_func,
7477 void *data)
7478 {
7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
7481 struct dwarf2_section_info *section = this_cu->section;
7482 bfd *abfd = get_section_bfd_owner (section);
7483 struct dwarf2_cu *cu;
7484 const gdb_byte *begin_info_ptr, *info_ptr;
7485 struct die_reader_specs reader;
7486 struct die_info *comp_unit_die;
7487 int has_children;
7488 struct attribute *attr;
7489 struct signatured_type *sig_type = NULL;
7490 struct dwarf2_section_info *abbrev_section;
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
7494 int rereading_dwo_cu = 0;
7495
7496 if (dwarf_die_debug)
7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7498 this_cu->is_debug_types ? "type" : "comp",
7499 sect_offset_str (this_cu->sect_off));
7500
7501 if (use_existing_cu)
7502 gdb_assert (keep);
7503
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7507 {
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
7513 return;
7514 }
7515
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7518
7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7520
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
7522
7523 std::unique_ptr<dwarf2_cu> new_cu;
7524 if (use_existing_cu && this_cu->cu != NULL)
7525 {
7526 cu = this_cu->cu;
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7532 optimization. */
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
7535 }
7536 else
7537 {
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
7540 new_cu.reset (new dwarf2_cu (this_cu));
7541 cu = new_cu.get ();
7542 }
7543
7544 /* Get the header. */
7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7546 {
7547 /* We already have the header, there's no need to read it in again. */
7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7549 }
7550 else
7551 {
7552 if (this_cu->is_debug_types)
7553 {
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section, info_ptr,
7557 rcuh_kind::TYPE);
7558
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
7562 gdb_assert (sig_type->signature == cu->header.signature);
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7566
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
7569 this_cu->length = get_cu_length (&cu->header);
7570
7571 /* Establish the type offset that can be used to lookup the type. */
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7574
7575 this_cu->dwarf_version = cu->header.version;
7576 }
7577 else
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section,
7582 info_ptr,
7583 rcuh_kind::COMPILE);
7584
7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7587 this_cu->dwarf_version = cu->header.version;
7588 }
7589 }
7590
7591 /* Skip dummy compilation units. */
7592 if (info_ptr >= begin_info_ptr + this_cu->length
7593 || peek_abbrev_code (abfd, info_ptr) == 0)
7594 return;
7595
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
7600 if (abbrev_table != NULL)
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7602 else
7603 {
7604 abbrev_table_holder
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
7608 }
7609
7610 /* Read the top level CU/TU die. */
7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7613
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7615 return;
7616
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7627 if (attr)
7628 {
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7631
7632 if (has_children)
7633 {
7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
7638 }
7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7640 if (dwo_unit != NULL)
7641 {
7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7643 comp_unit_die, NULL,
7644 &reader, &info_ptr,
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
7647 {
7648 /* Dummy die. */
7649 return;
7650 }
7651 comp_unit_die = dwo_comp_unit_die;
7652 }
7653 else
7654 {
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7659 debug info. */
7660 }
7661 }
7662
7663 /* All of the above is setup for this call. Yikes. */
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7665
7666 /* Done, clean up. */
7667 if (new_cu != NULL && keep)
7668 {
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7673 new_cu.release ();
7674 }
7675 }
7676
7677 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
7680
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7682 THIS_CU->is_debug_types, but nothing else.
7683
7684 We fill in THIS_CU->length.
7685
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
7692
7693 static void
7694 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7695 struct dwo_file *dwo_file,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
7701 struct dwarf2_section_info *section = this_cu->section;
7702 bfd *abfd = get_section_bfd_owner (section);
7703 struct dwarf2_section_info *abbrev_section;
7704 const gdb_byte *begin_info_ptr, *info_ptr;
7705 struct die_reader_specs reader;
7706 struct die_info *comp_unit_die;
7707 int has_children;
7708
7709 if (dwarf_die_debug)
7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7711 this_cu->is_debug_types ? "type" : "comp",
7712 sect_offset_str (this_cu->sect_off));
7713
7714 gdb_assert (this_cu->cu == NULL);
7715
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7719
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7722
7723 struct dwarf2_cu cu (this_cu);
7724
7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
7728 abbrev_section, info_ptr,
7729 (this_cu->is_debug_types
7730 ? rcuh_kind::TYPE
7731 : rcuh_kind::COMPILE));
7732
7733 this_cu->length = get_cu_length (&cu.header);
7734
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
7738 return;
7739
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
7743
7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7746
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7748 }
7749
7750 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
7753
7754 THIS_CU->cu is always freed when done.
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
7758
7759 static void
7760 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7762 void *data)
7763 {
7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7765 }
7766 \f
7767 /* Type Unit Groups.
7768
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
7774
7775 static hashval_t
7776 hash_type_unit_group (const void *item)
7777 {
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
7780
7781 return hash_stmt_list_entry (&tu_group->hash);
7782 }
7783
7784 static int
7785 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7786 {
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7789
7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7791 }
7792
7793 /* Allocate a hash table for type unit groups. */
7794
7795 static htab_t
7796 allocate_type_unit_groups_table (struct objfile *objfile)
7797 {
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7800 eq_type_unit_group,
7801 NULL,
7802 &objfile->objfile_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7805 }
7806
7807 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7812
7813 /* Helper routine for get_type_unit_group.
7814 Create the type_unit_group object used to hold one or more TUs. */
7815
7816 static struct type_unit_group *
7817 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7818 {
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 struct dwarf2_per_cu_data *per_cu;
7823 struct type_unit_group *tu_group;
7824
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
7827 per_cu = &tu_group->per_cu;
7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7829
7830 if (dwarf2_per_objfile->using_index)
7831 {
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
7834 }
7835 else
7836 {
7837 unsigned int line_offset = to_underlying (line_offset_struct);
7838 struct partial_symtab *pst;
7839 std::string name;
7840
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7845 else
7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
7847
7848 pst = create_partial_symtab (per_cu, name.c_str ());
7849 pst->anonymous = 1;
7850 }
7851
7852 tu_group->hash.dwo_unit = cu->dwo_unit;
7853 tu_group->hash.line_sect_off = line_offset_struct;
7854
7855 return tu_group;
7856 }
7857
7858 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
7860
7861 static struct type_unit_group *
7862 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7863 {
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7868 void **slot;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7871
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7873 {
7874 dwarf2_per_objfile->type_unit_groups =
7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7876 }
7877
7878 /* Do we need to create a new group, or can we use an existing one? */
7879
7880 if (stmt_list)
7881 {
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7884 }
7885 else
7886 {
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7896 }
7897
7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7902 if (*slot != NULL)
7903 {
7904 tu_group = (struct type_unit_group *) *slot;
7905 gdb_assert (tu_group != NULL);
7906 }
7907 else
7908 {
7909 sect_offset line_offset_struct = (sect_offset) line_offset;
7910 tu_group = create_type_unit_group (cu, line_offset_struct);
7911 *slot = tu_group;
7912 ++tu_stats->nr_symtabs;
7913 }
7914
7915 return tu_group;
7916 }
7917 \f
7918 /* Partial symbol tables. */
7919
7920 /* Create a psymtab named NAME and assign it to PER_CU.
7921
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7924
7925 static struct partial_symtab *
7926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7927 {
7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7929 struct partial_symtab *pst;
7930
7931 pst = start_psymtab_common (objfile, name, 0,
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
7934
7935 pst->psymtabs_addrmap_supported = 1;
7936
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7941
7942 return pst;
7943 }
7944
7945 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7946 type. */
7947
7948 struct process_psymtab_comp_unit_data
7949 {
7950 /* True if we are reading a DW_TAG_partial_unit. */
7951
7952 int want_partial_unit;
7953
7954 /* The "pretend" language that is used if the CU doesn't declare a
7955 language. */
7956
7957 enum language pretend_language;
7958 };
7959
7960 /* die_reader_func for process_psymtab_comp_unit. */
7961
7962 static void
7963 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7964 const gdb_byte *info_ptr,
7965 struct die_info *comp_unit_die,
7966 int has_children,
7967 void *data)
7968 {
7969 struct dwarf2_cu *cu = reader->cu;
7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7973 CORE_ADDR baseaddr;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
7976 enum pc_bounds_kind cu_bounds_kind;
7977 const char *filename;
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
7980
7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7982 return;
7983
7984 gdb_assert (! per_cu->is_debug_types);
7985
7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7987
7988 /* Allocate a new partial symbol table structure. */
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
7991 filename = "";
7992
7993 pst = create_partial_symtab (per_cu, filename);
7994
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7997
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7999
8000 dwarf2_find_base_address (comp_unit_die, cu);
8001
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8003 `DW_AT_ranges'. */
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8007 {
8008 CORE_ADDR low
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8010 - baseaddr);
8011 CORE_ADDR high
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8013 - baseaddr - 1);
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8017 }
8018
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8022 if (has_children)
8023 {
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8026
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8029
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8031
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8034
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8038 lowpc = highpc;
8039
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8043 {
8044 best_lowpc = lowpc;
8045 best_highpc = highpc;
8046 }
8047 }
8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_lowpc + baseaddr)
8050 - baseaddr);
8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8052 best_highpc + baseaddr)
8053 - baseaddr);
8054
8055 end_psymtab_common (objfile, pst);
8056
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8058 {
8059 int i;
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8062
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8064 post-pass. */
8065 pst->number_of_dependencies = len;
8066 pst->dependencies =
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8068 for (i = 0;
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8070 i, iter);
8071 ++i)
8072 pst->dependencies[i] = iter->v.psymtab;
8073
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8075 }
8076
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8080
8081 if (dwarf_read_debug)
8082 {
8083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8084
8085 fprintf_unfiltered (gdb_stdlog,
8086 "Psymtab for %s unit @%s: %s - %s"
8087 ", %d global, %d static syms\n",
8088 per_cu->is_debug_types ? "type" : "comp",
8089 sect_offset_str (per_cu->sect_off),
8090 paddress (gdbarch, pst->text_low (objfile)),
8091 paddress (gdbarch, pst->text_high (objfile)),
8092 pst->n_global_syms, pst->n_static_syms);
8093 }
8094 }
8095
8096 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8097 Process compilation unit THIS_CU for a psymtab. */
8098
8099 static void
8100 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8101 int want_partial_unit,
8102 enum language pretend_language)
8103 {
8104 /* If this compilation unit was already read in, free the
8105 cached copy in order to read it in again. This is
8106 necessary because we skipped some symbols when we first
8107 read in the compilation unit (see load_partial_dies).
8108 This problem could be avoided, but the benefit is unclear. */
8109 if (this_cu->cu != NULL)
8110 free_one_cached_comp_unit (this_cu);
8111
8112 if (this_cu->is_debug_types)
8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8114 build_type_psymtabs_reader, NULL);
8115 else
8116 {
8117 process_psymtab_comp_unit_data info;
8118 info.want_partial_unit = want_partial_unit;
8119 info.pretend_language = pretend_language;
8120 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8121 process_psymtab_comp_unit_reader, &info);
8122 }
8123
8124 /* Age out any secondary CUs. */
8125 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8126 }
8127
8128 /* Reader function for build_type_psymtabs. */
8129
8130 static void
8131 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8132 const gdb_byte *info_ptr,
8133 struct die_info *type_unit_die,
8134 int has_children,
8135 void *data)
8136 {
8137 struct dwarf2_per_objfile *dwarf2_per_objfile
8138 = reader->cu->per_cu->dwarf2_per_objfile;
8139 struct objfile *objfile = dwarf2_per_objfile->objfile;
8140 struct dwarf2_cu *cu = reader->cu;
8141 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8142 struct signatured_type *sig_type;
8143 struct type_unit_group *tu_group;
8144 struct attribute *attr;
8145 struct partial_die_info *first_die;
8146 CORE_ADDR lowpc, highpc;
8147 struct partial_symtab *pst;
8148
8149 gdb_assert (data == NULL);
8150 gdb_assert (per_cu->is_debug_types);
8151 sig_type = (struct signatured_type *) per_cu;
8152
8153 if (! has_children)
8154 return;
8155
8156 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8157 tu_group = get_type_unit_group (cu, attr);
8158
8159 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8160
8161 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8162 pst = create_partial_symtab (per_cu, "");
8163 pst->anonymous = 1;
8164
8165 first_die = load_partial_dies (reader, info_ptr, 1);
8166
8167 lowpc = (CORE_ADDR) -1;
8168 highpc = (CORE_ADDR) 0;
8169 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8170
8171 end_psymtab_common (objfile, pst);
8172 }
8173
8174 /* Struct used to sort TUs by their abbreviation table offset. */
8175
8176 struct tu_abbrev_offset
8177 {
8178 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8179 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8180 {}
8181
8182 signatured_type *sig_type;
8183 sect_offset abbrev_offset;
8184 };
8185
8186 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8187
8188 static bool
8189 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8190 const struct tu_abbrev_offset &b)
8191 {
8192 return a.abbrev_offset < b.abbrev_offset;
8193 }
8194
8195 /* Efficiently read all the type units.
8196 This does the bulk of the work for build_type_psymtabs.
8197
8198 The efficiency is because we sort TUs by the abbrev table they use and
8199 only read each abbrev table once. In one program there are 200K TUs
8200 sharing 8K abbrev tables.
8201
8202 The main purpose of this function is to support building the
8203 dwarf2_per_objfile->type_unit_groups table.
8204 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8205 can collapse the search space by grouping them by stmt_list.
8206 The savings can be significant, in the same program from above the 200K TUs
8207 share 8K stmt_list tables.
8208
8209 FUNC is expected to call get_type_unit_group, which will create the
8210 struct type_unit_group if necessary and add it to
8211 dwarf2_per_objfile->type_unit_groups. */
8212
8213 static void
8214 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8215 {
8216 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8217 abbrev_table_up abbrev_table;
8218 sect_offset abbrev_offset;
8219
8220 /* It's up to the caller to not call us multiple times. */
8221 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8222
8223 if (dwarf2_per_objfile->all_type_units.empty ())
8224 return;
8225
8226 /* TUs typically share abbrev tables, and there can be way more TUs than
8227 abbrev tables. Sort by abbrev table to reduce the number of times we
8228 read each abbrev table in.
8229 Alternatives are to punt or to maintain a cache of abbrev tables.
8230 This is simpler and efficient enough for now.
8231
8232 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8233 symtab to use). Typically TUs with the same abbrev offset have the same
8234 stmt_list value too so in practice this should work well.
8235
8236 The basic algorithm here is:
8237
8238 sort TUs by abbrev table
8239 for each TU with same abbrev table:
8240 read abbrev table if first user
8241 read TU top level DIE
8242 [IWBN if DWO skeletons had DW_AT_stmt_list]
8243 call FUNC */
8244
8245 if (dwarf_read_debug)
8246 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8247
8248 /* Sort in a separate table to maintain the order of all_type_units
8249 for .gdb_index: TU indices directly index all_type_units. */
8250 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8251 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8252
8253 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8254 sorted_by_abbrev.emplace_back
8255 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8256 sig_type->per_cu.section,
8257 sig_type->per_cu.sect_off));
8258
8259 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8260 sort_tu_by_abbrev_offset);
8261
8262 abbrev_offset = (sect_offset) ~(unsigned) 0;
8263
8264 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8265 {
8266 /* Switch to the next abbrev table if necessary. */
8267 if (abbrev_table == NULL
8268 || tu.abbrev_offset != abbrev_offset)
8269 {
8270 abbrev_offset = tu.abbrev_offset;
8271 abbrev_table =
8272 abbrev_table_read_table (dwarf2_per_objfile,
8273 &dwarf2_per_objfile->abbrev,
8274 abbrev_offset);
8275 ++tu_stats->nr_uniq_abbrev_tables;
8276 }
8277
8278 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8279 0, 0, false, build_type_psymtabs_reader, NULL);
8280 }
8281 }
8282
8283 /* Print collected type unit statistics. */
8284
8285 static void
8286 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8287 {
8288 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8289
8290 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8291 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8292 dwarf2_per_objfile->all_type_units.size ());
8293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8294 tu_stats->nr_uniq_abbrev_tables);
8295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8296 tu_stats->nr_symtabs);
8297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8298 tu_stats->nr_symtab_sharers);
8299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8300 tu_stats->nr_stmt_less_type_units);
8301 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8302 tu_stats->nr_all_type_units_reallocs);
8303 }
8304
8305 /* Traversal function for build_type_psymtabs. */
8306
8307 static int
8308 build_type_psymtab_dependencies (void **slot, void *info)
8309 {
8310 struct dwarf2_per_objfile *dwarf2_per_objfile
8311 = (struct dwarf2_per_objfile *) info;
8312 struct objfile *objfile = dwarf2_per_objfile->objfile;
8313 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8314 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8315 struct partial_symtab *pst = per_cu->v.psymtab;
8316 int len = VEC_length (sig_type_ptr, tu_group->tus);
8317 struct signatured_type *iter;
8318 int i;
8319
8320 gdb_assert (len > 0);
8321 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8322
8323 pst->number_of_dependencies = len;
8324 pst->dependencies =
8325 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8326 for (i = 0;
8327 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8328 ++i)
8329 {
8330 gdb_assert (iter->per_cu.is_debug_types);
8331 pst->dependencies[i] = iter->per_cu.v.psymtab;
8332 iter->type_unit_group = tu_group;
8333 }
8334
8335 VEC_free (sig_type_ptr, tu_group->tus);
8336
8337 return 1;
8338 }
8339
8340 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8341 Build partial symbol tables for the .debug_types comp-units. */
8342
8343 static void
8344 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8345 {
8346 if (! create_all_type_units (dwarf2_per_objfile))
8347 return;
8348
8349 build_type_psymtabs_1 (dwarf2_per_objfile);
8350 }
8351
8352 /* Traversal function for process_skeletonless_type_unit.
8353 Read a TU in a DWO file and build partial symbols for it. */
8354
8355 static int
8356 process_skeletonless_type_unit (void **slot, void *info)
8357 {
8358 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8359 struct dwarf2_per_objfile *dwarf2_per_objfile
8360 = (struct dwarf2_per_objfile *) info;
8361 struct signatured_type find_entry, *entry;
8362
8363 /* If this TU doesn't exist in the global table, add it and read it in. */
8364
8365 if (dwarf2_per_objfile->signatured_types == NULL)
8366 {
8367 dwarf2_per_objfile->signatured_types
8368 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8369 }
8370
8371 find_entry.signature = dwo_unit->signature;
8372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8373 INSERT);
8374 /* If we've already seen this type there's nothing to do. What's happening
8375 is we're doing our own version of comdat-folding here. */
8376 if (*slot != NULL)
8377 return 1;
8378
8379 /* This does the job that create_all_type_units would have done for
8380 this TU. */
8381 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8382 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8383 *slot = entry;
8384
8385 /* This does the job that build_type_psymtabs_1 would have done. */
8386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8387 build_type_psymtabs_reader, NULL);
8388
8389 return 1;
8390 }
8391
8392 /* Traversal function for process_skeletonless_type_units. */
8393
8394 static int
8395 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8396 {
8397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8398
8399 if (dwo_file->tus != NULL)
8400 {
8401 htab_traverse_noresize (dwo_file->tus,
8402 process_skeletonless_type_unit, info);
8403 }
8404
8405 return 1;
8406 }
8407
8408 /* Scan all TUs of DWO files, verifying we've processed them.
8409 This is needed in case a TU was emitted without its skeleton.
8410 Note: This can't be done until we know what all the DWO files are. */
8411
8412 static void
8413 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8414 {
8415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8416 if (get_dwp_file (dwarf2_per_objfile) == NULL
8417 && dwarf2_per_objfile->dwo_files != NULL)
8418 {
8419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8420 process_dwo_file_for_skeletonless_type_units,
8421 dwarf2_per_objfile);
8422 }
8423 }
8424
8425 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8426
8427 static void
8428 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8429 {
8430 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8431 {
8432 struct partial_symtab *pst = per_cu->v.psymtab;
8433
8434 if (pst == NULL)
8435 continue;
8436
8437 for (int j = 0; j < pst->number_of_dependencies; ++j)
8438 {
8439 /* Set the 'user' field only if it is not already set. */
8440 if (pst->dependencies[j]->user == NULL)
8441 pst->dependencies[j]->user = pst;
8442 }
8443 }
8444 }
8445
8446 /* Build the partial symbol table by doing a quick pass through the
8447 .debug_info and .debug_abbrev sections. */
8448
8449 static void
8450 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8451 {
8452 struct objfile *objfile = dwarf2_per_objfile->objfile;
8453
8454 if (dwarf_read_debug)
8455 {
8456 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8457 objfile_name (objfile));
8458 }
8459
8460 dwarf2_per_objfile->reading_partial_symbols = 1;
8461
8462 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8463
8464 /* Any cached compilation units will be linked by the per-objfile
8465 read_in_chain. Make sure to free them when we're done. */
8466 free_cached_comp_units freer (dwarf2_per_objfile);
8467
8468 build_type_psymtabs (dwarf2_per_objfile);
8469
8470 create_all_comp_units (dwarf2_per_objfile);
8471
8472 /* Create a temporary address map on a temporary obstack. We later
8473 copy this to the final obstack. */
8474 auto_obstack temp_obstack;
8475
8476 scoped_restore save_psymtabs_addrmap
8477 = make_scoped_restore (&objfile->psymtabs_addrmap,
8478 addrmap_create_mutable (&temp_obstack));
8479
8480 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8481 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8482
8483 /* This has to wait until we read the CUs, we need the list of DWOs. */
8484 process_skeletonless_type_units (dwarf2_per_objfile);
8485
8486 /* Now that all TUs have been processed we can fill in the dependencies. */
8487 if (dwarf2_per_objfile->type_unit_groups != NULL)
8488 {
8489 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8490 build_type_psymtab_dependencies, dwarf2_per_objfile);
8491 }
8492
8493 if (dwarf_read_debug)
8494 print_tu_stats (dwarf2_per_objfile);
8495
8496 set_partial_user (dwarf2_per_objfile);
8497
8498 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8499 &objfile->objfile_obstack);
8500 /* At this point we want to keep the address map. */
8501 save_psymtabs_addrmap.release ();
8502
8503 if (dwarf_read_debug)
8504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8505 objfile_name (objfile));
8506 }
8507
8508 /* die_reader_func for load_partial_comp_unit. */
8509
8510 static void
8511 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8512 const gdb_byte *info_ptr,
8513 struct die_info *comp_unit_die,
8514 int has_children,
8515 void *data)
8516 {
8517 struct dwarf2_cu *cu = reader->cu;
8518
8519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8520
8521 /* Check if comp unit has_children.
8522 If so, read the rest of the partial symbols from this comp unit.
8523 If not, there's no more debug_info for this comp unit. */
8524 if (has_children)
8525 load_partial_dies (reader, info_ptr, 0);
8526 }
8527
8528 /* Load the partial DIEs for a secondary CU into memory.
8529 This is also used when rereading a primary CU with load_all_dies. */
8530
8531 static void
8532 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8533 {
8534 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8535 load_partial_comp_unit_reader, NULL);
8536 }
8537
8538 static void
8539 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8540 struct dwarf2_section_info *section,
8541 struct dwarf2_section_info *abbrev_section,
8542 unsigned int is_dwz)
8543 {
8544 const gdb_byte *info_ptr;
8545 struct objfile *objfile = dwarf2_per_objfile->objfile;
8546
8547 if (dwarf_read_debug)
8548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8549 get_section_name (section),
8550 get_section_file_name (section));
8551
8552 dwarf2_read_section (objfile, section);
8553
8554 info_ptr = section->buffer;
8555
8556 while (info_ptr < section->buffer + section->size)
8557 {
8558 struct dwarf2_per_cu_data *this_cu;
8559
8560 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8561
8562 comp_unit_head cu_header;
8563 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8564 abbrev_section, info_ptr,
8565 rcuh_kind::COMPILE);
8566
8567 /* Save the compilation unit for later lookup. */
8568 if (cu_header.unit_type != DW_UT_type)
8569 {
8570 this_cu = XOBNEW (&objfile->objfile_obstack,
8571 struct dwarf2_per_cu_data);
8572 memset (this_cu, 0, sizeof (*this_cu));
8573 }
8574 else
8575 {
8576 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8577 struct signatured_type);
8578 memset (sig_type, 0, sizeof (*sig_type));
8579 sig_type->signature = cu_header.signature;
8580 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8581 this_cu = &sig_type->per_cu;
8582 }
8583 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8584 this_cu->sect_off = sect_off;
8585 this_cu->length = cu_header.length + cu_header.initial_length_size;
8586 this_cu->is_dwz = is_dwz;
8587 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8588 this_cu->section = section;
8589
8590 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8591
8592 info_ptr = info_ptr + this_cu->length;
8593 }
8594 }
8595
8596 /* Create a list of all compilation units in OBJFILE.
8597 This is only done for -readnow and building partial symtabs. */
8598
8599 static void
8600 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8601 {
8602 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8603 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8604 &dwarf2_per_objfile->abbrev, 0);
8605
8606 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8607 if (dwz != NULL)
8608 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8609 1);
8610 }
8611
8612 /* Process all loaded DIEs for compilation unit CU, starting at
8613 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8614 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8615 DW_AT_ranges). See the comments of add_partial_subprogram on how
8616 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8617
8618 static void
8619 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8620 CORE_ADDR *highpc, int set_addrmap,
8621 struct dwarf2_cu *cu)
8622 {
8623 struct partial_die_info *pdi;
8624
8625 /* Now, march along the PDI's, descending into ones which have
8626 interesting children but skipping the children of the other ones,
8627 until we reach the end of the compilation unit. */
8628
8629 pdi = first_die;
8630
8631 while (pdi != NULL)
8632 {
8633 pdi->fixup (cu);
8634
8635 /* Anonymous namespaces or modules have no name but have interesting
8636 children, so we need to look at them. Ditto for anonymous
8637 enums. */
8638
8639 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8640 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8641 || pdi->tag == DW_TAG_imported_unit
8642 || pdi->tag == DW_TAG_inlined_subroutine)
8643 {
8644 switch (pdi->tag)
8645 {
8646 case DW_TAG_subprogram:
8647 case DW_TAG_inlined_subroutine:
8648 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8649 break;
8650 case DW_TAG_constant:
8651 case DW_TAG_variable:
8652 case DW_TAG_typedef:
8653 case DW_TAG_union_type:
8654 if (!pdi->is_declaration)
8655 {
8656 add_partial_symbol (pdi, cu);
8657 }
8658 break;
8659 case DW_TAG_class_type:
8660 case DW_TAG_interface_type:
8661 case DW_TAG_structure_type:
8662 if (!pdi->is_declaration)
8663 {
8664 add_partial_symbol (pdi, cu);
8665 }
8666 if ((cu->language == language_rust
8667 || cu->language == language_cplus) && pdi->has_children)
8668 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8669 set_addrmap, cu);
8670 break;
8671 case DW_TAG_enumeration_type:
8672 if (!pdi->is_declaration)
8673 add_partial_enumeration (pdi, cu);
8674 break;
8675 case DW_TAG_base_type:
8676 case DW_TAG_subrange_type:
8677 /* File scope base type definitions are added to the partial
8678 symbol table. */
8679 add_partial_symbol (pdi, cu);
8680 break;
8681 case DW_TAG_namespace:
8682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8683 break;
8684 case DW_TAG_module:
8685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8686 break;
8687 case DW_TAG_imported_unit:
8688 {
8689 struct dwarf2_per_cu_data *per_cu;
8690
8691 /* For now we don't handle imported units in type units. */
8692 if (cu->per_cu->is_debug_types)
8693 {
8694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8695 " supported in type units [in module %s]"),
8696 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8697 }
8698
8699 per_cu = dwarf2_find_containing_comp_unit
8700 (pdi->d.sect_off, pdi->is_dwz,
8701 cu->per_cu->dwarf2_per_objfile);
8702
8703 /* Go read the partial unit, if needed. */
8704 if (per_cu->v.psymtab == NULL)
8705 process_psymtab_comp_unit (per_cu, 1, cu->language);
8706
8707 VEC_safe_push (dwarf2_per_cu_ptr,
8708 cu->per_cu->imported_symtabs, per_cu);
8709 }
8710 break;
8711 case DW_TAG_imported_declaration:
8712 add_partial_symbol (pdi, cu);
8713 break;
8714 default:
8715 break;
8716 }
8717 }
8718
8719 /* If the die has a sibling, skip to the sibling. */
8720
8721 pdi = pdi->die_sibling;
8722 }
8723 }
8724
8725 /* Functions used to compute the fully scoped name of a partial DIE.
8726
8727 Normally, this is simple. For C++, the parent DIE's fully scoped
8728 name is concatenated with "::" and the partial DIE's name.
8729 Enumerators are an exception; they use the scope of their parent
8730 enumeration type, i.e. the name of the enumeration type is not
8731 prepended to the enumerator.
8732
8733 There are two complexities. One is DW_AT_specification; in this
8734 case "parent" means the parent of the target of the specification,
8735 instead of the direct parent of the DIE. The other is compilers
8736 which do not emit DW_TAG_namespace; in this case we try to guess
8737 the fully qualified name of structure types from their members'
8738 linkage names. This must be done using the DIE's children rather
8739 than the children of any DW_AT_specification target. We only need
8740 to do this for structures at the top level, i.e. if the target of
8741 any DW_AT_specification (if any; otherwise the DIE itself) does not
8742 have a parent. */
8743
8744 /* Compute the scope prefix associated with PDI's parent, in
8745 compilation unit CU. The result will be allocated on CU's
8746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8747 field. NULL is returned if no prefix is necessary. */
8748 static const char *
8749 partial_die_parent_scope (struct partial_die_info *pdi,
8750 struct dwarf2_cu *cu)
8751 {
8752 const char *grandparent_scope;
8753 struct partial_die_info *parent, *real_pdi;
8754
8755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8756 then this means the parent of the specification DIE. */
8757
8758 real_pdi = pdi;
8759 while (real_pdi->has_specification)
8760 real_pdi = find_partial_die (real_pdi->spec_offset,
8761 real_pdi->spec_is_dwz, cu);
8762
8763 parent = real_pdi->die_parent;
8764 if (parent == NULL)
8765 return NULL;
8766
8767 if (parent->scope_set)
8768 return parent->scope;
8769
8770 parent->fixup (cu);
8771
8772 grandparent_scope = partial_die_parent_scope (parent, cu);
8773
8774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8776 Work around this problem here. */
8777 if (cu->language == language_cplus
8778 && parent->tag == DW_TAG_namespace
8779 && strcmp (parent->name, "::") == 0
8780 && grandparent_scope == NULL)
8781 {
8782 parent->scope = NULL;
8783 parent->scope_set = 1;
8784 return NULL;
8785 }
8786
8787 if (pdi->tag == DW_TAG_enumerator)
8788 /* Enumerators should not get the name of the enumeration as a prefix. */
8789 parent->scope = grandparent_scope;
8790 else if (parent->tag == DW_TAG_namespace
8791 || parent->tag == DW_TAG_module
8792 || parent->tag == DW_TAG_structure_type
8793 || parent->tag == DW_TAG_class_type
8794 || parent->tag == DW_TAG_interface_type
8795 || parent->tag == DW_TAG_union_type
8796 || parent->tag == DW_TAG_enumeration_type)
8797 {
8798 if (grandparent_scope == NULL)
8799 parent->scope = parent->name;
8800 else
8801 parent->scope = typename_concat (&cu->comp_unit_obstack,
8802 grandparent_scope,
8803 parent->name, 0, cu);
8804 }
8805 else
8806 {
8807 /* FIXME drow/2004-04-01: What should we be doing with
8808 function-local names? For partial symbols, we should probably be
8809 ignoring them. */
8810 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8811 parent->tag, sect_offset_str (pdi->sect_off));
8812 parent->scope = grandparent_scope;
8813 }
8814
8815 parent->scope_set = 1;
8816 return parent->scope;
8817 }
8818
8819 /* Return the fully scoped name associated with PDI, from compilation unit
8820 CU. The result will be allocated with malloc. */
8821
8822 static char *
8823 partial_die_full_name (struct partial_die_info *pdi,
8824 struct dwarf2_cu *cu)
8825 {
8826 const char *parent_scope;
8827
8828 /* If this is a template instantiation, we can not work out the
8829 template arguments from partial DIEs. So, unfortunately, we have
8830 to go through the full DIEs. At least any work we do building
8831 types here will be reused if full symbols are loaded later. */
8832 if (pdi->has_template_arguments)
8833 {
8834 pdi->fixup (cu);
8835
8836 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8837 {
8838 struct die_info *die;
8839 struct attribute attr;
8840 struct dwarf2_cu *ref_cu = cu;
8841
8842 /* DW_FORM_ref_addr is using section offset. */
8843 attr.name = (enum dwarf_attribute) 0;
8844 attr.form = DW_FORM_ref_addr;
8845 attr.u.unsnd = to_underlying (pdi->sect_off);
8846 die = follow_die_ref (NULL, &attr, &ref_cu);
8847
8848 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8849 }
8850 }
8851
8852 parent_scope = partial_die_parent_scope (pdi, cu);
8853 if (parent_scope == NULL)
8854 return NULL;
8855 else
8856 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8857 }
8858
8859 static void
8860 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8861 {
8862 struct dwarf2_per_objfile *dwarf2_per_objfile
8863 = cu->per_cu->dwarf2_per_objfile;
8864 struct objfile *objfile = dwarf2_per_objfile->objfile;
8865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8866 CORE_ADDR addr = 0;
8867 const char *actual_name = NULL;
8868 CORE_ADDR baseaddr;
8869 char *built_actual_name;
8870
8871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8872
8873 built_actual_name = partial_die_full_name (pdi, cu);
8874 if (built_actual_name != NULL)
8875 actual_name = built_actual_name;
8876
8877 if (actual_name == NULL)
8878 actual_name = pdi->name;
8879
8880 switch (pdi->tag)
8881 {
8882 case DW_TAG_inlined_subroutine:
8883 case DW_TAG_subprogram:
8884 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8885 - baseaddr);
8886 if (pdi->is_external || cu->language == language_ada)
8887 {
8888 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8889 of the global scope. But in Ada, we want to be able to access
8890 nested procedures globally. So all Ada subprograms are stored
8891 in the global scope. */
8892 add_psymbol_to_list (actual_name, strlen (actual_name),
8893 built_actual_name != NULL,
8894 VAR_DOMAIN, LOC_BLOCK,
8895 SECT_OFF_TEXT (objfile),
8896 &objfile->global_psymbols,
8897 addr,
8898 cu->language, objfile);
8899 }
8900 else
8901 {
8902 add_psymbol_to_list (actual_name, strlen (actual_name),
8903 built_actual_name != NULL,
8904 VAR_DOMAIN, LOC_BLOCK,
8905 SECT_OFF_TEXT (objfile),
8906 &objfile->static_psymbols,
8907 addr, cu->language, objfile);
8908 }
8909
8910 if (pdi->main_subprogram && actual_name != NULL)
8911 set_objfile_main_name (objfile, actual_name, cu->language);
8912 break;
8913 case DW_TAG_constant:
8914 {
8915 std::vector<partial_symbol *> *list;
8916
8917 if (pdi->is_external)
8918 list = &objfile->global_psymbols;
8919 else
8920 list = &objfile->static_psymbols;
8921 add_psymbol_to_list (actual_name, strlen (actual_name),
8922 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8923 -1, list, 0, cu->language, objfile);
8924 }
8925 break;
8926 case DW_TAG_variable:
8927 if (pdi->d.locdesc)
8928 addr = decode_locdesc (pdi->d.locdesc, cu);
8929
8930 if (pdi->d.locdesc
8931 && addr == 0
8932 && !dwarf2_per_objfile->has_section_at_zero)
8933 {
8934 /* A global or static variable may also have been stripped
8935 out by the linker if unused, in which case its address
8936 will be nullified; do not add such variables into partial
8937 symbol table then. */
8938 }
8939 else if (pdi->is_external)
8940 {
8941 /* Global Variable.
8942 Don't enter into the minimal symbol tables as there is
8943 a minimal symbol table entry from the ELF symbols already.
8944 Enter into partial symbol table if it has a location
8945 descriptor or a type.
8946 If the location descriptor is missing, new_symbol will create
8947 a LOC_UNRESOLVED symbol, the address of the variable will then
8948 be determined from the minimal symbol table whenever the variable
8949 is referenced.
8950 The address for the partial symbol table entry is not
8951 used by GDB, but it comes in handy for debugging partial symbol
8952 table building. */
8953
8954 if (pdi->d.locdesc || pdi->has_type)
8955 add_psymbol_to_list (actual_name, strlen (actual_name),
8956 built_actual_name != NULL,
8957 VAR_DOMAIN, LOC_STATIC,
8958 SECT_OFF_TEXT (objfile),
8959 &objfile->global_psymbols,
8960 addr, cu->language, objfile);
8961 }
8962 else
8963 {
8964 int has_loc = pdi->d.locdesc != NULL;
8965
8966 /* Static Variable. Skip symbols whose value we cannot know (those
8967 without location descriptors or constant values). */
8968 if (!has_loc && !pdi->has_const_value)
8969 {
8970 xfree (built_actual_name);
8971 return;
8972 }
8973
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_STATIC,
8977 SECT_OFF_TEXT (objfile),
8978 &objfile->static_psymbols,
8979 has_loc ? addr : 0,
8980 cu->language, objfile);
8981 }
8982 break;
8983 case DW_TAG_typedef:
8984 case DW_TAG_base_type:
8985 case DW_TAG_subrange_type:
8986 add_psymbol_to_list (actual_name, strlen (actual_name),
8987 built_actual_name != NULL,
8988 VAR_DOMAIN, LOC_TYPEDEF, -1,
8989 &objfile->static_psymbols,
8990 0, cu->language, objfile);
8991 break;
8992 case DW_TAG_imported_declaration:
8993 case DW_TAG_namespace:
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_TYPEDEF, -1,
8997 &objfile->global_psymbols,
8998 0, cu->language, objfile);
8999 break;
9000 case DW_TAG_module:
9001 add_psymbol_to_list (actual_name, strlen (actual_name),
9002 built_actual_name != NULL,
9003 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9004 &objfile->global_psymbols,
9005 0, cu->language, objfile);
9006 break;
9007 case DW_TAG_class_type:
9008 case DW_TAG_interface_type:
9009 case DW_TAG_structure_type:
9010 case DW_TAG_union_type:
9011 case DW_TAG_enumeration_type:
9012 /* Skip external references. The DWARF standard says in the section
9013 about "Structure, Union, and Class Type Entries": "An incomplete
9014 structure, union or class type is represented by a structure,
9015 union or class entry that does not have a byte size attribute
9016 and that has a DW_AT_declaration attribute." */
9017 if (!pdi->has_byte_size && pdi->is_declaration)
9018 {
9019 xfree (built_actual_name);
9020 return;
9021 }
9022
9023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9024 static vs. global. */
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9028 cu->language == language_cplus
9029 ? &objfile->global_psymbols
9030 : &objfile->static_psymbols,
9031 0, cu->language, objfile);
9032
9033 break;
9034 case DW_TAG_enumerator:
9035 add_psymbol_to_list (actual_name, strlen (actual_name),
9036 built_actual_name != NULL,
9037 VAR_DOMAIN, LOC_CONST, -1,
9038 cu->language == language_cplus
9039 ? &objfile->global_psymbols
9040 : &objfile->static_psymbols,
9041 0, cu->language, objfile);
9042 break;
9043 default:
9044 break;
9045 }
9046
9047 xfree (built_actual_name);
9048 }
9049
9050 /* Read a partial die corresponding to a namespace; also, add a symbol
9051 corresponding to that namespace to the symbol table. NAMESPACE is
9052 the name of the enclosing namespace. */
9053
9054 static void
9055 add_partial_namespace (struct partial_die_info *pdi,
9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9057 int set_addrmap, struct dwarf2_cu *cu)
9058 {
9059 /* Add a symbol for the namespace. */
9060
9061 add_partial_symbol (pdi, cu);
9062
9063 /* Now scan partial symbols in that namespace. */
9064
9065 if (pdi->has_children)
9066 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9067 }
9068
9069 /* Read a partial die corresponding to a Fortran module. */
9070
9071 static void
9072 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9073 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9074 {
9075 /* Add a symbol for the namespace. */
9076
9077 add_partial_symbol (pdi, cu);
9078
9079 /* Now scan partial symbols in that module. */
9080
9081 if (pdi->has_children)
9082 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9083 }
9084
9085 /* Read a partial die corresponding to a subprogram or an inlined
9086 subprogram and create a partial symbol for that subprogram.
9087 When the CU language allows it, this routine also defines a partial
9088 symbol for each nested subprogram that this subprogram contains.
9089 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9090 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9091
9092 PDI may also be a lexical block, in which case we simply search
9093 recursively for subprograms defined inside that lexical block.
9094 Again, this is only performed when the CU language allows this
9095 type of definitions. */
9096
9097 static void
9098 add_partial_subprogram (struct partial_die_info *pdi,
9099 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9100 int set_addrmap, struct dwarf2_cu *cu)
9101 {
9102 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9103 {
9104 if (pdi->has_pc_info)
9105 {
9106 if (pdi->lowpc < *lowpc)
9107 *lowpc = pdi->lowpc;
9108 if (pdi->highpc > *highpc)
9109 *highpc = pdi->highpc;
9110 if (set_addrmap)
9111 {
9112 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9114 CORE_ADDR baseaddr;
9115 CORE_ADDR highpc;
9116 CORE_ADDR lowpc;
9117
9118 baseaddr = ANOFFSET (objfile->section_offsets,
9119 SECT_OFF_TEXT (objfile));
9120 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9121 pdi->lowpc + baseaddr)
9122 - baseaddr);
9123 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9124 pdi->highpc + baseaddr)
9125 - baseaddr);
9126 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9127 cu->per_cu->v.psymtab);
9128 }
9129 }
9130
9131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9132 {
9133 if (!pdi->is_declaration)
9134 /* Ignore subprogram DIEs that do not have a name, they are
9135 illegal. Do not emit a complaint at this point, we will
9136 do so when we convert this psymtab into a symtab. */
9137 if (pdi->name)
9138 add_partial_symbol (pdi, cu);
9139 }
9140 }
9141
9142 if (! pdi->has_children)
9143 return;
9144
9145 if (cu->language == language_ada)
9146 {
9147 pdi = pdi->die_child;
9148 while (pdi != NULL)
9149 {
9150 pdi->fixup (cu);
9151 if (pdi->tag == DW_TAG_subprogram
9152 || pdi->tag == DW_TAG_inlined_subroutine
9153 || pdi->tag == DW_TAG_lexical_block)
9154 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9155 pdi = pdi->die_sibling;
9156 }
9157 }
9158 }
9159
9160 /* Read a partial die corresponding to an enumeration type. */
9161
9162 static void
9163 add_partial_enumeration (struct partial_die_info *enum_pdi,
9164 struct dwarf2_cu *cu)
9165 {
9166 struct partial_die_info *pdi;
9167
9168 if (enum_pdi->name != NULL)
9169 add_partial_symbol (enum_pdi, cu);
9170
9171 pdi = enum_pdi->die_child;
9172 while (pdi)
9173 {
9174 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9175 complaint (_("malformed enumerator DIE ignored"));
9176 else
9177 add_partial_symbol (pdi, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181
9182 /* Return the initial uleb128 in the die at INFO_PTR. */
9183
9184 static unsigned int
9185 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9186 {
9187 unsigned int bytes_read;
9188
9189 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9190 }
9191
9192 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9193 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9194
9195 Return the corresponding abbrev, or NULL if the number is zero (indicating
9196 an empty DIE). In either case *BYTES_READ will be set to the length of
9197 the initial number. */
9198
9199 static struct abbrev_info *
9200 peek_die_abbrev (const die_reader_specs &reader,
9201 const gdb_byte *info_ptr, unsigned int *bytes_read)
9202 {
9203 dwarf2_cu *cu = reader.cu;
9204 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9205 unsigned int abbrev_number
9206 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9207
9208 if (abbrev_number == 0)
9209 return NULL;
9210
9211 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9212 if (!abbrev)
9213 {
9214 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9215 " at offset %s [in module %s]"),
9216 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9217 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9218 }
9219
9220 return abbrev;
9221 }
9222
9223 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9224 Returns a pointer to the end of a series of DIEs, terminated by an empty
9225 DIE. Any children of the skipped DIEs will also be skipped. */
9226
9227 static const gdb_byte *
9228 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9229 {
9230 while (1)
9231 {
9232 unsigned int bytes_read;
9233 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9234
9235 if (abbrev == NULL)
9236 return info_ptr + bytes_read;
9237 else
9238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9239 }
9240 }
9241
9242 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9244 abbrev corresponding to that skipped uleb128 should be passed in
9245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9246 children. */
9247
9248 static const gdb_byte *
9249 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9250 struct abbrev_info *abbrev)
9251 {
9252 unsigned int bytes_read;
9253 struct attribute attr;
9254 bfd *abfd = reader->abfd;
9255 struct dwarf2_cu *cu = reader->cu;
9256 const gdb_byte *buffer = reader->buffer;
9257 const gdb_byte *buffer_end = reader->buffer_end;
9258 unsigned int form, i;
9259
9260 for (i = 0; i < abbrev->num_attrs; i++)
9261 {
9262 /* The only abbrev we care about is DW_AT_sibling. */
9263 if (abbrev->attrs[i].name == DW_AT_sibling)
9264 {
9265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9266 if (attr.form == DW_FORM_ref_addr)
9267 complaint (_("ignoring absolute DW_AT_sibling"));
9268 else
9269 {
9270 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9271 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9272
9273 if (sibling_ptr < info_ptr)
9274 complaint (_("DW_AT_sibling points backwards"));
9275 else if (sibling_ptr > reader->buffer_end)
9276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9277 else
9278 return sibling_ptr;
9279 }
9280 }
9281
9282 /* If it isn't DW_AT_sibling, skip this attribute. */
9283 form = abbrev->attrs[i].form;
9284 skip_attribute:
9285 switch (form)
9286 {
9287 case DW_FORM_ref_addr:
9288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9289 and later it is offset sized. */
9290 if (cu->header.version == 2)
9291 info_ptr += cu->header.addr_size;
9292 else
9293 info_ptr += cu->header.offset_size;
9294 break;
9295 case DW_FORM_GNU_ref_alt:
9296 info_ptr += cu->header.offset_size;
9297 break;
9298 case DW_FORM_addr:
9299 info_ptr += cu->header.addr_size;
9300 break;
9301 case DW_FORM_data1:
9302 case DW_FORM_ref1:
9303 case DW_FORM_flag:
9304 info_ptr += 1;
9305 break;
9306 case DW_FORM_flag_present:
9307 case DW_FORM_implicit_const:
9308 break;
9309 case DW_FORM_data2:
9310 case DW_FORM_ref2:
9311 info_ptr += 2;
9312 break;
9313 case DW_FORM_data4:
9314 case DW_FORM_ref4:
9315 info_ptr += 4;
9316 break;
9317 case DW_FORM_data8:
9318 case DW_FORM_ref8:
9319 case DW_FORM_ref_sig8:
9320 info_ptr += 8;
9321 break;
9322 case DW_FORM_data16:
9323 info_ptr += 16;
9324 break;
9325 case DW_FORM_string:
9326 read_direct_string (abfd, info_ptr, &bytes_read);
9327 info_ptr += bytes_read;
9328 break;
9329 case DW_FORM_sec_offset:
9330 case DW_FORM_strp:
9331 case DW_FORM_GNU_strp_alt:
9332 info_ptr += cu->header.offset_size;
9333 break;
9334 case DW_FORM_exprloc:
9335 case DW_FORM_block:
9336 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9337 info_ptr += bytes_read;
9338 break;
9339 case DW_FORM_block1:
9340 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9341 break;
9342 case DW_FORM_block2:
9343 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9344 break;
9345 case DW_FORM_block4:
9346 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9347 break;
9348 case DW_FORM_sdata:
9349 case DW_FORM_udata:
9350 case DW_FORM_ref_udata:
9351 case DW_FORM_GNU_addr_index:
9352 case DW_FORM_GNU_str_index:
9353 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9354 break;
9355 case DW_FORM_indirect:
9356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9357 info_ptr += bytes_read;
9358 /* We need to continue parsing from here, so just go back to
9359 the top. */
9360 goto skip_attribute;
9361
9362 default:
9363 error (_("Dwarf Error: Cannot handle %s "
9364 "in DWARF reader [in module %s]"),
9365 dwarf_form_name (form),
9366 bfd_get_filename (abfd));
9367 }
9368 }
9369
9370 if (abbrev->has_children)
9371 return skip_children (reader, info_ptr);
9372 else
9373 return info_ptr;
9374 }
9375
9376 /* Locate ORIG_PDI's sibling.
9377 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9378
9379 static const gdb_byte *
9380 locate_pdi_sibling (const struct die_reader_specs *reader,
9381 struct partial_die_info *orig_pdi,
9382 const gdb_byte *info_ptr)
9383 {
9384 /* Do we know the sibling already? */
9385
9386 if (orig_pdi->sibling)
9387 return orig_pdi->sibling;
9388
9389 /* Are there any children to deal with? */
9390
9391 if (!orig_pdi->has_children)
9392 return info_ptr;
9393
9394 /* Skip the children the long way. */
9395
9396 return skip_children (reader, info_ptr);
9397 }
9398
9399 /* Expand this partial symbol table into a full symbol table. SELF is
9400 not NULL. */
9401
9402 static void
9403 dwarf2_read_symtab (struct partial_symtab *self,
9404 struct objfile *objfile)
9405 {
9406 struct dwarf2_per_objfile *dwarf2_per_objfile
9407 = get_dwarf2_per_objfile (objfile);
9408
9409 if (self->readin)
9410 {
9411 warning (_("bug: psymtab for %s is already read in."),
9412 self->filename);
9413 }
9414 else
9415 {
9416 if (info_verbose)
9417 {
9418 printf_filtered (_("Reading in symbols for %s..."),
9419 self->filename);
9420 gdb_flush (gdb_stdout);
9421 }
9422
9423 /* If this psymtab is constructed from a debug-only objfile, the
9424 has_section_at_zero flag will not necessarily be correct. We
9425 can get the correct value for this flag by looking at the data
9426 associated with the (presumably stripped) associated objfile. */
9427 if (objfile->separate_debug_objfile_backlink)
9428 {
9429 struct dwarf2_per_objfile *dpo_backlink
9430 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9431
9432 dwarf2_per_objfile->has_section_at_zero
9433 = dpo_backlink->has_section_at_zero;
9434 }
9435
9436 dwarf2_per_objfile->reading_partial_symbols = 0;
9437
9438 psymtab_to_symtab_1 (self);
9439
9440 /* Finish up the debug error message. */
9441 if (info_verbose)
9442 printf_filtered (_("done.\n"));
9443 }
9444
9445 process_cu_includes (dwarf2_per_objfile);
9446 }
9447 \f
9448 /* Reading in full CUs. */
9449
9450 /* Add PER_CU to the queue. */
9451
9452 static void
9453 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9454 enum language pretend_language)
9455 {
9456 struct dwarf2_queue_item *item;
9457
9458 per_cu->queued = 1;
9459 item = XNEW (struct dwarf2_queue_item);
9460 item->per_cu = per_cu;
9461 item->pretend_language = pretend_language;
9462 item->next = NULL;
9463
9464 if (dwarf2_queue == NULL)
9465 dwarf2_queue = item;
9466 else
9467 dwarf2_queue_tail->next = item;
9468
9469 dwarf2_queue_tail = item;
9470 }
9471
9472 /* If PER_CU is not yet queued, add it to the queue.
9473 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9474 dependency.
9475 The result is non-zero if PER_CU was queued, otherwise the result is zero
9476 meaning either PER_CU is already queued or it is already loaded.
9477
9478 N.B. There is an invariant here that if a CU is queued then it is loaded.
9479 The caller is required to load PER_CU if we return non-zero. */
9480
9481 static int
9482 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9483 struct dwarf2_per_cu_data *per_cu,
9484 enum language pretend_language)
9485 {
9486 /* We may arrive here during partial symbol reading, if we need full
9487 DIEs to process an unusual case (e.g. template arguments). Do
9488 not queue PER_CU, just tell our caller to load its DIEs. */
9489 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9490 {
9491 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9492 return 1;
9493 return 0;
9494 }
9495
9496 /* Mark the dependence relation so that we don't flush PER_CU
9497 too early. */
9498 if (dependent_cu != NULL)
9499 dwarf2_add_dependence (dependent_cu, per_cu);
9500
9501 /* If it's already on the queue, we have nothing to do. */
9502 if (per_cu->queued)
9503 return 0;
9504
9505 /* If the compilation unit is already loaded, just mark it as
9506 used. */
9507 if (per_cu->cu != NULL)
9508 {
9509 per_cu->cu->last_used = 0;
9510 return 0;
9511 }
9512
9513 /* Add it to the queue. */
9514 queue_comp_unit (per_cu, pretend_language);
9515
9516 return 1;
9517 }
9518
9519 /* Process the queue. */
9520
9521 static void
9522 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9523 {
9524 struct dwarf2_queue_item *item, *next_item;
9525
9526 if (dwarf_read_debug)
9527 {
9528 fprintf_unfiltered (gdb_stdlog,
9529 "Expanding one or more symtabs of objfile %s ...\n",
9530 objfile_name (dwarf2_per_objfile->objfile));
9531 }
9532
9533 /* The queue starts out with one item, but following a DIE reference
9534 may load a new CU, adding it to the end of the queue. */
9535 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9536 {
9537 if ((dwarf2_per_objfile->using_index
9538 ? !item->per_cu->v.quick->compunit_symtab
9539 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9540 /* Skip dummy CUs. */
9541 && item->per_cu->cu != NULL)
9542 {
9543 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9544 unsigned int debug_print_threshold;
9545 char buf[100];
9546
9547 if (per_cu->is_debug_types)
9548 {
9549 struct signatured_type *sig_type =
9550 (struct signatured_type *) per_cu;
9551
9552 sprintf (buf, "TU %s at offset %s",
9553 hex_string (sig_type->signature),
9554 sect_offset_str (per_cu->sect_off));
9555 /* There can be 100s of TUs.
9556 Only print them in verbose mode. */
9557 debug_print_threshold = 2;
9558 }
9559 else
9560 {
9561 sprintf (buf, "CU at offset %s",
9562 sect_offset_str (per_cu->sect_off));
9563 debug_print_threshold = 1;
9564 }
9565
9566 if (dwarf_read_debug >= debug_print_threshold)
9567 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9568
9569 if (per_cu->is_debug_types)
9570 process_full_type_unit (per_cu, item->pretend_language);
9571 else
9572 process_full_comp_unit (per_cu, item->pretend_language);
9573
9574 if (dwarf_read_debug >= debug_print_threshold)
9575 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9576 }
9577
9578 item->per_cu->queued = 0;
9579 next_item = item->next;
9580 xfree (item);
9581 }
9582
9583 dwarf2_queue_tail = NULL;
9584
9585 if (dwarf_read_debug)
9586 {
9587 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9588 objfile_name (dwarf2_per_objfile->objfile));
9589 }
9590 }
9591
9592 /* Read in full symbols for PST, and anything it depends on. */
9593
9594 static void
9595 psymtab_to_symtab_1 (struct partial_symtab *pst)
9596 {
9597 struct dwarf2_per_cu_data *per_cu;
9598 int i;
9599
9600 if (pst->readin)
9601 return;
9602
9603 for (i = 0; i < pst->number_of_dependencies; i++)
9604 if (!pst->dependencies[i]->readin
9605 && pst->dependencies[i]->user == NULL)
9606 {
9607 /* Inform about additional files that need to be read in. */
9608 if (info_verbose)
9609 {
9610 /* FIXME: i18n: Need to make this a single string. */
9611 fputs_filtered (" ", gdb_stdout);
9612 wrap_here ("");
9613 fputs_filtered ("and ", gdb_stdout);
9614 wrap_here ("");
9615 printf_filtered ("%s...", pst->dependencies[i]->filename);
9616 wrap_here (""); /* Flush output. */
9617 gdb_flush (gdb_stdout);
9618 }
9619 psymtab_to_symtab_1 (pst->dependencies[i]);
9620 }
9621
9622 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9623
9624 if (per_cu == NULL)
9625 {
9626 /* It's an include file, no symbols to read for it.
9627 Everything is in the parent symtab. */
9628 pst->readin = 1;
9629 return;
9630 }
9631
9632 dw2_do_instantiate_symtab (per_cu, false);
9633 }
9634
9635 /* Trivial hash function for die_info: the hash value of a DIE
9636 is its offset in .debug_info for this objfile. */
9637
9638 static hashval_t
9639 die_hash (const void *item)
9640 {
9641 const struct die_info *die = (const struct die_info *) item;
9642
9643 return to_underlying (die->sect_off);
9644 }
9645
9646 /* Trivial comparison function for die_info structures: two DIEs
9647 are equal if they have the same offset. */
9648
9649 static int
9650 die_eq (const void *item_lhs, const void *item_rhs)
9651 {
9652 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9653 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9654
9655 return die_lhs->sect_off == die_rhs->sect_off;
9656 }
9657
9658 /* die_reader_func for load_full_comp_unit.
9659 This is identical to read_signatured_type_reader,
9660 but is kept separate for now. */
9661
9662 static void
9663 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9664 const gdb_byte *info_ptr,
9665 struct die_info *comp_unit_die,
9666 int has_children,
9667 void *data)
9668 {
9669 struct dwarf2_cu *cu = reader->cu;
9670 enum language *language_ptr = (enum language *) data;
9671
9672 gdb_assert (cu->die_hash == NULL);
9673 cu->die_hash =
9674 htab_create_alloc_ex (cu->header.length / 12,
9675 die_hash,
9676 die_eq,
9677 NULL,
9678 &cu->comp_unit_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
9681
9682 if (has_children)
9683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9684 &info_ptr, comp_unit_die);
9685 cu->dies = comp_unit_die;
9686 /* comp_unit_die is not stored in die_hash, no need. */
9687
9688 /* We try not to read any attributes in this function, because not
9689 all CUs needed for references have been loaded yet, and symbol
9690 table processing isn't initialized. But we have to set the CU language,
9691 or we won't be able to build types correctly.
9692 Similarly, if we do not read the producer, we can not apply
9693 producer-specific interpretation. */
9694 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9695 }
9696
9697 /* Load the DIEs associated with PER_CU into memory. */
9698
9699 static void
9700 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9701 bool skip_partial,
9702 enum language pretend_language)
9703 {
9704 gdb_assert (! this_cu->is_debug_types);
9705
9706 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9707 load_full_comp_unit_reader, &pretend_language);
9708 }
9709
9710 /* Add a DIE to the delayed physname list. */
9711
9712 static void
9713 add_to_method_list (struct type *type, int fnfield_index, int index,
9714 const char *name, struct die_info *die,
9715 struct dwarf2_cu *cu)
9716 {
9717 struct delayed_method_info mi;
9718 mi.type = type;
9719 mi.fnfield_index = fnfield_index;
9720 mi.index = index;
9721 mi.name = name;
9722 mi.die = die;
9723 cu->method_list.push_back (mi);
9724 }
9725
9726 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9727 "const" / "volatile". If so, decrements LEN by the length of the
9728 modifier and return true. Otherwise return false. */
9729
9730 template<size_t N>
9731 static bool
9732 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9733 {
9734 size_t mod_len = sizeof (mod) - 1;
9735 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9736 {
9737 len -= mod_len;
9738 return true;
9739 }
9740 return false;
9741 }
9742
9743 /* Compute the physnames of any methods on the CU's method list.
9744
9745 The computation of method physnames is delayed in order to avoid the
9746 (bad) condition that one of the method's formal parameters is of an as yet
9747 incomplete type. */
9748
9749 static void
9750 compute_delayed_physnames (struct dwarf2_cu *cu)
9751 {
9752 /* Only C++ delays computing physnames. */
9753 if (cu->method_list.empty ())
9754 return;
9755 gdb_assert (cu->language == language_cplus);
9756
9757 for (const delayed_method_info &mi : cu->method_list)
9758 {
9759 const char *physname;
9760 struct fn_fieldlist *fn_flp
9761 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9762 physname = dwarf2_physname (mi.name, mi.die, cu);
9763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9764 = physname ? physname : "";
9765
9766 /* Since there's no tag to indicate whether a method is a
9767 const/volatile overload, extract that information out of the
9768 demangled name. */
9769 if (physname != NULL)
9770 {
9771 size_t len = strlen (physname);
9772
9773 while (1)
9774 {
9775 if (physname[len] == ')') /* shortcut */
9776 break;
9777 else if (check_modifier (physname, len, " const"))
9778 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9779 else if (check_modifier (physname, len, " volatile"))
9780 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9781 else
9782 break;
9783 }
9784 }
9785 }
9786
9787 /* The list is no longer needed. */
9788 cu->method_list.clear ();
9789 }
9790
9791 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9792 the same as all other symbols in LISTHEAD. If a new symbol is added
9793 with a different language, this function asserts. */
9794
9795 static inline void
9796 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9797 {
9798 /* Only assert if LISTHEAD already contains symbols of a different
9799 language (dict_create_hashed/insert_symbol_hashed requires that all
9800 symbols in this list are of the same language). */
9801 gdb_assert ((*listhead) == NULL
9802 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9803 == SYMBOL_LANGUAGE (symbol)));
9804
9805 add_symbol_to_list (symbol, listhead);
9806 }
9807
9808 /* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819 static void
9820 fixup_go_packaging (struct dwarf2_cu *cu)
9821 {
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
9826 for (list = *cu->builder->get_global_symbols ();
9827 list != NULL;
9828 list = list->next)
9829 {
9830 for (i = 0; i < list->nsyms; ++i)
9831 {
9832 struct symbol *sym = list->symbol[i];
9833
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9836 {
9837 char *this_package_name = go_symbol_package_name (sym);
9838
9839 if (this_package_name == NULL)
9840 continue;
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9843 else
9844 {
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
9847 if (strcmp (package_name, this_package_name) != 0)
9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
9852 : objfile_name (objfile)),
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9855 }
9856 }
9857 }
9858 }
9859
9860 if (package_name != NULL)
9861 {
9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9863 const char *saved_package_name
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9865 package_name,
9866 strlen (package_name));
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
9869 struct symbol *sym;
9870
9871 sym = allocate_symbol (objfile);
9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9879 SYMBOL_TYPE (sym) = type;
9880
9881 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9882
9883 xfree (package_name);
9884 }
9885 }
9886
9887 /* Allocate a fully-qualified name consisting of the two parts on the
9888 obstack. */
9889
9890 static const char *
9891 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9892 {
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9894 }
9895
9896 /* A helper that allocates a struct discriminant_info to attach to a
9897 union type. */
9898
9899 static struct discriminant_info *
9900 alloc_discriminant_info (struct type *type, int discriminant_index,
9901 int default_index)
9902 {
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
9907 gdb_assert (default_index == -1
9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9909
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9911
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9914 TYPE_ZALLOC (type,
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9919
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9923
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9925
9926 return disc;
9927 }
9928
9929 /* Some versions of rustc emitted enums in an unusual way.
9930
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9934
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9944 field is zero.
9945
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9948
9949 static void
9950 quirk_rust_enum (struct type *type, struct objfile *objfile)
9951 {
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9953
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9956 return;
9957
9958 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9961 {
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9963
9964 /* Decode the field name to find the offset of the
9965 discriminant. */
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9969 {
9970 char *tail;
9971 unsigned long index = strtoul (name, &tail, 10);
9972 name = tail;
9973 if (*name != '$'
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9977 {
9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
9979 "[in module %s]"),
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9982 return;
9983 }
9984 ++name;
9985
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9988 }
9989
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9998
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10004
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10015
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10018 name);
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10020 dataless_name);
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10027
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10032 TYPE_FIELDS (type)
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10034
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10039 }
10040 else if (TYPE_NFIELDS (type) == 1)
10041 {
10042 /* We assume that a union with a single field is a univariant
10043 enum. */
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10047
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
10062 TYPE_NAME (type), variant_name);
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10082 {
10083 /* All fields of a true enum will be structs. */
10084 return;
10085 }
10086 else if (TYPE_NFIELDS (disr_type) == 0)
10087 {
10088 /* Could be data-less variant, so keep going. */
10089 disr_type = nullptr;
10090 }
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10093 {
10094 /* Not a Rust enum. */
10095 return;
10096 }
10097 else
10098 {
10099 /* Found one. */
10100 break;
10101 }
10102 }
10103
10104 /* If we got here without a discriminant, then it's probably
10105 just a union. */
10106 if (disr_type == nullptr)
10107 return;
10108
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10112
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10124
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10127
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10132
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10137
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10140
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10146 {
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10148 {
10149 const char *name
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10152 }
10153 }
10154
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10160 {
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10163 discriminant. */
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10166 i)));
10167
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10171
10172 /* Remove the discriminant field, if it exists. */
10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10174 if (TYPE_NFIELDS (sub_type) > 0)
10175 {
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10178 }
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10183 }
10184 }
10185 }
10186
10187 /* Rewrite some Rust unions to be structures with variants parts. */
10188
10189 static void
10190 rust_union_quirks (struct dwarf2_cu *cu)
10191 {
10192 gdb_assert (cu->language == language_rust);
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
10197 }
10198
10199 /* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10201
10202 static struct compunit_symtab *
10203 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10204 {
10205 return (per_cu->dwarf2_per_objfile->using_index
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
10208 }
10209
10210 /* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10212
10213 static void
10214 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10215 htab_t all_children, htab_t all_type_symtabs,
10216 struct dwarf2_per_cu_data *per_cu,
10217 struct compunit_symtab *immediate_parent)
10218 {
10219 void **slot;
10220 int ix;
10221 struct compunit_symtab *cust;
10222 struct dwarf2_per_cu_data *iter;
10223
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10225 if (*slot != NULL)
10226 {
10227 /* This inclusion and its children have been processed. */
10228 return;
10229 }
10230
10231 *slot = per_cu;
10232 /* Only add a CU if it has a symbol table. */
10233 cust = get_compunit_symtab (per_cu);
10234 if (cust != NULL)
10235 {
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10239 {
10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10241 if (*slot == NULL)
10242 {
10243 *slot = cust;
10244 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
10247 }
10248 }
10249 else
10250 {
10251 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10254 }
10255 }
10256
10257 for (ix = 0;
10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10259 ++ix)
10260 {
10261 recursively_compute_inclusions (result, all_children,
10262 all_type_symtabs, iter, cust);
10263 }
10264 }
10265
10266 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10267 PER_CU. */
10268
10269 static void
10270 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10271 {
10272 gdb_assert (! per_cu->is_debug_types);
10273
10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10275 {
10276 int ix, len;
10277 struct dwarf2_per_cu_data *per_cu_iter;
10278 struct compunit_symtab *compunit_symtab_iter;
10279 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10280 htab_t all_children, all_type_symtabs;
10281 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10282
10283 /* If we don't have a symtab, we can just skip this case. */
10284 if (cust == NULL)
10285 return;
10286
10287 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10288 NULL, xcalloc, xfree);
10289 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10290 NULL, xcalloc, xfree);
10291
10292 for (ix = 0;
10293 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10294 ix, per_cu_iter);
10295 ++ix)
10296 {
10297 recursively_compute_inclusions (&result_symtabs, all_children,
10298 all_type_symtabs, per_cu_iter,
10299 cust);
10300 }
10301
10302 /* Now we have a transitive closure of all the included symtabs. */
10303 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10304 cust->includes
10305 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10306 struct compunit_symtab *, len + 1);
10307 for (ix = 0;
10308 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10309 compunit_symtab_iter);
10310 ++ix)
10311 cust->includes[ix] = compunit_symtab_iter;
10312 cust->includes[len] = NULL;
10313
10314 VEC_free (compunit_symtab_ptr, result_symtabs);
10315 htab_delete (all_children);
10316 htab_delete (all_type_symtabs);
10317 }
10318 }
10319
10320 /* Compute the 'includes' field for the symtabs of all the CUs we just
10321 read. */
10322
10323 static void
10324 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10325 {
10326 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10327 {
10328 if (! iter->is_debug_types)
10329 compute_compunit_symtab_includes (iter);
10330 }
10331
10332 dwarf2_per_objfile->just_read_cus.clear ();
10333 }
10334
10335 /* Generate full symbol information for PER_CU, whose DIEs have
10336 already been loaded into memory. */
10337
10338 static void
10339 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10340 enum language pretend_language)
10341 {
10342 struct dwarf2_cu *cu = per_cu->cu;
10343 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
10345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10346 CORE_ADDR lowpc, highpc;
10347 struct compunit_symtab *cust;
10348 CORE_ADDR baseaddr;
10349 struct block *static_block;
10350 CORE_ADDR addr;
10351
10352 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10353
10354 /* Clear the list here in case something was left over. */
10355 cu->method_list.clear ();
10356
10357 cu->language = pretend_language;
10358 cu->language_defn = language_def (cu->language);
10359
10360 /* Do line number decoding in read_file_scope () */
10361 process_die (cu->dies, cu);
10362
10363 /* For now fudge the Go package. */
10364 if (cu->language == language_go)
10365 fixup_go_packaging (cu);
10366
10367 /* Now that we have processed all the DIEs in the CU, all the types
10368 should be complete, and it should now be safe to compute all of the
10369 physnames. */
10370 compute_delayed_physnames (cu);
10371
10372 if (cu->language == language_rust)
10373 rust_union_quirks (cu);
10374
10375 /* Some compilers don't define a DW_AT_high_pc attribute for the
10376 compilation unit. If the DW_AT_high_pc is missing, synthesize
10377 it, by scanning the DIE's below the compilation unit. */
10378 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10379
10380 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10381 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10382
10383 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10384 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10385 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10386 addrmap to help ensure it has an accurate map of pc values belonging to
10387 this comp unit. */
10388 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10389
10390 cust = cu->builder->end_symtab_from_static_block (static_block,
10391 SECT_OFF_TEXT (objfile),
10392 0);
10393
10394 if (cust != NULL)
10395 {
10396 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10397
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors, do
10400 not set the language if it was already deduced by start_subfile. */
10401 if (!(cu->language == language_c
10402 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10403 COMPUNIT_FILETABS (cust)->language = cu->language;
10404
10405 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10406 produce DW_AT_location with location lists but it can be possibly
10407 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10408 there were bugs in prologue debug info, fixed later in GCC-4.5
10409 by "unwind info for epilogues" patch (which is not directly related).
10410
10411 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10412 needed, it would be wrong due to missing DW_AT_producer there.
10413
10414 Still one can confuse GDB by using non-standard GCC compilation
10415 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10416 */
10417 if (cu->has_loclist && gcc_4_minor >= 5)
10418 cust->locations_valid = 1;
10419
10420 if (gcc_4_minor >= 5)
10421 cust->epilogue_unwind_valid = 1;
10422
10423 cust->call_site_htab = cu->call_site_htab;
10424 }
10425
10426 if (dwarf2_per_objfile->using_index)
10427 per_cu->v.quick->compunit_symtab = cust;
10428 else
10429 {
10430 struct partial_symtab *pst = per_cu->v.psymtab;
10431 pst->compunit_symtab = cust;
10432 pst->readin = 1;
10433 }
10434
10435 /* Push it for inclusion processing later. */
10436 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10437
10438 /* Not needed any more. */
10439 cu->builder.reset ();
10440 }
10441
10442 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10443 already been loaded into memory. */
10444
10445 static void
10446 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10447 enum language pretend_language)
10448 {
10449 struct dwarf2_cu *cu = per_cu->cu;
10450 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10451 struct objfile *objfile = dwarf2_per_objfile->objfile;
10452 struct compunit_symtab *cust;
10453 struct signatured_type *sig_type;
10454
10455 gdb_assert (per_cu->is_debug_types);
10456 sig_type = (struct signatured_type *) per_cu;
10457
10458 /* Clear the list here in case something was left over. */
10459 cu->method_list.clear ();
10460
10461 cu->language = pretend_language;
10462 cu->language_defn = language_def (cu->language);
10463
10464 /* The symbol tables are set up in read_type_unit_scope. */
10465 process_die (cu->dies, cu);
10466
10467 /* For now fudge the Go package. */
10468 if (cu->language == language_go)
10469 fixup_go_packaging (cu);
10470
10471 /* Now that we have processed all the DIEs in the CU, all the types
10472 should be complete, and it should now be safe to compute all of the
10473 physnames. */
10474 compute_delayed_physnames (cu);
10475
10476 if (cu->language == language_rust)
10477 rust_union_quirks (cu);
10478
10479 /* TUs share symbol tables.
10480 If this is the first TU to use this symtab, complete the construction
10481 of it with end_expandable_symtab. Otherwise, complete the addition of
10482 this TU's symbols to the existing symtab. */
10483 if (sig_type->type_unit_group->compunit_symtab == NULL)
10484 {
10485 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10486 sig_type->type_unit_group->compunit_symtab = cust;
10487
10488 if (cust != NULL)
10489 {
10490 /* Set symtab language to language from DW_AT_language. If the
10491 compilation is from a C file generated by language preprocessors,
10492 do not set the language if it was already deduced by
10493 start_subfile. */
10494 if (!(cu->language == language_c
10495 && COMPUNIT_FILETABS (cust)->language != language_c))
10496 COMPUNIT_FILETABS (cust)->language = cu->language;
10497 }
10498 }
10499 else
10500 {
10501 cu->builder->augment_type_symtab ();
10502 cust = sig_type->type_unit_group->compunit_symtab;
10503 }
10504
10505 if (dwarf2_per_objfile->using_index)
10506 per_cu->v.quick->compunit_symtab = cust;
10507 else
10508 {
10509 struct partial_symtab *pst = per_cu->v.psymtab;
10510 pst->compunit_symtab = cust;
10511 pst->readin = 1;
10512 }
10513
10514 /* Not needed any more. */
10515 cu->builder.reset ();
10516 }
10517
10518 /* Process an imported unit DIE. */
10519
10520 static void
10521 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10522 {
10523 struct attribute *attr;
10524
10525 /* For now we don't handle imported units in type units. */
10526 if (cu->per_cu->is_debug_types)
10527 {
10528 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10529 " supported in type units [in module %s]"),
10530 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10531 }
10532
10533 attr = dwarf2_attr (die, DW_AT_import, cu);
10534 if (attr != NULL)
10535 {
10536 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10537 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10538 dwarf2_per_cu_data *per_cu
10539 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10540 cu->per_cu->dwarf2_per_objfile);
10541
10542 /* If necessary, add it to the queue and load its DIEs. */
10543 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10544 load_full_comp_unit (per_cu, false, cu->language);
10545
10546 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10547 per_cu);
10548 }
10549 }
10550
10551 /* RAII object that represents a process_die scope: i.e.,
10552 starts/finishes processing a DIE. */
10553 class process_die_scope
10554 {
10555 public:
10556 process_die_scope (die_info *die, dwarf2_cu *cu)
10557 : m_die (die), m_cu (cu)
10558 {
10559 /* We should only be processing DIEs not already in process. */
10560 gdb_assert (!m_die->in_process);
10561 m_die->in_process = true;
10562 }
10563
10564 ~process_die_scope ()
10565 {
10566 m_die->in_process = false;
10567
10568 /* If we're done processing the DIE for the CU that owns the line
10569 header, we don't need the line header anymore. */
10570 if (m_cu->line_header_die_owner == m_die)
10571 {
10572 delete m_cu->line_header;
10573 m_cu->line_header = NULL;
10574 m_cu->line_header_die_owner = NULL;
10575 }
10576 }
10577
10578 private:
10579 die_info *m_die;
10580 dwarf2_cu *m_cu;
10581 };
10582
10583 /* Process a die and its children. */
10584
10585 static void
10586 process_die (struct die_info *die, struct dwarf2_cu *cu)
10587 {
10588 process_die_scope scope (die, cu);
10589
10590 switch (die->tag)
10591 {
10592 case DW_TAG_padding:
10593 break;
10594 case DW_TAG_compile_unit:
10595 case DW_TAG_partial_unit:
10596 read_file_scope (die, cu);
10597 break;
10598 case DW_TAG_type_unit:
10599 read_type_unit_scope (die, cu);
10600 break;
10601 case DW_TAG_subprogram:
10602 case DW_TAG_inlined_subroutine:
10603 read_func_scope (die, cu);
10604 break;
10605 case DW_TAG_lexical_block:
10606 case DW_TAG_try_block:
10607 case DW_TAG_catch_block:
10608 read_lexical_block_scope (die, cu);
10609 break;
10610 case DW_TAG_call_site:
10611 case DW_TAG_GNU_call_site:
10612 read_call_site_scope (die, cu);
10613 break;
10614 case DW_TAG_class_type:
10615 case DW_TAG_interface_type:
10616 case DW_TAG_structure_type:
10617 case DW_TAG_union_type:
10618 process_structure_scope (die, cu);
10619 break;
10620 case DW_TAG_enumeration_type:
10621 process_enumeration_scope (die, cu);
10622 break;
10623
10624 /* These dies have a type, but processing them does not create
10625 a symbol or recurse to process the children. Therefore we can
10626 read them on-demand through read_type_die. */
10627 case DW_TAG_subroutine_type:
10628 case DW_TAG_set_type:
10629 case DW_TAG_array_type:
10630 case DW_TAG_pointer_type:
10631 case DW_TAG_ptr_to_member_type:
10632 case DW_TAG_reference_type:
10633 case DW_TAG_rvalue_reference_type:
10634 case DW_TAG_string_type:
10635 break;
10636
10637 case DW_TAG_base_type:
10638 case DW_TAG_subrange_type:
10639 case DW_TAG_typedef:
10640 /* Add a typedef symbol for the type definition, if it has a
10641 DW_AT_name. */
10642 new_symbol (die, read_type_die (die, cu), cu);
10643 break;
10644 case DW_TAG_common_block:
10645 read_common_block (die, cu);
10646 break;
10647 case DW_TAG_common_inclusion:
10648 break;
10649 case DW_TAG_namespace:
10650 cu->processing_has_namespace_info = 1;
10651 read_namespace (die, cu);
10652 break;
10653 case DW_TAG_module:
10654 cu->processing_has_namespace_info = 1;
10655 read_module (die, cu);
10656 break;
10657 case DW_TAG_imported_declaration:
10658 cu->processing_has_namespace_info = 1;
10659 if (read_namespace_alias (die, cu))
10660 break;
10661 /* The declaration is not a global namespace alias. */
10662 /* Fall through. */
10663 case DW_TAG_imported_module:
10664 cu->processing_has_namespace_info = 1;
10665 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10666 || cu->language != language_fortran))
10667 complaint (_("Tag '%s' has unexpected children"),
10668 dwarf_tag_name (die->tag));
10669 read_import_statement (die, cu);
10670 break;
10671
10672 case DW_TAG_imported_unit:
10673 process_imported_unit_die (die, cu);
10674 break;
10675
10676 case DW_TAG_variable:
10677 read_variable (die, cu);
10678 break;
10679
10680 default:
10681 new_symbol (die, NULL, cu);
10682 break;
10683 }
10684 }
10685 \f
10686 /* DWARF name computation. */
10687
10688 /* A helper function for dwarf2_compute_name which determines whether DIE
10689 needs to have the name of the scope prepended to the name listed in the
10690 die. */
10691
10692 static int
10693 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10694 {
10695 struct attribute *attr;
10696
10697 switch (die->tag)
10698 {
10699 case DW_TAG_namespace:
10700 case DW_TAG_typedef:
10701 case DW_TAG_class_type:
10702 case DW_TAG_interface_type:
10703 case DW_TAG_structure_type:
10704 case DW_TAG_union_type:
10705 case DW_TAG_enumeration_type:
10706 case DW_TAG_enumerator:
10707 case DW_TAG_subprogram:
10708 case DW_TAG_inlined_subroutine:
10709 case DW_TAG_member:
10710 case DW_TAG_imported_declaration:
10711 return 1;
10712
10713 case DW_TAG_variable:
10714 case DW_TAG_constant:
10715 /* We only need to prefix "globally" visible variables. These include
10716 any variable marked with DW_AT_external or any variable that
10717 lives in a namespace. [Variables in anonymous namespaces
10718 require prefixing, but they are not DW_AT_external.] */
10719
10720 if (dwarf2_attr (die, DW_AT_specification, cu))
10721 {
10722 struct dwarf2_cu *spec_cu = cu;
10723
10724 return die_needs_namespace (die_specification (die, &spec_cu),
10725 spec_cu);
10726 }
10727
10728 attr = dwarf2_attr (die, DW_AT_external, cu);
10729 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10730 && die->parent->tag != DW_TAG_module)
10731 return 0;
10732 /* A variable in a lexical block of some kind does not need a
10733 namespace, even though in C++ such variables may be external
10734 and have a mangled name. */
10735 if (die->parent->tag == DW_TAG_lexical_block
10736 || die->parent->tag == DW_TAG_try_block
10737 || die->parent->tag == DW_TAG_catch_block
10738 || die->parent->tag == DW_TAG_subprogram)
10739 return 0;
10740 return 1;
10741
10742 default:
10743 return 0;
10744 }
10745 }
10746
10747 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10748 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10749 defined for the given DIE. */
10750
10751 static struct attribute *
10752 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10753 {
10754 struct attribute *attr;
10755
10756 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10757 if (attr == NULL)
10758 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10759
10760 return attr;
10761 }
10762
10763 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10764 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10765 defined for the given DIE. */
10766
10767 static const char *
10768 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10769 {
10770 const char *linkage_name;
10771
10772 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10773 if (linkage_name == NULL)
10774 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10775
10776 return linkage_name;
10777 }
10778
10779 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10780 compute the physname for the object, which include a method's:
10781 - formal parameters (C++),
10782 - receiver type (Go),
10783
10784 The term "physname" is a bit confusing.
10785 For C++, for example, it is the demangled name.
10786 For Go, for example, it's the mangled name.
10787
10788 For Ada, return the DIE's linkage name rather than the fully qualified
10789 name. PHYSNAME is ignored..
10790
10791 The result is allocated on the objfile_obstack and canonicalized. */
10792
10793 static const char *
10794 dwarf2_compute_name (const char *name,
10795 struct die_info *die, struct dwarf2_cu *cu,
10796 int physname)
10797 {
10798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10799
10800 if (name == NULL)
10801 name = dwarf2_name (die, cu);
10802
10803 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10804 but otherwise compute it by typename_concat inside GDB.
10805 FIXME: Actually this is not really true, or at least not always true.
10806 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10807 Fortran names because there is no mangling standard. So new_symbol
10808 will set the demangled name to the result of dwarf2_full_name, and it is
10809 the demangled name that GDB uses if it exists. */
10810 if (cu->language == language_ada
10811 || (cu->language == language_fortran && physname))
10812 {
10813 /* For Ada unit, we prefer the linkage name over the name, as
10814 the former contains the exported name, which the user expects
10815 to be able to reference. Ideally, we want the user to be able
10816 to reference this entity using either natural or linkage name,
10817 but we haven't started looking at this enhancement yet. */
10818 const char *linkage_name = dw2_linkage_name (die, cu);
10819
10820 if (linkage_name != NULL)
10821 return linkage_name;
10822 }
10823
10824 /* These are the only languages we know how to qualify names in. */
10825 if (name != NULL
10826 && (cu->language == language_cplus
10827 || cu->language == language_fortran || cu->language == language_d
10828 || cu->language == language_rust))
10829 {
10830 if (die_needs_namespace (die, cu))
10831 {
10832 const char *prefix;
10833 const char *canonical_name = NULL;
10834
10835 string_file buf;
10836
10837 prefix = determine_prefix (die, cu);
10838 if (*prefix != '\0')
10839 {
10840 char *prefixed_name = typename_concat (NULL, prefix, name,
10841 physname, cu);
10842
10843 buf.puts (prefixed_name);
10844 xfree (prefixed_name);
10845 }
10846 else
10847 buf.puts (name);
10848
10849 /* Template parameters may be specified in the DIE's DW_AT_name, or
10850 as children with DW_TAG_template_type_param or
10851 DW_TAG_value_type_param. If the latter, add them to the name
10852 here. If the name already has template parameters, then
10853 skip this step; some versions of GCC emit both, and
10854 it is more efficient to use the pre-computed name.
10855
10856 Something to keep in mind about this process: it is very
10857 unlikely, or in some cases downright impossible, to produce
10858 something that will match the mangled name of a function.
10859 If the definition of the function has the same debug info,
10860 we should be able to match up with it anyway. But fallbacks
10861 using the minimal symbol, for instance to find a method
10862 implemented in a stripped copy of libstdc++, will not work.
10863 If we do not have debug info for the definition, we will have to
10864 match them up some other way.
10865
10866 When we do name matching there is a related problem with function
10867 templates; two instantiated function templates are allowed to
10868 differ only by their return types, which we do not add here. */
10869
10870 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10871 {
10872 struct attribute *attr;
10873 struct die_info *child;
10874 int first = 1;
10875
10876 die->building_fullname = 1;
10877
10878 for (child = die->child; child != NULL; child = child->sibling)
10879 {
10880 struct type *type;
10881 LONGEST value;
10882 const gdb_byte *bytes;
10883 struct dwarf2_locexpr_baton *baton;
10884 struct value *v;
10885
10886 if (child->tag != DW_TAG_template_type_param
10887 && child->tag != DW_TAG_template_value_param)
10888 continue;
10889
10890 if (first)
10891 {
10892 buf.puts ("<");
10893 first = 0;
10894 }
10895 else
10896 buf.puts (", ");
10897
10898 attr = dwarf2_attr (child, DW_AT_type, cu);
10899 if (attr == NULL)
10900 {
10901 complaint (_("template parameter missing DW_AT_type"));
10902 buf.puts ("UNKNOWN_TYPE");
10903 continue;
10904 }
10905 type = die_type (child, cu);
10906
10907 if (child->tag == DW_TAG_template_type_param)
10908 {
10909 c_print_type (type, "", &buf, -1, 0, cu->language,
10910 &type_print_raw_options);
10911 continue;
10912 }
10913
10914 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10915 if (attr == NULL)
10916 {
10917 complaint (_("template parameter missing "
10918 "DW_AT_const_value"));
10919 buf.puts ("UNKNOWN_VALUE");
10920 continue;
10921 }
10922
10923 dwarf2_const_value_attr (attr, type, name,
10924 &cu->comp_unit_obstack, cu,
10925 &value, &bytes, &baton);
10926
10927 if (TYPE_NOSIGN (type))
10928 /* GDB prints characters as NUMBER 'CHAR'. If that's
10929 changed, this can use value_print instead. */
10930 c_printchar (value, type, &buf);
10931 else
10932 {
10933 struct value_print_options opts;
10934
10935 if (baton != NULL)
10936 v = dwarf2_evaluate_loc_desc (type, NULL,
10937 baton->data,
10938 baton->size,
10939 baton->per_cu);
10940 else if (bytes != NULL)
10941 {
10942 v = allocate_value (type);
10943 memcpy (value_contents_writeable (v), bytes,
10944 TYPE_LENGTH (type));
10945 }
10946 else
10947 v = value_from_longest (type, value);
10948
10949 /* Specify decimal so that we do not depend on
10950 the radix. */
10951 get_formatted_print_options (&opts, 'd');
10952 opts.raw = 1;
10953 value_print (v, &buf, &opts);
10954 release_value (v);
10955 }
10956 }
10957
10958 die->building_fullname = 0;
10959
10960 if (!first)
10961 {
10962 /* Close the argument list, with a space if necessary
10963 (nested templates). */
10964 if (!buf.empty () && buf.string ().back () == '>')
10965 buf.puts (" >");
10966 else
10967 buf.puts (">");
10968 }
10969 }
10970
10971 /* For C++ methods, append formal parameter type
10972 information, if PHYSNAME. */
10973
10974 if (physname && die->tag == DW_TAG_subprogram
10975 && cu->language == language_cplus)
10976 {
10977 struct type *type = read_type_die (die, cu);
10978
10979 c_type_print_args (type, &buf, 1, cu->language,
10980 &type_print_raw_options);
10981
10982 if (cu->language == language_cplus)
10983 {
10984 /* Assume that an artificial first parameter is
10985 "this", but do not crash if it is not. RealView
10986 marks unnamed (and thus unused) parameters as
10987 artificial; there is no way to differentiate
10988 the two cases. */
10989 if (TYPE_NFIELDS (type) > 0
10990 && TYPE_FIELD_ARTIFICIAL (type, 0)
10991 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10992 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10993 0))))
10994 buf.puts (" const");
10995 }
10996 }
10997
10998 const std::string &intermediate_name = buf.string ();
10999
11000 if (cu->language == language_cplus)
11001 canonical_name
11002 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11003 &objfile->per_bfd->storage_obstack);
11004
11005 /* If we only computed INTERMEDIATE_NAME, or if
11006 INTERMEDIATE_NAME is already canonical, then we need to
11007 copy it to the appropriate obstack. */
11008 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11009 name = ((const char *)
11010 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11011 intermediate_name.c_str (),
11012 intermediate_name.length ()));
11013 else
11014 name = canonical_name;
11015 }
11016 }
11017
11018 return name;
11019 }
11020
11021 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11022 If scope qualifiers are appropriate they will be added. The result
11023 will be allocated on the storage_obstack, or NULL if the DIE does
11024 not have a name. NAME may either be from a previous call to
11025 dwarf2_name or NULL.
11026
11027 The output string will be canonicalized (if C++). */
11028
11029 static const char *
11030 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11031 {
11032 return dwarf2_compute_name (name, die, cu, 0);
11033 }
11034
11035 /* Construct a physname for the given DIE in CU. NAME may either be
11036 from a previous call to dwarf2_name or NULL. The result will be
11037 allocated on the objfile_objstack or NULL if the DIE does not have a
11038 name.
11039
11040 The output string will be canonicalized (if C++). */
11041
11042 static const char *
11043 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11044 {
11045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11046 const char *retval, *mangled = NULL, *canon = NULL;
11047 int need_copy = 1;
11048
11049 /* In this case dwarf2_compute_name is just a shortcut not building anything
11050 on its own. */
11051 if (!die_needs_namespace (die, cu))
11052 return dwarf2_compute_name (name, die, cu, 1);
11053
11054 mangled = dw2_linkage_name (die, cu);
11055
11056 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11057 See https://github.com/rust-lang/rust/issues/32925. */
11058 if (cu->language == language_rust && mangled != NULL
11059 && strchr (mangled, '{') != NULL)
11060 mangled = NULL;
11061
11062 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11063 has computed. */
11064 gdb::unique_xmalloc_ptr<char> demangled;
11065 if (mangled != NULL)
11066 {
11067
11068 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11069 {
11070 /* Do nothing (do not demangle the symbol name). */
11071 }
11072 else if (cu->language == language_go)
11073 {
11074 /* This is a lie, but we already lie to the caller new_symbol.
11075 new_symbol assumes we return the mangled name.
11076 This just undoes that lie until things are cleaned up. */
11077 }
11078 else
11079 {
11080 /* Use DMGL_RET_DROP for C++ template functions to suppress
11081 their return type. It is easier for GDB users to search
11082 for such functions as `name(params)' than `long name(params)'.
11083 In such case the minimal symbol names do not match the full
11084 symbol names but for template functions there is never a need
11085 to look up their definition from their declaration so
11086 the only disadvantage remains the minimal symbol variant
11087 `long name(params)' does not have the proper inferior type. */
11088 demangled.reset (gdb_demangle (mangled,
11089 (DMGL_PARAMS | DMGL_ANSI
11090 | DMGL_RET_DROP)));
11091 }
11092 if (demangled)
11093 canon = demangled.get ();
11094 else
11095 {
11096 canon = mangled;
11097 need_copy = 0;
11098 }
11099 }
11100
11101 if (canon == NULL || check_physname)
11102 {
11103 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11104
11105 if (canon != NULL && strcmp (physname, canon) != 0)
11106 {
11107 /* It may not mean a bug in GDB. The compiler could also
11108 compute DW_AT_linkage_name incorrectly. But in such case
11109 GDB would need to be bug-to-bug compatible. */
11110
11111 complaint (_("Computed physname <%s> does not match demangled <%s> "
11112 "(from linkage <%s>) - DIE at %s [in module %s]"),
11113 physname, canon, mangled, sect_offset_str (die->sect_off),
11114 objfile_name (objfile));
11115
11116 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11117 is available here - over computed PHYSNAME. It is safer
11118 against both buggy GDB and buggy compilers. */
11119
11120 retval = canon;
11121 }
11122 else
11123 {
11124 retval = physname;
11125 need_copy = 0;
11126 }
11127 }
11128 else
11129 retval = canon;
11130
11131 if (need_copy)
11132 retval = ((const char *)
11133 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11134 retval, strlen (retval)));
11135
11136 return retval;
11137 }
11138
11139 /* Inspect DIE in CU for a namespace alias. If one exists, record
11140 a new symbol for it.
11141
11142 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11143
11144 static int
11145 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11146 {
11147 struct attribute *attr;
11148
11149 /* If the die does not have a name, this is not a namespace
11150 alias. */
11151 attr = dwarf2_attr (die, DW_AT_name, cu);
11152 if (attr != NULL)
11153 {
11154 int num;
11155 struct die_info *d = die;
11156 struct dwarf2_cu *imported_cu = cu;
11157
11158 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11159 keep inspecting DIEs until we hit the underlying import. */
11160 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11161 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11162 {
11163 attr = dwarf2_attr (d, DW_AT_import, cu);
11164 if (attr == NULL)
11165 break;
11166
11167 d = follow_die_ref (d, attr, &imported_cu);
11168 if (d->tag != DW_TAG_imported_declaration)
11169 break;
11170 }
11171
11172 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11173 {
11174 complaint (_("DIE at %s has too many recursively imported "
11175 "declarations"), sect_offset_str (d->sect_off));
11176 return 0;
11177 }
11178
11179 if (attr != NULL)
11180 {
11181 struct type *type;
11182 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11183
11184 type = get_die_type_at_offset (sect_off, cu->per_cu);
11185 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11186 {
11187 /* This declaration is a global namespace alias. Add
11188 a symbol for it whose type is the aliased namespace. */
11189 new_symbol (die, type, cu);
11190 return 1;
11191 }
11192 }
11193 }
11194
11195 return 0;
11196 }
11197
11198 /* Return the using directives repository (global or local?) to use in the
11199 current context for CU.
11200
11201 For Ada, imported declarations can materialize renamings, which *may* be
11202 global. However it is impossible (for now?) in DWARF to distinguish
11203 "external" imported declarations and "static" ones. As all imported
11204 declarations seem to be static in all other languages, make them all CU-wide
11205 global only in Ada. */
11206
11207 static struct using_direct **
11208 using_directives (struct dwarf2_cu *cu)
11209 {
11210 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11211 return cu->builder->get_global_using_directives ();
11212 else
11213 return cu->builder->get_local_using_directives ();
11214 }
11215
11216 /* Read the import statement specified by the given die and record it. */
11217
11218 static void
11219 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11220 {
11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11222 struct attribute *import_attr;
11223 struct die_info *imported_die, *child_die;
11224 struct dwarf2_cu *imported_cu;
11225 const char *imported_name;
11226 const char *imported_name_prefix;
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
11230 const char *import_prefix;
11231 std::vector<const char *> excludes;
11232
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11235 {
11236 complaint (_("Tag '%s' has no DW_AT_import"),
11237 dwarf_tag_name (die->tag));
11238 return;
11239 }
11240
11241 imported_cu = cu;
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
11244 if (imported_name == NULL)
11245 {
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11247
11248 The import in the following code:
11249 namespace A
11250 {
11251 typedef int B;
11252 }
11253
11254 int main ()
11255 {
11256 using A::B;
11257 B b;
11258 return b;
11259 }
11260
11261 ...
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11271 ...
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11275
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11278 return;
11279 }
11280
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
11283
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11286
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11290
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
11293 {
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
11296 }
11297 else if (strlen (imported_name_prefix) > 0)
11298 canonical_name = obconcat (&objfile->objfile_obstack,
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
11302 else
11303 canonical_name = imported_name;
11304
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11308 {
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11313
11314 if (child_die->tag != DW_TAG_imported_declaration)
11315 {
11316 complaint (_("child DW_TAG_imported_declaration expected "
11317 "- DIE at %s [in module %s]"),
11318 sect_offset_str (child_die->sect_off),
11319 objfile_name (objfile));
11320 continue;
11321 }
11322
11323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11324 if (import_attr == NULL)
11325 {
11326 complaint (_("Tag '%s' has no DW_AT_import"),
11327 dwarf_tag_name (child_die->tag));
11328 continue;
11329 }
11330
11331 imported_cu = cu;
11332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11333 &imported_cu);
11334 imported_name = dwarf2_name (imported_die, imported_cu);
11335 if (imported_name == NULL)
11336 {
11337 complaint (_("child DW_TAG_imported_declaration has unknown "
11338 "imported name - DIE at %s [in module %s]"),
11339 sect_offset_str (child_die->sect_off),
11340 objfile_name (objfile));
11341 continue;
11342 }
11343
11344 excludes.push_back (imported_name);
11345
11346 process_die (child_die, cu);
11347 }
11348
11349 add_using_directive (using_directives (cu),
11350 import_prefix,
11351 canonical_name,
11352 import_alias,
11353 imported_declaration,
11354 excludes,
11355 0,
11356 &objfile->objfile_obstack);
11357 }
11358
11359 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11360 types, but gives them a size of zero. Starting with version 14,
11361 ICC is compatible with GCC. */
11362
11363 static int
11364 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11365 {
11366 if (!cu->checked_producer)
11367 check_producer (cu);
11368
11369 return cu->producer_is_icc_lt_14;
11370 }
11371
11372 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11373 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11374 this, it was first present in GCC release 4.3.0. */
11375
11376 static int
11377 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11378 {
11379 if (!cu->checked_producer)
11380 check_producer (cu);
11381
11382 return cu->producer_is_gcc_lt_4_3;
11383 }
11384
11385 static file_and_directory
11386 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11387 {
11388 file_and_directory res;
11389
11390 /* Find the filename. Do not use dwarf2_name here, since the filename
11391 is not a source language identifier. */
11392 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11393 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11394
11395 if (res.comp_dir == NULL
11396 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11397 && IS_ABSOLUTE_PATH (res.name))
11398 {
11399 res.comp_dir_storage = ldirname (res.name);
11400 if (!res.comp_dir_storage.empty ())
11401 res.comp_dir = res.comp_dir_storage.c_str ();
11402 }
11403 if (res.comp_dir != NULL)
11404 {
11405 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11406 directory, get rid of it. */
11407 const char *cp = strchr (res.comp_dir, ':');
11408
11409 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11410 res.comp_dir = cp + 1;
11411 }
11412
11413 if (res.name == NULL)
11414 res.name = "<unknown>";
11415
11416 return res;
11417 }
11418
11419 /* Handle DW_AT_stmt_list for a compilation unit.
11420 DIE is the DW_TAG_compile_unit die for CU.
11421 COMP_DIR is the compilation directory. LOWPC is passed to
11422 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11423
11424 static void
11425 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11426 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11427 {
11428 struct dwarf2_per_objfile *dwarf2_per_objfile
11429 = cu->per_cu->dwarf2_per_objfile;
11430 struct objfile *objfile = dwarf2_per_objfile->objfile;
11431 struct attribute *attr;
11432 struct line_header line_header_local;
11433 hashval_t line_header_local_hash;
11434 void **slot;
11435 int decode_mapping;
11436
11437 gdb_assert (! cu->per_cu->is_debug_types);
11438
11439 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11440 if (attr == NULL)
11441 return;
11442
11443 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11444
11445 /* The line header hash table is only created if needed (it exists to
11446 prevent redundant reading of the line table for partial_units).
11447 If we're given a partial_unit, we'll need it. If we're given a
11448 compile_unit, then use the line header hash table if it's already
11449 created, but don't create one just yet. */
11450
11451 if (dwarf2_per_objfile->line_header_hash == NULL
11452 && die->tag == DW_TAG_partial_unit)
11453 {
11454 dwarf2_per_objfile->line_header_hash
11455 = htab_create_alloc_ex (127, line_header_hash_voidp,
11456 line_header_eq_voidp,
11457 free_line_header_voidp,
11458 &objfile->objfile_obstack,
11459 hashtab_obstack_allocate,
11460 dummy_obstack_deallocate);
11461 }
11462
11463 line_header_local.sect_off = line_offset;
11464 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11465 line_header_local_hash = line_header_hash (&line_header_local);
11466 if (dwarf2_per_objfile->line_header_hash != NULL)
11467 {
11468 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11469 &line_header_local,
11470 line_header_local_hash, NO_INSERT);
11471
11472 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11473 is not present in *SLOT (since if there is something in *SLOT then
11474 it will be for a partial_unit). */
11475 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11476 {
11477 gdb_assert (*slot != NULL);
11478 cu->line_header = (struct line_header *) *slot;
11479 return;
11480 }
11481 }
11482
11483 /* dwarf_decode_line_header does not yet provide sufficient information.
11484 We always have to call also dwarf_decode_lines for it. */
11485 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11486 if (lh == NULL)
11487 return;
11488
11489 cu->line_header = lh.release ();
11490 cu->line_header_die_owner = die;
11491
11492 if (dwarf2_per_objfile->line_header_hash == NULL)
11493 slot = NULL;
11494 else
11495 {
11496 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11497 &line_header_local,
11498 line_header_local_hash, INSERT);
11499 gdb_assert (slot != NULL);
11500 }
11501 if (slot != NULL && *slot == NULL)
11502 {
11503 /* This newly decoded line number information unit will be owned
11504 by line_header_hash hash table. */
11505 *slot = cu->line_header;
11506 cu->line_header_die_owner = NULL;
11507 }
11508 else
11509 {
11510 /* We cannot free any current entry in (*slot) as that struct line_header
11511 may be already used by multiple CUs. Create only temporary decoded
11512 line_header for this CU - it may happen at most once for each line
11513 number information unit. And if we're not using line_header_hash
11514 then this is what we want as well. */
11515 gdb_assert (die->tag != DW_TAG_partial_unit);
11516 }
11517 decode_mapping = (die->tag != DW_TAG_partial_unit);
11518 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11519 decode_mapping);
11520
11521 }
11522
11523 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11524
11525 static void
11526 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11527 {
11528 struct dwarf2_per_objfile *dwarf2_per_objfile
11529 = cu->per_cu->dwarf2_per_objfile;
11530 struct objfile *objfile = dwarf2_per_objfile->objfile;
11531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11532 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11533 CORE_ADDR highpc = ((CORE_ADDR) 0);
11534 struct attribute *attr;
11535 struct die_info *child_die;
11536 CORE_ADDR baseaddr;
11537
11538 prepare_one_comp_unit (cu, die, cu->language);
11539 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11540
11541 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11542
11543 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11544 from finish_block. */
11545 if (lowpc == ((CORE_ADDR) -1))
11546 lowpc = highpc;
11547 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11548
11549 file_and_directory fnd = find_file_and_directory (die, cu);
11550
11551 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11552 standardised yet. As a workaround for the language detection we fall
11553 back to the DW_AT_producer string. */
11554 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11555 cu->language = language_opencl;
11556
11557 /* Similar hack for Go. */
11558 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11559 set_cu_language (DW_LANG_Go, cu);
11560
11561 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11562
11563 /* Decode line number information if present. We do this before
11564 processing child DIEs, so that the line header table is available
11565 for DW_AT_decl_file. */
11566 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11567
11568 /* Process all dies in compilation unit. */
11569 if (die->child != NULL)
11570 {
11571 child_die = die->child;
11572 while (child_die && child_die->tag)
11573 {
11574 process_die (child_die, cu);
11575 child_die = sibling_die (child_die);
11576 }
11577 }
11578
11579 /* Decode macro information, if present. Dwarf 2 macro information
11580 refers to information in the line number info statement program
11581 header, so we can only read it if we've read the header
11582 successfully. */
11583 attr = dwarf2_attr (die, DW_AT_macros, cu);
11584 if (attr == NULL)
11585 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11586 if (attr && cu->line_header)
11587 {
11588 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11589 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11590
11591 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11592 }
11593 else
11594 {
11595 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11596 if (attr && cu->line_header)
11597 {
11598 unsigned int macro_offset = DW_UNSND (attr);
11599
11600 dwarf_decode_macros (cu, macro_offset, 0);
11601 }
11602 }
11603 }
11604
11605 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11606 Create the set of symtabs used by this TU, or if this TU is sharing
11607 symtabs with another TU and the symtabs have already been created
11608 then restore those symtabs in the line header.
11609 We don't need the pc/line-number mapping for type units. */
11610
11611 static void
11612 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11613 {
11614 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11615 struct type_unit_group *tu_group;
11616 int first_time;
11617 struct attribute *attr;
11618 unsigned int i;
11619 struct signatured_type *sig_type;
11620
11621 gdb_assert (per_cu->is_debug_types);
11622 sig_type = (struct signatured_type *) per_cu;
11623
11624 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11625
11626 /* If we're using .gdb_index (includes -readnow) then
11627 per_cu->type_unit_group may not have been set up yet. */
11628 if (sig_type->type_unit_group == NULL)
11629 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11630 tu_group = sig_type->type_unit_group;
11631
11632 /* If we've already processed this stmt_list there's no real need to
11633 do it again, we could fake it and just recreate the part we need
11634 (file name,index -> symtab mapping). If data shows this optimization
11635 is useful we can do it then. */
11636 first_time = tu_group->compunit_symtab == NULL;
11637
11638 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11639 debug info. */
11640 line_header_up lh;
11641 if (attr != NULL)
11642 {
11643 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11644 lh = dwarf_decode_line_header (line_offset, cu);
11645 }
11646 if (lh == NULL)
11647 {
11648 if (first_time)
11649 dwarf2_start_symtab (cu, "", NULL, 0);
11650 else
11651 {
11652 gdb_assert (tu_group->symtabs == NULL);
11653 gdb_assert (cu->builder == nullptr);
11654 struct compunit_symtab *cust = tu_group->compunit_symtab;
11655 cu->builder.reset (new struct buildsym_compunit
11656 (COMPUNIT_OBJFILE (cust), "",
11657 COMPUNIT_DIRNAME (cust),
11658 compunit_language (cust),
11659 0, cust));
11660 }
11661 return;
11662 }
11663
11664 cu->line_header = lh.release ();
11665 cu->line_header_die_owner = die;
11666
11667 if (first_time)
11668 {
11669 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11670
11671 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11672 still initializing it, and our caller (a few levels up)
11673 process_full_type_unit still needs to know if this is the first
11674 time. */
11675
11676 tu_group->num_symtabs = cu->line_header->file_names.size ();
11677 tu_group->symtabs = XNEWVEC (struct symtab *,
11678 cu->line_header->file_names.size ());
11679
11680 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11681 {
11682 file_entry &fe = cu->line_header->file_names[i];
11683
11684 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11685
11686 if (cu->builder->get_current_subfile ()->symtab == NULL)
11687 {
11688 /* NOTE: start_subfile will recognize when it's been
11689 passed a file it has already seen. So we can't
11690 assume there's a simple mapping from
11691 cu->line_header->file_names to subfiles, plus
11692 cu->line_header->file_names may contain dups. */
11693 cu->builder->get_current_subfile ()->symtab
11694 = allocate_symtab (cust,
11695 cu->builder->get_current_subfile ()->name);
11696 }
11697
11698 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11699 tu_group->symtabs[i] = fe.symtab;
11700 }
11701 }
11702 else
11703 {
11704 gdb_assert (cu->builder == nullptr);
11705 struct compunit_symtab *cust = tu_group->compunit_symtab;
11706 cu->builder.reset (new struct buildsym_compunit
11707 (COMPUNIT_OBJFILE (cust), "",
11708 COMPUNIT_DIRNAME (cust),
11709 compunit_language (cust),
11710 0, cust));
11711
11712 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11713 {
11714 file_entry &fe = cu->line_header->file_names[i];
11715
11716 fe.symtab = tu_group->symtabs[i];
11717 }
11718 }
11719
11720 /* The main symtab is allocated last. Type units don't have DW_AT_name
11721 so they don't have a "real" (so to speak) symtab anyway.
11722 There is later code that will assign the main symtab to all symbols
11723 that don't have one. We need to handle the case of a symbol with a
11724 missing symtab (DW_AT_decl_file) anyway. */
11725 }
11726
11727 /* Process DW_TAG_type_unit.
11728 For TUs we want to skip the first top level sibling if it's not the
11729 actual type being defined by this TU. In this case the first top
11730 level sibling is there to provide context only. */
11731
11732 static void
11733 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11734 {
11735 struct die_info *child_die;
11736
11737 prepare_one_comp_unit (cu, die, language_minimal);
11738
11739 /* Initialize (or reinitialize) the machinery for building symtabs.
11740 We do this before processing child DIEs, so that the line header table
11741 is available for DW_AT_decl_file. */
11742 setup_type_unit_groups (die, cu);
11743
11744 if (die->child != NULL)
11745 {
11746 child_die = die->child;
11747 while (child_die && child_die->tag)
11748 {
11749 process_die (child_die, cu);
11750 child_die = sibling_die (child_die);
11751 }
11752 }
11753 }
11754 \f
11755 /* DWO/DWP files.
11756
11757 http://gcc.gnu.org/wiki/DebugFission
11758 http://gcc.gnu.org/wiki/DebugFissionDWP
11759
11760 To simplify handling of both DWO files ("object" files with the DWARF info)
11761 and DWP files (a file with the DWOs packaged up into one file), we treat
11762 DWP files as having a collection of virtual DWO files. */
11763
11764 static hashval_t
11765 hash_dwo_file (const void *item)
11766 {
11767 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11768 hashval_t hash;
11769
11770 hash = htab_hash_string (dwo_file->dwo_name);
11771 if (dwo_file->comp_dir != NULL)
11772 hash += htab_hash_string (dwo_file->comp_dir);
11773 return hash;
11774 }
11775
11776 static int
11777 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11778 {
11779 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11780 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11781
11782 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11783 return 0;
11784 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11785 return lhs->comp_dir == rhs->comp_dir;
11786 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11787 }
11788
11789 /* Allocate a hash table for DWO files. */
11790
11791 static htab_t
11792 allocate_dwo_file_hash_table (struct objfile *objfile)
11793 {
11794 return htab_create_alloc_ex (41,
11795 hash_dwo_file,
11796 eq_dwo_file,
11797 NULL,
11798 &objfile->objfile_obstack,
11799 hashtab_obstack_allocate,
11800 dummy_obstack_deallocate);
11801 }
11802
11803 /* Lookup DWO file DWO_NAME. */
11804
11805 static void **
11806 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11807 const char *dwo_name,
11808 const char *comp_dir)
11809 {
11810 struct dwo_file find_entry;
11811 void **slot;
11812
11813 if (dwarf2_per_objfile->dwo_files == NULL)
11814 dwarf2_per_objfile->dwo_files
11815 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11816
11817 memset (&find_entry, 0, sizeof (find_entry));
11818 find_entry.dwo_name = dwo_name;
11819 find_entry.comp_dir = comp_dir;
11820 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11821
11822 return slot;
11823 }
11824
11825 static hashval_t
11826 hash_dwo_unit (const void *item)
11827 {
11828 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11829
11830 /* This drops the top 32 bits of the id, but is ok for a hash. */
11831 return dwo_unit->signature;
11832 }
11833
11834 static int
11835 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11836 {
11837 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11838 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11839
11840 /* The signature is assumed to be unique within the DWO file.
11841 So while object file CU dwo_id's always have the value zero,
11842 that's OK, assuming each object file DWO file has only one CU,
11843 and that's the rule for now. */
11844 return lhs->signature == rhs->signature;
11845 }
11846
11847 /* Allocate a hash table for DWO CUs,TUs.
11848 There is one of these tables for each of CUs,TUs for each DWO file. */
11849
11850 static htab_t
11851 allocate_dwo_unit_table (struct objfile *objfile)
11852 {
11853 /* Start out with a pretty small number.
11854 Generally DWO files contain only one CU and maybe some TUs. */
11855 return htab_create_alloc_ex (3,
11856 hash_dwo_unit,
11857 eq_dwo_unit,
11858 NULL,
11859 &objfile->objfile_obstack,
11860 hashtab_obstack_allocate,
11861 dummy_obstack_deallocate);
11862 }
11863
11864 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11865
11866 struct create_dwo_cu_data
11867 {
11868 struct dwo_file *dwo_file;
11869 struct dwo_unit dwo_unit;
11870 };
11871
11872 /* die_reader_func for create_dwo_cu. */
11873
11874 static void
11875 create_dwo_cu_reader (const struct die_reader_specs *reader,
11876 const gdb_byte *info_ptr,
11877 struct die_info *comp_unit_die,
11878 int has_children,
11879 void *datap)
11880 {
11881 struct dwarf2_cu *cu = reader->cu;
11882 sect_offset sect_off = cu->per_cu->sect_off;
11883 struct dwarf2_section_info *section = cu->per_cu->section;
11884 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11885 struct dwo_file *dwo_file = data->dwo_file;
11886 struct dwo_unit *dwo_unit = &data->dwo_unit;
11887 struct attribute *attr;
11888
11889 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11890 if (attr == NULL)
11891 {
11892 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11893 " its dwo_id [in module %s]"),
11894 sect_offset_str (sect_off), dwo_file->dwo_name);
11895 return;
11896 }
11897
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = DW_UNSND (attr);
11900 dwo_unit->section = section;
11901 dwo_unit->sect_off = sect_off;
11902 dwo_unit->length = cu->per_cu->length;
11903
11904 if (dwarf_read_debug)
11905 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11906 sect_offset_str (sect_off),
11907 hex_string (dwo_unit->signature));
11908 }
11909
11910 /* Create the dwo_units for the CUs in a DWO_FILE.
11911 Note: This function processes DWO files only, not DWP files. */
11912
11913 static void
11914 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11915 struct dwo_file &dwo_file, dwarf2_section_info &section,
11916 htab_t &cus_htab)
11917 {
11918 struct objfile *objfile = dwarf2_per_objfile->objfile;
11919 const gdb_byte *info_ptr, *end_ptr;
11920
11921 dwarf2_read_section (objfile, &section);
11922 info_ptr = section.buffer;
11923
11924 if (info_ptr == NULL)
11925 return;
11926
11927 if (dwarf_read_debug)
11928 {
11929 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11930 get_section_name (&section),
11931 get_section_file_name (&section));
11932 }
11933
11934 end_ptr = info_ptr + section.size;
11935 while (info_ptr < end_ptr)
11936 {
11937 struct dwarf2_per_cu_data per_cu;
11938 struct create_dwo_cu_data create_dwo_cu_data;
11939 struct dwo_unit *dwo_unit;
11940 void **slot;
11941 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11942
11943 memset (&create_dwo_cu_data.dwo_unit, 0,
11944 sizeof (create_dwo_cu_data.dwo_unit));
11945 memset (&per_cu, 0, sizeof (per_cu));
11946 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11947 per_cu.is_debug_types = 0;
11948 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11949 per_cu.section = &section;
11950 create_dwo_cu_data.dwo_file = &dwo_file;
11951
11952 init_cutu_and_read_dies_no_follow (
11953 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11954 info_ptr += per_cu.length;
11955
11956 // If the unit could not be parsed, skip it.
11957 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11958 continue;
11959
11960 if (cus_htab == NULL)
11961 cus_htab = allocate_dwo_unit_table (objfile);
11962
11963 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11964 *dwo_unit = create_dwo_cu_data.dwo_unit;
11965 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11966 gdb_assert (slot != NULL);
11967 if (*slot != NULL)
11968 {
11969 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11970 sect_offset dup_sect_off = dup_cu->sect_off;
11971
11972 complaint (_("debug cu entry at offset %s is duplicate to"
11973 " the entry at offset %s, signature %s"),
11974 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11975 hex_string (dwo_unit->signature));
11976 }
11977 *slot = (void *)dwo_unit;
11978 }
11979 }
11980
11981 /* DWP file .debug_{cu,tu}_index section format:
11982 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11983
11984 DWP Version 1:
11985
11986 Both index sections have the same format, and serve to map a 64-bit
11987 signature to a set of section numbers. Each section begins with a header,
11988 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11989 indexes, and a pool of 32-bit section numbers. The index sections will be
11990 aligned at 8-byte boundaries in the file.
11991
11992 The index section header consists of:
11993
11994 V, 32 bit version number
11995 -, 32 bits unused
11996 N, 32 bit number of compilation units or type units in the index
11997 M, 32 bit number of slots in the hash table
11998
11999 Numbers are recorded using the byte order of the application binary.
12000
12001 The hash table begins at offset 16 in the section, and consists of an array
12002 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12003 order of the application binary). Unused slots in the hash table are 0.
12004 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12005
12006 The parallel table begins immediately after the hash table
12007 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12008 array of 32-bit indexes (using the byte order of the application binary),
12009 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12010 table contains a 32-bit index into the pool of section numbers. For unused
12011 hash table slots, the corresponding entry in the parallel table will be 0.
12012
12013 The pool of section numbers begins immediately following the hash table
12014 (at offset 16 + 12 * M from the beginning of the section). The pool of
12015 section numbers consists of an array of 32-bit words (using the byte order
12016 of the application binary). Each item in the array is indexed starting
12017 from 0. The hash table entry provides the index of the first section
12018 number in the set. Additional section numbers in the set follow, and the
12019 set is terminated by a 0 entry (section number 0 is not used in ELF).
12020
12021 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12022 section must be the first entry in the set, and the .debug_abbrev.dwo must
12023 be the second entry. Other members of the set may follow in any order.
12024
12025 ---
12026
12027 DWP Version 2:
12028
12029 DWP Version 2 combines all the .debug_info, etc. sections into one,
12030 and the entries in the index tables are now offsets into these sections.
12031 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12032 section.
12033
12034 Index Section Contents:
12035 Header
12036 Hash Table of Signatures dwp_hash_table.hash_table
12037 Parallel Table of Indices dwp_hash_table.unit_table
12038 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12039 Table of Section Sizes dwp_hash_table.v2.sizes
12040
12041 The index section header consists of:
12042
12043 V, 32 bit version number
12044 L, 32 bit number of columns in the table of section offsets
12045 N, 32 bit number of compilation units or type units in the index
12046 M, 32 bit number of slots in the hash table
12047
12048 Numbers are recorded using the byte order of the application binary.
12049
12050 The hash table has the same format as version 1.
12051 The parallel table of indices has the same format as version 1,
12052 except that the entries are origin-1 indices into the table of sections
12053 offsets and the table of section sizes.
12054
12055 The table of offsets begins immediately following the parallel table
12056 (at offset 16 + 12 * M from the beginning of the section). The table is
12057 a two-dimensional array of 32-bit words (using the byte order of the
12058 application binary), with L columns and N+1 rows, in row-major order.
12059 Each row in the array is indexed starting from 0. The first row provides
12060 a key to the remaining rows: each column in this row provides an identifier
12061 for a debug section, and the offsets in the same column of subsequent rows
12062 refer to that section. The section identifiers are:
12063
12064 DW_SECT_INFO 1 .debug_info.dwo
12065 DW_SECT_TYPES 2 .debug_types.dwo
12066 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12067 DW_SECT_LINE 4 .debug_line.dwo
12068 DW_SECT_LOC 5 .debug_loc.dwo
12069 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12070 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12071 DW_SECT_MACRO 8 .debug_macro.dwo
12072
12073 The offsets provided by the CU and TU index sections are the base offsets
12074 for the contributions made by each CU or TU to the corresponding section
12075 in the package file. Each CU and TU header contains an abbrev_offset
12076 field, used to find the abbreviations table for that CU or TU within the
12077 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12078 be interpreted as relative to the base offset given in the index section.
12079 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12080 should be interpreted as relative to the base offset for .debug_line.dwo,
12081 and offsets into other debug sections obtained from DWARF attributes should
12082 also be interpreted as relative to the corresponding base offset.
12083
12084 The table of sizes begins immediately following the table of offsets.
12085 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12086 with L columns and N rows, in row-major order. Each row in the array is
12087 indexed starting from 1 (row 0 is shared by the two tables).
12088
12089 ---
12090
12091 Hash table lookup is handled the same in version 1 and 2:
12092
12093 We assume that N and M will not exceed 2^32 - 1.
12094 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12095
12096 Given a 64-bit compilation unit signature or a type signature S, an entry
12097 in the hash table is located as follows:
12098
12099 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12100 the low-order k bits all set to 1.
12101
12102 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12103
12104 3) If the hash table entry at index H matches the signature, use that
12105 entry. If the hash table entry at index H is unused (all zeroes),
12106 terminate the search: the signature is not present in the table.
12107
12108 4) Let H = (H + H') modulo M. Repeat at Step 3.
12109
12110 Because M > N and H' and M are relatively prime, the search is guaranteed
12111 to stop at an unused slot or find the match. */
12112
12113 /* Create a hash table to map DWO IDs to their CU/TU entry in
12114 .debug_{info,types}.dwo in DWP_FILE.
12115 Returns NULL if there isn't one.
12116 Note: This function processes DWP files only, not DWO files. */
12117
12118 static struct dwp_hash_table *
12119 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12120 struct dwp_file *dwp_file, int is_debug_types)
12121 {
12122 struct objfile *objfile = dwarf2_per_objfile->objfile;
12123 bfd *dbfd = dwp_file->dbfd.get ();
12124 const gdb_byte *index_ptr, *index_end;
12125 struct dwarf2_section_info *index;
12126 uint32_t version, nr_columns, nr_units, nr_slots;
12127 struct dwp_hash_table *htab;
12128
12129 if (is_debug_types)
12130 index = &dwp_file->sections.tu_index;
12131 else
12132 index = &dwp_file->sections.cu_index;
12133
12134 if (dwarf2_section_empty_p (index))
12135 return NULL;
12136 dwarf2_read_section (objfile, index);
12137
12138 index_ptr = index->buffer;
12139 index_end = index_ptr + index->size;
12140
12141 version = read_4_bytes (dbfd, index_ptr);
12142 index_ptr += 4;
12143 if (version == 2)
12144 nr_columns = read_4_bytes (dbfd, index_ptr);
12145 else
12146 nr_columns = 0;
12147 index_ptr += 4;
12148 nr_units = read_4_bytes (dbfd, index_ptr);
12149 index_ptr += 4;
12150 nr_slots = read_4_bytes (dbfd, index_ptr);
12151 index_ptr += 4;
12152
12153 if (version != 1 && version != 2)
12154 {
12155 error (_("Dwarf Error: unsupported DWP file version (%s)"
12156 " [in module %s]"),
12157 pulongest (version), dwp_file->name);
12158 }
12159 if (nr_slots != (nr_slots & -nr_slots))
12160 {
12161 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12162 " is not power of 2 [in module %s]"),
12163 pulongest (nr_slots), dwp_file->name);
12164 }
12165
12166 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12167 htab->version = version;
12168 htab->nr_columns = nr_columns;
12169 htab->nr_units = nr_units;
12170 htab->nr_slots = nr_slots;
12171 htab->hash_table = index_ptr;
12172 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12173
12174 /* Exit early if the table is empty. */
12175 if (nr_slots == 0 || nr_units == 0
12176 || (version == 2 && nr_columns == 0))
12177 {
12178 /* All must be zero. */
12179 if (nr_slots != 0 || nr_units != 0
12180 || (version == 2 && nr_columns != 0))
12181 {
12182 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12183 " all zero [in modules %s]"),
12184 dwp_file->name);
12185 }
12186 return htab;
12187 }
12188
12189 if (version == 1)
12190 {
12191 htab->section_pool.v1.indices =
12192 htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 /* It's harder to decide whether the section is too small in v1.
12194 V1 is deprecated anyway so we punt. */
12195 }
12196 else
12197 {
12198 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 int *ids = htab->section_pool.v2.section_ids;
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
12216 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12217 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
12266
12267 return htab;
12268 }
12269
12270 /* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
12274 read comes from the DWP V1 hash table, not the full ELF section table.
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278 static int
12279 locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
12281 {
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
12287 if (sections->abbrev.s.section != NULL)
12288 return 0;
12289 sections->abbrev.s.section = sectp;
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->info_or_types.s.section != NULL)
12297 return 0;
12298 sections->info_or_types.s.section = sectp;
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
12304 if (sections->line.s.section != NULL)
12305 return 0;
12306 sections->line.s.section = sectp;
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
12312 if (sections->loc.s.section != NULL)
12313 return 0;
12314 sections->loc.s.section = sectp;
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
12320 if (sections->macinfo.s.section != NULL)
12321 return 0;
12322 sections->macinfo.s.section = sectp;
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
12328 if (sections->macro.s.section != NULL)
12329 return 0;
12330 sections->macro.s.section = sectp;
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
12336 if (sections->str_offsets.s.section != NULL)
12337 return 0;
12338 sections->str_offsets.s.section = sectp;
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348 }
12349
12350 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
12354
12355 static struct dwo_unit *
12356 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
12361 {
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
12365 bfd *dbfd = dwp_file->dbfd.get ();
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
12369 struct virtual_v1_dwo_sections sections;
12370 void **dwo_file_slot;
12371 int i;
12372
12373 gdb_assert (dwp_file->version == 1);
12374
12375 if (dwarf_read_debug)
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12378 kind,
12379 pulongest (unit_index), hex_string (signature),
12380 dwp_file->name);
12381 }
12382
12383 /* Fetch the sections of this DWO unit.
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12386
12387 #define MAX_NR_V1_DWO_SECTIONS \
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
12393 + 1 /* .debug_macro or .debug_macinfo */ \
12394 + 1 /* trailing zero */)
12395
12396 memset (&sections, 0, sizeof (sections));
12397
12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12399 {
12400 asection *sectp;
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
12405
12406 if (section_nr == 0)
12407 break;
12408 if (section_nr >= dwp_file->num_sections)
12409 {
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12412 dwp_file->name);
12413 }
12414
12415 sectp = dwp_file->elf_sections[section_nr];
12416 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12417 {
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12420 dwp_file->name);
12421 }
12422 }
12423
12424 if (i < 2
12425 || dwarf2_section_empty_p (&sections.info_or_types)
12426 || dwarf2_section_empty_p (&sections.abbrev))
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432 if (i == MAX_NR_V1_DWO_SECTIONS)
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12441
12442 The DWP file can be made up of a random collection of CUs and TUs.
12443 However, for each CU + set of TUs that came from the same original DWO
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12447
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (&sections.abbrev),
12451 get_section_id (&sections.line),
12452 get_section_id (&sections.loc),
12453 get_section_id (&sections.str_offsets));
12454 /* Can we use an existing virtual DWO file? */
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12457 comp_dir);
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12460 {
12461 if (dwarf_read_debug)
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12464 virtual_dwo_name.c_str ());
12465 }
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12467 dwo_file->dwo_name
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
12471 dwo_file->comp_dir = comp_dir;
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
12480 /* The info or types section is assigned below to dwo_unit,
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
12485 for it, invalidating all copies of pointers into the previous
12486 contents. */
12487 *dwo_file_slot = dwo_file;
12488 }
12489 else
12490 {
12491 if (dwarf_read_debug)
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12494 virtual_dwo_name.c_str ());
12495 }
12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
12497 }
12498
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12504 *dwo_unit->section = sections.info_or_types;
12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12506
12507 return dwo_unit;
12508 }
12509
12510 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12514
12515 static struct dwarf2_section_info
12516 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
12518 bfd_size_type offset, bfd_size_type size)
12519 {
12520 struct dwarf2_section_info result;
12521 asection *sectp;
12522
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12525
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12529
12530 if (size == 0)
12531 return result;
12532
12533 sectp = get_section_bfd_section (section);
12534
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12538 if (sectp == NULL
12539 || offset + size > bfd_get_section_size (sectp))
12540 {
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12545 }
12546
12547 result.virtual_offset = offset;
12548 result.size = size;
12549 return result;
12550 }
12551
12552 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12556
12557 static struct dwo_unit *
12558 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563 {
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
12567 bfd *dbfd = dwp_file->dbfd.get ();
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
12573 int i;
12574
12575 gdb_assert (dwp_file->version == 2);
12576
12577 if (dwarf_read_debug)
12578 {
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12580 kind,
12581 pulongest (unit_index), hex_string (signature),
12582 dwp_file->name);
12583 }
12584
12585 /* Fetch the section offsets of this DWO unit. */
12586
12587 memset (&sections, 0, sizeof (sections));
12588
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12590 {
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12599 + i)
12600 * sizeof (uint32_t)));
12601
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12603 {
12604 case DW_SECT_INFO:
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12608 break;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12612 break;
12613 case DW_SECT_LINE:
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12616 break;
12617 case DW_SECT_LOC:
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12620 break;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12624 break;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12628 break;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12632 break;
12633 }
12634 }
12635
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12638
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12644
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
12652 /* Can we use an existing virtual DWO file? */
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12655 comp_dir);
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12658 {
12659 if (dwarf_read_debug)
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12662 virtual_dwo_name.c_str ());
12663 }
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12665 dwo_file->dwo_name
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12698 contents. */
12699 *dwo_file_slot = dwo_file;
12700 }
12701 else
12702 {
12703 if (dwarf_read_debug)
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12706 virtual_dwo_name.c_str ());
12707 }
12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
12709 }
12710
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12717 is_debug_types
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12723
12724 return dwo_unit;
12725 }
12726
12727 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
12729
12730 static struct dwo_unit *
12731 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
12733 ULONGEST signature, int is_debug_types)
12734 {
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
12737 bfd *dbfd = dwp_file->dbfd.get ();
12738 uint32_t mask = dwp_htab->nr_slots - 1;
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12741 unsigned int i;
12742 void **slot;
12743 struct dwo_unit find_dwo_cu;
12744
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
12751
12752 if (*slot != NULL)
12753 return (struct dwo_unit *) *slot;
12754
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
12757 {
12758 ULONGEST signature_in_table;
12759
12760 signature_in_table =
12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12762 if (signature_in_table == signature)
12763 {
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
12767
12768 if (dwp_file->version == 1)
12769 {
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
12772 comp_dir, signature,
12773 is_debug_types);
12774 }
12775 else
12776 {
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
12782 return (struct dwo_unit *) *slot;
12783 }
12784 if (signature_in_table == 0)
12785 return NULL;
12786 hash = (hash + hash2) & mask;
12787 }
12788
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12791 dwp_file->name);
12792 }
12793
12794 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
12803 If unable to find/open the file, return NULL.
12804 NOTE: This function is derived from symfile_bfd_open. */
12805
12806 static gdb_bfd_ref_ptr
12807 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
12809 {
12810 int desc;
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
12814 const char *search_path;
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12816
12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
12818 if (search_cwd)
12819 {
12820 if (*debug_file_directory != '\0')
12821 {
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12824 (char *) NULL));
12825 search_path = search_path_holder.get ();
12826 }
12827 else
12828 search_path = ".";
12829 }
12830 else
12831 search_path = debug_file_directory;
12832
12833 openp_flags flags = OPF_RETURN_REALPATH;
12834 if (is_dwp)
12835 flags |= OPF_SEARCH_IN_PATH;
12836
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
12838 desc = openp (search_path, flags, file_name,
12839 O_RDONLY | O_BINARY, &absolute_name);
12840 if (desc < 0)
12841 return NULL;
12842
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12844 gnutarget, desc));
12845 if (sym_bfd == NULL)
12846 return NULL;
12847 bfd_set_cacheable (sym_bfd.get (), 1);
12848
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12850 return NULL;
12851
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12857
12858 return sym_bfd;
12859 }
12860
12861 /* Try to open DWO file FILE_NAME.
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12867
12868 static gdb_bfd_ref_ptr
12869 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
12871 {
12872 if (IS_ABSOLUTE_PATH (file_name))
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
12875
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12877
12878 if (comp_dir != NULL)
12879 {
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
12882
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12886 path_to_try,
12887 0 /*is_dwp*/,
12888 1 /*search_cwd*/));
12889 xfree (path_to_try);
12890 if (abfd != NULL)
12891 return abfd;
12892 }
12893
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12896
12897 if (*debug_file_directory == '\0')
12898 return NULL;
12899
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
12902 }
12903
12904 /* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12906
12907 static void
12908 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12909 {
12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12911 const struct dwop_section_names *names = &dwop_section_names;
12912
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12914 {
12915 dwo_sections->abbrev.s.section = sectp;
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12919 {
12920 dwo_sections->info.s.section = sectp;
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12924 {
12925 dwo_sections->line.s.section = sectp;
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12929 {
12930 dwo_sections->loc.s.section = sectp;
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12934 {
12935 dwo_sections->macinfo.s.section = sectp;
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12939 {
12940 dwo_sections->macro.s.section = sectp;
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12944 {
12945 dwo_sections->str.s.section = sectp;
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12949 {
12950 dwo_sections->str_offsets.s.section = sectp;
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12954 {
12955 struct dwarf2_section_info type_section;
12956
12957 memset (&type_section, 0, sizeof (type_section));
12958 type_section.s.section = sectp;
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12961 &type_section);
12962 }
12963 }
12964
12965 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12966 by PER_CU. This is for the non-DWP case.
12967 The result is NULL if DWO_NAME can't be found. */
12968
12969 static struct dwo_file *
12970 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
12972 {
12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
12975
12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12977 if (dbfd == NULL)
12978 {
12979 if (dwarf_read_debug)
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12981 return NULL;
12982 }
12983
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12987 struct dwo_file));
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
12990 dwo_file->dbfd = dbfd.release ();
12991
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
12994
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12996 dwo_file->cus);
12997
12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12999 dwo_file->sections.types, dwo_file->tus);
13000
13001 if (dwarf_read_debug)
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
13004 return dwo_file.release ();
13005 }
13006
13007 /* This function is mapped across the sections and remembers the offset and
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
13010
13011 static void
13012 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
13014 {
13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13018
13019 /* Record the ELF section number for later lookup: this is what the
13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
13023
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
13027 dwp_file->sections.str.s.section = sectp;
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
13032 dwp_file->sections.cu_index.s.section = sectp;
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
13037 dwp_file->sections.tu_index.s.section = sectp;
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040 }
13041
13042 /* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047 static void
13048 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049 {
13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
13062 dwp_file->sections.abbrev.s.section = sectp;
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
13067 dwp_file->sections.info.s.section = sectp;
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
13072 dwp_file->sections.line.s.section = sectp;
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
13077 dwp_file->sections.loc.s.section = sectp;
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
13082 dwp_file->sections.macinfo.s.section = sectp;
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
13087 dwp_file->sections.macro.s.section = sectp;
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
13092 dwp_file->sections.str_offsets.s.section = sectp;
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
13097 dwp_file->sections.types.s.section = sectp;
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100 }
13101
13102 /* Hash function for dwp_file loaded CUs/TUs. */
13103
13104 static hashval_t
13105 hash_dwp_loaded_cutus (const void *item)
13106 {
13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13108
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
13111 }
13112
13113 /* Equality function for dwp_file loaded CUs/TUs. */
13114
13115 static int
13116 eq_dwp_loaded_cutus (const void *a, const void *b)
13117 {
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13120
13121 return dua->signature == dub->signature;
13122 }
13123
13124 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13125
13126 static htab_t
13127 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128 {
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136 }
13137
13138 /* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
13144 static gdb_bfd_ref_ptr
13145 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
13147 {
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
13150 1 /*search_cwd*/));
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
13173 }
13174
13175 /* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
13178
13179 static std::unique_ptr<struct dwp_file>
13180 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13181 {
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
13183
13184 /* Try to find first .dwp for the binary file before any symbolic links
13185 resolving. */
13186
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
13189 std::string dwp_name;
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13191 {
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
13194
13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13196 }
13197 else
13198 dwp_name = objfile->original_name;
13199
13200 dwp_name += ".dwp";
13201
13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13203 if (dbfd == NULL
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13205 {
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13210 }
13211
13212 if (dbfd == NULL)
13213 {
13214 if (dwarf_read_debug)
13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13216 return std::unique_ptr<dwp_file> ();
13217 }
13218
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
13222
13223 /* +1: section 0 is unused */
13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13231 dwp_file.get ());
13232
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13234 0);
13235
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 1);
13238
13239 /* The DWP file version is stored in the hash table. Oh well. */
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
13242 {
13243 /* Technically speaking, we should try to limp along, but this is
13244 pretty bizarre. We use pulongest here because that's the established
13245 portability solution (e.g, we cannot use %u for uint32_t). */
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13250 }
13251
13252 if (dwp_file->cus)
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13256 else
13257 dwp_file->version = 2;
13258
13259 if (dwp_file->version == 2)
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13262 dwp_file.get ());
13263
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13266
13267 if (dwarf_read_debug)
13268 {
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13274 }
13275
13276 return dwp_file;
13277 }
13278
13279 /* Wrapper around open_and_init_dwp_file, only open it once. */
13280
13281 static struct dwp_file *
13282 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13283 {
13284 if (! dwarf2_per_objfile->dwp_checked)
13285 {
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
13288 dwarf2_per_objfile->dwp_checked = 1;
13289 }
13290 return dwarf2_per_objfile->dwp_file.get ();
13291 }
13292
13293 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13298
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13304 for a DWO file.
13305
13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13308
13309 static struct dwo_unit *
13310 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
13313 {
13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
13318 struct dwo_file *dwo_file;
13319 struct dwp_file *dwp_file;
13320
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
13325
13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
13327 if (dwp_file != NULL)
13328 {
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13331
13332 if (dwp_htab != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu =
13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13336 signature, is_debug_types);
13337
13338 if (dwo_cutu != NULL)
13339 {
13340 if (dwarf_read_debug)
13341 {
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13346 }
13347 return dwo_cutu;
13348 }
13349 }
13350 }
13351 else
13352 {
13353 /* No DWP file, look for the DWO file. */
13354
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
13357 if (*dwo_file_slot == NULL)
13358 {
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13361 }
13362 /* NOTE: This will be NULL if unable to open the file. */
13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
13364
13365 if (dwo_file != NULL)
13366 {
13367 struct dwo_unit *dwo_cutu = NULL;
13368
13369 if (is_debug_types && dwo_file->tus)
13370 {
13371 struct dwo_unit find_dwo_cutu;
13372
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
13375 dwo_cutu
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13377 }
13378 else if (!is_debug_types && dwo_file->cus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13385 &find_dwo_cutu);
13386 }
13387
13388 if (dwo_cutu != NULL)
13389 {
13390 if (dwarf_read_debug)
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13395 }
13396 return dwo_cutu;
13397 }
13398 }
13399 }
13400
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13404
13405 if (dwarf_read_debug)
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13409 }
13410
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
13413 {
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
13416 std::string dwp_text;
13417
13418 if (dwp_file != NULL)
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
13421
13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
13425 dwp_text.c_str (),
13426 this_unit->is_debug_types ? "TU" : "CU",
13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13428 }
13429 return NULL;
13430 }
13431
13432 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13434
13435 static struct dwo_unit *
13436 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13439 {
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13441 }
13442
13443 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446 static struct dwo_unit *
13447 lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13449 {
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13451 }
13452
13453 /* Traversal function for queue_and_load_all_dwo_tus. */
13454
13455 static int
13456 queue_and_load_dwo_tu (void **slot, void *info)
13457 {
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13463
13464 if (sig_type != NULL)
13465 {
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13467
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13474 }
13475
13476 return 1;
13477 }
13478
13479 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13483
13484 static void
13485 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13486 {
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13489
13490 gdb_assert (!per_cu->is_debug_types);
13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13492 gdb_assert (per_cu->cu != NULL);
13493
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13496
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13500 }
13501
13502 /* Free all resources associated with DWO_FILE.
13503 Close the DWO file and munmap the sections. */
13504
13505 static void
13506 free_dwo_file (struct dwo_file *dwo_file)
13507 {
13508 /* Note: dbfd is NULL for virtual DWO files. */
13509 gdb_bfd_unref (dwo_file->dbfd);
13510
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13512 }
13513
13514 /* Traversal function for free_dwo_files. */
13515
13516 static int
13517 free_dwo_file_from_slot (void **slot, void *info)
13518 {
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13520
13521 free_dwo_file (dwo_file);
13522
13523 return 1;
13524 }
13525
13526 /* Free all resources associated with DWO_FILES. */
13527
13528 static void
13529 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13530 {
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13532 }
13533 \f
13534 /* Read in various DIEs. */
13535
13536 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13539 current DIE. */
13540
13541 static void
13542 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13543 {
13544 struct die_info *child_die;
13545 sect_offset *offsetp;
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
13550 struct attribute *attr;
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
13553
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13555 if (!attr)
13556 return;
13557
13558 /* Note that following die references may follow to a die in a
13559 different cu. */
13560
13561 origin_cu = cu;
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13563
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13565 symbols in. */
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13568
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
13575
13576 std::vector<sect_offset> offsets;
13577
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13581 {
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13584
13585 /* We are trying to process concrete instance entries:
13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13589 one. */
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
13592 continue;
13593
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13598 40573). */
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
13601 while (1)
13602 {
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13604 child_origin_cu);
13605 if (attr == NULL)
13606 break;
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13608 &child_origin_cu);
13609 }
13610
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
13613 if (child_origin_die != child_die)
13614 {
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
13618 complaint (_("Child DIE %s and its abstract origin %s have "
13619 "different tags"),
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
13622 if (child_origin_die->parent != origin_die)
13623 complaint (_("Child DIE %s and its abstract origin %s have "
13624 "different parents"),
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
13627 else
13628 offsets.push_back (child_origin_die->sect_off);
13629 }
13630 }
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13634 if (offsetp[-1] == *offsetp)
13635 complaint (_("Multiple children of DIE %s refer "
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13638
13639 offsetp = offsets.data ();
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13642 {
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13644 while (offsetp < offsets_end
13645 && *offsetp < origin_child_die->sect_off)
13646 offsetp++;
13647 if (offsetp >= offsets_end
13648 || *offsetp > origin_child_die->sect_off)
13649 {
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13653 PR 16581. */
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
13656 }
13657 origin_child_die = sibling_die (origin_child_die);
13658 }
13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
13660 }
13661
13662 static void
13663 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13667 struct context_stack *newobj;
13668 CORE_ADDR lowpc;
13669 CORE_ADDR highpc;
13670 struct die_info *child_die;
13671 struct attribute *attr, *call_line, *call_file;
13672 const char *name;
13673 CORE_ADDR baseaddr;
13674 struct block *block;
13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13676 std::vector<struct symbol *> template_args;
13677 struct template_symbol *templ_func = NULL;
13678
13679 if (inlined_func)
13680 {
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13687 {
13688 read_lexical_block_scope (die, cu);
13689 return;
13690 }
13691 }
13692
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13694
13695 name = dwarf2_name (die, cu);
13696
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13699 if (name == NULL)
13700 {
13701 complaint (_("missing name for subprogram DIE at %s"),
13702 sect_offset_str (die->sect_off));
13703 return;
13704 }
13705
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13708 <= PC_BOUNDS_INVALID)
13709 {
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
13712 complaint (_("cannot get low and high bounds "
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
13715 return;
13716 }
13717
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13720
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13724 {
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13727 {
13728 templ_func = allocate_template_symbol (objfile);
13729 templ_func->subclass = SYMBOL_TEMPLATE;
13730 break;
13731 }
13732 }
13733
13734 newobj = cu->builder->push_context (0, lowpc);
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
13737
13738 /* If there is a location expression for DW_AT_frame_base, record
13739 it. */
13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13741 if (attr)
13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13743
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13747 if (attr)
13748 {
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13752 }
13753
13754 cu->list_in_scope = cu->builder->get_local_symbols ();
13755
13756 if (die->child != NULL)
13757 {
13758 child_die = die->child;
13759 while (child_die && child_die->tag)
13760 {
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
13766 if (arg != NULL)
13767 template_args.push_back (arg);
13768 }
13769 else
13770 process_die (child_die, cu);
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
13775 inherit_abstract_dies (die, cu);
13776
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
13802 struct context_stack cstk = cu->builder->pop_context ();
13803 /* Make a block for the local symbols within. */
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
13806
13807 /* For C++, set the block's scope. */
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
13810 || cu->language == language_d
13811 || cu->language == language_rust)
13812 && cu->processing_has_namespace_info)
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
13815
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13818
13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13820
13821 /* Attach template arguments to function. */
13822 if (!template_args.empty ())
13823 {
13824 gdb_assert (templ_func != NULL);
13825
13826 templ_func->n_template_arguments = template_args.size ();
13827 templ_func->template_arguments
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
13830 memcpy (templ_func->template_arguments,
13831 template_args.data (),
13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
13838 for (struct symbol *sym : template_args)
13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
13840 }
13841
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
13848
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
13853 }
13854
13855 /* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858 static void
13859 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
13872 be nasty. Might be easier to properly extend generic blocks to
13873 describe ranges. */
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13890
13891 cu->builder->push_context (0, lowpc);
13892 if (die->child != NULL)
13893 {
13894 child_die = die->child;
13895 while (child_die && child_die->tag)
13896 {
13897 process_die (child_die, cu);
13898 child_die = sibling_die (child_die);
13899 }
13900 }
13901 inherit_abstract_dies (die, cu);
13902 struct context_stack cstk = cu->builder->pop_context ();
13903
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
13906 {
13907 struct block *block
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13922 }
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
13925 }
13926
13927 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13928
13929 static void
13930 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931 {
13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
13950 if (!attr)
13951 {
13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
13955 return;
13956 }
13957 pc = attr_value_as_address (attr) + baseaddr;
13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13971 objfile_name (objfile));
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13983 {
13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
13987 objfile_name (objfile));
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
14016 if (func_die
14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
14046 complaint (_("Cannot find function owning DW_TAG_call_site "
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
14049 }
14050 }
14051
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14057 if (attr == NULL)
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
14076 else if (attr_form_is_ref (attr))
14077 {
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
14081 target_die = follow_die_ref (die, attr, &target_cu);
14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14083 if (die_is_declaration (target_die, target_cu))
14084 {
14085 const char *target_physname;
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
14088 target_physname = dw2_linkage_name (target_die, target_cu);
14089 if (target_physname == NULL)
14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14091 if (target_physname == NULL)
14092 complaint (_("DW_AT_call_target target DIE has invalid "
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
14095 else
14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14104 <= PC_BOUNDS_INVALID)
14105 complaint (_("DW_AT_call_target target DIE has invalid "
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
14108 else
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
14113 }
14114 }
14115 else
14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
14126 struct call_site_parameter *parameter;
14127 struct attribute *loc, *origin;
14128
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14141 register is contained in DW_AT_call_value. */
14142
14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14152 {
14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
14165 objfile_name (objfile));
14166 continue;
14167 }
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14172 {
14173 complaint (_("No DW_FORM_block* DW_AT_location for "
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14176 continue;
14177 }
14178 else
14179 {
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14191 "for DW_FORM_block* DW_AT_location is supported for "
14192 "DW_TAG_call_site child DIE %s "
14193 "[in module %s]"),
14194 sect_offset_str (child_die->sect_off),
14195 objfile_name (objfile));
14196 continue;
14197 }
14198 }
14199
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14203 if (!attr_form_is_block (attr))
14204 {
14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
14208 objfile_name (objfile));
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
14228 objfile_name (objfile));
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236 }
14237
14238 /* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242 static struct type *
14243 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261 }
14262
14263 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265 static void
14266 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267 {
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
14282 storage->subclass = SYMBOL_RUST_VTABLE;
14283 }
14284 }
14285
14286 struct symbol *res = new_symbol (die, NULL, cu, storage);
14287 struct attribute *abstract_origin
14288 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14289 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14290 if (res == NULL && loc && abstract_origin)
14291 {
14292 /* We have a variable without a name, but with a location and an abstract
14293 origin. This may be a concrete instance of an abstract variable
14294 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14295 later. */
14296 struct dwarf2_cu *origin_cu = cu;
14297 struct die_info *origin_die
14298 = follow_die_ref (die, abstract_origin, &origin_cu);
14299 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14300 dpo->abstract_to_concrete[origin_die].push_back (die);
14301 }
14302 }
14303
14304 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14305 reading .debug_rnglists.
14306 Callback's type should be:
14307 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14308 Return true if the attributes are present and valid, otherwise,
14309 return false. */
14310
14311 template <typename Callback>
14312 static bool
14313 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14314 Callback &&callback)
14315 {
14316 struct dwarf2_per_objfile *dwarf2_per_objfile
14317 = cu->per_cu->dwarf2_per_objfile;
14318 struct objfile *objfile = dwarf2_per_objfile->objfile;
14319 bfd *obfd = objfile->obfd;
14320 /* Base address selection entry. */
14321 CORE_ADDR base;
14322 int found_base;
14323 const gdb_byte *buffer;
14324 CORE_ADDR baseaddr;
14325 bool overflow = false;
14326
14327 found_base = cu->base_known;
14328 base = cu->base_address;
14329
14330 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14331 if (offset >= dwarf2_per_objfile->rnglists.size)
14332 {
14333 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14334 offset);
14335 return false;
14336 }
14337 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14338
14339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14340
14341 while (1)
14342 {
14343 /* Initialize it due to a false compiler warning. */
14344 CORE_ADDR range_beginning = 0, range_end = 0;
14345 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14346 + dwarf2_per_objfile->rnglists.size);
14347 unsigned int bytes_read;
14348
14349 if (buffer == buf_end)
14350 {
14351 overflow = true;
14352 break;
14353 }
14354 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14355 switch (rlet)
14356 {
14357 case DW_RLE_end_of_list:
14358 break;
14359 case DW_RLE_base_address:
14360 if (buffer + cu->header.addr_size > buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 base = read_address (obfd, buffer, cu, &bytes_read);
14366 found_base = 1;
14367 buffer += bytes_read;
14368 break;
14369 case DW_RLE_start_length:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14377 range_end = (range_beginning
14378 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 break;
14386 case DW_RLE_offset_pair:
14387 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14395 buffer += bytes_read;
14396 if (buffer > buf_end)
14397 {
14398 overflow = true;
14399 break;
14400 }
14401 break;
14402 case DW_RLE_start_end:
14403 if (buffer + 2 * cu->header.addr_size > buf_end)
14404 {
14405 overflow = true;
14406 break;
14407 }
14408 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 range_end = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 break;
14413 default:
14414 complaint (_("Invalid .debug_rnglists data (no base address)"));
14415 return false;
14416 }
14417 if (rlet == DW_RLE_end_of_list || overflow)
14418 break;
14419 if (rlet == DW_RLE_base_address)
14420 continue;
14421
14422 if (!found_base)
14423 {
14424 /* We have no valid base address for the ranges
14425 data. */
14426 complaint (_("Invalid .debug_rnglists data (no base address)"));
14427 return false;
14428 }
14429
14430 if (range_beginning > range_end)
14431 {
14432 /* Inverted range entries are invalid. */
14433 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14434 return false;
14435 }
14436
14437 /* Empty range entries have no effect. */
14438 if (range_beginning == range_end)
14439 continue;
14440
14441 range_beginning += base;
14442 range_end += base;
14443
14444 /* A not-uncommon case of bad debug info.
14445 Don't pollute the addrmap with bad data. */
14446 if (range_beginning + baseaddr == 0
14447 && !dwarf2_per_objfile->has_section_at_zero)
14448 {
14449 complaint (_(".debug_rnglists entry has start address of zero"
14450 " [in module %s]"), objfile_name (objfile));
14451 continue;
14452 }
14453
14454 callback (range_beginning, range_end);
14455 }
14456
14457 if (overflow)
14458 {
14459 complaint (_("Offset %d is not terminated "
14460 "for DW_AT_ranges attribute"),
14461 offset);
14462 return false;
14463 }
14464
14465 return true;
14466 }
14467
14468 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14469 Callback's type should be:
14470 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14471 Return 1 if the attributes are present and valid, otherwise, return 0. */
14472
14473 template <typename Callback>
14474 static int
14475 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14476 Callback &&callback)
14477 {
14478 struct dwarf2_per_objfile *dwarf2_per_objfile
14479 = cu->per_cu->dwarf2_per_objfile;
14480 struct objfile *objfile = dwarf2_per_objfile->objfile;
14481 struct comp_unit_head *cu_header = &cu->header;
14482 bfd *obfd = objfile->obfd;
14483 unsigned int addr_size = cu_header->addr_size;
14484 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14485 /* Base address selection entry. */
14486 CORE_ADDR base;
14487 int found_base;
14488 unsigned int dummy;
14489 const gdb_byte *buffer;
14490 CORE_ADDR baseaddr;
14491
14492 if (cu_header->version >= 5)
14493 return dwarf2_rnglists_process (offset, cu, callback);
14494
14495 found_base = cu->base_known;
14496 base = cu->base_address;
14497
14498 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14499 if (offset >= dwarf2_per_objfile->ranges.size)
14500 {
14501 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14502 offset);
14503 return 0;
14504 }
14505 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14506
14507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14508
14509 while (1)
14510 {
14511 CORE_ADDR range_beginning, range_end;
14512
14513 range_beginning = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 range_end = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 offset += 2 * addr_size;
14518
14519 /* An end of list marker is a pair of zero addresses. */
14520 if (range_beginning == 0 && range_end == 0)
14521 /* Found the end of list entry. */
14522 break;
14523
14524 /* Each base address selection entry is a pair of 2 values.
14525 The first is the largest possible address, the second is
14526 the base address. Check for a base address here. */
14527 if ((range_beginning & mask) == mask)
14528 {
14529 /* If we found the largest possible address, then we already
14530 have the base address in range_end. */
14531 base = range_end;
14532 found_base = 1;
14533 continue;
14534 }
14535
14536 if (!found_base)
14537 {
14538 /* We have no valid base address for the ranges
14539 data. */
14540 complaint (_("Invalid .debug_ranges data (no base address)"));
14541 return 0;
14542 }
14543
14544 if (range_beginning > range_end)
14545 {
14546 /* Inverted range entries are invalid. */
14547 complaint (_("Invalid .debug_ranges data (inverted range)"));
14548 return 0;
14549 }
14550
14551 /* Empty range entries have no effect. */
14552 if (range_beginning == range_end)
14553 continue;
14554
14555 range_beginning += base;
14556 range_end += base;
14557
14558 /* A not-uncommon case of bad debug info.
14559 Don't pollute the addrmap with bad data. */
14560 if (range_beginning + baseaddr == 0
14561 && !dwarf2_per_objfile->has_section_at_zero)
14562 {
14563 complaint (_(".debug_ranges entry has start address of zero"
14564 " [in module %s]"), objfile_name (objfile));
14565 continue;
14566 }
14567
14568 callback (range_beginning, range_end);
14569 }
14570
14571 return 1;
14572 }
14573
14574 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14575 Return 1 if the attributes are present and valid, otherwise, return 0.
14576 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14577
14578 static int
14579 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14580 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14581 struct partial_symtab *ranges_pst)
14582 {
14583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14585 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14586 SECT_OFF_TEXT (objfile));
14587 int low_set = 0;
14588 CORE_ADDR low = 0;
14589 CORE_ADDR high = 0;
14590 int retval;
14591
14592 retval = dwarf2_ranges_process (offset, cu,
14593 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14594 {
14595 if (ranges_pst != NULL)
14596 {
14597 CORE_ADDR lowpc;
14598 CORE_ADDR highpc;
14599
14600 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14601 range_beginning + baseaddr)
14602 - baseaddr);
14603 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_end + baseaddr)
14605 - baseaddr);
14606 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14607 ranges_pst);
14608 }
14609
14610 /* FIXME: This is recording everything as a low-high
14611 segment of consecutive addresses. We should have a
14612 data structure for discontiguous block ranges
14613 instead. */
14614 if (! low_set)
14615 {
14616 low = range_beginning;
14617 high = range_end;
14618 low_set = 1;
14619 }
14620 else
14621 {
14622 if (range_beginning < low)
14623 low = range_beginning;
14624 if (range_end > high)
14625 high = range_end;
14626 }
14627 });
14628 if (!retval)
14629 return 0;
14630
14631 if (! low_set)
14632 /* If the first entry is an end-of-list marker, the range
14633 describes an empty scope, i.e. no instructions. */
14634 return 0;
14635
14636 if (low_return)
14637 *low_return = low;
14638 if (high_return)
14639 *high_return = high;
14640 return 1;
14641 }
14642
14643 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14644 definition for the return value. *LOWPC and *HIGHPC are set iff
14645 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14646
14647 static enum pc_bounds_kind
14648 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14649 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14650 struct partial_symtab *pst)
14651 {
14652 struct dwarf2_per_objfile *dwarf2_per_objfile
14653 = cu->per_cu->dwarf2_per_objfile;
14654 struct attribute *attr;
14655 struct attribute *attr_high;
14656 CORE_ADDR low = 0;
14657 CORE_ADDR high = 0;
14658 enum pc_bounds_kind ret;
14659
14660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14661 if (attr_high)
14662 {
14663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14664 if (attr)
14665 {
14666 low = attr_value_as_address (attr);
14667 high = attr_value_as_address (attr_high);
14668 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14669 high += low;
14670 }
14671 else
14672 /* Found high w/o low attribute. */
14673 return PC_BOUNDS_INVALID;
14674
14675 /* Found consecutive range of addresses. */
14676 ret = PC_BOUNDS_HIGH_LOW;
14677 }
14678 else
14679 {
14680 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14681 if (attr != NULL)
14682 {
14683 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14684 We take advantage of the fact that DW_AT_ranges does not appear
14685 in DW_TAG_compile_unit of DWO files. */
14686 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14687 unsigned int ranges_offset = (DW_UNSND (attr)
14688 + (need_ranges_base
14689 ? cu->ranges_base
14690 : 0));
14691
14692 /* Value of the DW_AT_ranges attribute is the offset in the
14693 .debug_ranges section. */
14694 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14695 return PC_BOUNDS_INVALID;
14696 /* Found discontinuous range of addresses. */
14697 ret = PC_BOUNDS_RANGES;
14698 }
14699 else
14700 return PC_BOUNDS_NOT_PRESENT;
14701 }
14702
14703 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14704 if (high <= low)
14705 return PC_BOUNDS_INVALID;
14706
14707 /* When using the GNU linker, .gnu.linkonce. sections are used to
14708 eliminate duplicate copies of functions and vtables and such.
14709 The linker will arbitrarily choose one and discard the others.
14710 The AT_*_pc values for such functions refer to local labels in
14711 these sections. If the section from that file was discarded, the
14712 labels are not in the output, so the relocs get a value of 0.
14713 If this is a discarded function, mark the pc bounds as invalid,
14714 so that GDB will ignore it. */
14715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14716 return PC_BOUNDS_INVALID;
14717
14718 *lowpc = low;
14719 if (highpc)
14720 *highpc = high;
14721 return ret;
14722 }
14723
14724 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14725 its low and high PC addresses. Do nothing if these addresses could not
14726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14727 and HIGHPC to the high address if greater than HIGHPC. */
14728
14729 static void
14730 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14732 struct dwarf2_cu *cu)
14733 {
14734 CORE_ADDR low, high;
14735 struct die_info *child = die->child;
14736
14737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14738 {
14739 *lowpc = std::min (*lowpc, low);
14740 *highpc = std::max (*highpc, high);
14741 }
14742
14743 /* If the language does not allow nested subprograms (either inside
14744 subprograms or lexical blocks), we're done. */
14745 if (cu->language != language_ada)
14746 return;
14747
14748 /* Check all the children of the given DIE. If it contains nested
14749 subprograms, then check their pc bounds. Likewise, we need to
14750 check lexical blocks as well, as they may also contain subprogram
14751 definitions. */
14752 while (child && child->tag)
14753 {
14754 if (child->tag == DW_TAG_subprogram
14755 || child->tag == DW_TAG_lexical_block)
14756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14757 child = sibling_die (child);
14758 }
14759 }
14760
14761 /* Get the low and high pc's represented by the scope DIE, and store
14762 them in *LOWPC and *HIGHPC. If the correct values can't be
14763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14764
14765 static void
14766 get_scope_pc_bounds (struct die_info *die,
14767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14768 struct dwarf2_cu *cu)
14769 {
14770 CORE_ADDR best_low = (CORE_ADDR) -1;
14771 CORE_ADDR best_high = (CORE_ADDR) 0;
14772 CORE_ADDR current_low, current_high;
14773
14774 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14775 >= PC_BOUNDS_RANGES)
14776 {
14777 best_low = current_low;
14778 best_high = current_high;
14779 }
14780 else
14781 {
14782 struct die_info *child = die->child;
14783
14784 while (child && child->tag)
14785 {
14786 switch (child->tag) {
14787 case DW_TAG_subprogram:
14788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14789 break;
14790 case DW_TAG_namespace:
14791 case DW_TAG_module:
14792 /* FIXME: carlton/2004-01-16: Should we do this for
14793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14794 that current GCC's always emit the DIEs corresponding
14795 to definitions of methods of classes as children of a
14796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14797 the DIEs giving the declarations, which could be
14798 anywhere). But I don't see any reason why the
14799 standards says that they have to be there. */
14800 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14801
14802 if (current_low != ((CORE_ADDR) -1))
14803 {
14804 best_low = std::min (best_low, current_low);
14805 best_high = std::max (best_high, current_high);
14806 }
14807 break;
14808 default:
14809 /* Ignore. */
14810 break;
14811 }
14812
14813 child = sibling_die (child);
14814 }
14815 }
14816
14817 *lowpc = best_low;
14818 *highpc = best_high;
14819 }
14820
14821 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14822 in DIE. */
14823
14824 static void
14825 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14827 {
14828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14830 struct attribute *attr;
14831 struct attribute *attr_high;
14832
14833 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14834 if (attr_high)
14835 {
14836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14837 if (attr)
14838 {
14839 CORE_ADDR low = attr_value_as_address (attr);
14840 CORE_ADDR high = attr_value_as_address (attr_high);
14841
14842 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14843 high += low;
14844
14845 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14846 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14847 cu->builder->record_block_range (block, low, high - 1);
14848 }
14849 }
14850
14851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14852 if (attr)
14853 {
14854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14855 We take advantage of the fact that DW_AT_ranges does not appear
14856 in DW_TAG_compile_unit of DWO files. */
14857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14858
14859 /* The value of the DW_AT_ranges attribute is the offset of the
14860 address range list in the .debug_ranges section. */
14861 unsigned long offset = (DW_UNSND (attr)
14862 + (need_ranges_base ? cu->ranges_base : 0));
14863
14864 std::vector<blockrange> blockvec;
14865 dwarf2_ranges_process (offset, cu,
14866 [&] (CORE_ADDR start, CORE_ADDR end)
14867 {
14868 start += baseaddr;
14869 end += baseaddr;
14870 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14871 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14872 cu->builder->record_block_range (block, start, end - 1);
14873 blockvec.emplace_back (start, end);
14874 });
14875
14876 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14877 }
14878 }
14879
14880 /* Check whether the producer field indicates either of GCC < 4.6, or the
14881 Intel C/C++ compiler, and cache the result in CU. */
14882
14883 static void
14884 check_producer (struct dwarf2_cu *cu)
14885 {
14886 int major, minor;
14887
14888 if (cu->producer == NULL)
14889 {
14890 /* For unknown compilers expect their behavior is DWARF version
14891 compliant.
14892
14893 GCC started to support .debug_types sections by -gdwarf-4 since
14894 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14895 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14896 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14897 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14898 }
14899 else if (producer_is_gcc (cu->producer, &major, &minor))
14900 {
14901 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14902 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14903 }
14904 else if (producer_is_icc (cu->producer, &major, &minor))
14905 cu->producer_is_icc_lt_14 = major < 14;
14906 else
14907 {
14908 /* For other non-GCC compilers, expect their behavior is DWARF version
14909 compliant. */
14910 }
14911
14912 cu->checked_producer = 1;
14913 }
14914
14915 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14916 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14917 during 4.6.0 experimental. */
14918
14919 static int
14920 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14921 {
14922 if (!cu->checked_producer)
14923 check_producer (cu);
14924
14925 return cu->producer_is_gxx_lt_4_6;
14926 }
14927
14928 /* Return the default accessibility type if it is not overriden by
14929 DW_AT_accessibility. */
14930
14931 static enum dwarf_access_attribute
14932 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14933 {
14934 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14935 {
14936 /* The default DWARF 2 accessibility for members is public, the default
14937 accessibility for inheritance is private. */
14938
14939 if (die->tag != DW_TAG_inheritance)
14940 return DW_ACCESS_public;
14941 else
14942 return DW_ACCESS_private;
14943 }
14944 else
14945 {
14946 /* DWARF 3+ defines the default accessibility a different way. The same
14947 rules apply now for DW_TAG_inheritance as for the members and it only
14948 depends on the container kind. */
14949
14950 if (die->parent->tag == DW_TAG_class_type)
14951 return DW_ACCESS_private;
14952 else
14953 return DW_ACCESS_public;
14954 }
14955 }
14956
14957 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14958 offset. If the attribute was not found return 0, otherwise return
14959 1. If it was found but could not properly be handled, set *OFFSET
14960 to 0. */
14961
14962 static int
14963 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14964 LONGEST *offset)
14965 {
14966 struct attribute *attr;
14967
14968 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14969 if (attr != NULL)
14970 {
14971 *offset = 0;
14972
14973 /* Note that we do not check for a section offset first here.
14974 This is because DW_AT_data_member_location is new in DWARF 4,
14975 so if we see it, we can assume that a constant form is really
14976 a constant and not a section offset. */
14977 if (attr_form_is_constant (attr))
14978 *offset = dwarf2_get_attr_constant_value (attr, 0);
14979 else if (attr_form_is_section_offset (attr))
14980 dwarf2_complex_location_expr_complaint ();
14981 else if (attr_form_is_block (attr))
14982 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14983 else
14984 dwarf2_complex_location_expr_complaint ();
14985
14986 return 1;
14987 }
14988
14989 return 0;
14990 }
14991
14992 /* Add an aggregate field to the field list. */
14993
14994 static void
14995 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14996 struct dwarf2_cu *cu)
14997 {
14998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15000 struct nextfield *new_field;
15001 struct attribute *attr;
15002 struct field *fp;
15003 const char *fieldname = "";
15004
15005 if (die->tag == DW_TAG_inheritance)
15006 {
15007 fip->baseclasses.emplace_back ();
15008 new_field = &fip->baseclasses.back ();
15009 }
15010 else
15011 {
15012 fip->fields.emplace_back ();
15013 new_field = &fip->fields.back ();
15014 }
15015
15016 fip->nfields++;
15017
15018 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15019 if (attr)
15020 new_field->accessibility = DW_UNSND (attr);
15021 else
15022 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15023 if (new_field->accessibility != DW_ACCESS_public)
15024 fip->non_public_fields = 1;
15025
15026 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15027 if (attr)
15028 new_field->virtuality = DW_UNSND (attr);
15029 else
15030 new_field->virtuality = DW_VIRTUALITY_none;
15031
15032 fp = &new_field->field;
15033
15034 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15035 {
15036 LONGEST offset;
15037
15038 /* Data member other than a C++ static data member. */
15039
15040 /* Get type of field. */
15041 fp->type = die_type (die, cu);
15042
15043 SET_FIELD_BITPOS (*fp, 0);
15044
15045 /* Get bit size of field (zero if none). */
15046 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15047 if (attr)
15048 {
15049 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15050 }
15051 else
15052 {
15053 FIELD_BITSIZE (*fp) = 0;
15054 }
15055
15056 /* Get bit offset of field. */
15057 if (handle_data_member_location (die, cu, &offset))
15058 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15059 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15060 if (attr)
15061 {
15062 if (gdbarch_bits_big_endian (gdbarch))
15063 {
15064 /* For big endian bits, the DW_AT_bit_offset gives the
15065 additional bit offset from the MSB of the containing
15066 anonymous object to the MSB of the field. We don't
15067 have to do anything special since we don't need to
15068 know the size of the anonymous object. */
15069 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15070 }
15071 else
15072 {
15073 /* For little endian bits, compute the bit offset to the
15074 MSB of the anonymous object, subtract off the number of
15075 bits from the MSB of the field to the MSB of the
15076 object, and then subtract off the number of bits of
15077 the field itself. The result is the bit offset of
15078 the LSB of the field. */
15079 int anonymous_size;
15080 int bit_offset = DW_UNSND (attr);
15081
15082 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15083 if (attr)
15084 {
15085 /* The size of the anonymous object containing
15086 the bit field is explicit, so use the
15087 indicated size (in bytes). */
15088 anonymous_size = DW_UNSND (attr);
15089 }
15090 else
15091 {
15092 /* The size of the anonymous object containing
15093 the bit field must be inferred from the type
15094 attribute of the data member containing the
15095 bit field. */
15096 anonymous_size = TYPE_LENGTH (fp->type);
15097 }
15098 SET_FIELD_BITPOS (*fp,
15099 (FIELD_BITPOS (*fp)
15100 + anonymous_size * bits_per_byte
15101 - bit_offset - FIELD_BITSIZE (*fp)));
15102 }
15103 }
15104 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15105 if (attr != NULL)
15106 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15107 + dwarf2_get_attr_constant_value (attr, 0)));
15108
15109 /* Get name of field. */
15110 fieldname = dwarf2_name (die, cu);
15111 if (fieldname == NULL)
15112 fieldname = "";
15113
15114 /* The name is already allocated along with this objfile, so we don't
15115 need to duplicate it for the type. */
15116 fp->name = fieldname;
15117
15118 /* Change accessibility for artificial fields (e.g. virtual table
15119 pointer or virtual base class pointer) to private. */
15120 if (dwarf2_attr (die, DW_AT_artificial, cu))
15121 {
15122 FIELD_ARTIFICIAL (*fp) = 1;
15123 new_field->accessibility = DW_ACCESS_private;
15124 fip->non_public_fields = 1;
15125 }
15126 }
15127 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15128 {
15129 /* C++ static member. */
15130
15131 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15132 is a declaration, but all versions of G++ as of this writing
15133 (so through at least 3.2.1) incorrectly generate
15134 DW_TAG_variable tags. */
15135
15136 const char *physname;
15137
15138 /* Get name of field. */
15139 fieldname = dwarf2_name (die, cu);
15140 if (fieldname == NULL)
15141 return;
15142
15143 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15144 if (attr
15145 /* Only create a symbol if this is an external value.
15146 new_symbol checks this and puts the value in the global symbol
15147 table, which we want. If it is not external, new_symbol
15148 will try to put the value in cu->list_in_scope which is wrong. */
15149 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15150 {
15151 /* A static const member, not much different than an enum as far as
15152 we're concerned, except that we can support more types. */
15153 new_symbol (die, NULL, cu);
15154 }
15155
15156 /* Get physical name. */
15157 physname = dwarf2_physname (fieldname, die, cu);
15158
15159 /* The name is already allocated along with this objfile, so we don't
15160 need to duplicate it for the type. */
15161 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15162 FIELD_TYPE (*fp) = die_type (die, cu);
15163 FIELD_NAME (*fp) = fieldname;
15164 }
15165 else if (die->tag == DW_TAG_inheritance)
15166 {
15167 LONGEST offset;
15168
15169 /* C++ base class field. */
15170 if (handle_data_member_location (die, cu, &offset))
15171 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15172 FIELD_BITSIZE (*fp) = 0;
15173 FIELD_TYPE (*fp) = die_type (die, cu);
15174 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15175 }
15176 else if (die->tag == DW_TAG_variant_part)
15177 {
15178 /* process_structure_scope will treat this DIE as a union. */
15179 process_structure_scope (die, cu);
15180
15181 /* The variant part is relative to the start of the enclosing
15182 structure. */
15183 SET_FIELD_BITPOS (*fp, 0);
15184 fp->type = get_die_type (die, cu);
15185 fp->artificial = 1;
15186 fp->name = "<<variant>>";
15187
15188 /* Normally a DW_TAG_variant_part won't have a size, but our
15189 representation requires one, so set it to the maximum of the
15190 child sizes. */
15191 if (TYPE_LENGTH (fp->type) == 0)
15192 {
15193 unsigned max = 0;
15194 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15195 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15196 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15197 TYPE_LENGTH (fp->type) = max;
15198 }
15199 }
15200 else
15201 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15202 }
15203
15204 /* Can the type given by DIE define another type? */
15205
15206 static bool
15207 type_can_define_types (const struct die_info *die)
15208 {
15209 switch (die->tag)
15210 {
15211 case DW_TAG_typedef:
15212 case DW_TAG_class_type:
15213 case DW_TAG_structure_type:
15214 case DW_TAG_union_type:
15215 case DW_TAG_enumeration_type:
15216 return true;
15217
15218 default:
15219 return false;
15220 }
15221 }
15222
15223 /* Add a type definition defined in the scope of the FIP's class. */
15224
15225 static void
15226 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15227 struct dwarf2_cu *cu)
15228 {
15229 struct decl_field fp;
15230 memset (&fp, 0, sizeof (fp));
15231
15232 gdb_assert (type_can_define_types (die));
15233
15234 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15235 fp.name = dwarf2_name (die, cu);
15236 fp.type = read_type_die (die, cu);
15237
15238 /* Save accessibility. */
15239 enum dwarf_access_attribute accessibility;
15240 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15241 if (attr != NULL)
15242 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15243 else
15244 accessibility = dwarf2_default_access_attribute (die, cu);
15245 switch (accessibility)
15246 {
15247 case DW_ACCESS_public:
15248 /* The assumed value if neither private nor protected. */
15249 break;
15250 case DW_ACCESS_private:
15251 fp.is_private = 1;
15252 break;
15253 case DW_ACCESS_protected:
15254 fp.is_protected = 1;
15255 break;
15256 default:
15257 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15258 }
15259
15260 if (die->tag == DW_TAG_typedef)
15261 fip->typedef_field_list.push_back (fp);
15262 else
15263 fip->nested_types_list.push_back (fp);
15264 }
15265
15266 /* Create the vector of fields, and attach it to the type. */
15267
15268 static void
15269 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15270 struct dwarf2_cu *cu)
15271 {
15272 int nfields = fip->nfields;
15273
15274 /* Record the field count, allocate space for the array of fields,
15275 and create blank accessibility bitfields if necessary. */
15276 TYPE_NFIELDS (type) = nfields;
15277 TYPE_FIELDS (type) = (struct field *)
15278 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15279
15280 if (fip->non_public_fields && cu->language != language_ada)
15281 {
15282 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15283
15284 TYPE_FIELD_PRIVATE_BITS (type) =
15285 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15286 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15287
15288 TYPE_FIELD_PROTECTED_BITS (type) =
15289 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15290 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15291
15292 TYPE_FIELD_IGNORE_BITS (type) =
15293 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15294 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15295 }
15296
15297 /* If the type has baseclasses, allocate and clear a bit vector for
15298 TYPE_FIELD_VIRTUAL_BITS. */
15299 if (!fip->baseclasses.empty () && cu->language != language_ada)
15300 {
15301 int num_bytes = B_BYTES (fip->baseclasses.size ());
15302 unsigned char *pointer;
15303
15304 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15305 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15306 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15307 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15308 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15309 }
15310
15311 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15312 {
15313 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15314
15315 for (int index = 0; index < nfields; ++index)
15316 {
15317 struct nextfield &field = fip->fields[index];
15318
15319 if (field.variant.is_discriminant)
15320 di->discriminant_index = index;
15321 else if (field.variant.default_branch)
15322 di->default_index = index;
15323 else
15324 di->discriminants[index] = field.variant.discriminant_value;
15325 }
15326 }
15327
15328 /* Copy the saved-up fields into the field vector. */
15329 for (int i = 0; i < nfields; ++i)
15330 {
15331 struct nextfield &field
15332 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15333 : fip->fields[i - fip->baseclasses.size ()]);
15334
15335 TYPE_FIELD (type, i) = field.field;
15336 switch (field.accessibility)
15337 {
15338 case DW_ACCESS_private:
15339 if (cu->language != language_ada)
15340 SET_TYPE_FIELD_PRIVATE (type, i);
15341 break;
15342
15343 case DW_ACCESS_protected:
15344 if (cu->language != language_ada)
15345 SET_TYPE_FIELD_PROTECTED (type, i);
15346 break;
15347
15348 case DW_ACCESS_public:
15349 break;
15350
15351 default:
15352 /* Unknown accessibility. Complain and treat it as public. */
15353 {
15354 complaint (_("unsupported accessibility %d"),
15355 field.accessibility);
15356 }
15357 break;
15358 }
15359 if (i < fip->baseclasses.size ())
15360 {
15361 switch (field.virtuality)
15362 {
15363 case DW_VIRTUALITY_virtual:
15364 case DW_VIRTUALITY_pure_virtual:
15365 if (cu->language == language_ada)
15366 error (_("unexpected virtuality in component of Ada type"));
15367 SET_TYPE_FIELD_VIRTUAL (type, i);
15368 break;
15369 }
15370 }
15371 }
15372 }
15373
15374 /* Return true if this member function is a constructor, false
15375 otherwise. */
15376
15377 static int
15378 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15379 {
15380 const char *fieldname;
15381 const char *type_name;
15382 int len;
15383
15384 if (die->parent == NULL)
15385 return 0;
15386
15387 if (die->parent->tag != DW_TAG_structure_type
15388 && die->parent->tag != DW_TAG_union_type
15389 && die->parent->tag != DW_TAG_class_type)
15390 return 0;
15391
15392 fieldname = dwarf2_name (die, cu);
15393 type_name = dwarf2_name (die->parent, cu);
15394 if (fieldname == NULL || type_name == NULL)
15395 return 0;
15396
15397 len = strlen (fieldname);
15398 return (strncmp (fieldname, type_name, len) == 0
15399 && (type_name[len] == '\0' || type_name[len] == '<'));
15400 }
15401
15402 /* Add a member function to the proper fieldlist. */
15403
15404 static void
15405 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15406 struct type *type, struct dwarf2_cu *cu)
15407 {
15408 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15409 struct attribute *attr;
15410 int i;
15411 struct fnfieldlist *flp = nullptr;
15412 struct fn_field *fnp;
15413 const char *fieldname;
15414 struct type *this_type;
15415 enum dwarf_access_attribute accessibility;
15416
15417 if (cu->language == language_ada)
15418 error (_("unexpected member function in Ada type"));
15419
15420 /* Get name of member function. */
15421 fieldname = dwarf2_name (die, cu);
15422 if (fieldname == NULL)
15423 return;
15424
15425 /* Look up member function name in fieldlist. */
15426 for (i = 0; i < fip->fnfieldlists.size (); i++)
15427 {
15428 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15429 {
15430 flp = &fip->fnfieldlists[i];
15431 break;
15432 }
15433 }
15434
15435 /* Create a new fnfieldlist if necessary. */
15436 if (flp == nullptr)
15437 {
15438 fip->fnfieldlists.emplace_back ();
15439 flp = &fip->fnfieldlists.back ();
15440 flp->name = fieldname;
15441 i = fip->fnfieldlists.size () - 1;
15442 }
15443
15444 /* Create a new member function field and add it to the vector of
15445 fnfieldlists. */
15446 flp->fnfields.emplace_back ();
15447 fnp = &flp->fnfields.back ();
15448
15449 /* Delay processing of the physname until later. */
15450 if (cu->language == language_cplus)
15451 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15452 die, cu);
15453 else
15454 {
15455 const char *physname = dwarf2_physname (fieldname, die, cu);
15456 fnp->physname = physname ? physname : "";
15457 }
15458
15459 fnp->type = alloc_type (objfile);
15460 this_type = read_type_die (die, cu);
15461 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15462 {
15463 int nparams = TYPE_NFIELDS (this_type);
15464
15465 /* TYPE is the domain of this method, and THIS_TYPE is the type
15466 of the method itself (TYPE_CODE_METHOD). */
15467 smash_to_method_type (fnp->type, type,
15468 TYPE_TARGET_TYPE (this_type),
15469 TYPE_FIELDS (this_type),
15470 TYPE_NFIELDS (this_type),
15471 TYPE_VARARGS (this_type));
15472
15473 /* Handle static member functions.
15474 Dwarf2 has no clean way to discern C++ static and non-static
15475 member functions. G++ helps GDB by marking the first
15476 parameter for non-static member functions (which is the this
15477 pointer) as artificial. We obtain this information from
15478 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15479 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15480 fnp->voffset = VOFFSET_STATIC;
15481 }
15482 else
15483 complaint (_("member function type missing for '%s'"),
15484 dwarf2_full_name (fieldname, die, cu));
15485
15486 /* Get fcontext from DW_AT_containing_type if present. */
15487 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15488 fnp->fcontext = die_containing_type (die, cu);
15489
15490 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15491 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15492
15493 /* Get accessibility. */
15494 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15495 if (attr)
15496 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15497 else
15498 accessibility = dwarf2_default_access_attribute (die, cu);
15499 switch (accessibility)
15500 {
15501 case DW_ACCESS_private:
15502 fnp->is_private = 1;
15503 break;
15504 case DW_ACCESS_protected:
15505 fnp->is_protected = 1;
15506 break;
15507 }
15508
15509 /* Check for artificial methods. */
15510 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15511 if (attr && DW_UNSND (attr) != 0)
15512 fnp->is_artificial = 1;
15513
15514 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15515
15516 /* Get index in virtual function table if it is a virtual member
15517 function. For older versions of GCC, this is an offset in the
15518 appropriate virtual table, as specified by DW_AT_containing_type.
15519 For everyone else, it is an expression to be evaluated relative
15520 to the object address. */
15521
15522 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15523 if (attr)
15524 {
15525 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15526 {
15527 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15528 {
15529 /* Old-style GCC. */
15530 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15531 }
15532 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15533 || (DW_BLOCK (attr)->size > 1
15534 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15535 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15536 {
15537 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15538 if ((fnp->voffset % cu->header.addr_size) != 0)
15539 dwarf2_complex_location_expr_complaint ();
15540 else
15541 fnp->voffset /= cu->header.addr_size;
15542 fnp->voffset += 2;
15543 }
15544 else
15545 dwarf2_complex_location_expr_complaint ();
15546
15547 if (!fnp->fcontext)
15548 {
15549 /* If there is no `this' field and no DW_AT_containing_type,
15550 we cannot actually find a base class context for the
15551 vtable! */
15552 if (TYPE_NFIELDS (this_type) == 0
15553 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15554 {
15555 complaint (_("cannot determine context for virtual member "
15556 "function \"%s\" (offset %s)"),
15557 fieldname, sect_offset_str (die->sect_off));
15558 }
15559 else
15560 {
15561 fnp->fcontext
15562 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15563 }
15564 }
15565 }
15566 else if (attr_form_is_section_offset (attr))
15567 {
15568 dwarf2_complex_location_expr_complaint ();
15569 }
15570 else
15571 {
15572 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15573 fieldname);
15574 }
15575 }
15576 else
15577 {
15578 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15579 if (attr && DW_UNSND (attr))
15580 {
15581 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15582 complaint (_("Member function \"%s\" (offset %s) is virtual "
15583 "but the vtable offset is not specified"),
15584 fieldname, sect_offset_str (die->sect_off));
15585 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15586 TYPE_CPLUS_DYNAMIC (type) = 1;
15587 }
15588 }
15589 }
15590
15591 /* Create the vector of member function fields, and attach it to the type. */
15592
15593 static void
15594 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15595 struct dwarf2_cu *cu)
15596 {
15597 if (cu->language == language_ada)
15598 error (_("unexpected member functions in Ada type"));
15599
15600 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15601 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15602 TYPE_ALLOC (type,
15603 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15604
15605 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15606 {
15607 struct fnfieldlist &nf = fip->fnfieldlists[i];
15608 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15609
15610 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15611 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15612 fn_flp->fn_fields = (struct fn_field *)
15613 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15614
15615 for (int k = 0; k < nf.fnfields.size (); ++k)
15616 fn_flp->fn_fields[k] = nf.fnfields[k];
15617 }
15618
15619 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15620 }
15621
15622 /* Returns non-zero if NAME is the name of a vtable member in CU's
15623 language, zero otherwise. */
15624 static int
15625 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15626 {
15627 static const char vptr[] = "_vptr";
15628
15629 /* Look for the C++ form of the vtable. */
15630 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15631 return 1;
15632
15633 return 0;
15634 }
15635
15636 /* GCC outputs unnamed structures that are really pointers to member
15637 functions, with the ABI-specified layout. If TYPE describes
15638 such a structure, smash it into a member function type.
15639
15640 GCC shouldn't do this; it should just output pointer to member DIEs.
15641 This is GCC PR debug/28767. */
15642
15643 static void
15644 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15645 {
15646 struct type *pfn_type, *self_type, *new_type;
15647
15648 /* Check for a structure with no name and two children. */
15649 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15650 return;
15651
15652 /* Check for __pfn and __delta members. */
15653 if (TYPE_FIELD_NAME (type, 0) == NULL
15654 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15655 || TYPE_FIELD_NAME (type, 1) == NULL
15656 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15657 return;
15658
15659 /* Find the type of the method. */
15660 pfn_type = TYPE_FIELD_TYPE (type, 0);
15661 if (pfn_type == NULL
15662 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15663 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15664 return;
15665
15666 /* Look for the "this" argument. */
15667 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15668 if (TYPE_NFIELDS (pfn_type) == 0
15669 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15670 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15671 return;
15672
15673 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15674 new_type = alloc_type (objfile);
15675 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15676 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15677 TYPE_VARARGS (pfn_type));
15678 smash_to_methodptr_type (type, new_type);
15679 }
15680
15681 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15682 appropriate error checking and issuing complaints if there is a
15683 problem. */
15684
15685 static ULONGEST
15686 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15687 {
15688 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15689
15690 if (attr == nullptr)
15691 return 0;
15692
15693 if (!attr_form_is_constant (attr))
15694 {
15695 complaint (_("DW_AT_alignment must have constant form"
15696 " - DIE at %s [in module %s]"),
15697 sect_offset_str (die->sect_off),
15698 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15699 return 0;
15700 }
15701
15702 ULONGEST align;
15703 if (attr->form == DW_FORM_sdata)
15704 {
15705 LONGEST val = DW_SND (attr);
15706 if (val < 0)
15707 {
15708 complaint (_("DW_AT_alignment value must not be negative"
15709 " - DIE at %s [in module %s]"),
15710 sect_offset_str (die->sect_off),
15711 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15712 return 0;
15713 }
15714 align = val;
15715 }
15716 else
15717 align = DW_UNSND (attr);
15718
15719 if (align == 0)
15720 {
15721 complaint (_("DW_AT_alignment value must not be zero"
15722 " - DIE at %s [in module %s]"),
15723 sect_offset_str (die->sect_off),
15724 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15725 return 0;
15726 }
15727 if ((align & (align - 1)) != 0)
15728 {
15729 complaint (_("DW_AT_alignment value must be a power of 2"
15730 " - DIE at %s [in module %s]"),
15731 sect_offset_str (die->sect_off),
15732 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15733 return 0;
15734 }
15735
15736 return align;
15737 }
15738
15739 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15740 the alignment for TYPE. */
15741
15742 static void
15743 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15744 struct type *type)
15745 {
15746 if (!set_type_align (type, get_alignment (cu, die)))
15747 complaint (_("DW_AT_alignment value too large"
15748 " - DIE at %s [in module %s]"),
15749 sect_offset_str (die->sect_off),
15750 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 }
15752
15753 /* Called when we find the DIE that starts a structure or union scope
15754 (definition) to create a type for the structure or union. Fill in
15755 the type's name and general properties; the members will not be
15756 processed until process_structure_scope. A symbol table entry for
15757 the type will also not be done until process_structure_scope (assuming
15758 the type has a name).
15759
15760 NOTE: we need to call these functions regardless of whether or not the
15761 DIE has a DW_AT_name attribute, since it might be an anonymous
15762 structure or union. This gets the type entered into our set of
15763 user defined types. */
15764
15765 static struct type *
15766 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15767 {
15768 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15769 struct type *type;
15770 struct attribute *attr;
15771 const char *name;
15772
15773 /* If the definition of this type lives in .debug_types, read that type.
15774 Don't follow DW_AT_specification though, that will take us back up
15775 the chain and we want to go down. */
15776 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15777 if (attr)
15778 {
15779 type = get_DW_AT_signature_type (die, attr, cu);
15780
15781 /* The type's CU may not be the same as CU.
15782 Ensure TYPE is recorded with CU in die_type_hash. */
15783 return set_die_type (die, type, cu);
15784 }
15785
15786 type = alloc_type (objfile);
15787 INIT_CPLUS_SPECIFIC (type);
15788
15789 name = dwarf2_name (die, cu);
15790 if (name != NULL)
15791 {
15792 if (cu->language == language_cplus
15793 || cu->language == language_d
15794 || cu->language == language_rust)
15795 {
15796 const char *full_name = dwarf2_full_name (name, die, cu);
15797
15798 /* dwarf2_full_name might have already finished building the DIE's
15799 type. If so, there is no need to continue. */
15800 if (get_die_type (die, cu) != NULL)
15801 return get_die_type (die, cu);
15802
15803 TYPE_NAME (type) = full_name;
15804 }
15805 else
15806 {
15807 /* The name is already allocated along with this objfile, so
15808 we don't need to duplicate it for the type. */
15809 TYPE_NAME (type) = name;
15810 }
15811 }
15812
15813 if (die->tag == DW_TAG_structure_type)
15814 {
15815 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15816 }
15817 else if (die->tag == DW_TAG_union_type)
15818 {
15819 TYPE_CODE (type) = TYPE_CODE_UNION;
15820 }
15821 else if (die->tag == DW_TAG_variant_part)
15822 {
15823 TYPE_CODE (type) = TYPE_CODE_UNION;
15824 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15825 }
15826 else
15827 {
15828 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15829 }
15830
15831 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15832 TYPE_DECLARED_CLASS (type) = 1;
15833
15834 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15835 if (attr)
15836 {
15837 if (attr_form_is_constant (attr))
15838 TYPE_LENGTH (type) = DW_UNSND (attr);
15839 else
15840 {
15841 /* For the moment, dynamic type sizes are not supported
15842 by GDB's struct type. The actual size is determined
15843 on-demand when resolving the type of a given object,
15844 so set the type's length to zero for now. Otherwise,
15845 we record an expression as the length, and that expression
15846 could lead to a very large value, which could eventually
15847 lead to us trying to allocate that much memory when creating
15848 a value of that type. */
15849 TYPE_LENGTH (type) = 0;
15850 }
15851 }
15852 else
15853 {
15854 TYPE_LENGTH (type) = 0;
15855 }
15856
15857 maybe_set_alignment (cu, die, type);
15858
15859 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15860 {
15861 /* ICC<14 does not output the required DW_AT_declaration on
15862 incomplete types, but gives them a size of zero. */
15863 TYPE_STUB (type) = 1;
15864 }
15865 else
15866 TYPE_STUB_SUPPORTED (type) = 1;
15867
15868 if (die_is_declaration (die, cu))
15869 TYPE_STUB (type) = 1;
15870 else if (attr == NULL && die->child == NULL
15871 && producer_is_realview (cu->producer))
15872 /* RealView does not output the required DW_AT_declaration
15873 on incomplete types. */
15874 TYPE_STUB (type) = 1;
15875
15876 /* We need to add the type field to the die immediately so we don't
15877 infinitely recurse when dealing with pointers to the structure
15878 type within the structure itself. */
15879 set_die_type (die, type, cu);
15880
15881 /* set_die_type should be already done. */
15882 set_descriptive_type (type, die, cu);
15883
15884 return type;
15885 }
15886
15887 /* A helper for process_structure_scope that handles a single member
15888 DIE. */
15889
15890 static void
15891 handle_struct_member_die (struct die_info *child_die, struct type *type,
15892 struct field_info *fi,
15893 std::vector<struct symbol *> *template_args,
15894 struct dwarf2_cu *cu)
15895 {
15896 if (child_die->tag == DW_TAG_member
15897 || child_die->tag == DW_TAG_variable
15898 || child_die->tag == DW_TAG_variant_part)
15899 {
15900 /* NOTE: carlton/2002-11-05: A C++ static data member
15901 should be a DW_TAG_member that is a declaration, but
15902 all versions of G++ as of this writing (so through at
15903 least 3.2.1) incorrectly generate DW_TAG_variable
15904 tags for them instead. */
15905 dwarf2_add_field (fi, child_die, cu);
15906 }
15907 else if (child_die->tag == DW_TAG_subprogram)
15908 {
15909 /* Rust doesn't have member functions in the C++ sense.
15910 However, it does emit ordinary functions as children
15911 of a struct DIE. */
15912 if (cu->language == language_rust)
15913 read_func_scope (child_die, cu);
15914 else
15915 {
15916 /* C++ member function. */
15917 dwarf2_add_member_fn (fi, child_die, type, cu);
15918 }
15919 }
15920 else if (child_die->tag == DW_TAG_inheritance)
15921 {
15922 /* C++ base class field. */
15923 dwarf2_add_field (fi, child_die, cu);
15924 }
15925 else if (type_can_define_types (child_die))
15926 dwarf2_add_type_defn (fi, child_die, cu);
15927 else if (child_die->tag == DW_TAG_template_type_param
15928 || child_die->tag == DW_TAG_template_value_param)
15929 {
15930 struct symbol *arg = new_symbol (child_die, NULL, cu);
15931
15932 if (arg != NULL)
15933 template_args->push_back (arg);
15934 }
15935 else if (child_die->tag == DW_TAG_variant)
15936 {
15937 /* In a variant we want to get the discriminant and also add a
15938 field for our sole member child. */
15939 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15940
15941 for (struct die_info *variant_child = child_die->child;
15942 variant_child != NULL;
15943 variant_child = sibling_die (variant_child))
15944 {
15945 if (variant_child->tag == DW_TAG_member)
15946 {
15947 handle_struct_member_die (variant_child, type, fi,
15948 template_args, cu);
15949 /* Only handle the one. */
15950 break;
15951 }
15952 }
15953
15954 /* We don't handle this but we might as well report it if we see
15955 it. */
15956 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15957 complaint (_("DW_AT_discr_list is not supported yet"
15958 " - DIE at %s [in module %s]"),
15959 sect_offset_str (child_die->sect_off),
15960 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15961
15962 /* The first field was just added, so we can stash the
15963 discriminant there. */
15964 gdb_assert (!fi->fields.empty ());
15965 if (discr == NULL)
15966 fi->fields.back ().variant.default_branch = true;
15967 else
15968 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15969 }
15970 }
15971
15972 /* Finish creating a structure or union type, including filling in
15973 its members and creating a symbol for it. */
15974
15975 static void
15976 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15977 {
15978 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15979 struct die_info *child_die;
15980 struct type *type;
15981
15982 type = get_die_type (die, cu);
15983 if (type == NULL)
15984 type = read_structure_type (die, cu);
15985
15986 /* When reading a DW_TAG_variant_part, we need to notice when we
15987 read the discriminant member, so we can record it later in the
15988 discriminant_info. */
15989 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15990 sect_offset discr_offset;
15991 bool has_template_parameters = false;
15992
15993 if (is_variant_part)
15994 {
15995 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15996 if (discr == NULL)
15997 {
15998 /* Maybe it's a univariant form, an extension we support.
15999 In this case arrange not to check the offset. */
16000 is_variant_part = false;
16001 }
16002 else if (attr_form_is_ref (discr))
16003 {
16004 struct dwarf2_cu *target_cu = cu;
16005 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16006
16007 discr_offset = target_die->sect_off;
16008 }
16009 else
16010 {
16011 complaint (_("DW_AT_discr does not have DIE reference form"
16012 " - DIE at %s [in module %s]"),
16013 sect_offset_str (die->sect_off),
16014 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16015 is_variant_part = false;
16016 }
16017 }
16018
16019 if (die->child != NULL && ! die_is_declaration (die, cu))
16020 {
16021 struct field_info fi;
16022 std::vector<struct symbol *> template_args;
16023
16024 child_die = die->child;
16025
16026 while (child_die && child_die->tag)
16027 {
16028 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16029
16030 if (is_variant_part && discr_offset == child_die->sect_off)
16031 fi.fields.back ().variant.is_discriminant = true;
16032
16033 child_die = sibling_die (child_die);
16034 }
16035
16036 /* Attach template arguments to type. */
16037 if (!template_args.empty ())
16038 {
16039 has_template_parameters = true;
16040 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16041 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16042 TYPE_TEMPLATE_ARGUMENTS (type)
16043 = XOBNEWVEC (&objfile->objfile_obstack,
16044 struct symbol *,
16045 TYPE_N_TEMPLATE_ARGUMENTS (type));
16046 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16047 template_args.data (),
16048 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16049 * sizeof (struct symbol *)));
16050 }
16051
16052 /* Attach fields and member functions to the type. */
16053 if (fi.nfields)
16054 dwarf2_attach_fields_to_type (&fi, type, cu);
16055 if (!fi.fnfieldlists.empty ())
16056 {
16057 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16058
16059 /* Get the type which refers to the base class (possibly this
16060 class itself) which contains the vtable pointer for the current
16061 class from the DW_AT_containing_type attribute. This use of
16062 DW_AT_containing_type is a GNU extension. */
16063
16064 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16065 {
16066 struct type *t = die_containing_type (die, cu);
16067
16068 set_type_vptr_basetype (type, t);
16069 if (type == t)
16070 {
16071 int i;
16072
16073 /* Our own class provides vtbl ptr. */
16074 for (i = TYPE_NFIELDS (t) - 1;
16075 i >= TYPE_N_BASECLASSES (t);
16076 --i)
16077 {
16078 const char *fieldname = TYPE_FIELD_NAME (t, i);
16079
16080 if (is_vtable_name (fieldname, cu))
16081 {
16082 set_type_vptr_fieldno (type, i);
16083 break;
16084 }
16085 }
16086
16087 /* Complain if virtual function table field not found. */
16088 if (i < TYPE_N_BASECLASSES (t))
16089 complaint (_("virtual function table pointer "
16090 "not found when defining class '%s'"),
16091 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16092 }
16093 else
16094 {
16095 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16096 }
16097 }
16098 else if (cu->producer
16099 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16100 {
16101 /* The IBM XLC compiler does not provide direct indication
16102 of the containing type, but the vtable pointer is
16103 always named __vfp. */
16104
16105 int i;
16106
16107 for (i = TYPE_NFIELDS (type) - 1;
16108 i >= TYPE_N_BASECLASSES (type);
16109 --i)
16110 {
16111 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16112 {
16113 set_type_vptr_fieldno (type, i);
16114 set_type_vptr_basetype (type, type);
16115 break;
16116 }
16117 }
16118 }
16119 }
16120
16121 /* Copy fi.typedef_field_list linked list elements content into the
16122 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16123 if (!fi.typedef_field_list.empty ())
16124 {
16125 int count = fi.typedef_field_list.size ();
16126
16127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16128 TYPE_TYPEDEF_FIELD_ARRAY (type)
16129 = ((struct decl_field *)
16130 TYPE_ALLOC (type,
16131 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16132 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16133
16134 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16135 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16136 }
16137
16138 /* Copy fi.nested_types_list linked list elements content into the
16139 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16140 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16141 {
16142 int count = fi.nested_types_list.size ();
16143
16144 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16145 TYPE_NESTED_TYPES_ARRAY (type)
16146 = ((struct decl_field *)
16147 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16148 TYPE_NESTED_TYPES_COUNT (type) = count;
16149
16150 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16151 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16152 }
16153 }
16154
16155 quirk_gcc_member_function_pointer (type, objfile);
16156 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16157 cu->rust_unions.push_back (type);
16158
16159 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16160 snapshots) has been known to create a die giving a declaration
16161 for a class that has, as a child, a die giving a definition for a
16162 nested class. So we have to process our children even if the
16163 current die is a declaration. Normally, of course, a declaration
16164 won't have any children at all. */
16165
16166 child_die = die->child;
16167
16168 while (child_die != NULL && child_die->tag)
16169 {
16170 if (child_die->tag == DW_TAG_member
16171 || child_die->tag == DW_TAG_variable
16172 || child_die->tag == DW_TAG_inheritance
16173 || child_die->tag == DW_TAG_template_value_param
16174 || child_die->tag == DW_TAG_template_type_param)
16175 {
16176 /* Do nothing. */
16177 }
16178 else
16179 process_die (child_die, cu);
16180
16181 child_die = sibling_die (child_die);
16182 }
16183
16184 /* Do not consider external references. According to the DWARF standard,
16185 these DIEs are identified by the fact that they have no byte_size
16186 attribute, and a declaration attribute. */
16187 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16188 || !die_is_declaration (die, cu))
16189 {
16190 struct symbol *sym = new_symbol (die, type, cu);
16191
16192 if (has_template_parameters)
16193 {
16194 /* Make sure that the symtab is set on the new symbols.
16195 Even though they don't appear in this symtab directly,
16196 other parts of gdb assume that symbols do, and this is
16197 reasonably true. */
16198 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16199 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16200 symbol_symtab (sym));
16201 }
16202 }
16203 }
16204
16205 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16206 update TYPE using some information only available in DIE's children. */
16207
16208 static void
16209 update_enumeration_type_from_children (struct die_info *die,
16210 struct type *type,
16211 struct dwarf2_cu *cu)
16212 {
16213 struct die_info *child_die;
16214 int unsigned_enum = 1;
16215 int flag_enum = 1;
16216 ULONGEST mask = 0;
16217
16218 auto_obstack obstack;
16219
16220 for (child_die = die->child;
16221 child_die != NULL && child_die->tag;
16222 child_die = sibling_die (child_die))
16223 {
16224 struct attribute *attr;
16225 LONGEST value;
16226 const gdb_byte *bytes;
16227 struct dwarf2_locexpr_baton *baton;
16228 const char *name;
16229
16230 if (child_die->tag != DW_TAG_enumerator)
16231 continue;
16232
16233 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16234 if (attr == NULL)
16235 continue;
16236
16237 name = dwarf2_name (child_die, cu);
16238 if (name == NULL)
16239 name = "<anonymous enumerator>";
16240
16241 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16242 &value, &bytes, &baton);
16243 if (value < 0)
16244 {
16245 unsigned_enum = 0;
16246 flag_enum = 0;
16247 }
16248 else if ((mask & value) != 0)
16249 flag_enum = 0;
16250 else
16251 mask |= value;
16252
16253 /* If we already know that the enum type is neither unsigned, nor
16254 a flag type, no need to look at the rest of the enumerates. */
16255 if (!unsigned_enum && !flag_enum)
16256 break;
16257 }
16258
16259 if (unsigned_enum)
16260 TYPE_UNSIGNED (type) = 1;
16261 if (flag_enum)
16262 TYPE_FLAG_ENUM (type) = 1;
16263 }
16264
16265 /* Given a DW_AT_enumeration_type die, set its type. We do not
16266 complete the type's fields yet, or create any symbols. */
16267
16268 static struct type *
16269 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16270 {
16271 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16272 struct type *type;
16273 struct attribute *attr;
16274 const char *name;
16275
16276 /* If the definition of this type lives in .debug_types, read that type.
16277 Don't follow DW_AT_specification though, that will take us back up
16278 the chain and we want to go down. */
16279 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16280 if (attr)
16281 {
16282 type = get_DW_AT_signature_type (die, attr, cu);
16283
16284 /* The type's CU may not be the same as CU.
16285 Ensure TYPE is recorded with CU in die_type_hash. */
16286 return set_die_type (die, type, cu);
16287 }
16288
16289 type = alloc_type (objfile);
16290
16291 TYPE_CODE (type) = TYPE_CODE_ENUM;
16292 name = dwarf2_full_name (NULL, die, cu);
16293 if (name != NULL)
16294 TYPE_NAME (type) = name;
16295
16296 attr = dwarf2_attr (die, DW_AT_type, cu);
16297 if (attr != NULL)
16298 {
16299 struct type *underlying_type = die_type (die, cu);
16300
16301 TYPE_TARGET_TYPE (type) = underlying_type;
16302 }
16303
16304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16305 if (attr)
16306 {
16307 TYPE_LENGTH (type) = DW_UNSND (attr);
16308 }
16309 else
16310 {
16311 TYPE_LENGTH (type) = 0;
16312 }
16313
16314 maybe_set_alignment (cu, die, type);
16315
16316 /* The enumeration DIE can be incomplete. In Ada, any type can be
16317 declared as private in the package spec, and then defined only
16318 inside the package body. Such types are known as Taft Amendment
16319 Types. When another package uses such a type, an incomplete DIE
16320 may be generated by the compiler. */
16321 if (die_is_declaration (die, cu))
16322 TYPE_STUB (type) = 1;
16323
16324 /* Finish the creation of this type by using the enum's children.
16325 We must call this even when the underlying type has been provided
16326 so that we can determine if we're looking at a "flag" enum. */
16327 update_enumeration_type_from_children (die, type, cu);
16328
16329 /* If this type has an underlying type that is not a stub, then we
16330 may use its attributes. We always use the "unsigned" attribute
16331 in this situation, because ordinarily we guess whether the type
16332 is unsigned -- but the guess can be wrong and the underlying type
16333 can tell us the reality. However, we defer to a local size
16334 attribute if one exists, because this lets the compiler override
16335 the underlying type if needed. */
16336 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16337 {
16338 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16339 if (TYPE_LENGTH (type) == 0)
16340 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16341 if (TYPE_RAW_ALIGN (type) == 0
16342 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16343 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16344 }
16345
16346 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16347
16348 return set_die_type (die, type, cu);
16349 }
16350
16351 /* Given a pointer to a die which begins an enumeration, process all
16352 the dies that define the members of the enumeration, and create the
16353 symbol for the enumeration type.
16354
16355 NOTE: We reverse the order of the element list. */
16356
16357 static void
16358 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16359 {
16360 struct type *this_type;
16361
16362 this_type = get_die_type (die, cu);
16363 if (this_type == NULL)
16364 this_type = read_enumeration_type (die, cu);
16365
16366 if (die->child != NULL)
16367 {
16368 struct die_info *child_die;
16369 struct symbol *sym;
16370 struct field *fields = NULL;
16371 int num_fields = 0;
16372 const char *name;
16373
16374 child_die = die->child;
16375 while (child_die && child_die->tag)
16376 {
16377 if (child_die->tag != DW_TAG_enumerator)
16378 {
16379 process_die (child_die, cu);
16380 }
16381 else
16382 {
16383 name = dwarf2_name (child_die, cu);
16384 if (name)
16385 {
16386 sym = new_symbol (child_die, this_type, cu);
16387
16388 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16389 {
16390 fields = (struct field *)
16391 xrealloc (fields,
16392 (num_fields + DW_FIELD_ALLOC_CHUNK)
16393 * sizeof (struct field));
16394 }
16395
16396 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16397 FIELD_TYPE (fields[num_fields]) = NULL;
16398 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16399 FIELD_BITSIZE (fields[num_fields]) = 0;
16400
16401 num_fields++;
16402 }
16403 }
16404
16405 child_die = sibling_die (child_die);
16406 }
16407
16408 if (num_fields)
16409 {
16410 TYPE_NFIELDS (this_type) = num_fields;
16411 TYPE_FIELDS (this_type) = (struct field *)
16412 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16413 memcpy (TYPE_FIELDS (this_type), fields,
16414 sizeof (struct field) * num_fields);
16415 xfree (fields);
16416 }
16417 }
16418
16419 /* If we are reading an enum from a .debug_types unit, and the enum
16420 is a declaration, and the enum is not the signatured type in the
16421 unit, then we do not want to add a symbol for it. Adding a
16422 symbol would in some cases obscure the true definition of the
16423 enum, giving users an incomplete type when the definition is
16424 actually available. Note that we do not want to do this for all
16425 enums which are just declarations, because C++0x allows forward
16426 enum declarations. */
16427 if (cu->per_cu->is_debug_types
16428 && die_is_declaration (die, cu))
16429 {
16430 struct signatured_type *sig_type;
16431
16432 sig_type = (struct signatured_type *) cu->per_cu;
16433 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16434 if (sig_type->type_offset_in_section != die->sect_off)
16435 return;
16436 }
16437
16438 new_symbol (die, this_type, cu);
16439 }
16440
16441 /* Extract all information from a DW_TAG_array_type DIE and put it in
16442 the DIE's type field. For now, this only handles one dimensional
16443 arrays. */
16444
16445 static struct type *
16446 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16447 {
16448 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16449 struct die_info *child_die;
16450 struct type *type;
16451 struct type *element_type, *range_type, *index_type;
16452 struct attribute *attr;
16453 const char *name;
16454 struct dynamic_prop *byte_stride_prop = NULL;
16455 unsigned int bit_stride = 0;
16456
16457 element_type = die_type (die, cu);
16458
16459 /* The die_type call above may have already set the type for this DIE. */
16460 type = get_die_type (die, cu);
16461 if (type)
16462 return type;
16463
16464 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16465 if (attr != NULL)
16466 {
16467 int stride_ok;
16468
16469 byte_stride_prop
16470 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16471 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16472 if (!stride_ok)
16473 {
16474 complaint (_("unable to read array DW_AT_byte_stride "
16475 " - DIE at %s [in module %s]"),
16476 sect_offset_str (die->sect_off),
16477 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16478 /* Ignore this attribute. We will likely not be able to print
16479 arrays of this type correctly, but there is little we can do
16480 to help if we cannot read the attribute's value. */
16481 byte_stride_prop = NULL;
16482 }
16483 }
16484
16485 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16486 if (attr != NULL)
16487 bit_stride = DW_UNSND (attr);
16488
16489 /* Irix 6.2 native cc creates array types without children for
16490 arrays with unspecified length. */
16491 if (die->child == NULL)
16492 {
16493 index_type = objfile_type (objfile)->builtin_int;
16494 range_type = create_static_range_type (NULL, index_type, 0, -1);
16495 type = create_array_type_with_stride (NULL, element_type, range_type,
16496 byte_stride_prop, bit_stride);
16497 return set_die_type (die, type, cu);
16498 }
16499
16500 std::vector<struct type *> range_types;
16501 child_die = die->child;
16502 while (child_die && child_die->tag)
16503 {
16504 if (child_die->tag == DW_TAG_subrange_type)
16505 {
16506 struct type *child_type = read_type_die (child_die, cu);
16507
16508 if (child_type != NULL)
16509 {
16510 /* The range type was succesfully read. Save it for the
16511 array type creation. */
16512 range_types.push_back (child_type);
16513 }
16514 }
16515 child_die = sibling_die (child_die);
16516 }
16517
16518 /* Dwarf2 dimensions are output from left to right, create the
16519 necessary array types in backwards order. */
16520
16521 type = element_type;
16522
16523 if (read_array_order (die, cu) == DW_ORD_col_major)
16524 {
16525 int i = 0;
16526
16527 while (i < range_types.size ())
16528 type = create_array_type_with_stride (NULL, type, range_types[i++],
16529 byte_stride_prop, bit_stride);
16530 }
16531 else
16532 {
16533 size_t ndim = range_types.size ();
16534 while (ndim-- > 0)
16535 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16536 byte_stride_prop, bit_stride);
16537 }
16538
16539 /* Understand Dwarf2 support for vector types (like they occur on
16540 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16541 array type. This is not part of the Dwarf2/3 standard yet, but a
16542 custom vendor extension. The main difference between a regular
16543 array and the vector variant is that vectors are passed by value
16544 to functions. */
16545 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16546 if (attr)
16547 make_vector_type (type);
16548
16549 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16550 implementation may choose to implement triple vectors using this
16551 attribute. */
16552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16553 if (attr)
16554 {
16555 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16556 TYPE_LENGTH (type) = DW_UNSND (attr);
16557 else
16558 complaint (_("DW_AT_byte_size for array type smaller "
16559 "than the total size of elements"));
16560 }
16561
16562 name = dwarf2_name (die, cu);
16563 if (name)
16564 TYPE_NAME (type) = name;
16565
16566 maybe_set_alignment (cu, die, type);
16567
16568 /* Install the type in the die. */
16569 set_die_type (die, type, cu);
16570
16571 /* set_die_type should be already done. */
16572 set_descriptive_type (type, die, cu);
16573
16574 return type;
16575 }
16576
16577 static enum dwarf_array_dim_ordering
16578 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16579 {
16580 struct attribute *attr;
16581
16582 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16583
16584 if (attr)
16585 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16586
16587 /* GNU F77 is a special case, as at 08/2004 array type info is the
16588 opposite order to the dwarf2 specification, but data is still
16589 laid out as per normal fortran.
16590
16591 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16592 version checking. */
16593
16594 if (cu->language == language_fortran
16595 && cu->producer && strstr (cu->producer, "GNU F77"))
16596 {
16597 return DW_ORD_row_major;
16598 }
16599
16600 switch (cu->language_defn->la_array_ordering)
16601 {
16602 case array_column_major:
16603 return DW_ORD_col_major;
16604 case array_row_major:
16605 default:
16606 return DW_ORD_row_major;
16607 };
16608 }
16609
16610 /* Extract all information from a DW_TAG_set_type DIE and put it in
16611 the DIE's type field. */
16612
16613 static struct type *
16614 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16615 {
16616 struct type *domain_type, *set_type;
16617 struct attribute *attr;
16618
16619 domain_type = die_type (die, cu);
16620
16621 /* The die_type call above may have already set the type for this DIE. */
16622 set_type = get_die_type (die, cu);
16623 if (set_type)
16624 return set_type;
16625
16626 set_type = create_set_type (NULL, domain_type);
16627
16628 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16629 if (attr)
16630 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16631
16632 maybe_set_alignment (cu, die, set_type);
16633
16634 return set_die_type (die, set_type, cu);
16635 }
16636
16637 /* A helper for read_common_block that creates a locexpr baton.
16638 SYM is the symbol which we are marking as computed.
16639 COMMON_DIE is the DIE for the common block.
16640 COMMON_LOC is the location expression attribute for the common
16641 block itself.
16642 MEMBER_LOC is the location expression attribute for the particular
16643 member of the common block that we are processing.
16644 CU is the CU from which the above come. */
16645
16646 static void
16647 mark_common_block_symbol_computed (struct symbol *sym,
16648 struct die_info *common_die,
16649 struct attribute *common_loc,
16650 struct attribute *member_loc,
16651 struct dwarf2_cu *cu)
16652 {
16653 struct dwarf2_per_objfile *dwarf2_per_objfile
16654 = cu->per_cu->dwarf2_per_objfile;
16655 struct objfile *objfile = dwarf2_per_objfile->objfile;
16656 struct dwarf2_locexpr_baton *baton;
16657 gdb_byte *ptr;
16658 unsigned int cu_off;
16659 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16660 LONGEST offset = 0;
16661
16662 gdb_assert (common_loc && member_loc);
16663 gdb_assert (attr_form_is_block (common_loc));
16664 gdb_assert (attr_form_is_block (member_loc)
16665 || attr_form_is_constant (member_loc));
16666
16667 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16668 baton->per_cu = cu->per_cu;
16669 gdb_assert (baton->per_cu);
16670
16671 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16672
16673 if (attr_form_is_constant (member_loc))
16674 {
16675 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16676 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16677 }
16678 else
16679 baton->size += DW_BLOCK (member_loc)->size;
16680
16681 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16682 baton->data = ptr;
16683
16684 *ptr++ = DW_OP_call4;
16685 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16686 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16687 ptr += 4;
16688
16689 if (attr_form_is_constant (member_loc))
16690 {
16691 *ptr++ = DW_OP_addr;
16692 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16693 ptr += cu->header.addr_size;
16694 }
16695 else
16696 {
16697 /* We have to copy the data here, because DW_OP_call4 will only
16698 use a DW_AT_location attribute. */
16699 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16700 ptr += DW_BLOCK (member_loc)->size;
16701 }
16702
16703 *ptr++ = DW_OP_plus;
16704 gdb_assert (ptr - baton->data == baton->size);
16705
16706 SYMBOL_LOCATION_BATON (sym) = baton;
16707 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16708 }
16709
16710 /* Create appropriate locally-scoped variables for all the
16711 DW_TAG_common_block entries. Also create a struct common_block
16712 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16713 is used to sepate the common blocks name namespace from regular
16714 variable names. */
16715
16716 static void
16717 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16718 {
16719 struct attribute *attr;
16720
16721 attr = dwarf2_attr (die, DW_AT_location, cu);
16722 if (attr)
16723 {
16724 /* Support the .debug_loc offsets. */
16725 if (attr_form_is_block (attr))
16726 {
16727 /* Ok. */
16728 }
16729 else if (attr_form_is_section_offset (attr))
16730 {
16731 dwarf2_complex_location_expr_complaint ();
16732 attr = NULL;
16733 }
16734 else
16735 {
16736 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16737 "common block member");
16738 attr = NULL;
16739 }
16740 }
16741
16742 if (die->child != NULL)
16743 {
16744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16745 struct die_info *child_die;
16746 size_t n_entries = 0, size;
16747 struct common_block *common_block;
16748 struct symbol *sym;
16749
16750 for (child_die = die->child;
16751 child_die && child_die->tag;
16752 child_die = sibling_die (child_die))
16753 ++n_entries;
16754
16755 size = (sizeof (struct common_block)
16756 + (n_entries - 1) * sizeof (struct symbol *));
16757 common_block
16758 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16759 size);
16760 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16761 common_block->n_entries = 0;
16762
16763 for (child_die = die->child;
16764 child_die && child_die->tag;
16765 child_die = sibling_die (child_die))
16766 {
16767 /* Create the symbol in the DW_TAG_common_block block in the current
16768 symbol scope. */
16769 sym = new_symbol (child_die, NULL, cu);
16770 if (sym != NULL)
16771 {
16772 struct attribute *member_loc;
16773
16774 common_block->contents[common_block->n_entries++] = sym;
16775
16776 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16777 cu);
16778 if (member_loc)
16779 {
16780 /* GDB has handled this for a long time, but it is
16781 not specified by DWARF. It seems to have been
16782 emitted by gfortran at least as recently as:
16783 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16784 complaint (_("Variable in common block has "
16785 "DW_AT_data_member_location "
16786 "- DIE at %s [in module %s]"),
16787 sect_offset_str (child_die->sect_off),
16788 objfile_name (objfile));
16789
16790 if (attr_form_is_section_offset (member_loc))
16791 dwarf2_complex_location_expr_complaint ();
16792 else if (attr_form_is_constant (member_loc)
16793 || attr_form_is_block (member_loc))
16794 {
16795 if (attr)
16796 mark_common_block_symbol_computed (sym, die, attr,
16797 member_loc, cu);
16798 }
16799 else
16800 dwarf2_complex_location_expr_complaint ();
16801 }
16802 }
16803 }
16804
16805 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16806 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16807 }
16808 }
16809
16810 /* Create a type for a C++ namespace. */
16811
16812 static struct type *
16813 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16814 {
16815 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16816 const char *previous_prefix, *name;
16817 int is_anonymous;
16818 struct type *type;
16819
16820 /* For extensions, reuse the type of the original namespace. */
16821 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16822 {
16823 struct die_info *ext_die;
16824 struct dwarf2_cu *ext_cu = cu;
16825
16826 ext_die = dwarf2_extension (die, &ext_cu);
16827 type = read_type_die (ext_die, ext_cu);
16828
16829 /* EXT_CU may not be the same as CU.
16830 Ensure TYPE is recorded with CU in die_type_hash. */
16831 return set_die_type (die, type, cu);
16832 }
16833
16834 name = namespace_name (die, &is_anonymous, cu);
16835
16836 /* Now build the name of the current namespace. */
16837
16838 previous_prefix = determine_prefix (die, cu);
16839 if (previous_prefix[0] != '\0')
16840 name = typename_concat (&objfile->objfile_obstack,
16841 previous_prefix, name, 0, cu);
16842
16843 /* Create the type. */
16844 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16845
16846 return set_die_type (die, type, cu);
16847 }
16848
16849 /* Read a namespace scope. */
16850
16851 static void
16852 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16853 {
16854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16855 int is_anonymous;
16856
16857 /* Add a symbol associated to this if we haven't seen the namespace
16858 before. Also, add a using directive if it's an anonymous
16859 namespace. */
16860
16861 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16862 {
16863 struct type *type;
16864
16865 type = read_type_die (die, cu);
16866 new_symbol (die, type, cu);
16867
16868 namespace_name (die, &is_anonymous, cu);
16869 if (is_anonymous)
16870 {
16871 const char *previous_prefix = determine_prefix (die, cu);
16872
16873 std::vector<const char *> excludes;
16874 add_using_directive (using_directives (cu),
16875 previous_prefix, TYPE_NAME (type), NULL,
16876 NULL, excludes, 0, &objfile->objfile_obstack);
16877 }
16878 }
16879
16880 if (die->child != NULL)
16881 {
16882 struct die_info *child_die = die->child;
16883
16884 while (child_die && child_die->tag)
16885 {
16886 process_die (child_die, cu);
16887 child_die = sibling_die (child_die);
16888 }
16889 }
16890 }
16891
16892 /* Read a Fortran module as type. This DIE can be only a declaration used for
16893 imported module. Still we need that type as local Fortran "use ... only"
16894 declaration imports depend on the created type in determine_prefix. */
16895
16896 static struct type *
16897 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16898 {
16899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16900 const char *module_name;
16901 struct type *type;
16902
16903 module_name = dwarf2_name (die, cu);
16904 if (!module_name)
16905 complaint (_("DW_TAG_module has no name, offset %s"),
16906 sect_offset_str (die->sect_off));
16907 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16908
16909 return set_die_type (die, type, cu);
16910 }
16911
16912 /* Read a Fortran module. */
16913
16914 static void
16915 read_module (struct die_info *die, struct dwarf2_cu *cu)
16916 {
16917 struct die_info *child_die = die->child;
16918 struct type *type;
16919
16920 type = read_type_die (die, cu);
16921 new_symbol (die, type, cu);
16922
16923 while (child_die && child_die->tag)
16924 {
16925 process_die (child_die, cu);
16926 child_die = sibling_die (child_die);
16927 }
16928 }
16929
16930 /* Return the name of the namespace represented by DIE. Set
16931 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16932 namespace. */
16933
16934 static const char *
16935 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16936 {
16937 struct die_info *current_die;
16938 const char *name = NULL;
16939
16940 /* Loop through the extensions until we find a name. */
16941
16942 for (current_die = die;
16943 current_die != NULL;
16944 current_die = dwarf2_extension (die, &cu))
16945 {
16946 /* We don't use dwarf2_name here so that we can detect the absence
16947 of a name -> anonymous namespace. */
16948 name = dwarf2_string_attr (die, DW_AT_name, cu);
16949
16950 if (name != NULL)
16951 break;
16952 }
16953
16954 /* Is it an anonymous namespace? */
16955
16956 *is_anonymous = (name == NULL);
16957 if (*is_anonymous)
16958 name = CP_ANONYMOUS_NAMESPACE_STR;
16959
16960 return name;
16961 }
16962
16963 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16964 the user defined type vector. */
16965
16966 static struct type *
16967 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16968 {
16969 struct gdbarch *gdbarch
16970 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16971 struct comp_unit_head *cu_header = &cu->header;
16972 struct type *type;
16973 struct attribute *attr_byte_size;
16974 struct attribute *attr_address_class;
16975 int byte_size, addr_class;
16976 struct type *target_type;
16977
16978 target_type = die_type (die, cu);
16979
16980 /* The die_type call above may have already set the type for this DIE. */
16981 type = get_die_type (die, cu);
16982 if (type)
16983 return type;
16984
16985 type = lookup_pointer_type (target_type);
16986
16987 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16988 if (attr_byte_size)
16989 byte_size = DW_UNSND (attr_byte_size);
16990 else
16991 byte_size = cu_header->addr_size;
16992
16993 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16994 if (attr_address_class)
16995 addr_class = DW_UNSND (attr_address_class);
16996 else
16997 addr_class = DW_ADDR_none;
16998
16999 ULONGEST alignment = get_alignment (cu, die);
17000
17001 /* If the pointer size, alignment, or address class is different
17002 than the default, create a type variant marked as such and set
17003 the length accordingly. */
17004 if (TYPE_LENGTH (type) != byte_size
17005 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17006 && alignment != TYPE_RAW_ALIGN (type))
17007 || addr_class != DW_ADDR_none)
17008 {
17009 if (gdbarch_address_class_type_flags_p (gdbarch))
17010 {
17011 int type_flags;
17012
17013 type_flags = gdbarch_address_class_type_flags
17014 (gdbarch, byte_size, addr_class);
17015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17016 == 0);
17017 type = make_type_with_address_space (type, type_flags);
17018 }
17019 else if (TYPE_LENGTH (type) != byte_size)
17020 {
17021 complaint (_("invalid pointer size %d"), byte_size);
17022 }
17023 else if (TYPE_RAW_ALIGN (type) != alignment)
17024 {
17025 complaint (_("Invalid DW_AT_alignment"
17026 " - DIE at %s [in module %s]"),
17027 sect_offset_str (die->sect_off),
17028 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17029 }
17030 else
17031 {
17032 /* Should we also complain about unhandled address classes? */
17033 }
17034 }
17035
17036 TYPE_LENGTH (type) = byte_size;
17037 set_type_align (type, alignment);
17038 return set_die_type (die, type, cu);
17039 }
17040
17041 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17042 the user defined type vector. */
17043
17044 static struct type *
17045 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17046 {
17047 struct type *type;
17048 struct type *to_type;
17049 struct type *domain;
17050
17051 to_type = die_type (die, cu);
17052 domain = die_containing_type (die, cu);
17053
17054 /* The calls above may have already set the type for this DIE. */
17055 type = get_die_type (die, cu);
17056 if (type)
17057 return type;
17058
17059 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17060 type = lookup_methodptr_type (to_type);
17061 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17062 {
17063 struct type *new_type
17064 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17065
17066 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17067 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17068 TYPE_VARARGS (to_type));
17069 type = lookup_methodptr_type (new_type);
17070 }
17071 else
17072 type = lookup_memberptr_type (to_type, domain);
17073
17074 return set_die_type (die, type, cu);
17075 }
17076
17077 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17078 the user defined type vector. */
17079
17080 static struct type *
17081 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17082 enum type_code refcode)
17083 {
17084 struct comp_unit_head *cu_header = &cu->header;
17085 struct type *type, *target_type;
17086 struct attribute *attr;
17087
17088 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17089
17090 target_type = die_type (die, cu);
17091
17092 /* The die_type call above may have already set the type for this DIE. */
17093 type = get_die_type (die, cu);
17094 if (type)
17095 return type;
17096
17097 type = lookup_reference_type (target_type, refcode);
17098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17099 if (attr)
17100 {
17101 TYPE_LENGTH (type) = DW_UNSND (attr);
17102 }
17103 else
17104 {
17105 TYPE_LENGTH (type) = cu_header->addr_size;
17106 }
17107 maybe_set_alignment (cu, die, type);
17108 return set_die_type (die, type, cu);
17109 }
17110
17111 /* Add the given cv-qualifiers to the element type of the array. GCC
17112 outputs DWARF type qualifiers that apply to an array, not the
17113 element type. But GDB relies on the array element type to carry
17114 the cv-qualifiers. This mimics section 6.7.3 of the C99
17115 specification. */
17116
17117 static struct type *
17118 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17119 struct type *base_type, int cnst, int voltl)
17120 {
17121 struct type *el_type, *inner_array;
17122
17123 base_type = copy_type (base_type);
17124 inner_array = base_type;
17125
17126 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17127 {
17128 TYPE_TARGET_TYPE (inner_array) =
17129 copy_type (TYPE_TARGET_TYPE (inner_array));
17130 inner_array = TYPE_TARGET_TYPE (inner_array);
17131 }
17132
17133 el_type = TYPE_TARGET_TYPE (inner_array);
17134 cnst |= TYPE_CONST (el_type);
17135 voltl |= TYPE_VOLATILE (el_type);
17136 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17137
17138 return set_die_type (die, base_type, cu);
17139 }
17140
17141 static struct type *
17142 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17143 {
17144 struct type *base_type, *cv_type;
17145
17146 base_type = die_type (die, cu);
17147
17148 /* The die_type call above may have already set the type for this DIE. */
17149 cv_type = get_die_type (die, cu);
17150 if (cv_type)
17151 return cv_type;
17152
17153 /* In case the const qualifier is applied to an array type, the element type
17154 is so qualified, not the array type (section 6.7.3 of C99). */
17155 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17156 return add_array_cv_type (die, cu, base_type, 1, 0);
17157
17158 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17159 return set_die_type (die, cv_type, cu);
17160 }
17161
17162 static struct type *
17163 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17164 {
17165 struct type *base_type, *cv_type;
17166
17167 base_type = die_type (die, cu);
17168
17169 /* The die_type call above may have already set the type for this DIE. */
17170 cv_type = get_die_type (die, cu);
17171 if (cv_type)
17172 return cv_type;
17173
17174 /* In case the volatile qualifier is applied to an array type, the
17175 element type is so qualified, not the array type (section 6.7.3
17176 of C99). */
17177 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17178 return add_array_cv_type (die, cu, base_type, 0, 1);
17179
17180 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17181 return set_die_type (die, cv_type, cu);
17182 }
17183
17184 /* Handle DW_TAG_restrict_type. */
17185
17186 static struct type *
17187 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17188 {
17189 struct type *base_type, *cv_type;
17190
17191 base_type = die_type (die, cu);
17192
17193 /* The die_type call above may have already set the type for this DIE. */
17194 cv_type = get_die_type (die, cu);
17195 if (cv_type)
17196 return cv_type;
17197
17198 cv_type = make_restrict_type (base_type);
17199 return set_die_type (die, cv_type, cu);
17200 }
17201
17202 /* Handle DW_TAG_atomic_type. */
17203
17204 static struct type *
17205 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17206 {
17207 struct type *base_type, *cv_type;
17208
17209 base_type = die_type (die, cu);
17210
17211 /* The die_type call above may have already set the type for this DIE. */
17212 cv_type = get_die_type (die, cu);
17213 if (cv_type)
17214 return cv_type;
17215
17216 cv_type = make_atomic_type (base_type);
17217 return set_die_type (die, cv_type, cu);
17218 }
17219
17220 /* Extract all information from a DW_TAG_string_type DIE and add to
17221 the user defined type vector. It isn't really a user defined type,
17222 but it behaves like one, with other DIE's using an AT_user_def_type
17223 attribute to reference it. */
17224
17225 static struct type *
17226 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17227 {
17228 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17230 struct type *type, *range_type, *index_type, *char_type;
17231 struct attribute *attr;
17232 unsigned int length;
17233
17234 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17235 if (attr)
17236 {
17237 length = DW_UNSND (attr);
17238 }
17239 else
17240 {
17241 /* Check for the DW_AT_byte_size attribute. */
17242 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17243 if (attr)
17244 {
17245 length = DW_UNSND (attr);
17246 }
17247 else
17248 {
17249 length = 1;
17250 }
17251 }
17252
17253 index_type = objfile_type (objfile)->builtin_int;
17254 range_type = create_static_range_type (NULL, index_type, 1, length);
17255 char_type = language_string_char_type (cu->language_defn, gdbarch);
17256 type = create_string_type (NULL, char_type, range_type);
17257
17258 return set_die_type (die, type, cu);
17259 }
17260
17261 /* Assuming that DIE corresponds to a function, returns nonzero
17262 if the function is prototyped. */
17263
17264 static int
17265 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17266 {
17267 struct attribute *attr;
17268
17269 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17270 if (attr && (DW_UNSND (attr) != 0))
17271 return 1;
17272
17273 /* The DWARF standard implies that the DW_AT_prototyped attribute
17274 is only meaninful for C, but the concept also extends to other
17275 languages that allow unprototyped functions (Eg: Objective C).
17276 For all other languages, assume that functions are always
17277 prototyped. */
17278 if (cu->language != language_c
17279 && cu->language != language_objc
17280 && cu->language != language_opencl)
17281 return 1;
17282
17283 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17284 prototyped and unprototyped functions; default to prototyped,
17285 since that is more common in modern code (and RealView warns
17286 about unprototyped functions). */
17287 if (producer_is_realview (cu->producer))
17288 return 1;
17289
17290 return 0;
17291 }
17292
17293 /* Handle DIES due to C code like:
17294
17295 struct foo
17296 {
17297 int (*funcp)(int a, long l);
17298 int b;
17299 };
17300
17301 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17302
17303 static struct type *
17304 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17305 {
17306 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17307 struct type *type; /* Type that this function returns. */
17308 struct type *ftype; /* Function that returns above type. */
17309 struct attribute *attr;
17310
17311 type = die_type (die, cu);
17312
17313 /* The die_type call above may have already set the type for this DIE. */
17314 ftype = get_die_type (die, cu);
17315 if (ftype)
17316 return ftype;
17317
17318 ftype = lookup_function_type (type);
17319
17320 if (prototyped_function_p (die, cu))
17321 TYPE_PROTOTYPED (ftype) = 1;
17322
17323 /* Store the calling convention in the type if it's available in
17324 the subroutine die. Otherwise set the calling convention to
17325 the default value DW_CC_normal. */
17326 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17327 if (attr)
17328 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17329 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17330 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17331 else
17332 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17333
17334 /* Record whether the function returns normally to its caller or not
17335 if the DWARF producer set that information. */
17336 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17337 if (attr && (DW_UNSND (attr) != 0))
17338 TYPE_NO_RETURN (ftype) = 1;
17339
17340 /* We need to add the subroutine type to the die immediately so
17341 we don't infinitely recurse when dealing with parameters
17342 declared as the same subroutine type. */
17343 set_die_type (die, ftype, cu);
17344
17345 if (die->child != NULL)
17346 {
17347 struct type *void_type = objfile_type (objfile)->builtin_void;
17348 struct die_info *child_die;
17349 int nparams, iparams;
17350
17351 /* Count the number of parameters.
17352 FIXME: GDB currently ignores vararg functions, but knows about
17353 vararg member functions. */
17354 nparams = 0;
17355 child_die = die->child;
17356 while (child_die && child_die->tag)
17357 {
17358 if (child_die->tag == DW_TAG_formal_parameter)
17359 nparams++;
17360 else if (child_die->tag == DW_TAG_unspecified_parameters)
17361 TYPE_VARARGS (ftype) = 1;
17362 child_die = sibling_die (child_die);
17363 }
17364
17365 /* Allocate storage for parameters and fill them in. */
17366 TYPE_NFIELDS (ftype) = nparams;
17367 TYPE_FIELDS (ftype) = (struct field *)
17368 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17369
17370 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17371 even if we error out during the parameters reading below. */
17372 for (iparams = 0; iparams < nparams; iparams++)
17373 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17374
17375 iparams = 0;
17376 child_die = die->child;
17377 while (child_die && child_die->tag)
17378 {
17379 if (child_die->tag == DW_TAG_formal_parameter)
17380 {
17381 struct type *arg_type;
17382
17383 /* DWARF version 2 has no clean way to discern C++
17384 static and non-static member functions. G++ helps
17385 GDB by marking the first parameter for non-static
17386 member functions (which is the this pointer) as
17387 artificial. We pass this information to
17388 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17389
17390 DWARF version 3 added DW_AT_object_pointer, which GCC
17391 4.5 does not yet generate. */
17392 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17393 if (attr)
17394 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17395 else
17396 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17397 arg_type = die_type (child_die, cu);
17398
17399 /* RealView does not mark THIS as const, which the testsuite
17400 expects. GCC marks THIS as const in method definitions,
17401 but not in the class specifications (GCC PR 43053). */
17402 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17403 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17404 {
17405 int is_this = 0;
17406 struct dwarf2_cu *arg_cu = cu;
17407 const char *name = dwarf2_name (child_die, cu);
17408
17409 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17410 if (attr)
17411 {
17412 /* If the compiler emits this, use it. */
17413 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17414 is_this = 1;
17415 }
17416 else if (name && strcmp (name, "this") == 0)
17417 /* Function definitions will have the argument names. */
17418 is_this = 1;
17419 else if (name == NULL && iparams == 0)
17420 /* Declarations may not have the names, so like
17421 elsewhere in GDB, assume an artificial first
17422 argument is "this". */
17423 is_this = 1;
17424
17425 if (is_this)
17426 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17427 arg_type, 0);
17428 }
17429
17430 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17431 iparams++;
17432 }
17433 child_die = sibling_die (child_die);
17434 }
17435 }
17436
17437 return ftype;
17438 }
17439
17440 static struct type *
17441 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17442 {
17443 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17444 const char *name = NULL;
17445 struct type *this_type, *target_type;
17446
17447 name = dwarf2_full_name (NULL, die, cu);
17448 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17449 TYPE_TARGET_STUB (this_type) = 1;
17450 set_die_type (die, this_type, cu);
17451 target_type = die_type (die, cu);
17452 if (target_type != this_type)
17453 TYPE_TARGET_TYPE (this_type) = target_type;
17454 else
17455 {
17456 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17457 spec and cause infinite loops in GDB. */
17458 complaint (_("Self-referential DW_TAG_typedef "
17459 "- DIE at %s [in module %s]"),
17460 sect_offset_str (die->sect_off), objfile_name (objfile));
17461 TYPE_TARGET_TYPE (this_type) = NULL;
17462 }
17463 return this_type;
17464 }
17465
17466 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17467 (which may be different from NAME) to the architecture back-end to allow
17468 it to guess the correct format if necessary. */
17469
17470 static struct type *
17471 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17472 const char *name_hint)
17473 {
17474 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17475 const struct floatformat **format;
17476 struct type *type;
17477
17478 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17479 if (format)
17480 type = init_float_type (objfile, bits, name, format);
17481 else
17482 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17483
17484 return type;
17485 }
17486
17487 /* Find a representation of a given base type and install
17488 it in the TYPE field of the die. */
17489
17490 static struct type *
17491 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17492 {
17493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17494 struct type *type;
17495 struct attribute *attr;
17496 int encoding = 0, bits = 0;
17497 const char *name;
17498
17499 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17500 if (attr)
17501 {
17502 encoding = DW_UNSND (attr);
17503 }
17504 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17505 if (attr)
17506 {
17507 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17508 }
17509 name = dwarf2_name (die, cu);
17510 if (!name)
17511 {
17512 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17513 }
17514
17515 switch (encoding)
17516 {
17517 case DW_ATE_address:
17518 /* Turn DW_ATE_address into a void * pointer. */
17519 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17520 type = init_pointer_type (objfile, bits, name, type);
17521 break;
17522 case DW_ATE_boolean:
17523 type = init_boolean_type (objfile, bits, 1, name);
17524 break;
17525 case DW_ATE_complex_float:
17526 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17527 type = init_complex_type (objfile, name, type);
17528 break;
17529 case DW_ATE_decimal_float:
17530 type = init_decfloat_type (objfile, bits, name);
17531 break;
17532 case DW_ATE_float:
17533 type = dwarf2_init_float_type (objfile, bits, name, name);
17534 break;
17535 case DW_ATE_signed:
17536 type = init_integer_type (objfile, bits, 0, name);
17537 break;
17538 case DW_ATE_unsigned:
17539 if (cu->language == language_fortran
17540 && name
17541 && startswith (name, "character("))
17542 type = init_character_type (objfile, bits, 1, name);
17543 else
17544 type = init_integer_type (objfile, bits, 1, name);
17545 break;
17546 case DW_ATE_signed_char:
17547 if (cu->language == language_ada || cu->language == language_m2
17548 || cu->language == language_pascal
17549 || cu->language == language_fortran)
17550 type = init_character_type (objfile, bits, 0, name);
17551 else
17552 type = init_integer_type (objfile, bits, 0, name);
17553 break;
17554 case DW_ATE_unsigned_char:
17555 if (cu->language == language_ada || cu->language == language_m2
17556 || cu->language == language_pascal
17557 || cu->language == language_fortran
17558 || cu->language == language_rust)
17559 type = init_character_type (objfile, bits, 1, name);
17560 else
17561 type = init_integer_type (objfile, bits, 1, name);
17562 break;
17563 case DW_ATE_UTF:
17564 {
17565 gdbarch *arch = get_objfile_arch (objfile);
17566
17567 if (bits == 16)
17568 type = builtin_type (arch)->builtin_char16;
17569 else if (bits == 32)
17570 type = builtin_type (arch)->builtin_char32;
17571 else
17572 {
17573 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17574 bits);
17575 type = init_integer_type (objfile, bits, 1, name);
17576 }
17577 return set_die_type (die, type, cu);
17578 }
17579 break;
17580
17581 default:
17582 complaint (_("unsupported DW_AT_encoding: '%s'"),
17583 dwarf_type_encoding_name (encoding));
17584 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17585 break;
17586 }
17587
17588 if (name && strcmp (name, "char") == 0)
17589 TYPE_NOSIGN (type) = 1;
17590
17591 maybe_set_alignment (cu, die, type);
17592
17593 return set_die_type (die, type, cu);
17594 }
17595
17596 /* Parse dwarf attribute if it's a block, reference or constant and put the
17597 resulting value of the attribute into struct bound_prop.
17598 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17599
17600 static int
17601 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17602 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17603 {
17604 struct dwarf2_property_baton *baton;
17605 struct obstack *obstack
17606 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17607
17608 if (attr == NULL || prop == NULL)
17609 return 0;
17610
17611 if (attr_form_is_block (attr))
17612 {
17613 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17614 baton->referenced_type = NULL;
17615 baton->locexpr.per_cu = cu->per_cu;
17616 baton->locexpr.size = DW_BLOCK (attr)->size;
17617 baton->locexpr.data = DW_BLOCK (attr)->data;
17618 prop->data.baton = baton;
17619 prop->kind = PROP_LOCEXPR;
17620 gdb_assert (prop->data.baton != NULL);
17621 }
17622 else if (attr_form_is_ref (attr))
17623 {
17624 struct dwarf2_cu *target_cu = cu;
17625 struct die_info *target_die;
17626 struct attribute *target_attr;
17627
17628 target_die = follow_die_ref (die, attr, &target_cu);
17629 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17630 if (target_attr == NULL)
17631 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17632 target_cu);
17633 if (target_attr == NULL)
17634 return 0;
17635
17636 switch (target_attr->name)
17637 {
17638 case DW_AT_location:
17639 if (attr_form_is_section_offset (target_attr))
17640 {
17641 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17642 baton->referenced_type = die_type (target_die, target_cu);
17643 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17644 prop->data.baton = baton;
17645 prop->kind = PROP_LOCLIST;
17646 gdb_assert (prop->data.baton != NULL);
17647 }
17648 else if (attr_form_is_block (target_attr))
17649 {
17650 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17651 baton->referenced_type = die_type (target_die, target_cu);
17652 baton->locexpr.per_cu = cu->per_cu;
17653 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17654 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17655 prop->data.baton = baton;
17656 prop->kind = PROP_LOCEXPR;
17657 gdb_assert (prop->data.baton != NULL);
17658 }
17659 else
17660 {
17661 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17662 "dynamic property");
17663 return 0;
17664 }
17665 break;
17666 case DW_AT_data_member_location:
17667 {
17668 LONGEST offset;
17669
17670 if (!handle_data_member_location (target_die, target_cu,
17671 &offset))
17672 return 0;
17673
17674 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17675 baton->referenced_type = read_type_die (target_die->parent,
17676 target_cu);
17677 baton->offset_info.offset = offset;
17678 baton->offset_info.type = die_type (target_die, target_cu);
17679 prop->data.baton = baton;
17680 prop->kind = PROP_ADDR_OFFSET;
17681 break;
17682 }
17683 }
17684 }
17685 else if (attr_form_is_constant (attr))
17686 {
17687 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17688 prop->kind = PROP_CONST;
17689 }
17690 else
17691 {
17692 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17693 dwarf2_name (die, cu));
17694 return 0;
17695 }
17696
17697 return 1;
17698 }
17699
17700 /* Read the given DW_AT_subrange DIE. */
17701
17702 static struct type *
17703 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17704 {
17705 struct type *base_type, *orig_base_type;
17706 struct type *range_type;
17707 struct attribute *attr;
17708 struct dynamic_prop low, high;
17709 int low_default_is_valid;
17710 int high_bound_is_count = 0;
17711 const char *name;
17712 LONGEST negative_mask;
17713
17714 orig_base_type = die_type (die, cu);
17715 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17716 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17717 creating the range type, but we use the result of check_typedef
17718 when examining properties of the type. */
17719 base_type = check_typedef (orig_base_type);
17720
17721 /* The die_type call above may have already set the type for this DIE. */
17722 range_type = get_die_type (die, cu);
17723 if (range_type)
17724 return range_type;
17725
17726 low.kind = PROP_CONST;
17727 high.kind = PROP_CONST;
17728 high.data.const_val = 0;
17729
17730 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17731 omitting DW_AT_lower_bound. */
17732 switch (cu->language)
17733 {
17734 case language_c:
17735 case language_cplus:
17736 low.data.const_val = 0;
17737 low_default_is_valid = 1;
17738 break;
17739 case language_fortran:
17740 low.data.const_val = 1;
17741 low_default_is_valid = 1;
17742 break;
17743 case language_d:
17744 case language_objc:
17745 case language_rust:
17746 low.data.const_val = 0;
17747 low_default_is_valid = (cu->header.version >= 4);
17748 break;
17749 case language_ada:
17750 case language_m2:
17751 case language_pascal:
17752 low.data.const_val = 1;
17753 low_default_is_valid = (cu->header.version >= 4);
17754 break;
17755 default:
17756 low.data.const_val = 0;
17757 low_default_is_valid = 0;
17758 break;
17759 }
17760
17761 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17762 if (attr)
17763 attr_to_dynamic_prop (attr, die, cu, &low);
17764 else if (!low_default_is_valid)
17765 complaint (_("Missing DW_AT_lower_bound "
17766 "- DIE at %s [in module %s]"),
17767 sect_offset_str (die->sect_off),
17768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17769
17770 struct attribute *attr_ub, *attr_count;
17771 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17772 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17773 {
17774 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17775 if (attr_to_dynamic_prop (attr, die, cu, &high))
17776 {
17777 /* If bounds are constant do the final calculation here. */
17778 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17779 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17780 else
17781 high_bound_is_count = 1;
17782 }
17783 else
17784 {
17785 if (attr_ub != NULL)
17786 complaint (_("Unresolved DW_AT_upper_bound "
17787 "- DIE at %s [in module %s]"),
17788 sect_offset_str (die->sect_off),
17789 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17790 if (attr_count != NULL)
17791 complaint (_("Unresolved DW_AT_count "
17792 "- DIE at %s [in module %s]"),
17793 sect_offset_str (die->sect_off),
17794 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17795 }
17796
17797 }
17798
17799 /* Dwarf-2 specifications explicitly allows to create subrange types
17800 without specifying a base type.
17801 In that case, the base type must be set to the type of
17802 the lower bound, upper bound or count, in that order, if any of these
17803 three attributes references an object that has a type.
17804 If no base type is found, the Dwarf-2 specifications say that
17805 a signed integer type of size equal to the size of an address should
17806 be used.
17807 For the following C code: `extern char gdb_int [];'
17808 GCC produces an empty range DIE.
17809 FIXME: muller/2010-05-28: Possible references to object for low bound,
17810 high bound or count are not yet handled by this code. */
17811 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17812 {
17813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17815 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17816 struct type *int_type = objfile_type (objfile)->builtin_int;
17817
17818 /* Test "int", "long int", and "long long int" objfile types,
17819 and select the first one having a size above or equal to the
17820 architecture address size. */
17821 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17822 base_type = int_type;
17823 else
17824 {
17825 int_type = objfile_type (objfile)->builtin_long;
17826 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17827 base_type = int_type;
17828 else
17829 {
17830 int_type = objfile_type (objfile)->builtin_long_long;
17831 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17832 base_type = int_type;
17833 }
17834 }
17835 }
17836
17837 /* Normally, the DWARF producers are expected to use a signed
17838 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17839 But this is unfortunately not always the case, as witnessed
17840 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17841 is used instead. To work around that ambiguity, we treat
17842 the bounds as signed, and thus sign-extend their values, when
17843 the base type is signed. */
17844 negative_mask =
17845 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17846 if (low.kind == PROP_CONST
17847 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17848 low.data.const_val |= negative_mask;
17849 if (high.kind == PROP_CONST
17850 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17851 high.data.const_val |= negative_mask;
17852
17853 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17854
17855 if (high_bound_is_count)
17856 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17857
17858 /* Ada expects an empty array on no boundary attributes. */
17859 if (attr == NULL && cu->language != language_ada)
17860 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17861
17862 name = dwarf2_name (die, cu);
17863 if (name)
17864 TYPE_NAME (range_type) = name;
17865
17866 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17867 if (attr)
17868 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17869
17870 maybe_set_alignment (cu, die, range_type);
17871
17872 set_die_type (die, range_type, cu);
17873
17874 /* set_die_type should be already done. */
17875 set_descriptive_type (range_type, die, cu);
17876
17877 return range_type;
17878 }
17879
17880 static struct type *
17881 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17882 {
17883 struct type *type;
17884
17885 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17886 NULL);
17887 TYPE_NAME (type) = dwarf2_name (die, cu);
17888
17889 /* In Ada, an unspecified type is typically used when the description
17890 of the type is defered to a different unit. When encountering
17891 such a type, we treat it as a stub, and try to resolve it later on,
17892 when needed. */
17893 if (cu->language == language_ada)
17894 TYPE_STUB (type) = 1;
17895
17896 return set_die_type (die, type, cu);
17897 }
17898
17899 /* Read a single die and all its descendents. Set the die's sibling
17900 field to NULL; set other fields in the die correctly, and set all
17901 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17902 location of the info_ptr after reading all of those dies. PARENT
17903 is the parent of the die in question. */
17904
17905 static struct die_info *
17906 read_die_and_children (const struct die_reader_specs *reader,
17907 const gdb_byte *info_ptr,
17908 const gdb_byte **new_info_ptr,
17909 struct die_info *parent)
17910 {
17911 struct die_info *die;
17912 const gdb_byte *cur_ptr;
17913 int has_children;
17914
17915 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17916 if (die == NULL)
17917 {
17918 *new_info_ptr = cur_ptr;
17919 return NULL;
17920 }
17921 store_in_ref_table (die, reader->cu);
17922
17923 if (has_children)
17924 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17925 else
17926 {
17927 die->child = NULL;
17928 *new_info_ptr = cur_ptr;
17929 }
17930
17931 die->sibling = NULL;
17932 die->parent = parent;
17933 return die;
17934 }
17935
17936 /* Read a die, all of its descendents, and all of its siblings; set
17937 all of the fields of all of the dies correctly. Arguments are as
17938 in read_die_and_children. */
17939
17940 static struct die_info *
17941 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17942 const gdb_byte *info_ptr,
17943 const gdb_byte **new_info_ptr,
17944 struct die_info *parent)
17945 {
17946 struct die_info *first_die, *last_sibling;
17947 const gdb_byte *cur_ptr;
17948
17949 cur_ptr = info_ptr;
17950 first_die = last_sibling = NULL;
17951
17952 while (1)
17953 {
17954 struct die_info *die
17955 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17956
17957 if (die == NULL)
17958 {
17959 *new_info_ptr = cur_ptr;
17960 return first_die;
17961 }
17962
17963 if (!first_die)
17964 first_die = die;
17965 else
17966 last_sibling->sibling = die;
17967
17968 last_sibling = die;
17969 }
17970 }
17971
17972 /* Read a die, all of its descendents, and all of its siblings; set
17973 all of the fields of all of the dies correctly. Arguments are as
17974 in read_die_and_children.
17975 This the main entry point for reading a DIE and all its children. */
17976
17977 static struct die_info *
17978 read_die_and_siblings (const struct die_reader_specs *reader,
17979 const gdb_byte *info_ptr,
17980 const gdb_byte **new_info_ptr,
17981 struct die_info *parent)
17982 {
17983 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17984 new_info_ptr, parent);
17985
17986 if (dwarf_die_debug)
17987 {
17988 fprintf_unfiltered (gdb_stdlog,
17989 "Read die from %s@0x%x of %s:\n",
17990 get_section_name (reader->die_section),
17991 (unsigned) (info_ptr - reader->die_section->buffer),
17992 bfd_get_filename (reader->abfd));
17993 dump_die (die, dwarf_die_debug);
17994 }
17995
17996 return die;
17997 }
17998
17999 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18000 attributes.
18001 The caller is responsible for filling in the extra attributes
18002 and updating (*DIEP)->num_attrs.
18003 Set DIEP to point to a newly allocated die with its information,
18004 except for its child, sibling, and parent fields.
18005 Set HAS_CHILDREN to tell whether the die has children or not. */
18006
18007 static const gdb_byte *
18008 read_full_die_1 (const struct die_reader_specs *reader,
18009 struct die_info **diep, const gdb_byte *info_ptr,
18010 int *has_children, int num_extra_attrs)
18011 {
18012 unsigned int abbrev_number, bytes_read, i;
18013 struct abbrev_info *abbrev;
18014 struct die_info *die;
18015 struct dwarf2_cu *cu = reader->cu;
18016 bfd *abfd = reader->abfd;
18017
18018 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18019 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18020 info_ptr += bytes_read;
18021 if (!abbrev_number)
18022 {
18023 *diep = NULL;
18024 *has_children = 0;
18025 return info_ptr;
18026 }
18027
18028 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18029 if (!abbrev)
18030 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18031 abbrev_number,
18032 bfd_get_filename (abfd));
18033
18034 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18035 die->sect_off = sect_off;
18036 die->tag = abbrev->tag;
18037 die->abbrev = abbrev_number;
18038
18039 /* Make the result usable.
18040 The caller needs to update num_attrs after adding the extra
18041 attributes. */
18042 die->num_attrs = abbrev->num_attrs;
18043
18044 for (i = 0; i < abbrev->num_attrs; ++i)
18045 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18046 info_ptr);
18047
18048 *diep = die;
18049 *has_children = abbrev->has_children;
18050 return info_ptr;
18051 }
18052
18053 /* Read a die and all its attributes.
18054 Set DIEP to point to a newly allocated die with its information,
18055 except for its child, sibling, and parent fields.
18056 Set HAS_CHILDREN to tell whether the die has children or not. */
18057
18058 static const gdb_byte *
18059 read_full_die (const struct die_reader_specs *reader,
18060 struct die_info **diep, const gdb_byte *info_ptr,
18061 int *has_children)
18062 {
18063 const gdb_byte *result;
18064
18065 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18066
18067 if (dwarf_die_debug)
18068 {
18069 fprintf_unfiltered (gdb_stdlog,
18070 "Read die from %s@0x%x of %s:\n",
18071 get_section_name (reader->die_section),
18072 (unsigned) (info_ptr - reader->die_section->buffer),
18073 bfd_get_filename (reader->abfd));
18074 dump_die (*diep, dwarf_die_debug);
18075 }
18076
18077 return result;
18078 }
18079 \f
18080 /* Abbreviation tables.
18081
18082 In DWARF version 2, the description of the debugging information is
18083 stored in a separate .debug_abbrev section. Before we read any
18084 dies from a section we read in all abbreviations and install them
18085 in a hash table. */
18086
18087 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18088
18089 struct abbrev_info *
18090 abbrev_table::alloc_abbrev ()
18091 {
18092 struct abbrev_info *abbrev;
18093
18094 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18095 memset (abbrev, 0, sizeof (struct abbrev_info));
18096
18097 return abbrev;
18098 }
18099
18100 /* Add an abbreviation to the table. */
18101
18102 void
18103 abbrev_table::add_abbrev (unsigned int abbrev_number,
18104 struct abbrev_info *abbrev)
18105 {
18106 unsigned int hash_number;
18107
18108 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18109 abbrev->next = m_abbrevs[hash_number];
18110 m_abbrevs[hash_number] = abbrev;
18111 }
18112
18113 /* Look up an abbrev in the table.
18114 Returns NULL if the abbrev is not found. */
18115
18116 struct abbrev_info *
18117 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18118 {
18119 unsigned int hash_number;
18120 struct abbrev_info *abbrev;
18121
18122 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18123 abbrev = m_abbrevs[hash_number];
18124
18125 while (abbrev)
18126 {
18127 if (abbrev->number == abbrev_number)
18128 return abbrev;
18129 abbrev = abbrev->next;
18130 }
18131 return NULL;
18132 }
18133
18134 /* Read in an abbrev table. */
18135
18136 static abbrev_table_up
18137 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18138 struct dwarf2_section_info *section,
18139 sect_offset sect_off)
18140 {
18141 struct objfile *objfile = dwarf2_per_objfile->objfile;
18142 bfd *abfd = get_section_bfd_owner (section);
18143 const gdb_byte *abbrev_ptr;
18144 struct abbrev_info *cur_abbrev;
18145 unsigned int abbrev_number, bytes_read, abbrev_name;
18146 unsigned int abbrev_form;
18147 struct attr_abbrev *cur_attrs;
18148 unsigned int allocated_attrs;
18149
18150 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18151
18152 dwarf2_read_section (objfile, section);
18153 abbrev_ptr = section->buffer + to_underlying (sect_off);
18154 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18155 abbrev_ptr += bytes_read;
18156
18157 allocated_attrs = ATTR_ALLOC_CHUNK;
18158 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18159
18160 /* Loop until we reach an abbrev number of 0. */
18161 while (abbrev_number)
18162 {
18163 cur_abbrev = abbrev_table->alloc_abbrev ();
18164
18165 /* read in abbrev header */
18166 cur_abbrev->number = abbrev_number;
18167 cur_abbrev->tag
18168 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18169 abbrev_ptr += bytes_read;
18170 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18171 abbrev_ptr += 1;
18172
18173 /* now read in declarations */
18174 for (;;)
18175 {
18176 LONGEST implicit_const;
18177
18178 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18179 abbrev_ptr += bytes_read;
18180 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18181 abbrev_ptr += bytes_read;
18182 if (abbrev_form == DW_FORM_implicit_const)
18183 {
18184 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18185 &bytes_read);
18186 abbrev_ptr += bytes_read;
18187 }
18188 else
18189 {
18190 /* Initialize it due to a false compiler warning. */
18191 implicit_const = -1;
18192 }
18193
18194 if (abbrev_name == 0)
18195 break;
18196
18197 if (cur_abbrev->num_attrs == allocated_attrs)
18198 {
18199 allocated_attrs += ATTR_ALLOC_CHUNK;
18200 cur_attrs
18201 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18202 }
18203
18204 cur_attrs[cur_abbrev->num_attrs].name
18205 = (enum dwarf_attribute) abbrev_name;
18206 cur_attrs[cur_abbrev->num_attrs].form
18207 = (enum dwarf_form) abbrev_form;
18208 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18209 ++cur_abbrev->num_attrs;
18210 }
18211
18212 cur_abbrev->attrs =
18213 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18214 cur_abbrev->num_attrs);
18215 memcpy (cur_abbrev->attrs, cur_attrs,
18216 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18217
18218 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18219
18220 /* Get next abbreviation.
18221 Under Irix6 the abbreviations for a compilation unit are not
18222 always properly terminated with an abbrev number of 0.
18223 Exit loop if we encounter an abbreviation which we have
18224 already read (which means we are about to read the abbreviations
18225 for the next compile unit) or if the end of the abbreviation
18226 table is reached. */
18227 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18228 break;
18229 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18230 abbrev_ptr += bytes_read;
18231 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18232 break;
18233 }
18234
18235 xfree (cur_attrs);
18236 return abbrev_table;
18237 }
18238
18239 /* Returns nonzero if TAG represents a type that we might generate a partial
18240 symbol for. */
18241
18242 static int
18243 is_type_tag_for_partial (int tag)
18244 {
18245 switch (tag)
18246 {
18247 #if 0
18248 /* Some types that would be reasonable to generate partial symbols for,
18249 that we don't at present. */
18250 case DW_TAG_array_type:
18251 case DW_TAG_file_type:
18252 case DW_TAG_ptr_to_member_type:
18253 case DW_TAG_set_type:
18254 case DW_TAG_string_type:
18255 case DW_TAG_subroutine_type:
18256 #endif
18257 case DW_TAG_base_type:
18258 case DW_TAG_class_type:
18259 case DW_TAG_interface_type:
18260 case DW_TAG_enumeration_type:
18261 case DW_TAG_structure_type:
18262 case DW_TAG_subrange_type:
18263 case DW_TAG_typedef:
18264 case DW_TAG_union_type:
18265 return 1;
18266 default:
18267 return 0;
18268 }
18269 }
18270
18271 /* Load all DIEs that are interesting for partial symbols into memory. */
18272
18273 static struct partial_die_info *
18274 load_partial_dies (const struct die_reader_specs *reader,
18275 const gdb_byte *info_ptr, int building_psymtab)
18276 {
18277 struct dwarf2_cu *cu = reader->cu;
18278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18279 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18280 unsigned int bytes_read;
18281 unsigned int load_all = 0;
18282 int nesting_level = 1;
18283
18284 parent_die = NULL;
18285 last_die = NULL;
18286
18287 gdb_assert (cu->per_cu != NULL);
18288 if (cu->per_cu->load_all_dies)
18289 load_all = 1;
18290
18291 cu->partial_dies
18292 = htab_create_alloc_ex (cu->header.length / 12,
18293 partial_die_hash,
18294 partial_die_eq,
18295 NULL,
18296 &cu->comp_unit_obstack,
18297 hashtab_obstack_allocate,
18298 dummy_obstack_deallocate);
18299
18300 while (1)
18301 {
18302 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18303
18304 /* A NULL abbrev means the end of a series of children. */
18305 if (abbrev == NULL)
18306 {
18307 if (--nesting_level == 0)
18308 return first_die;
18309
18310 info_ptr += bytes_read;
18311 last_die = parent_die;
18312 parent_die = parent_die->die_parent;
18313 continue;
18314 }
18315
18316 /* Check for template arguments. We never save these; if
18317 they're seen, we just mark the parent, and go on our way. */
18318 if (parent_die != NULL
18319 && cu->language == language_cplus
18320 && (abbrev->tag == DW_TAG_template_type_param
18321 || abbrev->tag == DW_TAG_template_value_param))
18322 {
18323 parent_die->has_template_arguments = 1;
18324
18325 if (!load_all)
18326 {
18327 /* We don't need a partial DIE for the template argument. */
18328 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18329 continue;
18330 }
18331 }
18332
18333 /* We only recurse into c++ subprograms looking for template arguments.
18334 Skip their other children. */
18335 if (!load_all
18336 && cu->language == language_cplus
18337 && parent_die != NULL
18338 && parent_die->tag == DW_TAG_subprogram)
18339 {
18340 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18341 continue;
18342 }
18343
18344 /* Check whether this DIE is interesting enough to save. Normally
18345 we would not be interested in members here, but there may be
18346 later variables referencing them via DW_AT_specification (for
18347 static members). */
18348 if (!load_all
18349 && !is_type_tag_for_partial (abbrev->tag)
18350 && abbrev->tag != DW_TAG_constant
18351 && abbrev->tag != DW_TAG_enumerator
18352 && abbrev->tag != DW_TAG_subprogram
18353 && abbrev->tag != DW_TAG_inlined_subroutine
18354 && abbrev->tag != DW_TAG_lexical_block
18355 && abbrev->tag != DW_TAG_variable
18356 && abbrev->tag != DW_TAG_namespace
18357 && abbrev->tag != DW_TAG_module
18358 && abbrev->tag != DW_TAG_member
18359 && abbrev->tag != DW_TAG_imported_unit
18360 && abbrev->tag != DW_TAG_imported_declaration)
18361 {
18362 /* Otherwise we skip to the next sibling, if any. */
18363 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18364 continue;
18365 }
18366
18367 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18368 abbrev);
18369
18370 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18371
18372 /* This two-pass algorithm for processing partial symbols has a
18373 high cost in cache pressure. Thus, handle some simple cases
18374 here which cover the majority of C partial symbols. DIEs
18375 which neither have specification tags in them, nor could have
18376 specification tags elsewhere pointing at them, can simply be
18377 processed and discarded.
18378
18379 This segment is also optional; scan_partial_symbols and
18380 add_partial_symbol will handle these DIEs if we chain
18381 them in normally. When compilers which do not emit large
18382 quantities of duplicate debug information are more common,
18383 this code can probably be removed. */
18384
18385 /* Any complete simple types at the top level (pretty much all
18386 of them, for a language without namespaces), can be processed
18387 directly. */
18388 if (parent_die == NULL
18389 && pdi.has_specification == 0
18390 && pdi.is_declaration == 0
18391 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18392 || pdi.tag == DW_TAG_base_type
18393 || pdi.tag == DW_TAG_subrange_type))
18394 {
18395 if (building_psymtab && pdi.name != NULL)
18396 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18397 VAR_DOMAIN, LOC_TYPEDEF, -1,
18398 &objfile->static_psymbols,
18399 0, cu->language, objfile);
18400 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18401 continue;
18402 }
18403
18404 /* The exception for DW_TAG_typedef with has_children above is
18405 a workaround of GCC PR debug/47510. In the case of this complaint
18406 type_name_or_error will error on such types later.
18407
18408 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18409 it could not find the child DIEs referenced later, this is checked
18410 above. In correct DWARF DW_TAG_typedef should have no children. */
18411
18412 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18413 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18414 "- DIE at %s [in module %s]"),
18415 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18416
18417 /* If we're at the second level, and we're an enumerator, and
18418 our parent has no specification (meaning possibly lives in a
18419 namespace elsewhere), then we can add the partial symbol now
18420 instead of queueing it. */
18421 if (pdi.tag == DW_TAG_enumerator
18422 && parent_die != NULL
18423 && parent_die->die_parent == NULL
18424 && parent_die->tag == DW_TAG_enumeration_type
18425 && parent_die->has_specification == 0)
18426 {
18427 if (pdi.name == NULL)
18428 complaint (_("malformed enumerator DIE ignored"));
18429 else if (building_psymtab)
18430 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18431 VAR_DOMAIN, LOC_CONST, -1,
18432 cu->language == language_cplus
18433 ? &objfile->global_psymbols
18434 : &objfile->static_psymbols,
18435 0, cu->language, objfile);
18436
18437 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18438 continue;
18439 }
18440
18441 struct partial_die_info *part_die
18442 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18443
18444 /* We'll save this DIE so link it in. */
18445 part_die->die_parent = parent_die;
18446 part_die->die_sibling = NULL;
18447 part_die->die_child = NULL;
18448
18449 if (last_die && last_die == parent_die)
18450 last_die->die_child = part_die;
18451 else if (last_die)
18452 last_die->die_sibling = part_die;
18453
18454 last_die = part_die;
18455
18456 if (first_die == NULL)
18457 first_die = part_die;
18458
18459 /* Maybe add the DIE to the hash table. Not all DIEs that we
18460 find interesting need to be in the hash table, because we
18461 also have the parent/sibling/child chains; only those that we
18462 might refer to by offset later during partial symbol reading.
18463
18464 For now this means things that might have be the target of a
18465 DW_AT_specification, DW_AT_abstract_origin, or
18466 DW_AT_extension. DW_AT_extension will refer only to
18467 namespaces; DW_AT_abstract_origin refers to functions (and
18468 many things under the function DIE, but we do not recurse
18469 into function DIEs during partial symbol reading) and
18470 possibly variables as well; DW_AT_specification refers to
18471 declarations. Declarations ought to have the DW_AT_declaration
18472 flag. It happens that GCC forgets to put it in sometimes, but
18473 only for functions, not for types.
18474
18475 Adding more things than necessary to the hash table is harmless
18476 except for the performance cost. Adding too few will result in
18477 wasted time in find_partial_die, when we reread the compilation
18478 unit with load_all_dies set. */
18479
18480 if (load_all
18481 || abbrev->tag == DW_TAG_constant
18482 || abbrev->tag == DW_TAG_subprogram
18483 || abbrev->tag == DW_TAG_variable
18484 || abbrev->tag == DW_TAG_namespace
18485 || part_die->is_declaration)
18486 {
18487 void **slot;
18488
18489 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18490 to_underlying (part_die->sect_off),
18491 INSERT);
18492 *slot = part_die;
18493 }
18494
18495 /* For some DIEs we want to follow their children (if any). For C
18496 we have no reason to follow the children of structures; for other
18497 languages we have to, so that we can get at method physnames
18498 to infer fully qualified class names, for DW_AT_specification,
18499 and for C++ template arguments. For C++, we also look one level
18500 inside functions to find template arguments (if the name of the
18501 function does not already contain the template arguments).
18502
18503 For Ada, we need to scan the children of subprograms and lexical
18504 blocks as well because Ada allows the definition of nested
18505 entities that could be interesting for the debugger, such as
18506 nested subprograms for instance. */
18507 if (last_die->has_children
18508 && (load_all
18509 || last_die->tag == DW_TAG_namespace
18510 || last_die->tag == DW_TAG_module
18511 || last_die->tag == DW_TAG_enumeration_type
18512 || (cu->language == language_cplus
18513 && last_die->tag == DW_TAG_subprogram
18514 && (last_die->name == NULL
18515 || strchr (last_die->name, '<') == NULL))
18516 || (cu->language != language_c
18517 && (last_die->tag == DW_TAG_class_type
18518 || last_die->tag == DW_TAG_interface_type
18519 || last_die->tag == DW_TAG_structure_type
18520 || last_die->tag == DW_TAG_union_type))
18521 || (cu->language == language_ada
18522 && (last_die->tag == DW_TAG_subprogram
18523 || last_die->tag == DW_TAG_lexical_block))))
18524 {
18525 nesting_level++;
18526 parent_die = last_die;
18527 continue;
18528 }
18529
18530 /* Otherwise we skip to the next sibling, if any. */
18531 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18532
18533 /* Back to the top, do it again. */
18534 }
18535 }
18536
18537 partial_die_info::partial_die_info (sect_offset sect_off_,
18538 struct abbrev_info *abbrev)
18539 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18540 {
18541 }
18542
18543 /* Read a minimal amount of information into the minimal die structure.
18544 INFO_PTR should point just after the initial uleb128 of a DIE. */
18545
18546 const gdb_byte *
18547 partial_die_info::read (const struct die_reader_specs *reader,
18548 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18549 {
18550 struct dwarf2_cu *cu = reader->cu;
18551 struct dwarf2_per_objfile *dwarf2_per_objfile
18552 = cu->per_cu->dwarf2_per_objfile;
18553 unsigned int i;
18554 int has_low_pc_attr = 0;
18555 int has_high_pc_attr = 0;
18556 int high_pc_relative = 0;
18557
18558 for (i = 0; i < abbrev.num_attrs; ++i)
18559 {
18560 struct attribute attr;
18561
18562 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18563
18564 /* Store the data if it is of an attribute we want to keep in a
18565 partial symbol table. */
18566 switch (attr.name)
18567 {
18568 case DW_AT_name:
18569 switch (tag)
18570 {
18571 case DW_TAG_compile_unit:
18572 case DW_TAG_partial_unit:
18573 case DW_TAG_type_unit:
18574 /* Compilation units have a DW_AT_name that is a filename, not
18575 a source language identifier. */
18576 case DW_TAG_enumeration_type:
18577 case DW_TAG_enumerator:
18578 /* These tags always have simple identifiers already; no need
18579 to canonicalize them. */
18580 name = DW_STRING (&attr);
18581 break;
18582 default:
18583 {
18584 struct objfile *objfile = dwarf2_per_objfile->objfile;
18585
18586 name
18587 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18588 &objfile->per_bfd->storage_obstack);
18589 }
18590 break;
18591 }
18592 break;
18593 case DW_AT_linkage_name:
18594 case DW_AT_MIPS_linkage_name:
18595 /* Note that both forms of linkage name might appear. We
18596 assume they will be the same, and we only store the last
18597 one we see. */
18598 if (cu->language == language_ada)
18599 name = DW_STRING (&attr);
18600 linkage_name = DW_STRING (&attr);
18601 break;
18602 case DW_AT_low_pc:
18603 has_low_pc_attr = 1;
18604 lowpc = attr_value_as_address (&attr);
18605 break;
18606 case DW_AT_high_pc:
18607 has_high_pc_attr = 1;
18608 highpc = attr_value_as_address (&attr);
18609 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18610 high_pc_relative = 1;
18611 break;
18612 case DW_AT_location:
18613 /* Support the .debug_loc offsets. */
18614 if (attr_form_is_block (&attr))
18615 {
18616 d.locdesc = DW_BLOCK (&attr);
18617 }
18618 else if (attr_form_is_section_offset (&attr))
18619 {
18620 dwarf2_complex_location_expr_complaint ();
18621 }
18622 else
18623 {
18624 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18625 "partial symbol information");
18626 }
18627 break;
18628 case DW_AT_external:
18629 is_external = DW_UNSND (&attr);
18630 break;
18631 case DW_AT_declaration:
18632 is_declaration = DW_UNSND (&attr);
18633 break;
18634 case DW_AT_type:
18635 has_type = 1;
18636 break;
18637 case DW_AT_abstract_origin:
18638 case DW_AT_specification:
18639 case DW_AT_extension:
18640 has_specification = 1;
18641 spec_offset = dwarf2_get_ref_die_offset (&attr);
18642 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18643 || cu->per_cu->is_dwz);
18644 break;
18645 case DW_AT_sibling:
18646 /* Ignore absolute siblings, they might point outside of
18647 the current compile unit. */
18648 if (attr.form == DW_FORM_ref_addr)
18649 complaint (_("ignoring absolute DW_AT_sibling"));
18650 else
18651 {
18652 const gdb_byte *buffer = reader->buffer;
18653 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18654 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18655
18656 if (sibling_ptr < info_ptr)
18657 complaint (_("DW_AT_sibling points backwards"));
18658 else if (sibling_ptr > reader->buffer_end)
18659 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18660 else
18661 sibling = sibling_ptr;
18662 }
18663 break;
18664 case DW_AT_byte_size:
18665 has_byte_size = 1;
18666 break;
18667 case DW_AT_const_value:
18668 has_const_value = 1;
18669 break;
18670 case DW_AT_calling_convention:
18671 /* DWARF doesn't provide a way to identify a program's source-level
18672 entry point. DW_AT_calling_convention attributes are only meant
18673 to describe functions' calling conventions.
18674
18675 However, because it's a necessary piece of information in
18676 Fortran, and before DWARF 4 DW_CC_program was the only
18677 piece of debugging information whose definition refers to
18678 a 'main program' at all, several compilers marked Fortran
18679 main programs with DW_CC_program --- even when those
18680 functions use the standard calling conventions.
18681
18682 Although DWARF now specifies a way to provide this
18683 information, we support this practice for backward
18684 compatibility. */
18685 if (DW_UNSND (&attr) == DW_CC_program
18686 && cu->language == language_fortran)
18687 main_subprogram = 1;
18688 break;
18689 case DW_AT_inline:
18690 if (DW_UNSND (&attr) == DW_INL_inlined
18691 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18692 may_be_inlined = 1;
18693 break;
18694
18695 case DW_AT_import:
18696 if (tag == DW_TAG_imported_unit)
18697 {
18698 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18699 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18700 || cu->per_cu->is_dwz);
18701 }
18702 break;
18703
18704 case DW_AT_main_subprogram:
18705 main_subprogram = DW_UNSND (&attr);
18706 break;
18707
18708 default:
18709 break;
18710 }
18711 }
18712
18713 if (high_pc_relative)
18714 highpc += lowpc;
18715
18716 if (has_low_pc_attr && has_high_pc_attr)
18717 {
18718 /* When using the GNU linker, .gnu.linkonce. sections are used to
18719 eliminate duplicate copies of functions and vtables and such.
18720 The linker will arbitrarily choose one and discard the others.
18721 The AT_*_pc values for such functions refer to local labels in
18722 these sections. If the section from that file was discarded, the
18723 labels are not in the output, so the relocs get a value of 0.
18724 If this is a discarded function, mark the pc bounds as invalid,
18725 so that GDB will ignore it. */
18726 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18727 {
18728 struct objfile *objfile = dwarf2_per_objfile->objfile;
18729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18730
18731 complaint (_("DW_AT_low_pc %s is zero "
18732 "for DIE at %s [in module %s]"),
18733 paddress (gdbarch, lowpc),
18734 sect_offset_str (sect_off),
18735 objfile_name (objfile));
18736 }
18737 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18738 else if (lowpc >= highpc)
18739 {
18740 struct objfile *objfile = dwarf2_per_objfile->objfile;
18741 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18742
18743 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18744 "for DIE at %s [in module %s]"),
18745 paddress (gdbarch, lowpc),
18746 paddress (gdbarch, highpc),
18747 sect_offset_str (sect_off),
18748 objfile_name (objfile));
18749 }
18750 else
18751 has_pc_info = 1;
18752 }
18753
18754 return info_ptr;
18755 }
18756
18757 /* Find a cached partial DIE at OFFSET in CU. */
18758
18759 struct partial_die_info *
18760 dwarf2_cu::find_partial_die (sect_offset sect_off)
18761 {
18762 struct partial_die_info *lookup_die = NULL;
18763 struct partial_die_info part_die (sect_off);
18764
18765 lookup_die = ((struct partial_die_info *)
18766 htab_find_with_hash (partial_dies, &part_die,
18767 to_underlying (sect_off)));
18768
18769 return lookup_die;
18770 }
18771
18772 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18773 except in the case of .debug_types DIEs which do not reference
18774 outside their CU (they do however referencing other types via
18775 DW_FORM_ref_sig8). */
18776
18777 static struct partial_die_info *
18778 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18779 {
18780 struct dwarf2_per_objfile *dwarf2_per_objfile
18781 = cu->per_cu->dwarf2_per_objfile;
18782 struct objfile *objfile = dwarf2_per_objfile->objfile;
18783 struct dwarf2_per_cu_data *per_cu = NULL;
18784 struct partial_die_info *pd = NULL;
18785
18786 if (offset_in_dwz == cu->per_cu->is_dwz
18787 && offset_in_cu_p (&cu->header, sect_off))
18788 {
18789 pd = cu->find_partial_die (sect_off);
18790 if (pd != NULL)
18791 return pd;
18792 /* We missed recording what we needed.
18793 Load all dies and try again. */
18794 per_cu = cu->per_cu;
18795 }
18796 else
18797 {
18798 /* TUs don't reference other CUs/TUs (except via type signatures). */
18799 if (cu->per_cu->is_debug_types)
18800 {
18801 error (_("Dwarf Error: Type Unit at offset %s contains"
18802 " external reference to offset %s [in module %s].\n"),
18803 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18804 bfd_get_filename (objfile->obfd));
18805 }
18806 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18807 dwarf2_per_objfile);
18808
18809 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18810 load_partial_comp_unit (per_cu);
18811
18812 per_cu->cu->last_used = 0;
18813 pd = per_cu->cu->find_partial_die (sect_off);
18814 }
18815
18816 /* If we didn't find it, and not all dies have been loaded,
18817 load them all and try again. */
18818
18819 if (pd == NULL && per_cu->load_all_dies == 0)
18820 {
18821 per_cu->load_all_dies = 1;
18822
18823 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18824 THIS_CU->cu may already be in use. So we can't just free it and
18825 replace its DIEs with the ones we read in. Instead, we leave those
18826 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18827 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18828 set. */
18829 load_partial_comp_unit (per_cu);
18830
18831 pd = per_cu->cu->find_partial_die (sect_off);
18832 }
18833
18834 if (pd == NULL)
18835 internal_error (__FILE__, __LINE__,
18836 _("could not find partial DIE %s "
18837 "in cache [from module %s]\n"),
18838 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18839 return pd;
18840 }
18841
18842 /* See if we can figure out if the class lives in a namespace. We do
18843 this by looking for a member function; its demangled name will
18844 contain namespace info, if there is any. */
18845
18846 static void
18847 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18848 struct dwarf2_cu *cu)
18849 {
18850 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18851 what template types look like, because the demangler
18852 frequently doesn't give the same name as the debug info. We
18853 could fix this by only using the demangled name to get the
18854 prefix (but see comment in read_structure_type). */
18855
18856 struct partial_die_info *real_pdi;
18857 struct partial_die_info *child_pdi;
18858
18859 /* If this DIE (this DIE's specification, if any) has a parent, then
18860 we should not do this. We'll prepend the parent's fully qualified
18861 name when we create the partial symbol. */
18862
18863 real_pdi = struct_pdi;
18864 while (real_pdi->has_specification)
18865 real_pdi = find_partial_die (real_pdi->spec_offset,
18866 real_pdi->spec_is_dwz, cu);
18867
18868 if (real_pdi->die_parent != NULL)
18869 return;
18870
18871 for (child_pdi = struct_pdi->die_child;
18872 child_pdi != NULL;
18873 child_pdi = child_pdi->die_sibling)
18874 {
18875 if (child_pdi->tag == DW_TAG_subprogram
18876 && child_pdi->linkage_name != NULL)
18877 {
18878 char *actual_class_name
18879 = language_class_name_from_physname (cu->language_defn,
18880 child_pdi->linkage_name);
18881 if (actual_class_name != NULL)
18882 {
18883 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18884 struct_pdi->name
18885 = ((const char *)
18886 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18887 actual_class_name,
18888 strlen (actual_class_name)));
18889 xfree (actual_class_name);
18890 }
18891 break;
18892 }
18893 }
18894 }
18895
18896 void
18897 partial_die_info::fixup (struct dwarf2_cu *cu)
18898 {
18899 /* Once we've fixed up a die, there's no point in doing so again.
18900 This also avoids a memory leak if we were to call
18901 guess_partial_die_structure_name multiple times. */
18902 if (fixup_called)
18903 return;
18904
18905 /* If we found a reference attribute and the DIE has no name, try
18906 to find a name in the referred to DIE. */
18907
18908 if (name == NULL && has_specification)
18909 {
18910 struct partial_die_info *spec_die;
18911
18912 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18913
18914 spec_die->fixup (cu);
18915
18916 if (spec_die->name)
18917 {
18918 name = spec_die->name;
18919
18920 /* Copy DW_AT_external attribute if it is set. */
18921 if (spec_die->is_external)
18922 is_external = spec_die->is_external;
18923 }
18924 }
18925
18926 /* Set default names for some unnamed DIEs. */
18927
18928 if (name == NULL && tag == DW_TAG_namespace)
18929 name = CP_ANONYMOUS_NAMESPACE_STR;
18930
18931 /* If there is no parent die to provide a namespace, and there are
18932 children, see if we can determine the namespace from their linkage
18933 name. */
18934 if (cu->language == language_cplus
18935 && !VEC_empty (dwarf2_section_info_def,
18936 cu->per_cu->dwarf2_per_objfile->types)
18937 && die_parent == NULL
18938 && has_children
18939 && (tag == DW_TAG_class_type
18940 || tag == DW_TAG_structure_type
18941 || tag == DW_TAG_union_type))
18942 guess_partial_die_structure_name (this, cu);
18943
18944 /* GCC might emit a nameless struct or union that has a linkage
18945 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18946 if (name == NULL
18947 && (tag == DW_TAG_class_type
18948 || tag == DW_TAG_interface_type
18949 || tag == DW_TAG_structure_type
18950 || tag == DW_TAG_union_type)
18951 && linkage_name != NULL)
18952 {
18953 char *demangled;
18954
18955 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18956 if (demangled)
18957 {
18958 const char *base;
18959
18960 /* Strip any leading namespaces/classes, keep only the base name.
18961 DW_AT_name for named DIEs does not contain the prefixes. */
18962 base = strrchr (demangled, ':');
18963 if (base && base > demangled && base[-1] == ':')
18964 base++;
18965 else
18966 base = demangled;
18967
18968 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18969 name
18970 = ((const char *)
18971 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18972 base, strlen (base)));
18973 xfree (demangled);
18974 }
18975 }
18976
18977 fixup_called = 1;
18978 }
18979
18980 /* Read an attribute value described by an attribute form. */
18981
18982 static const gdb_byte *
18983 read_attribute_value (const struct die_reader_specs *reader,
18984 struct attribute *attr, unsigned form,
18985 LONGEST implicit_const, const gdb_byte *info_ptr)
18986 {
18987 struct dwarf2_cu *cu = reader->cu;
18988 struct dwarf2_per_objfile *dwarf2_per_objfile
18989 = cu->per_cu->dwarf2_per_objfile;
18990 struct objfile *objfile = dwarf2_per_objfile->objfile;
18991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18992 bfd *abfd = reader->abfd;
18993 struct comp_unit_head *cu_header = &cu->header;
18994 unsigned int bytes_read;
18995 struct dwarf_block *blk;
18996
18997 attr->form = (enum dwarf_form) form;
18998 switch (form)
18999 {
19000 case DW_FORM_ref_addr:
19001 if (cu->header.version == 2)
19002 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19003 else
19004 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19005 &cu->header, &bytes_read);
19006 info_ptr += bytes_read;
19007 break;
19008 case DW_FORM_GNU_ref_alt:
19009 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19010 info_ptr += bytes_read;
19011 break;
19012 case DW_FORM_addr:
19013 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19014 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19015 info_ptr += bytes_read;
19016 break;
19017 case DW_FORM_block2:
19018 blk = dwarf_alloc_block (cu);
19019 blk->size = read_2_bytes (abfd, info_ptr);
19020 info_ptr += 2;
19021 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19022 info_ptr += blk->size;
19023 DW_BLOCK (attr) = blk;
19024 break;
19025 case DW_FORM_block4:
19026 blk = dwarf_alloc_block (cu);
19027 blk->size = read_4_bytes (abfd, info_ptr);
19028 info_ptr += 4;
19029 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19030 info_ptr += blk->size;
19031 DW_BLOCK (attr) = blk;
19032 break;
19033 case DW_FORM_data2:
19034 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19035 info_ptr += 2;
19036 break;
19037 case DW_FORM_data4:
19038 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19039 info_ptr += 4;
19040 break;
19041 case DW_FORM_data8:
19042 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19043 info_ptr += 8;
19044 break;
19045 case DW_FORM_data16:
19046 blk = dwarf_alloc_block (cu);
19047 blk->size = 16;
19048 blk->data = read_n_bytes (abfd, info_ptr, 16);
19049 info_ptr += 16;
19050 DW_BLOCK (attr) = blk;
19051 break;
19052 case DW_FORM_sec_offset:
19053 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19054 info_ptr += bytes_read;
19055 break;
19056 case DW_FORM_string:
19057 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19058 DW_STRING_IS_CANONICAL (attr) = 0;
19059 info_ptr += bytes_read;
19060 break;
19061 case DW_FORM_strp:
19062 if (!cu->per_cu->is_dwz)
19063 {
19064 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19065 abfd, info_ptr, cu_header,
19066 &bytes_read);
19067 DW_STRING_IS_CANONICAL (attr) = 0;
19068 info_ptr += bytes_read;
19069 break;
19070 }
19071 /* FALLTHROUGH */
19072 case DW_FORM_line_strp:
19073 if (!cu->per_cu->is_dwz)
19074 {
19075 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19076 abfd, info_ptr,
19077 cu_header, &bytes_read);
19078 DW_STRING_IS_CANONICAL (attr) = 0;
19079 info_ptr += bytes_read;
19080 break;
19081 }
19082 /* FALLTHROUGH */
19083 case DW_FORM_GNU_strp_alt:
19084 {
19085 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19086 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19087 &bytes_read);
19088
19089 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19090 dwz, str_offset);
19091 DW_STRING_IS_CANONICAL (attr) = 0;
19092 info_ptr += bytes_read;
19093 }
19094 break;
19095 case DW_FORM_exprloc:
19096 case DW_FORM_block:
19097 blk = dwarf_alloc_block (cu);
19098 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19099 info_ptr += bytes_read;
19100 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19101 info_ptr += blk->size;
19102 DW_BLOCK (attr) = blk;
19103 break;
19104 case DW_FORM_block1:
19105 blk = dwarf_alloc_block (cu);
19106 blk->size = read_1_byte (abfd, info_ptr);
19107 info_ptr += 1;
19108 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19109 info_ptr += blk->size;
19110 DW_BLOCK (attr) = blk;
19111 break;
19112 case DW_FORM_data1:
19113 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19114 info_ptr += 1;
19115 break;
19116 case DW_FORM_flag:
19117 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19118 info_ptr += 1;
19119 break;
19120 case DW_FORM_flag_present:
19121 DW_UNSND (attr) = 1;
19122 break;
19123 case DW_FORM_sdata:
19124 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19125 info_ptr += bytes_read;
19126 break;
19127 case DW_FORM_udata:
19128 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19129 info_ptr += bytes_read;
19130 break;
19131 case DW_FORM_ref1:
19132 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19133 + read_1_byte (abfd, info_ptr));
19134 info_ptr += 1;
19135 break;
19136 case DW_FORM_ref2:
19137 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19138 + read_2_bytes (abfd, info_ptr));
19139 info_ptr += 2;
19140 break;
19141 case DW_FORM_ref4:
19142 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19143 + read_4_bytes (abfd, info_ptr));
19144 info_ptr += 4;
19145 break;
19146 case DW_FORM_ref8:
19147 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19148 + read_8_bytes (abfd, info_ptr));
19149 info_ptr += 8;
19150 break;
19151 case DW_FORM_ref_sig8:
19152 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19153 info_ptr += 8;
19154 break;
19155 case DW_FORM_ref_udata:
19156 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19157 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19158 info_ptr += bytes_read;
19159 break;
19160 case DW_FORM_indirect:
19161 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19162 info_ptr += bytes_read;
19163 if (form == DW_FORM_implicit_const)
19164 {
19165 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19166 info_ptr += bytes_read;
19167 }
19168 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19169 info_ptr);
19170 break;
19171 case DW_FORM_implicit_const:
19172 DW_SND (attr) = implicit_const;
19173 break;
19174 case DW_FORM_GNU_addr_index:
19175 if (reader->dwo_file == NULL)
19176 {
19177 /* For now flag a hard error.
19178 Later we can turn this into a complaint. */
19179 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19180 dwarf_form_name (form),
19181 bfd_get_filename (abfd));
19182 }
19183 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19184 info_ptr += bytes_read;
19185 break;
19186 case DW_FORM_GNU_str_index:
19187 if (reader->dwo_file == NULL)
19188 {
19189 /* For now flag a hard error.
19190 Later we can turn this into a complaint if warranted. */
19191 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19192 dwarf_form_name (form),
19193 bfd_get_filename (abfd));
19194 }
19195 {
19196 ULONGEST str_index =
19197 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19198
19199 DW_STRING (attr) = read_str_index (reader, str_index);
19200 DW_STRING_IS_CANONICAL (attr) = 0;
19201 info_ptr += bytes_read;
19202 }
19203 break;
19204 default:
19205 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19206 dwarf_form_name (form),
19207 bfd_get_filename (abfd));
19208 }
19209
19210 /* Super hack. */
19211 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19212 attr->form = DW_FORM_GNU_ref_alt;
19213
19214 /* We have seen instances where the compiler tried to emit a byte
19215 size attribute of -1 which ended up being encoded as an unsigned
19216 0xffffffff. Although 0xffffffff is technically a valid size value,
19217 an object of this size seems pretty unlikely so we can relatively
19218 safely treat these cases as if the size attribute was invalid and
19219 treat them as zero by default. */
19220 if (attr->name == DW_AT_byte_size
19221 && form == DW_FORM_data4
19222 && DW_UNSND (attr) >= 0xffffffff)
19223 {
19224 complaint
19225 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19226 hex_string (DW_UNSND (attr)));
19227 DW_UNSND (attr) = 0;
19228 }
19229
19230 return info_ptr;
19231 }
19232
19233 /* Read an attribute described by an abbreviated attribute. */
19234
19235 static const gdb_byte *
19236 read_attribute (const struct die_reader_specs *reader,
19237 struct attribute *attr, struct attr_abbrev *abbrev,
19238 const gdb_byte *info_ptr)
19239 {
19240 attr->name = abbrev->name;
19241 return read_attribute_value (reader, attr, abbrev->form,
19242 abbrev->implicit_const, info_ptr);
19243 }
19244
19245 /* Read dwarf information from a buffer. */
19246
19247 static unsigned int
19248 read_1_byte (bfd *abfd, const gdb_byte *buf)
19249 {
19250 return bfd_get_8 (abfd, buf);
19251 }
19252
19253 static int
19254 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19255 {
19256 return bfd_get_signed_8 (abfd, buf);
19257 }
19258
19259 static unsigned int
19260 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19261 {
19262 return bfd_get_16 (abfd, buf);
19263 }
19264
19265 static int
19266 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19267 {
19268 return bfd_get_signed_16 (abfd, buf);
19269 }
19270
19271 static unsigned int
19272 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19273 {
19274 return bfd_get_32 (abfd, buf);
19275 }
19276
19277 static int
19278 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19279 {
19280 return bfd_get_signed_32 (abfd, buf);
19281 }
19282
19283 static ULONGEST
19284 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19285 {
19286 return bfd_get_64 (abfd, buf);
19287 }
19288
19289 static CORE_ADDR
19290 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19291 unsigned int *bytes_read)
19292 {
19293 struct comp_unit_head *cu_header = &cu->header;
19294 CORE_ADDR retval = 0;
19295
19296 if (cu_header->signed_addr_p)
19297 {
19298 switch (cu_header->addr_size)
19299 {
19300 case 2:
19301 retval = bfd_get_signed_16 (abfd, buf);
19302 break;
19303 case 4:
19304 retval = bfd_get_signed_32 (abfd, buf);
19305 break;
19306 case 8:
19307 retval = bfd_get_signed_64 (abfd, buf);
19308 break;
19309 default:
19310 internal_error (__FILE__, __LINE__,
19311 _("read_address: bad switch, signed [in module %s]"),
19312 bfd_get_filename (abfd));
19313 }
19314 }
19315 else
19316 {
19317 switch (cu_header->addr_size)
19318 {
19319 case 2:
19320 retval = bfd_get_16 (abfd, buf);
19321 break;
19322 case 4:
19323 retval = bfd_get_32 (abfd, buf);
19324 break;
19325 case 8:
19326 retval = bfd_get_64 (abfd, buf);
19327 break;
19328 default:
19329 internal_error (__FILE__, __LINE__,
19330 _("read_address: bad switch, "
19331 "unsigned [in module %s]"),
19332 bfd_get_filename (abfd));
19333 }
19334 }
19335
19336 *bytes_read = cu_header->addr_size;
19337 return retval;
19338 }
19339
19340 /* Read the initial length from a section. The (draft) DWARF 3
19341 specification allows the initial length to take up either 4 bytes
19342 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19343 bytes describe the length and all offsets will be 8 bytes in length
19344 instead of 4.
19345
19346 An older, non-standard 64-bit format is also handled by this
19347 function. The older format in question stores the initial length
19348 as an 8-byte quantity without an escape value. Lengths greater
19349 than 2^32 aren't very common which means that the initial 4 bytes
19350 is almost always zero. Since a length value of zero doesn't make
19351 sense for the 32-bit format, this initial zero can be considered to
19352 be an escape value which indicates the presence of the older 64-bit
19353 format. As written, the code can't detect (old format) lengths
19354 greater than 4GB. If it becomes necessary to handle lengths
19355 somewhat larger than 4GB, we could allow other small values (such
19356 as the non-sensical values of 1, 2, and 3) to also be used as
19357 escape values indicating the presence of the old format.
19358
19359 The value returned via bytes_read should be used to increment the
19360 relevant pointer after calling read_initial_length().
19361
19362 [ Note: read_initial_length() and read_offset() are based on the
19363 document entitled "DWARF Debugging Information Format", revision
19364 3, draft 8, dated November 19, 2001. This document was obtained
19365 from:
19366
19367 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19368
19369 This document is only a draft and is subject to change. (So beware.)
19370
19371 Details regarding the older, non-standard 64-bit format were
19372 determined empirically by examining 64-bit ELF files produced by
19373 the SGI toolchain on an IRIX 6.5 machine.
19374
19375 - Kevin, July 16, 2002
19376 ] */
19377
19378 static LONGEST
19379 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19380 {
19381 LONGEST length = bfd_get_32 (abfd, buf);
19382
19383 if (length == 0xffffffff)
19384 {
19385 length = bfd_get_64 (abfd, buf + 4);
19386 *bytes_read = 12;
19387 }
19388 else if (length == 0)
19389 {
19390 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19391 length = bfd_get_64 (abfd, buf);
19392 *bytes_read = 8;
19393 }
19394 else
19395 {
19396 *bytes_read = 4;
19397 }
19398
19399 return length;
19400 }
19401
19402 /* Cover function for read_initial_length.
19403 Returns the length of the object at BUF, and stores the size of the
19404 initial length in *BYTES_READ and stores the size that offsets will be in
19405 *OFFSET_SIZE.
19406 If the initial length size is not equivalent to that specified in
19407 CU_HEADER then issue a complaint.
19408 This is useful when reading non-comp-unit headers. */
19409
19410 static LONGEST
19411 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19412 const struct comp_unit_head *cu_header,
19413 unsigned int *bytes_read,
19414 unsigned int *offset_size)
19415 {
19416 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19417
19418 gdb_assert (cu_header->initial_length_size == 4
19419 || cu_header->initial_length_size == 8
19420 || cu_header->initial_length_size == 12);
19421
19422 if (cu_header->initial_length_size != *bytes_read)
19423 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19424
19425 *offset_size = (*bytes_read == 4) ? 4 : 8;
19426 return length;
19427 }
19428
19429 /* Read an offset from the data stream. The size of the offset is
19430 given by cu_header->offset_size. */
19431
19432 static LONGEST
19433 read_offset (bfd *abfd, const gdb_byte *buf,
19434 const struct comp_unit_head *cu_header,
19435 unsigned int *bytes_read)
19436 {
19437 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19438
19439 *bytes_read = cu_header->offset_size;
19440 return offset;
19441 }
19442
19443 /* Read an offset from the data stream. */
19444
19445 static LONGEST
19446 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19447 {
19448 LONGEST retval = 0;
19449
19450 switch (offset_size)
19451 {
19452 case 4:
19453 retval = bfd_get_32 (abfd, buf);
19454 break;
19455 case 8:
19456 retval = bfd_get_64 (abfd, buf);
19457 break;
19458 default:
19459 internal_error (__FILE__, __LINE__,
19460 _("read_offset_1: bad switch [in module %s]"),
19461 bfd_get_filename (abfd));
19462 }
19463
19464 return retval;
19465 }
19466
19467 static const gdb_byte *
19468 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19469 {
19470 /* If the size of a host char is 8 bits, we can return a pointer
19471 to the buffer, otherwise we have to copy the data to a buffer
19472 allocated on the temporary obstack. */
19473 gdb_assert (HOST_CHAR_BIT == 8);
19474 return buf;
19475 }
19476
19477 static const char *
19478 read_direct_string (bfd *abfd, const gdb_byte *buf,
19479 unsigned int *bytes_read_ptr)
19480 {
19481 /* If the size of a host char is 8 bits, we can return a pointer
19482 to the string, otherwise we have to copy the string to a buffer
19483 allocated on the temporary obstack. */
19484 gdb_assert (HOST_CHAR_BIT == 8);
19485 if (*buf == '\0')
19486 {
19487 *bytes_read_ptr = 1;
19488 return NULL;
19489 }
19490 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19491 return (const char *) buf;
19492 }
19493
19494 /* Return pointer to string at section SECT offset STR_OFFSET with error
19495 reporting strings FORM_NAME and SECT_NAME. */
19496
19497 static const char *
19498 read_indirect_string_at_offset_from (struct objfile *objfile,
19499 bfd *abfd, LONGEST str_offset,
19500 struct dwarf2_section_info *sect,
19501 const char *form_name,
19502 const char *sect_name)
19503 {
19504 dwarf2_read_section (objfile, sect);
19505 if (sect->buffer == NULL)
19506 error (_("%s used without %s section [in module %s]"),
19507 form_name, sect_name, bfd_get_filename (abfd));
19508 if (str_offset >= sect->size)
19509 error (_("%s pointing outside of %s section [in module %s]"),
19510 form_name, sect_name, bfd_get_filename (abfd));
19511 gdb_assert (HOST_CHAR_BIT == 8);
19512 if (sect->buffer[str_offset] == '\0')
19513 return NULL;
19514 return (const char *) (sect->buffer + str_offset);
19515 }
19516
19517 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19518
19519 static const char *
19520 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19521 bfd *abfd, LONGEST str_offset)
19522 {
19523 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19524 abfd, str_offset,
19525 &dwarf2_per_objfile->str,
19526 "DW_FORM_strp", ".debug_str");
19527 }
19528
19529 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19530
19531 static const char *
19532 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19533 bfd *abfd, LONGEST str_offset)
19534 {
19535 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19536 abfd, str_offset,
19537 &dwarf2_per_objfile->line_str,
19538 "DW_FORM_line_strp",
19539 ".debug_line_str");
19540 }
19541
19542 /* Read a string at offset STR_OFFSET in the .debug_str section from
19543 the .dwz file DWZ. Throw an error if the offset is too large. If
19544 the string consists of a single NUL byte, return NULL; otherwise
19545 return a pointer to the string. */
19546
19547 static const char *
19548 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19549 LONGEST str_offset)
19550 {
19551 dwarf2_read_section (objfile, &dwz->str);
19552
19553 if (dwz->str.buffer == NULL)
19554 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19555 "section [in module %s]"),
19556 bfd_get_filename (dwz->dwz_bfd));
19557 if (str_offset >= dwz->str.size)
19558 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19559 ".debug_str section [in module %s]"),
19560 bfd_get_filename (dwz->dwz_bfd));
19561 gdb_assert (HOST_CHAR_BIT == 8);
19562 if (dwz->str.buffer[str_offset] == '\0')
19563 return NULL;
19564 return (const char *) (dwz->str.buffer + str_offset);
19565 }
19566
19567 /* Return pointer to string at .debug_str offset as read from BUF.
19568 BUF is assumed to be in a compilation unit described by CU_HEADER.
19569 Return *BYTES_READ_PTR count of bytes read from BUF. */
19570
19571 static const char *
19572 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19573 const gdb_byte *buf,
19574 const struct comp_unit_head *cu_header,
19575 unsigned int *bytes_read_ptr)
19576 {
19577 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19578
19579 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19580 }
19581
19582 /* Return pointer to string at .debug_line_str offset as read from BUF.
19583 BUF is assumed to be in a compilation unit described by CU_HEADER.
19584 Return *BYTES_READ_PTR count of bytes read from BUF. */
19585
19586 static const char *
19587 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19588 bfd *abfd, const gdb_byte *buf,
19589 const struct comp_unit_head *cu_header,
19590 unsigned int *bytes_read_ptr)
19591 {
19592 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19593
19594 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19595 str_offset);
19596 }
19597
19598 ULONGEST
19599 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19600 unsigned int *bytes_read_ptr)
19601 {
19602 ULONGEST result;
19603 unsigned int num_read;
19604 int shift;
19605 unsigned char byte;
19606
19607 result = 0;
19608 shift = 0;
19609 num_read = 0;
19610 while (1)
19611 {
19612 byte = bfd_get_8 (abfd, buf);
19613 buf++;
19614 num_read++;
19615 result |= ((ULONGEST) (byte & 127) << shift);
19616 if ((byte & 128) == 0)
19617 {
19618 break;
19619 }
19620 shift += 7;
19621 }
19622 *bytes_read_ptr = num_read;
19623 return result;
19624 }
19625
19626 static LONGEST
19627 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19628 unsigned int *bytes_read_ptr)
19629 {
19630 LONGEST result;
19631 int shift, num_read;
19632 unsigned char byte;
19633
19634 result = 0;
19635 shift = 0;
19636 num_read = 0;
19637 while (1)
19638 {
19639 byte = bfd_get_8 (abfd, buf);
19640 buf++;
19641 num_read++;
19642 result |= ((LONGEST) (byte & 127) << shift);
19643 shift += 7;
19644 if ((byte & 128) == 0)
19645 {
19646 break;
19647 }
19648 }
19649 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19650 result |= -(((LONGEST) 1) << shift);
19651 *bytes_read_ptr = num_read;
19652 return result;
19653 }
19654
19655 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19656 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19657 ADDR_SIZE is the size of addresses from the CU header. */
19658
19659 static CORE_ADDR
19660 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19661 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19662 {
19663 struct objfile *objfile = dwarf2_per_objfile->objfile;
19664 bfd *abfd = objfile->obfd;
19665 const gdb_byte *info_ptr;
19666
19667 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19668 if (dwarf2_per_objfile->addr.buffer == NULL)
19669 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19670 objfile_name (objfile));
19671 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19672 error (_("DW_FORM_addr_index pointing outside of "
19673 ".debug_addr section [in module %s]"),
19674 objfile_name (objfile));
19675 info_ptr = (dwarf2_per_objfile->addr.buffer
19676 + addr_base + addr_index * addr_size);
19677 if (addr_size == 4)
19678 return bfd_get_32 (abfd, info_ptr);
19679 else
19680 return bfd_get_64 (abfd, info_ptr);
19681 }
19682
19683 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19684
19685 static CORE_ADDR
19686 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19687 {
19688 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19689 cu->addr_base, cu->header.addr_size);
19690 }
19691
19692 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19693
19694 static CORE_ADDR
19695 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19696 unsigned int *bytes_read)
19697 {
19698 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19699 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19700
19701 return read_addr_index (cu, addr_index);
19702 }
19703
19704 /* Data structure to pass results from dwarf2_read_addr_index_reader
19705 back to dwarf2_read_addr_index. */
19706
19707 struct dwarf2_read_addr_index_data
19708 {
19709 ULONGEST addr_base;
19710 int addr_size;
19711 };
19712
19713 /* die_reader_func for dwarf2_read_addr_index. */
19714
19715 static void
19716 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19717 const gdb_byte *info_ptr,
19718 struct die_info *comp_unit_die,
19719 int has_children,
19720 void *data)
19721 {
19722 struct dwarf2_cu *cu = reader->cu;
19723 struct dwarf2_read_addr_index_data *aidata =
19724 (struct dwarf2_read_addr_index_data *) data;
19725
19726 aidata->addr_base = cu->addr_base;
19727 aidata->addr_size = cu->header.addr_size;
19728 }
19729
19730 /* Given an index in .debug_addr, fetch the value.
19731 NOTE: This can be called during dwarf expression evaluation,
19732 long after the debug information has been read, and thus per_cu->cu
19733 may no longer exist. */
19734
19735 CORE_ADDR
19736 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19737 unsigned int addr_index)
19738 {
19739 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19740 struct dwarf2_cu *cu = per_cu->cu;
19741 ULONGEST addr_base;
19742 int addr_size;
19743
19744 /* We need addr_base and addr_size.
19745 If we don't have PER_CU->cu, we have to get it.
19746 Nasty, but the alternative is storing the needed info in PER_CU,
19747 which at this point doesn't seem justified: it's not clear how frequently
19748 it would get used and it would increase the size of every PER_CU.
19749 Entry points like dwarf2_per_cu_addr_size do a similar thing
19750 so we're not in uncharted territory here.
19751 Alas we need to be a bit more complicated as addr_base is contained
19752 in the DIE.
19753
19754 We don't need to read the entire CU(/TU).
19755 We just need the header and top level die.
19756
19757 IWBN to use the aging mechanism to let us lazily later discard the CU.
19758 For now we skip this optimization. */
19759
19760 if (cu != NULL)
19761 {
19762 addr_base = cu->addr_base;
19763 addr_size = cu->header.addr_size;
19764 }
19765 else
19766 {
19767 struct dwarf2_read_addr_index_data aidata;
19768
19769 /* Note: We can't use init_cutu_and_read_dies_simple here,
19770 we need addr_base. */
19771 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19772 dwarf2_read_addr_index_reader, &aidata);
19773 addr_base = aidata.addr_base;
19774 addr_size = aidata.addr_size;
19775 }
19776
19777 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19778 addr_size);
19779 }
19780
19781 /* Given a DW_FORM_GNU_str_index, fetch the string.
19782 This is only used by the Fission support. */
19783
19784 static const char *
19785 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19786 {
19787 struct dwarf2_cu *cu = reader->cu;
19788 struct dwarf2_per_objfile *dwarf2_per_objfile
19789 = cu->per_cu->dwarf2_per_objfile;
19790 struct objfile *objfile = dwarf2_per_objfile->objfile;
19791 const char *objf_name = objfile_name (objfile);
19792 bfd *abfd = objfile->obfd;
19793 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19794 struct dwarf2_section_info *str_offsets_section =
19795 &reader->dwo_file->sections.str_offsets;
19796 const gdb_byte *info_ptr;
19797 ULONGEST str_offset;
19798 static const char form_name[] = "DW_FORM_GNU_str_index";
19799
19800 dwarf2_read_section (objfile, str_section);
19801 dwarf2_read_section (objfile, str_offsets_section);
19802 if (str_section->buffer == NULL)
19803 error (_("%s used without .debug_str.dwo section"
19804 " in CU at offset %s [in module %s]"),
19805 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19806 if (str_offsets_section->buffer == NULL)
19807 error (_("%s used without .debug_str_offsets.dwo section"
19808 " in CU at offset %s [in module %s]"),
19809 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19810 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19811 error (_("%s pointing outside of .debug_str_offsets.dwo"
19812 " section in CU at offset %s [in module %s]"),
19813 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19814 info_ptr = (str_offsets_section->buffer
19815 + str_index * cu->header.offset_size);
19816 if (cu->header.offset_size == 4)
19817 str_offset = bfd_get_32 (abfd, info_ptr);
19818 else
19819 str_offset = bfd_get_64 (abfd, info_ptr);
19820 if (str_offset >= str_section->size)
19821 error (_("Offset from %s pointing outside of"
19822 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19823 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19824 return (const char *) (str_section->buffer + str_offset);
19825 }
19826
19827 /* Return the length of an LEB128 number in BUF. */
19828
19829 static int
19830 leb128_size (const gdb_byte *buf)
19831 {
19832 const gdb_byte *begin = buf;
19833 gdb_byte byte;
19834
19835 while (1)
19836 {
19837 byte = *buf++;
19838 if ((byte & 128) == 0)
19839 return buf - begin;
19840 }
19841 }
19842
19843 static void
19844 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19845 {
19846 switch (lang)
19847 {
19848 case DW_LANG_C89:
19849 case DW_LANG_C99:
19850 case DW_LANG_C11:
19851 case DW_LANG_C:
19852 case DW_LANG_UPC:
19853 cu->language = language_c;
19854 break;
19855 case DW_LANG_Java:
19856 case DW_LANG_C_plus_plus:
19857 case DW_LANG_C_plus_plus_11:
19858 case DW_LANG_C_plus_plus_14:
19859 cu->language = language_cplus;
19860 break;
19861 case DW_LANG_D:
19862 cu->language = language_d;
19863 break;
19864 case DW_LANG_Fortran77:
19865 case DW_LANG_Fortran90:
19866 case DW_LANG_Fortran95:
19867 case DW_LANG_Fortran03:
19868 case DW_LANG_Fortran08:
19869 cu->language = language_fortran;
19870 break;
19871 case DW_LANG_Go:
19872 cu->language = language_go;
19873 break;
19874 case DW_LANG_Mips_Assembler:
19875 cu->language = language_asm;
19876 break;
19877 case DW_LANG_Ada83:
19878 case DW_LANG_Ada95:
19879 cu->language = language_ada;
19880 break;
19881 case DW_LANG_Modula2:
19882 cu->language = language_m2;
19883 break;
19884 case DW_LANG_Pascal83:
19885 cu->language = language_pascal;
19886 break;
19887 case DW_LANG_ObjC:
19888 cu->language = language_objc;
19889 break;
19890 case DW_LANG_Rust:
19891 case DW_LANG_Rust_old:
19892 cu->language = language_rust;
19893 break;
19894 case DW_LANG_Cobol74:
19895 case DW_LANG_Cobol85:
19896 default:
19897 cu->language = language_minimal;
19898 break;
19899 }
19900 cu->language_defn = language_def (cu->language);
19901 }
19902
19903 /* Return the named attribute or NULL if not there. */
19904
19905 static struct attribute *
19906 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19907 {
19908 for (;;)
19909 {
19910 unsigned int i;
19911 struct attribute *spec = NULL;
19912
19913 for (i = 0; i < die->num_attrs; ++i)
19914 {
19915 if (die->attrs[i].name == name)
19916 return &die->attrs[i];
19917 if (die->attrs[i].name == DW_AT_specification
19918 || die->attrs[i].name == DW_AT_abstract_origin)
19919 spec = &die->attrs[i];
19920 }
19921
19922 if (!spec)
19923 break;
19924
19925 die = follow_die_ref (die, spec, &cu);
19926 }
19927
19928 return NULL;
19929 }
19930
19931 /* Return the named attribute or NULL if not there,
19932 but do not follow DW_AT_specification, etc.
19933 This is for use in contexts where we're reading .debug_types dies.
19934 Following DW_AT_specification, DW_AT_abstract_origin will take us
19935 back up the chain, and we want to go down. */
19936
19937 static struct attribute *
19938 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19939 {
19940 unsigned int i;
19941
19942 for (i = 0; i < die->num_attrs; ++i)
19943 if (die->attrs[i].name == name)
19944 return &die->attrs[i];
19945
19946 return NULL;
19947 }
19948
19949 /* Return the string associated with a string-typed attribute, or NULL if it
19950 is either not found or is of an incorrect type. */
19951
19952 static const char *
19953 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19954 {
19955 struct attribute *attr;
19956 const char *str = NULL;
19957
19958 attr = dwarf2_attr (die, name, cu);
19959
19960 if (attr != NULL)
19961 {
19962 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19963 || attr->form == DW_FORM_string
19964 || attr->form == DW_FORM_GNU_str_index
19965 || attr->form == DW_FORM_GNU_strp_alt)
19966 str = DW_STRING (attr);
19967 else
19968 complaint (_("string type expected for attribute %s for "
19969 "DIE at %s in module %s"),
19970 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19971 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19972 }
19973
19974 return str;
19975 }
19976
19977 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19978 and holds a non-zero value. This function should only be used for
19979 DW_FORM_flag or DW_FORM_flag_present attributes. */
19980
19981 static int
19982 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19983 {
19984 struct attribute *attr = dwarf2_attr (die, name, cu);
19985
19986 return (attr && DW_UNSND (attr));
19987 }
19988
19989 static int
19990 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19991 {
19992 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19993 which value is non-zero. However, we have to be careful with
19994 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19995 (via dwarf2_flag_true_p) follows this attribute. So we may
19996 end up accidently finding a declaration attribute that belongs
19997 to a different DIE referenced by the specification attribute,
19998 even though the given DIE does not have a declaration attribute. */
19999 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20000 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20001 }
20002
20003 /* Return the die giving the specification for DIE, if there is
20004 one. *SPEC_CU is the CU containing DIE on input, and the CU
20005 containing the return value on output. If there is no
20006 specification, but there is an abstract origin, that is
20007 returned. */
20008
20009 static struct die_info *
20010 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20011 {
20012 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20013 *spec_cu);
20014
20015 if (spec_attr == NULL)
20016 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20017
20018 if (spec_attr == NULL)
20019 return NULL;
20020 else
20021 return follow_die_ref (die, spec_attr, spec_cu);
20022 }
20023
20024 /* Stub for free_line_header to match void * callback types. */
20025
20026 static void
20027 free_line_header_voidp (void *arg)
20028 {
20029 struct line_header *lh = (struct line_header *) arg;
20030
20031 delete lh;
20032 }
20033
20034 void
20035 line_header::add_include_dir (const char *include_dir)
20036 {
20037 if (dwarf_line_debug >= 2)
20038 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20039 include_dirs.size () + 1, include_dir);
20040
20041 include_dirs.push_back (include_dir);
20042 }
20043
20044 void
20045 line_header::add_file_name (const char *name,
20046 dir_index d_index,
20047 unsigned int mod_time,
20048 unsigned int length)
20049 {
20050 if (dwarf_line_debug >= 2)
20051 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20052 (unsigned) file_names.size () + 1, name);
20053
20054 file_names.emplace_back (name, d_index, mod_time, length);
20055 }
20056
20057 /* A convenience function to find the proper .debug_line section for a CU. */
20058
20059 static struct dwarf2_section_info *
20060 get_debug_line_section (struct dwarf2_cu *cu)
20061 {
20062 struct dwarf2_section_info *section;
20063 struct dwarf2_per_objfile *dwarf2_per_objfile
20064 = cu->per_cu->dwarf2_per_objfile;
20065
20066 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20067 DWO file. */
20068 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20069 section = &cu->dwo_unit->dwo_file->sections.line;
20070 else if (cu->per_cu->is_dwz)
20071 {
20072 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20073
20074 section = &dwz->line;
20075 }
20076 else
20077 section = &dwarf2_per_objfile->line;
20078
20079 return section;
20080 }
20081
20082 /* Read directory or file name entry format, starting with byte of
20083 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20084 entries count and the entries themselves in the described entry
20085 format. */
20086
20087 static void
20088 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20089 bfd *abfd, const gdb_byte **bufp,
20090 struct line_header *lh,
20091 const struct comp_unit_head *cu_header,
20092 void (*callback) (struct line_header *lh,
20093 const char *name,
20094 dir_index d_index,
20095 unsigned int mod_time,
20096 unsigned int length))
20097 {
20098 gdb_byte format_count, formati;
20099 ULONGEST data_count, datai;
20100 const gdb_byte *buf = *bufp;
20101 const gdb_byte *format_header_data;
20102 unsigned int bytes_read;
20103
20104 format_count = read_1_byte (abfd, buf);
20105 buf += 1;
20106 format_header_data = buf;
20107 for (formati = 0; formati < format_count; formati++)
20108 {
20109 read_unsigned_leb128 (abfd, buf, &bytes_read);
20110 buf += bytes_read;
20111 read_unsigned_leb128 (abfd, buf, &bytes_read);
20112 buf += bytes_read;
20113 }
20114
20115 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20116 buf += bytes_read;
20117 for (datai = 0; datai < data_count; datai++)
20118 {
20119 const gdb_byte *format = format_header_data;
20120 struct file_entry fe;
20121
20122 for (formati = 0; formati < format_count; formati++)
20123 {
20124 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20125 format += bytes_read;
20126
20127 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20128 format += bytes_read;
20129
20130 gdb::optional<const char *> string;
20131 gdb::optional<unsigned int> uint;
20132
20133 switch (form)
20134 {
20135 case DW_FORM_string:
20136 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20137 buf += bytes_read;
20138 break;
20139
20140 case DW_FORM_line_strp:
20141 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20142 abfd, buf,
20143 cu_header,
20144 &bytes_read));
20145 buf += bytes_read;
20146 break;
20147
20148 case DW_FORM_data1:
20149 uint.emplace (read_1_byte (abfd, buf));
20150 buf += 1;
20151 break;
20152
20153 case DW_FORM_data2:
20154 uint.emplace (read_2_bytes (abfd, buf));
20155 buf += 2;
20156 break;
20157
20158 case DW_FORM_data4:
20159 uint.emplace (read_4_bytes (abfd, buf));
20160 buf += 4;
20161 break;
20162
20163 case DW_FORM_data8:
20164 uint.emplace (read_8_bytes (abfd, buf));
20165 buf += 8;
20166 break;
20167
20168 case DW_FORM_udata:
20169 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20170 buf += bytes_read;
20171 break;
20172
20173 case DW_FORM_block:
20174 /* It is valid only for DW_LNCT_timestamp which is ignored by
20175 current GDB. */
20176 break;
20177 }
20178
20179 switch (content_type)
20180 {
20181 case DW_LNCT_path:
20182 if (string.has_value ())
20183 fe.name = *string;
20184 break;
20185 case DW_LNCT_directory_index:
20186 if (uint.has_value ())
20187 fe.d_index = (dir_index) *uint;
20188 break;
20189 case DW_LNCT_timestamp:
20190 if (uint.has_value ())
20191 fe.mod_time = *uint;
20192 break;
20193 case DW_LNCT_size:
20194 if (uint.has_value ())
20195 fe.length = *uint;
20196 break;
20197 case DW_LNCT_MD5:
20198 break;
20199 default:
20200 complaint (_("Unknown format content type %s"),
20201 pulongest (content_type));
20202 }
20203 }
20204
20205 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20206 }
20207
20208 *bufp = buf;
20209 }
20210
20211 /* Read the statement program header starting at OFFSET in
20212 .debug_line, or .debug_line.dwo. Return a pointer
20213 to a struct line_header, allocated using xmalloc.
20214 Returns NULL if there is a problem reading the header, e.g., if it
20215 has a version we don't understand.
20216
20217 NOTE: the strings in the include directory and file name tables of
20218 the returned object point into the dwarf line section buffer,
20219 and must not be freed. */
20220
20221 static line_header_up
20222 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20223 {
20224 const gdb_byte *line_ptr;
20225 unsigned int bytes_read, offset_size;
20226 int i;
20227 const char *cur_dir, *cur_file;
20228 struct dwarf2_section_info *section;
20229 bfd *abfd;
20230 struct dwarf2_per_objfile *dwarf2_per_objfile
20231 = cu->per_cu->dwarf2_per_objfile;
20232
20233 section = get_debug_line_section (cu);
20234 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20235 if (section->buffer == NULL)
20236 {
20237 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20238 complaint (_("missing .debug_line.dwo section"));
20239 else
20240 complaint (_("missing .debug_line section"));
20241 return 0;
20242 }
20243
20244 /* We can't do this until we know the section is non-empty.
20245 Only then do we know we have such a section. */
20246 abfd = get_section_bfd_owner (section);
20247
20248 /* Make sure that at least there's room for the total_length field.
20249 That could be 12 bytes long, but we're just going to fudge that. */
20250 if (to_underlying (sect_off) + 4 >= section->size)
20251 {
20252 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20253 return 0;
20254 }
20255
20256 line_header_up lh (new line_header ());
20257
20258 lh->sect_off = sect_off;
20259 lh->offset_in_dwz = cu->per_cu->is_dwz;
20260
20261 line_ptr = section->buffer + to_underlying (sect_off);
20262
20263 /* Read in the header. */
20264 lh->total_length =
20265 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20266 &bytes_read, &offset_size);
20267 line_ptr += bytes_read;
20268 if (line_ptr + lh->total_length > (section->buffer + section->size))
20269 {
20270 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20271 return 0;
20272 }
20273 lh->statement_program_end = line_ptr + lh->total_length;
20274 lh->version = read_2_bytes (abfd, line_ptr);
20275 line_ptr += 2;
20276 if (lh->version > 5)
20277 {
20278 /* This is a version we don't understand. The format could have
20279 changed in ways we don't handle properly so just punt. */
20280 complaint (_("unsupported version in .debug_line section"));
20281 return NULL;
20282 }
20283 if (lh->version >= 5)
20284 {
20285 gdb_byte segment_selector_size;
20286
20287 /* Skip address size. */
20288 read_1_byte (abfd, line_ptr);
20289 line_ptr += 1;
20290
20291 segment_selector_size = read_1_byte (abfd, line_ptr);
20292 line_ptr += 1;
20293 if (segment_selector_size != 0)
20294 {
20295 complaint (_("unsupported segment selector size %u "
20296 "in .debug_line section"),
20297 segment_selector_size);
20298 return NULL;
20299 }
20300 }
20301 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20302 line_ptr += offset_size;
20303 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20304 line_ptr += 1;
20305 if (lh->version >= 4)
20306 {
20307 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20308 line_ptr += 1;
20309 }
20310 else
20311 lh->maximum_ops_per_instruction = 1;
20312
20313 if (lh->maximum_ops_per_instruction == 0)
20314 {
20315 lh->maximum_ops_per_instruction = 1;
20316 complaint (_("invalid maximum_ops_per_instruction "
20317 "in `.debug_line' section"));
20318 }
20319
20320 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20321 line_ptr += 1;
20322 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20323 line_ptr += 1;
20324 lh->line_range = read_1_byte (abfd, line_ptr);
20325 line_ptr += 1;
20326 lh->opcode_base = read_1_byte (abfd, line_ptr);
20327 line_ptr += 1;
20328 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20329
20330 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20331 for (i = 1; i < lh->opcode_base; ++i)
20332 {
20333 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20334 line_ptr += 1;
20335 }
20336
20337 if (lh->version >= 5)
20338 {
20339 /* Read directory table. */
20340 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20341 &cu->header,
20342 [] (struct line_header *lh, const char *name,
20343 dir_index d_index, unsigned int mod_time,
20344 unsigned int length)
20345 {
20346 lh->add_include_dir (name);
20347 });
20348
20349 /* Read file name table. */
20350 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20351 &cu->header,
20352 [] (struct line_header *lh, const char *name,
20353 dir_index d_index, unsigned int mod_time,
20354 unsigned int length)
20355 {
20356 lh->add_file_name (name, d_index, mod_time, length);
20357 });
20358 }
20359 else
20360 {
20361 /* Read directory table. */
20362 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20363 {
20364 line_ptr += bytes_read;
20365 lh->add_include_dir (cur_dir);
20366 }
20367 line_ptr += bytes_read;
20368
20369 /* Read file name table. */
20370 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20371 {
20372 unsigned int mod_time, length;
20373 dir_index d_index;
20374
20375 line_ptr += bytes_read;
20376 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20377 line_ptr += bytes_read;
20378 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20379 line_ptr += bytes_read;
20380 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20381 line_ptr += bytes_read;
20382
20383 lh->add_file_name (cur_file, d_index, mod_time, length);
20384 }
20385 line_ptr += bytes_read;
20386 }
20387 lh->statement_program_start = line_ptr;
20388
20389 if (line_ptr > (section->buffer + section->size))
20390 complaint (_("line number info header doesn't "
20391 "fit in `.debug_line' section"));
20392
20393 return lh;
20394 }
20395
20396 /* Subroutine of dwarf_decode_lines to simplify it.
20397 Return the file name of the psymtab for included file FILE_INDEX
20398 in line header LH of PST.
20399 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20400 If space for the result is malloc'd, *NAME_HOLDER will be set.
20401 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20402
20403 static const char *
20404 psymtab_include_file_name (const struct line_header *lh, int file_index,
20405 const struct partial_symtab *pst,
20406 const char *comp_dir,
20407 gdb::unique_xmalloc_ptr<char> *name_holder)
20408 {
20409 const file_entry &fe = lh->file_names[file_index];
20410 const char *include_name = fe.name;
20411 const char *include_name_to_compare = include_name;
20412 const char *pst_filename;
20413 int file_is_pst;
20414
20415 const char *dir_name = fe.include_dir (lh);
20416
20417 gdb::unique_xmalloc_ptr<char> hold_compare;
20418 if (!IS_ABSOLUTE_PATH (include_name)
20419 && (dir_name != NULL || comp_dir != NULL))
20420 {
20421 /* Avoid creating a duplicate psymtab for PST.
20422 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20423 Before we do the comparison, however, we need to account
20424 for DIR_NAME and COMP_DIR.
20425 First prepend dir_name (if non-NULL). If we still don't
20426 have an absolute path prepend comp_dir (if non-NULL).
20427 However, the directory we record in the include-file's
20428 psymtab does not contain COMP_DIR (to match the
20429 corresponding symtab(s)).
20430
20431 Example:
20432
20433 bash$ cd /tmp
20434 bash$ gcc -g ./hello.c
20435 include_name = "hello.c"
20436 dir_name = "."
20437 DW_AT_comp_dir = comp_dir = "/tmp"
20438 DW_AT_name = "./hello.c"
20439
20440 */
20441
20442 if (dir_name != NULL)
20443 {
20444 name_holder->reset (concat (dir_name, SLASH_STRING,
20445 include_name, (char *) NULL));
20446 include_name = name_holder->get ();
20447 include_name_to_compare = include_name;
20448 }
20449 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20450 {
20451 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20452 include_name, (char *) NULL));
20453 include_name_to_compare = hold_compare.get ();
20454 }
20455 }
20456
20457 pst_filename = pst->filename;
20458 gdb::unique_xmalloc_ptr<char> copied_name;
20459 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20460 {
20461 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20462 pst_filename, (char *) NULL));
20463 pst_filename = copied_name.get ();
20464 }
20465
20466 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20467
20468 if (file_is_pst)
20469 return NULL;
20470 return include_name;
20471 }
20472
20473 /* State machine to track the state of the line number program. */
20474
20475 class lnp_state_machine
20476 {
20477 public:
20478 /* Initialize a machine state for the start of a line number
20479 program. */
20480 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20481 bool record_lines_p);
20482
20483 file_entry *current_file ()
20484 {
20485 /* lh->file_names is 0-based, but the file name numbers in the
20486 statement program are 1-based. */
20487 return m_line_header->file_name_at (m_file);
20488 }
20489
20490 /* Record the line in the state machine. END_SEQUENCE is true if
20491 we're processing the end of a sequence. */
20492 void record_line (bool end_sequence);
20493
20494 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20495 nop-out rest of the lines in this sequence. */
20496 void check_line_address (struct dwarf2_cu *cu,
20497 const gdb_byte *line_ptr,
20498 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20499
20500 void handle_set_discriminator (unsigned int discriminator)
20501 {
20502 m_discriminator = discriminator;
20503 m_line_has_non_zero_discriminator |= discriminator != 0;
20504 }
20505
20506 /* Handle DW_LNE_set_address. */
20507 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20508 {
20509 m_op_index = 0;
20510 address += baseaddr;
20511 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20512 }
20513
20514 /* Handle DW_LNS_advance_pc. */
20515 void handle_advance_pc (CORE_ADDR adjust);
20516
20517 /* Handle a special opcode. */
20518 void handle_special_opcode (unsigned char op_code);
20519
20520 /* Handle DW_LNS_advance_line. */
20521 void handle_advance_line (int line_delta)
20522 {
20523 advance_line (line_delta);
20524 }
20525
20526 /* Handle DW_LNS_set_file. */
20527 void handle_set_file (file_name_index file);
20528
20529 /* Handle DW_LNS_negate_stmt. */
20530 void handle_negate_stmt ()
20531 {
20532 m_is_stmt = !m_is_stmt;
20533 }
20534
20535 /* Handle DW_LNS_const_add_pc. */
20536 void handle_const_add_pc ();
20537
20538 /* Handle DW_LNS_fixed_advance_pc. */
20539 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20540 {
20541 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20542 m_op_index = 0;
20543 }
20544
20545 /* Handle DW_LNS_copy. */
20546 void handle_copy ()
20547 {
20548 record_line (false);
20549 m_discriminator = 0;
20550 }
20551
20552 /* Handle DW_LNE_end_sequence. */
20553 void handle_end_sequence ()
20554 {
20555 m_currently_recording_lines = true;
20556 }
20557
20558 private:
20559 /* Advance the line by LINE_DELTA. */
20560 void advance_line (int line_delta)
20561 {
20562 m_line += line_delta;
20563
20564 if (line_delta != 0)
20565 m_line_has_non_zero_discriminator = m_discriminator != 0;
20566 }
20567
20568 struct dwarf2_cu *m_cu;
20569
20570 gdbarch *m_gdbarch;
20571
20572 /* True if we're recording lines.
20573 Otherwise we're building partial symtabs and are just interested in
20574 finding include files mentioned by the line number program. */
20575 bool m_record_lines_p;
20576
20577 /* The line number header. */
20578 line_header *m_line_header;
20579
20580 /* These are part of the standard DWARF line number state machine,
20581 and initialized according to the DWARF spec. */
20582
20583 unsigned char m_op_index = 0;
20584 /* The line table index (1-based) of the current file. */
20585 file_name_index m_file = (file_name_index) 1;
20586 unsigned int m_line = 1;
20587
20588 /* These are initialized in the constructor. */
20589
20590 CORE_ADDR m_address;
20591 bool m_is_stmt;
20592 unsigned int m_discriminator;
20593
20594 /* Additional bits of state we need to track. */
20595
20596 /* The last file that we called dwarf2_start_subfile for.
20597 This is only used for TLLs. */
20598 unsigned int m_last_file = 0;
20599 /* The last file a line number was recorded for. */
20600 struct subfile *m_last_subfile = NULL;
20601
20602 /* When true, record the lines we decode. */
20603 bool m_currently_recording_lines = false;
20604
20605 /* The last line number that was recorded, used to coalesce
20606 consecutive entries for the same line. This can happen, for
20607 example, when discriminators are present. PR 17276. */
20608 unsigned int m_last_line = 0;
20609 bool m_line_has_non_zero_discriminator = false;
20610 };
20611
20612 void
20613 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20614 {
20615 CORE_ADDR addr_adj = (((m_op_index + adjust)
20616 / m_line_header->maximum_ops_per_instruction)
20617 * m_line_header->minimum_instruction_length);
20618 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20619 m_op_index = ((m_op_index + adjust)
20620 % m_line_header->maximum_ops_per_instruction);
20621 }
20622
20623 void
20624 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20625 {
20626 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20627 CORE_ADDR addr_adj = (((m_op_index
20628 + (adj_opcode / m_line_header->line_range))
20629 / m_line_header->maximum_ops_per_instruction)
20630 * m_line_header->minimum_instruction_length);
20631 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20632 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20633 % m_line_header->maximum_ops_per_instruction);
20634
20635 int line_delta = (m_line_header->line_base
20636 + (adj_opcode % m_line_header->line_range));
20637 advance_line (line_delta);
20638 record_line (false);
20639 m_discriminator = 0;
20640 }
20641
20642 void
20643 lnp_state_machine::handle_set_file (file_name_index file)
20644 {
20645 m_file = file;
20646
20647 const file_entry *fe = current_file ();
20648 if (fe == NULL)
20649 dwarf2_debug_line_missing_file_complaint ();
20650 else if (m_record_lines_p)
20651 {
20652 const char *dir = fe->include_dir (m_line_header);
20653
20654 m_last_subfile = m_cu->builder->get_current_subfile ();
20655 m_line_has_non_zero_discriminator = m_discriminator != 0;
20656 dwarf2_start_subfile (m_cu, fe->name, dir);
20657 }
20658 }
20659
20660 void
20661 lnp_state_machine::handle_const_add_pc ()
20662 {
20663 CORE_ADDR adjust
20664 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20665
20666 CORE_ADDR addr_adj
20667 = (((m_op_index + adjust)
20668 / m_line_header->maximum_ops_per_instruction)
20669 * m_line_header->minimum_instruction_length);
20670
20671 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20672 m_op_index = ((m_op_index + adjust)
20673 % m_line_header->maximum_ops_per_instruction);
20674 }
20675
20676 /* Return non-zero if we should add LINE to the line number table.
20677 LINE is the line to add, LAST_LINE is the last line that was added,
20678 LAST_SUBFILE is the subfile for LAST_LINE.
20679 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20680 had a non-zero discriminator.
20681
20682 We have to be careful in the presence of discriminators.
20683 E.g., for this line:
20684
20685 for (i = 0; i < 100000; i++);
20686
20687 clang can emit four line number entries for that one line,
20688 each with a different discriminator.
20689 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20690
20691 However, we want gdb to coalesce all four entries into one.
20692 Otherwise the user could stepi into the middle of the line and
20693 gdb would get confused about whether the pc really was in the
20694 middle of the line.
20695
20696 Things are further complicated by the fact that two consecutive
20697 line number entries for the same line is a heuristic used by gcc
20698 to denote the end of the prologue. So we can't just discard duplicate
20699 entries, we have to be selective about it. The heuristic we use is
20700 that we only collapse consecutive entries for the same line if at least
20701 one of those entries has a non-zero discriminator. PR 17276.
20702
20703 Note: Addresses in the line number state machine can never go backwards
20704 within one sequence, thus this coalescing is ok. */
20705
20706 static int
20707 dwarf_record_line_p (struct dwarf2_cu *cu,
20708 unsigned int line, unsigned int last_line,
20709 int line_has_non_zero_discriminator,
20710 struct subfile *last_subfile)
20711 {
20712 if (cu->builder->get_current_subfile () != last_subfile)
20713 return 1;
20714 if (line != last_line)
20715 return 1;
20716 /* Same line for the same file that we've seen already.
20717 As a last check, for pr 17276, only record the line if the line
20718 has never had a non-zero discriminator. */
20719 if (!line_has_non_zero_discriminator)
20720 return 1;
20721 return 0;
20722 }
20723
20724 /* Use the CU's builder to record line number LINE beginning at
20725 address ADDRESS in the line table of subfile SUBFILE. */
20726
20727 static void
20728 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20729 unsigned int line, CORE_ADDR address,
20730 struct dwarf2_cu *cu)
20731 {
20732 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20733
20734 if (dwarf_line_debug)
20735 {
20736 fprintf_unfiltered (gdb_stdlog,
20737 "Recording line %u, file %s, address %s\n",
20738 line, lbasename (subfile->name),
20739 paddress (gdbarch, address));
20740 }
20741
20742 if (cu != nullptr)
20743 cu->builder->record_line (subfile, line, addr);
20744 }
20745
20746 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20747 Mark the end of a set of line number records.
20748 The arguments are the same as for dwarf_record_line_1.
20749 If SUBFILE is NULL the request is ignored. */
20750
20751 static void
20752 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20753 CORE_ADDR address, struct dwarf2_cu *cu)
20754 {
20755 if (subfile == NULL)
20756 return;
20757
20758 if (dwarf_line_debug)
20759 {
20760 fprintf_unfiltered (gdb_stdlog,
20761 "Finishing current line, file %s, address %s\n",
20762 lbasename (subfile->name),
20763 paddress (gdbarch, address));
20764 }
20765
20766 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20767 }
20768
20769 void
20770 lnp_state_machine::record_line (bool end_sequence)
20771 {
20772 if (dwarf_line_debug)
20773 {
20774 fprintf_unfiltered (gdb_stdlog,
20775 "Processing actual line %u: file %u,"
20776 " address %s, is_stmt %u, discrim %u\n",
20777 m_line, to_underlying (m_file),
20778 paddress (m_gdbarch, m_address),
20779 m_is_stmt, m_discriminator);
20780 }
20781
20782 file_entry *fe = current_file ();
20783
20784 if (fe == NULL)
20785 dwarf2_debug_line_missing_file_complaint ();
20786 /* For now we ignore lines not starting on an instruction boundary.
20787 But not when processing end_sequence for compatibility with the
20788 previous version of the code. */
20789 else if (m_op_index == 0 || end_sequence)
20790 {
20791 fe->included_p = 1;
20792 if (m_record_lines_p && m_is_stmt)
20793 {
20794 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20795 || end_sequence)
20796 {
20797 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20798 m_currently_recording_lines ? m_cu : nullptr);
20799 }
20800
20801 if (!end_sequence)
20802 {
20803 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20804 m_line_has_non_zero_discriminator,
20805 m_last_subfile))
20806 {
20807 dwarf_record_line_1 (m_gdbarch,
20808 m_cu->builder->get_current_subfile (),
20809 m_line, m_address,
20810 m_currently_recording_lines ? m_cu : nullptr);
20811 }
20812 m_last_subfile = m_cu->builder->get_current_subfile ();
20813 m_last_line = m_line;
20814 }
20815 }
20816 }
20817 }
20818
20819 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20820 line_header *lh, bool record_lines_p)
20821 {
20822 m_cu = cu;
20823 m_gdbarch = arch;
20824 m_record_lines_p = record_lines_p;
20825 m_line_header = lh;
20826
20827 m_currently_recording_lines = true;
20828
20829 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20830 was a line entry for it so that the backend has a chance to adjust it
20831 and also record it in case it needs it. This is currently used by MIPS
20832 code, cf. `mips_adjust_dwarf2_line'. */
20833 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20834 m_is_stmt = lh->default_is_stmt;
20835 m_discriminator = 0;
20836 }
20837
20838 void
20839 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20840 const gdb_byte *line_ptr,
20841 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20842 {
20843 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20844 the pc range of the CU. However, we restrict the test to only ADDRESS
20845 values of zero to preserve GDB's previous behaviour which is to handle
20846 the specific case of a function being GC'd by the linker. */
20847
20848 if (address == 0 && address < unrelocated_lowpc)
20849 {
20850 /* This line table is for a function which has been
20851 GCd by the linker. Ignore it. PR gdb/12528 */
20852
20853 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20854 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20855
20856 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20857 line_offset, objfile_name (objfile));
20858 m_currently_recording_lines = false;
20859 /* Note: m_currently_recording_lines is left as false until we see
20860 DW_LNE_end_sequence. */
20861 }
20862 }
20863
20864 /* Subroutine of dwarf_decode_lines to simplify it.
20865 Process the line number information in LH.
20866 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20867 program in order to set included_p for every referenced header. */
20868
20869 static void
20870 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20871 const int decode_for_pst_p, CORE_ADDR lowpc)
20872 {
20873 const gdb_byte *line_ptr, *extended_end;
20874 const gdb_byte *line_end;
20875 unsigned int bytes_read, extended_len;
20876 unsigned char op_code, extended_op;
20877 CORE_ADDR baseaddr;
20878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20879 bfd *abfd = objfile->obfd;
20880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20881 /* True if we're recording line info (as opposed to building partial
20882 symtabs and just interested in finding include files mentioned by
20883 the line number program). */
20884 bool record_lines_p = !decode_for_pst_p;
20885
20886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20887
20888 line_ptr = lh->statement_program_start;
20889 line_end = lh->statement_program_end;
20890
20891 /* Read the statement sequences until there's nothing left. */
20892 while (line_ptr < line_end)
20893 {
20894 /* The DWARF line number program state machine. Reset the state
20895 machine at the start of each sequence. */
20896 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20897 bool end_sequence = false;
20898
20899 if (record_lines_p)
20900 {
20901 /* Start a subfile for the current file of the state
20902 machine. */
20903 const file_entry *fe = state_machine.current_file ();
20904
20905 if (fe != NULL)
20906 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20907 }
20908
20909 /* Decode the table. */
20910 while (line_ptr < line_end && !end_sequence)
20911 {
20912 op_code = read_1_byte (abfd, line_ptr);
20913 line_ptr += 1;
20914
20915 if (op_code >= lh->opcode_base)
20916 {
20917 /* Special opcode. */
20918 state_machine.handle_special_opcode (op_code);
20919 }
20920 else switch (op_code)
20921 {
20922 case DW_LNS_extended_op:
20923 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20924 &bytes_read);
20925 line_ptr += bytes_read;
20926 extended_end = line_ptr + extended_len;
20927 extended_op = read_1_byte (abfd, line_ptr);
20928 line_ptr += 1;
20929 switch (extended_op)
20930 {
20931 case DW_LNE_end_sequence:
20932 state_machine.handle_end_sequence ();
20933 end_sequence = true;
20934 break;
20935 case DW_LNE_set_address:
20936 {
20937 CORE_ADDR address
20938 = read_address (abfd, line_ptr, cu, &bytes_read);
20939 line_ptr += bytes_read;
20940
20941 state_machine.check_line_address (cu, line_ptr,
20942 lowpc - baseaddr, address);
20943 state_machine.handle_set_address (baseaddr, address);
20944 }
20945 break;
20946 case DW_LNE_define_file:
20947 {
20948 const char *cur_file;
20949 unsigned int mod_time, length;
20950 dir_index dindex;
20951
20952 cur_file = read_direct_string (abfd, line_ptr,
20953 &bytes_read);
20954 line_ptr += bytes_read;
20955 dindex = (dir_index)
20956 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20957 line_ptr += bytes_read;
20958 mod_time =
20959 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20960 line_ptr += bytes_read;
20961 length =
20962 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20963 line_ptr += bytes_read;
20964 lh->add_file_name (cur_file, dindex, mod_time, length);
20965 }
20966 break;
20967 case DW_LNE_set_discriminator:
20968 {
20969 /* The discriminator is not interesting to the
20970 debugger; just ignore it. We still need to
20971 check its value though:
20972 if there are consecutive entries for the same
20973 (non-prologue) line we want to coalesce them.
20974 PR 17276. */
20975 unsigned int discr
20976 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20977 line_ptr += bytes_read;
20978
20979 state_machine.handle_set_discriminator (discr);
20980 }
20981 break;
20982 default:
20983 complaint (_("mangled .debug_line section"));
20984 return;
20985 }
20986 /* Make sure that we parsed the extended op correctly. If e.g.
20987 we expected a different address size than the producer used,
20988 we may have read the wrong number of bytes. */
20989 if (line_ptr != extended_end)
20990 {
20991 complaint (_("mangled .debug_line section"));
20992 return;
20993 }
20994 break;
20995 case DW_LNS_copy:
20996 state_machine.handle_copy ();
20997 break;
20998 case DW_LNS_advance_pc:
20999 {
21000 CORE_ADDR adjust
21001 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21002 line_ptr += bytes_read;
21003
21004 state_machine.handle_advance_pc (adjust);
21005 }
21006 break;
21007 case DW_LNS_advance_line:
21008 {
21009 int line_delta
21010 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21011 line_ptr += bytes_read;
21012
21013 state_machine.handle_advance_line (line_delta);
21014 }
21015 break;
21016 case DW_LNS_set_file:
21017 {
21018 file_name_index file
21019 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21020 &bytes_read);
21021 line_ptr += bytes_read;
21022
21023 state_machine.handle_set_file (file);
21024 }
21025 break;
21026 case DW_LNS_set_column:
21027 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21028 line_ptr += bytes_read;
21029 break;
21030 case DW_LNS_negate_stmt:
21031 state_machine.handle_negate_stmt ();
21032 break;
21033 case DW_LNS_set_basic_block:
21034 break;
21035 /* Add to the address register of the state machine the
21036 address increment value corresponding to special opcode
21037 255. I.e., this value is scaled by the minimum
21038 instruction length since special opcode 255 would have
21039 scaled the increment. */
21040 case DW_LNS_const_add_pc:
21041 state_machine.handle_const_add_pc ();
21042 break;
21043 case DW_LNS_fixed_advance_pc:
21044 {
21045 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21046 line_ptr += 2;
21047
21048 state_machine.handle_fixed_advance_pc (addr_adj);
21049 }
21050 break;
21051 default:
21052 {
21053 /* Unknown standard opcode, ignore it. */
21054 int i;
21055
21056 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21057 {
21058 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21059 line_ptr += bytes_read;
21060 }
21061 }
21062 }
21063 }
21064
21065 if (!end_sequence)
21066 dwarf2_debug_line_missing_end_sequence_complaint ();
21067
21068 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21069 in which case we still finish recording the last line). */
21070 state_machine.record_line (true);
21071 }
21072 }
21073
21074 /* Decode the Line Number Program (LNP) for the given line_header
21075 structure and CU. The actual information extracted and the type
21076 of structures created from the LNP depends on the value of PST.
21077
21078 1. If PST is NULL, then this procedure uses the data from the program
21079 to create all necessary symbol tables, and their linetables.
21080
21081 2. If PST is not NULL, this procedure reads the program to determine
21082 the list of files included by the unit represented by PST, and
21083 builds all the associated partial symbol tables.
21084
21085 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21086 It is used for relative paths in the line table.
21087 NOTE: When processing partial symtabs (pst != NULL),
21088 comp_dir == pst->dirname.
21089
21090 NOTE: It is important that psymtabs have the same file name (via strcmp)
21091 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21092 symtab we don't use it in the name of the psymtabs we create.
21093 E.g. expand_line_sal requires this when finding psymtabs to expand.
21094 A good testcase for this is mb-inline.exp.
21095
21096 LOWPC is the lowest address in CU (or 0 if not known).
21097
21098 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21099 for its PC<->lines mapping information. Otherwise only the filename
21100 table is read in. */
21101
21102 static void
21103 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21104 struct dwarf2_cu *cu, struct partial_symtab *pst,
21105 CORE_ADDR lowpc, int decode_mapping)
21106 {
21107 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21108 const int decode_for_pst_p = (pst != NULL);
21109
21110 if (decode_mapping)
21111 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21112
21113 if (decode_for_pst_p)
21114 {
21115 int file_index;
21116
21117 /* Now that we're done scanning the Line Header Program, we can
21118 create the psymtab of each included file. */
21119 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21120 if (lh->file_names[file_index].included_p == 1)
21121 {
21122 gdb::unique_xmalloc_ptr<char> name_holder;
21123 const char *include_name =
21124 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21125 &name_holder);
21126 if (include_name != NULL)
21127 dwarf2_create_include_psymtab (include_name, pst, objfile);
21128 }
21129 }
21130 else
21131 {
21132 /* Make sure a symtab is created for every file, even files
21133 which contain only variables (i.e. no code with associated
21134 line numbers). */
21135 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21136 int i;
21137
21138 for (i = 0; i < lh->file_names.size (); i++)
21139 {
21140 file_entry &fe = lh->file_names[i];
21141
21142 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21143
21144 if (cu->builder->get_current_subfile ()->symtab == NULL)
21145 {
21146 cu->builder->get_current_subfile ()->symtab
21147 = allocate_symtab (cust,
21148 cu->builder->get_current_subfile ()->name);
21149 }
21150 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21151 }
21152 }
21153 }
21154
21155 /* Start a subfile for DWARF. FILENAME is the name of the file and
21156 DIRNAME the name of the source directory which contains FILENAME
21157 or NULL if not known.
21158 This routine tries to keep line numbers from identical absolute and
21159 relative file names in a common subfile.
21160
21161 Using the `list' example from the GDB testsuite, which resides in
21162 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21163 of /srcdir/list0.c yields the following debugging information for list0.c:
21164
21165 DW_AT_name: /srcdir/list0.c
21166 DW_AT_comp_dir: /compdir
21167 files.files[0].name: list0.h
21168 files.files[0].dir: /srcdir
21169 files.files[1].name: list0.c
21170 files.files[1].dir: /srcdir
21171
21172 The line number information for list0.c has to end up in a single
21173 subfile, so that `break /srcdir/list0.c:1' works as expected.
21174 start_subfile will ensure that this happens provided that we pass the
21175 concatenation of files.files[1].dir and files.files[1].name as the
21176 subfile's name. */
21177
21178 static void
21179 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21180 const char *dirname)
21181 {
21182 char *copy = NULL;
21183
21184 /* In order not to lose the line information directory,
21185 we concatenate it to the filename when it makes sense.
21186 Note that the Dwarf3 standard says (speaking of filenames in line
21187 information): ``The directory index is ignored for file names
21188 that represent full path names''. Thus ignoring dirname in the
21189 `else' branch below isn't an issue. */
21190
21191 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21192 {
21193 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21194 filename = copy;
21195 }
21196
21197 cu->builder->start_subfile (filename);
21198
21199 if (copy != NULL)
21200 xfree (copy);
21201 }
21202
21203 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21204 buildsym_compunit constructor. */
21205
21206 static struct compunit_symtab *
21207 dwarf2_start_symtab (struct dwarf2_cu *cu,
21208 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21209 {
21210 gdb_assert (cu->builder == nullptr);
21211
21212 cu->builder.reset (new struct buildsym_compunit
21213 (cu->per_cu->dwarf2_per_objfile->objfile,
21214 name, comp_dir, cu->language, low_pc));
21215
21216 cu->list_in_scope = cu->builder->get_file_symbols ();
21217
21218 cu->builder->record_debugformat ("DWARF 2");
21219 cu->builder->record_producer (cu->producer);
21220
21221 cu->processing_has_namespace_info = 0;
21222
21223 return cu->builder->get_compunit_symtab ();
21224 }
21225
21226 static void
21227 var_decode_location (struct attribute *attr, struct symbol *sym,
21228 struct dwarf2_cu *cu)
21229 {
21230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21231 struct comp_unit_head *cu_header = &cu->header;
21232
21233 /* NOTE drow/2003-01-30: There used to be a comment and some special
21234 code here to turn a symbol with DW_AT_external and a
21235 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21236 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21237 with some versions of binutils) where shared libraries could have
21238 relocations against symbols in their debug information - the
21239 minimal symbol would have the right address, but the debug info
21240 would not. It's no longer necessary, because we will explicitly
21241 apply relocations when we read in the debug information now. */
21242
21243 /* A DW_AT_location attribute with no contents indicates that a
21244 variable has been optimized away. */
21245 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21246 {
21247 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21248 return;
21249 }
21250
21251 /* Handle one degenerate form of location expression specially, to
21252 preserve GDB's previous behavior when section offsets are
21253 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21254 then mark this symbol as LOC_STATIC. */
21255
21256 if (attr_form_is_block (attr)
21257 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21258 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21259 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21260 && (DW_BLOCK (attr)->size
21261 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21262 {
21263 unsigned int dummy;
21264
21265 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21266 SYMBOL_VALUE_ADDRESS (sym) =
21267 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21268 else
21269 SYMBOL_VALUE_ADDRESS (sym) =
21270 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21271 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21272 fixup_symbol_section (sym, objfile);
21273 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21274 SYMBOL_SECTION (sym));
21275 return;
21276 }
21277
21278 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21279 expression evaluator, and use LOC_COMPUTED only when necessary
21280 (i.e. when the value of a register or memory location is
21281 referenced, or a thread-local block, etc.). Then again, it might
21282 not be worthwhile. I'm assuming that it isn't unless performance
21283 or memory numbers show me otherwise. */
21284
21285 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21286
21287 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21288 cu->has_loclist = 1;
21289 }
21290
21291 /* Given a pointer to a DWARF information entry, figure out if we need
21292 to make a symbol table entry for it, and if so, create a new entry
21293 and return a pointer to it.
21294 If TYPE is NULL, determine symbol type from the die, otherwise
21295 used the passed type.
21296 If SPACE is not NULL, use it to hold the new symbol. If it is
21297 NULL, allocate a new symbol on the objfile's obstack. */
21298
21299 static struct symbol *
21300 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21301 struct symbol *space)
21302 {
21303 struct dwarf2_per_objfile *dwarf2_per_objfile
21304 = cu->per_cu->dwarf2_per_objfile;
21305 struct objfile *objfile = dwarf2_per_objfile->objfile;
21306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21307 struct symbol *sym = NULL;
21308 const char *name;
21309 struct attribute *attr = NULL;
21310 struct attribute *attr2 = NULL;
21311 CORE_ADDR baseaddr;
21312 struct pending **list_to_add = NULL;
21313
21314 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21315
21316 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21317
21318 name = dwarf2_name (die, cu);
21319 if (name)
21320 {
21321 const char *linkagename;
21322 int suppress_add = 0;
21323
21324 if (space)
21325 sym = space;
21326 else
21327 sym = allocate_symbol (objfile);
21328 OBJSTAT (objfile, n_syms++);
21329
21330 /* Cache this symbol's name and the name's demangled form (if any). */
21331 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21332 linkagename = dwarf2_physname (name, die, cu);
21333 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21334
21335 /* Fortran does not have mangling standard and the mangling does differ
21336 between gfortran, iFort etc. */
21337 if (cu->language == language_fortran
21338 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21339 symbol_set_demangled_name (&(sym->ginfo),
21340 dwarf2_full_name (name, die, cu),
21341 NULL);
21342
21343 /* Default assumptions.
21344 Use the passed type or decode it from the die. */
21345 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21346 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21347 if (type != NULL)
21348 SYMBOL_TYPE (sym) = type;
21349 else
21350 SYMBOL_TYPE (sym) = die_type (die, cu);
21351 attr = dwarf2_attr (die,
21352 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21353 cu);
21354 if (attr)
21355 {
21356 SYMBOL_LINE (sym) = DW_UNSND (attr);
21357 }
21358
21359 attr = dwarf2_attr (die,
21360 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21361 cu);
21362 if (attr)
21363 {
21364 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21365 struct file_entry *fe;
21366
21367 if (cu->line_header != NULL)
21368 fe = cu->line_header->file_name_at (file_index);
21369 else
21370 fe = NULL;
21371
21372 if (fe == NULL)
21373 complaint (_("file index out of range"));
21374 else
21375 symbol_set_symtab (sym, fe->symtab);
21376 }
21377
21378 switch (die->tag)
21379 {
21380 case DW_TAG_label:
21381 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21382 if (attr)
21383 {
21384 CORE_ADDR addr;
21385
21386 addr = attr_value_as_address (attr);
21387 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21388 SYMBOL_VALUE_ADDRESS (sym) = addr;
21389 }
21390 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21391 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21392 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21393 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21394 break;
21395 case DW_TAG_subprogram:
21396 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21397 finish_block. */
21398 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21399 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21400 if ((attr2 && (DW_UNSND (attr2) != 0))
21401 || cu->language == language_ada)
21402 {
21403 /* Subprograms marked external are stored as a global symbol.
21404 Ada subprograms, whether marked external or not, are always
21405 stored as a global symbol, because we want to be able to
21406 access them globally. For instance, we want to be able
21407 to break on a nested subprogram without having to
21408 specify the context. */
21409 list_to_add = cu->builder->get_global_symbols ();
21410 }
21411 else
21412 {
21413 list_to_add = cu->list_in_scope;
21414 }
21415 break;
21416 case DW_TAG_inlined_subroutine:
21417 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21418 finish_block. */
21419 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21420 SYMBOL_INLINED (sym) = 1;
21421 list_to_add = cu->list_in_scope;
21422 break;
21423 case DW_TAG_template_value_param:
21424 suppress_add = 1;
21425 /* Fall through. */
21426 case DW_TAG_constant:
21427 case DW_TAG_variable:
21428 case DW_TAG_member:
21429 /* Compilation with minimal debug info may result in
21430 variables with missing type entries. Change the
21431 misleading `void' type to something sensible. */
21432 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21433 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21434
21435 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21436 /* In the case of DW_TAG_member, we should only be called for
21437 static const members. */
21438 if (die->tag == DW_TAG_member)
21439 {
21440 /* dwarf2_add_field uses die_is_declaration,
21441 so we do the same. */
21442 gdb_assert (die_is_declaration (die, cu));
21443 gdb_assert (attr);
21444 }
21445 if (attr)
21446 {
21447 dwarf2_const_value (attr, sym, cu);
21448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21449 if (!suppress_add)
21450 {
21451 if (attr2 && (DW_UNSND (attr2) != 0))
21452 list_to_add = cu->builder->get_global_symbols ();
21453 else
21454 list_to_add = cu->list_in_scope;
21455 }
21456 break;
21457 }
21458 attr = dwarf2_attr (die, DW_AT_location, cu);
21459 if (attr)
21460 {
21461 var_decode_location (attr, sym, cu);
21462 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21463
21464 /* Fortran explicitly imports any global symbols to the local
21465 scope by DW_TAG_common_block. */
21466 if (cu->language == language_fortran && die->parent
21467 && die->parent->tag == DW_TAG_common_block)
21468 attr2 = NULL;
21469
21470 if (SYMBOL_CLASS (sym) == LOC_STATIC
21471 && SYMBOL_VALUE_ADDRESS (sym) == 0
21472 && !dwarf2_per_objfile->has_section_at_zero)
21473 {
21474 /* When a static variable is eliminated by the linker,
21475 the corresponding debug information is not stripped
21476 out, but the variable address is set to null;
21477 do not add such variables into symbol table. */
21478 }
21479 else if (attr2 && (DW_UNSND (attr2) != 0))
21480 {
21481 /* Workaround gfortran PR debug/40040 - it uses
21482 DW_AT_location for variables in -fPIC libraries which may
21483 get overriden by other libraries/executable and get
21484 a different address. Resolve it by the minimal symbol
21485 which may come from inferior's executable using copy
21486 relocation. Make this workaround only for gfortran as for
21487 other compilers GDB cannot guess the minimal symbol
21488 Fortran mangling kind. */
21489 if (cu->language == language_fortran && die->parent
21490 && die->parent->tag == DW_TAG_module
21491 && cu->producer
21492 && startswith (cu->producer, "GNU Fortran"))
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21494
21495 /* A variable with DW_AT_external is never static,
21496 but it may be block-scoped. */
21497 list_to_add
21498 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21499 ? cu->builder->get_global_symbols ()
21500 : cu->list_in_scope);
21501 }
21502 else
21503 list_to_add = cu->list_in_scope;
21504 }
21505 else
21506 {
21507 /* We do not know the address of this symbol.
21508 If it is an external symbol and we have type information
21509 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21510 The address of the variable will then be determined from
21511 the minimal symbol table whenever the variable is
21512 referenced. */
21513 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21514
21515 /* Fortran explicitly imports any global symbols to the local
21516 scope by DW_TAG_common_block. */
21517 if (cu->language == language_fortran && die->parent
21518 && die->parent->tag == DW_TAG_common_block)
21519 {
21520 /* SYMBOL_CLASS doesn't matter here because
21521 read_common_block is going to reset it. */
21522 if (!suppress_add)
21523 list_to_add = cu->list_in_scope;
21524 }
21525 else if (attr2 && (DW_UNSND (attr2) != 0)
21526 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21527 {
21528 /* A variable with DW_AT_external is never static, but it
21529 may be block-scoped. */
21530 list_to_add
21531 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21532 ? cu->builder->get_global_symbols ()
21533 : cu->list_in_scope);
21534
21535 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21536 }
21537 else if (!die_is_declaration (die, cu))
21538 {
21539 /* Use the default LOC_OPTIMIZED_OUT class. */
21540 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21541 if (!suppress_add)
21542 list_to_add = cu->list_in_scope;
21543 }
21544 }
21545 break;
21546 case DW_TAG_formal_parameter:
21547 {
21548 /* If we are inside a function, mark this as an argument. If
21549 not, we might be looking at an argument to an inlined function
21550 when we do not have enough information to show inlined frames;
21551 pretend it's a local variable in that case so that the user can
21552 still see it. */
21553 struct context_stack *curr
21554 = cu->builder->get_current_context_stack ();
21555 if (curr != nullptr && curr->name != nullptr)
21556 SYMBOL_IS_ARGUMENT (sym) = 1;
21557 attr = dwarf2_attr (die, DW_AT_location, cu);
21558 if (attr)
21559 {
21560 var_decode_location (attr, sym, cu);
21561 }
21562 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21563 if (attr)
21564 {
21565 dwarf2_const_value (attr, sym, cu);
21566 }
21567
21568 list_to_add = cu->list_in_scope;
21569 }
21570 break;
21571 case DW_TAG_unspecified_parameters:
21572 /* From varargs functions; gdb doesn't seem to have any
21573 interest in this information, so just ignore it for now.
21574 (FIXME?) */
21575 break;
21576 case DW_TAG_template_type_param:
21577 suppress_add = 1;
21578 /* Fall through. */
21579 case DW_TAG_class_type:
21580 case DW_TAG_interface_type:
21581 case DW_TAG_structure_type:
21582 case DW_TAG_union_type:
21583 case DW_TAG_set_type:
21584 case DW_TAG_enumeration_type:
21585 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21586 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21587
21588 {
21589 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21590 really ever be static objects: otherwise, if you try
21591 to, say, break of a class's method and you're in a file
21592 which doesn't mention that class, it won't work unless
21593 the check for all static symbols in lookup_symbol_aux
21594 saves you. See the OtherFileClass tests in
21595 gdb.c++/namespace.exp. */
21596
21597 if (!suppress_add)
21598 {
21599 list_to_add
21600 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21601 && cu->language == language_cplus
21602 ? cu->builder->get_global_symbols ()
21603 : cu->list_in_scope);
21604
21605 /* The semantics of C++ state that "struct foo {
21606 ... }" also defines a typedef for "foo". */
21607 if (cu->language == language_cplus
21608 || cu->language == language_ada
21609 || cu->language == language_d
21610 || cu->language == language_rust)
21611 {
21612 /* The symbol's name is already allocated along
21613 with this objfile, so we don't need to
21614 duplicate it for the type. */
21615 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21616 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21617 }
21618 }
21619 }
21620 break;
21621 case DW_TAG_typedef:
21622 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21623 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21624 list_to_add = cu->list_in_scope;
21625 break;
21626 case DW_TAG_base_type:
21627 case DW_TAG_subrange_type:
21628 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21629 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21630 list_to_add = cu->list_in_scope;
21631 break;
21632 case DW_TAG_enumerator:
21633 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21634 if (attr)
21635 {
21636 dwarf2_const_value (attr, sym, cu);
21637 }
21638 {
21639 /* NOTE: carlton/2003-11-10: See comment above in the
21640 DW_TAG_class_type, etc. block. */
21641
21642 list_to_add
21643 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21644 && cu->language == language_cplus
21645 ? cu->builder->get_global_symbols ()
21646 : cu->list_in_scope);
21647 }
21648 break;
21649 case DW_TAG_imported_declaration:
21650 case DW_TAG_namespace:
21651 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21652 list_to_add = cu->builder->get_global_symbols ();
21653 break;
21654 case DW_TAG_module:
21655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21656 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21657 list_to_add = cu->builder->get_global_symbols ();
21658 break;
21659 case DW_TAG_common_block:
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21661 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21662 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21663 break;
21664 default:
21665 /* Not a tag we recognize. Hopefully we aren't processing
21666 trash data, but since we must specifically ignore things
21667 we don't recognize, there is nothing else we should do at
21668 this point. */
21669 complaint (_("unsupported tag: '%s'"),
21670 dwarf_tag_name (die->tag));
21671 break;
21672 }
21673
21674 if (suppress_add)
21675 {
21676 sym->hash_next = objfile->template_symbols;
21677 objfile->template_symbols = sym;
21678 list_to_add = NULL;
21679 }
21680
21681 if (list_to_add != NULL)
21682 dw2_add_symbol_to_list (sym, list_to_add);
21683
21684 /* For the benefit of old versions of GCC, check for anonymous
21685 namespaces based on the demangled name. */
21686 if (!cu->processing_has_namespace_info
21687 && cu->language == language_cplus)
21688 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21689 }
21690 return (sym);
21691 }
21692
21693 /* Given an attr with a DW_FORM_dataN value in host byte order,
21694 zero-extend it as appropriate for the symbol's type. The DWARF
21695 standard (v4) is not entirely clear about the meaning of using
21696 DW_FORM_dataN for a constant with a signed type, where the type is
21697 wider than the data. The conclusion of a discussion on the DWARF
21698 list was that this is unspecified. We choose to always zero-extend
21699 because that is the interpretation long in use by GCC. */
21700
21701 static gdb_byte *
21702 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21703 struct dwarf2_cu *cu, LONGEST *value, int bits)
21704 {
21705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21706 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21707 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21708 LONGEST l = DW_UNSND (attr);
21709
21710 if (bits < sizeof (*value) * 8)
21711 {
21712 l &= ((LONGEST) 1 << bits) - 1;
21713 *value = l;
21714 }
21715 else if (bits == sizeof (*value) * 8)
21716 *value = l;
21717 else
21718 {
21719 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21720 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21721 return bytes;
21722 }
21723
21724 return NULL;
21725 }
21726
21727 /* Read a constant value from an attribute. Either set *VALUE, or if
21728 the value does not fit in *VALUE, set *BYTES - either already
21729 allocated on the objfile obstack, or newly allocated on OBSTACK,
21730 or, set *BATON, if we translated the constant to a location
21731 expression. */
21732
21733 static void
21734 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21735 const char *name, struct obstack *obstack,
21736 struct dwarf2_cu *cu,
21737 LONGEST *value, const gdb_byte **bytes,
21738 struct dwarf2_locexpr_baton **baton)
21739 {
21740 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21741 struct comp_unit_head *cu_header = &cu->header;
21742 struct dwarf_block *blk;
21743 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21744 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21745
21746 *value = 0;
21747 *bytes = NULL;
21748 *baton = NULL;
21749
21750 switch (attr->form)
21751 {
21752 case DW_FORM_addr:
21753 case DW_FORM_GNU_addr_index:
21754 {
21755 gdb_byte *data;
21756
21757 if (TYPE_LENGTH (type) != cu_header->addr_size)
21758 dwarf2_const_value_length_mismatch_complaint (name,
21759 cu_header->addr_size,
21760 TYPE_LENGTH (type));
21761 /* Symbols of this form are reasonably rare, so we just
21762 piggyback on the existing location code rather than writing
21763 a new implementation of symbol_computed_ops. */
21764 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21765 (*baton)->per_cu = cu->per_cu;
21766 gdb_assert ((*baton)->per_cu);
21767
21768 (*baton)->size = 2 + cu_header->addr_size;
21769 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21770 (*baton)->data = data;
21771
21772 data[0] = DW_OP_addr;
21773 store_unsigned_integer (&data[1], cu_header->addr_size,
21774 byte_order, DW_ADDR (attr));
21775 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21776 }
21777 break;
21778 case DW_FORM_string:
21779 case DW_FORM_strp:
21780 case DW_FORM_GNU_str_index:
21781 case DW_FORM_GNU_strp_alt:
21782 /* DW_STRING is already allocated on the objfile obstack, point
21783 directly to it. */
21784 *bytes = (const gdb_byte *) DW_STRING (attr);
21785 break;
21786 case DW_FORM_block1:
21787 case DW_FORM_block2:
21788 case DW_FORM_block4:
21789 case DW_FORM_block:
21790 case DW_FORM_exprloc:
21791 case DW_FORM_data16:
21792 blk = DW_BLOCK (attr);
21793 if (TYPE_LENGTH (type) != blk->size)
21794 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21795 TYPE_LENGTH (type));
21796 *bytes = blk->data;
21797 break;
21798
21799 /* The DW_AT_const_value attributes are supposed to carry the
21800 symbol's value "represented as it would be on the target
21801 architecture." By the time we get here, it's already been
21802 converted to host endianness, so we just need to sign- or
21803 zero-extend it as appropriate. */
21804 case DW_FORM_data1:
21805 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21806 break;
21807 case DW_FORM_data2:
21808 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21809 break;
21810 case DW_FORM_data4:
21811 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21812 break;
21813 case DW_FORM_data8:
21814 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21815 break;
21816
21817 case DW_FORM_sdata:
21818 case DW_FORM_implicit_const:
21819 *value = DW_SND (attr);
21820 break;
21821
21822 case DW_FORM_udata:
21823 *value = DW_UNSND (attr);
21824 break;
21825
21826 default:
21827 complaint (_("unsupported const value attribute form: '%s'"),
21828 dwarf_form_name (attr->form));
21829 *value = 0;
21830 break;
21831 }
21832 }
21833
21834
21835 /* Copy constant value from an attribute to a symbol. */
21836
21837 static void
21838 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21839 struct dwarf2_cu *cu)
21840 {
21841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21842 LONGEST value;
21843 const gdb_byte *bytes;
21844 struct dwarf2_locexpr_baton *baton;
21845
21846 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21847 SYMBOL_PRINT_NAME (sym),
21848 &objfile->objfile_obstack, cu,
21849 &value, &bytes, &baton);
21850
21851 if (baton != NULL)
21852 {
21853 SYMBOL_LOCATION_BATON (sym) = baton;
21854 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21855 }
21856 else if (bytes != NULL)
21857 {
21858 SYMBOL_VALUE_BYTES (sym) = bytes;
21859 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21860 }
21861 else
21862 {
21863 SYMBOL_VALUE (sym) = value;
21864 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21865 }
21866 }
21867
21868 /* Return the type of the die in question using its DW_AT_type attribute. */
21869
21870 static struct type *
21871 die_type (struct die_info *die, struct dwarf2_cu *cu)
21872 {
21873 struct attribute *type_attr;
21874
21875 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21876 if (!type_attr)
21877 {
21878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21879 /* A missing DW_AT_type represents a void type. */
21880 return objfile_type (objfile)->builtin_void;
21881 }
21882
21883 return lookup_die_type (die, type_attr, cu);
21884 }
21885
21886 /* True iff CU's producer generates GNAT Ada auxiliary information
21887 that allows to find parallel types through that information instead
21888 of having to do expensive parallel lookups by type name. */
21889
21890 static int
21891 need_gnat_info (struct dwarf2_cu *cu)
21892 {
21893 /* Assume that the Ada compiler was GNAT, which always produces
21894 the auxiliary information. */
21895 return (cu->language == language_ada);
21896 }
21897
21898 /* Return the auxiliary type of the die in question using its
21899 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21900 attribute is not present. */
21901
21902 static struct type *
21903 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21904 {
21905 struct attribute *type_attr;
21906
21907 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21908 if (!type_attr)
21909 return NULL;
21910
21911 return lookup_die_type (die, type_attr, cu);
21912 }
21913
21914 /* If DIE has a descriptive_type attribute, then set the TYPE's
21915 descriptive type accordingly. */
21916
21917 static void
21918 set_descriptive_type (struct type *type, struct die_info *die,
21919 struct dwarf2_cu *cu)
21920 {
21921 struct type *descriptive_type = die_descriptive_type (die, cu);
21922
21923 if (descriptive_type)
21924 {
21925 ALLOCATE_GNAT_AUX_TYPE (type);
21926 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21927 }
21928 }
21929
21930 /* Return the containing type of the die in question using its
21931 DW_AT_containing_type attribute. */
21932
21933 static struct type *
21934 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21935 {
21936 struct attribute *type_attr;
21937 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21938
21939 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21940 if (!type_attr)
21941 error (_("Dwarf Error: Problem turning containing type into gdb type "
21942 "[in module %s]"), objfile_name (objfile));
21943
21944 return lookup_die_type (die, type_attr, cu);
21945 }
21946
21947 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21948
21949 static struct type *
21950 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21951 {
21952 struct dwarf2_per_objfile *dwarf2_per_objfile
21953 = cu->per_cu->dwarf2_per_objfile;
21954 struct objfile *objfile = dwarf2_per_objfile->objfile;
21955 char *saved;
21956
21957 std::string message
21958 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21959 objfile_name (objfile),
21960 sect_offset_str (cu->header.sect_off),
21961 sect_offset_str (die->sect_off));
21962 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21963 message.c_str (), message.length ());
21964
21965 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21966 }
21967
21968 /* Look up the type of DIE in CU using its type attribute ATTR.
21969 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21970 DW_AT_containing_type.
21971 If there is no type substitute an error marker. */
21972
21973 static struct type *
21974 lookup_die_type (struct die_info *die, const struct attribute *attr,
21975 struct dwarf2_cu *cu)
21976 {
21977 struct dwarf2_per_objfile *dwarf2_per_objfile
21978 = cu->per_cu->dwarf2_per_objfile;
21979 struct objfile *objfile = dwarf2_per_objfile->objfile;
21980 struct type *this_type;
21981
21982 gdb_assert (attr->name == DW_AT_type
21983 || attr->name == DW_AT_GNAT_descriptive_type
21984 || attr->name == DW_AT_containing_type);
21985
21986 /* First see if we have it cached. */
21987
21988 if (attr->form == DW_FORM_GNU_ref_alt)
21989 {
21990 struct dwarf2_per_cu_data *per_cu;
21991 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21992
21993 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21994 dwarf2_per_objfile);
21995 this_type = get_die_type_at_offset (sect_off, per_cu);
21996 }
21997 else if (attr_form_is_ref (attr))
21998 {
21999 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22000
22001 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22002 }
22003 else if (attr->form == DW_FORM_ref_sig8)
22004 {
22005 ULONGEST signature = DW_SIGNATURE (attr);
22006
22007 return get_signatured_type (die, signature, cu);
22008 }
22009 else
22010 {
22011 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22012 " at %s [in module %s]"),
22013 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22014 objfile_name (objfile));
22015 return build_error_marker_type (cu, die);
22016 }
22017
22018 /* If not cached we need to read it in. */
22019
22020 if (this_type == NULL)
22021 {
22022 struct die_info *type_die = NULL;
22023 struct dwarf2_cu *type_cu = cu;
22024
22025 if (attr_form_is_ref (attr))
22026 type_die = follow_die_ref (die, attr, &type_cu);
22027 if (type_die == NULL)
22028 return build_error_marker_type (cu, die);
22029 /* If we find the type now, it's probably because the type came
22030 from an inter-CU reference and the type's CU got expanded before
22031 ours. */
22032 this_type = read_type_die (type_die, type_cu);
22033 }
22034
22035 /* If we still don't have a type use an error marker. */
22036
22037 if (this_type == NULL)
22038 return build_error_marker_type (cu, die);
22039
22040 return this_type;
22041 }
22042
22043 /* Return the type in DIE, CU.
22044 Returns NULL for invalid types.
22045
22046 This first does a lookup in die_type_hash,
22047 and only reads the die in if necessary.
22048
22049 NOTE: This can be called when reading in partial or full symbols. */
22050
22051 static struct type *
22052 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22053 {
22054 struct type *this_type;
22055
22056 this_type = get_die_type (die, cu);
22057 if (this_type)
22058 return this_type;
22059
22060 return read_type_die_1 (die, cu);
22061 }
22062
22063 /* Read the type in DIE, CU.
22064 Returns NULL for invalid types. */
22065
22066 static struct type *
22067 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22068 {
22069 struct type *this_type = NULL;
22070
22071 switch (die->tag)
22072 {
22073 case DW_TAG_class_type:
22074 case DW_TAG_interface_type:
22075 case DW_TAG_structure_type:
22076 case DW_TAG_union_type:
22077 this_type = read_structure_type (die, cu);
22078 break;
22079 case DW_TAG_enumeration_type:
22080 this_type = read_enumeration_type (die, cu);
22081 break;
22082 case DW_TAG_subprogram:
22083 case DW_TAG_subroutine_type:
22084 case DW_TAG_inlined_subroutine:
22085 this_type = read_subroutine_type (die, cu);
22086 break;
22087 case DW_TAG_array_type:
22088 this_type = read_array_type (die, cu);
22089 break;
22090 case DW_TAG_set_type:
22091 this_type = read_set_type (die, cu);
22092 break;
22093 case DW_TAG_pointer_type:
22094 this_type = read_tag_pointer_type (die, cu);
22095 break;
22096 case DW_TAG_ptr_to_member_type:
22097 this_type = read_tag_ptr_to_member_type (die, cu);
22098 break;
22099 case DW_TAG_reference_type:
22100 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22101 break;
22102 case DW_TAG_rvalue_reference_type:
22103 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22104 break;
22105 case DW_TAG_const_type:
22106 this_type = read_tag_const_type (die, cu);
22107 break;
22108 case DW_TAG_volatile_type:
22109 this_type = read_tag_volatile_type (die, cu);
22110 break;
22111 case DW_TAG_restrict_type:
22112 this_type = read_tag_restrict_type (die, cu);
22113 break;
22114 case DW_TAG_string_type:
22115 this_type = read_tag_string_type (die, cu);
22116 break;
22117 case DW_TAG_typedef:
22118 this_type = read_typedef (die, cu);
22119 break;
22120 case DW_TAG_subrange_type:
22121 this_type = read_subrange_type (die, cu);
22122 break;
22123 case DW_TAG_base_type:
22124 this_type = read_base_type (die, cu);
22125 break;
22126 case DW_TAG_unspecified_type:
22127 this_type = read_unspecified_type (die, cu);
22128 break;
22129 case DW_TAG_namespace:
22130 this_type = read_namespace_type (die, cu);
22131 break;
22132 case DW_TAG_module:
22133 this_type = read_module_type (die, cu);
22134 break;
22135 case DW_TAG_atomic_type:
22136 this_type = read_tag_atomic_type (die, cu);
22137 break;
22138 default:
22139 complaint (_("unexpected tag in read_type_die: '%s'"),
22140 dwarf_tag_name (die->tag));
22141 break;
22142 }
22143
22144 return this_type;
22145 }
22146
22147 /* See if we can figure out if the class lives in a namespace. We do
22148 this by looking for a member function; its demangled name will
22149 contain namespace info, if there is any.
22150 Return the computed name or NULL.
22151 Space for the result is allocated on the objfile's obstack.
22152 This is the full-die version of guess_partial_die_structure_name.
22153 In this case we know DIE has no useful parent. */
22154
22155 static char *
22156 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22157 {
22158 struct die_info *spec_die;
22159 struct dwarf2_cu *spec_cu;
22160 struct die_info *child;
22161 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22162
22163 spec_cu = cu;
22164 spec_die = die_specification (die, &spec_cu);
22165 if (spec_die != NULL)
22166 {
22167 die = spec_die;
22168 cu = spec_cu;
22169 }
22170
22171 for (child = die->child;
22172 child != NULL;
22173 child = child->sibling)
22174 {
22175 if (child->tag == DW_TAG_subprogram)
22176 {
22177 const char *linkage_name = dw2_linkage_name (child, cu);
22178
22179 if (linkage_name != NULL)
22180 {
22181 char *actual_name
22182 = language_class_name_from_physname (cu->language_defn,
22183 linkage_name);
22184 char *name = NULL;
22185
22186 if (actual_name != NULL)
22187 {
22188 const char *die_name = dwarf2_name (die, cu);
22189
22190 if (die_name != NULL
22191 && strcmp (die_name, actual_name) != 0)
22192 {
22193 /* Strip off the class name from the full name.
22194 We want the prefix. */
22195 int die_name_len = strlen (die_name);
22196 int actual_name_len = strlen (actual_name);
22197
22198 /* Test for '::' as a sanity check. */
22199 if (actual_name_len > die_name_len + 2
22200 && actual_name[actual_name_len
22201 - die_name_len - 1] == ':')
22202 name = (char *) obstack_copy0 (
22203 &objfile->per_bfd->storage_obstack,
22204 actual_name, actual_name_len - die_name_len - 2);
22205 }
22206 }
22207 xfree (actual_name);
22208 return name;
22209 }
22210 }
22211 }
22212
22213 return NULL;
22214 }
22215
22216 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22217 prefix part in such case. See
22218 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22219
22220 static const char *
22221 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22222 {
22223 struct attribute *attr;
22224 const char *base;
22225
22226 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22227 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22228 return NULL;
22229
22230 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22231 return NULL;
22232
22233 attr = dw2_linkage_name_attr (die, cu);
22234 if (attr == NULL || DW_STRING (attr) == NULL)
22235 return NULL;
22236
22237 /* dwarf2_name had to be already called. */
22238 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22239
22240 /* Strip the base name, keep any leading namespaces/classes. */
22241 base = strrchr (DW_STRING (attr), ':');
22242 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22243 return "";
22244
22245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22246 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22247 DW_STRING (attr),
22248 &base[-1] - DW_STRING (attr));
22249 }
22250
22251 /* Return the name of the namespace/class that DIE is defined within,
22252 or "" if we can't tell. The caller should not xfree the result.
22253
22254 For example, if we're within the method foo() in the following
22255 code:
22256
22257 namespace N {
22258 class C {
22259 void foo () {
22260 }
22261 };
22262 }
22263
22264 then determine_prefix on foo's die will return "N::C". */
22265
22266 static const char *
22267 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22268 {
22269 struct dwarf2_per_objfile *dwarf2_per_objfile
22270 = cu->per_cu->dwarf2_per_objfile;
22271 struct die_info *parent, *spec_die;
22272 struct dwarf2_cu *spec_cu;
22273 struct type *parent_type;
22274 const char *retval;
22275
22276 if (cu->language != language_cplus
22277 && cu->language != language_fortran && cu->language != language_d
22278 && cu->language != language_rust)
22279 return "";
22280
22281 retval = anonymous_struct_prefix (die, cu);
22282 if (retval)
22283 return retval;
22284
22285 /* We have to be careful in the presence of DW_AT_specification.
22286 For example, with GCC 3.4, given the code
22287
22288 namespace N {
22289 void foo() {
22290 // Definition of N::foo.
22291 }
22292 }
22293
22294 then we'll have a tree of DIEs like this:
22295
22296 1: DW_TAG_compile_unit
22297 2: DW_TAG_namespace // N
22298 3: DW_TAG_subprogram // declaration of N::foo
22299 4: DW_TAG_subprogram // definition of N::foo
22300 DW_AT_specification // refers to die #3
22301
22302 Thus, when processing die #4, we have to pretend that we're in
22303 the context of its DW_AT_specification, namely the contex of die
22304 #3. */
22305 spec_cu = cu;
22306 spec_die = die_specification (die, &spec_cu);
22307 if (spec_die == NULL)
22308 parent = die->parent;
22309 else
22310 {
22311 parent = spec_die->parent;
22312 cu = spec_cu;
22313 }
22314
22315 if (parent == NULL)
22316 return "";
22317 else if (parent->building_fullname)
22318 {
22319 const char *name;
22320 const char *parent_name;
22321
22322 /* It has been seen on RealView 2.2 built binaries,
22323 DW_TAG_template_type_param types actually _defined_ as
22324 children of the parent class:
22325
22326 enum E {};
22327 template class <class Enum> Class{};
22328 Class<enum E> class_e;
22329
22330 1: DW_TAG_class_type (Class)
22331 2: DW_TAG_enumeration_type (E)
22332 3: DW_TAG_enumerator (enum1:0)
22333 3: DW_TAG_enumerator (enum2:1)
22334 ...
22335 2: DW_TAG_template_type_param
22336 DW_AT_type DW_FORM_ref_udata (E)
22337
22338 Besides being broken debug info, it can put GDB into an
22339 infinite loop. Consider:
22340
22341 When we're building the full name for Class<E>, we'll start
22342 at Class, and go look over its template type parameters,
22343 finding E. We'll then try to build the full name of E, and
22344 reach here. We're now trying to build the full name of E,
22345 and look over the parent DIE for containing scope. In the
22346 broken case, if we followed the parent DIE of E, we'd again
22347 find Class, and once again go look at its template type
22348 arguments, etc., etc. Simply don't consider such parent die
22349 as source-level parent of this die (it can't be, the language
22350 doesn't allow it), and break the loop here. */
22351 name = dwarf2_name (die, cu);
22352 parent_name = dwarf2_name (parent, cu);
22353 complaint (_("template param type '%s' defined within parent '%s'"),
22354 name ? name : "<unknown>",
22355 parent_name ? parent_name : "<unknown>");
22356 return "";
22357 }
22358 else
22359 switch (parent->tag)
22360 {
22361 case DW_TAG_namespace:
22362 parent_type = read_type_die (parent, cu);
22363 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22364 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22365 Work around this problem here. */
22366 if (cu->language == language_cplus
22367 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22368 return "";
22369 /* We give a name to even anonymous namespaces. */
22370 return TYPE_NAME (parent_type);
22371 case DW_TAG_class_type:
22372 case DW_TAG_interface_type:
22373 case DW_TAG_structure_type:
22374 case DW_TAG_union_type:
22375 case DW_TAG_module:
22376 parent_type = read_type_die (parent, cu);
22377 if (TYPE_NAME (parent_type) != NULL)
22378 return TYPE_NAME (parent_type);
22379 else
22380 /* An anonymous structure is only allowed non-static data
22381 members; no typedefs, no member functions, et cetera.
22382 So it does not need a prefix. */
22383 return "";
22384 case DW_TAG_compile_unit:
22385 case DW_TAG_partial_unit:
22386 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22387 if (cu->language == language_cplus
22388 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22389 && die->child != NULL
22390 && (die->tag == DW_TAG_class_type
22391 || die->tag == DW_TAG_structure_type
22392 || die->tag == DW_TAG_union_type))
22393 {
22394 char *name = guess_full_die_structure_name (die, cu);
22395 if (name != NULL)
22396 return name;
22397 }
22398 return "";
22399 case DW_TAG_enumeration_type:
22400 parent_type = read_type_die (parent, cu);
22401 if (TYPE_DECLARED_CLASS (parent_type))
22402 {
22403 if (TYPE_NAME (parent_type) != NULL)
22404 return TYPE_NAME (parent_type);
22405 return "";
22406 }
22407 /* Fall through. */
22408 default:
22409 return determine_prefix (parent, cu);
22410 }
22411 }
22412
22413 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22414 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22415 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22416 an obconcat, otherwise allocate storage for the result. The CU argument is
22417 used to determine the language and hence, the appropriate separator. */
22418
22419 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22420
22421 static char *
22422 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22423 int physname, struct dwarf2_cu *cu)
22424 {
22425 const char *lead = "";
22426 const char *sep;
22427
22428 if (suffix == NULL || suffix[0] == '\0'
22429 || prefix == NULL || prefix[0] == '\0')
22430 sep = "";
22431 else if (cu->language == language_d)
22432 {
22433 /* For D, the 'main' function could be defined in any module, but it
22434 should never be prefixed. */
22435 if (strcmp (suffix, "D main") == 0)
22436 {
22437 prefix = "";
22438 sep = "";
22439 }
22440 else
22441 sep = ".";
22442 }
22443 else if (cu->language == language_fortran && physname)
22444 {
22445 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22446 DW_AT_MIPS_linkage_name is preferred and used instead. */
22447
22448 lead = "__";
22449 sep = "_MOD_";
22450 }
22451 else
22452 sep = "::";
22453
22454 if (prefix == NULL)
22455 prefix = "";
22456 if (suffix == NULL)
22457 suffix = "";
22458
22459 if (obs == NULL)
22460 {
22461 char *retval
22462 = ((char *)
22463 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22464
22465 strcpy (retval, lead);
22466 strcat (retval, prefix);
22467 strcat (retval, sep);
22468 strcat (retval, suffix);
22469 return retval;
22470 }
22471 else
22472 {
22473 /* We have an obstack. */
22474 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22475 }
22476 }
22477
22478 /* Return sibling of die, NULL if no sibling. */
22479
22480 static struct die_info *
22481 sibling_die (struct die_info *die)
22482 {
22483 return die->sibling;
22484 }
22485
22486 /* Get name of a die, return NULL if not found. */
22487
22488 static const char *
22489 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22490 struct obstack *obstack)
22491 {
22492 if (name && cu->language == language_cplus)
22493 {
22494 std::string canon_name = cp_canonicalize_string (name);
22495
22496 if (!canon_name.empty ())
22497 {
22498 if (canon_name != name)
22499 name = (const char *) obstack_copy0 (obstack,
22500 canon_name.c_str (),
22501 canon_name.length ());
22502 }
22503 }
22504
22505 return name;
22506 }
22507
22508 /* Get name of a die, return NULL if not found.
22509 Anonymous namespaces are converted to their magic string. */
22510
22511 static const char *
22512 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22513 {
22514 struct attribute *attr;
22515 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22516
22517 attr = dwarf2_attr (die, DW_AT_name, cu);
22518 if ((!attr || !DW_STRING (attr))
22519 && die->tag != DW_TAG_namespace
22520 && die->tag != DW_TAG_class_type
22521 && die->tag != DW_TAG_interface_type
22522 && die->tag != DW_TAG_structure_type
22523 && die->tag != DW_TAG_union_type)
22524 return NULL;
22525
22526 switch (die->tag)
22527 {
22528 case DW_TAG_compile_unit:
22529 case DW_TAG_partial_unit:
22530 /* Compilation units have a DW_AT_name that is a filename, not
22531 a source language identifier. */
22532 case DW_TAG_enumeration_type:
22533 case DW_TAG_enumerator:
22534 /* These tags always have simple identifiers already; no need
22535 to canonicalize them. */
22536 return DW_STRING (attr);
22537
22538 case DW_TAG_namespace:
22539 if (attr != NULL && DW_STRING (attr) != NULL)
22540 return DW_STRING (attr);
22541 return CP_ANONYMOUS_NAMESPACE_STR;
22542
22543 case DW_TAG_class_type:
22544 case DW_TAG_interface_type:
22545 case DW_TAG_structure_type:
22546 case DW_TAG_union_type:
22547 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22548 structures or unions. These were of the form "._%d" in GCC 4.1,
22549 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22550 and GCC 4.4. We work around this problem by ignoring these. */
22551 if (attr && DW_STRING (attr)
22552 && (startswith (DW_STRING (attr), "._")
22553 || startswith (DW_STRING (attr), "<anonymous")))
22554 return NULL;
22555
22556 /* GCC might emit a nameless typedef that has a linkage name. See
22557 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22558 if (!attr || DW_STRING (attr) == NULL)
22559 {
22560 char *demangled = NULL;
22561
22562 attr = dw2_linkage_name_attr (die, cu);
22563 if (attr == NULL || DW_STRING (attr) == NULL)
22564 return NULL;
22565
22566 /* Avoid demangling DW_STRING (attr) the second time on a second
22567 call for the same DIE. */
22568 if (!DW_STRING_IS_CANONICAL (attr))
22569 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22570
22571 if (demangled)
22572 {
22573 const char *base;
22574
22575 /* FIXME: we already did this for the partial symbol... */
22576 DW_STRING (attr)
22577 = ((const char *)
22578 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22579 demangled, strlen (demangled)));
22580 DW_STRING_IS_CANONICAL (attr) = 1;
22581 xfree (demangled);
22582
22583 /* Strip any leading namespaces/classes, keep only the base name.
22584 DW_AT_name for named DIEs does not contain the prefixes. */
22585 base = strrchr (DW_STRING (attr), ':');
22586 if (base && base > DW_STRING (attr) && base[-1] == ':')
22587 return &base[1];
22588 else
22589 return DW_STRING (attr);
22590 }
22591 }
22592 break;
22593
22594 default:
22595 break;
22596 }
22597
22598 if (!DW_STRING_IS_CANONICAL (attr))
22599 {
22600 DW_STRING (attr)
22601 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22602 &objfile->per_bfd->storage_obstack);
22603 DW_STRING_IS_CANONICAL (attr) = 1;
22604 }
22605 return DW_STRING (attr);
22606 }
22607
22608 /* Return the die that this die in an extension of, or NULL if there
22609 is none. *EXT_CU is the CU containing DIE on input, and the CU
22610 containing the return value on output. */
22611
22612 static struct die_info *
22613 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22614 {
22615 struct attribute *attr;
22616
22617 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22618 if (attr == NULL)
22619 return NULL;
22620
22621 return follow_die_ref (die, attr, ext_cu);
22622 }
22623
22624 /* Convert a DIE tag into its string name. */
22625
22626 static const char *
22627 dwarf_tag_name (unsigned tag)
22628 {
22629 const char *name = get_DW_TAG_name (tag);
22630
22631 if (name == NULL)
22632 return "DW_TAG_<unknown>";
22633
22634 return name;
22635 }
22636
22637 /* Convert a DWARF attribute code into its string name. */
22638
22639 static const char *
22640 dwarf_attr_name (unsigned attr)
22641 {
22642 const char *name;
22643
22644 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22645 if (attr == DW_AT_MIPS_fde)
22646 return "DW_AT_MIPS_fde";
22647 #else
22648 if (attr == DW_AT_HP_block_index)
22649 return "DW_AT_HP_block_index";
22650 #endif
22651
22652 name = get_DW_AT_name (attr);
22653
22654 if (name == NULL)
22655 return "DW_AT_<unknown>";
22656
22657 return name;
22658 }
22659
22660 /* Convert a DWARF value form code into its string name. */
22661
22662 static const char *
22663 dwarf_form_name (unsigned form)
22664 {
22665 const char *name = get_DW_FORM_name (form);
22666
22667 if (name == NULL)
22668 return "DW_FORM_<unknown>";
22669
22670 return name;
22671 }
22672
22673 static const char *
22674 dwarf_bool_name (unsigned mybool)
22675 {
22676 if (mybool)
22677 return "TRUE";
22678 else
22679 return "FALSE";
22680 }
22681
22682 /* Convert a DWARF type code into its string name. */
22683
22684 static const char *
22685 dwarf_type_encoding_name (unsigned enc)
22686 {
22687 const char *name = get_DW_ATE_name (enc);
22688
22689 if (name == NULL)
22690 return "DW_ATE_<unknown>";
22691
22692 return name;
22693 }
22694
22695 static void
22696 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22697 {
22698 unsigned int i;
22699
22700 print_spaces (indent, f);
22701 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22702 dwarf_tag_name (die->tag), die->abbrev,
22703 sect_offset_str (die->sect_off));
22704
22705 if (die->parent != NULL)
22706 {
22707 print_spaces (indent, f);
22708 fprintf_unfiltered (f, " parent at offset: %s\n",
22709 sect_offset_str (die->parent->sect_off));
22710 }
22711
22712 print_spaces (indent, f);
22713 fprintf_unfiltered (f, " has children: %s\n",
22714 dwarf_bool_name (die->child != NULL));
22715
22716 print_spaces (indent, f);
22717 fprintf_unfiltered (f, " attributes:\n");
22718
22719 for (i = 0; i < die->num_attrs; ++i)
22720 {
22721 print_spaces (indent, f);
22722 fprintf_unfiltered (f, " %s (%s) ",
22723 dwarf_attr_name (die->attrs[i].name),
22724 dwarf_form_name (die->attrs[i].form));
22725
22726 switch (die->attrs[i].form)
22727 {
22728 case DW_FORM_addr:
22729 case DW_FORM_GNU_addr_index:
22730 fprintf_unfiltered (f, "address: ");
22731 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22732 break;
22733 case DW_FORM_block2:
22734 case DW_FORM_block4:
22735 case DW_FORM_block:
22736 case DW_FORM_block1:
22737 fprintf_unfiltered (f, "block: size %s",
22738 pulongest (DW_BLOCK (&die->attrs[i])->size));
22739 break;
22740 case DW_FORM_exprloc:
22741 fprintf_unfiltered (f, "expression: size %s",
22742 pulongest (DW_BLOCK (&die->attrs[i])->size));
22743 break;
22744 case DW_FORM_data16:
22745 fprintf_unfiltered (f, "constant of 16 bytes");
22746 break;
22747 case DW_FORM_ref_addr:
22748 fprintf_unfiltered (f, "ref address: ");
22749 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22750 break;
22751 case DW_FORM_GNU_ref_alt:
22752 fprintf_unfiltered (f, "alt ref address: ");
22753 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22754 break;
22755 case DW_FORM_ref1:
22756 case DW_FORM_ref2:
22757 case DW_FORM_ref4:
22758 case DW_FORM_ref8:
22759 case DW_FORM_ref_udata:
22760 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22761 (long) (DW_UNSND (&die->attrs[i])));
22762 break;
22763 case DW_FORM_data1:
22764 case DW_FORM_data2:
22765 case DW_FORM_data4:
22766 case DW_FORM_data8:
22767 case DW_FORM_udata:
22768 case DW_FORM_sdata:
22769 fprintf_unfiltered (f, "constant: %s",
22770 pulongest (DW_UNSND (&die->attrs[i])));
22771 break;
22772 case DW_FORM_sec_offset:
22773 fprintf_unfiltered (f, "section offset: %s",
22774 pulongest (DW_UNSND (&die->attrs[i])));
22775 break;
22776 case DW_FORM_ref_sig8:
22777 fprintf_unfiltered (f, "signature: %s",
22778 hex_string (DW_SIGNATURE (&die->attrs[i])));
22779 break;
22780 case DW_FORM_string:
22781 case DW_FORM_strp:
22782 case DW_FORM_line_strp:
22783 case DW_FORM_GNU_str_index:
22784 case DW_FORM_GNU_strp_alt:
22785 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22786 DW_STRING (&die->attrs[i])
22787 ? DW_STRING (&die->attrs[i]) : "",
22788 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22789 break;
22790 case DW_FORM_flag:
22791 if (DW_UNSND (&die->attrs[i]))
22792 fprintf_unfiltered (f, "flag: TRUE");
22793 else
22794 fprintf_unfiltered (f, "flag: FALSE");
22795 break;
22796 case DW_FORM_flag_present:
22797 fprintf_unfiltered (f, "flag: TRUE");
22798 break;
22799 case DW_FORM_indirect:
22800 /* The reader will have reduced the indirect form to
22801 the "base form" so this form should not occur. */
22802 fprintf_unfiltered (f,
22803 "unexpected attribute form: DW_FORM_indirect");
22804 break;
22805 case DW_FORM_implicit_const:
22806 fprintf_unfiltered (f, "constant: %s",
22807 plongest (DW_SND (&die->attrs[i])));
22808 break;
22809 default:
22810 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22811 die->attrs[i].form);
22812 break;
22813 }
22814 fprintf_unfiltered (f, "\n");
22815 }
22816 }
22817
22818 static void
22819 dump_die_for_error (struct die_info *die)
22820 {
22821 dump_die_shallow (gdb_stderr, 0, die);
22822 }
22823
22824 static void
22825 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22826 {
22827 int indent = level * 4;
22828
22829 gdb_assert (die != NULL);
22830
22831 if (level >= max_level)
22832 return;
22833
22834 dump_die_shallow (f, indent, die);
22835
22836 if (die->child != NULL)
22837 {
22838 print_spaces (indent, f);
22839 fprintf_unfiltered (f, " Children:");
22840 if (level + 1 < max_level)
22841 {
22842 fprintf_unfiltered (f, "\n");
22843 dump_die_1 (f, level + 1, max_level, die->child);
22844 }
22845 else
22846 {
22847 fprintf_unfiltered (f,
22848 " [not printed, max nesting level reached]\n");
22849 }
22850 }
22851
22852 if (die->sibling != NULL && level > 0)
22853 {
22854 dump_die_1 (f, level, max_level, die->sibling);
22855 }
22856 }
22857
22858 /* This is called from the pdie macro in gdbinit.in.
22859 It's not static so gcc will keep a copy callable from gdb. */
22860
22861 void
22862 dump_die (struct die_info *die, int max_level)
22863 {
22864 dump_die_1 (gdb_stdlog, 0, max_level, die);
22865 }
22866
22867 static void
22868 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22869 {
22870 void **slot;
22871
22872 slot = htab_find_slot_with_hash (cu->die_hash, die,
22873 to_underlying (die->sect_off),
22874 INSERT);
22875
22876 *slot = die;
22877 }
22878
22879 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22880 required kind. */
22881
22882 static sect_offset
22883 dwarf2_get_ref_die_offset (const struct attribute *attr)
22884 {
22885 if (attr_form_is_ref (attr))
22886 return (sect_offset) DW_UNSND (attr);
22887
22888 complaint (_("unsupported die ref attribute form: '%s'"),
22889 dwarf_form_name (attr->form));
22890 return {};
22891 }
22892
22893 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22894 * the value held by the attribute is not constant. */
22895
22896 static LONGEST
22897 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22898 {
22899 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22900 return DW_SND (attr);
22901 else if (attr->form == DW_FORM_udata
22902 || attr->form == DW_FORM_data1
22903 || attr->form == DW_FORM_data2
22904 || attr->form == DW_FORM_data4
22905 || attr->form == DW_FORM_data8)
22906 return DW_UNSND (attr);
22907 else
22908 {
22909 /* For DW_FORM_data16 see attr_form_is_constant. */
22910 complaint (_("Attribute value is not a constant (%s)"),
22911 dwarf_form_name (attr->form));
22912 return default_value;
22913 }
22914 }
22915
22916 /* Follow reference or signature attribute ATTR of SRC_DIE.
22917 On entry *REF_CU is the CU of SRC_DIE.
22918 On exit *REF_CU is the CU of the result. */
22919
22920 static struct die_info *
22921 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22922 struct dwarf2_cu **ref_cu)
22923 {
22924 struct die_info *die;
22925
22926 if (attr_form_is_ref (attr))
22927 die = follow_die_ref (src_die, attr, ref_cu);
22928 else if (attr->form == DW_FORM_ref_sig8)
22929 die = follow_die_sig (src_die, attr, ref_cu);
22930 else
22931 {
22932 dump_die_for_error (src_die);
22933 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22934 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22935 }
22936
22937 return die;
22938 }
22939
22940 /* Follow reference OFFSET.
22941 On entry *REF_CU is the CU of the source die referencing OFFSET.
22942 On exit *REF_CU is the CU of the result.
22943 Returns NULL if OFFSET is invalid. */
22944
22945 static struct die_info *
22946 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22947 struct dwarf2_cu **ref_cu)
22948 {
22949 struct die_info temp_die;
22950 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22951 struct dwarf2_per_objfile *dwarf2_per_objfile
22952 = cu->per_cu->dwarf2_per_objfile;
22953
22954 gdb_assert (cu->per_cu != NULL);
22955
22956 target_cu = cu;
22957
22958 if (cu->per_cu->is_debug_types)
22959 {
22960 /* .debug_types CUs cannot reference anything outside their CU.
22961 If they need to, they have to reference a signatured type via
22962 DW_FORM_ref_sig8. */
22963 if (!offset_in_cu_p (&cu->header, sect_off))
22964 return NULL;
22965 }
22966 else if (offset_in_dwz != cu->per_cu->is_dwz
22967 || !offset_in_cu_p (&cu->header, sect_off))
22968 {
22969 struct dwarf2_per_cu_data *per_cu;
22970
22971 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22972 dwarf2_per_objfile);
22973
22974 /* If necessary, add it to the queue and load its DIEs. */
22975 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22976 load_full_comp_unit (per_cu, false, cu->language);
22977
22978 target_cu = per_cu->cu;
22979 }
22980 else if (cu->dies == NULL)
22981 {
22982 /* We're loading full DIEs during partial symbol reading. */
22983 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22984 load_full_comp_unit (cu->per_cu, false, language_minimal);
22985 }
22986
22987 *ref_cu = target_cu;
22988 temp_die.sect_off = sect_off;
22989 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22990 &temp_die,
22991 to_underlying (sect_off));
22992 }
22993
22994 /* Follow reference attribute ATTR of SRC_DIE.
22995 On entry *REF_CU is the CU of SRC_DIE.
22996 On exit *REF_CU is the CU of the result. */
22997
22998 static struct die_info *
22999 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23000 struct dwarf2_cu **ref_cu)
23001 {
23002 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23003 struct dwarf2_cu *cu = *ref_cu;
23004 struct die_info *die;
23005
23006 die = follow_die_offset (sect_off,
23007 (attr->form == DW_FORM_GNU_ref_alt
23008 || cu->per_cu->is_dwz),
23009 ref_cu);
23010 if (!die)
23011 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23012 "at %s [in module %s]"),
23013 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23014 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23015
23016 return die;
23017 }
23018
23019 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23020 Returned value is intended for DW_OP_call*. Returned
23021 dwarf2_locexpr_baton->data has lifetime of
23022 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23023
23024 struct dwarf2_locexpr_baton
23025 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23026 struct dwarf2_per_cu_data *per_cu,
23027 CORE_ADDR (*get_frame_pc) (void *baton),
23028 void *baton, bool resolve_abstract_p)
23029 {
23030 struct dwarf2_cu *cu;
23031 struct die_info *die;
23032 struct attribute *attr;
23033 struct dwarf2_locexpr_baton retval;
23034 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23035 struct objfile *objfile = dwarf2_per_objfile->objfile;
23036
23037 if (per_cu->cu == NULL)
23038 load_cu (per_cu, false);
23039 cu = per_cu->cu;
23040 if (cu == NULL)
23041 {
23042 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23043 Instead just throw an error, not much else we can do. */
23044 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23045 sect_offset_str (sect_off), objfile_name (objfile));
23046 }
23047
23048 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23049 if (!die)
23050 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23051 sect_offset_str (sect_off), objfile_name (objfile));
23052
23053 attr = dwarf2_attr (die, DW_AT_location, cu);
23054 if (!attr && resolve_abstract_p
23055 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23056 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23057 {
23058 CORE_ADDR pc = (*get_frame_pc) (baton);
23059
23060 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23061 {
23062 if (!cand->parent
23063 || cand->parent->tag != DW_TAG_subprogram)
23064 continue;
23065
23066 CORE_ADDR pc_low, pc_high;
23067 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23068 if (pc_low == ((CORE_ADDR) -1)
23069 || !(pc_low <= pc && pc < pc_high))
23070 continue;
23071
23072 die = cand;
23073 attr = dwarf2_attr (die, DW_AT_location, cu);
23074 break;
23075 }
23076 }
23077
23078 if (!attr)
23079 {
23080 /* DWARF: "If there is no such attribute, then there is no effect.".
23081 DATA is ignored if SIZE is 0. */
23082
23083 retval.data = NULL;
23084 retval.size = 0;
23085 }
23086 else if (attr_form_is_section_offset (attr))
23087 {
23088 struct dwarf2_loclist_baton loclist_baton;
23089 CORE_ADDR pc = (*get_frame_pc) (baton);
23090 size_t size;
23091
23092 fill_in_loclist_baton (cu, &loclist_baton, attr);
23093
23094 retval.data = dwarf2_find_location_expression (&loclist_baton,
23095 &size, pc);
23096 retval.size = size;
23097 }
23098 else
23099 {
23100 if (!attr_form_is_block (attr))
23101 error (_("Dwarf Error: DIE at %s referenced in module %s "
23102 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23103 sect_offset_str (sect_off), objfile_name (objfile));
23104
23105 retval.data = DW_BLOCK (attr)->data;
23106 retval.size = DW_BLOCK (attr)->size;
23107 }
23108 retval.per_cu = cu->per_cu;
23109
23110 age_cached_comp_units (dwarf2_per_objfile);
23111
23112 return retval;
23113 }
23114
23115 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23116 offset. */
23117
23118 struct dwarf2_locexpr_baton
23119 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23120 struct dwarf2_per_cu_data *per_cu,
23121 CORE_ADDR (*get_frame_pc) (void *baton),
23122 void *baton)
23123 {
23124 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23125
23126 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23127 }
23128
23129 /* Write a constant of a given type as target-ordered bytes into
23130 OBSTACK. */
23131
23132 static const gdb_byte *
23133 write_constant_as_bytes (struct obstack *obstack,
23134 enum bfd_endian byte_order,
23135 struct type *type,
23136 ULONGEST value,
23137 LONGEST *len)
23138 {
23139 gdb_byte *result;
23140
23141 *len = TYPE_LENGTH (type);
23142 result = (gdb_byte *) obstack_alloc (obstack, *len);
23143 store_unsigned_integer (result, *len, byte_order, value);
23144
23145 return result;
23146 }
23147
23148 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23149 pointer to the constant bytes and set LEN to the length of the
23150 data. If memory is needed, allocate it on OBSTACK. If the DIE
23151 does not have a DW_AT_const_value, return NULL. */
23152
23153 const gdb_byte *
23154 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23155 struct dwarf2_per_cu_data *per_cu,
23156 struct obstack *obstack,
23157 LONGEST *len)
23158 {
23159 struct dwarf2_cu *cu;
23160 struct die_info *die;
23161 struct attribute *attr;
23162 const gdb_byte *result = NULL;
23163 struct type *type;
23164 LONGEST value;
23165 enum bfd_endian byte_order;
23166 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23167
23168 if (per_cu->cu == NULL)
23169 load_cu (per_cu, false);
23170 cu = per_cu->cu;
23171 if (cu == NULL)
23172 {
23173 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23174 Instead just throw an error, not much else we can do. */
23175 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23176 sect_offset_str (sect_off), objfile_name (objfile));
23177 }
23178
23179 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23180 if (!die)
23181 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23182 sect_offset_str (sect_off), objfile_name (objfile));
23183
23184 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23185 if (attr == NULL)
23186 return NULL;
23187
23188 byte_order = (bfd_big_endian (objfile->obfd)
23189 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23190
23191 switch (attr->form)
23192 {
23193 case DW_FORM_addr:
23194 case DW_FORM_GNU_addr_index:
23195 {
23196 gdb_byte *tem;
23197
23198 *len = cu->header.addr_size;
23199 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23200 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23201 result = tem;
23202 }
23203 break;
23204 case DW_FORM_string:
23205 case DW_FORM_strp:
23206 case DW_FORM_GNU_str_index:
23207 case DW_FORM_GNU_strp_alt:
23208 /* DW_STRING is already allocated on the objfile obstack, point
23209 directly to it. */
23210 result = (const gdb_byte *) DW_STRING (attr);
23211 *len = strlen (DW_STRING (attr));
23212 break;
23213 case DW_FORM_block1:
23214 case DW_FORM_block2:
23215 case DW_FORM_block4:
23216 case DW_FORM_block:
23217 case DW_FORM_exprloc:
23218 case DW_FORM_data16:
23219 result = DW_BLOCK (attr)->data;
23220 *len = DW_BLOCK (attr)->size;
23221 break;
23222
23223 /* The DW_AT_const_value attributes are supposed to carry the
23224 symbol's value "represented as it would be on the target
23225 architecture." By the time we get here, it's already been
23226 converted to host endianness, so we just need to sign- or
23227 zero-extend it as appropriate. */
23228 case DW_FORM_data1:
23229 type = die_type (die, cu);
23230 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23231 if (result == NULL)
23232 result = write_constant_as_bytes (obstack, byte_order,
23233 type, value, len);
23234 break;
23235 case DW_FORM_data2:
23236 type = die_type (die, cu);
23237 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23238 if (result == NULL)
23239 result = write_constant_as_bytes (obstack, byte_order,
23240 type, value, len);
23241 break;
23242 case DW_FORM_data4:
23243 type = die_type (die, cu);
23244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23245 if (result == NULL)
23246 result = write_constant_as_bytes (obstack, byte_order,
23247 type, value, len);
23248 break;
23249 case DW_FORM_data8:
23250 type = die_type (die, cu);
23251 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23252 if (result == NULL)
23253 result = write_constant_as_bytes (obstack, byte_order,
23254 type, value, len);
23255 break;
23256
23257 case DW_FORM_sdata:
23258 case DW_FORM_implicit_const:
23259 type = die_type (die, cu);
23260 result = write_constant_as_bytes (obstack, byte_order,
23261 type, DW_SND (attr), len);
23262 break;
23263
23264 case DW_FORM_udata:
23265 type = die_type (die, cu);
23266 result = write_constant_as_bytes (obstack, byte_order,
23267 type, DW_UNSND (attr), len);
23268 break;
23269
23270 default:
23271 complaint (_("unsupported const value attribute form: '%s'"),
23272 dwarf_form_name (attr->form));
23273 break;
23274 }
23275
23276 return result;
23277 }
23278
23279 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23280 valid type for this die is found. */
23281
23282 struct type *
23283 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23284 struct dwarf2_per_cu_data *per_cu)
23285 {
23286 struct dwarf2_cu *cu;
23287 struct die_info *die;
23288
23289 if (per_cu->cu == NULL)
23290 load_cu (per_cu, false);
23291 cu = per_cu->cu;
23292 if (!cu)
23293 return NULL;
23294
23295 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23296 if (!die)
23297 return NULL;
23298
23299 return die_type (die, cu);
23300 }
23301
23302 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23303 PER_CU. */
23304
23305 struct type *
23306 dwarf2_get_die_type (cu_offset die_offset,
23307 struct dwarf2_per_cu_data *per_cu)
23308 {
23309 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23310 return get_die_type_at_offset (die_offset_sect, per_cu);
23311 }
23312
23313 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23314 On entry *REF_CU is the CU of SRC_DIE.
23315 On exit *REF_CU is the CU of the result.
23316 Returns NULL if the referenced DIE isn't found. */
23317
23318 static struct die_info *
23319 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23320 struct dwarf2_cu **ref_cu)
23321 {
23322 struct die_info temp_die;
23323 struct dwarf2_cu *sig_cu;
23324 struct die_info *die;
23325
23326 /* While it might be nice to assert sig_type->type == NULL here,
23327 we can get here for DW_AT_imported_declaration where we need
23328 the DIE not the type. */
23329
23330 /* If necessary, add it to the queue and load its DIEs. */
23331
23332 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23333 read_signatured_type (sig_type);
23334
23335 sig_cu = sig_type->per_cu.cu;
23336 gdb_assert (sig_cu != NULL);
23337 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23338 temp_die.sect_off = sig_type->type_offset_in_section;
23339 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23340 to_underlying (temp_die.sect_off));
23341 if (die)
23342 {
23343 struct dwarf2_per_objfile *dwarf2_per_objfile
23344 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23345
23346 /* For .gdb_index version 7 keep track of included TUs.
23347 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23348 if (dwarf2_per_objfile->index_table != NULL
23349 && dwarf2_per_objfile->index_table->version <= 7)
23350 {
23351 VEC_safe_push (dwarf2_per_cu_ptr,
23352 (*ref_cu)->per_cu->imported_symtabs,
23353 sig_cu->per_cu);
23354 }
23355
23356 *ref_cu = sig_cu;
23357 return die;
23358 }
23359
23360 return NULL;
23361 }
23362
23363 /* Follow signatured type referenced by ATTR in SRC_DIE.
23364 On entry *REF_CU is the CU of SRC_DIE.
23365 On exit *REF_CU is the CU of the result.
23366 The result is the DIE of the type.
23367 If the referenced type cannot be found an error is thrown. */
23368
23369 static struct die_info *
23370 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23371 struct dwarf2_cu **ref_cu)
23372 {
23373 ULONGEST signature = DW_SIGNATURE (attr);
23374 struct signatured_type *sig_type;
23375 struct die_info *die;
23376
23377 gdb_assert (attr->form == DW_FORM_ref_sig8);
23378
23379 sig_type = lookup_signatured_type (*ref_cu, signature);
23380 /* sig_type will be NULL if the signatured type is missing from
23381 the debug info. */
23382 if (sig_type == NULL)
23383 {
23384 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23385 " from DIE at %s [in module %s]"),
23386 hex_string (signature), sect_offset_str (src_die->sect_off),
23387 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23388 }
23389
23390 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23391 if (die == NULL)
23392 {
23393 dump_die_for_error (src_die);
23394 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23395 " from DIE at %s [in module %s]"),
23396 hex_string (signature), sect_offset_str (src_die->sect_off),
23397 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23398 }
23399
23400 return die;
23401 }
23402
23403 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23404 reading in and processing the type unit if necessary. */
23405
23406 static struct type *
23407 get_signatured_type (struct die_info *die, ULONGEST signature,
23408 struct dwarf2_cu *cu)
23409 {
23410 struct dwarf2_per_objfile *dwarf2_per_objfile
23411 = cu->per_cu->dwarf2_per_objfile;
23412 struct signatured_type *sig_type;
23413 struct dwarf2_cu *type_cu;
23414 struct die_info *type_die;
23415 struct type *type;
23416
23417 sig_type = lookup_signatured_type (cu, signature);
23418 /* sig_type will be NULL if the signatured type is missing from
23419 the debug info. */
23420 if (sig_type == NULL)
23421 {
23422 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23423 " from DIE at %s [in module %s]"),
23424 hex_string (signature), sect_offset_str (die->sect_off),
23425 objfile_name (dwarf2_per_objfile->objfile));
23426 return build_error_marker_type (cu, die);
23427 }
23428
23429 /* If we already know the type we're done. */
23430 if (sig_type->type != NULL)
23431 return sig_type->type;
23432
23433 type_cu = cu;
23434 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23435 if (type_die != NULL)
23436 {
23437 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23438 is created. This is important, for example, because for c++ classes
23439 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23440 type = read_type_die (type_die, type_cu);
23441 if (type == NULL)
23442 {
23443 complaint (_("Dwarf Error: Cannot build signatured type %s"
23444 " referenced from DIE at %s [in module %s]"),
23445 hex_string (signature), sect_offset_str (die->sect_off),
23446 objfile_name (dwarf2_per_objfile->objfile));
23447 type = build_error_marker_type (cu, die);
23448 }
23449 }
23450 else
23451 {
23452 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23453 " from DIE at %s [in module %s]"),
23454 hex_string (signature), sect_offset_str (die->sect_off),
23455 objfile_name (dwarf2_per_objfile->objfile));
23456 type = build_error_marker_type (cu, die);
23457 }
23458 sig_type->type = type;
23459
23460 return type;
23461 }
23462
23463 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23464 reading in and processing the type unit if necessary. */
23465
23466 static struct type *
23467 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23468 struct dwarf2_cu *cu) /* ARI: editCase function */
23469 {
23470 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23471 if (attr_form_is_ref (attr))
23472 {
23473 struct dwarf2_cu *type_cu = cu;
23474 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23475
23476 return read_type_die (type_die, type_cu);
23477 }
23478 else if (attr->form == DW_FORM_ref_sig8)
23479 {
23480 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23481 }
23482 else
23483 {
23484 struct dwarf2_per_objfile *dwarf2_per_objfile
23485 = cu->per_cu->dwarf2_per_objfile;
23486
23487 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23488 " at %s [in module %s]"),
23489 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23490 objfile_name (dwarf2_per_objfile->objfile));
23491 return build_error_marker_type (cu, die);
23492 }
23493 }
23494
23495 /* Load the DIEs associated with type unit PER_CU into memory. */
23496
23497 static void
23498 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23499 {
23500 struct signatured_type *sig_type;
23501
23502 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23503 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23504
23505 /* We have the per_cu, but we need the signatured_type.
23506 Fortunately this is an easy translation. */
23507 gdb_assert (per_cu->is_debug_types);
23508 sig_type = (struct signatured_type *) per_cu;
23509
23510 gdb_assert (per_cu->cu == NULL);
23511
23512 read_signatured_type (sig_type);
23513
23514 gdb_assert (per_cu->cu != NULL);
23515 }
23516
23517 /* die_reader_func for read_signatured_type.
23518 This is identical to load_full_comp_unit_reader,
23519 but is kept separate for now. */
23520
23521 static void
23522 read_signatured_type_reader (const struct die_reader_specs *reader,
23523 const gdb_byte *info_ptr,
23524 struct die_info *comp_unit_die,
23525 int has_children,
23526 void *data)
23527 {
23528 struct dwarf2_cu *cu = reader->cu;
23529
23530 gdb_assert (cu->die_hash == NULL);
23531 cu->die_hash =
23532 htab_create_alloc_ex (cu->header.length / 12,
23533 die_hash,
23534 die_eq,
23535 NULL,
23536 &cu->comp_unit_obstack,
23537 hashtab_obstack_allocate,
23538 dummy_obstack_deallocate);
23539
23540 if (has_children)
23541 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23542 &info_ptr, comp_unit_die);
23543 cu->dies = comp_unit_die;
23544 /* comp_unit_die is not stored in die_hash, no need. */
23545
23546 /* We try not to read any attributes in this function, because not
23547 all CUs needed for references have been loaded yet, and symbol
23548 table processing isn't initialized. But we have to set the CU language,
23549 or we won't be able to build types correctly.
23550 Similarly, if we do not read the producer, we can not apply
23551 producer-specific interpretation. */
23552 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23553 }
23554
23555 /* Read in a signatured type and build its CU and DIEs.
23556 If the type is a stub for the real type in a DWO file,
23557 read in the real type from the DWO file as well. */
23558
23559 static void
23560 read_signatured_type (struct signatured_type *sig_type)
23561 {
23562 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23563
23564 gdb_assert (per_cu->is_debug_types);
23565 gdb_assert (per_cu->cu == NULL);
23566
23567 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23568 read_signatured_type_reader, NULL);
23569 sig_type->per_cu.tu_read = 1;
23570 }
23571
23572 /* Decode simple location descriptions.
23573 Given a pointer to a dwarf block that defines a location, compute
23574 the location and return the value.
23575
23576 NOTE drow/2003-11-18: This function is called in two situations
23577 now: for the address of static or global variables (partial symbols
23578 only) and for offsets into structures which are expected to be
23579 (more or less) constant. The partial symbol case should go away,
23580 and only the constant case should remain. That will let this
23581 function complain more accurately. A few special modes are allowed
23582 without complaint for global variables (for instance, global
23583 register values and thread-local values).
23584
23585 A location description containing no operations indicates that the
23586 object is optimized out. The return value is 0 for that case.
23587 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23588 callers will only want a very basic result and this can become a
23589 complaint.
23590
23591 Note that stack[0] is unused except as a default error return. */
23592
23593 static CORE_ADDR
23594 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23595 {
23596 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23597 size_t i;
23598 size_t size = blk->size;
23599 const gdb_byte *data = blk->data;
23600 CORE_ADDR stack[64];
23601 int stacki;
23602 unsigned int bytes_read, unsnd;
23603 gdb_byte op;
23604
23605 i = 0;
23606 stacki = 0;
23607 stack[stacki] = 0;
23608 stack[++stacki] = 0;
23609
23610 while (i < size)
23611 {
23612 op = data[i++];
23613 switch (op)
23614 {
23615 case DW_OP_lit0:
23616 case DW_OP_lit1:
23617 case DW_OP_lit2:
23618 case DW_OP_lit3:
23619 case DW_OP_lit4:
23620 case DW_OP_lit5:
23621 case DW_OP_lit6:
23622 case DW_OP_lit7:
23623 case DW_OP_lit8:
23624 case DW_OP_lit9:
23625 case DW_OP_lit10:
23626 case DW_OP_lit11:
23627 case DW_OP_lit12:
23628 case DW_OP_lit13:
23629 case DW_OP_lit14:
23630 case DW_OP_lit15:
23631 case DW_OP_lit16:
23632 case DW_OP_lit17:
23633 case DW_OP_lit18:
23634 case DW_OP_lit19:
23635 case DW_OP_lit20:
23636 case DW_OP_lit21:
23637 case DW_OP_lit22:
23638 case DW_OP_lit23:
23639 case DW_OP_lit24:
23640 case DW_OP_lit25:
23641 case DW_OP_lit26:
23642 case DW_OP_lit27:
23643 case DW_OP_lit28:
23644 case DW_OP_lit29:
23645 case DW_OP_lit30:
23646 case DW_OP_lit31:
23647 stack[++stacki] = op - DW_OP_lit0;
23648 break;
23649
23650 case DW_OP_reg0:
23651 case DW_OP_reg1:
23652 case DW_OP_reg2:
23653 case DW_OP_reg3:
23654 case DW_OP_reg4:
23655 case DW_OP_reg5:
23656 case DW_OP_reg6:
23657 case DW_OP_reg7:
23658 case DW_OP_reg8:
23659 case DW_OP_reg9:
23660 case DW_OP_reg10:
23661 case DW_OP_reg11:
23662 case DW_OP_reg12:
23663 case DW_OP_reg13:
23664 case DW_OP_reg14:
23665 case DW_OP_reg15:
23666 case DW_OP_reg16:
23667 case DW_OP_reg17:
23668 case DW_OP_reg18:
23669 case DW_OP_reg19:
23670 case DW_OP_reg20:
23671 case DW_OP_reg21:
23672 case DW_OP_reg22:
23673 case DW_OP_reg23:
23674 case DW_OP_reg24:
23675 case DW_OP_reg25:
23676 case DW_OP_reg26:
23677 case DW_OP_reg27:
23678 case DW_OP_reg28:
23679 case DW_OP_reg29:
23680 case DW_OP_reg30:
23681 case DW_OP_reg31:
23682 stack[++stacki] = op - DW_OP_reg0;
23683 if (i < size)
23684 dwarf2_complex_location_expr_complaint ();
23685 break;
23686
23687 case DW_OP_regx:
23688 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23689 i += bytes_read;
23690 stack[++stacki] = unsnd;
23691 if (i < size)
23692 dwarf2_complex_location_expr_complaint ();
23693 break;
23694
23695 case DW_OP_addr:
23696 stack[++stacki] = read_address (objfile->obfd, &data[i],
23697 cu, &bytes_read);
23698 i += bytes_read;
23699 break;
23700
23701 case DW_OP_const1u:
23702 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23703 i += 1;
23704 break;
23705
23706 case DW_OP_const1s:
23707 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23708 i += 1;
23709 break;
23710
23711 case DW_OP_const2u:
23712 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23713 i += 2;
23714 break;
23715
23716 case DW_OP_const2s:
23717 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23718 i += 2;
23719 break;
23720
23721 case DW_OP_const4u:
23722 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23723 i += 4;
23724 break;
23725
23726 case DW_OP_const4s:
23727 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23728 i += 4;
23729 break;
23730
23731 case DW_OP_const8u:
23732 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23733 i += 8;
23734 break;
23735
23736 case DW_OP_constu:
23737 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23738 &bytes_read);
23739 i += bytes_read;
23740 break;
23741
23742 case DW_OP_consts:
23743 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23744 i += bytes_read;
23745 break;
23746
23747 case DW_OP_dup:
23748 stack[stacki + 1] = stack[stacki];
23749 stacki++;
23750 break;
23751
23752 case DW_OP_plus:
23753 stack[stacki - 1] += stack[stacki];
23754 stacki--;
23755 break;
23756
23757 case DW_OP_plus_uconst:
23758 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23759 &bytes_read);
23760 i += bytes_read;
23761 break;
23762
23763 case DW_OP_minus:
23764 stack[stacki - 1] -= stack[stacki];
23765 stacki--;
23766 break;
23767
23768 case DW_OP_deref:
23769 /* If we're not the last op, then we definitely can't encode
23770 this using GDB's address_class enum. This is valid for partial
23771 global symbols, although the variable's address will be bogus
23772 in the psymtab. */
23773 if (i < size)
23774 dwarf2_complex_location_expr_complaint ();
23775 break;
23776
23777 case DW_OP_GNU_push_tls_address:
23778 case DW_OP_form_tls_address:
23779 /* The top of the stack has the offset from the beginning
23780 of the thread control block at which the variable is located. */
23781 /* Nothing should follow this operator, so the top of stack would
23782 be returned. */
23783 /* This is valid for partial global symbols, but the variable's
23784 address will be bogus in the psymtab. Make it always at least
23785 non-zero to not look as a variable garbage collected by linker
23786 which have DW_OP_addr 0. */
23787 if (i < size)
23788 dwarf2_complex_location_expr_complaint ();
23789 stack[stacki]++;
23790 break;
23791
23792 case DW_OP_GNU_uninit:
23793 break;
23794
23795 case DW_OP_GNU_addr_index:
23796 case DW_OP_GNU_const_index:
23797 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23798 &bytes_read);
23799 i += bytes_read;
23800 break;
23801
23802 default:
23803 {
23804 const char *name = get_DW_OP_name (op);
23805
23806 if (name)
23807 complaint (_("unsupported stack op: '%s'"),
23808 name);
23809 else
23810 complaint (_("unsupported stack op: '%02x'"),
23811 op);
23812 }
23813
23814 return (stack[stacki]);
23815 }
23816
23817 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23818 outside of the allocated space. Also enforce minimum>0. */
23819 if (stacki >= ARRAY_SIZE (stack) - 1)
23820 {
23821 complaint (_("location description stack overflow"));
23822 return 0;
23823 }
23824
23825 if (stacki <= 0)
23826 {
23827 complaint (_("location description stack underflow"));
23828 return 0;
23829 }
23830 }
23831 return (stack[stacki]);
23832 }
23833
23834 /* memory allocation interface */
23835
23836 static struct dwarf_block *
23837 dwarf_alloc_block (struct dwarf2_cu *cu)
23838 {
23839 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23840 }
23841
23842 static struct die_info *
23843 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23844 {
23845 struct die_info *die;
23846 size_t size = sizeof (struct die_info);
23847
23848 if (num_attrs > 1)
23849 size += (num_attrs - 1) * sizeof (struct attribute);
23850
23851 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23852 memset (die, 0, sizeof (struct die_info));
23853 return (die);
23854 }
23855
23856 \f
23857 /* Macro support. */
23858
23859 /* Return file name relative to the compilation directory of file number I in
23860 *LH's file name table. The result is allocated using xmalloc; the caller is
23861 responsible for freeing it. */
23862
23863 static char *
23864 file_file_name (int file, struct line_header *lh)
23865 {
23866 /* Is the file number a valid index into the line header's file name
23867 table? Remember that file numbers start with one, not zero. */
23868 if (1 <= file && file <= lh->file_names.size ())
23869 {
23870 const file_entry &fe = lh->file_names[file - 1];
23871
23872 if (!IS_ABSOLUTE_PATH (fe.name))
23873 {
23874 const char *dir = fe.include_dir (lh);
23875 if (dir != NULL)
23876 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23877 }
23878 return xstrdup (fe.name);
23879 }
23880 else
23881 {
23882 /* The compiler produced a bogus file number. We can at least
23883 record the macro definitions made in the file, even if we
23884 won't be able to find the file by name. */
23885 char fake_name[80];
23886
23887 xsnprintf (fake_name, sizeof (fake_name),
23888 "<bad macro file number %d>", file);
23889
23890 complaint (_("bad file number in macro information (%d)"),
23891 file);
23892
23893 return xstrdup (fake_name);
23894 }
23895 }
23896
23897 /* Return the full name of file number I in *LH's file name table.
23898 Use COMP_DIR as the name of the current directory of the
23899 compilation. The result is allocated using xmalloc; the caller is
23900 responsible for freeing it. */
23901 static char *
23902 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23903 {
23904 /* Is the file number a valid index into the line header's file name
23905 table? Remember that file numbers start with one, not zero. */
23906 if (1 <= file && file <= lh->file_names.size ())
23907 {
23908 char *relative = file_file_name (file, lh);
23909
23910 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23911 return relative;
23912 return reconcat (relative, comp_dir, SLASH_STRING,
23913 relative, (char *) NULL);
23914 }
23915 else
23916 return file_file_name (file, lh);
23917 }
23918
23919
23920 static struct macro_source_file *
23921 macro_start_file (struct dwarf2_cu *cu,
23922 int file, int line,
23923 struct macro_source_file *current_file,
23924 struct line_header *lh)
23925 {
23926 /* File name relative to the compilation directory of this source file. */
23927 char *file_name = file_file_name (file, lh);
23928
23929 if (! current_file)
23930 {
23931 /* Note: We don't create a macro table for this compilation unit
23932 at all until we actually get a filename. */
23933 struct macro_table *macro_table = cu->builder->get_macro_table ();
23934
23935 /* If we have no current file, then this must be the start_file
23936 directive for the compilation unit's main source file. */
23937 current_file = macro_set_main (macro_table, file_name);
23938 macro_define_special (macro_table);
23939 }
23940 else
23941 current_file = macro_include (current_file, line, file_name);
23942
23943 xfree (file_name);
23944
23945 return current_file;
23946 }
23947
23948 static const char *
23949 consume_improper_spaces (const char *p, const char *body)
23950 {
23951 if (*p == ' ')
23952 {
23953 complaint (_("macro definition contains spaces "
23954 "in formal argument list:\n`%s'"),
23955 body);
23956
23957 while (*p == ' ')
23958 p++;
23959 }
23960
23961 return p;
23962 }
23963
23964
23965 static void
23966 parse_macro_definition (struct macro_source_file *file, int line,
23967 const char *body)
23968 {
23969 const char *p;
23970
23971 /* The body string takes one of two forms. For object-like macro
23972 definitions, it should be:
23973
23974 <macro name> " " <definition>
23975
23976 For function-like macro definitions, it should be:
23977
23978 <macro name> "() " <definition>
23979 or
23980 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23981
23982 Spaces may appear only where explicitly indicated, and in the
23983 <definition>.
23984
23985 The Dwarf 2 spec says that an object-like macro's name is always
23986 followed by a space, but versions of GCC around March 2002 omit
23987 the space when the macro's definition is the empty string.
23988
23989 The Dwarf 2 spec says that there should be no spaces between the
23990 formal arguments in a function-like macro's formal argument list,
23991 but versions of GCC around March 2002 include spaces after the
23992 commas. */
23993
23994
23995 /* Find the extent of the macro name. The macro name is terminated
23996 by either a space or null character (for an object-like macro) or
23997 an opening paren (for a function-like macro). */
23998 for (p = body; *p; p++)
23999 if (*p == ' ' || *p == '(')
24000 break;
24001
24002 if (*p == ' ' || *p == '\0')
24003 {
24004 /* It's an object-like macro. */
24005 int name_len = p - body;
24006 char *name = savestring (body, name_len);
24007 const char *replacement;
24008
24009 if (*p == ' ')
24010 replacement = body + name_len + 1;
24011 else
24012 {
24013 dwarf2_macro_malformed_definition_complaint (body);
24014 replacement = body + name_len;
24015 }
24016
24017 macro_define_object (file, line, name, replacement);
24018
24019 xfree (name);
24020 }
24021 else if (*p == '(')
24022 {
24023 /* It's a function-like macro. */
24024 char *name = savestring (body, p - body);
24025 int argc = 0;
24026 int argv_size = 1;
24027 char **argv = XNEWVEC (char *, argv_size);
24028
24029 p++;
24030
24031 p = consume_improper_spaces (p, body);
24032
24033 /* Parse the formal argument list. */
24034 while (*p && *p != ')')
24035 {
24036 /* Find the extent of the current argument name. */
24037 const char *arg_start = p;
24038
24039 while (*p && *p != ',' && *p != ')' && *p != ' ')
24040 p++;
24041
24042 if (! *p || p == arg_start)
24043 dwarf2_macro_malformed_definition_complaint (body);
24044 else
24045 {
24046 /* Make sure argv has room for the new argument. */
24047 if (argc >= argv_size)
24048 {
24049 argv_size *= 2;
24050 argv = XRESIZEVEC (char *, argv, argv_size);
24051 }
24052
24053 argv[argc++] = savestring (arg_start, p - arg_start);
24054 }
24055
24056 p = consume_improper_spaces (p, body);
24057
24058 /* Consume the comma, if present. */
24059 if (*p == ',')
24060 {
24061 p++;
24062
24063 p = consume_improper_spaces (p, body);
24064 }
24065 }
24066
24067 if (*p == ')')
24068 {
24069 p++;
24070
24071 if (*p == ' ')
24072 /* Perfectly formed definition, no complaints. */
24073 macro_define_function (file, line, name,
24074 argc, (const char **) argv,
24075 p + 1);
24076 else if (*p == '\0')
24077 {
24078 /* Complain, but do define it. */
24079 dwarf2_macro_malformed_definition_complaint (body);
24080 macro_define_function (file, line, name,
24081 argc, (const char **) argv,
24082 p);
24083 }
24084 else
24085 /* Just complain. */
24086 dwarf2_macro_malformed_definition_complaint (body);
24087 }
24088 else
24089 /* Just complain. */
24090 dwarf2_macro_malformed_definition_complaint (body);
24091
24092 xfree (name);
24093 {
24094 int i;
24095
24096 for (i = 0; i < argc; i++)
24097 xfree (argv[i]);
24098 }
24099 xfree (argv);
24100 }
24101 else
24102 dwarf2_macro_malformed_definition_complaint (body);
24103 }
24104
24105 /* Skip some bytes from BYTES according to the form given in FORM.
24106 Returns the new pointer. */
24107
24108 static const gdb_byte *
24109 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24110 enum dwarf_form form,
24111 unsigned int offset_size,
24112 struct dwarf2_section_info *section)
24113 {
24114 unsigned int bytes_read;
24115
24116 switch (form)
24117 {
24118 case DW_FORM_data1:
24119 case DW_FORM_flag:
24120 ++bytes;
24121 break;
24122
24123 case DW_FORM_data2:
24124 bytes += 2;
24125 break;
24126
24127 case DW_FORM_data4:
24128 bytes += 4;
24129 break;
24130
24131 case DW_FORM_data8:
24132 bytes += 8;
24133 break;
24134
24135 case DW_FORM_data16:
24136 bytes += 16;
24137 break;
24138
24139 case DW_FORM_string:
24140 read_direct_string (abfd, bytes, &bytes_read);
24141 bytes += bytes_read;
24142 break;
24143
24144 case DW_FORM_sec_offset:
24145 case DW_FORM_strp:
24146 case DW_FORM_GNU_strp_alt:
24147 bytes += offset_size;
24148 break;
24149
24150 case DW_FORM_block:
24151 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24152 bytes += bytes_read;
24153 break;
24154
24155 case DW_FORM_block1:
24156 bytes += 1 + read_1_byte (abfd, bytes);
24157 break;
24158 case DW_FORM_block2:
24159 bytes += 2 + read_2_bytes (abfd, bytes);
24160 break;
24161 case DW_FORM_block4:
24162 bytes += 4 + read_4_bytes (abfd, bytes);
24163 break;
24164
24165 case DW_FORM_sdata:
24166 case DW_FORM_udata:
24167 case DW_FORM_GNU_addr_index:
24168 case DW_FORM_GNU_str_index:
24169 bytes = gdb_skip_leb128 (bytes, buffer_end);
24170 if (bytes == NULL)
24171 {
24172 dwarf2_section_buffer_overflow_complaint (section);
24173 return NULL;
24174 }
24175 break;
24176
24177 case DW_FORM_implicit_const:
24178 break;
24179
24180 default:
24181 {
24182 complaint (_("invalid form 0x%x in `%s'"),
24183 form, get_section_name (section));
24184 return NULL;
24185 }
24186 }
24187
24188 return bytes;
24189 }
24190
24191 /* A helper for dwarf_decode_macros that handles skipping an unknown
24192 opcode. Returns an updated pointer to the macro data buffer; or,
24193 on error, issues a complaint and returns NULL. */
24194
24195 static const gdb_byte *
24196 skip_unknown_opcode (unsigned int opcode,
24197 const gdb_byte **opcode_definitions,
24198 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24199 bfd *abfd,
24200 unsigned int offset_size,
24201 struct dwarf2_section_info *section)
24202 {
24203 unsigned int bytes_read, i;
24204 unsigned long arg;
24205 const gdb_byte *defn;
24206
24207 if (opcode_definitions[opcode] == NULL)
24208 {
24209 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24210 opcode);
24211 return NULL;
24212 }
24213
24214 defn = opcode_definitions[opcode];
24215 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24216 defn += bytes_read;
24217
24218 for (i = 0; i < arg; ++i)
24219 {
24220 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24221 (enum dwarf_form) defn[i], offset_size,
24222 section);
24223 if (mac_ptr == NULL)
24224 {
24225 /* skip_form_bytes already issued the complaint. */
24226 return NULL;
24227 }
24228 }
24229
24230 return mac_ptr;
24231 }
24232
24233 /* A helper function which parses the header of a macro section.
24234 If the macro section is the extended (for now called "GNU") type,
24235 then this updates *OFFSET_SIZE. Returns a pointer to just after
24236 the header, or issues a complaint and returns NULL on error. */
24237
24238 static const gdb_byte *
24239 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24240 bfd *abfd,
24241 const gdb_byte *mac_ptr,
24242 unsigned int *offset_size,
24243 int section_is_gnu)
24244 {
24245 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24246
24247 if (section_is_gnu)
24248 {
24249 unsigned int version, flags;
24250
24251 version = read_2_bytes (abfd, mac_ptr);
24252 if (version != 4 && version != 5)
24253 {
24254 complaint (_("unrecognized version `%d' in .debug_macro section"),
24255 version);
24256 return NULL;
24257 }
24258 mac_ptr += 2;
24259
24260 flags = read_1_byte (abfd, mac_ptr);
24261 ++mac_ptr;
24262 *offset_size = (flags & 1) ? 8 : 4;
24263
24264 if ((flags & 2) != 0)
24265 /* We don't need the line table offset. */
24266 mac_ptr += *offset_size;
24267
24268 /* Vendor opcode descriptions. */
24269 if ((flags & 4) != 0)
24270 {
24271 unsigned int i, count;
24272
24273 count = read_1_byte (abfd, mac_ptr);
24274 ++mac_ptr;
24275 for (i = 0; i < count; ++i)
24276 {
24277 unsigned int opcode, bytes_read;
24278 unsigned long arg;
24279
24280 opcode = read_1_byte (abfd, mac_ptr);
24281 ++mac_ptr;
24282 opcode_definitions[opcode] = mac_ptr;
24283 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24284 mac_ptr += bytes_read;
24285 mac_ptr += arg;
24286 }
24287 }
24288 }
24289
24290 return mac_ptr;
24291 }
24292
24293 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24294 including DW_MACRO_import. */
24295
24296 static void
24297 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24298 bfd *abfd,
24299 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24300 struct macro_source_file *current_file,
24301 struct line_header *lh,
24302 struct dwarf2_section_info *section,
24303 int section_is_gnu, int section_is_dwz,
24304 unsigned int offset_size,
24305 htab_t include_hash)
24306 {
24307 struct dwarf2_per_objfile *dwarf2_per_objfile
24308 = cu->per_cu->dwarf2_per_objfile;
24309 struct objfile *objfile = dwarf2_per_objfile->objfile;
24310 enum dwarf_macro_record_type macinfo_type;
24311 int at_commandline;
24312 const gdb_byte *opcode_definitions[256];
24313
24314 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24315 &offset_size, section_is_gnu);
24316 if (mac_ptr == NULL)
24317 {
24318 /* We already issued a complaint. */
24319 return;
24320 }
24321
24322 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24323 GDB is still reading the definitions from command line. First
24324 DW_MACINFO_start_file will need to be ignored as it was already executed
24325 to create CURRENT_FILE for the main source holding also the command line
24326 definitions. On first met DW_MACINFO_start_file this flag is reset to
24327 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24328
24329 at_commandline = 1;
24330
24331 do
24332 {
24333 /* Do we at least have room for a macinfo type byte? */
24334 if (mac_ptr >= mac_end)
24335 {
24336 dwarf2_section_buffer_overflow_complaint (section);
24337 break;
24338 }
24339
24340 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24341 mac_ptr++;
24342
24343 /* Note that we rely on the fact that the corresponding GNU and
24344 DWARF constants are the same. */
24345 DIAGNOSTIC_PUSH
24346 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24347 switch (macinfo_type)
24348 {
24349 /* A zero macinfo type indicates the end of the macro
24350 information. */
24351 case 0:
24352 break;
24353
24354 case DW_MACRO_define:
24355 case DW_MACRO_undef:
24356 case DW_MACRO_define_strp:
24357 case DW_MACRO_undef_strp:
24358 case DW_MACRO_define_sup:
24359 case DW_MACRO_undef_sup:
24360 {
24361 unsigned int bytes_read;
24362 int line;
24363 const char *body;
24364 int is_define;
24365
24366 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24367 mac_ptr += bytes_read;
24368
24369 if (macinfo_type == DW_MACRO_define
24370 || macinfo_type == DW_MACRO_undef)
24371 {
24372 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24373 mac_ptr += bytes_read;
24374 }
24375 else
24376 {
24377 LONGEST str_offset;
24378
24379 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24380 mac_ptr += offset_size;
24381
24382 if (macinfo_type == DW_MACRO_define_sup
24383 || macinfo_type == DW_MACRO_undef_sup
24384 || section_is_dwz)
24385 {
24386 struct dwz_file *dwz
24387 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24388
24389 body = read_indirect_string_from_dwz (objfile,
24390 dwz, str_offset);
24391 }
24392 else
24393 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24394 abfd, str_offset);
24395 }
24396
24397 is_define = (macinfo_type == DW_MACRO_define
24398 || macinfo_type == DW_MACRO_define_strp
24399 || macinfo_type == DW_MACRO_define_sup);
24400 if (! current_file)
24401 {
24402 /* DWARF violation as no main source is present. */
24403 complaint (_("debug info with no main source gives macro %s "
24404 "on line %d: %s"),
24405 is_define ? _("definition") : _("undefinition"),
24406 line, body);
24407 break;
24408 }
24409 if ((line == 0 && !at_commandline)
24410 || (line != 0 && at_commandline))
24411 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24412 at_commandline ? _("command-line") : _("in-file"),
24413 is_define ? _("definition") : _("undefinition"),
24414 line == 0 ? _("zero") : _("non-zero"), line, body);
24415
24416 if (is_define)
24417 parse_macro_definition (current_file, line, body);
24418 else
24419 {
24420 gdb_assert (macinfo_type == DW_MACRO_undef
24421 || macinfo_type == DW_MACRO_undef_strp
24422 || macinfo_type == DW_MACRO_undef_sup);
24423 macro_undef (current_file, line, body);
24424 }
24425 }
24426 break;
24427
24428 case DW_MACRO_start_file:
24429 {
24430 unsigned int bytes_read;
24431 int line, file;
24432
24433 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24434 mac_ptr += bytes_read;
24435 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24436 mac_ptr += bytes_read;
24437
24438 if ((line == 0 && !at_commandline)
24439 || (line != 0 && at_commandline))
24440 complaint (_("debug info gives source %d included "
24441 "from %s at %s line %d"),
24442 file, at_commandline ? _("command-line") : _("file"),
24443 line == 0 ? _("zero") : _("non-zero"), line);
24444
24445 if (at_commandline)
24446 {
24447 /* This DW_MACRO_start_file was executed in the
24448 pass one. */
24449 at_commandline = 0;
24450 }
24451 else
24452 current_file = macro_start_file (cu, file, line, current_file,
24453 lh);
24454 }
24455 break;
24456
24457 case DW_MACRO_end_file:
24458 if (! current_file)
24459 complaint (_("macro debug info has an unmatched "
24460 "`close_file' directive"));
24461 else
24462 {
24463 current_file = current_file->included_by;
24464 if (! current_file)
24465 {
24466 enum dwarf_macro_record_type next_type;
24467
24468 /* GCC circa March 2002 doesn't produce the zero
24469 type byte marking the end of the compilation
24470 unit. Complain if it's not there, but exit no
24471 matter what. */
24472
24473 /* Do we at least have room for a macinfo type byte? */
24474 if (mac_ptr >= mac_end)
24475 {
24476 dwarf2_section_buffer_overflow_complaint (section);
24477 return;
24478 }
24479
24480 /* We don't increment mac_ptr here, so this is just
24481 a look-ahead. */
24482 next_type
24483 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24484 mac_ptr);
24485 if (next_type != 0)
24486 complaint (_("no terminating 0-type entry for "
24487 "macros in `.debug_macinfo' section"));
24488
24489 return;
24490 }
24491 }
24492 break;
24493
24494 case DW_MACRO_import:
24495 case DW_MACRO_import_sup:
24496 {
24497 LONGEST offset;
24498 void **slot;
24499 bfd *include_bfd = abfd;
24500 struct dwarf2_section_info *include_section = section;
24501 const gdb_byte *include_mac_end = mac_end;
24502 int is_dwz = section_is_dwz;
24503 const gdb_byte *new_mac_ptr;
24504
24505 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24506 mac_ptr += offset_size;
24507
24508 if (macinfo_type == DW_MACRO_import_sup)
24509 {
24510 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24511
24512 dwarf2_read_section (objfile, &dwz->macro);
24513
24514 include_section = &dwz->macro;
24515 include_bfd = get_section_bfd_owner (include_section);
24516 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24517 is_dwz = 1;
24518 }
24519
24520 new_mac_ptr = include_section->buffer + offset;
24521 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24522
24523 if (*slot != NULL)
24524 {
24525 /* This has actually happened; see
24526 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24527 complaint (_("recursive DW_MACRO_import in "
24528 ".debug_macro section"));
24529 }
24530 else
24531 {
24532 *slot = (void *) new_mac_ptr;
24533
24534 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24535 include_mac_end, current_file, lh,
24536 section, section_is_gnu, is_dwz,
24537 offset_size, include_hash);
24538
24539 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24540 }
24541 }
24542 break;
24543
24544 case DW_MACINFO_vendor_ext:
24545 if (!section_is_gnu)
24546 {
24547 unsigned int bytes_read;
24548
24549 /* This reads the constant, but since we don't recognize
24550 any vendor extensions, we ignore it. */
24551 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24552 mac_ptr += bytes_read;
24553 read_direct_string (abfd, mac_ptr, &bytes_read);
24554 mac_ptr += bytes_read;
24555
24556 /* We don't recognize any vendor extensions. */
24557 break;
24558 }
24559 /* FALLTHROUGH */
24560
24561 default:
24562 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24563 mac_ptr, mac_end, abfd, offset_size,
24564 section);
24565 if (mac_ptr == NULL)
24566 return;
24567 break;
24568 }
24569 DIAGNOSTIC_POP
24570 } while (macinfo_type != 0);
24571 }
24572
24573 static void
24574 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24575 int section_is_gnu)
24576 {
24577 struct dwarf2_per_objfile *dwarf2_per_objfile
24578 = cu->per_cu->dwarf2_per_objfile;
24579 struct objfile *objfile = dwarf2_per_objfile->objfile;
24580 struct line_header *lh = cu->line_header;
24581 bfd *abfd;
24582 const gdb_byte *mac_ptr, *mac_end;
24583 struct macro_source_file *current_file = 0;
24584 enum dwarf_macro_record_type macinfo_type;
24585 unsigned int offset_size = cu->header.offset_size;
24586 const gdb_byte *opcode_definitions[256];
24587 void **slot;
24588 struct dwarf2_section_info *section;
24589 const char *section_name;
24590
24591 if (cu->dwo_unit != NULL)
24592 {
24593 if (section_is_gnu)
24594 {
24595 section = &cu->dwo_unit->dwo_file->sections.macro;
24596 section_name = ".debug_macro.dwo";
24597 }
24598 else
24599 {
24600 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24601 section_name = ".debug_macinfo.dwo";
24602 }
24603 }
24604 else
24605 {
24606 if (section_is_gnu)
24607 {
24608 section = &dwarf2_per_objfile->macro;
24609 section_name = ".debug_macro";
24610 }
24611 else
24612 {
24613 section = &dwarf2_per_objfile->macinfo;
24614 section_name = ".debug_macinfo";
24615 }
24616 }
24617
24618 dwarf2_read_section (objfile, section);
24619 if (section->buffer == NULL)
24620 {
24621 complaint (_("missing %s section"), section_name);
24622 return;
24623 }
24624 abfd = get_section_bfd_owner (section);
24625
24626 /* First pass: Find the name of the base filename.
24627 This filename is needed in order to process all macros whose definition
24628 (or undefinition) comes from the command line. These macros are defined
24629 before the first DW_MACINFO_start_file entry, and yet still need to be
24630 associated to the base file.
24631
24632 To determine the base file name, we scan the macro definitions until we
24633 reach the first DW_MACINFO_start_file entry. We then initialize
24634 CURRENT_FILE accordingly so that any macro definition found before the
24635 first DW_MACINFO_start_file can still be associated to the base file. */
24636
24637 mac_ptr = section->buffer + offset;
24638 mac_end = section->buffer + section->size;
24639
24640 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24641 &offset_size, section_is_gnu);
24642 if (mac_ptr == NULL)
24643 {
24644 /* We already issued a complaint. */
24645 return;
24646 }
24647
24648 do
24649 {
24650 /* Do we at least have room for a macinfo type byte? */
24651 if (mac_ptr >= mac_end)
24652 {
24653 /* Complaint is printed during the second pass as GDB will probably
24654 stop the first pass earlier upon finding
24655 DW_MACINFO_start_file. */
24656 break;
24657 }
24658
24659 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24660 mac_ptr++;
24661
24662 /* Note that we rely on the fact that the corresponding GNU and
24663 DWARF constants are the same. */
24664 DIAGNOSTIC_PUSH
24665 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24666 switch (macinfo_type)
24667 {
24668 /* A zero macinfo type indicates the end of the macro
24669 information. */
24670 case 0:
24671 break;
24672
24673 case DW_MACRO_define:
24674 case DW_MACRO_undef:
24675 /* Only skip the data by MAC_PTR. */
24676 {
24677 unsigned int bytes_read;
24678
24679 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24680 mac_ptr += bytes_read;
24681 read_direct_string (abfd, mac_ptr, &bytes_read);
24682 mac_ptr += bytes_read;
24683 }
24684 break;
24685
24686 case DW_MACRO_start_file:
24687 {
24688 unsigned int bytes_read;
24689 int line, file;
24690
24691 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24692 mac_ptr += bytes_read;
24693 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24694 mac_ptr += bytes_read;
24695
24696 current_file = macro_start_file (cu, file, line, current_file, lh);
24697 }
24698 break;
24699
24700 case DW_MACRO_end_file:
24701 /* No data to skip by MAC_PTR. */
24702 break;
24703
24704 case DW_MACRO_define_strp:
24705 case DW_MACRO_undef_strp:
24706 case DW_MACRO_define_sup:
24707 case DW_MACRO_undef_sup:
24708 {
24709 unsigned int bytes_read;
24710
24711 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24712 mac_ptr += bytes_read;
24713 mac_ptr += offset_size;
24714 }
24715 break;
24716
24717 case DW_MACRO_import:
24718 case DW_MACRO_import_sup:
24719 /* Note that, according to the spec, a transparent include
24720 chain cannot call DW_MACRO_start_file. So, we can just
24721 skip this opcode. */
24722 mac_ptr += offset_size;
24723 break;
24724
24725 case DW_MACINFO_vendor_ext:
24726 /* Only skip the data by MAC_PTR. */
24727 if (!section_is_gnu)
24728 {
24729 unsigned int bytes_read;
24730
24731 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733 read_direct_string (abfd, mac_ptr, &bytes_read);
24734 mac_ptr += bytes_read;
24735 }
24736 /* FALLTHROUGH */
24737
24738 default:
24739 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24740 mac_ptr, mac_end, abfd, offset_size,
24741 section);
24742 if (mac_ptr == NULL)
24743 return;
24744 break;
24745 }
24746 DIAGNOSTIC_POP
24747 } while (macinfo_type != 0 && current_file == NULL);
24748
24749 /* Second pass: Process all entries.
24750
24751 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24752 command-line macro definitions/undefinitions. This flag is unset when we
24753 reach the first DW_MACINFO_start_file entry. */
24754
24755 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24756 htab_eq_pointer,
24757 NULL, xcalloc, xfree));
24758 mac_ptr = section->buffer + offset;
24759 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24760 *slot = (void *) mac_ptr;
24761 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24762 current_file, lh, section,
24763 section_is_gnu, 0, offset_size,
24764 include_hash.get ());
24765 }
24766
24767 /* Check if the attribute's form is a DW_FORM_block*
24768 if so return true else false. */
24769
24770 static int
24771 attr_form_is_block (const struct attribute *attr)
24772 {
24773 return (attr == NULL ? 0 :
24774 attr->form == DW_FORM_block1
24775 || attr->form == DW_FORM_block2
24776 || attr->form == DW_FORM_block4
24777 || attr->form == DW_FORM_block
24778 || attr->form == DW_FORM_exprloc);
24779 }
24780
24781 /* Return non-zero if ATTR's value is a section offset --- classes
24782 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24783 You may use DW_UNSND (attr) to retrieve such offsets.
24784
24785 Section 7.5.4, "Attribute Encodings", explains that no attribute
24786 may have a value that belongs to more than one of these classes; it
24787 would be ambiguous if we did, because we use the same forms for all
24788 of them. */
24789
24790 static int
24791 attr_form_is_section_offset (const struct attribute *attr)
24792 {
24793 return (attr->form == DW_FORM_data4
24794 || attr->form == DW_FORM_data8
24795 || attr->form == DW_FORM_sec_offset);
24796 }
24797
24798 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24799 zero otherwise. When this function returns true, you can apply
24800 dwarf2_get_attr_constant_value to it.
24801
24802 However, note that for some attributes you must check
24803 attr_form_is_section_offset before using this test. DW_FORM_data4
24804 and DW_FORM_data8 are members of both the constant class, and of
24805 the classes that contain offsets into other debug sections
24806 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24807 that, if an attribute's can be either a constant or one of the
24808 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24809 taken as section offsets, not constants.
24810
24811 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24812 cannot handle that. */
24813
24814 static int
24815 attr_form_is_constant (const struct attribute *attr)
24816 {
24817 switch (attr->form)
24818 {
24819 case DW_FORM_sdata:
24820 case DW_FORM_udata:
24821 case DW_FORM_data1:
24822 case DW_FORM_data2:
24823 case DW_FORM_data4:
24824 case DW_FORM_data8:
24825 case DW_FORM_implicit_const:
24826 return 1;
24827 default:
24828 return 0;
24829 }
24830 }
24831
24832
24833 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24834 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24835
24836 static int
24837 attr_form_is_ref (const struct attribute *attr)
24838 {
24839 switch (attr->form)
24840 {
24841 case DW_FORM_ref_addr:
24842 case DW_FORM_ref1:
24843 case DW_FORM_ref2:
24844 case DW_FORM_ref4:
24845 case DW_FORM_ref8:
24846 case DW_FORM_ref_udata:
24847 case DW_FORM_GNU_ref_alt:
24848 return 1;
24849 default:
24850 return 0;
24851 }
24852 }
24853
24854 /* Return the .debug_loc section to use for CU.
24855 For DWO files use .debug_loc.dwo. */
24856
24857 static struct dwarf2_section_info *
24858 cu_debug_loc_section (struct dwarf2_cu *cu)
24859 {
24860 struct dwarf2_per_objfile *dwarf2_per_objfile
24861 = cu->per_cu->dwarf2_per_objfile;
24862
24863 if (cu->dwo_unit)
24864 {
24865 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24866
24867 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24868 }
24869 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24870 : &dwarf2_per_objfile->loc);
24871 }
24872
24873 /* A helper function that fills in a dwarf2_loclist_baton. */
24874
24875 static void
24876 fill_in_loclist_baton (struct dwarf2_cu *cu,
24877 struct dwarf2_loclist_baton *baton,
24878 const struct attribute *attr)
24879 {
24880 struct dwarf2_per_objfile *dwarf2_per_objfile
24881 = cu->per_cu->dwarf2_per_objfile;
24882 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24883
24884 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24885
24886 baton->per_cu = cu->per_cu;
24887 gdb_assert (baton->per_cu);
24888 /* We don't know how long the location list is, but make sure we
24889 don't run off the edge of the section. */
24890 baton->size = section->size - DW_UNSND (attr);
24891 baton->data = section->buffer + DW_UNSND (attr);
24892 baton->base_address = cu->base_address;
24893 baton->from_dwo = cu->dwo_unit != NULL;
24894 }
24895
24896 static void
24897 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24898 struct dwarf2_cu *cu, int is_block)
24899 {
24900 struct dwarf2_per_objfile *dwarf2_per_objfile
24901 = cu->per_cu->dwarf2_per_objfile;
24902 struct objfile *objfile = dwarf2_per_objfile->objfile;
24903 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24904
24905 if (attr_form_is_section_offset (attr)
24906 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24907 the section. If so, fall through to the complaint in the
24908 other branch. */
24909 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24910 {
24911 struct dwarf2_loclist_baton *baton;
24912
24913 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24914
24915 fill_in_loclist_baton (cu, baton, attr);
24916
24917 if (cu->base_known == 0)
24918 complaint (_("Location list used without "
24919 "specifying the CU base address."));
24920
24921 SYMBOL_ACLASS_INDEX (sym) = (is_block
24922 ? dwarf2_loclist_block_index
24923 : dwarf2_loclist_index);
24924 SYMBOL_LOCATION_BATON (sym) = baton;
24925 }
24926 else
24927 {
24928 struct dwarf2_locexpr_baton *baton;
24929
24930 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24931 baton->per_cu = cu->per_cu;
24932 gdb_assert (baton->per_cu);
24933
24934 if (attr_form_is_block (attr))
24935 {
24936 /* Note that we're just copying the block's data pointer
24937 here, not the actual data. We're still pointing into the
24938 info_buffer for SYM's objfile; right now we never release
24939 that buffer, but when we do clean up properly this may
24940 need to change. */
24941 baton->size = DW_BLOCK (attr)->size;
24942 baton->data = DW_BLOCK (attr)->data;
24943 }
24944 else
24945 {
24946 dwarf2_invalid_attrib_class_complaint ("location description",
24947 SYMBOL_NATURAL_NAME (sym));
24948 baton->size = 0;
24949 }
24950
24951 SYMBOL_ACLASS_INDEX (sym) = (is_block
24952 ? dwarf2_locexpr_block_index
24953 : dwarf2_locexpr_index);
24954 SYMBOL_LOCATION_BATON (sym) = baton;
24955 }
24956 }
24957
24958 /* Return the OBJFILE associated with the compilation unit CU. If CU
24959 came from a separate debuginfo file, then the master objfile is
24960 returned. */
24961
24962 struct objfile *
24963 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24964 {
24965 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24966
24967 /* Return the master objfile, so that we can report and look up the
24968 correct file containing this variable. */
24969 if (objfile->separate_debug_objfile_backlink)
24970 objfile = objfile->separate_debug_objfile_backlink;
24971
24972 return objfile;
24973 }
24974
24975 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24976 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24977 CU_HEADERP first. */
24978
24979 static const struct comp_unit_head *
24980 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24981 struct dwarf2_per_cu_data *per_cu)
24982 {
24983 const gdb_byte *info_ptr;
24984
24985 if (per_cu->cu)
24986 return &per_cu->cu->header;
24987
24988 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24989
24990 memset (cu_headerp, 0, sizeof (*cu_headerp));
24991 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24992 rcuh_kind::COMPILE);
24993
24994 return cu_headerp;
24995 }
24996
24997 /* Return the address size given in the compilation unit header for CU. */
24998
24999 int
25000 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25001 {
25002 struct comp_unit_head cu_header_local;
25003 const struct comp_unit_head *cu_headerp;
25004
25005 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25006
25007 return cu_headerp->addr_size;
25008 }
25009
25010 /* Return the offset size given in the compilation unit header for CU. */
25011
25012 int
25013 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25014 {
25015 struct comp_unit_head cu_header_local;
25016 const struct comp_unit_head *cu_headerp;
25017
25018 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25019
25020 return cu_headerp->offset_size;
25021 }
25022
25023 /* See its dwarf2loc.h declaration. */
25024
25025 int
25026 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25027 {
25028 struct comp_unit_head cu_header_local;
25029 const struct comp_unit_head *cu_headerp;
25030
25031 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25032
25033 if (cu_headerp->version == 2)
25034 return cu_headerp->addr_size;
25035 else
25036 return cu_headerp->offset_size;
25037 }
25038
25039 /* Return the text offset of the CU. The returned offset comes from
25040 this CU's objfile. If this objfile came from a separate debuginfo
25041 file, then the offset may be different from the corresponding
25042 offset in the parent objfile. */
25043
25044 CORE_ADDR
25045 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25046 {
25047 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25048
25049 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25050 }
25051
25052 /* Return DWARF version number of PER_CU. */
25053
25054 short
25055 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25056 {
25057 return per_cu->dwarf_version;
25058 }
25059
25060 /* Locate the .debug_info compilation unit from CU's objfile which contains
25061 the DIE at OFFSET. Raises an error on failure. */
25062
25063 static struct dwarf2_per_cu_data *
25064 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25065 unsigned int offset_in_dwz,
25066 struct dwarf2_per_objfile *dwarf2_per_objfile)
25067 {
25068 struct dwarf2_per_cu_data *this_cu;
25069 int low, high;
25070 const sect_offset *cu_off;
25071
25072 low = 0;
25073 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25074 while (high > low)
25075 {
25076 struct dwarf2_per_cu_data *mid_cu;
25077 int mid = low + (high - low) / 2;
25078
25079 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25080 cu_off = &mid_cu->sect_off;
25081 if (mid_cu->is_dwz > offset_in_dwz
25082 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25083 high = mid;
25084 else
25085 low = mid + 1;
25086 }
25087 gdb_assert (low == high);
25088 this_cu = dwarf2_per_objfile->all_comp_units[low];
25089 cu_off = &this_cu->sect_off;
25090 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25091 {
25092 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25093 error (_("Dwarf Error: could not find partial DIE containing "
25094 "offset %s [in module %s]"),
25095 sect_offset_str (sect_off),
25096 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25097
25098 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25099 <= sect_off);
25100 return dwarf2_per_objfile->all_comp_units[low-1];
25101 }
25102 else
25103 {
25104 this_cu = dwarf2_per_objfile->all_comp_units[low];
25105 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25106 && sect_off >= this_cu->sect_off + this_cu->length)
25107 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25108 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25109 return this_cu;
25110 }
25111 }
25112
25113 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25114
25115 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25116 : per_cu (per_cu_),
25117 mark (0),
25118 has_loclist (0),
25119 checked_producer (0),
25120 producer_is_gxx_lt_4_6 (0),
25121 producer_is_gcc_lt_4_3 (0),
25122 producer_is_icc_lt_14 (0),
25123 processing_has_namespace_info (0)
25124 {
25125 per_cu->cu = this;
25126 }
25127
25128 /* Destroy a dwarf2_cu. */
25129
25130 dwarf2_cu::~dwarf2_cu ()
25131 {
25132 per_cu->cu = NULL;
25133 }
25134
25135 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25136
25137 static void
25138 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25139 enum language pretend_language)
25140 {
25141 struct attribute *attr;
25142
25143 /* Set the language we're debugging. */
25144 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25145 if (attr)
25146 set_cu_language (DW_UNSND (attr), cu);
25147 else
25148 {
25149 cu->language = pretend_language;
25150 cu->language_defn = language_def (cu->language);
25151 }
25152
25153 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25154 }
25155
25156 /* Increase the age counter on each cached compilation unit, and free
25157 any that are too old. */
25158
25159 static void
25160 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25161 {
25162 struct dwarf2_per_cu_data *per_cu, **last_chain;
25163
25164 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25165 per_cu = dwarf2_per_objfile->read_in_chain;
25166 while (per_cu != NULL)
25167 {
25168 per_cu->cu->last_used ++;
25169 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25170 dwarf2_mark (per_cu->cu);
25171 per_cu = per_cu->cu->read_in_chain;
25172 }
25173
25174 per_cu = dwarf2_per_objfile->read_in_chain;
25175 last_chain = &dwarf2_per_objfile->read_in_chain;
25176 while (per_cu != NULL)
25177 {
25178 struct dwarf2_per_cu_data *next_cu;
25179
25180 next_cu = per_cu->cu->read_in_chain;
25181
25182 if (!per_cu->cu->mark)
25183 {
25184 delete per_cu->cu;
25185 *last_chain = next_cu;
25186 }
25187 else
25188 last_chain = &per_cu->cu->read_in_chain;
25189
25190 per_cu = next_cu;
25191 }
25192 }
25193
25194 /* Remove a single compilation unit from the cache. */
25195
25196 static void
25197 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25198 {
25199 struct dwarf2_per_cu_data *per_cu, **last_chain;
25200 struct dwarf2_per_objfile *dwarf2_per_objfile
25201 = target_per_cu->dwarf2_per_objfile;
25202
25203 per_cu = dwarf2_per_objfile->read_in_chain;
25204 last_chain = &dwarf2_per_objfile->read_in_chain;
25205 while (per_cu != NULL)
25206 {
25207 struct dwarf2_per_cu_data *next_cu;
25208
25209 next_cu = per_cu->cu->read_in_chain;
25210
25211 if (per_cu == target_per_cu)
25212 {
25213 delete per_cu->cu;
25214 per_cu->cu = NULL;
25215 *last_chain = next_cu;
25216 break;
25217 }
25218 else
25219 last_chain = &per_cu->cu->read_in_chain;
25220
25221 per_cu = next_cu;
25222 }
25223 }
25224
25225 /* Cleanup function for the dwarf2_per_objfile data. */
25226
25227 static void
25228 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25229 {
25230 struct dwarf2_per_objfile *dwarf2_per_objfile
25231 = static_cast<struct dwarf2_per_objfile *> (datum);
25232
25233 delete dwarf2_per_objfile;
25234 }
25235
25236 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25237 We store these in a hash table separate from the DIEs, and preserve them
25238 when the DIEs are flushed out of cache.
25239
25240 The CU "per_cu" pointer is needed because offset alone is not enough to
25241 uniquely identify the type. A file may have multiple .debug_types sections,
25242 or the type may come from a DWO file. Furthermore, while it's more logical
25243 to use per_cu->section+offset, with Fission the section with the data is in
25244 the DWO file but we don't know that section at the point we need it.
25245 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25246 because we can enter the lookup routine, get_die_type_at_offset, from
25247 outside this file, and thus won't necessarily have PER_CU->cu.
25248 Fortunately, PER_CU is stable for the life of the objfile. */
25249
25250 struct dwarf2_per_cu_offset_and_type
25251 {
25252 const struct dwarf2_per_cu_data *per_cu;
25253 sect_offset sect_off;
25254 struct type *type;
25255 };
25256
25257 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25258
25259 static hashval_t
25260 per_cu_offset_and_type_hash (const void *item)
25261 {
25262 const struct dwarf2_per_cu_offset_and_type *ofs
25263 = (const struct dwarf2_per_cu_offset_and_type *) item;
25264
25265 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25266 }
25267
25268 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25269
25270 static int
25271 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25272 {
25273 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25274 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25275 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25276 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25277
25278 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25279 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25280 }
25281
25282 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25283 table if necessary. For convenience, return TYPE.
25284
25285 The DIEs reading must have careful ordering to:
25286 * Not cause infite loops trying to read in DIEs as a prerequisite for
25287 reading current DIE.
25288 * Not trying to dereference contents of still incompletely read in types
25289 while reading in other DIEs.
25290 * Enable referencing still incompletely read in types just by a pointer to
25291 the type without accessing its fields.
25292
25293 Therefore caller should follow these rules:
25294 * Try to fetch any prerequisite types we may need to build this DIE type
25295 before building the type and calling set_die_type.
25296 * After building type call set_die_type for current DIE as soon as
25297 possible before fetching more types to complete the current type.
25298 * Make the type as complete as possible before fetching more types. */
25299
25300 static struct type *
25301 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25302 {
25303 struct dwarf2_per_objfile *dwarf2_per_objfile
25304 = cu->per_cu->dwarf2_per_objfile;
25305 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25306 struct objfile *objfile = dwarf2_per_objfile->objfile;
25307 struct attribute *attr;
25308 struct dynamic_prop prop;
25309
25310 /* For Ada types, make sure that the gnat-specific data is always
25311 initialized (if not already set). There are a few types where
25312 we should not be doing so, because the type-specific area is
25313 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25314 where the type-specific area is used to store the floatformat).
25315 But this is not a problem, because the gnat-specific information
25316 is actually not needed for these types. */
25317 if (need_gnat_info (cu)
25318 && TYPE_CODE (type) != TYPE_CODE_FUNC
25319 && TYPE_CODE (type) != TYPE_CODE_FLT
25320 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25321 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25322 && TYPE_CODE (type) != TYPE_CODE_METHOD
25323 && !HAVE_GNAT_AUX_INFO (type))
25324 INIT_GNAT_SPECIFIC (type);
25325
25326 /* Read DW_AT_allocated and set in type. */
25327 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25328 if (attr_form_is_block (attr))
25329 {
25330 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25331 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25332 }
25333 else if (attr != NULL)
25334 {
25335 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25336 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25337 sect_offset_str (die->sect_off));
25338 }
25339
25340 /* Read DW_AT_associated and set in type. */
25341 attr = dwarf2_attr (die, DW_AT_associated, cu);
25342 if (attr_form_is_block (attr))
25343 {
25344 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25345 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25346 }
25347 else if (attr != NULL)
25348 {
25349 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25350 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25351 sect_offset_str (die->sect_off));
25352 }
25353
25354 /* Read DW_AT_data_location and set in type. */
25355 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25356 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25357 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25358
25359 if (dwarf2_per_objfile->die_type_hash == NULL)
25360 {
25361 dwarf2_per_objfile->die_type_hash =
25362 htab_create_alloc_ex (127,
25363 per_cu_offset_and_type_hash,
25364 per_cu_offset_and_type_eq,
25365 NULL,
25366 &objfile->objfile_obstack,
25367 hashtab_obstack_allocate,
25368 dummy_obstack_deallocate);
25369 }
25370
25371 ofs.per_cu = cu->per_cu;
25372 ofs.sect_off = die->sect_off;
25373 ofs.type = type;
25374 slot = (struct dwarf2_per_cu_offset_and_type **)
25375 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25376 if (*slot)
25377 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25378 sect_offset_str (die->sect_off));
25379 *slot = XOBNEW (&objfile->objfile_obstack,
25380 struct dwarf2_per_cu_offset_and_type);
25381 **slot = ofs;
25382 return type;
25383 }
25384
25385 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25386 or return NULL if the die does not have a saved type. */
25387
25388 static struct type *
25389 get_die_type_at_offset (sect_offset sect_off,
25390 struct dwarf2_per_cu_data *per_cu)
25391 {
25392 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25393 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25394
25395 if (dwarf2_per_objfile->die_type_hash == NULL)
25396 return NULL;
25397
25398 ofs.per_cu = per_cu;
25399 ofs.sect_off = sect_off;
25400 slot = ((struct dwarf2_per_cu_offset_and_type *)
25401 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25402 if (slot)
25403 return slot->type;
25404 else
25405 return NULL;
25406 }
25407
25408 /* Look up the type for DIE in CU in die_type_hash,
25409 or return NULL if DIE does not have a saved type. */
25410
25411 static struct type *
25412 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25413 {
25414 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25415 }
25416
25417 /* Add a dependence relationship from CU to REF_PER_CU. */
25418
25419 static void
25420 dwarf2_add_dependence (struct dwarf2_cu *cu,
25421 struct dwarf2_per_cu_data *ref_per_cu)
25422 {
25423 void **slot;
25424
25425 if (cu->dependencies == NULL)
25426 cu->dependencies
25427 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25428 NULL, &cu->comp_unit_obstack,
25429 hashtab_obstack_allocate,
25430 dummy_obstack_deallocate);
25431
25432 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25433 if (*slot == NULL)
25434 *slot = ref_per_cu;
25435 }
25436
25437 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25438 Set the mark field in every compilation unit in the
25439 cache that we must keep because we are keeping CU. */
25440
25441 static int
25442 dwarf2_mark_helper (void **slot, void *data)
25443 {
25444 struct dwarf2_per_cu_data *per_cu;
25445
25446 per_cu = (struct dwarf2_per_cu_data *) *slot;
25447
25448 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25449 reading of the chain. As such dependencies remain valid it is not much
25450 useful to track and undo them during QUIT cleanups. */
25451 if (per_cu->cu == NULL)
25452 return 1;
25453
25454 if (per_cu->cu->mark)
25455 return 1;
25456 per_cu->cu->mark = 1;
25457
25458 if (per_cu->cu->dependencies != NULL)
25459 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25460
25461 return 1;
25462 }
25463
25464 /* Set the mark field in CU and in every other compilation unit in the
25465 cache that we must keep because we are keeping CU. */
25466
25467 static void
25468 dwarf2_mark (struct dwarf2_cu *cu)
25469 {
25470 if (cu->mark)
25471 return;
25472 cu->mark = 1;
25473 if (cu->dependencies != NULL)
25474 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25475 }
25476
25477 static void
25478 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25479 {
25480 while (per_cu)
25481 {
25482 per_cu->cu->mark = 0;
25483 per_cu = per_cu->cu->read_in_chain;
25484 }
25485 }
25486
25487 /* Trivial hash function for partial_die_info: the hash value of a DIE
25488 is its offset in .debug_info for this objfile. */
25489
25490 static hashval_t
25491 partial_die_hash (const void *item)
25492 {
25493 const struct partial_die_info *part_die
25494 = (const struct partial_die_info *) item;
25495
25496 return to_underlying (part_die->sect_off);
25497 }
25498
25499 /* Trivial comparison function for partial_die_info structures: two DIEs
25500 are equal if they have the same offset. */
25501
25502 static int
25503 partial_die_eq (const void *item_lhs, const void *item_rhs)
25504 {
25505 const struct partial_die_info *part_die_lhs
25506 = (const struct partial_die_info *) item_lhs;
25507 const struct partial_die_info *part_die_rhs
25508 = (const struct partial_die_info *) item_rhs;
25509
25510 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25511 }
25512
25513 struct cmd_list_element *set_dwarf_cmdlist;
25514 struct cmd_list_element *show_dwarf_cmdlist;
25515
25516 static void
25517 set_dwarf_cmd (const char *args, int from_tty)
25518 {
25519 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25520 gdb_stdout);
25521 }
25522
25523 static void
25524 show_dwarf_cmd (const char *args, int from_tty)
25525 {
25526 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25527 }
25528
25529 int dwarf_always_disassemble;
25530
25531 static void
25532 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25533 struct cmd_list_element *c, const char *value)
25534 {
25535 fprintf_filtered (file,
25536 _("Whether to always disassemble "
25537 "DWARF expressions is %s.\n"),
25538 value);
25539 }
25540
25541 static void
25542 show_check_physname (struct ui_file *file, int from_tty,
25543 struct cmd_list_element *c, const char *value)
25544 {
25545 fprintf_filtered (file,
25546 _("Whether to check \"physname\" is %s.\n"),
25547 value);
25548 }
25549
25550 void
25551 _initialize_dwarf2_read (void)
25552 {
25553 dwarf2_objfile_data_key
25554 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25555
25556 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25557 Set DWARF specific variables.\n\
25558 Configure DWARF variables such as the cache size"),
25559 &set_dwarf_cmdlist, "maintenance set dwarf ",
25560 0/*allow-unknown*/, &maintenance_set_cmdlist);
25561
25562 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25563 Show DWARF specific variables\n\
25564 Show DWARF variables such as the cache size"),
25565 &show_dwarf_cmdlist, "maintenance show dwarf ",
25566 0/*allow-unknown*/, &maintenance_show_cmdlist);
25567
25568 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25569 &dwarf_max_cache_age, _("\
25570 Set the upper bound on the age of cached DWARF compilation units."), _("\
25571 Show the upper bound on the age of cached DWARF compilation units."), _("\
25572 A higher limit means that cached compilation units will be stored\n\
25573 in memory longer, and more total memory will be used. Zero disables\n\
25574 caching, which can slow down startup."),
25575 NULL,
25576 show_dwarf_max_cache_age,
25577 &set_dwarf_cmdlist,
25578 &show_dwarf_cmdlist);
25579
25580 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25581 &dwarf_always_disassemble, _("\
25582 Set whether `info address' always disassembles DWARF expressions."), _("\
25583 Show whether `info address' always disassembles DWARF expressions."), _("\
25584 When enabled, DWARF expressions are always printed in an assembly-like\n\
25585 syntax. When disabled, expressions will be printed in a more\n\
25586 conversational style, when possible."),
25587 NULL,
25588 show_dwarf_always_disassemble,
25589 &set_dwarf_cmdlist,
25590 &show_dwarf_cmdlist);
25591
25592 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25593 Set debugging of the DWARF reader."), _("\
25594 Show debugging of the DWARF reader."), _("\
25595 When enabled (non-zero), debugging messages are printed during DWARF\n\
25596 reading and symtab expansion. A value of 1 (one) provides basic\n\
25597 information. A value greater than 1 provides more verbose information."),
25598 NULL,
25599 NULL,
25600 &setdebuglist, &showdebuglist);
25601
25602 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25603 Set debugging of the DWARF DIE reader."), _("\
25604 Show debugging of the DWARF DIE reader."), _("\
25605 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25606 The value is the maximum depth to print."),
25607 NULL,
25608 NULL,
25609 &setdebuglist, &showdebuglist);
25610
25611 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25612 Set debugging of the dwarf line reader."), _("\
25613 Show debugging of the dwarf line reader."), _("\
25614 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25615 A value of 1 (one) provides basic information.\n\
25616 A value greater than 1 provides more verbose information."),
25617 NULL,
25618 NULL,
25619 &setdebuglist, &showdebuglist);
25620
25621 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25622 Set cross-checking of \"physname\" code against demangler."), _("\
25623 Show cross-checking of \"physname\" code against demangler."), _("\
25624 When enabled, GDB's internal \"physname\" code is checked against\n\
25625 the demangler."),
25626 NULL, show_check_physname,
25627 &setdebuglist, &showdebuglist);
25628
25629 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25630 no_class, &use_deprecated_index_sections, _("\
25631 Set whether to use deprecated gdb_index sections."), _("\
25632 Show whether to use deprecated gdb_index sections."), _("\
25633 When enabled, deprecated .gdb_index sections are used anyway.\n\
25634 Normally they are ignored either because of a missing feature or\n\
25635 performance issue.\n\
25636 Warning: This option must be enabled before gdb reads the file."),
25637 NULL,
25638 NULL,
25639 &setlist, &showlist);
25640
25641 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25642 &dwarf2_locexpr_funcs);
25643 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25644 &dwarf2_loclist_funcs);
25645
25646 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25647 &dwarf2_block_frame_base_locexpr_funcs);
25648 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25649 &dwarf2_block_frame_base_loclist_funcs);
25650
25651 #if GDB_SELF_TEST
25652 selftests::register_test ("dw2_expand_symtabs_matching",
25653 selftests::dw2_expand_symtabs_matching::run_test);
25654 #endif
25655 }
This page took 0.888584 seconds and 4 git commands to generate.