* ax-gdb.c (gen_var_ref): Unconditionally call via computed ops,
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71
72 #include <fcntl.h>
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 struct dwarf2_section_info
103 {
104 asection *asection;
105 gdb_byte *buffer;
106 bfd_size_type size;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
122 do { \
123 gdb_assert ((unsigned int) (value) <= 1); \
124 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
125 } while (0)
126
127 /* Ensure only legit values are used. */
128 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
129 do { \
130 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
131 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
132 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
133 } while (0)
134
135 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
136 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
137 do { \
138 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
139 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
140 } while (0)
141
142 /* A description of the mapped index. The file format is described in
143 a comment by the code that writes the index. */
144 struct mapped_index
145 {
146 /* Index data format version. */
147 int version;
148
149 /* The total length of the buffer. */
150 off_t total_size;
151
152 /* A pointer to the address table data. */
153 const gdb_byte *address_table;
154
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157
158 /* The symbol table, implemented as a hash table. */
159 const offset_type *symbol_table;
160
161 /* Size in slots, each slot is 2 offset_types. */
162 offset_type symbol_table_slots;
163
164 /* A pointer to the constant pool. */
165 const char *constant_pool;
166 };
167
168 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
169 DEF_VEC_P (dwarf2_per_cu_ptr);
170
171 /* Collection of data recorded per objfile.
172 This hangs off of dwarf2_objfile_data_key. */
173
174 struct dwarf2_per_objfile
175 {
176 struct dwarf2_section_info info;
177 struct dwarf2_section_info abbrev;
178 struct dwarf2_section_info line;
179 struct dwarf2_section_info loc;
180 struct dwarf2_section_info macinfo;
181 struct dwarf2_section_info macro;
182 struct dwarf2_section_info str;
183 struct dwarf2_section_info ranges;
184 struct dwarf2_section_info addr;
185 struct dwarf2_section_info frame;
186 struct dwarf2_section_info eh_frame;
187 struct dwarf2_section_info gdb_index;
188
189 VEC (dwarf2_section_info_def) *types;
190
191 /* Back link. */
192 struct objfile *objfile;
193
194 /* Table of all the compilation units. This is used to locate
195 the target compilation unit of a particular reference. */
196 struct dwarf2_per_cu_data **all_comp_units;
197
198 /* The number of compilation units in ALL_COMP_UNITS. */
199 int n_comp_units;
200
201 /* The number of .debug_types-related CUs. */
202 int n_type_units;
203
204 /* The .debug_types-related CUs (TUs). */
205 struct signatured_type **all_type_units;
206
207 /* The number of entries in all_type_unit_groups. */
208 int n_type_unit_groups;
209
210 /* Table of type unit groups.
211 This exists to make it easy to iterate over all CUs and TU groups. */
212 struct type_unit_group **all_type_unit_groups;
213
214 /* Table of struct type_unit_group objects.
215 The hash key is the DW_AT_stmt_list value. */
216 htab_t type_unit_groups;
217
218 /* A table mapping .debug_types signatures to its signatured_type entry.
219 This is NULL if the .debug_types section hasn't been read in yet. */
220 htab_t signatured_types;
221
222 /* Type unit statistics, to see how well the scaling improvements
223 are doing. */
224 struct tu_stats
225 {
226 int nr_uniq_abbrev_tables;
227 int nr_symtabs;
228 int nr_symtab_sharers;
229 int nr_stmt_less_type_units;
230 } tu_stats;
231
232 /* A chain of compilation units that are currently read in, so that
233 they can be freed later. */
234 struct dwarf2_per_cu_data *read_in_chain;
235
236 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
237 This is NULL if the table hasn't been allocated yet. */
238 htab_t dwo_files;
239
240 /* Non-zero if we've check for whether there is a DWP file. */
241 int dwp_checked;
242
243 /* The DWP file if there is one, or NULL. */
244 struct dwp_file *dwp_file;
245
246 /* The shared '.dwz' file, if one exists. This is used when the
247 original data was compressed using 'dwz -m'. */
248 struct dwz_file *dwz_file;
249
250 /* A flag indicating wether this objfile has a section loaded at a
251 VMA of 0. */
252 int has_section_at_zero;
253
254 /* True if we are using the mapped index,
255 or we are faking it for OBJF_READNOW's sake. */
256 unsigned char using_index;
257
258 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
259 struct mapped_index *index_table;
260
261 /* When using index_table, this keeps track of all quick_file_names entries.
262 TUs typically share line table entries with a CU, so we maintain a
263 separate table of all line table entries to support the sharing.
264 Note that while there can be way more TUs than CUs, we've already
265 sorted all the TUs into "type unit groups", grouped by their
266 DW_AT_stmt_list value. Therefore the only sharing done here is with a
267 CU and its associated TU group if there is one. */
268 htab_t quick_file_names_table;
269
270 /* Set during partial symbol reading, to prevent queueing of full
271 symbols. */
272 int reading_partial_symbols;
273
274 /* Table mapping type DIEs to their struct type *.
275 This is NULL if not allocated yet.
276 The mapping is done via (CU/TU signature + DIE offset) -> type. */
277 htab_t die_type_hash;
278
279 /* The CUs we recently read. */
280 VEC (dwarf2_per_cu_ptr) *just_read_cus;
281 };
282
283 static struct dwarf2_per_objfile *dwarf2_per_objfile;
284
285 /* Default names of the debugging sections. */
286
287 /* Note that if the debugging section has been compressed, it might
288 have a name like .zdebug_info. */
289
290 static const struct dwarf2_debug_sections dwarf2_elf_names =
291 {
292 { ".debug_info", ".zdebug_info" },
293 { ".debug_abbrev", ".zdebug_abbrev" },
294 { ".debug_line", ".zdebug_line" },
295 { ".debug_loc", ".zdebug_loc" },
296 { ".debug_macinfo", ".zdebug_macinfo" },
297 { ".debug_macro", ".zdebug_macro" },
298 { ".debug_str", ".zdebug_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_types", ".zdebug_types" },
301 { ".debug_addr", ".zdebug_addr" },
302 { ".debug_frame", ".zdebug_frame" },
303 { ".eh_frame", NULL },
304 { ".gdb_index", ".zgdb_index" },
305 23
306 };
307
308 /* List of DWO/DWP sections. */
309
310 static const struct dwop_section_names
311 {
312 struct dwarf2_section_names abbrev_dwo;
313 struct dwarf2_section_names info_dwo;
314 struct dwarf2_section_names line_dwo;
315 struct dwarf2_section_names loc_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
323 }
324 dwop_section_names =
325 {
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
331 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
332 { ".debug_str.dwo", ".zdebug_str.dwo" },
333 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
334 { ".debug_types.dwo", ".zdebug_types.dwo" },
335 { ".debug_cu_index", ".zdebug_cu_index" },
336 { ".debug_tu_index", ".zdebug_tu_index" },
337 };
338
339 /* local data types */
340
341 /* The data in a compilation unit header, after target2host
342 translation, looks like this. */
343 struct comp_unit_head
344 {
345 unsigned int length;
346 short version;
347 unsigned char addr_size;
348 unsigned char signed_addr_p;
349 sect_offset abbrev_offset;
350
351 /* Size of file offsets; either 4 or 8. */
352 unsigned int offset_size;
353
354 /* Size of the length field; either 4 or 12. */
355 unsigned int initial_length_size;
356
357 /* Offset to the first byte of this compilation unit header in the
358 .debug_info section, for resolving relative reference dies. */
359 sect_offset offset;
360
361 /* Offset to first die in this cu from the start of the cu.
362 This will be the first byte following the compilation unit header. */
363 cu_offset first_die_offset;
364 };
365
366 /* Type used for delaying computation of method physnames.
367 See comments for compute_delayed_physnames. */
368 struct delayed_method_info
369 {
370 /* The type to which the method is attached, i.e., its parent class. */
371 struct type *type;
372
373 /* The index of the method in the type's function fieldlists. */
374 int fnfield_index;
375
376 /* The index of the method in the fieldlist. */
377 int index;
378
379 /* The name of the DIE. */
380 const char *name;
381
382 /* The DIE associated with this method. */
383 struct die_info *die;
384 };
385
386 typedef struct delayed_method_info delayed_method_info;
387 DEF_VEC_O (delayed_method_info);
388
389 /* Internal state when decoding a particular compilation unit. */
390 struct dwarf2_cu
391 {
392 /* The objfile containing this compilation unit. */
393 struct objfile *objfile;
394
395 /* The header of the compilation unit. */
396 struct comp_unit_head header;
397
398 /* Base address of this compilation unit. */
399 CORE_ADDR base_address;
400
401 /* Non-zero if base_address has been set. */
402 int base_known;
403
404 /* The language we are debugging. */
405 enum language language;
406 const struct language_defn *language_defn;
407
408 const char *producer;
409
410 /* The generic symbol table building routines have separate lists for
411 file scope symbols and all all other scopes (local scopes). So
412 we need to select the right one to pass to add_symbol_to_list().
413 We do it by keeping a pointer to the correct list in list_in_scope.
414
415 FIXME: The original dwarf code just treated the file scope as the
416 first local scope, and all other local scopes as nested local
417 scopes, and worked fine. Check to see if we really need to
418 distinguish these in buildsym.c. */
419 struct pending **list_in_scope;
420
421 /* The abbrev table for this CU.
422 Normally this points to the abbrev table in the objfile.
423 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
424 struct abbrev_table *abbrev_table;
425
426 /* Hash table holding all the loaded partial DIEs
427 with partial_die->offset.SECT_OFF as hash. */
428 htab_t partial_dies;
429
430 /* Storage for things with the same lifetime as this read-in compilation
431 unit, including partial DIEs. */
432 struct obstack comp_unit_obstack;
433
434 /* When multiple dwarf2_cu structures are living in memory, this field
435 chains them all together, so that they can be released efficiently.
436 We will probably also want a generation counter so that most-recently-used
437 compilation units are cached... */
438 struct dwarf2_per_cu_data *read_in_chain;
439
440 /* Backchain to our per_cu entry if the tree has been built. */
441 struct dwarf2_per_cu_data *per_cu;
442
443 /* How many compilation units ago was this CU last referenced? */
444 int last_used;
445
446 /* A hash table of DIE cu_offset for following references with
447 die_info->offset.sect_off as hash. */
448 htab_t die_hash;
449
450 /* Full DIEs if read in. */
451 struct die_info *dies;
452
453 /* A set of pointers to dwarf2_per_cu_data objects for compilation
454 units referenced by this one. Only set during full symbol processing;
455 partial symbol tables do not have dependencies. */
456 htab_t dependencies;
457
458 /* Header data from the line table, during full symbol processing. */
459 struct line_header *line_header;
460
461 /* A list of methods which need to have physnames computed
462 after all type information has been read. */
463 VEC (delayed_method_info) *method_list;
464
465 /* To be copied to symtab->call_site_htab. */
466 htab_t call_site_htab;
467
468 /* Non-NULL if this CU came from a DWO file.
469 There is an invariant here that is important to remember:
470 Except for attributes copied from the top level DIE in the "main"
471 (or "stub") file in preparation for reading the DWO file
472 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
473 Either there isn't a DWO file (in which case this is NULL and the point
474 is moot), or there is and either we're not going to read it (in which
475 case this is NULL) or there is and we are reading it (in which case this
476 is non-NULL). */
477 struct dwo_unit *dwo_unit;
478
479 /* The DW_AT_addr_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE. */
482 ULONGEST addr_base;
483
484 /* The DW_AT_ranges_base attribute if present, zero otherwise
485 (zero is a valid value though).
486 Note this value comes from the stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_ranges_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base;
495
496 /* Mark used when releasing cached dies. */
497 unsigned int mark : 1;
498
499 /* This CU references .debug_loc. See the symtab->locations_valid field.
500 This test is imperfect as there may exist optimized debug code not using
501 any location list and still facing inlining issues if handled as
502 unoptimized code. For a future better test see GCC PR other/32998. */
503 unsigned int has_loclist : 1;
504
505 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
506 if all the producer_is_* fields are valid. This information is cached
507 because profiling CU expansion showed excessive time spent in
508 producer_is_gxx_lt_4_6. */
509 unsigned int checked_producer : 1;
510 unsigned int producer_is_gxx_lt_4_6 : 1;
511 unsigned int producer_is_gcc_lt_4_3 : 1;
512 unsigned int producer_is_icc : 1;
513
514 /* When set, the file that we're processing is known to have
515 debugging info for C++ namespaces. GCC 3.3.x did not produce
516 this information, but later versions do. */
517
518 unsigned int processing_has_namespace_info : 1;
519 };
520
521 /* Persistent data held for a compilation unit, even when not
522 processing it. We put a pointer to this structure in the
523 read_symtab_private field of the psymtab. */
524
525 struct dwarf2_per_cu_data
526 {
527 /* The start offset and length of this compilation unit.
528 NOTE: Unlike comp_unit_head.length, this length includes
529 initial_length_size.
530 If the DIE refers to a DWO file, this is always of the original die,
531 not the DWO file. */
532 sect_offset offset;
533 unsigned int length;
534
535 /* Flag indicating this compilation unit will be read in before
536 any of the current compilation units are processed. */
537 unsigned int queued : 1;
538
539 /* This flag will be set when reading partial DIEs if we need to load
540 absolutely all DIEs for this compilation unit, instead of just the ones
541 we think are interesting. It gets set if we look for a DIE in the
542 hash table and don't find it. */
543 unsigned int load_all_dies : 1;
544
545 /* Non-zero if this CU is from .debug_types. */
546 unsigned int is_debug_types : 1;
547
548 /* Non-zero if this CU is from the .dwz file. */
549 unsigned int is_dwz : 1;
550
551 /* The section this CU/TU lives in.
552 If the DIE refers to a DWO file, this is always the original die,
553 not the DWO file. */
554 struct dwarf2_section_info *info_or_types_section;
555
556 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
557 of the CU cache it gets reset to NULL again. */
558 struct dwarf2_cu *cu;
559
560 /* The corresponding objfile.
561 Normally we can get the objfile from dwarf2_per_objfile.
562 However we can enter this file with just a "per_cu" handle. */
563 struct objfile *objfile;
564
565 /* When using partial symbol tables, the 'psymtab' field is active.
566 Otherwise the 'quick' field is active. */
567 union
568 {
569 /* The partial symbol table associated with this compilation unit,
570 or NULL for unread partial units. */
571 struct partial_symtab *psymtab;
572
573 /* Data needed by the "quick" functions. */
574 struct dwarf2_per_cu_quick_data *quick;
575 } v;
576
577 /* The CUs we import using DW_TAG_imported_unit. This is filled in
578 while reading psymtabs, used to compute the psymtab dependencies,
579 and then cleared. Then it is filled in again while reading full
580 symbols, and only deleted when the objfile is destroyed.
581
582 This is also used to work around a difference between the way gold
583 generates .gdb_index version <=7 and the way gdb does. Arguably this
584 is a gold bug. For symbols coming from TUs, gold records in the index
585 the CU that includes the TU instead of the TU itself. This breaks
586 dw2_lookup_symbol: It assumes that if the index says symbol X lives
587 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
588 will find X. Alas TUs live in their own symtab, so after expanding CU Y
589 we need to look in TU Z to find X. Fortunately, this is akin to
590 DW_TAG_imported_unit, so we just use the same mechanism: For
591 .gdb_index version <=7 this also records the TUs that the CU referred
592 to. Concurrently with this change gdb was modified to emit version 8
593 indices so we only pay a price for gold generated indices. */
594 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
595
596 /* Type units are grouped by their DW_AT_stmt_list entry so that they
597 can share them. If this is a TU, this points to the containing
598 symtab. */
599 struct type_unit_group *type_unit_group;
600 };
601
602 /* Entry in the signatured_types hash table. */
603
604 struct signatured_type
605 {
606 /* The "per_cu" object of this type.
607 N.B.: This is the first member so that it's easy to convert pointers
608 between them. */
609 struct dwarf2_per_cu_data per_cu;
610
611 /* The type's signature. */
612 ULONGEST signature;
613
614 /* Offset in the TU of the type's DIE, as read from the TU header.
615 If the definition lives in a DWO file, this value is unusable. */
616 cu_offset type_offset_in_tu;
617
618 /* Offset in the section of the type's DIE.
619 If the definition lives in a DWO file, this is the offset in the
620 .debug_types.dwo section.
621 The value is zero until the actual value is known.
622 Zero is otherwise not a valid section offset. */
623 sect_offset type_offset_in_section;
624 };
625
626 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
627 This includes type_unit_group and quick_file_names. */
628
629 struct stmt_list_hash
630 {
631 /* The DWO unit this table is from or NULL if there is none. */
632 struct dwo_unit *dwo_unit;
633
634 /* Offset in .debug_line or .debug_line.dwo. */
635 sect_offset line_offset;
636 };
637
638 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
639 an object of this type. */
640
641 struct type_unit_group
642 {
643 /* dwarf2read.c's main "handle" on the symtab.
644 To simplify things we create an artificial CU that "includes" all the
645 type units using this stmt_list so that the rest of the code still has
646 a "per_cu" handle on the symtab.
647 This PER_CU is recognized by having no section. */
648 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
649 struct dwarf2_per_cu_data per_cu;
650
651 union
652 {
653 /* The TUs that share this DW_AT_stmt_list entry.
654 This is added to while parsing type units to build partial symtabs,
655 and is deleted afterwards and not used again. */
656 VEC (dwarf2_per_cu_ptr) *tus;
657
658 /* When reading the line table in "quick" functions, we need a real TU.
659 Any will do, we know they all share the same DW_AT_stmt_list entry.
660 For simplicity's sake, we pick the first one. */
661 struct dwarf2_per_cu_data *first_tu;
662 } t;
663
664 /* The primary symtab.
665 Type units in a group needn't all be defined in the same source file,
666 so we create an essentially anonymous symtab as the primary symtab. */
667 struct symtab *primary_symtab;
668
669 /* The data used to construct the hash key. */
670 struct stmt_list_hash hash;
671
672 /* The number of symtabs from the line header.
673 The value here must match line_header.num_file_names. */
674 unsigned int num_symtabs;
675
676 /* The symbol tables for this TU (obtained from the files listed in
677 DW_AT_stmt_list).
678 WARNING: The order of entries here must match the order of entries
679 in the line header. After the first TU using this type_unit_group, the
680 line header for the subsequent TUs is recreated from this. This is done
681 because we need to use the same symtabs for each TU using the same
682 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
683 there's no guarantee the line header doesn't have duplicate entries. */
684 struct symtab **symtabs;
685 };
686
687 /* These sections are what may appear in a DWO file. */
688
689 struct dwo_sections
690 {
691 struct dwarf2_section_info abbrev;
692 struct dwarf2_section_info line;
693 struct dwarf2_section_info loc;
694 struct dwarf2_section_info macinfo;
695 struct dwarf2_section_info macro;
696 struct dwarf2_section_info str;
697 struct dwarf2_section_info str_offsets;
698 /* In the case of a virtual DWO file, these two are unused. */
699 struct dwarf2_section_info info;
700 VEC (dwarf2_section_info_def) *types;
701 };
702
703 /* Common bits of DWO CUs/TUs. */
704
705 struct dwo_unit
706 {
707 /* Backlink to the containing struct dwo_file. */
708 struct dwo_file *dwo_file;
709
710 /* The "id" that distinguishes this CU/TU.
711 .debug_info calls this "dwo_id", .debug_types calls this "signature".
712 Since signatures came first, we stick with it for consistency. */
713 ULONGEST signature;
714
715 /* The section this CU/TU lives in, in the DWO file. */
716 struct dwarf2_section_info *info_or_types_section;
717
718 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
719 sect_offset offset;
720 unsigned int length;
721
722 /* For types, offset in the type's DIE of the type defined by this TU. */
723 cu_offset type_offset_in_tu;
724 };
725
726 /* Data for one DWO file.
727 This includes virtual DWO files that have been packaged into a
728 DWP file. */
729
730 struct dwo_file
731 {
732 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
733 For virtual DWO files the name is constructed from the section offsets
734 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
735 from related CU+TUs. */
736 const char *name;
737
738 /* The bfd, when the file is open. Otherwise this is NULL.
739 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
740 bfd *dbfd;
741
742 /* Section info for this file. */
743 struct dwo_sections sections;
744
745 /* Table of CUs in the file.
746 Each element is a struct dwo_unit. */
747 htab_t cus;
748
749 /* Table of TUs in the file.
750 Each element is a struct dwo_unit. */
751 htab_t tus;
752 };
753
754 /* These sections are what may appear in a DWP file. */
755
756 struct dwp_sections
757 {
758 struct dwarf2_section_info str;
759 struct dwarf2_section_info cu_index;
760 struct dwarf2_section_info tu_index;
761 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
762 by section number. We don't need to record them here. */
763 };
764
765 /* These sections are what may appear in a virtual DWO file. */
766
767 struct virtual_dwo_sections
768 {
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.info_or_types_section. */
777 struct dwarf2_section_info info_or_types;
778 };
779
780 /* Contents of DWP hash tables. */
781
782 struct dwp_hash_table
783 {
784 uint32_t nr_units, nr_slots;
785 const gdb_byte *hash_table, *unit_table, *section_pool;
786 };
787
788 /* Data for one DWP file. */
789
790 struct dwp_file
791 {
792 /* Name of the file. */
793 const char *name;
794
795 /* The bfd, when the file is open. Otherwise this is NULL. */
796 bfd *dbfd;
797
798 /* Section info for this file. */
799 struct dwp_sections sections;
800
801 /* Table of CUs in the file. */
802 const struct dwp_hash_table *cus;
803
804 /* Table of TUs in the file. */
805 const struct dwp_hash_table *tus;
806
807 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
808 htab_t loaded_cutus;
809
810 /* Table to map ELF section numbers to their sections. */
811 unsigned int num_sections;
812 asection **elf_sections;
813 };
814
815 /* This represents a '.dwz' file. */
816
817 struct dwz_file
818 {
819 /* A dwz file can only contain a few sections. */
820 struct dwarf2_section_info abbrev;
821 struct dwarf2_section_info info;
822 struct dwarf2_section_info str;
823 struct dwarf2_section_info line;
824 struct dwarf2_section_info macro;
825 struct dwarf2_section_info gdb_index;
826
827 /* The dwz's BFD. */
828 bfd *dwz_bfd;
829 };
830
831 /* Struct used to pass misc. parameters to read_die_and_children, et
832 al. which are used for both .debug_info and .debug_types dies.
833 All parameters here are unchanging for the life of the call. This
834 struct exists to abstract away the constant parameters of die reading. */
835
836 struct die_reader_specs
837 {
838 /* die_section->asection->owner. */
839 bfd* abfd;
840
841 /* The CU of the DIE we are parsing. */
842 struct dwarf2_cu *cu;
843
844 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
845 struct dwo_file *dwo_file;
846
847 /* The section the die comes from.
848 This is either .debug_info or .debug_types, or the .dwo variants. */
849 struct dwarf2_section_info *die_section;
850
851 /* die_section->buffer. */
852 gdb_byte *buffer;
853
854 /* The end of the buffer. */
855 const gdb_byte *buffer_end;
856 };
857
858 /* Type of function passed to init_cutu_and_read_dies, et.al. */
859 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
860 gdb_byte *info_ptr,
861 struct die_info *comp_unit_die,
862 int has_children,
863 void *data);
864
865 /* The line number information for a compilation unit (found in the
866 .debug_line section) begins with a "statement program header",
867 which contains the following information. */
868 struct line_header
869 {
870 unsigned int total_length;
871 unsigned short version;
872 unsigned int header_length;
873 unsigned char minimum_instruction_length;
874 unsigned char maximum_ops_per_instruction;
875 unsigned char default_is_stmt;
876 int line_base;
877 unsigned char line_range;
878 unsigned char opcode_base;
879
880 /* standard_opcode_lengths[i] is the number of operands for the
881 standard opcode whose value is i. This means that
882 standard_opcode_lengths[0] is unused, and the last meaningful
883 element is standard_opcode_lengths[opcode_base - 1]. */
884 unsigned char *standard_opcode_lengths;
885
886 /* The include_directories table. NOTE! These strings are not
887 allocated with xmalloc; instead, they are pointers into
888 debug_line_buffer. If you try to free them, `free' will get
889 indigestion. */
890 unsigned int num_include_dirs, include_dirs_size;
891 char **include_dirs;
892
893 /* The file_names table. NOTE! These strings are not allocated
894 with xmalloc; instead, they are pointers into debug_line_buffer.
895 Don't try to free them directly. */
896 unsigned int num_file_names, file_names_size;
897 struct file_entry
898 {
899 char *name;
900 unsigned int dir_index;
901 unsigned int mod_time;
902 unsigned int length;
903 int included_p; /* Non-zero if referenced by the Line Number Program. */
904 struct symtab *symtab; /* The associated symbol table, if any. */
905 } *file_names;
906
907 /* The start and end of the statement program following this
908 header. These point into dwarf2_per_objfile->line_buffer. */
909 gdb_byte *statement_program_start, *statement_program_end;
910 };
911
912 /* When we construct a partial symbol table entry we only
913 need this much information. */
914 struct partial_die_info
915 {
916 /* Offset of this DIE. */
917 sect_offset offset;
918
919 /* DWARF-2 tag for this DIE. */
920 ENUM_BITFIELD(dwarf_tag) tag : 16;
921
922 /* Assorted flags describing the data found in this DIE. */
923 unsigned int has_children : 1;
924 unsigned int is_external : 1;
925 unsigned int is_declaration : 1;
926 unsigned int has_type : 1;
927 unsigned int has_specification : 1;
928 unsigned int has_pc_info : 1;
929 unsigned int may_be_inlined : 1;
930
931 /* Flag set if the SCOPE field of this structure has been
932 computed. */
933 unsigned int scope_set : 1;
934
935 /* Flag set if the DIE has a byte_size attribute. */
936 unsigned int has_byte_size : 1;
937
938 /* Flag set if any of the DIE's children are template arguments. */
939 unsigned int has_template_arguments : 1;
940
941 /* Flag set if fixup_partial_die has been called on this die. */
942 unsigned int fixup_called : 1;
943
944 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
945 unsigned int is_dwz : 1;
946
947 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
948 unsigned int spec_is_dwz : 1;
949
950 /* The name of this DIE. Normally the value of DW_AT_name, but
951 sometimes a default name for unnamed DIEs. */
952 const char *name;
953
954 /* The linkage name, if present. */
955 const char *linkage_name;
956
957 /* The scope to prepend to our children. This is generally
958 allocated on the comp_unit_obstack, so will disappear
959 when this compilation unit leaves the cache. */
960 const char *scope;
961
962 /* Some data associated with the partial DIE. The tag determines
963 which field is live. */
964 union
965 {
966 /* The location description associated with this DIE, if any. */
967 struct dwarf_block *locdesc;
968 /* The offset of an import, for DW_TAG_imported_unit. */
969 sect_offset offset;
970 } d;
971
972 /* If HAS_PC_INFO, the PC range associated with this DIE. */
973 CORE_ADDR lowpc;
974 CORE_ADDR highpc;
975
976 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
977 DW_AT_sibling, if any. */
978 /* NOTE: This member isn't strictly necessary, read_partial_die could
979 return DW_AT_sibling values to its caller load_partial_dies. */
980 gdb_byte *sibling;
981
982 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
983 DW_AT_specification (or DW_AT_abstract_origin or
984 DW_AT_extension). */
985 sect_offset spec_offset;
986
987 /* Pointers to this DIE's parent, first child, and next sibling,
988 if any. */
989 struct partial_die_info *die_parent, *die_child, *die_sibling;
990 };
991
992 /* This data structure holds the information of an abbrev. */
993 struct abbrev_info
994 {
995 unsigned int number; /* number identifying abbrev */
996 enum dwarf_tag tag; /* dwarf tag */
997 unsigned short has_children; /* boolean */
998 unsigned short num_attrs; /* number of attributes */
999 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1000 struct abbrev_info *next; /* next in chain */
1001 };
1002
1003 struct attr_abbrev
1004 {
1005 ENUM_BITFIELD(dwarf_attribute) name : 16;
1006 ENUM_BITFIELD(dwarf_form) form : 16;
1007 };
1008
1009 /* Size of abbrev_table.abbrev_hash_table. */
1010 #define ABBREV_HASH_SIZE 121
1011
1012 /* Top level data structure to contain an abbreviation table. */
1013
1014 struct abbrev_table
1015 {
1016 /* Where the abbrev table came from.
1017 This is used as a sanity check when the table is used. */
1018 sect_offset offset;
1019
1020 /* Storage for the abbrev table. */
1021 struct obstack abbrev_obstack;
1022
1023 /* Hash table of abbrevs.
1024 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1025 It could be statically allocated, but the previous code didn't so we
1026 don't either. */
1027 struct abbrev_info **abbrevs;
1028 };
1029
1030 /* Attributes have a name and a value. */
1031 struct attribute
1032 {
1033 ENUM_BITFIELD(dwarf_attribute) name : 16;
1034 ENUM_BITFIELD(dwarf_form) form : 15;
1035
1036 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1037 field should be in u.str (existing only for DW_STRING) but it is kept
1038 here for better struct attribute alignment. */
1039 unsigned int string_is_canonical : 1;
1040
1041 union
1042 {
1043 const char *str;
1044 struct dwarf_block *blk;
1045 ULONGEST unsnd;
1046 LONGEST snd;
1047 CORE_ADDR addr;
1048 struct signatured_type *signatured_type;
1049 }
1050 u;
1051 };
1052
1053 /* This data structure holds a complete die structure. */
1054 struct die_info
1055 {
1056 /* DWARF-2 tag for this DIE. */
1057 ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Number of attributes */
1060 unsigned char num_attrs;
1061
1062 /* True if we're presently building the full type name for the
1063 type derived from this DIE. */
1064 unsigned char building_fullname : 1;
1065
1066 /* Abbrev number */
1067 unsigned int abbrev;
1068
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset offset;
1071
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1079
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1084 };
1085
1086 /* Get at parts of an attribute structure. */
1087
1088 #define DW_STRING(attr) ((attr)->u.str)
1089 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1090 #define DW_UNSND(attr) ((attr)->u.unsnd)
1091 #define DW_BLOCK(attr) ((attr)->u.blk)
1092 #define DW_SND(attr) ((attr)->u.snd)
1093 #define DW_ADDR(attr) ((attr)->u.addr)
1094 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1095
1096 /* Blocks are a bunch of untyped bytes. */
1097 struct dwarf_block
1098 {
1099 size_t size;
1100
1101 /* Valid only if SIZE is not zero. */
1102 gdb_byte *data;
1103 };
1104
1105 #ifndef ATTR_ALLOC_CHUNK
1106 #define ATTR_ALLOC_CHUNK 4
1107 #endif
1108
1109 /* Allocate fields for structs, unions and enums in this size. */
1110 #ifndef DW_FIELD_ALLOC_CHUNK
1111 #define DW_FIELD_ALLOC_CHUNK 4
1112 #endif
1113
1114 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1115 but this would require a corresponding change in unpack_field_as_long
1116 and friends. */
1117 static int bits_per_byte = 8;
1118
1119 /* The routines that read and process dies for a C struct or C++ class
1120 pass lists of data member fields and lists of member function fields
1121 in an instance of a field_info structure, as defined below. */
1122 struct field_info
1123 {
1124 /* List of data member and baseclasses fields. */
1125 struct nextfield
1126 {
1127 struct nextfield *next;
1128 int accessibility;
1129 int virtuality;
1130 struct field field;
1131 }
1132 *fields, *baseclasses;
1133
1134 /* Number of fields (including baseclasses). */
1135 int nfields;
1136
1137 /* Number of baseclasses. */
1138 int nbaseclasses;
1139
1140 /* Set if the accesibility of one of the fields is not public. */
1141 int non_public_fields;
1142
1143 /* Member function fields array, entries are allocated in the order they
1144 are encountered in the object file. */
1145 struct nextfnfield
1146 {
1147 struct nextfnfield *next;
1148 struct fn_field fnfield;
1149 }
1150 *fnfields;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 struct fnfieldlist
1156 {
1157 const char *name;
1158 int length;
1159 struct nextfnfield *head;
1160 }
1161 *fnfieldlists;
1162
1163 /* Number of entries in the fnfieldlists array. */
1164 int nfnfields;
1165
1166 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1167 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1168 struct typedef_field_list
1169 {
1170 struct typedef_field field;
1171 struct typedef_field_list *next;
1172 }
1173 *typedef_field_list;
1174 unsigned typedef_field_list_count;
1175 };
1176
1177 /* One item on the queue of compilation units to read in full symbols
1178 for. */
1179 struct dwarf2_queue_item
1180 {
1181 struct dwarf2_per_cu_data *per_cu;
1182 enum language pretend_language;
1183 struct dwarf2_queue_item *next;
1184 };
1185
1186 /* The current queue. */
1187 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1188
1189 /* Loaded secondary compilation units are kept in memory until they
1190 have not been referenced for the processing of this many
1191 compilation units. Set this to zero to disable caching. Cache
1192 sizes of up to at least twenty will improve startup time for
1193 typical inter-CU-reference binaries, at an obvious memory cost. */
1194 static int dwarf2_max_cache_age = 5;
1195 static void
1196 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1197 struct cmd_list_element *c, const char *value)
1198 {
1199 fprintf_filtered (file, _("The upper bound on the age of cached "
1200 "dwarf2 compilation units is %s.\n"),
1201 value);
1202 }
1203
1204
1205 /* Various complaints about symbol reading that don't abort the process. */
1206
1207 static void
1208 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1209 {
1210 complaint (&symfile_complaints,
1211 _("statement list doesn't fit in .debug_line section"));
1212 }
1213
1214 static void
1215 dwarf2_debug_line_missing_file_complaint (void)
1216 {
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line data without a file"));
1219 }
1220
1221 static void
1222 dwarf2_debug_line_missing_end_sequence_complaint (void)
1223 {
1224 complaint (&symfile_complaints,
1225 _(".debug_line section has line "
1226 "program sequence without an end"));
1227 }
1228
1229 static void
1230 dwarf2_complex_location_expr_complaint (void)
1231 {
1232 complaint (&symfile_complaints, _("location expression too complex"));
1233 }
1234
1235 static void
1236 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1237 int arg3)
1238 {
1239 complaint (&symfile_complaints,
1240 _("const value length mismatch for '%s', got %d, expected %d"),
1241 arg1, arg2, arg3);
1242 }
1243
1244 static void
1245 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1246 {
1247 complaint (&symfile_complaints,
1248 _("debug info runs off end of %s section"
1249 " [in module %s]"),
1250 section->asection->name,
1251 bfd_get_filename (section->asection->owner));
1252 }
1253
1254 static void
1255 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1256 {
1257 complaint (&symfile_complaints,
1258 _("macro debug info contains a "
1259 "malformed macro definition:\n`%s'"),
1260 arg1);
1261 }
1262
1263 static void
1264 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1265 {
1266 complaint (&symfile_complaints,
1267 _("invalid attribute class or form for '%s' in '%s'"),
1268 arg1, arg2);
1269 }
1270
1271 /* local function prototypes */
1272
1273 static void dwarf2_locate_sections (bfd *, asection *, void *);
1274
1275 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1276 struct objfile *);
1277
1278 static void dwarf2_find_base_address (struct die_info *die,
1279 struct dwarf2_cu *cu);
1280
1281 static void dwarf2_build_psymtabs_hard (struct objfile *);
1282
1283 static void scan_partial_symbols (struct partial_die_info *,
1284 CORE_ADDR *, CORE_ADDR *,
1285 int, struct dwarf2_cu *);
1286
1287 static void add_partial_symbol (struct partial_die_info *,
1288 struct dwarf2_cu *);
1289
1290 static void add_partial_namespace (struct partial_die_info *pdi,
1291 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1292 int need_pc, struct dwarf2_cu *cu);
1293
1294 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1295 CORE_ADDR *highpc, int need_pc,
1296 struct dwarf2_cu *cu);
1297
1298 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1299 struct dwarf2_cu *cu);
1300
1301 static void add_partial_subprogram (struct partial_die_info *pdi,
1302 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1303 int need_pc, struct dwarf2_cu *cu);
1304
1305 static void dwarf2_read_symtab (struct partial_symtab *,
1306 struct objfile *);
1307
1308 static void psymtab_to_symtab_1 (struct partial_symtab *);
1309
1310 static struct abbrev_info *abbrev_table_lookup_abbrev
1311 (const struct abbrev_table *, unsigned int);
1312
1313 static struct abbrev_table *abbrev_table_read_table
1314 (struct dwarf2_section_info *, sect_offset);
1315
1316 static void abbrev_table_free (struct abbrev_table *);
1317
1318 static void abbrev_table_free_cleanup (void *);
1319
1320 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1321 struct dwarf2_section_info *);
1322
1323 static void dwarf2_free_abbrev_table (void *);
1324
1325 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1326
1327 static struct partial_die_info *load_partial_dies
1328 (const struct die_reader_specs *, gdb_byte *, int);
1329
1330 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1331 struct partial_die_info *,
1332 struct abbrev_info *,
1333 unsigned int,
1334 gdb_byte *);
1335
1336 static struct partial_die_info *find_partial_die (sect_offset, int,
1337 struct dwarf2_cu *);
1338
1339 static void fixup_partial_die (struct partial_die_info *,
1340 struct dwarf2_cu *);
1341
1342 static gdb_byte *read_attribute (const struct die_reader_specs *,
1343 struct attribute *, struct attr_abbrev *,
1344 gdb_byte *);
1345
1346 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1347
1348 static int read_1_signed_byte (bfd *, const gdb_byte *);
1349
1350 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1351
1352 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1353
1354 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1355
1356 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1357 unsigned int *);
1358
1359 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1360
1361 static LONGEST read_checked_initial_length_and_offset
1362 (bfd *, gdb_byte *, const struct comp_unit_head *,
1363 unsigned int *, unsigned int *);
1364
1365 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1366 unsigned int *);
1367
1368 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1369
1370 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1371 sect_offset);
1372
1373 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1374
1375 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1376
1377 static char *read_indirect_string (bfd *, gdb_byte *,
1378 const struct comp_unit_head *,
1379 unsigned int *);
1380
1381 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1382
1383 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1384
1385 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1386
1387 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1388 unsigned int *);
1389
1390 static char *read_str_index (const struct die_reader_specs *reader,
1391 struct dwarf2_cu *cu, ULONGEST str_index);
1392
1393 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1394
1395 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1396 struct dwarf2_cu *);
1397
1398 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1399 unsigned int);
1400
1401 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1402 struct dwarf2_cu *cu);
1403
1404 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1405
1406 static struct die_info *die_specification (struct die_info *die,
1407 struct dwarf2_cu **);
1408
1409 static void free_line_header (struct line_header *lh);
1410
1411 static void add_file_name (struct line_header *, char *, unsigned int,
1412 unsigned int, unsigned int);
1413
1414 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1415 struct dwarf2_cu *cu);
1416
1417 static void dwarf_decode_lines (struct line_header *, const char *,
1418 struct dwarf2_cu *, struct partial_symtab *,
1419 int);
1420
1421 static void dwarf2_start_subfile (char *, const char *, const char *);
1422
1423 static void dwarf2_start_symtab (struct dwarf2_cu *,
1424 const char *, const char *, CORE_ADDR);
1425
1426 static struct symbol *new_symbol (struct die_info *, struct type *,
1427 struct dwarf2_cu *);
1428
1429 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1430 struct dwarf2_cu *, struct symbol *);
1431
1432 static void dwarf2_const_value (struct attribute *, struct symbol *,
1433 struct dwarf2_cu *);
1434
1435 static void dwarf2_const_value_attr (struct attribute *attr,
1436 struct type *type,
1437 const char *name,
1438 struct obstack *obstack,
1439 struct dwarf2_cu *cu, LONGEST *value,
1440 gdb_byte **bytes,
1441 struct dwarf2_locexpr_baton **baton);
1442
1443 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1444
1445 static int need_gnat_info (struct dwarf2_cu *);
1446
1447 static struct type *die_descriptive_type (struct die_info *,
1448 struct dwarf2_cu *);
1449
1450 static void set_descriptive_type (struct type *, struct die_info *,
1451 struct dwarf2_cu *);
1452
1453 static struct type *die_containing_type (struct die_info *,
1454 struct dwarf2_cu *);
1455
1456 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1457 struct dwarf2_cu *);
1458
1459 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1460
1461 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1462
1463 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1464
1465 static char *typename_concat (struct obstack *obs, const char *prefix,
1466 const char *suffix, int physname,
1467 struct dwarf2_cu *cu);
1468
1469 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1470
1471 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1472
1473 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1474
1475 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1476
1477 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1478
1479 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1480 struct dwarf2_cu *, struct partial_symtab *);
1481
1482 static int dwarf2_get_pc_bounds (struct die_info *,
1483 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1484 struct partial_symtab *);
1485
1486 static void get_scope_pc_bounds (struct die_info *,
1487 CORE_ADDR *, CORE_ADDR *,
1488 struct dwarf2_cu *);
1489
1490 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1491 CORE_ADDR, struct dwarf2_cu *);
1492
1493 static void dwarf2_add_field (struct field_info *, struct die_info *,
1494 struct dwarf2_cu *);
1495
1496 static void dwarf2_attach_fields_to_type (struct field_info *,
1497 struct type *, struct dwarf2_cu *);
1498
1499 static void dwarf2_add_member_fn (struct field_info *,
1500 struct die_info *, struct type *,
1501 struct dwarf2_cu *);
1502
1503 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1504 struct type *,
1505 struct dwarf2_cu *);
1506
1507 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1508
1509 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1510
1511 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1512
1513 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1514
1515 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1516
1517 static struct type *read_module_type (struct die_info *die,
1518 struct dwarf2_cu *cu);
1519
1520 static const char *namespace_name (struct die_info *die,
1521 int *is_anonymous, struct dwarf2_cu *);
1522
1523 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1524
1525 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1526
1527 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1528 struct dwarf2_cu *);
1529
1530 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1531 gdb_byte *info_ptr,
1532 gdb_byte **new_info_ptr,
1533 struct die_info *parent);
1534
1535 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1536 gdb_byte *info_ptr,
1537 gdb_byte **new_info_ptr,
1538 struct die_info *parent);
1539
1540 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1541 struct die_info **, gdb_byte *, int *, int);
1542
1543 static gdb_byte *read_full_die (const struct die_reader_specs *,
1544 struct die_info **, gdb_byte *, int *);
1545
1546 static void process_die (struct die_info *, struct dwarf2_cu *);
1547
1548 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1549 struct obstack *);
1550
1551 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1552
1553 static const char *dwarf2_full_name (const char *name,
1554 struct die_info *die,
1555 struct dwarf2_cu *cu);
1556
1557 static struct die_info *dwarf2_extension (struct die_info *die,
1558 struct dwarf2_cu **);
1559
1560 static const char *dwarf_tag_name (unsigned int);
1561
1562 static const char *dwarf_attr_name (unsigned int);
1563
1564 static const char *dwarf_form_name (unsigned int);
1565
1566 static char *dwarf_bool_name (unsigned int);
1567
1568 static const char *dwarf_type_encoding_name (unsigned int);
1569
1570 static struct die_info *sibling_die (struct die_info *);
1571
1572 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1573
1574 static void dump_die_for_error (struct die_info *);
1575
1576 static void dump_die_1 (struct ui_file *, int level, int max_level,
1577 struct die_info *);
1578
1579 /*static*/ void dump_die (struct die_info *, int max_level);
1580
1581 static void store_in_ref_table (struct die_info *,
1582 struct dwarf2_cu *);
1583
1584 static int is_ref_attr (struct attribute *);
1585
1586 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1587
1588 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1589
1590 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1591 struct attribute *,
1592 struct dwarf2_cu **);
1593
1594 static struct die_info *follow_die_ref (struct die_info *,
1595 struct attribute *,
1596 struct dwarf2_cu **);
1597
1598 static struct die_info *follow_die_sig (struct die_info *,
1599 struct attribute *,
1600 struct dwarf2_cu **);
1601
1602 static struct signatured_type *lookup_signatured_type_at_offset
1603 (struct objfile *objfile,
1604 struct dwarf2_section_info *section, sect_offset offset);
1605
1606 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1607
1608 static void read_signatured_type (struct signatured_type *);
1609
1610 static struct type_unit_group *get_type_unit_group
1611 (struct dwarf2_cu *, struct attribute *);
1612
1613 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1614
1615 /* memory allocation interface */
1616
1617 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1618
1619 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1620
1621 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1622 const char *, int);
1623
1624 static int attr_form_is_block (struct attribute *);
1625
1626 static int attr_form_is_section_offset (struct attribute *);
1627
1628 static int attr_form_is_constant (struct attribute *);
1629
1630 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1631 struct dwarf2_loclist_baton *baton,
1632 struct attribute *attr);
1633
1634 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1635 struct symbol *sym,
1636 struct dwarf2_cu *cu,
1637 int is_block);
1638
1639 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1640 gdb_byte *info_ptr,
1641 struct abbrev_info *abbrev);
1642
1643 static void free_stack_comp_unit (void *);
1644
1645 static hashval_t partial_die_hash (const void *item);
1646
1647 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1648
1649 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1650 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1651
1652 static void init_one_comp_unit (struct dwarf2_cu *cu,
1653 struct dwarf2_per_cu_data *per_cu);
1654
1655 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1656 struct die_info *comp_unit_die,
1657 enum language pretend_language);
1658
1659 static void free_heap_comp_unit (void *);
1660
1661 static void free_cached_comp_units (void *);
1662
1663 static void age_cached_comp_units (void);
1664
1665 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1666
1667 static struct type *set_die_type (struct die_info *, struct type *,
1668 struct dwarf2_cu *);
1669
1670 static void create_all_comp_units (struct objfile *);
1671
1672 static int create_all_type_units (struct objfile *);
1673
1674 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1675 enum language);
1676
1677 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1678 enum language);
1679
1680 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1681 enum language);
1682
1683 static void dwarf2_add_dependence (struct dwarf2_cu *,
1684 struct dwarf2_per_cu_data *);
1685
1686 static void dwarf2_mark (struct dwarf2_cu *);
1687
1688 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1689
1690 static struct type *get_die_type_at_offset (sect_offset,
1691 struct dwarf2_per_cu_data *per_cu);
1692
1693 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1694
1695 static void dwarf2_release_queue (void *dummy);
1696
1697 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1698 enum language pretend_language);
1699
1700 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1701 struct dwarf2_per_cu_data *per_cu,
1702 enum language pretend_language);
1703
1704 static void process_queue (void);
1705
1706 static void find_file_and_directory (struct die_info *die,
1707 struct dwarf2_cu *cu,
1708 const char **name, const char **comp_dir);
1709
1710 static char *file_full_name (int file, struct line_header *lh,
1711 const char *comp_dir);
1712
1713 static gdb_byte *read_and_check_comp_unit_head
1714 (struct comp_unit_head *header,
1715 struct dwarf2_section_info *section,
1716 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1717 int is_debug_types_section);
1718
1719 static void init_cutu_and_read_dies
1720 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1721 int use_existing_cu, int keep,
1722 die_reader_func_ftype *die_reader_func, void *data);
1723
1724 static void init_cutu_and_read_dies_simple
1725 (struct dwarf2_per_cu_data *this_cu,
1726 die_reader_func_ftype *die_reader_func, void *data);
1727
1728 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1729
1730 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1731
1732 static struct dwo_unit *lookup_dwo_comp_unit
1733 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1734
1735 static struct dwo_unit *lookup_dwo_type_unit
1736 (struct signatured_type *, const char *, const char *);
1737
1738 static void free_dwo_file_cleanup (void *);
1739
1740 static void process_cu_includes (void);
1741
1742 static void check_producer (struct dwarf2_cu *cu);
1743
1744 #if WORDS_BIGENDIAN
1745
1746 /* Convert VALUE between big- and little-endian. */
1747 static offset_type
1748 byte_swap (offset_type value)
1749 {
1750 offset_type result;
1751
1752 result = (value & 0xff) << 24;
1753 result |= (value & 0xff00) << 8;
1754 result |= (value & 0xff0000) >> 8;
1755 result |= (value & 0xff000000) >> 24;
1756 return result;
1757 }
1758
1759 #define MAYBE_SWAP(V) byte_swap (V)
1760
1761 #else
1762 #define MAYBE_SWAP(V) (V)
1763 #endif /* WORDS_BIGENDIAN */
1764
1765 /* The suffix for an index file. */
1766 #define INDEX_SUFFIX ".gdb-index"
1767
1768 static const char *dwarf2_physname (const char *name, struct die_info *die,
1769 struct dwarf2_cu *cu);
1770
1771 /* Try to locate the sections we need for DWARF 2 debugging
1772 information and return true if we have enough to do something.
1773 NAMES points to the dwarf2 section names, or is NULL if the standard
1774 ELF names are used. */
1775
1776 int
1777 dwarf2_has_info (struct objfile *objfile,
1778 const struct dwarf2_debug_sections *names)
1779 {
1780 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1781 if (!dwarf2_per_objfile)
1782 {
1783 /* Initialize per-objfile state. */
1784 struct dwarf2_per_objfile *data
1785 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1786
1787 memset (data, 0, sizeof (*data));
1788 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1789 dwarf2_per_objfile = data;
1790
1791 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1792 (void *) names);
1793 dwarf2_per_objfile->objfile = objfile;
1794 }
1795 return (dwarf2_per_objfile->info.asection != NULL
1796 && dwarf2_per_objfile->abbrev.asection != NULL);
1797 }
1798
1799 /* When loading sections, we look either for uncompressed section or for
1800 compressed section names. */
1801
1802 static int
1803 section_is_p (const char *section_name,
1804 const struct dwarf2_section_names *names)
1805 {
1806 if (names->normal != NULL
1807 && strcmp (section_name, names->normal) == 0)
1808 return 1;
1809 if (names->compressed != NULL
1810 && strcmp (section_name, names->compressed) == 0)
1811 return 1;
1812 return 0;
1813 }
1814
1815 /* This function is mapped across the sections and remembers the
1816 offset and size of each of the debugging sections we are interested
1817 in. */
1818
1819 static void
1820 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1821 {
1822 const struct dwarf2_debug_sections *names;
1823 flagword aflag = bfd_get_section_flags (abfd, sectp);
1824
1825 if (vnames == NULL)
1826 names = &dwarf2_elf_names;
1827 else
1828 names = (const struct dwarf2_debug_sections *) vnames;
1829
1830 if ((aflag & SEC_HAS_CONTENTS) == 0)
1831 {
1832 }
1833 else if (section_is_p (sectp->name, &names->info))
1834 {
1835 dwarf2_per_objfile->info.asection = sectp;
1836 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1837 }
1838 else if (section_is_p (sectp->name, &names->abbrev))
1839 {
1840 dwarf2_per_objfile->abbrev.asection = sectp;
1841 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1842 }
1843 else if (section_is_p (sectp->name, &names->line))
1844 {
1845 dwarf2_per_objfile->line.asection = sectp;
1846 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1847 }
1848 else if (section_is_p (sectp->name, &names->loc))
1849 {
1850 dwarf2_per_objfile->loc.asection = sectp;
1851 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1852 }
1853 else if (section_is_p (sectp->name, &names->macinfo))
1854 {
1855 dwarf2_per_objfile->macinfo.asection = sectp;
1856 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1857 }
1858 else if (section_is_p (sectp->name, &names->macro))
1859 {
1860 dwarf2_per_objfile->macro.asection = sectp;
1861 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1862 }
1863 else if (section_is_p (sectp->name, &names->str))
1864 {
1865 dwarf2_per_objfile->str.asection = sectp;
1866 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1867 }
1868 else if (section_is_p (sectp->name, &names->addr))
1869 {
1870 dwarf2_per_objfile->addr.asection = sectp;
1871 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1872 }
1873 else if (section_is_p (sectp->name, &names->frame))
1874 {
1875 dwarf2_per_objfile->frame.asection = sectp;
1876 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1877 }
1878 else if (section_is_p (sectp->name, &names->eh_frame))
1879 {
1880 dwarf2_per_objfile->eh_frame.asection = sectp;
1881 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1882 }
1883 else if (section_is_p (sectp->name, &names->ranges))
1884 {
1885 dwarf2_per_objfile->ranges.asection = sectp;
1886 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names->types))
1889 {
1890 struct dwarf2_section_info type_section;
1891
1892 memset (&type_section, 0, sizeof (type_section));
1893 type_section.asection = sectp;
1894 type_section.size = bfd_get_section_size (sectp);
1895
1896 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1897 &type_section);
1898 }
1899 else if (section_is_p (sectp->name, &names->gdb_index))
1900 {
1901 dwarf2_per_objfile->gdb_index.asection = sectp;
1902 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1903 }
1904
1905 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1906 && bfd_section_vma (abfd, sectp) == 0)
1907 dwarf2_per_objfile->has_section_at_zero = 1;
1908 }
1909
1910 /* A helper function that decides whether a section is empty,
1911 or not present. */
1912
1913 static int
1914 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1915 {
1916 return info->asection == NULL || info->size == 0;
1917 }
1918
1919 /* Read the contents of the section INFO.
1920 OBJFILE is the main object file, but not necessarily the file where
1921 the section comes from. E.g., for DWO files INFO->asection->owner
1922 is the bfd of the DWO file.
1923 If the section is compressed, uncompress it before returning. */
1924
1925 static void
1926 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1927 {
1928 asection *sectp = info->asection;
1929 bfd *abfd;
1930 gdb_byte *buf, *retbuf;
1931 unsigned char header[4];
1932
1933 if (info->readin)
1934 return;
1935 info->buffer = NULL;
1936 info->readin = 1;
1937
1938 if (dwarf2_section_empty_p (info))
1939 return;
1940
1941 abfd = sectp->owner;
1942
1943 /* If the section has relocations, we must read it ourselves.
1944 Otherwise we attach it to the BFD. */
1945 if ((sectp->flags & SEC_RELOC) == 0)
1946 {
1947 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1948
1949 /* We have to cast away const here for historical reasons.
1950 Fixing dwarf2read to be const-correct would be quite nice. */
1951 info->buffer = (gdb_byte *) bytes;
1952 return;
1953 }
1954
1955 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1956 info->buffer = buf;
1957
1958 /* When debugging .o files, we may need to apply relocations; see
1959 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1960 We never compress sections in .o files, so we only need to
1961 try this when the section is not compressed. */
1962 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1963 if (retbuf != NULL)
1964 {
1965 info->buffer = retbuf;
1966 return;
1967 }
1968
1969 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1970 || bfd_bread (buf, info->size, abfd) != info->size)
1971 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1972 bfd_get_filename (abfd));
1973 }
1974
1975 /* A helper function that returns the size of a section in a safe way.
1976 If you are positive that the section has been read before using the
1977 size, then it is safe to refer to the dwarf2_section_info object's
1978 "size" field directly. In other cases, you must call this
1979 function, because for compressed sections the size field is not set
1980 correctly until the section has been read. */
1981
1982 static bfd_size_type
1983 dwarf2_section_size (struct objfile *objfile,
1984 struct dwarf2_section_info *info)
1985 {
1986 if (!info->readin)
1987 dwarf2_read_section (objfile, info);
1988 return info->size;
1989 }
1990
1991 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1992 SECTION_NAME. */
1993
1994 void
1995 dwarf2_get_section_info (struct objfile *objfile,
1996 enum dwarf2_section_enum sect,
1997 asection **sectp, gdb_byte **bufp,
1998 bfd_size_type *sizep)
1999 {
2000 struct dwarf2_per_objfile *data
2001 = objfile_data (objfile, dwarf2_objfile_data_key);
2002 struct dwarf2_section_info *info;
2003
2004 /* We may see an objfile without any DWARF, in which case we just
2005 return nothing. */
2006 if (data == NULL)
2007 {
2008 *sectp = NULL;
2009 *bufp = NULL;
2010 *sizep = 0;
2011 return;
2012 }
2013 switch (sect)
2014 {
2015 case DWARF2_DEBUG_FRAME:
2016 info = &data->frame;
2017 break;
2018 case DWARF2_EH_FRAME:
2019 info = &data->eh_frame;
2020 break;
2021 default:
2022 gdb_assert_not_reached ("unexpected section");
2023 }
2024
2025 dwarf2_read_section (objfile, info);
2026
2027 *sectp = info->asection;
2028 *bufp = info->buffer;
2029 *sizep = info->size;
2030 }
2031
2032 /* A helper function to find the sections for a .dwz file. */
2033
2034 static void
2035 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2036 {
2037 struct dwz_file *dwz_file = arg;
2038
2039 /* Note that we only support the standard ELF names, because .dwz
2040 is ELF-only (at the time of writing). */
2041 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2042 {
2043 dwz_file->abbrev.asection = sectp;
2044 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2045 }
2046 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2047 {
2048 dwz_file->info.asection = sectp;
2049 dwz_file->info.size = bfd_get_section_size (sectp);
2050 }
2051 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2052 {
2053 dwz_file->str.asection = sectp;
2054 dwz_file->str.size = bfd_get_section_size (sectp);
2055 }
2056 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2057 {
2058 dwz_file->line.asection = sectp;
2059 dwz_file->line.size = bfd_get_section_size (sectp);
2060 }
2061 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2062 {
2063 dwz_file->macro.asection = sectp;
2064 dwz_file->macro.size = bfd_get_section_size (sectp);
2065 }
2066 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2067 {
2068 dwz_file->gdb_index.asection = sectp;
2069 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2070 }
2071 }
2072
2073 /* Open the separate '.dwz' debug file, if needed. Error if the file
2074 cannot be found. */
2075
2076 static struct dwz_file *
2077 dwarf2_get_dwz_file (void)
2078 {
2079 bfd *abfd, *dwz_bfd;
2080 asection *section;
2081 gdb_byte *data;
2082 struct cleanup *cleanup;
2083 const char *filename;
2084 struct dwz_file *result;
2085
2086 if (dwarf2_per_objfile->dwz_file != NULL)
2087 return dwarf2_per_objfile->dwz_file;
2088
2089 abfd = dwarf2_per_objfile->objfile->obfd;
2090 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2091 if (section == NULL)
2092 error (_("could not find '.gnu_debugaltlink' section"));
2093 if (!bfd_malloc_and_get_section (abfd, section, &data))
2094 error (_("could not read '.gnu_debugaltlink' section: %s"),
2095 bfd_errmsg (bfd_get_error ()));
2096 cleanup = make_cleanup (xfree, data);
2097
2098 filename = data;
2099 if (!IS_ABSOLUTE_PATH (filename))
2100 {
2101 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2102 char *rel;
2103
2104 make_cleanup (xfree, abs);
2105 abs = ldirname (abs);
2106 make_cleanup (xfree, abs);
2107
2108 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2109 make_cleanup (xfree, rel);
2110 filename = rel;
2111 }
2112
2113 /* The format is just a NUL-terminated file name, followed by the
2114 build-id. For now, though, we ignore the build-id. */
2115 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2116 if (dwz_bfd == NULL)
2117 error (_("could not read '%s': %s"), filename,
2118 bfd_errmsg (bfd_get_error ()));
2119
2120 if (!bfd_check_format (dwz_bfd, bfd_object))
2121 {
2122 gdb_bfd_unref (dwz_bfd);
2123 error (_("file '%s' was not usable: %s"), filename,
2124 bfd_errmsg (bfd_get_error ()));
2125 }
2126
2127 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2128 struct dwz_file);
2129 result->dwz_bfd = dwz_bfd;
2130
2131 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2132
2133 do_cleanups (cleanup);
2134
2135 dwarf2_per_objfile->dwz_file = result;
2136 return result;
2137 }
2138 \f
2139 /* DWARF quick_symbols_functions support. */
2140
2141 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2142 unique line tables, so we maintain a separate table of all .debug_line
2143 derived entries to support the sharing.
2144 All the quick functions need is the list of file names. We discard the
2145 line_header when we're done and don't need to record it here. */
2146 struct quick_file_names
2147 {
2148 /* The data used to construct the hash key. */
2149 struct stmt_list_hash hash;
2150
2151 /* The number of entries in file_names, real_names. */
2152 unsigned int num_file_names;
2153
2154 /* The file names from the line table, after being run through
2155 file_full_name. */
2156 const char **file_names;
2157
2158 /* The file names from the line table after being run through
2159 gdb_realpath. These are computed lazily. */
2160 const char **real_names;
2161 };
2162
2163 /* When using the index (and thus not using psymtabs), each CU has an
2164 object of this type. This is used to hold information needed by
2165 the various "quick" methods. */
2166 struct dwarf2_per_cu_quick_data
2167 {
2168 /* The file table. This can be NULL if there was no file table
2169 or it's currently not read in.
2170 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2171 struct quick_file_names *file_names;
2172
2173 /* The corresponding symbol table. This is NULL if symbols for this
2174 CU have not yet been read. */
2175 struct symtab *symtab;
2176
2177 /* A temporary mark bit used when iterating over all CUs in
2178 expand_symtabs_matching. */
2179 unsigned int mark : 1;
2180
2181 /* True if we've tried to read the file table and found there isn't one.
2182 There will be no point in trying to read it again next time. */
2183 unsigned int no_file_data : 1;
2184 };
2185
2186 /* Utility hash function for a stmt_list_hash. */
2187
2188 static hashval_t
2189 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2190 {
2191 hashval_t v = 0;
2192
2193 if (stmt_list_hash->dwo_unit != NULL)
2194 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2195 v += stmt_list_hash->line_offset.sect_off;
2196 return v;
2197 }
2198
2199 /* Utility equality function for a stmt_list_hash. */
2200
2201 static int
2202 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2203 const struct stmt_list_hash *rhs)
2204 {
2205 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2206 return 0;
2207 if (lhs->dwo_unit != NULL
2208 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2209 return 0;
2210
2211 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2212 }
2213
2214 /* Hash function for a quick_file_names. */
2215
2216 static hashval_t
2217 hash_file_name_entry (const void *e)
2218 {
2219 const struct quick_file_names *file_data = e;
2220
2221 return hash_stmt_list_entry (&file_data->hash);
2222 }
2223
2224 /* Equality function for a quick_file_names. */
2225
2226 static int
2227 eq_file_name_entry (const void *a, const void *b)
2228 {
2229 const struct quick_file_names *ea = a;
2230 const struct quick_file_names *eb = b;
2231
2232 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2233 }
2234
2235 /* Delete function for a quick_file_names. */
2236
2237 static void
2238 delete_file_name_entry (void *e)
2239 {
2240 struct quick_file_names *file_data = e;
2241 int i;
2242
2243 for (i = 0; i < file_data->num_file_names; ++i)
2244 {
2245 xfree ((void*) file_data->file_names[i]);
2246 if (file_data->real_names)
2247 xfree ((void*) file_data->real_names[i]);
2248 }
2249
2250 /* The space for the struct itself lives on objfile_obstack,
2251 so we don't free it here. */
2252 }
2253
2254 /* Create a quick_file_names hash table. */
2255
2256 static htab_t
2257 create_quick_file_names_table (unsigned int nr_initial_entries)
2258 {
2259 return htab_create_alloc (nr_initial_entries,
2260 hash_file_name_entry, eq_file_name_entry,
2261 delete_file_name_entry, xcalloc, xfree);
2262 }
2263
2264 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2265 have to be created afterwards. You should call age_cached_comp_units after
2266 processing PER_CU->CU. dw2_setup must have been already called. */
2267
2268 static void
2269 load_cu (struct dwarf2_per_cu_data *per_cu)
2270 {
2271 if (per_cu->is_debug_types)
2272 load_full_type_unit (per_cu);
2273 else
2274 load_full_comp_unit (per_cu, language_minimal);
2275
2276 gdb_assert (per_cu->cu != NULL);
2277
2278 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2279 }
2280
2281 /* Read in the symbols for PER_CU. */
2282
2283 static void
2284 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2285 {
2286 struct cleanup *back_to;
2287
2288 /* Skip type_unit_groups, reading the type units they contain
2289 is handled elsewhere. */
2290 if (IS_TYPE_UNIT_GROUP (per_cu))
2291 return;
2292
2293 back_to = make_cleanup (dwarf2_release_queue, NULL);
2294
2295 if (dwarf2_per_objfile->using_index
2296 ? per_cu->v.quick->symtab == NULL
2297 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2298 {
2299 queue_comp_unit (per_cu, language_minimal);
2300 load_cu (per_cu);
2301 }
2302
2303 process_queue ();
2304
2305 /* Age the cache, releasing compilation units that have not
2306 been used recently. */
2307 age_cached_comp_units ();
2308
2309 do_cleanups (back_to);
2310 }
2311
2312 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2313 the objfile from which this CU came. Returns the resulting symbol
2314 table. */
2315
2316 static struct symtab *
2317 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2318 {
2319 gdb_assert (dwarf2_per_objfile->using_index);
2320 if (!per_cu->v.quick->symtab)
2321 {
2322 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2323 increment_reading_symtab ();
2324 dw2_do_instantiate_symtab (per_cu);
2325 process_cu_includes ();
2326 do_cleanups (back_to);
2327 }
2328 return per_cu->v.quick->symtab;
2329 }
2330
2331 /* Return the CU given its index.
2332
2333 This is intended for loops like:
2334
2335 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2336 + dwarf2_per_objfile->n_type_units); ++i)
2337 {
2338 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2339
2340 ...;
2341 }
2342 */
2343
2344 static struct dwarf2_per_cu_data *
2345 dw2_get_cu (int index)
2346 {
2347 if (index >= dwarf2_per_objfile->n_comp_units)
2348 {
2349 index -= dwarf2_per_objfile->n_comp_units;
2350 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2351 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2352 }
2353
2354 return dwarf2_per_objfile->all_comp_units[index];
2355 }
2356
2357 /* Return the primary CU given its index.
2358 The difference between this function and dw2_get_cu is in the handling
2359 of type units (TUs). Here we return the type_unit_group object.
2360
2361 This is intended for loops like:
2362
2363 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2364 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2365 {
2366 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2367
2368 ...;
2369 }
2370 */
2371
2372 static struct dwarf2_per_cu_data *
2373 dw2_get_primary_cu (int index)
2374 {
2375 if (index >= dwarf2_per_objfile->n_comp_units)
2376 {
2377 index -= dwarf2_per_objfile->n_comp_units;
2378 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2379 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2380 }
2381
2382 return dwarf2_per_objfile->all_comp_units[index];
2383 }
2384
2385 /* A helper for create_cus_from_index that handles a given list of
2386 CUs. */
2387
2388 static void
2389 create_cus_from_index_list (struct objfile *objfile,
2390 const gdb_byte *cu_list, offset_type n_elements,
2391 struct dwarf2_section_info *section,
2392 int is_dwz,
2393 int base_offset)
2394 {
2395 offset_type i;
2396
2397 for (i = 0; i < n_elements; i += 2)
2398 {
2399 struct dwarf2_per_cu_data *the_cu;
2400 ULONGEST offset, length;
2401
2402 gdb_static_assert (sizeof (ULONGEST) >= 8);
2403 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2404 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2405 cu_list += 2 * 8;
2406
2407 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2408 struct dwarf2_per_cu_data);
2409 the_cu->offset.sect_off = offset;
2410 the_cu->length = length;
2411 the_cu->objfile = objfile;
2412 the_cu->info_or_types_section = section;
2413 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2414 struct dwarf2_per_cu_quick_data);
2415 the_cu->is_dwz = is_dwz;
2416 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2417 }
2418 }
2419
2420 /* Read the CU list from the mapped index, and use it to create all
2421 the CU objects for this objfile. */
2422
2423 static void
2424 create_cus_from_index (struct objfile *objfile,
2425 const gdb_byte *cu_list, offset_type cu_list_elements,
2426 const gdb_byte *dwz_list, offset_type dwz_elements)
2427 {
2428 struct dwz_file *dwz;
2429
2430 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2431 dwarf2_per_objfile->all_comp_units
2432 = obstack_alloc (&objfile->objfile_obstack,
2433 dwarf2_per_objfile->n_comp_units
2434 * sizeof (struct dwarf2_per_cu_data *));
2435
2436 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2437 &dwarf2_per_objfile->info, 0, 0);
2438
2439 if (dwz_elements == 0)
2440 return;
2441
2442 dwz = dwarf2_get_dwz_file ();
2443 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2444 cu_list_elements / 2);
2445 }
2446
2447 /* Create the signatured type hash table from the index. */
2448
2449 static void
2450 create_signatured_type_table_from_index (struct objfile *objfile,
2451 struct dwarf2_section_info *section,
2452 const gdb_byte *bytes,
2453 offset_type elements)
2454 {
2455 offset_type i;
2456 htab_t sig_types_hash;
2457
2458 dwarf2_per_objfile->n_type_units = elements / 3;
2459 dwarf2_per_objfile->all_type_units
2460 = obstack_alloc (&objfile->objfile_obstack,
2461 dwarf2_per_objfile->n_type_units
2462 * sizeof (struct signatured_type *));
2463
2464 sig_types_hash = allocate_signatured_type_table (objfile);
2465
2466 for (i = 0; i < elements; i += 3)
2467 {
2468 struct signatured_type *sig_type;
2469 ULONGEST offset, type_offset_in_tu, signature;
2470 void **slot;
2471
2472 gdb_static_assert (sizeof (ULONGEST) >= 8);
2473 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2474 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2475 BFD_ENDIAN_LITTLE);
2476 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2477 bytes += 3 * 8;
2478
2479 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2480 struct signatured_type);
2481 sig_type->signature = signature;
2482 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2483 sig_type->per_cu.is_debug_types = 1;
2484 sig_type->per_cu.info_or_types_section = section;
2485 sig_type->per_cu.offset.sect_off = offset;
2486 sig_type->per_cu.objfile = objfile;
2487 sig_type->per_cu.v.quick
2488 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2489 struct dwarf2_per_cu_quick_data);
2490
2491 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2492 *slot = sig_type;
2493
2494 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2495 }
2496
2497 dwarf2_per_objfile->signatured_types = sig_types_hash;
2498 }
2499
2500 /* Read the address map data from the mapped index, and use it to
2501 populate the objfile's psymtabs_addrmap. */
2502
2503 static void
2504 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2505 {
2506 const gdb_byte *iter, *end;
2507 struct obstack temp_obstack;
2508 struct addrmap *mutable_map;
2509 struct cleanup *cleanup;
2510 CORE_ADDR baseaddr;
2511
2512 obstack_init (&temp_obstack);
2513 cleanup = make_cleanup_obstack_free (&temp_obstack);
2514 mutable_map = addrmap_create_mutable (&temp_obstack);
2515
2516 iter = index->address_table;
2517 end = iter + index->address_table_size;
2518
2519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2520
2521 while (iter < end)
2522 {
2523 ULONGEST hi, lo, cu_index;
2524 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2525 iter += 8;
2526 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2527 iter += 8;
2528 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2529 iter += 4;
2530
2531 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2532 dw2_get_cu (cu_index));
2533 }
2534
2535 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2536 &objfile->objfile_obstack);
2537 do_cleanups (cleanup);
2538 }
2539
2540 /* The hash function for strings in the mapped index. This is the same as
2541 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2542 implementation. This is necessary because the hash function is tied to the
2543 format of the mapped index file. The hash values do not have to match with
2544 SYMBOL_HASH_NEXT.
2545
2546 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2547
2548 static hashval_t
2549 mapped_index_string_hash (int index_version, const void *p)
2550 {
2551 const unsigned char *str = (const unsigned char *) p;
2552 hashval_t r = 0;
2553 unsigned char c;
2554
2555 while ((c = *str++) != 0)
2556 {
2557 if (index_version >= 5)
2558 c = tolower (c);
2559 r = r * 67 + c - 113;
2560 }
2561
2562 return r;
2563 }
2564
2565 /* Find a slot in the mapped index INDEX for the object named NAME.
2566 If NAME is found, set *VEC_OUT to point to the CU vector in the
2567 constant pool and return 1. If NAME cannot be found, return 0. */
2568
2569 static int
2570 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2571 offset_type **vec_out)
2572 {
2573 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2574 offset_type hash;
2575 offset_type slot, step;
2576 int (*cmp) (const char *, const char *);
2577
2578 if (current_language->la_language == language_cplus
2579 || current_language->la_language == language_java
2580 || current_language->la_language == language_fortran)
2581 {
2582 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2583 not contain any. */
2584 const char *paren = strchr (name, '(');
2585
2586 if (paren)
2587 {
2588 char *dup;
2589
2590 dup = xmalloc (paren - name + 1);
2591 memcpy (dup, name, paren - name);
2592 dup[paren - name] = 0;
2593
2594 make_cleanup (xfree, dup);
2595 name = dup;
2596 }
2597 }
2598
2599 /* Index version 4 did not support case insensitive searches. But the
2600 indices for case insensitive languages are built in lowercase, therefore
2601 simulate our NAME being searched is also lowercased. */
2602 hash = mapped_index_string_hash ((index->version == 4
2603 && case_sensitivity == case_sensitive_off
2604 ? 5 : index->version),
2605 name);
2606
2607 slot = hash & (index->symbol_table_slots - 1);
2608 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2609 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2610
2611 for (;;)
2612 {
2613 /* Convert a slot number to an offset into the table. */
2614 offset_type i = 2 * slot;
2615 const char *str;
2616 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2617 {
2618 do_cleanups (back_to);
2619 return 0;
2620 }
2621
2622 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2623 if (!cmp (name, str))
2624 {
2625 *vec_out = (offset_type *) (index->constant_pool
2626 + MAYBE_SWAP (index->symbol_table[i + 1]));
2627 do_cleanups (back_to);
2628 return 1;
2629 }
2630
2631 slot = (slot + step) & (index->symbol_table_slots - 1);
2632 }
2633 }
2634
2635 /* A helper function that reads the .gdb_index from SECTION and fills
2636 in MAP. FILENAME is the name of the file containing the section;
2637 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2638 ok to use deprecated sections.
2639
2640 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2641 out parameters that are filled in with information about the CU and
2642 TU lists in the section.
2643
2644 Returns 1 if all went well, 0 otherwise. */
2645
2646 static int
2647 read_index_from_section (struct objfile *objfile,
2648 const char *filename,
2649 int deprecated_ok,
2650 struct dwarf2_section_info *section,
2651 struct mapped_index *map,
2652 const gdb_byte **cu_list,
2653 offset_type *cu_list_elements,
2654 const gdb_byte **types_list,
2655 offset_type *types_list_elements)
2656 {
2657 char *addr;
2658 offset_type version;
2659 offset_type *metadata;
2660 int i;
2661
2662 if (dwarf2_section_empty_p (section))
2663 return 0;
2664
2665 /* Older elfutils strip versions could keep the section in the main
2666 executable while splitting it for the separate debug info file. */
2667 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2668 return 0;
2669
2670 dwarf2_read_section (objfile, section);
2671
2672 addr = section->buffer;
2673 /* Version check. */
2674 version = MAYBE_SWAP (*(offset_type *) addr);
2675 /* Versions earlier than 3 emitted every copy of a psymbol. This
2676 causes the index to behave very poorly for certain requests. Version 3
2677 contained incomplete addrmap. So, it seems better to just ignore such
2678 indices. */
2679 if (version < 4)
2680 {
2681 static int warning_printed = 0;
2682 if (!warning_printed)
2683 {
2684 warning (_("Skipping obsolete .gdb_index section in %s."),
2685 filename);
2686 warning_printed = 1;
2687 }
2688 return 0;
2689 }
2690 /* Index version 4 uses a different hash function than index version
2691 5 and later.
2692
2693 Versions earlier than 6 did not emit psymbols for inlined
2694 functions. Using these files will cause GDB not to be able to
2695 set breakpoints on inlined functions by name, so we ignore these
2696 indices unless the user has done
2697 "set use-deprecated-index-sections on". */
2698 if (version < 6 && !deprecated_ok)
2699 {
2700 static int warning_printed = 0;
2701 if (!warning_printed)
2702 {
2703 warning (_("\
2704 Skipping deprecated .gdb_index section in %s.\n\
2705 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2706 to use the section anyway."),
2707 filename);
2708 warning_printed = 1;
2709 }
2710 return 0;
2711 }
2712 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2713 of the TU (for symbols coming from TUs). It's just a performance bug, and
2714 we can't distinguish gdb-generated indices from gold-generated ones, so
2715 nothing to do here. */
2716
2717 /* Indexes with higher version than the one supported by GDB may be no
2718 longer backward compatible. */
2719 if (version > 8)
2720 return 0;
2721
2722 map->version = version;
2723 map->total_size = section->size;
2724
2725 metadata = (offset_type *) (addr + sizeof (offset_type));
2726
2727 i = 0;
2728 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2729 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2730 / 8);
2731 ++i;
2732
2733 *types_list = addr + MAYBE_SWAP (metadata[i]);
2734 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2735 - MAYBE_SWAP (metadata[i]))
2736 / 8);
2737 ++i;
2738
2739 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2740 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2741 - MAYBE_SWAP (metadata[i]));
2742 ++i;
2743
2744 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2745 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2746 - MAYBE_SWAP (metadata[i]))
2747 / (2 * sizeof (offset_type)));
2748 ++i;
2749
2750 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2751
2752 return 1;
2753 }
2754
2755
2756 /* Read the index file. If everything went ok, initialize the "quick"
2757 elements of all the CUs and return 1. Otherwise, return 0. */
2758
2759 static int
2760 dwarf2_read_index (struct objfile *objfile)
2761 {
2762 struct mapped_index local_map, *map;
2763 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2764 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2765
2766 if (!read_index_from_section (objfile, objfile->name,
2767 use_deprecated_index_sections,
2768 &dwarf2_per_objfile->gdb_index, &local_map,
2769 &cu_list, &cu_list_elements,
2770 &types_list, &types_list_elements))
2771 return 0;
2772
2773 /* Don't use the index if it's empty. */
2774 if (local_map.symbol_table_slots == 0)
2775 return 0;
2776
2777 /* If there is a .dwz file, read it so we can get its CU list as
2778 well. */
2779 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2780 {
2781 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2782 struct mapped_index dwz_map;
2783 const gdb_byte *dwz_types_ignore;
2784 offset_type dwz_types_elements_ignore;
2785
2786 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2787 1,
2788 &dwz->gdb_index, &dwz_map,
2789 &dwz_list, &dwz_list_elements,
2790 &dwz_types_ignore,
2791 &dwz_types_elements_ignore))
2792 {
2793 warning (_("could not read '.gdb_index' section from %s; skipping"),
2794 bfd_get_filename (dwz->dwz_bfd));
2795 return 0;
2796 }
2797 }
2798
2799 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2800 dwz_list_elements);
2801
2802 if (types_list_elements)
2803 {
2804 struct dwarf2_section_info *section;
2805
2806 /* We can only handle a single .debug_types when we have an
2807 index. */
2808 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2809 return 0;
2810
2811 section = VEC_index (dwarf2_section_info_def,
2812 dwarf2_per_objfile->types, 0);
2813
2814 create_signatured_type_table_from_index (objfile, section, types_list,
2815 types_list_elements);
2816 }
2817
2818 create_addrmap_from_index (objfile, &local_map);
2819
2820 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2821 *map = local_map;
2822
2823 dwarf2_per_objfile->index_table = map;
2824 dwarf2_per_objfile->using_index = 1;
2825 dwarf2_per_objfile->quick_file_names_table =
2826 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2827
2828 return 1;
2829 }
2830
2831 /* A helper for the "quick" functions which sets the global
2832 dwarf2_per_objfile according to OBJFILE. */
2833
2834 static void
2835 dw2_setup (struct objfile *objfile)
2836 {
2837 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2838 gdb_assert (dwarf2_per_objfile);
2839 }
2840
2841 /* die_reader_func for dw2_get_file_names. */
2842
2843 static void
2844 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2845 gdb_byte *info_ptr,
2846 struct die_info *comp_unit_die,
2847 int has_children,
2848 void *data)
2849 {
2850 struct dwarf2_cu *cu = reader->cu;
2851 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2852 struct objfile *objfile = dwarf2_per_objfile->objfile;
2853 struct dwarf2_per_cu_data *lh_cu;
2854 struct line_header *lh;
2855 struct attribute *attr;
2856 int i;
2857 const char *name, *comp_dir;
2858 void **slot;
2859 struct quick_file_names *qfn;
2860 unsigned int line_offset;
2861
2862 /* Our callers never want to match partial units -- instead they
2863 will match the enclosing full CU. */
2864 if (comp_unit_die->tag == DW_TAG_partial_unit)
2865 {
2866 this_cu->v.quick->no_file_data = 1;
2867 return;
2868 }
2869
2870 /* If we're reading the line header for TUs, store it in the "per_cu"
2871 for tu_group. */
2872 if (this_cu->is_debug_types)
2873 {
2874 struct type_unit_group *tu_group = data;
2875
2876 gdb_assert (tu_group != NULL);
2877 lh_cu = &tu_group->per_cu;
2878 }
2879 else
2880 lh_cu = this_cu;
2881
2882 lh = NULL;
2883 slot = NULL;
2884 line_offset = 0;
2885
2886 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2887 if (attr)
2888 {
2889 struct quick_file_names find_entry;
2890
2891 line_offset = DW_UNSND (attr);
2892
2893 /* We may have already read in this line header (TU line header sharing).
2894 If we have we're done. */
2895 find_entry.hash.dwo_unit = cu->dwo_unit;
2896 find_entry.hash.line_offset.sect_off = line_offset;
2897 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2898 &find_entry, INSERT);
2899 if (*slot != NULL)
2900 {
2901 lh_cu->v.quick->file_names = *slot;
2902 return;
2903 }
2904
2905 lh = dwarf_decode_line_header (line_offset, cu);
2906 }
2907 if (lh == NULL)
2908 {
2909 lh_cu->v.quick->no_file_data = 1;
2910 return;
2911 }
2912
2913 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2914 qfn->hash.dwo_unit = cu->dwo_unit;
2915 qfn->hash.line_offset.sect_off = line_offset;
2916 gdb_assert (slot != NULL);
2917 *slot = qfn;
2918
2919 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2920
2921 qfn->num_file_names = lh->num_file_names;
2922 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2923 lh->num_file_names * sizeof (char *));
2924 for (i = 0; i < lh->num_file_names; ++i)
2925 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2926 qfn->real_names = NULL;
2927
2928 free_line_header (lh);
2929
2930 lh_cu->v.quick->file_names = qfn;
2931 }
2932
2933 /* A helper for the "quick" functions which attempts to read the line
2934 table for THIS_CU. */
2935
2936 static struct quick_file_names *
2937 dw2_get_file_names (struct objfile *objfile,
2938 struct dwarf2_per_cu_data *this_cu)
2939 {
2940 /* For TUs this should only be called on the parent group. */
2941 if (this_cu->is_debug_types)
2942 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2943
2944 if (this_cu->v.quick->file_names != NULL)
2945 return this_cu->v.quick->file_names;
2946 /* If we know there is no line data, no point in looking again. */
2947 if (this_cu->v.quick->no_file_data)
2948 return NULL;
2949
2950 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2951 in the stub for CUs, there's is no need to lookup the DWO file.
2952 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2953 DWO file. */
2954 if (this_cu->is_debug_types)
2955 {
2956 struct type_unit_group *tu_group = this_cu->type_unit_group;
2957
2958 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2959 dw2_get_file_names_reader, tu_group);
2960 }
2961 else
2962 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2963
2964 if (this_cu->v.quick->no_file_data)
2965 return NULL;
2966 return this_cu->v.quick->file_names;
2967 }
2968
2969 /* A helper for the "quick" functions which computes and caches the
2970 real path for a given file name from the line table. */
2971
2972 static const char *
2973 dw2_get_real_path (struct objfile *objfile,
2974 struct quick_file_names *qfn, int index)
2975 {
2976 if (qfn->real_names == NULL)
2977 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2978 qfn->num_file_names, sizeof (char *));
2979
2980 if (qfn->real_names[index] == NULL)
2981 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2982
2983 return qfn->real_names[index];
2984 }
2985
2986 static struct symtab *
2987 dw2_find_last_source_symtab (struct objfile *objfile)
2988 {
2989 int index;
2990
2991 dw2_setup (objfile);
2992 index = dwarf2_per_objfile->n_comp_units - 1;
2993 return dw2_instantiate_symtab (dw2_get_cu (index));
2994 }
2995
2996 /* Traversal function for dw2_forget_cached_source_info. */
2997
2998 static int
2999 dw2_free_cached_file_names (void **slot, void *info)
3000 {
3001 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3002
3003 if (file_data->real_names)
3004 {
3005 int i;
3006
3007 for (i = 0; i < file_data->num_file_names; ++i)
3008 {
3009 xfree ((void*) file_data->real_names[i]);
3010 file_data->real_names[i] = NULL;
3011 }
3012 }
3013
3014 return 1;
3015 }
3016
3017 static void
3018 dw2_forget_cached_source_info (struct objfile *objfile)
3019 {
3020 dw2_setup (objfile);
3021
3022 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3023 dw2_free_cached_file_names, NULL);
3024 }
3025
3026 /* Helper function for dw2_map_symtabs_matching_filename that expands
3027 the symtabs and calls the iterator. */
3028
3029 static int
3030 dw2_map_expand_apply (struct objfile *objfile,
3031 struct dwarf2_per_cu_data *per_cu,
3032 const char *name, const char *real_path,
3033 int (*callback) (struct symtab *, void *),
3034 void *data)
3035 {
3036 struct symtab *last_made = objfile->symtabs;
3037
3038 /* Don't visit already-expanded CUs. */
3039 if (per_cu->v.quick->symtab)
3040 return 0;
3041
3042 /* This may expand more than one symtab, and we want to iterate over
3043 all of them. */
3044 dw2_instantiate_symtab (per_cu);
3045
3046 return iterate_over_some_symtabs (name, real_path, callback, data,
3047 objfile->symtabs, last_made);
3048 }
3049
3050 /* Implementation of the map_symtabs_matching_filename method. */
3051
3052 static int
3053 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3054 const char *real_path,
3055 int (*callback) (struct symtab *, void *),
3056 void *data)
3057 {
3058 int i;
3059 const char *name_basename = lbasename (name);
3060
3061 dw2_setup (objfile);
3062
3063 /* The rule is CUs specify all the files, including those used by
3064 any TU, so there's no need to scan TUs here. */
3065
3066 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3067 {
3068 int j;
3069 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3070 struct quick_file_names *file_data;
3071
3072 /* We only need to look at symtabs not already expanded. */
3073 if (per_cu->v.quick->symtab)
3074 continue;
3075
3076 file_data = dw2_get_file_names (objfile, per_cu);
3077 if (file_data == NULL)
3078 continue;
3079
3080 for (j = 0; j < file_data->num_file_names; ++j)
3081 {
3082 const char *this_name = file_data->file_names[j];
3083 const char *this_real_name;
3084
3085 if (compare_filenames_for_search (this_name, name))
3086 {
3087 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3088 callback, data))
3089 return 1;
3090 continue;
3091 }
3092
3093 /* Before we invoke realpath, which can get expensive when many
3094 files are involved, do a quick comparison of the basenames. */
3095 if (! basenames_may_differ
3096 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3097 continue;
3098
3099 this_real_name = dw2_get_real_path (objfile, file_data, j);
3100 if (compare_filenames_for_search (this_real_name, name))
3101 {
3102 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3103 callback, data))
3104 return 1;
3105 continue;
3106 }
3107
3108 if (real_path != NULL)
3109 {
3110 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3111 gdb_assert (IS_ABSOLUTE_PATH (name));
3112 if (this_real_name != NULL
3113 && FILENAME_CMP (real_path, this_real_name) == 0)
3114 {
3115 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3116 callback, data))
3117 return 1;
3118 continue;
3119 }
3120 }
3121 }
3122 }
3123
3124 return 0;
3125 }
3126
3127 /* Struct used to manage iterating over all CUs looking for a symbol. */
3128
3129 struct dw2_symtab_iterator
3130 {
3131 /* The internalized form of .gdb_index. */
3132 struct mapped_index *index;
3133 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3134 int want_specific_block;
3135 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3136 Unused if !WANT_SPECIFIC_BLOCK. */
3137 int block_index;
3138 /* The kind of symbol we're looking for. */
3139 domain_enum domain;
3140 /* The list of CUs from the index entry of the symbol,
3141 or NULL if not found. */
3142 offset_type *vec;
3143 /* The next element in VEC to look at. */
3144 int next;
3145 /* The number of elements in VEC, or zero if there is no match. */
3146 int length;
3147 };
3148
3149 /* Initialize the index symtab iterator ITER.
3150 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3151 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3152
3153 static void
3154 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3155 struct mapped_index *index,
3156 int want_specific_block,
3157 int block_index,
3158 domain_enum domain,
3159 const char *name)
3160 {
3161 iter->index = index;
3162 iter->want_specific_block = want_specific_block;
3163 iter->block_index = block_index;
3164 iter->domain = domain;
3165 iter->next = 0;
3166
3167 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3168 iter->length = MAYBE_SWAP (*iter->vec);
3169 else
3170 {
3171 iter->vec = NULL;
3172 iter->length = 0;
3173 }
3174 }
3175
3176 /* Return the next matching CU or NULL if there are no more. */
3177
3178 static struct dwarf2_per_cu_data *
3179 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3180 {
3181 for ( ; iter->next < iter->length; ++iter->next)
3182 {
3183 offset_type cu_index_and_attrs =
3184 MAYBE_SWAP (iter->vec[iter->next + 1]);
3185 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3186 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3187 int want_static = iter->block_index != GLOBAL_BLOCK;
3188 /* This value is only valid for index versions >= 7. */
3189 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3190 gdb_index_symbol_kind symbol_kind =
3191 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3192 /* Only check the symbol attributes if they're present.
3193 Indices prior to version 7 don't record them,
3194 and indices >= 7 may elide them for certain symbols
3195 (gold does this). */
3196 int attrs_valid =
3197 (iter->index->version >= 7
3198 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3199
3200 /* Skip if already read in. */
3201 if (per_cu->v.quick->symtab)
3202 continue;
3203
3204 if (attrs_valid
3205 && iter->want_specific_block
3206 && want_static != is_static)
3207 continue;
3208
3209 /* Only check the symbol's kind if it has one. */
3210 if (attrs_valid)
3211 {
3212 switch (iter->domain)
3213 {
3214 case VAR_DOMAIN:
3215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3216 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3217 /* Some types are also in VAR_DOMAIN. */
3218 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3219 continue;
3220 break;
3221 case STRUCT_DOMAIN:
3222 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3223 continue;
3224 break;
3225 case LABEL_DOMAIN:
3226 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3227 continue;
3228 break;
3229 default:
3230 break;
3231 }
3232 }
3233
3234 ++iter->next;
3235 return per_cu;
3236 }
3237
3238 return NULL;
3239 }
3240
3241 static struct symtab *
3242 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3243 const char *name, domain_enum domain)
3244 {
3245 struct symtab *stab_best = NULL;
3246 struct mapped_index *index;
3247
3248 dw2_setup (objfile);
3249
3250 index = dwarf2_per_objfile->index_table;
3251
3252 /* index is NULL if OBJF_READNOW. */
3253 if (index)
3254 {
3255 struct dw2_symtab_iterator iter;
3256 struct dwarf2_per_cu_data *per_cu;
3257
3258 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3259
3260 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3261 {
3262 struct symbol *sym = NULL;
3263 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3264
3265 /* Some caution must be observed with overloaded functions
3266 and methods, since the index will not contain any overload
3267 information (but NAME might contain it). */
3268 if (stab->primary)
3269 {
3270 struct blockvector *bv = BLOCKVECTOR (stab);
3271 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3272
3273 sym = lookup_block_symbol (block, name, domain);
3274 }
3275
3276 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3277 {
3278 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3279 return stab;
3280
3281 stab_best = stab;
3282 }
3283
3284 /* Keep looking through other CUs. */
3285 }
3286 }
3287
3288 return stab_best;
3289 }
3290
3291 static void
3292 dw2_print_stats (struct objfile *objfile)
3293 {
3294 int i, count;
3295
3296 dw2_setup (objfile);
3297 count = 0;
3298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3299 + dwarf2_per_objfile->n_type_units); ++i)
3300 {
3301 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3302
3303 if (!per_cu->v.quick->symtab)
3304 ++count;
3305 }
3306 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3307 }
3308
3309 static void
3310 dw2_dump (struct objfile *objfile)
3311 {
3312 /* Nothing worth printing. */
3313 }
3314
3315 static void
3316 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3317 struct section_offsets *delta)
3318 {
3319 /* There's nothing to relocate here. */
3320 }
3321
3322 static void
3323 dw2_expand_symtabs_for_function (struct objfile *objfile,
3324 const char *func_name)
3325 {
3326 struct mapped_index *index;
3327
3328 dw2_setup (objfile);
3329
3330 index = dwarf2_per_objfile->index_table;
3331
3332 /* index is NULL if OBJF_READNOW. */
3333 if (index)
3334 {
3335 struct dw2_symtab_iterator iter;
3336 struct dwarf2_per_cu_data *per_cu;
3337
3338 /* Note: It doesn't matter what we pass for block_index here. */
3339 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3340 func_name);
3341
3342 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3343 dw2_instantiate_symtab (per_cu);
3344 }
3345 }
3346
3347 static void
3348 dw2_expand_all_symtabs (struct objfile *objfile)
3349 {
3350 int i;
3351
3352 dw2_setup (objfile);
3353
3354 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3355 + dwarf2_per_objfile->n_type_units); ++i)
3356 {
3357 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3358
3359 dw2_instantiate_symtab (per_cu);
3360 }
3361 }
3362
3363 static void
3364 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3365 const char *fullname)
3366 {
3367 int i;
3368
3369 dw2_setup (objfile);
3370
3371 /* We don't need to consider type units here.
3372 This is only called for examining code, e.g. expand_line_sal.
3373 There can be an order of magnitude (or more) more type units
3374 than comp units, and we avoid them if we can. */
3375
3376 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3377 {
3378 int j;
3379 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3380 struct quick_file_names *file_data;
3381
3382 /* We only need to look at symtabs not already expanded. */
3383 if (per_cu->v.quick->symtab)
3384 continue;
3385
3386 file_data = dw2_get_file_names (objfile, per_cu);
3387 if (file_data == NULL)
3388 continue;
3389
3390 for (j = 0; j < file_data->num_file_names; ++j)
3391 {
3392 const char *this_fullname = file_data->file_names[j];
3393
3394 if (filename_cmp (this_fullname, fullname) == 0)
3395 {
3396 dw2_instantiate_symtab (per_cu);
3397 break;
3398 }
3399 }
3400 }
3401 }
3402
3403 /* A helper function for dw2_find_symbol_file that finds the primary
3404 file name for a given CU. This is a die_reader_func. */
3405
3406 static void
3407 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3408 gdb_byte *info_ptr,
3409 struct die_info *comp_unit_die,
3410 int has_children,
3411 void *data)
3412 {
3413 const char **result_ptr = data;
3414 struct dwarf2_cu *cu = reader->cu;
3415 struct attribute *attr;
3416
3417 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3418 if (attr == NULL)
3419 *result_ptr = NULL;
3420 else
3421 *result_ptr = DW_STRING (attr);
3422 }
3423
3424 static const char *
3425 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3426 {
3427 struct dwarf2_per_cu_data *per_cu;
3428 offset_type *vec;
3429 const char *filename;
3430
3431 dw2_setup (objfile);
3432
3433 /* index_table is NULL if OBJF_READNOW. */
3434 if (!dwarf2_per_objfile->index_table)
3435 {
3436 struct symtab *s;
3437
3438 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3439 {
3440 struct blockvector *bv = BLOCKVECTOR (s);
3441 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3442 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3443
3444 if (sym)
3445 {
3446 /* Only file extension of returned filename is recognized. */
3447 return SYMBOL_SYMTAB (sym)->filename;
3448 }
3449 }
3450 return NULL;
3451 }
3452
3453 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3454 name, &vec))
3455 return NULL;
3456
3457 /* Note that this just looks at the very first one named NAME -- but
3458 actually we are looking for a function. find_main_filename
3459 should be rewritten so that it doesn't require a custom hook. It
3460 could just use the ordinary symbol tables. */
3461 /* vec[0] is the length, which must always be >0. */
3462 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3463
3464 if (per_cu->v.quick->symtab != NULL)
3465 {
3466 /* Only file extension of returned filename is recognized. */
3467 return per_cu->v.quick->symtab->filename;
3468 }
3469
3470 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3471 dw2_get_primary_filename_reader, &filename);
3472
3473 /* Only file extension of returned filename is recognized. */
3474 return filename;
3475 }
3476
3477 static void
3478 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3479 struct objfile *objfile, int global,
3480 int (*callback) (struct block *,
3481 struct symbol *, void *),
3482 void *data, symbol_compare_ftype *match,
3483 symbol_compare_ftype *ordered_compare)
3484 {
3485 /* Currently unimplemented; used for Ada. The function can be called if the
3486 current language is Ada for a non-Ada objfile using GNU index. As Ada
3487 does not look for non-Ada symbols this function should just return. */
3488 }
3489
3490 static void
3491 dw2_expand_symtabs_matching
3492 (struct objfile *objfile,
3493 int (*file_matcher) (const char *, void *, int basenames),
3494 int (*name_matcher) (const char *, void *),
3495 enum search_domain kind,
3496 void *data)
3497 {
3498 int i;
3499 offset_type iter;
3500 struct mapped_index *index;
3501
3502 dw2_setup (objfile);
3503
3504 /* index_table is NULL if OBJF_READNOW. */
3505 if (!dwarf2_per_objfile->index_table)
3506 return;
3507 index = dwarf2_per_objfile->index_table;
3508
3509 if (file_matcher != NULL)
3510 {
3511 struct cleanup *cleanup;
3512 htab_t visited_found, visited_not_found;
3513
3514 visited_found = htab_create_alloc (10,
3515 htab_hash_pointer, htab_eq_pointer,
3516 NULL, xcalloc, xfree);
3517 cleanup = make_cleanup_htab_delete (visited_found);
3518 visited_not_found = htab_create_alloc (10,
3519 htab_hash_pointer, htab_eq_pointer,
3520 NULL, xcalloc, xfree);
3521 make_cleanup_htab_delete (visited_not_found);
3522
3523 /* The rule is CUs specify all the files, including those used by
3524 any TU, so there's no need to scan TUs here. */
3525
3526 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3527 {
3528 int j;
3529 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3530 struct quick_file_names *file_data;
3531 void **slot;
3532
3533 per_cu->v.quick->mark = 0;
3534
3535 /* We only need to look at symtabs not already expanded. */
3536 if (per_cu->v.quick->symtab)
3537 continue;
3538
3539 file_data = dw2_get_file_names (objfile, per_cu);
3540 if (file_data == NULL)
3541 continue;
3542
3543 if (htab_find (visited_not_found, file_data) != NULL)
3544 continue;
3545 else if (htab_find (visited_found, file_data) != NULL)
3546 {
3547 per_cu->v.quick->mark = 1;
3548 continue;
3549 }
3550
3551 for (j = 0; j < file_data->num_file_names; ++j)
3552 {
3553 const char *this_real_name;
3554
3555 if (file_matcher (file_data->file_names[j], data, 0))
3556 {
3557 per_cu->v.quick->mark = 1;
3558 break;
3559 }
3560
3561 /* Before we invoke realpath, which can get expensive when many
3562 files are involved, do a quick comparison of the basenames. */
3563 if (!basenames_may_differ
3564 && !file_matcher (lbasename (file_data->file_names[j]),
3565 data, 1))
3566 continue;
3567
3568 this_real_name = dw2_get_real_path (objfile, file_data, j);
3569 if (file_matcher (this_real_name, data, 0))
3570 {
3571 per_cu->v.quick->mark = 1;
3572 break;
3573 }
3574 }
3575
3576 slot = htab_find_slot (per_cu->v.quick->mark
3577 ? visited_found
3578 : visited_not_found,
3579 file_data, INSERT);
3580 *slot = file_data;
3581 }
3582
3583 do_cleanups (cleanup);
3584 }
3585
3586 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3587 {
3588 offset_type idx = 2 * iter;
3589 const char *name;
3590 offset_type *vec, vec_len, vec_idx;
3591
3592 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3593 continue;
3594
3595 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3596
3597 if (! (*name_matcher) (name, data))
3598 continue;
3599
3600 /* The name was matched, now expand corresponding CUs that were
3601 marked. */
3602 vec = (offset_type *) (index->constant_pool
3603 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3604 vec_len = MAYBE_SWAP (vec[0]);
3605 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3606 {
3607 struct dwarf2_per_cu_data *per_cu;
3608 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3609 gdb_index_symbol_kind symbol_kind =
3610 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3611 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3612
3613 /* Don't crash on bad data. */
3614 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3615 + dwarf2_per_objfile->n_type_units))
3616 continue;
3617
3618 /* Only check the symbol's kind if it has one.
3619 Indices prior to version 7 don't record it. */
3620 if (index->version >= 7)
3621 {
3622 switch (kind)
3623 {
3624 case VARIABLES_DOMAIN:
3625 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3626 continue;
3627 break;
3628 case FUNCTIONS_DOMAIN:
3629 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3630 continue;
3631 break;
3632 case TYPES_DOMAIN:
3633 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3634 continue;
3635 break;
3636 default:
3637 break;
3638 }
3639 }
3640
3641 per_cu = dw2_get_cu (cu_index);
3642 if (file_matcher == NULL || per_cu->v.quick->mark)
3643 dw2_instantiate_symtab (per_cu);
3644 }
3645 }
3646 }
3647
3648 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3649 symtab. */
3650
3651 static struct symtab *
3652 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3653 {
3654 int i;
3655
3656 if (BLOCKVECTOR (symtab) != NULL
3657 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3658 return symtab;
3659
3660 if (symtab->includes == NULL)
3661 return NULL;
3662
3663 for (i = 0; symtab->includes[i]; ++i)
3664 {
3665 struct symtab *s = symtab->includes[i];
3666
3667 s = recursively_find_pc_sect_symtab (s, pc);
3668 if (s != NULL)
3669 return s;
3670 }
3671
3672 return NULL;
3673 }
3674
3675 static struct symtab *
3676 dw2_find_pc_sect_symtab (struct objfile *objfile,
3677 struct minimal_symbol *msymbol,
3678 CORE_ADDR pc,
3679 struct obj_section *section,
3680 int warn_if_readin)
3681 {
3682 struct dwarf2_per_cu_data *data;
3683 struct symtab *result;
3684
3685 dw2_setup (objfile);
3686
3687 if (!objfile->psymtabs_addrmap)
3688 return NULL;
3689
3690 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3691 if (!data)
3692 return NULL;
3693
3694 if (warn_if_readin && data->v.quick->symtab)
3695 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3696 paddress (get_objfile_arch (objfile), pc));
3697
3698 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3699 gdb_assert (result != NULL);
3700 return result;
3701 }
3702
3703 static void
3704 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3705 void *data, int need_fullname)
3706 {
3707 int i;
3708 struct cleanup *cleanup;
3709 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3710 NULL, xcalloc, xfree);
3711
3712 cleanup = make_cleanup_htab_delete (visited);
3713 dw2_setup (objfile);
3714
3715 /* The rule is CUs specify all the files, including those used by
3716 any TU, so there's no need to scan TUs here.
3717 We can ignore file names coming from already-expanded CUs. */
3718
3719 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3720 {
3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3722
3723 if (per_cu->v.quick->symtab)
3724 {
3725 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3726 INSERT);
3727
3728 *slot = per_cu->v.quick->file_names;
3729 }
3730 }
3731
3732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3733 {
3734 int j;
3735 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3736 struct quick_file_names *file_data;
3737 void **slot;
3738
3739 /* We only need to look at symtabs not already expanded. */
3740 if (per_cu->v.quick->symtab)
3741 continue;
3742
3743 file_data = dw2_get_file_names (objfile, per_cu);
3744 if (file_data == NULL)
3745 continue;
3746
3747 slot = htab_find_slot (visited, file_data, INSERT);
3748 if (*slot)
3749 {
3750 /* Already visited. */
3751 continue;
3752 }
3753 *slot = file_data;
3754
3755 for (j = 0; j < file_data->num_file_names; ++j)
3756 {
3757 const char *this_real_name;
3758
3759 if (need_fullname)
3760 this_real_name = dw2_get_real_path (objfile, file_data, j);
3761 else
3762 this_real_name = NULL;
3763 (*fun) (file_data->file_names[j], this_real_name, data);
3764 }
3765 }
3766
3767 do_cleanups (cleanup);
3768 }
3769
3770 static int
3771 dw2_has_symbols (struct objfile *objfile)
3772 {
3773 return 1;
3774 }
3775
3776 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3777 {
3778 dw2_has_symbols,
3779 dw2_find_last_source_symtab,
3780 dw2_forget_cached_source_info,
3781 dw2_map_symtabs_matching_filename,
3782 dw2_lookup_symbol,
3783 dw2_print_stats,
3784 dw2_dump,
3785 dw2_relocate,
3786 dw2_expand_symtabs_for_function,
3787 dw2_expand_all_symtabs,
3788 dw2_expand_symtabs_with_fullname,
3789 dw2_find_symbol_file,
3790 dw2_map_matching_symbols,
3791 dw2_expand_symtabs_matching,
3792 dw2_find_pc_sect_symtab,
3793 dw2_map_symbol_filenames
3794 };
3795
3796 /* Initialize for reading DWARF for this objfile. Return 0 if this
3797 file will use psymtabs, or 1 if using the GNU index. */
3798
3799 int
3800 dwarf2_initialize_objfile (struct objfile *objfile)
3801 {
3802 /* If we're about to read full symbols, don't bother with the
3803 indices. In this case we also don't care if some other debug
3804 format is making psymtabs, because they are all about to be
3805 expanded anyway. */
3806 if ((objfile->flags & OBJF_READNOW))
3807 {
3808 int i;
3809
3810 dwarf2_per_objfile->using_index = 1;
3811 create_all_comp_units (objfile);
3812 create_all_type_units (objfile);
3813 dwarf2_per_objfile->quick_file_names_table =
3814 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3815
3816 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3817 + dwarf2_per_objfile->n_type_units); ++i)
3818 {
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3820
3821 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3822 struct dwarf2_per_cu_quick_data);
3823 }
3824
3825 /* Return 1 so that gdb sees the "quick" functions. However,
3826 these functions will be no-ops because we will have expanded
3827 all symtabs. */
3828 return 1;
3829 }
3830
3831 if (dwarf2_read_index (objfile))
3832 return 1;
3833
3834 return 0;
3835 }
3836
3837 \f
3838
3839 /* Build a partial symbol table. */
3840
3841 void
3842 dwarf2_build_psymtabs (struct objfile *objfile)
3843 {
3844 volatile struct gdb_exception except;
3845
3846 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3847 {
3848 init_psymbol_list (objfile, 1024);
3849 }
3850
3851 TRY_CATCH (except, RETURN_MASK_ERROR)
3852 {
3853 /* This isn't really ideal: all the data we allocate on the
3854 objfile's obstack is still uselessly kept around. However,
3855 freeing it seems unsafe. */
3856 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3857
3858 dwarf2_build_psymtabs_hard (objfile);
3859 discard_cleanups (cleanups);
3860 }
3861 if (except.reason < 0)
3862 exception_print (gdb_stderr, except);
3863 }
3864
3865 /* Return the total length of the CU described by HEADER. */
3866
3867 static unsigned int
3868 get_cu_length (const struct comp_unit_head *header)
3869 {
3870 return header->initial_length_size + header->length;
3871 }
3872
3873 /* Return TRUE if OFFSET is within CU_HEADER. */
3874
3875 static inline int
3876 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3877 {
3878 sect_offset bottom = { cu_header->offset.sect_off };
3879 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3880
3881 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3882 }
3883
3884 /* Find the base address of the compilation unit for range lists and
3885 location lists. It will normally be specified by DW_AT_low_pc.
3886 In DWARF-3 draft 4, the base address could be overridden by
3887 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3888 compilation units with discontinuous ranges. */
3889
3890 static void
3891 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3892 {
3893 struct attribute *attr;
3894
3895 cu->base_known = 0;
3896 cu->base_address = 0;
3897
3898 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3899 if (attr)
3900 {
3901 cu->base_address = DW_ADDR (attr);
3902 cu->base_known = 1;
3903 }
3904 else
3905 {
3906 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3907 if (attr)
3908 {
3909 cu->base_address = DW_ADDR (attr);
3910 cu->base_known = 1;
3911 }
3912 }
3913 }
3914
3915 /* Read in the comp unit header information from the debug_info at info_ptr.
3916 NOTE: This leaves members offset, first_die_offset to be filled in
3917 by the caller. */
3918
3919 static gdb_byte *
3920 read_comp_unit_head (struct comp_unit_head *cu_header,
3921 gdb_byte *info_ptr, bfd *abfd)
3922 {
3923 int signed_addr;
3924 unsigned int bytes_read;
3925
3926 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3927 cu_header->initial_length_size = bytes_read;
3928 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3929 info_ptr += bytes_read;
3930 cu_header->version = read_2_bytes (abfd, info_ptr);
3931 info_ptr += 2;
3932 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3933 &bytes_read);
3934 info_ptr += bytes_read;
3935 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3936 info_ptr += 1;
3937 signed_addr = bfd_get_sign_extend_vma (abfd);
3938 if (signed_addr < 0)
3939 internal_error (__FILE__, __LINE__,
3940 _("read_comp_unit_head: dwarf from non elf file"));
3941 cu_header->signed_addr_p = signed_addr;
3942
3943 return info_ptr;
3944 }
3945
3946 /* Helper function that returns the proper abbrev section for
3947 THIS_CU. */
3948
3949 static struct dwarf2_section_info *
3950 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3951 {
3952 struct dwarf2_section_info *abbrev;
3953
3954 if (this_cu->is_dwz)
3955 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3956 else
3957 abbrev = &dwarf2_per_objfile->abbrev;
3958
3959 return abbrev;
3960 }
3961
3962 /* Subroutine of read_and_check_comp_unit_head and
3963 read_and_check_type_unit_head to simplify them.
3964 Perform various error checking on the header. */
3965
3966 static void
3967 error_check_comp_unit_head (struct comp_unit_head *header,
3968 struct dwarf2_section_info *section,
3969 struct dwarf2_section_info *abbrev_section)
3970 {
3971 bfd *abfd = section->asection->owner;
3972 const char *filename = bfd_get_filename (abfd);
3973
3974 if (header->version != 2 && header->version != 3 && header->version != 4)
3975 error (_("Dwarf Error: wrong version in compilation unit header "
3976 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3977 filename);
3978
3979 if (header->abbrev_offset.sect_off
3980 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3981 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3982 "(offset 0x%lx + 6) [in module %s]"),
3983 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3984 filename);
3985
3986 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3987 avoid potential 32-bit overflow. */
3988 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3989 > section->size)
3990 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3991 "(offset 0x%lx + 0) [in module %s]"),
3992 (long) header->length, (long) header->offset.sect_off,
3993 filename);
3994 }
3995
3996 /* Read in a CU/TU header and perform some basic error checking.
3997 The contents of the header are stored in HEADER.
3998 The result is a pointer to the start of the first DIE. */
3999
4000 static gdb_byte *
4001 read_and_check_comp_unit_head (struct comp_unit_head *header,
4002 struct dwarf2_section_info *section,
4003 struct dwarf2_section_info *abbrev_section,
4004 gdb_byte *info_ptr,
4005 int is_debug_types_section)
4006 {
4007 gdb_byte *beg_of_comp_unit = info_ptr;
4008 bfd *abfd = section->asection->owner;
4009
4010 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4011
4012 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4013
4014 /* If we're reading a type unit, skip over the signature and
4015 type_offset fields. */
4016 if (is_debug_types_section)
4017 info_ptr += 8 /*signature*/ + header->offset_size;
4018
4019 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4020
4021 error_check_comp_unit_head (header, section, abbrev_section);
4022
4023 return info_ptr;
4024 }
4025
4026 /* Read in the types comp unit header information from .debug_types entry at
4027 types_ptr. The result is a pointer to one past the end of the header. */
4028
4029 static gdb_byte *
4030 read_and_check_type_unit_head (struct comp_unit_head *header,
4031 struct dwarf2_section_info *section,
4032 struct dwarf2_section_info *abbrev_section,
4033 gdb_byte *info_ptr,
4034 ULONGEST *signature,
4035 cu_offset *type_offset_in_tu)
4036 {
4037 gdb_byte *beg_of_comp_unit = info_ptr;
4038 bfd *abfd = section->asection->owner;
4039
4040 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4041
4042 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4043
4044 /* If we're reading a type unit, skip over the signature and
4045 type_offset fields. */
4046 if (signature != NULL)
4047 *signature = read_8_bytes (abfd, info_ptr);
4048 info_ptr += 8;
4049 if (type_offset_in_tu != NULL)
4050 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4051 header->offset_size);
4052 info_ptr += header->offset_size;
4053
4054 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4055
4056 error_check_comp_unit_head (header, section, abbrev_section);
4057
4058 return info_ptr;
4059 }
4060
4061 /* Fetch the abbreviation table offset from a comp or type unit header. */
4062
4063 static sect_offset
4064 read_abbrev_offset (struct dwarf2_section_info *section,
4065 sect_offset offset)
4066 {
4067 bfd *abfd = section->asection->owner;
4068 gdb_byte *info_ptr;
4069 unsigned int length, initial_length_size, offset_size;
4070 sect_offset abbrev_offset;
4071
4072 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4073 info_ptr = section->buffer + offset.sect_off;
4074 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4075 offset_size = initial_length_size == 4 ? 4 : 8;
4076 info_ptr += initial_length_size + 2 /*version*/;
4077 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4078 return abbrev_offset;
4079 }
4080
4081 /* Allocate a new partial symtab for file named NAME and mark this new
4082 partial symtab as being an include of PST. */
4083
4084 static void
4085 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4086 struct objfile *objfile)
4087 {
4088 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4089
4090 if (!IS_ABSOLUTE_PATH (subpst->filename))
4091 {
4092 /* It shares objfile->objfile_obstack. */
4093 subpst->dirname = pst->dirname;
4094 }
4095
4096 subpst->section_offsets = pst->section_offsets;
4097 subpst->textlow = 0;
4098 subpst->texthigh = 0;
4099
4100 subpst->dependencies = (struct partial_symtab **)
4101 obstack_alloc (&objfile->objfile_obstack,
4102 sizeof (struct partial_symtab *));
4103 subpst->dependencies[0] = pst;
4104 subpst->number_of_dependencies = 1;
4105
4106 subpst->globals_offset = 0;
4107 subpst->n_global_syms = 0;
4108 subpst->statics_offset = 0;
4109 subpst->n_static_syms = 0;
4110 subpst->symtab = NULL;
4111 subpst->read_symtab = pst->read_symtab;
4112 subpst->readin = 0;
4113
4114 /* No private part is necessary for include psymtabs. This property
4115 can be used to differentiate between such include psymtabs and
4116 the regular ones. */
4117 subpst->read_symtab_private = NULL;
4118 }
4119
4120 /* Read the Line Number Program data and extract the list of files
4121 included by the source file represented by PST. Build an include
4122 partial symtab for each of these included files. */
4123
4124 static void
4125 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4126 struct die_info *die,
4127 struct partial_symtab *pst)
4128 {
4129 struct line_header *lh = NULL;
4130 struct attribute *attr;
4131
4132 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4133 if (attr)
4134 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4135 if (lh == NULL)
4136 return; /* No linetable, so no includes. */
4137
4138 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4139 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4140
4141 free_line_header (lh);
4142 }
4143
4144 static hashval_t
4145 hash_signatured_type (const void *item)
4146 {
4147 const struct signatured_type *sig_type = item;
4148
4149 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4150 return sig_type->signature;
4151 }
4152
4153 static int
4154 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4155 {
4156 const struct signatured_type *lhs = item_lhs;
4157 const struct signatured_type *rhs = item_rhs;
4158
4159 return lhs->signature == rhs->signature;
4160 }
4161
4162 /* Allocate a hash table for signatured types. */
4163
4164 static htab_t
4165 allocate_signatured_type_table (struct objfile *objfile)
4166 {
4167 return htab_create_alloc_ex (41,
4168 hash_signatured_type,
4169 eq_signatured_type,
4170 NULL,
4171 &objfile->objfile_obstack,
4172 hashtab_obstack_allocate,
4173 dummy_obstack_deallocate);
4174 }
4175
4176 /* A helper function to add a signatured type CU to a table. */
4177
4178 static int
4179 add_signatured_type_cu_to_table (void **slot, void *datum)
4180 {
4181 struct signatured_type *sigt = *slot;
4182 struct signatured_type ***datap = datum;
4183
4184 **datap = sigt;
4185 ++*datap;
4186
4187 return 1;
4188 }
4189
4190 /* Create the hash table of all entries in the .debug_types section.
4191 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4192 NULL otherwise.
4193 Note: This function processes DWO files only, not DWP files.
4194 The result is a pointer to the hash table or NULL if there are
4195 no types. */
4196
4197 static htab_t
4198 create_debug_types_hash_table (struct dwo_file *dwo_file,
4199 VEC (dwarf2_section_info_def) *types)
4200 {
4201 struct objfile *objfile = dwarf2_per_objfile->objfile;
4202 htab_t types_htab = NULL;
4203 int ix;
4204 struct dwarf2_section_info *section;
4205 struct dwarf2_section_info *abbrev_section;
4206
4207 if (VEC_empty (dwarf2_section_info_def, types))
4208 return NULL;
4209
4210 abbrev_section = (dwo_file != NULL
4211 ? &dwo_file->sections.abbrev
4212 : &dwarf2_per_objfile->abbrev);
4213
4214 if (dwarf2_read_debug)
4215 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4216 dwo_file ? ".dwo" : "",
4217 bfd_get_filename (abbrev_section->asection->owner));
4218
4219 for (ix = 0;
4220 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4221 ++ix)
4222 {
4223 bfd *abfd;
4224 gdb_byte *info_ptr, *end_ptr;
4225 struct dwarf2_section_info *abbrev_section;
4226
4227 dwarf2_read_section (objfile, section);
4228 info_ptr = section->buffer;
4229
4230 if (info_ptr == NULL)
4231 continue;
4232
4233 /* We can't set abfd until now because the section may be empty or
4234 not present, in which case section->asection will be NULL. */
4235 abfd = section->asection->owner;
4236
4237 if (dwo_file)
4238 abbrev_section = &dwo_file->sections.abbrev;
4239 else
4240 abbrev_section = &dwarf2_per_objfile->abbrev;
4241
4242 if (types_htab == NULL)
4243 {
4244 if (dwo_file)
4245 types_htab = allocate_dwo_unit_table (objfile);
4246 else
4247 types_htab = allocate_signatured_type_table (objfile);
4248 }
4249
4250 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4251 because we don't need to read any dies: the signature is in the
4252 header. */
4253
4254 end_ptr = info_ptr + section->size;
4255 while (info_ptr < end_ptr)
4256 {
4257 sect_offset offset;
4258 cu_offset type_offset_in_tu;
4259 ULONGEST signature;
4260 struct signatured_type *sig_type;
4261 struct dwo_unit *dwo_tu;
4262 void **slot;
4263 gdb_byte *ptr = info_ptr;
4264 struct comp_unit_head header;
4265 unsigned int length;
4266
4267 offset.sect_off = ptr - section->buffer;
4268
4269 /* We need to read the type's signature in order to build the hash
4270 table, but we don't need anything else just yet. */
4271
4272 ptr = read_and_check_type_unit_head (&header, section,
4273 abbrev_section, ptr,
4274 &signature, &type_offset_in_tu);
4275
4276 length = get_cu_length (&header);
4277
4278 /* Skip dummy type units. */
4279 if (ptr >= info_ptr + length
4280 || peek_abbrev_code (abfd, ptr) == 0)
4281 {
4282 info_ptr += length;
4283 continue;
4284 }
4285
4286 if (dwo_file)
4287 {
4288 sig_type = NULL;
4289 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4290 struct dwo_unit);
4291 dwo_tu->dwo_file = dwo_file;
4292 dwo_tu->signature = signature;
4293 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4294 dwo_tu->info_or_types_section = section;
4295 dwo_tu->offset = offset;
4296 dwo_tu->length = length;
4297 }
4298 else
4299 {
4300 /* N.B.: type_offset is not usable if this type uses a DWO file.
4301 The real type_offset is in the DWO file. */
4302 dwo_tu = NULL;
4303 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4304 struct signatured_type);
4305 sig_type->signature = signature;
4306 sig_type->type_offset_in_tu = type_offset_in_tu;
4307 sig_type->per_cu.objfile = objfile;
4308 sig_type->per_cu.is_debug_types = 1;
4309 sig_type->per_cu.info_or_types_section = section;
4310 sig_type->per_cu.offset = offset;
4311 sig_type->per_cu.length = length;
4312 }
4313
4314 slot = htab_find_slot (types_htab,
4315 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4316 INSERT);
4317 gdb_assert (slot != NULL);
4318 if (*slot != NULL)
4319 {
4320 sect_offset dup_offset;
4321
4322 if (dwo_file)
4323 {
4324 const struct dwo_unit *dup_tu = *slot;
4325
4326 dup_offset = dup_tu->offset;
4327 }
4328 else
4329 {
4330 const struct signatured_type *dup_tu = *slot;
4331
4332 dup_offset = dup_tu->per_cu.offset;
4333 }
4334
4335 complaint (&symfile_complaints,
4336 _("debug type entry at offset 0x%x is duplicate to the "
4337 "entry at offset 0x%x, signature 0x%s"),
4338 offset.sect_off, dup_offset.sect_off,
4339 phex (signature, sizeof (signature)));
4340 }
4341 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4342
4343 if (dwarf2_read_debug)
4344 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4345 offset.sect_off,
4346 phex (signature, sizeof (signature)));
4347
4348 info_ptr += length;
4349 }
4350 }
4351
4352 return types_htab;
4353 }
4354
4355 /* Create the hash table of all entries in the .debug_types section,
4356 and initialize all_type_units.
4357 The result is zero if there is an error (e.g. missing .debug_types section),
4358 otherwise non-zero. */
4359
4360 static int
4361 create_all_type_units (struct objfile *objfile)
4362 {
4363 htab_t types_htab;
4364 struct signatured_type **iter;
4365
4366 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4367 if (types_htab == NULL)
4368 {
4369 dwarf2_per_objfile->signatured_types = NULL;
4370 return 0;
4371 }
4372
4373 dwarf2_per_objfile->signatured_types = types_htab;
4374
4375 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4376 dwarf2_per_objfile->all_type_units
4377 = obstack_alloc (&objfile->objfile_obstack,
4378 dwarf2_per_objfile->n_type_units
4379 * sizeof (struct signatured_type *));
4380 iter = &dwarf2_per_objfile->all_type_units[0];
4381 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4382 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4383 == dwarf2_per_objfile->n_type_units);
4384
4385 return 1;
4386 }
4387
4388 /* Lookup a signature based type for DW_FORM_ref_sig8.
4389 Returns NULL if signature SIG is not present in the table. */
4390
4391 static struct signatured_type *
4392 lookup_signatured_type (ULONGEST sig)
4393 {
4394 struct signatured_type find_entry, *entry;
4395
4396 if (dwarf2_per_objfile->signatured_types == NULL)
4397 {
4398 complaint (&symfile_complaints,
4399 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4400 return NULL;
4401 }
4402
4403 find_entry.signature = sig;
4404 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4405 return entry;
4406 }
4407 \f
4408 /* Low level DIE reading support. */
4409
4410 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4411
4412 static void
4413 init_cu_die_reader (struct die_reader_specs *reader,
4414 struct dwarf2_cu *cu,
4415 struct dwarf2_section_info *section,
4416 struct dwo_file *dwo_file)
4417 {
4418 gdb_assert (section->readin && section->buffer != NULL);
4419 reader->abfd = section->asection->owner;
4420 reader->cu = cu;
4421 reader->dwo_file = dwo_file;
4422 reader->die_section = section;
4423 reader->buffer = section->buffer;
4424 reader->buffer_end = section->buffer + section->size;
4425 }
4426
4427 /* Initialize a CU (or TU) and read its DIEs.
4428 If the CU defers to a DWO file, read the DWO file as well.
4429
4430 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4431 Otherwise the table specified in the comp unit header is read in and used.
4432 This is an optimization for when we already have the abbrev table.
4433
4434 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4435 Otherwise, a new CU is allocated with xmalloc.
4436
4437 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4438 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4439
4440 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4441 linker) then DIE_READER_FUNC will not get called. */
4442
4443 static void
4444 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4445 struct abbrev_table *abbrev_table,
4446 int use_existing_cu, int keep,
4447 die_reader_func_ftype *die_reader_func,
4448 void *data)
4449 {
4450 struct objfile *objfile = dwarf2_per_objfile->objfile;
4451 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4452 bfd *abfd = section->asection->owner;
4453 struct dwarf2_cu *cu;
4454 gdb_byte *begin_info_ptr, *info_ptr;
4455 struct die_reader_specs reader;
4456 struct die_info *comp_unit_die;
4457 int has_children;
4458 struct attribute *attr;
4459 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4460 struct signatured_type *sig_type = NULL;
4461 struct dwarf2_section_info *abbrev_section;
4462 /* Non-zero if CU currently points to a DWO file and we need to
4463 reread it. When this happens we need to reread the skeleton die
4464 before we can reread the DWO file. */
4465 int rereading_dwo_cu = 0;
4466
4467 if (dwarf2_die_debug)
4468 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4469 this_cu->is_debug_types ? "type" : "comp",
4470 this_cu->offset.sect_off);
4471
4472 if (use_existing_cu)
4473 gdb_assert (keep);
4474
4475 cleanups = make_cleanup (null_cleanup, NULL);
4476
4477 /* This is cheap if the section is already read in. */
4478 dwarf2_read_section (objfile, section);
4479
4480 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4481
4482 abbrev_section = get_abbrev_section_for_cu (this_cu);
4483
4484 if (use_existing_cu && this_cu->cu != NULL)
4485 {
4486 cu = this_cu->cu;
4487
4488 /* If this CU is from a DWO file we need to start over, we need to
4489 refetch the attributes from the skeleton CU.
4490 This could be optimized by retrieving those attributes from when we
4491 were here the first time: the previous comp_unit_die was stored in
4492 comp_unit_obstack. But there's no data yet that we need this
4493 optimization. */
4494 if (cu->dwo_unit != NULL)
4495 rereading_dwo_cu = 1;
4496 }
4497 else
4498 {
4499 /* If !use_existing_cu, this_cu->cu must be NULL. */
4500 gdb_assert (this_cu->cu == NULL);
4501
4502 cu = xmalloc (sizeof (*cu));
4503 init_one_comp_unit (cu, this_cu);
4504
4505 /* If an error occurs while loading, release our storage. */
4506 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4507 }
4508
4509 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4510 {
4511 /* We already have the header, there's no need to read it in again. */
4512 info_ptr += cu->header.first_die_offset.cu_off;
4513 }
4514 else
4515 {
4516 if (this_cu->is_debug_types)
4517 {
4518 ULONGEST signature;
4519 cu_offset type_offset_in_tu;
4520
4521 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4522 abbrev_section, info_ptr,
4523 &signature,
4524 &type_offset_in_tu);
4525
4526 /* Since per_cu is the first member of struct signatured_type,
4527 we can go from a pointer to one to a pointer to the other. */
4528 sig_type = (struct signatured_type *) this_cu;
4529 gdb_assert (sig_type->signature == signature);
4530 gdb_assert (sig_type->type_offset_in_tu.cu_off
4531 == type_offset_in_tu.cu_off);
4532 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4533
4534 /* LENGTH has not been set yet for type units if we're
4535 using .gdb_index. */
4536 this_cu->length = get_cu_length (&cu->header);
4537
4538 /* Establish the type offset that can be used to lookup the type. */
4539 sig_type->type_offset_in_section.sect_off =
4540 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4541 }
4542 else
4543 {
4544 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4545 abbrev_section,
4546 info_ptr, 0);
4547
4548 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4549 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4550 }
4551 }
4552
4553 /* Skip dummy compilation units. */
4554 if (info_ptr >= begin_info_ptr + this_cu->length
4555 || peek_abbrev_code (abfd, info_ptr) == 0)
4556 {
4557 do_cleanups (cleanups);
4558 return;
4559 }
4560
4561 /* If we don't have them yet, read the abbrevs for this compilation unit.
4562 And if we need to read them now, make sure they're freed when we're
4563 done. Note that it's important that if the CU had an abbrev table
4564 on entry we don't free it when we're done: Somewhere up the call stack
4565 it may be in use. */
4566 if (abbrev_table != NULL)
4567 {
4568 gdb_assert (cu->abbrev_table == NULL);
4569 gdb_assert (cu->header.abbrev_offset.sect_off
4570 == abbrev_table->offset.sect_off);
4571 cu->abbrev_table = abbrev_table;
4572 }
4573 else if (cu->abbrev_table == NULL)
4574 {
4575 dwarf2_read_abbrevs (cu, abbrev_section);
4576 make_cleanup (dwarf2_free_abbrev_table, cu);
4577 }
4578 else if (rereading_dwo_cu)
4579 {
4580 dwarf2_free_abbrev_table (cu);
4581 dwarf2_read_abbrevs (cu, abbrev_section);
4582 }
4583
4584 /* Read the top level CU/TU die. */
4585 init_cu_die_reader (&reader, cu, section, NULL);
4586 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4587
4588 /* If we have a DWO stub, process it and then read in the DWO file.
4589 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4590 a DWO CU, that this test will fail. */
4591 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4592 if (attr)
4593 {
4594 const char *dwo_name = DW_STRING (attr);
4595 const char *comp_dir_string;
4596 struct dwo_unit *dwo_unit;
4597 ULONGEST signature; /* Or dwo_id. */
4598 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4599 int i,num_extra_attrs;
4600 struct dwarf2_section_info *dwo_abbrev_section;
4601
4602 if (has_children)
4603 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4604 " has children (offset 0x%x) [in module %s]"),
4605 this_cu->offset.sect_off, bfd_get_filename (abfd));
4606
4607 /* These attributes aren't processed until later:
4608 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4609 However, the attribute is found in the stub which we won't have later.
4610 In order to not impose this complication on the rest of the code,
4611 we read them here and copy them to the DWO CU/TU die. */
4612
4613 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4614 DWO file. */
4615 stmt_list = NULL;
4616 if (! this_cu->is_debug_types)
4617 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4618 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4619 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4620 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4621 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4622
4623 /* There should be a DW_AT_addr_base attribute here (if needed).
4624 We need the value before we can process DW_FORM_GNU_addr_index. */
4625 cu->addr_base = 0;
4626 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4627 if (attr)
4628 cu->addr_base = DW_UNSND (attr);
4629
4630 /* There should be a DW_AT_ranges_base attribute here (if needed).
4631 We need the value before we can process DW_AT_ranges. */
4632 cu->ranges_base = 0;
4633 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4634 if (attr)
4635 cu->ranges_base = DW_UNSND (attr);
4636
4637 if (this_cu->is_debug_types)
4638 {
4639 gdb_assert (sig_type != NULL);
4640 signature = sig_type->signature;
4641 }
4642 else
4643 {
4644 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4645 if (! attr)
4646 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4647 dwo_name);
4648 signature = DW_UNSND (attr);
4649 }
4650
4651 /* We may need the comp_dir in order to find the DWO file. */
4652 comp_dir_string = NULL;
4653 if (comp_dir)
4654 comp_dir_string = DW_STRING (comp_dir);
4655
4656 if (this_cu->is_debug_types)
4657 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4658 else
4659 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4660 signature);
4661
4662 if (dwo_unit == NULL)
4663 {
4664 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4665 " with ID %s [in module %s]"),
4666 this_cu->offset.sect_off,
4667 phex (signature, sizeof (signature)),
4668 objfile->name);
4669 }
4670
4671 /* Set up for reading the DWO CU/TU. */
4672 cu->dwo_unit = dwo_unit;
4673 section = dwo_unit->info_or_types_section;
4674 dwarf2_read_section (objfile, section);
4675 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4676 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4677 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4678
4679 if (this_cu->is_debug_types)
4680 {
4681 ULONGEST signature;
4682 cu_offset type_offset_in_tu;
4683
4684 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4685 dwo_abbrev_section,
4686 info_ptr,
4687 &signature,
4688 &type_offset_in_tu);
4689 gdb_assert (sig_type->signature == signature);
4690 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4691 /* For DWOs coming from DWP files, we don't know the CU length
4692 nor the type's offset in the TU until now. */
4693 dwo_unit->length = get_cu_length (&cu->header);
4694 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4695
4696 /* Establish the type offset that can be used to lookup the type.
4697 For DWO files, we don't know it until now. */
4698 sig_type->type_offset_in_section.sect_off =
4699 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4700 }
4701 else
4702 {
4703 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4704 dwo_abbrev_section,
4705 info_ptr, 0);
4706 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4707 /* For DWOs coming from DWP files, we don't know the CU length
4708 until now. */
4709 dwo_unit->length = get_cu_length (&cu->header);
4710 }
4711
4712 /* Discard the original CU's abbrev table, and read the DWO's. */
4713 if (abbrev_table == NULL)
4714 {
4715 dwarf2_free_abbrev_table (cu);
4716 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4717 }
4718 else
4719 {
4720 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4721 make_cleanup (dwarf2_free_abbrev_table, cu);
4722 }
4723
4724 /* Read in the die, but leave space to copy over the attributes
4725 from the stub. This has the benefit of simplifying the rest of
4726 the code - all the real work is done here. */
4727 num_extra_attrs = ((stmt_list != NULL)
4728 + (low_pc != NULL)
4729 + (high_pc != NULL)
4730 + (ranges != NULL)
4731 + (comp_dir != NULL));
4732 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4733 &has_children, num_extra_attrs);
4734
4735 /* Copy over the attributes from the stub to the DWO die. */
4736 i = comp_unit_die->num_attrs;
4737 if (stmt_list != NULL)
4738 comp_unit_die->attrs[i++] = *stmt_list;
4739 if (low_pc != NULL)
4740 comp_unit_die->attrs[i++] = *low_pc;
4741 if (high_pc != NULL)
4742 comp_unit_die->attrs[i++] = *high_pc;
4743 if (ranges != NULL)
4744 comp_unit_die->attrs[i++] = *ranges;
4745 if (comp_dir != NULL)
4746 comp_unit_die->attrs[i++] = *comp_dir;
4747 comp_unit_die->num_attrs += num_extra_attrs;
4748
4749 /* Skip dummy compilation units. */
4750 if (info_ptr >= begin_info_ptr + dwo_unit->length
4751 || peek_abbrev_code (abfd, info_ptr) == 0)
4752 {
4753 do_cleanups (cleanups);
4754 return;
4755 }
4756 }
4757
4758 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4759
4760 if (free_cu_cleanup != NULL)
4761 {
4762 if (keep)
4763 {
4764 /* We've successfully allocated this compilation unit. Let our
4765 caller clean it up when finished with it. */
4766 discard_cleanups (free_cu_cleanup);
4767
4768 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4769 So we have to manually free the abbrev table. */
4770 dwarf2_free_abbrev_table (cu);
4771
4772 /* Link this CU into read_in_chain. */
4773 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4774 dwarf2_per_objfile->read_in_chain = this_cu;
4775 }
4776 else
4777 do_cleanups (free_cu_cleanup);
4778 }
4779
4780 do_cleanups (cleanups);
4781 }
4782
4783 /* Read CU/TU THIS_CU in section SECTION,
4784 but do not follow DW_AT_GNU_dwo_name if present.
4785 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4786 to have already done the lookup to find the DWO/DWP file).
4787
4788 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4789 THIS_CU->is_debug_types, but nothing else.
4790
4791 We fill in THIS_CU->length.
4792
4793 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4794 linker) then DIE_READER_FUNC will not get called.
4795
4796 THIS_CU->cu is always freed when done.
4797 This is done in order to not leave THIS_CU->cu in a state where we have
4798 to care whether it refers to the "main" CU or the DWO CU. */
4799
4800 static void
4801 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4802 struct dwarf2_section_info *abbrev_section,
4803 struct dwo_file *dwo_file,
4804 die_reader_func_ftype *die_reader_func,
4805 void *data)
4806 {
4807 struct objfile *objfile = dwarf2_per_objfile->objfile;
4808 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4809 bfd *abfd = section->asection->owner;
4810 struct dwarf2_cu cu;
4811 gdb_byte *begin_info_ptr, *info_ptr;
4812 struct die_reader_specs reader;
4813 struct cleanup *cleanups;
4814 struct die_info *comp_unit_die;
4815 int has_children;
4816
4817 if (dwarf2_die_debug)
4818 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4819 this_cu->is_debug_types ? "type" : "comp",
4820 this_cu->offset.sect_off);
4821
4822 gdb_assert (this_cu->cu == NULL);
4823
4824 /* This is cheap if the section is already read in. */
4825 dwarf2_read_section (objfile, section);
4826
4827 init_one_comp_unit (&cu, this_cu);
4828
4829 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4830
4831 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4832 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4833 abbrev_section, info_ptr,
4834 this_cu->is_debug_types);
4835
4836 this_cu->length = get_cu_length (&cu.header);
4837
4838 /* Skip dummy compilation units. */
4839 if (info_ptr >= begin_info_ptr + this_cu->length
4840 || peek_abbrev_code (abfd, info_ptr) == 0)
4841 {
4842 do_cleanups (cleanups);
4843 return;
4844 }
4845
4846 dwarf2_read_abbrevs (&cu, abbrev_section);
4847 make_cleanup (dwarf2_free_abbrev_table, &cu);
4848
4849 init_cu_die_reader (&reader, &cu, section, dwo_file);
4850 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4851
4852 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4853
4854 do_cleanups (cleanups);
4855 }
4856
4857 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4858 does not lookup the specified DWO file.
4859 This cannot be used to read DWO files.
4860
4861 THIS_CU->cu is always freed when done.
4862 This is done in order to not leave THIS_CU->cu in a state where we have
4863 to care whether it refers to the "main" CU or the DWO CU.
4864 We can revisit this if the data shows there's a performance issue. */
4865
4866 static void
4867 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4868 die_reader_func_ftype *die_reader_func,
4869 void *data)
4870 {
4871 init_cutu_and_read_dies_no_follow (this_cu,
4872 get_abbrev_section_for_cu (this_cu),
4873 NULL,
4874 die_reader_func, data);
4875 }
4876
4877 /* Create a psymtab named NAME and assign it to PER_CU.
4878
4879 The caller must fill in the following details:
4880 dirname, textlow, texthigh. */
4881
4882 static struct partial_symtab *
4883 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4884 {
4885 struct objfile *objfile = per_cu->objfile;
4886 struct partial_symtab *pst;
4887
4888 pst = start_psymtab_common (objfile, objfile->section_offsets,
4889 name, 0,
4890 objfile->global_psymbols.next,
4891 objfile->static_psymbols.next);
4892
4893 pst->psymtabs_addrmap_supported = 1;
4894
4895 /* This is the glue that links PST into GDB's symbol API. */
4896 pst->read_symtab_private = per_cu;
4897 pst->read_symtab = dwarf2_read_symtab;
4898 per_cu->v.psymtab = pst;
4899
4900 return pst;
4901 }
4902
4903 /* die_reader_func for process_psymtab_comp_unit. */
4904
4905 static void
4906 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4907 gdb_byte *info_ptr,
4908 struct die_info *comp_unit_die,
4909 int has_children,
4910 void *data)
4911 {
4912 struct dwarf2_cu *cu = reader->cu;
4913 struct objfile *objfile = cu->objfile;
4914 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4915 struct attribute *attr;
4916 CORE_ADDR baseaddr;
4917 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4918 struct partial_symtab *pst;
4919 int has_pc_info;
4920 const char *filename;
4921 int *want_partial_unit_ptr = data;
4922
4923 if (comp_unit_die->tag == DW_TAG_partial_unit
4924 && (want_partial_unit_ptr == NULL
4925 || !*want_partial_unit_ptr))
4926 return;
4927
4928 gdb_assert (! per_cu->is_debug_types);
4929
4930 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4931
4932 cu->list_in_scope = &file_symbols;
4933
4934 /* Allocate a new partial symbol table structure. */
4935 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4936 if (attr == NULL || !DW_STRING (attr))
4937 filename = "";
4938 else
4939 filename = DW_STRING (attr);
4940
4941 pst = create_partial_symtab (per_cu, filename);
4942
4943 /* This must be done before calling dwarf2_build_include_psymtabs. */
4944 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4945 if (attr != NULL)
4946 pst->dirname = DW_STRING (attr);
4947
4948 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4949
4950 dwarf2_find_base_address (comp_unit_die, cu);
4951
4952 /* Possibly set the default values of LOWPC and HIGHPC from
4953 `DW_AT_ranges'. */
4954 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4955 &best_highpc, cu, pst);
4956 if (has_pc_info == 1 && best_lowpc < best_highpc)
4957 /* Store the contiguous range if it is not empty; it can be empty for
4958 CUs with no code. */
4959 addrmap_set_empty (objfile->psymtabs_addrmap,
4960 best_lowpc + baseaddr,
4961 best_highpc + baseaddr - 1, pst);
4962
4963 /* Check if comp unit has_children.
4964 If so, read the rest of the partial symbols from this comp unit.
4965 If not, there's no more debug_info for this comp unit. */
4966 if (has_children)
4967 {
4968 struct partial_die_info *first_die;
4969 CORE_ADDR lowpc, highpc;
4970
4971 lowpc = ((CORE_ADDR) -1);
4972 highpc = ((CORE_ADDR) 0);
4973
4974 first_die = load_partial_dies (reader, info_ptr, 1);
4975
4976 scan_partial_symbols (first_die, &lowpc, &highpc,
4977 ! has_pc_info, cu);
4978
4979 /* If we didn't find a lowpc, set it to highpc to avoid
4980 complaints from `maint check'. */
4981 if (lowpc == ((CORE_ADDR) -1))
4982 lowpc = highpc;
4983
4984 /* If the compilation unit didn't have an explicit address range,
4985 then use the information extracted from its child dies. */
4986 if (! has_pc_info)
4987 {
4988 best_lowpc = lowpc;
4989 best_highpc = highpc;
4990 }
4991 }
4992 pst->textlow = best_lowpc + baseaddr;
4993 pst->texthigh = best_highpc + baseaddr;
4994
4995 pst->n_global_syms = objfile->global_psymbols.next -
4996 (objfile->global_psymbols.list + pst->globals_offset);
4997 pst->n_static_syms = objfile->static_psymbols.next -
4998 (objfile->static_psymbols.list + pst->statics_offset);
4999 sort_pst_symbols (objfile, pst);
5000
5001 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5002 {
5003 int i;
5004 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5005 struct dwarf2_per_cu_data *iter;
5006
5007 /* Fill in 'dependencies' here; we fill in 'users' in a
5008 post-pass. */
5009 pst->number_of_dependencies = len;
5010 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5011 len * sizeof (struct symtab *));
5012 for (i = 0;
5013 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5014 i, iter);
5015 ++i)
5016 pst->dependencies[i] = iter->v.psymtab;
5017
5018 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5019 }
5020
5021 /* Get the list of files included in the current compilation unit,
5022 and build a psymtab for each of them. */
5023 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5024
5025 if (dwarf2_read_debug)
5026 {
5027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5028
5029 fprintf_unfiltered (gdb_stdlog,
5030 "Psymtab for %s unit @0x%x: %s - %s"
5031 ", %d global, %d static syms\n",
5032 per_cu->is_debug_types ? "type" : "comp",
5033 per_cu->offset.sect_off,
5034 paddress (gdbarch, pst->textlow),
5035 paddress (gdbarch, pst->texthigh),
5036 pst->n_global_syms, pst->n_static_syms);
5037 }
5038 }
5039
5040 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5041 Process compilation unit THIS_CU for a psymtab. */
5042
5043 static void
5044 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5045 int want_partial_unit)
5046 {
5047 /* If this compilation unit was already read in, free the
5048 cached copy in order to read it in again. This is
5049 necessary because we skipped some symbols when we first
5050 read in the compilation unit (see load_partial_dies).
5051 This problem could be avoided, but the benefit is unclear. */
5052 if (this_cu->cu != NULL)
5053 free_one_cached_comp_unit (this_cu);
5054
5055 gdb_assert (! this_cu->is_debug_types);
5056 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5057 process_psymtab_comp_unit_reader,
5058 &want_partial_unit);
5059
5060 /* Age out any secondary CUs. */
5061 age_cached_comp_units ();
5062 }
5063
5064 static hashval_t
5065 hash_type_unit_group (const void *item)
5066 {
5067 const struct type_unit_group *tu_group = item;
5068
5069 return hash_stmt_list_entry (&tu_group->hash);
5070 }
5071
5072 static int
5073 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5074 {
5075 const struct type_unit_group *lhs = item_lhs;
5076 const struct type_unit_group *rhs = item_rhs;
5077
5078 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5079 }
5080
5081 /* Allocate a hash table for type unit groups. */
5082
5083 static htab_t
5084 allocate_type_unit_groups_table (void)
5085 {
5086 return htab_create_alloc_ex (3,
5087 hash_type_unit_group,
5088 eq_type_unit_group,
5089 NULL,
5090 &dwarf2_per_objfile->objfile->objfile_obstack,
5091 hashtab_obstack_allocate,
5092 dummy_obstack_deallocate);
5093 }
5094
5095 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5096 partial symtabs. We combine several TUs per psymtab to not let the size
5097 of any one psymtab grow too big. */
5098 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5099 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5100
5101 /* Helper routine for get_type_unit_group.
5102 Create the type_unit_group object used to hold one or more TUs. */
5103
5104 static struct type_unit_group *
5105 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5106 {
5107 struct objfile *objfile = dwarf2_per_objfile->objfile;
5108 struct dwarf2_per_cu_data *per_cu;
5109 struct type_unit_group *tu_group;
5110
5111 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5112 struct type_unit_group);
5113 per_cu = &tu_group->per_cu;
5114 per_cu->objfile = objfile;
5115 per_cu->is_debug_types = 1;
5116 per_cu->type_unit_group = tu_group;
5117
5118 if (dwarf2_per_objfile->using_index)
5119 {
5120 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5121 struct dwarf2_per_cu_quick_data);
5122 tu_group->t.first_tu = cu->per_cu;
5123 }
5124 else
5125 {
5126 unsigned int line_offset = line_offset_struct.sect_off;
5127 struct partial_symtab *pst;
5128 char *name;
5129
5130 /* Give the symtab a useful name for debug purposes. */
5131 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5132 name = xstrprintf ("<type_units_%d>",
5133 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5134 else
5135 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5136
5137 pst = create_partial_symtab (per_cu, name);
5138 pst->anonymous = 1;
5139
5140 xfree (name);
5141 }
5142
5143 tu_group->hash.dwo_unit = cu->dwo_unit;
5144 tu_group->hash.line_offset = line_offset_struct;
5145
5146 return tu_group;
5147 }
5148
5149 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5150 STMT_LIST is a DW_AT_stmt_list attribute. */
5151
5152 static struct type_unit_group *
5153 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5154 {
5155 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5156 struct type_unit_group *tu_group;
5157 void **slot;
5158 unsigned int line_offset;
5159 struct type_unit_group type_unit_group_for_lookup;
5160
5161 if (dwarf2_per_objfile->type_unit_groups == NULL)
5162 {
5163 dwarf2_per_objfile->type_unit_groups =
5164 allocate_type_unit_groups_table ();
5165 }
5166
5167 /* Do we need to create a new group, or can we use an existing one? */
5168
5169 if (stmt_list)
5170 {
5171 line_offset = DW_UNSND (stmt_list);
5172 ++tu_stats->nr_symtab_sharers;
5173 }
5174 else
5175 {
5176 /* Ugh, no stmt_list. Rare, but we have to handle it.
5177 We can do various things here like create one group per TU or
5178 spread them over multiple groups to split up the expansion work.
5179 To avoid worst case scenarios (too many groups or too large groups)
5180 we, umm, group them in bunches. */
5181 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5182 | (tu_stats->nr_stmt_less_type_units
5183 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5184 ++tu_stats->nr_stmt_less_type_units;
5185 }
5186
5187 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5188 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5189 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5190 &type_unit_group_for_lookup, INSERT);
5191 if (*slot != NULL)
5192 {
5193 tu_group = *slot;
5194 gdb_assert (tu_group != NULL);
5195 }
5196 else
5197 {
5198 sect_offset line_offset_struct;
5199
5200 line_offset_struct.sect_off = line_offset;
5201 tu_group = create_type_unit_group (cu, line_offset_struct);
5202 *slot = tu_group;
5203 ++tu_stats->nr_symtabs;
5204 }
5205
5206 return tu_group;
5207 }
5208
5209 /* Struct used to sort TUs by their abbreviation table offset. */
5210
5211 struct tu_abbrev_offset
5212 {
5213 struct signatured_type *sig_type;
5214 sect_offset abbrev_offset;
5215 };
5216
5217 /* Helper routine for build_type_unit_groups, passed to qsort. */
5218
5219 static int
5220 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5221 {
5222 const struct tu_abbrev_offset * const *a = ap;
5223 const struct tu_abbrev_offset * const *b = bp;
5224 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5225 unsigned int boff = (*b)->abbrev_offset.sect_off;
5226
5227 return (aoff > boff) - (aoff < boff);
5228 }
5229
5230 /* A helper function to add a type_unit_group to a table. */
5231
5232 static int
5233 add_type_unit_group_to_table (void **slot, void *datum)
5234 {
5235 struct type_unit_group *tu_group = *slot;
5236 struct type_unit_group ***datap = datum;
5237
5238 **datap = tu_group;
5239 ++*datap;
5240
5241 return 1;
5242 }
5243
5244 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5245 each one passing FUNC,DATA.
5246
5247 The efficiency is because we sort TUs by the abbrev table they use and
5248 only read each abbrev table once. In one program there are 200K TUs
5249 sharing 8K abbrev tables.
5250
5251 The main purpose of this function is to support building the
5252 dwarf2_per_objfile->type_unit_groups table.
5253 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5254 can collapse the search space by grouping them by stmt_list.
5255 The savings can be significant, in the same program from above the 200K TUs
5256 share 8K stmt_list tables.
5257
5258 FUNC is expected to call get_type_unit_group, which will create the
5259 struct type_unit_group if necessary and add it to
5260 dwarf2_per_objfile->type_unit_groups. */
5261
5262 static void
5263 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5264 {
5265 struct objfile *objfile = dwarf2_per_objfile->objfile;
5266 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5267 struct cleanup *cleanups;
5268 struct abbrev_table *abbrev_table;
5269 sect_offset abbrev_offset;
5270 struct tu_abbrev_offset *sorted_by_abbrev;
5271 struct type_unit_group **iter;
5272 int i;
5273
5274 /* It's up to the caller to not call us multiple times. */
5275 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5276
5277 if (dwarf2_per_objfile->n_type_units == 0)
5278 return;
5279
5280 /* TUs typically share abbrev tables, and there can be way more TUs than
5281 abbrev tables. Sort by abbrev table to reduce the number of times we
5282 read each abbrev table in.
5283 Alternatives are to punt or to maintain a cache of abbrev tables.
5284 This is simpler and efficient enough for now.
5285
5286 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5287 symtab to use). Typically TUs with the same abbrev offset have the same
5288 stmt_list value too so in practice this should work well.
5289
5290 The basic algorithm here is:
5291
5292 sort TUs by abbrev table
5293 for each TU with same abbrev table:
5294 read abbrev table if first user
5295 read TU top level DIE
5296 [IWBN if DWO skeletons had DW_AT_stmt_list]
5297 call FUNC */
5298
5299 if (dwarf2_read_debug)
5300 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5301
5302 /* Sort in a separate table to maintain the order of all_type_units
5303 for .gdb_index: TU indices directly index all_type_units. */
5304 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5305 dwarf2_per_objfile->n_type_units);
5306 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5307 {
5308 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5309
5310 sorted_by_abbrev[i].sig_type = sig_type;
5311 sorted_by_abbrev[i].abbrev_offset =
5312 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5313 sig_type->per_cu.offset);
5314 }
5315 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5316 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5317 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5318
5319 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5320 called any number of times, so we don't reset tu_stats here. */
5321
5322 abbrev_offset.sect_off = ~(unsigned) 0;
5323 abbrev_table = NULL;
5324 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5325
5326 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5327 {
5328 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5329
5330 /* Switch to the next abbrev table if necessary. */
5331 if (abbrev_table == NULL
5332 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5333 {
5334 if (abbrev_table != NULL)
5335 {
5336 abbrev_table_free (abbrev_table);
5337 /* Reset to NULL in case abbrev_table_read_table throws
5338 an error: abbrev_table_free_cleanup will get called. */
5339 abbrev_table = NULL;
5340 }
5341 abbrev_offset = tu->abbrev_offset;
5342 abbrev_table =
5343 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5344 abbrev_offset);
5345 ++tu_stats->nr_uniq_abbrev_tables;
5346 }
5347
5348 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5349 func, data);
5350 }
5351
5352 /* Create a vector of pointers to primary type units to make it easy to
5353 iterate over them and CUs. See dw2_get_primary_cu. */
5354 dwarf2_per_objfile->n_type_unit_groups =
5355 htab_elements (dwarf2_per_objfile->type_unit_groups);
5356 dwarf2_per_objfile->all_type_unit_groups =
5357 obstack_alloc (&objfile->objfile_obstack,
5358 dwarf2_per_objfile->n_type_unit_groups
5359 * sizeof (struct type_unit_group *));
5360 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5361 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5362 add_type_unit_group_to_table, &iter);
5363 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5364 == dwarf2_per_objfile->n_type_unit_groups);
5365
5366 do_cleanups (cleanups);
5367
5368 if (dwarf2_read_debug)
5369 {
5370 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5371 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5372 dwarf2_per_objfile->n_type_units);
5373 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5374 tu_stats->nr_uniq_abbrev_tables);
5375 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5376 tu_stats->nr_symtabs);
5377 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5378 tu_stats->nr_symtab_sharers);
5379 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5380 tu_stats->nr_stmt_less_type_units);
5381 }
5382 }
5383
5384 /* Reader function for build_type_psymtabs. */
5385
5386 static void
5387 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5388 gdb_byte *info_ptr,
5389 struct die_info *type_unit_die,
5390 int has_children,
5391 void *data)
5392 {
5393 struct objfile *objfile = dwarf2_per_objfile->objfile;
5394 struct dwarf2_cu *cu = reader->cu;
5395 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5396 struct type_unit_group *tu_group;
5397 struct attribute *attr;
5398 struct partial_die_info *first_die;
5399 CORE_ADDR lowpc, highpc;
5400 struct partial_symtab *pst;
5401
5402 gdb_assert (data == NULL);
5403
5404 if (! has_children)
5405 return;
5406
5407 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5408 tu_group = get_type_unit_group (cu, attr);
5409
5410 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5411
5412 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5413 cu->list_in_scope = &file_symbols;
5414 pst = create_partial_symtab (per_cu, "");
5415 pst->anonymous = 1;
5416
5417 first_die = load_partial_dies (reader, info_ptr, 1);
5418
5419 lowpc = (CORE_ADDR) -1;
5420 highpc = (CORE_ADDR) 0;
5421 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5422
5423 pst->n_global_syms = objfile->global_psymbols.next -
5424 (objfile->global_psymbols.list + pst->globals_offset);
5425 pst->n_static_syms = objfile->static_psymbols.next -
5426 (objfile->static_psymbols.list + pst->statics_offset);
5427 sort_pst_symbols (objfile, pst);
5428 }
5429
5430 /* Traversal function for build_type_psymtabs. */
5431
5432 static int
5433 build_type_psymtab_dependencies (void **slot, void *info)
5434 {
5435 struct objfile *objfile = dwarf2_per_objfile->objfile;
5436 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5437 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5438 struct partial_symtab *pst = per_cu->v.psymtab;
5439 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5440 struct dwarf2_per_cu_data *iter;
5441 int i;
5442
5443 gdb_assert (len > 0);
5444
5445 pst->number_of_dependencies = len;
5446 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5447 len * sizeof (struct psymtab *));
5448 for (i = 0;
5449 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5450 ++i)
5451 {
5452 pst->dependencies[i] = iter->v.psymtab;
5453 iter->type_unit_group = tu_group;
5454 }
5455
5456 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5457
5458 return 1;
5459 }
5460
5461 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5462 Build partial symbol tables for the .debug_types comp-units. */
5463
5464 static void
5465 build_type_psymtabs (struct objfile *objfile)
5466 {
5467 if (! create_all_type_units (objfile))
5468 return;
5469
5470 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5471
5472 /* Now that all TUs have been processed we can fill in the dependencies. */
5473 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5474 build_type_psymtab_dependencies, NULL);
5475 }
5476
5477 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5478
5479 static void
5480 psymtabs_addrmap_cleanup (void *o)
5481 {
5482 struct objfile *objfile = o;
5483
5484 objfile->psymtabs_addrmap = NULL;
5485 }
5486
5487 /* Compute the 'user' field for each psymtab in OBJFILE. */
5488
5489 static void
5490 set_partial_user (struct objfile *objfile)
5491 {
5492 int i;
5493
5494 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5495 {
5496 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5497 struct partial_symtab *pst = per_cu->v.psymtab;
5498 int j;
5499
5500 if (pst == NULL)
5501 continue;
5502
5503 for (j = 0; j < pst->number_of_dependencies; ++j)
5504 {
5505 /* Set the 'user' field only if it is not already set. */
5506 if (pst->dependencies[j]->user == NULL)
5507 pst->dependencies[j]->user = pst;
5508 }
5509 }
5510 }
5511
5512 /* Build the partial symbol table by doing a quick pass through the
5513 .debug_info and .debug_abbrev sections. */
5514
5515 static void
5516 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5517 {
5518 struct cleanup *back_to, *addrmap_cleanup;
5519 struct obstack temp_obstack;
5520 int i;
5521
5522 if (dwarf2_read_debug)
5523 {
5524 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5525 objfile->name);
5526 }
5527
5528 dwarf2_per_objfile->reading_partial_symbols = 1;
5529
5530 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5531
5532 /* Any cached compilation units will be linked by the per-objfile
5533 read_in_chain. Make sure to free them when we're done. */
5534 back_to = make_cleanup (free_cached_comp_units, NULL);
5535
5536 build_type_psymtabs (objfile);
5537
5538 create_all_comp_units (objfile);
5539
5540 /* Create a temporary address map on a temporary obstack. We later
5541 copy this to the final obstack. */
5542 obstack_init (&temp_obstack);
5543 make_cleanup_obstack_free (&temp_obstack);
5544 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5545 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5546
5547 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5548 {
5549 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5550
5551 process_psymtab_comp_unit (per_cu, 0);
5552 }
5553
5554 set_partial_user (objfile);
5555
5556 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5557 &objfile->objfile_obstack);
5558 discard_cleanups (addrmap_cleanup);
5559
5560 do_cleanups (back_to);
5561
5562 if (dwarf2_read_debug)
5563 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5564 objfile->name);
5565 }
5566
5567 /* die_reader_func for load_partial_comp_unit. */
5568
5569 static void
5570 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5571 gdb_byte *info_ptr,
5572 struct die_info *comp_unit_die,
5573 int has_children,
5574 void *data)
5575 {
5576 struct dwarf2_cu *cu = reader->cu;
5577
5578 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5579
5580 /* Check if comp unit has_children.
5581 If so, read the rest of the partial symbols from this comp unit.
5582 If not, there's no more debug_info for this comp unit. */
5583 if (has_children)
5584 load_partial_dies (reader, info_ptr, 0);
5585 }
5586
5587 /* Load the partial DIEs for a secondary CU into memory.
5588 This is also used when rereading a primary CU with load_all_dies. */
5589
5590 static void
5591 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5592 {
5593 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5594 load_partial_comp_unit_reader, NULL);
5595 }
5596
5597 static void
5598 read_comp_units_from_section (struct objfile *objfile,
5599 struct dwarf2_section_info *section,
5600 unsigned int is_dwz,
5601 int *n_allocated,
5602 int *n_comp_units,
5603 struct dwarf2_per_cu_data ***all_comp_units)
5604 {
5605 gdb_byte *info_ptr;
5606 bfd *abfd = section->asection->owner;
5607
5608 dwarf2_read_section (objfile, section);
5609
5610 info_ptr = section->buffer;
5611
5612 while (info_ptr < section->buffer + section->size)
5613 {
5614 unsigned int length, initial_length_size;
5615 struct dwarf2_per_cu_data *this_cu;
5616 sect_offset offset;
5617
5618 offset.sect_off = info_ptr - section->buffer;
5619
5620 /* Read just enough information to find out where the next
5621 compilation unit is. */
5622 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5623
5624 /* Save the compilation unit for later lookup. */
5625 this_cu = obstack_alloc (&objfile->objfile_obstack,
5626 sizeof (struct dwarf2_per_cu_data));
5627 memset (this_cu, 0, sizeof (*this_cu));
5628 this_cu->offset = offset;
5629 this_cu->length = length + initial_length_size;
5630 this_cu->is_dwz = is_dwz;
5631 this_cu->objfile = objfile;
5632 this_cu->info_or_types_section = section;
5633
5634 if (*n_comp_units == *n_allocated)
5635 {
5636 *n_allocated *= 2;
5637 *all_comp_units = xrealloc (*all_comp_units,
5638 *n_allocated
5639 * sizeof (struct dwarf2_per_cu_data *));
5640 }
5641 (*all_comp_units)[*n_comp_units] = this_cu;
5642 ++*n_comp_units;
5643
5644 info_ptr = info_ptr + this_cu->length;
5645 }
5646 }
5647
5648 /* Create a list of all compilation units in OBJFILE.
5649 This is only done for -readnow and building partial symtabs. */
5650
5651 static void
5652 create_all_comp_units (struct objfile *objfile)
5653 {
5654 int n_allocated;
5655 int n_comp_units;
5656 struct dwarf2_per_cu_data **all_comp_units;
5657
5658 n_comp_units = 0;
5659 n_allocated = 10;
5660 all_comp_units = xmalloc (n_allocated
5661 * sizeof (struct dwarf2_per_cu_data *));
5662
5663 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5664 &n_allocated, &n_comp_units, &all_comp_units);
5665
5666 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5667 {
5668 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5669
5670 read_comp_units_from_section (objfile, &dwz->info, 1,
5671 &n_allocated, &n_comp_units,
5672 &all_comp_units);
5673 }
5674
5675 dwarf2_per_objfile->all_comp_units
5676 = obstack_alloc (&objfile->objfile_obstack,
5677 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5678 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5679 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5680 xfree (all_comp_units);
5681 dwarf2_per_objfile->n_comp_units = n_comp_units;
5682 }
5683
5684 /* Process all loaded DIEs for compilation unit CU, starting at
5685 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5686 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5687 DW_AT_ranges). If NEED_PC is set, then this function will set
5688 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5689 and record the covered ranges in the addrmap. */
5690
5691 static void
5692 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5693 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5694 {
5695 struct partial_die_info *pdi;
5696
5697 /* Now, march along the PDI's, descending into ones which have
5698 interesting children but skipping the children of the other ones,
5699 until we reach the end of the compilation unit. */
5700
5701 pdi = first_die;
5702
5703 while (pdi != NULL)
5704 {
5705 fixup_partial_die (pdi, cu);
5706
5707 /* Anonymous namespaces or modules have no name but have interesting
5708 children, so we need to look at them. Ditto for anonymous
5709 enums. */
5710
5711 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5712 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5713 || pdi->tag == DW_TAG_imported_unit)
5714 {
5715 switch (pdi->tag)
5716 {
5717 case DW_TAG_subprogram:
5718 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5719 break;
5720 case DW_TAG_constant:
5721 case DW_TAG_variable:
5722 case DW_TAG_typedef:
5723 case DW_TAG_union_type:
5724 if (!pdi->is_declaration)
5725 {
5726 add_partial_symbol (pdi, cu);
5727 }
5728 break;
5729 case DW_TAG_class_type:
5730 case DW_TAG_interface_type:
5731 case DW_TAG_structure_type:
5732 if (!pdi->is_declaration)
5733 {
5734 add_partial_symbol (pdi, cu);
5735 }
5736 break;
5737 case DW_TAG_enumeration_type:
5738 if (!pdi->is_declaration)
5739 add_partial_enumeration (pdi, cu);
5740 break;
5741 case DW_TAG_base_type:
5742 case DW_TAG_subrange_type:
5743 /* File scope base type definitions are added to the partial
5744 symbol table. */
5745 add_partial_symbol (pdi, cu);
5746 break;
5747 case DW_TAG_namespace:
5748 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5749 break;
5750 case DW_TAG_module:
5751 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5752 break;
5753 case DW_TAG_imported_unit:
5754 {
5755 struct dwarf2_per_cu_data *per_cu;
5756
5757 /* For now we don't handle imported units in type units. */
5758 if (cu->per_cu->is_debug_types)
5759 {
5760 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5761 " supported in type units [in module %s]"),
5762 cu->objfile->name);
5763 }
5764
5765 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5766 pdi->is_dwz,
5767 cu->objfile);
5768
5769 /* Go read the partial unit, if needed. */
5770 if (per_cu->v.psymtab == NULL)
5771 process_psymtab_comp_unit (per_cu, 1);
5772
5773 VEC_safe_push (dwarf2_per_cu_ptr,
5774 cu->per_cu->imported_symtabs, per_cu);
5775 }
5776 break;
5777 default:
5778 break;
5779 }
5780 }
5781
5782 /* If the die has a sibling, skip to the sibling. */
5783
5784 pdi = pdi->die_sibling;
5785 }
5786 }
5787
5788 /* Functions used to compute the fully scoped name of a partial DIE.
5789
5790 Normally, this is simple. For C++, the parent DIE's fully scoped
5791 name is concatenated with "::" and the partial DIE's name. For
5792 Java, the same thing occurs except that "." is used instead of "::".
5793 Enumerators are an exception; they use the scope of their parent
5794 enumeration type, i.e. the name of the enumeration type is not
5795 prepended to the enumerator.
5796
5797 There are two complexities. One is DW_AT_specification; in this
5798 case "parent" means the parent of the target of the specification,
5799 instead of the direct parent of the DIE. The other is compilers
5800 which do not emit DW_TAG_namespace; in this case we try to guess
5801 the fully qualified name of structure types from their members'
5802 linkage names. This must be done using the DIE's children rather
5803 than the children of any DW_AT_specification target. We only need
5804 to do this for structures at the top level, i.e. if the target of
5805 any DW_AT_specification (if any; otherwise the DIE itself) does not
5806 have a parent. */
5807
5808 /* Compute the scope prefix associated with PDI's parent, in
5809 compilation unit CU. The result will be allocated on CU's
5810 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5811 field. NULL is returned if no prefix is necessary. */
5812 static const char *
5813 partial_die_parent_scope (struct partial_die_info *pdi,
5814 struct dwarf2_cu *cu)
5815 {
5816 const char *grandparent_scope;
5817 struct partial_die_info *parent, *real_pdi;
5818
5819 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5820 then this means the parent of the specification DIE. */
5821
5822 real_pdi = pdi;
5823 while (real_pdi->has_specification)
5824 real_pdi = find_partial_die (real_pdi->spec_offset,
5825 real_pdi->spec_is_dwz, cu);
5826
5827 parent = real_pdi->die_parent;
5828 if (parent == NULL)
5829 return NULL;
5830
5831 if (parent->scope_set)
5832 return parent->scope;
5833
5834 fixup_partial_die (parent, cu);
5835
5836 grandparent_scope = partial_die_parent_scope (parent, cu);
5837
5838 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5839 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5840 Work around this problem here. */
5841 if (cu->language == language_cplus
5842 && parent->tag == DW_TAG_namespace
5843 && strcmp (parent->name, "::") == 0
5844 && grandparent_scope == NULL)
5845 {
5846 parent->scope = NULL;
5847 parent->scope_set = 1;
5848 return NULL;
5849 }
5850
5851 if (pdi->tag == DW_TAG_enumerator)
5852 /* Enumerators should not get the name of the enumeration as a prefix. */
5853 parent->scope = grandparent_scope;
5854 else if (parent->tag == DW_TAG_namespace
5855 || parent->tag == DW_TAG_module
5856 || parent->tag == DW_TAG_structure_type
5857 || parent->tag == DW_TAG_class_type
5858 || parent->tag == DW_TAG_interface_type
5859 || parent->tag == DW_TAG_union_type
5860 || parent->tag == DW_TAG_enumeration_type)
5861 {
5862 if (grandparent_scope == NULL)
5863 parent->scope = parent->name;
5864 else
5865 parent->scope = typename_concat (&cu->comp_unit_obstack,
5866 grandparent_scope,
5867 parent->name, 0, cu);
5868 }
5869 else
5870 {
5871 /* FIXME drow/2004-04-01: What should we be doing with
5872 function-local names? For partial symbols, we should probably be
5873 ignoring them. */
5874 complaint (&symfile_complaints,
5875 _("unhandled containing DIE tag %d for DIE at %d"),
5876 parent->tag, pdi->offset.sect_off);
5877 parent->scope = grandparent_scope;
5878 }
5879
5880 parent->scope_set = 1;
5881 return parent->scope;
5882 }
5883
5884 /* Return the fully scoped name associated with PDI, from compilation unit
5885 CU. The result will be allocated with malloc. */
5886
5887 static char *
5888 partial_die_full_name (struct partial_die_info *pdi,
5889 struct dwarf2_cu *cu)
5890 {
5891 const char *parent_scope;
5892
5893 /* If this is a template instantiation, we can not work out the
5894 template arguments from partial DIEs. So, unfortunately, we have
5895 to go through the full DIEs. At least any work we do building
5896 types here will be reused if full symbols are loaded later. */
5897 if (pdi->has_template_arguments)
5898 {
5899 fixup_partial_die (pdi, cu);
5900
5901 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5902 {
5903 struct die_info *die;
5904 struct attribute attr;
5905 struct dwarf2_cu *ref_cu = cu;
5906
5907 /* DW_FORM_ref_addr is using section offset. */
5908 attr.name = 0;
5909 attr.form = DW_FORM_ref_addr;
5910 attr.u.unsnd = pdi->offset.sect_off;
5911 die = follow_die_ref (NULL, &attr, &ref_cu);
5912
5913 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5914 }
5915 }
5916
5917 parent_scope = partial_die_parent_scope (pdi, cu);
5918 if (parent_scope == NULL)
5919 return NULL;
5920 else
5921 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5922 }
5923
5924 static void
5925 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5926 {
5927 struct objfile *objfile = cu->objfile;
5928 CORE_ADDR addr = 0;
5929 const char *actual_name = NULL;
5930 CORE_ADDR baseaddr;
5931 char *built_actual_name;
5932
5933 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5934
5935 built_actual_name = partial_die_full_name (pdi, cu);
5936 if (built_actual_name != NULL)
5937 actual_name = built_actual_name;
5938
5939 if (actual_name == NULL)
5940 actual_name = pdi->name;
5941
5942 switch (pdi->tag)
5943 {
5944 case DW_TAG_subprogram:
5945 if (pdi->is_external || cu->language == language_ada)
5946 {
5947 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5948 of the global scope. But in Ada, we want to be able to access
5949 nested procedures globally. So all Ada subprograms are stored
5950 in the global scope. */
5951 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5952 mst_text, objfile); */
5953 add_psymbol_to_list (actual_name, strlen (actual_name),
5954 built_actual_name != NULL,
5955 VAR_DOMAIN, LOC_BLOCK,
5956 &objfile->global_psymbols,
5957 0, pdi->lowpc + baseaddr,
5958 cu->language, objfile);
5959 }
5960 else
5961 {
5962 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5963 mst_file_text, objfile); */
5964 add_psymbol_to_list (actual_name, strlen (actual_name),
5965 built_actual_name != NULL,
5966 VAR_DOMAIN, LOC_BLOCK,
5967 &objfile->static_psymbols,
5968 0, pdi->lowpc + baseaddr,
5969 cu->language, objfile);
5970 }
5971 break;
5972 case DW_TAG_constant:
5973 {
5974 struct psymbol_allocation_list *list;
5975
5976 if (pdi->is_external)
5977 list = &objfile->global_psymbols;
5978 else
5979 list = &objfile->static_psymbols;
5980 add_psymbol_to_list (actual_name, strlen (actual_name),
5981 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5982 list, 0, 0, cu->language, objfile);
5983 }
5984 break;
5985 case DW_TAG_variable:
5986 if (pdi->d.locdesc)
5987 addr = decode_locdesc (pdi->d.locdesc, cu);
5988
5989 if (pdi->d.locdesc
5990 && addr == 0
5991 && !dwarf2_per_objfile->has_section_at_zero)
5992 {
5993 /* A global or static variable may also have been stripped
5994 out by the linker if unused, in which case its address
5995 will be nullified; do not add such variables into partial
5996 symbol table then. */
5997 }
5998 else if (pdi->is_external)
5999 {
6000 /* Global Variable.
6001 Don't enter into the minimal symbol tables as there is
6002 a minimal symbol table entry from the ELF symbols already.
6003 Enter into partial symbol table if it has a location
6004 descriptor or a type.
6005 If the location descriptor is missing, new_symbol will create
6006 a LOC_UNRESOLVED symbol, the address of the variable will then
6007 be determined from the minimal symbol table whenever the variable
6008 is referenced.
6009 The address for the partial symbol table entry is not
6010 used by GDB, but it comes in handy for debugging partial symbol
6011 table building. */
6012
6013 if (pdi->d.locdesc || pdi->has_type)
6014 add_psymbol_to_list (actual_name, strlen (actual_name),
6015 built_actual_name != NULL,
6016 VAR_DOMAIN, LOC_STATIC,
6017 &objfile->global_psymbols,
6018 0, addr + baseaddr,
6019 cu->language, objfile);
6020 }
6021 else
6022 {
6023 /* Static Variable. Skip symbols without location descriptors. */
6024 if (pdi->d.locdesc == NULL)
6025 {
6026 xfree (built_actual_name);
6027 return;
6028 }
6029 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6030 mst_file_data, objfile); */
6031 add_psymbol_to_list (actual_name, strlen (actual_name),
6032 built_actual_name != NULL,
6033 VAR_DOMAIN, LOC_STATIC,
6034 &objfile->static_psymbols,
6035 0, addr + baseaddr,
6036 cu->language, objfile);
6037 }
6038 break;
6039 case DW_TAG_typedef:
6040 case DW_TAG_base_type:
6041 case DW_TAG_subrange_type:
6042 add_psymbol_to_list (actual_name, strlen (actual_name),
6043 built_actual_name != NULL,
6044 VAR_DOMAIN, LOC_TYPEDEF,
6045 &objfile->static_psymbols,
6046 0, (CORE_ADDR) 0, cu->language, objfile);
6047 break;
6048 case DW_TAG_namespace:
6049 add_psymbol_to_list (actual_name, strlen (actual_name),
6050 built_actual_name != NULL,
6051 VAR_DOMAIN, LOC_TYPEDEF,
6052 &objfile->global_psymbols,
6053 0, (CORE_ADDR) 0, cu->language, objfile);
6054 break;
6055 case DW_TAG_class_type:
6056 case DW_TAG_interface_type:
6057 case DW_TAG_structure_type:
6058 case DW_TAG_union_type:
6059 case DW_TAG_enumeration_type:
6060 /* Skip external references. The DWARF standard says in the section
6061 about "Structure, Union, and Class Type Entries": "An incomplete
6062 structure, union or class type is represented by a structure,
6063 union or class entry that does not have a byte size attribute
6064 and that has a DW_AT_declaration attribute." */
6065 if (!pdi->has_byte_size && pdi->is_declaration)
6066 {
6067 xfree (built_actual_name);
6068 return;
6069 }
6070
6071 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6072 static vs. global. */
6073 add_psymbol_to_list (actual_name, strlen (actual_name),
6074 built_actual_name != NULL,
6075 STRUCT_DOMAIN, LOC_TYPEDEF,
6076 (cu->language == language_cplus
6077 || cu->language == language_java)
6078 ? &objfile->global_psymbols
6079 : &objfile->static_psymbols,
6080 0, (CORE_ADDR) 0, cu->language, objfile);
6081
6082 break;
6083 case DW_TAG_enumerator:
6084 add_psymbol_to_list (actual_name, strlen (actual_name),
6085 built_actual_name != NULL,
6086 VAR_DOMAIN, LOC_CONST,
6087 (cu->language == language_cplus
6088 || cu->language == language_java)
6089 ? &objfile->global_psymbols
6090 : &objfile->static_psymbols,
6091 0, (CORE_ADDR) 0, cu->language, objfile);
6092 break;
6093 default:
6094 break;
6095 }
6096
6097 xfree (built_actual_name);
6098 }
6099
6100 /* Read a partial die corresponding to a namespace; also, add a symbol
6101 corresponding to that namespace to the symbol table. NAMESPACE is
6102 the name of the enclosing namespace. */
6103
6104 static void
6105 add_partial_namespace (struct partial_die_info *pdi,
6106 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6107 int need_pc, struct dwarf2_cu *cu)
6108 {
6109 /* Add a symbol for the namespace. */
6110
6111 add_partial_symbol (pdi, cu);
6112
6113 /* Now scan partial symbols in that namespace. */
6114
6115 if (pdi->has_children)
6116 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6117 }
6118
6119 /* Read a partial die corresponding to a Fortran module. */
6120
6121 static void
6122 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6123 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6124 {
6125 /* Now scan partial symbols in that module. */
6126
6127 if (pdi->has_children)
6128 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6129 }
6130
6131 /* Read a partial die corresponding to a subprogram and create a partial
6132 symbol for that subprogram. When the CU language allows it, this
6133 routine also defines a partial symbol for each nested subprogram
6134 that this subprogram contains.
6135
6136 DIE my also be a lexical block, in which case we simply search
6137 recursively for suprograms defined inside that lexical block.
6138 Again, this is only performed when the CU language allows this
6139 type of definitions. */
6140
6141 static void
6142 add_partial_subprogram (struct partial_die_info *pdi,
6143 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6144 int need_pc, struct dwarf2_cu *cu)
6145 {
6146 if (pdi->tag == DW_TAG_subprogram)
6147 {
6148 if (pdi->has_pc_info)
6149 {
6150 if (pdi->lowpc < *lowpc)
6151 *lowpc = pdi->lowpc;
6152 if (pdi->highpc > *highpc)
6153 *highpc = pdi->highpc;
6154 if (need_pc)
6155 {
6156 CORE_ADDR baseaddr;
6157 struct objfile *objfile = cu->objfile;
6158
6159 baseaddr = ANOFFSET (objfile->section_offsets,
6160 SECT_OFF_TEXT (objfile));
6161 addrmap_set_empty (objfile->psymtabs_addrmap,
6162 pdi->lowpc + baseaddr,
6163 pdi->highpc - 1 + baseaddr,
6164 cu->per_cu->v.psymtab);
6165 }
6166 }
6167
6168 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6169 {
6170 if (!pdi->is_declaration)
6171 /* Ignore subprogram DIEs that do not have a name, they are
6172 illegal. Do not emit a complaint at this point, we will
6173 do so when we convert this psymtab into a symtab. */
6174 if (pdi->name)
6175 add_partial_symbol (pdi, cu);
6176 }
6177 }
6178
6179 if (! pdi->has_children)
6180 return;
6181
6182 if (cu->language == language_ada)
6183 {
6184 pdi = pdi->die_child;
6185 while (pdi != NULL)
6186 {
6187 fixup_partial_die (pdi, cu);
6188 if (pdi->tag == DW_TAG_subprogram
6189 || pdi->tag == DW_TAG_lexical_block)
6190 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6191 pdi = pdi->die_sibling;
6192 }
6193 }
6194 }
6195
6196 /* Read a partial die corresponding to an enumeration type. */
6197
6198 static void
6199 add_partial_enumeration (struct partial_die_info *enum_pdi,
6200 struct dwarf2_cu *cu)
6201 {
6202 struct partial_die_info *pdi;
6203
6204 if (enum_pdi->name != NULL)
6205 add_partial_symbol (enum_pdi, cu);
6206
6207 pdi = enum_pdi->die_child;
6208 while (pdi)
6209 {
6210 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6211 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6212 else
6213 add_partial_symbol (pdi, cu);
6214 pdi = pdi->die_sibling;
6215 }
6216 }
6217
6218 /* Return the initial uleb128 in the die at INFO_PTR. */
6219
6220 static unsigned int
6221 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6222 {
6223 unsigned int bytes_read;
6224
6225 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6226 }
6227
6228 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6229 Return the corresponding abbrev, or NULL if the number is zero (indicating
6230 an empty DIE). In either case *BYTES_READ will be set to the length of
6231 the initial number. */
6232
6233 static struct abbrev_info *
6234 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6235 struct dwarf2_cu *cu)
6236 {
6237 bfd *abfd = cu->objfile->obfd;
6238 unsigned int abbrev_number;
6239 struct abbrev_info *abbrev;
6240
6241 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6242
6243 if (abbrev_number == 0)
6244 return NULL;
6245
6246 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6247 if (!abbrev)
6248 {
6249 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6250 abbrev_number, bfd_get_filename (abfd));
6251 }
6252
6253 return abbrev;
6254 }
6255
6256 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6257 Returns a pointer to the end of a series of DIEs, terminated by an empty
6258 DIE. Any children of the skipped DIEs will also be skipped. */
6259
6260 static gdb_byte *
6261 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6262 {
6263 struct dwarf2_cu *cu = reader->cu;
6264 struct abbrev_info *abbrev;
6265 unsigned int bytes_read;
6266
6267 while (1)
6268 {
6269 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6270 if (abbrev == NULL)
6271 return info_ptr + bytes_read;
6272 else
6273 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6274 }
6275 }
6276
6277 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6278 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6279 abbrev corresponding to that skipped uleb128 should be passed in
6280 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6281 children. */
6282
6283 static gdb_byte *
6284 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6285 struct abbrev_info *abbrev)
6286 {
6287 unsigned int bytes_read;
6288 struct attribute attr;
6289 bfd *abfd = reader->abfd;
6290 struct dwarf2_cu *cu = reader->cu;
6291 gdb_byte *buffer = reader->buffer;
6292 const gdb_byte *buffer_end = reader->buffer_end;
6293 gdb_byte *start_info_ptr = info_ptr;
6294 unsigned int form, i;
6295
6296 for (i = 0; i < abbrev->num_attrs; i++)
6297 {
6298 /* The only abbrev we care about is DW_AT_sibling. */
6299 if (abbrev->attrs[i].name == DW_AT_sibling)
6300 {
6301 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6302 if (attr.form == DW_FORM_ref_addr)
6303 complaint (&symfile_complaints,
6304 _("ignoring absolute DW_AT_sibling"));
6305 else
6306 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6307 }
6308
6309 /* If it isn't DW_AT_sibling, skip this attribute. */
6310 form = abbrev->attrs[i].form;
6311 skip_attribute:
6312 switch (form)
6313 {
6314 case DW_FORM_ref_addr:
6315 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6316 and later it is offset sized. */
6317 if (cu->header.version == 2)
6318 info_ptr += cu->header.addr_size;
6319 else
6320 info_ptr += cu->header.offset_size;
6321 break;
6322 case DW_FORM_GNU_ref_alt:
6323 info_ptr += cu->header.offset_size;
6324 break;
6325 case DW_FORM_addr:
6326 info_ptr += cu->header.addr_size;
6327 break;
6328 case DW_FORM_data1:
6329 case DW_FORM_ref1:
6330 case DW_FORM_flag:
6331 info_ptr += 1;
6332 break;
6333 case DW_FORM_flag_present:
6334 break;
6335 case DW_FORM_data2:
6336 case DW_FORM_ref2:
6337 info_ptr += 2;
6338 break;
6339 case DW_FORM_data4:
6340 case DW_FORM_ref4:
6341 info_ptr += 4;
6342 break;
6343 case DW_FORM_data8:
6344 case DW_FORM_ref8:
6345 case DW_FORM_ref_sig8:
6346 info_ptr += 8;
6347 break;
6348 case DW_FORM_string:
6349 read_direct_string (abfd, info_ptr, &bytes_read);
6350 info_ptr += bytes_read;
6351 break;
6352 case DW_FORM_sec_offset:
6353 case DW_FORM_strp:
6354 case DW_FORM_GNU_strp_alt:
6355 info_ptr += cu->header.offset_size;
6356 break;
6357 case DW_FORM_exprloc:
6358 case DW_FORM_block:
6359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6360 info_ptr += bytes_read;
6361 break;
6362 case DW_FORM_block1:
6363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6364 break;
6365 case DW_FORM_block2:
6366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6367 break;
6368 case DW_FORM_block4:
6369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6370 break;
6371 case DW_FORM_sdata:
6372 case DW_FORM_udata:
6373 case DW_FORM_ref_udata:
6374 case DW_FORM_GNU_addr_index:
6375 case DW_FORM_GNU_str_index:
6376 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6377 break;
6378 case DW_FORM_indirect:
6379 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6380 info_ptr += bytes_read;
6381 /* We need to continue parsing from here, so just go back to
6382 the top. */
6383 goto skip_attribute;
6384
6385 default:
6386 error (_("Dwarf Error: Cannot handle %s "
6387 "in DWARF reader [in module %s]"),
6388 dwarf_form_name (form),
6389 bfd_get_filename (abfd));
6390 }
6391 }
6392
6393 if (abbrev->has_children)
6394 return skip_children (reader, info_ptr);
6395 else
6396 return info_ptr;
6397 }
6398
6399 /* Locate ORIG_PDI's sibling.
6400 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6401
6402 static gdb_byte *
6403 locate_pdi_sibling (const struct die_reader_specs *reader,
6404 struct partial_die_info *orig_pdi,
6405 gdb_byte *info_ptr)
6406 {
6407 /* Do we know the sibling already? */
6408
6409 if (orig_pdi->sibling)
6410 return orig_pdi->sibling;
6411
6412 /* Are there any children to deal with? */
6413
6414 if (!orig_pdi->has_children)
6415 return info_ptr;
6416
6417 /* Skip the children the long way. */
6418
6419 return skip_children (reader, info_ptr);
6420 }
6421
6422 /* Expand this partial symbol table into a full symbol table. SELF is
6423 not NULL. */
6424
6425 static void
6426 dwarf2_read_symtab (struct partial_symtab *self,
6427 struct objfile *objfile)
6428 {
6429 if (self->readin)
6430 {
6431 warning (_("bug: psymtab for %s is already read in."),
6432 self->filename);
6433 }
6434 else
6435 {
6436 if (info_verbose)
6437 {
6438 printf_filtered (_("Reading in symbols for %s..."),
6439 self->filename);
6440 gdb_flush (gdb_stdout);
6441 }
6442
6443 /* Restore our global data. */
6444 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6445
6446 /* If this psymtab is constructed from a debug-only objfile, the
6447 has_section_at_zero flag will not necessarily be correct. We
6448 can get the correct value for this flag by looking at the data
6449 associated with the (presumably stripped) associated objfile. */
6450 if (objfile->separate_debug_objfile_backlink)
6451 {
6452 struct dwarf2_per_objfile *dpo_backlink
6453 = objfile_data (objfile->separate_debug_objfile_backlink,
6454 dwarf2_objfile_data_key);
6455
6456 dwarf2_per_objfile->has_section_at_zero
6457 = dpo_backlink->has_section_at_zero;
6458 }
6459
6460 dwarf2_per_objfile->reading_partial_symbols = 0;
6461
6462 psymtab_to_symtab_1 (self);
6463
6464 /* Finish up the debug error message. */
6465 if (info_verbose)
6466 printf_filtered (_("done.\n"));
6467 }
6468
6469 process_cu_includes ();
6470 }
6471 \f
6472 /* Reading in full CUs. */
6473
6474 /* Add PER_CU to the queue. */
6475
6476 static void
6477 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6478 enum language pretend_language)
6479 {
6480 struct dwarf2_queue_item *item;
6481
6482 per_cu->queued = 1;
6483 item = xmalloc (sizeof (*item));
6484 item->per_cu = per_cu;
6485 item->pretend_language = pretend_language;
6486 item->next = NULL;
6487
6488 if (dwarf2_queue == NULL)
6489 dwarf2_queue = item;
6490 else
6491 dwarf2_queue_tail->next = item;
6492
6493 dwarf2_queue_tail = item;
6494 }
6495
6496 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6497 unit and add it to our queue.
6498 The result is non-zero if PER_CU was queued, otherwise the result is zero
6499 meaning either PER_CU is already queued or it is already loaded. */
6500
6501 static int
6502 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6503 struct dwarf2_per_cu_data *per_cu,
6504 enum language pretend_language)
6505 {
6506 /* We may arrive here during partial symbol reading, if we need full
6507 DIEs to process an unusual case (e.g. template arguments). Do
6508 not queue PER_CU, just tell our caller to load its DIEs. */
6509 if (dwarf2_per_objfile->reading_partial_symbols)
6510 {
6511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6512 return 1;
6513 return 0;
6514 }
6515
6516 /* Mark the dependence relation so that we don't flush PER_CU
6517 too early. */
6518 dwarf2_add_dependence (this_cu, per_cu);
6519
6520 /* If it's already on the queue, we have nothing to do. */
6521 if (per_cu->queued)
6522 return 0;
6523
6524 /* If the compilation unit is already loaded, just mark it as
6525 used. */
6526 if (per_cu->cu != NULL)
6527 {
6528 per_cu->cu->last_used = 0;
6529 return 0;
6530 }
6531
6532 /* Add it to the queue. */
6533 queue_comp_unit (per_cu, pretend_language);
6534
6535 return 1;
6536 }
6537
6538 /* Process the queue. */
6539
6540 static void
6541 process_queue (void)
6542 {
6543 struct dwarf2_queue_item *item, *next_item;
6544
6545 if (dwarf2_read_debug)
6546 {
6547 fprintf_unfiltered (gdb_stdlog,
6548 "Expanding one or more symtabs of objfile %s ...\n",
6549 dwarf2_per_objfile->objfile->name);
6550 }
6551
6552 /* The queue starts out with one item, but following a DIE reference
6553 may load a new CU, adding it to the end of the queue. */
6554 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6555 {
6556 if (dwarf2_per_objfile->using_index
6557 ? !item->per_cu->v.quick->symtab
6558 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6559 {
6560 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6561
6562 if (dwarf2_read_debug)
6563 {
6564 fprintf_unfiltered (gdb_stdlog,
6565 "Expanding symtab of %s at offset 0x%x\n",
6566 per_cu->is_debug_types ? "TU" : "CU",
6567 per_cu->offset.sect_off);
6568 }
6569
6570 if (per_cu->is_debug_types)
6571 process_full_type_unit (per_cu, item->pretend_language);
6572 else
6573 process_full_comp_unit (per_cu, item->pretend_language);
6574
6575 if (dwarf2_read_debug)
6576 {
6577 fprintf_unfiltered (gdb_stdlog,
6578 "Done expanding %s at offset 0x%x\n",
6579 per_cu->is_debug_types ? "TU" : "CU",
6580 per_cu->offset.sect_off);
6581 }
6582 }
6583
6584 item->per_cu->queued = 0;
6585 next_item = item->next;
6586 xfree (item);
6587 }
6588
6589 dwarf2_queue_tail = NULL;
6590
6591 if (dwarf2_read_debug)
6592 {
6593 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6594 dwarf2_per_objfile->objfile->name);
6595 }
6596 }
6597
6598 /* Free all allocated queue entries. This function only releases anything if
6599 an error was thrown; if the queue was processed then it would have been
6600 freed as we went along. */
6601
6602 static void
6603 dwarf2_release_queue (void *dummy)
6604 {
6605 struct dwarf2_queue_item *item, *last;
6606
6607 item = dwarf2_queue;
6608 while (item)
6609 {
6610 /* Anything still marked queued is likely to be in an
6611 inconsistent state, so discard it. */
6612 if (item->per_cu->queued)
6613 {
6614 if (item->per_cu->cu != NULL)
6615 free_one_cached_comp_unit (item->per_cu);
6616 item->per_cu->queued = 0;
6617 }
6618
6619 last = item;
6620 item = item->next;
6621 xfree (last);
6622 }
6623
6624 dwarf2_queue = dwarf2_queue_tail = NULL;
6625 }
6626
6627 /* Read in full symbols for PST, and anything it depends on. */
6628
6629 static void
6630 psymtab_to_symtab_1 (struct partial_symtab *pst)
6631 {
6632 struct dwarf2_per_cu_data *per_cu;
6633 int i;
6634
6635 if (pst->readin)
6636 return;
6637
6638 for (i = 0; i < pst->number_of_dependencies; i++)
6639 if (!pst->dependencies[i]->readin
6640 && pst->dependencies[i]->user == NULL)
6641 {
6642 /* Inform about additional files that need to be read in. */
6643 if (info_verbose)
6644 {
6645 /* FIXME: i18n: Need to make this a single string. */
6646 fputs_filtered (" ", gdb_stdout);
6647 wrap_here ("");
6648 fputs_filtered ("and ", gdb_stdout);
6649 wrap_here ("");
6650 printf_filtered ("%s...", pst->dependencies[i]->filename);
6651 wrap_here (""); /* Flush output. */
6652 gdb_flush (gdb_stdout);
6653 }
6654 psymtab_to_symtab_1 (pst->dependencies[i]);
6655 }
6656
6657 per_cu = pst->read_symtab_private;
6658
6659 if (per_cu == NULL)
6660 {
6661 /* It's an include file, no symbols to read for it.
6662 Everything is in the parent symtab. */
6663 pst->readin = 1;
6664 return;
6665 }
6666
6667 dw2_do_instantiate_symtab (per_cu);
6668 }
6669
6670 /* Trivial hash function for die_info: the hash value of a DIE
6671 is its offset in .debug_info for this objfile. */
6672
6673 static hashval_t
6674 die_hash (const void *item)
6675 {
6676 const struct die_info *die = item;
6677
6678 return die->offset.sect_off;
6679 }
6680
6681 /* Trivial comparison function for die_info structures: two DIEs
6682 are equal if they have the same offset. */
6683
6684 static int
6685 die_eq (const void *item_lhs, const void *item_rhs)
6686 {
6687 const struct die_info *die_lhs = item_lhs;
6688 const struct die_info *die_rhs = item_rhs;
6689
6690 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6691 }
6692
6693 /* die_reader_func for load_full_comp_unit.
6694 This is identical to read_signatured_type_reader,
6695 but is kept separate for now. */
6696
6697 static void
6698 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6699 gdb_byte *info_ptr,
6700 struct die_info *comp_unit_die,
6701 int has_children,
6702 void *data)
6703 {
6704 struct dwarf2_cu *cu = reader->cu;
6705 enum language *language_ptr = data;
6706
6707 gdb_assert (cu->die_hash == NULL);
6708 cu->die_hash =
6709 htab_create_alloc_ex (cu->header.length / 12,
6710 die_hash,
6711 die_eq,
6712 NULL,
6713 &cu->comp_unit_obstack,
6714 hashtab_obstack_allocate,
6715 dummy_obstack_deallocate);
6716
6717 if (has_children)
6718 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6719 &info_ptr, comp_unit_die);
6720 cu->dies = comp_unit_die;
6721 /* comp_unit_die is not stored in die_hash, no need. */
6722
6723 /* We try not to read any attributes in this function, because not
6724 all CUs needed for references have been loaded yet, and symbol
6725 table processing isn't initialized. But we have to set the CU language,
6726 or we won't be able to build types correctly.
6727 Similarly, if we do not read the producer, we can not apply
6728 producer-specific interpretation. */
6729 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6730 }
6731
6732 /* Load the DIEs associated with PER_CU into memory. */
6733
6734 static void
6735 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6736 enum language pretend_language)
6737 {
6738 gdb_assert (! this_cu->is_debug_types);
6739
6740 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6741 load_full_comp_unit_reader, &pretend_language);
6742 }
6743
6744 /* Add a DIE to the delayed physname list. */
6745
6746 static void
6747 add_to_method_list (struct type *type, int fnfield_index, int index,
6748 const char *name, struct die_info *die,
6749 struct dwarf2_cu *cu)
6750 {
6751 struct delayed_method_info mi;
6752 mi.type = type;
6753 mi.fnfield_index = fnfield_index;
6754 mi.index = index;
6755 mi.name = name;
6756 mi.die = die;
6757 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6758 }
6759
6760 /* A cleanup for freeing the delayed method list. */
6761
6762 static void
6763 free_delayed_list (void *ptr)
6764 {
6765 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6766 if (cu->method_list != NULL)
6767 {
6768 VEC_free (delayed_method_info, cu->method_list);
6769 cu->method_list = NULL;
6770 }
6771 }
6772
6773 /* Compute the physnames of any methods on the CU's method list.
6774
6775 The computation of method physnames is delayed in order to avoid the
6776 (bad) condition that one of the method's formal parameters is of an as yet
6777 incomplete type. */
6778
6779 static void
6780 compute_delayed_physnames (struct dwarf2_cu *cu)
6781 {
6782 int i;
6783 struct delayed_method_info *mi;
6784 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6785 {
6786 const char *physname;
6787 struct fn_fieldlist *fn_flp
6788 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6789 physname = dwarf2_physname (mi->name, mi->die, cu);
6790 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6791 }
6792 }
6793
6794 /* Go objects should be embedded in a DW_TAG_module DIE,
6795 and it's not clear if/how imported objects will appear.
6796 To keep Go support simple until that's worked out,
6797 go back through what we've read and create something usable.
6798 We could do this while processing each DIE, and feels kinda cleaner,
6799 but that way is more invasive.
6800 This is to, for example, allow the user to type "p var" or "b main"
6801 without having to specify the package name, and allow lookups
6802 of module.object to work in contexts that use the expression
6803 parser. */
6804
6805 static void
6806 fixup_go_packaging (struct dwarf2_cu *cu)
6807 {
6808 char *package_name = NULL;
6809 struct pending *list;
6810 int i;
6811
6812 for (list = global_symbols; list != NULL; list = list->next)
6813 {
6814 for (i = 0; i < list->nsyms; ++i)
6815 {
6816 struct symbol *sym = list->symbol[i];
6817
6818 if (SYMBOL_LANGUAGE (sym) == language_go
6819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6820 {
6821 char *this_package_name = go_symbol_package_name (sym);
6822
6823 if (this_package_name == NULL)
6824 continue;
6825 if (package_name == NULL)
6826 package_name = this_package_name;
6827 else
6828 {
6829 if (strcmp (package_name, this_package_name) != 0)
6830 complaint (&symfile_complaints,
6831 _("Symtab %s has objects from two different Go packages: %s and %s"),
6832 (SYMBOL_SYMTAB (sym)
6833 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6834 : cu->objfile->name),
6835 this_package_name, package_name);
6836 xfree (this_package_name);
6837 }
6838 }
6839 }
6840 }
6841
6842 if (package_name != NULL)
6843 {
6844 struct objfile *objfile = cu->objfile;
6845 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6846 package_name,
6847 strlen (package_name));
6848 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6849 saved_package_name, objfile);
6850 struct symbol *sym;
6851
6852 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6853
6854 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6855 SYMBOL_SET_LANGUAGE (sym, language_go);
6856 SYMBOL_SET_NAMES (sym, saved_package_name,
6857 strlen (saved_package_name), 0, objfile);
6858 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6859 e.g., "main" finds the "main" module and not C's main(). */
6860 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6861 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6862 SYMBOL_TYPE (sym) = type;
6863
6864 add_symbol_to_list (sym, &global_symbols);
6865
6866 xfree (package_name);
6867 }
6868 }
6869
6870 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6871
6872 /* Return the symtab for PER_CU. This works properly regardless of
6873 whether we're using the index or psymtabs. */
6874
6875 static struct symtab *
6876 get_symtab (struct dwarf2_per_cu_data *per_cu)
6877 {
6878 return (dwarf2_per_objfile->using_index
6879 ? per_cu->v.quick->symtab
6880 : per_cu->v.psymtab->symtab);
6881 }
6882
6883 /* A helper function for computing the list of all symbol tables
6884 included by PER_CU. */
6885
6886 static void
6887 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6888 htab_t all_children,
6889 struct dwarf2_per_cu_data *per_cu)
6890 {
6891 void **slot;
6892 int ix;
6893 struct dwarf2_per_cu_data *iter;
6894
6895 slot = htab_find_slot (all_children, per_cu, INSERT);
6896 if (*slot != NULL)
6897 {
6898 /* This inclusion and its children have been processed. */
6899 return;
6900 }
6901
6902 *slot = per_cu;
6903 /* Only add a CU if it has a symbol table. */
6904 if (get_symtab (per_cu) != NULL)
6905 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6906
6907 for (ix = 0;
6908 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6909 ++ix)
6910 recursively_compute_inclusions (result, all_children, iter);
6911 }
6912
6913 /* Compute the symtab 'includes' fields for the symtab related to
6914 PER_CU. */
6915
6916 static void
6917 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6918 {
6919 gdb_assert (! per_cu->is_debug_types);
6920
6921 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6922 {
6923 int ix, len;
6924 struct dwarf2_per_cu_data *iter;
6925 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6926 htab_t all_children;
6927 struct symtab *symtab = get_symtab (per_cu);
6928
6929 /* If we don't have a symtab, we can just skip this case. */
6930 if (symtab == NULL)
6931 return;
6932
6933 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6934 NULL, xcalloc, xfree);
6935
6936 for (ix = 0;
6937 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6938 ix, iter);
6939 ++ix)
6940 recursively_compute_inclusions (&result_children, all_children, iter);
6941
6942 /* Now we have a transitive closure of all the included CUs, and
6943 for .gdb_index version 7 the included TUs, so we can convert it
6944 to a list of symtabs. */
6945 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6946 symtab->includes
6947 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6948 (len + 1) * sizeof (struct symtab *));
6949 for (ix = 0;
6950 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6951 ++ix)
6952 symtab->includes[ix] = get_symtab (iter);
6953 symtab->includes[len] = NULL;
6954
6955 VEC_free (dwarf2_per_cu_ptr, result_children);
6956 htab_delete (all_children);
6957 }
6958 }
6959
6960 /* Compute the 'includes' field for the symtabs of all the CUs we just
6961 read. */
6962
6963 static void
6964 process_cu_includes (void)
6965 {
6966 int ix;
6967 struct dwarf2_per_cu_data *iter;
6968
6969 for (ix = 0;
6970 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6971 ix, iter);
6972 ++ix)
6973 {
6974 if (! iter->is_debug_types)
6975 compute_symtab_includes (iter);
6976 }
6977
6978 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6979 }
6980
6981 /* Generate full symbol information for PER_CU, whose DIEs have
6982 already been loaded into memory. */
6983
6984 static void
6985 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6986 enum language pretend_language)
6987 {
6988 struct dwarf2_cu *cu = per_cu->cu;
6989 struct objfile *objfile = per_cu->objfile;
6990 CORE_ADDR lowpc, highpc;
6991 struct symtab *symtab;
6992 struct cleanup *back_to, *delayed_list_cleanup;
6993 CORE_ADDR baseaddr;
6994 struct block *static_block;
6995
6996 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6997
6998 buildsym_init ();
6999 back_to = make_cleanup (really_free_pendings, NULL);
7000 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7001
7002 cu->list_in_scope = &file_symbols;
7003
7004 cu->language = pretend_language;
7005 cu->language_defn = language_def (cu->language);
7006
7007 /* Do line number decoding in read_file_scope () */
7008 process_die (cu->dies, cu);
7009
7010 /* For now fudge the Go package. */
7011 if (cu->language == language_go)
7012 fixup_go_packaging (cu);
7013
7014 /* Now that we have processed all the DIEs in the CU, all the types
7015 should be complete, and it should now be safe to compute all of the
7016 physnames. */
7017 compute_delayed_physnames (cu);
7018 do_cleanups (delayed_list_cleanup);
7019
7020 /* Some compilers don't define a DW_AT_high_pc attribute for the
7021 compilation unit. If the DW_AT_high_pc is missing, synthesize
7022 it, by scanning the DIE's below the compilation unit. */
7023 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7024
7025 static_block
7026 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7027 per_cu->imported_symtabs != NULL);
7028
7029 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7030 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7031 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7032 addrmap to help ensure it has an accurate map of pc values belonging to
7033 this comp unit. */
7034 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7035
7036 symtab = end_symtab_from_static_block (static_block, objfile,
7037 SECT_OFF_TEXT (objfile), 0);
7038
7039 if (symtab != NULL)
7040 {
7041 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7042
7043 /* Set symtab language to language from DW_AT_language. If the
7044 compilation is from a C file generated by language preprocessors, do
7045 not set the language if it was already deduced by start_subfile. */
7046 if (!(cu->language == language_c && symtab->language != language_c))
7047 symtab->language = cu->language;
7048
7049 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7050 produce DW_AT_location with location lists but it can be possibly
7051 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7052 there were bugs in prologue debug info, fixed later in GCC-4.5
7053 by "unwind info for epilogues" patch (which is not directly related).
7054
7055 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7056 needed, it would be wrong due to missing DW_AT_producer there.
7057
7058 Still one can confuse GDB by using non-standard GCC compilation
7059 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7060 */
7061 if (cu->has_loclist && gcc_4_minor >= 5)
7062 symtab->locations_valid = 1;
7063
7064 if (gcc_4_minor >= 5)
7065 symtab->epilogue_unwind_valid = 1;
7066
7067 symtab->call_site_htab = cu->call_site_htab;
7068 }
7069
7070 if (dwarf2_per_objfile->using_index)
7071 per_cu->v.quick->symtab = symtab;
7072 else
7073 {
7074 struct partial_symtab *pst = per_cu->v.psymtab;
7075 pst->symtab = symtab;
7076 pst->readin = 1;
7077 }
7078
7079 /* Push it for inclusion processing later. */
7080 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7081
7082 do_cleanups (back_to);
7083 }
7084
7085 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7086 already been loaded into memory. */
7087
7088 static void
7089 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7090 enum language pretend_language)
7091 {
7092 struct dwarf2_cu *cu = per_cu->cu;
7093 struct objfile *objfile = per_cu->objfile;
7094 struct symtab *symtab;
7095 struct cleanup *back_to, *delayed_list_cleanup;
7096
7097 buildsym_init ();
7098 back_to = make_cleanup (really_free_pendings, NULL);
7099 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7100
7101 cu->list_in_scope = &file_symbols;
7102
7103 cu->language = pretend_language;
7104 cu->language_defn = language_def (cu->language);
7105
7106 /* The symbol tables are set up in read_type_unit_scope. */
7107 process_die (cu->dies, cu);
7108
7109 /* For now fudge the Go package. */
7110 if (cu->language == language_go)
7111 fixup_go_packaging (cu);
7112
7113 /* Now that we have processed all the DIEs in the CU, all the types
7114 should be complete, and it should now be safe to compute all of the
7115 physnames. */
7116 compute_delayed_physnames (cu);
7117 do_cleanups (delayed_list_cleanup);
7118
7119 /* TUs share symbol tables.
7120 If this is the first TU to use this symtab, complete the construction
7121 of it with end_expandable_symtab. Otherwise, complete the addition of
7122 this TU's symbols to the existing symtab. */
7123 if (per_cu->type_unit_group->primary_symtab == NULL)
7124 {
7125 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7126 per_cu->type_unit_group->primary_symtab = symtab;
7127
7128 if (symtab != NULL)
7129 {
7130 /* Set symtab language to language from DW_AT_language. If the
7131 compilation is from a C file generated by language preprocessors,
7132 do not set the language if it was already deduced by
7133 start_subfile. */
7134 if (!(cu->language == language_c && symtab->language != language_c))
7135 symtab->language = cu->language;
7136 }
7137 }
7138 else
7139 {
7140 augment_type_symtab (objfile,
7141 per_cu->type_unit_group->primary_symtab);
7142 symtab = per_cu->type_unit_group->primary_symtab;
7143 }
7144
7145 if (dwarf2_per_objfile->using_index)
7146 per_cu->v.quick->symtab = symtab;
7147 else
7148 {
7149 struct partial_symtab *pst = per_cu->v.psymtab;
7150 pst->symtab = symtab;
7151 pst->readin = 1;
7152 }
7153
7154 do_cleanups (back_to);
7155 }
7156
7157 /* Process an imported unit DIE. */
7158
7159 static void
7160 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7161 {
7162 struct attribute *attr;
7163
7164 /* For now we don't handle imported units in type units. */
7165 if (cu->per_cu->is_debug_types)
7166 {
7167 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7168 " supported in type units [in module %s]"),
7169 cu->objfile->name);
7170 }
7171
7172 attr = dwarf2_attr (die, DW_AT_import, cu);
7173 if (attr != NULL)
7174 {
7175 struct dwarf2_per_cu_data *per_cu;
7176 struct symtab *imported_symtab;
7177 sect_offset offset;
7178 int is_dwz;
7179
7180 offset = dwarf2_get_ref_die_offset (attr);
7181 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7182 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7183
7184 /* Queue the unit, if needed. */
7185 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7186 load_full_comp_unit (per_cu, cu->language);
7187
7188 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7189 per_cu);
7190 }
7191 }
7192
7193 /* Process a die and its children. */
7194
7195 static void
7196 process_die (struct die_info *die, struct dwarf2_cu *cu)
7197 {
7198 switch (die->tag)
7199 {
7200 case DW_TAG_padding:
7201 break;
7202 case DW_TAG_compile_unit:
7203 case DW_TAG_partial_unit:
7204 read_file_scope (die, cu);
7205 break;
7206 case DW_TAG_type_unit:
7207 read_type_unit_scope (die, cu);
7208 break;
7209 case DW_TAG_subprogram:
7210 case DW_TAG_inlined_subroutine:
7211 read_func_scope (die, cu);
7212 break;
7213 case DW_TAG_lexical_block:
7214 case DW_TAG_try_block:
7215 case DW_TAG_catch_block:
7216 read_lexical_block_scope (die, cu);
7217 break;
7218 case DW_TAG_GNU_call_site:
7219 read_call_site_scope (die, cu);
7220 break;
7221 case DW_TAG_class_type:
7222 case DW_TAG_interface_type:
7223 case DW_TAG_structure_type:
7224 case DW_TAG_union_type:
7225 process_structure_scope (die, cu);
7226 break;
7227 case DW_TAG_enumeration_type:
7228 process_enumeration_scope (die, cu);
7229 break;
7230
7231 /* These dies have a type, but processing them does not create
7232 a symbol or recurse to process the children. Therefore we can
7233 read them on-demand through read_type_die. */
7234 case DW_TAG_subroutine_type:
7235 case DW_TAG_set_type:
7236 case DW_TAG_array_type:
7237 case DW_TAG_pointer_type:
7238 case DW_TAG_ptr_to_member_type:
7239 case DW_TAG_reference_type:
7240 case DW_TAG_string_type:
7241 break;
7242
7243 case DW_TAG_base_type:
7244 case DW_TAG_subrange_type:
7245 case DW_TAG_typedef:
7246 /* Add a typedef symbol for the type definition, if it has a
7247 DW_AT_name. */
7248 new_symbol (die, read_type_die (die, cu), cu);
7249 break;
7250 case DW_TAG_common_block:
7251 read_common_block (die, cu);
7252 break;
7253 case DW_TAG_common_inclusion:
7254 break;
7255 case DW_TAG_namespace:
7256 cu->processing_has_namespace_info = 1;
7257 read_namespace (die, cu);
7258 break;
7259 case DW_TAG_module:
7260 cu->processing_has_namespace_info = 1;
7261 read_module (die, cu);
7262 break;
7263 case DW_TAG_imported_declaration:
7264 case DW_TAG_imported_module:
7265 cu->processing_has_namespace_info = 1;
7266 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7267 || cu->language != language_fortran))
7268 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7269 dwarf_tag_name (die->tag));
7270 read_import_statement (die, cu);
7271 break;
7272
7273 case DW_TAG_imported_unit:
7274 process_imported_unit_die (die, cu);
7275 break;
7276
7277 default:
7278 new_symbol (die, NULL, cu);
7279 break;
7280 }
7281 }
7282
7283 /* A helper function for dwarf2_compute_name which determines whether DIE
7284 needs to have the name of the scope prepended to the name listed in the
7285 die. */
7286
7287 static int
7288 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7289 {
7290 struct attribute *attr;
7291
7292 switch (die->tag)
7293 {
7294 case DW_TAG_namespace:
7295 case DW_TAG_typedef:
7296 case DW_TAG_class_type:
7297 case DW_TAG_interface_type:
7298 case DW_TAG_structure_type:
7299 case DW_TAG_union_type:
7300 case DW_TAG_enumeration_type:
7301 case DW_TAG_enumerator:
7302 case DW_TAG_subprogram:
7303 case DW_TAG_member:
7304 return 1;
7305
7306 case DW_TAG_variable:
7307 case DW_TAG_constant:
7308 /* We only need to prefix "globally" visible variables. These include
7309 any variable marked with DW_AT_external or any variable that
7310 lives in a namespace. [Variables in anonymous namespaces
7311 require prefixing, but they are not DW_AT_external.] */
7312
7313 if (dwarf2_attr (die, DW_AT_specification, cu))
7314 {
7315 struct dwarf2_cu *spec_cu = cu;
7316
7317 return die_needs_namespace (die_specification (die, &spec_cu),
7318 spec_cu);
7319 }
7320
7321 attr = dwarf2_attr (die, DW_AT_external, cu);
7322 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7323 && die->parent->tag != DW_TAG_module)
7324 return 0;
7325 /* A variable in a lexical block of some kind does not need a
7326 namespace, even though in C++ such variables may be external
7327 and have a mangled name. */
7328 if (die->parent->tag == DW_TAG_lexical_block
7329 || die->parent->tag == DW_TAG_try_block
7330 || die->parent->tag == DW_TAG_catch_block
7331 || die->parent->tag == DW_TAG_subprogram)
7332 return 0;
7333 return 1;
7334
7335 default:
7336 return 0;
7337 }
7338 }
7339
7340 /* Retrieve the last character from a mem_file. */
7341
7342 static void
7343 do_ui_file_peek_last (void *object, const char *buffer, long length)
7344 {
7345 char *last_char_p = (char *) object;
7346
7347 if (length > 0)
7348 *last_char_p = buffer[length - 1];
7349 }
7350
7351 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7352 compute the physname for the object, which include a method's:
7353 - formal parameters (C++/Java),
7354 - receiver type (Go),
7355 - return type (Java).
7356
7357 The term "physname" is a bit confusing.
7358 For C++, for example, it is the demangled name.
7359 For Go, for example, it's the mangled name.
7360
7361 For Ada, return the DIE's linkage name rather than the fully qualified
7362 name. PHYSNAME is ignored..
7363
7364 The result is allocated on the objfile_obstack and canonicalized. */
7365
7366 static const char *
7367 dwarf2_compute_name (const char *name,
7368 struct die_info *die, struct dwarf2_cu *cu,
7369 int physname)
7370 {
7371 struct objfile *objfile = cu->objfile;
7372
7373 if (name == NULL)
7374 name = dwarf2_name (die, cu);
7375
7376 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7377 compute it by typename_concat inside GDB. */
7378 if (cu->language == language_ada
7379 || (cu->language == language_fortran && physname))
7380 {
7381 /* For Ada unit, we prefer the linkage name over the name, as
7382 the former contains the exported name, which the user expects
7383 to be able to reference. Ideally, we want the user to be able
7384 to reference this entity using either natural or linkage name,
7385 but we haven't started looking at this enhancement yet. */
7386 struct attribute *attr;
7387
7388 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7389 if (attr == NULL)
7390 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7391 if (attr && DW_STRING (attr))
7392 return DW_STRING (attr);
7393 }
7394
7395 /* These are the only languages we know how to qualify names in. */
7396 if (name != NULL
7397 && (cu->language == language_cplus || cu->language == language_java
7398 || cu->language == language_fortran))
7399 {
7400 if (die_needs_namespace (die, cu))
7401 {
7402 long length;
7403 const char *prefix;
7404 struct ui_file *buf;
7405
7406 prefix = determine_prefix (die, cu);
7407 buf = mem_fileopen ();
7408 if (*prefix != '\0')
7409 {
7410 char *prefixed_name = typename_concat (NULL, prefix, name,
7411 physname, cu);
7412
7413 fputs_unfiltered (prefixed_name, buf);
7414 xfree (prefixed_name);
7415 }
7416 else
7417 fputs_unfiltered (name, buf);
7418
7419 /* Template parameters may be specified in the DIE's DW_AT_name, or
7420 as children with DW_TAG_template_type_param or
7421 DW_TAG_value_type_param. If the latter, add them to the name
7422 here. If the name already has template parameters, then
7423 skip this step; some versions of GCC emit both, and
7424 it is more efficient to use the pre-computed name.
7425
7426 Something to keep in mind about this process: it is very
7427 unlikely, or in some cases downright impossible, to produce
7428 something that will match the mangled name of a function.
7429 If the definition of the function has the same debug info,
7430 we should be able to match up with it anyway. But fallbacks
7431 using the minimal symbol, for instance to find a method
7432 implemented in a stripped copy of libstdc++, will not work.
7433 If we do not have debug info for the definition, we will have to
7434 match them up some other way.
7435
7436 When we do name matching there is a related problem with function
7437 templates; two instantiated function templates are allowed to
7438 differ only by their return types, which we do not add here. */
7439
7440 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7441 {
7442 struct attribute *attr;
7443 struct die_info *child;
7444 int first = 1;
7445
7446 die->building_fullname = 1;
7447
7448 for (child = die->child; child != NULL; child = child->sibling)
7449 {
7450 struct type *type;
7451 LONGEST value;
7452 gdb_byte *bytes;
7453 struct dwarf2_locexpr_baton *baton;
7454 struct value *v;
7455
7456 if (child->tag != DW_TAG_template_type_param
7457 && child->tag != DW_TAG_template_value_param)
7458 continue;
7459
7460 if (first)
7461 {
7462 fputs_unfiltered ("<", buf);
7463 first = 0;
7464 }
7465 else
7466 fputs_unfiltered (", ", buf);
7467
7468 attr = dwarf2_attr (child, DW_AT_type, cu);
7469 if (attr == NULL)
7470 {
7471 complaint (&symfile_complaints,
7472 _("template parameter missing DW_AT_type"));
7473 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7474 continue;
7475 }
7476 type = die_type (child, cu);
7477
7478 if (child->tag == DW_TAG_template_type_param)
7479 {
7480 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7481 continue;
7482 }
7483
7484 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7485 if (attr == NULL)
7486 {
7487 complaint (&symfile_complaints,
7488 _("template parameter missing "
7489 "DW_AT_const_value"));
7490 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7491 continue;
7492 }
7493
7494 dwarf2_const_value_attr (attr, type, name,
7495 &cu->comp_unit_obstack, cu,
7496 &value, &bytes, &baton);
7497
7498 if (TYPE_NOSIGN (type))
7499 /* GDB prints characters as NUMBER 'CHAR'. If that's
7500 changed, this can use value_print instead. */
7501 c_printchar (value, type, buf);
7502 else
7503 {
7504 struct value_print_options opts;
7505
7506 if (baton != NULL)
7507 v = dwarf2_evaluate_loc_desc (type, NULL,
7508 baton->data,
7509 baton->size,
7510 baton->per_cu);
7511 else if (bytes != NULL)
7512 {
7513 v = allocate_value (type);
7514 memcpy (value_contents_writeable (v), bytes,
7515 TYPE_LENGTH (type));
7516 }
7517 else
7518 v = value_from_longest (type, value);
7519
7520 /* Specify decimal so that we do not depend on
7521 the radix. */
7522 get_formatted_print_options (&opts, 'd');
7523 opts.raw = 1;
7524 value_print (v, buf, &opts);
7525 release_value (v);
7526 value_free (v);
7527 }
7528 }
7529
7530 die->building_fullname = 0;
7531
7532 if (!first)
7533 {
7534 /* Close the argument list, with a space if necessary
7535 (nested templates). */
7536 char last_char = '\0';
7537 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7538 if (last_char == '>')
7539 fputs_unfiltered (" >", buf);
7540 else
7541 fputs_unfiltered (">", buf);
7542 }
7543 }
7544
7545 /* For Java and C++ methods, append formal parameter type
7546 information, if PHYSNAME. */
7547
7548 if (physname && die->tag == DW_TAG_subprogram
7549 && (cu->language == language_cplus
7550 || cu->language == language_java))
7551 {
7552 struct type *type = read_type_die (die, cu);
7553
7554 c_type_print_args (type, buf, 1, cu->language,
7555 &type_print_raw_options);
7556
7557 if (cu->language == language_java)
7558 {
7559 /* For java, we must append the return type to method
7560 names. */
7561 if (die->tag == DW_TAG_subprogram)
7562 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7563 0, 0, &type_print_raw_options);
7564 }
7565 else if (cu->language == language_cplus)
7566 {
7567 /* Assume that an artificial first parameter is
7568 "this", but do not crash if it is not. RealView
7569 marks unnamed (and thus unused) parameters as
7570 artificial; there is no way to differentiate
7571 the two cases. */
7572 if (TYPE_NFIELDS (type) > 0
7573 && TYPE_FIELD_ARTIFICIAL (type, 0)
7574 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7575 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7576 0))))
7577 fputs_unfiltered (" const", buf);
7578 }
7579 }
7580
7581 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7582 &length);
7583 ui_file_delete (buf);
7584
7585 if (cu->language == language_cplus)
7586 {
7587 const char *cname
7588 = dwarf2_canonicalize_name (name, cu,
7589 &objfile->objfile_obstack);
7590
7591 if (cname != NULL)
7592 name = cname;
7593 }
7594 }
7595 }
7596
7597 return name;
7598 }
7599
7600 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7601 If scope qualifiers are appropriate they will be added. The result
7602 will be allocated on the objfile_obstack, or NULL if the DIE does
7603 not have a name. NAME may either be from a previous call to
7604 dwarf2_name or NULL.
7605
7606 The output string will be canonicalized (if C++/Java). */
7607
7608 static const char *
7609 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7610 {
7611 return dwarf2_compute_name (name, die, cu, 0);
7612 }
7613
7614 /* Construct a physname for the given DIE in CU. NAME may either be
7615 from a previous call to dwarf2_name or NULL. The result will be
7616 allocated on the objfile_objstack or NULL if the DIE does not have a
7617 name.
7618
7619 The output string will be canonicalized (if C++/Java). */
7620
7621 static const char *
7622 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7623 {
7624 struct objfile *objfile = cu->objfile;
7625 struct attribute *attr;
7626 const char *retval, *mangled = NULL, *canon = NULL;
7627 struct cleanup *back_to;
7628 int need_copy = 1;
7629
7630 /* In this case dwarf2_compute_name is just a shortcut not building anything
7631 on its own. */
7632 if (!die_needs_namespace (die, cu))
7633 return dwarf2_compute_name (name, die, cu, 1);
7634
7635 back_to = make_cleanup (null_cleanup, NULL);
7636
7637 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7638 if (!attr)
7639 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7640
7641 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7642 has computed. */
7643 if (attr && DW_STRING (attr))
7644 {
7645 char *demangled;
7646
7647 mangled = DW_STRING (attr);
7648
7649 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7650 type. It is easier for GDB users to search for such functions as
7651 `name(params)' than `long name(params)'. In such case the minimal
7652 symbol names do not match the full symbol names but for template
7653 functions there is never a need to look up their definition from their
7654 declaration so the only disadvantage remains the minimal symbol
7655 variant `long name(params)' does not have the proper inferior type.
7656 */
7657
7658 if (cu->language == language_go)
7659 {
7660 /* This is a lie, but we already lie to the caller new_symbol_full.
7661 new_symbol_full assumes we return the mangled name.
7662 This just undoes that lie until things are cleaned up. */
7663 demangled = NULL;
7664 }
7665 else
7666 {
7667 demangled = cplus_demangle (mangled,
7668 (DMGL_PARAMS | DMGL_ANSI
7669 | (cu->language == language_java
7670 ? DMGL_JAVA | DMGL_RET_POSTFIX
7671 : DMGL_RET_DROP)));
7672 }
7673 if (demangled)
7674 {
7675 make_cleanup (xfree, demangled);
7676 canon = demangled;
7677 }
7678 else
7679 {
7680 canon = mangled;
7681 need_copy = 0;
7682 }
7683 }
7684
7685 if (canon == NULL || check_physname)
7686 {
7687 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7688
7689 if (canon != NULL && strcmp (physname, canon) != 0)
7690 {
7691 /* It may not mean a bug in GDB. The compiler could also
7692 compute DW_AT_linkage_name incorrectly. But in such case
7693 GDB would need to be bug-to-bug compatible. */
7694
7695 complaint (&symfile_complaints,
7696 _("Computed physname <%s> does not match demangled <%s> "
7697 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7698 physname, canon, mangled, die->offset.sect_off, objfile->name);
7699
7700 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7701 is available here - over computed PHYSNAME. It is safer
7702 against both buggy GDB and buggy compilers. */
7703
7704 retval = canon;
7705 }
7706 else
7707 {
7708 retval = physname;
7709 need_copy = 0;
7710 }
7711 }
7712 else
7713 retval = canon;
7714
7715 if (need_copy)
7716 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7717
7718 do_cleanups (back_to);
7719 return retval;
7720 }
7721
7722 /* Read the import statement specified by the given die and record it. */
7723
7724 static void
7725 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7726 {
7727 struct objfile *objfile = cu->objfile;
7728 struct attribute *import_attr;
7729 struct die_info *imported_die, *child_die;
7730 struct dwarf2_cu *imported_cu;
7731 const char *imported_name;
7732 const char *imported_name_prefix;
7733 const char *canonical_name;
7734 const char *import_alias;
7735 const char *imported_declaration = NULL;
7736 const char *import_prefix;
7737 VEC (const_char_ptr) *excludes = NULL;
7738 struct cleanup *cleanups;
7739
7740 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7741 if (import_attr == NULL)
7742 {
7743 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7744 dwarf_tag_name (die->tag));
7745 return;
7746 }
7747
7748 imported_cu = cu;
7749 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7750 imported_name = dwarf2_name (imported_die, imported_cu);
7751 if (imported_name == NULL)
7752 {
7753 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7754
7755 The import in the following code:
7756 namespace A
7757 {
7758 typedef int B;
7759 }
7760
7761 int main ()
7762 {
7763 using A::B;
7764 B b;
7765 return b;
7766 }
7767
7768 ...
7769 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7770 <52> DW_AT_decl_file : 1
7771 <53> DW_AT_decl_line : 6
7772 <54> DW_AT_import : <0x75>
7773 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7774 <59> DW_AT_name : B
7775 <5b> DW_AT_decl_file : 1
7776 <5c> DW_AT_decl_line : 2
7777 <5d> DW_AT_type : <0x6e>
7778 ...
7779 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7780 <76> DW_AT_byte_size : 4
7781 <77> DW_AT_encoding : 5 (signed)
7782
7783 imports the wrong die ( 0x75 instead of 0x58 ).
7784 This case will be ignored until the gcc bug is fixed. */
7785 return;
7786 }
7787
7788 /* Figure out the local name after import. */
7789 import_alias = dwarf2_name (die, cu);
7790
7791 /* Figure out where the statement is being imported to. */
7792 import_prefix = determine_prefix (die, cu);
7793
7794 /* Figure out what the scope of the imported die is and prepend it
7795 to the name of the imported die. */
7796 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7797
7798 if (imported_die->tag != DW_TAG_namespace
7799 && imported_die->tag != DW_TAG_module)
7800 {
7801 imported_declaration = imported_name;
7802 canonical_name = imported_name_prefix;
7803 }
7804 else if (strlen (imported_name_prefix) > 0)
7805 canonical_name = obconcat (&objfile->objfile_obstack,
7806 imported_name_prefix, "::", imported_name,
7807 (char *) NULL);
7808 else
7809 canonical_name = imported_name;
7810
7811 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7812
7813 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7814 for (child_die = die->child; child_die && child_die->tag;
7815 child_die = sibling_die (child_die))
7816 {
7817 /* DWARF-4: A Fortran use statement with a “rename list” may be
7818 represented by an imported module entry with an import attribute
7819 referring to the module and owned entries corresponding to those
7820 entities that are renamed as part of being imported. */
7821
7822 if (child_die->tag != DW_TAG_imported_declaration)
7823 {
7824 complaint (&symfile_complaints,
7825 _("child DW_TAG_imported_declaration expected "
7826 "- DIE at 0x%x [in module %s]"),
7827 child_die->offset.sect_off, objfile->name);
7828 continue;
7829 }
7830
7831 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7832 if (import_attr == NULL)
7833 {
7834 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7835 dwarf_tag_name (child_die->tag));
7836 continue;
7837 }
7838
7839 imported_cu = cu;
7840 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7841 &imported_cu);
7842 imported_name = dwarf2_name (imported_die, imported_cu);
7843 if (imported_name == NULL)
7844 {
7845 complaint (&symfile_complaints,
7846 _("child DW_TAG_imported_declaration has unknown "
7847 "imported name - DIE at 0x%x [in module %s]"),
7848 child_die->offset.sect_off, objfile->name);
7849 continue;
7850 }
7851
7852 VEC_safe_push (const_char_ptr, excludes, imported_name);
7853
7854 process_die (child_die, cu);
7855 }
7856
7857 cp_add_using_directive (import_prefix,
7858 canonical_name,
7859 import_alias,
7860 imported_declaration,
7861 excludes,
7862 0,
7863 &objfile->objfile_obstack);
7864
7865 do_cleanups (cleanups);
7866 }
7867
7868 /* Cleanup function for handle_DW_AT_stmt_list. */
7869
7870 static void
7871 free_cu_line_header (void *arg)
7872 {
7873 struct dwarf2_cu *cu = arg;
7874
7875 free_line_header (cu->line_header);
7876 cu->line_header = NULL;
7877 }
7878
7879 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7880 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7881 this, it was first present in GCC release 4.3.0. */
7882
7883 static int
7884 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7885 {
7886 if (!cu->checked_producer)
7887 check_producer (cu);
7888
7889 return cu->producer_is_gcc_lt_4_3;
7890 }
7891
7892 static void
7893 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7894 const char **name, const char **comp_dir)
7895 {
7896 struct attribute *attr;
7897
7898 *name = NULL;
7899 *comp_dir = NULL;
7900
7901 /* Find the filename. Do not use dwarf2_name here, since the filename
7902 is not a source language identifier. */
7903 attr = dwarf2_attr (die, DW_AT_name, cu);
7904 if (attr)
7905 {
7906 *name = DW_STRING (attr);
7907 }
7908
7909 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7910 if (attr)
7911 *comp_dir = DW_STRING (attr);
7912 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7913 && IS_ABSOLUTE_PATH (*name))
7914 {
7915 char *d = ldirname (*name);
7916
7917 *comp_dir = d;
7918 if (d != NULL)
7919 make_cleanup (xfree, d);
7920 }
7921 if (*comp_dir != NULL)
7922 {
7923 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7924 directory, get rid of it. */
7925 char *cp = strchr (*comp_dir, ':');
7926
7927 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7928 *comp_dir = cp + 1;
7929 }
7930
7931 if (*name == NULL)
7932 *name = "<unknown>";
7933 }
7934
7935 /* Handle DW_AT_stmt_list for a compilation unit.
7936 DIE is the DW_TAG_compile_unit die for CU.
7937 COMP_DIR is the compilation directory.
7938 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7939
7940 static void
7941 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7942 const char *comp_dir)
7943 {
7944 struct attribute *attr;
7945
7946 gdb_assert (! cu->per_cu->is_debug_types);
7947
7948 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7949 if (attr)
7950 {
7951 unsigned int line_offset = DW_UNSND (attr);
7952 struct line_header *line_header
7953 = dwarf_decode_line_header (line_offset, cu);
7954
7955 if (line_header)
7956 {
7957 cu->line_header = line_header;
7958 make_cleanup (free_cu_line_header, cu);
7959 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7960 }
7961 }
7962 }
7963
7964 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7965
7966 static void
7967 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7968 {
7969 struct objfile *objfile = dwarf2_per_objfile->objfile;
7970 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7971 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7972 CORE_ADDR highpc = ((CORE_ADDR) 0);
7973 struct attribute *attr;
7974 const char *name = NULL;
7975 const char *comp_dir = NULL;
7976 struct die_info *child_die;
7977 bfd *abfd = objfile->obfd;
7978 CORE_ADDR baseaddr;
7979
7980 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7981
7982 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7983
7984 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7985 from finish_block. */
7986 if (lowpc == ((CORE_ADDR) -1))
7987 lowpc = highpc;
7988 lowpc += baseaddr;
7989 highpc += baseaddr;
7990
7991 find_file_and_directory (die, cu, &name, &comp_dir);
7992
7993 prepare_one_comp_unit (cu, die, cu->language);
7994
7995 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7996 standardised yet. As a workaround for the language detection we fall
7997 back to the DW_AT_producer string. */
7998 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7999 cu->language = language_opencl;
8000
8001 /* Similar hack for Go. */
8002 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8003 set_cu_language (DW_LANG_Go, cu);
8004
8005 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8006
8007 /* Decode line number information if present. We do this before
8008 processing child DIEs, so that the line header table is available
8009 for DW_AT_decl_file. */
8010 handle_DW_AT_stmt_list (die, cu, comp_dir);
8011
8012 /* Process all dies in compilation unit. */
8013 if (die->child != NULL)
8014 {
8015 child_die = die->child;
8016 while (child_die && child_die->tag)
8017 {
8018 process_die (child_die, cu);
8019 child_die = sibling_die (child_die);
8020 }
8021 }
8022
8023 /* Decode macro information, if present. Dwarf 2 macro information
8024 refers to information in the line number info statement program
8025 header, so we can only read it if we've read the header
8026 successfully. */
8027 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8028 if (attr && cu->line_header)
8029 {
8030 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8031 complaint (&symfile_complaints,
8032 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8033
8034 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8035 }
8036 else
8037 {
8038 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8039 if (attr && cu->line_header)
8040 {
8041 unsigned int macro_offset = DW_UNSND (attr);
8042
8043 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8044 }
8045 }
8046
8047 do_cleanups (back_to);
8048 }
8049
8050 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8051 Create the set of symtabs used by this TU, or if this TU is sharing
8052 symtabs with another TU and the symtabs have already been created
8053 then restore those symtabs in the line header.
8054 We don't need the pc/line-number mapping for type units. */
8055
8056 static void
8057 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8058 {
8059 struct objfile *objfile = dwarf2_per_objfile->objfile;
8060 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8061 struct type_unit_group *tu_group;
8062 int first_time;
8063 struct line_header *lh;
8064 struct attribute *attr;
8065 unsigned int i, line_offset;
8066
8067 gdb_assert (per_cu->is_debug_types);
8068
8069 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8070
8071 /* If we're using .gdb_index (includes -readnow) then
8072 per_cu->s.type_unit_group may not have been set up yet. */
8073 if (per_cu->type_unit_group == NULL)
8074 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8075 tu_group = per_cu->type_unit_group;
8076
8077 /* If we've already processed this stmt_list there's no real need to
8078 do it again, we could fake it and just recreate the part we need
8079 (file name,index -> symtab mapping). If data shows this optimization
8080 is useful we can do it then. */
8081 first_time = tu_group->primary_symtab == NULL;
8082
8083 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8084 debug info. */
8085 lh = NULL;
8086 if (attr != NULL)
8087 {
8088 line_offset = DW_UNSND (attr);
8089 lh = dwarf_decode_line_header (line_offset, cu);
8090 }
8091 if (lh == NULL)
8092 {
8093 if (first_time)
8094 dwarf2_start_symtab (cu, "", NULL, 0);
8095 else
8096 {
8097 gdb_assert (tu_group->symtabs == NULL);
8098 restart_symtab (0);
8099 }
8100 /* Note: The primary symtab will get allocated at the end. */
8101 return;
8102 }
8103
8104 cu->line_header = lh;
8105 make_cleanup (free_cu_line_header, cu);
8106
8107 if (first_time)
8108 {
8109 dwarf2_start_symtab (cu, "", NULL, 0);
8110
8111 tu_group->num_symtabs = lh->num_file_names;
8112 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8113
8114 for (i = 0; i < lh->num_file_names; ++i)
8115 {
8116 char *dir = NULL;
8117 struct file_entry *fe = &lh->file_names[i];
8118
8119 if (fe->dir_index)
8120 dir = lh->include_dirs[fe->dir_index - 1];
8121 dwarf2_start_subfile (fe->name, dir, NULL);
8122
8123 /* Note: We don't have to watch for the main subfile here, type units
8124 don't have DW_AT_name. */
8125
8126 if (current_subfile->symtab == NULL)
8127 {
8128 /* NOTE: start_subfile will recognize when it's been passed
8129 a file it has already seen. So we can't assume there's a
8130 simple mapping from lh->file_names to subfiles,
8131 lh->file_names may contain dups. */
8132 current_subfile->symtab = allocate_symtab (current_subfile->name,
8133 objfile);
8134 }
8135
8136 fe->symtab = current_subfile->symtab;
8137 tu_group->symtabs[i] = fe->symtab;
8138 }
8139 }
8140 else
8141 {
8142 restart_symtab (0);
8143
8144 for (i = 0; i < lh->num_file_names; ++i)
8145 {
8146 struct file_entry *fe = &lh->file_names[i];
8147
8148 fe->symtab = tu_group->symtabs[i];
8149 }
8150 }
8151
8152 /* The main symtab is allocated last. Type units don't have DW_AT_name
8153 so they don't have a "real" (so to speak) symtab anyway.
8154 There is later code that will assign the main symtab to all symbols
8155 that don't have one. We need to handle the case of a symbol with a
8156 missing symtab (DW_AT_decl_file) anyway. */
8157 }
8158
8159 /* Process DW_TAG_type_unit.
8160 For TUs we want to skip the first top level sibling if it's not the
8161 actual type being defined by this TU. In this case the first top
8162 level sibling is there to provide context only. */
8163
8164 static void
8165 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8166 {
8167 struct die_info *child_die;
8168
8169 prepare_one_comp_unit (cu, die, language_minimal);
8170
8171 /* Initialize (or reinitialize) the machinery for building symtabs.
8172 We do this before processing child DIEs, so that the line header table
8173 is available for DW_AT_decl_file. */
8174 setup_type_unit_groups (die, cu);
8175
8176 if (die->child != NULL)
8177 {
8178 child_die = die->child;
8179 while (child_die && child_die->tag)
8180 {
8181 process_die (child_die, cu);
8182 child_die = sibling_die (child_die);
8183 }
8184 }
8185 }
8186 \f
8187 /* DWO/DWP files.
8188
8189 http://gcc.gnu.org/wiki/DebugFission
8190 http://gcc.gnu.org/wiki/DebugFissionDWP
8191
8192 To simplify handling of both DWO files ("object" files with the DWARF info)
8193 and DWP files (a file with the DWOs packaged up into one file), we treat
8194 DWP files as having a collection of virtual DWO files. */
8195
8196 static hashval_t
8197 hash_dwo_file (const void *item)
8198 {
8199 const struct dwo_file *dwo_file = item;
8200
8201 return htab_hash_string (dwo_file->name);
8202 }
8203
8204 static int
8205 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8206 {
8207 const struct dwo_file *lhs = item_lhs;
8208 const struct dwo_file *rhs = item_rhs;
8209
8210 return strcmp (lhs->name, rhs->name) == 0;
8211 }
8212
8213 /* Allocate a hash table for DWO files. */
8214
8215 static htab_t
8216 allocate_dwo_file_hash_table (void)
8217 {
8218 struct objfile *objfile = dwarf2_per_objfile->objfile;
8219
8220 return htab_create_alloc_ex (41,
8221 hash_dwo_file,
8222 eq_dwo_file,
8223 NULL,
8224 &objfile->objfile_obstack,
8225 hashtab_obstack_allocate,
8226 dummy_obstack_deallocate);
8227 }
8228
8229 /* Lookup DWO file DWO_NAME. */
8230
8231 static void **
8232 lookup_dwo_file_slot (const char *dwo_name)
8233 {
8234 struct dwo_file find_entry;
8235 void **slot;
8236
8237 if (dwarf2_per_objfile->dwo_files == NULL)
8238 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8239
8240 memset (&find_entry, 0, sizeof (find_entry));
8241 find_entry.name = dwo_name;
8242 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8243
8244 return slot;
8245 }
8246
8247 static hashval_t
8248 hash_dwo_unit (const void *item)
8249 {
8250 const struct dwo_unit *dwo_unit = item;
8251
8252 /* This drops the top 32 bits of the id, but is ok for a hash. */
8253 return dwo_unit->signature;
8254 }
8255
8256 static int
8257 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8258 {
8259 const struct dwo_unit *lhs = item_lhs;
8260 const struct dwo_unit *rhs = item_rhs;
8261
8262 /* The signature is assumed to be unique within the DWO file.
8263 So while object file CU dwo_id's always have the value zero,
8264 that's OK, assuming each object file DWO file has only one CU,
8265 and that's the rule for now. */
8266 return lhs->signature == rhs->signature;
8267 }
8268
8269 /* Allocate a hash table for DWO CUs,TUs.
8270 There is one of these tables for each of CUs,TUs for each DWO file. */
8271
8272 static htab_t
8273 allocate_dwo_unit_table (struct objfile *objfile)
8274 {
8275 /* Start out with a pretty small number.
8276 Generally DWO files contain only one CU and maybe some TUs. */
8277 return htab_create_alloc_ex (3,
8278 hash_dwo_unit,
8279 eq_dwo_unit,
8280 NULL,
8281 &objfile->objfile_obstack,
8282 hashtab_obstack_allocate,
8283 dummy_obstack_deallocate);
8284 }
8285
8286 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8287
8288 struct create_dwo_info_table_data
8289 {
8290 struct dwo_file *dwo_file;
8291 htab_t cu_htab;
8292 };
8293
8294 /* die_reader_func for create_dwo_debug_info_hash_table. */
8295
8296 static void
8297 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8298 gdb_byte *info_ptr,
8299 struct die_info *comp_unit_die,
8300 int has_children,
8301 void *datap)
8302 {
8303 struct dwarf2_cu *cu = reader->cu;
8304 struct objfile *objfile = dwarf2_per_objfile->objfile;
8305 sect_offset offset = cu->per_cu->offset;
8306 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8307 struct create_dwo_info_table_data *data = datap;
8308 struct dwo_file *dwo_file = data->dwo_file;
8309 htab_t cu_htab = data->cu_htab;
8310 void **slot;
8311 struct attribute *attr;
8312 struct dwo_unit *dwo_unit;
8313
8314 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8315 if (attr == NULL)
8316 {
8317 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8318 " its dwo_id [in module %s]"),
8319 offset.sect_off, dwo_file->name);
8320 return;
8321 }
8322
8323 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8324 dwo_unit->dwo_file = dwo_file;
8325 dwo_unit->signature = DW_UNSND (attr);
8326 dwo_unit->info_or_types_section = section;
8327 dwo_unit->offset = offset;
8328 dwo_unit->length = cu->per_cu->length;
8329
8330 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8331 gdb_assert (slot != NULL);
8332 if (*slot != NULL)
8333 {
8334 const struct dwo_unit *dup_dwo_unit = *slot;
8335
8336 complaint (&symfile_complaints,
8337 _("debug entry at offset 0x%x is duplicate to the entry at"
8338 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8339 offset.sect_off, dup_dwo_unit->offset.sect_off,
8340 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8341 dwo_file->name);
8342 }
8343 else
8344 *slot = dwo_unit;
8345
8346 if (dwarf2_read_debug)
8347 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8348 offset.sect_off,
8349 phex (dwo_unit->signature,
8350 sizeof (dwo_unit->signature)));
8351 }
8352
8353 /* Create a hash table to map DWO IDs to their CU entry in
8354 .debug_info.dwo in DWO_FILE.
8355 Note: This function processes DWO files only, not DWP files. */
8356
8357 static htab_t
8358 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8359 {
8360 struct objfile *objfile = dwarf2_per_objfile->objfile;
8361 struct dwarf2_section_info *section = &dwo_file->sections.info;
8362 bfd *abfd;
8363 htab_t cu_htab;
8364 gdb_byte *info_ptr, *end_ptr;
8365 struct create_dwo_info_table_data create_dwo_info_table_data;
8366
8367 dwarf2_read_section (objfile, section);
8368 info_ptr = section->buffer;
8369
8370 if (info_ptr == NULL)
8371 return NULL;
8372
8373 /* We can't set abfd until now because the section may be empty or
8374 not present, in which case section->asection will be NULL. */
8375 abfd = section->asection->owner;
8376
8377 if (dwarf2_read_debug)
8378 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8379 bfd_get_filename (abfd));
8380
8381 cu_htab = allocate_dwo_unit_table (objfile);
8382
8383 create_dwo_info_table_data.dwo_file = dwo_file;
8384 create_dwo_info_table_data.cu_htab = cu_htab;
8385
8386 end_ptr = info_ptr + section->size;
8387 while (info_ptr < end_ptr)
8388 {
8389 struct dwarf2_per_cu_data per_cu;
8390
8391 memset (&per_cu, 0, sizeof (per_cu));
8392 per_cu.objfile = objfile;
8393 per_cu.is_debug_types = 0;
8394 per_cu.offset.sect_off = info_ptr - section->buffer;
8395 per_cu.info_or_types_section = section;
8396
8397 init_cutu_and_read_dies_no_follow (&per_cu,
8398 &dwo_file->sections.abbrev,
8399 dwo_file,
8400 create_dwo_debug_info_hash_table_reader,
8401 &create_dwo_info_table_data);
8402
8403 info_ptr += per_cu.length;
8404 }
8405
8406 return cu_htab;
8407 }
8408
8409 /* DWP file .debug_{cu,tu}_index section format:
8410 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8411
8412 Both index sections have the same format, and serve to map a 64-bit
8413 signature to a set of section numbers. Each section begins with a header,
8414 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8415 indexes, and a pool of 32-bit section numbers. The index sections will be
8416 aligned at 8-byte boundaries in the file.
8417
8418 The index section header contains two unsigned 32-bit values (using the
8419 byte order of the application binary):
8420
8421 N, the number of compilation units or type units in the index
8422 M, the number of slots in the hash table
8423
8424 (We assume that N and M will not exceed 2^32 - 1.)
8425
8426 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8427
8428 The hash table begins at offset 8 in the section, and consists of an array
8429 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8430 order of the application binary). Unused slots in the hash table are 0.
8431 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8432
8433 The parallel table begins immediately after the hash table
8434 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8435 array of 32-bit indexes (using the byte order of the application binary),
8436 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8437 table contains a 32-bit index into the pool of section numbers. For unused
8438 hash table slots, the corresponding entry in the parallel table will be 0.
8439
8440 Given a 64-bit compilation unit signature or a type signature S, an entry
8441 in the hash table is located as follows:
8442
8443 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8444 the low-order k bits all set to 1.
8445
8446 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8447
8448 3) If the hash table entry at index H matches the signature, use that
8449 entry. If the hash table entry at index H is unused (all zeroes),
8450 terminate the search: the signature is not present in the table.
8451
8452 4) Let H = (H + H') modulo M. Repeat at Step 3.
8453
8454 Because M > N and H' and M are relatively prime, the search is guaranteed
8455 to stop at an unused slot or find the match.
8456
8457 The pool of section numbers begins immediately following the hash table
8458 (at offset 8 + 12 * M from the beginning of the section). The pool of
8459 section numbers consists of an array of 32-bit words (using the byte order
8460 of the application binary). Each item in the array is indexed starting
8461 from 0. The hash table entry provides the index of the first section
8462 number in the set. Additional section numbers in the set follow, and the
8463 set is terminated by a 0 entry (section number 0 is not used in ELF).
8464
8465 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8466 section must be the first entry in the set, and the .debug_abbrev.dwo must
8467 be the second entry. Other members of the set may follow in any order. */
8468
8469 /* Create a hash table to map DWO IDs to their CU/TU entry in
8470 .debug_{info,types}.dwo in DWP_FILE.
8471 Returns NULL if there isn't one.
8472 Note: This function processes DWP files only, not DWO files. */
8473
8474 static struct dwp_hash_table *
8475 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8476 {
8477 struct objfile *objfile = dwarf2_per_objfile->objfile;
8478 bfd *dbfd = dwp_file->dbfd;
8479 char *index_ptr, *index_end;
8480 struct dwarf2_section_info *index;
8481 uint32_t version, nr_units, nr_slots;
8482 struct dwp_hash_table *htab;
8483
8484 if (is_debug_types)
8485 index = &dwp_file->sections.tu_index;
8486 else
8487 index = &dwp_file->sections.cu_index;
8488
8489 if (dwarf2_section_empty_p (index))
8490 return NULL;
8491 dwarf2_read_section (objfile, index);
8492
8493 index_ptr = index->buffer;
8494 index_end = index_ptr + index->size;
8495
8496 version = read_4_bytes (dbfd, index_ptr);
8497 index_ptr += 8; /* Skip the unused word. */
8498 nr_units = read_4_bytes (dbfd, index_ptr);
8499 index_ptr += 4;
8500 nr_slots = read_4_bytes (dbfd, index_ptr);
8501 index_ptr += 4;
8502
8503 if (version != 1)
8504 {
8505 error (_("Dwarf Error: unsupported DWP file version (%u)"
8506 " [in module %s]"),
8507 version, dwp_file->name);
8508 }
8509 if (nr_slots != (nr_slots & -nr_slots))
8510 {
8511 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8512 " is not power of 2 [in module %s]"),
8513 nr_slots, dwp_file->name);
8514 }
8515
8516 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8517 htab->nr_units = nr_units;
8518 htab->nr_slots = nr_slots;
8519 htab->hash_table = index_ptr;
8520 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8521 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8522
8523 return htab;
8524 }
8525
8526 /* Update SECTIONS with the data from SECTP.
8527
8528 This function is like the other "locate" section routines that are
8529 passed to bfd_map_over_sections, but in this context the sections to
8530 read comes from the DWP hash table, not the full ELF section table.
8531
8532 The result is non-zero for success, or zero if an error was found. */
8533
8534 static int
8535 locate_virtual_dwo_sections (asection *sectp,
8536 struct virtual_dwo_sections *sections)
8537 {
8538 const struct dwop_section_names *names = &dwop_section_names;
8539
8540 if (section_is_p (sectp->name, &names->abbrev_dwo))
8541 {
8542 /* There can be only one. */
8543 if (sections->abbrev.asection != NULL)
8544 return 0;
8545 sections->abbrev.asection = sectp;
8546 sections->abbrev.size = bfd_get_section_size (sectp);
8547 }
8548 else if (section_is_p (sectp->name, &names->info_dwo)
8549 || section_is_p (sectp->name, &names->types_dwo))
8550 {
8551 /* There can be only one. */
8552 if (sections->info_or_types.asection != NULL)
8553 return 0;
8554 sections->info_or_types.asection = sectp;
8555 sections->info_or_types.size = bfd_get_section_size (sectp);
8556 }
8557 else if (section_is_p (sectp->name, &names->line_dwo))
8558 {
8559 /* There can be only one. */
8560 if (sections->line.asection != NULL)
8561 return 0;
8562 sections->line.asection = sectp;
8563 sections->line.size = bfd_get_section_size (sectp);
8564 }
8565 else if (section_is_p (sectp->name, &names->loc_dwo))
8566 {
8567 /* There can be only one. */
8568 if (sections->loc.asection != NULL)
8569 return 0;
8570 sections->loc.asection = sectp;
8571 sections->loc.size = bfd_get_section_size (sectp);
8572 }
8573 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8574 {
8575 /* There can be only one. */
8576 if (sections->macinfo.asection != NULL)
8577 return 0;
8578 sections->macinfo.asection = sectp;
8579 sections->macinfo.size = bfd_get_section_size (sectp);
8580 }
8581 else if (section_is_p (sectp->name, &names->macro_dwo))
8582 {
8583 /* There can be only one. */
8584 if (sections->macro.asection != NULL)
8585 return 0;
8586 sections->macro.asection = sectp;
8587 sections->macro.size = bfd_get_section_size (sectp);
8588 }
8589 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8590 {
8591 /* There can be only one. */
8592 if (sections->str_offsets.asection != NULL)
8593 return 0;
8594 sections->str_offsets.asection = sectp;
8595 sections->str_offsets.size = bfd_get_section_size (sectp);
8596 }
8597 else
8598 {
8599 /* No other kind of section is valid. */
8600 return 0;
8601 }
8602
8603 return 1;
8604 }
8605
8606 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8607 HTAB is the hash table from the DWP file.
8608 SECTION_INDEX is the index of the DWO in HTAB. */
8609
8610 static struct dwo_unit *
8611 create_dwo_in_dwp (struct dwp_file *dwp_file,
8612 const struct dwp_hash_table *htab,
8613 uint32_t section_index,
8614 ULONGEST signature, int is_debug_types)
8615 {
8616 struct objfile *objfile = dwarf2_per_objfile->objfile;
8617 bfd *dbfd = dwp_file->dbfd;
8618 const char *kind = is_debug_types ? "TU" : "CU";
8619 struct dwo_file *dwo_file;
8620 struct dwo_unit *dwo_unit;
8621 struct virtual_dwo_sections sections;
8622 void **dwo_file_slot;
8623 char *virtual_dwo_name;
8624 struct dwarf2_section_info *cutu;
8625 struct cleanup *cleanups;
8626 int i;
8627
8628 if (dwarf2_read_debug)
8629 {
8630 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8631 kind,
8632 section_index, phex (signature, sizeof (signature)),
8633 dwp_file->name);
8634 }
8635
8636 /* Fetch the sections of this DWO.
8637 Put a limit on the number of sections we look for so that bad data
8638 doesn't cause us to loop forever. */
8639
8640 #define MAX_NR_DWO_SECTIONS \
8641 (1 /* .debug_info or .debug_types */ \
8642 + 1 /* .debug_abbrev */ \
8643 + 1 /* .debug_line */ \
8644 + 1 /* .debug_loc */ \
8645 + 1 /* .debug_str_offsets */ \
8646 + 1 /* .debug_macro */ \
8647 + 1 /* .debug_macinfo */ \
8648 + 1 /* trailing zero */)
8649
8650 memset (&sections, 0, sizeof (sections));
8651 cleanups = make_cleanup (null_cleanup, 0);
8652
8653 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8654 {
8655 asection *sectp;
8656 uint32_t section_nr =
8657 read_4_bytes (dbfd,
8658 htab->section_pool
8659 + (section_index + i) * sizeof (uint32_t));
8660
8661 if (section_nr == 0)
8662 break;
8663 if (section_nr >= dwp_file->num_sections)
8664 {
8665 error (_("Dwarf Error: bad DWP hash table, section number too large"
8666 " [in module %s]"),
8667 dwp_file->name);
8668 }
8669
8670 sectp = dwp_file->elf_sections[section_nr];
8671 if (! locate_virtual_dwo_sections (sectp, &sections))
8672 {
8673 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8674 " [in module %s]"),
8675 dwp_file->name);
8676 }
8677 }
8678
8679 if (i < 2
8680 || sections.info_or_types.asection == NULL
8681 || sections.abbrev.asection == NULL)
8682 {
8683 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8684 " [in module %s]"),
8685 dwp_file->name);
8686 }
8687 if (i == MAX_NR_DWO_SECTIONS)
8688 {
8689 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8690 " [in module %s]"),
8691 dwp_file->name);
8692 }
8693
8694 /* It's easier for the rest of the code if we fake a struct dwo_file and
8695 have dwo_unit "live" in that. At least for now.
8696
8697 The DWP file can be made up of a random collection of CUs and TUs.
8698 However, for each CU + set of TUs that came from the same original DWO
8699 file, we want to combine them back into a virtual DWO file to save space
8700 (fewer struct dwo_file objects to allocated). Remember that for really
8701 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8702
8703 virtual_dwo_name =
8704 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8705 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8706 sections.line.asection ? sections.line.asection->id : 0,
8707 sections.loc.asection ? sections.loc.asection->id : 0,
8708 (sections.str_offsets.asection
8709 ? sections.str_offsets.asection->id
8710 : 0));
8711 make_cleanup (xfree, virtual_dwo_name);
8712 /* Can we use an existing virtual DWO file? */
8713 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8714 /* Create one if necessary. */
8715 if (*dwo_file_slot == NULL)
8716 {
8717 if (dwarf2_read_debug)
8718 {
8719 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8720 virtual_dwo_name);
8721 }
8722 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8723 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8724 virtual_dwo_name,
8725 strlen (virtual_dwo_name));
8726 dwo_file->sections.abbrev = sections.abbrev;
8727 dwo_file->sections.line = sections.line;
8728 dwo_file->sections.loc = sections.loc;
8729 dwo_file->sections.macinfo = sections.macinfo;
8730 dwo_file->sections.macro = sections.macro;
8731 dwo_file->sections.str_offsets = sections.str_offsets;
8732 /* The "str" section is global to the entire DWP file. */
8733 dwo_file->sections.str = dwp_file->sections.str;
8734 /* The info or types section is assigned later to dwo_unit,
8735 there's no need to record it in dwo_file.
8736 Also, we can't simply record type sections in dwo_file because
8737 we record a pointer into the vector in dwo_unit. As we collect more
8738 types we'll grow the vector and eventually have to reallocate space
8739 for it, invalidating all the pointers into the current copy. */
8740 *dwo_file_slot = dwo_file;
8741 }
8742 else
8743 {
8744 if (dwarf2_read_debug)
8745 {
8746 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8747 virtual_dwo_name);
8748 }
8749 dwo_file = *dwo_file_slot;
8750 }
8751 do_cleanups (cleanups);
8752
8753 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8754 dwo_unit->dwo_file = dwo_file;
8755 dwo_unit->signature = signature;
8756 dwo_unit->info_or_types_section =
8757 obstack_alloc (&objfile->objfile_obstack,
8758 sizeof (struct dwarf2_section_info));
8759 *dwo_unit->info_or_types_section = sections.info_or_types;
8760 /* offset, length, type_offset_in_tu are set later. */
8761
8762 return dwo_unit;
8763 }
8764
8765 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8766
8767 static struct dwo_unit *
8768 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8769 const struct dwp_hash_table *htab,
8770 ULONGEST signature, int is_debug_types)
8771 {
8772 bfd *dbfd = dwp_file->dbfd;
8773 uint32_t mask = htab->nr_slots - 1;
8774 uint32_t hash = signature & mask;
8775 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8776 unsigned int i;
8777 void **slot;
8778 struct dwo_unit find_dwo_cu, *dwo_cu;
8779
8780 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8781 find_dwo_cu.signature = signature;
8782 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8783
8784 if (*slot != NULL)
8785 return *slot;
8786
8787 /* Use a for loop so that we don't loop forever on bad debug info. */
8788 for (i = 0; i < htab->nr_slots; ++i)
8789 {
8790 ULONGEST signature_in_table;
8791
8792 signature_in_table =
8793 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8794 if (signature_in_table == signature)
8795 {
8796 uint32_t section_index =
8797 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8798
8799 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8800 signature, is_debug_types);
8801 return *slot;
8802 }
8803 if (signature_in_table == 0)
8804 return NULL;
8805 hash = (hash + hash2) & mask;
8806 }
8807
8808 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8809 " [in module %s]"),
8810 dwp_file->name);
8811 }
8812
8813 /* Subroutine of open_dwop_file to simplify it.
8814 Open the file specified by FILE_NAME and hand it off to BFD for
8815 preliminary analysis. Return a newly initialized bfd *, which
8816 includes a canonicalized copy of FILE_NAME.
8817 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8818 In case of trouble, return NULL.
8819 NOTE: This function is derived from symfile_bfd_open. */
8820
8821 static bfd *
8822 try_open_dwop_file (const char *file_name, int is_dwp)
8823 {
8824 bfd *sym_bfd;
8825 int desc, flags;
8826 char *absolute_name;
8827
8828 flags = OPF_TRY_CWD_FIRST;
8829 if (is_dwp)
8830 flags |= OPF_SEARCH_IN_PATH;
8831 desc = openp (debug_file_directory, flags, file_name,
8832 O_RDONLY | O_BINARY, &absolute_name);
8833 if (desc < 0)
8834 return NULL;
8835
8836 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8837 if (!sym_bfd)
8838 {
8839 xfree (absolute_name);
8840 return NULL;
8841 }
8842 xfree (absolute_name);
8843 bfd_set_cacheable (sym_bfd, 1);
8844
8845 if (!bfd_check_format (sym_bfd, bfd_object))
8846 {
8847 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8848 return NULL;
8849 }
8850
8851 return sym_bfd;
8852 }
8853
8854 /* Try to open DWO/DWP file FILE_NAME.
8855 COMP_DIR is the DW_AT_comp_dir attribute.
8856 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8857 The result is the bfd handle of the file.
8858 If there is a problem finding or opening the file, return NULL.
8859 Upon success, the canonicalized path of the file is stored in the bfd,
8860 same as symfile_bfd_open. */
8861
8862 static bfd *
8863 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8864 {
8865 bfd *abfd;
8866
8867 if (IS_ABSOLUTE_PATH (file_name))
8868 return try_open_dwop_file (file_name, is_dwp);
8869
8870 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8871
8872 if (comp_dir != NULL)
8873 {
8874 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8875
8876 /* NOTE: If comp_dir is a relative path, this will also try the
8877 search path, which seems useful. */
8878 abfd = try_open_dwop_file (path_to_try, is_dwp);
8879 xfree (path_to_try);
8880 if (abfd != NULL)
8881 return abfd;
8882 }
8883
8884 /* That didn't work, try debug-file-directory, which, despite its name,
8885 is a list of paths. */
8886
8887 if (*debug_file_directory == '\0')
8888 return NULL;
8889
8890 return try_open_dwop_file (file_name, is_dwp);
8891 }
8892
8893 /* This function is mapped across the sections and remembers the offset and
8894 size of each of the DWO debugging sections we are interested in. */
8895
8896 static void
8897 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8898 {
8899 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8900 const struct dwop_section_names *names = &dwop_section_names;
8901
8902 if (section_is_p (sectp->name, &names->abbrev_dwo))
8903 {
8904 dwo_sections->abbrev.asection = sectp;
8905 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8906 }
8907 else if (section_is_p (sectp->name, &names->info_dwo))
8908 {
8909 dwo_sections->info.asection = sectp;
8910 dwo_sections->info.size = bfd_get_section_size (sectp);
8911 }
8912 else if (section_is_p (sectp->name, &names->line_dwo))
8913 {
8914 dwo_sections->line.asection = sectp;
8915 dwo_sections->line.size = bfd_get_section_size (sectp);
8916 }
8917 else if (section_is_p (sectp->name, &names->loc_dwo))
8918 {
8919 dwo_sections->loc.asection = sectp;
8920 dwo_sections->loc.size = bfd_get_section_size (sectp);
8921 }
8922 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8923 {
8924 dwo_sections->macinfo.asection = sectp;
8925 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8926 }
8927 else if (section_is_p (sectp->name, &names->macro_dwo))
8928 {
8929 dwo_sections->macro.asection = sectp;
8930 dwo_sections->macro.size = bfd_get_section_size (sectp);
8931 }
8932 else if (section_is_p (sectp->name, &names->str_dwo))
8933 {
8934 dwo_sections->str.asection = sectp;
8935 dwo_sections->str.size = bfd_get_section_size (sectp);
8936 }
8937 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8938 {
8939 dwo_sections->str_offsets.asection = sectp;
8940 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8941 }
8942 else if (section_is_p (sectp->name, &names->types_dwo))
8943 {
8944 struct dwarf2_section_info type_section;
8945
8946 memset (&type_section, 0, sizeof (type_section));
8947 type_section.asection = sectp;
8948 type_section.size = bfd_get_section_size (sectp);
8949 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8950 &type_section);
8951 }
8952 }
8953
8954 /* Initialize the use of the DWO file specified by DWO_NAME.
8955 The result is NULL if DWO_NAME can't be found. */
8956
8957 static struct dwo_file *
8958 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8959 {
8960 struct objfile *objfile = dwarf2_per_objfile->objfile;
8961 struct dwo_file *dwo_file;
8962 bfd *dbfd;
8963 struct cleanup *cleanups;
8964
8965 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8966 if (dbfd == NULL)
8967 {
8968 if (dwarf2_read_debug)
8969 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8970 return NULL;
8971 }
8972 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8973 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8974 dwo_name, strlen (dwo_name));
8975 dwo_file->dbfd = dbfd;
8976
8977 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8978
8979 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8980
8981 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8982
8983 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8984 dwo_file->sections.types);
8985
8986 discard_cleanups (cleanups);
8987
8988 if (dwarf2_read_debug)
8989 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8990
8991 return dwo_file;
8992 }
8993
8994 /* This function is mapped across the sections and remembers the offset and
8995 size of each of the DWP debugging sections we are interested in. */
8996
8997 static void
8998 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8999 {
9000 struct dwp_file *dwp_file = dwp_file_ptr;
9001 const struct dwop_section_names *names = &dwop_section_names;
9002 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9003
9004 /* Record the ELF section number for later lookup: this is what the
9005 .debug_cu_index,.debug_tu_index tables use. */
9006 gdb_assert (elf_section_nr < dwp_file->num_sections);
9007 dwp_file->elf_sections[elf_section_nr] = sectp;
9008
9009 /* Look for specific sections that we need. */
9010 if (section_is_p (sectp->name, &names->str_dwo))
9011 {
9012 dwp_file->sections.str.asection = sectp;
9013 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9014 }
9015 else if (section_is_p (sectp->name, &names->cu_index))
9016 {
9017 dwp_file->sections.cu_index.asection = sectp;
9018 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9019 }
9020 else if (section_is_p (sectp->name, &names->tu_index))
9021 {
9022 dwp_file->sections.tu_index.asection = sectp;
9023 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9024 }
9025 }
9026
9027 /* Hash function for dwp_file loaded CUs/TUs. */
9028
9029 static hashval_t
9030 hash_dwp_loaded_cutus (const void *item)
9031 {
9032 const struct dwo_unit *dwo_unit = item;
9033
9034 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9035 return dwo_unit->signature;
9036 }
9037
9038 /* Equality function for dwp_file loaded CUs/TUs. */
9039
9040 static int
9041 eq_dwp_loaded_cutus (const void *a, const void *b)
9042 {
9043 const struct dwo_unit *dua = a;
9044 const struct dwo_unit *dub = b;
9045
9046 return dua->signature == dub->signature;
9047 }
9048
9049 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9050
9051 static htab_t
9052 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9053 {
9054 return htab_create_alloc_ex (3,
9055 hash_dwp_loaded_cutus,
9056 eq_dwp_loaded_cutus,
9057 NULL,
9058 &objfile->objfile_obstack,
9059 hashtab_obstack_allocate,
9060 dummy_obstack_deallocate);
9061 }
9062
9063 /* Initialize the use of the DWP file for the current objfile.
9064 By convention the name of the DWP file is ${objfile}.dwp.
9065 The result is NULL if it can't be found. */
9066
9067 static struct dwp_file *
9068 open_and_init_dwp_file (const char *comp_dir)
9069 {
9070 struct objfile *objfile = dwarf2_per_objfile->objfile;
9071 struct dwp_file *dwp_file;
9072 char *dwp_name;
9073 bfd *dbfd;
9074 struct cleanup *cleanups;
9075
9076 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9077 cleanups = make_cleanup (xfree, dwp_name);
9078
9079 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9080 if (dbfd == NULL)
9081 {
9082 if (dwarf2_read_debug)
9083 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9084 do_cleanups (cleanups);
9085 return NULL;
9086 }
9087 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9088 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9089 dwp_name, strlen (dwp_name));
9090 dwp_file->dbfd = dbfd;
9091 do_cleanups (cleanups);
9092
9093 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9094
9095 /* +1: section 0 is unused */
9096 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9097 dwp_file->elf_sections =
9098 OBSTACK_CALLOC (&objfile->objfile_obstack,
9099 dwp_file->num_sections, asection *);
9100
9101 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9102
9103 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9104
9105 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9106
9107 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9108
9109 discard_cleanups (cleanups);
9110
9111 if (dwarf2_read_debug)
9112 {
9113 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9114 fprintf_unfiltered (gdb_stdlog,
9115 " %u CUs, %u TUs\n",
9116 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9117 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9118 }
9119
9120 return dwp_file;
9121 }
9122
9123 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9124 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9125 or in the DWP file for the objfile, referenced by THIS_UNIT.
9126 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9127 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9128
9129 This is called, for example, when wanting to read a variable with a
9130 complex location. Therefore we don't want to do file i/o for every call.
9131 Therefore we don't want to look for a DWO file on every call.
9132 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9133 then we check if we've already seen DWO_NAME, and only THEN do we check
9134 for a DWO file.
9135
9136 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9137 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9138
9139 static struct dwo_unit *
9140 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9141 const char *dwo_name, const char *comp_dir,
9142 ULONGEST signature, int is_debug_types)
9143 {
9144 struct objfile *objfile = dwarf2_per_objfile->objfile;
9145 const char *kind = is_debug_types ? "TU" : "CU";
9146 void **dwo_file_slot;
9147 struct dwo_file *dwo_file;
9148 struct dwp_file *dwp_file;
9149
9150 /* Have we already read SIGNATURE from a DWP file? */
9151
9152 if (! dwarf2_per_objfile->dwp_checked)
9153 {
9154 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9155 dwarf2_per_objfile->dwp_checked = 1;
9156 }
9157 dwp_file = dwarf2_per_objfile->dwp_file;
9158
9159 if (dwp_file != NULL)
9160 {
9161 const struct dwp_hash_table *dwp_htab =
9162 is_debug_types ? dwp_file->tus : dwp_file->cus;
9163
9164 if (dwp_htab != NULL)
9165 {
9166 struct dwo_unit *dwo_cutu =
9167 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9168
9169 if (dwo_cutu != NULL)
9170 {
9171 if (dwarf2_read_debug)
9172 {
9173 fprintf_unfiltered (gdb_stdlog,
9174 "Virtual DWO %s %s found: @%s\n",
9175 kind, hex_string (signature),
9176 host_address_to_string (dwo_cutu));
9177 }
9178 return dwo_cutu;
9179 }
9180 }
9181 }
9182
9183 /* Have we already seen DWO_NAME? */
9184
9185 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9186 if (*dwo_file_slot == NULL)
9187 {
9188 /* Read in the file and build a table of the DWOs it contains. */
9189 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9190 }
9191 /* NOTE: This will be NULL if unable to open the file. */
9192 dwo_file = *dwo_file_slot;
9193
9194 if (dwo_file != NULL)
9195 {
9196 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9197
9198 if (htab != NULL)
9199 {
9200 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9201
9202 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9203 find_dwo_cutu.signature = signature;
9204 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9205
9206 if (dwo_cutu != NULL)
9207 {
9208 if (dwarf2_read_debug)
9209 {
9210 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9211 kind, dwo_name, hex_string (signature),
9212 host_address_to_string (dwo_cutu));
9213 }
9214 return dwo_cutu;
9215 }
9216 }
9217 }
9218
9219 /* We didn't find it. This could mean a dwo_id mismatch, or
9220 someone deleted the DWO/DWP file, or the search path isn't set up
9221 correctly to find the file. */
9222
9223 if (dwarf2_read_debug)
9224 {
9225 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9226 kind, dwo_name, hex_string (signature));
9227 }
9228
9229 complaint (&symfile_complaints,
9230 _("Could not find DWO CU referenced by CU at offset 0x%x"
9231 " [in module %s]"),
9232 this_unit->offset.sect_off, objfile->name);
9233 return NULL;
9234 }
9235
9236 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9237 See lookup_dwo_cutu_unit for details. */
9238
9239 static struct dwo_unit *
9240 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9241 const char *dwo_name, const char *comp_dir,
9242 ULONGEST signature)
9243 {
9244 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9245 }
9246
9247 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9248 See lookup_dwo_cutu_unit for details. */
9249
9250 static struct dwo_unit *
9251 lookup_dwo_type_unit (struct signatured_type *this_tu,
9252 const char *dwo_name, const char *comp_dir)
9253 {
9254 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9255 }
9256
9257 /* Free all resources associated with DWO_FILE.
9258 Close the DWO file and munmap the sections.
9259 All memory should be on the objfile obstack. */
9260
9261 static void
9262 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9263 {
9264 int ix;
9265 struct dwarf2_section_info *section;
9266
9267 gdb_bfd_unref (dwo_file->dbfd);
9268
9269 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9270 }
9271
9272 /* Wrapper for free_dwo_file for use in cleanups. */
9273
9274 static void
9275 free_dwo_file_cleanup (void *arg)
9276 {
9277 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9278 struct objfile *objfile = dwarf2_per_objfile->objfile;
9279
9280 free_dwo_file (dwo_file, objfile);
9281 }
9282
9283 /* Traversal function for free_dwo_files. */
9284
9285 static int
9286 free_dwo_file_from_slot (void **slot, void *info)
9287 {
9288 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9289 struct objfile *objfile = (struct objfile *) info;
9290
9291 free_dwo_file (dwo_file, objfile);
9292
9293 return 1;
9294 }
9295
9296 /* Free all resources associated with DWO_FILES. */
9297
9298 static void
9299 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9300 {
9301 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9302 }
9303 \f
9304 /* Read in various DIEs. */
9305
9306 /* qsort helper for inherit_abstract_dies. */
9307
9308 static int
9309 unsigned_int_compar (const void *ap, const void *bp)
9310 {
9311 unsigned int a = *(unsigned int *) ap;
9312 unsigned int b = *(unsigned int *) bp;
9313
9314 return (a > b) - (b > a);
9315 }
9316
9317 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9318 Inherit only the children of the DW_AT_abstract_origin DIE not being
9319 already referenced by DW_AT_abstract_origin from the children of the
9320 current DIE. */
9321
9322 static void
9323 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9324 {
9325 struct die_info *child_die;
9326 unsigned die_children_count;
9327 /* CU offsets which were referenced by children of the current DIE. */
9328 sect_offset *offsets;
9329 sect_offset *offsets_end, *offsetp;
9330 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9331 struct die_info *origin_die;
9332 /* Iterator of the ORIGIN_DIE children. */
9333 struct die_info *origin_child_die;
9334 struct cleanup *cleanups;
9335 struct attribute *attr;
9336 struct dwarf2_cu *origin_cu;
9337 struct pending **origin_previous_list_in_scope;
9338
9339 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9340 if (!attr)
9341 return;
9342
9343 /* Note that following die references may follow to a die in a
9344 different cu. */
9345
9346 origin_cu = cu;
9347 origin_die = follow_die_ref (die, attr, &origin_cu);
9348
9349 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9350 symbols in. */
9351 origin_previous_list_in_scope = origin_cu->list_in_scope;
9352 origin_cu->list_in_scope = cu->list_in_scope;
9353
9354 if (die->tag != origin_die->tag
9355 && !(die->tag == DW_TAG_inlined_subroutine
9356 && origin_die->tag == DW_TAG_subprogram))
9357 complaint (&symfile_complaints,
9358 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9359 die->offset.sect_off, origin_die->offset.sect_off);
9360
9361 child_die = die->child;
9362 die_children_count = 0;
9363 while (child_die && child_die->tag)
9364 {
9365 child_die = sibling_die (child_die);
9366 die_children_count++;
9367 }
9368 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9369 cleanups = make_cleanup (xfree, offsets);
9370
9371 offsets_end = offsets;
9372 child_die = die->child;
9373 while (child_die && child_die->tag)
9374 {
9375 /* For each CHILD_DIE, find the corresponding child of
9376 ORIGIN_DIE. If there is more than one layer of
9377 DW_AT_abstract_origin, follow them all; there shouldn't be,
9378 but GCC versions at least through 4.4 generate this (GCC PR
9379 40573). */
9380 struct die_info *child_origin_die = child_die;
9381 struct dwarf2_cu *child_origin_cu = cu;
9382
9383 while (1)
9384 {
9385 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9386 child_origin_cu);
9387 if (attr == NULL)
9388 break;
9389 child_origin_die = follow_die_ref (child_origin_die, attr,
9390 &child_origin_cu);
9391 }
9392
9393 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9394 counterpart may exist. */
9395 if (child_origin_die != child_die)
9396 {
9397 if (child_die->tag != child_origin_die->tag
9398 && !(child_die->tag == DW_TAG_inlined_subroutine
9399 && child_origin_die->tag == DW_TAG_subprogram))
9400 complaint (&symfile_complaints,
9401 _("Child DIE 0x%x and its abstract origin 0x%x have "
9402 "different tags"), child_die->offset.sect_off,
9403 child_origin_die->offset.sect_off);
9404 if (child_origin_die->parent != origin_die)
9405 complaint (&symfile_complaints,
9406 _("Child DIE 0x%x and its abstract origin 0x%x have "
9407 "different parents"), child_die->offset.sect_off,
9408 child_origin_die->offset.sect_off);
9409 else
9410 *offsets_end++ = child_origin_die->offset;
9411 }
9412 child_die = sibling_die (child_die);
9413 }
9414 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9415 unsigned_int_compar);
9416 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9417 if (offsetp[-1].sect_off == offsetp->sect_off)
9418 complaint (&symfile_complaints,
9419 _("Multiple children of DIE 0x%x refer "
9420 "to DIE 0x%x as their abstract origin"),
9421 die->offset.sect_off, offsetp->sect_off);
9422
9423 offsetp = offsets;
9424 origin_child_die = origin_die->child;
9425 while (origin_child_die && origin_child_die->tag)
9426 {
9427 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9428 while (offsetp < offsets_end
9429 && offsetp->sect_off < origin_child_die->offset.sect_off)
9430 offsetp++;
9431 if (offsetp >= offsets_end
9432 || offsetp->sect_off > origin_child_die->offset.sect_off)
9433 {
9434 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9435 process_die (origin_child_die, origin_cu);
9436 }
9437 origin_child_die = sibling_die (origin_child_die);
9438 }
9439 origin_cu->list_in_scope = origin_previous_list_in_scope;
9440
9441 do_cleanups (cleanups);
9442 }
9443
9444 static void
9445 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9446 {
9447 struct objfile *objfile = cu->objfile;
9448 struct context_stack *new;
9449 CORE_ADDR lowpc;
9450 CORE_ADDR highpc;
9451 struct die_info *child_die;
9452 struct attribute *attr, *call_line, *call_file;
9453 const char *name;
9454 CORE_ADDR baseaddr;
9455 struct block *block;
9456 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9457 VEC (symbolp) *template_args = NULL;
9458 struct template_symbol *templ_func = NULL;
9459
9460 if (inlined_func)
9461 {
9462 /* If we do not have call site information, we can't show the
9463 caller of this inlined function. That's too confusing, so
9464 only use the scope for local variables. */
9465 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9466 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9467 if (call_line == NULL || call_file == NULL)
9468 {
9469 read_lexical_block_scope (die, cu);
9470 return;
9471 }
9472 }
9473
9474 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9475
9476 name = dwarf2_name (die, cu);
9477
9478 /* Ignore functions with missing or empty names. These are actually
9479 illegal according to the DWARF standard. */
9480 if (name == NULL)
9481 {
9482 complaint (&symfile_complaints,
9483 _("missing name for subprogram DIE at %d"),
9484 die->offset.sect_off);
9485 return;
9486 }
9487
9488 /* Ignore functions with missing or invalid low and high pc attributes. */
9489 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9490 {
9491 attr = dwarf2_attr (die, DW_AT_external, cu);
9492 if (!attr || !DW_UNSND (attr))
9493 complaint (&symfile_complaints,
9494 _("cannot get low and high bounds "
9495 "for subprogram DIE at %d"),
9496 die->offset.sect_off);
9497 return;
9498 }
9499
9500 lowpc += baseaddr;
9501 highpc += baseaddr;
9502
9503 /* If we have any template arguments, then we must allocate a
9504 different sort of symbol. */
9505 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9506 {
9507 if (child_die->tag == DW_TAG_template_type_param
9508 || child_die->tag == DW_TAG_template_value_param)
9509 {
9510 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9511 struct template_symbol);
9512 templ_func->base.is_cplus_template_function = 1;
9513 break;
9514 }
9515 }
9516
9517 new = push_context (0, lowpc);
9518 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9519 (struct symbol *) templ_func);
9520
9521 /* If there is a location expression for DW_AT_frame_base, record
9522 it. */
9523 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9524 if (attr)
9525 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9526
9527 cu->list_in_scope = &local_symbols;
9528
9529 if (die->child != NULL)
9530 {
9531 child_die = die->child;
9532 while (child_die && child_die->tag)
9533 {
9534 if (child_die->tag == DW_TAG_template_type_param
9535 || child_die->tag == DW_TAG_template_value_param)
9536 {
9537 struct symbol *arg = new_symbol (child_die, NULL, cu);
9538
9539 if (arg != NULL)
9540 VEC_safe_push (symbolp, template_args, arg);
9541 }
9542 else
9543 process_die (child_die, cu);
9544 child_die = sibling_die (child_die);
9545 }
9546 }
9547
9548 inherit_abstract_dies (die, cu);
9549
9550 /* If we have a DW_AT_specification, we might need to import using
9551 directives from the context of the specification DIE. See the
9552 comment in determine_prefix. */
9553 if (cu->language == language_cplus
9554 && dwarf2_attr (die, DW_AT_specification, cu))
9555 {
9556 struct dwarf2_cu *spec_cu = cu;
9557 struct die_info *spec_die = die_specification (die, &spec_cu);
9558
9559 while (spec_die)
9560 {
9561 child_die = spec_die->child;
9562 while (child_die && child_die->tag)
9563 {
9564 if (child_die->tag == DW_TAG_imported_module)
9565 process_die (child_die, spec_cu);
9566 child_die = sibling_die (child_die);
9567 }
9568
9569 /* In some cases, GCC generates specification DIEs that
9570 themselves contain DW_AT_specification attributes. */
9571 spec_die = die_specification (spec_die, &spec_cu);
9572 }
9573 }
9574
9575 new = pop_context ();
9576 /* Make a block for the local symbols within. */
9577 block = finish_block (new->name, &local_symbols, new->old_blocks,
9578 lowpc, highpc, objfile);
9579
9580 /* For C++, set the block's scope. */
9581 if ((cu->language == language_cplus || cu->language == language_fortran)
9582 && cu->processing_has_namespace_info)
9583 block_set_scope (block, determine_prefix (die, cu),
9584 &objfile->objfile_obstack);
9585
9586 /* If we have address ranges, record them. */
9587 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9588
9589 /* Attach template arguments to function. */
9590 if (! VEC_empty (symbolp, template_args))
9591 {
9592 gdb_assert (templ_func != NULL);
9593
9594 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9595 templ_func->template_arguments
9596 = obstack_alloc (&objfile->objfile_obstack,
9597 (templ_func->n_template_arguments
9598 * sizeof (struct symbol *)));
9599 memcpy (templ_func->template_arguments,
9600 VEC_address (symbolp, template_args),
9601 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9602 VEC_free (symbolp, template_args);
9603 }
9604
9605 /* In C++, we can have functions nested inside functions (e.g., when
9606 a function declares a class that has methods). This means that
9607 when we finish processing a function scope, we may need to go
9608 back to building a containing block's symbol lists. */
9609 local_symbols = new->locals;
9610 using_directives = new->using_directives;
9611
9612 /* If we've finished processing a top-level function, subsequent
9613 symbols go in the file symbol list. */
9614 if (outermost_context_p ())
9615 cu->list_in_scope = &file_symbols;
9616 }
9617
9618 /* Process all the DIES contained within a lexical block scope. Start
9619 a new scope, process the dies, and then close the scope. */
9620
9621 static void
9622 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9623 {
9624 struct objfile *objfile = cu->objfile;
9625 struct context_stack *new;
9626 CORE_ADDR lowpc, highpc;
9627 struct die_info *child_die;
9628 CORE_ADDR baseaddr;
9629
9630 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9631
9632 /* Ignore blocks with missing or invalid low and high pc attributes. */
9633 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9634 as multiple lexical blocks? Handling children in a sane way would
9635 be nasty. Might be easier to properly extend generic blocks to
9636 describe ranges. */
9637 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9638 return;
9639 lowpc += baseaddr;
9640 highpc += baseaddr;
9641
9642 push_context (0, lowpc);
9643 if (die->child != NULL)
9644 {
9645 child_die = die->child;
9646 while (child_die && child_die->tag)
9647 {
9648 process_die (child_die, cu);
9649 child_die = sibling_die (child_die);
9650 }
9651 }
9652 new = pop_context ();
9653
9654 if (local_symbols != NULL || using_directives != NULL)
9655 {
9656 struct block *block
9657 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9658 highpc, objfile);
9659
9660 /* Note that recording ranges after traversing children, as we
9661 do here, means that recording a parent's ranges entails
9662 walking across all its children's ranges as they appear in
9663 the address map, which is quadratic behavior.
9664
9665 It would be nicer to record the parent's ranges before
9666 traversing its children, simply overriding whatever you find
9667 there. But since we don't even decide whether to create a
9668 block until after we've traversed its children, that's hard
9669 to do. */
9670 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9671 }
9672 local_symbols = new->locals;
9673 using_directives = new->using_directives;
9674 }
9675
9676 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9677
9678 static void
9679 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9680 {
9681 struct objfile *objfile = cu->objfile;
9682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9683 CORE_ADDR pc, baseaddr;
9684 struct attribute *attr;
9685 struct call_site *call_site, call_site_local;
9686 void **slot;
9687 int nparams;
9688 struct die_info *child_die;
9689
9690 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9691
9692 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9693 if (!attr)
9694 {
9695 complaint (&symfile_complaints,
9696 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9697 "DIE 0x%x [in module %s]"),
9698 die->offset.sect_off, objfile->name);
9699 return;
9700 }
9701 pc = DW_ADDR (attr) + baseaddr;
9702
9703 if (cu->call_site_htab == NULL)
9704 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9705 NULL, &objfile->objfile_obstack,
9706 hashtab_obstack_allocate, NULL);
9707 call_site_local.pc = pc;
9708 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9709 if (*slot != NULL)
9710 {
9711 complaint (&symfile_complaints,
9712 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9713 "DIE 0x%x [in module %s]"),
9714 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9715 return;
9716 }
9717
9718 /* Count parameters at the caller. */
9719
9720 nparams = 0;
9721 for (child_die = die->child; child_die && child_die->tag;
9722 child_die = sibling_die (child_die))
9723 {
9724 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9725 {
9726 complaint (&symfile_complaints,
9727 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9728 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9729 child_die->tag, child_die->offset.sect_off, objfile->name);
9730 continue;
9731 }
9732
9733 nparams++;
9734 }
9735
9736 call_site = obstack_alloc (&objfile->objfile_obstack,
9737 (sizeof (*call_site)
9738 + (sizeof (*call_site->parameter)
9739 * (nparams - 1))));
9740 *slot = call_site;
9741 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9742 call_site->pc = pc;
9743
9744 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9745 {
9746 struct die_info *func_die;
9747
9748 /* Skip also over DW_TAG_inlined_subroutine. */
9749 for (func_die = die->parent;
9750 func_die && func_die->tag != DW_TAG_subprogram
9751 && func_die->tag != DW_TAG_subroutine_type;
9752 func_die = func_die->parent);
9753
9754 /* DW_AT_GNU_all_call_sites is a superset
9755 of DW_AT_GNU_all_tail_call_sites. */
9756 if (func_die
9757 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9758 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9759 {
9760 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9761 not complete. But keep CALL_SITE for look ups via call_site_htab,
9762 both the initial caller containing the real return address PC and
9763 the final callee containing the current PC of a chain of tail
9764 calls do not need to have the tail call list complete. But any
9765 function candidate for a virtual tail call frame searched via
9766 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9767 determined unambiguously. */
9768 }
9769 else
9770 {
9771 struct type *func_type = NULL;
9772
9773 if (func_die)
9774 func_type = get_die_type (func_die, cu);
9775 if (func_type != NULL)
9776 {
9777 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9778
9779 /* Enlist this call site to the function. */
9780 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9781 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9782 }
9783 else
9784 complaint (&symfile_complaints,
9785 _("Cannot find function owning DW_TAG_GNU_call_site "
9786 "DIE 0x%x [in module %s]"),
9787 die->offset.sect_off, objfile->name);
9788 }
9789 }
9790
9791 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9792 if (attr == NULL)
9793 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9794 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9795 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9796 /* Keep NULL DWARF_BLOCK. */;
9797 else if (attr_form_is_block (attr))
9798 {
9799 struct dwarf2_locexpr_baton *dlbaton;
9800
9801 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9802 dlbaton->data = DW_BLOCK (attr)->data;
9803 dlbaton->size = DW_BLOCK (attr)->size;
9804 dlbaton->per_cu = cu->per_cu;
9805
9806 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9807 }
9808 else if (is_ref_attr (attr))
9809 {
9810 struct dwarf2_cu *target_cu = cu;
9811 struct die_info *target_die;
9812
9813 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9814 gdb_assert (target_cu->objfile == objfile);
9815 if (die_is_declaration (target_die, target_cu))
9816 {
9817 const char *target_physname = NULL;
9818 struct attribute *target_attr;
9819
9820 /* Prefer the mangled name; otherwise compute the demangled one. */
9821 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9822 if (target_attr == NULL)
9823 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9824 target_cu);
9825 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9826 target_physname = DW_STRING (target_attr);
9827 else
9828 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9829 if (target_physname == NULL)
9830 complaint (&symfile_complaints,
9831 _("DW_AT_GNU_call_site_target target DIE has invalid "
9832 "physname, for referencing DIE 0x%x [in module %s]"),
9833 die->offset.sect_off, objfile->name);
9834 else
9835 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9836 }
9837 else
9838 {
9839 CORE_ADDR lowpc;
9840
9841 /* DW_AT_entry_pc should be preferred. */
9842 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9843 complaint (&symfile_complaints,
9844 _("DW_AT_GNU_call_site_target target DIE has invalid "
9845 "low pc, for referencing DIE 0x%x [in module %s]"),
9846 die->offset.sect_off, objfile->name);
9847 else
9848 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9849 }
9850 }
9851 else
9852 complaint (&symfile_complaints,
9853 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9854 "block nor reference, for DIE 0x%x [in module %s]"),
9855 die->offset.sect_off, objfile->name);
9856
9857 call_site->per_cu = cu->per_cu;
9858
9859 for (child_die = die->child;
9860 child_die && child_die->tag;
9861 child_die = sibling_die (child_die))
9862 {
9863 struct call_site_parameter *parameter;
9864 struct attribute *loc, *origin;
9865
9866 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9867 {
9868 /* Already printed the complaint above. */
9869 continue;
9870 }
9871
9872 gdb_assert (call_site->parameter_count < nparams);
9873 parameter = &call_site->parameter[call_site->parameter_count];
9874
9875 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9876 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9877 register is contained in DW_AT_GNU_call_site_value. */
9878
9879 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9880 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9881 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9882 {
9883 sect_offset offset;
9884
9885 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9886 offset = dwarf2_get_ref_die_offset (origin);
9887 if (!offset_in_cu_p (&cu->header, offset))
9888 {
9889 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9890 binding can be done only inside one CU. Such referenced DIE
9891 therefore cannot be even moved to DW_TAG_partial_unit. */
9892 complaint (&symfile_complaints,
9893 _("DW_AT_abstract_origin offset is not in CU for "
9894 "DW_TAG_GNU_call_site child DIE 0x%x "
9895 "[in module %s]"),
9896 child_die->offset.sect_off, objfile->name);
9897 continue;
9898 }
9899 parameter->u.param_offset.cu_off = (offset.sect_off
9900 - cu->header.offset.sect_off);
9901 }
9902 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9903 {
9904 complaint (&symfile_complaints,
9905 _("No DW_FORM_block* DW_AT_location for "
9906 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9907 child_die->offset.sect_off, objfile->name);
9908 continue;
9909 }
9910 else
9911 {
9912 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9913 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9914 if (parameter->u.dwarf_reg != -1)
9915 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9916 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9917 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9918 &parameter->u.fb_offset))
9919 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9920 else
9921 {
9922 complaint (&symfile_complaints,
9923 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9924 "for DW_FORM_block* DW_AT_location is supported for "
9925 "DW_TAG_GNU_call_site child DIE 0x%x "
9926 "[in module %s]"),
9927 child_die->offset.sect_off, objfile->name);
9928 continue;
9929 }
9930 }
9931
9932 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9933 if (!attr_form_is_block (attr))
9934 {
9935 complaint (&symfile_complaints,
9936 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9937 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9938 child_die->offset.sect_off, objfile->name);
9939 continue;
9940 }
9941 parameter->value = DW_BLOCK (attr)->data;
9942 parameter->value_size = DW_BLOCK (attr)->size;
9943
9944 /* Parameters are not pre-cleared by memset above. */
9945 parameter->data_value = NULL;
9946 parameter->data_value_size = 0;
9947 call_site->parameter_count++;
9948
9949 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9950 if (attr)
9951 {
9952 if (!attr_form_is_block (attr))
9953 complaint (&symfile_complaints,
9954 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9955 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9956 child_die->offset.sect_off, objfile->name);
9957 else
9958 {
9959 parameter->data_value = DW_BLOCK (attr)->data;
9960 parameter->data_value_size = DW_BLOCK (attr)->size;
9961 }
9962 }
9963 }
9964 }
9965
9966 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9967 Return 1 if the attributes are present and valid, otherwise, return 0.
9968 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9969
9970 static int
9971 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9972 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9973 struct partial_symtab *ranges_pst)
9974 {
9975 struct objfile *objfile = cu->objfile;
9976 struct comp_unit_head *cu_header = &cu->header;
9977 bfd *obfd = objfile->obfd;
9978 unsigned int addr_size = cu_header->addr_size;
9979 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9980 /* Base address selection entry. */
9981 CORE_ADDR base;
9982 int found_base;
9983 unsigned int dummy;
9984 gdb_byte *buffer;
9985 CORE_ADDR marker;
9986 int low_set;
9987 CORE_ADDR low = 0;
9988 CORE_ADDR high = 0;
9989 CORE_ADDR baseaddr;
9990
9991 found_base = cu->base_known;
9992 base = cu->base_address;
9993
9994 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9995 if (offset >= dwarf2_per_objfile->ranges.size)
9996 {
9997 complaint (&symfile_complaints,
9998 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9999 offset);
10000 return 0;
10001 }
10002 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10003
10004 /* Read in the largest possible address. */
10005 marker = read_address (obfd, buffer, cu, &dummy);
10006 if ((marker & mask) == mask)
10007 {
10008 /* If we found the largest possible address, then
10009 read the base address. */
10010 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10011 buffer += 2 * addr_size;
10012 offset += 2 * addr_size;
10013 found_base = 1;
10014 }
10015
10016 low_set = 0;
10017
10018 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10019
10020 while (1)
10021 {
10022 CORE_ADDR range_beginning, range_end;
10023
10024 range_beginning = read_address (obfd, buffer, cu, &dummy);
10025 buffer += addr_size;
10026 range_end = read_address (obfd, buffer, cu, &dummy);
10027 buffer += addr_size;
10028 offset += 2 * addr_size;
10029
10030 /* An end of list marker is a pair of zero addresses. */
10031 if (range_beginning == 0 && range_end == 0)
10032 /* Found the end of list entry. */
10033 break;
10034
10035 /* Each base address selection entry is a pair of 2 values.
10036 The first is the largest possible address, the second is
10037 the base address. Check for a base address here. */
10038 if ((range_beginning & mask) == mask)
10039 {
10040 /* If we found the largest possible address, then
10041 read the base address. */
10042 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10043 found_base = 1;
10044 continue;
10045 }
10046
10047 if (!found_base)
10048 {
10049 /* We have no valid base address for the ranges
10050 data. */
10051 complaint (&symfile_complaints,
10052 _("Invalid .debug_ranges data (no base address)"));
10053 return 0;
10054 }
10055
10056 if (range_beginning > range_end)
10057 {
10058 /* Inverted range entries are invalid. */
10059 complaint (&symfile_complaints,
10060 _("Invalid .debug_ranges data (inverted range)"));
10061 return 0;
10062 }
10063
10064 /* Empty range entries have no effect. */
10065 if (range_beginning == range_end)
10066 continue;
10067
10068 range_beginning += base;
10069 range_end += base;
10070
10071 /* A not-uncommon case of bad debug info.
10072 Don't pollute the addrmap with bad data. */
10073 if (range_beginning + baseaddr == 0
10074 && !dwarf2_per_objfile->has_section_at_zero)
10075 {
10076 complaint (&symfile_complaints,
10077 _(".debug_ranges entry has start address of zero"
10078 " [in module %s]"), objfile->name);
10079 continue;
10080 }
10081
10082 if (ranges_pst != NULL)
10083 addrmap_set_empty (objfile->psymtabs_addrmap,
10084 range_beginning + baseaddr,
10085 range_end - 1 + baseaddr,
10086 ranges_pst);
10087
10088 /* FIXME: This is recording everything as a low-high
10089 segment of consecutive addresses. We should have a
10090 data structure for discontiguous block ranges
10091 instead. */
10092 if (! low_set)
10093 {
10094 low = range_beginning;
10095 high = range_end;
10096 low_set = 1;
10097 }
10098 else
10099 {
10100 if (range_beginning < low)
10101 low = range_beginning;
10102 if (range_end > high)
10103 high = range_end;
10104 }
10105 }
10106
10107 if (! low_set)
10108 /* If the first entry is an end-of-list marker, the range
10109 describes an empty scope, i.e. no instructions. */
10110 return 0;
10111
10112 if (low_return)
10113 *low_return = low;
10114 if (high_return)
10115 *high_return = high;
10116 return 1;
10117 }
10118
10119 /* Get low and high pc attributes from a die. Return 1 if the attributes
10120 are present and valid, otherwise, return 0. Return -1 if the range is
10121 discontinuous, i.e. derived from DW_AT_ranges information. */
10122
10123 static int
10124 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10125 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10126 struct partial_symtab *pst)
10127 {
10128 struct attribute *attr;
10129 struct attribute *attr_high;
10130 CORE_ADDR low = 0;
10131 CORE_ADDR high = 0;
10132 int ret = 0;
10133
10134 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10135 if (attr_high)
10136 {
10137 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10138 if (attr)
10139 {
10140 low = DW_ADDR (attr);
10141 if (attr_high->form == DW_FORM_addr
10142 || attr_high->form == DW_FORM_GNU_addr_index)
10143 high = DW_ADDR (attr_high);
10144 else
10145 high = low + DW_UNSND (attr_high);
10146 }
10147 else
10148 /* Found high w/o low attribute. */
10149 return 0;
10150
10151 /* Found consecutive range of addresses. */
10152 ret = 1;
10153 }
10154 else
10155 {
10156 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10157 if (attr != NULL)
10158 {
10159 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10160 We take advantage of the fact that DW_AT_ranges does not appear
10161 in DW_TAG_compile_unit of DWO files. */
10162 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10163 unsigned int ranges_offset = (DW_UNSND (attr)
10164 + (need_ranges_base
10165 ? cu->ranges_base
10166 : 0));
10167
10168 /* Value of the DW_AT_ranges attribute is the offset in the
10169 .debug_ranges section. */
10170 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10171 return 0;
10172 /* Found discontinuous range of addresses. */
10173 ret = -1;
10174 }
10175 }
10176
10177 /* read_partial_die has also the strict LOW < HIGH requirement. */
10178 if (high <= low)
10179 return 0;
10180
10181 /* When using the GNU linker, .gnu.linkonce. sections are used to
10182 eliminate duplicate copies of functions and vtables and such.
10183 The linker will arbitrarily choose one and discard the others.
10184 The AT_*_pc values for such functions refer to local labels in
10185 these sections. If the section from that file was discarded, the
10186 labels are not in the output, so the relocs get a value of 0.
10187 If this is a discarded function, mark the pc bounds as invalid,
10188 so that GDB will ignore it. */
10189 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10190 return 0;
10191
10192 *lowpc = low;
10193 if (highpc)
10194 *highpc = high;
10195 return ret;
10196 }
10197
10198 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10199 its low and high PC addresses. Do nothing if these addresses could not
10200 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10201 and HIGHPC to the high address if greater than HIGHPC. */
10202
10203 static void
10204 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10205 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10206 struct dwarf2_cu *cu)
10207 {
10208 CORE_ADDR low, high;
10209 struct die_info *child = die->child;
10210
10211 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10212 {
10213 *lowpc = min (*lowpc, low);
10214 *highpc = max (*highpc, high);
10215 }
10216
10217 /* If the language does not allow nested subprograms (either inside
10218 subprograms or lexical blocks), we're done. */
10219 if (cu->language != language_ada)
10220 return;
10221
10222 /* Check all the children of the given DIE. If it contains nested
10223 subprograms, then check their pc bounds. Likewise, we need to
10224 check lexical blocks as well, as they may also contain subprogram
10225 definitions. */
10226 while (child && child->tag)
10227 {
10228 if (child->tag == DW_TAG_subprogram
10229 || child->tag == DW_TAG_lexical_block)
10230 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10231 child = sibling_die (child);
10232 }
10233 }
10234
10235 /* Get the low and high pc's represented by the scope DIE, and store
10236 them in *LOWPC and *HIGHPC. If the correct values can't be
10237 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10238
10239 static void
10240 get_scope_pc_bounds (struct die_info *die,
10241 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10242 struct dwarf2_cu *cu)
10243 {
10244 CORE_ADDR best_low = (CORE_ADDR) -1;
10245 CORE_ADDR best_high = (CORE_ADDR) 0;
10246 CORE_ADDR current_low, current_high;
10247
10248 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10249 {
10250 best_low = current_low;
10251 best_high = current_high;
10252 }
10253 else
10254 {
10255 struct die_info *child = die->child;
10256
10257 while (child && child->tag)
10258 {
10259 switch (child->tag) {
10260 case DW_TAG_subprogram:
10261 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10262 break;
10263 case DW_TAG_namespace:
10264 case DW_TAG_module:
10265 /* FIXME: carlton/2004-01-16: Should we do this for
10266 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10267 that current GCC's always emit the DIEs corresponding
10268 to definitions of methods of classes as children of a
10269 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10270 the DIEs giving the declarations, which could be
10271 anywhere). But I don't see any reason why the
10272 standards says that they have to be there. */
10273 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10274
10275 if (current_low != ((CORE_ADDR) -1))
10276 {
10277 best_low = min (best_low, current_low);
10278 best_high = max (best_high, current_high);
10279 }
10280 break;
10281 default:
10282 /* Ignore. */
10283 break;
10284 }
10285
10286 child = sibling_die (child);
10287 }
10288 }
10289
10290 *lowpc = best_low;
10291 *highpc = best_high;
10292 }
10293
10294 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10295 in DIE. */
10296
10297 static void
10298 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10299 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10300 {
10301 struct objfile *objfile = cu->objfile;
10302 struct attribute *attr;
10303 struct attribute *attr_high;
10304
10305 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10306 if (attr_high)
10307 {
10308 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10309 if (attr)
10310 {
10311 CORE_ADDR low = DW_ADDR (attr);
10312 CORE_ADDR high;
10313 if (attr_high->form == DW_FORM_addr
10314 || attr_high->form == DW_FORM_GNU_addr_index)
10315 high = DW_ADDR (attr_high);
10316 else
10317 high = low + DW_UNSND (attr_high);
10318
10319 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10320 }
10321 }
10322
10323 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10324 if (attr)
10325 {
10326 bfd *obfd = objfile->obfd;
10327 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10328 We take advantage of the fact that DW_AT_ranges does not appear
10329 in DW_TAG_compile_unit of DWO files. */
10330 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10331
10332 /* The value of the DW_AT_ranges attribute is the offset of the
10333 address range list in the .debug_ranges section. */
10334 unsigned long offset = (DW_UNSND (attr)
10335 + (need_ranges_base ? cu->ranges_base : 0));
10336 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10337
10338 /* For some target architectures, but not others, the
10339 read_address function sign-extends the addresses it returns.
10340 To recognize base address selection entries, we need a
10341 mask. */
10342 unsigned int addr_size = cu->header.addr_size;
10343 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10344
10345 /* The base address, to which the next pair is relative. Note
10346 that this 'base' is a DWARF concept: most entries in a range
10347 list are relative, to reduce the number of relocs against the
10348 debugging information. This is separate from this function's
10349 'baseaddr' argument, which GDB uses to relocate debugging
10350 information from a shared library based on the address at
10351 which the library was loaded. */
10352 CORE_ADDR base = cu->base_address;
10353 int base_known = cu->base_known;
10354
10355 gdb_assert (dwarf2_per_objfile->ranges.readin);
10356 if (offset >= dwarf2_per_objfile->ranges.size)
10357 {
10358 complaint (&symfile_complaints,
10359 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10360 offset);
10361 return;
10362 }
10363
10364 for (;;)
10365 {
10366 unsigned int bytes_read;
10367 CORE_ADDR start, end;
10368
10369 start = read_address (obfd, buffer, cu, &bytes_read);
10370 buffer += bytes_read;
10371 end = read_address (obfd, buffer, cu, &bytes_read);
10372 buffer += bytes_read;
10373
10374 /* Did we find the end of the range list? */
10375 if (start == 0 && end == 0)
10376 break;
10377
10378 /* Did we find a base address selection entry? */
10379 else if ((start & base_select_mask) == base_select_mask)
10380 {
10381 base = end;
10382 base_known = 1;
10383 }
10384
10385 /* We found an ordinary address range. */
10386 else
10387 {
10388 if (!base_known)
10389 {
10390 complaint (&symfile_complaints,
10391 _("Invalid .debug_ranges data "
10392 "(no base address)"));
10393 return;
10394 }
10395
10396 if (start > end)
10397 {
10398 /* Inverted range entries are invalid. */
10399 complaint (&symfile_complaints,
10400 _("Invalid .debug_ranges data "
10401 "(inverted range)"));
10402 return;
10403 }
10404
10405 /* Empty range entries have no effect. */
10406 if (start == end)
10407 continue;
10408
10409 start += base + baseaddr;
10410 end += base + baseaddr;
10411
10412 /* A not-uncommon case of bad debug info.
10413 Don't pollute the addrmap with bad data. */
10414 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10415 {
10416 complaint (&symfile_complaints,
10417 _(".debug_ranges entry has start address of zero"
10418 " [in module %s]"), objfile->name);
10419 continue;
10420 }
10421
10422 record_block_range (block, start, end - 1);
10423 }
10424 }
10425 }
10426 }
10427
10428 /* Check whether the producer field indicates either of GCC < 4.6, or the
10429 Intel C/C++ compiler, and cache the result in CU. */
10430
10431 static void
10432 check_producer (struct dwarf2_cu *cu)
10433 {
10434 const char *cs;
10435 int major, minor, release;
10436
10437 if (cu->producer == NULL)
10438 {
10439 /* For unknown compilers expect their behavior is DWARF version
10440 compliant.
10441
10442 GCC started to support .debug_types sections by -gdwarf-4 since
10443 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10444 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10445 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10446 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10447 }
10448 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10449 {
10450 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10451
10452 cs = &cu->producer[strlen ("GNU ")];
10453 while (*cs && !isdigit (*cs))
10454 cs++;
10455 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10456 {
10457 /* Not recognized as GCC. */
10458 }
10459 else
10460 {
10461 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10462 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10463 }
10464 }
10465 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10466 cu->producer_is_icc = 1;
10467 else
10468 {
10469 /* For other non-GCC compilers, expect their behavior is DWARF version
10470 compliant. */
10471 }
10472
10473 cu->checked_producer = 1;
10474 }
10475
10476 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10477 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10478 during 4.6.0 experimental. */
10479
10480 static int
10481 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10482 {
10483 if (!cu->checked_producer)
10484 check_producer (cu);
10485
10486 return cu->producer_is_gxx_lt_4_6;
10487 }
10488
10489 /* Return the default accessibility type if it is not overriden by
10490 DW_AT_accessibility. */
10491
10492 static enum dwarf_access_attribute
10493 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10494 {
10495 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10496 {
10497 /* The default DWARF 2 accessibility for members is public, the default
10498 accessibility for inheritance is private. */
10499
10500 if (die->tag != DW_TAG_inheritance)
10501 return DW_ACCESS_public;
10502 else
10503 return DW_ACCESS_private;
10504 }
10505 else
10506 {
10507 /* DWARF 3+ defines the default accessibility a different way. The same
10508 rules apply now for DW_TAG_inheritance as for the members and it only
10509 depends on the container kind. */
10510
10511 if (die->parent->tag == DW_TAG_class_type)
10512 return DW_ACCESS_private;
10513 else
10514 return DW_ACCESS_public;
10515 }
10516 }
10517
10518 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10519 offset. If the attribute was not found return 0, otherwise return
10520 1. If it was found but could not properly be handled, set *OFFSET
10521 to 0. */
10522
10523 static int
10524 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10525 LONGEST *offset)
10526 {
10527 struct attribute *attr;
10528
10529 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10530 if (attr != NULL)
10531 {
10532 *offset = 0;
10533
10534 /* Note that we do not check for a section offset first here.
10535 This is because DW_AT_data_member_location is new in DWARF 4,
10536 so if we see it, we can assume that a constant form is really
10537 a constant and not a section offset. */
10538 if (attr_form_is_constant (attr))
10539 *offset = dwarf2_get_attr_constant_value (attr, 0);
10540 else if (attr_form_is_section_offset (attr))
10541 dwarf2_complex_location_expr_complaint ();
10542 else if (attr_form_is_block (attr))
10543 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10544 else
10545 dwarf2_complex_location_expr_complaint ();
10546
10547 return 1;
10548 }
10549
10550 return 0;
10551 }
10552
10553 /* Add an aggregate field to the field list. */
10554
10555 static void
10556 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10557 struct dwarf2_cu *cu)
10558 {
10559 struct objfile *objfile = cu->objfile;
10560 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10561 struct nextfield *new_field;
10562 struct attribute *attr;
10563 struct field *fp;
10564 const char *fieldname = "";
10565
10566 /* Allocate a new field list entry and link it in. */
10567 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10568 make_cleanup (xfree, new_field);
10569 memset (new_field, 0, sizeof (struct nextfield));
10570
10571 if (die->tag == DW_TAG_inheritance)
10572 {
10573 new_field->next = fip->baseclasses;
10574 fip->baseclasses = new_field;
10575 }
10576 else
10577 {
10578 new_field->next = fip->fields;
10579 fip->fields = new_field;
10580 }
10581 fip->nfields++;
10582
10583 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10584 if (attr)
10585 new_field->accessibility = DW_UNSND (attr);
10586 else
10587 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10588 if (new_field->accessibility != DW_ACCESS_public)
10589 fip->non_public_fields = 1;
10590
10591 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10592 if (attr)
10593 new_field->virtuality = DW_UNSND (attr);
10594 else
10595 new_field->virtuality = DW_VIRTUALITY_none;
10596
10597 fp = &new_field->field;
10598
10599 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10600 {
10601 LONGEST offset;
10602
10603 /* Data member other than a C++ static data member. */
10604
10605 /* Get type of field. */
10606 fp->type = die_type (die, cu);
10607
10608 SET_FIELD_BITPOS (*fp, 0);
10609
10610 /* Get bit size of field (zero if none). */
10611 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10612 if (attr)
10613 {
10614 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10615 }
10616 else
10617 {
10618 FIELD_BITSIZE (*fp) = 0;
10619 }
10620
10621 /* Get bit offset of field. */
10622 if (handle_data_member_location (die, cu, &offset))
10623 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10624 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10625 if (attr)
10626 {
10627 if (gdbarch_bits_big_endian (gdbarch))
10628 {
10629 /* For big endian bits, the DW_AT_bit_offset gives the
10630 additional bit offset from the MSB of the containing
10631 anonymous object to the MSB of the field. We don't
10632 have to do anything special since we don't need to
10633 know the size of the anonymous object. */
10634 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10635 }
10636 else
10637 {
10638 /* For little endian bits, compute the bit offset to the
10639 MSB of the anonymous object, subtract off the number of
10640 bits from the MSB of the field to the MSB of the
10641 object, and then subtract off the number of bits of
10642 the field itself. The result is the bit offset of
10643 the LSB of the field. */
10644 int anonymous_size;
10645 int bit_offset = DW_UNSND (attr);
10646
10647 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10648 if (attr)
10649 {
10650 /* The size of the anonymous object containing
10651 the bit field is explicit, so use the
10652 indicated size (in bytes). */
10653 anonymous_size = DW_UNSND (attr);
10654 }
10655 else
10656 {
10657 /* The size of the anonymous object containing
10658 the bit field must be inferred from the type
10659 attribute of the data member containing the
10660 bit field. */
10661 anonymous_size = TYPE_LENGTH (fp->type);
10662 }
10663 SET_FIELD_BITPOS (*fp,
10664 (FIELD_BITPOS (*fp)
10665 + anonymous_size * bits_per_byte
10666 - bit_offset - FIELD_BITSIZE (*fp)));
10667 }
10668 }
10669
10670 /* Get name of field. */
10671 fieldname = dwarf2_name (die, cu);
10672 if (fieldname == NULL)
10673 fieldname = "";
10674
10675 /* The name is already allocated along with this objfile, so we don't
10676 need to duplicate it for the type. */
10677 fp->name = fieldname;
10678
10679 /* Change accessibility for artificial fields (e.g. virtual table
10680 pointer or virtual base class pointer) to private. */
10681 if (dwarf2_attr (die, DW_AT_artificial, cu))
10682 {
10683 FIELD_ARTIFICIAL (*fp) = 1;
10684 new_field->accessibility = DW_ACCESS_private;
10685 fip->non_public_fields = 1;
10686 }
10687 }
10688 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10689 {
10690 /* C++ static member. */
10691
10692 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10693 is a declaration, but all versions of G++ as of this writing
10694 (so through at least 3.2.1) incorrectly generate
10695 DW_TAG_variable tags. */
10696
10697 const char *physname;
10698
10699 /* Get name of field. */
10700 fieldname = dwarf2_name (die, cu);
10701 if (fieldname == NULL)
10702 return;
10703
10704 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10705 if (attr
10706 /* Only create a symbol if this is an external value.
10707 new_symbol checks this and puts the value in the global symbol
10708 table, which we want. If it is not external, new_symbol
10709 will try to put the value in cu->list_in_scope which is wrong. */
10710 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10711 {
10712 /* A static const member, not much different than an enum as far as
10713 we're concerned, except that we can support more types. */
10714 new_symbol (die, NULL, cu);
10715 }
10716
10717 /* Get physical name. */
10718 physname = dwarf2_physname (fieldname, die, cu);
10719
10720 /* The name is already allocated along with this objfile, so we don't
10721 need to duplicate it for the type. */
10722 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10723 FIELD_TYPE (*fp) = die_type (die, cu);
10724 FIELD_NAME (*fp) = fieldname;
10725 }
10726 else if (die->tag == DW_TAG_inheritance)
10727 {
10728 LONGEST offset;
10729
10730 /* C++ base class field. */
10731 if (handle_data_member_location (die, cu, &offset))
10732 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10733 FIELD_BITSIZE (*fp) = 0;
10734 FIELD_TYPE (*fp) = die_type (die, cu);
10735 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10736 fip->nbaseclasses++;
10737 }
10738 }
10739
10740 /* Add a typedef defined in the scope of the FIP's class. */
10741
10742 static void
10743 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10744 struct dwarf2_cu *cu)
10745 {
10746 struct objfile *objfile = cu->objfile;
10747 struct typedef_field_list *new_field;
10748 struct attribute *attr;
10749 struct typedef_field *fp;
10750 char *fieldname = "";
10751
10752 /* Allocate a new field list entry and link it in. */
10753 new_field = xzalloc (sizeof (*new_field));
10754 make_cleanup (xfree, new_field);
10755
10756 gdb_assert (die->tag == DW_TAG_typedef);
10757
10758 fp = &new_field->field;
10759
10760 /* Get name of field. */
10761 fp->name = dwarf2_name (die, cu);
10762 if (fp->name == NULL)
10763 return;
10764
10765 fp->type = read_type_die (die, cu);
10766
10767 new_field->next = fip->typedef_field_list;
10768 fip->typedef_field_list = new_field;
10769 fip->typedef_field_list_count++;
10770 }
10771
10772 /* Create the vector of fields, and attach it to the type. */
10773
10774 static void
10775 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10776 struct dwarf2_cu *cu)
10777 {
10778 int nfields = fip->nfields;
10779
10780 /* Record the field count, allocate space for the array of fields,
10781 and create blank accessibility bitfields if necessary. */
10782 TYPE_NFIELDS (type) = nfields;
10783 TYPE_FIELDS (type) = (struct field *)
10784 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10785 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10786
10787 if (fip->non_public_fields && cu->language != language_ada)
10788 {
10789 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10790
10791 TYPE_FIELD_PRIVATE_BITS (type) =
10792 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10793 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10794
10795 TYPE_FIELD_PROTECTED_BITS (type) =
10796 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10797 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10798
10799 TYPE_FIELD_IGNORE_BITS (type) =
10800 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10801 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10802 }
10803
10804 /* If the type has baseclasses, allocate and clear a bit vector for
10805 TYPE_FIELD_VIRTUAL_BITS. */
10806 if (fip->nbaseclasses && cu->language != language_ada)
10807 {
10808 int num_bytes = B_BYTES (fip->nbaseclasses);
10809 unsigned char *pointer;
10810
10811 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10812 pointer = TYPE_ALLOC (type, num_bytes);
10813 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10814 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10815 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10816 }
10817
10818 /* Copy the saved-up fields into the field vector. Start from the head of
10819 the list, adding to the tail of the field array, so that they end up in
10820 the same order in the array in which they were added to the list. */
10821 while (nfields-- > 0)
10822 {
10823 struct nextfield *fieldp;
10824
10825 if (fip->fields)
10826 {
10827 fieldp = fip->fields;
10828 fip->fields = fieldp->next;
10829 }
10830 else
10831 {
10832 fieldp = fip->baseclasses;
10833 fip->baseclasses = fieldp->next;
10834 }
10835
10836 TYPE_FIELD (type, nfields) = fieldp->field;
10837 switch (fieldp->accessibility)
10838 {
10839 case DW_ACCESS_private:
10840 if (cu->language != language_ada)
10841 SET_TYPE_FIELD_PRIVATE (type, nfields);
10842 break;
10843
10844 case DW_ACCESS_protected:
10845 if (cu->language != language_ada)
10846 SET_TYPE_FIELD_PROTECTED (type, nfields);
10847 break;
10848
10849 case DW_ACCESS_public:
10850 break;
10851
10852 default:
10853 /* Unknown accessibility. Complain and treat it as public. */
10854 {
10855 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10856 fieldp->accessibility);
10857 }
10858 break;
10859 }
10860 if (nfields < fip->nbaseclasses)
10861 {
10862 switch (fieldp->virtuality)
10863 {
10864 case DW_VIRTUALITY_virtual:
10865 case DW_VIRTUALITY_pure_virtual:
10866 if (cu->language == language_ada)
10867 error (_("unexpected virtuality in component of Ada type"));
10868 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10869 break;
10870 }
10871 }
10872 }
10873 }
10874
10875 /* Return true if this member function is a constructor, false
10876 otherwise. */
10877
10878 static int
10879 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10880 {
10881 const char *fieldname;
10882 const char *typename;
10883 int len;
10884
10885 if (die->parent == NULL)
10886 return 0;
10887
10888 if (die->parent->tag != DW_TAG_structure_type
10889 && die->parent->tag != DW_TAG_union_type
10890 && die->parent->tag != DW_TAG_class_type)
10891 return 0;
10892
10893 fieldname = dwarf2_name (die, cu);
10894 typename = dwarf2_name (die->parent, cu);
10895 if (fieldname == NULL || typename == NULL)
10896 return 0;
10897
10898 len = strlen (fieldname);
10899 return (strncmp (fieldname, typename, len) == 0
10900 && (typename[len] == '\0' || typename[len] == '<'));
10901 }
10902
10903 /* Add a member function to the proper fieldlist. */
10904
10905 static void
10906 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10907 struct type *type, struct dwarf2_cu *cu)
10908 {
10909 struct objfile *objfile = cu->objfile;
10910 struct attribute *attr;
10911 struct fnfieldlist *flp;
10912 int i;
10913 struct fn_field *fnp;
10914 const char *fieldname;
10915 struct nextfnfield *new_fnfield;
10916 struct type *this_type;
10917 enum dwarf_access_attribute accessibility;
10918
10919 if (cu->language == language_ada)
10920 error (_("unexpected member function in Ada type"));
10921
10922 /* Get name of member function. */
10923 fieldname = dwarf2_name (die, cu);
10924 if (fieldname == NULL)
10925 return;
10926
10927 /* Look up member function name in fieldlist. */
10928 for (i = 0; i < fip->nfnfields; i++)
10929 {
10930 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10931 break;
10932 }
10933
10934 /* Create new list element if necessary. */
10935 if (i < fip->nfnfields)
10936 flp = &fip->fnfieldlists[i];
10937 else
10938 {
10939 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10940 {
10941 fip->fnfieldlists = (struct fnfieldlist *)
10942 xrealloc (fip->fnfieldlists,
10943 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10944 * sizeof (struct fnfieldlist));
10945 if (fip->nfnfields == 0)
10946 make_cleanup (free_current_contents, &fip->fnfieldlists);
10947 }
10948 flp = &fip->fnfieldlists[fip->nfnfields];
10949 flp->name = fieldname;
10950 flp->length = 0;
10951 flp->head = NULL;
10952 i = fip->nfnfields++;
10953 }
10954
10955 /* Create a new member function field and chain it to the field list
10956 entry. */
10957 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10958 make_cleanup (xfree, new_fnfield);
10959 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10960 new_fnfield->next = flp->head;
10961 flp->head = new_fnfield;
10962 flp->length++;
10963
10964 /* Fill in the member function field info. */
10965 fnp = &new_fnfield->fnfield;
10966
10967 /* Delay processing of the physname until later. */
10968 if (cu->language == language_cplus || cu->language == language_java)
10969 {
10970 add_to_method_list (type, i, flp->length - 1, fieldname,
10971 die, cu);
10972 }
10973 else
10974 {
10975 const char *physname = dwarf2_physname (fieldname, die, cu);
10976 fnp->physname = physname ? physname : "";
10977 }
10978
10979 fnp->type = alloc_type (objfile);
10980 this_type = read_type_die (die, cu);
10981 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10982 {
10983 int nparams = TYPE_NFIELDS (this_type);
10984
10985 /* TYPE is the domain of this method, and THIS_TYPE is the type
10986 of the method itself (TYPE_CODE_METHOD). */
10987 smash_to_method_type (fnp->type, type,
10988 TYPE_TARGET_TYPE (this_type),
10989 TYPE_FIELDS (this_type),
10990 TYPE_NFIELDS (this_type),
10991 TYPE_VARARGS (this_type));
10992
10993 /* Handle static member functions.
10994 Dwarf2 has no clean way to discern C++ static and non-static
10995 member functions. G++ helps GDB by marking the first
10996 parameter for non-static member functions (which is the this
10997 pointer) as artificial. We obtain this information from
10998 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10999 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11000 fnp->voffset = VOFFSET_STATIC;
11001 }
11002 else
11003 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11004 dwarf2_full_name (fieldname, die, cu));
11005
11006 /* Get fcontext from DW_AT_containing_type if present. */
11007 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11008 fnp->fcontext = die_containing_type (die, cu);
11009
11010 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11011 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11012
11013 /* Get accessibility. */
11014 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11015 if (attr)
11016 accessibility = DW_UNSND (attr);
11017 else
11018 accessibility = dwarf2_default_access_attribute (die, cu);
11019 switch (accessibility)
11020 {
11021 case DW_ACCESS_private:
11022 fnp->is_private = 1;
11023 break;
11024 case DW_ACCESS_protected:
11025 fnp->is_protected = 1;
11026 break;
11027 }
11028
11029 /* Check for artificial methods. */
11030 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11031 if (attr && DW_UNSND (attr) != 0)
11032 fnp->is_artificial = 1;
11033
11034 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11035
11036 /* Get index in virtual function table if it is a virtual member
11037 function. For older versions of GCC, this is an offset in the
11038 appropriate virtual table, as specified by DW_AT_containing_type.
11039 For everyone else, it is an expression to be evaluated relative
11040 to the object address. */
11041
11042 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11043 if (attr)
11044 {
11045 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11046 {
11047 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11048 {
11049 /* Old-style GCC. */
11050 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11051 }
11052 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11053 || (DW_BLOCK (attr)->size > 1
11054 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11055 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11056 {
11057 struct dwarf_block blk;
11058 int offset;
11059
11060 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11061 ? 1 : 2);
11062 blk.size = DW_BLOCK (attr)->size - offset;
11063 blk.data = DW_BLOCK (attr)->data + offset;
11064 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11065 if ((fnp->voffset % cu->header.addr_size) != 0)
11066 dwarf2_complex_location_expr_complaint ();
11067 else
11068 fnp->voffset /= cu->header.addr_size;
11069 fnp->voffset += 2;
11070 }
11071 else
11072 dwarf2_complex_location_expr_complaint ();
11073
11074 if (!fnp->fcontext)
11075 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11076 }
11077 else if (attr_form_is_section_offset (attr))
11078 {
11079 dwarf2_complex_location_expr_complaint ();
11080 }
11081 else
11082 {
11083 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11084 fieldname);
11085 }
11086 }
11087 else
11088 {
11089 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11090 if (attr && DW_UNSND (attr))
11091 {
11092 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11093 complaint (&symfile_complaints,
11094 _("Member function \"%s\" (offset %d) is virtual "
11095 "but the vtable offset is not specified"),
11096 fieldname, die->offset.sect_off);
11097 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11098 TYPE_CPLUS_DYNAMIC (type) = 1;
11099 }
11100 }
11101 }
11102
11103 /* Create the vector of member function fields, and attach it to the type. */
11104
11105 static void
11106 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11107 struct dwarf2_cu *cu)
11108 {
11109 struct fnfieldlist *flp;
11110 int i;
11111
11112 if (cu->language == language_ada)
11113 error (_("unexpected member functions in Ada type"));
11114
11115 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11116 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11117 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11118
11119 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11120 {
11121 struct nextfnfield *nfp = flp->head;
11122 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11123 int k;
11124
11125 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11126 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11127 fn_flp->fn_fields = (struct fn_field *)
11128 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11129 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11130 fn_flp->fn_fields[k] = nfp->fnfield;
11131 }
11132
11133 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11134 }
11135
11136 /* Returns non-zero if NAME is the name of a vtable member in CU's
11137 language, zero otherwise. */
11138 static int
11139 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11140 {
11141 static const char vptr[] = "_vptr";
11142 static const char vtable[] = "vtable";
11143
11144 /* Look for the C++ and Java forms of the vtable. */
11145 if ((cu->language == language_java
11146 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11147 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11148 && is_cplus_marker (name[sizeof (vptr) - 1])))
11149 return 1;
11150
11151 return 0;
11152 }
11153
11154 /* GCC outputs unnamed structures that are really pointers to member
11155 functions, with the ABI-specified layout. If TYPE describes
11156 such a structure, smash it into a member function type.
11157
11158 GCC shouldn't do this; it should just output pointer to member DIEs.
11159 This is GCC PR debug/28767. */
11160
11161 static void
11162 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11163 {
11164 struct type *pfn_type, *domain_type, *new_type;
11165
11166 /* Check for a structure with no name and two children. */
11167 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11168 return;
11169
11170 /* Check for __pfn and __delta members. */
11171 if (TYPE_FIELD_NAME (type, 0) == NULL
11172 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11173 || TYPE_FIELD_NAME (type, 1) == NULL
11174 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11175 return;
11176
11177 /* Find the type of the method. */
11178 pfn_type = TYPE_FIELD_TYPE (type, 0);
11179 if (pfn_type == NULL
11180 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11181 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11182 return;
11183
11184 /* Look for the "this" argument. */
11185 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11186 if (TYPE_NFIELDS (pfn_type) == 0
11187 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11188 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11189 return;
11190
11191 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11192 new_type = alloc_type (objfile);
11193 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11194 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11195 TYPE_VARARGS (pfn_type));
11196 smash_to_methodptr_type (type, new_type);
11197 }
11198
11199 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11200 (icc). */
11201
11202 static int
11203 producer_is_icc (struct dwarf2_cu *cu)
11204 {
11205 if (!cu->checked_producer)
11206 check_producer (cu);
11207
11208 return cu->producer_is_icc;
11209 }
11210
11211 /* Called when we find the DIE that starts a structure or union scope
11212 (definition) to create a type for the structure or union. Fill in
11213 the type's name and general properties; the members will not be
11214 processed until process_structure_type.
11215
11216 NOTE: we need to call these functions regardless of whether or not the
11217 DIE has a DW_AT_name attribute, since it might be an anonymous
11218 structure or union. This gets the type entered into our set of
11219 user defined types.
11220
11221 However, if the structure is incomplete (an opaque struct/union)
11222 then suppress creating a symbol table entry for it since gdb only
11223 wants to find the one with the complete definition. Note that if
11224 it is complete, we just call new_symbol, which does it's own
11225 checking about whether the struct/union is anonymous or not (and
11226 suppresses creating a symbol table entry itself). */
11227
11228 static struct type *
11229 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11230 {
11231 struct objfile *objfile = cu->objfile;
11232 struct type *type;
11233 struct attribute *attr;
11234 const char *name;
11235
11236 /* If the definition of this type lives in .debug_types, read that type.
11237 Don't follow DW_AT_specification though, that will take us back up
11238 the chain and we want to go down. */
11239 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11240 if (attr)
11241 {
11242 struct dwarf2_cu *type_cu = cu;
11243 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11244
11245 /* We could just recurse on read_structure_type, but we need to call
11246 get_die_type to ensure only one type for this DIE is created.
11247 This is important, for example, because for c++ classes we need
11248 TYPE_NAME set which is only done by new_symbol. Blech. */
11249 type = read_type_die (type_die, type_cu);
11250
11251 /* TYPE_CU may not be the same as CU.
11252 Ensure TYPE is recorded in CU's type_hash table. */
11253 return set_die_type (die, type, cu);
11254 }
11255
11256 type = alloc_type (objfile);
11257 INIT_CPLUS_SPECIFIC (type);
11258
11259 name = dwarf2_name (die, cu);
11260 if (name != NULL)
11261 {
11262 if (cu->language == language_cplus
11263 || cu->language == language_java)
11264 {
11265 const char *full_name = dwarf2_full_name (name, die, cu);
11266
11267 /* dwarf2_full_name might have already finished building the DIE's
11268 type. If so, there is no need to continue. */
11269 if (get_die_type (die, cu) != NULL)
11270 return get_die_type (die, cu);
11271
11272 TYPE_TAG_NAME (type) = full_name;
11273 if (die->tag == DW_TAG_structure_type
11274 || die->tag == DW_TAG_class_type)
11275 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11276 }
11277 else
11278 {
11279 /* The name is already allocated along with this objfile, so
11280 we don't need to duplicate it for the type. */
11281 TYPE_TAG_NAME (type) = name;
11282 if (die->tag == DW_TAG_class_type)
11283 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11284 }
11285 }
11286
11287 if (die->tag == DW_TAG_structure_type)
11288 {
11289 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11290 }
11291 else if (die->tag == DW_TAG_union_type)
11292 {
11293 TYPE_CODE (type) = TYPE_CODE_UNION;
11294 }
11295 else
11296 {
11297 TYPE_CODE (type) = TYPE_CODE_CLASS;
11298 }
11299
11300 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11301 TYPE_DECLARED_CLASS (type) = 1;
11302
11303 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11304 if (attr)
11305 {
11306 TYPE_LENGTH (type) = DW_UNSND (attr);
11307 }
11308 else
11309 {
11310 TYPE_LENGTH (type) = 0;
11311 }
11312
11313 if (producer_is_icc (cu))
11314 {
11315 /* ICC does not output the required DW_AT_declaration
11316 on incomplete types, but gives them a size of zero. */
11317 }
11318 else
11319 TYPE_STUB_SUPPORTED (type) = 1;
11320
11321 if (die_is_declaration (die, cu))
11322 TYPE_STUB (type) = 1;
11323 else if (attr == NULL && die->child == NULL
11324 && producer_is_realview (cu->producer))
11325 /* RealView does not output the required DW_AT_declaration
11326 on incomplete types. */
11327 TYPE_STUB (type) = 1;
11328
11329 /* We need to add the type field to the die immediately so we don't
11330 infinitely recurse when dealing with pointers to the structure
11331 type within the structure itself. */
11332 set_die_type (die, type, cu);
11333
11334 /* set_die_type should be already done. */
11335 set_descriptive_type (type, die, cu);
11336
11337 return type;
11338 }
11339
11340 /* Finish creating a structure or union type, including filling in
11341 its members and creating a symbol for it. */
11342
11343 static void
11344 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11345 {
11346 struct objfile *objfile = cu->objfile;
11347 struct die_info *child_die = die->child;
11348 struct type *type;
11349
11350 type = get_die_type (die, cu);
11351 if (type == NULL)
11352 type = read_structure_type (die, cu);
11353
11354 if (die->child != NULL && ! die_is_declaration (die, cu))
11355 {
11356 struct field_info fi;
11357 struct die_info *child_die;
11358 VEC (symbolp) *template_args = NULL;
11359 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11360
11361 memset (&fi, 0, sizeof (struct field_info));
11362
11363 child_die = die->child;
11364
11365 while (child_die && child_die->tag)
11366 {
11367 if (child_die->tag == DW_TAG_member
11368 || child_die->tag == DW_TAG_variable)
11369 {
11370 /* NOTE: carlton/2002-11-05: A C++ static data member
11371 should be a DW_TAG_member that is a declaration, but
11372 all versions of G++ as of this writing (so through at
11373 least 3.2.1) incorrectly generate DW_TAG_variable
11374 tags for them instead. */
11375 dwarf2_add_field (&fi, child_die, cu);
11376 }
11377 else if (child_die->tag == DW_TAG_subprogram)
11378 {
11379 /* C++ member function. */
11380 dwarf2_add_member_fn (&fi, child_die, type, cu);
11381 }
11382 else if (child_die->tag == DW_TAG_inheritance)
11383 {
11384 /* C++ base class field. */
11385 dwarf2_add_field (&fi, child_die, cu);
11386 }
11387 else if (child_die->tag == DW_TAG_typedef)
11388 dwarf2_add_typedef (&fi, child_die, cu);
11389 else if (child_die->tag == DW_TAG_template_type_param
11390 || child_die->tag == DW_TAG_template_value_param)
11391 {
11392 struct symbol *arg = new_symbol (child_die, NULL, cu);
11393
11394 if (arg != NULL)
11395 VEC_safe_push (symbolp, template_args, arg);
11396 }
11397
11398 child_die = sibling_die (child_die);
11399 }
11400
11401 /* Attach template arguments to type. */
11402 if (! VEC_empty (symbolp, template_args))
11403 {
11404 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11405 TYPE_N_TEMPLATE_ARGUMENTS (type)
11406 = VEC_length (symbolp, template_args);
11407 TYPE_TEMPLATE_ARGUMENTS (type)
11408 = obstack_alloc (&objfile->objfile_obstack,
11409 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11410 * sizeof (struct symbol *)));
11411 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11412 VEC_address (symbolp, template_args),
11413 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11414 * sizeof (struct symbol *)));
11415 VEC_free (symbolp, template_args);
11416 }
11417
11418 /* Attach fields and member functions to the type. */
11419 if (fi.nfields)
11420 dwarf2_attach_fields_to_type (&fi, type, cu);
11421 if (fi.nfnfields)
11422 {
11423 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11424
11425 /* Get the type which refers to the base class (possibly this
11426 class itself) which contains the vtable pointer for the current
11427 class from the DW_AT_containing_type attribute. This use of
11428 DW_AT_containing_type is a GNU extension. */
11429
11430 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11431 {
11432 struct type *t = die_containing_type (die, cu);
11433
11434 TYPE_VPTR_BASETYPE (type) = t;
11435 if (type == t)
11436 {
11437 int i;
11438
11439 /* Our own class provides vtbl ptr. */
11440 for (i = TYPE_NFIELDS (t) - 1;
11441 i >= TYPE_N_BASECLASSES (t);
11442 --i)
11443 {
11444 const char *fieldname = TYPE_FIELD_NAME (t, i);
11445
11446 if (is_vtable_name (fieldname, cu))
11447 {
11448 TYPE_VPTR_FIELDNO (type) = i;
11449 break;
11450 }
11451 }
11452
11453 /* Complain if virtual function table field not found. */
11454 if (i < TYPE_N_BASECLASSES (t))
11455 complaint (&symfile_complaints,
11456 _("virtual function table pointer "
11457 "not found when defining class '%s'"),
11458 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11459 "");
11460 }
11461 else
11462 {
11463 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11464 }
11465 }
11466 else if (cu->producer
11467 && strncmp (cu->producer,
11468 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11469 {
11470 /* The IBM XLC compiler does not provide direct indication
11471 of the containing type, but the vtable pointer is
11472 always named __vfp. */
11473
11474 int i;
11475
11476 for (i = TYPE_NFIELDS (type) - 1;
11477 i >= TYPE_N_BASECLASSES (type);
11478 --i)
11479 {
11480 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11481 {
11482 TYPE_VPTR_FIELDNO (type) = i;
11483 TYPE_VPTR_BASETYPE (type) = type;
11484 break;
11485 }
11486 }
11487 }
11488 }
11489
11490 /* Copy fi.typedef_field_list linked list elements content into the
11491 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11492 if (fi.typedef_field_list)
11493 {
11494 int i = fi.typedef_field_list_count;
11495
11496 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11497 TYPE_TYPEDEF_FIELD_ARRAY (type)
11498 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11499 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11500
11501 /* Reverse the list order to keep the debug info elements order. */
11502 while (--i >= 0)
11503 {
11504 struct typedef_field *dest, *src;
11505
11506 dest = &TYPE_TYPEDEF_FIELD (type, i);
11507 src = &fi.typedef_field_list->field;
11508 fi.typedef_field_list = fi.typedef_field_list->next;
11509 *dest = *src;
11510 }
11511 }
11512
11513 do_cleanups (back_to);
11514
11515 if (HAVE_CPLUS_STRUCT (type))
11516 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11517 }
11518
11519 quirk_gcc_member_function_pointer (type, objfile);
11520
11521 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11522 snapshots) has been known to create a die giving a declaration
11523 for a class that has, as a child, a die giving a definition for a
11524 nested class. So we have to process our children even if the
11525 current die is a declaration. Normally, of course, a declaration
11526 won't have any children at all. */
11527
11528 while (child_die != NULL && child_die->tag)
11529 {
11530 if (child_die->tag == DW_TAG_member
11531 || child_die->tag == DW_TAG_variable
11532 || child_die->tag == DW_TAG_inheritance
11533 || child_die->tag == DW_TAG_template_value_param
11534 || child_die->tag == DW_TAG_template_type_param)
11535 {
11536 /* Do nothing. */
11537 }
11538 else
11539 process_die (child_die, cu);
11540
11541 child_die = sibling_die (child_die);
11542 }
11543
11544 /* Do not consider external references. According to the DWARF standard,
11545 these DIEs are identified by the fact that they have no byte_size
11546 attribute, and a declaration attribute. */
11547 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11548 || !die_is_declaration (die, cu))
11549 new_symbol (die, type, cu);
11550 }
11551
11552 /* Given a DW_AT_enumeration_type die, set its type. We do not
11553 complete the type's fields yet, or create any symbols. */
11554
11555 static struct type *
11556 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11557 {
11558 struct objfile *objfile = cu->objfile;
11559 struct type *type;
11560 struct attribute *attr;
11561 const char *name;
11562
11563 /* If the definition of this type lives in .debug_types, read that type.
11564 Don't follow DW_AT_specification though, that will take us back up
11565 the chain and we want to go down. */
11566 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11567 if (attr)
11568 {
11569 struct dwarf2_cu *type_cu = cu;
11570 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11571
11572 type = read_type_die (type_die, type_cu);
11573
11574 /* TYPE_CU may not be the same as CU.
11575 Ensure TYPE is recorded in CU's type_hash table. */
11576 return set_die_type (die, type, cu);
11577 }
11578
11579 type = alloc_type (objfile);
11580
11581 TYPE_CODE (type) = TYPE_CODE_ENUM;
11582 name = dwarf2_full_name (NULL, die, cu);
11583 if (name != NULL)
11584 TYPE_TAG_NAME (type) = name;
11585
11586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11587 if (attr)
11588 {
11589 TYPE_LENGTH (type) = DW_UNSND (attr);
11590 }
11591 else
11592 {
11593 TYPE_LENGTH (type) = 0;
11594 }
11595
11596 /* The enumeration DIE can be incomplete. In Ada, any type can be
11597 declared as private in the package spec, and then defined only
11598 inside the package body. Such types are known as Taft Amendment
11599 Types. When another package uses such a type, an incomplete DIE
11600 may be generated by the compiler. */
11601 if (die_is_declaration (die, cu))
11602 TYPE_STUB (type) = 1;
11603
11604 return set_die_type (die, type, cu);
11605 }
11606
11607 /* Given a pointer to a die which begins an enumeration, process all
11608 the dies that define the members of the enumeration, and create the
11609 symbol for the enumeration type.
11610
11611 NOTE: We reverse the order of the element list. */
11612
11613 static void
11614 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11615 {
11616 struct type *this_type;
11617
11618 this_type = get_die_type (die, cu);
11619 if (this_type == NULL)
11620 this_type = read_enumeration_type (die, cu);
11621
11622 if (die->child != NULL)
11623 {
11624 struct die_info *child_die;
11625 struct symbol *sym;
11626 struct field *fields = NULL;
11627 int num_fields = 0;
11628 int unsigned_enum = 1;
11629 const char *name;
11630 int flag_enum = 1;
11631 ULONGEST mask = 0;
11632
11633 child_die = die->child;
11634 while (child_die && child_die->tag)
11635 {
11636 if (child_die->tag != DW_TAG_enumerator)
11637 {
11638 process_die (child_die, cu);
11639 }
11640 else
11641 {
11642 name = dwarf2_name (child_die, cu);
11643 if (name)
11644 {
11645 sym = new_symbol (child_die, this_type, cu);
11646 if (SYMBOL_VALUE (sym) < 0)
11647 {
11648 unsigned_enum = 0;
11649 flag_enum = 0;
11650 }
11651 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11652 flag_enum = 0;
11653 else
11654 mask |= SYMBOL_VALUE (sym);
11655
11656 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11657 {
11658 fields = (struct field *)
11659 xrealloc (fields,
11660 (num_fields + DW_FIELD_ALLOC_CHUNK)
11661 * sizeof (struct field));
11662 }
11663
11664 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11665 FIELD_TYPE (fields[num_fields]) = NULL;
11666 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11667 FIELD_BITSIZE (fields[num_fields]) = 0;
11668
11669 num_fields++;
11670 }
11671 }
11672
11673 child_die = sibling_die (child_die);
11674 }
11675
11676 if (num_fields)
11677 {
11678 TYPE_NFIELDS (this_type) = num_fields;
11679 TYPE_FIELDS (this_type) = (struct field *)
11680 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11681 memcpy (TYPE_FIELDS (this_type), fields,
11682 sizeof (struct field) * num_fields);
11683 xfree (fields);
11684 }
11685 if (unsigned_enum)
11686 TYPE_UNSIGNED (this_type) = 1;
11687 if (flag_enum)
11688 TYPE_FLAG_ENUM (this_type) = 1;
11689 }
11690
11691 /* If we are reading an enum from a .debug_types unit, and the enum
11692 is a declaration, and the enum is not the signatured type in the
11693 unit, then we do not want to add a symbol for it. Adding a
11694 symbol would in some cases obscure the true definition of the
11695 enum, giving users an incomplete type when the definition is
11696 actually available. Note that we do not want to do this for all
11697 enums which are just declarations, because C++0x allows forward
11698 enum declarations. */
11699 if (cu->per_cu->is_debug_types
11700 && die_is_declaration (die, cu))
11701 {
11702 struct signatured_type *sig_type;
11703
11704 sig_type
11705 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11706 cu->per_cu->info_or_types_section,
11707 cu->per_cu->offset);
11708 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11709 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11710 return;
11711 }
11712
11713 new_symbol (die, this_type, cu);
11714 }
11715
11716 /* Extract all information from a DW_TAG_array_type DIE and put it in
11717 the DIE's type field. For now, this only handles one dimensional
11718 arrays. */
11719
11720 static struct type *
11721 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11722 {
11723 struct objfile *objfile = cu->objfile;
11724 struct die_info *child_die;
11725 struct type *type;
11726 struct type *element_type, *range_type, *index_type;
11727 struct type **range_types = NULL;
11728 struct attribute *attr;
11729 int ndim = 0;
11730 struct cleanup *back_to;
11731 const char *name;
11732
11733 element_type = die_type (die, cu);
11734
11735 /* The die_type call above may have already set the type for this DIE. */
11736 type = get_die_type (die, cu);
11737 if (type)
11738 return type;
11739
11740 /* Irix 6.2 native cc creates array types without children for
11741 arrays with unspecified length. */
11742 if (die->child == NULL)
11743 {
11744 index_type = objfile_type (objfile)->builtin_int;
11745 range_type = create_range_type (NULL, index_type, 0, -1);
11746 type = create_array_type (NULL, element_type, range_type);
11747 return set_die_type (die, type, cu);
11748 }
11749
11750 back_to = make_cleanup (null_cleanup, NULL);
11751 child_die = die->child;
11752 while (child_die && child_die->tag)
11753 {
11754 if (child_die->tag == DW_TAG_subrange_type)
11755 {
11756 struct type *child_type = read_type_die (child_die, cu);
11757
11758 if (child_type != NULL)
11759 {
11760 /* The range type was succesfully read. Save it for the
11761 array type creation. */
11762 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11763 {
11764 range_types = (struct type **)
11765 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11766 * sizeof (struct type *));
11767 if (ndim == 0)
11768 make_cleanup (free_current_contents, &range_types);
11769 }
11770 range_types[ndim++] = child_type;
11771 }
11772 }
11773 child_die = sibling_die (child_die);
11774 }
11775
11776 /* Dwarf2 dimensions are output from left to right, create the
11777 necessary array types in backwards order. */
11778
11779 type = element_type;
11780
11781 if (read_array_order (die, cu) == DW_ORD_col_major)
11782 {
11783 int i = 0;
11784
11785 while (i < ndim)
11786 type = create_array_type (NULL, type, range_types[i++]);
11787 }
11788 else
11789 {
11790 while (ndim-- > 0)
11791 type = create_array_type (NULL, type, range_types[ndim]);
11792 }
11793
11794 /* Understand Dwarf2 support for vector types (like they occur on
11795 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11796 array type. This is not part of the Dwarf2/3 standard yet, but a
11797 custom vendor extension. The main difference between a regular
11798 array and the vector variant is that vectors are passed by value
11799 to functions. */
11800 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11801 if (attr)
11802 make_vector_type (type);
11803
11804 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11805 implementation may choose to implement triple vectors using this
11806 attribute. */
11807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11808 if (attr)
11809 {
11810 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11811 TYPE_LENGTH (type) = DW_UNSND (attr);
11812 else
11813 complaint (&symfile_complaints,
11814 _("DW_AT_byte_size for array type smaller "
11815 "than the total size of elements"));
11816 }
11817
11818 name = dwarf2_name (die, cu);
11819 if (name)
11820 TYPE_NAME (type) = name;
11821
11822 /* Install the type in the die. */
11823 set_die_type (die, type, cu);
11824
11825 /* set_die_type should be already done. */
11826 set_descriptive_type (type, die, cu);
11827
11828 do_cleanups (back_to);
11829
11830 return type;
11831 }
11832
11833 static enum dwarf_array_dim_ordering
11834 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11835 {
11836 struct attribute *attr;
11837
11838 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11839
11840 if (attr) return DW_SND (attr);
11841
11842 /* GNU F77 is a special case, as at 08/2004 array type info is the
11843 opposite order to the dwarf2 specification, but data is still
11844 laid out as per normal fortran.
11845
11846 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11847 version checking. */
11848
11849 if (cu->language == language_fortran
11850 && cu->producer && strstr (cu->producer, "GNU F77"))
11851 {
11852 return DW_ORD_row_major;
11853 }
11854
11855 switch (cu->language_defn->la_array_ordering)
11856 {
11857 case array_column_major:
11858 return DW_ORD_col_major;
11859 case array_row_major:
11860 default:
11861 return DW_ORD_row_major;
11862 };
11863 }
11864
11865 /* Extract all information from a DW_TAG_set_type DIE and put it in
11866 the DIE's type field. */
11867
11868 static struct type *
11869 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11870 {
11871 struct type *domain_type, *set_type;
11872 struct attribute *attr;
11873
11874 domain_type = die_type (die, cu);
11875
11876 /* The die_type call above may have already set the type for this DIE. */
11877 set_type = get_die_type (die, cu);
11878 if (set_type)
11879 return set_type;
11880
11881 set_type = create_set_type (NULL, domain_type);
11882
11883 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11884 if (attr)
11885 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11886
11887 return set_die_type (die, set_type, cu);
11888 }
11889
11890 /* A helper for read_common_block that creates a locexpr baton.
11891 SYM is the symbol which we are marking as computed.
11892 COMMON_DIE is the DIE for the common block.
11893 COMMON_LOC is the location expression attribute for the common
11894 block itself.
11895 MEMBER_LOC is the location expression attribute for the particular
11896 member of the common block that we are processing.
11897 CU is the CU from which the above come. */
11898
11899 static void
11900 mark_common_block_symbol_computed (struct symbol *sym,
11901 struct die_info *common_die,
11902 struct attribute *common_loc,
11903 struct attribute *member_loc,
11904 struct dwarf2_cu *cu)
11905 {
11906 struct objfile *objfile = dwarf2_per_objfile->objfile;
11907 struct dwarf2_locexpr_baton *baton;
11908 gdb_byte *ptr;
11909 unsigned int cu_off;
11910 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11911 LONGEST offset = 0;
11912
11913 gdb_assert (common_loc && member_loc);
11914 gdb_assert (attr_form_is_block (common_loc));
11915 gdb_assert (attr_form_is_block (member_loc)
11916 || attr_form_is_constant (member_loc));
11917
11918 baton = obstack_alloc (&objfile->objfile_obstack,
11919 sizeof (struct dwarf2_locexpr_baton));
11920 baton->per_cu = cu->per_cu;
11921 gdb_assert (baton->per_cu);
11922
11923 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11924
11925 if (attr_form_is_constant (member_loc))
11926 {
11927 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11928 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11929 }
11930 else
11931 baton->size += DW_BLOCK (member_loc)->size;
11932
11933 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11934 baton->data = ptr;
11935
11936 *ptr++ = DW_OP_call4;
11937 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11938 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11939 ptr += 4;
11940
11941 if (attr_form_is_constant (member_loc))
11942 {
11943 *ptr++ = DW_OP_addr;
11944 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11945 ptr += cu->header.addr_size;
11946 }
11947 else
11948 {
11949 /* We have to copy the data here, because DW_OP_call4 will only
11950 use a DW_AT_location attribute. */
11951 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11952 ptr += DW_BLOCK (member_loc)->size;
11953 }
11954
11955 *ptr++ = DW_OP_plus;
11956 gdb_assert (ptr - baton->data == baton->size);
11957
11958 SYMBOL_LOCATION_BATON (sym) = baton;
11959 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
11960 }
11961
11962 /* Create appropriate locally-scoped variables for all the
11963 DW_TAG_common_block entries. Also create a struct common_block
11964 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11965 is used to sepate the common blocks name namespace from regular
11966 variable names. */
11967
11968 static void
11969 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11970 {
11971 struct attribute *attr;
11972
11973 attr = dwarf2_attr (die, DW_AT_location, cu);
11974 if (attr)
11975 {
11976 /* Support the .debug_loc offsets. */
11977 if (attr_form_is_block (attr))
11978 {
11979 /* Ok. */
11980 }
11981 else if (attr_form_is_section_offset (attr))
11982 {
11983 dwarf2_complex_location_expr_complaint ();
11984 attr = NULL;
11985 }
11986 else
11987 {
11988 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11989 "common block member");
11990 attr = NULL;
11991 }
11992 }
11993
11994 if (die->child != NULL)
11995 {
11996 struct objfile *objfile = cu->objfile;
11997 struct die_info *child_die;
11998 size_t n_entries = 0, size;
11999 struct common_block *common_block;
12000 struct symbol *sym;
12001
12002 for (child_die = die->child;
12003 child_die && child_die->tag;
12004 child_die = sibling_die (child_die))
12005 ++n_entries;
12006
12007 size = (sizeof (struct common_block)
12008 + (n_entries - 1) * sizeof (struct symbol *));
12009 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12010 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12011 common_block->n_entries = 0;
12012
12013 for (child_die = die->child;
12014 child_die && child_die->tag;
12015 child_die = sibling_die (child_die))
12016 {
12017 /* Create the symbol in the DW_TAG_common_block block in the current
12018 symbol scope. */
12019 sym = new_symbol (child_die, NULL, cu);
12020 if (sym != NULL)
12021 {
12022 struct attribute *member_loc;
12023
12024 common_block->contents[common_block->n_entries++] = sym;
12025
12026 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12027 cu);
12028 if (member_loc)
12029 {
12030 /* GDB has handled this for a long time, but it is
12031 not specified by DWARF. It seems to have been
12032 emitted by gfortran at least as recently as:
12033 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12034 complaint (&symfile_complaints,
12035 _("Variable in common block has "
12036 "DW_AT_data_member_location "
12037 "- DIE at 0x%x [in module %s]"),
12038 child_die->offset.sect_off, cu->objfile->name);
12039
12040 if (attr_form_is_section_offset (member_loc))
12041 dwarf2_complex_location_expr_complaint ();
12042 else if (attr_form_is_constant (member_loc)
12043 || attr_form_is_block (member_loc))
12044 {
12045 if (attr)
12046 mark_common_block_symbol_computed (sym, die, attr,
12047 member_loc, cu);
12048 }
12049 else
12050 dwarf2_complex_location_expr_complaint ();
12051 }
12052 }
12053 }
12054
12055 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12056 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12057 }
12058 }
12059
12060 /* Create a type for a C++ namespace. */
12061
12062 static struct type *
12063 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12064 {
12065 struct objfile *objfile = cu->objfile;
12066 const char *previous_prefix, *name;
12067 int is_anonymous;
12068 struct type *type;
12069
12070 /* For extensions, reuse the type of the original namespace. */
12071 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12072 {
12073 struct die_info *ext_die;
12074 struct dwarf2_cu *ext_cu = cu;
12075
12076 ext_die = dwarf2_extension (die, &ext_cu);
12077 type = read_type_die (ext_die, ext_cu);
12078
12079 /* EXT_CU may not be the same as CU.
12080 Ensure TYPE is recorded in CU's type_hash table. */
12081 return set_die_type (die, type, cu);
12082 }
12083
12084 name = namespace_name (die, &is_anonymous, cu);
12085
12086 /* Now build the name of the current namespace. */
12087
12088 previous_prefix = determine_prefix (die, cu);
12089 if (previous_prefix[0] != '\0')
12090 name = typename_concat (&objfile->objfile_obstack,
12091 previous_prefix, name, 0, cu);
12092
12093 /* Create the type. */
12094 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12095 objfile);
12096 TYPE_NAME (type) = name;
12097 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12098
12099 return set_die_type (die, type, cu);
12100 }
12101
12102 /* Read a C++ namespace. */
12103
12104 static void
12105 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12106 {
12107 struct objfile *objfile = cu->objfile;
12108 int is_anonymous;
12109
12110 /* Add a symbol associated to this if we haven't seen the namespace
12111 before. Also, add a using directive if it's an anonymous
12112 namespace. */
12113
12114 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12115 {
12116 struct type *type;
12117
12118 type = read_type_die (die, cu);
12119 new_symbol (die, type, cu);
12120
12121 namespace_name (die, &is_anonymous, cu);
12122 if (is_anonymous)
12123 {
12124 const char *previous_prefix = determine_prefix (die, cu);
12125
12126 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12127 NULL, NULL, 0, &objfile->objfile_obstack);
12128 }
12129 }
12130
12131 if (die->child != NULL)
12132 {
12133 struct die_info *child_die = die->child;
12134
12135 while (child_die && child_die->tag)
12136 {
12137 process_die (child_die, cu);
12138 child_die = sibling_die (child_die);
12139 }
12140 }
12141 }
12142
12143 /* Read a Fortran module as type. This DIE can be only a declaration used for
12144 imported module. Still we need that type as local Fortran "use ... only"
12145 declaration imports depend on the created type in determine_prefix. */
12146
12147 static struct type *
12148 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12149 {
12150 struct objfile *objfile = cu->objfile;
12151 const char *module_name;
12152 struct type *type;
12153
12154 module_name = dwarf2_name (die, cu);
12155 if (!module_name)
12156 complaint (&symfile_complaints,
12157 _("DW_TAG_module has no name, offset 0x%x"),
12158 die->offset.sect_off);
12159 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12160
12161 /* determine_prefix uses TYPE_TAG_NAME. */
12162 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12163
12164 return set_die_type (die, type, cu);
12165 }
12166
12167 /* Read a Fortran module. */
12168
12169 static void
12170 read_module (struct die_info *die, struct dwarf2_cu *cu)
12171 {
12172 struct die_info *child_die = die->child;
12173
12174 while (child_die && child_die->tag)
12175 {
12176 process_die (child_die, cu);
12177 child_die = sibling_die (child_die);
12178 }
12179 }
12180
12181 /* Return the name of the namespace represented by DIE. Set
12182 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12183 namespace. */
12184
12185 static const char *
12186 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12187 {
12188 struct die_info *current_die;
12189 const char *name = NULL;
12190
12191 /* Loop through the extensions until we find a name. */
12192
12193 for (current_die = die;
12194 current_die != NULL;
12195 current_die = dwarf2_extension (die, &cu))
12196 {
12197 name = dwarf2_name (current_die, cu);
12198 if (name != NULL)
12199 break;
12200 }
12201
12202 /* Is it an anonymous namespace? */
12203
12204 *is_anonymous = (name == NULL);
12205 if (*is_anonymous)
12206 name = CP_ANONYMOUS_NAMESPACE_STR;
12207
12208 return name;
12209 }
12210
12211 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12212 the user defined type vector. */
12213
12214 static struct type *
12215 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12216 {
12217 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12218 struct comp_unit_head *cu_header = &cu->header;
12219 struct type *type;
12220 struct attribute *attr_byte_size;
12221 struct attribute *attr_address_class;
12222 int byte_size, addr_class;
12223 struct type *target_type;
12224
12225 target_type = die_type (die, cu);
12226
12227 /* The die_type call above may have already set the type for this DIE. */
12228 type = get_die_type (die, cu);
12229 if (type)
12230 return type;
12231
12232 type = lookup_pointer_type (target_type);
12233
12234 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12235 if (attr_byte_size)
12236 byte_size = DW_UNSND (attr_byte_size);
12237 else
12238 byte_size = cu_header->addr_size;
12239
12240 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12241 if (attr_address_class)
12242 addr_class = DW_UNSND (attr_address_class);
12243 else
12244 addr_class = DW_ADDR_none;
12245
12246 /* If the pointer size or address class is different than the
12247 default, create a type variant marked as such and set the
12248 length accordingly. */
12249 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12250 {
12251 if (gdbarch_address_class_type_flags_p (gdbarch))
12252 {
12253 int type_flags;
12254
12255 type_flags = gdbarch_address_class_type_flags
12256 (gdbarch, byte_size, addr_class);
12257 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12258 == 0);
12259 type = make_type_with_address_space (type, type_flags);
12260 }
12261 else if (TYPE_LENGTH (type) != byte_size)
12262 {
12263 complaint (&symfile_complaints,
12264 _("invalid pointer size %d"), byte_size);
12265 }
12266 else
12267 {
12268 /* Should we also complain about unhandled address classes? */
12269 }
12270 }
12271
12272 TYPE_LENGTH (type) = byte_size;
12273 return set_die_type (die, type, cu);
12274 }
12275
12276 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12277 the user defined type vector. */
12278
12279 static struct type *
12280 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12281 {
12282 struct type *type;
12283 struct type *to_type;
12284 struct type *domain;
12285
12286 to_type = die_type (die, cu);
12287 domain = die_containing_type (die, cu);
12288
12289 /* The calls above may have already set the type for this DIE. */
12290 type = get_die_type (die, cu);
12291 if (type)
12292 return type;
12293
12294 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12295 type = lookup_methodptr_type (to_type);
12296 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12297 {
12298 struct type *new_type = alloc_type (cu->objfile);
12299
12300 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12301 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12302 TYPE_VARARGS (to_type));
12303 type = lookup_methodptr_type (new_type);
12304 }
12305 else
12306 type = lookup_memberptr_type (to_type, domain);
12307
12308 return set_die_type (die, type, cu);
12309 }
12310
12311 /* Extract all information from a DW_TAG_reference_type DIE and add to
12312 the user defined type vector. */
12313
12314 static struct type *
12315 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12316 {
12317 struct comp_unit_head *cu_header = &cu->header;
12318 struct type *type, *target_type;
12319 struct attribute *attr;
12320
12321 target_type = die_type (die, cu);
12322
12323 /* The die_type call above may have already set the type for this DIE. */
12324 type = get_die_type (die, cu);
12325 if (type)
12326 return type;
12327
12328 type = lookup_reference_type (target_type);
12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12330 if (attr)
12331 {
12332 TYPE_LENGTH (type) = DW_UNSND (attr);
12333 }
12334 else
12335 {
12336 TYPE_LENGTH (type) = cu_header->addr_size;
12337 }
12338 return set_die_type (die, type, cu);
12339 }
12340
12341 static struct type *
12342 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12343 {
12344 struct type *base_type, *cv_type;
12345
12346 base_type = die_type (die, cu);
12347
12348 /* The die_type call above may have already set the type for this DIE. */
12349 cv_type = get_die_type (die, cu);
12350 if (cv_type)
12351 return cv_type;
12352
12353 /* In case the const qualifier is applied to an array type, the element type
12354 is so qualified, not the array type (section 6.7.3 of C99). */
12355 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12356 {
12357 struct type *el_type, *inner_array;
12358
12359 base_type = copy_type (base_type);
12360 inner_array = base_type;
12361
12362 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12363 {
12364 TYPE_TARGET_TYPE (inner_array) =
12365 copy_type (TYPE_TARGET_TYPE (inner_array));
12366 inner_array = TYPE_TARGET_TYPE (inner_array);
12367 }
12368
12369 el_type = TYPE_TARGET_TYPE (inner_array);
12370 TYPE_TARGET_TYPE (inner_array) =
12371 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12372
12373 return set_die_type (die, base_type, cu);
12374 }
12375
12376 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12377 return set_die_type (die, cv_type, cu);
12378 }
12379
12380 static struct type *
12381 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12382 {
12383 struct type *base_type, *cv_type;
12384
12385 base_type = die_type (die, cu);
12386
12387 /* The die_type call above may have already set the type for this DIE. */
12388 cv_type = get_die_type (die, cu);
12389 if (cv_type)
12390 return cv_type;
12391
12392 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12393 return set_die_type (die, cv_type, cu);
12394 }
12395
12396 /* Handle DW_TAG_restrict_type. */
12397
12398 static struct type *
12399 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12400 {
12401 struct type *base_type, *cv_type;
12402
12403 base_type = die_type (die, cu);
12404
12405 /* The die_type call above may have already set the type for this DIE. */
12406 cv_type = get_die_type (die, cu);
12407 if (cv_type)
12408 return cv_type;
12409
12410 cv_type = make_restrict_type (base_type);
12411 return set_die_type (die, cv_type, cu);
12412 }
12413
12414 /* Extract all information from a DW_TAG_string_type DIE and add to
12415 the user defined type vector. It isn't really a user defined type,
12416 but it behaves like one, with other DIE's using an AT_user_def_type
12417 attribute to reference it. */
12418
12419 static struct type *
12420 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12421 {
12422 struct objfile *objfile = cu->objfile;
12423 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12424 struct type *type, *range_type, *index_type, *char_type;
12425 struct attribute *attr;
12426 unsigned int length;
12427
12428 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12429 if (attr)
12430 {
12431 length = DW_UNSND (attr);
12432 }
12433 else
12434 {
12435 /* Check for the DW_AT_byte_size attribute. */
12436 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12437 if (attr)
12438 {
12439 length = DW_UNSND (attr);
12440 }
12441 else
12442 {
12443 length = 1;
12444 }
12445 }
12446
12447 index_type = objfile_type (objfile)->builtin_int;
12448 range_type = create_range_type (NULL, index_type, 1, length);
12449 char_type = language_string_char_type (cu->language_defn, gdbarch);
12450 type = create_string_type (NULL, char_type, range_type);
12451
12452 return set_die_type (die, type, cu);
12453 }
12454
12455 /* Handle DIES due to C code like:
12456
12457 struct foo
12458 {
12459 int (*funcp)(int a, long l);
12460 int b;
12461 };
12462
12463 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12464
12465 static struct type *
12466 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12467 {
12468 struct objfile *objfile = cu->objfile;
12469 struct type *type; /* Type that this function returns. */
12470 struct type *ftype; /* Function that returns above type. */
12471 struct attribute *attr;
12472
12473 type = die_type (die, cu);
12474
12475 /* The die_type call above may have already set the type for this DIE. */
12476 ftype = get_die_type (die, cu);
12477 if (ftype)
12478 return ftype;
12479
12480 ftype = lookup_function_type (type);
12481
12482 /* All functions in C++, Pascal and Java have prototypes. */
12483 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12484 if ((attr && (DW_UNSND (attr) != 0))
12485 || cu->language == language_cplus
12486 || cu->language == language_java
12487 || cu->language == language_pascal)
12488 TYPE_PROTOTYPED (ftype) = 1;
12489 else if (producer_is_realview (cu->producer))
12490 /* RealView does not emit DW_AT_prototyped. We can not
12491 distinguish prototyped and unprototyped functions; default to
12492 prototyped, since that is more common in modern code (and
12493 RealView warns about unprototyped functions). */
12494 TYPE_PROTOTYPED (ftype) = 1;
12495
12496 /* Store the calling convention in the type if it's available in
12497 the subroutine die. Otherwise set the calling convention to
12498 the default value DW_CC_normal. */
12499 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12500 if (attr)
12501 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12502 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12503 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12504 else
12505 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12506
12507 /* We need to add the subroutine type to the die immediately so
12508 we don't infinitely recurse when dealing with parameters
12509 declared as the same subroutine type. */
12510 set_die_type (die, ftype, cu);
12511
12512 if (die->child != NULL)
12513 {
12514 struct type *void_type = objfile_type (objfile)->builtin_void;
12515 struct die_info *child_die;
12516 int nparams, iparams;
12517
12518 /* Count the number of parameters.
12519 FIXME: GDB currently ignores vararg functions, but knows about
12520 vararg member functions. */
12521 nparams = 0;
12522 child_die = die->child;
12523 while (child_die && child_die->tag)
12524 {
12525 if (child_die->tag == DW_TAG_formal_parameter)
12526 nparams++;
12527 else if (child_die->tag == DW_TAG_unspecified_parameters)
12528 TYPE_VARARGS (ftype) = 1;
12529 child_die = sibling_die (child_die);
12530 }
12531
12532 /* Allocate storage for parameters and fill them in. */
12533 TYPE_NFIELDS (ftype) = nparams;
12534 TYPE_FIELDS (ftype) = (struct field *)
12535 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12536
12537 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12538 even if we error out during the parameters reading below. */
12539 for (iparams = 0; iparams < nparams; iparams++)
12540 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12541
12542 iparams = 0;
12543 child_die = die->child;
12544 while (child_die && child_die->tag)
12545 {
12546 if (child_die->tag == DW_TAG_formal_parameter)
12547 {
12548 struct type *arg_type;
12549
12550 /* DWARF version 2 has no clean way to discern C++
12551 static and non-static member functions. G++ helps
12552 GDB by marking the first parameter for non-static
12553 member functions (which is the this pointer) as
12554 artificial. We pass this information to
12555 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12556
12557 DWARF version 3 added DW_AT_object_pointer, which GCC
12558 4.5 does not yet generate. */
12559 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12560 if (attr)
12561 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12562 else
12563 {
12564 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12565
12566 /* GCC/43521: In java, the formal parameter
12567 "this" is sometimes not marked with DW_AT_artificial. */
12568 if (cu->language == language_java)
12569 {
12570 const char *name = dwarf2_name (child_die, cu);
12571
12572 if (name && !strcmp (name, "this"))
12573 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12574 }
12575 }
12576 arg_type = die_type (child_die, cu);
12577
12578 /* RealView does not mark THIS as const, which the testsuite
12579 expects. GCC marks THIS as const in method definitions,
12580 but not in the class specifications (GCC PR 43053). */
12581 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12582 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12583 {
12584 int is_this = 0;
12585 struct dwarf2_cu *arg_cu = cu;
12586 const char *name = dwarf2_name (child_die, cu);
12587
12588 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12589 if (attr)
12590 {
12591 /* If the compiler emits this, use it. */
12592 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12593 is_this = 1;
12594 }
12595 else if (name && strcmp (name, "this") == 0)
12596 /* Function definitions will have the argument names. */
12597 is_this = 1;
12598 else if (name == NULL && iparams == 0)
12599 /* Declarations may not have the names, so like
12600 elsewhere in GDB, assume an artificial first
12601 argument is "this". */
12602 is_this = 1;
12603
12604 if (is_this)
12605 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12606 arg_type, 0);
12607 }
12608
12609 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12610 iparams++;
12611 }
12612 child_die = sibling_die (child_die);
12613 }
12614 }
12615
12616 return ftype;
12617 }
12618
12619 static struct type *
12620 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12621 {
12622 struct objfile *objfile = cu->objfile;
12623 const char *name = NULL;
12624 struct type *this_type, *target_type;
12625
12626 name = dwarf2_full_name (NULL, die, cu);
12627 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12628 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12629 TYPE_NAME (this_type) = name;
12630 set_die_type (die, this_type, cu);
12631 target_type = die_type (die, cu);
12632 if (target_type != this_type)
12633 TYPE_TARGET_TYPE (this_type) = target_type;
12634 else
12635 {
12636 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12637 spec and cause infinite loops in GDB. */
12638 complaint (&symfile_complaints,
12639 _("Self-referential DW_TAG_typedef "
12640 "- DIE at 0x%x [in module %s]"),
12641 die->offset.sect_off, objfile->name);
12642 TYPE_TARGET_TYPE (this_type) = NULL;
12643 }
12644 return this_type;
12645 }
12646
12647 /* Find a representation of a given base type and install
12648 it in the TYPE field of the die. */
12649
12650 static struct type *
12651 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12652 {
12653 struct objfile *objfile = cu->objfile;
12654 struct type *type;
12655 struct attribute *attr;
12656 int encoding = 0, size = 0;
12657 const char *name;
12658 enum type_code code = TYPE_CODE_INT;
12659 int type_flags = 0;
12660 struct type *target_type = NULL;
12661
12662 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12663 if (attr)
12664 {
12665 encoding = DW_UNSND (attr);
12666 }
12667 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12668 if (attr)
12669 {
12670 size = DW_UNSND (attr);
12671 }
12672 name = dwarf2_name (die, cu);
12673 if (!name)
12674 {
12675 complaint (&symfile_complaints,
12676 _("DW_AT_name missing from DW_TAG_base_type"));
12677 }
12678
12679 switch (encoding)
12680 {
12681 case DW_ATE_address:
12682 /* Turn DW_ATE_address into a void * pointer. */
12683 code = TYPE_CODE_PTR;
12684 type_flags |= TYPE_FLAG_UNSIGNED;
12685 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12686 break;
12687 case DW_ATE_boolean:
12688 code = TYPE_CODE_BOOL;
12689 type_flags |= TYPE_FLAG_UNSIGNED;
12690 break;
12691 case DW_ATE_complex_float:
12692 code = TYPE_CODE_COMPLEX;
12693 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12694 break;
12695 case DW_ATE_decimal_float:
12696 code = TYPE_CODE_DECFLOAT;
12697 break;
12698 case DW_ATE_float:
12699 code = TYPE_CODE_FLT;
12700 break;
12701 case DW_ATE_signed:
12702 break;
12703 case DW_ATE_unsigned:
12704 type_flags |= TYPE_FLAG_UNSIGNED;
12705 if (cu->language == language_fortran
12706 && name
12707 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12708 code = TYPE_CODE_CHAR;
12709 break;
12710 case DW_ATE_signed_char:
12711 if (cu->language == language_ada || cu->language == language_m2
12712 || cu->language == language_pascal
12713 || cu->language == language_fortran)
12714 code = TYPE_CODE_CHAR;
12715 break;
12716 case DW_ATE_unsigned_char:
12717 if (cu->language == language_ada || cu->language == language_m2
12718 || cu->language == language_pascal
12719 || cu->language == language_fortran)
12720 code = TYPE_CODE_CHAR;
12721 type_flags |= TYPE_FLAG_UNSIGNED;
12722 break;
12723 case DW_ATE_UTF:
12724 /* We just treat this as an integer and then recognize the
12725 type by name elsewhere. */
12726 break;
12727
12728 default:
12729 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12730 dwarf_type_encoding_name (encoding));
12731 break;
12732 }
12733
12734 type = init_type (code, size, type_flags, NULL, objfile);
12735 TYPE_NAME (type) = name;
12736 TYPE_TARGET_TYPE (type) = target_type;
12737
12738 if (name && strcmp (name, "char") == 0)
12739 TYPE_NOSIGN (type) = 1;
12740
12741 return set_die_type (die, type, cu);
12742 }
12743
12744 /* Read the given DW_AT_subrange DIE. */
12745
12746 static struct type *
12747 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12748 {
12749 struct type *base_type, *orig_base_type;
12750 struct type *range_type;
12751 struct attribute *attr;
12752 LONGEST low, high;
12753 int low_default_is_valid;
12754 const char *name;
12755 LONGEST negative_mask;
12756
12757 orig_base_type = die_type (die, cu);
12758 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12759 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12760 creating the range type, but we use the result of check_typedef
12761 when examining properties of the type. */
12762 base_type = check_typedef (orig_base_type);
12763
12764 /* The die_type call above may have already set the type for this DIE. */
12765 range_type = get_die_type (die, cu);
12766 if (range_type)
12767 return range_type;
12768
12769 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12770 omitting DW_AT_lower_bound. */
12771 switch (cu->language)
12772 {
12773 case language_c:
12774 case language_cplus:
12775 low = 0;
12776 low_default_is_valid = 1;
12777 break;
12778 case language_fortran:
12779 low = 1;
12780 low_default_is_valid = 1;
12781 break;
12782 case language_d:
12783 case language_java:
12784 case language_objc:
12785 low = 0;
12786 low_default_is_valid = (cu->header.version >= 4);
12787 break;
12788 case language_ada:
12789 case language_m2:
12790 case language_pascal:
12791 low = 1;
12792 low_default_is_valid = (cu->header.version >= 4);
12793 break;
12794 default:
12795 low = 0;
12796 low_default_is_valid = 0;
12797 break;
12798 }
12799
12800 /* FIXME: For variable sized arrays either of these could be
12801 a variable rather than a constant value. We'll allow it,
12802 but we don't know how to handle it. */
12803 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12804 if (attr)
12805 low = dwarf2_get_attr_constant_value (attr, low);
12806 else if (!low_default_is_valid)
12807 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12808 "- DIE at 0x%x [in module %s]"),
12809 die->offset.sect_off, cu->objfile->name);
12810
12811 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12812 if (attr)
12813 {
12814 if (attr_form_is_block (attr) || is_ref_attr (attr))
12815 {
12816 /* GCC encodes arrays with unspecified or dynamic length
12817 with a DW_FORM_block1 attribute or a reference attribute.
12818 FIXME: GDB does not yet know how to handle dynamic
12819 arrays properly, treat them as arrays with unspecified
12820 length for now.
12821
12822 FIXME: jimb/2003-09-22: GDB does not really know
12823 how to handle arrays of unspecified length
12824 either; we just represent them as zero-length
12825 arrays. Choose an appropriate upper bound given
12826 the lower bound we've computed above. */
12827 high = low - 1;
12828 }
12829 else
12830 high = dwarf2_get_attr_constant_value (attr, 1);
12831 }
12832 else
12833 {
12834 attr = dwarf2_attr (die, DW_AT_count, cu);
12835 if (attr)
12836 {
12837 int count = dwarf2_get_attr_constant_value (attr, 1);
12838 high = low + count - 1;
12839 }
12840 else
12841 {
12842 /* Unspecified array length. */
12843 high = low - 1;
12844 }
12845 }
12846
12847 /* Dwarf-2 specifications explicitly allows to create subrange types
12848 without specifying a base type.
12849 In that case, the base type must be set to the type of
12850 the lower bound, upper bound or count, in that order, if any of these
12851 three attributes references an object that has a type.
12852 If no base type is found, the Dwarf-2 specifications say that
12853 a signed integer type of size equal to the size of an address should
12854 be used.
12855 For the following C code: `extern char gdb_int [];'
12856 GCC produces an empty range DIE.
12857 FIXME: muller/2010-05-28: Possible references to object for low bound,
12858 high bound or count are not yet handled by this code. */
12859 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12860 {
12861 struct objfile *objfile = cu->objfile;
12862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12863 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12864 struct type *int_type = objfile_type (objfile)->builtin_int;
12865
12866 /* Test "int", "long int", and "long long int" objfile types,
12867 and select the first one having a size above or equal to the
12868 architecture address size. */
12869 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12870 base_type = int_type;
12871 else
12872 {
12873 int_type = objfile_type (objfile)->builtin_long;
12874 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12875 base_type = int_type;
12876 else
12877 {
12878 int_type = objfile_type (objfile)->builtin_long_long;
12879 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12880 base_type = int_type;
12881 }
12882 }
12883 }
12884
12885 negative_mask =
12886 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12887 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12888 low |= negative_mask;
12889 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12890 high |= negative_mask;
12891
12892 range_type = create_range_type (NULL, orig_base_type, low, high);
12893
12894 /* Mark arrays with dynamic length at least as an array of unspecified
12895 length. GDB could check the boundary but before it gets implemented at
12896 least allow accessing the array elements. */
12897 if (attr && attr_form_is_block (attr))
12898 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12899
12900 /* Ada expects an empty array on no boundary attributes. */
12901 if (attr == NULL && cu->language != language_ada)
12902 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12903
12904 name = dwarf2_name (die, cu);
12905 if (name)
12906 TYPE_NAME (range_type) = name;
12907
12908 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12909 if (attr)
12910 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12911
12912 set_die_type (die, range_type, cu);
12913
12914 /* set_die_type should be already done. */
12915 set_descriptive_type (range_type, die, cu);
12916
12917 return range_type;
12918 }
12919
12920 static struct type *
12921 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12922 {
12923 struct type *type;
12924
12925 /* For now, we only support the C meaning of an unspecified type: void. */
12926
12927 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12928 TYPE_NAME (type) = dwarf2_name (die, cu);
12929
12930 return set_die_type (die, type, cu);
12931 }
12932
12933 /* Read a single die and all its descendents. Set the die's sibling
12934 field to NULL; set other fields in the die correctly, and set all
12935 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12936 location of the info_ptr after reading all of those dies. PARENT
12937 is the parent of the die in question. */
12938
12939 static struct die_info *
12940 read_die_and_children (const struct die_reader_specs *reader,
12941 gdb_byte *info_ptr,
12942 gdb_byte **new_info_ptr,
12943 struct die_info *parent)
12944 {
12945 struct die_info *die;
12946 gdb_byte *cur_ptr;
12947 int has_children;
12948
12949 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12950 if (die == NULL)
12951 {
12952 *new_info_ptr = cur_ptr;
12953 return NULL;
12954 }
12955 store_in_ref_table (die, reader->cu);
12956
12957 if (has_children)
12958 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12959 else
12960 {
12961 die->child = NULL;
12962 *new_info_ptr = cur_ptr;
12963 }
12964
12965 die->sibling = NULL;
12966 die->parent = parent;
12967 return die;
12968 }
12969
12970 /* Read a die, all of its descendents, and all of its siblings; set
12971 all of the fields of all of the dies correctly. Arguments are as
12972 in read_die_and_children. */
12973
12974 static struct die_info *
12975 read_die_and_siblings (const struct die_reader_specs *reader,
12976 gdb_byte *info_ptr,
12977 gdb_byte **new_info_ptr,
12978 struct die_info *parent)
12979 {
12980 struct die_info *first_die, *last_sibling;
12981 gdb_byte *cur_ptr;
12982
12983 cur_ptr = info_ptr;
12984 first_die = last_sibling = NULL;
12985
12986 while (1)
12987 {
12988 struct die_info *die
12989 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12990
12991 if (die == NULL)
12992 {
12993 *new_info_ptr = cur_ptr;
12994 return first_die;
12995 }
12996
12997 if (!first_die)
12998 first_die = die;
12999 else
13000 last_sibling->sibling = die;
13001
13002 last_sibling = die;
13003 }
13004 }
13005
13006 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13007 attributes.
13008 The caller is responsible for filling in the extra attributes
13009 and updating (*DIEP)->num_attrs.
13010 Set DIEP to point to a newly allocated die with its information,
13011 except for its child, sibling, and parent fields.
13012 Set HAS_CHILDREN to tell whether the die has children or not. */
13013
13014 static gdb_byte *
13015 read_full_die_1 (const struct die_reader_specs *reader,
13016 struct die_info **diep, gdb_byte *info_ptr,
13017 int *has_children, int num_extra_attrs)
13018 {
13019 unsigned int abbrev_number, bytes_read, i;
13020 sect_offset offset;
13021 struct abbrev_info *abbrev;
13022 struct die_info *die;
13023 struct dwarf2_cu *cu = reader->cu;
13024 bfd *abfd = reader->abfd;
13025
13026 offset.sect_off = info_ptr - reader->buffer;
13027 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13028 info_ptr += bytes_read;
13029 if (!abbrev_number)
13030 {
13031 *diep = NULL;
13032 *has_children = 0;
13033 return info_ptr;
13034 }
13035
13036 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13037 if (!abbrev)
13038 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13039 abbrev_number,
13040 bfd_get_filename (abfd));
13041
13042 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13043 die->offset = offset;
13044 die->tag = abbrev->tag;
13045 die->abbrev = abbrev_number;
13046
13047 /* Make the result usable.
13048 The caller needs to update num_attrs after adding the extra
13049 attributes. */
13050 die->num_attrs = abbrev->num_attrs;
13051
13052 for (i = 0; i < abbrev->num_attrs; ++i)
13053 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13054 info_ptr);
13055
13056 *diep = die;
13057 *has_children = abbrev->has_children;
13058 return info_ptr;
13059 }
13060
13061 /* Read a die and all its attributes.
13062 Set DIEP to point to a newly allocated die with its information,
13063 except for its child, sibling, and parent fields.
13064 Set HAS_CHILDREN to tell whether the die has children or not. */
13065
13066 static gdb_byte *
13067 read_full_die (const struct die_reader_specs *reader,
13068 struct die_info **diep, gdb_byte *info_ptr,
13069 int *has_children)
13070 {
13071 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13072 }
13073 \f
13074 /* Abbreviation tables.
13075
13076 In DWARF version 2, the description of the debugging information is
13077 stored in a separate .debug_abbrev section. Before we read any
13078 dies from a section we read in all abbreviations and install them
13079 in a hash table. */
13080
13081 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13082
13083 static struct abbrev_info *
13084 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13085 {
13086 struct abbrev_info *abbrev;
13087
13088 abbrev = (struct abbrev_info *)
13089 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13090 memset (abbrev, 0, sizeof (struct abbrev_info));
13091 return abbrev;
13092 }
13093
13094 /* Add an abbreviation to the table. */
13095
13096 static void
13097 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13098 unsigned int abbrev_number,
13099 struct abbrev_info *abbrev)
13100 {
13101 unsigned int hash_number;
13102
13103 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13104 abbrev->next = abbrev_table->abbrevs[hash_number];
13105 abbrev_table->abbrevs[hash_number] = abbrev;
13106 }
13107
13108 /* Look up an abbrev in the table.
13109 Returns NULL if the abbrev is not found. */
13110
13111 static struct abbrev_info *
13112 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13113 unsigned int abbrev_number)
13114 {
13115 unsigned int hash_number;
13116 struct abbrev_info *abbrev;
13117
13118 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13119 abbrev = abbrev_table->abbrevs[hash_number];
13120
13121 while (abbrev)
13122 {
13123 if (abbrev->number == abbrev_number)
13124 return abbrev;
13125 abbrev = abbrev->next;
13126 }
13127 return NULL;
13128 }
13129
13130 /* Read in an abbrev table. */
13131
13132 static struct abbrev_table *
13133 abbrev_table_read_table (struct dwarf2_section_info *section,
13134 sect_offset offset)
13135 {
13136 struct objfile *objfile = dwarf2_per_objfile->objfile;
13137 bfd *abfd = section->asection->owner;
13138 struct abbrev_table *abbrev_table;
13139 gdb_byte *abbrev_ptr;
13140 struct abbrev_info *cur_abbrev;
13141 unsigned int abbrev_number, bytes_read, abbrev_name;
13142 unsigned int abbrev_form;
13143 struct attr_abbrev *cur_attrs;
13144 unsigned int allocated_attrs;
13145
13146 abbrev_table = XMALLOC (struct abbrev_table);
13147 abbrev_table->offset = offset;
13148 obstack_init (&abbrev_table->abbrev_obstack);
13149 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13150 (ABBREV_HASH_SIZE
13151 * sizeof (struct abbrev_info *)));
13152 memset (abbrev_table->abbrevs, 0,
13153 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13154
13155 dwarf2_read_section (objfile, section);
13156 abbrev_ptr = section->buffer + offset.sect_off;
13157 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13158 abbrev_ptr += bytes_read;
13159
13160 allocated_attrs = ATTR_ALLOC_CHUNK;
13161 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13162
13163 /* Loop until we reach an abbrev number of 0. */
13164 while (abbrev_number)
13165 {
13166 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13167
13168 /* read in abbrev header */
13169 cur_abbrev->number = abbrev_number;
13170 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13171 abbrev_ptr += bytes_read;
13172 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13173 abbrev_ptr += 1;
13174
13175 /* now read in declarations */
13176 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13177 abbrev_ptr += bytes_read;
13178 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13179 abbrev_ptr += bytes_read;
13180 while (abbrev_name)
13181 {
13182 if (cur_abbrev->num_attrs == allocated_attrs)
13183 {
13184 allocated_attrs += ATTR_ALLOC_CHUNK;
13185 cur_attrs
13186 = xrealloc (cur_attrs, (allocated_attrs
13187 * sizeof (struct attr_abbrev)));
13188 }
13189
13190 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13191 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13192 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13193 abbrev_ptr += bytes_read;
13194 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13195 abbrev_ptr += bytes_read;
13196 }
13197
13198 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13199 (cur_abbrev->num_attrs
13200 * sizeof (struct attr_abbrev)));
13201 memcpy (cur_abbrev->attrs, cur_attrs,
13202 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13203
13204 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13205
13206 /* Get next abbreviation.
13207 Under Irix6 the abbreviations for a compilation unit are not
13208 always properly terminated with an abbrev number of 0.
13209 Exit loop if we encounter an abbreviation which we have
13210 already read (which means we are about to read the abbreviations
13211 for the next compile unit) or if the end of the abbreviation
13212 table is reached. */
13213 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13214 break;
13215 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13216 abbrev_ptr += bytes_read;
13217 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13218 break;
13219 }
13220
13221 xfree (cur_attrs);
13222 return abbrev_table;
13223 }
13224
13225 /* Free the resources held by ABBREV_TABLE. */
13226
13227 static void
13228 abbrev_table_free (struct abbrev_table *abbrev_table)
13229 {
13230 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13231 xfree (abbrev_table);
13232 }
13233
13234 /* Same as abbrev_table_free but as a cleanup.
13235 We pass in a pointer to the pointer to the table so that we can
13236 set the pointer to NULL when we're done. It also simplifies
13237 build_type_unit_groups. */
13238
13239 static void
13240 abbrev_table_free_cleanup (void *table_ptr)
13241 {
13242 struct abbrev_table **abbrev_table_ptr = table_ptr;
13243
13244 if (*abbrev_table_ptr != NULL)
13245 abbrev_table_free (*abbrev_table_ptr);
13246 *abbrev_table_ptr = NULL;
13247 }
13248
13249 /* Read the abbrev table for CU from ABBREV_SECTION. */
13250
13251 static void
13252 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13253 struct dwarf2_section_info *abbrev_section)
13254 {
13255 cu->abbrev_table =
13256 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13257 }
13258
13259 /* Release the memory used by the abbrev table for a compilation unit. */
13260
13261 static void
13262 dwarf2_free_abbrev_table (void *ptr_to_cu)
13263 {
13264 struct dwarf2_cu *cu = ptr_to_cu;
13265
13266 abbrev_table_free (cu->abbrev_table);
13267 /* Set this to NULL so that we SEGV if we try to read it later,
13268 and also because free_comp_unit verifies this is NULL. */
13269 cu->abbrev_table = NULL;
13270 }
13271 \f
13272 /* Returns nonzero if TAG represents a type that we might generate a partial
13273 symbol for. */
13274
13275 static int
13276 is_type_tag_for_partial (int tag)
13277 {
13278 switch (tag)
13279 {
13280 #if 0
13281 /* Some types that would be reasonable to generate partial symbols for,
13282 that we don't at present. */
13283 case DW_TAG_array_type:
13284 case DW_TAG_file_type:
13285 case DW_TAG_ptr_to_member_type:
13286 case DW_TAG_set_type:
13287 case DW_TAG_string_type:
13288 case DW_TAG_subroutine_type:
13289 #endif
13290 case DW_TAG_base_type:
13291 case DW_TAG_class_type:
13292 case DW_TAG_interface_type:
13293 case DW_TAG_enumeration_type:
13294 case DW_TAG_structure_type:
13295 case DW_TAG_subrange_type:
13296 case DW_TAG_typedef:
13297 case DW_TAG_union_type:
13298 return 1;
13299 default:
13300 return 0;
13301 }
13302 }
13303
13304 /* Load all DIEs that are interesting for partial symbols into memory. */
13305
13306 static struct partial_die_info *
13307 load_partial_dies (const struct die_reader_specs *reader,
13308 gdb_byte *info_ptr, int building_psymtab)
13309 {
13310 struct dwarf2_cu *cu = reader->cu;
13311 struct objfile *objfile = cu->objfile;
13312 struct partial_die_info *part_die;
13313 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13314 struct abbrev_info *abbrev;
13315 unsigned int bytes_read;
13316 unsigned int load_all = 0;
13317 int nesting_level = 1;
13318
13319 parent_die = NULL;
13320 last_die = NULL;
13321
13322 gdb_assert (cu->per_cu != NULL);
13323 if (cu->per_cu->load_all_dies)
13324 load_all = 1;
13325
13326 cu->partial_dies
13327 = htab_create_alloc_ex (cu->header.length / 12,
13328 partial_die_hash,
13329 partial_die_eq,
13330 NULL,
13331 &cu->comp_unit_obstack,
13332 hashtab_obstack_allocate,
13333 dummy_obstack_deallocate);
13334
13335 part_die = obstack_alloc (&cu->comp_unit_obstack,
13336 sizeof (struct partial_die_info));
13337
13338 while (1)
13339 {
13340 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13341
13342 /* A NULL abbrev means the end of a series of children. */
13343 if (abbrev == NULL)
13344 {
13345 if (--nesting_level == 0)
13346 {
13347 /* PART_DIE was probably the last thing allocated on the
13348 comp_unit_obstack, so we could call obstack_free
13349 here. We don't do that because the waste is small,
13350 and will be cleaned up when we're done with this
13351 compilation unit. This way, we're also more robust
13352 against other users of the comp_unit_obstack. */
13353 return first_die;
13354 }
13355 info_ptr += bytes_read;
13356 last_die = parent_die;
13357 parent_die = parent_die->die_parent;
13358 continue;
13359 }
13360
13361 /* Check for template arguments. We never save these; if
13362 they're seen, we just mark the parent, and go on our way. */
13363 if (parent_die != NULL
13364 && cu->language == language_cplus
13365 && (abbrev->tag == DW_TAG_template_type_param
13366 || abbrev->tag == DW_TAG_template_value_param))
13367 {
13368 parent_die->has_template_arguments = 1;
13369
13370 if (!load_all)
13371 {
13372 /* We don't need a partial DIE for the template argument. */
13373 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13374 continue;
13375 }
13376 }
13377
13378 /* We only recurse into c++ subprograms looking for template arguments.
13379 Skip their other children. */
13380 if (!load_all
13381 && cu->language == language_cplus
13382 && parent_die != NULL
13383 && parent_die->tag == DW_TAG_subprogram)
13384 {
13385 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13386 continue;
13387 }
13388
13389 /* Check whether this DIE is interesting enough to save. Normally
13390 we would not be interested in members here, but there may be
13391 later variables referencing them via DW_AT_specification (for
13392 static members). */
13393 if (!load_all
13394 && !is_type_tag_for_partial (abbrev->tag)
13395 && abbrev->tag != DW_TAG_constant
13396 && abbrev->tag != DW_TAG_enumerator
13397 && abbrev->tag != DW_TAG_subprogram
13398 && abbrev->tag != DW_TAG_lexical_block
13399 && abbrev->tag != DW_TAG_variable
13400 && abbrev->tag != DW_TAG_namespace
13401 && abbrev->tag != DW_TAG_module
13402 && abbrev->tag != DW_TAG_member
13403 && abbrev->tag != DW_TAG_imported_unit)
13404 {
13405 /* Otherwise we skip to the next sibling, if any. */
13406 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13407 continue;
13408 }
13409
13410 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13411 info_ptr);
13412
13413 /* This two-pass algorithm for processing partial symbols has a
13414 high cost in cache pressure. Thus, handle some simple cases
13415 here which cover the majority of C partial symbols. DIEs
13416 which neither have specification tags in them, nor could have
13417 specification tags elsewhere pointing at them, can simply be
13418 processed and discarded.
13419
13420 This segment is also optional; scan_partial_symbols and
13421 add_partial_symbol will handle these DIEs if we chain
13422 them in normally. When compilers which do not emit large
13423 quantities of duplicate debug information are more common,
13424 this code can probably be removed. */
13425
13426 /* Any complete simple types at the top level (pretty much all
13427 of them, for a language without namespaces), can be processed
13428 directly. */
13429 if (parent_die == NULL
13430 && part_die->has_specification == 0
13431 && part_die->is_declaration == 0
13432 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13433 || part_die->tag == DW_TAG_base_type
13434 || part_die->tag == DW_TAG_subrange_type))
13435 {
13436 if (building_psymtab && part_die->name != NULL)
13437 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13438 VAR_DOMAIN, LOC_TYPEDEF,
13439 &objfile->static_psymbols,
13440 0, (CORE_ADDR) 0, cu->language, objfile);
13441 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13442 continue;
13443 }
13444
13445 /* The exception for DW_TAG_typedef with has_children above is
13446 a workaround of GCC PR debug/47510. In the case of this complaint
13447 type_name_no_tag_or_error will error on such types later.
13448
13449 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13450 it could not find the child DIEs referenced later, this is checked
13451 above. In correct DWARF DW_TAG_typedef should have no children. */
13452
13453 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13454 complaint (&symfile_complaints,
13455 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13456 "- DIE at 0x%x [in module %s]"),
13457 part_die->offset.sect_off, objfile->name);
13458
13459 /* If we're at the second level, and we're an enumerator, and
13460 our parent has no specification (meaning possibly lives in a
13461 namespace elsewhere), then we can add the partial symbol now
13462 instead of queueing it. */
13463 if (part_die->tag == DW_TAG_enumerator
13464 && parent_die != NULL
13465 && parent_die->die_parent == NULL
13466 && parent_die->tag == DW_TAG_enumeration_type
13467 && parent_die->has_specification == 0)
13468 {
13469 if (part_die->name == NULL)
13470 complaint (&symfile_complaints,
13471 _("malformed enumerator DIE ignored"));
13472 else if (building_psymtab)
13473 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13474 VAR_DOMAIN, LOC_CONST,
13475 (cu->language == language_cplus
13476 || cu->language == language_java)
13477 ? &objfile->global_psymbols
13478 : &objfile->static_psymbols,
13479 0, (CORE_ADDR) 0, cu->language, objfile);
13480
13481 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13482 continue;
13483 }
13484
13485 /* We'll save this DIE so link it in. */
13486 part_die->die_parent = parent_die;
13487 part_die->die_sibling = NULL;
13488 part_die->die_child = NULL;
13489
13490 if (last_die && last_die == parent_die)
13491 last_die->die_child = part_die;
13492 else if (last_die)
13493 last_die->die_sibling = part_die;
13494
13495 last_die = part_die;
13496
13497 if (first_die == NULL)
13498 first_die = part_die;
13499
13500 /* Maybe add the DIE to the hash table. Not all DIEs that we
13501 find interesting need to be in the hash table, because we
13502 also have the parent/sibling/child chains; only those that we
13503 might refer to by offset later during partial symbol reading.
13504
13505 For now this means things that might have be the target of a
13506 DW_AT_specification, DW_AT_abstract_origin, or
13507 DW_AT_extension. DW_AT_extension will refer only to
13508 namespaces; DW_AT_abstract_origin refers to functions (and
13509 many things under the function DIE, but we do not recurse
13510 into function DIEs during partial symbol reading) and
13511 possibly variables as well; DW_AT_specification refers to
13512 declarations. Declarations ought to have the DW_AT_declaration
13513 flag. It happens that GCC forgets to put it in sometimes, but
13514 only for functions, not for types.
13515
13516 Adding more things than necessary to the hash table is harmless
13517 except for the performance cost. Adding too few will result in
13518 wasted time in find_partial_die, when we reread the compilation
13519 unit with load_all_dies set. */
13520
13521 if (load_all
13522 || abbrev->tag == DW_TAG_constant
13523 || abbrev->tag == DW_TAG_subprogram
13524 || abbrev->tag == DW_TAG_variable
13525 || abbrev->tag == DW_TAG_namespace
13526 || part_die->is_declaration)
13527 {
13528 void **slot;
13529
13530 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13531 part_die->offset.sect_off, INSERT);
13532 *slot = part_die;
13533 }
13534
13535 part_die = obstack_alloc (&cu->comp_unit_obstack,
13536 sizeof (struct partial_die_info));
13537
13538 /* For some DIEs we want to follow their children (if any). For C
13539 we have no reason to follow the children of structures; for other
13540 languages we have to, so that we can get at method physnames
13541 to infer fully qualified class names, for DW_AT_specification,
13542 and for C++ template arguments. For C++, we also look one level
13543 inside functions to find template arguments (if the name of the
13544 function does not already contain the template arguments).
13545
13546 For Ada, we need to scan the children of subprograms and lexical
13547 blocks as well because Ada allows the definition of nested
13548 entities that could be interesting for the debugger, such as
13549 nested subprograms for instance. */
13550 if (last_die->has_children
13551 && (load_all
13552 || last_die->tag == DW_TAG_namespace
13553 || last_die->tag == DW_TAG_module
13554 || last_die->tag == DW_TAG_enumeration_type
13555 || (cu->language == language_cplus
13556 && last_die->tag == DW_TAG_subprogram
13557 && (last_die->name == NULL
13558 || strchr (last_die->name, '<') == NULL))
13559 || (cu->language != language_c
13560 && (last_die->tag == DW_TAG_class_type
13561 || last_die->tag == DW_TAG_interface_type
13562 || last_die->tag == DW_TAG_structure_type
13563 || last_die->tag == DW_TAG_union_type))
13564 || (cu->language == language_ada
13565 && (last_die->tag == DW_TAG_subprogram
13566 || last_die->tag == DW_TAG_lexical_block))))
13567 {
13568 nesting_level++;
13569 parent_die = last_die;
13570 continue;
13571 }
13572
13573 /* Otherwise we skip to the next sibling, if any. */
13574 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13575
13576 /* Back to the top, do it again. */
13577 }
13578 }
13579
13580 /* Read a minimal amount of information into the minimal die structure. */
13581
13582 static gdb_byte *
13583 read_partial_die (const struct die_reader_specs *reader,
13584 struct partial_die_info *part_die,
13585 struct abbrev_info *abbrev, unsigned int abbrev_len,
13586 gdb_byte *info_ptr)
13587 {
13588 struct dwarf2_cu *cu = reader->cu;
13589 struct objfile *objfile = cu->objfile;
13590 gdb_byte *buffer = reader->buffer;
13591 unsigned int i;
13592 struct attribute attr;
13593 int has_low_pc_attr = 0;
13594 int has_high_pc_attr = 0;
13595 int high_pc_relative = 0;
13596
13597 memset (part_die, 0, sizeof (struct partial_die_info));
13598
13599 part_die->offset.sect_off = info_ptr - buffer;
13600
13601 info_ptr += abbrev_len;
13602
13603 if (abbrev == NULL)
13604 return info_ptr;
13605
13606 part_die->tag = abbrev->tag;
13607 part_die->has_children = abbrev->has_children;
13608
13609 for (i = 0; i < abbrev->num_attrs; ++i)
13610 {
13611 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13612
13613 /* Store the data if it is of an attribute we want to keep in a
13614 partial symbol table. */
13615 switch (attr.name)
13616 {
13617 case DW_AT_name:
13618 switch (part_die->tag)
13619 {
13620 case DW_TAG_compile_unit:
13621 case DW_TAG_partial_unit:
13622 case DW_TAG_type_unit:
13623 /* Compilation units have a DW_AT_name that is a filename, not
13624 a source language identifier. */
13625 case DW_TAG_enumeration_type:
13626 case DW_TAG_enumerator:
13627 /* These tags always have simple identifiers already; no need
13628 to canonicalize them. */
13629 part_die->name = DW_STRING (&attr);
13630 break;
13631 default:
13632 part_die->name
13633 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13634 &objfile->objfile_obstack);
13635 break;
13636 }
13637 break;
13638 case DW_AT_linkage_name:
13639 case DW_AT_MIPS_linkage_name:
13640 /* Note that both forms of linkage name might appear. We
13641 assume they will be the same, and we only store the last
13642 one we see. */
13643 if (cu->language == language_ada)
13644 part_die->name = DW_STRING (&attr);
13645 part_die->linkage_name = DW_STRING (&attr);
13646 break;
13647 case DW_AT_low_pc:
13648 has_low_pc_attr = 1;
13649 part_die->lowpc = DW_ADDR (&attr);
13650 break;
13651 case DW_AT_high_pc:
13652 has_high_pc_attr = 1;
13653 if (attr.form == DW_FORM_addr
13654 || attr.form == DW_FORM_GNU_addr_index)
13655 part_die->highpc = DW_ADDR (&attr);
13656 else
13657 {
13658 high_pc_relative = 1;
13659 part_die->highpc = DW_UNSND (&attr);
13660 }
13661 break;
13662 case DW_AT_location:
13663 /* Support the .debug_loc offsets. */
13664 if (attr_form_is_block (&attr))
13665 {
13666 part_die->d.locdesc = DW_BLOCK (&attr);
13667 }
13668 else if (attr_form_is_section_offset (&attr))
13669 {
13670 dwarf2_complex_location_expr_complaint ();
13671 }
13672 else
13673 {
13674 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13675 "partial symbol information");
13676 }
13677 break;
13678 case DW_AT_external:
13679 part_die->is_external = DW_UNSND (&attr);
13680 break;
13681 case DW_AT_declaration:
13682 part_die->is_declaration = DW_UNSND (&attr);
13683 break;
13684 case DW_AT_type:
13685 part_die->has_type = 1;
13686 break;
13687 case DW_AT_abstract_origin:
13688 case DW_AT_specification:
13689 case DW_AT_extension:
13690 part_die->has_specification = 1;
13691 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13692 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13693 || cu->per_cu->is_dwz);
13694 break;
13695 case DW_AT_sibling:
13696 /* Ignore absolute siblings, they might point outside of
13697 the current compile unit. */
13698 if (attr.form == DW_FORM_ref_addr)
13699 complaint (&symfile_complaints,
13700 _("ignoring absolute DW_AT_sibling"));
13701 else
13702 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13703 break;
13704 case DW_AT_byte_size:
13705 part_die->has_byte_size = 1;
13706 break;
13707 case DW_AT_calling_convention:
13708 /* DWARF doesn't provide a way to identify a program's source-level
13709 entry point. DW_AT_calling_convention attributes are only meant
13710 to describe functions' calling conventions.
13711
13712 However, because it's a necessary piece of information in
13713 Fortran, and because DW_CC_program is the only piece of debugging
13714 information whose definition refers to a 'main program' at all,
13715 several compilers have begun marking Fortran main programs with
13716 DW_CC_program --- even when those functions use the standard
13717 calling conventions.
13718
13719 So until DWARF specifies a way to provide this information and
13720 compilers pick up the new representation, we'll support this
13721 practice. */
13722 if (DW_UNSND (&attr) == DW_CC_program
13723 && cu->language == language_fortran)
13724 {
13725 set_main_name (part_die->name);
13726
13727 /* As this DIE has a static linkage the name would be difficult
13728 to look up later. */
13729 language_of_main = language_fortran;
13730 }
13731 break;
13732 case DW_AT_inline:
13733 if (DW_UNSND (&attr) == DW_INL_inlined
13734 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13735 part_die->may_be_inlined = 1;
13736 break;
13737
13738 case DW_AT_import:
13739 if (part_die->tag == DW_TAG_imported_unit)
13740 {
13741 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13742 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13743 || cu->per_cu->is_dwz);
13744 }
13745 break;
13746
13747 default:
13748 break;
13749 }
13750 }
13751
13752 if (high_pc_relative)
13753 part_die->highpc += part_die->lowpc;
13754
13755 if (has_low_pc_attr && has_high_pc_attr)
13756 {
13757 /* When using the GNU linker, .gnu.linkonce. sections are used to
13758 eliminate duplicate copies of functions and vtables and such.
13759 The linker will arbitrarily choose one and discard the others.
13760 The AT_*_pc values for such functions refer to local labels in
13761 these sections. If the section from that file was discarded, the
13762 labels are not in the output, so the relocs get a value of 0.
13763 If this is a discarded function, mark the pc bounds as invalid,
13764 so that GDB will ignore it. */
13765 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13766 {
13767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13768
13769 complaint (&symfile_complaints,
13770 _("DW_AT_low_pc %s is zero "
13771 "for DIE at 0x%x [in module %s]"),
13772 paddress (gdbarch, part_die->lowpc),
13773 part_die->offset.sect_off, objfile->name);
13774 }
13775 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13776 else if (part_die->lowpc >= part_die->highpc)
13777 {
13778 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13779
13780 complaint (&symfile_complaints,
13781 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13782 "for DIE at 0x%x [in module %s]"),
13783 paddress (gdbarch, part_die->lowpc),
13784 paddress (gdbarch, part_die->highpc),
13785 part_die->offset.sect_off, objfile->name);
13786 }
13787 else
13788 part_die->has_pc_info = 1;
13789 }
13790
13791 return info_ptr;
13792 }
13793
13794 /* Find a cached partial DIE at OFFSET in CU. */
13795
13796 static struct partial_die_info *
13797 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13798 {
13799 struct partial_die_info *lookup_die = NULL;
13800 struct partial_die_info part_die;
13801
13802 part_die.offset = offset;
13803 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13804 offset.sect_off);
13805
13806 return lookup_die;
13807 }
13808
13809 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13810 except in the case of .debug_types DIEs which do not reference
13811 outside their CU (they do however referencing other types via
13812 DW_FORM_ref_sig8). */
13813
13814 static struct partial_die_info *
13815 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13816 {
13817 struct objfile *objfile = cu->objfile;
13818 struct dwarf2_per_cu_data *per_cu = NULL;
13819 struct partial_die_info *pd = NULL;
13820
13821 if (offset_in_dwz == cu->per_cu->is_dwz
13822 && offset_in_cu_p (&cu->header, offset))
13823 {
13824 pd = find_partial_die_in_comp_unit (offset, cu);
13825 if (pd != NULL)
13826 return pd;
13827 /* We missed recording what we needed.
13828 Load all dies and try again. */
13829 per_cu = cu->per_cu;
13830 }
13831 else
13832 {
13833 /* TUs don't reference other CUs/TUs (except via type signatures). */
13834 if (cu->per_cu->is_debug_types)
13835 {
13836 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13837 " external reference to offset 0x%lx [in module %s].\n"),
13838 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13839 bfd_get_filename (objfile->obfd));
13840 }
13841 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13842 objfile);
13843
13844 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13845 load_partial_comp_unit (per_cu);
13846
13847 per_cu->cu->last_used = 0;
13848 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13849 }
13850
13851 /* If we didn't find it, and not all dies have been loaded,
13852 load them all and try again. */
13853
13854 if (pd == NULL && per_cu->load_all_dies == 0)
13855 {
13856 per_cu->load_all_dies = 1;
13857
13858 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13859 THIS_CU->cu may already be in use. So we can't just free it and
13860 replace its DIEs with the ones we read in. Instead, we leave those
13861 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13862 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13863 set. */
13864 load_partial_comp_unit (per_cu);
13865
13866 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13867 }
13868
13869 if (pd == NULL)
13870 internal_error (__FILE__, __LINE__,
13871 _("could not find partial DIE 0x%x "
13872 "in cache [from module %s]\n"),
13873 offset.sect_off, bfd_get_filename (objfile->obfd));
13874 return pd;
13875 }
13876
13877 /* See if we can figure out if the class lives in a namespace. We do
13878 this by looking for a member function; its demangled name will
13879 contain namespace info, if there is any. */
13880
13881 static void
13882 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13883 struct dwarf2_cu *cu)
13884 {
13885 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13886 what template types look like, because the demangler
13887 frequently doesn't give the same name as the debug info. We
13888 could fix this by only using the demangled name to get the
13889 prefix (but see comment in read_structure_type). */
13890
13891 struct partial_die_info *real_pdi;
13892 struct partial_die_info *child_pdi;
13893
13894 /* If this DIE (this DIE's specification, if any) has a parent, then
13895 we should not do this. We'll prepend the parent's fully qualified
13896 name when we create the partial symbol. */
13897
13898 real_pdi = struct_pdi;
13899 while (real_pdi->has_specification)
13900 real_pdi = find_partial_die (real_pdi->spec_offset,
13901 real_pdi->spec_is_dwz, cu);
13902
13903 if (real_pdi->die_parent != NULL)
13904 return;
13905
13906 for (child_pdi = struct_pdi->die_child;
13907 child_pdi != NULL;
13908 child_pdi = child_pdi->die_sibling)
13909 {
13910 if (child_pdi->tag == DW_TAG_subprogram
13911 && child_pdi->linkage_name != NULL)
13912 {
13913 char *actual_class_name
13914 = language_class_name_from_physname (cu->language_defn,
13915 child_pdi->linkage_name);
13916 if (actual_class_name != NULL)
13917 {
13918 struct_pdi->name
13919 = obstack_copy0 (&cu->objfile->objfile_obstack,
13920 actual_class_name,
13921 strlen (actual_class_name));
13922 xfree (actual_class_name);
13923 }
13924 break;
13925 }
13926 }
13927 }
13928
13929 /* Adjust PART_DIE before generating a symbol for it. This function
13930 may set the is_external flag or change the DIE's name. */
13931
13932 static void
13933 fixup_partial_die (struct partial_die_info *part_die,
13934 struct dwarf2_cu *cu)
13935 {
13936 /* Once we've fixed up a die, there's no point in doing so again.
13937 This also avoids a memory leak if we were to call
13938 guess_partial_die_structure_name multiple times. */
13939 if (part_die->fixup_called)
13940 return;
13941
13942 /* If we found a reference attribute and the DIE has no name, try
13943 to find a name in the referred to DIE. */
13944
13945 if (part_die->name == NULL && part_die->has_specification)
13946 {
13947 struct partial_die_info *spec_die;
13948
13949 spec_die = find_partial_die (part_die->spec_offset,
13950 part_die->spec_is_dwz, cu);
13951
13952 fixup_partial_die (spec_die, cu);
13953
13954 if (spec_die->name)
13955 {
13956 part_die->name = spec_die->name;
13957
13958 /* Copy DW_AT_external attribute if it is set. */
13959 if (spec_die->is_external)
13960 part_die->is_external = spec_die->is_external;
13961 }
13962 }
13963
13964 /* Set default names for some unnamed DIEs. */
13965
13966 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13967 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13968
13969 /* If there is no parent die to provide a namespace, and there are
13970 children, see if we can determine the namespace from their linkage
13971 name. */
13972 if (cu->language == language_cplus
13973 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13974 && part_die->die_parent == NULL
13975 && part_die->has_children
13976 && (part_die->tag == DW_TAG_class_type
13977 || part_die->tag == DW_TAG_structure_type
13978 || part_die->tag == DW_TAG_union_type))
13979 guess_partial_die_structure_name (part_die, cu);
13980
13981 /* GCC might emit a nameless struct or union that has a linkage
13982 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13983 if (part_die->name == NULL
13984 && (part_die->tag == DW_TAG_class_type
13985 || part_die->tag == DW_TAG_interface_type
13986 || part_die->tag == DW_TAG_structure_type
13987 || part_die->tag == DW_TAG_union_type)
13988 && part_die->linkage_name != NULL)
13989 {
13990 char *demangled;
13991
13992 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13993 if (demangled)
13994 {
13995 const char *base;
13996
13997 /* Strip any leading namespaces/classes, keep only the base name.
13998 DW_AT_name for named DIEs does not contain the prefixes. */
13999 base = strrchr (demangled, ':');
14000 if (base && base > demangled && base[-1] == ':')
14001 base++;
14002 else
14003 base = demangled;
14004
14005 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14006 base, strlen (base));
14007 xfree (demangled);
14008 }
14009 }
14010
14011 part_die->fixup_called = 1;
14012 }
14013
14014 /* Read an attribute value described by an attribute form. */
14015
14016 static gdb_byte *
14017 read_attribute_value (const struct die_reader_specs *reader,
14018 struct attribute *attr, unsigned form,
14019 gdb_byte *info_ptr)
14020 {
14021 struct dwarf2_cu *cu = reader->cu;
14022 bfd *abfd = reader->abfd;
14023 struct comp_unit_head *cu_header = &cu->header;
14024 unsigned int bytes_read;
14025 struct dwarf_block *blk;
14026
14027 attr->form = form;
14028 switch (form)
14029 {
14030 case DW_FORM_ref_addr:
14031 if (cu->header.version == 2)
14032 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14033 else
14034 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14035 &cu->header, &bytes_read);
14036 info_ptr += bytes_read;
14037 break;
14038 case DW_FORM_GNU_ref_alt:
14039 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14040 info_ptr += bytes_read;
14041 break;
14042 case DW_FORM_addr:
14043 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14044 info_ptr += bytes_read;
14045 break;
14046 case DW_FORM_block2:
14047 blk = dwarf_alloc_block (cu);
14048 blk->size = read_2_bytes (abfd, info_ptr);
14049 info_ptr += 2;
14050 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14051 info_ptr += blk->size;
14052 DW_BLOCK (attr) = blk;
14053 break;
14054 case DW_FORM_block4:
14055 blk = dwarf_alloc_block (cu);
14056 blk->size = read_4_bytes (abfd, info_ptr);
14057 info_ptr += 4;
14058 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14059 info_ptr += blk->size;
14060 DW_BLOCK (attr) = blk;
14061 break;
14062 case DW_FORM_data2:
14063 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14064 info_ptr += 2;
14065 break;
14066 case DW_FORM_data4:
14067 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14068 info_ptr += 4;
14069 break;
14070 case DW_FORM_data8:
14071 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14072 info_ptr += 8;
14073 break;
14074 case DW_FORM_sec_offset:
14075 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14076 info_ptr += bytes_read;
14077 break;
14078 case DW_FORM_string:
14079 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14080 DW_STRING_IS_CANONICAL (attr) = 0;
14081 info_ptr += bytes_read;
14082 break;
14083 case DW_FORM_strp:
14084 if (!cu->per_cu->is_dwz)
14085 {
14086 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14087 &bytes_read);
14088 DW_STRING_IS_CANONICAL (attr) = 0;
14089 info_ptr += bytes_read;
14090 break;
14091 }
14092 /* FALLTHROUGH */
14093 case DW_FORM_GNU_strp_alt:
14094 {
14095 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14096 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14097 &bytes_read);
14098
14099 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14100 DW_STRING_IS_CANONICAL (attr) = 0;
14101 info_ptr += bytes_read;
14102 }
14103 break;
14104 case DW_FORM_exprloc:
14105 case DW_FORM_block:
14106 blk = dwarf_alloc_block (cu);
14107 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14108 info_ptr += bytes_read;
14109 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14110 info_ptr += blk->size;
14111 DW_BLOCK (attr) = blk;
14112 break;
14113 case DW_FORM_block1:
14114 blk = dwarf_alloc_block (cu);
14115 blk->size = read_1_byte (abfd, info_ptr);
14116 info_ptr += 1;
14117 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14118 info_ptr += blk->size;
14119 DW_BLOCK (attr) = blk;
14120 break;
14121 case DW_FORM_data1:
14122 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14123 info_ptr += 1;
14124 break;
14125 case DW_FORM_flag:
14126 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14127 info_ptr += 1;
14128 break;
14129 case DW_FORM_flag_present:
14130 DW_UNSND (attr) = 1;
14131 break;
14132 case DW_FORM_sdata:
14133 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14134 info_ptr += bytes_read;
14135 break;
14136 case DW_FORM_udata:
14137 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14138 info_ptr += bytes_read;
14139 break;
14140 case DW_FORM_ref1:
14141 DW_UNSND (attr) = (cu->header.offset.sect_off
14142 + read_1_byte (abfd, info_ptr));
14143 info_ptr += 1;
14144 break;
14145 case DW_FORM_ref2:
14146 DW_UNSND (attr) = (cu->header.offset.sect_off
14147 + read_2_bytes (abfd, info_ptr));
14148 info_ptr += 2;
14149 break;
14150 case DW_FORM_ref4:
14151 DW_UNSND (attr) = (cu->header.offset.sect_off
14152 + read_4_bytes (abfd, info_ptr));
14153 info_ptr += 4;
14154 break;
14155 case DW_FORM_ref8:
14156 DW_UNSND (attr) = (cu->header.offset.sect_off
14157 + read_8_bytes (abfd, info_ptr));
14158 info_ptr += 8;
14159 break;
14160 case DW_FORM_ref_sig8:
14161 /* Convert the signature to something we can record in DW_UNSND
14162 for later lookup.
14163 NOTE: This is NULL if the type wasn't found. */
14164 DW_SIGNATURED_TYPE (attr) =
14165 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14166 info_ptr += 8;
14167 break;
14168 case DW_FORM_ref_udata:
14169 DW_UNSND (attr) = (cu->header.offset.sect_off
14170 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14171 info_ptr += bytes_read;
14172 break;
14173 case DW_FORM_indirect:
14174 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14175 info_ptr += bytes_read;
14176 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14177 break;
14178 case DW_FORM_GNU_addr_index:
14179 if (reader->dwo_file == NULL)
14180 {
14181 /* For now flag a hard error.
14182 Later we can turn this into a complaint. */
14183 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14184 dwarf_form_name (form),
14185 bfd_get_filename (abfd));
14186 }
14187 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14188 info_ptr += bytes_read;
14189 break;
14190 case DW_FORM_GNU_str_index:
14191 if (reader->dwo_file == NULL)
14192 {
14193 /* For now flag a hard error.
14194 Later we can turn this into a complaint if warranted. */
14195 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14196 dwarf_form_name (form),
14197 bfd_get_filename (abfd));
14198 }
14199 {
14200 ULONGEST str_index =
14201 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14202
14203 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14204 DW_STRING_IS_CANONICAL (attr) = 0;
14205 info_ptr += bytes_read;
14206 }
14207 break;
14208 default:
14209 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14210 dwarf_form_name (form),
14211 bfd_get_filename (abfd));
14212 }
14213
14214 /* Super hack. */
14215 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14216 attr->form = DW_FORM_GNU_ref_alt;
14217
14218 /* We have seen instances where the compiler tried to emit a byte
14219 size attribute of -1 which ended up being encoded as an unsigned
14220 0xffffffff. Although 0xffffffff is technically a valid size value,
14221 an object of this size seems pretty unlikely so we can relatively
14222 safely treat these cases as if the size attribute was invalid and
14223 treat them as zero by default. */
14224 if (attr->name == DW_AT_byte_size
14225 && form == DW_FORM_data4
14226 && DW_UNSND (attr) >= 0xffffffff)
14227 {
14228 complaint
14229 (&symfile_complaints,
14230 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14231 hex_string (DW_UNSND (attr)));
14232 DW_UNSND (attr) = 0;
14233 }
14234
14235 return info_ptr;
14236 }
14237
14238 /* Read an attribute described by an abbreviated attribute. */
14239
14240 static gdb_byte *
14241 read_attribute (const struct die_reader_specs *reader,
14242 struct attribute *attr, struct attr_abbrev *abbrev,
14243 gdb_byte *info_ptr)
14244 {
14245 attr->name = abbrev->name;
14246 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14247 }
14248
14249 /* Read dwarf information from a buffer. */
14250
14251 static unsigned int
14252 read_1_byte (bfd *abfd, const gdb_byte *buf)
14253 {
14254 return bfd_get_8 (abfd, buf);
14255 }
14256
14257 static int
14258 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14259 {
14260 return bfd_get_signed_8 (abfd, buf);
14261 }
14262
14263 static unsigned int
14264 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14265 {
14266 return bfd_get_16 (abfd, buf);
14267 }
14268
14269 static int
14270 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14271 {
14272 return bfd_get_signed_16 (abfd, buf);
14273 }
14274
14275 static unsigned int
14276 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14277 {
14278 return bfd_get_32 (abfd, buf);
14279 }
14280
14281 static int
14282 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14283 {
14284 return bfd_get_signed_32 (abfd, buf);
14285 }
14286
14287 static ULONGEST
14288 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14289 {
14290 return bfd_get_64 (abfd, buf);
14291 }
14292
14293 static CORE_ADDR
14294 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14295 unsigned int *bytes_read)
14296 {
14297 struct comp_unit_head *cu_header = &cu->header;
14298 CORE_ADDR retval = 0;
14299
14300 if (cu_header->signed_addr_p)
14301 {
14302 switch (cu_header->addr_size)
14303 {
14304 case 2:
14305 retval = bfd_get_signed_16 (abfd, buf);
14306 break;
14307 case 4:
14308 retval = bfd_get_signed_32 (abfd, buf);
14309 break;
14310 case 8:
14311 retval = bfd_get_signed_64 (abfd, buf);
14312 break;
14313 default:
14314 internal_error (__FILE__, __LINE__,
14315 _("read_address: bad switch, signed [in module %s]"),
14316 bfd_get_filename (abfd));
14317 }
14318 }
14319 else
14320 {
14321 switch (cu_header->addr_size)
14322 {
14323 case 2:
14324 retval = bfd_get_16 (abfd, buf);
14325 break;
14326 case 4:
14327 retval = bfd_get_32 (abfd, buf);
14328 break;
14329 case 8:
14330 retval = bfd_get_64 (abfd, buf);
14331 break;
14332 default:
14333 internal_error (__FILE__, __LINE__,
14334 _("read_address: bad switch, "
14335 "unsigned [in module %s]"),
14336 bfd_get_filename (abfd));
14337 }
14338 }
14339
14340 *bytes_read = cu_header->addr_size;
14341 return retval;
14342 }
14343
14344 /* Read the initial length from a section. The (draft) DWARF 3
14345 specification allows the initial length to take up either 4 bytes
14346 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14347 bytes describe the length and all offsets will be 8 bytes in length
14348 instead of 4.
14349
14350 An older, non-standard 64-bit format is also handled by this
14351 function. The older format in question stores the initial length
14352 as an 8-byte quantity without an escape value. Lengths greater
14353 than 2^32 aren't very common which means that the initial 4 bytes
14354 is almost always zero. Since a length value of zero doesn't make
14355 sense for the 32-bit format, this initial zero can be considered to
14356 be an escape value which indicates the presence of the older 64-bit
14357 format. As written, the code can't detect (old format) lengths
14358 greater than 4GB. If it becomes necessary to handle lengths
14359 somewhat larger than 4GB, we could allow other small values (such
14360 as the non-sensical values of 1, 2, and 3) to also be used as
14361 escape values indicating the presence of the old format.
14362
14363 The value returned via bytes_read should be used to increment the
14364 relevant pointer after calling read_initial_length().
14365
14366 [ Note: read_initial_length() and read_offset() are based on the
14367 document entitled "DWARF Debugging Information Format", revision
14368 3, draft 8, dated November 19, 2001. This document was obtained
14369 from:
14370
14371 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14372
14373 This document is only a draft and is subject to change. (So beware.)
14374
14375 Details regarding the older, non-standard 64-bit format were
14376 determined empirically by examining 64-bit ELF files produced by
14377 the SGI toolchain on an IRIX 6.5 machine.
14378
14379 - Kevin, July 16, 2002
14380 ] */
14381
14382 static LONGEST
14383 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14384 {
14385 LONGEST length = bfd_get_32 (abfd, buf);
14386
14387 if (length == 0xffffffff)
14388 {
14389 length = bfd_get_64 (abfd, buf + 4);
14390 *bytes_read = 12;
14391 }
14392 else if (length == 0)
14393 {
14394 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14395 length = bfd_get_64 (abfd, buf);
14396 *bytes_read = 8;
14397 }
14398 else
14399 {
14400 *bytes_read = 4;
14401 }
14402
14403 return length;
14404 }
14405
14406 /* Cover function for read_initial_length.
14407 Returns the length of the object at BUF, and stores the size of the
14408 initial length in *BYTES_READ and stores the size that offsets will be in
14409 *OFFSET_SIZE.
14410 If the initial length size is not equivalent to that specified in
14411 CU_HEADER then issue a complaint.
14412 This is useful when reading non-comp-unit headers. */
14413
14414 static LONGEST
14415 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14416 const struct comp_unit_head *cu_header,
14417 unsigned int *bytes_read,
14418 unsigned int *offset_size)
14419 {
14420 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14421
14422 gdb_assert (cu_header->initial_length_size == 4
14423 || cu_header->initial_length_size == 8
14424 || cu_header->initial_length_size == 12);
14425
14426 if (cu_header->initial_length_size != *bytes_read)
14427 complaint (&symfile_complaints,
14428 _("intermixed 32-bit and 64-bit DWARF sections"));
14429
14430 *offset_size = (*bytes_read == 4) ? 4 : 8;
14431 return length;
14432 }
14433
14434 /* Read an offset from the data stream. The size of the offset is
14435 given by cu_header->offset_size. */
14436
14437 static LONGEST
14438 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14439 unsigned int *bytes_read)
14440 {
14441 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14442
14443 *bytes_read = cu_header->offset_size;
14444 return offset;
14445 }
14446
14447 /* Read an offset from the data stream. */
14448
14449 static LONGEST
14450 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14451 {
14452 LONGEST retval = 0;
14453
14454 switch (offset_size)
14455 {
14456 case 4:
14457 retval = bfd_get_32 (abfd, buf);
14458 break;
14459 case 8:
14460 retval = bfd_get_64 (abfd, buf);
14461 break;
14462 default:
14463 internal_error (__FILE__, __LINE__,
14464 _("read_offset_1: bad switch [in module %s]"),
14465 bfd_get_filename (abfd));
14466 }
14467
14468 return retval;
14469 }
14470
14471 static gdb_byte *
14472 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14473 {
14474 /* If the size of a host char is 8 bits, we can return a pointer
14475 to the buffer, otherwise we have to copy the data to a buffer
14476 allocated on the temporary obstack. */
14477 gdb_assert (HOST_CHAR_BIT == 8);
14478 return buf;
14479 }
14480
14481 static char *
14482 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14483 {
14484 /* If the size of a host char is 8 bits, we can return a pointer
14485 to the string, otherwise we have to copy the string to a buffer
14486 allocated on the temporary obstack. */
14487 gdb_assert (HOST_CHAR_BIT == 8);
14488 if (*buf == '\0')
14489 {
14490 *bytes_read_ptr = 1;
14491 return NULL;
14492 }
14493 *bytes_read_ptr = strlen ((char *) buf) + 1;
14494 return (char *) buf;
14495 }
14496
14497 static char *
14498 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14499 {
14500 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14501 if (dwarf2_per_objfile->str.buffer == NULL)
14502 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14503 bfd_get_filename (abfd));
14504 if (str_offset >= dwarf2_per_objfile->str.size)
14505 error (_("DW_FORM_strp pointing outside of "
14506 ".debug_str section [in module %s]"),
14507 bfd_get_filename (abfd));
14508 gdb_assert (HOST_CHAR_BIT == 8);
14509 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14510 return NULL;
14511 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14512 }
14513
14514 /* Read a string at offset STR_OFFSET in the .debug_str section from
14515 the .dwz file DWZ. Throw an error if the offset is too large. If
14516 the string consists of a single NUL byte, return NULL; otherwise
14517 return a pointer to the string. */
14518
14519 static char *
14520 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14521 {
14522 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14523
14524 if (dwz->str.buffer == NULL)
14525 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14526 "section [in module %s]"),
14527 bfd_get_filename (dwz->dwz_bfd));
14528 if (str_offset >= dwz->str.size)
14529 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14530 ".debug_str section [in module %s]"),
14531 bfd_get_filename (dwz->dwz_bfd));
14532 gdb_assert (HOST_CHAR_BIT == 8);
14533 if (dwz->str.buffer[str_offset] == '\0')
14534 return NULL;
14535 return (char *) (dwz->str.buffer + str_offset);
14536 }
14537
14538 static char *
14539 read_indirect_string (bfd *abfd, gdb_byte *buf,
14540 const struct comp_unit_head *cu_header,
14541 unsigned int *bytes_read_ptr)
14542 {
14543 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14544
14545 return read_indirect_string_at_offset (abfd, str_offset);
14546 }
14547
14548 static ULONGEST
14549 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14550 {
14551 ULONGEST result;
14552 unsigned int num_read;
14553 int i, shift;
14554 unsigned char byte;
14555
14556 result = 0;
14557 shift = 0;
14558 num_read = 0;
14559 i = 0;
14560 while (1)
14561 {
14562 byte = bfd_get_8 (abfd, buf);
14563 buf++;
14564 num_read++;
14565 result |= ((ULONGEST) (byte & 127) << shift);
14566 if ((byte & 128) == 0)
14567 {
14568 break;
14569 }
14570 shift += 7;
14571 }
14572 *bytes_read_ptr = num_read;
14573 return result;
14574 }
14575
14576 static LONGEST
14577 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14578 {
14579 LONGEST result;
14580 int i, shift, num_read;
14581 unsigned char byte;
14582
14583 result = 0;
14584 shift = 0;
14585 num_read = 0;
14586 i = 0;
14587 while (1)
14588 {
14589 byte = bfd_get_8 (abfd, buf);
14590 buf++;
14591 num_read++;
14592 result |= ((LONGEST) (byte & 127) << shift);
14593 shift += 7;
14594 if ((byte & 128) == 0)
14595 {
14596 break;
14597 }
14598 }
14599 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14600 result |= -(((LONGEST) 1) << shift);
14601 *bytes_read_ptr = num_read;
14602 return result;
14603 }
14604
14605 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14606 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14607 ADDR_SIZE is the size of addresses from the CU header. */
14608
14609 static CORE_ADDR
14610 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14611 {
14612 struct objfile *objfile = dwarf2_per_objfile->objfile;
14613 bfd *abfd = objfile->obfd;
14614 const gdb_byte *info_ptr;
14615
14616 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14617 if (dwarf2_per_objfile->addr.buffer == NULL)
14618 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14619 objfile->name);
14620 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14621 error (_("DW_FORM_addr_index pointing outside of "
14622 ".debug_addr section [in module %s]"),
14623 objfile->name);
14624 info_ptr = (dwarf2_per_objfile->addr.buffer
14625 + addr_base + addr_index * addr_size);
14626 if (addr_size == 4)
14627 return bfd_get_32 (abfd, info_ptr);
14628 else
14629 return bfd_get_64 (abfd, info_ptr);
14630 }
14631
14632 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14633
14634 static CORE_ADDR
14635 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14636 {
14637 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14638 }
14639
14640 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14641
14642 static CORE_ADDR
14643 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14644 unsigned int *bytes_read)
14645 {
14646 bfd *abfd = cu->objfile->obfd;
14647 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14648
14649 return read_addr_index (cu, addr_index);
14650 }
14651
14652 /* Data structure to pass results from dwarf2_read_addr_index_reader
14653 back to dwarf2_read_addr_index. */
14654
14655 struct dwarf2_read_addr_index_data
14656 {
14657 ULONGEST addr_base;
14658 int addr_size;
14659 };
14660
14661 /* die_reader_func for dwarf2_read_addr_index. */
14662
14663 static void
14664 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14665 gdb_byte *info_ptr,
14666 struct die_info *comp_unit_die,
14667 int has_children,
14668 void *data)
14669 {
14670 struct dwarf2_cu *cu = reader->cu;
14671 struct dwarf2_read_addr_index_data *aidata =
14672 (struct dwarf2_read_addr_index_data *) data;
14673
14674 aidata->addr_base = cu->addr_base;
14675 aidata->addr_size = cu->header.addr_size;
14676 }
14677
14678 /* Given an index in .debug_addr, fetch the value.
14679 NOTE: This can be called during dwarf expression evaluation,
14680 long after the debug information has been read, and thus per_cu->cu
14681 may no longer exist. */
14682
14683 CORE_ADDR
14684 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14685 unsigned int addr_index)
14686 {
14687 struct objfile *objfile = per_cu->objfile;
14688 struct dwarf2_cu *cu = per_cu->cu;
14689 ULONGEST addr_base;
14690 int addr_size;
14691
14692 /* This is intended to be called from outside this file. */
14693 dw2_setup (objfile);
14694
14695 /* We need addr_base and addr_size.
14696 If we don't have PER_CU->cu, we have to get it.
14697 Nasty, but the alternative is storing the needed info in PER_CU,
14698 which at this point doesn't seem justified: it's not clear how frequently
14699 it would get used and it would increase the size of every PER_CU.
14700 Entry points like dwarf2_per_cu_addr_size do a similar thing
14701 so we're not in uncharted territory here.
14702 Alas we need to be a bit more complicated as addr_base is contained
14703 in the DIE.
14704
14705 We don't need to read the entire CU(/TU).
14706 We just need the header and top level die.
14707
14708 IWBN to use the aging mechanism to let us lazily later discard the CU.
14709 For now we skip this optimization. */
14710
14711 if (cu != NULL)
14712 {
14713 addr_base = cu->addr_base;
14714 addr_size = cu->header.addr_size;
14715 }
14716 else
14717 {
14718 struct dwarf2_read_addr_index_data aidata;
14719
14720 /* Note: We can't use init_cutu_and_read_dies_simple here,
14721 we need addr_base. */
14722 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14723 dwarf2_read_addr_index_reader, &aidata);
14724 addr_base = aidata.addr_base;
14725 addr_size = aidata.addr_size;
14726 }
14727
14728 return read_addr_index_1 (addr_index, addr_base, addr_size);
14729 }
14730
14731 /* Given a DW_AT_str_index, fetch the string. */
14732
14733 static char *
14734 read_str_index (const struct die_reader_specs *reader,
14735 struct dwarf2_cu *cu, ULONGEST str_index)
14736 {
14737 struct objfile *objfile = dwarf2_per_objfile->objfile;
14738 const char *dwo_name = objfile->name;
14739 bfd *abfd = objfile->obfd;
14740 struct dwo_sections *sections = &reader->dwo_file->sections;
14741 gdb_byte *info_ptr;
14742 ULONGEST str_offset;
14743
14744 dwarf2_read_section (objfile, &sections->str);
14745 dwarf2_read_section (objfile, &sections->str_offsets);
14746 if (sections->str.buffer == NULL)
14747 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14748 " in CU at offset 0x%lx [in module %s]"),
14749 (long) cu->header.offset.sect_off, dwo_name);
14750 if (sections->str_offsets.buffer == NULL)
14751 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14752 " in CU at offset 0x%lx [in module %s]"),
14753 (long) cu->header.offset.sect_off, dwo_name);
14754 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14755 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14756 " section in CU at offset 0x%lx [in module %s]"),
14757 (long) cu->header.offset.sect_off, dwo_name);
14758 info_ptr = (sections->str_offsets.buffer
14759 + str_index * cu->header.offset_size);
14760 if (cu->header.offset_size == 4)
14761 str_offset = bfd_get_32 (abfd, info_ptr);
14762 else
14763 str_offset = bfd_get_64 (abfd, info_ptr);
14764 if (str_offset >= sections->str.size)
14765 error (_("Offset from DW_FORM_str_index pointing outside of"
14766 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14767 (long) cu->header.offset.sect_off, dwo_name);
14768 return (char *) (sections->str.buffer + str_offset);
14769 }
14770
14771 /* Return the length of an LEB128 number in BUF. */
14772
14773 static int
14774 leb128_size (const gdb_byte *buf)
14775 {
14776 const gdb_byte *begin = buf;
14777 gdb_byte byte;
14778
14779 while (1)
14780 {
14781 byte = *buf++;
14782 if ((byte & 128) == 0)
14783 return buf - begin;
14784 }
14785 }
14786
14787 static void
14788 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14789 {
14790 switch (lang)
14791 {
14792 case DW_LANG_C89:
14793 case DW_LANG_C99:
14794 case DW_LANG_C:
14795 cu->language = language_c;
14796 break;
14797 case DW_LANG_C_plus_plus:
14798 cu->language = language_cplus;
14799 break;
14800 case DW_LANG_D:
14801 cu->language = language_d;
14802 break;
14803 case DW_LANG_Fortran77:
14804 case DW_LANG_Fortran90:
14805 case DW_LANG_Fortran95:
14806 cu->language = language_fortran;
14807 break;
14808 case DW_LANG_Go:
14809 cu->language = language_go;
14810 break;
14811 case DW_LANG_Mips_Assembler:
14812 cu->language = language_asm;
14813 break;
14814 case DW_LANG_Java:
14815 cu->language = language_java;
14816 break;
14817 case DW_LANG_Ada83:
14818 case DW_LANG_Ada95:
14819 cu->language = language_ada;
14820 break;
14821 case DW_LANG_Modula2:
14822 cu->language = language_m2;
14823 break;
14824 case DW_LANG_Pascal83:
14825 cu->language = language_pascal;
14826 break;
14827 case DW_LANG_ObjC:
14828 cu->language = language_objc;
14829 break;
14830 case DW_LANG_Cobol74:
14831 case DW_LANG_Cobol85:
14832 default:
14833 cu->language = language_minimal;
14834 break;
14835 }
14836 cu->language_defn = language_def (cu->language);
14837 }
14838
14839 /* Return the named attribute or NULL if not there. */
14840
14841 static struct attribute *
14842 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14843 {
14844 for (;;)
14845 {
14846 unsigned int i;
14847 struct attribute *spec = NULL;
14848
14849 for (i = 0; i < die->num_attrs; ++i)
14850 {
14851 if (die->attrs[i].name == name)
14852 return &die->attrs[i];
14853 if (die->attrs[i].name == DW_AT_specification
14854 || die->attrs[i].name == DW_AT_abstract_origin)
14855 spec = &die->attrs[i];
14856 }
14857
14858 if (!spec)
14859 break;
14860
14861 die = follow_die_ref (die, spec, &cu);
14862 }
14863
14864 return NULL;
14865 }
14866
14867 /* Return the named attribute or NULL if not there,
14868 but do not follow DW_AT_specification, etc.
14869 This is for use in contexts where we're reading .debug_types dies.
14870 Following DW_AT_specification, DW_AT_abstract_origin will take us
14871 back up the chain, and we want to go down. */
14872
14873 static struct attribute *
14874 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14875 {
14876 unsigned int i;
14877
14878 for (i = 0; i < die->num_attrs; ++i)
14879 if (die->attrs[i].name == name)
14880 return &die->attrs[i];
14881
14882 return NULL;
14883 }
14884
14885 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14886 and holds a non-zero value. This function should only be used for
14887 DW_FORM_flag or DW_FORM_flag_present attributes. */
14888
14889 static int
14890 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14891 {
14892 struct attribute *attr = dwarf2_attr (die, name, cu);
14893
14894 return (attr && DW_UNSND (attr));
14895 }
14896
14897 static int
14898 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14899 {
14900 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14901 which value is non-zero. However, we have to be careful with
14902 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14903 (via dwarf2_flag_true_p) follows this attribute. So we may
14904 end up accidently finding a declaration attribute that belongs
14905 to a different DIE referenced by the specification attribute,
14906 even though the given DIE does not have a declaration attribute. */
14907 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14908 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14909 }
14910
14911 /* Return the die giving the specification for DIE, if there is
14912 one. *SPEC_CU is the CU containing DIE on input, and the CU
14913 containing the return value on output. If there is no
14914 specification, but there is an abstract origin, that is
14915 returned. */
14916
14917 static struct die_info *
14918 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14919 {
14920 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14921 *spec_cu);
14922
14923 if (spec_attr == NULL)
14924 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14925
14926 if (spec_attr == NULL)
14927 return NULL;
14928 else
14929 return follow_die_ref (die, spec_attr, spec_cu);
14930 }
14931
14932 /* Free the line_header structure *LH, and any arrays and strings it
14933 refers to.
14934 NOTE: This is also used as a "cleanup" function. */
14935
14936 static void
14937 free_line_header (struct line_header *lh)
14938 {
14939 if (lh->standard_opcode_lengths)
14940 xfree (lh->standard_opcode_lengths);
14941
14942 /* Remember that all the lh->file_names[i].name pointers are
14943 pointers into debug_line_buffer, and don't need to be freed. */
14944 if (lh->file_names)
14945 xfree (lh->file_names);
14946
14947 /* Similarly for the include directory names. */
14948 if (lh->include_dirs)
14949 xfree (lh->include_dirs);
14950
14951 xfree (lh);
14952 }
14953
14954 /* Add an entry to LH's include directory table. */
14955
14956 static void
14957 add_include_dir (struct line_header *lh, char *include_dir)
14958 {
14959 /* Grow the array if necessary. */
14960 if (lh->include_dirs_size == 0)
14961 {
14962 lh->include_dirs_size = 1; /* for testing */
14963 lh->include_dirs = xmalloc (lh->include_dirs_size
14964 * sizeof (*lh->include_dirs));
14965 }
14966 else if (lh->num_include_dirs >= lh->include_dirs_size)
14967 {
14968 lh->include_dirs_size *= 2;
14969 lh->include_dirs = xrealloc (lh->include_dirs,
14970 (lh->include_dirs_size
14971 * sizeof (*lh->include_dirs)));
14972 }
14973
14974 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14975 }
14976
14977 /* Add an entry to LH's file name table. */
14978
14979 static void
14980 add_file_name (struct line_header *lh,
14981 char *name,
14982 unsigned int dir_index,
14983 unsigned int mod_time,
14984 unsigned int length)
14985 {
14986 struct file_entry *fe;
14987
14988 /* Grow the array if necessary. */
14989 if (lh->file_names_size == 0)
14990 {
14991 lh->file_names_size = 1; /* for testing */
14992 lh->file_names = xmalloc (lh->file_names_size
14993 * sizeof (*lh->file_names));
14994 }
14995 else if (lh->num_file_names >= lh->file_names_size)
14996 {
14997 lh->file_names_size *= 2;
14998 lh->file_names = xrealloc (lh->file_names,
14999 (lh->file_names_size
15000 * sizeof (*lh->file_names)));
15001 }
15002
15003 fe = &lh->file_names[lh->num_file_names++];
15004 fe->name = name;
15005 fe->dir_index = dir_index;
15006 fe->mod_time = mod_time;
15007 fe->length = length;
15008 fe->included_p = 0;
15009 fe->symtab = NULL;
15010 }
15011
15012 /* A convenience function to find the proper .debug_line section for a
15013 CU. */
15014
15015 static struct dwarf2_section_info *
15016 get_debug_line_section (struct dwarf2_cu *cu)
15017 {
15018 struct dwarf2_section_info *section;
15019
15020 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15021 DWO file. */
15022 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15023 section = &cu->dwo_unit->dwo_file->sections.line;
15024 else if (cu->per_cu->is_dwz)
15025 {
15026 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15027
15028 section = &dwz->line;
15029 }
15030 else
15031 section = &dwarf2_per_objfile->line;
15032
15033 return section;
15034 }
15035
15036 /* Read the statement program header starting at OFFSET in
15037 .debug_line, or .debug_line.dwo. Return a pointer
15038 to a struct line_header, allocated using xmalloc.
15039
15040 NOTE: the strings in the include directory and file name tables of
15041 the returned object point into the dwarf line section buffer,
15042 and must not be freed. */
15043
15044 static struct line_header *
15045 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15046 {
15047 struct cleanup *back_to;
15048 struct line_header *lh;
15049 gdb_byte *line_ptr;
15050 unsigned int bytes_read, offset_size;
15051 int i;
15052 char *cur_dir, *cur_file;
15053 struct dwarf2_section_info *section;
15054 bfd *abfd;
15055
15056 section = get_debug_line_section (cu);
15057 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15058 if (section->buffer == NULL)
15059 {
15060 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15061 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15062 else
15063 complaint (&symfile_complaints, _("missing .debug_line section"));
15064 return 0;
15065 }
15066
15067 /* We can't do this until we know the section is non-empty.
15068 Only then do we know we have such a section. */
15069 abfd = section->asection->owner;
15070
15071 /* Make sure that at least there's room for the total_length field.
15072 That could be 12 bytes long, but we're just going to fudge that. */
15073 if (offset + 4 >= section->size)
15074 {
15075 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15076 return 0;
15077 }
15078
15079 lh = xmalloc (sizeof (*lh));
15080 memset (lh, 0, sizeof (*lh));
15081 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15082 (void *) lh);
15083
15084 line_ptr = section->buffer + offset;
15085
15086 /* Read in the header. */
15087 lh->total_length =
15088 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15089 &bytes_read, &offset_size);
15090 line_ptr += bytes_read;
15091 if (line_ptr + lh->total_length > (section->buffer + section->size))
15092 {
15093 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15094 return 0;
15095 }
15096 lh->statement_program_end = line_ptr + lh->total_length;
15097 lh->version = read_2_bytes (abfd, line_ptr);
15098 line_ptr += 2;
15099 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15100 line_ptr += offset_size;
15101 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15102 line_ptr += 1;
15103 if (lh->version >= 4)
15104 {
15105 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15106 line_ptr += 1;
15107 }
15108 else
15109 lh->maximum_ops_per_instruction = 1;
15110
15111 if (lh->maximum_ops_per_instruction == 0)
15112 {
15113 lh->maximum_ops_per_instruction = 1;
15114 complaint (&symfile_complaints,
15115 _("invalid maximum_ops_per_instruction "
15116 "in `.debug_line' section"));
15117 }
15118
15119 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15120 line_ptr += 1;
15121 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15122 line_ptr += 1;
15123 lh->line_range = read_1_byte (abfd, line_ptr);
15124 line_ptr += 1;
15125 lh->opcode_base = read_1_byte (abfd, line_ptr);
15126 line_ptr += 1;
15127 lh->standard_opcode_lengths
15128 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15129
15130 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15131 for (i = 1; i < lh->opcode_base; ++i)
15132 {
15133 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15134 line_ptr += 1;
15135 }
15136
15137 /* Read directory table. */
15138 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15139 {
15140 line_ptr += bytes_read;
15141 add_include_dir (lh, cur_dir);
15142 }
15143 line_ptr += bytes_read;
15144
15145 /* Read file name table. */
15146 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15147 {
15148 unsigned int dir_index, mod_time, length;
15149
15150 line_ptr += bytes_read;
15151 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15152 line_ptr += bytes_read;
15153 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15154 line_ptr += bytes_read;
15155 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15156 line_ptr += bytes_read;
15157
15158 add_file_name (lh, cur_file, dir_index, mod_time, length);
15159 }
15160 line_ptr += bytes_read;
15161 lh->statement_program_start = line_ptr;
15162
15163 if (line_ptr > (section->buffer + section->size))
15164 complaint (&symfile_complaints,
15165 _("line number info header doesn't "
15166 "fit in `.debug_line' section"));
15167
15168 discard_cleanups (back_to);
15169 return lh;
15170 }
15171
15172 /* Subroutine of dwarf_decode_lines to simplify it.
15173 Return the file name of the psymtab for included file FILE_INDEX
15174 in line header LH of PST.
15175 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15176 If space for the result is malloc'd, it will be freed by a cleanup.
15177 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15178
15179 The function creates dangling cleanup registration. */
15180
15181 static char *
15182 psymtab_include_file_name (const struct line_header *lh, int file_index,
15183 const struct partial_symtab *pst,
15184 const char *comp_dir)
15185 {
15186 const struct file_entry fe = lh->file_names [file_index];
15187 char *include_name = fe.name;
15188 char *include_name_to_compare = include_name;
15189 char *dir_name = NULL;
15190 const char *pst_filename;
15191 char *copied_name = NULL;
15192 int file_is_pst;
15193
15194 if (fe.dir_index)
15195 dir_name = lh->include_dirs[fe.dir_index - 1];
15196
15197 if (!IS_ABSOLUTE_PATH (include_name)
15198 && (dir_name != NULL || comp_dir != NULL))
15199 {
15200 /* Avoid creating a duplicate psymtab for PST.
15201 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15202 Before we do the comparison, however, we need to account
15203 for DIR_NAME and COMP_DIR.
15204 First prepend dir_name (if non-NULL). If we still don't
15205 have an absolute path prepend comp_dir (if non-NULL).
15206 However, the directory we record in the include-file's
15207 psymtab does not contain COMP_DIR (to match the
15208 corresponding symtab(s)).
15209
15210 Example:
15211
15212 bash$ cd /tmp
15213 bash$ gcc -g ./hello.c
15214 include_name = "hello.c"
15215 dir_name = "."
15216 DW_AT_comp_dir = comp_dir = "/tmp"
15217 DW_AT_name = "./hello.c" */
15218
15219 if (dir_name != NULL)
15220 {
15221 include_name = concat (dir_name, SLASH_STRING,
15222 include_name, (char *)NULL);
15223 include_name_to_compare = include_name;
15224 make_cleanup (xfree, include_name);
15225 }
15226 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15227 {
15228 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15229 include_name, (char *)NULL);
15230 }
15231 }
15232
15233 pst_filename = pst->filename;
15234 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15235 {
15236 copied_name = concat (pst->dirname, SLASH_STRING,
15237 pst_filename, (char *)NULL);
15238 pst_filename = copied_name;
15239 }
15240
15241 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15242
15243 if (include_name_to_compare != include_name)
15244 xfree (include_name_to_compare);
15245 if (copied_name != NULL)
15246 xfree (copied_name);
15247
15248 if (file_is_pst)
15249 return NULL;
15250 return include_name;
15251 }
15252
15253 /* Ignore this record_line request. */
15254
15255 static void
15256 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15257 {
15258 return;
15259 }
15260
15261 /* Subroutine of dwarf_decode_lines to simplify it.
15262 Process the line number information in LH. */
15263
15264 static void
15265 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15266 struct dwarf2_cu *cu, struct partial_symtab *pst)
15267 {
15268 gdb_byte *line_ptr, *extended_end;
15269 gdb_byte *line_end;
15270 unsigned int bytes_read, extended_len;
15271 unsigned char op_code, extended_op, adj_opcode;
15272 CORE_ADDR baseaddr;
15273 struct objfile *objfile = cu->objfile;
15274 bfd *abfd = objfile->obfd;
15275 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15276 const int decode_for_pst_p = (pst != NULL);
15277 struct subfile *last_subfile = NULL;
15278 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15279 = record_line;
15280
15281 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15282
15283 line_ptr = lh->statement_program_start;
15284 line_end = lh->statement_program_end;
15285
15286 /* Read the statement sequences until there's nothing left. */
15287 while (line_ptr < line_end)
15288 {
15289 /* state machine registers */
15290 CORE_ADDR address = 0;
15291 unsigned int file = 1;
15292 unsigned int line = 1;
15293 unsigned int column = 0;
15294 int is_stmt = lh->default_is_stmt;
15295 int basic_block = 0;
15296 int end_sequence = 0;
15297 CORE_ADDR addr;
15298 unsigned char op_index = 0;
15299
15300 if (!decode_for_pst_p && lh->num_file_names >= file)
15301 {
15302 /* Start a subfile for the current file of the state machine. */
15303 /* lh->include_dirs and lh->file_names are 0-based, but the
15304 directory and file name numbers in the statement program
15305 are 1-based. */
15306 struct file_entry *fe = &lh->file_names[file - 1];
15307 char *dir = NULL;
15308
15309 if (fe->dir_index)
15310 dir = lh->include_dirs[fe->dir_index - 1];
15311
15312 dwarf2_start_subfile (fe->name, dir, comp_dir);
15313 }
15314
15315 /* Decode the table. */
15316 while (!end_sequence)
15317 {
15318 op_code = read_1_byte (abfd, line_ptr);
15319 line_ptr += 1;
15320 if (line_ptr > line_end)
15321 {
15322 dwarf2_debug_line_missing_end_sequence_complaint ();
15323 break;
15324 }
15325
15326 if (op_code >= lh->opcode_base)
15327 {
15328 /* Special operand. */
15329 adj_opcode = op_code - lh->opcode_base;
15330 address += (((op_index + (adj_opcode / lh->line_range))
15331 / lh->maximum_ops_per_instruction)
15332 * lh->minimum_instruction_length);
15333 op_index = ((op_index + (adj_opcode / lh->line_range))
15334 % lh->maximum_ops_per_instruction);
15335 line += lh->line_base + (adj_opcode % lh->line_range);
15336 if (lh->num_file_names < file || file == 0)
15337 dwarf2_debug_line_missing_file_complaint ();
15338 /* For now we ignore lines not starting on an
15339 instruction boundary. */
15340 else if (op_index == 0)
15341 {
15342 lh->file_names[file - 1].included_p = 1;
15343 if (!decode_for_pst_p && is_stmt)
15344 {
15345 if (last_subfile != current_subfile)
15346 {
15347 addr = gdbarch_addr_bits_remove (gdbarch, address);
15348 if (last_subfile)
15349 (*p_record_line) (last_subfile, 0, addr);
15350 last_subfile = current_subfile;
15351 }
15352 /* Append row to matrix using current values. */
15353 addr = gdbarch_addr_bits_remove (gdbarch, address);
15354 (*p_record_line) (current_subfile, line, addr);
15355 }
15356 }
15357 basic_block = 0;
15358 }
15359 else switch (op_code)
15360 {
15361 case DW_LNS_extended_op:
15362 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15363 &bytes_read);
15364 line_ptr += bytes_read;
15365 extended_end = line_ptr + extended_len;
15366 extended_op = read_1_byte (abfd, line_ptr);
15367 line_ptr += 1;
15368 switch (extended_op)
15369 {
15370 case DW_LNE_end_sequence:
15371 p_record_line = record_line;
15372 end_sequence = 1;
15373 break;
15374 case DW_LNE_set_address:
15375 address = read_address (abfd, line_ptr, cu, &bytes_read);
15376
15377 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15378 {
15379 /* This line table is for a function which has been
15380 GCd by the linker. Ignore it. PR gdb/12528 */
15381
15382 long line_offset
15383 = line_ptr - get_debug_line_section (cu)->buffer;
15384
15385 complaint (&symfile_complaints,
15386 _(".debug_line address at offset 0x%lx is 0 "
15387 "[in module %s]"),
15388 line_offset, objfile->name);
15389 p_record_line = noop_record_line;
15390 }
15391
15392 op_index = 0;
15393 line_ptr += bytes_read;
15394 address += baseaddr;
15395 break;
15396 case DW_LNE_define_file:
15397 {
15398 char *cur_file;
15399 unsigned int dir_index, mod_time, length;
15400
15401 cur_file = read_direct_string (abfd, line_ptr,
15402 &bytes_read);
15403 line_ptr += bytes_read;
15404 dir_index =
15405 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15406 line_ptr += bytes_read;
15407 mod_time =
15408 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15409 line_ptr += bytes_read;
15410 length =
15411 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15412 line_ptr += bytes_read;
15413 add_file_name (lh, cur_file, dir_index, mod_time, length);
15414 }
15415 break;
15416 case DW_LNE_set_discriminator:
15417 /* The discriminator is not interesting to the debugger;
15418 just ignore it. */
15419 line_ptr = extended_end;
15420 break;
15421 default:
15422 complaint (&symfile_complaints,
15423 _("mangled .debug_line section"));
15424 return;
15425 }
15426 /* Make sure that we parsed the extended op correctly. If e.g.
15427 we expected a different address size than the producer used,
15428 we may have read the wrong number of bytes. */
15429 if (line_ptr != extended_end)
15430 {
15431 complaint (&symfile_complaints,
15432 _("mangled .debug_line section"));
15433 return;
15434 }
15435 break;
15436 case DW_LNS_copy:
15437 if (lh->num_file_names < file || file == 0)
15438 dwarf2_debug_line_missing_file_complaint ();
15439 else
15440 {
15441 lh->file_names[file - 1].included_p = 1;
15442 if (!decode_for_pst_p && is_stmt)
15443 {
15444 if (last_subfile != current_subfile)
15445 {
15446 addr = gdbarch_addr_bits_remove (gdbarch, address);
15447 if (last_subfile)
15448 (*p_record_line) (last_subfile, 0, addr);
15449 last_subfile = current_subfile;
15450 }
15451 addr = gdbarch_addr_bits_remove (gdbarch, address);
15452 (*p_record_line) (current_subfile, line, addr);
15453 }
15454 }
15455 basic_block = 0;
15456 break;
15457 case DW_LNS_advance_pc:
15458 {
15459 CORE_ADDR adjust
15460 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15461
15462 address += (((op_index + adjust)
15463 / lh->maximum_ops_per_instruction)
15464 * lh->minimum_instruction_length);
15465 op_index = ((op_index + adjust)
15466 % lh->maximum_ops_per_instruction);
15467 line_ptr += bytes_read;
15468 }
15469 break;
15470 case DW_LNS_advance_line:
15471 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15472 line_ptr += bytes_read;
15473 break;
15474 case DW_LNS_set_file:
15475 {
15476 /* The arrays lh->include_dirs and lh->file_names are
15477 0-based, but the directory and file name numbers in
15478 the statement program are 1-based. */
15479 struct file_entry *fe;
15480 char *dir = NULL;
15481
15482 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15483 line_ptr += bytes_read;
15484 if (lh->num_file_names < file || file == 0)
15485 dwarf2_debug_line_missing_file_complaint ();
15486 else
15487 {
15488 fe = &lh->file_names[file - 1];
15489 if (fe->dir_index)
15490 dir = lh->include_dirs[fe->dir_index - 1];
15491 if (!decode_for_pst_p)
15492 {
15493 last_subfile = current_subfile;
15494 dwarf2_start_subfile (fe->name, dir, comp_dir);
15495 }
15496 }
15497 }
15498 break;
15499 case DW_LNS_set_column:
15500 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15501 line_ptr += bytes_read;
15502 break;
15503 case DW_LNS_negate_stmt:
15504 is_stmt = (!is_stmt);
15505 break;
15506 case DW_LNS_set_basic_block:
15507 basic_block = 1;
15508 break;
15509 /* Add to the address register of the state machine the
15510 address increment value corresponding to special opcode
15511 255. I.e., this value is scaled by the minimum
15512 instruction length since special opcode 255 would have
15513 scaled the increment. */
15514 case DW_LNS_const_add_pc:
15515 {
15516 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15517
15518 address += (((op_index + adjust)
15519 / lh->maximum_ops_per_instruction)
15520 * lh->minimum_instruction_length);
15521 op_index = ((op_index + adjust)
15522 % lh->maximum_ops_per_instruction);
15523 }
15524 break;
15525 case DW_LNS_fixed_advance_pc:
15526 address += read_2_bytes (abfd, line_ptr);
15527 op_index = 0;
15528 line_ptr += 2;
15529 break;
15530 default:
15531 {
15532 /* Unknown standard opcode, ignore it. */
15533 int i;
15534
15535 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15536 {
15537 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15538 line_ptr += bytes_read;
15539 }
15540 }
15541 }
15542 }
15543 if (lh->num_file_names < file || file == 0)
15544 dwarf2_debug_line_missing_file_complaint ();
15545 else
15546 {
15547 lh->file_names[file - 1].included_p = 1;
15548 if (!decode_for_pst_p)
15549 {
15550 addr = gdbarch_addr_bits_remove (gdbarch, address);
15551 (*p_record_line) (current_subfile, 0, addr);
15552 }
15553 }
15554 }
15555 }
15556
15557 /* Decode the Line Number Program (LNP) for the given line_header
15558 structure and CU. The actual information extracted and the type
15559 of structures created from the LNP depends on the value of PST.
15560
15561 1. If PST is NULL, then this procedure uses the data from the program
15562 to create all necessary symbol tables, and their linetables.
15563
15564 2. If PST is not NULL, this procedure reads the program to determine
15565 the list of files included by the unit represented by PST, and
15566 builds all the associated partial symbol tables.
15567
15568 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15569 It is used for relative paths in the line table.
15570 NOTE: When processing partial symtabs (pst != NULL),
15571 comp_dir == pst->dirname.
15572
15573 NOTE: It is important that psymtabs have the same file name (via strcmp)
15574 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15575 symtab we don't use it in the name of the psymtabs we create.
15576 E.g. expand_line_sal requires this when finding psymtabs to expand.
15577 A good testcase for this is mb-inline.exp. */
15578
15579 static void
15580 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15581 struct dwarf2_cu *cu, struct partial_symtab *pst,
15582 int want_line_info)
15583 {
15584 struct objfile *objfile = cu->objfile;
15585 const int decode_for_pst_p = (pst != NULL);
15586 struct subfile *first_subfile = current_subfile;
15587
15588 if (want_line_info)
15589 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15590
15591 if (decode_for_pst_p)
15592 {
15593 int file_index;
15594
15595 /* Now that we're done scanning the Line Header Program, we can
15596 create the psymtab of each included file. */
15597 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15598 if (lh->file_names[file_index].included_p == 1)
15599 {
15600 char *include_name =
15601 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15602 if (include_name != NULL)
15603 dwarf2_create_include_psymtab (include_name, pst, objfile);
15604 }
15605 }
15606 else
15607 {
15608 /* Make sure a symtab is created for every file, even files
15609 which contain only variables (i.e. no code with associated
15610 line numbers). */
15611 int i;
15612
15613 for (i = 0; i < lh->num_file_names; i++)
15614 {
15615 char *dir = NULL;
15616 struct file_entry *fe;
15617
15618 fe = &lh->file_names[i];
15619 if (fe->dir_index)
15620 dir = lh->include_dirs[fe->dir_index - 1];
15621 dwarf2_start_subfile (fe->name, dir, comp_dir);
15622
15623 /* Skip the main file; we don't need it, and it must be
15624 allocated last, so that it will show up before the
15625 non-primary symtabs in the objfile's symtab list. */
15626 if (current_subfile == first_subfile)
15627 continue;
15628
15629 if (current_subfile->symtab == NULL)
15630 current_subfile->symtab = allocate_symtab (current_subfile->name,
15631 objfile);
15632 fe->symtab = current_subfile->symtab;
15633 }
15634 }
15635 }
15636
15637 /* Start a subfile for DWARF. FILENAME is the name of the file and
15638 DIRNAME the name of the source directory which contains FILENAME
15639 or NULL if not known. COMP_DIR is the compilation directory for the
15640 linetable's compilation unit or NULL if not known.
15641 This routine tries to keep line numbers from identical absolute and
15642 relative file names in a common subfile.
15643
15644 Using the `list' example from the GDB testsuite, which resides in
15645 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15646 of /srcdir/list0.c yields the following debugging information for list0.c:
15647
15648 DW_AT_name: /srcdir/list0.c
15649 DW_AT_comp_dir: /compdir
15650 files.files[0].name: list0.h
15651 files.files[0].dir: /srcdir
15652 files.files[1].name: list0.c
15653 files.files[1].dir: /srcdir
15654
15655 The line number information for list0.c has to end up in a single
15656 subfile, so that `break /srcdir/list0.c:1' works as expected.
15657 start_subfile will ensure that this happens provided that we pass the
15658 concatenation of files.files[1].dir and files.files[1].name as the
15659 subfile's name. */
15660
15661 static void
15662 dwarf2_start_subfile (char *filename, const char *dirname,
15663 const char *comp_dir)
15664 {
15665 char *fullname;
15666
15667 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15668 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15669 second argument to start_subfile. To be consistent, we do the
15670 same here. In order not to lose the line information directory,
15671 we concatenate it to the filename when it makes sense.
15672 Note that the Dwarf3 standard says (speaking of filenames in line
15673 information): ``The directory index is ignored for file names
15674 that represent full path names''. Thus ignoring dirname in the
15675 `else' branch below isn't an issue. */
15676
15677 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15678 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15679 else
15680 fullname = filename;
15681
15682 start_subfile (fullname, comp_dir);
15683
15684 if (fullname != filename)
15685 xfree (fullname);
15686 }
15687
15688 /* Start a symtab for DWARF.
15689 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15690
15691 static void
15692 dwarf2_start_symtab (struct dwarf2_cu *cu,
15693 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15694 {
15695 start_symtab (name, comp_dir, low_pc);
15696 record_debugformat ("DWARF 2");
15697 record_producer (cu->producer);
15698
15699 /* We assume that we're processing GCC output. */
15700 processing_gcc_compilation = 2;
15701
15702 cu->processing_has_namespace_info = 0;
15703 }
15704
15705 static void
15706 var_decode_location (struct attribute *attr, struct symbol *sym,
15707 struct dwarf2_cu *cu)
15708 {
15709 struct objfile *objfile = cu->objfile;
15710 struct comp_unit_head *cu_header = &cu->header;
15711
15712 /* NOTE drow/2003-01-30: There used to be a comment and some special
15713 code here to turn a symbol with DW_AT_external and a
15714 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15715 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15716 with some versions of binutils) where shared libraries could have
15717 relocations against symbols in their debug information - the
15718 minimal symbol would have the right address, but the debug info
15719 would not. It's no longer necessary, because we will explicitly
15720 apply relocations when we read in the debug information now. */
15721
15722 /* A DW_AT_location attribute with no contents indicates that a
15723 variable has been optimized away. */
15724 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15725 {
15726 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15727 return;
15728 }
15729
15730 /* Handle one degenerate form of location expression specially, to
15731 preserve GDB's previous behavior when section offsets are
15732 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15733 then mark this symbol as LOC_STATIC. */
15734
15735 if (attr_form_is_block (attr)
15736 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15737 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15738 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15739 && (DW_BLOCK (attr)->size
15740 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15741 {
15742 unsigned int dummy;
15743
15744 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15745 SYMBOL_VALUE_ADDRESS (sym) =
15746 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15747 else
15748 SYMBOL_VALUE_ADDRESS (sym) =
15749 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15750 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15751 fixup_symbol_section (sym, objfile);
15752 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15753 SYMBOL_SECTION (sym));
15754 return;
15755 }
15756
15757 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15758 expression evaluator, and use LOC_COMPUTED only when necessary
15759 (i.e. when the value of a register or memory location is
15760 referenced, or a thread-local block, etc.). Then again, it might
15761 not be worthwhile. I'm assuming that it isn't unless performance
15762 or memory numbers show me otherwise. */
15763
15764 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15765
15766 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15767 cu->has_loclist = 1;
15768 }
15769
15770 /* Given a pointer to a DWARF information entry, figure out if we need
15771 to make a symbol table entry for it, and if so, create a new entry
15772 and return a pointer to it.
15773 If TYPE is NULL, determine symbol type from the die, otherwise
15774 used the passed type.
15775 If SPACE is not NULL, use it to hold the new symbol. If it is
15776 NULL, allocate a new symbol on the objfile's obstack. */
15777
15778 static struct symbol *
15779 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15780 struct symbol *space)
15781 {
15782 struct objfile *objfile = cu->objfile;
15783 struct symbol *sym = NULL;
15784 const char *name;
15785 struct attribute *attr = NULL;
15786 struct attribute *attr2 = NULL;
15787 CORE_ADDR baseaddr;
15788 struct pending **list_to_add = NULL;
15789
15790 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15791
15792 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15793
15794 name = dwarf2_name (die, cu);
15795 if (name)
15796 {
15797 const char *linkagename;
15798 int suppress_add = 0;
15799
15800 if (space)
15801 sym = space;
15802 else
15803 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15804 OBJSTAT (objfile, n_syms++);
15805
15806 /* Cache this symbol's name and the name's demangled form (if any). */
15807 SYMBOL_SET_LANGUAGE (sym, cu->language);
15808 linkagename = dwarf2_physname (name, die, cu);
15809 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15810
15811 /* Fortran does not have mangling standard and the mangling does differ
15812 between gfortran, iFort etc. */
15813 if (cu->language == language_fortran
15814 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15815 symbol_set_demangled_name (&(sym->ginfo),
15816 dwarf2_full_name (name, die, cu),
15817 NULL);
15818
15819 /* Default assumptions.
15820 Use the passed type or decode it from the die. */
15821 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15822 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15823 if (type != NULL)
15824 SYMBOL_TYPE (sym) = type;
15825 else
15826 SYMBOL_TYPE (sym) = die_type (die, cu);
15827 attr = dwarf2_attr (die,
15828 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15829 cu);
15830 if (attr)
15831 {
15832 SYMBOL_LINE (sym) = DW_UNSND (attr);
15833 }
15834
15835 attr = dwarf2_attr (die,
15836 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15837 cu);
15838 if (attr)
15839 {
15840 int file_index = DW_UNSND (attr);
15841
15842 if (cu->line_header == NULL
15843 || file_index > cu->line_header->num_file_names)
15844 complaint (&symfile_complaints,
15845 _("file index out of range"));
15846 else if (file_index > 0)
15847 {
15848 struct file_entry *fe;
15849
15850 fe = &cu->line_header->file_names[file_index - 1];
15851 SYMBOL_SYMTAB (sym) = fe->symtab;
15852 }
15853 }
15854
15855 switch (die->tag)
15856 {
15857 case DW_TAG_label:
15858 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15859 if (attr)
15860 {
15861 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15862 }
15863 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15864 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15865 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
15866 add_symbol_to_list (sym, cu->list_in_scope);
15867 break;
15868 case DW_TAG_subprogram:
15869 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15870 finish_block. */
15871 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
15872 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15873 if ((attr2 && (DW_UNSND (attr2) != 0))
15874 || cu->language == language_ada)
15875 {
15876 /* Subprograms marked external are stored as a global symbol.
15877 Ada subprograms, whether marked external or not, are always
15878 stored as a global symbol, because we want to be able to
15879 access them globally. For instance, we want to be able
15880 to break on a nested subprogram without having to
15881 specify the context. */
15882 list_to_add = &global_symbols;
15883 }
15884 else
15885 {
15886 list_to_add = cu->list_in_scope;
15887 }
15888 break;
15889 case DW_TAG_inlined_subroutine:
15890 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15891 finish_block. */
15892 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
15893 SYMBOL_INLINED (sym) = 1;
15894 list_to_add = cu->list_in_scope;
15895 break;
15896 case DW_TAG_template_value_param:
15897 suppress_add = 1;
15898 /* Fall through. */
15899 case DW_TAG_constant:
15900 case DW_TAG_variable:
15901 case DW_TAG_member:
15902 /* Compilation with minimal debug info may result in
15903 variables with missing type entries. Change the
15904 misleading `void' type to something sensible. */
15905 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15906 SYMBOL_TYPE (sym)
15907 = objfile_type (objfile)->nodebug_data_symbol;
15908
15909 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15910 /* In the case of DW_TAG_member, we should only be called for
15911 static const members. */
15912 if (die->tag == DW_TAG_member)
15913 {
15914 /* dwarf2_add_field uses die_is_declaration,
15915 so we do the same. */
15916 gdb_assert (die_is_declaration (die, cu));
15917 gdb_assert (attr);
15918 }
15919 if (attr)
15920 {
15921 dwarf2_const_value (attr, sym, cu);
15922 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15923 if (!suppress_add)
15924 {
15925 if (attr2 && (DW_UNSND (attr2) != 0))
15926 list_to_add = &global_symbols;
15927 else
15928 list_to_add = cu->list_in_scope;
15929 }
15930 break;
15931 }
15932 attr = dwarf2_attr (die, DW_AT_location, cu);
15933 if (attr)
15934 {
15935 var_decode_location (attr, sym, cu);
15936 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15937
15938 /* Fortran explicitly imports any global symbols to the local
15939 scope by DW_TAG_common_block. */
15940 if (cu->language == language_fortran && die->parent
15941 && die->parent->tag == DW_TAG_common_block)
15942 attr2 = NULL;
15943
15944 if (SYMBOL_CLASS (sym) == LOC_STATIC
15945 && SYMBOL_VALUE_ADDRESS (sym) == 0
15946 && !dwarf2_per_objfile->has_section_at_zero)
15947 {
15948 /* When a static variable is eliminated by the linker,
15949 the corresponding debug information is not stripped
15950 out, but the variable address is set to null;
15951 do not add such variables into symbol table. */
15952 }
15953 else if (attr2 && (DW_UNSND (attr2) != 0))
15954 {
15955 /* Workaround gfortran PR debug/40040 - it uses
15956 DW_AT_location for variables in -fPIC libraries which may
15957 get overriden by other libraries/executable and get
15958 a different address. Resolve it by the minimal symbol
15959 which may come from inferior's executable using copy
15960 relocation. Make this workaround only for gfortran as for
15961 other compilers GDB cannot guess the minimal symbol
15962 Fortran mangling kind. */
15963 if (cu->language == language_fortran && die->parent
15964 && die->parent->tag == DW_TAG_module
15965 && cu->producer
15966 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15967 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
15968
15969 /* A variable with DW_AT_external is never static,
15970 but it may be block-scoped. */
15971 list_to_add = (cu->list_in_scope == &file_symbols
15972 ? &global_symbols : cu->list_in_scope);
15973 }
15974 else
15975 list_to_add = cu->list_in_scope;
15976 }
15977 else
15978 {
15979 /* We do not know the address of this symbol.
15980 If it is an external symbol and we have type information
15981 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15982 The address of the variable will then be determined from
15983 the minimal symbol table whenever the variable is
15984 referenced. */
15985 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15986
15987 /* Fortran explicitly imports any global symbols to the local
15988 scope by DW_TAG_common_block. */
15989 if (cu->language == language_fortran && die->parent
15990 && die->parent->tag == DW_TAG_common_block)
15991 {
15992 /* SYMBOL_CLASS doesn't matter here because
15993 read_common_block is going to reset it. */
15994 if (!suppress_add)
15995 list_to_add = cu->list_in_scope;
15996 }
15997 else if (attr2 && (DW_UNSND (attr2) != 0)
15998 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15999 {
16000 /* A variable with DW_AT_external is never static, but it
16001 may be block-scoped. */
16002 list_to_add = (cu->list_in_scope == &file_symbols
16003 ? &global_symbols : cu->list_in_scope);
16004
16005 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16006 }
16007 else if (!die_is_declaration (die, cu))
16008 {
16009 /* Use the default LOC_OPTIMIZED_OUT class. */
16010 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16011 if (!suppress_add)
16012 list_to_add = cu->list_in_scope;
16013 }
16014 }
16015 break;
16016 case DW_TAG_formal_parameter:
16017 /* If we are inside a function, mark this as an argument. If
16018 not, we might be looking at an argument to an inlined function
16019 when we do not have enough information to show inlined frames;
16020 pretend it's a local variable in that case so that the user can
16021 still see it. */
16022 if (context_stack_depth > 0
16023 && context_stack[context_stack_depth - 1].name != NULL)
16024 SYMBOL_IS_ARGUMENT (sym) = 1;
16025 attr = dwarf2_attr (die, DW_AT_location, cu);
16026 if (attr)
16027 {
16028 var_decode_location (attr, sym, cu);
16029 }
16030 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16031 if (attr)
16032 {
16033 dwarf2_const_value (attr, sym, cu);
16034 }
16035
16036 list_to_add = cu->list_in_scope;
16037 break;
16038 case DW_TAG_unspecified_parameters:
16039 /* From varargs functions; gdb doesn't seem to have any
16040 interest in this information, so just ignore it for now.
16041 (FIXME?) */
16042 break;
16043 case DW_TAG_template_type_param:
16044 suppress_add = 1;
16045 /* Fall through. */
16046 case DW_TAG_class_type:
16047 case DW_TAG_interface_type:
16048 case DW_TAG_structure_type:
16049 case DW_TAG_union_type:
16050 case DW_TAG_set_type:
16051 case DW_TAG_enumeration_type:
16052 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16053 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16054
16055 {
16056 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16057 really ever be static objects: otherwise, if you try
16058 to, say, break of a class's method and you're in a file
16059 which doesn't mention that class, it won't work unless
16060 the check for all static symbols in lookup_symbol_aux
16061 saves you. See the OtherFileClass tests in
16062 gdb.c++/namespace.exp. */
16063
16064 if (!suppress_add)
16065 {
16066 list_to_add = (cu->list_in_scope == &file_symbols
16067 && (cu->language == language_cplus
16068 || cu->language == language_java)
16069 ? &global_symbols : cu->list_in_scope);
16070
16071 /* The semantics of C++ state that "struct foo {
16072 ... }" also defines a typedef for "foo". A Java
16073 class declaration also defines a typedef for the
16074 class. */
16075 if (cu->language == language_cplus
16076 || cu->language == language_java
16077 || cu->language == language_ada)
16078 {
16079 /* The symbol's name is already allocated along
16080 with this objfile, so we don't need to
16081 duplicate it for the type. */
16082 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16083 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16084 }
16085 }
16086 }
16087 break;
16088 case DW_TAG_typedef:
16089 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16090 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16091 list_to_add = cu->list_in_scope;
16092 break;
16093 case DW_TAG_base_type:
16094 case DW_TAG_subrange_type:
16095 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16097 list_to_add = cu->list_in_scope;
16098 break;
16099 case DW_TAG_enumerator:
16100 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16101 if (attr)
16102 {
16103 dwarf2_const_value (attr, sym, cu);
16104 }
16105 {
16106 /* NOTE: carlton/2003-11-10: See comment above in the
16107 DW_TAG_class_type, etc. block. */
16108
16109 list_to_add = (cu->list_in_scope == &file_symbols
16110 && (cu->language == language_cplus
16111 || cu->language == language_java)
16112 ? &global_symbols : cu->list_in_scope);
16113 }
16114 break;
16115 case DW_TAG_namespace:
16116 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16117 list_to_add = &global_symbols;
16118 break;
16119 case DW_TAG_common_block:
16120 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16121 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16122 add_symbol_to_list (sym, cu->list_in_scope);
16123 break;
16124 default:
16125 /* Not a tag we recognize. Hopefully we aren't processing
16126 trash data, but since we must specifically ignore things
16127 we don't recognize, there is nothing else we should do at
16128 this point. */
16129 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16130 dwarf_tag_name (die->tag));
16131 break;
16132 }
16133
16134 if (suppress_add)
16135 {
16136 sym->hash_next = objfile->template_symbols;
16137 objfile->template_symbols = sym;
16138 list_to_add = NULL;
16139 }
16140
16141 if (list_to_add != NULL)
16142 add_symbol_to_list (sym, list_to_add);
16143
16144 /* For the benefit of old versions of GCC, check for anonymous
16145 namespaces based on the demangled name. */
16146 if (!cu->processing_has_namespace_info
16147 && cu->language == language_cplus)
16148 cp_scan_for_anonymous_namespaces (sym, objfile);
16149 }
16150 return (sym);
16151 }
16152
16153 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16154
16155 static struct symbol *
16156 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16157 {
16158 return new_symbol_full (die, type, cu, NULL);
16159 }
16160
16161 /* Given an attr with a DW_FORM_dataN value in host byte order,
16162 zero-extend it as appropriate for the symbol's type. The DWARF
16163 standard (v4) is not entirely clear about the meaning of using
16164 DW_FORM_dataN for a constant with a signed type, where the type is
16165 wider than the data. The conclusion of a discussion on the DWARF
16166 list was that this is unspecified. We choose to always zero-extend
16167 because that is the interpretation long in use by GCC. */
16168
16169 static gdb_byte *
16170 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16171 const char *name, struct obstack *obstack,
16172 struct dwarf2_cu *cu, LONGEST *value, int bits)
16173 {
16174 struct objfile *objfile = cu->objfile;
16175 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16176 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16177 LONGEST l = DW_UNSND (attr);
16178
16179 if (bits < sizeof (*value) * 8)
16180 {
16181 l &= ((LONGEST) 1 << bits) - 1;
16182 *value = l;
16183 }
16184 else if (bits == sizeof (*value) * 8)
16185 *value = l;
16186 else
16187 {
16188 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16189 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16190 return bytes;
16191 }
16192
16193 return NULL;
16194 }
16195
16196 /* Read a constant value from an attribute. Either set *VALUE, or if
16197 the value does not fit in *VALUE, set *BYTES - either already
16198 allocated on the objfile obstack, or newly allocated on OBSTACK,
16199 or, set *BATON, if we translated the constant to a location
16200 expression. */
16201
16202 static void
16203 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16204 const char *name, struct obstack *obstack,
16205 struct dwarf2_cu *cu,
16206 LONGEST *value, gdb_byte **bytes,
16207 struct dwarf2_locexpr_baton **baton)
16208 {
16209 struct objfile *objfile = cu->objfile;
16210 struct comp_unit_head *cu_header = &cu->header;
16211 struct dwarf_block *blk;
16212 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16213 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16214
16215 *value = 0;
16216 *bytes = NULL;
16217 *baton = NULL;
16218
16219 switch (attr->form)
16220 {
16221 case DW_FORM_addr:
16222 case DW_FORM_GNU_addr_index:
16223 {
16224 gdb_byte *data;
16225
16226 if (TYPE_LENGTH (type) != cu_header->addr_size)
16227 dwarf2_const_value_length_mismatch_complaint (name,
16228 cu_header->addr_size,
16229 TYPE_LENGTH (type));
16230 /* Symbols of this form are reasonably rare, so we just
16231 piggyback on the existing location code rather than writing
16232 a new implementation of symbol_computed_ops. */
16233 *baton = obstack_alloc (&objfile->objfile_obstack,
16234 sizeof (struct dwarf2_locexpr_baton));
16235 (*baton)->per_cu = cu->per_cu;
16236 gdb_assert ((*baton)->per_cu);
16237
16238 (*baton)->size = 2 + cu_header->addr_size;
16239 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16240 (*baton)->data = data;
16241
16242 data[0] = DW_OP_addr;
16243 store_unsigned_integer (&data[1], cu_header->addr_size,
16244 byte_order, DW_ADDR (attr));
16245 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16246 }
16247 break;
16248 case DW_FORM_string:
16249 case DW_FORM_strp:
16250 case DW_FORM_GNU_str_index:
16251 case DW_FORM_GNU_strp_alt:
16252 /* DW_STRING is already allocated on the objfile obstack, point
16253 directly to it. */
16254 *bytes = (gdb_byte *) DW_STRING (attr);
16255 break;
16256 case DW_FORM_block1:
16257 case DW_FORM_block2:
16258 case DW_FORM_block4:
16259 case DW_FORM_block:
16260 case DW_FORM_exprloc:
16261 blk = DW_BLOCK (attr);
16262 if (TYPE_LENGTH (type) != blk->size)
16263 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16264 TYPE_LENGTH (type));
16265 *bytes = blk->data;
16266 break;
16267
16268 /* The DW_AT_const_value attributes are supposed to carry the
16269 symbol's value "represented as it would be on the target
16270 architecture." By the time we get here, it's already been
16271 converted to host endianness, so we just need to sign- or
16272 zero-extend it as appropriate. */
16273 case DW_FORM_data1:
16274 *bytes = dwarf2_const_value_data (attr, type, name,
16275 obstack, cu, value, 8);
16276 break;
16277 case DW_FORM_data2:
16278 *bytes = dwarf2_const_value_data (attr, type, name,
16279 obstack, cu, value, 16);
16280 break;
16281 case DW_FORM_data4:
16282 *bytes = dwarf2_const_value_data (attr, type, name,
16283 obstack, cu, value, 32);
16284 break;
16285 case DW_FORM_data8:
16286 *bytes = dwarf2_const_value_data (attr, type, name,
16287 obstack, cu, value, 64);
16288 break;
16289
16290 case DW_FORM_sdata:
16291 *value = DW_SND (attr);
16292 break;
16293
16294 case DW_FORM_udata:
16295 *value = DW_UNSND (attr);
16296 break;
16297
16298 default:
16299 complaint (&symfile_complaints,
16300 _("unsupported const value attribute form: '%s'"),
16301 dwarf_form_name (attr->form));
16302 *value = 0;
16303 break;
16304 }
16305 }
16306
16307
16308 /* Copy constant value from an attribute to a symbol. */
16309
16310 static void
16311 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16312 struct dwarf2_cu *cu)
16313 {
16314 struct objfile *objfile = cu->objfile;
16315 struct comp_unit_head *cu_header = &cu->header;
16316 LONGEST value;
16317 gdb_byte *bytes;
16318 struct dwarf2_locexpr_baton *baton;
16319
16320 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16321 SYMBOL_PRINT_NAME (sym),
16322 &objfile->objfile_obstack, cu,
16323 &value, &bytes, &baton);
16324
16325 if (baton != NULL)
16326 {
16327 SYMBOL_LOCATION_BATON (sym) = baton;
16328 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16329 }
16330 else if (bytes != NULL)
16331 {
16332 SYMBOL_VALUE_BYTES (sym) = bytes;
16333 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16334 }
16335 else
16336 {
16337 SYMBOL_VALUE (sym) = value;
16338 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16339 }
16340 }
16341
16342 /* Return the type of the die in question using its DW_AT_type attribute. */
16343
16344 static struct type *
16345 die_type (struct die_info *die, struct dwarf2_cu *cu)
16346 {
16347 struct attribute *type_attr;
16348
16349 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16350 if (!type_attr)
16351 {
16352 /* A missing DW_AT_type represents a void type. */
16353 return objfile_type (cu->objfile)->builtin_void;
16354 }
16355
16356 return lookup_die_type (die, type_attr, cu);
16357 }
16358
16359 /* True iff CU's producer generates GNAT Ada auxiliary information
16360 that allows to find parallel types through that information instead
16361 of having to do expensive parallel lookups by type name. */
16362
16363 static int
16364 need_gnat_info (struct dwarf2_cu *cu)
16365 {
16366 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16367 of GNAT produces this auxiliary information, without any indication
16368 that it is produced. Part of enhancing the FSF version of GNAT
16369 to produce that information will be to put in place an indicator
16370 that we can use in order to determine whether the descriptive type
16371 info is available or not. One suggestion that has been made is
16372 to use a new attribute, attached to the CU die. For now, assume
16373 that the descriptive type info is not available. */
16374 return 0;
16375 }
16376
16377 /* Return the auxiliary type of the die in question using its
16378 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16379 attribute is not present. */
16380
16381 static struct type *
16382 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16383 {
16384 struct attribute *type_attr;
16385
16386 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16387 if (!type_attr)
16388 return NULL;
16389
16390 return lookup_die_type (die, type_attr, cu);
16391 }
16392
16393 /* If DIE has a descriptive_type attribute, then set the TYPE's
16394 descriptive type accordingly. */
16395
16396 static void
16397 set_descriptive_type (struct type *type, struct die_info *die,
16398 struct dwarf2_cu *cu)
16399 {
16400 struct type *descriptive_type = die_descriptive_type (die, cu);
16401
16402 if (descriptive_type)
16403 {
16404 ALLOCATE_GNAT_AUX_TYPE (type);
16405 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16406 }
16407 }
16408
16409 /* Return the containing type of the die in question using its
16410 DW_AT_containing_type attribute. */
16411
16412 static struct type *
16413 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16414 {
16415 struct attribute *type_attr;
16416
16417 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16418 if (!type_attr)
16419 error (_("Dwarf Error: Problem turning containing type into gdb type "
16420 "[in module %s]"), cu->objfile->name);
16421
16422 return lookup_die_type (die, type_attr, cu);
16423 }
16424
16425 /* Look up the type of DIE in CU using its type attribute ATTR.
16426 If there is no type substitute an error marker. */
16427
16428 static struct type *
16429 lookup_die_type (struct die_info *die, struct attribute *attr,
16430 struct dwarf2_cu *cu)
16431 {
16432 struct objfile *objfile = cu->objfile;
16433 struct type *this_type;
16434
16435 /* First see if we have it cached. */
16436
16437 if (attr->form == DW_FORM_GNU_ref_alt)
16438 {
16439 struct dwarf2_per_cu_data *per_cu;
16440 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16441
16442 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16443 this_type = get_die_type_at_offset (offset, per_cu);
16444 }
16445 else if (is_ref_attr (attr))
16446 {
16447 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16448
16449 this_type = get_die_type_at_offset (offset, cu->per_cu);
16450 }
16451 else if (attr->form == DW_FORM_ref_sig8)
16452 {
16453 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16454
16455 /* sig_type will be NULL if the signatured type is missing from
16456 the debug info. */
16457 if (sig_type == NULL)
16458 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16459 "at 0x%x [in module %s]"),
16460 die->offset.sect_off, objfile->name);
16461
16462 gdb_assert (sig_type->per_cu.is_debug_types);
16463 /* If we haven't filled in type_offset_in_section yet, then we
16464 haven't read the type in yet. */
16465 this_type = NULL;
16466 if (sig_type->type_offset_in_section.sect_off != 0)
16467 {
16468 this_type =
16469 get_die_type_at_offset (sig_type->type_offset_in_section,
16470 &sig_type->per_cu);
16471 }
16472 }
16473 else
16474 {
16475 dump_die_for_error (die);
16476 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16477 dwarf_attr_name (attr->name), objfile->name);
16478 }
16479
16480 /* If not cached we need to read it in. */
16481
16482 if (this_type == NULL)
16483 {
16484 struct die_info *type_die;
16485 struct dwarf2_cu *type_cu = cu;
16486
16487 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16488 /* If we found the type now, it's probably because the type came
16489 from an inter-CU reference and the type's CU got expanded before
16490 ours. */
16491 this_type = get_die_type (type_die, type_cu);
16492 if (this_type == NULL)
16493 this_type = read_type_die_1 (type_die, type_cu);
16494 }
16495
16496 /* If we still don't have a type use an error marker. */
16497
16498 if (this_type == NULL)
16499 {
16500 char *message, *saved;
16501
16502 /* read_type_die already issued a complaint. */
16503 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16504 objfile->name,
16505 cu->header.offset.sect_off,
16506 die->offset.sect_off);
16507 saved = obstack_copy0 (&objfile->objfile_obstack,
16508 message, strlen (message));
16509 xfree (message);
16510
16511 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16512 }
16513
16514 return this_type;
16515 }
16516
16517 /* Return the type in DIE, CU.
16518 Returns NULL for invalid types.
16519
16520 This first does a lookup in the appropriate type_hash table,
16521 and only reads the die in if necessary.
16522
16523 NOTE: This can be called when reading in partial or full symbols. */
16524
16525 static struct type *
16526 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16527 {
16528 struct type *this_type;
16529
16530 this_type = get_die_type (die, cu);
16531 if (this_type)
16532 return this_type;
16533
16534 return read_type_die_1 (die, cu);
16535 }
16536
16537 /* Read the type in DIE, CU.
16538 Returns NULL for invalid types. */
16539
16540 static struct type *
16541 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16542 {
16543 struct type *this_type = NULL;
16544
16545 switch (die->tag)
16546 {
16547 case DW_TAG_class_type:
16548 case DW_TAG_interface_type:
16549 case DW_TAG_structure_type:
16550 case DW_TAG_union_type:
16551 this_type = read_structure_type (die, cu);
16552 break;
16553 case DW_TAG_enumeration_type:
16554 this_type = read_enumeration_type (die, cu);
16555 break;
16556 case DW_TAG_subprogram:
16557 case DW_TAG_subroutine_type:
16558 case DW_TAG_inlined_subroutine:
16559 this_type = read_subroutine_type (die, cu);
16560 break;
16561 case DW_TAG_array_type:
16562 this_type = read_array_type (die, cu);
16563 break;
16564 case DW_TAG_set_type:
16565 this_type = read_set_type (die, cu);
16566 break;
16567 case DW_TAG_pointer_type:
16568 this_type = read_tag_pointer_type (die, cu);
16569 break;
16570 case DW_TAG_ptr_to_member_type:
16571 this_type = read_tag_ptr_to_member_type (die, cu);
16572 break;
16573 case DW_TAG_reference_type:
16574 this_type = read_tag_reference_type (die, cu);
16575 break;
16576 case DW_TAG_const_type:
16577 this_type = read_tag_const_type (die, cu);
16578 break;
16579 case DW_TAG_volatile_type:
16580 this_type = read_tag_volatile_type (die, cu);
16581 break;
16582 case DW_TAG_restrict_type:
16583 this_type = read_tag_restrict_type (die, cu);
16584 break;
16585 case DW_TAG_string_type:
16586 this_type = read_tag_string_type (die, cu);
16587 break;
16588 case DW_TAG_typedef:
16589 this_type = read_typedef (die, cu);
16590 break;
16591 case DW_TAG_subrange_type:
16592 this_type = read_subrange_type (die, cu);
16593 break;
16594 case DW_TAG_base_type:
16595 this_type = read_base_type (die, cu);
16596 break;
16597 case DW_TAG_unspecified_type:
16598 this_type = read_unspecified_type (die, cu);
16599 break;
16600 case DW_TAG_namespace:
16601 this_type = read_namespace_type (die, cu);
16602 break;
16603 case DW_TAG_module:
16604 this_type = read_module_type (die, cu);
16605 break;
16606 default:
16607 complaint (&symfile_complaints,
16608 _("unexpected tag in read_type_die: '%s'"),
16609 dwarf_tag_name (die->tag));
16610 break;
16611 }
16612
16613 return this_type;
16614 }
16615
16616 /* See if we can figure out if the class lives in a namespace. We do
16617 this by looking for a member function; its demangled name will
16618 contain namespace info, if there is any.
16619 Return the computed name or NULL.
16620 Space for the result is allocated on the objfile's obstack.
16621 This is the full-die version of guess_partial_die_structure_name.
16622 In this case we know DIE has no useful parent. */
16623
16624 static char *
16625 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16626 {
16627 struct die_info *spec_die;
16628 struct dwarf2_cu *spec_cu;
16629 struct die_info *child;
16630
16631 spec_cu = cu;
16632 spec_die = die_specification (die, &spec_cu);
16633 if (spec_die != NULL)
16634 {
16635 die = spec_die;
16636 cu = spec_cu;
16637 }
16638
16639 for (child = die->child;
16640 child != NULL;
16641 child = child->sibling)
16642 {
16643 if (child->tag == DW_TAG_subprogram)
16644 {
16645 struct attribute *attr;
16646
16647 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16648 if (attr == NULL)
16649 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16650 if (attr != NULL)
16651 {
16652 char *actual_name
16653 = language_class_name_from_physname (cu->language_defn,
16654 DW_STRING (attr));
16655 char *name = NULL;
16656
16657 if (actual_name != NULL)
16658 {
16659 const char *die_name = dwarf2_name (die, cu);
16660
16661 if (die_name != NULL
16662 && strcmp (die_name, actual_name) != 0)
16663 {
16664 /* Strip off the class name from the full name.
16665 We want the prefix. */
16666 int die_name_len = strlen (die_name);
16667 int actual_name_len = strlen (actual_name);
16668
16669 /* Test for '::' as a sanity check. */
16670 if (actual_name_len > die_name_len + 2
16671 && actual_name[actual_name_len
16672 - die_name_len - 1] == ':')
16673 name =
16674 obstack_copy0 (&cu->objfile->objfile_obstack,
16675 actual_name,
16676 actual_name_len - die_name_len - 2);
16677 }
16678 }
16679 xfree (actual_name);
16680 return name;
16681 }
16682 }
16683 }
16684
16685 return NULL;
16686 }
16687
16688 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16689 prefix part in such case. See
16690 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16691
16692 static char *
16693 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16694 {
16695 struct attribute *attr;
16696 char *base;
16697
16698 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16699 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16700 return NULL;
16701
16702 attr = dwarf2_attr (die, DW_AT_name, cu);
16703 if (attr != NULL && DW_STRING (attr) != NULL)
16704 return NULL;
16705
16706 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16707 if (attr == NULL)
16708 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16709 if (attr == NULL || DW_STRING (attr) == NULL)
16710 return NULL;
16711
16712 /* dwarf2_name had to be already called. */
16713 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16714
16715 /* Strip the base name, keep any leading namespaces/classes. */
16716 base = strrchr (DW_STRING (attr), ':');
16717 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16718 return "";
16719
16720 return obstack_copy0 (&cu->objfile->objfile_obstack,
16721 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16722 }
16723
16724 /* Return the name of the namespace/class that DIE is defined within,
16725 or "" if we can't tell. The caller should not xfree the result.
16726
16727 For example, if we're within the method foo() in the following
16728 code:
16729
16730 namespace N {
16731 class C {
16732 void foo () {
16733 }
16734 };
16735 }
16736
16737 then determine_prefix on foo's die will return "N::C". */
16738
16739 static const char *
16740 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16741 {
16742 struct die_info *parent, *spec_die;
16743 struct dwarf2_cu *spec_cu;
16744 struct type *parent_type;
16745 char *retval;
16746
16747 if (cu->language != language_cplus && cu->language != language_java
16748 && cu->language != language_fortran)
16749 return "";
16750
16751 retval = anonymous_struct_prefix (die, cu);
16752 if (retval)
16753 return retval;
16754
16755 /* We have to be careful in the presence of DW_AT_specification.
16756 For example, with GCC 3.4, given the code
16757
16758 namespace N {
16759 void foo() {
16760 // Definition of N::foo.
16761 }
16762 }
16763
16764 then we'll have a tree of DIEs like this:
16765
16766 1: DW_TAG_compile_unit
16767 2: DW_TAG_namespace // N
16768 3: DW_TAG_subprogram // declaration of N::foo
16769 4: DW_TAG_subprogram // definition of N::foo
16770 DW_AT_specification // refers to die #3
16771
16772 Thus, when processing die #4, we have to pretend that we're in
16773 the context of its DW_AT_specification, namely the contex of die
16774 #3. */
16775 spec_cu = cu;
16776 spec_die = die_specification (die, &spec_cu);
16777 if (spec_die == NULL)
16778 parent = die->parent;
16779 else
16780 {
16781 parent = spec_die->parent;
16782 cu = spec_cu;
16783 }
16784
16785 if (parent == NULL)
16786 return "";
16787 else if (parent->building_fullname)
16788 {
16789 const char *name;
16790 const char *parent_name;
16791
16792 /* It has been seen on RealView 2.2 built binaries,
16793 DW_TAG_template_type_param types actually _defined_ as
16794 children of the parent class:
16795
16796 enum E {};
16797 template class <class Enum> Class{};
16798 Class<enum E> class_e;
16799
16800 1: DW_TAG_class_type (Class)
16801 2: DW_TAG_enumeration_type (E)
16802 3: DW_TAG_enumerator (enum1:0)
16803 3: DW_TAG_enumerator (enum2:1)
16804 ...
16805 2: DW_TAG_template_type_param
16806 DW_AT_type DW_FORM_ref_udata (E)
16807
16808 Besides being broken debug info, it can put GDB into an
16809 infinite loop. Consider:
16810
16811 When we're building the full name for Class<E>, we'll start
16812 at Class, and go look over its template type parameters,
16813 finding E. We'll then try to build the full name of E, and
16814 reach here. We're now trying to build the full name of E,
16815 and look over the parent DIE for containing scope. In the
16816 broken case, if we followed the parent DIE of E, we'd again
16817 find Class, and once again go look at its template type
16818 arguments, etc., etc. Simply don't consider such parent die
16819 as source-level parent of this die (it can't be, the language
16820 doesn't allow it), and break the loop here. */
16821 name = dwarf2_name (die, cu);
16822 parent_name = dwarf2_name (parent, cu);
16823 complaint (&symfile_complaints,
16824 _("template param type '%s' defined within parent '%s'"),
16825 name ? name : "<unknown>",
16826 parent_name ? parent_name : "<unknown>");
16827 return "";
16828 }
16829 else
16830 switch (parent->tag)
16831 {
16832 case DW_TAG_namespace:
16833 parent_type = read_type_die (parent, cu);
16834 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16835 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16836 Work around this problem here. */
16837 if (cu->language == language_cplus
16838 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16839 return "";
16840 /* We give a name to even anonymous namespaces. */
16841 return TYPE_TAG_NAME (parent_type);
16842 case DW_TAG_class_type:
16843 case DW_TAG_interface_type:
16844 case DW_TAG_structure_type:
16845 case DW_TAG_union_type:
16846 case DW_TAG_module:
16847 parent_type = read_type_die (parent, cu);
16848 if (TYPE_TAG_NAME (parent_type) != NULL)
16849 return TYPE_TAG_NAME (parent_type);
16850 else
16851 /* An anonymous structure is only allowed non-static data
16852 members; no typedefs, no member functions, et cetera.
16853 So it does not need a prefix. */
16854 return "";
16855 case DW_TAG_compile_unit:
16856 case DW_TAG_partial_unit:
16857 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16858 if (cu->language == language_cplus
16859 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16860 && die->child != NULL
16861 && (die->tag == DW_TAG_class_type
16862 || die->tag == DW_TAG_structure_type
16863 || die->tag == DW_TAG_union_type))
16864 {
16865 char *name = guess_full_die_structure_name (die, cu);
16866 if (name != NULL)
16867 return name;
16868 }
16869 return "";
16870 default:
16871 return determine_prefix (parent, cu);
16872 }
16873 }
16874
16875 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16876 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16877 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16878 an obconcat, otherwise allocate storage for the result. The CU argument is
16879 used to determine the language and hence, the appropriate separator. */
16880
16881 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16882
16883 static char *
16884 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16885 int physname, struct dwarf2_cu *cu)
16886 {
16887 const char *lead = "";
16888 const char *sep;
16889
16890 if (suffix == NULL || suffix[0] == '\0'
16891 || prefix == NULL || prefix[0] == '\0')
16892 sep = "";
16893 else if (cu->language == language_java)
16894 sep = ".";
16895 else if (cu->language == language_fortran && physname)
16896 {
16897 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16898 DW_AT_MIPS_linkage_name is preferred and used instead. */
16899
16900 lead = "__";
16901 sep = "_MOD_";
16902 }
16903 else
16904 sep = "::";
16905
16906 if (prefix == NULL)
16907 prefix = "";
16908 if (suffix == NULL)
16909 suffix = "";
16910
16911 if (obs == NULL)
16912 {
16913 char *retval
16914 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16915
16916 strcpy (retval, lead);
16917 strcat (retval, prefix);
16918 strcat (retval, sep);
16919 strcat (retval, suffix);
16920 return retval;
16921 }
16922 else
16923 {
16924 /* We have an obstack. */
16925 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16926 }
16927 }
16928
16929 /* Return sibling of die, NULL if no sibling. */
16930
16931 static struct die_info *
16932 sibling_die (struct die_info *die)
16933 {
16934 return die->sibling;
16935 }
16936
16937 /* Get name of a die, return NULL if not found. */
16938
16939 static const char *
16940 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16941 struct obstack *obstack)
16942 {
16943 if (name && cu->language == language_cplus)
16944 {
16945 char *canon_name = cp_canonicalize_string (name);
16946
16947 if (canon_name != NULL)
16948 {
16949 if (strcmp (canon_name, name) != 0)
16950 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16951 xfree (canon_name);
16952 }
16953 }
16954
16955 return name;
16956 }
16957
16958 /* Get name of a die, return NULL if not found. */
16959
16960 static const char *
16961 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16962 {
16963 struct attribute *attr;
16964
16965 attr = dwarf2_attr (die, DW_AT_name, cu);
16966 if ((!attr || !DW_STRING (attr))
16967 && die->tag != DW_TAG_class_type
16968 && die->tag != DW_TAG_interface_type
16969 && die->tag != DW_TAG_structure_type
16970 && die->tag != DW_TAG_union_type)
16971 return NULL;
16972
16973 switch (die->tag)
16974 {
16975 case DW_TAG_compile_unit:
16976 case DW_TAG_partial_unit:
16977 /* Compilation units have a DW_AT_name that is a filename, not
16978 a source language identifier. */
16979 case DW_TAG_enumeration_type:
16980 case DW_TAG_enumerator:
16981 /* These tags always have simple identifiers already; no need
16982 to canonicalize them. */
16983 return DW_STRING (attr);
16984
16985 case DW_TAG_subprogram:
16986 /* Java constructors will all be named "<init>", so return
16987 the class name when we see this special case. */
16988 if (cu->language == language_java
16989 && DW_STRING (attr) != NULL
16990 && strcmp (DW_STRING (attr), "<init>") == 0)
16991 {
16992 struct dwarf2_cu *spec_cu = cu;
16993 struct die_info *spec_die;
16994
16995 /* GCJ will output '<init>' for Java constructor names.
16996 For this special case, return the name of the parent class. */
16997
16998 /* GCJ may output suprogram DIEs with AT_specification set.
16999 If so, use the name of the specified DIE. */
17000 spec_die = die_specification (die, &spec_cu);
17001 if (spec_die != NULL)
17002 return dwarf2_name (spec_die, spec_cu);
17003
17004 do
17005 {
17006 die = die->parent;
17007 if (die->tag == DW_TAG_class_type)
17008 return dwarf2_name (die, cu);
17009 }
17010 while (die->tag != DW_TAG_compile_unit
17011 && die->tag != DW_TAG_partial_unit);
17012 }
17013 break;
17014
17015 case DW_TAG_class_type:
17016 case DW_TAG_interface_type:
17017 case DW_TAG_structure_type:
17018 case DW_TAG_union_type:
17019 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17020 structures or unions. These were of the form "._%d" in GCC 4.1,
17021 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17022 and GCC 4.4. We work around this problem by ignoring these. */
17023 if (attr && DW_STRING (attr)
17024 && (strncmp (DW_STRING (attr), "._", 2) == 0
17025 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17026 return NULL;
17027
17028 /* GCC might emit a nameless typedef that has a linkage name. See
17029 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17030 if (!attr || DW_STRING (attr) == NULL)
17031 {
17032 char *demangled = NULL;
17033
17034 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17035 if (attr == NULL)
17036 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17037
17038 if (attr == NULL || DW_STRING (attr) == NULL)
17039 return NULL;
17040
17041 /* Avoid demangling DW_STRING (attr) the second time on a second
17042 call for the same DIE. */
17043 if (!DW_STRING_IS_CANONICAL (attr))
17044 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17045
17046 if (demangled)
17047 {
17048 char *base;
17049
17050 /* FIXME: we already did this for the partial symbol... */
17051 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17052 demangled, strlen (demangled));
17053 DW_STRING_IS_CANONICAL (attr) = 1;
17054 xfree (demangled);
17055
17056 /* Strip any leading namespaces/classes, keep only the base name.
17057 DW_AT_name for named DIEs does not contain the prefixes. */
17058 base = strrchr (DW_STRING (attr), ':');
17059 if (base && base > DW_STRING (attr) && base[-1] == ':')
17060 return &base[1];
17061 else
17062 return DW_STRING (attr);
17063 }
17064 }
17065 break;
17066
17067 default:
17068 break;
17069 }
17070
17071 if (!DW_STRING_IS_CANONICAL (attr))
17072 {
17073 DW_STRING (attr)
17074 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17075 &cu->objfile->objfile_obstack);
17076 DW_STRING_IS_CANONICAL (attr) = 1;
17077 }
17078 return DW_STRING (attr);
17079 }
17080
17081 /* Return the die that this die in an extension of, or NULL if there
17082 is none. *EXT_CU is the CU containing DIE on input, and the CU
17083 containing the return value on output. */
17084
17085 static struct die_info *
17086 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17087 {
17088 struct attribute *attr;
17089
17090 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17091 if (attr == NULL)
17092 return NULL;
17093
17094 return follow_die_ref (die, attr, ext_cu);
17095 }
17096
17097 /* Convert a DIE tag into its string name. */
17098
17099 static const char *
17100 dwarf_tag_name (unsigned tag)
17101 {
17102 const char *name = get_DW_TAG_name (tag);
17103
17104 if (name == NULL)
17105 return "DW_TAG_<unknown>";
17106
17107 return name;
17108 }
17109
17110 /* Convert a DWARF attribute code into its string name. */
17111
17112 static const char *
17113 dwarf_attr_name (unsigned attr)
17114 {
17115 const char *name;
17116
17117 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17118 if (attr == DW_AT_MIPS_fde)
17119 return "DW_AT_MIPS_fde";
17120 #else
17121 if (attr == DW_AT_HP_block_index)
17122 return "DW_AT_HP_block_index";
17123 #endif
17124
17125 name = get_DW_AT_name (attr);
17126
17127 if (name == NULL)
17128 return "DW_AT_<unknown>";
17129
17130 return name;
17131 }
17132
17133 /* Convert a DWARF value form code into its string name. */
17134
17135 static const char *
17136 dwarf_form_name (unsigned form)
17137 {
17138 const char *name = get_DW_FORM_name (form);
17139
17140 if (name == NULL)
17141 return "DW_FORM_<unknown>";
17142
17143 return name;
17144 }
17145
17146 static char *
17147 dwarf_bool_name (unsigned mybool)
17148 {
17149 if (mybool)
17150 return "TRUE";
17151 else
17152 return "FALSE";
17153 }
17154
17155 /* Convert a DWARF type code into its string name. */
17156
17157 static const char *
17158 dwarf_type_encoding_name (unsigned enc)
17159 {
17160 const char *name = get_DW_ATE_name (enc);
17161
17162 if (name == NULL)
17163 return "DW_ATE_<unknown>";
17164
17165 return name;
17166 }
17167
17168 static void
17169 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17170 {
17171 unsigned int i;
17172
17173 print_spaces (indent, f);
17174 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17175 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17176
17177 if (die->parent != NULL)
17178 {
17179 print_spaces (indent, f);
17180 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17181 die->parent->offset.sect_off);
17182 }
17183
17184 print_spaces (indent, f);
17185 fprintf_unfiltered (f, " has children: %s\n",
17186 dwarf_bool_name (die->child != NULL));
17187
17188 print_spaces (indent, f);
17189 fprintf_unfiltered (f, " attributes:\n");
17190
17191 for (i = 0; i < die->num_attrs; ++i)
17192 {
17193 print_spaces (indent, f);
17194 fprintf_unfiltered (f, " %s (%s) ",
17195 dwarf_attr_name (die->attrs[i].name),
17196 dwarf_form_name (die->attrs[i].form));
17197
17198 switch (die->attrs[i].form)
17199 {
17200 case DW_FORM_addr:
17201 case DW_FORM_GNU_addr_index:
17202 fprintf_unfiltered (f, "address: ");
17203 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17204 break;
17205 case DW_FORM_block2:
17206 case DW_FORM_block4:
17207 case DW_FORM_block:
17208 case DW_FORM_block1:
17209 fprintf_unfiltered (f, "block: size %s",
17210 pulongest (DW_BLOCK (&die->attrs[i])->size));
17211 break;
17212 case DW_FORM_exprloc:
17213 fprintf_unfiltered (f, "expression: size %s",
17214 pulongest (DW_BLOCK (&die->attrs[i])->size));
17215 break;
17216 case DW_FORM_ref_addr:
17217 fprintf_unfiltered (f, "ref address: ");
17218 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17219 break;
17220 case DW_FORM_GNU_ref_alt:
17221 fprintf_unfiltered (f, "alt ref address: ");
17222 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17223 break;
17224 case DW_FORM_ref1:
17225 case DW_FORM_ref2:
17226 case DW_FORM_ref4:
17227 case DW_FORM_ref8:
17228 case DW_FORM_ref_udata:
17229 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17230 (long) (DW_UNSND (&die->attrs[i])));
17231 break;
17232 case DW_FORM_data1:
17233 case DW_FORM_data2:
17234 case DW_FORM_data4:
17235 case DW_FORM_data8:
17236 case DW_FORM_udata:
17237 case DW_FORM_sdata:
17238 fprintf_unfiltered (f, "constant: %s",
17239 pulongest (DW_UNSND (&die->attrs[i])));
17240 break;
17241 case DW_FORM_sec_offset:
17242 fprintf_unfiltered (f, "section offset: %s",
17243 pulongest (DW_UNSND (&die->attrs[i])));
17244 break;
17245 case DW_FORM_ref_sig8:
17246 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17247 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17248 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17249 else
17250 fprintf_unfiltered (f, "signatured type, offset: unknown");
17251 break;
17252 case DW_FORM_string:
17253 case DW_FORM_strp:
17254 case DW_FORM_GNU_str_index:
17255 case DW_FORM_GNU_strp_alt:
17256 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17257 DW_STRING (&die->attrs[i])
17258 ? DW_STRING (&die->attrs[i]) : "",
17259 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17260 break;
17261 case DW_FORM_flag:
17262 if (DW_UNSND (&die->attrs[i]))
17263 fprintf_unfiltered (f, "flag: TRUE");
17264 else
17265 fprintf_unfiltered (f, "flag: FALSE");
17266 break;
17267 case DW_FORM_flag_present:
17268 fprintf_unfiltered (f, "flag: TRUE");
17269 break;
17270 case DW_FORM_indirect:
17271 /* The reader will have reduced the indirect form to
17272 the "base form" so this form should not occur. */
17273 fprintf_unfiltered (f,
17274 "unexpected attribute form: DW_FORM_indirect");
17275 break;
17276 default:
17277 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17278 die->attrs[i].form);
17279 break;
17280 }
17281 fprintf_unfiltered (f, "\n");
17282 }
17283 }
17284
17285 static void
17286 dump_die_for_error (struct die_info *die)
17287 {
17288 dump_die_shallow (gdb_stderr, 0, die);
17289 }
17290
17291 static void
17292 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17293 {
17294 int indent = level * 4;
17295
17296 gdb_assert (die != NULL);
17297
17298 if (level >= max_level)
17299 return;
17300
17301 dump_die_shallow (f, indent, die);
17302
17303 if (die->child != NULL)
17304 {
17305 print_spaces (indent, f);
17306 fprintf_unfiltered (f, " Children:");
17307 if (level + 1 < max_level)
17308 {
17309 fprintf_unfiltered (f, "\n");
17310 dump_die_1 (f, level + 1, max_level, die->child);
17311 }
17312 else
17313 {
17314 fprintf_unfiltered (f,
17315 " [not printed, max nesting level reached]\n");
17316 }
17317 }
17318
17319 if (die->sibling != NULL && level > 0)
17320 {
17321 dump_die_1 (f, level, max_level, die->sibling);
17322 }
17323 }
17324
17325 /* This is called from the pdie macro in gdbinit.in.
17326 It's not static so gcc will keep a copy callable from gdb. */
17327
17328 void
17329 dump_die (struct die_info *die, int max_level)
17330 {
17331 dump_die_1 (gdb_stdlog, 0, max_level, die);
17332 }
17333
17334 static void
17335 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17336 {
17337 void **slot;
17338
17339 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17340 INSERT);
17341
17342 *slot = die;
17343 }
17344
17345 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17346 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17347
17348 static int
17349 is_ref_attr (struct attribute *attr)
17350 {
17351 switch (attr->form)
17352 {
17353 case DW_FORM_ref_addr:
17354 case DW_FORM_ref1:
17355 case DW_FORM_ref2:
17356 case DW_FORM_ref4:
17357 case DW_FORM_ref8:
17358 case DW_FORM_ref_udata:
17359 case DW_FORM_GNU_ref_alt:
17360 return 1;
17361 default:
17362 return 0;
17363 }
17364 }
17365
17366 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17367 required kind. */
17368
17369 static sect_offset
17370 dwarf2_get_ref_die_offset (struct attribute *attr)
17371 {
17372 sect_offset retval = { DW_UNSND (attr) };
17373
17374 if (is_ref_attr (attr))
17375 return retval;
17376
17377 retval.sect_off = 0;
17378 complaint (&symfile_complaints,
17379 _("unsupported die ref attribute form: '%s'"),
17380 dwarf_form_name (attr->form));
17381 return retval;
17382 }
17383
17384 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17385 * the value held by the attribute is not constant. */
17386
17387 static LONGEST
17388 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17389 {
17390 if (attr->form == DW_FORM_sdata)
17391 return DW_SND (attr);
17392 else if (attr->form == DW_FORM_udata
17393 || attr->form == DW_FORM_data1
17394 || attr->form == DW_FORM_data2
17395 || attr->form == DW_FORM_data4
17396 || attr->form == DW_FORM_data8)
17397 return DW_UNSND (attr);
17398 else
17399 {
17400 complaint (&symfile_complaints,
17401 _("Attribute value is not a constant (%s)"),
17402 dwarf_form_name (attr->form));
17403 return default_value;
17404 }
17405 }
17406
17407 /* Follow reference or signature attribute ATTR of SRC_DIE.
17408 On entry *REF_CU is the CU of SRC_DIE.
17409 On exit *REF_CU is the CU of the result. */
17410
17411 static struct die_info *
17412 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17413 struct dwarf2_cu **ref_cu)
17414 {
17415 struct die_info *die;
17416
17417 if (is_ref_attr (attr))
17418 die = follow_die_ref (src_die, attr, ref_cu);
17419 else if (attr->form == DW_FORM_ref_sig8)
17420 die = follow_die_sig (src_die, attr, ref_cu);
17421 else
17422 {
17423 dump_die_for_error (src_die);
17424 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17425 (*ref_cu)->objfile->name);
17426 }
17427
17428 return die;
17429 }
17430
17431 /* Follow reference OFFSET.
17432 On entry *REF_CU is the CU of the source die referencing OFFSET.
17433 On exit *REF_CU is the CU of the result.
17434 Returns NULL if OFFSET is invalid. */
17435
17436 static struct die_info *
17437 follow_die_offset (sect_offset offset, int offset_in_dwz,
17438 struct dwarf2_cu **ref_cu)
17439 {
17440 struct die_info temp_die;
17441 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17442
17443 gdb_assert (cu->per_cu != NULL);
17444
17445 target_cu = cu;
17446
17447 if (cu->per_cu->is_debug_types)
17448 {
17449 /* .debug_types CUs cannot reference anything outside their CU.
17450 If they need to, they have to reference a signatured type via
17451 DW_FORM_ref_sig8. */
17452 if (! offset_in_cu_p (&cu->header, offset))
17453 return NULL;
17454 }
17455 else if (offset_in_dwz != cu->per_cu->is_dwz
17456 || ! offset_in_cu_p (&cu->header, offset))
17457 {
17458 struct dwarf2_per_cu_data *per_cu;
17459
17460 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17461 cu->objfile);
17462
17463 /* If necessary, add it to the queue and load its DIEs. */
17464 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17465 load_full_comp_unit (per_cu, cu->language);
17466
17467 target_cu = per_cu->cu;
17468 }
17469 else if (cu->dies == NULL)
17470 {
17471 /* We're loading full DIEs during partial symbol reading. */
17472 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17473 load_full_comp_unit (cu->per_cu, language_minimal);
17474 }
17475
17476 *ref_cu = target_cu;
17477 temp_die.offset = offset;
17478 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17479 }
17480
17481 /* Follow reference attribute ATTR of SRC_DIE.
17482 On entry *REF_CU is the CU of SRC_DIE.
17483 On exit *REF_CU is the CU of the result. */
17484
17485 static struct die_info *
17486 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17487 struct dwarf2_cu **ref_cu)
17488 {
17489 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17490 struct dwarf2_cu *cu = *ref_cu;
17491 struct die_info *die;
17492
17493 die = follow_die_offset (offset,
17494 (attr->form == DW_FORM_GNU_ref_alt
17495 || cu->per_cu->is_dwz),
17496 ref_cu);
17497 if (!die)
17498 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17499 "at 0x%x [in module %s]"),
17500 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17501
17502 return die;
17503 }
17504
17505 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17506 Returned value is intended for DW_OP_call*. Returned
17507 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17508
17509 struct dwarf2_locexpr_baton
17510 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17511 struct dwarf2_per_cu_data *per_cu,
17512 CORE_ADDR (*get_frame_pc) (void *baton),
17513 void *baton)
17514 {
17515 struct dwarf2_cu *cu;
17516 struct die_info *die;
17517 struct attribute *attr;
17518 struct dwarf2_locexpr_baton retval;
17519
17520 dw2_setup (per_cu->objfile);
17521
17522 if (per_cu->cu == NULL)
17523 load_cu (per_cu);
17524 cu = per_cu->cu;
17525
17526 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17527 if (!die)
17528 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17529 offset.sect_off, per_cu->objfile->name);
17530
17531 attr = dwarf2_attr (die, DW_AT_location, cu);
17532 if (!attr)
17533 {
17534 /* DWARF: "If there is no such attribute, then there is no effect.".
17535 DATA is ignored if SIZE is 0. */
17536
17537 retval.data = NULL;
17538 retval.size = 0;
17539 }
17540 else if (attr_form_is_section_offset (attr))
17541 {
17542 struct dwarf2_loclist_baton loclist_baton;
17543 CORE_ADDR pc = (*get_frame_pc) (baton);
17544 size_t size;
17545
17546 fill_in_loclist_baton (cu, &loclist_baton, attr);
17547
17548 retval.data = dwarf2_find_location_expression (&loclist_baton,
17549 &size, pc);
17550 retval.size = size;
17551 }
17552 else
17553 {
17554 if (!attr_form_is_block (attr))
17555 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17556 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17557 offset.sect_off, per_cu->objfile->name);
17558
17559 retval.data = DW_BLOCK (attr)->data;
17560 retval.size = DW_BLOCK (attr)->size;
17561 }
17562 retval.per_cu = cu->per_cu;
17563
17564 age_cached_comp_units ();
17565
17566 return retval;
17567 }
17568
17569 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17570 offset. */
17571
17572 struct dwarf2_locexpr_baton
17573 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17574 struct dwarf2_per_cu_data *per_cu,
17575 CORE_ADDR (*get_frame_pc) (void *baton),
17576 void *baton)
17577 {
17578 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17579
17580 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17581 }
17582
17583 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17584 PER_CU. */
17585
17586 struct type *
17587 dwarf2_get_die_type (cu_offset die_offset,
17588 struct dwarf2_per_cu_data *per_cu)
17589 {
17590 sect_offset die_offset_sect;
17591
17592 dw2_setup (per_cu->objfile);
17593
17594 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17595 return get_die_type_at_offset (die_offset_sect, per_cu);
17596 }
17597
17598 /* Follow the signature attribute ATTR in SRC_DIE.
17599 On entry *REF_CU is the CU of SRC_DIE.
17600 On exit *REF_CU is the CU of the result. */
17601
17602 static struct die_info *
17603 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17604 struct dwarf2_cu **ref_cu)
17605 {
17606 struct objfile *objfile = (*ref_cu)->objfile;
17607 struct die_info temp_die;
17608 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17609 struct dwarf2_cu *sig_cu;
17610 struct die_info *die;
17611
17612 /* sig_type will be NULL if the signatured type is missing from
17613 the debug info. */
17614 if (sig_type == NULL)
17615 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17616 "at 0x%x [in module %s]"),
17617 src_die->offset.sect_off, objfile->name);
17618
17619 /* If necessary, add it to the queue and load its DIEs. */
17620
17621 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17622 read_signatured_type (sig_type);
17623
17624 gdb_assert (sig_type->per_cu.cu != NULL);
17625
17626 sig_cu = sig_type->per_cu.cu;
17627 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17628 temp_die.offset = sig_type->type_offset_in_section;
17629 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17630 temp_die.offset.sect_off);
17631 if (die)
17632 {
17633 /* For .gdb_index version 7 keep track of included TUs.
17634 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17635 if (dwarf2_per_objfile->index_table != NULL
17636 && dwarf2_per_objfile->index_table->version <= 7)
17637 {
17638 VEC_safe_push (dwarf2_per_cu_ptr,
17639 (*ref_cu)->per_cu->imported_symtabs,
17640 sig_cu->per_cu);
17641 }
17642
17643 *ref_cu = sig_cu;
17644 return die;
17645 }
17646
17647 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17648 "from DIE at 0x%x [in module %s]"),
17649 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17650 }
17651
17652 /* Given an offset of a signatured type, return its signatured_type. */
17653
17654 static struct signatured_type *
17655 lookup_signatured_type_at_offset (struct objfile *objfile,
17656 struct dwarf2_section_info *section,
17657 sect_offset offset)
17658 {
17659 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17660 unsigned int length, initial_length_size;
17661 unsigned int sig_offset;
17662 struct signatured_type find_entry, *sig_type;
17663
17664 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17665 sig_offset = (initial_length_size
17666 + 2 /*version*/
17667 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17668 + 1 /*address_size*/);
17669 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17670 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17671
17672 /* This is only used to lookup previously recorded types.
17673 If we didn't find it, it's our bug. */
17674 gdb_assert (sig_type != NULL);
17675 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17676
17677 return sig_type;
17678 }
17679
17680 /* Load the DIEs associated with type unit PER_CU into memory. */
17681
17682 static void
17683 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17684 {
17685 struct signatured_type *sig_type;
17686
17687 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17688 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17689
17690 /* We have the per_cu, but we need the signatured_type.
17691 Fortunately this is an easy translation. */
17692 gdb_assert (per_cu->is_debug_types);
17693 sig_type = (struct signatured_type *) per_cu;
17694
17695 gdb_assert (per_cu->cu == NULL);
17696
17697 read_signatured_type (sig_type);
17698
17699 gdb_assert (per_cu->cu != NULL);
17700 }
17701
17702 /* die_reader_func for read_signatured_type.
17703 This is identical to load_full_comp_unit_reader,
17704 but is kept separate for now. */
17705
17706 static void
17707 read_signatured_type_reader (const struct die_reader_specs *reader,
17708 gdb_byte *info_ptr,
17709 struct die_info *comp_unit_die,
17710 int has_children,
17711 void *data)
17712 {
17713 struct dwarf2_cu *cu = reader->cu;
17714
17715 gdb_assert (cu->die_hash == NULL);
17716 cu->die_hash =
17717 htab_create_alloc_ex (cu->header.length / 12,
17718 die_hash,
17719 die_eq,
17720 NULL,
17721 &cu->comp_unit_obstack,
17722 hashtab_obstack_allocate,
17723 dummy_obstack_deallocate);
17724
17725 if (has_children)
17726 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17727 &info_ptr, comp_unit_die);
17728 cu->dies = comp_unit_die;
17729 /* comp_unit_die is not stored in die_hash, no need. */
17730
17731 /* We try not to read any attributes in this function, because not
17732 all CUs needed for references have been loaded yet, and symbol
17733 table processing isn't initialized. But we have to set the CU language,
17734 or we won't be able to build types correctly.
17735 Similarly, if we do not read the producer, we can not apply
17736 producer-specific interpretation. */
17737 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17738 }
17739
17740 /* Read in a signatured type and build its CU and DIEs.
17741 If the type is a stub for the real type in a DWO file,
17742 read in the real type from the DWO file as well. */
17743
17744 static void
17745 read_signatured_type (struct signatured_type *sig_type)
17746 {
17747 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17748
17749 gdb_assert (per_cu->is_debug_types);
17750 gdb_assert (per_cu->cu == NULL);
17751
17752 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17753 read_signatured_type_reader, NULL);
17754 }
17755
17756 /* Decode simple location descriptions.
17757 Given a pointer to a dwarf block that defines a location, compute
17758 the location and return the value.
17759
17760 NOTE drow/2003-11-18: This function is called in two situations
17761 now: for the address of static or global variables (partial symbols
17762 only) and for offsets into structures which are expected to be
17763 (more or less) constant. The partial symbol case should go away,
17764 and only the constant case should remain. That will let this
17765 function complain more accurately. A few special modes are allowed
17766 without complaint for global variables (for instance, global
17767 register values and thread-local values).
17768
17769 A location description containing no operations indicates that the
17770 object is optimized out. The return value is 0 for that case.
17771 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17772 callers will only want a very basic result and this can become a
17773 complaint.
17774
17775 Note that stack[0] is unused except as a default error return. */
17776
17777 static CORE_ADDR
17778 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17779 {
17780 struct objfile *objfile = cu->objfile;
17781 size_t i;
17782 size_t size = blk->size;
17783 gdb_byte *data = blk->data;
17784 CORE_ADDR stack[64];
17785 int stacki;
17786 unsigned int bytes_read, unsnd;
17787 gdb_byte op;
17788
17789 i = 0;
17790 stacki = 0;
17791 stack[stacki] = 0;
17792 stack[++stacki] = 0;
17793
17794 while (i < size)
17795 {
17796 op = data[i++];
17797 switch (op)
17798 {
17799 case DW_OP_lit0:
17800 case DW_OP_lit1:
17801 case DW_OP_lit2:
17802 case DW_OP_lit3:
17803 case DW_OP_lit4:
17804 case DW_OP_lit5:
17805 case DW_OP_lit6:
17806 case DW_OP_lit7:
17807 case DW_OP_lit8:
17808 case DW_OP_lit9:
17809 case DW_OP_lit10:
17810 case DW_OP_lit11:
17811 case DW_OP_lit12:
17812 case DW_OP_lit13:
17813 case DW_OP_lit14:
17814 case DW_OP_lit15:
17815 case DW_OP_lit16:
17816 case DW_OP_lit17:
17817 case DW_OP_lit18:
17818 case DW_OP_lit19:
17819 case DW_OP_lit20:
17820 case DW_OP_lit21:
17821 case DW_OP_lit22:
17822 case DW_OP_lit23:
17823 case DW_OP_lit24:
17824 case DW_OP_lit25:
17825 case DW_OP_lit26:
17826 case DW_OP_lit27:
17827 case DW_OP_lit28:
17828 case DW_OP_lit29:
17829 case DW_OP_lit30:
17830 case DW_OP_lit31:
17831 stack[++stacki] = op - DW_OP_lit0;
17832 break;
17833
17834 case DW_OP_reg0:
17835 case DW_OP_reg1:
17836 case DW_OP_reg2:
17837 case DW_OP_reg3:
17838 case DW_OP_reg4:
17839 case DW_OP_reg5:
17840 case DW_OP_reg6:
17841 case DW_OP_reg7:
17842 case DW_OP_reg8:
17843 case DW_OP_reg9:
17844 case DW_OP_reg10:
17845 case DW_OP_reg11:
17846 case DW_OP_reg12:
17847 case DW_OP_reg13:
17848 case DW_OP_reg14:
17849 case DW_OP_reg15:
17850 case DW_OP_reg16:
17851 case DW_OP_reg17:
17852 case DW_OP_reg18:
17853 case DW_OP_reg19:
17854 case DW_OP_reg20:
17855 case DW_OP_reg21:
17856 case DW_OP_reg22:
17857 case DW_OP_reg23:
17858 case DW_OP_reg24:
17859 case DW_OP_reg25:
17860 case DW_OP_reg26:
17861 case DW_OP_reg27:
17862 case DW_OP_reg28:
17863 case DW_OP_reg29:
17864 case DW_OP_reg30:
17865 case DW_OP_reg31:
17866 stack[++stacki] = op - DW_OP_reg0;
17867 if (i < size)
17868 dwarf2_complex_location_expr_complaint ();
17869 break;
17870
17871 case DW_OP_regx:
17872 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17873 i += bytes_read;
17874 stack[++stacki] = unsnd;
17875 if (i < size)
17876 dwarf2_complex_location_expr_complaint ();
17877 break;
17878
17879 case DW_OP_addr:
17880 stack[++stacki] = read_address (objfile->obfd, &data[i],
17881 cu, &bytes_read);
17882 i += bytes_read;
17883 break;
17884
17885 case DW_OP_const1u:
17886 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17887 i += 1;
17888 break;
17889
17890 case DW_OP_const1s:
17891 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17892 i += 1;
17893 break;
17894
17895 case DW_OP_const2u:
17896 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17897 i += 2;
17898 break;
17899
17900 case DW_OP_const2s:
17901 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17902 i += 2;
17903 break;
17904
17905 case DW_OP_const4u:
17906 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17907 i += 4;
17908 break;
17909
17910 case DW_OP_const4s:
17911 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17912 i += 4;
17913 break;
17914
17915 case DW_OP_const8u:
17916 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17917 i += 8;
17918 break;
17919
17920 case DW_OP_constu:
17921 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17922 &bytes_read);
17923 i += bytes_read;
17924 break;
17925
17926 case DW_OP_consts:
17927 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17928 i += bytes_read;
17929 break;
17930
17931 case DW_OP_dup:
17932 stack[stacki + 1] = stack[stacki];
17933 stacki++;
17934 break;
17935
17936 case DW_OP_plus:
17937 stack[stacki - 1] += stack[stacki];
17938 stacki--;
17939 break;
17940
17941 case DW_OP_plus_uconst:
17942 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17943 &bytes_read);
17944 i += bytes_read;
17945 break;
17946
17947 case DW_OP_minus:
17948 stack[stacki - 1] -= stack[stacki];
17949 stacki--;
17950 break;
17951
17952 case DW_OP_deref:
17953 /* If we're not the last op, then we definitely can't encode
17954 this using GDB's address_class enum. This is valid for partial
17955 global symbols, although the variable's address will be bogus
17956 in the psymtab. */
17957 if (i < size)
17958 dwarf2_complex_location_expr_complaint ();
17959 break;
17960
17961 case DW_OP_GNU_push_tls_address:
17962 /* The top of the stack has the offset from the beginning
17963 of the thread control block at which the variable is located. */
17964 /* Nothing should follow this operator, so the top of stack would
17965 be returned. */
17966 /* This is valid for partial global symbols, but the variable's
17967 address will be bogus in the psymtab. Make it always at least
17968 non-zero to not look as a variable garbage collected by linker
17969 which have DW_OP_addr 0. */
17970 if (i < size)
17971 dwarf2_complex_location_expr_complaint ();
17972 stack[stacki]++;
17973 break;
17974
17975 case DW_OP_GNU_uninit:
17976 break;
17977
17978 case DW_OP_GNU_addr_index:
17979 case DW_OP_GNU_const_index:
17980 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17981 &bytes_read);
17982 i += bytes_read;
17983 break;
17984
17985 default:
17986 {
17987 const char *name = get_DW_OP_name (op);
17988
17989 if (name)
17990 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17991 name);
17992 else
17993 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17994 op);
17995 }
17996
17997 return (stack[stacki]);
17998 }
17999
18000 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18001 outside of the allocated space. Also enforce minimum>0. */
18002 if (stacki >= ARRAY_SIZE (stack) - 1)
18003 {
18004 complaint (&symfile_complaints,
18005 _("location description stack overflow"));
18006 return 0;
18007 }
18008
18009 if (stacki <= 0)
18010 {
18011 complaint (&symfile_complaints,
18012 _("location description stack underflow"));
18013 return 0;
18014 }
18015 }
18016 return (stack[stacki]);
18017 }
18018
18019 /* memory allocation interface */
18020
18021 static struct dwarf_block *
18022 dwarf_alloc_block (struct dwarf2_cu *cu)
18023 {
18024 struct dwarf_block *blk;
18025
18026 blk = (struct dwarf_block *)
18027 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18028 return (blk);
18029 }
18030
18031 static struct die_info *
18032 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18033 {
18034 struct die_info *die;
18035 size_t size = sizeof (struct die_info);
18036
18037 if (num_attrs > 1)
18038 size += (num_attrs - 1) * sizeof (struct attribute);
18039
18040 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18041 memset (die, 0, sizeof (struct die_info));
18042 return (die);
18043 }
18044
18045 \f
18046 /* Macro support. */
18047
18048 /* Return file name relative to the compilation directory of file number I in
18049 *LH's file name table. The result is allocated using xmalloc; the caller is
18050 responsible for freeing it. */
18051
18052 static char *
18053 file_file_name (int file, struct line_header *lh)
18054 {
18055 /* Is the file number a valid index into the line header's file name
18056 table? Remember that file numbers start with one, not zero. */
18057 if (1 <= file && file <= lh->num_file_names)
18058 {
18059 struct file_entry *fe = &lh->file_names[file - 1];
18060
18061 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18062 return xstrdup (fe->name);
18063 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18064 fe->name, NULL);
18065 }
18066 else
18067 {
18068 /* The compiler produced a bogus file number. We can at least
18069 record the macro definitions made in the file, even if we
18070 won't be able to find the file by name. */
18071 char fake_name[80];
18072
18073 xsnprintf (fake_name, sizeof (fake_name),
18074 "<bad macro file number %d>", file);
18075
18076 complaint (&symfile_complaints,
18077 _("bad file number in macro information (%d)"),
18078 file);
18079
18080 return xstrdup (fake_name);
18081 }
18082 }
18083
18084 /* Return the full name of file number I in *LH's file name table.
18085 Use COMP_DIR as the name of the current directory of the
18086 compilation. The result is allocated using xmalloc; the caller is
18087 responsible for freeing it. */
18088 static char *
18089 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18090 {
18091 /* Is the file number a valid index into the line header's file name
18092 table? Remember that file numbers start with one, not zero. */
18093 if (1 <= file && file <= lh->num_file_names)
18094 {
18095 char *relative = file_file_name (file, lh);
18096
18097 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18098 return relative;
18099 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18100 }
18101 else
18102 return file_file_name (file, lh);
18103 }
18104
18105
18106 static struct macro_source_file *
18107 macro_start_file (int file, int line,
18108 struct macro_source_file *current_file,
18109 const char *comp_dir,
18110 struct line_header *lh, struct objfile *objfile)
18111 {
18112 /* File name relative to the compilation directory of this source file. */
18113 char *file_name = file_file_name (file, lh);
18114
18115 /* We don't create a macro table for this compilation unit
18116 at all until we actually get a filename. */
18117 if (! pending_macros)
18118 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18119 objfile->per_bfd->macro_cache,
18120 comp_dir);
18121
18122 if (! current_file)
18123 {
18124 /* If we have no current file, then this must be the start_file
18125 directive for the compilation unit's main source file. */
18126 current_file = macro_set_main (pending_macros, file_name);
18127 macro_define_special (pending_macros);
18128 }
18129 else
18130 current_file = macro_include (current_file, line, file_name);
18131
18132 xfree (file_name);
18133
18134 return current_file;
18135 }
18136
18137
18138 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18139 followed by a null byte. */
18140 static char *
18141 copy_string (const char *buf, int len)
18142 {
18143 char *s = xmalloc (len + 1);
18144
18145 memcpy (s, buf, len);
18146 s[len] = '\0';
18147 return s;
18148 }
18149
18150
18151 static const char *
18152 consume_improper_spaces (const char *p, const char *body)
18153 {
18154 if (*p == ' ')
18155 {
18156 complaint (&symfile_complaints,
18157 _("macro definition contains spaces "
18158 "in formal argument list:\n`%s'"),
18159 body);
18160
18161 while (*p == ' ')
18162 p++;
18163 }
18164
18165 return p;
18166 }
18167
18168
18169 static void
18170 parse_macro_definition (struct macro_source_file *file, int line,
18171 const char *body)
18172 {
18173 const char *p;
18174
18175 /* The body string takes one of two forms. For object-like macro
18176 definitions, it should be:
18177
18178 <macro name> " " <definition>
18179
18180 For function-like macro definitions, it should be:
18181
18182 <macro name> "() " <definition>
18183 or
18184 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18185
18186 Spaces may appear only where explicitly indicated, and in the
18187 <definition>.
18188
18189 The Dwarf 2 spec says that an object-like macro's name is always
18190 followed by a space, but versions of GCC around March 2002 omit
18191 the space when the macro's definition is the empty string.
18192
18193 The Dwarf 2 spec says that there should be no spaces between the
18194 formal arguments in a function-like macro's formal argument list,
18195 but versions of GCC around March 2002 include spaces after the
18196 commas. */
18197
18198
18199 /* Find the extent of the macro name. The macro name is terminated
18200 by either a space or null character (for an object-like macro) or
18201 an opening paren (for a function-like macro). */
18202 for (p = body; *p; p++)
18203 if (*p == ' ' || *p == '(')
18204 break;
18205
18206 if (*p == ' ' || *p == '\0')
18207 {
18208 /* It's an object-like macro. */
18209 int name_len = p - body;
18210 char *name = copy_string (body, name_len);
18211 const char *replacement;
18212
18213 if (*p == ' ')
18214 replacement = body + name_len + 1;
18215 else
18216 {
18217 dwarf2_macro_malformed_definition_complaint (body);
18218 replacement = body + name_len;
18219 }
18220
18221 macro_define_object (file, line, name, replacement);
18222
18223 xfree (name);
18224 }
18225 else if (*p == '(')
18226 {
18227 /* It's a function-like macro. */
18228 char *name = copy_string (body, p - body);
18229 int argc = 0;
18230 int argv_size = 1;
18231 char **argv = xmalloc (argv_size * sizeof (*argv));
18232
18233 p++;
18234
18235 p = consume_improper_spaces (p, body);
18236
18237 /* Parse the formal argument list. */
18238 while (*p && *p != ')')
18239 {
18240 /* Find the extent of the current argument name. */
18241 const char *arg_start = p;
18242
18243 while (*p && *p != ',' && *p != ')' && *p != ' ')
18244 p++;
18245
18246 if (! *p || p == arg_start)
18247 dwarf2_macro_malformed_definition_complaint (body);
18248 else
18249 {
18250 /* Make sure argv has room for the new argument. */
18251 if (argc >= argv_size)
18252 {
18253 argv_size *= 2;
18254 argv = xrealloc (argv, argv_size * sizeof (*argv));
18255 }
18256
18257 argv[argc++] = copy_string (arg_start, p - arg_start);
18258 }
18259
18260 p = consume_improper_spaces (p, body);
18261
18262 /* Consume the comma, if present. */
18263 if (*p == ',')
18264 {
18265 p++;
18266
18267 p = consume_improper_spaces (p, body);
18268 }
18269 }
18270
18271 if (*p == ')')
18272 {
18273 p++;
18274
18275 if (*p == ' ')
18276 /* Perfectly formed definition, no complaints. */
18277 macro_define_function (file, line, name,
18278 argc, (const char **) argv,
18279 p + 1);
18280 else if (*p == '\0')
18281 {
18282 /* Complain, but do define it. */
18283 dwarf2_macro_malformed_definition_complaint (body);
18284 macro_define_function (file, line, name,
18285 argc, (const char **) argv,
18286 p);
18287 }
18288 else
18289 /* Just complain. */
18290 dwarf2_macro_malformed_definition_complaint (body);
18291 }
18292 else
18293 /* Just complain. */
18294 dwarf2_macro_malformed_definition_complaint (body);
18295
18296 xfree (name);
18297 {
18298 int i;
18299
18300 for (i = 0; i < argc; i++)
18301 xfree (argv[i]);
18302 }
18303 xfree (argv);
18304 }
18305 else
18306 dwarf2_macro_malformed_definition_complaint (body);
18307 }
18308
18309 /* Skip some bytes from BYTES according to the form given in FORM.
18310 Returns the new pointer. */
18311
18312 static gdb_byte *
18313 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18314 enum dwarf_form form,
18315 unsigned int offset_size,
18316 struct dwarf2_section_info *section)
18317 {
18318 unsigned int bytes_read;
18319
18320 switch (form)
18321 {
18322 case DW_FORM_data1:
18323 case DW_FORM_flag:
18324 ++bytes;
18325 break;
18326
18327 case DW_FORM_data2:
18328 bytes += 2;
18329 break;
18330
18331 case DW_FORM_data4:
18332 bytes += 4;
18333 break;
18334
18335 case DW_FORM_data8:
18336 bytes += 8;
18337 break;
18338
18339 case DW_FORM_string:
18340 read_direct_string (abfd, bytes, &bytes_read);
18341 bytes += bytes_read;
18342 break;
18343
18344 case DW_FORM_sec_offset:
18345 case DW_FORM_strp:
18346 case DW_FORM_GNU_strp_alt:
18347 bytes += offset_size;
18348 break;
18349
18350 case DW_FORM_block:
18351 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18352 bytes += bytes_read;
18353 break;
18354
18355 case DW_FORM_block1:
18356 bytes += 1 + read_1_byte (abfd, bytes);
18357 break;
18358 case DW_FORM_block2:
18359 bytes += 2 + read_2_bytes (abfd, bytes);
18360 break;
18361 case DW_FORM_block4:
18362 bytes += 4 + read_4_bytes (abfd, bytes);
18363 break;
18364
18365 case DW_FORM_sdata:
18366 case DW_FORM_udata:
18367 case DW_FORM_GNU_addr_index:
18368 case DW_FORM_GNU_str_index:
18369 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18370 if (bytes == NULL)
18371 {
18372 dwarf2_section_buffer_overflow_complaint (section);
18373 return NULL;
18374 }
18375 break;
18376
18377 default:
18378 {
18379 complain:
18380 complaint (&symfile_complaints,
18381 _("invalid form 0x%x in `%s'"),
18382 form,
18383 section->asection->name);
18384 return NULL;
18385 }
18386 }
18387
18388 return bytes;
18389 }
18390
18391 /* A helper for dwarf_decode_macros that handles skipping an unknown
18392 opcode. Returns an updated pointer to the macro data buffer; or,
18393 on error, issues a complaint and returns NULL. */
18394
18395 static gdb_byte *
18396 skip_unknown_opcode (unsigned int opcode,
18397 gdb_byte **opcode_definitions,
18398 gdb_byte *mac_ptr, gdb_byte *mac_end,
18399 bfd *abfd,
18400 unsigned int offset_size,
18401 struct dwarf2_section_info *section)
18402 {
18403 unsigned int bytes_read, i;
18404 unsigned long arg;
18405 gdb_byte *defn;
18406
18407 if (opcode_definitions[opcode] == NULL)
18408 {
18409 complaint (&symfile_complaints,
18410 _("unrecognized DW_MACFINO opcode 0x%x"),
18411 opcode);
18412 return NULL;
18413 }
18414
18415 defn = opcode_definitions[opcode];
18416 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18417 defn += bytes_read;
18418
18419 for (i = 0; i < arg; ++i)
18420 {
18421 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18422 section);
18423 if (mac_ptr == NULL)
18424 {
18425 /* skip_form_bytes already issued the complaint. */
18426 return NULL;
18427 }
18428 }
18429
18430 return mac_ptr;
18431 }
18432
18433 /* A helper function which parses the header of a macro section.
18434 If the macro section is the extended (for now called "GNU") type,
18435 then this updates *OFFSET_SIZE. Returns a pointer to just after
18436 the header, or issues a complaint and returns NULL on error. */
18437
18438 static gdb_byte *
18439 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18440 bfd *abfd,
18441 gdb_byte *mac_ptr,
18442 unsigned int *offset_size,
18443 int section_is_gnu)
18444 {
18445 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18446
18447 if (section_is_gnu)
18448 {
18449 unsigned int version, flags;
18450
18451 version = read_2_bytes (abfd, mac_ptr);
18452 if (version != 4)
18453 {
18454 complaint (&symfile_complaints,
18455 _("unrecognized version `%d' in .debug_macro section"),
18456 version);
18457 return NULL;
18458 }
18459 mac_ptr += 2;
18460
18461 flags = read_1_byte (abfd, mac_ptr);
18462 ++mac_ptr;
18463 *offset_size = (flags & 1) ? 8 : 4;
18464
18465 if ((flags & 2) != 0)
18466 /* We don't need the line table offset. */
18467 mac_ptr += *offset_size;
18468
18469 /* Vendor opcode descriptions. */
18470 if ((flags & 4) != 0)
18471 {
18472 unsigned int i, count;
18473
18474 count = read_1_byte (abfd, mac_ptr);
18475 ++mac_ptr;
18476 for (i = 0; i < count; ++i)
18477 {
18478 unsigned int opcode, bytes_read;
18479 unsigned long arg;
18480
18481 opcode = read_1_byte (abfd, mac_ptr);
18482 ++mac_ptr;
18483 opcode_definitions[opcode] = mac_ptr;
18484 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18485 mac_ptr += bytes_read;
18486 mac_ptr += arg;
18487 }
18488 }
18489 }
18490
18491 return mac_ptr;
18492 }
18493
18494 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18495 including DW_MACRO_GNU_transparent_include. */
18496
18497 static void
18498 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18499 struct macro_source_file *current_file,
18500 struct line_header *lh, const char *comp_dir,
18501 struct dwarf2_section_info *section,
18502 int section_is_gnu, int section_is_dwz,
18503 unsigned int offset_size,
18504 struct objfile *objfile,
18505 htab_t include_hash)
18506 {
18507 enum dwarf_macro_record_type macinfo_type;
18508 int at_commandline;
18509 gdb_byte *opcode_definitions[256];
18510
18511 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18512 &offset_size, section_is_gnu);
18513 if (mac_ptr == NULL)
18514 {
18515 /* We already issued a complaint. */
18516 return;
18517 }
18518
18519 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18520 GDB is still reading the definitions from command line. First
18521 DW_MACINFO_start_file will need to be ignored as it was already executed
18522 to create CURRENT_FILE for the main source holding also the command line
18523 definitions. On first met DW_MACINFO_start_file this flag is reset to
18524 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18525
18526 at_commandline = 1;
18527
18528 do
18529 {
18530 /* Do we at least have room for a macinfo type byte? */
18531 if (mac_ptr >= mac_end)
18532 {
18533 dwarf2_section_buffer_overflow_complaint (section);
18534 break;
18535 }
18536
18537 macinfo_type = read_1_byte (abfd, mac_ptr);
18538 mac_ptr++;
18539
18540 /* Note that we rely on the fact that the corresponding GNU and
18541 DWARF constants are the same. */
18542 switch (macinfo_type)
18543 {
18544 /* A zero macinfo type indicates the end of the macro
18545 information. */
18546 case 0:
18547 break;
18548
18549 case DW_MACRO_GNU_define:
18550 case DW_MACRO_GNU_undef:
18551 case DW_MACRO_GNU_define_indirect:
18552 case DW_MACRO_GNU_undef_indirect:
18553 case DW_MACRO_GNU_define_indirect_alt:
18554 case DW_MACRO_GNU_undef_indirect_alt:
18555 {
18556 unsigned int bytes_read;
18557 int line;
18558 char *body;
18559 int is_define;
18560
18561 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18562 mac_ptr += bytes_read;
18563
18564 if (macinfo_type == DW_MACRO_GNU_define
18565 || macinfo_type == DW_MACRO_GNU_undef)
18566 {
18567 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18568 mac_ptr += bytes_read;
18569 }
18570 else
18571 {
18572 LONGEST str_offset;
18573
18574 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18575 mac_ptr += offset_size;
18576
18577 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18578 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18579 || section_is_dwz)
18580 {
18581 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18582
18583 body = read_indirect_string_from_dwz (dwz, str_offset);
18584 }
18585 else
18586 body = read_indirect_string_at_offset (abfd, str_offset);
18587 }
18588
18589 is_define = (macinfo_type == DW_MACRO_GNU_define
18590 || macinfo_type == DW_MACRO_GNU_define_indirect
18591 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18592 if (! current_file)
18593 {
18594 /* DWARF violation as no main source is present. */
18595 complaint (&symfile_complaints,
18596 _("debug info with no main source gives macro %s "
18597 "on line %d: %s"),
18598 is_define ? _("definition") : _("undefinition"),
18599 line, body);
18600 break;
18601 }
18602 if ((line == 0 && !at_commandline)
18603 || (line != 0 && at_commandline))
18604 complaint (&symfile_complaints,
18605 _("debug info gives %s macro %s with %s line %d: %s"),
18606 at_commandline ? _("command-line") : _("in-file"),
18607 is_define ? _("definition") : _("undefinition"),
18608 line == 0 ? _("zero") : _("non-zero"), line, body);
18609
18610 if (is_define)
18611 parse_macro_definition (current_file, line, body);
18612 else
18613 {
18614 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18615 || macinfo_type == DW_MACRO_GNU_undef_indirect
18616 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18617 macro_undef (current_file, line, body);
18618 }
18619 }
18620 break;
18621
18622 case DW_MACRO_GNU_start_file:
18623 {
18624 unsigned int bytes_read;
18625 int line, file;
18626
18627 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18628 mac_ptr += bytes_read;
18629 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18630 mac_ptr += bytes_read;
18631
18632 if ((line == 0 && !at_commandline)
18633 || (line != 0 && at_commandline))
18634 complaint (&symfile_complaints,
18635 _("debug info gives source %d included "
18636 "from %s at %s line %d"),
18637 file, at_commandline ? _("command-line") : _("file"),
18638 line == 0 ? _("zero") : _("non-zero"), line);
18639
18640 if (at_commandline)
18641 {
18642 /* This DW_MACRO_GNU_start_file was executed in the
18643 pass one. */
18644 at_commandline = 0;
18645 }
18646 else
18647 current_file = macro_start_file (file, line,
18648 current_file, comp_dir,
18649 lh, objfile);
18650 }
18651 break;
18652
18653 case DW_MACRO_GNU_end_file:
18654 if (! current_file)
18655 complaint (&symfile_complaints,
18656 _("macro debug info has an unmatched "
18657 "`close_file' directive"));
18658 else
18659 {
18660 current_file = current_file->included_by;
18661 if (! current_file)
18662 {
18663 enum dwarf_macro_record_type next_type;
18664
18665 /* GCC circa March 2002 doesn't produce the zero
18666 type byte marking the end of the compilation
18667 unit. Complain if it's not there, but exit no
18668 matter what. */
18669
18670 /* Do we at least have room for a macinfo type byte? */
18671 if (mac_ptr >= mac_end)
18672 {
18673 dwarf2_section_buffer_overflow_complaint (section);
18674 return;
18675 }
18676
18677 /* We don't increment mac_ptr here, so this is just
18678 a look-ahead. */
18679 next_type = read_1_byte (abfd, mac_ptr);
18680 if (next_type != 0)
18681 complaint (&symfile_complaints,
18682 _("no terminating 0-type entry for "
18683 "macros in `.debug_macinfo' section"));
18684
18685 return;
18686 }
18687 }
18688 break;
18689
18690 case DW_MACRO_GNU_transparent_include:
18691 case DW_MACRO_GNU_transparent_include_alt:
18692 {
18693 LONGEST offset;
18694 void **slot;
18695 bfd *include_bfd = abfd;
18696 struct dwarf2_section_info *include_section = section;
18697 struct dwarf2_section_info alt_section;
18698 gdb_byte *include_mac_end = mac_end;
18699 int is_dwz = section_is_dwz;
18700 gdb_byte *new_mac_ptr;
18701
18702 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18703 mac_ptr += offset_size;
18704
18705 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18706 {
18707 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18708
18709 dwarf2_read_section (dwarf2_per_objfile->objfile,
18710 &dwz->macro);
18711
18712 include_bfd = dwz->macro.asection->owner;
18713 include_section = &dwz->macro;
18714 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18715 is_dwz = 1;
18716 }
18717
18718 new_mac_ptr = include_section->buffer + offset;
18719 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18720
18721 if (*slot != NULL)
18722 {
18723 /* This has actually happened; see
18724 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18725 complaint (&symfile_complaints,
18726 _("recursive DW_MACRO_GNU_transparent_include in "
18727 ".debug_macro section"));
18728 }
18729 else
18730 {
18731 *slot = new_mac_ptr;
18732
18733 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18734 include_mac_end, current_file,
18735 lh, comp_dir,
18736 section, section_is_gnu, is_dwz,
18737 offset_size, objfile, include_hash);
18738
18739 htab_remove_elt (include_hash, new_mac_ptr);
18740 }
18741 }
18742 break;
18743
18744 case DW_MACINFO_vendor_ext:
18745 if (!section_is_gnu)
18746 {
18747 unsigned int bytes_read;
18748 int constant;
18749
18750 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18751 mac_ptr += bytes_read;
18752 read_direct_string (abfd, mac_ptr, &bytes_read);
18753 mac_ptr += bytes_read;
18754
18755 /* We don't recognize any vendor extensions. */
18756 break;
18757 }
18758 /* FALLTHROUGH */
18759
18760 default:
18761 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18762 mac_ptr, mac_end, abfd, offset_size,
18763 section);
18764 if (mac_ptr == NULL)
18765 return;
18766 break;
18767 }
18768 } while (macinfo_type != 0);
18769 }
18770
18771 static void
18772 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18773 const char *comp_dir, int section_is_gnu)
18774 {
18775 struct objfile *objfile = dwarf2_per_objfile->objfile;
18776 struct line_header *lh = cu->line_header;
18777 bfd *abfd;
18778 gdb_byte *mac_ptr, *mac_end;
18779 struct macro_source_file *current_file = 0;
18780 enum dwarf_macro_record_type macinfo_type;
18781 unsigned int offset_size = cu->header.offset_size;
18782 gdb_byte *opcode_definitions[256];
18783 struct cleanup *cleanup;
18784 htab_t include_hash;
18785 void **slot;
18786 struct dwarf2_section_info *section;
18787 const char *section_name;
18788
18789 if (cu->dwo_unit != NULL)
18790 {
18791 if (section_is_gnu)
18792 {
18793 section = &cu->dwo_unit->dwo_file->sections.macro;
18794 section_name = ".debug_macro.dwo";
18795 }
18796 else
18797 {
18798 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18799 section_name = ".debug_macinfo.dwo";
18800 }
18801 }
18802 else
18803 {
18804 if (section_is_gnu)
18805 {
18806 section = &dwarf2_per_objfile->macro;
18807 section_name = ".debug_macro";
18808 }
18809 else
18810 {
18811 section = &dwarf2_per_objfile->macinfo;
18812 section_name = ".debug_macinfo";
18813 }
18814 }
18815
18816 dwarf2_read_section (objfile, section);
18817 if (section->buffer == NULL)
18818 {
18819 complaint (&symfile_complaints, _("missing %s section"), section_name);
18820 return;
18821 }
18822 abfd = section->asection->owner;
18823
18824 /* First pass: Find the name of the base filename.
18825 This filename is needed in order to process all macros whose definition
18826 (or undefinition) comes from the command line. These macros are defined
18827 before the first DW_MACINFO_start_file entry, and yet still need to be
18828 associated to the base file.
18829
18830 To determine the base file name, we scan the macro definitions until we
18831 reach the first DW_MACINFO_start_file entry. We then initialize
18832 CURRENT_FILE accordingly so that any macro definition found before the
18833 first DW_MACINFO_start_file can still be associated to the base file. */
18834
18835 mac_ptr = section->buffer + offset;
18836 mac_end = section->buffer + section->size;
18837
18838 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18839 &offset_size, section_is_gnu);
18840 if (mac_ptr == NULL)
18841 {
18842 /* We already issued a complaint. */
18843 return;
18844 }
18845
18846 do
18847 {
18848 /* Do we at least have room for a macinfo type byte? */
18849 if (mac_ptr >= mac_end)
18850 {
18851 /* Complaint is printed during the second pass as GDB will probably
18852 stop the first pass earlier upon finding
18853 DW_MACINFO_start_file. */
18854 break;
18855 }
18856
18857 macinfo_type = read_1_byte (abfd, mac_ptr);
18858 mac_ptr++;
18859
18860 /* Note that we rely on the fact that the corresponding GNU and
18861 DWARF constants are the same. */
18862 switch (macinfo_type)
18863 {
18864 /* A zero macinfo type indicates the end of the macro
18865 information. */
18866 case 0:
18867 break;
18868
18869 case DW_MACRO_GNU_define:
18870 case DW_MACRO_GNU_undef:
18871 /* Only skip the data by MAC_PTR. */
18872 {
18873 unsigned int bytes_read;
18874
18875 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18876 mac_ptr += bytes_read;
18877 read_direct_string (abfd, mac_ptr, &bytes_read);
18878 mac_ptr += bytes_read;
18879 }
18880 break;
18881
18882 case DW_MACRO_GNU_start_file:
18883 {
18884 unsigned int bytes_read;
18885 int line, file;
18886
18887 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18888 mac_ptr += bytes_read;
18889 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18890 mac_ptr += bytes_read;
18891
18892 current_file = macro_start_file (file, line, current_file,
18893 comp_dir, lh, objfile);
18894 }
18895 break;
18896
18897 case DW_MACRO_GNU_end_file:
18898 /* No data to skip by MAC_PTR. */
18899 break;
18900
18901 case DW_MACRO_GNU_define_indirect:
18902 case DW_MACRO_GNU_undef_indirect:
18903 case DW_MACRO_GNU_define_indirect_alt:
18904 case DW_MACRO_GNU_undef_indirect_alt:
18905 {
18906 unsigned int bytes_read;
18907
18908 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18909 mac_ptr += bytes_read;
18910 mac_ptr += offset_size;
18911 }
18912 break;
18913
18914 case DW_MACRO_GNU_transparent_include:
18915 case DW_MACRO_GNU_transparent_include_alt:
18916 /* Note that, according to the spec, a transparent include
18917 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18918 skip this opcode. */
18919 mac_ptr += offset_size;
18920 break;
18921
18922 case DW_MACINFO_vendor_ext:
18923 /* Only skip the data by MAC_PTR. */
18924 if (!section_is_gnu)
18925 {
18926 unsigned int bytes_read;
18927
18928 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18929 mac_ptr += bytes_read;
18930 read_direct_string (abfd, mac_ptr, &bytes_read);
18931 mac_ptr += bytes_read;
18932 }
18933 /* FALLTHROUGH */
18934
18935 default:
18936 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18937 mac_ptr, mac_end, abfd, offset_size,
18938 section);
18939 if (mac_ptr == NULL)
18940 return;
18941 break;
18942 }
18943 } while (macinfo_type != 0 && current_file == NULL);
18944
18945 /* Second pass: Process all entries.
18946
18947 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18948 command-line macro definitions/undefinitions. This flag is unset when we
18949 reach the first DW_MACINFO_start_file entry. */
18950
18951 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18952 NULL, xcalloc, xfree);
18953 cleanup = make_cleanup_htab_delete (include_hash);
18954 mac_ptr = section->buffer + offset;
18955 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18956 *slot = mac_ptr;
18957 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18958 current_file, lh, comp_dir, section,
18959 section_is_gnu, 0,
18960 offset_size, objfile, include_hash);
18961 do_cleanups (cleanup);
18962 }
18963
18964 /* Check if the attribute's form is a DW_FORM_block*
18965 if so return true else false. */
18966
18967 static int
18968 attr_form_is_block (struct attribute *attr)
18969 {
18970 return (attr == NULL ? 0 :
18971 attr->form == DW_FORM_block1
18972 || attr->form == DW_FORM_block2
18973 || attr->form == DW_FORM_block4
18974 || attr->form == DW_FORM_block
18975 || attr->form == DW_FORM_exprloc);
18976 }
18977
18978 /* Return non-zero if ATTR's value is a section offset --- classes
18979 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18980 You may use DW_UNSND (attr) to retrieve such offsets.
18981
18982 Section 7.5.4, "Attribute Encodings", explains that no attribute
18983 may have a value that belongs to more than one of these classes; it
18984 would be ambiguous if we did, because we use the same forms for all
18985 of them. */
18986
18987 static int
18988 attr_form_is_section_offset (struct attribute *attr)
18989 {
18990 return (attr->form == DW_FORM_data4
18991 || attr->form == DW_FORM_data8
18992 || attr->form == DW_FORM_sec_offset);
18993 }
18994
18995 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18996 zero otherwise. When this function returns true, you can apply
18997 dwarf2_get_attr_constant_value to it.
18998
18999 However, note that for some attributes you must check
19000 attr_form_is_section_offset before using this test. DW_FORM_data4
19001 and DW_FORM_data8 are members of both the constant class, and of
19002 the classes that contain offsets into other debug sections
19003 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19004 that, if an attribute's can be either a constant or one of the
19005 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19006 taken as section offsets, not constants. */
19007
19008 static int
19009 attr_form_is_constant (struct attribute *attr)
19010 {
19011 switch (attr->form)
19012 {
19013 case DW_FORM_sdata:
19014 case DW_FORM_udata:
19015 case DW_FORM_data1:
19016 case DW_FORM_data2:
19017 case DW_FORM_data4:
19018 case DW_FORM_data8:
19019 return 1;
19020 default:
19021 return 0;
19022 }
19023 }
19024
19025 /* Return the .debug_loc section to use for CU.
19026 For DWO files use .debug_loc.dwo. */
19027
19028 static struct dwarf2_section_info *
19029 cu_debug_loc_section (struct dwarf2_cu *cu)
19030 {
19031 if (cu->dwo_unit)
19032 return &cu->dwo_unit->dwo_file->sections.loc;
19033 return &dwarf2_per_objfile->loc;
19034 }
19035
19036 /* A helper function that fills in a dwarf2_loclist_baton. */
19037
19038 static void
19039 fill_in_loclist_baton (struct dwarf2_cu *cu,
19040 struct dwarf2_loclist_baton *baton,
19041 struct attribute *attr)
19042 {
19043 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19044
19045 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19046
19047 baton->per_cu = cu->per_cu;
19048 gdb_assert (baton->per_cu);
19049 /* We don't know how long the location list is, but make sure we
19050 don't run off the edge of the section. */
19051 baton->size = section->size - DW_UNSND (attr);
19052 baton->data = section->buffer + DW_UNSND (attr);
19053 baton->base_address = cu->base_address;
19054 baton->from_dwo = cu->dwo_unit != NULL;
19055 }
19056
19057 static void
19058 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19059 struct dwarf2_cu *cu, int is_block)
19060 {
19061 struct objfile *objfile = dwarf2_per_objfile->objfile;
19062 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19063
19064 if (attr_form_is_section_offset (attr)
19065 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19066 the section. If so, fall through to the complaint in the
19067 other branch. */
19068 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19069 {
19070 struct dwarf2_loclist_baton *baton;
19071
19072 baton = obstack_alloc (&objfile->objfile_obstack,
19073 sizeof (struct dwarf2_loclist_baton));
19074
19075 fill_in_loclist_baton (cu, baton, attr);
19076
19077 if (cu->base_known == 0)
19078 complaint (&symfile_complaints,
19079 _("Location list used without "
19080 "specifying the CU base address."));
19081
19082 SYMBOL_ACLASS_INDEX (sym) = (is_block
19083 ? dwarf2_loclist_block_index
19084 : dwarf2_loclist_index);
19085 SYMBOL_LOCATION_BATON (sym) = baton;
19086 }
19087 else
19088 {
19089 struct dwarf2_locexpr_baton *baton;
19090
19091 baton = obstack_alloc (&objfile->objfile_obstack,
19092 sizeof (struct dwarf2_locexpr_baton));
19093 baton->per_cu = cu->per_cu;
19094 gdb_assert (baton->per_cu);
19095
19096 if (attr_form_is_block (attr))
19097 {
19098 /* Note that we're just copying the block's data pointer
19099 here, not the actual data. We're still pointing into the
19100 info_buffer for SYM's objfile; right now we never release
19101 that buffer, but when we do clean up properly this may
19102 need to change. */
19103 baton->size = DW_BLOCK (attr)->size;
19104 baton->data = DW_BLOCK (attr)->data;
19105 }
19106 else
19107 {
19108 dwarf2_invalid_attrib_class_complaint ("location description",
19109 SYMBOL_NATURAL_NAME (sym));
19110 baton->size = 0;
19111 }
19112
19113 SYMBOL_ACLASS_INDEX (sym) = (is_block
19114 ? dwarf2_locexpr_block_index
19115 : dwarf2_locexpr_index);
19116 SYMBOL_LOCATION_BATON (sym) = baton;
19117 }
19118 }
19119
19120 /* Return the OBJFILE associated with the compilation unit CU. If CU
19121 came from a separate debuginfo file, then the master objfile is
19122 returned. */
19123
19124 struct objfile *
19125 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19126 {
19127 struct objfile *objfile = per_cu->objfile;
19128
19129 /* Return the master objfile, so that we can report and look up the
19130 correct file containing this variable. */
19131 if (objfile->separate_debug_objfile_backlink)
19132 objfile = objfile->separate_debug_objfile_backlink;
19133
19134 return objfile;
19135 }
19136
19137 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19138 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19139 CU_HEADERP first. */
19140
19141 static const struct comp_unit_head *
19142 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19143 struct dwarf2_per_cu_data *per_cu)
19144 {
19145 gdb_byte *info_ptr;
19146
19147 if (per_cu->cu)
19148 return &per_cu->cu->header;
19149
19150 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19151
19152 memset (cu_headerp, 0, sizeof (*cu_headerp));
19153 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19154
19155 return cu_headerp;
19156 }
19157
19158 /* Return the address size given in the compilation unit header for CU. */
19159
19160 int
19161 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19162 {
19163 struct comp_unit_head cu_header_local;
19164 const struct comp_unit_head *cu_headerp;
19165
19166 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19167
19168 return cu_headerp->addr_size;
19169 }
19170
19171 /* Return the offset size given in the compilation unit header for CU. */
19172
19173 int
19174 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19175 {
19176 struct comp_unit_head cu_header_local;
19177 const struct comp_unit_head *cu_headerp;
19178
19179 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19180
19181 return cu_headerp->offset_size;
19182 }
19183
19184 /* See its dwarf2loc.h declaration. */
19185
19186 int
19187 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19188 {
19189 struct comp_unit_head cu_header_local;
19190 const struct comp_unit_head *cu_headerp;
19191
19192 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19193
19194 if (cu_headerp->version == 2)
19195 return cu_headerp->addr_size;
19196 else
19197 return cu_headerp->offset_size;
19198 }
19199
19200 /* Return the text offset of the CU. The returned offset comes from
19201 this CU's objfile. If this objfile came from a separate debuginfo
19202 file, then the offset may be different from the corresponding
19203 offset in the parent objfile. */
19204
19205 CORE_ADDR
19206 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19207 {
19208 struct objfile *objfile = per_cu->objfile;
19209
19210 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19211 }
19212
19213 /* Locate the .debug_info compilation unit from CU's objfile which contains
19214 the DIE at OFFSET. Raises an error on failure. */
19215
19216 static struct dwarf2_per_cu_data *
19217 dwarf2_find_containing_comp_unit (sect_offset offset,
19218 unsigned int offset_in_dwz,
19219 struct objfile *objfile)
19220 {
19221 struct dwarf2_per_cu_data *this_cu;
19222 int low, high;
19223 const sect_offset *cu_off;
19224
19225 low = 0;
19226 high = dwarf2_per_objfile->n_comp_units - 1;
19227 while (high > low)
19228 {
19229 struct dwarf2_per_cu_data *mid_cu;
19230 int mid = low + (high - low) / 2;
19231
19232 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19233 cu_off = &mid_cu->offset;
19234 if (mid_cu->is_dwz > offset_in_dwz
19235 || (mid_cu->is_dwz == offset_in_dwz
19236 && cu_off->sect_off >= offset.sect_off))
19237 high = mid;
19238 else
19239 low = mid + 1;
19240 }
19241 gdb_assert (low == high);
19242 this_cu = dwarf2_per_objfile->all_comp_units[low];
19243 cu_off = &this_cu->offset;
19244 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19245 {
19246 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19247 error (_("Dwarf Error: could not find partial DIE containing "
19248 "offset 0x%lx [in module %s]"),
19249 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19250
19251 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19252 <= offset.sect_off);
19253 return dwarf2_per_objfile->all_comp_units[low-1];
19254 }
19255 else
19256 {
19257 this_cu = dwarf2_per_objfile->all_comp_units[low];
19258 if (low == dwarf2_per_objfile->n_comp_units - 1
19259 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19260 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19261 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19262 return this_cu;
19263 }
19264 }
19265
19266 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19267
19268 static void
19269 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19270 {
19271 memset (cu, 0, sizeof (*cu));
19272 per_cu->cu = cu;
19273 cu->per_cu = per_cu;
19274 cu->objfile = per_cu->objfile;
19275 obstack_init (&cu->comp_unit_obstack);
19276 }
19277
19278 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19279
19280 static void
19281 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19282 enum language pretend_language)
19283 {
19284 struct attribute *attr;
19285
19286 /* Set the language we're debugging. */
19287 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19288 if (attr)
19289 set_cu_language (DW_UNSND (attr), cu);
19290 else
19291 {
19292 cu->language = pretend_language;
19293 cu->language_defn = language_def (cu->language);
19294 }
19295
19296 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19297 if (attr)
19298 cu->producer = DW_STRING (attr);
19299 }
19300
19301 /* Release one cached compilation unit, CU. We unlink it from the tree
19302 of compilation units, but we don't remove it from the read_in_chain;
19303 the caller is responsible for that.
19304 NOTE: DATA is a void * because this function is also used as a
19305 cleanup routine. */
19306
19307 static void
19308 free_heap_comp_unit (void *data)
19309 {
19310 struct dwarf2_cu *cu = data;
19311
19312 gdb_assert (cu->per_cu != NULL);
19313 cu->per_cu->cu = NULL;
19314 cu->per_cu = NULL;
19315
19316 obstack_free (&cu->comp_unit_obstack, NULL);
19317
19318 xfree (cu);
19319 }
19320
19321 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19322 when we're finished with it. We can't free the pointer itself, but be
19323 sure to unlink it from the cache. Also release any associated storage. */
19324
19325 static void
19326 free_stack_comp_unit (void *data)
19327 {
19328 struct dwarf2_cu *cu = data;
19329
19330 gdb_assert (cu->per_cu != NULL);
19331 cu->per_cu->cu = NULL;
19332 cu->per_cu = NULL;
19333
19334 obstack_free (&cu->comp_unit_obstack, NULL);
19335 cu->partial_dies = NULL;
19336 }
19337
19338 /* Free all cached compilation units. */
19339
19340 static void
19341 free_cached_comp_units (void *data)
19342 {
19343 struct dwarf2_per_cu_data *per_cu, **last_chain;
19344
19345 per_cu = dwarf2_per_objfile->read_in_chain;
19346 last_chain = &dwarf2_per_objfile->read_in_chain;
19347 while (per_cu != NULL)
19348 {
19349 struct dwarf2_per_cu_data *next_cu;
19350
19351 next_cu = per_cu->cu->read_in_chain;
19352
19353 free_heap_comp_unit (per_cu->cu);
19354 *last_chain = next_cu;
19355
19356 per_cu = next_cu;
19357 }
19358 }
19359
19360 /* Increase the age counter on each cached compilation unit, and free
19361 any that are too old. */
19362
19363 static void
19364 age_cached_comp_units (void)
19365 {
19366 struct dwarf2_per_cu_data *per_cu, **last_chain;
19367
19368 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19369 per_cu = dwarf2_per_objfile->read_in_chain;
19370 while (per_cu != NULL)
19371 {
19372 per_cu->cu->last_used ++;
19373 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19374 dwarf2_mark (per_cu->cu);
19375 per_cu = per_cu->cu->read_in_chain;
19376 }
19377
19378 per_cu = dwarf2_per_objfile->read_in_chain;
19379 last_chain = &dwarf2_per_objfile->read_in_chain;
19380 while (per_cu != NULL)
19381 {
19382 struct dwarf2_per_cu_data *next_cu;
19383
19384 next_cu = per_cu->cu->read_in_chain;
19385
19386 if (!per_cu->cu->mark)
19387 {
19388 free_heap_comp_unit (per_cu->cu);
19389 *last_chain = next_cu;
19390 }
19391 else
19392 last_chain = &per_cu->cu->read_in_chain;
19393
19394 per_cu = next_cu;
19395 }
19396 }
19397
19398 /* Remove a single compilation unit from the cache. */
19399
19400 static void
19401 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19402 {
19403 struct dwarf2_per_cu_data *per_cu, **last_chain;
19404
19405 per_cu = dwarf2_per_objfile->read_in_chain;
19406 last_chain = &dwarf2_per_objfile->read_in_chain;
19407 while (per_cu != NULL)
19408 {
19409 struct dwarf2_per_cu_data *next_cu;
19410
19411 next_cu = per_cu->cu->read_in_chain;
19412
19413 if (per_cu == target_per_cu)
19414 {
19415 free_heap_comp_unit (per_cu->cu);
19416 per_cu->cu = NULL;
19417 *last_chain = next_cu;
19418 break;
19419 }
19420 else
19421 last_chain = &per_cu->cu->read_in_chain;
19422
19423 per_cu = next_cu;
19424 }
19425 }
19426
19427 /* Release all extra memory associated with OBJFILE. */
19428
19429 void
19430 dwarf2_free_objfile (struct objfile *objfile)
19431 {
19432 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19433
19434 if (dwarf2_per_objfile == NULL)
19435 return;
19436
19437 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19438 free_cached_comp_units (NULL);
19439
19440 if (dwarf2_per_objfile->quick_file_names_table)
19441 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19442
19443 /* Everything else should be on the objfile obstack. */
19444 }
19445
19446 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19447 We store these in a hash table separate from the DIEs, and preserve them
19448 when the DIEs are flushed out of cache.
19449
19450 The CU "per_cu" pointer is needed because offset alone is not enough to
19451 uniquely identify the type. A file may have multiple .debug_types sections,
19452 or the type may come from a DWO file. We have to use something in
19453 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19454 routine, get_die_type_at_offset, from outside this file, and thus won't
19455 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19456 of the objfile. */
19457
19458 struct dwarf2_per_cu_offset_and_type
19459 {
19460 const struct dwarf2_per_cu_data *per_cu;
19461 sect_offset offset;
19462 struct type *type;
19463 };
19464
19465 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19466
19467 static hashval_t
19468 per_cu_offset_and_type_hash (const void *item)
19469 {
19470 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19471
19472 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19473 }
19474
19475 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19476
19477 static int
19478 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19479 {
19480 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19481 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19482
19483 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19484 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19485 }
19486
19487 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19488 table if necessary. For convenience, return TYPE.
19489
19490 The DIEs reading must have careful ordering to:
19491 * Not cause infite loops trying to read in DIEs as a prerequisite for
19492 reading current DIE.
19493 * Not trying to dereference contents of still incompletely read in types
19494 while reading in other DIEs.
19495 * Enable referencing still incompletely read in types just by a pointer to
19496 the type without accessing its fields.
19497
19498 Therefore caller should follow these rules:
19499 * Try to fetch any prerequisite types we may need to build this DIE type
19500 before building the type and calling set_die_type.
19501 * After building type call set_die_type for current DIE as soon as
19502 possible before fetching more types to complete the current type.
19503 * Make the type as complete as possible before fetching more types. */
19504
19505 static struct type *
19506 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19507 {
19508 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19509 struct objfile *objfile = cu->objfile;
19510
19511 /* For Ada types, make sure that the gnat-specific data is always
19512 initialized (if not already set). There are a few types where
19513 we should not be doing so, because the type-specific area is
19514 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19515 where the type-specific area is used to store the floatformat).
19516 But this is not a problem, because the gnat-specific information
19517 is actually not needed for these types. */
19518 if (need_gnat_info (cu)
19519 && TYPE_CODE (type) != TYPE_CODE_FUNC
19520 && TYPE_CODE (type) != TYPE_CODE_FLT
19521 && !HAVE_GNAT_AUX_INFO (type))
19522 INIT_GNAT_SPECIFIC (type);
19523
19524 if (dwarf2_per_objfile->die_type_hash == NULL)
19525 {
19526 dwarf2_per_objfile->die_type_hash =
19527 htab_create_alloc_ex (127,
19528 per_cu_offset_and_type_hash,
19529 per_cu_offset_and_type_eq,
19530 NULL,
19531 &objfile->objfile_obstack,
19532 hashtab_obstack_allocate,
19533 dummy_obstack_deallocate);
19534 }
19535
19536 ofs.per_cu = cu->per_cu;
19537 ofs.offset = die->offset;
19538 ofs.type = type;
19539 slot = (struct dwarf2_per_cu_offset_and_type **)
19540 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19541 if (*slot)
19542 complaint (&symfile_complaints,
19543 _("A problem internal to GDB: DIE 0x%x has type already set"),
19544 die->offset.sect_off);
19545 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19546 **slot = ofs;
19547 return type;
19548 }
19549
19550 /* Look up the type for the die at OFFSET in the appropriate type_hash
19551 table, or return NULL if the die does not have a saved type. */
19552
19553 static struct type *
19554 get_die_type_at_offset (sect_offset offset,
19555 struct dwarf2_per_cu_data *per_cu)
19556 {
19557 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19558
19559 if (dwarf2_per_objfile->die_type_hash == NULL)
19560 return NULL;
19561
19562 ofs.per_cu = per_cu;
19563 ofs.offset = offset;
19564 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19565 if (slot)
19566 return slot->type;
19567 else
19568 return NULL;
19569 }
19570
19571 /* Look up the type for DIE in the appropriate type_hash table,
19572 or return NULL if DIE does not have a saved type. */
19573
19574 static struct type *
19575 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19576 {
19577 return get_die_type_at_offset (die->offset, cu->per_cu);
19578 }
19579
19580 /* Add a dependence relationship from CU to REF_PER_CU. */
19581
19582 static void
19583 dwarf2_add_dependence (struct dwarf2_cu *cu,
19584 struct dwarf2_per_cu_data *ref_per_cu)
19585 {
19586 void **slot;
19587
19588 if (cu->dependencies == NULL)
19589 cu->dependencies
19590 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19591 NULL, &cu->comp_unit_obstack,
19592 hashtab_obstack_allocate,
19593 dummy_obstack_deallocate);
19594
19595 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19596 if (*slot == NULL)
19597 *slot = ref_per_cu;
19598 }
19599
19600 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19601 Set the mark field in every compilation unit in the
19602 cache that we must keep because we are keeping CU. */
19603
19604 static int
19605 dwarf2_mark_helper (void **slot, void *data)
19606 {
19607 struct dwarf2_per_cu_data *per_cu;
19608
19609 per_cu = (struct dwarf2_per_cu_data *) *slot;
19610
19611 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19612 reading of the chain. As such dependencies remain valid it is not much
19613 useful to track and undo them during QUIT cleanups. */
19614 if (per_cu->cu == NULL)
19615 return 1;
19616
19617 if (per_cu->cu->mark)
19618 return 1;
19619 per_cu->cu->mark = 1;
19620
19621 if (per_cu->cu->dependencies != NULL)
19622 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19623
19624 return 1;
19625 }
19626
19627 /* Set the mark field in CU and in every other compilation unit in the
19628 cache that we must keep because we are keeping CU. */
19629
19630 static void
19631 dwarf2_mark (struct dwarf2_cu *cu)
19632 {
19633 if (cu->mark)
19634 return;
19635 cu->mark = 1;
19636 if (cu->dependencies != NULL)
19637 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19638 }
19639
19640 static void
19641 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19642 {
19643 while (per_cu)
19644 {
19645 per_cu->cu->mark = 0;
19646 per_cu = per_cu->cu->read_in_chain;
19647 }
19648 }
19649
19650 /* Trivial hash function for partial_die_info: the hash value of a DIE
19651 is its offset in .debug_info for this objfile. */
19652
19653 static hashval_t
19654 partial_die_hash (const void *item)
19655 {
19656 const struct partial_die_info *part_die = item;
19657
19658 return part_die->offset.sect_off;
19659 }
19660
19661 /* Trivial comparison function for partial_die_info structures: two DIEs
19662 are equal if they have the same offset. */
19663
19664 static int
19665 partial_die_eq (const void *item_lhs, const void *item_rhs)
19666 {
19667 const struct partial_die_info *part_die_lhs = item_lhs;
19668 const struct partial_die_info *part_die_rhs = item_rhs;
19669
19670 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19671 }
19672
19673 static struct cmd_list_element *set_dwarf2_cmdlist;
19674 static struct cmd_list_element *show_dwarf2_cmdlist;
19675
19676 static void
19677 set_dwarf2_cmd (char *args, int from_tty)
19678 {
19679 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19680 }
19681
19682 static void
19683 show_dwarf2_cmd (char *args, int from_tty)
19684 {
19685 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19686 }
19687
19688 /* Free data associated with OBJFILE, if necessary. */
19689
19690 static void
19691 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19692 {
19693 struct dwarf2_per_objfile *data = d;
19694 int ix;
19695
19696 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19697 VEC_free (dwarf2_per_cu_ptr,
19698 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19699
19700 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19701 VEC_free (dwarf2_per_cu_ptr,
19702 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19703
19704 VEC_free (dwarf2_section_info_def, data->types);
19705
19706 if (data->dwo_files)
19707 free_dwo_files (data->dwo_files, objfile);
19708
19709 if (data->dwz_file && data->dwz_file->dwz_bfd)
19710 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19711 }
19712
19713 \f
19714 /* The "save gdb-index" command. */
19715
19716 /* The contents of the hash table we create when building the string
19717 table. */
19718 struct strtab_entry
19719 {
19720 offset_type offset;
19721 const char *str;
19722 };
19723
19724 /* Hash function for a strtab_entry.
19725
19726 Function is used only during write_hash_table so no index format backward
19727 compatibility is needed. */
19728
19729 static hashval_t
19730 hash_strtab_entry (const void *e)
19731 {
19732 const struct strtab_entry *entry = e;
19733 return mapped_index_string_hash (INT_MAX, entry->str);
19734 }
19735
19736 /* Equality function for a strtab_entry. */
19737
19738 static int
19739 eq_strtab_entry (const void *a, const void *b)
19740 {
19741 const struct strtab_entry *ea = a;
19742 const struct strtab_entry *eb = b;
19743 return !strcmp (ea->str, eb->str);
19744 }
19745
19746 /* Create a strtab_entry hash table. */
19747
19748 static htab_t
19749 create_strtab (void)
19750 {
19751 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19752 xfree, xcalloc, xfree);
19753 }
19754
19755 /* Add a string to the constant pool. Return the string's offset in
19756 host order. */
19757
19758 static offset_type
19759 add_string (htab_t table, struct obstack *cpool, const char *str)
19760 {
19761 void **slot;
19762 struct strtab_entry entry;
19763 struct strtab_entry *result;
19764
19765 entry.str = str;
19766 slot = htab_find_slot (table, &entry, INSERT);
19767 if (*slot)
19768 result = *slot;
19769 else
19770 {
19771 result = XNEW (struct strtab_entry);
19772 result->offset = obstack_object_size (cpool);
19773 result->str = str;
19774 obstack_grow_str0 (cpool, str);
19775 *slot = result;
19776 }
19777 return result->offset;
19778 }
19779
19780 /* An entry in the symbol table. */
19781 struct symtab_index_entry
19782 {
19783 /* The name of the symbol. */
19784 const char *name;
19785 /* The offset of the name in the constant pool. */
19786 offset_type index_offset;
19787 /* A sorted vector of the indices of all the CUs that hold an object
19788 of this name. */
19789 VEC (offset_type) *cu_indices;
19790 };
19791
19792 /* The symbol table. This is a power-of-2-sized hash table. */
19793 struct mapped_symtab
19794 {
19795 offset_type n_elements;
19796 offset_type size;
19797 struct symtab_index_entry **data;
19798 };
19799
19800 /* Hash function for a symtab_index_entry. */
19801
19802 static hashval_t
19803 hash_symtab_entry (const void *e)
19804 {
19805 const struct symtab_index_entry *entry = e;
19806 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19807 sizeof (offset_type) * VEC_length (offset_type,
19808 entry->cu_indices),
19809 0);
19810 }
19811
19812 /* Equality function for a symtab_index_entry. */
19813
19814 static int
19815 eq_symtab_entry (const void *a, const void *b)
19816 {
19817 const struct symtab_index_entry *ea = a;
19818 const struct symtab_index_entry *eb = b;
19819 int len = VEC_length (offset_type, ea->cu_indices);
19820 if (len != VEC_length (offset_type, eb->cu_indices))
19821 return 0;
19822 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19823 VEC_address (offset_type, eb->cu_indices),
19824 sizeof (offset_type) * len);
19825 }
19826
19827 /* Destroy a symtab_index_entry. */
19828
19829 static void
19830 delete_symtab_entry (void *p)
19831 {
19832 struct symtab_index_entry *entry = p;
19833 VEC_free (offset_type, entry->cu_indices);
19834 xfree (entry);
19835 }
19836
19837 /* Create a hash table holding symtab_index_entry objects. */
19838
19839 static htab_t
19840 create_symbol_hash_table (void)
19841 {
19842 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19843 delete_symtab_entry, xcalloc, xfree);
19844 }
19845
19846 /* Create a new mapped symtab object. */
19847
19848 static struct mapped_symtab *
19849 create_mapped_symtab (void)
19850 {
19851 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19852 symtab->n_elements = 0;
19853 symtab->size = 1024;
19854 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19855 return symtab;
19856 }
19857
19858 /* Destroy a mapped_symtab. */
19859
19860 static void
19861 cleanup_mapped_symtab (void *p)
19862 {
19863 struct mapped_symtab *symtab = p;
19864 /* The contents of the array are freed when the other hash table is
19865 destroyed. */
19866 xfree (symtab->data);
19867 xfree (symtab);
19868 }
19869
19870 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19871 the slot.
19872
19873 Function is used only during write_hash_table so no index format backward
19874 compatibility is needed. */
19875
19876 static struct symtab_index_entry **
19877 find_slot (struct mapped_symtab *symtab, const char *name)
19878 {
19879 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19880
19881 index = hash & (symtab->size - 1);
19882 step = ((hash * 17) & (symtab->size - 1)) | 1;
19883
19884 for (;;)
19885 {
19886 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19887 return &symtab->data[index];
19888 index = (index + step) & (symtab->size - 1);
19889 }
19890 }
19891
19892 /* Expand SYMTAB's hash table. */
19893
19894 static void
19895 hash_expand (struct mapped_symtab *symtab)
19896 {
19897 offset_type old_size = symtab->size;
19898 offset_type i;
19899 struct symtab_index_entry **old_entries = symtab->data;
19900
19901 symtab->size *= 2;
19902 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19903
19904 for (i = 0; i < old_size; ++i)
19905 {
19906 if (old_entries[i])
19907 {
19908 struct symtab_index_entry **slot = find_slot (symtab,
19909 old_entries[i]->name);
19910 *slot = old_entries[i];
19911 }
19912 }
19913
19914 xfree (old_entries);
19915 }
19916
19917 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19918 CU_INDEX is the index of the CU in which the symbol appears.
19919 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19920
19921 static void
19922 add_index_entry (struct mapped_symtab *symtab, const char *name,
19923 int is_static, gdb_index_symbol_kind kind,
19924 offset_type cu_index)
19925 {
19926 struct symtab_index_entry **slot;
19927 offset_type cu_index_and_attrs;
19928
19929 ++symtab->n_elements;
19930 if (4 * symtab->n_elements / 3 >= symtab->size)
19931 hash_expand (symtab);
19932
19933 slot = find_slot (symtab, name);
19934 if (!*slot)
19935 {
19936 *slot = XNEW (struct symtab_index_entry);
19937 (*slot)->name = name;
19938 /* index_offset is set later. */
19939 (*slot)->cu_indices = NULL;
19940 }
19941
19942 cu_index_and_attrs = 0;
19943 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19944 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19945 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19946
19947 /* We don't want to record an index value twice as we want to avoid the
19948 duplication.
19949 We process all global symbols and then all static symbols
19950 (which would allow us to avoid the duplication by only having to check
19951 the last entry pushed), but a symbol could have multiple kinds in one CU.
19952 To keep things simple we don't worry about the duplication here and
19953 sort and uniqufy the list after we've processed all symbols. */
19954 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19955 }
19956
19957 /* qsort helper routine for uniquify_cu_indices. */
19958
19959 static int
19960 offset_type_compare (const void *ap, const void *bp)
19961 {
19962 offset_type a = *(offset_type *) ap;
19963 offset_type b = *(offset_type *) bp;
19964
19965 return (a > b) - (b > a);
19966 }
19967
19968 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19969
19970 static void
19971 uniquify_cu_indices (struct mapped_symtab *symtab)
19972 {
19973 int i;
19974
19975 for (i = 0; i < symtab->size; ++i)
19976 {
19977 struct symtab_index_entry *entry = symtab->data[i];
19978
19979 if (entry
19980 && entry->cu_indices != NULL)
19981 {
19982 unsigned int next_to_insert, next_to_check;
19983 offset_type last_value;
19984
19985 qsort (VEC_address (offset_type, entry->cu_indices),
19986 VEC_length (offset_type, entry->cu_indices),
19987 sizeof (offset_type), offset_type_compare);
19988
19989 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19990 next_to_insert = 1;
19991 for (next_to_check = 1;
19992 next_to_check < VEC_length (offset_type, entry->cu_indices);
19993 ++next_to_check)
19994 {
19995 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19996 != last_value)
19997 {
19998 last_value = VEC_index (offset_type, entry->cu_indices,
19999 next_to_check);
20000 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20001 last_value);
20002 ++next_to_insert;
20003 }
20004 }
20005 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20006 }
20007 }
20008 }
20009
20010 /* Add a vector of indices to the constant pool. */
20011
20012 static offset_type
20013 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20014 struct symtab_index_entry *entry)
20015 {
20016 void **slot;
20017
20018 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20019 if (!*slot)
20020 {
20021 offset_type len = VEC_length (offset_type, entry->cu_indices);
20022 offset_type val = MAYBE_SWAP (len);
20023 offset_type iter;
20024 int i;
20025
20026 *slot = entry;
20027 entry->index_offset = obstack_object_size (cpool);
20028
20029 obstack_grow (cpool, &val, sizeof (val));
20030 for (i = 0;
20031 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20032 ++i)
20033 {
20034 val = MAYBE_SWAP (iter);
20035 obstack_grow (cpool, &val, sizeof (val));
20036 }
20037 }
20038 else
20039 {
20040 struct symtab_index_entry *old_entry = *slot;
20041 entry->index_offset = old_entry->index_offset;
20042 entry = old_entry;
20043 }
20044 return entry->index_offset;
20045 }
20046
20047 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20048 constant pool entries going into the obstack CPOOL. */
20049
20050 static void
20051 write_hash_table (struct mapped_symtab *symtab,
20052 struct obstack *output, struct obstack *cpool)
20053 {
20054 offset_type i;
20055 htab_t symbol_hash_table;
20056 htab_t str_table;
20057
20058 symbol_hash_table = create_symbol_hash_table ();
20059 str_table = create_strtab ();
20060
20061 /* We add all the index vectors to the constant pool first, to
20062 ensure alignment is ok. */
20063 for (i = 0; i < symtab->size; ++i)
20064 {
20065 if (symtab->data[i])
20066 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20067 }
20068
20069 /* Now write out the hash table. */
20070 for (i = 0; i < symtab->size; ++i)
20071 {
20072 offset_type str_off, vec_off;
20073
20074 if (symtab->data[i])
20075 {
20076 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20077 vec_off = symtab->data[i]->index_offset;
20078 }
20079 else
20080 {
20081 /* While 0 is a valid constant pool index, it is not valid
20082 to have 0 for both offsets. */
20083 str_off = 0;
20084 vec_off = 0;
20085 }
20086
20087 str_off = MAYBE_SWAP (str_off);
20088 vec_off = MAYBE_SWAP (vec_off);
20089
20090 obstack_grow (output, &str_off, sizeof (str_off));
20091 obstack_grow (output, &vec_off, sizeof (vec_off));
20092 }
20093
20094 htab_delete (str_table);
20095 htab_delete (symbol_hash_table);
20096 }
20097
20098 /* Struct to map psymtab to CU index in the index file. */
20099 struct psymtab_cu_index_map
20100 {
20101 struct partial_symtab *psymtab;
20102 unsigned int cu_index;
20103 };
20104
20105 static hashval_t
20106 hash_psymtab_cu_index (const void *item)
20107 {
20108 const struct psymtab_cu_index_map *map = item;
20109
20110 return htab_hash_pointer (map->psymtab);
20111 }
20112
20113 static int
20114 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20115 {
20116 const struct psymtab_cu_index_map *lhs = item_lhs;
20117 const struct psymtab_cu_index_map *rhs = item_rhs;
20118
20119 return lhs->psymtab == rhs->psymtab;
20120 }
20121
20122 /* Helper struct for building the address table. */
20123 struct addrmap_index_data
20124 {
20125 struct objfile *objfile;
20126 struct obstack *addr_obstack;
20127 htab_t cu_index_htab;
20128
20129 /* Non-zero if the previous_* fields are valid.
20130 We can't write an entry until we see the next entry (since it is only then
20131 that we know the end of the entry). */
20132 int previous_valid;
20133 /* Index of the CU in the table of all CUs in the index file. */
20134 unsigned int previous_cu_index;
20135 /* Start address of the CU. */
20136 CORE_ADDR previous_cu_start;
20137 };
20138
20139 /* Write an address entry to OBSTACK. */
20140
20141 static void
20142 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20143 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20144 {
20145 offset_type cu_index_to_write;
20146 char addr[8];
20147 CORE_ADDR baseaddr;
20148
20149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20150
20151 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20152 obstack_grow (obstack, addr, 8);
20153 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20154 obstack_grow (obstack, addr, 8);
20155 cu_index_to_write = MAYBE_SWAP (cu_index);
20156 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20157 }
20158
20159 /* Worker function for traversing an addrmap to build the address table. */
20160
20161 static int
20162 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20163 {
20164 struct addrmap_index_data *data = datap;
20165 struct partial_symtab *pst = obj;
20166
20167 if (data->previous_valid)
20168 add_address_entry (data->objfile, data->addr_obstack,
20169 data->previous_cu_start, start_addr,
20170 data->previous_cu_index);
20171
20172 data->previous_cu_start = start_addr;
20173 if (pst != NULL)
20174 {
20175 struct psymtab_cu_index_map find_map, *map;
20176 find_map.psymtab = pst;
20177 map = htab_find (data->cu_index_htab, &find_map);
20178 gdb_assert (map != NULL);
20179 data->previous_cu_index = map->cu_index;
20180 data->previous_valid = 1;
20181 }
20182 else
20183 data->previous_valid = 0;
20184
20185 return 0;
20186 }
20187
20188 /* Write OBJFILE's address map to OBSTACK.
20189 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20190 in the index file. */
20191
20192 static void
20193 write_address_map (struct objfile *objfile, struct obstack *obstack,
20194 htab_t cu_index_htab)
20195 {
20196 struct addrmap_index_data addrmap_index_data;
20197
20198 /* When writing the address table, we have to cope with the fact that
20199 the addrmap iterator only provides the start of a region; we have to
20200 wait until the next invocation to get the start of the next region. */
20201
20202 addrmap_index_data.objfile = objfile;
20203 addrmap_index_data.addr_obstack = obstack;
20204 addrmap_index_data.cu_index_htab = cu_index_htab;
20205 addrmap_index_data.previous_valid = 0;
20206
20207 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20208 &addrmap_index_data);
20209
20210 /* It's highly unlikely the last entry (end address = 0xff...ff)
20211 is valid, but we should still handle it.
20212 The end address is recorded as the start of the next region, but that
20213 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20214 anyway. */
20215 if (addrmap_index_data.previous_valid)
20216 add_address_entry (objfile, obstack,
20217 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20218 addrmap_index_data.previous_cu_index);
20219 }
20220
20221 /* Return the symbol kind of PSYM. */
20222
20223 static gdb_index_symbol_kind
20224 symbol_kind (struct partial_symbol *psym)
20225 {
20226 domain_enum domain = PSYMBOL_DOMAIN (psym);
20227 enum address_class aclass = PSYMBOL_CLASS (psym);
20228
20229 switch (domain)
20230 {
20231 case VAR_DOMAIN:
20232 switch (aclass)
20233 {
20234 case LOC_BLOCK:
20235 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20236 case LOC_TYPEDEF:
20237 return GDB_INDEX_SYMBOL_KIND_TYPE;
20238 case LOC_COMPUTED:
20239 case LOC_CONST_BYTES:
20240 case LOC_OPTIMIZED_OUT:
20241 case LOC_STATIC:
20242 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20243 case LOC_CONST:
20244 /* Note: It's currently impossible to recognize psyms as enum values
20245 short of reading the type info. For now punt. */
20246 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20247 default:
20248 /* There are other LOC_FOO values that one might want to classify
20249 as variables, but dwarf2read.c doesn't currently use them. */
20250 return GDB_INDEX_SYMBOL_KIND_OTHER;
20251 }
20252 case STRUCT_DOMAIN:
20253 return GDB_INDEX_SYMBOL_KIND_TYPE;
20254 default:
20255 return GDB_INDEX_SYMBOL_KIND_OTHER;
20256 }
20257 }
20258
20259 /* Add a list of partial symbols to SYMTAB. */
20260
20261 static void
20262 write_psymbols (struct mapped_symtab *symtab,
20263 htab_t psyms_seen,
20264 struct partial_symbol **psymp,
20265 int count,
20266 offset_type cu_index,
20267 int is_static)
20268 {
20269 for (; count-- > 0; ++psymp)
20270 {
20271 struct partial_symbol *psym = *psymp;
20272 void **slot;
20273
20274 if (SYMBOL_LANGUAGE (psym) == language_ada)
20275 error (_("Ada is not currently supported by the index"));
20276
20277 /* Only add a given psymbol once. */
20278 slot = htab_find_slot (psyms_seen, psym, INSERT);
20279 if (!*slot)
20280 {
20281 gdb_index_symbol_kind kind = symbol_kind (psym);
20282
20283 *slot = psym;
20284 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20285 is_static, kind, cu_index);
20286 }
20287 }
20288 }
20289
20290 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20291 exception if there is an error. */
20292
20293 static void
20294 write_obstack (FILE *file, struct obstack *obstack)
20295 {
20296 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20297 file)
20298 != obstack_object_size (obstack))
20299 error (_("couldn't data write to file"));
20300 }
20301
20302 /* Unlink a file if the argument is not NULL. */
20303
20304 static void
20305 unlink_if_set (void *p)
20306 {
20307 char **filename = p;
20308 if (*filename)
20309 unlink (*filename);
20310 }
20311
20312 /* A helper struct used when iterating over debug_types. */
20313 struct signatured_type_index_data
20314 {
20315 struct objfile *objfile;
20316 struct mapped_symtab *symtab;
20317 struct obstack *types_list;
20318 htab_t psyms_seen;
20319 int cu_index;
20320 };
20321
20322 /* A helper function that writes a single signatured_type to an
20323 obstack. */
20324
20325 static int
20326 write_one_signatured_type (void **slot, void *d)
20327 {
20328 struct signatured_type_index_data *info = d;
20329 struct signatured_type *entry = (struct signatured_type *) *slot;
20330 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20331 struct partial_symtab *psymtab = per_cu->v.psymtab;
20332 gdb_byte val[8];
20333
20334 write_psymbols (info->symtab,
20335 info->psyms_seen,
20336 info->objfile->global_psymbols.list
20337 + psymtab->globals_offset,
20338 psymtab->n_global_syms, info->cu_index,
20339 0);
20340 write_psymbols (info->symtab,
20341 info->psyms_seen,
20342 info->objfile->static_psymbols.list
20343 + psymtab->statics_offset,
20344 psymtab->n_static_syms, info->cu_index,
20345 1);
20346
20347 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20348 entry->per_cu.offset.sect_off);
20349 obstack_grow (info->types_list, val, 8);
20350 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20351 entry->type_offset_in_tu.cu_off);
20352 obstack_grow (info->types_list, val, 8);
20353 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20354 obstack_grow (info->types_list, val, 8);
20355
20356 ++info->cu_index;
20357
20358 return 1;
20359 }
20360
20361 /* Recurse into all "included" dependencies and write their symbols as
20362 if they appeared in this psymtab. */
20363
20364 static void
20365 recursively_write_psymbols (struct objfile *objfile,
20366 struct partial_symtab *psymtab,
20367 struct mapped_symtab *symtab,
20368 htab_t psyms_seen,
20369 offset_type cu_index)
20370 {
20371 int i;
20372
20373 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20374 if (psymtab->dependencies[i]->user != NULL)
20375 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20376 symtab, psyms_seen, cu_index);
20377
20378 write_psymbols (symtab,
20379 psyms_seen,
20380 objfile->global_psymbols.list + psymtab->globals_offset,
20381 psymtab->n_global_syms, cu_index,
20382 0);
20383 write_psymbols (symtab,
20384 psyms_seen,
20385 objfile->static_psymbols.list + psymtab->statics_offset,
20386 psymtab->n_static_syms, cu_index,
20387 1);
20388 }
20389
20390 /* Create an index file for OBJFILE in the directory DIR. */
20391
20392 static void
20393 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20394 {
20395 struct cleanup *cleanup;
20396 char *filename, *cleanup_filename;
20397 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20398 struct obstack cu_list, types_cu_list;
20399 int i;
20400 FILE *out_file;
20401 struct mapped_symtab *symtab;
20402 offset_type val, size_of_contents, total_len;
20403 struct stat st;
20404 htab_t psyms_seen;
20405 htab_t cu_index_htab;
20406 struct psymtab_cu_index_map *psymtab_cu_index_map;
20407
20408 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20409 return;
20410
20411 if (dwarf2_per_objfile->using_index)
20412 error (_("Cannot use an index to create the index"));
20413
20414 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20415 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20416
20417 if (stat (objfile->name, &st) < 0)
20418 perror_with_name (objfile->name);
20419
20420 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20421 INDEX_SUFFIX, (char *) NULL);
20422 cleanup = make_cleanup (xfree, filename);
20423
20424 out_file = fopen (filename, "wb");
20425 if (!out_file)
20426 error (_("Can't open `%s' for writing"), filename);
20427
20428 cleanup_filename = filename;
20429 make_cleanup (unlink_if_set, &cleanup_filename);
20430
20431 symtab = create_mapped_symtab ();
20432 make_cleanup (cleanup_mapped_symtab, symtab);
20433
20434 obstack_init (&addr_obstack);
20435 make_cleanup_obstack_free (&addr_obstack);
20436
20437 obstack_init (&cu_list);
20438 make_cleanup_obstack_free (&cu_list);
20439
20440 obstack_init (&types_cu_list);
20441 make_cleanup_obstack_free (&types_cu_list);
20442
20443 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20444 NULL, xcalloc, xfree);
20445 make_cleanup_htab_delete (psyms_seen);
20446
20447 /* While we're scanning CU's create a table that maps a psymtab pointer
20448 (which is what addrmap records) to its index (which is what is recorded
20449 in the index file). This will later be needed to write the address
20450 table. */
20451 cu_index_htab = htab_create_alloc (100,
20452 hash_psymtab_cu_index,
20453 eq_psymtab_cu_index,
20454 NULL, xcalloc, xfree);
20455 make_cleanup_htab_delete (cu_index_htab);
20456 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20457 xmalloc (sizeof (struct psymtab_cu_index_map)
20458 * dwarf2_per_objfile->n_comp_units);
20459 make_cleanup (xfree, psymtab_cu_index_map);
20460
20461 /* The CU list is already sorted, so we don't need to do additional
20462 work here. Also, the debug_types entries do not appear in
20463 all_comp_units, but only in their own hash table. */
20464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20465 {
20466 struct dwarf2_per_cu_data *per_cu
20467 = dwarf2_per_objfile->all_comp_units[i];
20468 struct partial_symtab *psymtab = per_cu->v.psymtab;
20469 gdb_byte val[8];
20470 struct psymtab_cu_index_map *map;
20471 void **slot;
20472
20473 if (psymtab->user == NULL)
20474 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20475
20476 map = &psymtab_cu_index_map[i];
20477 map->psymtab = psymtab;
20478 map->cu_index = i;
20479 slot = htab_find_slot (cu_index_htab, map, INSERT);
20480 gdb_assert (slot != NULL);
20481 gdb_assert (*slot == NULL);
20482 *slot = map;
20483
20484 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20485 per_cu->offset.sect_off);
20486 obstack_grow (&cu_list, val, 8);
20487 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20488 obstack_grow (&cu_list, val, 8);
20489 }
20490
20491 /* Dump the address map. */
20492 write_address_map (objfile, &addr_obstack, cu_index_htab);
20493
20494 /* Write out the .debug_type entries, if any. */
20495 if (dwarf2_per_objfile->signatured_types)
20496 {
20497 struct signatured_type_index_data sig_data;
20498
20499 sig_data.objfile = objfile;
20500 sig_data.symtab = symtab;
20501 sig_data.types_list = &types_cu_list;
20502 sig_data.psyms_seen = psyms_seen;
20503 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20504 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20505 write_one_signatured_type, &sig_data);
20506 }
20507
20508 /* Now that we've processed all symbols we can shrink their cu_indices
20509 lists. */
20510 uniquify_cu_indices (symtab);
20511
20512 obstack_init (&constant_pool);
20513 make_cleanup_obstack_free (&constant_pool);
20514 obstack_init (&symtab_obstack);
20515 make_cleanup_obstack_free (&symtab_obstack);
20516 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20517
20518 obstack_init (&contents);
20519 make_cleanup_obstack_free (&contents);
20520 size_of_contents = 6 * sizeof (offset_type);
20521 total_len = size_of_contents;
20522
20523 /* The version number. */
20524 val = MAYBE_SWAP (8);
20525 obstack_grow (&contents, &val, sizeof (val));
20526
20527 /* The offset of the CU list from the start of the file. */
20528 val = MAYBE_SWAP (total_len);
20529 obstack_grow (&contents, &val, sizeof (val));
20530 total_len += obstack_object_size (&cu_list);
20531
20532 /* The offset of the types CU list from the start of the file. */
20533 val = MAYBE_SWAP (total_len);
20534 obstack_grow (&contents, &val, sizeof (val));
20535 total_len += obstack_object_size (&types_cu_list);
20536
20537 /* The offset of the address table from the start of the file. */
20538 val = MAYBE_SWAP (total_len);
20539 obstack_grow (&contents, &val, sizeof (val));
20540 total_len += obstack_object_size (&addr_obstack);
20541
20542 /* The offset of the symbol table from the start of the file. */
20543 val = MAYBE_SWAP (total_len);
20544 obstack_grow (&contents, &val, sizeof (val));
20545 total_len += obstack_object_size (&symtab_obstack);
20546
20547 /* The offset of the constant pool from the start of the file. */
20548 val = MAYBE_SWAP (total_len);
20549 obstack_grow (&contents, &val, sizeof (val));
20550 total_len += obstack_object_size (&constant_pool);
20551
20552 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20553
20554 write_obstack (out_file, &contents);
20555 write_obstack (out_file, &cu_list);
20556 write_obstack (out_file, &types_cu_list);
20557 write_obstack (out_file, &addr_obstack);
20558 write_obstack (out_file, &symtab_obstack);
20559 write_obstack (out_file, &constant_pool);
20560
20561 fclose (out_file);
20562
20563 /* We want to keep the file, so we set cleanup_filename to NULL
20564 here. See unlink_if_set. */
20565 cleanup_filename = NULL;
20566
20567 do_cleanups (cleanup);
20568 }
20569
20570 /* Implementation of the `save gdb-index' command.
20571
20572 Note that the file format used by this command is documented in the
20573 GDB manual. Any changes here must be documented there. */
20574
20575 static void
20576 save_gdb_index_command (char *arg, int from_tty)
20577 {
20578 struct objfile *objfile;
20579
20580 if (!arg || !*arg)
20581 error (_("usage: save gdb-index DIRECTORY"));
20582
20583 ALL_OBJFILES (objfile)
20584 {
20585 struct stat st;
20586
20587 /* If the objfile does not correspond to an actual file, skip it. */
20588 if (stat (objfile->name, &st) < 0)
20589 continue;
20590
20591 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20592 if (dwarf2_per_objfile)
20593 {
20594 volatile struct gdb_exception except;
20595
20596 TRY_CATCH (except, RETURN_MASK_ERROR)
20597 {
20598 write_psymtabs_to_index (objfile, arg);
20599 }
20600 if (except.reason < 0)
20601 exception_fprintf (gdb_stderr, except,
20602 _("Error while writing index for `%s': "),
20603 objfile->name);
20604 }
20605 }
20606 }
20607
20608 \f
20609
20610 int dwarf2_always_disassemble;
20611
20612 static void
20613 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20614 struct cmd_list_element *c, const char *value)
20615 {
20616 fprintf_filtered (file,
20617 _("Whether to always disassemble "
20618 "DWARF expressions is %s.\n"),
20619 value);
20620 }
20621
20622 static void
20623 show_check_physname (struct ui_file *file, int from_tty,
20624 struct cmd_list_element *c, const char *value)
20625 {
20626 fprintf_filtered (file,
20627 _("Whether to check \"physname\" is %s.\n"),
20628 value);
20629 }
20630
20631 void _initialize_dwarf2_read (void);
20632
20633 void
20634 _initialize_dwarf2_read (void)
20635 {
20636 struct cmd_list_element *c;
20637
20638 dwarf2_objfile_data_key
20639 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20640
20641 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20642 Set DWARF 2 specific variables.\n\
20643 Configure DWARF 2 variables such as the cache size"),
20644 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20645 0/*allow-unknown*/, &maintenance_set_cmdlist);
20646
20647 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20648 Show DWARF 2 specific variables\n\
20649 Show DWARF 2 variables such as the cache size"),
20650 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20651 0/*allow-unknown*/, &maintenance_show_cmdlist);
20652
20653 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20654 &dwarf2_max_cache_age, _("\
20655 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20656 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20657 A higher limit means that cached compilation units will be stored\n\
20658 in memory longer, and more total memory will be used. Zero disables\n\
20659 caching, which can slow down startup."),
20660 NULL,
20661 show_dwarf2_max_cache_age,
20662 &set_dwarf2_cmdlist,
20663 &show_dwarf2_cmdlist);
20664
20665 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20666 &dwarf2_always_disassemble, _("\
20667 Set whether `info address' always disassembles DWARF expressions."), _("\
20668 Show whether `info address' always disassembles DWARF expressions."), _("\
20669 When enabled, DWARF expressions are always printed in an assembly-like\n\
20670 syntax. When disabled, expressions will be printed in a more\n\
20671 conversational style, when possible."),
20672 NULL,
20673 show_dwarf2_always_disassemble,
20674 &set_dwarf2_cmdlist,
20675 &show_dwarf2_cmdlist);
20676
20677 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20678 Set debugging of the dwarf2 reader."), _("\
20679 Show debugging of the dwarf2 reader."), _("\
20680 When enabled, debugging messages are printed during dwarf2 reading\n\
20681 and symtab expansion."),
20682 NULL,
20683 NULL,
20684 &setdebuglist, &showdebuglist);
20685
20686 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20687 Set debugging of the dwarf2 DIE reader."), _("\
20688 Show debugging of the dwarf2 DIE reader."), _("\
20689 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20690 The value is the maximum depth to print."),
20691 NULL,
20692 NULL,
20693 &setdebuglist, &showdebuglist);
20694
20695 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20696 Set cross-checking of \"physname\" code against demangler."), _("\
20697 Show cross-checking of \"physname\" code against demangler."), _("\
20698 When enabled, GDB's internal \"physname\" code is checked against\n\
20699 the demangler."),
20700 NULL, show_check_physname,
20701 &setdebuglist, &showdebuglist);
20702
20703 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20704 no_class, &use_deprecated_index_sections, _("\
20705 Set whether to use deprecated gdb_index sections."), _("\
20706 Show whether to use deprecated gdb_index sections."), _("\
20707 When enabled, deprecated .gdb_index sections are used anyway.\n\
20708 Normally they are ignored either because of a missing feature or\n\
20709 performance issue.\n\
20710 Warning: This option must be enabled before gdb reads the file."),
20711 NULL,
20712 NULL,
20713 &setlist, &showlist);
20714
20715 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20716 _("\
20717 Save a gdb-index file.\n\
20718 Usage: save gdb-index DIRECTORY"),
20719 &save_cmdlist);
20720 set_cmd_completer (c, filename_completer);
20721
20722 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
20723 &dwarf2_locexpr_funcs);
20724 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
20725 &dwarf2_loclist_funcs);
20726
20727 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
20728 &dwarf2_block_frame_base_locexpr_funcs);
20729 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
20730 &dwarf2_block_frame_base_loclist_funcs);
20731 }
This page took 0.544546 seconds and 4 git commands to generate.