* breakpoint.c (_initialize_breakpoint): Remove trailing \n from
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
564 struct dwarf2_section_info *section;
565
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
568 struct dwarf2_cu *cu;
569
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
580 or NULL for unread partial units. */
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
586
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
605 };
606
607 /* Entry in the signatured_types hash table. */
608
609 struct signatured_type
610 {
611 /* The "per_cu" object of this type.
612 This struct is used iff per_cu.is_debug_types.
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
617 /* The type's signature. */
618 ULONGEST signature;
619
620 /* Offset in the TU of the type's DIE, as read from the TU header.
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
644 };
645
646 typedef struct signatured_type *sig_type_ptr;
647 DEF_VEC_P (sig_type_ptr);
648
649 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652 struct stmt_list_hash
653 {
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659 };
660
661 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664 struct type_unit_group
665 {
666 /* dwarf2read.c's main "handle" on a TU symtab.
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
671 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
672 struct dwarf2_per_cu_data per_cu;
673
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
678
679 /* The primary symtab.
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
682 struct symtab *primary_symtab;
683
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700 };
701
702 /* These sections are what may appear in a DWO file. */
703
704 struct dwo_sections
705 {
706 struct dwarf2_section_info abbrev;
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
715 VEC (dwarf2_section_info_def) *types;
716 };
717
718 /* CUs/TUs in DWP/DWO files. */
719
720 struct dwo_unit
721 {
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
731 struct dwarf2_section_info *section;
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739 };
740
741 /* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
744
745 struct dwo_file
746 {
747 /* The DW_AT_GNU_dwo_name attribute.
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
755
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773 };
774
775 /* These sections are what may appear in a DWP file. */
776
777 struct dwp_sections
778 {
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784 };
785
786 /* These sections are what may appear in a virtual DWO file. */
787
788 struct virtual_dwo_sections
789 {
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
797 That is recorded here, and copied to dwo_unit.section. */
798 struct dwarf2_section_info info_or_types;
799 };
800
801 /* Contents of DWP hash tables. */
802
803 struct dwp_hash_table
804 {
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* The bfd, when the file is open. Otherwise this is NULL. */
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834 };
835
836 /* This represents a '.dwz' file. */
837
838 struct dwz_file
839 {
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
846 struct dwarf2_section_info gdb_index;
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850 };
851
852 /* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
855 struct exists to abstract away the constant parameters of die reading. */
856
857 struct die_reader_specs
858 {
859 /* die_section->asection->owner. */
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
866 struct dwo_file *dwo_file;
867
868 /* The section the die comes from.
869 This is either .debug_info or .debug_types, or the .dwo variants. */
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
873 const gdb_byte *buffer;
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880 };
881
882 /* Type of function passed to init_cutu_and_read_dies, et.al. */
883 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
884 const gdb_byte *info_ptr,
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
889 /* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892 struct line_header
893 {
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
898 unsigned char maximum_ops_per_instruction;
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
915 const char **include_dirs;
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
922 {
923 const char *name;
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
927 int included_p; /* Non-zero if referenced by the Line Number Program. */
928 struct symtab *symtab; /* The associated symbol table, if any. */
929 } *file_names;
930
931 /* The start and end of the statement program following this
932 header. These point into dwarf2_per_objfile->line_buffer. */
933 const gdb_byte *statement_program_start, *statement_program_end;
934 };
935
936 /* When we construct a partial symbol table entry we only
937 need this much information. */
938 struct partial_die_info
939 {
940 /* Offset of this DIE. */
941 sect_offset offset;
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
953 unsigned int may_be_inlined : 1;
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
974 /* The name of this DIE. Normally the value of DW_AT_name, but
975 sometimes a default name for unnamed DIEs. */
976 const char *name;
977
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
984 const char *scope;
985
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
999
1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1001 DW_AT_sibling, if any. */
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
1004 const gdb_byte *sibling;
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
1009 sect_offset spec_offset;
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
1014 };
1015
1016 /* This data structure holds the information of an abbrev. */
1017 struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027 struct attr_abbrev
1028 {
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
1031 };
1032
1033 /* Size of abbrev_table.abbrev_hash_table. */
1034 #define ABBREV_HASH_SIZE 121
1035
1036 /* Top level data structure to contain an abbreviation table. */
1037
1038 struct abbrev_table
1039 {
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052 };
1053
1054 /* Attributes have a name and a value. */
1055 struct attribute
1056 {
1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
1065 union
1066 {
1067 const char *str;
1068 struct dwarf_block *blk;
1069 ULONGEST unsnd;
1070 LONGEST snd;
1071 CORE_ADDR addr;
1072 ULONGEST signature;
1073 }
1074 u;
1075 };
1076
1077 /* This data structure holds a complete die structure. */
1078 struct die_info
1079 {
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
1093 /* Offset in .debug_info or .debug_types section. */
1094 sect_offset offset;
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
1099 together via their SIBLING fields. */
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
1103
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
1108 };
1109
1110 /* Get at parts of an attribute structure. */
1111
1112 #define DW_STRING(attr) ((attr)->u.str)
1113 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1114 #define DW_UNSND(attr) ((attr)->u.unsnd)
1115 #define DW_BLOCK(attr) ((attr)->u.blk)
1116 #define DW_SND(attr) ((attr)->u.snd)
1117 #define DW_ADDR(attr) ((attr)->u.addr)
1118 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1119
1120 /* Blocks are a bunch of untyped bytes. */
1121 struct dwarf_block
1122 {
1123 size_t size;
1124
1125 /* Valid only if SIZE is not zero. */
1126 const gdb_byte *data;
1127 };
1128
1129 #ifndef ATTR_ALLOC_CHUNK
1130 #define ATTR_ALLOC_CHUNK 4
1131 #endif
1132
1133 /* Allocate fields for structs, unions and enums in this size. */
1134 #ifndef DW_FIELD_ALLOC_CHUNK
1135 #define DW_FIELD_ALLOC_CHUNK 4
1136 #endif
1137
1138 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141 static int bits_per_byte = 8;
1142
1143 /* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146 struct field_info
1147 {
1148 /* List of data member and baseclasses fields. */
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
1156 *fields, *baseclasses;
1157
1158 /* Number of fields (including baseclasses). */
1159 int nfields;
1160
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
1163
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
1166
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
1175
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
1181 const char *name;
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
1186
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
1199 };
1200
1201 /* One item on the queue of compilation units to read in full symbols
1202 for. */
1203 struct dwarf2_queue_item
1204 {
1205 struct dwarf2_per_cu_data *per_cu;
1206 enum language pretend_language;
1207 struct dwarf2_queue_item *next;
1208 };
1209
1210 /* The current queue. */
1211 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
1213 /* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218 static int dwarf2_max_cache_age = 5;
1219 static void
1220 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222 {
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
1225 value);
1226 }
1227
1228
1229 /* Various complaints about symbol reading that don't abort the process. */
1230
1231 static void
1232 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _("statement list doesn't fit in .debug_line section"));
1236 }
1237
1238 static void
1239 dwarf2_debug_line_missing_file_complaint (void)
1240 {
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243 }
1244
1245 static void
1246 dwarf2_debug_line_missing_end_sequence_complaint (void)
1247 {
1248 complaint (&symfile_complaints,
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
1251 }
1252
1253 static void
1254 dwarf2_complex_location_expr_complaint (void)
1255 {
1256 complaint (&symfile_complaints, _("location expression too complex"));
1257 }
1258
1259 static void
1260 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
1262 {
1263 complaint (&symfile_complaints,
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
1266 }
1267
1268 static void
1269 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1270 {
1271 complaint (&symfile_complaints,
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
1276 }
1277
1278 static void
1279 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1280 {
1281 complaint (&symfile_complaints,
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
1284 arg1);
1285 }
1286
1287 static void
1288 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1289 {
1290 complaint (&symfile_complaints,
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
1293 }
1294
1295 /* local function prototypes */
1296
1297 static void dwarf2_locate_sections (bfd *, asection *, void *);
1298
1299 static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
1302 static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
1305 static void dwarf2_build_psymtabs_hard (struct objfile *);
1306
1307 static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
1309 int, struct dwarf2_cu *);
1310
1311 static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
1314 static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1316 int need_pc, struct dwarf2_cu *cu);
1317
1318 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
1322 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
1324
1325 static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1327 int need_pc, struct dwarf2_cu *cu);
1328
1329 static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
1331
1332 static void psymtab_to_symtab_1 (struct partial_symtab *);
1333
1334 static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337 static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340 static void abbrev_table_free (struct abbrev_table *);
1341
1342 static void abbrev_table_free_cleanup (void *);
1343
1344 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
1346
1347 static void dwarf2_free_abbrev_table (void *);
1348
1349 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1350
1351 static struct partial_die_info *load_partial_dies
1352 (const struct die_reader_specs *, const gdb_byte *, int);
1353
1354 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
1359
1360 static struct partial_die_info *find_partial_die (sect_offset, int,
1361 struct dwarf2_cu *);
1362
1363 static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
1366 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
1369
1370 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1371
1372 static int read_1_signed_byte (bfd *, const gdb_byte *);
1373
1374 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1375
1376 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1377
1378 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1379
1380 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1381 unsigned int *);
1382
1383 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1384
1385 static LONGEST read_checked_initial_length_and_offset
1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1387 unsigned int *, unsigned int *);
1388
1389 static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
1391 unsigned int *);
1392
1393 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1394
1395 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
1398 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1399
1400 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1401
1402 static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
1405
1406 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1407
1408 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1409
1410 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
1414 unsigned int *);
1415
1416 static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
1418
1419 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1420
1421 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
1423
1424 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1425 unsigned int);
1426
1427 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
1430 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1431
1432 static struct die_info *die_specification (struct die_info *die,
1433 struct dwarf2_cu **);
1434
1435 static void free_line_header (struct line_header *lh);
1436
1437 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
1439
1440 static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
1443
1444 static void dwarf2_start_subfile (const char *, const char *, const char *);
1445
1446 static void dwarf2_start_symtab (struct dwarf2_cu *,
1447 const char *, const char *, CORE_ADDR);
1448
1449 static struct symbol *new_symbol (struct die_info *, struct type *,
1450 struct dwarf2_cu *);
1451
1452 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
1455 static void dwarf2_const_value (struct attribute *, struct symbol *,
1456 struct dwarf2_cu *);
1457
1458 static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
1462 struct dwarf2_cu *cu, LONGEST *value,
1463 const gdb_byte **bytes,
1464 struct dwarf2_locexpr_baton **baton);
1465
1466 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1467
1468 static int need_gnat_info (struct dwarf2_cu *);
1469
1470 static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
1472
1473 static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
1476 static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
1478
1479 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
1481
1482 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1483
1484 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
1486 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1487
1488 static char *typename_concat (struct obstack *obs, const char *prefix,
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
1491
1492 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1493
1494 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
1496 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1497
1498 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1499
1500 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
1502 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
1505 static int dwarf2_get_pc_bounds (struct die_info *,
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
1508
1509 static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
1513 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
1516 static void dwarf2_add_field (struct field_info *, struct die_info *,
1517 struct dwarf2_cu *);
1518
1519 static void dwarf2_attach_fields_to_type (struct field_info *,
1520 struct type *, struct dwarf2_cu *);
1521
1522 static void dwarf2_add_member_fn (struct field_info *,
1523 struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1527 struct type *,
1528 struct dwarf2_cu *);
1529
1530 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1531
1532 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1533
1534 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1535
1536 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
1538 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
1540 static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
1543 static const char *namespace_name (struct die_info *die,
1544 int *is_anonymous, struct dwarf2_cu *);
1545
1546 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1547
1548 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1549
1550 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct die_info *read_die_and_siblings_1
1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1555 struct die_info *);
1556
1557 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
1560 struct die_info *parent);
1561
1562 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
1565
1566 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
1569
1570 static void process_die (struct die_info *, struct dwarf2_cu *);
1571
1572 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
1574
1575 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1576
1577 static const char *dwarf2_full_name (const char *name,
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
1581 static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
1584 static struct die_info *dwarf2_extension (struct die_info *die,
1585 struct dwarf2_cu **);
1586
1587 static const char *dwarf_tag_name (unsigned int);
1588
1589 static const char *dwarf_attr_name (unsigned int);
1590
1591 static const char *dwarf_form_name (unsigned int);
1592
1593 static char *dwarf_bool_name (unsigned int);
1594
1595 static const char *dwarf_type_encoding_name (unsigned int);
1596
1597 static struct die_info *sibling_die (struct die_info *);
1598
1599 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601 static void dump_die_for_error (struct die_info *);
1602
1603 static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
1605
1606 /*static*/ void dump_die (struct die_info *, int max_level);
1607
1608 static void store_in_ref_table (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static int is_ref_attr (struct attribute *);
1612
1613 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1614
1615 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1616
1617 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
1621 static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
1623 struct dwarf2_cu **);
1624
1625 static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632 static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
1636 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1637
1638 static void read_signatured_type (struct signatured_type *);
1639
1640 static struct type_unit_group *get_type_unit_group
1641 (struct dwarf2_cu *, struct attribute *);
1642
1643 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
1645 /* memory allocation interface */
1646
1647 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1648
1649 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1650
1651 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1652 const char *, int);
1653
1654 static int attr_form_is_block (struct attribute *);
1655
1656 static int attr_form_is_section_offset (struct attribute *);
1657
1658 static int attr_form_is_constant (struct attribute *);
1659
1660 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
1664 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
1666 struct dwarf2_cu *cu,
1667 int is_block);
1668
1669 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
1672
1673 static void free_stack_comp_unit (void *);
1674
1675 static hashval_t partial_die_hash (const void *item);
1676
1677 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
1679 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1681
1682 static void init_one_comp_unit (struct dwarf2_cu *cu,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
1688
1689 static void free_heap_comp_unit (void *);
1690
1691 static void free_cached_comp_units (void *);
1692
1693 static void age_cached_comp_units (void);
1694
1695 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1696
1697 static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1699
1700 static void create_all_comp_units (struct objfile *);
1701
1702 static int create_all_type_units (struct objfile *);
1703
1704 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
1706
1707 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
1709
1710 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
1713 static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
1716 static void dwarf2_mark (struct dwarf2_cu *);
1717
1718 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
1720 static struct type *get_die_type_at_offset (sect_offset,
1721 struct dwarf2_per_cu_data *);
1722
1723 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1724
1725 static void dwarf2_release_queue (void *dummy);
1726
1727 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
1733
1734 static void process_queue (void);
1735
1736 static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
1738 const char **name, const char **comp_dir);
1739
1740 static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
1743 static const gdb_byte *read_and_check_comp_unit_head
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1747 int is_debug_types_section);
1748
1749 static void init_cutu_and_read_dies
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
1754 static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
1757
1758 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1759
1760 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
1762 static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766 static struct dwp_file *get_dwp_file (void);
1767
1768 static struct dwo_unit *lookup_dwo_comp_unit
1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1770
1771 static struct dwo_unit *lookup_dwo_type_unit
1772 (struct signatured_type *, const char *, const char *);
1773
1774 static void free_dwo_file_cleanup (void *);
1775
1776 static void process_cu_includes (void);
1777
1778 static void check_producer (struct dwarf2_cu *cu);
1779
1780 #if WORDS_BIGENDIAN
1781
1782 /* Convert VALUE between big- and little-endian. */
1783 static offset_type
1784 byte_swap (offset_type value)
1785 {
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793 }
1794
1795 #define MAYBE_SWAP(V) byte_swap (V)
1796
1797 #else
1798 #define MAYBE_SWAP(V) (V)
1799 #endif /* WORDS_BIGENDIAN */
1800
1801 /* The suffix for an index file. */
1802 #define INDEX_SUFFIX ".gdb-index"
1803
1804 /* Try to locate the sections we need for DWARF 2 debugging
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
1808
1809 int
1810 dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
1812 {
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1819
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
1823
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
1830 }
1831
1832 /* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
1834
1835 static int
1836 section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
1838 {
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
1846 }
1847
1848 /* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852 static void
1853 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1854 {
1855 const struct dwarf2_debug_sections *names;
1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
1867 {
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->abbrev))
1872 {
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->line))
1877 {
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->loc))
1882 {
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->macinfo))
1887 {
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->str))
1897 {
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->frame))
1907 {
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->eh_frame))
1912 {
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->ranges))
1917 {
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->types))
1922 {
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
1931 }
1932 else if (section_is_p (sectp->name, &names->gdb_index))
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
1937
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
1941 }
1942
1943 /* A helper function that decides whether a section is empty,
1944 or not present. */
1945
1946 static int
1947 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948 {
1949 return info->asection == NULL || info->size == 0;
1950 }
1951
1952 /* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
1956 If the section is compressed, uncompress it before returning. */
1957
1958 static void
1959 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1960 {
1961 asection *sectp = info->asection;
1962 bfd *abfd;
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
1965
1966 if (info->readin)
1967 return;
1968 info->buffer = NULL;
1969 info->readin = 1;
1970
1971 if (dwarf2_section_empty_p (info))
1972 return;
1973
1974 abfd = sectp->owner;
1975
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
1979 {
1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1981 return;
1982 }
1983
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002 }
2003
2004 /* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011 static bfd_size_type
2012 dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014 {
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018 }
2019
2020 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2021 SECTION_NAME. */
2022
2023 void
2024 dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
2026 asection **sectp, const gdb_byte **bufp,
2027 bfd_size_type *sizep)
2028 {
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
2053
2054 dwarf2_read_section (objfile, info);
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059 }
2060
2061 /* A helper function to find the sections for a .dwz file. */
2062
2063 static void
2064 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065 {
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
2100 }
2101
2102 /* Open the separate '.dwz' debug file, if needed. Error if the file
2103 cannot be found. */
2104
2105 static struct dwz_file *
2106 dwarf2_get_dwz_file (void)
2107 {
2108 bfd *abfd, *dwz_bfd;
2109 asection *section;
2110 gdb_byte *data;
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
2114
2115 if (dwarf2_per_objfile->dwz_file != NULL)
2116 return dwarf2_per_objfile->dwz_file;
2117
2118 abfd = dwarf2_per_objfile->objfile->obfd;
2119 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2120 if (section == NULL)
2121 error (_("could not find '.gnu_debugaltlink' section"));
2122 if (!bfd_malloc_and_get_section (abfd, section, &data))
2123 error (_("could not read '.gnu_debugaltlink' section: %s"),
2124 bfd_errmsg (bfd_get_error ()));
2125 cleanup = make_cleanup (xfree, data);
2126
2127 filename = (const char *) data;
2128 if (!IS_ABSOLUTE_PATH (filename))
2129 {
2130 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2131 char *rel;
2132
2133 make_cleanup (xfree, abs);
2134 abs = ldirname (abs);
2135 make_cleanup (xfree, abs);
2136
2137 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2138 make_cleanup (xfree, rel);
2139 filename = rel;
2140 }
2141
2142 /* The format is just a NUL-terminated file name, followed by the
2143 build-id. For now, though, we ignore the build-id. */
2144 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2145 if (dwz_bfd == NULL)
2146 error (_("could not read '%s': %s"), filename,
2147 bfd_errmsg (bfd_get_error ()));
2148
2149 if (!bfd_check_format (dwz_bfd, bfd_object))
2150 {
2151 gdb_bfd_unref (dwz_bfd);
2152 error (_("file '%s' was not usable: %s"), filename,
2153 bfd_errmsg (bfd_get_error ()));
2154 }
2155
2156 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2157 struct dwz_file);
2158 result->dwz_bfd = dwz_bfd;
2159
2160 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2161
2162 do_cleanups (cleanup);
2163
2164 dwarf2_per_objfile->dwz_file = result;
2165 return result;
2166 }
2167 \f
2168 /* DWARF quick_symbols_functions support. */
2169
2170 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2171 unique line tables, so we maintain a separate table of all .debug_line
2172 derived entries to support the sharing.
2173 All the quick functions need is the list of file names. We discard the
2174 line_header when we're done and don't need to record it here. */
2175 struct quick_file_names
2176 {
2177 /* The data used to construct the hash key. */
2178 struct stmt_list_hash hash;
2179
2180 /* The number of entries in file_names, real_names. */
2181 unsigned int num_file_names;
2182
2183 /* The file names from the line table, after being run through
2184 file_full_name. */
2185 const char **file_names;
2186
2187 /* The file names from the line table after being run through
2188 gdb_realpath. These are computed lazily. */
2189 const char **real_names;
2190 };
2191
2192 /* When using the index (and thus not using psymtabs), each CU has an
2193 object of this type. This is used to hold information needed by
2194 the various "quick" methods. */
2195 struct dwarf2_per_cu_quick_data
2196 {
2197 /* The file table. This can be NULL if there was no file table
2198 or it's currently not read in.
2199 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2200 struct quick_file_names *file_names;
2201
2202 /* The corresponding symbol table. This is NULL if symbols for this
2203 CU have not yet been read. */
2204 struct symtab *symtab;
2205
2206 /* A temporary mark bit used when iterating over all CUs in
2207 expand_symtabs_matching. */
2208 unsigned int mark : 1;
2209
2210 /* True if we've tried to read the file table and found there isn't one.
2211 There will be no point in trying to read it again next time. */
2212 unsigned int no_file_data : 1;
2213 };
2214
2215 /* Utility hash function for a stmt_list_hash. */
2216
2217 static hashval_t
2218 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2219 {
2220 hashval_t v = 0;
2221
2222 if (stmt_list_hash->dwo_unit != NULL)
2223 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2224 v += stmt_list_hash->line_offset.sect_off;
2225 return v;
2226 }
2227
2228 /* Utility equality function for a stmt_list_hash. */
2229
2230 static int
2231 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2232 const struct stmt_list_hash *rhs)
2233 {
2234 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2235 return 0;
2236 if (lhs->dwo_unit != NULL
2237 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2238 return 0;
2239
2240 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2241 }
2242
2243 /* Hash function for a quick_file_names. */
2244
2245 static hashval_t
2246 hash_file_name_entry (const void *e)
2247 {
2248 const struct quick_file_names *file_data = e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = a;
2259 const struct quick_file_names *eb = b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_t
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree);
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, language_minimal);
2304
2305 gdb_assert (per_cu->cu != NULL);
2306
2307 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2308 }
2309
2310 /* Read in the symbols for PER_CU. */
2311
2312 static void
2313 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2314 {
2315 struct cleanup *back_to;
2316
2317 /* Skip type_unit_groups, reading the type units they contain
2318 is handled elsewhere. */
2319 if (IS_TYPE_UNIT_GROUP (per_cu))
2320 return;
2321
2322 back_to = make_cleanup (dwarf2_release_queue, NULL);
2323
2324 if (dwarf2_per_objfile->using_index
2325 ? per_cu->v.quick->symtab == NULL
2326 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2327 {
2328 queue_comp_unit (per_cu, language_minimal);
2329 load_cu (per_cu);
2330 }
2331
2332 process_queue ();
2333
2334 /* Age the cache, releasing compilation units that have not
2335 been used recently. */
2336 age_cached_comp_units ();
2337
2338 do_cleanups (back_to);
2339 }
2340
2341 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2342 the objfile from which this CU came. Returns the resulting symbol
2343 table. */
2344
2345 static struct symtab *
2346 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2347 {
2348 gdb_assert (dwarf2_per_objfile->using_index);
2349 if (!per_cu->v.quick->symtab)
2350 {
2351 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2352 increment_reading_symtab ();
2353 dw2_do_instantiate_symtab (per_cu);
2354 process_cu_includes ();
2355 do_cleanups (back_to);
2356 }
2357 return per_cu->v.quick->symtab;
2358 }
2359
2360 /* Return the CU given its index.
2361
2362 This is intended for loops like:
2363
2364 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2365 + dwarf2_per_objfile->n_type_units); ++i)
2366 {
2367 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2368
2369 ...;
2370 }
2371 */
2372
2373 static struct dwarf2_per_cu_data *
2374 dw2_get_cu (int index)
2375 {
2376 if (index >= dwarf2_per_objfile->n_comp_units)
2377 {
2378 index -= dwarf2_per_objfile->n_comp_units;
2379 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2380 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2381 }
2382
2383 return dwarf2_per_objfile->all_comp_units[index];
2384 }
2385
2386 /* Return the primary CU given its index.
2387 The difference between this function and dw2_get_cu is in the handling
2388 of type units (TUs). Here we return the type_unit_group object.
2389
2390 This is intended for loops like:
2391
2392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2394 {
2395 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2396
2397 ...;
2398 }
2399 */
2400
2401 static struct dwarf2_per_cu_data *
2402 dw2_get_primary_cu (int index)
2403 {
2404 if (index >= dwarf2_per_objfile->n_comp_units)
2405 {
2406 index -= dwarf2_per_objfile->n_comp_units;
2407 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2408 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2409 }
2410
2411 return dwarf2_per_objfile->all_comp_units[index];
2412 }
2413
2414 /* A helper for create_cus_from_index that handles a given list of
2415 CUs. */
2416
2417 static void
2418 create_cus_from_index_list (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type n_elements,
2420 struct dwarf2_section_info *section,
2421 int is_dwz,
2422 int base_offset)
2423 {
2424 offset_type i;
2425
2426 for (i = 0; i < n_elements; i += 2)
2427 {
2428 struct dwarf2_per_cu_data *the_cu;
2429 ULONGEST offset, length;
2430
2431 gdb_static_assert (sizeof (ULONGEST) >= 8);
2432 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2433 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2434 cu_list += 2 * 8;
2435
2436 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2437 struct dwarf2_per_cu_data);
2438 the_cu->offset.sect_off = offset;
2439 the_cu->length = length;
2440 the_cu->objfile = objfile;
2441 the_cu->section = section;
2442 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2443 struct dwarf2_per_cu_quick_data);
2444 the_cu->is_dwz = is_dwz;
2445 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2446 }
2447 }
2448
2449 /* Read the CU list from the mapped index, and use it to create all
2450 the CU objects for this objfile. */
2451
2452 static void
2453 create_cus_from_index (struct objfile *objfile,
2454 const gdb_byte *cu_list, offset_type cu_list_elements,
2455 const gdb_byte *dwz_list, offset_type dwz_elements)
2456 {
2457 struct dwz_file *dwz;
2458
2459 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2460 dwarf2_per_objfile->all_comp_units
2461 = obstack_alloc (&objfile->objfile_obstack,
2462 dwarf2_per_objfile->n_comp_units
2463 * sizeof (struct dwarf2_per_cu_data *));
2464
2465 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2466 &dwarf2_per_objfile->info, 0, 0);
2467
2468 if (dwz_elements == 0)
2469 return;
2470
2471 dwz = dwarf2_get_dwz_file ();
2472 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2473 cu_list_elements / 2);
2474 }
2475
2476 /* Create the signatured type hash table from the index. */
2477
2478 static void
2479 create_signatured_type_table_from_index (struct objfile *objfile,
2480 struct dwarf2_section_info *section,
2481 const gdb_byte *bytes,
2482 offset_type elements)
2483 {
2484 offset_type i;
2485 htab_t sig_types_hash;
2486
2487 dwarf2_per_objfile->n_type_units = elements / 3;
2488 dwarf2_per_objfile->all_type_units
2489 = xmalloc (dwarf2_per_objfile->n_type_units
2490 * sizeof (struct signatured_type *));
2491
2492 sig_types_hash = allocate_signatured_type_table (objfile);
2493
2494 for (i = 0; i < elements; i += 3)
2495 {
2496 struct signatured_type *sig_type;
2497 ULONGEST offset, type_offset_in_tu, signature;
2498 void **slot;
2499
2500 gdb_static_assert (sizeof (ULONGEST) >= 8);
2501 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2502 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2503 BFD_ENDIAN_LITTLE);
2504 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2505 bytes += 3 * 8;
2506
2507 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2508 struct signatured_type);
2509 sig_type->signature = signature;
2510 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2511 sig_type->per_cu.is_debug_types = 1;
2512 sig_type->per_cu.section = section;
2513 sig_type->per_cu.offset.sect_off = offset;
2514 sig_type->per_cu.objfile = objfile;
2515 sig_type->per_cu.v.quick
2516 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2517 struct dwarf2_per_cu_quick_data);
2518
2519 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2520 *slot = sig_type;
2521
2522 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2523 }
2524
2525 dwarf2_per_objfile->signatured_types = sig_types_hash;
2526 }
2527
2528 /* Read the address map data from the mapped index, and use it to
2529 populate the objfile's psymtabs_addrmap. */
2530
2531 static void
2532 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2533 {
2534 const gdb_byte *iter, *end;
2535 struct obstack temp_obstack;
2536 struct addrmap *mutable_map;
2537 struct cleanup *cleanup;
2538 CORE_ADDR baseaddr;
2539
2540 obstack_init (&temp_obstack);
2541 cleanup = make_cleanup_obstack_free (&temp_obstack);
2542 mutable_map = addrmap_create_mutable (&temp_obstack);
2543
2544 iter = index->address_table;
2545 end = iter + index->address_table_size;
2546
2547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2548
2549 while (iter < end)
2550 {
2551 ULONGEST hi, lo, cu_index;
2552 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2553 iter += 8;
2554 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2555 iter += 8;
2556 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2557 iter += 4;
2558
2559 if (cu_index < dwarf2_per_objfile->n_comp_units)
2560 {
2561 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2562 dw2_get_cu (cu_index));
2563 }
2564 else
2565 {
2566 complaint (&symfile_complaints,
2567 _(".gdb_index address table has invalid CU number %u"),
2568 (unsigned) cu_index);
2569 }
2570 }
2571
2572 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2573 &objfile->objfile_obstack);
2574 do_cleanups (cleanup);
2575 }
2576
2577 /* The hash function for strings in the mapped index. This is the same as
2578 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2579 implementation. This is necessary because the hash function is tied to the
2580 format of the mapped index file. The hash values do not have to match with
2581 SYMBOL_HASH_NEXT.
2582
2583 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2584
2585 static hashval_t
2586 mapped_index_string_hash (int index_version, const void *p)
2587 {
2588 const unsigned char *str = (const unsigned char *) p;
2589 hashval_t r = 0;
2590 unsigned char c;
2591
2592 while ((c = *str++) != 0)
2593 {
2594 if (index_version >= 5)
2595 c = tolower (c);
2596 r = r * 67 + c - 113;
2597 }
2598
2599 return r;
2600 }
2601
2602 /* Find a slot in the mapped index INDEX for the object named NAME.
2603 If NAME is found, set *VEC_OUT to point to the CU vector in the
2604 constant pool and return 1. If NAME cannot be found, return 0. */
2605
2606 static int
2607 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2608 offset_type **vec_out)
2609 {
2610 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2611 offset_type hash;
2612 offset_type slot, step;
2613 int (*cmp) (const char *, const char *);
2614
2615 if (current_language->la_language == language_cplus
2616 || current_language->la_language == language_java
2617 || current_language->la_language == language_fortran)
2618 {
2619 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2620 not contain any. */
2621 const char *paren = strchr (name, '(');
2622
2623 if (paren)
2624 {
2625 char *dup;
2626
2627 dup = xmalloc (paren - name + 1);
2628 memcpy (dup, name, paren - name);
2629 dup[paren - name] = 0;
2630
2631 make_cleanup (xfree, dup);
2632 name = dup;
2633 }
2634 }
2635
2636 /* Index version 4 did not support case insensitive searches. But the
2637 indices for case insensitive languages are built in lowercase, therefore
2638 simulate our NAME being searched is also lowercased. */
2639 hash = mapped_index_string_hash ((index->version == 4
2640 && case_sensitivity == case_sensitive_off
2641 ? 5 : index->version),
2642 name);
2643
2644 slot = hash & (index->symbol_table_slots - 1);
2645 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2646 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2647
2648 for (;;)
2649 {
2650 /* Convert a slot number to an offset into the table. */
2651 offset_type i = 2 * slot;
2652 const char *str;
2653 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2654 {
2655 do_cleanups (back_to);
2656 return 0;
2657 }
2658
2659 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2660 if (!cmp (name, str))
2661 {
2662 *vec_out = (offset_type *) (index->constant_pool
2663 + MAYBE_SWAP (index->symbol_table[i + 1]));
2664 do_cleanups (back_to);
2665 return 1;
2666 }
2667
2668 slot = (slot + step) & (index->symbol_table_slots - 1);
2669 }
2670 }
2671
2672 /* A helper function that reads the .gdb_index from SECTION and fills
2673 in MAP. FILENAME is the name of the file containing the section;
2674 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2675 ok to use deprecated sections.
2676
2677 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2678 out parameters that are filled in with information about the CU and
2679 TU lists in the section.
2680
2681 Returns 1 if all went well, 0 otherwise. */
2682
2683 static int
2684 read_index_from_section (struct objfile *objfile,
2685 const char *filename,
2686 int deprecated_ok,
2687 struct dwarf2_section_info *section,
2688 struct mapped_index *map,
2689 const gdb_byte **cu_list,
2690 offset_type *cu_list_elements,
2691 const gdb_byte **types_list,
2692 offset_type *types_list_elements)
2693 {
2694 const gdb_byte *addr;
2695 offset_type version;
2696 offset_type *metadata;
2697 int i;
2698
2699 if (dwarf2_section_empty_p (section))
2700 return 0;
2701
2702 /* Older elfutils strip versions could keep the section in the main
2703 executable while splitting it for the separate debug info file. */
2704 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2705 return 0;
2706
2707 dwarf2_read_section (objfile, section);
2708
2709 addr = section->buffer;
2710 /* Version check. */
2711 version = MAYBE_SWAP (*(offset_type *) addr);
2712 /* Versions earlier than 3 emitted every copy of a psymbol. This
2713 causes the index to behave very poorly for certain requests. Version 3
2714 contained incomplete addrmap. So, it seems better to just ignore such
2715 indices. */
2716 if (version < 4)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("Skipping obsolete .gdb_index section in %s."),
2722 filename);
2723 warning_printed = 1;
2724 }
2725 return 0;
2726 }
2727 /* Index version 4 uses a different hash function than index version
2728 5 and later.
2729
2730 Versions earlier than 6 did not emit psymbols for inlined
2731 functions. Using these files will cause GDB not to be able to
2732 set breakpoints on inlined functions by name, so we ignore these
2733 indices unless the user has done
2734 "set use-deprecated-index-sections on". */
2735 if (version < 6 && !deprecated_ok)
2736 {
2737 static int warning_printed = 0;
2738 if (!warning_printed)
2739 {
2740 warning (_("\
2741 Skipping deprecated .gdb_index section in %s.\n\
2742 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2743 to use the section anyway."),
2744 filename);
2745 warning_printed = 1;
2746 }
2747 return 0;
2748 }
2749 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2750 of the TU (for symbols coming from TUs). It's just a performance bug, and
2751 we can't distinguish gdb-generated indices from gold-generated ones, so
2752 nothing to do here. */
2753
2754 /* Indexes with higher version than the one supported by GDB may be no
2755 longer backward compatible. */
2756 if (version > 8)
2757 return 0;
2758
2759 map->version = version;
2760 map->total_size = section->size;
2761
2762 metadata = (offset_type *) (addr + sizeof (offset_type));
2763
2764 i = 0;
2765 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2766 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2767 / 8);
2768 ++i;
2769
2770 *types_list = addr + MAYBE_SWAP (metadata[i]);
2771 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2772 - MAYBE_SWAP (metadata[i]))
2773 / 8);
2774 ++i;
2775
2776 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2777 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2778 - MAYBE_SWAP (metadata[i]));
2779 ++i;
2780
2781 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2782 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2783 - MAYBE_SWAP (metadata[i]))
2784 / (2 * sizeof (offset_type)));
2785 ++i;
2786
2787 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2788
2789 return 1;
2790 }
2791
2792
2793 /* Read the index file. If everything went ok, initialize the "quick"
2794 elements of all the CUs and return 1. Otherwise, return 0. */
2795
2796 static int
2797 dwarf2_read_index (struct objfile *objfile)
2798 {
2799 struct mapped_index local_map, *map;
2800 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2801 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2802
2803 if (!read_index_from_section (objfile, objfile->name,
2804 use_deprecated_index_sections,
2805 &dwarf2_per_objfile->gdb_index, &local_map,
2806 &cu_list, &cu_list_elements,
2807 &types_list, &types_list_elements))
2808 return 0;
2809
2810 /* Don't use the index if it's empty. */
2811 if (local_map.symbol_table_slots == 0)
2812 return 0;
2813
2814 /* If there is a .dwz file, read it so we can get its CU list as
2815 well. */
2816 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2817 {
2818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2819 struct mapped_index dwz_map;
2820 const gdb_byte *dwz_types_ignore;
2821 offset_type dwz_types_elements_ignore;
2822
2823 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2824 1,
2825 &dwz->gdb_index, &dwz_map,
2826 &dwz_list, &dwz_list_elements,
2827 &dwz_types_ignore,
2828 &dwz_types_elements_ignore))
2829 {
2830 warning (_("could not read '.gdb_index' section from %s; skipping"),
2831 bfd_get_filename (dwz->dwz_bfd));
2832 return 0;
2833 }
2834 }
2835
2836 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2837 dwz_list_elements);
2838
2839 if (types_list_elements)
2840 {
2841 struct dwarf2_section_info *section;
2842
2843 /* We can only handle a single .debug_types when we have an
2844 index. */
2845 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2846 return 0;
2847
2848 section = VEC_index (dwarf2_section_info_def,
2849 dwarf2_per_objfile->types, 0);
2850
2851 create_signatured_type_table_from_index (objfile, section, types_list,
2852 types_list_elements);
2853 }
2854
2855 create_addrmap_from_index (objfile, &local_map);
2856
2857 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2858 *map = local_map;
2859
2860 dwarf2_per_objfile->index_table = map;
2861 dwarf2_per_objfile->using_index = 1;
2862 dwarf2_per_objfile->quick_file_names_table =
2863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2864
2865 return 1;
2866 }
2867
2868 /* A helper for the "quick" functions which sets the global
2869 dwarf2_per_objfile according to OBJFILE. */
2870
2871 static void
2872 dw2_setup (struct objfile *objfile)
2873 {
2874 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2875 gdb_assert (dwarf2_per_objfile);
2876 }
2877
2878 /* die_reader_func for dw2_get_file_names. */
2879
2880 static void
2881 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2882 const gdb_byte *info_ptr,
2883 struct die_info *comp_unit_die,
2884 int has_children,
2885 void *data)
2886 {
2887 struct dwarf2_cu *cu = reader->cu;
2888 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2889 struct objfile *objfile = dwarf2_per_objfile->objfile;
2890 struct dwarf2_per_cu_data *lh_cu;
2891 struct line_header *lh;
2892 struct attribute *attr;
2893 int i;
2894 const char *name, *comp_dir;
2895 void **slot;
2896 struct quick_file_names *qfn;
2897 unsigned int line_offset;
2898
2899 gdb_assert (! this_cu->is_debug_types);
2900
2901 /* Our callers never want to match partial units -- instead they
2902 will match the enclosing full CU. */
2903 if (comp_unit_die->tag == DW_TAG_partial_unit)
2904 {
2905 this_cu->v.quick->no_file_data = 1;
2906 return;
2907 }
2908
2909 lh_cu = this_cu;
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
2929 lh_cu->v.quick->file_names = *slot;
2930 return;
2931 }
2932
2933 lh = dwarf_decode_line_header (line_offset, cu);
2934 }
2935 if (lh == NULL)
2936 {
2937 lh_cu->v.quick->no_file_data = 1;
2938 return;
2939 }
2940
2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
2946
2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2948
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
2952 for (i = 0; i < lh->num_file_names; ++i)
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
2955
2956 free_line_header (lh);
2957
2958 lh_cu->v.quick->file_names = qfn;
2959 }
2960
2961 /* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964 static struct quick_file_names *
2965 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2966 {
2967 /* This should never be called for TUs. */
2968 gdb_assert (! this_cu->is_debug_types);
2969 /* Nor type unit groups. */
2970 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2971
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
2978 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2979
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982 return this_cu->v.quick->file_names;
2983 }
2984
2985 /* A helper for the "quick" functions which computes and caches the
2986 real path for a given file name from the line table. */
2987
2988 static const char *
2989 dw2_get_real_path (struct objfile *objfile,
2990 struct quick_file_names *qfn, int index)
2991 {
2992 if (qfn->real_names == NULL)
2993 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2994 qfn->num_file_names, sizeof (char *));
2995
2996 if (qfn->real_names[index] == NULL)
2997 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2998
2999 return qfn->real_names[index];
3000 }
3001
3002 static struct symtab *
3003 dw2_find_last_source_symtab (struct objfile *objfile)
3004 {
3005 int index;
3006
3007 dw2_setup (objfile);
3008 index = dwarf2_per_objfile->n_comp_units - 1;
3009 return dw2_instantiate_symtab (dw2_get_cu (index));
3010 }
3011
3012 /* Traversal function for dw2_forget_cached_source_info. */
3013
3014 static int
3015 dw2_free_cached_file_names (void **slot, void *info)
3016 {
3017 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3018
3019 if (file_data->real_names)
3020 {
3021 int i;
3022
3023 for (i = 0; i < file_data->num_file_names; ++i)
3024 {
3025 xfree ((void*) file_data->real_names[i]);
3026 file_data->real_names[i] = NULL;
3027 }
3028 }
3029
3030 return 1;
3031 }
3032
3033 static void
3034 dw2_forget_cached_source_info (struct objfile *objfile)
3035 {
3036 dw2_setup (objfile);
3037
3038 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3039 dw2_free_cached_file_names, NULL);
3040 }
3041
3042 /* Helper function for dw2_map_symtabs_matching_filename that expands
3043 the symtabs and calls the iterator. */
3044
3045 static int
3046 dw2_map_expand_apply (struct objfile *objfile,
3047 struct dwarf2_per_cu_data *per_cu,
3048 const char *name, const char *real_path,
3049 int (*callback) (struct symtab *, void *),
3050 void *data)
3051 {
3052 struct symtab *last_made = objfile->symtabs;
3053
3054 /* Don't visit already-expanded CUs. */
3055 if (per_cu->v.quick->symtab)
3056 return 0;
3057
3058 /* This may expand more than one symtab, and we want to iterate over
3059 all of them. */
3060 dw2_instantiate_symtab (per_cu);
3061
3062 return iterate_over_some_symtabs (name, real_path, callback, data,
3063 objfile->symtabs, last_made);
3064 }
3065
3066 /* Implementation of the map_symtabs_matching_filename method. */
3067
3068 static int
3069 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3070 const char *real_path,
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
3073 {
3074 int i;
3075 const char *name_basename = lbasename (name);
3076
3077 dw2_setup (objfile);
3078
3079 /* The rule is CUs specify all the files, including those used by
3080 any TU, so there's no need to scan TUs here. */
3081
3082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3083 {
3084 int j;
3085 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3086 struct quick_file_names *file_data;
3087
3088 /* We only need to look at symtabs not already expanded. */
3089 if (per_cu->v.quick->symtab)
3090 continue;
3091
3092 file_data = dw2_get_file_names (per_cu);
3093 if (file_data == NULL)
3094 continue;
3095
3096 for (j = 0; j < file_data->num_file_names; ++j)
3097 {
3098 const char *this_name = file_data->file_names[j];
3099 const char *this_real_name;
3100
3101 if (compare_filenames_for_search (this_name, name))
3102 {
3103 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3104 callback, data))
3105 return 1;
3106 continue;
3107 }
3108
3109 /* Before we invoke realpath, which can get expensive when many
3110 files are involved, do a quick comparison of the basenames. */
3111 if (! basenames_may_differ
3112 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3113 continue;
3114
3115 this_real_name = dw2_get_real_path (objfile, file_data, j);
3116 if (compare_filenames_for_search (this_real_name, name))
3117 {
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
3121 continue;
3122 }
3123
3124 if (real_path != NULL)
3125 {
3126 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3127 gdb_assert (IS_ABSOLUTE_PATH (name));
3128 if (this_real_name != NULL
3129 && FILENAME_CMP (real_path, this_real_name) == 0)
3130 {
3131 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3132 callback, data))
3133 return 1;
3134 continue;
3135 }
3136 }
3137 }
3138 }
3139
3140 return 0;
3141 }
3142
3143 /* Struct used to manage iterating over all CUs looking for a symbol. */
3144
3145 struct dw2_symtab_iterator
3146 {
3147 /* The internalized form of .gdb_index. */
3148 struct mapped_index *index;
3149 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3150 int want_specific_block;
3151 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3152 Unused if !WANT_SPECIFIC_BLOCK. */
3153 int block_index;
3154 /* The kind of symbol we're looking for. */
3155 domain_enum domain;
3156 /* The list of CUs from the index entry of the symbol,
3157 or NULL if not found. */
3158 offset_type *vec;
3159 /* The next element in VEC to look at. */
3160 int next;
3161 /* The number of elements in VEC, or zero if there is no match. */
3162 int length;
3163 };
3164
3165 /* Initialize the index symtab iterator ITER.
3166 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3167 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3168
3169 static void
3170 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3171 struct mapped_index *index,
3172 int want_specific_block,
3173 int block_index,
3174 domain_enum domain,
3175 const char *name)
3176 {
3177 iter->index = index;
3178 iter->want_specific_block = want_specific_block;
3179 iter->block_index = block_index;
3180 iter->domain = domain;
3181 iter->next = 0;
3182
3183 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3184 iter->length = MAYBE_SWAP (*iter->vec);
3185 else
3186 {
3187 iter->vec = NULL;
3188 iter->length = 0;
3189 }
3190 }
3191
3192 /* Return the next matching CU or NULL if there are no more. */
3193
3194 static struct dwarf2_per_cu_data *
3195 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3196 {
3197 for ( ; iter->next < iter->length; ++iter->next)
3198 {
3199 offset_type cu_index_and_attrs =
3200 MAYBE_SWAP (iter->vec[iter->next + 1]);
3201 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3202 struct dwarf2_per_cu_data *per_cu;
3203 int want_static = iter->block_index != GLOBAL_BLOCK;
3204 /* This value is only valid for index versions >= 7. */
3205 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3206 gdb_index_symbol_kind symbol_kind =
3207 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3208 /* Only check the symbol attributes if they're present.
3209 Indices prior to version 7 don't record them,
3210 and indices >= 7 may elide them for certain symbols
3211 (gold does this). */
3212 int attrs_valid =
3213 (iter->index->version >= 7
3214 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3215
3216 /* Don't crash on bad data. */
3217 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3218 + dwarf2_per_objfile->n_type_units))
3219 {
3220 complaint (&symfile_complaints,
3221 _(".gdb_index entry has bad CU index"
3222 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3223 continue;
3224 }
3225
3226 per_cu = dw2_get_cu (cu_index);
3227
3228 /* Skip if already read in. */
3229 if (per_cu->v.quick->symtab)
3230 continue;
3231
3232 if (attrs_valid
3233 && iter->want_specific_block
3234 && want_static != is_static)
3235 continue;
3236
3237 /* Only check the symbol's kind if it has one. */
3238 if (attrs_valid)
3239 {
3240 switch (iter->domain)
3241 {
3242 case VAR_DOMAIN:
3243 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3244 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3245 /* Some types are also in VAR_DOMAIN. */
3246 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3247 continue;
3248 break;
3249 case STRUCT_DOMAIN:
3250 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3251 continue;
3252 break;
3253 case LABEL_DOMAIN:
3254 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3255 continue;
3256 break;
3257 default:
3258 break;
3259 }
3260 }
3261
3262 ++iter->next;
3263 return per_cu;
3264 }
3265
3266 return NULL;
3267 }
3268
3269 static struct symtab *
3270 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3271 const char *name, domain_enum domain)
3272 {
3273 struct symtab *stab_best = NULL;
3274 struct mapped_index *index;
3275
3276 dw2_setup (objfile);
3277
3278 index = dwarf2_per_objfile->index_table;
3279
3280 /* index is NULL if OBJF_READNOW. */
3281 if (index)
3282 {
3283 struct dw2_symtab_iterator iter;
3284 struct dwarf2_per_cu_data *per_cu;
3285
3286 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3287
3288 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3289 {
3290 struct symbol *sym = NULL;
3291 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3292
3293 /* Some caution must be observed with overloaded functions
3294 and methods, since the index will not contain any overload
3295 information (but NAME might contain it). */
3296 if (stab->primary)
3297 {
3298 struct blockvector *bv = BLOCKVECTOR (stab);
3299 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3300
3301 sym = lookup_block_symbol (block, name, domain);
3302 }
3303
3304 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3305 {
3306 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3307 return stab;
3308
3309 stab_best = stab;
3310 }
3311
3312 /* Keep looking through other CUs. */
3313 }
3314 }
3315
3316 return stab_best;
3317 }
3318
3319 static void
3320 dw2_print_stats (struct objfile *objfile)
3321 {
3322 int i, total, count;
3323
3324 dw2_setup (objfile);
3325 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3326 count = 0;
3327 for (i = 0; i < total; ++i)
3328 {
3329 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3330
3331 if (!per_cu->v.quick->symtab)
3332 ++count;
3333 }
3334 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3335 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3336 }
3337
3338 static void
3339 dw2_dump (struct objfile *objfile)
3340 {
3341 /* Nothing worth printing. */
3342 }
3343
3344 static void
3345 dw2_relocate (struct objfile *objfile,
3346 const struct section_offsets *new_offsets,
3347 const struct section_offsets *delta)
3348 {
3349 /* There's nothing to relocate here. */
3350 }
3351
3352 static void
3353 dw2_expand_symtabs_for_function (struct objfile *objfile,
3354 const char *func_name)
3355 {
3356 struct mapped_index *index;
3357
3358 dw2_setup (objfile);
3359
3360 index = dwarf2_per_objfile->index_table;
3361
3362 /* index is NULL if OBJF_READNOW. */
3363 if (index)
3364 {
3365 struct dw2_symtab_iterator iter;
3366 struct dwarf2_per_cu_data *per_cu;
3367
3368 /* Note: It doesn't matter what we pass for block_index here. */
3369 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3370 func_name);
3371
3372 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3373 dw2_instantiate_symtab (per_cu);
3374 }
3375 }
3376
3377 static void
3378 dw2_expand_all_symtabs (struct objfile *objfile)
3379 {
3380 int i;
3381
3382 dw2_setup (objfile);
3383
3384 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3385 + dwarf2_per_objfile->n_type_units); ++i)
3386 {
3387 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3388
3389 dw2_instantiate_symtab (per_cu);
3390 }
3391 }
3392
3393 static void
3394 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3395 const char *fullname)
3396 {
3397 int i;
3398
3399 dw2_setup (objfile);
3400
3401 /* We don't need to consider type units here.
3402 This is only called for examining code, e.g. expand_line_sal.
3403 There can be an order of magnitude (or more) more type units
3404 than comp units, and we avoid them if we can. */
3405
3406 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3407 {
3408 int j;
3409 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3410 struct quick_file_names *file_data;
3411
3412 /* We only need to look at symtabs not already expanded. */
3413 if (per_cu->v.quick->symtab)
3414 continue;
3415
3416 file_data = dw2_get_file_names (per_cu);
3417 if (file_data == NULL)
3418 continue;
3419
3420 for (j = 0; j < file_data->num_file_names; ++j)
3421 {
3422 const char *this_fullname = file_data->file_names[j];
3423
3424 if (filename_cmp (this_fullname, fullname) == 0)
3425 {
3426 dw2_instantiate_symtab (per_cu);
3427 break;
3428 }
3429 }
3430 }
3431 }
3432
3433 /* A helper function for dw2_find_symbol_file that finds the primary
3434 file name for a given CU. This is a die_reader_func. */
3435
3436 static void
3437 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3438 const gdb_byte *info_ptr,
3439 struct die_info *comp_unit_die,
3440 int has_children,
3441 void *data)
3442 {
3443 const char **result_ptr = data;
3444 struct dwarf2_cu *cu = reader->cu;
3445 struct attribute *attr;
3446
3447 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3448 if (attr == NULL)
3449 *result_ptr = NULL;
3450 else
3451 *result_ptr = DW_STRING (attr);
3452 }
3453
3454 static const char *
3455 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3456 {
3457 struct dwarf2_per_cu_data *per_cu;
3458 offset_type *vec;
3459 const char *filename;
3460
3461 dw2_setup (objfile);
3462
3463 /* index_table is NULL if OBJF_READNOW. */
3464 if (!dwarf2_per_objfile->index_table)
3465 {
3466 struct symtab *s;
3467
3468 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3469 {
3470 struct blockvector *bv = BLOCKVECTOR (s);
3471 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3472 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3473
3474 if (sym)
3475 {
3476 /* Only file extension of returned filename is recognized. */
3477 return SYMBOL_SYMTAB (sym)->filename;
3478 }
3479 }
3480 return NULL;
3481 }
3482
3483 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3484 name, &vec))
3485 return NULL;
3486
3487 /* Note that this just looks at the very first one named NAME -- but
3488 actually we are looking for a function. find_main_filename
3489 should be rewritten so that it doesn't require a custom hook. It
3490 could just use the ordinary symbol tables. */
3491 /* vec[0] is the length, which must always be >0. */
3492 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3493
3494 if (per_cu->v.quick->symtab != NULL)
3495 {
3496 /* Only file extension of returned filename is recognized. */
3497 return per_cu->v.quick->symtab->filename;
3498 }
3499
3500 /* Initialize filename in case there's a problem reading the DWARF,
3501 dw2_get_primary_filename_reader may not get called. */
3502 filename = NULL;
3503 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3504 dw2_get_primary_filename_reader, &filename);
3505
3506 /* Only file extension of returned filename is recognized. */
3507 return filename;
3508 }
3509
3510 static void
3511 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3512 struct objfile *objfile, int global,
3513 int (*callback) (struct block *,
3514 struct symbol *, void *),
3515 void *data, symbol_compare_ftype *match,
3516 symbol_compare_ftype *ordered_compare)
3517 {
3518 /* Currently unimplemented; used for Ada. The function can be called if the
3519 current language is Ada for a non-Ada objfile using GNU index. As Ada
3520 does not look for non-Ada symbols this function should just return. */
3521 }
3522
3523 static void
3524 dw2_expand_symtabs_matching
3525 (struct objfile *objfile,
3526 int (*file_matcher) (const char *, void *, int basenames),
3527 int (*name_matcher) (const char *, void *),
3528 enum search_domain kind,
3529 void *data)
3530 {
3531 int i;
3532 offset_type iter;
3533 struct mapped_index *index;
3534
3535 dw2_setup (objfile);
3536
3537 /* index_table is NULL if OBJF_READNOW. */
3538 if (!dwarf2_per_objfile->index_table)
3539 return;
3540 index = dwarf2_per_objfile->index_table;
3541
3542 if (file_matcher != NULL)
3543 {
3544 struct cleanup *cleanup;
3545 htab_t visited_found, visited_not_found;
3546
3547 visited_found = htab_create_alloc (10,
3548 htab_hash_pointer, htab_eq_pointer,
3549 NULL, xcalloc, xfree);
3550 cleanup = make_cleanup_htab_delete (visited_found);
3551 visited_not_found = htab_create_alloc (10,
3552 htab_hash_pointer, htab_eq_pointer,
3553 NULL, xcalloc, xfree);
3554 make_cleanup_htab_delete (visited_not_found);
3555
3556 /* The rule is CUs specify all the files, including those used by
3557 any TU, so there's no need to scan TUs here. */
3558
3559 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3560 {
3561 int j;
3562 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3563 struct quick_file_names *file_data;
3564 void **slot;
3565
3566 per_cu->v.quick->mark = 0;
3567
3568 /* We only need to look at symtabs not already expanded. */
3569 if (per_cu->v.quick->symtab)
3570 continue;
3571
3572 file_data = dw2_get_file_names (per_cu);
3573 if (file_data == NULL)
3574 continue;
3575
3576 if (htab_find (visited_not_found, file_data) != NULL)
3577 continue;
3578 else if (htab_find (visited_found, file_data) != NULL)
3579 {
3580 per_cu->v.quick->mark = 1;
3581 continue;
3582 }
3583
3584 for (j = 0; j < file_data->num_file_names; ++j)
3585 {
3586 const char *this_real_name;
3587
3588 if (file_matcher (file_data->file_names[j], data, 0))
3589 {
3590 per_cu->v.quick->mark = 1;
3591 break;
3592 }
3593
3594 /* Before we invoke realpath, which can get expensive when many
3595 files are involved, do a quick comparison of the basenames. */
3596 if (!basenames_may_differ
3597 && !file_matcher (lbasename (file_data->file_names[j]),
3598 data, 1))
3599 continue;
3600
3601 this_real_name = dw2_get_real_path (objfile, file_data, j);
3602 if (file_matcher (this_real_name, data, 0))
3603 {
3604 per_cu->v.quick->mark = 1;
3605 break;
3606 }
3607 }
3608
3609 slot = htab_find_slot (per_cu->v.quick->mark
3610 ? visited_found
3611 : visited_not_found,
3612 file_data, INSERT);
3613 *slot = file_data;
3614 }
3615
3616 do_cleanups (cleanup);
3617 }
3618
3619 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3620 {
3621 offset_type idx = 2 * iter;
3622 const char *name;
3623 offset_type *vec, vec_len, vec_idx;
3624
3625 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3626 continue;
3627
3628 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3629
3630 if (! (*name_matcher) (name, data))
3631 continue;
3632
3633 /* The name was matched, now expand corresponding CUs that were
3634 marked. */
3635 vec = (offset_type *) (index->constant_pool
3636 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3637 vec_len = MAYBE_SWAP (vec[0]);
3638 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3639 {
3640 struct dwarf2_per_cu_data *per_cu;
3641 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3642 gdb_index_symbol_kind symbol_kind =
3643 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3644 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3645 /* Only check the symbol attributes if they're present.
3646 Indices prior to version 7 don't record them,
3647 and indices >= 7 may elide them for certain symbols
3648 (gold does this). */
3649 int attrs_valid =
3650 (index->version >= 7
3651 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (kind)
3657 {
3658 case VARIABLES_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3660 continue;
3661 break;
3662 case FUNCTIONS_DOMAIN:
3663 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3664 continue;
3665 break;
3666 case TYPES_DOMAIN:
3667 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3668 continue;
3669 break;
3670 default:
3671 break;
3672 }
3673 }
3674
3675 /* Don't crash on bad data. */
3676 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3677 + dwarf2_per_objfile->n_type_units))
3678 {
3679 complaint (&symfile_complaints,
3680 _(".gdb_index entry has bad CU index"
3681 " [in module %s]"), objfile->name);
3682 continue;
3683 }
3684
3685 per_cu = dw2_get_cu (cu_index);
3686 if (file_matcher == NULL || per_cu->v.quick->mark)
3687 dw2_instantiate_symtab (per_cu);
3688 }
3689 }
3690 }
3691
3692 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3693 symtab. */
3694
3695 static struct symtab *
3696 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3697 {
3698 int i;
3699
3700 if (BLOCKVECTOR (symtab) != NULL
3701 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3702 return symtab;
3703
3704 if (symtab->includes == NULL)
3705 return NULL;
3706
3707 for (i = 0; symtab->includes[i]; ++i)
3708 {
3709 struct symtab *s = symtab->includes[i];
3710
3711 s = recursively_find_pc_sect_symtab (s, pc);
3712 if (s != NULL)
3713 return s;
3714 }
3715
3716 return NULL;
3717 }
3718
3719 static struct symtab *
3720 dw2_find_pc_sect_symtab (struct objfile *objfile,
3721 struct minimal_symbol *msymbol,
3722 CORE_ADDR pc,
3723 struct obj_section *section,
3724 int warn_if_readin)
3725 {
3726 struct dwarf2_per_cu_data *data;
3727 struct symtab *result;
3728
3729 dw2_setup (objfile);
3730
3731 if (!objfile->psymtabs_addrmap)
3732 return NULL;
3733
3734 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3735 if (!data)
3736 return NULL;
3737
3738 if (warn_if_readin && data->v.quick->symtab)
3739 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3740 paddress (get_objfile_arch (objfile), pc));
3741
3742 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3743 gdb_assert (result != NULL);
3744 return result;
3745 }
3746
3747 static void
3748 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3749 void *data, int need_fullname)
3750 {
3751 int i;
3752 struct cleanup *cleanup;
3753 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3754 NULL, xcalloc, xfree);
3755
3756 cleanup = make_cleanup_htab_delete (visited);
3757 dw2_setup (objfile);
3758
3759 /* The rule is CUs specify all the files, including those used by
3760 any TU, so there's no need to scan TUs here.
3761 We can ignore file names coming from already-expanded CUs. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3764 {
3765 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3766
3767 if (per_cu->v.quick->symtab)
3768 {
3769 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3770 INSERT);
3771
3772 *slot = per_cu->v.quick->file_names;
3773 }
3774 }
3775
3776 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3777 {
3778 int j;
3779 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3780 struct quick_file_names *file_data;
3781 void **slot;
3782
3783 /* We only need to look at symtabs not already expanded. */
3784 if (per_cu->v.quick->symtab)
3785 continue;
3786
3787 file_data = dw2_get_file_names (per_cu);
3788 if (file_data == NULL)
3789 continue;
3790
3791 slot = htab_find_slot (visited, file_data, INSERT);
3792 if (*slot)
3793 {
3794 /* Already visited. */
3795 continue;
3796 }
3797 *slot = file_data;
3798
3799 for (j = 0; j < file_data->num_file_names; ++j)
3800 {
3801 const char *this_real_name;
3802
3803 if (need_fullname)
3804 this_real_name = dw2_get_real_path (objfile, file_data, j);
3805 else
3806 this_real_name = NULL;
3807 (*fun) (file_data->file_names[j], this_real_name, data);
3808 }
3809 }
3810
3811 do_cleanups (cleanup);
3812 }
3813
3814 static int
3815 dw2_has_symbols (struct objfile *objfile)
3816 {
3817 return 1;
3818 }
3819
3820 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3821 {
3822 dw2_has_symbols,
3823 dw2_find_last_source_symtab,
3824 dw2_forget_cached_source_info,
3825 dw2_map_symtabs_matching_filename,
3826 dw2_lookup_symbol,
3827 dw2_print_stats,
3828 dw2_dump,
3829 dw2_relocate,
3830 dw2_expand_symtabs_for_function,
3831 dw2_expand_all_symtabs,
3832 dw2_expand_symtabs_with_fullname,
3833 dw2_find_symbol_file,
3834 dw2_map_matching_symbols,
3835 dw2_expand_symtabs_matching,
3836 dw2_find_pc_sect_symtab,
3837 dw2_map_symbol_filenames
3838 };
3839
3840 /* Initialize for reading DWARF for this objfile. Return 0 if this
3841 file will use psymtabs, or 1 if using the GNU index. */
3842
3843 int
3844 dwarf2_initialize_objfile (struct objfile *objfile)
3845 {
3846 /* If we're about to read full symbols, don't bother with the
3847 indices. In this case we also don't care if some other debug
3848 format is making psymtabs, because they are all about to be
3849 expanded anyway. */
3850 if ((objfile->flags & OBJF_READNOW))
3851 {
3852 int i;
3853
3854 dwarf2_per_objfile->using_index = 1;
3855 create_all_comp_units (objfile);
3856 create_all_type_units (objfile);
3857 dwarf2_per_objfile->quick_file_names_table =
3858 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3859
3860 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3861 + dwarf2_per_objfile->n_type_units); ++i)
3862 {
3863 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3864
3865 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3866 struct dwarf2_per_cu_quick_data);
3867 }
3868
3869 /* Return 1 so that gdb sees the "quick" functions. However,
3870 these functions will be no-ops because we will have expanded
3871 all symtabs. */
3872 return 1;
3873 }
3874
3875 if (dwarf2_read_index (objfile))
3876 return 1;
3877
3878 return 0;
3879 }
3880
3881 \f
3882
3883 /* Build a partial symbol table. */
3884
3885 void
3886 dwarf2_build_psymtabs (struct objfile *objfile)
3887 {
3888 volatile struct gdb_exception except;
3889
3890 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3891 {
3892 init_psymbol_list (objfile, 1024);
3893 }
3894
3895 TRY_CATCH (except, RETURN_MASK_ERROR)
3896 {
3897 /* This isn't really ideal: all the data we allocate on the
3898 objfile's obstack is still uselessly kept around. However,
3899 freeing it seems unsafe. */
3900 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3901
3902 dwarf2_build_psymtabs_hard (objfile);
3903 discard_cleanups (cleanups);
3904 }
3905 if (except.reason < 0)
3906 exception_print (gdb_stderr, except);
3907 }
3908
3909 /* Return the total length of the CU described by HEADER. */
3910
3911 static unsigned int
3912 get_cu_length (const struct comp_unit_head *header)
3913 {
3914 return header->initial_length_size + header->length;
3915 }
3916
3917 /* Return TRUE if OFFSET is within CU_HEADER. */
3918
3919 static inline int
3920 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3921 {
3922 sect_offset bottom = { cu_header->offset.sect_off };
3923 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3924
3925 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3926 }
3927
3928 /* Find the base address of the compilation unit for range lists and
3929 location lists. It will normally be specified by DW_AT_low_pc.
3930 In DWARF-3 draft 4, the base address could be overridden by
3931 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3932 compilation units with discontinuous ranges. */
3933
3934 static void
3935 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3936 {
3937 struct attribute *attr;
3938
3939 cu->base_known = 0;
3940 cu->base_address = 0;
3941
3942 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3943 if (attr)
3944 {
3945 cu->base_address = DW_ADDR (attr);
3946 cu->base_known = 1;
3947 }
3948 else
3949 {
3950 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3951 if (attr)
3952 {
3953 cu->base_address = DW_ADDR (attr);
3954 cu->base_known = 1;
3955 }
3956 }
3957 }
3958
3959 /* Read in the comp unit header information from the debug_info at info_ptr.
3960 NOTE: This leaves members offset, first_die_offset to be filled in
3961 by the caller. */
3962
3963 static const gdb_byte *
3964 read_comp_unit_head (struct comp_unit_head *cu_header,
3965 const gdb_byte *info_ptr, bfd *abfd)
3966 {
3967 int signed_addr;
3968 unsigned int bytes_read;
3969
3970 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3971 cu_header->initial_length_size = bytes_read;
3972 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3973 info_ptr += bytes_read;
3974 cu_header->version = read_2_bytes (abfd, info_ptr);
3975 info_ptr += 2;
3976 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3977 &bytes_read);
3978 info_ptr += bytes_read;
3979 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3980 info_ptr += 1;
3981 signed_addr = bfd_get_sign_extend_vma (abfd);
3982 if (signed_addr < 0)
3983 internal_error (__FILE__, __LINE__,
3984 _("read_comp_unit_head: dwarf from non elf file"));
3985 cu_header->signed_addr_p = signed_addr;
3986
3987 return info_ptr;
3988 }
3989
3990 /* Helper function that returns the proper abbrev section for
3991 THIS_CU. */
3992
3993 static struct dwarf2_section_info *
3994 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3995 {
3996 struct dwarf2_section_info *abbrev;
3997
3998 if (this_cu->is_dwz)
3999 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4000 else
4001 abbrev = &dwarf2_per_objfile->abbrev;
4002
4003 return abbrev;
4004 }
4005
4006 /* Subroutine of read_and_check_comp_unit_head and
4007 read_and_check_type_unit_head to simplify them.
4008 Perform various error checking on the header. */
4009
4010 static void
4011 error_check_comp_unit_head (struct comp_unit_head *header,
4012 struct dwarf2_section_info *section,
4013 struct dwarf2_section_info *abbrev_section)
4014 {
4015 bfd *abfd = section->asection->owner;
4016 const char *filename = bfd_get_filename (abfd);
4017
4018 if (header->version != 2 && header->version != 3 && header->version != 4)
4019 error (_("Dwarf Error: wrong version in compilation unit header "
4020 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4021 filename);
4022
4023 if (header->abbrev_offset.sect_off
4024 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4025 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4026 "(offset 0x%lx + 6) [in module %s]"),
4027 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4028 filename);
4029
4030 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4031 avoid potential 32-bit overflow. */
4032 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4033 > section->size)
4034 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4035 "(offset 0x%lx + 0) [in module %s]"),
4036 (long) header->length, (long) header->offset.sect_off,
4037 filename);
4038 }
4039
4040 /* Read in a CU/TU header and perform some basic error checking.
4041 The contents of the header are stored in HEADER.
4042 The result is a pointer to the start of the first DIE. */
4043
4044 static const gdb_byte *
4045 read_and_check_comp_unit_head (struct comp_unit_head *header,
4046 struct dwarf2_section_info *section,
4047 struct dwarf2_section_info *abbrev_section,
4048 const gdb_byte *info_ptr,
4049 int is_debug_types_section)
4050 {
4051 const gdb_byte *beg_of_comp_unit = info_ptr;
4052 bfd *abfd = section->asection->owner;
4053
4054 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4055
4056 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4057
4058 /* If we're reading a type unit, skip over the signature and
4059 type_offset fields. */
4060 if (is_debug_types_section)
4061 info_ptr += 8 /*signature*/ + header->offset_size;
4062
4063 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4064
4065 error_check_comp_unit_head (header, section, abbrev_section);
4066
4067 return info_ptr;
4068 }
4069
4070 /* Read in the types comp unit header information from .debug_types entry at
4071 types_ptr. The result is a pointer to one past the end of the header. */
4072
4073 static const gdb_byte *
4074 read_and_check_type_unit_head (struct comp_unit_head *header,
4075 struct dwarf2_section_info *section,
4076 struct dwarf2_section_info *abbrev_section,
4077 const gdb_byte *info_ptr,
4078 ULONGEST *signature,
4079 cu_offset *type_offset_in_tu)
4080 {
4081 const gdb_byte *beg_of_comp_unit = info_ptr;
4082 bfd *abfd = section->asection->owner;
4083
4084 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4085
4086 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4087
4088 /* If we're reading a type unit, skip over the signature and
4089 type_offset fields. */
4090 if (signature != NULL)
4091 *signature = read_8_bytes (abfd, info_ptr);
4092 info_ptr += 8;
4093 if (type_offset_in_tu != NULL)
4094 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4095 header->offset_size);
4096 info_ptr += header->offset_size;
4097
4098 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4099
4100 error_check_comp_unit_head (header, section, abbrev_section);
4101
4102 return info_ptr;
4103 }
4104
4105 /* Fetch the abbreviation table offset from a comp or type unit header. */
4106
4107 static sect_offset
4108 read_abbrev_offset (struct dwarf2_section_info *section,
4109 sect_offset offset)
4110 {
4111 bfd *abfd = section->asection->owner;
4112 const gdb_byte *info_ptr;
4113 unsigned int length, initial_length_size, offset_size;
4114 sect_offset abbrev_offset;
4115
4116 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4117 info_ptr = section->buffer + offset.sect_off;
4118 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4119 offset_size = initial_length_size == 4 ? 4 : 8;
4120 info_ptr += initial_length_size + 2 /*version*/;
4121 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4122 return abbrev_offset;
4123 }
4124
4125 /* Allocate a new partial symtab for file named NAME and mark this new
4126 partial symtab as being an include of PST. */
4127
4128 static void
4129 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4130 struct objfile *objfile)
4131 {
4132 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4133
4134 if (!IS_ABSOLUTE_PATH (subpst->filename))
4135 {
4136 /* It shares objfile->objfile_obstack. */
4137 subpst->dirname = pst->dirname;
4138 }
4139
4140 subpst->section_offsets = pst->section_offsets;
4141 subpst->textlow = 0;
4142 subpst->texthigh = 0;
4143
4144 subpst->dependencies = (struct partial_symtab **)
4145 obstack_alloc (&objfile->objfile_obstack,
4146 sizeof (struct partial_symtab *));
4147 subpst->dependencies[0] = pst;
4148 subpst->number_of_dependencies = 1;
4149
4150 subpst->globals_offset = 0;
4151 subpst->n_global_syms = 0;
4152 subpst->statics_offset = 0;
4153 subpst->n_static_syms = 0;
4154 subpst->symtab = NULL;
4155 subpst->read_symtab = pst->read_symtab;
4156 subpst->readin = 0;
4157
4158 /* No private part is necessary for include psymtabs. This property
4159 can be used to differentiate between such include psymtabs and
4160 the regular ones. */
4161 subpst->read_symtab_private = NULL;
4162 }
4163
4164 /* Read the Line Number Program data and extract the list of files
4165 included by the source file represented by PST. Build an include
4166 partial symtab for each of these included files. */
4167
4168 static void
4169 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4170 struct die_info *die,
4171 struct partial_symtab *pst)
4172 {
4173 struct line_header *lh = NULL;
4174 struct attribute *attr;
4175
4176 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4177 if (attr)
4178 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4179 if (lh == NULL)
4180 return; /* No linetable, so no includes. */
4181
4182 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4183 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4184
4185 free_line_header (lh);
4186 }
4187
4188 static hashval_t
4189 hash_signatured_type (const void *item)
4190 {
4191 const struct signatured_type *sig_type = item;
4192
4193 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4194 return sig_type->signature;
4195 }
4196
4197 static int
4198 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4199 {
4200 const struct signatured_type *lhs = item_lhs;
4201 const struct signatured_type *rhs = item_rhs;
4202
4203 return lhs->signature == rhs->signature;
4204 }
4205
4206 /* Allocate a hash table for signatured types. */
4207
4208 static htab_t
4209 allocate_signatured_type_table (struct objfile *objfile)
4210 {
4211 return htab_create_alloc_ex (41,
4212 hash_signatured_type,
4213 eq_signatured_type,
4214 NULL,
4215 &objfile->objfile_obstack,
4216 hashtab_obstack_allocate,
4217 dummy_obstack_deallocate);
4218 }
4219
4220 /* A helper function to add a signatured type CU to a table. */
4221
4222 static int
4223 add_signatured_type_cu_to_table (void **slot, void *datum)
4224 {
4225 struct signatured_type *sigt = *slot;
4226 struct signatured_type ***datap = datum;
4227
4228 **datap = sigt;
4229 ++*datap;
4230
4231 return 1;
4232 }
4233
4234 /* Create the hash table of all entries in the .debug_types
4235 (or .debug_types.dwo) section(s).
4236 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4237 otherwise it is NULL.
4238
4239 The result is a pointer to the hash table or NULL if there are no types.
4240
4241 Note: This function processes DWO files only, not DWP files. */
4242
4243 static htab_t
4244 create_debug_types_hash_table (struct dwo_file *dwo_file,
4245 VEC (dwarf2_section_info_def) *types)
4246 {
4247 struct objfile *objfile = dwarf2_per_objfile->objfile;
4248 htab_t types_htab = NULL;
4249 int ix;
4250 struct dwarf2_section_info *section;
4251 struct dwarf2_section_info *abbrev_section;
4252
4253 if (VEC_empty (dwarf2_section_info_def, types))
4254 return NULL;
4255
4256 abbrev_section = (dwo_file != NULL
4257 ? &dwo_file->sections.abbrev
4258 : &dwarf2_per_objfile->abbrev);
4259
4260 if (dwarf2_read_debug)
4261 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4262 dwo_file ? ".dwo" : "",
4263 bfd_get_filename (abbrev_section->asection->owner));
4264
4265 for (ix = 0;
4266 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4267 ++ix)
4268 {
4269 bfd *abfd;
4270 const gdb_byte *info_ptr, *end_ptr;
4271 struct dwarf2_section_info *abbrev_section;
4272
4273 dwarf2_read_section (objfile, section);
4274 info_ptr = section->buffer;
4275
4276 if (info_ptr == NULL)
4277 continue;
4278
4279 /* We can't set abfd until now because the section may be empty or
4280 not present, in which case section->asection will be NULL. */
4281 abfd = section->asection->owner;
4282
4283 if (dwo_file)
4284 abbrev_section = &dwo_file->sections.abbrev;
4285 else
4286 abbrev_section = &dwarf2_per_objfile->abbrev;
4287
4288 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4289 because we don't need to read any dies: the signature is in the
4290 header. */
4291
4292 end_ptr = info_ptr + section->size;
4293 while (info_ptr < end_ptr)
4294 {
4295 sect_offset offset;
4296 cu_offset type_offset_in_tu;
4297 ULONGEST signature;
4298 struct signatured_type *sig_type;
4299 struct dwo_unit *dwo_tu;
4300 void **slot;
4301 const gdb_byte *ptr = info_ptr;
4302 struct comp_unit_head header;
4303 unsigned int length;
4304
4305 offset.sect_off = ptr - section->buffer;
4306
4307 /* We need to read the type's signature in order to build the hash
4308 table, but we don't need anything else just yet. */
4309
4310 ptr = read_and_check_type_unit_head (&header, section,
4311 abbrev_section, ptr,
4312 &signature, &type_offset_in_tu);
4313
4314 length = get_cu_length (&header);
4315
4316 /* Skip dummy type units. */
4317 if (ptr >= info_ptr + length
4318 || peek_abbrev_code (abfd, ptr) == 0)
4319 {
4320 info_ptr += length;
4321 continue;
4322 }
4323
4324 if (types_htab == NULL)
4325 {
4326 if (dwo_file)
4327 types_htab = allocate_dwo_unit_table (objfile);
4328 else
4329 types_htab = allocate_signatured_type_table (objfile);
4330 }
4331
4332 if (dwo_file)
4333 {
4334 sig_type = NULL;
4335 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4336 struct dwo_unit);
4337 dwo_tu->dwo_file = dwo_file;
4338 dwo_tu->signature = signature;
4339 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4340 dwo_tu->section = section;
4341 dwo_tu->offset = offset;
4342 dwo_tu->length = length;
4343 }
4344 else
4345 {
4346 /* N.B.: type_offset is not usable if this type uses a DWO file.
4347 The real type_offset is in the DWO file. */
4348 dwo_tu = NULL;
4349 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4350 struct signatured_type);
4351 sig_type->signature = signature;
4352 sig_type->type_offset_in_tu = type_offset_in_tu;
4353 sig_type->per_cu.objfile = objfile;
4354 sig_type->per_cu.is_debug_types = 1;
4355 sig_type->per_cu.section = section;
4356 sig_type->per_cu.offset = offset;
4357 sig_type->per_cu.length = length;
4358 }
4359
4360 slot = htab_find_slot (types_htab,
4361 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4362 INSERT);
4363 gdb_assert (slot != NULL);
4364 if (*slot != NULL)
4365 {
4366 sect_offset dup_offset;
4367
4368 if (dwo_file)
4369 {
4370 const struct dwo_unit *dup_tu = *slot;
4371
4372 dup_offset = dup_tu->offset;
4373 }
4374 else
4375 {
4376 const struct signatured_type *dup_tu = *slot;
4377
4378 dup_offset = dup_tu->per_cu.offset;
4379 }
4380
4381 complaint (&symfile_complaints,
4382 _("debug type entry at offset 0x%x is duplicate to"
4383 " the entry at offset 0x%x, signature %s"),
4384 offset.sect_off, dup_offset.sect_off,
4385 hex_string (signature));
4386 }
4387 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4388
4389 if (dwarf2_read_debug)
4390 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4391 offset.sect_off,
4392 hex_string (signature));
4393
4394 info_ptr += length;
4395 }
4396 }
4397
4398 return types_htab;
4399 }
4400
4401 /* Create the hash table of all entries in the .debug_types section,
4402 and initialize all_type_units.
4403 The result is zero if there is an error (e.g. missing .debug_types section),
4404 otherwise non-zero. */
4405
4406 static int
4407 create_all_type_units (struct objfile *objfile)
4408 {
4409 htab_t types_htab;
4410 struct signatured_type **iter;
4411
4412 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4413 if (types_htab == NULL)
4414 {
4415 dwarf2_per_objfile->signatured_types = NULL;
4416 return 0;
4417 }
4418
4419 dwarf2_per_objfile->signatured_types = types_htab;
4420
4421 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4422 dwarf2_per_objfile->all_type_units
4423 = xmalloc (dwarf2_per_objfile->n_type_units
4424 * sizeof (struct signatured_type *));
4425 iter = &dwarf2_per_objfile->all_type_units[0];
4426 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4427 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4428 == dwarf2_per_objfile->n_type_units);
4429
4430 return 1;
4431 }
4432
4433 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4434 Fill in SIG_ENTRY with DWO_ENTRY. */
4435
4436 static void
4437 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4438 struct signatured_type *sig_entry,
4439 struct dwo_unit *dwo_entry)
4440 {
4441 sig_entry->per_cu.section = dwo_entry->section;
4442 sig_entry->per_cu.offset = dwo_entry->offset;
4443 sig_entry->per_cu.length = dwo_entry->length;
4444 sig_entry->per_cu.reading_dwo_directly = 1;
4445 sig_entry->per_cu.objfile = objfile;
4446 gdb_assert (! sig_entry->per_cu.queued);
4447 gdb_assert (sig_entry->per_cu.cu == NULL);
4448 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4449 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4450 gdb_assert (sig_entry->signature == dwo_entry->signature);
4451 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4452 gdb_assert (sig_entry->type_unit_group == NULL);
4453 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4454 sig_entry->dwo_unit = dwo_entry;
4455 }
4456
4457 /* Subroutine of lookup_signatured_type.
4458 Create the signatured_type data structure for a TU to be read in
4459 directly from a DWO file, bypassing the stub.
4460 We do this for the case where there is no DWP file and we're using
4461 .gdb_index: When reading a CU we want to stay in the DWO file containing
4462 that CU. Otherwise we could end up reading several other DWO files (due
4463 to comdat folding) to process the transitive closure of all the mentioned
4464 TUs, and that can be slow. The current DWO file will have every type
4465 signature that it needs.
4466 We only do this for .gdb_index because in the psymtab case we already have
4467 to read all the DWOs to build the type unit groups. */
4468
4469 static struct signatured_type *
4470 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4471 {
4472 struct objfile *objfile = dwarf2_per_objfile->objfile;
4473 struct dwo_file *dwo_file;
4474 struct dwo_unit find_dwo_entry, *dwo_entry;
4475 struct signatured_type find_sig_entry, *sig_entry;
4476
4477 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4478
4479 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4480 dwo_unit of the TU itself. */
4481 dwo_file = cu->dwo_unit->dwo_file;
4482
4483 /* We only ever need to read in one copy of a signatured type.
4484 Just use the global signatured_types array. If this is the first time
4485 we're reading this type, replace the recorded data from .gdb_index with
4486 this TU. */
4487
4488 if (dwarf2_per_objfile->signatured_types == NULL)
4489 return NULL;
4490 find_sig_entry.signature = sig;
4491 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4492 if (sig_entry == NULL)
4493 return NULL;
4494 /* Have we already tried to read this TU? */
4495 if (sig_entry->dwo_unit != NULL)
4496 return sig_entry;
4497
4498 /* Ok, this is the first time we're reading this TU. */
4499 if (dwo_file->tus == NULL)
4500 return NULL;
4501 find_dwo_entry.signature = sig;
4502 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4503 if (dwo_entry == NULL)
4504 return NULL;
4505
4506 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4507 return sig_entry;
4508 }
4509
4510 /* Subroutine of lookup_dwp_signatured_type.
4511 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4512
4513 static struct signatured_type *
4514 add_type_unit (ULONGEST sig)
4515 {
4516 struct objfile *objfile = dwarf2_per_objfile->objfile;
4517 int n_type_units = dwarf2_per_objfile->n_type_units;
4518 struct signatured_type *sig_type;
4519 void **slot;
4520
4521 ++n_type_units;
4522 dwarf2_per_objfile->all_type_units =
4523 xrealloc (dwarf2_per_objfile->all_type_units,
4524 n_type_units * sizeof (struct signatured_type *));
4525 dwarf2_per_objfile->n_type_units = n_type_units;
4526 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4527 struct signatured_type);
4528 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4529 sig_type->signature = sig;
4530 sig_type->per_cu.is_debug_types = 1;
4531 sig_type->per_cu.v.quick =
4532 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4533 struct dwarf2_per_cu_quick_data);
4534 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4535 sig_type, INSERT);
4536 gdb_assert (*slot == NULL);
4537 *slot = sig_type;
4538 /* The rest of sig_type must be filled in by the caller. */
4539 return sig_type;
4540 }
4541
4542 /* Subroutine of lookup_signatured_type.
4543 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4544 then try the DWP file.
4545 Normally this "can't happen", but if there's a bug in signature
4546 generation and/or the DWP file is built incorrectly, it can happen.
4547 Using the type directly from the DWP file means we don't have the stub
4548 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4549 not critical. [Eventually the stub may go away for type units anyway.] */
4550
4551 static struct signatured_type *
4552 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4553 {
4554 struct objfile *objfile = dwarf2_per_objfile->objfile;
4555 struct dwp_file *dwp_file = get_dwp_file ();
4556 struct dwo_unit *dwo_entry;
4557 struct signatured_type find_sig_entry, *sig_entry;
4558
4559 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4560 gdb_assert (dwp_file != NULL);
4561
4562 if (dwarf2_per_objfile->signatured_types != NULL)
4563 {
4564 find_sig_entry.signature = sig;
4565 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4566 &find_sig_entry);
4567 if (sig_entry != NULL)
4568 return sig_entry;
4569 }
4570
4571 /* This is the "shouldn't happen" case.
4572 Try the DWP file and hope for the best. */
4573 if (dwp_file->tus == NULL)
4574 return NULL;
4575 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4576 sig, 1 /* is_debug_types */);
4577 if (dwo_entry == NULL)
4578 return NULL;
4579
4580 sig_entry = add_type_unit (sig);
4581 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4582
4583 /* The caller will signal a complaint if we return NULL.
4584 Here we don't return NULL but we still want to complain. */
4585 complaint (&symfile_complaints,
4586 _("Bad type signature %s referenced by %s at 0x%x,"
4587 " coping by using copy in DWP [in module %s]"),
4588 hex_string (sig),
4589 cu->per_cu->is_debug_types ? "TU" : "CU",
4590 cu->per_cu->offset.sect_off,
4591 objfile->name);
4592
4593 return sig_entry;
4594 }
4595
4596 /* Lookup a signature based type for DW_FORM_ref_sig8.
4597 Returns NULL if signature SIG is not present in the table.
4598 It is up to the caller to complain about this. */
4599
4600 static struct signatured_type *
4601 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4602 {
4603 if (cu->dwo_unit
4604 && dwarf2_per_objfile->using_index)
4605 {
4606 /* We're in a DWO/DWP file, and we're using .gdb_index.
4607 These cases require special processing. */
4608 if (get_dwp_file () == NULL)
4609 return lookup_dwo_signatured_type (cu, sig);
4610 else
4611 return lookup_dwp_signatured_type (cu, sig);
4612 }
4613 else
4614 {
4615 struct signatured_type find_entry, *entry;
4616
4617 if (dwarf2_per_objfile->signatured_types == NULL)
4618 return NULL;
4619 find_entry.signature = sig;
4620 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4621 return entry;
4622 }
4623 }
4624 \f
4625 /* Low level DIE reading support. */
4626
4627 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4628
4629 static void
4630 init_cu_die_reader (struct die_reader_specs *reader,
4631 struct dwarf2_cu *cu,
4632 struct dwarf2_section_info *section,
4633 struct dwo_file *dwo_file)
4634 {
4635 gdb_assert (section->readin && section->buffer != NULL);
4636 reader->abfd = section->asection->owner;
4637 reader->cu = cu;
4638 reader->dwo_file = dwo_file;
4639 reader->die_section = section;
4640 reader->buffer = section->buffer;
4641 reader->buffer_end = section->buffer + section->size;
4642 reader->comp_dir = NULL;
4643 }
4644
4645 /* Subroutine of init_cutu_and_read_dies to simplify it.
4646 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4647 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4648 already.
4649
4650 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4651 from it to the DIE in the DWO. If NULL we are skipping the stub.
4652 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4653 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4654 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4655 COMP_DIR must be non-NULL.
4656 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4657 are filled in with the info of the DIE from the DWO file.
4658 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4659 provided an abbrev table to use.
4660 The result is non-zero if a valid (non-dummy) DIE was found. */
4661
4662 static int
4663 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4664 struct dwo_unit *dwo_unit,
4665 int abbrev_table_provided,
4666 struct die_info *stub_comp_unit_die,
4667 const char *stub_comp_dir,
4668 struct die_reader_specs *result_reader,
4669 const gdb_byte **result_info_ptr,
4670 struct die_info **result_comp_unit_die,
4671 int *result_has_children)
4672 {
4673 struct objfile *objfile = dwarf2_per_objfile->objfile;
4674 struct dwarf2_cu *cu = this_cu->cu;
4675 struct dwarf2_section_info *section;
4676 bfd *abfd;
4677 const gdb_byte *begin_info_ptr, *info_ptr;
4678 const char *comp_dir_string;
4679 ULONGEST signature; /* Or dwo_id. */
4680 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4681 int i,num_extra_attrs;
4682 struct dwarf2_section_info *dwo_abbrev_section;
4683 struct attribute *attr;
4684 struct attribute comp_dir_attr;
4685 struct die_info *comp_unit_die;
4686
4687 /* Both can't be provided. */
4688 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4689
4690 /* These attributes aren't processed until later:
4691 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4692 However, the attribute is found in the stub which we won't have later.
4693 In order to not impose this complication on the rest of the code,
4694 we read them here and copy them to the DWO CU/TU die. */
4695
4696 stmt_list = NULL;
4697 low_pc = NULL;
4698 high_pc = NULL;
4699 ranges = NULL;
4700 comp_dir = NULL;
4701
4702 if (stub_comp_unit_die != NULL)
4703 {
4704 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4705 DWO file. */
4706 if (! this_cu->is_debug_types)
4707 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4708 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4709 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4710 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4711 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4712
4713 /* There should be a DW_AT_addr_base attribute here (if needed).
4714 We need the value before we can process DW_FORM_GNU_addr_index. */
4715 cu->addr_base = 0;
4716 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4717 if (attr)
4718 cu->addr_base = DW_UNSND (attr);
4719
4720 /* There should be a DW_AT_ranges_base attribute here (if needed).
4721 We need the value before we can process DW_AT_ranges. */
4722 cu->ranges_base = 0;
4723 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4724 if (attr)
4725 cu->ranges_base = DW_UNSND (attr);
4726 }
4727 else if (stub_comp_dir != NULL)
4728 {
4729 /* Reconstruct the comp_dir attribute to simplify the code below. */
4730 comp_dir = (struct attribute *)
4731 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4732 comp_dir->name = DW_AT_comp_dir;
4733 comp_dir->form = DW_FORM_string;
4734 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4735 DW_STRING (comp_dir) = stub_comp_dir;
4736 }
4737
4738 /* Set up for reading the DWO CU/TU. */
4739 cu->dwo_unit = dwo_unit;
4740 section = dwo_unit->section;
4741 dwarf2_read_section (objfile, section);
4742 abfd = section->asection->owner;
4743 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4744 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4745 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4746
4747 if (this_cu->is_debug_types)
4748 {
4749 ULONGEST header_signature;
4750 cu_offset type_offset_in_tu;
4751 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4752
4753 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4754 dwo_abbrev_section,
4755 info_ptr,
4756 &header_signature,
4757 &type_offset_in_tu);
4758 /* This is not an assert because it can be caused by bad debug info. */
4759 if (sig_type->signature != header_signature)
4760 {
4761 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4762 " TU at offset 0x%x [in module %s]"),
4763 hex_string (sig_type->signature),
4764 hex_string (header_signature),
4765 dwo_unit->offset.sect_off,
4766 bfd_get_filename (abfd));
4767 }
4768 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4769 /* For DWOs coming from DWP files, we don't know the CU length
4770 nor the type's offset in the TU until now. */
4771 dwo_unit->length = get_cu_length (&cu->header);
4772 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4773
4774 /* Establish the type offset that can be used to lookup the type.
4775 For DWO files, we don't know it until now. */
4776 sig_type->type_offset_in_section.sect_off =
4777 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4778 }
4779 else
4780 {
4781 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4782 dwo_abbrev_section,
4783 info_ptr, 0);
4784 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4785 /* For DWOs coming from DWP files, we don't know the CU length
4786 until now. */
4787 dwo_unit->length = get_cu_length (&cu->header);
4788 }
4789
4790 /* Replace the CU's original abbrev table with the DWO's.
4791 Reminder: We can't read the abbrev table until we've read the header. */
4792 if (abbrev_table_provided)
4793 {
4794 /* Don't free the provided abbrev table, the caller of
4795 init_cutu_and_read_dies owns it. */
4796 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4797 /* Ensure the DWO abbrev table gets freed. */
4798 make_cleanup (dwarf2_free_abbrev_table, cu);
4799 }
4800 else
4801 {
4802 dwarf2_free_abbrev_table (cu);
4803 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4804 /* Leave any existing abbrev table cleanup as is. */
4805 }
4806
4807 /* Read in the die, but leave space to copy over the attributes
4808 from the stub. This has the benefit of simplifying the rest of
4809 the code - all the work to maintain the illusion of a single
4810 DW_TAG_{compile,type}_unit DIE is done here. */
4811 num_extra_attrs = ((stmt_list != NULL)
4812 + (low_pc != NULL)
4813 + (high_pc != NULL)
4814 + (ranges != NULL)
4815 + (comp_dir != NULL));
4816 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4817 result_has_children, num_extra_attrs);
4818
4819 /* Copy over the attributes from the stub to the DIE we just read in. */
4820 comp_unit_die = *result_comp_unit_die;
4821 i = comp_unit_die->num_attrs;
4822 if (stmt_list != NULL)
4823 comp_unit_die->attrs[i++] = *stmt_list;
4824 if (low_pc != NULL)
4825 comp_unit_die->attrs[i++] = *low_pc;
4826 if (high_pc != NULL)
4827 comp_unit_die->attrs[i++] = *high_pc;
4828 if (ranges != NULL)
4829 comp_unit_die->attrs[i++] = *ranges;
4830 if (comp_dir != NULL)
4831 comp_unit_die->attrs[i++] = *comp_dir;
4832 comp_unit_die->num_attrs += num_extra_attrs;
4833
4834 if (dwarf2_die_debug)
4835 {
4836 fprintf_unfiltered (gdb_stdlog,
4837 "Read die from %s@0x%x of %s:\n",
4838 bfd_section_name (abfd, section->asection),
4839 (unsigned) (begin_info_ptr - section->buffer),
4840 bfd_get_filename (abfd));
4841 dump_die (comp_unit_die, dwarf2_die_debug);
4842 }
4843
4844 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4845 TUs by skipping the stub and going directly to the entry in the DWO file.
4846 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4847 to get it via circuitous means. Blech. */
4848 if (comp_dir != NULL)
4849 result_reader->comp_dir = DW_STRING (comp_dir);
4850
4851 /* Skip dummy compilation units. */
4852 if (info_ptr >= begin_info_ptr + dwo_unit->length
4853 || peek_abbrev_code (abfd, info_ptr) == 0)
4854 return 0;
4855
4856 *result_info_ptr = info_ptr;
4857 return 1;
4858 }
4859
4860 /* Subroutine of init_cutu_and_read_dies to simplify it.
4861 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4862 Returns NULL if the specified DWO unit cannot be found. */
4863
4864 static struct dwo_unit *
4865 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4866 struct die_info *comp_unit_die)
4867 {
4868 struct dwarf2_cu *cu = this_cu->cu;
4869 struct attribute *attr;
4870 ULONGEST signature;
4871 struct dwo_unit *dwo_unit;
4872 const char *comp_dir, *dwo_name;
4873
4874 gdb_assert (cu != NULL);
4875
4876 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4877 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4878 gdb_assert (attr != NULL);
4879 dwo_name = DW_STRING (attr);
4880 comp_dir = NULL;
4881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4882 if (attr)
4883 comp_dir = DW_STRING (attr);
4884
4885 if (this_cu->is_debug_types)
4886 {
4887 struct signatured_type *sig_type;
4888
4889 /* Since this_cu is the first member of struct signatured_type,
4890 we can go from a pointer to one to a pointer to the other. */
4891 sig_type = (struct signatured_type *) this_cu;
4892 signature = sig_type->signature;
4893 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4894 }
4895 else
4896 {
4897 struct attribute *attr;
4898
4899 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4900 if (! attr)
4901 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4902 " [in module %s]"),
4903 dwo_name, this_cu->objfile->name);
4904 signature = DW_UNSND (attr);
4905 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4906 signature);
4907 }
4908
4909 return dwo_unit;
4910 }
4911
4912 /* Subroutine of init_cutu_and_read_dies to simplify it.
4913 Read a TU directly from a DWO file, bypassing the stub. */
4914
4915 static void
4916 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4917 die_reader_func_ftype *die_reader_func,
4918 void *data)
4919 {
4920 struct dwarf2_cu *cu;
4921 struct signatured_type *sig_type;
4922 struct cleanup *cleanups, *free_cu_cleanup;
4923 struct die_reader_specs reader;
4924 const gdb_byte *info_ptr;
4925 struct die_info *comp_unit_die;
4926 int has_children;
4927
4928 /* Verify we can do the following downcast, and that we have the
4929 data we need. */
4930 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4931 sig_type = (struct signatured_type *) this_cu;
4932 gdb_assert (sig_type->dwo_unit != NULL);
4933
4934 cleanups = make_cleanup (null_cleanup, NULL);
4935
4936 gdb_assert (this_cu->cu == NULL);
4937 cu = xmalloc (sizeof (*cu));
4938 init_one_comp_unit (cu, this_cu);
4939 /* If an error occurs while loading, release our storage. */
4940 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4941
4942 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4943 0 /* abbrev_table_provided */,
4944 NULL /* stub_comp_unit_die */,
4945 sig_type->dwo_unit->dwo_file->comp_dir,
4946 &reader, &info_ptr,
4947 &comp_unit_die, &has_children) == 0)
4948 {
4949 /* Dummy die. */
4950 do_cleanups (cleanups);
4951 return;
4952 }
4953
4954 /* All the "real" work is done here. */
4955 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4956
4957 /* This duplicates some code in init_cutu_and_read_dies,
4958 but the alternative is making the latter more complex.
4959 This function is only for the special case of using DWO files directly:
4960 no point in overly complicating the general case just to handle this. */
4961 if (keep)
4962 {
4963 /* We've successfully allocated this compilation unit. Let our
4964 caller clean it up when finished with it. */
4965 discard_cleanups (free_cu_cleanup);
4966
4967 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4968 So we have to manually free the abbrev table. */
4969 dwarf2_free_abbrev_table (cu);
4970
4971 /* Link this CU into read_in_chain. */
4972 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4973 dwarf2_per_objfile->read_in_chain = this_cu;
4974 }
4975 else
4976 do_cleanups (free_cu_cleanup);
4977
4978 do_cleanups (cleanups);
4979 }
4980
4981 /* Initialize a CU (or TU) and read its DIEs.
4982 If the CU defers to a DWO file, read the DWO file as well.
4983
4984 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4985 Otherwise the table specified in the comp unit header is read in and used.
4986 This is an optimization for when we already have the abbrev table.
4987
4988 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4989 Otherwise, a new CU is allocated with xmalloc.
4990
4991 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4992 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4993
4994 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4995 linker) then DIE_READER_FUNC will not get called. */
4996
4997 static void
4998 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4999 struct abbrev_table *abbrev_table,
5000 int use_existing_cu, int keep,
5001 die_reader_func_ftype *die_reader_func,
5002 void *data)
5003 {
5004 struct objfile *objfile = dwarf2_per_objfile->objfile;
5005 struct dwarf2_section_info *section = this_cu->section;
5006 bfd *abfd = section->asection->owner;
5007 struct dwarf2_cu *cu;
5008 const gdb_byte *begin_info_ptr, *info_ptr;
5009 struct die_reader_specs reader;
5010 struct die_info *comp_unit_die;
5011 int has_children;
5012 struct attribute *attr;
5013 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5014 struct signatured_type *sig_type = NULL;
5015 struct dwarf2_section_info *abbrev_section;
5016 /* Non-zero if CU currently points to a DWO file and we need to
5017 reread it. When this happens we need to reread the skeleton die
5018 before we can reread the DWO file (this only applies to CUs, not TUs). */
5019 int rereading_dwo_cu = 0;
5020
5021 if (dwarf2_die_debug)
5022 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5023 this_cu->is_debug_types ? "type" : "comp",
5024 this_cu->offset.sect_off);
5025
5026 if (use_existing_cu)
5027 gdb_assert (keep);
5028
5029 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5030 file (instead of going through the stub), short-circuit all of this. */
5031 if (this_cu->reading_dwo_directly)
5032 {
5033 /* Narrow down the scope of possibilities to have to understand. */
5034 gdb_assert (this_cu->is_debug_types);
5035 gdb_assert (abbrev_table == NULL);
5036 gdb_assert (!use_existing_cu);
5037 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5038 return;
5039 }
5040
5041 cleanups = make_cleanup (null_cleanup, NULL);
5042
5043 /* This is cheap if the section is already read in. */
5044 dwarf2_read_section (objfile, section);
5045
5046 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5047
5048 abbrev_section = get_abbrev_section_for_cu (this_cu);
5049
5050 if (use_existing_cu && this_cu->cu != NULL)
5051 {
5052 cu = this_cu->cu;
5053
5054 /* If this CU is from a DWO file we need to start over, we need to
5055 refetch the attributes from the skeleton CU.
5056 This could be optimized by retrieving those attributes from when we
5057 were here the first time: the previous comp_unit_die was stored in
5058 comp_unit_obstack. But there's no data yet that we need this
5059 optimization. */
5060 if (cu->dwo_unit != NULL)
5061 rereading_dwo_cu = 1;
5062 }
5063 else
5064 {
5065 /* If !use_existing_cu, this_cu->cu must be NULL. */
5066 gdb_assert (this_cu->cu == NULL);
5067
5068 cu = xmalloc (sizeof (*cu));
5069 init_one_comp_unit (cu, this_cu);
5070
5071 /* If an error occurs while loading, release our storage. */
5072 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5073 }
5074
5075 /* Get the header. */
5076 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5077 {
5078 /* We already have the header, there's no need to read it in again. */
5079 info_ptr += cu->header.first_die_offset.cu_off;
5080 }
5081 else
5082 {
5083 if (this_cu->is_debug_types)
5084 {
5085 ULONGEST signature;
5086 cu_offset type_offset_in_tu;
5087
5088 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5089 abbrev_section, info_ptr,
5090 &signature,
5091 &type_offset_in_tu);
5092
5093 /* Since per_cu is the first member of struct signatured_type,
5094 we can go from a pointer to one to a pointer to the other. */
5095 sig_type = (struct signatured_type *) this_cu;
5096 gdb_assert (sig_type->signature == signature);
5097 gdb_assert (sig_type->type_offset_in_tu.cu_off
5098 == type_offset_in_tu.cu_off);
5099 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5100
5101 /* LENGTH has not been set yet for type units if we're
5102 using .gdb_index. */
5103 this_cu->length = get_cu_length (&cu->header);
5104
5105 /* Establish the type offset that can be used to lookup the type. */
5106 sig_type->type_offset_in_section.sect_off =
5107 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5108 }
5109 else
5110 {
5111 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5112 abbrev_section,
5113 info_ptr, 0);
5114
5115 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5116 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5117 }
5118 }
5119
5120 /* Skip dummy compilation units. */
5121 if (info_ptr >= begin_info_ptr + this_cu->length
5122 || peek_abbrev_code (abfd, info_ptr) == 0)
5123 {
5124 do_cleanups (cleanups);
5125 return;
5126 }
5127
5128 /* If we don't have them yet, read the abbrevs for this compilation unit.
5129 And if we need to read them now, make sure they're freed when we're
5130 done. Note that it's important that if the CU had an abbrev table
5131 on entry we don't free it when we're done: Somewhere up the call stack
5132 it may be in use. */
5133 if (abbrev_table != NULL)
5134 {
5135 gdb_assert (cu->abbrev_table == NULL);
5136 gdb_assert (cu->header.abbrev_offset.sect_off
5137 == abbrev_table->offset.sect_off);
5138 cu->abbrev_table = abbrev_table;
5139 }
5140 else if (cu->abbrev_table == NULL)
5141 {
5142 dwarf2_read_abbrevs (cu, abbrev_section);
5143 make_cleanup (dwarf2_free_abbrev_table, cu);
5144 }
5145 else if (rereading_dwo_cu)
5146 {
5147 dwarf2_free_abbrev_table (cu);
5148 dwarf2_read_abbrevs (cu, abbrev_section);
5149 }
5150
5151 /* Read the top level CU/TU die. */
5152 init_cu_die_reader (&reader, cu, section, NULL);
5153 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5154
5155 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5156 from the DWO file.
5157 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5158 DWO CU, that this test will fail (the attribute will not be present). */
5159 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5160 if (attr)
5161 {
5162 struct dwo_unit *dwo_unit;
5163 struct die_info *dwo_comp_unit_die;
5164
5165 if (has_children)
5166 {
5167 complaint (&symfile_complaints,
5168 _("compilation unit with DW_AT_GNU_dwo_name"
5169 " has children (offset 0x%x) [in module %s]"),
5170 this_cu->offset.sect_off, bfd_get_filename (abfd));
5171 }
5172 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5173 if (dwo_unit != NULL)
5174 {
5175 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5176 abbrev_table != NULL,
5177 comp_unit_die, NULL,
5178 &reader, &info_ptr,
5179 &dwo_comp_unit_die, &has_children) == 0)
5180 {
5181 /* Dummy die. */
5182 do_cleanups (cleanups);
5183 return;
5184 }
5185 comp_unit_die = dwo_comp_unit_die;
5186 }
5187 else
5188 {
5189 /* Yikes, we couldn't find the rest of the DIE, we only have
5190 the stub. A complaint has already been logged. There's
5191 not much more we can do except pass on the stub DIE to
5192 die_reader_func. We don't want to throw an error on bad
5193 debug info. */
5194 }
5195 }
5196
5197 /* All of the above is setup for this call. Yikes. */
5198 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5199
5200 /* Done, clean up. */
5201 if (free_cu_cleanup != NULL)
5202 {
5203 if (keep)
5204 {
5205 /* We've successfully allocated this compilation unit. Let our
5206 caller clean it up when finished with it. */
5207 discard_cleanups (free_cu_cleanup);
5208
5209 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5210 So we have to manually free the abbrev table. */
5211 dwarf2_free_abbrev_table (cu);
5212
5213 /* Link this CU into read_in_chain. */
5214 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5215 dwarf2_per_objfile->read_in_chain = this_cu;
5216 }
5217 else
5218 do_cleanups (free_cu_cleanup);
5219 }
5220
5221 do_cleanups (cleanups);
5222 }
5223
5224 /* Read CU/TU THIS_CU in section SECTION,
5225 but do not follow DW_AT_GNU_dwo_name if present.
5226 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5227 to have already done the lookup to find the DWO/DWP file).
5228
5229 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5230 THIS_CU->is_debug_types, but nothing else.
5231
5232 We fill in THIS_CU->length.
5233
5234 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5235 linker) then DIE_READER_FUNC will not get called.
5236
5237 THIS_CU->cu is always freed when done.
5238 This is done in order to not leave THIS_CU->cu in a state where we have
5239 to care whether it refers to the "main" CU or the DWO CU. */
5240
5241 static void
5242 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5243 struct dwarf2_section_info *abbrev_section,
5244 struct dwo_file *dwo_file,
5245 die_reader_func_ftype *die_reader_func,
5246 void *data)
5247 {
5248 struct objfile *objfile = dwarf2_per_objfile->objfile;
5249 struct dwarf2_section_info *section = this_cu->section;
5250 bfd *abfd = section->asection->owner;
5251 struct dwarf2_cu cu;
5252 const gdb_byte *begin_info_ptr, *info_ptr;
5253 struct die_reader_specs reader;
5254 struct cleanup *cleanups;
5255 struct die_info *comp_unit_die;
5256 int has_children;
5257
5258 if (dwarf2_die_debug)
5259 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5260 this_cu->is_debug_types ? "type" : "comp",
5261 this_cu->offset.sect_off);
5262
5263 gdb_assert (this_cu->cu == NULL);
5264
5265 /* This is cheap if the section is already read in. */
5266 dwarf2_read_section (objfile, section);
5267
5268 init_one_comp_unit (&cu, this_cu);
5269
5270 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5271
5272 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5273 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5274 abbrev_section, info_ptr,
5275 this_cu->is_debug_types);
5276
5277 this_cu->length = get_cu_length (&cu.header);
5278
5279 /* Skip dummy compilation units. */
5280 if (info_ptr >= begin_info_ptr + this_cu->length
5281 || peek_abbrev_code (abfd, info_ptr) == 0)
5282 {
5283 do_cleanups (cleanups);
5284 return;
5285 }
5286
5287 dwarf2_read_abbrevs (&cu, abbrev_section);
5288 make_cleanup (dwarf2_free_abbrev_table, &cu);
5289
5290 init_cu_die_reader (&reader, &cu, section, dwo_file);
5291 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5292
5293 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5294
5295 do_cleanups (cleanups);
5296 }
5297
5298 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5299 does not lookup the specified DWO file.
5300 This cannot be used to read DWO files.
5301
5302 THIS_CU->cu is always freed when done.
5303 This is done in order to not leave THIS_CU->cu in a state where we have
5304 to care whether it refers to the "main" CU or the DWO CU.
5305 We can revisit this if the data shows there's a performance issue. */
5306
5307 static void
5308 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5309 die_reader_func_ftype *die_reader_func,
5310 void *data)
5311 {
5312 init_cutu_and_read_dies_no_follow (this_cu,
5313 get_abbrev_section_for_cu (this_cu),
5314 NULL,
5315 die_reader_func, data);
5316 }
5317 \f
5318 /* Type Unit Groups.
5319
5320 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5321 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5322 so that all types coming from the same compilation (.o file) are grouped
5323 together. A future step could be to put the types in the same symtab as
5324 the CU the types ultimately came from. */
5325
5326 static hashval_t
5327 hash_type_unit_group (const void *item)
5328 {
5329 const struct type_unit_group *tu_group = item;
5330
5331 return hash_stmt_list_entry (&tu_group->hash);
5332 }
5333
5334 static int
5335 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5336 {
5337 const struct type_unit_group *lhs = item_lhs;
5338 const struct type_unit_group *rhs = item_rhs;
5339
5340 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5341 }
5342
5343 /* Allocate a hash table for type unit groups. */
5344
5345 static htab_t
5346 allocate_type_unit_groups_table (void)
5347 {
5348 return htab_create_alloc_ex (3,
5349 hash_type_unit_group,
5350 eq_type_unit_group,
5351 NULL,
5352 &dwarf2_per_objfile->objfile->objfile_obstack,
5353 hashtab_obstack_allocate,
5354 dummy_obstack_deallocate);
5355 }
5356
5357 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5358 partial symtabs. We combine several TUs per psymtab to not let the size
5359 of any one psymtab grow too big. */
5360 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5361 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5362
5363 /* Helper routine for get_type_unit_group.
5364 Create the type_unit_group object used to hold one or more TUs. */
5365
5366 static struct type_unit_group *
5367 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5368 {
5369 struct objfile *objfile = dwarf2_per_objfile->objfile;
5370 struct dwarf2_per_cu_data *per_cu;
5371 struct type_unit_group *tu_group;
5372
5373 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5374 struct type_unit_group);
5375 per_cu = &tu_group->per_cu;
5376 per_cu->objfile = objfile;
5377
5378 if (dwarf2_per_objfile->using_index)
5379 {
5380 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5381 struct dwarf2_per_cu_quick_data);
5382 }
5383 else
5384 {
5385 unsigned int line_offset = line_offset_struct.sect_off;
5386 struct partial_symtab *pst;
5387 char *name;
5388
5389 /* Give the symtab a useful name for debug purposes. */
5390 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5391 name = xstrprintf ("<type_units_%d>",
5392 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5393 else
5394 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5395
5396 pst = create_partial_symtab (per_cu, name);
5397 pst->anonymous = 1;
5398
5399 xfree (name);
5400 }
5401
5402 tu_group->hash.dwo_unit = cu->dwo_unit;
5403 tu_group->hash.line_offset = line_offset_struct;
5404
5405 return tu_group;
5406 }
5407
5408 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5409 STMT_LIST is a DW_AT_stmt_list attribute. */
5410
5411 static struct type_unit_group *
5412 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5413 {
5414 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5415 struct type_unit_group *tu_group;
5416 void **slot;
5417 unsigned int line_offset;
5418 struct type_unit_group type_unit_group_for_lookup;
5419
5420 if (dwarf2_per_objfile->type_unit_groups == NULL)
5421 {
5422 dwarf2_per_objfile->type_unit_groups =
5423 allocate_type_unit_groups_table ();
5424 }
5425
5426 /* Do we need to create a new group, or can we use an existing one? */
5427
5428 if (stmt_list)
5429 {
5430 line_offset = DW_UNSND (stmt_list);
5431 ++tu_stats->nr_symtab_sharers;
5432 }
5433 else
5434 {
5435 /* Ugh, no stmt_list. Rare, but we have to handle it.
5436 We can do various things here like create one group per TU or
5437 spread them over multiple groups to split up the expansion work.
5438 To avoid worst case scenarios (too many groups or too large groups)
5439 we, umm, group them in bunches. */
5440 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5441 | (tu_stats->nr_stmt_less_type_units
5442 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5443 ++tu_stats->nr_stmt_less_type_units;
5444 }
5445
5446 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5447 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5448 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5449 &type_unit_group_for_lookup, INSERT);
5450 if (*slot != NULL)
5451 {
5452 tu_group = *slot;
5453 gdb_assert (tu_group != NULL);
5454 }
5455 else
5456 {
5457 sect_offset line_offset_struct;
5458
5459 line_offset_struct.sect_off = line_offset;
5460 tu_group = create_type_unit_group (cu, line_offset_struct);
5461 *slot = tu_group;
5462 ++tu_stats->nr_symtabs;
5463 }
5464
5465 return tu_group;
5466 }
5467
5468 /* Struct used to sort TUs by their abbreviation table offset. */
5469
5470 struct tu_abbrev_offset
5471 {
5472 struct signatured_type *sig_type;
5473 sect_offset abbrev_offset;
5474 };
5475
5476 /* Helper routine for build_type_unit_groups, passed to qsort. */
5477
5478 static int
5479 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5480 {
5481 const struct tu_abbrev_offset * const *a = ap;
5482 const struct tu_abbrev_offset * const *b = bp;
5483 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5484 unsigned int boff = (*b)->abbrev_offset.sect_off;
5485
5486 return (aoff > boff) - (aoff < boff);
5487 }
5488
5489 /* A helper function to add a type_unit_group to a table. */
5490
5491 static int
5492 add_type_unit_group_to_table (void **slot, void *datum)
5493 {
5494 struct type_unit_group *tu_group = *slot;
5495 struct type_unit_group ***datap = datum;
5496
5497 **datap = tu_group;
5498 ++*datap;
5499
5500 return 1;
5501 }
5502
5503 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5504 each one passing FUNC,DATA.
5505
5506 The efficiency is because we sort TUs by the abbrev table they use and
5507 only read each abbrev table once. In one program there are 200K TUs
5508 sharing 8K abbrev tables.
5509
5510 The main purpose of this function is to support building the
5511 dwarf2_per_objfile->type_unit_groups table.
5512 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5513 can collapse the search space by grouping them by stmt_list.
5514 The savings can be significant, in the same program from above the 200K TUs
5515 share 8K stmt_list tables.
5516
5517 FUNC is expected to call get_type_unit_group, which will create the
5518 struct type_unit_group if necessary and add it to
5519 dwarf2_per_objfile->type_unit_groups. */
5520
5521 static void
5522 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5523 {
5524 struct objfile *objfile = dwarf2_per_objfile->objfile;
5525 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5526 struct cleanup *cleanups;
5527 struct abbrev_table *abbrev_table;
5528 sect_offset abbrev_offset;
5529 struct tu_abbrev_offset *sorted_by_abbrev;
5530 struct type_unit_group **iter;
5531 int i;
5532
5533 /* It's up to the caller to not call us multiple times. */
5534 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5535
5536 if (dwarf2_per_objfile->n_type_units == 0)
5537 return;
5538
5539 /* TUs typically share abbrev tables, and there can be way more TUs than
5540 abbrev tables. Sort by abbrev table to reduce the number of times we
5541 read each abbrev table in.
5542 Alternatives are to punt or to maintain a cache of abbrev tables.
5543 This is simpler and efficient enough for now.
5544
5545 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5546 symtab to use). Typically TUs with the same abbrev offset have the same
5547 stmt_list value too so in practice this should work well.
5548
5549 The basic algorithm here is:
5550
5551 sort TUs by abbrev table
5552 for each TU with same abbrev table:
5553 read abbrev table if first user
5554 read TU top level DIE
5555 [IWBN if DWO skeletons had DW_AT_stmt_list]
5556 call FUNC */
5557
5558 if (dwarf2_read_debug)
5559 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5560
5561 /* Sort in a separate table to maintain the order of all_type_units
5562 for .gdb_index: TU indices directly index all_type_units. */
5563 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5564 dwarf2_per_objfile->n_type_units);
5565 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5566 {
5567 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5568
5569 sorted_by_abbrev[i].sig_type = sig_type;
5570 sorted_by_abbrev[i].abbrev_offset =
5571 read_abbrev_offset (sig_type->per_cu.section,
5572 sig_type->per_cu.offset);
5573 }
5574 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5575 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5576 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5577
5578 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5579 called any number of times, so we don't reset tu_stats here. */
5580
5581 abbrev_offset.sect_off = ~(unsigned) 0;
5582 abbrev_table = NULL;
5583 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5584
5585 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5586 {
5587 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5588
5589 /* Switch to the next abbrev table if necessary. */
5590 if (abbrev_table == NULL
5591 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5592 {
5593 if (abbrev_table != NULL)
5594 {
5595 abbrev_table_free (abbrev_table);
5596 /* Reset to NULL in case abbrev_table_read_table throws
5597 an error: abbrev_table_free_cleanup will get called. */
5598 abbrev_table = NULL;
5599 }
5600 abbrev_offset = tu->abbrev_offset;
5601 abbrev_table =
5602 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5603 abbrev_offset);
5604 ++tu_stats->nr_uniq_abbrev_tables;
5605 }
5606
5607 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5608 func, data);
5609 }
5610
5611 /* type_unit_groups can be NULL if there is an error in the debug info.
5612 Just create an empty table so the rest of gdb doesn't have to watch
5613 for this error case. */
5614 if (dwarf2_per_objfile->type_unit_groups == NULL)
5615 {
5616 dwarf2_per_objfile->type_unit_groups =
5617 allocate_type_unit_groups_table ();
5618 dwarf2_per_objfile->n_type_unit_groups = 0;
5619 }
5620
5621 /* Create a vector of pointers to primary type units to make it easy to
5622 iterate over them and CUs. See dw2_get_primary_cu. */
5623 dwarf2_per_objfile->n_type_unit_groups =
5624 htab_elements (dwarf2_per_objfile->type_unit_groups);
5625 dwarf2_per_objfile->all_type_unit_groups =
5626 obstack_alloc (&objfile->objfile_obstack,
5627 dwarf2_per_objfile->n_type_unit_groups
5628 * sizeof (struct type_unit_group *));
5629 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5630 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5631 add_type_unit_group_to_table, &iter);
5632 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5633 == dwarf2_per_objfile->n_type_unit_groups);
5634
5635 do_cleanups (cleanups);
5636
5637 if (dwarf2_read_debug)
5638 {
5639 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5640 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5641 dwarf2_per_objfile->n_type_units);
5642 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5643 tu_stats->nr_uniq_abbrev_tables);
5644 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5645 tu_stats->nr_symtabs);
5646 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5647 tu_stats->nr_symtab_sharers);
5648 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5649 tu_stats->nr_stmt_less_type_units);
5650 }
5651 }
5652 \f
5653 /* Partial symbol tables. */
5654
5655 /* Create a psymtab named NAME and assign it to PER_CU.
5656
5657 The caller must fill in the following details:
5658 dirname, textlow, texthigh. */
5659
5660 static struct partial_symtab *
5661 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5662 {
5663 struct objfile *objfile = per_cu->objfile;
5664 struct partial_symtab *pst;
5665
5666 pst = start_psymtab_common (objfile, objfile->section_offsets,
5667 name, 0,
5668 objfile->global_psymbols.next,
5669 objfile->static_psymbols.next);
5670
5671 pst->psymtabs_addrmap_supported = 1;
5672
5673 /* This is the glue that links PST into GDB's symbol API. */
5674 pst->read_symtab_private = per_cu;
5675 pst->read_symtab = dwarf2_read_symtab;
5676 per_cu->v.psymtab = pst;
5677
5678 return pst;
5679 }
5680
5681 /* die_reader_func for process_psymtab_comp_unit. */
5682
5683 static void
5684 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5685 const gdb_byte *info_ptr,
5686 struct die_info *comp_unit_die,
5687 int has_children,
5688 void *data)
5689 {
5690 struct dwarf2_cu *cu = reader->cu;
5691 struct objfile *objfile = cu->objfile;
5692 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5693 struct attribute *attr;
5694 CORE_ADDR baseaddr;
5695 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5696 struct partial_symtab *pst;
5697 int has_pc_info;
5698 const char *filename;
5699 int *want_partial_unit_ptr = data;
5700
5701 if (comp_unit_die->tag == DW_TAG_partial_unit
5702 && (want_partial_unit_ptr == NULL
5703 || !*want_partial_unit_ptr))
5704 return;
5705
5706 gdb_assert (! per_cu->is_debug_types);
5707
5708 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5709
5710 cu->list_in_scope = &file_symbols;
5711
5712 /* Allocate a new partial symbol table structure. */
5713 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5714 if (attr == NULL || !DW_STRING (attr))
5715 filename = "";
5716 else
5717 filename = DW_STRING (attr);
5718
5719 pst = create_partial_symtab (per_cu, filename);
5720
5721 /* This must be done before calling dwarf2_build_include_psymtabs. */
5722 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5723 if (attr != NULL)
5724 pst->dirname = DW_STRING (attr);
5725
5726 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5727
5728 dwarf2_find_base_address (comp_unit_die, cu);
5729
5730 /* Possibly set the default values of LOWPC and HIGHPC from
5731 `DW_AT_ranges'. */
5732 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5733 &best_highpc, cu, pst);
5734 if (has_pc_info == 1 && best_lowpc < best_highpc)
5735 /* Store the contiguous range if it is not empty; it can be empty for
5736 CUs with no code. */
5737 addrmap_set_empty (objfile->psymtabs_addrmap,
5738 best_lowpc + baseaddr,
5739 best_highpc + baseaddr - 1, pst);
5740
5741 /* Check if comp unit has_children.
5742 If so, read the rest of the partial symbols from this comp unit.
5743 If not, there's no more debug_info for this comp unit. */
5744 if (has_children)
5745 {
5746 struct partial_die_info *first_die;
5747 CORE_ADDR lowpc, highpc;
5748
5749 lowpc = ((CORE_ADDR) -1);
5750 highpc = ((CORE_ADDR) 0);
5751
5752 first_die = load_partial_dies (reader, info_ptr, 1);
5753
5754 scan_partial_symbols (first_die, &lowpc, &highpc,
5755 ! has_pc_info, cu);
5756
5757 /* If we didn't find a lowpc, set it to highpc to avoid
5758 complaints from `maint check'. */
5759 if (lowpc == ((CORE_ADDR) -1))
5760 lowpc = highpc;
5761
5762 /* If the compilation unit didn't have an explicit address range,
5763 then use the information extracted from its child dies. */
5764 if (! has_pc_info)
5765 {
5766 best_lowpc = lowpc;
5767 best_highpc = highpc;
5768 }
5769 }
5770 pst->textlow = best_lowpc + baseaddr;
5771 pst->texthigh = best_highpc + baseaddr;
5772
5773 pst->n_global_syms = objfile->global_psymbols.next -
5774 (objfile->global_psymbols.list + pst->globals_offset);
5775 pst->n_static_syms = objfile->static_psymbols.next -
5776 (objfile->static_psymbols.list + pst->statics_offset);
5777 sort_pst_symbols (objfile, pst);
5778
5779 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5780 {
5781 int i;
5782 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5783 struct dwarf2_per_cu_data *iter;
5784
5785 /* Fill in 'dependencies' here; we fill in 'users' in a
5786 post-pass. */
5787 pst->number_of_dependencies = len;
5788 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5789 len * sizeof (struct symtab *));
5790 for (i = 0;
5791 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5792 i, iter);
5793 ++i)
5794 pst->dependencies[i] = iter->v.psymtab;
5795
5796 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5797 }
5798
5799 /* Get the list of files included in the current compilation unit,
5800 and build a psymtab for each of them. */
5801 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5802
5803 if (dwarf2_read_debug)
5804 {
5805 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5806
5807 fprintf_unfiltered (gdb_stdlog,
5808 "Psymtab for %s unit @0x%x: %s - %s"
5809 ", %d global, %d static syms\n",
5810 per_cu->is_debug_types ? "type" : "comp",
5811 per_cu->offset.sect_off,
5812 paddress (gdbarch, pst->textlow),
5813 paddress (gdbarch, pst->texthigh),
5814 pst->n_global_syms, pst->n_static_syms);
5815 }
5816 }
5817
5818 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5819 Process compilation unit THIS_CU for a psymtab. */
5820
5821 static void
5822 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5823 int want_partial_unit)
5824 {
5825 /* If this compilation unit was already read in, free the
5826 cached copy in order to read it in again. This is
5827 necessary because we skipped some symbols when we first
5828 read in the compilation unit (see load_partial_dies).
5829 This problem could be avoided, but the benefit is unclear. */
5830 if (this_cu->cu != NULL)
5831 free_one_cached_comp_unit (this_cu);
5832
5833 gdb_assert (! this_cu->is_debug_types);
5834 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5835 process_psymtab_comp_unit_reader,
5836 &want_partial_unit);
5837
5838 /* Age out any secondary CUs. */
5839 age_cached_comp_units ();
5840 }
5841
5842 /* Reader function for build_type_psymtabs. */
5843
5844 static void
5845 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5846 const gdb_byte *info_ptr,
5847 struct die_info *type_unit_die,
5848 int has_children,
5849 void *data)
5850 {
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct signatured_type *sig_type;
5855 struct type_unit_group *tu_group;
5856 struct attribute *attr;
5857 struct partial_die_info *first_die;
5858 CORE_ADDR lowpc, highpc;
5859 struct partial_symtab *pst;
5860
5861 gdb_assert (data == NULL);
5862 gdb_assert (per_cu->is_debug_types);
5863 sig_type = (struct signatured_type *) per_cu;
5864
5865 if (! has_children)
5866 return;
5867
5868 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5869 tu_group = get_type_unit_group (cu, attr);
5870
5871 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5872
5873 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5874 cu->list_in_scope = &file_symbols;
5875 pst = create_partial_symtab (per_cu, "");
5876 pst->anonymous = 1;
5877
5878 first_die = load_partial_dies (reader, info_ptr, 1);
5879
5880 lowpc = (CORE_ADDR) -1;
5881 highpc = (CORE_ADDR) 0;
5882 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5883
5884 pst->n_global_syms = objfile->global_psymbols.next -
5885 (objfile->global_psymbols.list + pst->globals_offset);
5886 pst->n_static_syms = objfile->static_psymbols.next -
5887 (objfile->static_psymbols.list + pst->statics_offset);
5888 sort_pst_symbols (objfile, pst);
5889 }
5890
5891 /* Traversal function for build_type_psymtabs. */
5892
5893 static int
5894 build_type_psymtab_dependencies (void **slot, void *info)
5895 {
5896 struct objfile *objfile = dwarf2_per_objfile->objfile;
5897 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5898 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5899 struct partial_symtab *pst = per_cu->v.psymtab;
5900 int len = VEC_length (sig_type_ptr, tu_group->tus);
5901 struct signatured_type *iter;
5902 int i;
5903
5904 gdb_assert (len > 0);
5905 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5906
5907 pst->number_of_dependencies = len;
5908 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5909 len * sizeof (struct psymtab *));
5910 for (i = 0;
5911 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5912 ++i)
5913 {
5914 gdb_assert (iter->per_cu.is_debug_types);
5915 pst->dependencies[i] = iter->per_cu.v.psymtab;
5916 iter->type_unit_group = tu_group;
5917 }
5918
5919 VEC_free (sig_type_ptr, tu_group->tus);
5920
5921 return 1;
5922 }
5923
5924 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5925 Build partial symbol tables for the .debug_types comp-units. */
5926
5927 static void
5928 build_type_psymtabs (struct objfile *objfile)
5929 {
5930 if (! create_all_type_units (objfile))
5931 return;
5932
5933 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5934
5935 /* Now that all TUs have been processed we can fill in the dependencies. */
5936 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5937 build_type_psymtab_dependencies, NULL);
5938 }
5939
5940 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5941
5942 static void
5943 psymtabs_addrmap_cleanup (void *o)
5944 {
5945 struct objfile *objfile = o;
5946
5947 objfile->psymtabs_addrmap = NULL;
5948 }
5949
5950 /* Compute the 'user' field for each psymtab in OBJFILE. */
5951
5952 static void
5953 set_partial_user (struct objfile *objfile)
5954 {
5955 int i;
5956
5957 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5958 {
5959 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5960 struct partial_symtab *pst = per_cu->v.psymtab;
5961 int j;
5962
5963 if (pst == NULL)
5964 continue;
5965
5966 for (j = 0; j < pst->number_of_dependencies; ++j)
5967 {
5968 /* Set the 'user' field only if it is not already set. */
5969 if (pst->dependencies[j]->user == NULL)
5970 pst->dependencies[j]->user = pst;
5971 }
5972 }
5973 }
5974
5975 /* Build the partial symbol table by doing a quick pass through the
5976 .debug_info and .debug_abbrev sections. */
5977
5978 static void
5979 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5980 {
5981 struct cleanup *back_to, *addrmap_cleanup;
5982 struct obstack temp_obstack;
5983 int i;
5984
5985 if (dwarf2_read_debug)
5986 {
5987 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5988 objfile->name);
5989 }
5990
5991 dwarf2_per_objfile->reading_partial_symbols = 1;
5992
5993 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5994
5995 /* Any cached compilation units will be linked by the per-objfile
5996 read_in_chain. Make sure to free them when we're done. */
5997 back_to = make_cleanup (free_cached_comp_units, NULL);
5998
5999 build_type_psymtabs (objfile);
6000
6001 create_all_comp_units (objfile);
6002
6003 /* Create a temporary address map on a temporary obstack. We later
6004 copy this to the final obstack. */
6005 obstack_init (&temp_obstack);
6006 make_cleanup_obstack_free (&temp_obstack);
6007 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6008 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6009
6010 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6011 {
6012 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6013
6014 process_psymtab_comp_unit (per_cu, 0);
6015 }
6016
6017 set_partial_user (objfile);
6018
6019 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6020 &objfile->objfile_obstack);
6021 discard_cleanups (addrmap_cleanup);
6022
6023 do_cleanups (back_to);
6024
6025 if (dwarf2_read_debug)
6026 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6027 objfile->name);
6028 }
6029
6030 /* die_reader_func for load_partial_comp_unit. */
6031
6032 static void
6033 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6034 const gdb_byte *info_ptr,
6035 struct die_info *comp_unit_die,
6036 int has_children,
6037 void *data)
6038 {
6039 struct dwarf2_cu *cu = reader->cu;
6040
6041 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6042
6043 /* Check if comp unit has_children.
6044 If so, read the rest of the partial symbols from this comp unit.
6045 If not, there's no more debug_info for this comp unit. */
6046 if (has_children)
6047 load_partial_dies (reader, info_ptr, 0);
6048 }
6049
6050 /* Load the partial DIEs for a secondary CU into memory.
6051 This is also used when rereading a primary CU with load_all_dies. */
6052
6053 static void
6054 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6055 {
6056 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6057 load_partial_comp_unit_reader, NULL);
6058 }
6059
6060 static void
6061 read_comp_units_from_section (struct objfile *objfile,
6062 struct dwarf2_section_info *section,
6063 unsigned int is_dwz,
6064 int *n_allocated,
6065 int *n_comp_units,
6066 struct dwarf2_per_cu_data ***all_comp_units)
6067 {
6068 const gdb_byte *info_ptr;
6069 bfd *abfd = section->asection->owner;
6070
6071 if (dwarf2_read_debug)
6072 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6073 section->asection->name, bfd_get_filename (abfd));
6074
6075 dwarf2_read_section (objfile, section);
6076
6077 info_ptr = section->buffer;
6078
6079 while (info_ptr < section->buffer + section->size)
6080 {
6081 unsigned int length, initial_length_size;
6082 struct dwarf2_per_cu_data *this_cu;
6083 sect_offset offset;
6084
6085 offset.sect_off = info_ptr - section->buffer;
6086
6087 /* Read just enough information to find out where the next
6088 compilation unit is. */
6089 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6090
6091 /* Save the compilation unit for later lookup. */
6092 this_cu = obstack_alloc (&objfile->objfile_obstack,
6093 sizeof (struct dwarf2_per_cu_data));
6094 memset (this_cu, 0, sizeof (*this_cu));
6095 this_cu->offset = offset;
6096 this_cu->length = length + initial_length_size;
6097 this_cu->is_dwz = is_dwz;
6098 this_cu->objfile = objfile;
6099 this_cu->section = section;
6100
6101 if (*n_comp_units == *n_allocated)
6102 {
6103 *n_allocated *= 2;
6104 *all_comp_units = xrealloc (*all_comp_units,
6105 *n_allocated
6106 * sizeof (struct dwarf2_per_cu_data *));
6107 }
6108 (*all_comp_units)[*n_comp_units] = this_cu;
6109 ++*n_comp_units;
6110
6111 info_ptr = info_ptr + this_cu->length;
6112 }
6113 }
6114
6115 /* Create a list of all compilation units in OBJFILE.
6116 This is only done for -readnow and building partial symtabs. */
6117
6118 static void
6119 create_all_comp_units (struct objfile *objfile)
6120 {
6121 int n_allocated;
6122 int n_comp_units;
6123 struct dwarf2_per_cu_data **all_comp_units;
6124
6125 n_comp_units = 0;
6126 n_allocated = 10;
6127 all_comp_units = xmalloc (n_allocated
6128 * sizeof (struct dwarf2_per_cu_data *));
6129
6130 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6131 &n_allocated, &n_comp_units, &all_comp_units);
6132
6133 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
6134 {
6135 struct dwz_file *dwz = dwarf2_get_dwz_file ();
6136
6137 read_comp_units_from_section (objfile, &dwz->info, 1,
6138 &n_allocated, &n_comp_units,
6139 &all_comp_units);
6140 }
6141
6142 dwarf2_per_objfile->all_comp_units
6143 = obstack_alloc (&objfile->objfile_obstack,
6144 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6145 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6146 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6147 xfree (all_comp_units);
6148 dwarf2_per_objfile->n_comp_units = n_comp_units;
6149 }
6150
6151 /* Process all loaded DIEs for compilation unit CU, starting at
6152 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6153 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6154 DW_AT_ranges). If NEED_PC is set, then this function will set
6155 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6156 and record the covered ranges in the addrmap. */
6157
6158 static void
6159 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6160 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6161 {
6162 struct partial_die_info *pdi;
6163
6164 /* Now, march along the PDI's, descending into ones which have
6165 interesting children but skipping the children of the other ones,
6166 until we reach the end of the compilation unit. */
6167
6168 pdi = first_die;
6169
6170 while (pdi != NULL)
6171 {
6172 fixup_partial_die (pdi, cu);
6173
6174 /* Anonymous namespaces or modules have no name but have interesting
6175 children, so we need to look at them. Ditto for anonymous
6176 enums. */
6177
6178 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6179 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6180 || pdi->tag == DW_TAG_imported_unit)
6181 {
6182 switch (pdi->tag)
6183 {
6184 case DW_TAG_subprogram:
6185 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6186 break;
6187 case DW_TAG_constant:
6188 case DW_TAG_variable:
6189 case DW_TAG_typedef:
6190 case DW_TAG_union_type:
6191 if (!pdi->is_declaration)
6192 {
6193 add_partial_symbol (pdi, cu);
6194 }
6195 break;
6196 case DW_TAG_class_type:
6197 case DW_TAG_interface_type:
6198 case DW_TAG_structure_type:
6199 if (!pdi->is_declaration)
6200 {
6201 add_partial_symbol (pdi, cu);
6202 }
6203 break;
6204 case DW_TAG_enumeration_type:
6205 if (!pdi->is_declaration)
6206 add_partial_enumeration (pdi, cu);
6207 break;
6208 case DW_TAG_base_type:
6209 case DW_TAG_subrange_type:
6210 /* File scope base type definitions are added to the partial
6211 symbol table. */
6212 add_partial_symbol (pdi, cu);
6213 break;
6214 case DW_TAG_namespace:
6215 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6216 break;
6217 case DW_TAG_module:
6218 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6219 break;
6220 case DW_TAG_imported_unit:
6221 {
6222 struct dwarf2_per_cu_data *per_cu;
6223
6224 /* For now we don't handle imported units in type units. */
6225 if (cu->per_cu->is_debug_types)
6226 {
6227 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6228 " supported in type units [in module %s]"),
6229 cu->objfile->name);
6230 }
6231
6232 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6233 pdi->is_dwz,
6234 cu->objfile);
6235
6236 /* Go read the partial unit, if needed. */
6237 if (per_cu->v.psymtab == NULL)
6238 process_psymtab_comp_unit (per_cu, 1);
6239
6240 VEC_safe_push (dwarf2_per_cu_ptr,
6241 cu->per_cu->imported_symtabs, per_cu);
6242 }
6243 break;
6244 default:
6245 break;
6246 }
6247 }
6248
6249 /* If the die has a sibling, skip to the sibling. */
6250
6251 pdi = pdi->die_sibling;
6252 }
6253 }
6254
6255 /* Functions used to compute the fully scoped name of a partial DIE.
6256
6257 Normally, this is simple. For C++, the parent DIE's fully scoped
6258 name is concatenated with "::" and the partial DIE's name. For
6259 Java, the same thing occurs except that "." is used instead of "::".
6260 Enumerators are an exception; they use the scope of their parent
6261 enumeration type, i.e. the name of the enumeration type is not
6262 prepended to the enumerator.
6263
6264 There are two complexities. One is DW_AT_specification; in this
6265 case "parent" means the parent of the target of the specification,
6266 instead of the direct parent of the DIE. The other is compilers
6267 which do not emit DW_TAG_namespace; in this case we try to guess
6268 the fully qualified name of structure types from their members'
6269 linkage names. This must be done using the DIE's children rather
6270 than the children of any DW_AT_specification target. We only need
6271 to do this for structures at the top level, i.e. if the target of
6272 any DW_AT_specification (if any; otherwise the DIE itself) does not
6273 have a parent. */
6274
6275 /* Compute the scope prefix associated with PDI's parent, in
6276 compilation unit CU. The result will be allocated on CU's
6277 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6278 field. NULL is returned if no prefix is necessary. */
6279 static const char *
6280 partial_die_parent_scope (struct partial_die_info *pdi,
6281 struct dwarf2_cu *cu)
6282 {
6283 const char *grandparent_scope;
6284 struct partial_die_info *parent, *real_pdi;
6285
6286 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6287 then this means the parent of the specification DIE. */
6288
6289 real_pdi = pdi;
6290 while (real_pdi->has_specification)
6291 real_pdi = find_partial_die (real_pdi->spec_offset,
6292 real_pdi->spec_is_dwz, cu);
6293
6294 parent = real_pdi->die_parent;
6295 if (parent == NULL)
6296 return NULL;
6297
6298 if (parent->scope_set)
6299 return parent->scope;
6300
6301 fixup_partial_die (parent, cu);
6302
6303 grandparent_scope = partial_die_parent_scope (parent, cu);
6304
6305 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6306 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6307 Work around this problem here. */
6308 if (cu->language == language_cplus
6309 && parent->tag == DW_TAG_namespace
6310 && strcmp (parent->name, "::") == 0
6311 && grandparent_scope == NULL)
6312 {
6313 parent->scope = NULL;
6314 parent->scope_set = 1;
6315 return NULL;
6316 }
6317
6318 if (pdi->tag == DW_TAG_enumerator)
6319 /* Enumerators should not get the name of the enumeration as a prefix. */
6320 parent->scope = grandparent_scope;
6321 else if (parent->tag == DW_TAG_namespace
6322 || parent->tag == DW_TAG_module
6323 || parent->tag == DW_TAG_structure_type
6324 || parent->tag == DW_TAG_class_type
6325 || parent->tag == DW_TAG_interface_type
6326 || parent->tag == DW_TAG_union_type
6327 || parent->tag == DW_TAG_enumeration_type)
6328 {
6329 if (grandparent_scope == NULL)
6330 parent->scope = parent->name;
6331 else
6332 parent->scope = typename_concat (&cu->comp_unit_obstack,
6333 grandparent_scope,
6334 parent->name, 0, cu);
6335 }
6336 else
6337 {
6338 /* FIXME drow/2004-04-01: What should we be doing with
6339 function-local names? For partial symbols, we should probably be
6340 ignoring them. */
6341 complaint (&symfile_complaints,
6342 _("unhandled containing DIE tag %d for DIE at %d"),
6343 parent->tag, pdi->offset.sect_off);
6344 parent->scope = grandparent_scope;
6345 }
6346
6347 parent->scope_set = 1;
6348 return parent->scope;
6349 }
6350
6351 /* Return the fully scoped name associated with PDI, from compilation unit
6352 CU. The result will be allocated with malloc. */
6353
6354 static char *
6355 partial_die_full_name (struct partial_die_info *pdi,
6356 struct dwarf2_cu *cu)
6357 {
6358 const char *parent_scope;
6359
6360 /* If this is a template instantiation, we can not work out the
6361 template arguments from partial DIEs. So, unfortunately, we have
6362 to go through the full DIEs. At least any work we do building
6363 types here will be reused if full symbols are loaded later. */
6364 if (pdi->has_template_arguments)
6365 {
6366 fixup_partial_die (pdi, cu);
6367
6368 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6369 {
6370 struct die_info *die;
6371 struct attribute attr;
6372 struct dwarf2_cu *ref_cu = cu;
6373
6374 /* DW_FORM_ref_addr is using section offset. */
6375 attr.name = 0;
6376 attr.form = DW_FORM_ref_addr;
6377 attr.u.unsnd = pdi->offset.sect_off;
6378 die = follow_die_ref (NULL, &attr, &ref_cu);
6379
6380 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6381 }
6382 }
6383
6384 parent_scope = partial_die_parent_scope (pdi, cu);
6385 if (parent_scope == NULL)
6386 return NULL;
6387 else
6388 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6389 }
6390
6391 static void
6392 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6393 {
6394 struct objfile *objfile = cu->objfile;
6395 CORE_ADDR addr = 0;
6396 const char *actual_name = NULL;
6397 CORE_ADDR baseaddr;
6398 char *built_actual_name;
6399
6400 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6401
6402 built_actual_name = partial_die_full_name (pdi, cu);
6403 if (built_actual_name != NULL)
6404 actual_name = built_actual_name;
6405
6406 if (actual_name == NULL)
6407 actual_name = pdi->name;
6408
6409 switch (pdi->tag)
6410 {
6411 case DW_TAG_subprogram:
6412 if (pdi->is_external || cu->language == language_ada)
6413 {
6414 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6415 of the global scope. But in Ada, we want to be able to access
6416 nested procedures globally. So all Ada subprograms are stored
6417 in the global scope. */
6418 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6419 mst_text, objfile); */
6420 add_psymbol_to_list (actual_name, strlen (actual_name),
6421 built_actual_name != NULL,
6422 VAR_DOMAIN, LOC_BLOCK,
6423 &objfile->global_psymbols,
6424 0, pdi->lowpc + baseaddr,
6425 cu->language, objfile);
6426 }
6427 else
6428 {
6429 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6430 mst_file_text, objfile); */
6431 add_psymbol_to_list (actual_name, strlen (actual_name),
6432 built_actual_name != NULL,
6433 VAR_DOMAIN, LOC_BLOCK,
6434 &objfile->static_psymbols,
6435 0, pdi->lowpc + baseaddr,
6436 cu->language, objfile);
6437 }
6438 break;
6439 case DW_TAG_constant:
6440 {
6441 struct psymbol_allocation_list *list;
6442
6443 if (pdi->is_external)
6444 list = &objfile->global_psymbols;
6445 else
6446 list = &objfile->static_psymbols;
6447 add_psymbol_to_list (actual_name, strlen (actual_name),
6448 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6449 list, 0, 0, cu->language, objfile);
6450 }
6451 break;
6452 case DW_TAG_variable:
6453 if (pdi->d.locdesc)
6454 addr = decode_locdesc (pdi->d.locdesc, cu);
6455
6456 if (pdi->d.locdesc
6457 && addr == 0
6458 && !dwarf2_per_objfile->has_section_at_zero)
6459 {
6460 /* A global or static variable may also have been stripped
6461 out by the linker if unused, in which case its address
6462 will be nullified; do not add such variables into partial
6463 symbol table then. */
6464 }
6465 else if (pdi->is_external)
6466 {
6467 /* Global Variable.
6468 Don't enter into the minimal symbol tables as there is
6469 a minimal symbol table entry from the ELF symbols already.
6470 Enter into partial symbol table if it has a location
6471 descriptor or a type.
6472 If the location descriptor is missing, new_symbol will create
6473 a LOC_UNRESOLVED symbol, the address of the variable will then
6474 be determined from the minimal symbol table whenever the variable
6475 is referenced.
6476 The address for the partial symbol table entry is not
6477 used by GDB, but it comes in handy for debugging partial symbol
6478 table building. */
6479
6480 if (pdi->d.locdesc || pdi->has_type)
6481 add_psymbol_to_list (actual_name, strlen (actual_name),
6482 built_actual_name != NULL,
6483 VAR_DOMAIN, LOC_STATIC,
6484 &objfile->global_psymbols,
6485 0, addr + baseaddr,
6486 cu->language, objfile);
6487 }
6488 else
6489 {
6490 /* Static Variable. Skip symbols without location descriptors. */
6491 if (pdi->d.locdesc == NULL)
6492 {
6493 xfree (built_actual_name);
6494 return;
6495 }
6496 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6497 mst_file_data, objfile); */
6498 add_psymbol_to_list (actual_name, strlen (actual_name),
6499 built_actual_name != NULL,
6500 VAR_DOMAIN, LOC_STATIC,
6501 &objfile->static_psymbols,
6502 0, addr + baseaddr,
6503 cu->language, objfile);
6504 }
6505 break;
6506 case DW_TAG_typedef:
6507 case DW_TAG_base_type:
6508 case DW_TAG_subrange_type:
6509 add_psymbol_to_list (actual_name, strlen (actual_name),
6510 built_actual_name != NULL,
6511 VAR_DOMAIN, LOC_TYPEDEF,
6512 &objfile->static_psymbols,
6513 0, (CORE_ADDR) 0, cu->language, objfile);
6514 break;
6515 case DW_TAG_namespace:
6516 add_psymbol_to_list (actual_name, strlen (actual_name),
6517 built_actual_name != NULL,
6518 VAR_DOMAIN, LOC_TYPEDEF,
6519 &objfile->global_psymbols,
6520 0, (CORE_ADDR) 0, cu->language, objfile);
6521 break;
6522 case DW_TAG_class_type:
6523 case DW_TAG_interface_type:
6524 case DW_TAG_structure_type:
6525 case DW_TAG_union_type:
6526 case DW_TAG_enumeration_type:
6527 /* Skip external references. The DWARF standard says in the section
6528 about "Structure, Union, and Class Type Entries": "An incomplete
6529 structure, union or class type is represented by a structure,
6530 union or class entry that does not have a byte size attribute
6531 and that has a DW_AT_declaration attribute." */
6532 if (!pdi->has_byte_size && pdi->is_declaration)
6533 {
6534 xfree (built_actual_name);
6535 return;
6536 }
6537
6538 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6539 static vs. global. */
6540 add_psymbol_to_list (actual_name, strlen (actual_name),
6541 built_actual_name != NULL,
6542 STRUCT_DOMAIN, LOC_TYPEDEF,
6543 (cu->language == language_cplus
6544 || cu->language == language_java)
6545 ? &objfile->global_psymbols
6546 : &objfile->static_psymbols,
6547 0, (CORE_ADDR) 0, cu->language, objfile);
6548
6549 break;
6550 case DW_TAG_enumerator:
6551 add_psymbol_to_list (actual_name, strlen (actual_name),
6552 built_actual_name != NULL,
6553 VAR_DOMAIN, LOC_CONST,
6554 (cu->language == language_cplus
6555 || cu->language == language_java)
6556 ? &objfile->global_psymbols
6557 : &objfile->static_psymbols,
6558 0, (CORE_ADDR) 0, cu->language, objfile);
6559 break;
6560 default:
6561 break;
6562 }
6563
6564 xfree (built_actual_name);
6565 }
6566
6567 /* Read a partial die corresponding to a namespace; also, add a symbol
6568 corresponding to that namespace to the symbol table. NAMESPACE is
6569 the name of the enclosing namespace. */
6570
6571 static void
6572 add_partial_namespace (struct partial_die_info *pdi,
6573 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6574 int need_pc, struct dwarf2_cu *cu)
6575 {
6576 /* Add a symbol for the namespace. */
6577
6578 add_partial_symbol (pdi, cu);
6579
6580 /* Now scan partial symbols in that namespace. */
6581
6582 if (pdi->has_children)
6583 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6584 }
6585
6586 /* Read a partial die corresponding to a Fortran module. */
6587
6588 static void
6589 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6590 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6591 {
6592 /* Now scan partial symbols in that module. */
6593
6594 if (pdi->has_children)
6595 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6596 }
6597
6598 /* Read a partial die corresponding to a subprogram and create a partial
6599 symbol for that subprogram. When the CU language allows it, this
6600 routine also defines a partial symbol for each nested subprogram
6601 that this subprogram contains.
6602
6603 DIE my also be a lexical block, in which case we simply search
6604 recursively for suprograms defined inside that lexical block.
6605 Again, this is only performed when the CU language allows this
6606 type of definitions. */
6607
6608 static void
6609 add_partial_subprogram (struct partial_die_info *pdi,
6610 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6611 int need_pc, struct dwarf2_cu *cu)
6612 {
6613 if (pdi->tag == DW_TAG_subprogram)
6614 {
6615 if (pdi->has_pc_info)
6616 {
6617 if (pdi->lowpc < *lowpc)
6618 *lowpc = pdi->lowpc;
6619 if (pdi->highpc > *highpc)
6620 *highpc = pdi->highpc;
6621 if (need_pc)
6622 {
6623 CORE_ADDR baseaddr;
6624 struct objfile *objfile = cu->objfile;
6625
6626 baseaddr = ANOFFSET (objfile->section_offsets,
6627 SECT_OFF_TEXT (objfile));
6628 addrmap_set_empty (objfile->psymtabs_addrmap,
6629 pdi->lowpc + baseaddr,
6630 pdi->highpc - 1 + baseaddr,
6631 cu->per_cu->v.psymtab);
6632 }
6633 }
6634
6635 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6636 {
6637 if (!pdi->is_declaration)
6638 /* Ignore subprogram DIEs that do not have a name, they are
6639 illegal. Do not emit a complaint at this point, we will
6640 do so when we convert this psymtab into a symtab. */
6641 if (pdi->name)
6642 add_partial_symbol (pdi, cu);
6643 }
6644 }
6645
6646 if (! pdi->has_children)
6647 return;
6648
6649 if (cu->language == language_ada)
6650 {
6651 pdi = pdi->die_child;
6652 while (pdi != NULL)
6653 {
6654 fixup_partial_die (pdi, cu);
6655 if (pdi->tag == DW_TAG_subprogram
6656 || pdi->tag == DW_TAG_lexical_block)
6657 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6658 pdi = pdi->die_sibling;
6659 }
6660 }
6661 }
6662
6663 /* Read a partial die corresponding to an enumeration type. */
6664
6665 static void
6666 add_partial_enumeration (struct partial_die_info *enum_pdi,
6667 struct dwarf2_cu *cu)
6668 {
6669 struct partial_die_info *pdi;
6670
6671 if (enum_pdi->name != NULL)
6672 add_partial_symbol (enum_pdi, cu);
6673
6674 pdi = enum_pdi->die_child;
6675 while (pdi)
6676 {
6677 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6678 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6679 else
6680 add_partial_symbol (pdi, cu);
6681 pdi = pdi->die_sibling;
6682 }
6683 }
6684
6685 /* Return the initial uleb128 in the die at INFO_PTR. */
6686
6687 static unsigned int
6688 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6689 {
6690 unsigned int bytes_read;
6691
6692 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6693 }
6694
6695 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6696 Return the corresponding abbrev, or NULL if the number is zero (indicating
6697 an empty DIE). In either case *BYTES_READ will be set to the length of
6698 the initial number. */
6699
6700 static struct abbrev_info *
6701 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6702 struct dwarf2_cu *cu)
6703 {
6704 bfd *abfd = cu->objfile->obfd;
6705 unsigned int abbrev_number;
6706 struct abbrev_info *abbrev;
6707
6708 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6709
6710 if (abbrev_number == 0)
6711 return NULL;
6712
6713 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6714 if (!abbrev)
6715 {
6716 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6717 abbrev_number, bfd_get_filename (abfd));
6718 }
6719
6720 return abbrev;
6721 }
6722
6723 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6724 Returns a pointer to the end of a series of DIEs, terminated by an empty
6725 DIE. Any children of the skipped DIEs will also be skipped. */
6726
6727 static const gdb_byte *
6728 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6729 {
6730 struct dwarf2_cu *cu = reader->cu;
6731 struct abbrev_info *abbrev;
6732 unsigned int bytes_read;
6733
6734 while (1)
6735 {
6736 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6737 if (abbrev == NULL)
6738 return info_ptr + bytes_read;
6739 else
6740 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6741 }
6742 }
6743
6744 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6745 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6746 abbrev corresponding to that skipped uleb128 should be passed in
6747 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6748 children. */
6749
6750 static const gdb_byte *
6751 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6752 struct abbrev_info *abbrev)
6753 {
6754 unsigned int bytes_read;
6755 struct attribute attr;
6756 bfd *abfd = reader->abfd;
6757 struct dwarf2_cu *cu = reader->cu;
6758 const gdb_byte *buffer = reader->buffer;
6759 const gdb_byte *buffer_end = reader->buffer_end;
6760 const gdb_byte *start_info_ptr = info_ptr;
6761 unsigned int form, i;
6762
6763 for (i = 0; i < abbrev->num_attrs; i++)
6764 {
6765 /* The only abbrev we care about is DW_AT_sibling. */
6766 if (abbrev->attrs[i].name == DW_AT_sibling)
6767 {
6768 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6769 if (attr.form == DW_FORM_ref_addr)
6770 complaint (&symfile_complaints,
6771 _("ignoring absolute DW_AT_sibling"));
6772 else
6773 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6774 }
6775
6776 /* If it isn't DW_AT_sibling, skip this attribute. */
6777 form = abbrev->attrs[i].form;
6778 skip_attribute:
6779 switch (form)
6780 {
6781 case DW_FORM_ref_addr:
6782 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6783 and later it is offset sized. */
6784 if (cu->header.version == 2)
6785 info_ptr += cu->header.addr_size;
6786 else
6787 info_ptr += cu->header.offset_size;
6788 break;
6789 case DW_FORM_GNU_ref_alt:
6790 info_ptr += cu->header.offset_size;
6791 break;
6792 case DW_FORM_addr:
6793 info_ptr += cu->header.addr_size;
6794 break;
6795 case DW_FORM_data1:
6796 case DW_FORM_ref1:
6797 case DW_FORM_flag:
6798 info_ptr += 1;
6799 break;
6800 case DW_FORM_flag_present:
6801 break;
6802 case DW_FORM_data2:
6803 case DW_FORM_ref2:
6804 info_ptr += 2;
6805 break;
6806 case DW_FORM_data4:
6807 case DW_FORM_ref4:
6808 info_ptr += 4;
6809 break;
6810 case DW_FORM_data8:
6811 case DW_FORM_ref8:
6812 case DW_FORM_ref_sig8:
6813 info_ptr += 8;
6814 break;
6815 case DW_FORM_string:
6816 read_direct_string (abfd, info_ptr, &bytes_read);
6817 info_ptr += bytes_read;
6818 break;
6819 case DW_FORM_sec_offset:
6820 case DW_FORM_strp:
6821 case DW_FORM_GNU_strp_alt:
6822 info_ptr += cu->header.offset_size;
6823 break;
6824 case DW_FORM_exprloc:
6825 case DW_FORM_block:
6826 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6827 info_ptr += bytes_read;
6828 break;
6829 case DW_FORM_block1:
6830 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6831 break;
6832 case DW_FORM_block2:
6833 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6834 break;
6835 case DW_FORM_block4:
6836 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6837 break;
6838 case DW_FORM_sdata:
6839 case DW_FORM_udata:
6840 case DW_FORM_ref_udata:
6841 case DW_FORM_GNU_addr_index:
6842 case DW_FORM_GNU_str_index:
6843 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6844 break;
6845 case DW_FORM_indirect:
6846 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6847 info_ptr += bytes_read;
6848 /* We need to continue parsing from here, so just go back to
6849 the top. */
6850 goto skip_attribute;
6851
6852 default:
6853 error (_("Dwarf Error: Cannot handle %s "
6854 "in DWARF reader [in module %s]"),
6855 dwarf_form_name (form),
6856 bfd_get_filename (abfd));
6857 }
6858 }
6859
6860 if (abbrev->has_children)
6861 return skip_children (reader, info_ptr);
6862 else
6863 return info_ptr;
6864 }
6865
6866 /* Locate ORIG_PDI's sibling.
6867 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6868
6869 static const gdb_byte *
6870 locate_pdi_sibling (const struct die_reader_specs *reader,
6871 struct partial_die_info *orig_pdi,
6872 const gdb_byte *info_ptr)
6873 {
6874 /* Do we know the sibling already? */
6875
6876 if (orig_pdi->sibling)
6877 return orig_pdi->sibling;
6878
6879 /* Are there any children to deal with? */
6880
6881 if (!orig_pdi->has_children)
6882 return info_ptr;
6883
6884 /* Skip the children the long way. */
6885
6886 return skip_children (reader, info_ptr);
6887 }
6888
6889 /* Expand this partial symbol table into a full symbol table. SELF is
6890 not NULL. */
6891
6892 static void
6893 dwarf2_read_symtab (struct partial_symtab *self,
6894 struct objfile *objfile)
6895 {
6896 if (self->readin)
6897 {
6898 warning (_("bug: psymtab for %s is already read in."),
6899 self->filename);
6900 }
6901 else
6902 {
6903 if (info_verbose)
6904 {
6905 printf_filtered (_("Reading in symbols for %s..."),
6906 self->filename);
6907 gdb_flush (gdb_stdout);
6908 }
6909
6910 /* Restore our global data. */
6911 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6912
6913 /* If this psymtab is constructed from a debug-only objfile, the
6914 has_section_at_zero flag will not necessarily be correct. We
6915 can get the correct value for this flag by looking at the data
6916 associated with the (presumably stripped) associated objfile. */
6917 if (objfile->separate_debug_objfile_backlink)
6918 {
6919 struct dwarf2_per_objfile *dpo_backlink
6920 = objfile_data (objfile->separate_debug_objfile_backlink,
6921 dwarf2_objfile_data_key);
6922
6923 dwarf2_per_objfile->has_section_at_zero
6924 = dpo_backlink->has_section_at_zero;
6925 }
6926
6927 dwarf2_per_objfile->reading_partial_symbols = 0;
6928
6929 psymtab_to_symtab_1 (self);
6930
6931 /* Finish up the debug error message. */
6932 if (info_verbose)
6933 printf_filtered (_("done.\n"));
6934 }
6935
6936 process_cu_includes ();
6937 }
6938 \f
6939 /* Reading in full CUs. */
6940
6941 /* Add PER_CU to the queue. */
6942
6943 static void
6944 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6945 enum language pretend_language)
6946 {
6947 struct dwarf2_queue_item *item;
6948
6949 per_cu->queued = 1;
6950 item = xmalloc (sizeof (*item));
6951 item->per_cu = per_cu;
6952 item->pretend_language = pretend_language;
6953 item->next = NULL;
6954
6955 if (dwarf2_queue == NULL)
6956 dwarf2_queue = item;
6957 else
6958 dwarf2_queue_tail->next = item;
6959
6960 dwarf2_queue_tail = item;
6961 }
6962
6963 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6964 unit and add it to our queue.
6965 The result is non-zero if PER_CU was queued, otherwise the result is zero
6966 meaning either PER_CU is already queued or it is already loaded. */
6967
6968 static int
6969 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6970 struct dwarf2_per_cu_data *per_cu,
6971 enum language pretend_language)
6972 {
6973 /* We may arrive here during partial symbol reading, if we need full
6974 DIEs to process an unusual case (e.g. template arguments). Do
6975 not queue PER_CU, just tell our caller to load its DIEs. */
6976 if (dwarf2_per_objfile->reading_partial_symbols)
6977 {
6978 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6979 return 1;
6980 return 0;
6981 }
6982
6983 /* Mark the dependence relation so that we don't flush PER_CU
6984 too early. */
6985 dwarf2_add_dependence (this_cu, per_cu);
6986
6987 /* If it's already on the queue, we have nothing to do. */
6988 if (per_cu->queued)
6989 return 0;
6990
6991 /* If the compilation unit is already loaded, just mark it as
6992 used. */
6993 if (per_cu->cu != NULL)
6994 {
6995 per_cu->cu->last_used = 0;
6996 return 0;
6997 }
6998
6999 /* Add it to the queue. */
7000 queue_comp_unit (per_cu, pretend_language);
7001
7002 return 1;
7003 }
7004
7005 /* Process the queue. */
7006
7007 static void
7008 process_queue (void)
7009 {
7010 struct dwarf2_queue_item *item, *next_item;
7011
7012 if (dwarf2_read_debug)
7013 {
7014 fprintf_unfiltered (gdb_stdlog,
7015 "Expanding one or more symtabs of objfile %s ...\n",
7016 dwarf2_per_objfile->objfile->name);
7017 }
7018
7019 /* The queue starts out with one item, but following a DIE reference
7020 may load a new CU, adding it to the end of the queue. */
7021 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7022 {
7023 if (dwarf2_per_objfile->using_index
7024 ? !item->per_cu->v.quick->symtab
7025 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7026 {
7027 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7028
7029 if (dwarf2_read_debug)
7030 {
7031 fprintf_unfiltered (gdb_stdlog,
7032 "Expanding symtab of %s at offset 0x%x\n",
7033 per_cu->is_debug_types ? "TU" : "CU",
7034 per_cu->offset.sect_off);
7035 }
7036
7037 if (per_cu->is_debug_types)
7038 process_full_type_unit (per_cu, item->pretend_language);
7039 else
7040 process_full_comp_unit (per_cu, item->pretend_language);
7041
7042 if (dwarf2_read_debug)
7043 {
7044 fprintf_unfiltered (gdb_stdlog,
7045 "Done expanding %s at offset 0x%x\n",
7046 per_cu->is_debug_types ? "TU" : "CU",
7047 per_cu->offset.sect_off);
7048 }
7049 }
7050
7051 item->per_cu->queued = 0;
7052 next_item = item->next;
7053 xfree (item);
7054 }
7055
7056 dwarf2_queue_tail = NULL;
7057
7058 if (dwarf2_read_debug)
7059 {
7060 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7061 dwarf2_per_objfile->objfile->name);
7062 }
7063 }
7064
7065 /* Free all allocated queue entries. This function only releases anything if
7066 an error was thrown; if the queue was processed then it would have been
7067 freed as we went along. */
7068
7069 static void
7070 dwarf2_release_queue (void *dummy)
7071 {
7072 struct dwarf2_queue_item *item, *last;
7073
7074 item = dwarf2_queue;
7075 while (item)
7076 {
7077 /* Anything still marked queued is likely to be in an
7078 inconsistent state, so discard it. */
7079 if (item->per_cu->queued)
7080 {
7081 if (item->per_cu->cu != NULL)
7082 free_one_cached_comp_unit (item->per_cu);
7083 item->per_cu->queued = 0;
7084 }
7085
7086 last = item;
7087 item = item->next;
7088 xfree (last);
7089 }
7090
7091 dwarf2_queue = dwarf2_queue_tail = NULL;
7092 }
7093
7094 /* Read in full symbols for PST, and anything it depends on. */
7095
7096 static void
7097 psymtab_to_symtab_1 (struct partial_symtab *pst)
7098 {
7099 struct dwarf2_per_cu_data *per_cu;
7100 int i;
7101
7102 if (pst->readin)
7103 return;
7104
7105 for (i = 0; i < pst->number_of_dependencies; i++)
7106 if (!pst->dependencies[i]->readin
7107 && pst->dependencies[i]->user == NULL)
7108 {
7109 /* Inform about additional files that need to be read in. */
7110 if (info_verbose)
7111 {
7112 /* FIXME: i18n: Need to make this a single string. */
7113 fputs_filtered (" ", gdb_stdout);
7114 wrap_here ("");
7115 fputs_filtered ("and ", gdb_stdout);
7116 wrap_here ("");
7117 printf_filtered ("%s...", pst->dependencies[i]->filename);
7118 wrap_here (""); /* Flush output. */
7119 gdb_flush (gdb_stdout);
7120 }
7121 psymtab_to_symtab_1 (pst->dependencies[i]);
7122 }
7123
7124 per_cu = pst->read_symtab_private;
7125
7126 if (per_cu == NULL)
7127 {
7128 /* It's an include file, no symbols to read for it.
7129 Everything is in the parent symtab. */
7130 pst->readin = 1;
7131 return;
7132 }
7133
7134 dw2_do_instantiate_symtab (per_cu);
7135 }
7136
7137 /* Trivial hash function for die_info: the hash value of a DIE
7138 is its offset in .debug_info for this objfile. */
7139
7140 static hashval_t
7141 die_hash (const void *item)
7142 {
7143 const struct die_info *die = item;
7144
7145 return die->offset.sect_off;
7146 }
7147
7148 /* Trivial comparison function for die_info structures: two DIEs
7149 are equal if they have the same offset. */
7150
7151 static int
7152 die_eq (const void *item_lhs, const void *item_rhs)
7153 {
7154 const struct die_info *die_lhs = item_lhs;
7155 const struct die_info *die_rhs = item_rhs;
7156
7157 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7158 }
7159
7160 /* die_reader_func for load_full_comp_unit.
7161 This is identical to read_signatured_type_reader,
7162 but is kept separate for now. */
7163
7164 static void
7165 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7166 const gdb_byte *info_ptr,
7167 struct die_info *comp_unit_die,
7168 int has_children,
7169 void *data)
7170 {
7171 struct dwarf2_cu *cu = reader->cu;
7172 enum language *language_ptr = data;
7173
7174 gdb_assert (cu->die_hash == NULL);
7175 cu->die_hash =
7176 htab_create_alloc_ex (cu->header.length / 12,
7177 die_hash,
7178 die_eq,
7179 NULL,
7180 &cu->comp_unit_obstack,
7181 hashtab_obstack_allocate,
7182 dummy_obstack_deallocate);
7183
7184 if (has_children)
7185 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7186 &info_ptr, comp_unit_die);
7187 cu->dies = comp_unit_die;
7188 /* comp_unit_die is not stored in die_hash, no need. */
7189
7190 /* We try not to read any attributes in this function, because not
7191 all CUs needed for references have been loaded yet, and symbol
7192 table processing isn't initialized. But we have to set the CU language,
7193 or we won't be able to build types correctly.
7194 Similarly, if we do not read the producer, we can not apply
7195 producer-specific interpretation. */
7196 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7197 }
7198
7199 /* Load the DIEs associated with PER_CU into memory. */
7200
7201 static void
7202 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7203 enum language pretend_language)
7204 {
7205 gdb_assert (! this_cu->is_debug_types);
7206
7207 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7208 load_full_comp_unit_reader, &pretend_language);
7209 }
7210
7211 /* Add a DIE to the delayed physname list. */
7212
7213 static void
7214 add_to_method_list (struct type *type, int fnfield_index, int index,
7215 const char *name, struct die_info *die,
7216 struct dwarf2_cu *cu)
7217 {
7218 struct delayed_method_info mi;
7219 mi.type = type;
7220 mi.fnfield_index = fnfield_index;
7221 mi.index = index;
7222 mi.name = name;
7223 mi.die = die;
7224 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7225 }
7226
7227 /* A cleanup for freeing the delayed method list. */
7228
7229 static void
7230 free_delayed_list (void *ptr)
7231 {
7232 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7233 if (cu->method_list != NULL)
7234 {
7235 VEC_free (delayed_method_info, cu->method_list);
7236 cu->method_list = NULL;
7237 }
7238 }
7239
7240 /* Compute the physnames of any methods on the CU's method list.
7241
7242 The computation of method physnames is delayed in order to avoid the
7243 (bad) condition that one of the method's formal parameters is of an as yet
7244 incomplete type. */
7245
7246 static void
7247 compute_delayed_physnames (struct dwarf2_cu *cu)
7248 {
7249 int i;
7250 struct delayed_method_info *mi;
7251 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7252 {
7253 const char *physname;
7254 struct fn_fieldlist *fn_flp
7255 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7256 physname = dwarf2_physname (mi->name, mi->die, cu);
7257 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7258 }
7259 }
7260
7261 /* Go objects should be embedded in a DW_TAG_module DIE,
7262 and it's not clear if/how imported objects will appear.
7263 To keep Go support simple until that's worked out,
7264 go back through what we've read and create something usable.
7265 We could do this while processing each DIE, and feels kinda cleaner,
7266 but that way is more invasive.
7267 This is to, for example, allow the user to type "p var" or "b main"
7268 without having to specify the package name, and allow lookups
7269 of module.object to work in contexts that use the expression
7270 parser. */
7271
7272 static void
7273 fixup_go_packaging (struct dwarf2_cu *cu)
7274 {
7275 char *package_name = NULL;
7276 struct pending *list;
7277 int i;
7278
7279 for (list = global_symbols; list != NULL; list = list->next)
7280 {
7281 for (i = 0; i < list->nsyms; ++i)
7282 {
7283 struct symbol *sym = list->symbol[i];
7284
7285 if (SYMBOL_LANGUAGE (sym) == language_go
7286 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7287 {
7288 char *this_package_name = go_symbol_package_name (sym);
7289
7290 if (this_package_name == NULL)
7291 continue;
7292 if (package_name == NULL)
7293 package_name = this_package_name;
7294 else
7295 {
7296 if (strcmp (package_name, this_package_name) != 0)
7297 complaint (&symfile_complaints,
7298 _("Symtab %s has objects from two different Go packages: %s and %s"),
7299 (SYMBOL_SYMTAB (sym)
7300 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7301 : cu->objfile->name),
7302 this_package_name, package_name);
7303 xfree (this_package_name);
7304 }
7305 }
7306 }
7307 }
7308
7309 if (package_name != NULL)
7310 {
7311 struct objfile *objfile = cu->objfile;
7312 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7313 package_name,
7314 strlen (package_name));
7315 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7316 saved_package_name, objfile);
7317 struct symbol *sym;
7318
7319 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7320
7321 sym = allocate_symbol (objfile);
7322 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7323 SYMBOL_SET_NAMES (sym, saved_package_name,
7324 strlen (saved_package_name), 0, objfile);
7325 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7326 e.g., "main" finds the "main" module and not C's main(). */
7327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7328 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7329 SYMBOL_TYPE (sym) = type;
7330
7331 add_symbol_to_list (sym, &global_symbols);
7332
7333 xfree (package_name);
7334 }
7335 }
7336
7337 /* Return the symtab for PER_CU. This works properly regardless of
7338 whether we're using the index or psymtabs. */
7339
7340 static struct symtab *
7341 get_symtab (struct dwarf2_per_cu_data *per_cu)
7342 {
7343 return (dwarf2_per_objfile->using_index
7344 ? per_cu->v.quick->symtab
7345 : per_cu->v.psymtab->symtab);
7346 }
7347
7348 /* A helper function for computing the list of all symbol tables
7349 included by PER_CU. */
7350
7351 static void
7352 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7353 htab_t all_children,
7354 struct dwarf2_per_cu_data *per_cu)
7355 {
7356 void **slot;
7357 int ix;
7358 struct dwarf2_per_cu_data *iter;
7359
7360 slot = htab_find_slot (all_children, per_cu, INSERT);
7361 if (*slot != NULL)
7362 {
7363 /* This inclusion and its children have been processed. */
7364 return;
7365 }
7366
7367 *slot = per_cu;
7368 /* Only add a CU if it has a symbol table. */
7369 if (get_symtab (per_cu) != NULL)
7370 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7371
7372 for (ix = 0;
7373 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7374 ++ix)
7375 recursively_compute_inclusions (result, all_children, iter);
7376 }
7377
7378 /* Compute the symtab 'includes' fields for the symtab related to
7379 PER_CU. */
7380
7381 static void
7382 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7383 {
7384 gdb_assert (! per_cu->is_debug_types);
7385
7386 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7387 {
7388 int ix, len;
7389 struct dwarf2_per_cu_data *iter;
7390 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7391 htab_t all_children;
7392 struct symtab *symtab = get_symtab (per_cu);
7393
7394 /* If we don't have a symtab, we can just skip this case. */
7395 if (symtab == NULL)
7396 return;
7397
7398 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7399 NULL, xcalloc, xfree);
7400
7401 for (ix = 0;
7402 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7403 ix, iter);
7404 ++ix)
7405 recursively_compute_inclusions (&result_children, all_children, iter);
7406
7407 /* Now we have a transitive closure of all the included CUs, and
7408 for .gdb_index version 7 the included TUs, so we can convert it
7409 to a list of symtabs. */
7410 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7411 symtab->includes
7412 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7413 (len + 1) * sizeof (struct symtab *));
7414 for (ix = 0;
7415 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7416 ++ix)
7417 symtab->includes[ix] = get_symtab (iter);
7418 symtab->includes[len] = NULL;
7419
7420 VEC_free (dwarf2_per_cu_ptr, result_children);
7421 htab_delete (all_children);
7422 }
7423 }
7424
7425 /* Compute the 'includes' field for the symtabs of all the CUs we just
7426 read. */
7427
7428 static void
7429 process_cu_includes (void)
7430 {
7431 int ix;
7432 struct dwarf2_per_cu_data *iter;
7433
7434 for (ix = 0;
7435 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7436 ix, iter);
7437 ++ix)
7438 {
7439 if (! iter->is_debug_types)
7440 compute_symtab_includes (iter);
7441 }
7442
7443 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7444 }
7445
7446 /* Generate full symbol information for PER_CU, whose DIEs have
7447 already been loaded into memory. */
7448
7449 static void
7450 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7451 enum language pretend_language)
7452 {
7453 struct dwarf2_cu *cu = per_cu->cu;
7454 struct objfile *objfile = per_cu->objfile;
7455 CORE_ADDR lowpc, highpc;
7456 struct symtab *symtab;
7457 struct cleanup *back_to, *delayed_list_cleanup;
7458 CORE_ADDR baseaddr;
7459 struct block *static_block;
7460
7461 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7462
7463 buildsym_init ();
7464 back_to = make_cleanup (really_free_pendings, NULL);
7465 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7466
7467 cu->list_in_scope = &file_symbols;
7468
7469 cu->language = pretend_language;
7470 cu->language_defn = language_def (cu->language);
7471
7472 /* Do line number decoding in read_file_scope () */
7473 process_die (cu->dies, cu);
7474
7475 /* For now fudge the Go package. */
7476 if (cu->language == language_go)
7477 fixup_go_packaging (cu);
7478
7479 /* Now that we have processed all the DIEs in the CU, all the types
7480 should be complete, and it should now be safe to compute all of the
7481 physnames. */
7482 compute_delayed_physnames (cu);
7483 do_cleanups (delayed_list_cleanup);
7484
7485 /* Some compilers don't define a DW_AT_high_pc attribute for the
7486 compilation unit. If the DW_AT_high_pc is missing, synthesize
7487 it, by scanning the DIE's below the compilation unit. */
7488 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7489
7490 static_block
7491 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7492
7493 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7494 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7495 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7496 addrmap to help ensure it has an accurate map of pc values belonging to
7497 this comp unit. */
7498 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7499
7500 symtab = end_symtab_from_static_block (static_block, objfile,
7501 SECT_OFF_TEXT (objfile), 0);
7502
7503 if (symtab != NULL)
7504 {
7505 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7506
7507 /* Set symtab language to language from DW_AT_language. If the
7508 compilation is from a C file generated by language preprocessors, do
7509 not set the language if it was already deduced by start_subfile. */
7510 if (!(cu->language == language_c && symtab->language != language_c))
7511 symtab->language = cu->language;
7512
7513 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7514 produce DW_AT_location with location lists but it can be possibly
7515 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7516 there were bugs in prologue debug info, fixed later in GCC-4.5
7517 by "unwind info for epilogues" patch (which is not directly related).
7518
7519 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7520 needed, it would be wrong due to missing DW_AT_producer there.
7521
7522 Still one can confuse GDB by using non-standard GCC compilation
7523 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7524 */
7525 if (cu->has_loclist && gcc_4_minor >= 5)
7526 symtab->locations_valid = 1;
7527
7528 if (gcc_4_minor >= 5)
7529 symtab->epilogue_unwind_valid = 1;
7530
7531 symtab->call_site_htab = cu->call_site_htab;
7532 }
7533
7534 if (dwarf2_per_objfile->using_index)
7535 per_cu->v.quick->symtab = symtab;
7536 else
7537 {
7538 struct partial_symtab *pst = per_cu->v.psymtab;
7539 pst->symtab = symtab;
7540 pst->readin = 1;
7541 }
7542
7543 /* Push it for inclusion processing later. */
7544 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7545
7546 do_cleanups (back_to);
7547 }
7548
7549 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7550 already been loaded into memory. */
7551
7552 static void
7553 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7554 enum language pretend_language)
7555 {
7556 struct dwarf2_cu *cu = per_cu->cu;
7557 struct objfile *objfile = per_cu->objfile;
7558 struct symtab *symtab;
7559 struct cleanup *back_to, *delayed_list_cleanup;
7560 struct signatured_type *sig_type;
7561
7562 gdb_assert (per_cu->is_debug_types);
7563 sig_type = (struct signatured_type *) per_cu;
7564
7565 buildsym_init ();
7566 back_to = make_cleanup (really_free_pendings, NULL);
7567 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7568
7569 cu->list_in_scope = &file_symbols;
7570
7571 cu->language = pretend_language;
7572 cu->language_defn = language_def (cu->language);
7573
7574 /* The symbol tables are set up in read_type_unit_scope. */
7575 process_die (cu->dies, cu);
7576
7577 /* For now fudge the Go package. */
7578 if (cu->language == language_go)
7579 fixup_go_packaging (cu);
7580
7581 /* Now that we have processed all the DIEs in the CU, all the types
7582 should be complete, and it should now be safe to compute all of the
7583 physnames. */
7584 compute_delayed_physnames (cu);
7585 do_cleanups (delayed_list_cleanup);
7586
7587 /* TUs share symbol tables.
7588 If this is the first TU to use this symtab, complete the construction
7589 of it with end_expandable_symtab. Otherwise, complete the addition of
7590 this TU's symbols to the existing symtab. */
7591 if (sig_type->type_unit_group->primary_symtab == NULL)
7592 {
7593 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7594 sig_type->type_unit_group->primary_symtab = symtab;
7595
7596 if (symtab != NULL)
7597 {
7598 /* Set symtab language to language from DW_AT_language. If the
7599 compilation is from a C file generated by language preprocessors,
7600 do not set the language if it was already deduced by
7601 start_subfile. */
7602 if (!(cu->language == language_c && symtab->language != language_c))
7603 symtab->language = cu->language;
7604 }
7605 }
7606 else
7607 {
7608 augment_type_symtab (objfile,
7609 sig_type->type_unit_group->primary_symtab);
7610 symtab = sig_type->type_unit_group->primary_symtab;
7611 }
7612
7613 if (dwarf2_per_objfile->using_index)
7614 per_cu->v.quick->symtab = symtab;
7615 else
7616 {
7617 struct partial_symtab *pst = per_cu->v.psymtab;
7618 pst->symtab = symtab;
7619 pst->readin = 1;
7620 }
7621
7622 do_cleanups (back_to);
7623 }
7624
7625 /* Process an imported unit DIE. */
7626
7627 static void
7628 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7629 {
7630 struct attribute *attr;
7631
7632 /* For now we don't handle imported units in type units. */
7633 if (cu->per_cu->is_debug_types)
7634 {
7635 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7636 " supported in type units [in module %s]"),
7637 cu->objfile->name);
7638 }
7639
7640 attr = dwarf2_attr (die, DW_AT_import, cu);
7641 if (attr != NULL)
7642 {
7643 struct dwarf2_per_cu_data *per_cu;
7644 struct symtab *imported_symtab;
7645 sect_offset offset;
7646 int is_dwz;
7647
7648 offset = dwarf2_get_ref_die_offset (attr);
7649 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7650 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7651
7652 /* Queue the unit, if needed. */
7653 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7654 load_full_comp_unit (per_cu, cu->language);
7655
7656 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7657 per_cu);
7658 }
7659 }
7660
7661 /* Process a die and its children. */
7662
7663 static void
7664 process_die (struct die_info *die, struct dwarf2_cu *cu)
7665 {
7666 switch (die->tag)
7667 {
7668 case DW_TAG_padding:
7669 break;
7670 case DW_TAG_compile_unit:
7671 case DW_TAG_partial_unit:
7672 read_file_scope (die, cu);
7673 break;
7674 case DW_TAG_type_unit:
7675 read_type_unit_scope (die, cu);
7676 break;
7677 case DW_TAG_subprogram:
7678 case DW_TAG_inlined_subroutine:
7679 read_func_scope (die, cu);
7680 break;
7681 case DW_TAG_lexical_block:
7682 case DW_TAG_try_block:
7683 case DW_TAG_catch_block:
7684 read_lexical_block_scope (die, cu);
7685 break;
7686 case DW_TAG_GNU_call_site:
7687 read_call_site_scope (die, cu);
7688 break;
7689 case DW_TAG_class_type:
7690 case DW_TAG_interface_type:
7691 case DW_TAG_structure_type:
7692 case DW_TAG_union_type:
7693 process_structure_scope (die, cu);
7694 break;
7695 case DW_TAG_enumeration_type:
7696 process_enumeration_scope (die, cu);
7697 break;
7698
7699 /* These dies have a type, but processing them does not create
7700 a symbol or recurse to process the children. Therefore we can
7701 read them on-demand through read_type_die. */
7702 case DW_TAG_subroutine_type:
7703 case DW_TAG_set_type:
7704 case DW_TAG_array_type:
7705 case DW_TAG_pointer_type:
7706 case DW_TAG_ptr_to_member_type:
7707 case DW_TAG_reference_type:
7708 case DW_TAG_string_type:
7709 break;
7710
7711 case DW_TAG_base_type:
7712 case DW_TAG_subrange_type:
7713 case DW_TAG_typedef:
7714 /* Add a typedef symbol for the type definition, if it has a
7715 DW_AT_name. */
7716 new_symbol (die, read_type_die (die, cu), cu);
7717 break;
7718 case DW_TAG_common_block:
7719 read_common_block (die, cu);
7720 break;
7721 case DW_TAG_common_inclusion:
7722 break;
7723 case DW_TAG_namespace:
7724 cu->processing_has_namespace_info = 1;
7725 read_namespace (die, cu);
7726 break;
7727 case DW_TAG_module:
7728 cu->processing_has_namespace_info = 1;
7729 read_module (die, cu);
7730 break;
7731 case DW_TAG_imported_declaration:
7732 case DW_TAG_imported_module:
7733 cu->processing_has_namespace_info = 1;
7734 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7735 || cu->language != language_fortran))
7736 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7737 dwarf_tag_name (die->tag));
7738 read_import_statement (die, cu);
7739 break;
7740
7741 case DW_TAG_imported_unit:
7742 process_imported_unit_die (die, cu);
7743 break;
7744
7745 default:
7746 new_symbol (die, NULL, cu);
7747 break;
7748 }
7749 }
7750 \f
7751 /* DWARF name computation. */
7752
7753 /* A helper function for dwarf2_compute_name which determines whether DIE
7754 needs to have the name of the scope prepended to the name listed in the
7755 die. */
7756
7757 static int
7758 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7759 {
7760 struct attribute *attr;
7761
7762 switch (die->tag)
7763 {
7764 case DW_TAG_namespace:
7765 case DW_TAG_typedef:
7766 case DW_TAG_class_type:
7767 case DW_TAG_interface_type:
7768 case DW_TAG_structure_type:
7769 case DW_TAG_union_type:
7770 case DW_TAG_enumeration_type:
7771 case DW_TAG_enumerator:
7772 case DW_TAG_subprogram:
7773 case DW_TAG_member:
7774 return 1;
7775
7776 case DW_TAG_variable:
7777 case DW_TAG_constant:
7778 /* We only need to prefix "globally" visible variables. These include
7779 any variable marked with DW_AT_external or any variable that
7780 lives in a namespace. [Variables in anonymous namespaces
7781 require prefixing, but they are not DW_AT_external.] */
7782
7783 if (dwarf2_attr (die, DW_AT_specification, cu))
7784 {
7785 struct dwarf2_cu *spec_cu = cu;
7786
7787 return die_needs_namespace (die_specification (die, &spec_cu),
7788 spec_cu);
7789 }
7790
7791 attr = dwarf2_attr (die, DW_AT_external, cu);
7792 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7793 && die->parent->tag != DW_TAG_module)
7794 return 0;
7795 /* A variable in a lexical block of some kind does not need a
7796 namespace, even though in C++ such variables may be external
7797 and have a mangled name. */
7798 if (die->parent->tag == DW_TAG_lexical_block
7799 || die->parent->tag == DW_TAG_try_block
7800 || die->parent->tag == DW_TAG_catch_block
7801 || die->parent->tag == DW_TAG_subprogram)
7802 return 0;
7803 return 1;
7804
7805 default:
7806 return 0;
7807 }
7808 }
7809
7810 /* Retrieve the last character from a mem_file. */
7811
7812 static void
7813 do_ui_file_peek_last (void *object, const char *buffer, long length)
7814 {
7815 char *last_char_p = (char *) object;
7816
7817 if (length > 0)
7818 *last_char_p = buffer[length - 1];
7819 }
7820
7821 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7822 compute the physname for the object, which include a method's:
7823 - formal parameters (C++/Java),
7824 - receiver type (Go),
7825 - return type (Java).
7826
7827 The term "physname" is a bit confusing.
7828 For C++, for example, it is the demangled name.
7829 For Go, for example, it's the mangled name.
7830
7831 For Ada, return the DIE's linkage name rather than the fully qualified
7832 name. PHYSNAME is ignored..
7833
7834 The result is allocated on the objfile_obstack and canonicalized. */
7835
7836 static const char *
7837 dwarf2_compute_name (const char *name,
7838 struct die_info *die, struct dwarf2_cu *cu,
7839 int physname)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842
7843 if (name == NULL)
7844 name = dwarf2_name (die, cu);
7845
7846 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7847 compute it by typename_concat inside GDB. */
7848 if (cu->language == language_ada
7849 || (cu->language == language_fortran && physname))
7850 {
7851 /* For Ada unit, we prefer the linkage name over the name, as
7852 the former contains the exported name, which the user expects
7853 to be able to reference. Ideally, we want the user to be able
7854 to reference this entity using either natural or linkage name,
7855 but we haven't started looking at this enhancement yet. */
7856 struct attribute *attr;
7857
7858 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7859 if (attr == NULL)
7860 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7861 if (attr && DW_STRING (attr))
7862 return DW_STRING (attr);
7863 }
7864
7865 /* These are the only languages we know how to qualify names in. */
7866 if (name != NULL
7867 && (cu->language == language_cplus || cu->language == language_java
7868 || cu->language == language_fortran))
7869 {
7870 if (die_needs_namespace (die, cu))
7871 {
7872 long length;
7873 const char *prefix;
7874 struct ui_file *buf;
7875
7876 prefix = determine_prefix (die, cu);
7877 buf = mem_fileopen ();
7878 if (*prefix != '\0')
7879 {
7880 char *prefixed_name = typename_concat (NULL, prefix, name,
7881 physname, cu);
7882
7883 fputs_unfiltered (prefixed_name, buf);
7884 xfree (prefixed_name);
7885 }
7886 else
7887 fputs_unfiltered (name, buf);
7888
7889 /* Template parameters may be specified in the DIE's DW_AT_name, or
7890 as children with DW_TAG_template_type_param or
7891 DW_TAG_value_type_param. If the latter, add them to the name
7892 here. If the name already has template parameters, then
7893 skip this step; some versions of GCC emit both, and
7894 it is more efficient to use the pre-computed name.
7895
7896 Something to keep in mind about this process: it is very
7897 unlikely, or in some cases downright impossible, to produce
7898 something that will match the mangled name of a function.
7899 If the definition of the function has the same debug info,
7900 we should be able to match up with it anyway. But fallbacks
7901 using the minimal symbol, for instance to find a method
7902 implemented in a stripped copy of libstdc++, will not work.
7903 If we do not have debug info for the definition, we will have to
7904 match them up some other way.
7905
7906 When we do name matching there is a related problem with function
7907 templates; two instantiated function templates are allowed to
7908 differ only by their return types, which we do not add here. */
7909
7910 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7911 {
7912 struct attribute *attr;
7913 struct die_info *child;
7914 int first = 1;
7915
7916 die->building_fullname = 1;
7917
7918 for (child = die->child; child != NULL; child = child->sibling)
7919 {
7920 struct type *type;
7921 LONGEST value;
7922 const gdb_byte *bytes;
7923 struct dwarf2_locexpr_baton *baton;
7924 struct value *v;
7925
7926 if (child->tag != DW_TAG_template_type_param
7927 && child->tag != DW_TAG_template_value_param)
7928 continue;
7929
7930 if (first)
7931 {
7932 fputs_unfiltered ("<", buf);
7933 first = 0;
7934 }
7935 else
7936 fputs_unfiltered (", ", buf);
7937
7938 attr = dwarf2_attr (child, DW_AT_type, cu);
7939 if (attr == NULL)
7940 {
7941 complaint (&symfile_complaints,
7942 _("template parameter missing DW_AT_type"));
7943 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7944 continue;
7945 }
7946 type = die_type (child, cu);
7947
7948 if (child->tag == DW_TAG_template_type_param)
7949 {
7950 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7951 continue;
7952 }
7953
7954 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7955 if (attr == NULL)
7956 {
7957 complaint (&symfile_complaints,
7958 _("template parameter missing "
7959 "DW_AT_const_value"));
7960 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7961 continue;
7962 }
7963
7964 dwarf2_const_value_attr (attr, type, name,
7965 &cu->comp_unit_obstack, cu,
7966 &value, &bytes, &baton);
7967
7968 if (TYPE_NOSIGN (type))
7969 /* GDB prints characters as NUMBER 'CHAR'. If that's
7970 changed, this can use value_print instead. */
7971 c_printchar (value, type, buf);
7972 else
7973 {
7974 struct value_print_options opts;
7975
7976 if (baton != NULL)
7977 v = dwarf2_evaluate_loc_desc (type, NULL,
7978 baton->data,
7979 baton->size,
7980 baton->per_cu);
7981 else if (bytes != NULL)
7982 {
7983 v = allocate_value (type);
7984 memcpy (value_contents_writeable (v), bytes,
7985 TYPE_LENGTH (type));
7986 }
7987 else
7988 v = value_from_longest (type, value);
7989
7990 /* Specify decimal so that we do not depend on
7991 the radix. */
7992 get_formatted_print_options (&opts, 'd');
7993 opts.raw = 1;
7994 value_print (v, buf, &opts);
7995 release_value (v);
7996 value_free (v);
7997 }
7998 }
7999
8000 die->building_fullname = 0;
8001
8002 if (!first)
8003 {
8004 /* Close the argument list, with a space if necessary
8005 (nested templates). */
8006 char last_char = '\0';
8007 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8008 if (last_char == '>')
8009 fputs_unfiltered (" >", buf);
8010 else
8011 fputs_unfiltered (">", buf);
8012 }
8013 }
8014
8015 /* For Java and C++ methods, append formal parameter type
8016 information, if PHYSNAME. */
8017
8018 if (physname && die->tag == DW_TAG_subprogram
8019 && (cu->language == language_cplus
8020 || cu->language == language_java))
8021 {
8022 struct type *type = read_type_die (die, cu);
8023
8024 c_type_print_args (type, buf, 1, cu->language,
8025 &type_print_raw_options);
8026
8027 if (cu->language == language_java)
8028 {
8029 /* For java, we must append the return type to method
8030 names. */
8031 if (die->tag == DW_TAG_subprogram)
8032 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8033 0, 0, &type_print_raw_options);
8034 }
8035 else if (cu->language == language_cplus)
8036 {
8037 /* Assume that an artificial first parameter is
8038 "this", but do not crash if it is not. RealView
8039 marks unnamed (and thus unused) parameters as
8040 artificial; there is no way to differentiate
8041 the two cases. */
8042 if (TYPE_NFIELDS (type) > 0
8043 && TYPE_FIELD_ARTIFICIAL (type, 0)
8044 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8045 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8046 0))))
8047 fputs_unfiltered (" const", buf);
8048 }
8049 }
8050
8051 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8052 &length);
8053 ui_file_delete (buf);
8054
8055 if (cu->language == language_cplus)
8056 {
8057 const char *cname
8058 = dwarf2_canonicalize_name (name, cu,
8059 &objfile->objfile_obstack);
8060
8061 if (cname != NULL)
8062 name = cname;
8063 }
8064 }
8065 }
8066
8067 return name;
8068 }
8069
8070 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8071 If scope qualifiers are appropriate they will be added. The result
8072 will be allocated on the objfile_obstack, or NULL if the DIE does
8073 not have a name. NAME may either be from a previous call to
8074 dwarf2_name or NULL.
8075
8076 The output string will be canonicalized (if C++/Java). */
8077
8078 static const char *
8079 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8080 {
8081 return dwarf2_compute_name (name, die, cu, 0);
8082 }
8083
8084 /* Construct a physname for the given DIE in CU. NAME may either be
8085 from a previous call to dwarf2_name or NULL. The result will be
8086 allocated on the objfile_objstack or NULL if the DIE does not have a
8087 name.
8088
8089 The output string will be canonicalized (if C++/Java). */
8090
8091 static const char *
8092 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8093 {
8094 struct objfile *objfile = cu->objfile;
8095 struct attribute *attr;
8096 const char *retval, *mangled = NULL, *canon = NULL;
8097 struct cleanup *back_to;
8098 int need_copy = 1;
8099
8100 /* In this case dwarf2_compute_name is just a shortcut not building anything
8101 on its own. */
8102 if (!die_needs_namespace (die, cu))
8103 return dwarf2_compute_name (name, die, cu, 1);
8104
8105 back_to = make_cleanup (null_cleanup, NULL);
8106
8107 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8108 if (!attr)
8109 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8110
8111 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8112 has computed. */
8113 if (attr && DW_STRING (attr))
8114 {
8115 char *demangled;
8116
8117 mangled = DW_STRING (attr);
8118
8119 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8120 type. It is easier for GDB users to search for such functions as
8121 `name(params)' than `long name(params)'. In such case the minimal
8122 symbol names do not match the full symbol names but for template
8123 functions there is never a need to look up their definition from their
8124 declaration so the only disadvantage remains the minimal symbol
8125 variant `long name(params)' does not have the proper inferior type.
8126 */
8127
8128 if (cu->language == language_go)
8129 {
8130 /* This is a lie, but we already lie to the caller new_symbol_full.
8131 new_symbol_full assumes we return the mangled name.
8132 This just undoes that lie until things are cleaned up. */
8133 demangled = NULL;
8134 }
8135 else
8136 {
8137 demangled = gdb_demangle (mangled,
8138 (DMGL_PARAMS | DMGL_ANSI
8139 | (cu->language == language_java
8140 ? DMGL_JAVA | DMGL_RET_POSTFIX
8141 : DMGL_RET_DROP)));
8142 }
8143 if (demangled)
8144 {
8145 make_cleanup (xfree, demangled);
8146 canon = demangled;
8147 }
8148 else
8149 {
8150 canon = mangled;
8151 need_copy = 0;
8152 }
8153 }
8154
8155 if (canon == NULL || check_physname)
8156 {
8157 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8158
8159 if (canon != NULL && strcmp (physname, canon) != 0)
8160 {
8161 /* It may not mean a bug in GDB. The compiler could also
8162 compute DW_AT_linkage_name incorrectly. But in such case
8163 GDB would need to be bug-to-bug compatible. */
8164
8165 complaint (&symfile_complaints,
8166 _("Computed physname <%s> does not match demangled <%s> "
8167 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8168 physname, canon, mangled, die->offset.sect_off, objfile->name);
8169
8170 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8171 is available here - over computed PHYSNAME. It is safer
8172 against both buggy GDB and buggy compilers. */
8173
8174 retval = canon;
8175 }
8176 else
8177 {
8178 retval = physname;
8179 need_copy = 0;
8180 }
8181 }
8182 else
8183 retval = canon;
8184
8185 if (need_copy)
8186 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8187
8188 do_cleanups (back_to);
8189 return retval;
8190 }
8191
8192 /* Read the import statement specified by the given die and record it. */
8193
8194 static void
8195 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8196 {
8197 struct objfile *objfile = cu->objfile;
8198 struct attribute *import_attr;
8199 struct die_info *imported_die, *child_die;
8200 struct dwarf2_cu *imported_cu;
8201 const char *imported_name;
8202 const char *imported_name_prefix;
8203 const char *canonical_name;
8204 const char *import_alias;
8205 const char *imported_declaration = NULL;
8206 const char *import_prefix;
8207 VEC (const_char_ptr) *excludes = NULL;
8208 struct cleanup *cleanups;
8209
8210 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8211 if (import_attr == NULL)
8212 {
8213 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8214 dwarf_tag_name (die->tag));
8215 return;
8216 }
8217
8218 imported_cu = cu;
8219 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8220 imported_name = dwarf2_name (imported_die, imported_cu);
8221 if (imported_name == NULL)
8222 {
8223 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8224
8225 The import in the following code:
8226 namespace A
8227 {
8228 typedef int B;
8229 }
8230
8231 int main ()
8232 {
8233 using A::B;
8234 B b;
8235 return b;
8236 }
8237
8238 ...
8239 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8240 <52> DW_AT_decl_file : 1
8241 <53> DW_AT_decl_line : 6
8242 <54> DW_AT_import : <0x75>
8243 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8244 <59> DW_AT_name : B
8245 <5b> DW_AT_decl_file : 1
8246 <5c> DW_AT_decl_line : 2
8247 <5d> DW_AT_type : <0x6e>
8248 ...
8249 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8250 <76> DW_AT_byte_size : 4
8251 <77> DW_AT_encoding : 5 (signed)
8252
8253 imports the wrong die ( 0x75 instead of 0x58 ).
8254 This case will be ignored until the gcc bug is fixed. */
8255 return;
8256 }
8257
8258 /* Figure out the local name after import. */
8259 import_alias = dwarf2_name (die, cu);
8260
8261 /* Figure out where the statement is being imported to. */
8262 import_prefix = determine_prefix (die, cu);
8263
8264 /* Figure out what the scope of the imported die is and prepend it
8265 to the name of the imported die. */
8266 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8267
8268 if (imported_die->tag != DW_TAG_namespace
8269 && imported_die->tag != DW_TAG_module)
8270 {
8271 imported_declaration = imported_name;
8272 canonical_name = imported_name_prefix;
8273 }
8274 else if (strlen (imported_name_prefix) > 0)
8275 canonical_name = obconcat (&objfile->objfile_obstack,
8276 imported_name_prefix, "::", imported_name,
8277 (char *) NULL);
8278 else
8279 canonical_name = imported_name;
8280
8281 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8282
8283 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8284 for (child_die = die->child; child_die && child_die->tag;
8285 child_die = sibling_die (child_die))
8286 {
8287 /* DWARF-4: A Fortran use statement with a “rename list” may be
8288 represented by an imported module entry with an import attribute
8289 referring to the module and owned entries corresponding to those
8290 entities that are renamed as part of being imported. */
8291
8292 if (child_die->tag != DW_TAG_imported_declaration)
8293 {
8294 complaint (&symfile_complaints,
8295 _("child DW_TAG_imported_declaration expected "
8296 "- DIE at 0x%x [in module %s]"),
8297 child_die->offset.sect_off, objfile->name);
8298 continue;
8299 }
8300
8301 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8302 if (import_attr == NULL)
8303 {
8304 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8305 dwarf_tag_name (child_die->tag));
8306 continue;
8307 }
8308
8309 imported_cu = cu;
8310 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8311 &imported_cu);
8312 imported_name = dwarf2_name (imported_die, imported_cu);
8313 if (imported_name == NULL)
8314 {
8315 complaint (&symfile_complaints,
8316 _("child DW_TAG_imported_declaration has unknown "
8317 "imported name - DIE at 0x%x [in module %s]"),
8318 child_die->offset.sect_off, objfile->name);
8319 continue;
8320 }
8321
8322 VEC_safe_push (const_char_ptr, excludes, imported_name);
8323
8324 process_die (child_die, cu);
8325 }
8326
8327 cp_add_using_directive (import_prefix,
8328 canonical_name,
8329 import_alias,
8330 imported_declaration,
8331 excludes,
8332 0,
8333 &objfile->objfile_obstack);
8334
8335 do_cleanups (cleanups);
8336 }
8337
8338 /* Cleanup function for handle_DW_AT_stmt_list. */
8339
8340 static void
8341 free_cu_line_header (void *arg)
8342 {
8343 struct dwarf2_cu *cu = arg;
8344
8345 free_line_header (cu->line_header);
8346 cu->line_header = NULL;
8347 }
8348
8349 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8350 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8351 this, it was first present in GCC release 4.3.0. */
8352
8353 static int
8354 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8355 {
8356 if (!cu->checked_producer)
8357 check_producer (cu);
8358
8359 return cu->producer_is_gcc_lt_4_3;
8360 }
8361
8362 static void
8363 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8364 const char **name, const char **comp_dir)
8365 {
8366 struct attribute *attr;
8367
8368 *name = NULL;
8369 *comp_dir = NULL;
8370
8371 /* Find the filename. Do not use dwarf2_name here, since the filename
8372 is not a source language identifier. */
8373 attr = dwarf2_attr (die, DW_AT_name, cu);
8374 if (attr)
8375 {
8376 *name = DW_STRING (attr);
8377 }
8378
8379 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8380 if (attr)
8381 *comp_dir = DW_STRING (attr);
8382 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8383 && IS_ABSOLUTE_PATH (*name))
8384 {
8385 char *d = ldirname (*name);
8386
8387 *comp_dir = d;
8388 if (d != NULL)
8389 make_cleanup (xfree, d);
8390 }
8391 if (*comp_dir != NULL)
8392 {
8393 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8394 directory, get rid of it. */
8395 char *cp = strchr (*comp_dir, ':');
8396
8397 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8398 *comp_dir = cp + 1;
8399 }
8400
8401 if (*name == NULL)
8402 *name = "<unknown>";
8403 }
8404
8405 /* Handle DW_AT_stmt_list for a compilation unit.
8406 DIE is the DW_TAG_compile_unit die for CU.
8407 COMP_DIR is the compilation directory.
8408 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8409
8410 static void
8411 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8412 const char *comp_dir) /* ARI: editCase function */
8413 {
8414 struct attribute *attr;
8415
8416 gdb_assert (! cu->per_cu->is_debug_types);
8417
8418 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8419 if (attr)
8420 {
8421 unsigned int line_offset = DW_UNSND (attr);
8422 struct line_header *line_header
8423 = dwarf_decode_line_header (line_offset, cu);
8424
8425 if (line_header)
8426 {
8427 cu->line_header = line_header;
8428 make_cleanup (free_cu_line_header, cu);
8429 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8430 }
8431 }
8432 }
8433
8434 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8435
8436 static void
8437 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8438 {
8439 struct objfile *objfile = dwarf2_per_objfile->objfile;
8440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8441 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8442 CORE_ADDR highpc = ((CORE_ADDR) 0);
8443 struct attribute *attr;
8444 const char *name = NULL;
8445 const char *comp_dir = NULL;
8446 struct die_info *child_die;
8447 bfd *abfd = objfile->obfd;
8448 CORE_ADDR baseaddr;
8449
8450 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8451
8452 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8453
8454 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8455 from finish_block. */
8456 if (lowpc == ((CORE_ADDR) -1))
8457 lowpc = highpc;
8458 lowpc += baseaddr;
8459 highpc += baseaddr;
8460
8461 find_file_and_directory (die, cu, &name, &comp_dir);
8462
8463 prepare_one_comp_unit (cu, die, cu->language);
8464
8465 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8466 standardised yet. As a workaround for the language detection we fall
8467 back to the DW_AT_producer string. */
8468 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8469 cu->language = language_opencl;
8470
8471 /* Similar hack for Go. */
8472 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8473 set_cu_language (DW_LANG_Go, cu);
8474
8475 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8476
8477 /* Decode line number information if present. We do this before
8478 processing child DIEs, so that the line header table is available
8479 for DW_AT_decl_file. */
8480 handle_DW_AT_stmt_list (die, cu, comp_dir);
8481
8482 /* Process all dies in compilation unit. */
8483 if (die->child != NULL)
8484 {
8485 child_die = die->child;
8486 while (child_die && child_die->tag)
8487 {
8488 process_die (child_die, cu);
8489 child_die = sibling_die (child_die);
8490 }
8491 }
8492
8493 /* Decode macro information, if present. Dwarf 2 macro information
8494 refers to information in the line number info statement program
8495 header, so we can only read it if we've read the header
8496 successfully. */
8497 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8498 if (attr && cu->line_header)
8499 {
8500 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8501 complaint (&symfile_complaints,
8502 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8503
8504 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8505 }
8506 else
8507 {
8508 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8509 if (attr && cu->line_header)
8510 {
8511 unsigned int macro_offset = DW_UNSND (attr);
8512
8513 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8514 }
8515 }
8516
8517 do_cleanups (back_to);
8518 }
8519
8520 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8521 Create the set of symtabs used by this TU, or if this TU is sharing
8522 symtabs with another TU and the symtabs have already been created
8523 then restore those symtabs in the line header.
8524 We don't need the pc/line-number mapping for type units. */
8525
8526 static void
8527 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8528 {
8529 struct objfile *objfile = dwarf2_per_objfile->objfile;
8530 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8531 struct type_unit_group *tu_group;
8532 int first_time;
8533 struct line_header *lh;
8534 struct attribute *attr;
8535 unsigned int i, line_offset;
8536 struct signatured_type *sig_type;
8537
8538 gdb_assert (per_cu->is_debug_types);
8539 sig_type = (struct signatured_type *) per_cu;
8540
8541 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8542
8543 /* If we're using .gdb_index (includes -readnow) then
8544 per_cu->type_unit_group may not have been set up yet. */
8545 if (sig_type->type_unit_group == NULL)
8546 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8547 tu_group = sig_type->type_unit_group;
8548
8549 /* If we've already processed this stmt_list there's no real need to
8550 do it again, we could fake it and just recreate the part we need
8551 (file name,index -> symtab mapping). If data shows this optimization
8552 is useful we can do it then. */
8553 first_time = tu_group->primary_symtab == NULL;
8554
8555 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8556 debug info. */
8557 lh = NULL;
8558 if (attr != NULL)
8559 {
8560 line_offset = DW_UNSND (attr);
8561 lh = dwarf_decode_line_header (line_offset, cu);
8562 }
8563 if (lh == NULL)
8564 {
8565 if (first_time)
8566 dwarf2_start_symtab (cu, "", NULL, 0);
8567 else
8568 {
8569 gdb_assert (tu_group->symtabs == NULL);
8570 restart_symtab (0);
8571 }
8572 /* Note: The primary symtab will get allocated at the end. */
8573 return;
8574 }
8575
8576 cu->line_header = lh;
8577 make_cleanup (free_cu_line_header, cu);
8578
8579 if (first_time)
8580 {
8581 dwarf2_start_symtab (cu, "", NULL, 0);
8582
8583 tu_group->num_symtabs = lh->num_file_names;
8584 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8585
8586 for (i = 0; i < lh->num_file_names; ++i)
8587 {
8588 const char *dir = NULL;
8589 struct file_entry *fe = &lh->file_names[i];
8590
8591 if (fe->dir_index)
8592 dir = lh->include_dirs[fe->dir_index - 1];
8593 dwarf2_start_subfile (fe->name, dir, NULL);
8594
8595 /* Note: We don't have to watch for the main subfile here, type units
8596 don't have DW_AT_name. */
8597
8598 if (current_subfile->symtab == NULL)
8599 {
8600 /* NOTE: start_subfile will recognize when it's been passed
8601 a file it has already seen. So we can't assume there's a
8602 simple mapping from lh->file_names to subfiles,
8603 lh->file_names may contain dups. */
8604 current_subfile->symtab = allocate_symtab (current_subfile->name,
8605 objfile);
8606 }
8607
8608 fe->symtab = current_subfile->symtab;
8609 tu_group->symtabs[i] = fe->symtab;
8610 }
8611 }
8612 else
8613 {
8614 restart_symtab (0);
8615
8616 for (i = 0; i < lh->num_file_names; ++i)
8617 {
8618 struct file_entry *fe = &lh->file_names[i];
8619
8620 fe->symtab = tu_group->symtabs[i];
8621 }
8622 }
8623
8624 /* The main symtab is allocated last. Type units don't have DW_AT_name
8625 so they don't have a "real" (so to speak) symtab anyway.
8626 There is later code that will assign the main symtab to all symbols
8627 that don't have one. We need to handle the case of a symbol with a
8628 missing symtab (DW_AT_decl_file) anyway. */
8629 }
8630
8631 /* Process DW_TAG_type_unit.
8632 For TUs we want to skip the first top level sibling if it's not the
8633 actual type being defined by this TU. In this case the first top
8634 level sibling is there to provide context only. */
8635
8636 static void
8637 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8638 {
8639 struct die_info *child_die;
8640
8641 prepare_one_comp_unit (cu, die, language_minimal);
8642
8643 /* Initialize (or reinitialize) the machinery for building symtabs.
8644 We do this before processing child DIEs, so that the line header table
8645 is available for DW_AT_decl_file. */
8646 setup_type_unit_groups (die, cu);
8647
8648 if (die->child != NULL)
8649 {
8650 child_die = die->child;
8651 while (child_die && child_die->tag)
8652 {
8653 process_die (child_die, cu);
8654 child_die = sibling_die (child_die);
8655 }
8656 }
8657 }
8658 \f
8659 /* DWO/DWP files.
8660
8661 http://gcc.gnu.org/wiki/DebugFission
8662 http://gcc.gnu.org/wiki/DebugFissionDWP
8663
8664 To simplify handling of both DWO files ("object" files with the DWARF info)
8665 and DWP files (a file with the DWOs packaged up into one file), we treat
8666 DWP files as having a collection of virtual DWO files. */
8667
8668 static hashval_t
8669 hash_dwo_file (const void *item)
8670 {
8671 const struct dwo_file *dwo_file = item;
8672 hashval_t hash;
8673
8674 hash = htab_hash_string (dwo_file->dwo_name);
8675 if (dwo_file->comp_dir != NULL)
8676 hash += htab_hash_string (dwo_file->comp_dir);
8677 return hash;
8678 }
8679
8680 static int
8681 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8682 {
8683 const struct dwo_file *lhs = item_lhs;
8684 const struct dwo_file *rhs = item_rhs;
8685
8686 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8687 return 0;
8688 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8689 return lhs->comp_dir == rhs->comp_dir;
8690 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8691 }
8692
8693 /* Allocate a hash table for DWO files. */
8694
8695 static htab_t
8696 allocate_dwo_file_hash_table (void)
8697 {
8698 struct objfile *objfile = dwarf2_per_objfile->objfile;
8699
8700 return htab_create_alloc_ex (41,
8701 hash_dwo_file,
8702 eq_dwo_file,
8703 NULL,
8704 &objfile->objfile_obstack,
8705 hashtab_obstack_allocate,
8706 dummy_obstack_deallocate);
8707 }
8708
8709 /* Lookup DWO file DWO_NAME. */
8710
8711 static void **
8712 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8713 {
8714 struct dwo_file find_entry;
8715 void **slot;
8716
8717 if (dwarf2_per_objfile->dwo_files == NULL)
8718 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8719
8720 memset (&find_entry, 0, sizeof (find_entry));
8721 find_entry.dwo_name = dwo_name;
8722 find_entry.comp_dir = comp_dir;
8723 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8724
8725 return slot;
8726 }
8727
8728 static hashval_t
8729 hash_dwo_unit (const void *item)
8730 {
8731 const struct dwo_unit *dwo_unit = item;
8732
8733 /* This drops the top 32 bits of the id, but is ok for a hash. */
8734 return dwo_unit->signature;
8735 }
8736
8737 static int
8738 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8739 {
8740 const struct dwo_unit *lhs = item_lhs;
8741 const struct dwo_unit *rhs = item_rhs;
8742
8743 /* The signature is assumed to be unique within the DWO file.
8744 So while object file CU dwo_id's always have the value zero,
8745 that's OK, assuming each object file DWO file has only one CU,
8746 and that's the rule for now. */
8747 return lhs->signature == rhs->signature;
8748 }
8749
8750 /* Allocate a hash table for DWO CUs,TUs.
8751 There is one of these tables for each of CUs,TUs for each DWO file. */
8752
8753 static htab_t
8754 allocate_dwo_unit_table (struct objfile *objfile)
8755 {
8756 /* Start out with a pretty small number.
8757 Generally DWO files contain only one CU and maybe some TUs. */
8758 return htab_create_alloc_ex (3,
8759 hash_dwo_unit,
8760 eq_dwo_unit,
8761 NULL,
8762 &objfile->objfile_obstack,
8763 hashtab_obstack_allocate,
8764 dummy_obstack_deallocate);
8765 }
8766
8767 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8768
8769 struct create_dwo_cu_data
8770 {
8771 struct dwo_file *dwo_file;
8772 struct dwo_unit dwo_unit;
8773 };
8774
8775 /* die_reader_func for create_dwo_cu. */
8776
8777 static void
8778 create_dwo_cu_reader (const struct die_reader_specs *reader,
8779 const gdb_byte *info_ptr,
8780 struct die_info *comp_unit_die,
8781 int has_children,
8782 void *datap)
8783 {
8784 struct dwarf2_cu *cu = reader->cu;
8785 struct objfile *objfile = dwarf2_per_objfile->objfile;
8786 sect_offset offset = cu->per_cu->offset;
8787 struct dwarf2_section_info *section = cu->per_cu->section;
8788 struct create_dwo_cu_data *data = datap;
8789 struct dwo_file *dwo_file = data->dwo_file;
8790 struct dwo_unit *dwo_unit = &data->dwo_unit;
8791 struct attribute *attr;
8792
8793 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8794 if (attr == NULL)
8795 {
8796 complaint (&symfile_complaints,
8797 _("Dwarf Error: debug entry at offset 0x%x is missing"
8798 " its dwo_id [in module %s]"),
8799 offset.sect_off, dwo_file->dwo_name);
8800 return;
8801 }
8802
8803 dwo_unit->dwo_file = dwo_file;
8804 dwo_unit->signature = DW_UNSND (attr);
8805 dwo_unit->section = section;
8806 dwo_unit->offset = offset;
8807 dwo_unit->length = cu->per_cu->length;
8808
8809 if (dwarf2_read_debug)
8810 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8811 offset.sect_off, hex_string (dwo_unit->signature));
8812 }
8813
8814 /* Create the dwo_unit for the lone CU in DWO_FILE.
8815 Note: This function processes DWO files only, not DWP files. */
8816
8817 static struct dwo_unit *
8818 create_dwo_cu (struct dwo_file *dwo_file)
8819 {
8820 struct objfile *objfile = dwarf2_per_objfile->objfile;
8821 struct dwarf2_section_info *section = &dwo_file->sections.info;
8822 bfd *abfd;
8823 htab_t cu_htab;
8824 const gdb_byte *info_ptr, *end_ptr;
8825 struct create_dwo_cu_data create_dwo_cu_data;
8826 struct dwo_unit *dwo_unit;
8827
8828 dwarf2_read_section (objfile, section);
8829 info_ptr = section->buffer;
8830
8831 if (info_ptr == NULL)
8832 return NULL;
8833
8834 /* We can't set abfd until now because the section may be empty or
8835 not present, in which case section->asection will be NULL. */
8836 abfd = section->asection->owner;
8837
8838 if (dwarf2_read_debug)
8839 {
8840 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8841 bfd_section_name (abfd, section->asection),
8842 bfd_get_filename (abfd));
8843 }
8844
8845 create_dwo_cu_data.dwo_file = dwo_file;
8846 dwo_unit = NULL;
8847
8848 end_ptr = info_ptr + section->size;
8849 while (info_ptr < end_ptr)
8850 {
8851 struct dwarf2_per_cu_data per_cu;
8852
8853 memset (&create_dwo_cu_data.dwo_unit, 0,
8854 sizeof (create_dwo_cu_data.dwo_unit));
8855 memset (&per_cu, 0, sizeof (per_cu));
8856 per_cu.objfile = objfile;
8857 per_cu.is_debug_types = 0;
8858 per_cu.offset.sect_off = info_ptr - section->buffer;
8859 per_cu.section = section;
8860
8861 init_cutu_and_read_dies_no_follow (&per_cu,
8862 &dwo_file->sections.abbrev,
8863 dwo_file,
8864 create_dwo_cu_reader,
8865 &create_dwo_cu_data);
8866
8867 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8868 {
8869 /* If we've already found one, complain. We only support one
8870 because having more than one requires hacking the dwo_name of
8871 each to match, which is highly unlikely to happen. */
8872 if (dwo_unit != NULL)
8873 {
8874 complaint (&symfile_complaints,
8875 _("Multiple CUs in DWO file %s [in module %s]"),
8876 dwo_file->dwo_name, objfile->name);
8877 break;
8878 }
8879
8880 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8881 *dwo_unit = create_dwo_cu_data.dwo_unit;
8882 }
8883
8884 info_ptr += per_cu.length;
8885 }
8886
8887 return dwo_unit;
8888 }
8889
8890 /* DWP file .debug_{cu,tu}_index section format:
8891 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8892
8893 DWP Version 1:
8894
8895 Both index sections have the same format, and serve to map a 64-bit
8896 signature to a set of section numbers. Each section begins with a header,
8897 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8898 indexes, and a pool of 32-bit section numbers. The index sections will be
8899 aligned at 8-byte boundaries in the file.
8900
8901 The index section header consists of:
8902
8903 V, 32 bit version number
8904 -, 32 bits unused
8905 N, 32 bit number of compilation units or type units in the index
8906 M, 32 bit number of slots in the hash table
8907
8908 Numbers are recorded using the byte order of the application binary.
8909
8910 We assume that N and M will not exceed 2^32 - 1.
8911
8912 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8913
8914 The hash table begins at offset 16 in the section, and consists of an array
8915 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8916 order of the application binary). Unused slots in the hash table are 0.
8917 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8918
8919 The parallel table begins immediately after the hash table
8920 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8921 array of 32-bit indexes (using the byte order of the application binary),
8922 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8923 table contains a 32-bit index into the pool of section numbers. For unused
8924 hash table slots, the corresponding entry in the parallel table will be 0.
8925
8926 Given a 64-bit compilation unit signature or a type signature S, an entry
8927 in the hash table is located as follows:
8928
8929 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8930 the low-order k bits all set to 1.
8931
8932 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8933
8934 3) If the hash table entry at index H matches the signature, use that
8935 entry. If the hash table entry at index H is unused (all zeroes),
8936 terminate the search: the signature is not present in the table.
8937
8938 4) Let H = (H + H') modulo M. Repeat at Step 3.
8939
8940 Because M > N and H' and M are relatively prime, the search is guaranteed
8941 to stop at an unused slot or find the match.
8942
8943 The pool of section numbers begins immediately following the hash table
8944 (at offset 16 + 12 * M from the beginning of the section). The pool of
8945 section numbers consists of an array of 32-bit words (using the byte order
8946 of the application binary). Each item in the array is indexed starting
8947 from 0. The hash table entry provides the index of the first section
8948 number in the set. Additional section numbers in the set follow, and the
8949 set is terminated by a 0 entry (section number 0 is not used in ELF).
8950
8951 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8952 section must be the first entry in the set, and the .debug_abbrev.dwo must
8953 be the second entry. Other members of the set may follow in any order. */
8954
8955 /* Create a hash table to map DWO IDs to their CU/TU entry in
8956 .debug_{info,types}.dwo in DWP_FILE.
8957 Returns NULL if there isn't one.
8958 Note: This function processes DWP files only, not DWO files. */
8959
8960 static struct dwp_hash_table *
8961 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8962 {
8963 struct objfile *objfile = dwarf2_per_objfile->objfile;
8964 bfd *dbfd = dwp_file->dbfd;
8965 const gdb_byte *index_ptr, *index_end;
8966 struct dwarf2_section_info *index;
8967 uint32_t version, nr_units, nr_slots;
8968 struct dwp_hash_table *htab;
8969
8970 if (is_debug_types)
8971 index = &dwp_file->sections.tu_index;
8972 else
8973 index = &dwp_file->sections.cu_index;
8974
8975 if (dwarf2_section_empty_p (index))
8976 return NULL;
8977 dwarf2_read_section (objfile, index);
8978
8979 index_ptr = index->buffer;
8980 index_end = index_ptr + index->size;
8981
8982 version = read_4_bytes (dbfd, index_ptr);
8983 index_ptr += 8; /* Skip the unused word. */
8984 nr_units = read_4_bytes (dbfd, index_ptr);
8985 index_ptr += 4;
8986 nr_slots = read_4_bytes (dbfd, index_ptr);
8987 index_ptr += 4;
8988
8989 if (version != 1)
8990 {
8991 error (_("Dwarf Error: unsupported DWP file version (%s)"
8992 " [in module %s]"),
8993 pulongest (version), dwp_file->name);
8994 }
8995 if (nr_slots != (nr_slots & -nr_slots))
8996 {
8997 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
8998 " is not power of 2 [in module %s]"),
8999 pulongest (nr_slots), dwp_file->name);
9000 }
9001
9002 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9003 htab->nr_units = nr_units;
9004 htab->nr_slots = nr_slots;
9005 htab->hash_table = index_ptr;
9006 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9007 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9008
9009 return htab;
9010 }
9011
9012 /* Update SECTIONS with the data from SECTP.
9013
9014 This function is like the other "locate" section routines that are
9015 passed to bfd_map_over_sections, but in this context the sections to
9016 read comes from the DWP hash table, not the full ELF section table.
9017
9018 The result is non-zero for success, or zero if an error was found. */
9019
9020 static int
9021 locate_virtual_dwo_sections (asection *sectp,
9022 struct virtual_dwo_sections *sections)
9023 {
9024 const struct dwop_section_names *names = &dwop_section_names;
9025
9026 if (section_is_p (sectp->name, &names->abbrev_dwo))
9027 {
9028 /* There can be only one. */
9029 if (sections->abbrev.asection != NULL)
9030 return 0;
9031 sections->abbrev.asection = sectp;
9032 sections->abbrev.size = bfd_get_section_size (sectp);
9033 }
9034 else if (section_is_p (sectp->name, &names->info_dwo)
9035 || section_is_p (sectp->name, &names->types_dwo))
9036 {
9037 /* There can be only one. */
9038 if (sections->info_or_types.asection != NULL)
9039 return 0;
9040 sections->info_or_types.asection = sectp;
9041 sections->info_or_types.size = bfd_get_section_size (sectp);
9042 }
9043 else if (section_is_p (sectp->name, &names->line_dwo))
9044 {
9045 /* There can be only one. */
9046 if (sections->line.asection != NULL)
9047 return 0;
9048 sections->line.asection = sectp;
9049 sections->line.size = bfd_get_section_size (sectp);
9050 }
9051 else if (section_is_p (sectp->name, &names->loc_dwo))
9052 {
9053 /* There can be only one. */
9054 if (sections->loc.asection != NULL)
9055 return 0;
9056 sections->loc.asection = sectp;
9057 sections->loc.size = bfd_get_section_size (sectp);
9058 }
9059 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9060 {
9061 /* There can be only one. */
9062 if (sections->macinfo.asection != NULL)
9063 return 0;
9064 sections->macinfo.asection = sectp;
9065 sections->macinfo.size = bfd_get_section_size (sectp);
9066 }
9067 else if (section_is_p (sectp->name, &names->macro_dwo))
9068 {
9069 /* There can be only one. */
9070 if (sections->macro.asection != NULL)
9071 return 0;
9072 sections->macro.asection = sectp;
9073 sections->macro.size = bfd_get_section_size (sectp);
9074 }
9075 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9076 {
9077 /* There can be only one. */
9078 if (sections->str_offsets.asection != NULL)
9079 return 0;
9080 sections->str_offsets.asection = sectp;
9081 sections->str_offsets.size = bfd_get_section_size (sectp);
9082 }
9083 else
9084 {
9085 /* No other kind of section is valid. */
9086 return 0;
9087 }
9088
9089 return 1;
9090 }
9091
9092 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9093 HTAB is the hash table from the DWP file.
9094 SECTION_INDEX is the index of the DWO in HTAB.
9095 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9096
9097 static struct dwo_unit *
9098 create_dwo_in_dwp (struct dwp_file *dwp_file,
9099 const struct dwp_hash_table *htab,
9100 uint32_t section_index,
9101 const char *comp_dir,
9102 ULONGEST signature, int is_debug_types)
9103 {
9104 struct objfile *objfile = dwarf2_per_objfile->objfile;
9105 bfd *dbfd = dwp_file->dbfd;
9106 const char *kind = is_debug_types ? "TU" : "CU";
9107 struct dwo_file *dwo_file;
9108 struct dwo_unit *dwo_unit;
9109 struct virtual_dwo_sections sections;
9110 void **dwo_file_slot;
9111 char *virtual_dwo_name;
9112 struct dwarf2_section_info *cutu;
9113 struct cleanup *cleanups;
9114 int i;
9115
9116 if (dwarf2_read_debug)
9117 {
9118 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9119 kind,
9120 pulongest (section_index), hex_string (signature),
9121 dwp_file->name);
9122 }
9123
9124 /* Fetch the sections of this DWO.
9125 Put a limit on the number of sections we look for so that bad data
9126 doesn't cause us to loop forever. */
9127
9128 #define MAX_NR_DWO_SECTIONS \
9129 (1 /* .debug_info or .debug_types */ \
9130 + 1 /* .debug_abbrev */ \
9131 + 1 /* .debug_line */ \
9132 + 1 /* .debug_loc */ \
9133 + 1 /* .debug_str_offsets */ \
9134 + 1 /* .debug_macro */ \
9135 + 1 /* .debug_macinfo */ \
9136 + 1 /* trailing zero */)
9137
9138 memset (&sections, 0, sizeof (sections));
9139 cleanups = make_cleanup (null_cleanup, 0);
9140
9141 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9142 {
9143 asection *sectp;
9144 uint32_t section_nr =
9145 read_4_bytes (dbfd,
9146 htab->section_pool
9147 + (section_index + i) * sizeof (uint32_t));
9148
9149 if (section_nr == 0)
9150 break;
9151 if (section_nr >= dwp_file->num_sections)
9152 {
9153 error (_("Dwarf Error: bad DWP hash table, section number too large"
9154 " [in module %s]"),
9155 dwp_file->name);
9156 }
9157
9158 sectp = dwp_file->elf_sections[section_nr];
9159 if (! locate_virtual_dwo_sections (sectp, &sections))
9160 {
9161 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9162 " [in module %s]"),
9163 dwp_file->name);
9164 }
9165 }
9166
9167 if (i < 2
9168 || sections.info_or_types.asection == NULL
9169 || sections.abbrev.asection == NULL)
9170 {
9171 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9172 " [in module %s]"),
9173 dwp_file->name);
9174 }
9175 if (i == MAX_NR_DWO_SECTIONS)
9176 {
9177 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9178 " [in module %s]"),
9179 dwp_file->name);
9180 }
9181
9182 /* It's easier for the rest of the code if we fake a struct dwo_file and
9183 have dwo_unit "live" in that. At least for now.
9184
9185 The DWP file can be made up of a random collection of CUs and TUs.
9186 However, for each CU + set of TUs that came from the same original DWO
9187 file, we want to combine them back into a virtual DWO file to save space
9188 (fewer struct dwo_file objects to allocated). Remember that for really
9189 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9190
9191 virtual_dwo_name =
9192 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9193 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9194 sections.line.asection ? sections.line.asection->id : 0,
9195 sections.loc.asection ? sections.loc.asection->id : 0,
9196 (sections.str_offsets.asection
9197 ? sections.str_offsets.asection->id
9198 : 0));
9199 make_cleanup (xfree, virtual_dwo_name);
9200 /* Can we use an existing virtual DWO file? */
9201 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9202 /* Create one if necessary. */
9203 if (*dwo_file_slot == NULL)
9204 {
9205 if (dwarf2_read_debug)
9206 {
9207 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9208 virtual_dwo_name);
9209 }
9210 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9211 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9212 virtual_dwo_name,
9213 strlen (virtual_dwo_name));
9214 dwo_file->comp_dir = comp_dir;
9215 dwo_file->sections.abbrev = sections.abbrev;
9216 dwo_file->sections.line = sections.line;
9217 dwo_file->sections.loc = sections.loc;
9218 dwo_file->sections.macinfo = sections.macinfo;
9219 dwo_file->sections.macro = sections.macro;
9220 dwo_file->sections.str_offsets = sections.str_offsets;
9221 /* The "str" section is global to the entire DWP file. */
9222 dwo_file->sections.str = dwp_file->sections.str;
9223 /* The info or types section is assigned later to dwo_unit,
9224 there's no need to record it in dwo_file.
9225 Also, we can't simply record type sections in dwo_file because
9226 we record a pointer into the vector in dwo_unit. As we collect more
9227 types we'll grow the vector and eventually have to reallocate space
9228 for it, invalidating all the pointers into the current copy. */
9229 *dwo_file_slot = dwo_file;
9230 }
9231 else
9232 {
9233 if (dwarf2_read_debug)
9234 {
9235 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9236 virtual_dwo_name);
9237 }
9238 dwo_file = *dwo_file_slot;
9239 }
9240 do_cleanups (cleanups);
9241
9242 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9243 dwo_unit->dwo_file = dwo_file;
9244 dwo_unit->signature = signature;
9245 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9246 sizeof (struct dwarf2_section_info));
9247 *dwo_unit->section = sections.info_or_types;
9248 /* offset, length, type_offset_in_tu are set later. */
9249
9250 return dwo_unit;
9251 }
9252
9253 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9254
9255 static struct dwo_unit *
9256 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9257 const struct dwp_hash_table *htab,
9258 const char *comp_dir,
9259 ULONGEST signature, int is_debug_types)
9260 {
9261 bfd *dbfd = dwp_file->dbfd;
9262 uint32_t mask = htab->nr_slots - 1;
9263 uint32_t hash = signature & mask;
9264 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9265 unsigned int i;
9266 void **slot;
9267 struct dwo_unit find_dwo_cu, *dwo_cu;
9268
9269 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9270 find_dwo_cu.signature = signature;
9271 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9272
9273 if (*slot != NULL)
9274 return *slot;
9275
9276 /* Use a for loop so that we don't loop forever on bad debug info. */
9277 for (i = 0; i < htab->nr_slots; ++i)
9278 {
9279 ULONGEST signature_in_table;
9280
9281 signature_in_table =
9282 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9283 if (signature_in_table == signature)
9284 {
9285 uint32_t section_index =
9286 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9287
9288 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9289 comp_dir, signature, is_debug_types);
9290 return *slot;
9291 }
9292 if (signature_in_table == 0)
9293 return NULL;
9294 hash = (hash + hash2) & mask;
9295 }
9296
9297 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9298 " [in module %s]"),
9299 dwp_file->name);
9300 }
9301
9302 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9303 Open the file specified by FILE_NAME and hand it off to BFD for
9304 preliminary analysis. Return a newly initialized bfd *, which
9305 includes a canonicalized copy of FILE_NAME.
9306 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9307 In case of trouble, return NULL.
9308 NOTE: This function is derived from symfile_bfd_open. */
9309
9310 static bfd *
9311 try_open_dwop_file (const char *file_name, int is_dwp)
9312 {
9313 bfd *sym_bfd;
9314 int desc, flags;
9315 char *absolute_name;
9316 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9317 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9318 to debug_file_directory. */
9319 char *search_path;
9320 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9321
9322 if (*debug_file_directory != '\0')
9323 search_path = concat (".", dirname_separator_string, debug_file_directory,
9324 NULL);
9325 else
9326 search_path = xstrdup (".");
9327
9328 flags = 0;
9329 if (is_dwp)
9330 flags |= OPF_SEARCH_IN_PATH;
9331 desc = openp (search_path, flags, file_name,
9332 O_RDONLY | O_BINARY, &absolute_name);
9333 xfree (search_path);
9334 if (desc < 0)
9335 return NULL;
9336
9337 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9338 xfree (absolute_name);
9339 if (sym_bfd == NULL)
9340 return NULL;
9341 bfd_set_cacheable (sym_bfd, 1);
9342
9343 if (!bfd_check_format (sym_bfd, bfd_object))
9344 {
9345 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9346 return NULL;
9347 }
9348
9349 return sym_bfd;
9350 }
9351
9352 /* Try to open DWO file FILE_NAME.
9353 COMP_DIR is the DW_AT_comp_dir attribute.
9354 The result is the bfd handle of the file.
9355 If there is a problem finding or opening the file, return NULL.
9356 Upon success, the canonicalized path of the file is stored in the bfd,
9357 same as symfile_bfd_open. */
9358
9359 static bfd *
9360 open_dwo_file (const char *file_name, const char *comp_dir)
9361 {
9362 bfd *abfd;
9363
9364 if (IS_ABSOLUTE_PATH (file_name))
9365 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9366
9367 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9368
9369 if (comp_dir != NULL)
9370 {
9371 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9372
9373 /* NOTE: If comp_dir is a relative path, this will also try the
9374 search path, which seems useful. */
9375 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
9376 xfree (path_to_try);
9377 if (abfd != NULL)
9378 return abfd;
9379 }
9380
9381 /* That didn't work, try debug-file-directory, which, despite its name,
9382 is a list of paths. */
9383
9384 if (*debug_file_directory == '\0')
9385 return NULL;
9386
9387 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9388 }
9389
9390 /* This function is mapped across the sections and remembers the offset and
9391 size of each of the DWO debugging sections we are interested in. */
9392
9393 static void
9394 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9395 {
9396 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9397 const struct dwop_section_names *names = &dwop_section_names;
9398
9399 if (section_is_p (sectp->name, &names->abbrev_dwo))
9400 {
9401 dwo_sections->abbrev.asection = sectp;
9402 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9403 }
9404 else if (section_is_p (sectp->name, &names->info_dwo))
9405 {
9406 dwo_sections->info.asection = sectp;
9407 dwo_sections->info.size = bfd_get_section_size (sectp);
9408 }
9409 else if (section_is_p (sectp->name, &names->line_dwo))
9410 {
9411 dwo_sections->line.asection = sectp;
9412 dwo_sections->line.size = bfd_get_section_size (sectp);
9413 }
9414 else if (section_is_p (sectp->name, &names->loc_dwo))
9415 {
9416 dwo_sections->loc.asection = sectp;
9417 dwo_sections->loc.size = bfd_get_section_size (sectp);
9418 }
9419 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9420 {
9421 dwo_sections->macinfo.asection = sectp;
9422 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9423 }
9424 else if (section_is_p (sectp->name, &names->macro_dwo))
9425 {
9426 dwo_sections->macro.asection = sectp;
9427 dwo_sections->macro.size = bfd_get_section_size (sectp);
9428 }
9429 else if (section_is_p (sectp->name, &names->str_dwo))
9430 {
9431 dwo_sections->str.asection = sectp;
9432 dwo_sections->str.size = bfd_get_section_size (sectp);
9433 }
9434 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9435 {
9436 dwo_sections->str_offsets.asection = sectp;
9437 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9438 }
9439 else if (section_is_p (sectp->name, &names->types_dwo))
9440 {
9441 struct dwarf2_section_info type_section;
9442
9443 memset (&type_section, 0, sizeof (type_section));
9444 type_section.asection = sectp;
9445 type_section.size = bfd_get_section_size (sectp);
9446 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9447 &type_section);
9448 }
9449 }
9450
9451 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9452 by PER_CU. This is for the non-DWP case.
9453 The result is NULL if DWO_NAME can't be found. */
9454
9455 static struct dwo_file *
9456 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9457 const char *dwo_name, const char *comp_dir)
9458 {
9459 struct objfile *objfile = dwarf2_per_objfile->objfile;
9460 struct dwo_file *dwo_file;
9461 bfd *dbfd;
9462 struct cleanup *cleanups;
9463
9464 dbfd = open_dwo_file (dwo_name, comp_dir);
9465 if (dbfd == NULL)
9466 {
9467 if (dwarf2_read_debug)
9468 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9469 return NULL;
9470 }
9471 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9472 dwo_file->dwo_name = dwo_name;
9473 dwo_file->comp_dir = comp_dir;
9474 dwo_file->dbfd = dbfd;
9475
9476 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9477
9478 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9479
9480 dwo_file->cu = create_dwo_cu (dwo_file);
9481
9482 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9483 dwo_file->sections.types);
9484
9485 discard_cleanups (cleanups);
9486
9487 if (dwarf2_read_debug)
9488 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9489
9490 return dwo_file;
9491 }
9492
9493 /* This function is mapped across the sections and remembers the offset and
9494 size of each of the DWP debugging sections we are interested in. */
9495
9496 static void
9497 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9498 {
9499 struct dwp_file *dwp_file = dwp_file_ptr;
9500 const struct dwop_section_names *names = &dwop_section_names;
9501 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9502
9503 /* Record the ELF section number for later lookup: this is what the
9504 .debug_cu_index,.debug_tu_index tables use. */
9505 gdb_assert (elf_section_nr < dwp_file->num_sections);
9506 dwp_file->elf_sections[elf_section_nr] = sectp;
9507
9508 /* Look for specific sections that we need. */
9509 if (section_is_p (sectp->name, &names->str_dwo))
9510 {
9511 dwp_file->sections.str.asection = sectp;
9512 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9513 }
9514 else if (section_is_p (sectp->name, &names->cu_index))
9515 {
9516 dwp_file->sections.cu_index.asection = sectp;
9517 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9518 }
9519 else if (section_is_p (sectp->name, &names->tu_index))
9520 {
9521 dwp_file->sections.tu_index.asection = sectp;
9522 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9523 }
9524 }
9525
9526 /* Hash function for dwp_file loaded CUs/TUs. */
9527
9528 static hashval_t
9529 hash_dwp_loaded_cutus (const void *item)
9530 {
9531 const struct dwo_unit *dwo_unit = item;
9532
9533 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9534 return dwo_unit->signature;
9535 }
9536
9537 /* Equality function for dwp_file loaded CUs/TUs. */
9538
9539 static int
9540 eq_dwp_loaded_cutus (const void *a, const void *b)
9541 {
9542 const struct dwo_unit *dua = a;
9543 const struct dwo_unit *dub = b;
9544
9545 return dua->signature == dub->signature;
9546 }
9547
9548 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9549
9550 static htab_t
9551 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9552 {
9553 return htab_create_alloc_ex (3,
9554 hash_dwp_loaded_cutus,
9555 eq_dwp_loaded_cutus,
9556 NULL,
9557 &objfile->objfile_obstack,
9558 hashtab_obstack_allocate,
9559 dummy_obstack_deallocate);
9560 }
9561
9562 /* Try to open DWP file FILE_NAME.
9563 The result is the bfd handle of the file.
9564 If there is a problem finding or opening the file, return NULL.
9565 Upon success, the canonicalized path of the file is stored in the bfd,
9566 same as symfile_bfd_open. */
9567
9568 static bfd *
9569 open_dwp_file (const char *file_name)
9570 {
9571 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9572 }
9573
9574 /* Initialize the use of the DWP file for the current objfile.
9575 By convention the name of the DWP file is ${objfile}.dwp.
9576 The result is NULL if it can't be found. */
9577
9578 static struct dwp_file *
9579 open_and_init_dwp_file (void)
9580 {
9581 struct objfile *objfile = dwarf2_per_objfile->objfile;
9582 struct dwp_file *dwp_file;
9583 char *dwp_name;
9584 bfd *dbfd;
9585 struct cleanup *cleanups;
9586
9587 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9588 cleanups = make_cleanup (xfree, dwp_name);
9589
9590 dbfd = open_dwp_file (dwp_name);
9591 if (dbfd == NULL)
9592 {
9593 if (dwarf2_read_debug)
9594 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9595 do_cleanups (cleanups);
9596 return NULL;
9597 }
9598 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9599 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9600 dwp_name, strlen (dwp_name));
9601 dwp_file->dbfd = dbfd;
9602 do_cleanups (cleanups);
9603
9604 /* +1: section 0 is unused */
9605 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9606 dwp_file->elf_sections =
9607 OBSTACK_CALLOC (&objfile->objfile_obstack,
9608 dwp_file->num_sections, asection *);
9609
9610 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9611
9612 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9613
9614 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9615
9616 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9617
9618 if (dwarf2_read_debug)
9619 {
9620 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9621 fprintf_unfiltered (gdb_stdlog,
9622 " %s CUs, %s TUs\n",
9623 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9624 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9625 }
9626
9627 return dwp_file;
9628 }
9629
9630 /* Wrapper around open_and_init_dwp_file, only open it once. */
9631
9632 static struct dwp_file *
9633 get_dwp_file (void)
9634 {
9635 if (! dwarf2_per_objfile->dwp_checked)
9636 {
9637 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9638 dwarf2_per_objfile->dwp_checked = 1;
9639 }
9640 return dwarf2_per_objfile->dwp_file;
9641 }
9642
9643 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9644 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9645 or in the DWP file for the objfile, referenced by THIS_UNIT.
9646 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9647 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9648
9649 This is called, for example, when wanting to read a variable with a
9650 complex location. Therefore we don't want to do file i/o for every call.
9651 Therefore we don't want to look for a DWO file on every call.
9652 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9653 then we check if we've already seen DWO_NAME, and only THEN do we check
9654 for a DWO file.
9655
9656 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9657 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9658
9659 static struct dwo_unit *
9660 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9661 const char *dwo_name, const char *comp_dir,
9662 ULONGEST signature, int is_debug_types)
9663 {
9664 struct objfile *objfile = dwarf2_per_objfile->objfile;
9665 const char *kind = is_debug_types ? "TU" : "CU";
9666 void **dwo_file_slot;
9667 struct dwo_file *dwo_file;
9668 struct dwp_file *dwp_file;
9669
9670 /* First see if there's a DWP file.
9671 If we have a DWP file but didn't find the DWO inside it, don't
9672 look for the original DWO file. It makes gdb behave differently
9673 depending on whether one is debugging in the build tree. */
9674
9675 dwp_file = get_dwp_file ();
9676 if (dwp_file != NULL)
9677 {
9678 const struct dwp_hash_table *dwp_htab =
9679 is_debug_types ? dwp_file->tus : dwp_file->cus;
9680
9681 if (dwp_htab != NULL)
9682 {
9683 struct dwo_unit *dwo_cutu =
9684 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9685 signature, is_debug_types);
9686
9687 if (dwo_cutu != NULL)
9688 {
9689 if (dwarf2_read_debug)
9690 {
9691 fprintf_unfiltered (gdb_stdlog,
9692 "Virtual DWO %s %s found: @%s\n",
9693 kind, hex_string (signature),
9694 host_address_to_string (dwo_cutu));
9695 }
9696 return dwo_cutu;
9697 }
9698 }
9699 }
9700 else
9701 {
9702 /* No DWP file, look for the DWO file. */
9703
9704 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9705 if (*dwo_file_slot == NULL)
9706 {
9707 /* Read in the file and build a table of the CUs/TUs it contains. */
9708 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9709 }
9710 /* NOTE: This will be NULL if unable to open the file. */
9711 dwo_file = *dwo_file_slot;
9712
9713 if (dwo_file != NULL)
9714 {
9715 struct dwo_unit *dwo_cutu = NULL;
9716
9717 if (is_debug_types && dwo_file->tus)
9718 {
9719 struct dwo_unit find_dwo_cutu;
9720
9721 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9722 find_dwo_cutu.signature = signature;
9723 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9724 }
9725 else if (!is_debug_types && dwo_file->cu)
9726 {
9727 if (signature == dwo_file->cu->signature)
9728 dwo_cutu = dwo_file->cu;
9729 }
9730
9731 if (dwo_cutu != NULL)
9732 {
9733 if (dwarf2_read_debug)
9734 {
9735 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9736 kind, dwo_name, hex_string (signature),
9737 host_address_to_string (dwo_cutu));
9738 }
9739 return dwo_cutu;
9740 }
9741 }
9742 }
9743
9744 /* We didn't find it. This could mean a dwo_id mismatch, or
9745 someone deleted the DWO/DWP file, or the search path isn't set up
9746 correctly to find the file. */
9747
9748 if (dwarf2_read_debug)
9749 {
9750 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9751 kind, dwo_name, hex_string (signature));
9752 }
9753
9754 complaint (&symfile_complaints,
9755 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9756 " [in module %s]"),
9757 kind, dwo_name, hex_string (signature),
9758 this_unit->is_debug_types ? "TU" : "CU",
9759 this_unit->offset.sect_off, objfile->name);
9760 return NULL;
9761 }
9762
9763 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9764 See lookup_dwo_cutu_unit for details. */
9765
9766 static struct dwo_unit *
9767 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9768 const char *dwo_name, const char *comp_dir,
9769 ULONGEST signature)
9770 {
9771 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9772 }
9773
9774 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9775 See lookup_dwo_cutu_unit for details. */
9776
9777 static struct dwo_unit *
9778 lookup_dwo_type_unit (struct signatured_type *this_tu,
9779 const char *dwo_name, const char *comp_dir)
9780 {
9781 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9782 }
9783
9784 /* Free all resources associated with DWO_FILE.
9785 Close the DWO file and munmap the sections.
9786 All memory should be on the objfile obstack. */
9787
9788 static void
9789 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9790 {
9791 int ix;
9792 struct dwarf2_section_info *section;
9793
9794 /* Note: dbfd is NULL for virtual DWO files. */
9795 gdb_bfd_unref (dwo_file->dbfd);
9796
9797 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9798 }
9799
9800 /* Wrapper for free_dwo_file for use in cleanups. */
9801
9802 static void
9803 free_dwo_file_cleanup (void *arg)
9804 {
9805 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9806 struct objfile *objfile = dwarf2_per_objfile->objfile;
9807
9808 free_dwo_file (dwo_file, objfile);
9809 }
9810
9811 /* Traversal function for free_dwo_files. */
9812
9813 static int
9814 free_dwo_file_from_slot (void **slot, void *info)
9815 {
9816 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9817 struct objfile *objfile = (struct objfile *) info;
9818
9819 free_dwo_file (dwo_file, objfile);
9820
9821 return 1;
9822 }
9823
9824 /* Free all resources associated with DWO_FILES. */
9825
9826 static void
9827 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9828 {
9829 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9830 }
9831 \f
9832 /* Read in various DIEs. */
9833
9834 /* qsort helper for inherit_abstract_dies. */
9835
9836 static int
9837 unsigned_int_compar (const void *ap, const void *bp)
9838 {
9839 unsigned int a = *(unsigned int *) ap;
9840 unsigned int b = *(unsigned int *) bp;
9841
9842 return (a > b) - (b > a);
9843 }
9844
9845 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9846 Inherit only the children of the DW_AT_abstract_origin DIE not being
9847 already referenced by DW_AT_abstract_origin from the children of the
9848 current DIE. */
9849
9850 static void
9851 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9852 {
9853 struct die_info *child_die;
9854 unsigned die_children_count;
9855 /* CU offsets which were referenced by children of the current DIE. */
9856 sect_offset *offsets;
9857 sect_offset *offsets_end, *offsetp;
9858 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9859 struct die_info *origin_die;
9860 /* Iterator of the ORIGIN_DIE children. */
9861 struct die_info *origin_child_die;
9862 struct cleanup *cleanups;
9863 struct attribute *attr;
9864 struct dwarf2_cu *origin_cu;
9865 struct pending **origin_previous_list_in_scope;
9866
9867 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9868 if (!attr)
9869 return;
9870
9871 /* Note that following die references may follow to a die in a
9872 different cu. */
9873
9874 origin_cu = cu;
9875 origin_die = follow_die_ref (die, attr, &origin_cu);
9876
9877 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9878 symbols in. */
9879 origin_previous_list_in_scope = origin_cu->list_in_scope;
9880 origin_cu->list_in_scope = cu->list_in_scope;
9881
9882 if (die->tag != origin_die->tag
9883 && !(die->tag == DW_TAG_inlined_subroutine
9884 && origin_die->tag == DW_TAG_subprogram))
9885 complaint (&symfile_complaints,
9886 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9887 die->offset.sect_off, origin_die->offset.sect_off);
9888
9889 child_die = die->child;
9890 die_children_count = 0;
9891 while (child_die && child_die->tag)
9892 {
9893 child_die = sibling_die (child_die);
9894 die_children_count++;
9895 }
9896 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9897 cleanups = make_cleanup (xfree, offsets);
9898
9899 offsets_end = offsets;
9900 child_die = die->child;
9901 while (child_die && child_die->tag)
9902 {
9903 /* For each CHILD_DIE, find the corresponding child of
9904 ORIGIN_DIE. If there is more than one layer of
9905 DW_AT_abstract_origin, follow them all; there shouldn't be,
9906 but GCC versions at least through 4.4 generate this (GCC PR
9907 40573). */
9908 struct die_info *child_origin_die = child_die;
9909 struct dwarf2_cu *child_origin_cu = cu;
9910
9911 while (1)
9912 {
9913 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9914 child_origin_cu);
9915 if (attr == NULL)
9916 break;
9917 child_origin_die = follow_die_ref (child_origin_die, attr,
9918 &child_origin_cu);
9919 }
9920
9921 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9922 counterpart may exist. */
9923 if (child_origin_die != child_die)
9924 {
9925 if (child_die->tag != child_origin_die->tag
9926 && !(child_die->tag == DW_TAG_inlined_subroutine
9927 && child_origin_die->tag == DW_TAG_subprogram))
9928 complaint (&symfile_complaints,
9929 _("Child DIE 0x%x and its abstract origin 0x%x have "
9930 "different tags"), child_die->offset.sect_off,
9931 child_origin_die->offset.sect_off);
9932 if (child_origin_die->parent != origin_die)
9933 complaint (&symfile_complaints,
9934 _("Child DIE 0x%x and its abstract origin 0x%x have "
9935 "different parents"), child_die->offset.sect_off,
9936 child_origin_die->offset.sect_off);
9937 else
9938 *offsets_end++ = child_origin_die->offset;
9939 }
9940 child_die = sibling_die (child_die);
9941 }
9942 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9943 unsigned_int_compar);
9944 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9945 if (offsetp[-1].sect_off == offsetp->sect_off)
9946 complaint (&symfile_complaints,
9947 _("Multiple children of DIE 0x%x refer "
9948 "to DIE 0x%x as their abstract origin"),
9949 die->offset.sect_off, offsetp->sect_off);
9950
9951 offsetp = offsets;
9952 origin_child_die = origin_die->child;
9953 while (origin_child_die && origin_child_die->tag)
9954 {
9955 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9956 while (offsetp < offsets_end
9957 && offsetp->sect_off < origin_child_die->offset.sect_off)
9958 offsetp++;
9959 if (offsetp >= offsets_end
9960 || offsetp->sect_off > origin_child_die->offset.sect_off)
9961 {
9962 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9963 process_die (origin_child_die, origin_cu);
9964 }
9965 origin_child_die = sibling_die (origin_child_die);
9966 }
9967 origin_cu->list_in_scope = origin_previous_list_in_scope;
9968
9969 do_cleanups (cleanups);
9970 }
9971
9972 static void
9973 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9974 {
9975 struct objfile *objfile = cu->objfile;
9976 struct context_stack *new;
9977 CORE_ADDR lowpc;
9978 CORE_ADDR highpc;
9979 struct die_info *child_die;
9980 struct attribute *attr, *call_line, *call_file;
9981 const char *name;
9982 CORE_ADDR baseaddr;
9983 struct block *block;
9984 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9985 VEC (symbolp) *template_args = NULL;
9986 struct template_symbol *templ_func = NULL;
9987
9988 if (inlined_func)
9989 {
9990 /* If we do not have call site information, we can't show the
9991 caller of this inlined function. That's too confusing, so
9992 only use the scope for local variables. */
9993 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9994 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9995 if (call_line == NULL || call_file == NULL)
9996 {
9997 read_lexical_block_scope (die, cu);
9998 return;
9999 }
10000 }
10001
10002 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10003
10004 name = dwarf2_name (die, cu);
10005
10006 /* Ignore functions with missing or empty names. These are actually
10007 illegal according to the DWARF standard. */
10008 if (name == NULL)
10009 {
10010 complaint (&symfile_complaints,
10011 _("missing name for subprogram DIE at %d"),
10012 die->offset.sect_off);
10013 return;
10014 }
10015
10016 /* Ignore functions with missing or invalid low and high pc attributes. */
10017 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10018 {
10019 attr = dwarf2_attr (die, DW_AT_external, cu);
10020 if (!attr || !DW_UNSND (attr))
10021 complaint (&symfile_complaints,
10022 _("cannot get low and high bounds "
10023 "for subprogram DIE at %d"),
10024 die->offset.sect_off);
10025 return;
10026 }
10027
10028 lowpc += baseaddr;
10029 highpc += baseaddr;
10030
10031 /* If we have any template arguments, then we must allocate a
10032 different sort of symbol. */
10033 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10034 {
10035 if (child_die->tag == DW_TAG_template_type_param
10036 || child_die->tag == DW_TAG_template_value_param)
10037 {
10038 templ_func = allocate_template_symbol (objfile);
10039 templ_func->base.is_cplus_template_function = 1;
10040 break;
10041 }
10042 }
10043
10044 new = push_context (0, lowpc);
10045 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10046 (struct symbol *) templ_func);
10047
10048 /* If there is a location expression for DW_AT_frame_base, record
10049 it. */
10050 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10051 if (attr)
10052 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10053
10054 cu->list_in_scope = &local_symbols;
10055
10056 if (die->child != NULL)
10057 {
10058 child_die = die->child;
10059 while (child_die && child_die->tag)
10060 {
10061 if (child_die->tag == DW_TAG_template_type_param
10062 || child_die->tag == DW_TAG_template_value_param)
10063 {
10064 struct symbol *arg = new_symbol (child_die, NULL, cu);
10065
10066 if (arg != NULL)
10067 VEC_safe_push (symbolp, template_args, arg);
10068 }
10069 else
10070 process_die (child_die, cu);
10071 child_die = sibling_die (child_die);
10072 }
10073 }
10074
10075 inherit_abstract_dies (die, cu);
10076
10077 /* If we have a DW_AT_specification, we might need to import using
10078 directives from the context of the specification DIE. See the
10079 comment in determine_prefix. */
10080 if (cu->language == language_cplus
10081 && dwarf2_attr (die, DW_AT_specification, cu))
10082 {
10083 struct dwarf2_cu *spec_cu = cu;
10084 struct die_info *spec_die = die_specification (die, &spec_cu);
10085
10086 while (spec_die)
10087 {
10088 child_die = spec_die->child;
10089 while (child_die && child_die->tag)
10090 {
10091 if (child_die->tag == DW_TAG_imported_module)
10092 process_die (child_die, spec_cu);
10093 child_die = sibling_die (child_die);
10094 }
10095
10096 /* In some cases, GCC generates specification DIEs that
10097 themselves contain DW_AT_specification attributes. */
10098 spec_die = die_specification (spec_die, &spec_cu);
10099 }
10100 }
10101
10102 new = pop_context ();
10103 /* Make a block for the local symbols within. */
10104 block = finish_block (new->name, &local_symbols, new->old_blocks,
10105 lowpc, highpc, objfile);
10106
10107 /* For C++, set the block's scope. */
10108 if ((cu->language == language_cplus || cu->language == language_fortran)
10109 && cu->processing_has_namespace_info)
10110 block_set_scope (block, determine_prefix (die, cu),
10111 &objfile->objfile_obstack);
10112
10113 /* If we have address ranges, record them. */
10114 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10115
10116 /* Attach template arguments to function. */
10117 if (! VEC_empty (symbolp, template_args))
10118 {
10119 gdb_assert (templ_func != NULL);
10120
10121 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10122 templ_func->template_arguments
10123 = obstack_alloc (&objfile->objfile_obstack,
10124 (templ_func->n_template_arguments
10125 * sizeof (struct symbol *)));
10126 memcpy (templ_func->template_arguments,
10127 VEC_address (symbolp, template_args),
10128 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10129 VEC_free (symbolp, template_args);
10130 }
10131
10132 /* In C++, we can have functions nested inside functions (e.g., when
10133 a function declares a class that has methods). This means that
10134 when we finish processing a function scope, we may need to go
10135 back to building a containing block's symbol lists. */
10136 local_symbols = new->locals;
10137 using_directives = new->using_directives;
10138
10139 /* If we've finished processing a top-level function, subsequent
10140 symbols go in the file symbol list. */
10141 if (outermost_context_p ())
10142 cu->list_in_scope = &file_symbols;
10143 }
10144
10145 /* Process all the DIES contained within a lexical block scope. Start
10146 a new scope, process the dies, and then close the scope. */
10147
10148 static void
10149 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10150 {
10151 struct objfile *objfile = cu->objfile;
10152 struct context_stack *new;
10153 CORE_ADDR lowpc, highpc;
10154 struct die_info *child_die;
10155 CORE_ADDR baseaddr;
10156
10157 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10158
10159 /* Ignore blocks with missing or invalid low and high pc attributes. */
10160 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10161 as multiple lexical blocks? Handling children in a sane way would
10162 be nasty. Might be easier to properly extend generic blocks to
10163 describe ranges. */
10164 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10165 return;
10166 lowpc += baseaddr;
10167 highpc += baseaddr;
10168
10169 push_context (0, lowpc);
10170 if (die->child != NULL)
10171 {
10172 child_die = die->child;
10173 while (child_die && child_die->tag)
10174 {
10175 process_die (child_die, cu);
10176 child_die = sibling_die (child_die);
10177 }
10178 }
10179 new = pop_context ();
10180
10181 if (local_symbols != NULL || using_directives != NULL)
10182 {
10183 struct block *block
10184 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10185 highpc, objfile);
10186
10187 /* Note that recording ranges after traversing children, as we
10188 do here, means that recording a parent's ranges entails
10189 walking across all its children's ranges as they appear in
10190 the address map, which is quadratic behavior.
10191
10192 It would be nicer to record the parent's ranges before
10193 traversing its children, simply overriding whatever you find
10194 there. But since we don't even decide whether to create a
10195 block until after we've traversed its children, that's hard
10196 to do. */
10197 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10198 }
10199 local_symbols = new->locals;
10200 using_directives = new->using_directives;
10201 }
10202
10203 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10204
10205 static void
10206 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10207 {
10208 struct objfile *objfile = cu->objfile;
10209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10210 CORE_ADDR pc, baseaddr;
10211 struct attribute *attr;
10212 struct call_site *call_site, call_site_local;
10213 void **slot;
10214 int nparams;
10215 struct die_info *child_die;
10216
10217 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10218
10219 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10220 if (!attr)
10221 {
10222 complaint (&symfile_complaints,
10223 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10224 "DIE 0x%x [in module %s]"),
10225 die->offset.sect_off, objfile->name);
10226 return;
10227 }
10228 pc = DW_ADDR (attr) + baseaddr;
10229
10230 if (cu->call_site_htab == NULL)
10231 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10232 NULL, &objfile->objfile_obstack,
10233 hashtab_obstack_allocate, NULL);
10234 call_site_local.pc = pc;
10235 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10236 if (*slot != NULL)
10237 {
10238 complaint (&symfile_complaints,
10239 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10240 "DIE 0x%x [in module %s]"),
10241 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10242 return;
10243 }
10244
10245 /* Count parameters at the caller. */
10246
10247 nparams = 0;
10248 for (child_die = die->child; child_die && child_die->tag;
10249 child_die = sibling_die (child_die))
10250 {
10251 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10252 {
10253 complaint (&symfile_complaints,
10254 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10255 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10256 child_die->tag, child_die->offset.sect_off, objfile->name);
10257 continue;
10258 }
10259
10260 nparams++;
10261 }
10262
10263 call_site = obstack_alloc (&objfile->objfile_obstack,
10264 (sizeof (*call_site)
10265 + (sizeof (*call_site->parameter)
10266 * (nparams - 1))));
10267 *slot = call_site;
10268 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10269 call_site->pc = pc;
10270
10271 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10272 {
10273 struct die_info *func_die;
10274
10275 /* Skip also over DW_TAG_inlined_subroutine. */
10276 for (func_die = die->parent;
10277 func_die && func_die->tag != DW_TAG_subprogram
10278 && func_die->tag != DW_TAG_subroutine_type;
10279 func_die = func_die->parent);
10280
10281 /* DW_AT_GNU_all_call_sites is a superset
10282 of DW_AT_GNU_all_tail_call_sites. */
10283 if (func_die
10284 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10285 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10286 {
10287 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10288 not complete. But keep CALL_SITE for look ups via call_site_htab,
10289 both the initial caller containing the real return address PC and
10290 the final callee containing the current PC of a chain of tail
10291 calls do not need to have the tail call list complete. But any
10292 function candidate for a virtual tail call frame searched via
10293 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10294 determined unambiguously. */
10295 }
10296 else
10297 {
10298 struct type *func_type = NULL;
10299
10300 if (func_die)
10301 func_type = get_die_type (func_die, cu);
10302 if (func_type != NULL)
10303 {
10304 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10305
10306 /* Enlist this call site to the function. */
10307 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10308 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10309 }
10310 else
10311 complaint (&symfile_complaints,
10312 _("Cannot find function owning DW_TAG_GNU_call_site "
10313 "DIE 0x%x [in module %s]"),
10314 die->offset.sect_off, objfile->name);
10315 }
10316 }
10317
10318 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10319 if (attr == NULL)
10320 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10321 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10322 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10323 /* Keep NULL DWARF_BLOCK. */;
10324 else if (attr_form_is_block (attr))
10325 {
10326 struct dwarf2_locexpr_baton *dlbaton;
10327
10328 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10329 dlbaton->data = DW_BLOCK (attr)->data;
10330 dlbaton->size = DW_BLOCK (attr)->size;
10331 dlbaton->per_cu = cu->per_cu;
10332
10333 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10334 }
10335 else if (is_ref_attr (attr))
10336 {
10337 struct dwarf2_cu *target_cu = cu;
10338 struct die_info *target_die;
10339
10340 target_die = follow_die_ref (die, attr, &target_cu);
10341 gdb_assert (target_cu->objfile == objfile);
10342 if (die_is_declaration (target_die, target_cu))
10343 {
10344 const char *target_physname = NULL;
10345 struct attribute *target_attr;
10346
10347 /* Prefer the mangled name; otherwise compute the demangled one. */
10348 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10349 if (target_attr == NULL)
10350 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10351 target_cu);
10352 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10353 target_physname = DW_STRING (target_attr);
10354 else
10355 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10356 if (target_physname == NULL)
10357 complaint (&symfile_complaints,
10358 _("DW_AT_GNU_call_site_target target DIE has invalid "
10359 "physname, for referencing DIE 0x%x [in module %s]"),
10360 die->offset.sect_off, objfile->name);
10361 else
10362 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10363 }
10364 else
10365 {
10366 CORE_ADDR lowpc;
10367
10368 /* DW_AT_entry_pc should be preferred. */
10369 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10370 complaint (&symfile_complaints,
10371 _("DW_AT_GNU_call_site_target target DIE has invalid "
10372 "low pc, for referencing DIE 0x%x [in module %s]"),
10373 die->offset.sect_off, objfile->name);
10374 else
10375 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10376 }
10377 }
10378 else
10379 complaint (&symfile_complaints,
10380 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10381 "block nor reference, for DIE 0x%x [in module %s]"),
10382 die->offset.sect_off, objfile->name);
10383
10384 call_site->per_cu = cu->per_cu;
10385
10386 for (child_die = die->child;
10387 child_die && child_die->tag;
10388 child_die = sibling_die (child_die))
10389 {
10390 struct call_site_parameter *parameter;
10391 struct attribute *loc, *origin;
10392
10393 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10394 {
10395 /* Already printed the complaint above. */
10396 continue;
10397 }
10398
10399 gdb_assert (call_site->parameter_count < nparams);
10400 parameter = &call_site->parameter[call_site->parameter_count];
10401
10402 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10403 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10404 register is contained in DW_AT_GNU_call_site_value. */
10405
10406 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10407 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10408 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10409 {
10410 sect_offset offset;
10411
10412 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10413 offset = dwarf2_get_ref_die_offset (origin);
10414 if (!offset_in_cu_p (&cu->header, offset))
10415 {
10416 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10417 binding can be done only inside one CU. Such referenced DIE
10418 therefore cannot be even moved to DW_TAG_partial_unit. */
10419 complaint (&symfile_complaints,
10420 _("DW_AT_abstract_origin offset is not in CU for "
10421 "DW_TAG_GNU_call_site child DIE 0x%x "
10422 "[in module %s]"),
10423 child_die->offset.sect_off, objfile->name);
10424 continue;
10425 }
10426 parameter->u.param_offset.cu_off = (offset.sect_off
10427 - cu->header.offset.sect_off);
10428 }
10429 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10430 {
10431 complaint (&symfile_complaints,
10432 _("No DW_FORM_block* DW_AT_location for "
10433 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10434 child_die->offset.sect_off, objfile->name);
10435 continue;
10436 }
10437 else
10438 {
10439 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10440 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10441 if (parameter->u.dwarf_reg != -1)
10442 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10443 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10444 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10445 &parameter->u.fb_offset))
10446 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10447 else
10448 {
10449 complaint (&symfile_complaints,
10450 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10451 "for DW_FORM_block* DW_AT_location is supported for "
10452 "DW_TAG_GNU_call_site child DIE 0x%x "
10453 "[in module %s]"),
10454 child_die->offset.sect_off, objfile->name);
10455 continue;
10456 }
10457 }
10458
10459 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10460 if (!attr_form_is_block (attr))
10461 {
10462 complaint (&symfile_complaints,
10463 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10464 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10465 child_die->offset.sect_off, objfile->name);
10466 continue;
10467 }
10468 parameter->value = DW_BLOCK (attr)->data;
10469 parameter->value_size = DW_BLOCK (attr)->size;
10470
10471 /* Parameters are not pre-cleared by memset above. */
10472 parameter->data_value = NULL;
10473 parameter->data_value_size = 0;
10474 call_site->parameter_count++;
10475
10476 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10477 if (attr)
10478 {
10479 if (!attr_form_is_block (attr))
10480 complaint (&symfile_complaints,
10481 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10482 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10483 child_die->offset.sect_off, objfile->name);
10484 else
10485 {
10486 parameter->data_value = DW_BLOCK (attr)->data;
10487 parameter->data_value_size = DW_BLOCK (attr)->size;
10488 }
10489 }
10490 }
10491 }
10492
10493 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10494 Return 1 if the attributes are present and valid, otherwise, return 0.
10495 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10496
10497 static int
10498 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10499 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10500 struct partial_symtab *ranges_pst)
10501 {
10502 struct objfile *objfile = cu->objfile;
10503 struct comp_unit_head *cu_header = &cu->header;
10504 bfd *obfd = objfile->obfd;
10505 unsigned int addr_size = cu_header->addr_size;
10506 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10507 /* Base address selection entry. */
10508 CORE_ADDR base;
10509 int found_base;
10510 unsigned int dummy;
10511 const gdb_byte *buffer;
10512 CORE_ADDR marker;
10513 int low_set;
10514 CORE_ADDR low = 0;
10515 CORE_ADDR high = 0;
10516 CORE_ADDR baseaddr;
10517
10518 found_base = cu->base_known;
10519 base = cu->base_address;
10520
10521 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10522 if (offset >= dwarf2_per_objfile->ranges.size)
10523 {
10524 complaint (&symfile_complaints,
10525 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10526 offset);
10527 return 0;
10528 }
10529 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10530
10531 /* Read in the largest possible address. */
10532 marker = read_address (obfd, buffer, cu, &dummy);
10533 if ((marker & mask) == mask)
10534 {
10535 /* If we found the largest possible address, then
10536 read the base address. */
10537 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10538 buffer += 2 * addr_size;
10539 offset += 2 * addr_size;
10540 found_base = 1;
10541 }
10542
10543 low_set = 0;
10544
10545 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10546
10547 while (1)
10548 {
10549 CORE_ADDR range_beginning, range_end;
10550
10551 range_beginning = read_address (obfd, buffer, cu, &dummy);
10552 buffer += addr_size;
10553 range_end = read_address (obfd, buffer, cu, &dummy);
10554 buffer += addr_size;
10555 offset += 2 * addr_size;
10556
10557 /* An end of list marker is a pair of zero addresses. */
10558 if (range_beginning == 0 && range_end == 0)
10559 /* Found the end of list entry. */
10560 break;
10561
10562 /* Each base address selection entry is a pair of 2 values.
10563 The first is the largest possible address, the second is
10564 the base address. Check for a base address here. */
10565 if ((range_beginning & mask) == mask)
10566 {
10567 /* If we found the largest possible address, then
10568 read the base address. */
10569 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10570 found_base = 1;
10571 continue;
10572 }
10573
10574 if (!found_base)
10575 {
10576 /* We have no valid base address for the ranges
10577 data. */
10578 complaint (&symfile_complaints,
10579 _("Invalid .debug_ranges data (no base address)"));
10580 return 0;
10581 }
10582
10583 if (range_beginning > range_end)
10584 {
10585 /* Inverted range entries are invalid. */
10586 complaint (&symfile_complaints,
10587 _("Invalid .debug_ranges data (inverted range)"));
10588 return 0;
10589 }
10590
10591 /* Empty range entries have no effect. */
10592 if (range_beginning == range_end)
10593 continue;
10594
10595 range_beginning += base;
10596 range_end += base;
10597
10598 /* A not-uncommon case of bad debug info.
10599 Don't pollute the addrmap with bad data. */
10600 if (range_beginning + baseaddr == 0
10601 && !dwarf2_per_objfile->has_section_at_zero)
10602 {
10603 complaint (&symfile_complaints,
10604 _(".debug_ranges entry has start address of zero"
10605 " [in module %s]"), objfile->name);
10606 continue;
10607 }
10608
10609 if (ranges_pst != NULL)
10610 addrmap_set_empty (objfile->psymtabs_addrmap,
10611 range_beginning + baseaddr,
10612 range_end - 1 + baseaddr,
10613 ranges_pst);
10614
10615 /* FIXME: This is recording everything as a low-high
10616 segment of consecutive addresses. We should have a
10617 data structure for discontiguous block ranges
10618 instead. */
10619 if (! low_set)
10620 {
10621 low = range_beginning;
10622 high = range_end;
10623 low_set = 1;
10624 }
10625 else
10626 {
10627 if (range_beginning < low)
10628 low = range_beginning;
10629 if (range_end > high)
10630 high = range_end;
10631 }
10632 }
10633
10634 if (! low_set)
10635 /* If the first entry is an end-of-list marker, the range
10636 describes an empty scope, i.e. no instructions. */
10637 return 0;
10638
10639 if (low_return)
10640 *low_return = low;
10641 if (high_return)
10642 *high_return = high;
10643 return 1;
10644 }
10645
10646 /* Get low and high pc attributes from a die. Return 1 if the attributes
10647 are present and valid, otherwise, return 0. Return -1 if the range is
10648 discontinuous, i.e. derived from DW_AT_ranges information. */
10649
10650 static int
10651 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10652 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10653 struct partial_symtab *pst)
10654 {
10655 struct attribute *attr;
10656 struct attribute *attr_high;
10657 CORE_ADDR low = 0;
10658 CORE_ADDR high = 0;
10659 int ret = 0;
10660
10661 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10662 if (attr_high)
10663 {
10664 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10665 if (attr)
10666 {
10667 low = DW_ADDR (attr);
10668 if (attr_high->form == DW_FORM_addr
10669 || attr_high->form == DW_FORM_GNU_addr_index)
10670 high = DW_ADDR (attr_high);
10671 else
10672 high = low + DW_UNSND (attr_high);
10673 }
10674 else
10675 /* Found high w/o low attribute. */
10676 return 0;
10677
10678 /* Found consecutive range of addresses. */
10679 ret = 1;
10680 }
10681 else
10682 {
10683 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10684 if (attr != NULL)
10685 {
10686 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10687 We take advantage of the fact that DW_AT_ranges does not appear
10688 in DW_TAG_compile_unit of DWO files. */
10689 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10690 unsigned int ranges_offset = (DW_UNSND (attr)
10691 + (need_ranges_base
10692 ? cu->ranges_base
10693 : 0));
10694
10695 /* Value of the DW_AT_ranges attribute is the offset in the
10696 .debug_ranges section. */
10697 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10698 return 0;
10699 /* Found discontinuous range of addresses. */
10700 ret = -1;
10701 }
10702 }
10703
10704 /* read_partial_die has also the strict LOW < HIGH requirement. */
10705 if (high <= low)
10706 return 0;
10707
10708 /* When using the GNU linker, .gnu.linkonce. sections are used to
10709 eliminate duplicate copies of functions and vtables and such.
10710 The linker will arbitrarily choose one and discard the others.
10711 The AT_*_pc values for such functions refer to local labels in
10712 these sections. If the section from that file was discarded, the
10713 labels are not in the output, so the relocs get a value of 0.
10714 If this is a discarded function, mark the pc bounds as invalid,
10715 so that GDB will ignore it. */
10716 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10717 return 0;
10718
10719 *lowpc = low;
10720 if (highpc)
10721 *highpc = high;
10722 return ret;
10723 }
10724
10725 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10726 its low and high PC addresses. Do nothing if these addresses could not
10727 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10728 and HIGHPC to the high address if greater than HIGHPC. */
10729
10730 static void
10731 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10732 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10733 struct dwarf2_cu *cu)
10734 {
10735 CORE_ADDR low, high;
10736 struct die_info *child = die->child;
10737
10738 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10739 {
10740 *lowpc = min (*lowpc, low);
10741 *highpc = max (*highpc, high);
10742 }
10743
10744 /* If the language does not allow nested subprograms (either inside
10745 subprograms or lexical blocks), we're done. */
10746 if (cu->language != language_ada)
10747 return;
10748
10749 /* Check all the children of the given DIE. If it contains nested
10750 subprograms, then check their pc bounds. Likewise, we need to
10751 check lexical blocks as well, as they may also contain subprogram
10752 definitions. */
10753 while (child && child->tag)
10754 {
10755 if (child->tag == DW_TAG_subprogram
10756 || child->tag == DW_TAG_lexical_block)
10757 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10758 child = sibling_die (child);
10759 }
10760 }
10761
10762 /* Get the low and high pc's represented by the scope DIE, and store
10763 them in *LOWPC and *HIGHPC. If the correct values can't be
10764 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10765
10766 static void
10767 get_scope_pc_bounds (struct die_info *die,
10768 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10769 struct dwarf2_cu *cu)
10770 {
10771 CORE_ADDR best_low = (CORE_ADDR) -1;
10772 CORE_ADDR best_high = (CORE_ADDR) 0;
10773 CORE_ADDR current_low, current_high;
10774
10775 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10776 {
10777 best_low = current_low;
10778 best_high = current_high;
10779 }
10780 else
10781 {
10782 struct die_info *child = die->child;
10783
10784 while (child && child->tag)
10785 {
10786 switch (child->tag) {
10787 case DW_TAG_subprogram:
10788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10789 break;
10790 case DW_TAG_namespace:
10791 case DW_TAG_module:
10792 /* FIXME: carlton/2004-01-16: Should we do this for
10793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10794 that current GCC's always emit the DIEs corresponding
10795 to definitions of methods of classes as children of a
10796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10797 the DIEs giving the declarations, which could be
10798 anywhere). But I don't see any reason why the
10799 standards says that they have to be there. */
10800 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10801
10802 if (current_low != ((CORE_ADDR) -1))
10803 {
10804 best_low = min (best_low, current_low);
10805 best_high = max (best_high, current_high);
10806 }
10807 break;
10808 default:
10809 /* Ignore. */
10810 break;
10811 }
10812
10813 child = sibling_die (child);
10814 }
10815 }
10816
10817 *lowpc = best_low;
10818 *highpc = best_high;
10819 }
10820
10821 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10822 in DIE. */
10823
10824 static void
10825 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10827 {
10828 struct objfile *objfile = cu->objfile;
10829 struct attribute *attr;
10830 struct attribute *attr_high;
10831
10832 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10833 if (attr_high)
10834 {
10835 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10836 if (attr)
10837 {
10838 CORE_ADDR low = DW_ADDR (attr);
10839 CORE_ADDR high;
10840 if (attr_high->form == DW_FORM_addr
10841 || attr_high->form == DW_FORM_GNU_addr_index)
10842 high = DW_ADDR (attr_high);
10843 else
10844 high = low + DW_UNSND (attr_high);
10845
10846 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10847 }
10848 }
10849
10850 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10851 if (attr)
10852 {
10853 bfd *obfd = objfile->obfd;
10854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10855 We take advantage of the fact that DW_AT_ranges does not appear
10856 in DW_TAG_compile_unit of DWO files. */
10857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10858
10859 /* The value of the DW_AT_ranges attribute is the offset of the
10860 address range list in the .debug_ranges section. */
10861 unsigned long offset = (DW_UNSND (attr)
10862 + (need_ranges_base ? cu->ranges_base : 0));
10863 const gdb_byte *buffer;
10864
10865 /* For some target architectures, but not others, the
10866 read_address function sign-extends the addresses it returns.
10867 To recognize base address selection entries, we need a
10868 mask. */
10869 unsigned int addr_size = cu->header.addr_size;
10870 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10871
10872 /* The base address, to which the next pair is relative. Note
10873 that this 'base' is a DWARF concept: most entries in a range
10874 list are relative, to reduce the number of relocs against the
10875 debugging information. This is separate from this function's
10876 'baseaddr' argument, which GDB uses to relocate debugging
10877 information from a shared library based on the address at
10878 which the library was loaded. */
10879 CORE_ADDR base = cu->base_address;
10880 int base_known = cu->base_known;
10881
10882 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10883 if (offset >= dwarf2_per_objfile->ranges.size)
10884 {
10885 complaint (&symfile_complaints,
10886 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10887 offset);
10888 return;
10889 }
10890 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10891
10892 for (;;)
10893 {
10894 unsigned int bytes_read;
10895 CORE_ADDR start, end;
10896
10897 start = read_address (obfd, buffer, cu, &bytes_read);
10898 buffer += bytes_read;
10899 end = read_address (obfd, buffer, cu, &bytes_read);
10900 buffer += bytes_read;
10901
10902 /* Did we find the end of the range list? */
10903 if (start == 0 && end == 0)
10904 break;
10905
10906 /* Did we find a base address selection entry? */
10907 else if ((start & base_select_mask) == base_select_mask)
10908 {
10909 base = end;
10910 base_known = 1;
10911 }
10912
10913 /* We found an ordinary address range. */
10914 else
10915 {
10916 if (!base_known)
10917 {
10918 complaint (&symfile_complaints,
10919 _("Invalid .debug_ranges data "
10920 "(no base address)"));
10921 return;
10922 }
10923
10924 if (start > end)
10925 {
10926 /* Inverted range entries are invalid. */
10927 complaint (&symfile_complaints,
10928 _("Invalid .debug_ranges data "
10929 "(inverted range)"));
10930 return;
10931 }
10932
10933 /* Empty range entries have no effect. */
10934 if (start == end)
10935 continue;
10936
10937 start += base + baseaddr;
10938 end += base + baseaddr;
10939
10940 /* A not-uncommon case of bad debug info.
10941 Don't pollute the addrmap with bad data. */
10942 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10943 {
10944 complaint (&symfile_complaints,
10945 _(".debug_ranges entry has start address of zero"
10946 " [in module %s]"), objfile->name);
10947 continue;
10948 }
10949
10950 record_block_range (block, start, end - 1);
10951 }
10952 }
10953 }
10954 }
10955
10956 /* Check whether the producer field indicates either of GCC < 4.6, or the
10957 Intel C/C++ compiler, and cache the result in CU. */
10958
10959 static void
10960 check_producer (struct dwarf2_cu *cu)
10961 {
10962 const char *cs;
10963 int major, minor, release;
10964
10965 if (cu->producer == NULL)
10966 {
10967 /* For unknown compilers expect their behavior is DWARF version
10968 compliant.
10969
10970 GCC started to support .debug_types sections by -gdwarf-4 since
10971 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10972 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10973 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10974 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10975 }
10976 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10977 {
10978 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10979
10980 cs = &cu->producer[strlen ("GNU ")];
10981 while (*cs && !isdigit (*cs))
10982 cs++;
10983 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10984 {
10985 /* Not recognized as GCC. */
10986 }
10987 else
10988 {
10989 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10990 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10991 }
10992 }
10993 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10994 cu->producer_is_icc = 1;
10995 else
10996 {
10997 /* For other non-GCC compilers, expect their behavior is DWARF version
10998 compliant. */
10999 }
11000
11001 cu->checked_producer = 1;
11002 }
11003
11004 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11005 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11006 during 4.6.0 experimental. */
11007
11008 static int
11009 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11010 {
11011 if (!cu->checked_producer)
11012 check_producer (cu);
11013
11014 return cu->producer_is_gxx_lt_4_6;
11015 }
11016
11017 /* Return the default accessibility type if it is not overriden by
11018 DW_AT_accessibility. */
11019
11020 static enum dwarf_access_attribute
11021 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11022 {
11023 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11024 {
11025 /* The default DWARF 2 accessibility for members is public, the default
11026 accessibility for inheritance is private. */
11027
11028 if (die->tag != DW_TAG_inheritance)
11029 return DW_ACCESS_public;
11030 else
11031 return DW_ACCESS_private;
11032 }
11033 else
11034 {
11035 /* DWARF 3+ defines the default accessibility a different way. The same
11036 rules apply now for DW_TAG_inheritance as for the members and it only
11037 depends on the container kind. */
11038
11039 if (die->parent->tag == DW_TAG_class_type)
11040 return DW_ACCESS_private;
11041 else
11042 return DW_ACCESS_public;
11043 }
11044 }
11045
11046 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11047 offset. If the attribute was not found return 0, otherwise return
11048 1. If it was found but could not properly be handled, set *OFFSET
11049 to 0. */
11050
11051 static int
11052 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11053 LONGEST *offset)
11054 {
11055 struct attribute *attr;
11056
11057 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11058 if (attr != NULL)
11059 {
11060 *offset = 0;
11061
11062 /* Note that we do not check for a section offset first here.
11063 This is because DW_AT_data_member_location is new in DWARF 4,
11064 so if we see it, we can assume that a constant form is really
11065 a constant and not a section offset. */
11066 if (attr_form_is_constant (attr))
11067 *offset = dwarf2_get_attr_constant_value (attr, 0);
11068 else if (attr_form_is_section_offset (attr))
11069 dwarf2_complex_location_expr_complaint ();
11070 else if (attr_form_is_block (attr))
11071 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11072 else
11073 dwarf2_complex_location_expr_complaint ();
11074
11075 return 1;
11076 }
11077
11078 return 0;
11079 }
11080
11081 /* Add an aggregate field to the field list. */
11082
11083 static void
11084 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11085 struct dwarf2_cu *cu)
11086 {
11087 struct objfile *objfile = cu->objfile;
11088 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11089 struct nextfield *new_field;
11090 struct attribute *attr;
11091 struct field *fp;
11092 const char *fieldname = "";
11093
11094 /* Allocate a new field list entry and link it in. */
11095 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11096 make_cleanup (xfree, new_field);
11097 memset (new_field, 0, sizeof (struct nextfield));
11098
11099 if (die->tag == DW_TAG_inheritance)
11100 {
11101 new_field->next = fip->baseclasses;
11102 fip->baseclasses = new_field;
11103 }
11104 else
11105 {
11106 new_field->next = fip->fields;
11107 fip->fields = new_field;
11108 }
11109 fip->nfields++;
11110
11111 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11112 if (attr)
11113 new_field->accessibility = DW_UNSND (attr);
11114 else
11115 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11116 if (new_field->accessibility != DW_ACCESS_public)
11117 fip->non_public_fields = 1;
11118
11119 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11120 if (attr)
11121 new_field->virtuality = DW_UNSND (attr);
11122 else
11123 new_field->virtuality = DW_VIRTUALITY_none;
11124
11125 fp = &new_field->field;
11126
11127 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11128 {
11129 LONGEST offset;
11130
11131 /* Data member other than a C++ static data member. */
11132
11133 /* Get type of field. */
11134 fp->type = die_type (die, cu);
11135
11136 SET_FIELD_BITPOS (*fp, 0);
11137
11138 /* Get bit size of field (zero if none). */
11139 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11140 if (attr)
11141 {
11142 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11143 }
11144 else
11145 {
11146 FIELD_BITSIZE (*fp) = 0;
11147 }
11148
11149 /* Get bit offset of field. */
11150 if (handle_data_member_location (die, cu, &offset))
11151 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11152 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11153 if (attr)
11154 {
11155 if (gdbarch_bits_big_endian (gdbarch))
11156 {
11157 /* For big endian bits, the DW_AT_bit_offset gives the
11158 additional bit offset from the MSB of the containing
11159 anonymous object to the MSB of the field. We don't
11160 have to do anything special since we don't need to
11161 know the size of the anonymous object. */
11162 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11163 }
11164 else
11165 {
11166 /* For little endian bits, compute the bit offset to the
11167 MSB of the anonymous object, subtract off the number of
11168 bits from the MSB of the field to the MSB of the
11169 object, and then subtract off the number of bits of
11170 the field itself. The result is the bit offset of
11171 the LSB of the field. */
11172 int anonymous_size;
11173 int bit_offset = DW_UNSND (attr);
11174
11175 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11176 if (attr)
11177 {
11178 /* The size of the anonymous object containing
11179 the bit field is explicit, so use the
11180 indicated size (in bytes). */
11181 anonymous_size = DW_UNSND (attr);
11182 }
11183 else
11184 {
11185 /* The size of the anonymous object containing
11186 the bit field must be inferred from the type
11187 attribute of the data member containing the
11188 bit field. */
11189 anonymous_size = TYPE_LENGTH (fp->type);
11190 }
11191 SET_FIELD_BITPOS (*fp,
11192 (FIELD_BITPOS (*fp)
11193 + anonymous_size * bits_per_byte
11194 - bit_offset - FIELD_BITSIZE (*fp)));
11195 }
11196 }
11197
11198 /* Get name of field. */
11199 fieldname = dwarf2_name (die, cu);
11200 if (fieldname == NULL)
11201 fieldname = "";
11202
11203 /* The name is already allocated along with this objfile, so we don't
11204 need to duplicate it for the type. */
11205 fp->name = fieldname;
11206
11207 /* Change accessibility for artificial fields (e.g. virtual table
11208 pointer or virtual base class pointer) to private. */
11209 if (dwarf2_attr (die, DW_AT_artificial, cu))
11210 {
11211 FIELD_ARTIFICIAL (*fp) = 1;
11212 new_field->accessibility = DW_ACCESS_private;
11213 fip->non_public_fields = 1;
11214 }
11215 }
11216 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11217 {
11218 /* C++ static member. */
11219
11220 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11221 is a declaration, but all versions of G++ as of this writing
11222 (so through at least 3.2.1) incorrectly generate
11223 DW_TAG_variable tags. */
11224
11225 const char *physname;
11226
11227 /* Get name of field. */
11228 fieldname = dwarf2_name (die, cu);
11229 if (fieldname == NULL)
11230 return;
11231
11232 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11233 if (attr
11234 /* Only create a symbol if this is an external value.
11235 new_symbol checks this and puts the value in the global symbol
11236 table, which we want. If it is not external, new_symbol
11237 will try to put the value in cu->list_in_scope which is wrong. */
11238 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11239 {
11240 /* A static const member, not much different than an enum as far as
11241 we're concerned, except that we can support more types. */
11242 new_symbol (die, NULL, cu);
11243 }
11244
11245 /* Get physical name. */
11246 physname = dwarf2_physname (fieldname, die, cu);
11247
11248 /* The name is already allocated along with this objfile, so we don't
11249 need to duplicate it for the type. */
11250 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11251 FIELD_TYPE (*fp) = die_type (die, cu);
11252 FIELD_NAME (*fp) = fieldname;
11253 }
11254 else if (die->tag == DW_TAG_inheritance)
11255 {
11256 LONGEST offset;
11257
11258 /* C++ base class field. */
11259 if (handle_data_member_location (die, cu, &offset))
11260 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11261 FIELD_BITSIZE (*fp) = 0;
11262 FIELD_TYPE (*fp) = die_type (die, cu);
11263 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11264 fip->nbaseclasses++;
11265 }
11266 }
11267
11268 /* Add a typedef defined in the scope of the FIP's class. */
11269
11270 static void
11271 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11272 struct dwarf2_cu *cu)
11273 {
11274 struct objfile *objfile = cu->objfile;
11275 struct typedef_field_list *new_field;
11276 struct attribute *attr;
11277 struct typedef_field *fp;
11278 char *fieldname = "";
11279
11280 /* Allocate a new field list entry and link it in. */
11281 new_field = xzalloc (sizeof (*new_field));
11282 make_cleanup (xfree, new_field);
11283
11284 gdb_assert (die->tag == DW_TAG_typedef);
11285
11286 fp = &new_field->field;
11287
11288 /* Get name of field. */
11289 fp->name = dwarf2_name (die, cu);
11290 if (fp->name == NULL)
11291 return;
11292
11293 fp->type = read_type_die (die, cu);
11294
11295 new_field->next = fip->typedef_field_list;
11296 fip->typedef_field_list = new_field;
11297 fip->typedef_field_list_count++;
11298 }
11299
11300 /* Create the vector of fields, and attach it to the type. */
11301
11302 static void
11303 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11304 struct dwarf2_cu *cu)
11305 {
11306 int nfields = fip->nfields;
11307
11308 /* Record the field count, allocate space for the array of fields,
11309 and create blank accessibility bitfields if necessary. */
11310 TYPE_NFIELDS (type) = nfields;
11311 TYPE_FIELDS (type) = (struct field *)
11312 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11313 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11314
11315 if (fip->non_public_fields && cu->language != language_ada)
11316 {
11317 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11318
11319 TYPE_FIELD_PRIVATE_BITS (type) =
11320 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11321 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11322
11323 TYPE_FIELD_PROTECTED_BITS (type) =
11324 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11325 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11326
11327 TYPE_FIELD_IGNORE_BITS (type) =
11328 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11329 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11330 }
11331
11332 /* If the type has baseclasses, allocate and clear a bit vector for
11333 TYPE_FIELD_VIRTUAL_BITS. */
11334 if (fip->nbaseclasses && cu->language != language_ada)
11335 {
11336 int num_bytes = B_BYTES (fip->nbaseclasses);
11337 unsigned char *pointer;
11338
11339 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11340 pointer = TYPE_ALLOC (type, num_bytes);
11341 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11342 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11343 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11344 }
11345
11346 /* Copy the saved-up fields into the field vector. Start from the head of
11347 the list, adding to the tail of the field array, so that they end up in
11348 the same order in the array in which they were added to the list. */
11349 while (nfields-- > 0)
11350 {
11351 struct nextfield *fieldp;
11352
11353 if (fip->fields)
11354 {
11355 fieldp = fip->fields;
11356 fip->fields = fieldp->next;
11357 }
11358 else
11359 {
11360 fieldp = fip->baseclasses;
11361 fip->baseclasses = fieldp->next;
11362 }
11363
11364 TYPE_FIELD (type, nfields) = fieldp->field;
11365 switch (fieldp->accessibility)
11366 {
11367 case DW_ACCESS_private:
11368 if (cu->language != language_ada)
11369 SET_TYPE_FIELD_PRIVATE (type, nfields);
11370 break;
11371
11372 case DW_ACCESS_protected:
11373 if (cu->language != language_ada)
11374 SET_TYPE_FIELD_PROTECTED (type, nfields);
11375 break;
11376
11377 case DW_ACCESS_public:
11378 break;
11379
11380 default:
11381 /* Unknown accessibility. Complain and treat it as public. */
11382 {
11383 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11384 fieldp->accessibility);
11385 }
11386 break;
11387 }
11388 if (nfields < fip->nbaseclasses)
11389 {
11390 switch (fieldp->virtuality)
11391 {
11392 case DW_VIRTUALITY_virtual:
11393 case DW_VIRTUALITY_pure_virtual:
11394 if (cu->language == language_ada)
11395 error (_("unexpected virtuality in component of Ada type"));
11396 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11397 break;
11398 }
11399 }
11400 }
11401 }
11402
11403 /* Return true if this member function is a constructor, false
11404 otherwise. */
11405
11406 static int
11407 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11408 {
11409 const char *fieldname;
11410 const char *typename;
11411 int len;
11412
11413 if (die->parent == NULL)
11414 return 0;
11415
11416 if (die->parent->tag != DW_TAG_structure_type
11417 && die->parent->tag != DW_TAG_union_type
11418 && die->parent->tag != DW_TAG_class_type)
11419 return 0;
11420
11421 fieldname = dwarf2_name (die, cu);
11422 typename = dwarf2_name (die->parent, cu);
11423 if (fieldname == NULL || typename == NULL)
11424 return 0;
11425
11426 len = strlen (fieldname);
11427 return (strncmp (fieldname, typename, len) == 0
11428 && (typename[len] == '\0' || typename[len] == '<'));
11429 }
11430
11431 /* Add a member function to the proper fieldlist. */
11432
11433 static void
11434 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11435 struct type *type, struct dwarf2_cu *cu)
11436 {
11437 struct objfile *objfile = cu->objfile;
11438 struct attribute *attr;
11439 struct fnfieldlist *flp;
11440 int i;
11441 struct fn_field *fnp;
11442 const char *fieldname;
11443 struct nextfnfield *new_fnfield;
11444 struct type *this_type;
11445 enum dwarf_access_attribute accessibility;
11446
11447 if (cu->language == language_ada)
11448 error (_("unexpected member function in Ada type"));
11449
11450 /* Get name of member function. */
11451 fieldname = dwarf2_name (die, cu);
11452 if (fieldname == NULL)
11453 return;
11454
11455 /* Look up member function name in fieldlist. */
11456 for (i = 0; i < fip->nfnfields; i++)
11457 {
11458 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11459 break;
11460 }
11461
11462 /* Create new list element if necessary. */
11463 if (i < fip->nfnfields)
11464 flp = &fip->fnfieldlists[i];
11465 else
11466 {
11467 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11468 {
11469 fip->fnfieldlists = (struct fnfieldlist *)
11470 xrealloc (fip->fnfieldlists,
11471 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11472 * sizeof (struct fnfieldlist));
11473 if (fip->nfnfields == 0)
11474 make_cleanup (free_current_contents, &fip->fnfieldlists);
11475 }
11476 flp = &fip->fnfieldlists[fip->nfnfields];
11477 flp->name = fieldname;
11478 flp->length = 0;
11479 flp->head = NULL;
11480 i = fip->nfnfields++;
11481 }
11482
11483 /* Create a new member function field and chain it to the field list
11484 entry. */
11485 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11486 make_cleanup (xfree, new_fnfield);
11487 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11488 new_fnfield->next = flp->head;
11489 flp->head = new_fnfield;
11490 flp->length++;
11491
11492 /* Fill in the member function field info. */
11493 fnp = &new_fnfield->fnfield;
11494
11495 /* Delay processing of the physname until later. */
11496 if (cu->language == language_cplus || cu->language == language_java)
11497 {
11498 add_to_method_list (type, i, flp->length - 1, fieldname,
11499 die, cu);
11500 }
11501 else
11502 {
11503 const char *physname = dwarf2_physname (fieldname, die, cu);
11504 fnp->physname = physname ? physname : "";
11505 }
11506
11507 fnp->type = alloc_type (objfile);
11508 this_type = read_type_die (die, cu);
11509 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11510 {
11511 int nparams = TYPE_NFIELDS (this_type);
11512
11513 /* TYPE is the domain of this method, and THIS_TYPE is the type
11514 of the method itself (TYPE_CODE_METHOD). */
11515 smash_to_method_type (fnp->type, type,
11516 TYPE_TARGET_TYPE (this_type),
11517 TYPE_FIELDS (this_type),
11518 TYPE_NFIELDS (this_type),
11519 TYPE_VARARGS (this_type));
11520
11521 /* Handle static member functions.
11522 Dwarf2 has no clean way to discern C++ static and non-static
11523 member functions. G++ helps GDB by marking the first
11524 parameter for non-static member functions (which is the this
11525 pointer) as artificial. We obtain this information from
11526 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11527 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11528 fnp->voffset = VOFFSET_STATIC;
11529 }
11530 else
11531 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11532 dwarf2_full_name (fieldname, die, cu));
11533
11534 /* Get fcontext from DW_AT_containing_type if present. */
11535 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11536 fnp->fcontext = die_containing_type (die, cu);
11537
11538 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11539 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11540
11541 /* Get accessibility. */
11542 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11543 if (attr)
11544 accessibility = DW_UNSND (attr);
11545 else
11546 accessibility = dwarf2_default_access_attribute (die, cu);
11547 switch (accessibility)
11548 {
11549 case DW_ACCESS_private:
11550 fnp->is_private = 1;
11551 break;
11552 case DW_ACCESS_protected:
11553 fnp->is_protected = 1;
11554 break;
11555 }
11556
11557 /* Check for artificial methods. */
11558 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11559 if (attr && DW_UNSND (attr) != 0)
11560 fnp->is_artificial = 1;
11561
11562 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11563
11564 /* Get index in virtual function table if it is a virtual member
11565 function. For older versions of GCC, this is an offset in the
11566 appropriate virtual table, as specified by DW_AT_containing_type.
11567 For everyone else, it is an expression to be evaluated relative
11568 to the object address. */
11569
11570 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11571 if (attr)
11572 {
11573 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11574 {
11575 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11576 {
11577 /* Old-style GCC. */
11578 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11579 }
11580 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11581 || (DW_BLOCK (attr)->size > 1
11582 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11583 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11584 {
11585 struct dwarf_block blk;
11586 int offset;
11587
11588 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11589 ? 1 : 2);
11590 blk.size = DW_BLOCK (attr)->size - offset;
11591 blk.data = DW_BLOCK (attr)->data + offset;
11592 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11593 if ((fnp->voffset % cu->header.addr_size) != 0)
11594 dwarf2_complex_location_expr_complaint ();
11595 else
11596 fnp->voffset /= cu->header.addr_size;
11597 fnp->voffset += 2;
11598 }
11599 else
11600 dwarf2_complex_location_expr_complaint ();
11601
11602 if (!fnp->fcontext)
11603 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11604 }
11605 else if (attr_form_is_section_offset (attr))
11606 {
11607 dwarf2_complex_location_expr_complaint ();
11608 }
11609 else
11610 {
11611 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11612 fieldname);
11613 }
11614 }
11615 else
11616 {
11617 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11618 if (attr && DW_UNSND (attr))
11619 {
11620 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11621 complaint (&symfile_complaints,
11622 _("Member function \"%s\" (offset %d) is virtual "
11623 "but the vtable offset is not specified"),
11624 fieldname, die->offset.sect_off);
11625 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11626 TYPE_CPLUS_DYNAMIC (type) = 1;
11627 }
11628 }
11629 }
11630
11631 /* Create the vector of member function fields, and attach it to the type. */
11632
11633 static void
11634 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11635 struct dwarf2_cu *cu)
11636 {
11637 struct fnfieldlist *flp;
11638 int i;
11639
11640 if (cu->language == language_ada)
11641 error (_("unexpected member functions in Ada type"));
11642
11643 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11644 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11645 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11646
11647 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11648 {
11649 struct nextfnfield *nfp = flp->head;
11650 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11651 int k;
11652
11653 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11654 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11655 fn_flp->fn_fields = (struct fn_field *)
11656 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11657 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11658 fn_flp->fn_fields[k] = nfp->fnfield;
11659 }
11660
11661 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11662 }
11663
11664 /* Returns non-zero if NAME is the name of a vtable member in CU's
11665 language, zero otherwise. */
11666 static int
11667 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11668 {
11669 static const char vptr[] = "_vptr";
11670 static const char vtable[] = "vtable";
11671
11672 /* Look for the C++ and Java forms of the vtable. */
11673 if ((cu->language == language_java
11674 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11675 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11676 && is_cplus_marker (name[sizeof (vptr) - 1])))
11677 return 1;
11678
11679 return 0;
11680 }
11681
11682 /* GCC outputs unnamed structures that are really pointers to member
11683 functions, with the ABI-specified layout. If TYPE describes
11684 such a structure, smash it into a member function type.
11685
11686 GCC shouldn't do this; it should just output pointer to member DIEs.
11687 This is GCC PR debug/28767. */
11688
11689 static void
11690 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11691 {
11692 struct type *pfn_type, *domain_type, *new_type;
11693
11694 /* Check for a structure with no name and two children. */
11695 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11696 return;
11697
11698 /* Check for __pfn and __delta members. */
11699 if (TYPE_FIELD_NAME (type, 0) == NULL
11700 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11701 || TYPE_FIELD_NAME (type, 1) == NULL
11702 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11703 return;
11704
11705 /* Find the type of the method. */
11706 pfn_type = TYPE_FIELD_TYPE (type, 0);
11707 if (pfn_type == NULL
11708 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11709 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11710 return;
11711
11712 /* Look for the "this" argument. */
11713 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11714 if (TYPE_NFIELDS (pfn_type) == 0
11715 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11716 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11717 return;
11718
11719 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11720 new_type = alloc_type (objfile);
11721 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11722 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11723 TYPE_VARARGS (pfn_type));
11724 smash_to_methodptr_type (type, new_type);
11725 }
11726
11727 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11728 (icc). */
11729
11730 static int
11731 producer_is_icc (struct dwarf2_cu *cu)
11732 {
11733 if (!cu->checked_producer)
11734 check_producer (cu);
11735
11736 return cu->producer_is_icc;
11737 }
11738
11739 /* Called when we find the DIE that starts a structure or union scope
11740 (definition) to create a type for the structure or union. Fill in
11741 the type's name and general properties; the members will not be
11742 processed until process_structure_scope.
11743
11744 NOTE: we need to call these functions regardless of whether or not the
11745 DIE has a DW_AT_name attribute, since it might be an anonymous
11746 structure or union. This gets the type entered into our set of
11747 user defined types.
11748
11749 However, if the structure is incomplete (an opaque struct/union)
11750 then suppress creating a symbol table entry for it since gdb only
11751 wants to find the one with the complete definition. Note that if
11752 it is complete, we just call new_symbol, which does it's own
11753 checking about whether the struct/union is anonymous or not (and
11754 suppresses creating a symbol table entry itself). */
11755
11756 static struct type *
11757 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11758 {
11759 struct objfile *objfile = cu->objfile;
11760 struct type *type;
11761 struct attribute *attr;
11762 const char *name;
11763
11764 /* If the definition of this type lives in .debug_types, read that type.
11765 Don't follow DW_AT_specification though, that will take us back up
11766 the chain and we want to go down. */
11767 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11768 if (attr)
11769 {
11770 type = get_DW_AT_signature_type (die, attr, cu);
11771
11772 /* The type's CU may not be the same as CU.
11773 Ensure TYPE is recorded with CU in die_type_hash. */
11774 return set_die_type (die, type, cu);
11775 }
11776
11777 type = alloc_type (objfile);
11778 INIT_CPLUS_SPECIFIC (type);
11779
11780 name = dwarf2_name (die, cu);
11781 if (name != NULL)
11782 {
11783 if (cu->language == language_cplus
11784 || cu->language == language_java)
11785 {
11786 const char *full_name = dwarf2_full_name (name, die, cu);
11787
11788 /* dwarf2_full_name might have already finished building the DIE's
11789 type. If so, there is no need to continue. */
11790 if (get_die_type (die, cu) != NULL)
11791 return get_die_type (die, cu);
11792
11793 TYPE_TAG_NAME (type) = full_name;
11794 if (die->tag == DW_TAG_structure_type
11795 || die->tag == DW_TAG_class_type)
11796 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11797 }
11798 else
11799 {
11800 /* The name is already allocated along with this objfile, so
11801 we don't need to duplicate it for the type. */
11802 TYPE_TAG_NAME (type) = name;
11803 if (die->tag == DW_TAG_class_type)
11804 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11805 }
11806 }
11807
11808 if (die->tag == DW_TAG_structure_type)
11809 {
11810 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11811 }
11812 else if (die->tag == DW_TAG_union_type)
11813 {
11814 TYPE_CODE (type) = TYPE_CODE_UNION;
11815 }
11816 else
11817 {
11818 TYPE_CODE (type) = TYPE_CODE_CLASS;
11819 }
11820
11821 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11822 TYPE_DECLARED_CLASS (type) = 1;
11823
11824 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11825 if (attr)
11826 {
11827 TYPE_LENGTH (type) = DW_UNSND (attr);
11828 }
11829 else
11830 {
11831 TYPE_LENGTH (type) = 0;
11832 }
11833
11834 if (producer_is_icc (cu))
11835 {
11836 /* ICC does not output the required DW_AT_declaration
11837 on incomplete types, but gives them a size of zero. */
11838 }
11839 else
11840 TYPE_STUB_SUPPORTED (type) = 1;
11841
11842 if (die_is_declaration (die, cu))
11843 TYPE_STUB (type) = 1;
11844 else if (attr == NULL && die->child == NULL
11845 && producer_is_realview (cu->producer))
11846 /* RealView does not output the required DW_AT_declaration
11847 on incomplete types. */
11848 TYPE_STUB (type) = 1;
11849
11850 /* We need to add the type field to the die immediately so we don't
11851 infinitely recurse when dealing with pointers to the structure
11852 type within the structure itself. */
11853 set_die_type (die, type, cu);
11854
11855 /* set_die_type should be already done. */
11856 set_descriptive_type (type, die, cu);
11857
11858 return type;
11859 }
11860
11861 /* Finish creating a structure or union type, including filling in
11862 its members and creating a symbol for it. */
11863
11864 static void
11865 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11866 {
11867 struct objfile *objfile = cu->objfile;
11868 struct die_info *child_die = die->child;
11869 struct type *type;
11870
11871 type = get_die_type (die, cu);
11872 if (type == NULL)
11873 type = read_structure_type (die, cu);
11874
11875 if (die->child != NULL && ! die_is_declaration (die, cu))
11876 {
11877 struct field_info fi;
11878 struct die_info *child_die;
11879 VEC (symbolp) *template_args = NULL;
11880 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11881
11882 memset (&fi, 0, sizeof (struct field_info));
11883
11884 child_die = die->child;
11885
11886 while (child_die && child_die->tag)
11887 {
11888 if (child_die->tag == DW_TAG_member
11889 || child_die->tag == DW_TAG_variable)
11890 {
11891 /* NOTE: carlton/2002-11-05: A C++ static data member
11892 should be a DW_TAG_member that is a declaration, but
11893 all versions of G++ as of this writing (so through at
11894 least 3.2.1) incorrectly generate DW_TAG_variable
11895 tags for them instead. */
11896 dwarf2_add_field (&fi, child_die, cu);
11897 }
11898 else if (child_die->tag == DW_TAG_subprogram)
11899 {
11900 /* C++ member function. */
11901 dwarf2_add_member_fn (&fi, child_die, type, cu);
11902 }
11903 else if (child_die->tag == DW_TAG_inheritance)
11904 {
11905 /* C++ base class field. */
11906 dwarf2_add_field (&fi, child_die, cu);
11907 }
11908 else if (child_die->tag == DW_TAG_typedef)
11909 dwarf2_add_typedef (&fi, child_die, cu);
11910 else if (child_die->tag == DW_TAG_template_type_param
11911 || child_die->tag == DW_TAG_template_value_param)
11912 {
11913 struct symbol *arg = new_symbol (child_die, NULL, cu);
11914
11915 if (arg != NULL)
11916 VEC_safe_push (symbolp, template_args, arg);
11917 }
11918
11919 child_die = sibling_die (child_die);
11920 }
11921
11922 /* Attach template arguments to type. */
11923 if (! VEC_empty (symbolp, template_args))
11924 {
11925 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11926 TYPE_N_TEMPLATE_ARGUMENTS (type)
11927 = VEC_length (symbolp, template_args);
11928 TYPE_TEMPLATE_ARGUMENTS (type)
11929 = obstack_alloc (&objfile->objfile_obstack,
11930 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11931 * sizeof (struct symbol *)));
11932 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11933 VEC_address (symbolp, template_args),
11934 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11935 * sizeof (struct symbol *)));
11936 VEC_free (symbolp, template_args);
11937 }
11938
11939 /* Attach fields and member functions to the type. */
11940 if (fi.nfields)
11941 dwarf2_attach_fields_to_type (&fi, type, cu);
11942 if (fi.nfnfields)
11943 {
11944 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11945
11946 /* Get the type which refers to the base class (possibly this
11947 class itself) which contains the vtable pointer for the current
11948 class from the DW_AT_containing_type attribute. This use of
11949 DW_AT_containing_type is a GNU extension. */
11950
11951 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11952 {
11953 struct type *t = die_containing_type (die, cu);
11954
11955 TYPE_VPTR_BASETYPE (type) = t;
11956 if (type == t)
11957 {
11958 int i;
11959
11960 /* Our own class provides vtbl ptr. */
11961 for (i = TYPE_NFIELDS (t) - 1;
11962 i >= TYPE_N_BASECLASSES (t);
11963 --i)
11964 {
11965 const char *fieldname = TYPE_FIELD_NAME (t, i);
11966
11967 if (is_vtable_name (fieldname, cu))
11968 {
11969 TYPE_VPTR_FIELDNO (type) = i;
11970 break;
11971 }
11972 }
11973
11974 /* Complain if virtual function table field not found. */
11975 if (i < TYPE_N_BASECLASSES (t))
11976 complaint (&symfile_complaints,
11977 _("virtual function table pointer "
11978 "not found when defining class '%s'"),
11979 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11980 "");
11981 }
11982 else
11983 {
11984 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11985 }
11986 }
11987 else if (cu->producer
11988 && strncmp (cu->producer,
11989 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11990 {
11991 /* The IBM XLC compiler does not provide direct indication
11992 of the containing type, but the vtable pointer is
11993 always named __vfp. */
11994
11995 int i;
11996
11997 for (i = TYPE_NFIELDS (type) - 1;
11998 i >= TYPE_N_BASECLASSES (type);
11999 --i)
12000 {
12001 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12002 {
12003 TYPE_VPTR_FIELDNO (type) = i;
12004 TYPE_VPTR_BASETYPE (type) = type;
12005 break;
12006 }
12007 }
12008 }
12009 }
12010
12011 /* Copy fi.typedef_field_list linked list elements content into the
12012 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12013 if (fi.typedef_field_list)
12014 {
12015 int i = fi.typedef_field_list_count;
12016
12017 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12018 TYPE_TYPEDEF_FIELD_ARRAY (type)
12019 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12020 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12021
12022 /* Reverse the list order to keep the debug info elements order. */
12023 while (--i >= 0)
12024 {
12025 struct typedef_field *dest, *src;
12026
12027 dest = &TYPE_TYPEDEF_FIELD (type, i);
12028 src = &fi.typedef_field_list->field;
12029 fi.typedef_field_list = fi.typedef_field_list->next;
12030 *dest = *src;
12031 }
12032 }
12033
12034 do_cleanups (back_to);
12035
12036 if (HAVE_CPLUS_STRUCT (type))
12037 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12038 }
12039
12040 quirk_gcc_member_function_pointer (type, objfile);
12041
12042 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12043 snapshots) has been known to create a die giving a declaration
12044 for a class that has, as a child, a die giving a definition for a
12045 nested class. So we have to process our children even if the
12046 current die is a declaration. Normally, of course, a declaration
12047 won't have any children at all. */
12048
12049 while (child_die != NULL && child_die->tag)
12050 {
12051 if (child_die->tag == DW_TAG_member
12052 || child_die->tag == DW_TAG_variable
12053 || child_die->tag == DW_TAG_inheritance
12054 || child_die->tag == DW_TAG_template_value_param
12055 || child_die->tag == DW_TAG_template_type_param)
12056 {
12057 /* Do nothing. */
12058 }
12059 else
12060 process_die (child_die, cu);
12061
12062 child_die = sibling_die (child_die);
12063 }
12064
12065 /* Do not consider external references. According to the DWARF standard,
12066 these DIEs are identified by the fact that they have no byte_size
12067 attribute, and a declaration attribute. */
12068 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12069 || !die_is_declaration (die, cu))
12070 new_symbol (die, type, cu);
12071 }
12072
12073 /* Given a DW_AT_enumeration_type die, set its type. We do not
12074 complete the type's fields yet, or create any symbols. */
12075
12076 static struct type *
12077 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12078 {
12079 struct objfile *objfile = cu->objfile;
12080 struct type *type;
12081 struct attribute *attr;
12082 const char *name;
12083
12084 /* If the definition of this type lives in .debug_types, read that type.
12085 Don't follow DW_AT_specification though, that will take us back up
12086 the chain and we want to go down. */
12087 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12088 if (attr)
12089 {
12090 type = get_DW_AT_signature_type (die, attr, cu);
12091
12092 /* The type's CU may not be the same as CU.
12093 Ensure TYPE is recorded with CU in die_type_hash. */
12094 return set_die_type (die, type, cu);
12095 }
12096
12097 type = alloc_type (objfile);
12098
12099 TYPE_CODE (type) = TYPE_CODE_ENUM;
12100 name = dwarf2_full_name (NULL, die, cu);
12101 if (name != NULL)
12102 TYPE_TAG_NAME (type) = name;
12103
12104 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12105 if (attr)
12106 {
12107 TYPE_LENGTH (type) = DW_UNSND (attr);
12108 }
12109 else
12110 {
12111 TYPE_LENGTH (type) = 0;
12112 }
12113
12114 /* The enumeration DIE can be incomplete. In Ada, any type can be
12115 declared as private in the package spec, and then defined only
12116 inside the package body. Such types are known as Taft Amendment
12117 Types. When another package uses such a type, an incomplete DIE
12118 may be generated by the compiler. */
12119 if (die_is_declaration (die, cu))
12120 TYPE_STUB (type) = 1;
12121
12122 return set_die_type (die, type, cu);
12123 }
12124
12125 /* Given a pointer to a die which begins an enumeration, process all
12126 the dies that define the members of the enumeration, and create the
12127 symbol for the enumeration type.
12128
12129 NOTE: We reverse the order of the element list. */
12130
12131 static void
12132 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12133 {
12134 struct type *this_type;
12135
12136 this_type = get_die_type (die, cu);
12137 if (this_type == NULL)
12138 this_type = read_enumeration_type (die, cu);
12139
12140 if (die->child != NULL)
12141 {
12142 struct die_info *child_die;
12143 struct symbol *sym;
12144 struct field *fields = NULL;
12145 int num_fields = 0;
12146 int unsigned_enum = 1;
12147 const char *name;
12148 int flag_enum = 1;
12149 ULONGEST mask = 0;
12150
12151 child_die = die->child;
12152 while (child_die && child_die->tag)
12153 {
12154 if (child_die->tag != DW_TAG_enumerator)
12155 {
12156 process_die (child_die, cu);
12157 }
12158 else
12159 {
12160 name = dwarf2_name (child_die, cu);
12161 if (name)
12162 {
12163 sym = new_symbol (child_die, this_type, cu);
12164 if (SYMBOL_VALUE (sym) < 0)
12165 {
12166 unsigned_enum = 0;
12167 flag_enum = 0;
12168 }
12169 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12170 flag_enum = 0;
12171 else
12172 mask |= SYMBOL_VALUE (sym);
12173
12174 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12175 {
12176 fields = (struct field *)
12177 xrealloc (fields,
12178 (num_fields + DW_FIELD_ALLOC_CHUNK)
12179 * sizeof (struct field));
12180 }
12181
12182 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12183 FIELD_TYPE (fields[num_fields]) = NULL;
12184 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12185 FIELD_BITSIZE (fields[num_fields]) = 0;
12186
12187 num_fields++;
12188 }
12189 }
12190
12191 child_die = sibling_die (child_die);
12192 }
12193
12194 if (num_fields)
12195 {
12196 TYPE_NFIELDS (this_type) = num_fields;
12197 TYPE_FIELDS (this_type) = (struct field *)
12198 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12199 memcpy (TYPE_FIELDS (this_type), fields,
12200 sizeof (struct field) * num_fields);
12201 xfree (fields);
12202 }
12203 if (unsigned_enum)
12204 TYPE_UNSIGNED (this_type) = 1;
12205 if (flag_enum)
12206 TYPE_FLAG_ENUM (this_type) = 1;
12207 }
12208
12209 /* If we are reading an enum from a .debug_types unit, and the enum
12210 is a declaration, and the enum is not the signatured type in the
12211 unit, then we do not want to add a symbol for it. Adding a
12212 symbol would in some cases obscure the true definition of the
12213 enum, giving users an incomplete type when the definition is
12214 actually available. Note that we do not want to do this for all
12215 enums which are just declarations, because C++0x allows forward
12216 enum declarations. */
12217 if (cu->per_cu->is_debug_types
12218 && die_is_declaration (die, cu))
12219 {
12220 struct signatured_type *sig_type;
12221
12222 sig_type = (struct signatured_type *) cu->per_cu;
12223 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12224 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12225 return;
12226 }
12227
12228 new_symbol (die, this_type, cu);
12229 }
12230
12231 /* Extract all information from a DW_TAG_array_type DIE and put it in
12232 the DIE's type field. For now, this only handles one dimensional
12233 arrays. */
12234
12235 static struct type *
12236 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12237 {
12238 struct objfile *objfile = cu->objfile;
12239 struct die_info *child_die;
12240 struct type *type;
12241 struct type *element_type, *range_type, *index_type;
12242 struct type **range_types = NULL;
12243 struct attribute *attr;
12244 int ndim = 0;
12245 struct cleanup *back_to;
12246 const char *name;
12247
12248 element_type = die_type (die, cu);
12249
12250 /* The die_type call above may have already set the type for this DIE. */
12251 type = get_die_type (die, cu);
12252 if (type)
12253 return type;
12254
12255 /* Irix 6.2 native cc creates array types without children for
12256 arrays with unspecified length. */
12257 if (die->child == NULL)
12258 {
12259 index_type = objfile_type (objfile)->builtin_int;
12260 range_type = create_range_type (NULL, index_type, 0, -1);
12261 type = create_array_type (NULL, element_type, range_type);
12262 return set_die_type (die, type, cu);
12263 }
12264
12265 back_to = make_cleanup (null_cleanup, NULL);
12266 child_die = die->child;
12267 while (child_die && child_die->tag)
12268 {
12269 if (child_die->tag == DW_TAG_subrange_type)
12270 {
12271 struct type *child_type = read_type_die (child_die, cu);
12272
12273 if (child_type != NULL)
12274 {
12275 /* The range type was succesfully read. Save it for the
12276 array type creation. */
12277 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12278 {
12279 range_types = (struct type **)
12280 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12281 * sizeof (struct type *));
12282 if (ndim == 0)
12283 make_cleanup (free_current_contents, &range_types);
12284 }
12285 range_types[ndim++] = child_type;
12286 }
12287 }
12288 child_die = sibling_die (child_die);
12289 }
12290
12291 /* Dwarf2 dimensions are output from left to right, create the
12292 necessary array types in backwards order. */
12293
12294 type = element_type;
12295
12296 if (read_array_order (die, cu) == DW_ORD_col_major)
12297 {
12298 int i = 0;
12299
12300 while (i < ndim)
12301 type = create_array_type (NULL, type, range_types[i++]);
12302 }
12303 else
12304 {
12305 while (ndim-- > 0)
12306 type = create_array_type (NULL, type, range_types[ndim]);
12307 }
12308
12309 /* Understand Dwarf2 support for vector types (like they occur on
12310 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12311 array type. This is not part of the Dwarf2/3 standard yet, but a
12312 custom vendor extension. The main difference between a regular
12313 array and the vector variant is that vectors are passed by value
12314 to functions. */
12315 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12316 if (attr)
12317 make_vector_type (type);
12318
12319 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12320 implementation may choose to implement triple vectors using this
12321 attribute. */
12322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12323 if (attr)
12324 {
12325 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12326 TYPE_LENGTH (type) = DW_UNSND (attr);
12327 else
12328 complaint (&symfile_complaints,
12329 _("DW_AT_byte_size for array type smaller "
12330 "than the total size of elements"));
12331 }
12332
12333 name = dwarf2_name (die, cu);
12334 if (name)
12335 TYPE_NAME (type) = name;
12336
12337 /* Install the type in the die. */
12338 set_die_type (die, type, cu);
12339
12340 /* set_die_type should be already done. */
12341 set_descriptive_type (type, die, cu);
12342
12343 do_cleanups (back_to);
12344
12345 return type;
12346 }
12347
12348 static enum dwarf_array_dim_ordering
12349 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12350 {
12351 struct attribute *attr;
12352
12353 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12354
12355 if (attr) return DW_SND (attr);
12356
12357 /* GNU F77 is a special case, as at 08/2004 array type info is the
12358 opposite order to the dwarf2 specification, but data is still
12359 laid out as per normal fortran.
12360
12361 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12362 version checking. */
12363
12364 if (cu->language == language_fortran
12365 && cu->producer && strstr (cu->producer, "GNU F77"))
12366 {
12367 return DW_ORD_row_major;
12368 }
12369
12370 switch (cu->language_defn->la_array_ordering)
12371 {
12372 case array_column_major:
12373 return DW_ORD_col_major;
12374 case array_row_major:
12375 default:
12376 return DW_ORD_row_major;
12377 };
12378 }
12379
12380 /* Extract all information from a DW_TAG_set_type DIE and put it in
12381 the DIE's type field. */
12382
12383 static struct type *
12384 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12385 {
12386 struct type *domain_type, *set_type;
12387 struct attribute *attr;
12388
12389 domain_type = die_type (die, cu);
12390
12391 /* The die_type call above may have already set the type for this DIE. */
12392 set_type = get_die_type (die, cu);
12393 if (set_type)
12394 return set_type;
12395
12396 set_type = create_set_type (NULL, domain_type);
12397
12398 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12399 if (attr)
12400 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12401
12402 return set_die_type (die, set_type, cu);
12403 }
12404
12405 /* A helper for read_common_block that creates a locexpr baton.
12406 SYM is the symbol which we are marking as computed.
12407 COMMON_DIE is the DIE for the common block.
12408 COMMON_LOC is the location expression attribute for the common
12409 block itself.
12410 MEMBER_LOC is the location expression attribute for the particular
12411 member of the common block that we are processing.
12412 CU is the CU from which the above come. */
12413
12414 static void
12415 mark_common_block_symbol_computed (struct symbol *sym,
12416 struct die_info *common_die,
12417 struct attribute *common_loc,
12418 struct attribute *member_loc,
12419 struct dwarf2_cu *cu)
12420 {
12421 struct objfile *objfile = dwarf2_per_objfile->objfile;
12422 struct dwarf2_locexpr_baton *baton;
12423 gdb_byte *ptr;
12424 unsigned int cu_off;
12425 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12426 LONGEST offset = 0;
12427
12428 gdb_assert (common_loc && member_loc);
12429 gdb_assert (attr_form_is_block (common_loc));
12430 gdb_assert (attr_form_is_block (member_loc)
12431 || attr_form_is_constant (member_loc));
12432
12433 baton = obstack_alloc (&objfile->objfile_obstack,
12434 sizeof (struct dwarf2_locexpr_baton));
12435 baton->per_cu = cu->per_cu;
12436 gdb_assert (baton->per_cu);
12437
12438 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12439
12440 if (attr_form_is_constant (member_loc))
12441 {
12442 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12443 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12444 }
12445 else
12446 baton->size += DW_BLOCK (member_loc)->size;
12447
12448 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12449 baton->data = ptr;
12450
12451 *ptr++ = DW_OP_call4;
12452 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12453 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12454 ptr += 4;
12455
12456 if (attr_form_is_constant (member_loc))
12457 {
12458 *ptr++ = DW_OP_addr;
12459 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12460 ptr += cu->header.addr_size;
12461 }
12462 else
12463 {
12464 /* We have to copy the data here, because DW_OP_call4 will only
12465 use a DW_AT_location attribute. */
12466 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12467 ptr += DW_BLOCK (member_loc)->size;
12468 }
12469
12470 *ptr++ = DW_OP_plus;
12471 gdb_assert (ptr - baton->data == baton->size);
12472
12473 SYMBOL_LOCATION_BATON (sym) = baton;
12474 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12475 }
12476
12477 /* Create appropriate locally-scoped variables for all the
12478 DW_TAG_common_block entries. Also create a struct common_block
12479 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12480 is used to sepate the common blocks name namespace from regular
12481 variable names. */
12482
12483 static void
12484 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12485 {
12486 struct attribute *attr;
12487
12488 attr = dwarf2_attr (die, DW_AT_location, cu);
12489 if (attr)
12490 {
12491 /* Support the .debug_loc offsets. */
12492 if (attr_form_is_block (attr))
12493 {
12494 /* Ok. */
12495 }
12496 else if (attr_form_is_section_offset (attr))
12497 {
12498 dwarf2_complex_location_expr_complaint ();
12499 attr = NULL;
12500 }
12501 else
12502 {
12503 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12504 "common block member");
12505 attr = NULL;
12506 }
12507 }
12508
12509 if (die->child != NULL)
12510 {
12511 struct objfile *objfile = cu->objfile;
12512 struct die_info *child_die;
12513 size_t n_entries = 0, size;
12514 struct common_block *common_block;
12515 struct symbol *sym;
12516
12517 for (child_die = die->child;
12518 child_die && child_die->tag;
12519 child_die = sibling_die (child_die))
12520 ++n_entries;
12521
12522 size = (sizeof (struct common_block)
12523 + (n_entries - 1) * sizeof (struct symbol *));
12524 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12525 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12526 common_block->n_entries = 0;
12527
12528 for (child_die = die->child;
12529 child_die && child_die->tag;
12530 child_die = sibling_die (child_die))
12531 {
12532 /* Create the symbol in the DW_TAG_common_block block in the current
12533 symbol scope. */
12534 sym = new_symbol (child_die, NULL, cu);
12535 if (sym != NULL)
12536 {
12537 struct attribute *member_loc;
12538
12539 common_block->contents[common_block->n_entries++] = sym;
12540
12541 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12542 cu);
12543 if (member_loc)
12544 {
12545 /* GDB has handled this for a long time, but it is
12546 not specified by DWARF. It seems to have been
12547 emitted by gfortran at least as recently as:
12548 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12549 complaint (&symfile_complaints,
12550 _("Variable in common block has "
12551 "DW_AT_data_member_location "
12552 "- DIE at 0x%x [in module %s]"),
12553 child_die->offset.sect_off, cu->objfile->name);
12554
12555 if (attr_form_is_section_offset (member_loc))
12556 dwarf2_complex_location_expr_complaint ();
12557 else if (attr_form_is_constant (member_loc)
12558 || attr_form_is_block (member_loc))
12559 {
12560 if (attr)
12561 mark_common_block_symbol_computed (sym, die, attr,
12562 member_loc, cu);
12563 }
12564 else
12565 dwarf2_complex_location_expr_complaint ();
12566 }
12567 }
12568 }
12569
12570 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12571 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12572 }
12573 }
12574
12575 /* Create a type for a C++ namespace. */
12576
12577 static struct type *
12578 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12579 {
12580 struct objfile *objfile = cu->objfile;
12581 const char *previous_prefix, *name;
12582 int is_anonymous;
12583 struct type *type;
12584
12585 /* For extensions, reuse the type of the original namespace. */
12586 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12587 {
12588 struct die_info *ext_die;
12589 struct dwarf2_cu *ext_cu = cu;
12590
12591 ext_die = dwarf2_extension (die, &ext_cu);
12592 type = read_type_die (ext_die, ext_cu);
12593
12594 /* EXT_CU may not be the same as CU.
12595 Ensure TYPE is recorded with CU in die_type_hash. */
12596 return set_die_type (die, type, cu);
12597 }
12598
12599 name = namespace_name (die, &is_anonymous, cu);
12600
12601 /* Now build the name of the current namespace. */
12602
12603 previous_prefix = determine_prefix (die, cu);
12604 if (previous_prefix[0] != '\0')
12605 name = typename_concat (&objfile->objfile_obstack,
12606 previous_prefix, name, 0, cu);
12607
12608 /* Create the type. */
12609 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12610 objfile);
12611 TYPE_NAME (type) = name;
12612 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12613
12614 return set_die_type (die, type, cu);
12615 }
12616
12617 /* Read a C++ namespace. */
12618
12619 static void
12620 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12621 {
12622 struct objfile *objfile = cu->objfile;
12623 int is_anonymous;
12624
12625 /* Add a symbol associated to this if we haven't seen the namespace
12626 before. Also, add a using directive if it's an anonymous
12627 namespace. */
12628
12629 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12630 {
12631 struct type *type;
12632
12633 type = read_type_die (die, cu);
12634 new_symbol (die, type, cu);
12635
12636 namespace_name (die, &is_anonymous, cu);
12637 if (is_anonymous)
12638 {
12639 const char *previous_prefix = determine_prefix (die, cu);
12640
12641 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12642 NULL, NULL, 0, &objfile->objfile_obstack);
12643 }
12644 }
12645
12646 if (die->child != NULL)
12647 {
12648 struct die_info *child_die = die->child;
12649
12650 while (child_die && child_die->tag)
12651 {
12652 process_die (child_die, cu);
12653 child_die = sibling_die (child_die);
12654 }
12655 }
12656 }
12657
12658 /* Read a Fortran module as type. This DIE can be only a declaration used for
12659 imported module. Still we need that type as local Fortran "use ... only"
12660 declaration imports depend on the created type in determine_prefix. */
12661
12662 static struct type *
12663 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12664 {
12665 struct objfile *objfile = cu->objfile;
12666 const char *module_name;
12667 struct type *type;
12668
12669 module_name = dwarf2_name (die, cu);
12670 if (!module_name)
12671 complaint (&symfile_complaints,
12672 _("DW_TAG_module has no name, offset 0x%x"),
12673 die->offset.sect_off);
12674 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12675
12676 /* determine_prefix uses TYPE_TAG_NAME. */
12677 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12678
12679 return set_die_type (die, type, cu);
12680 }
12681
12682 /* Read a Fortran module. */
12683
12684 static void
12685 read_module (struct die_info *die, struct dwarf2_cu *cu)
12686 {
12687 struct die_info *child_die = die->child;
12688
12689 while (child_die && child_die->tag)
12690 {
12691 process_die (child_die, cu);
12692 child_die = sibling_die (child_die);
12693 }
12694 }
12695
12696 /* Return the name of the namespace represented by DIE. Set
12697 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12698 namespace. */
12699
12700 static const char *
12701 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12702 {
12703 struct die_info *current_die;
12704 const char *name = NULL;
12705
12706 /* Loop through the extensions until we find a name. */
12707
12708 for (current_die = die;
12709 current_die != NULL;
12710 current_die = dwarf2_extension (die, &cu))
12711 {
12712 name = dwarf2_name (current_die, cu);
12713 if (name != NULL)
12714 break;
12715 }
12716
12717 /* Is it an anonymous namespace? */
12718
12719 *is_anonymous = (name == NULL);
12720 if (*is_anonymous)
12721 name = CP_ANONYMOUS_NAMESPACE_STR;
12722
12723 return name;
12724 }
12725
12726 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12727 the user defined type vector. */
12728
12729 static struct type *
12730 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12731 {
12732 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12733 struct comp_unit_head *cu_header = &cu->header;
12734 struct type *type;
12735 struct attribute *attr_byte_size;
12736 struct attribute *attr_address_class;
12737 int byte_size, addr_class;
12738 struct type *target_type;
12739
12740 target_type = die_type (die, cu);
12741
12742 /* The die_type call above may have already set the type for this DIE. */
12743 type = get_die_type (die, cu);
12744 if (type)
12745 return type;
12746
12747 type = lookup_pointer_type (target_type);
12748
12749 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12750 if (attr_byte_size)
12751 byte_size = DW_UNSND (attr_byte_size);
12752 else
12753 byte_size = cu_header->addr_size;
12754
12755 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12756 if (attr_address_class)
12757 addr_class = DW_UNSND (attr_address_class);
12758 else
12759 addr_class = DW_ADDR_none;
12760
12761 /* If the pointer size or address class is different than the
12762 default, create a type variant marked as such and set the
12763 length accordingly. */
12764 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12765 {
12766 if (gdbarch_address_class_type_flags_p (gdbarch))
12767 {
12768 int type_flags;
12769
12770 type_flags = gdbarch_address_class_type_flags
12771 (gdbarch, byte_size, addr_class);
12772 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12773 == 0);
12774 type = make_type_with_address_space (type, type_flags);
12775 }
12776 else if (TYPE_LENGTH (type) != byte_size)
12777 {
12778 complaint (&symfile_complaints,
12779 _("invalid pointer size %d"), byte_size);
12780 }
12781 else
12782 {
12783 /* Should we also complain about unhandled address classes? */
12784 }
12785 }
12786
12787 TYPE_LENGTH (type) = byte_size;
12788 return set_die_type (die, type, cu);
12789 }
12790
12791 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12792 the user defined type vector. */
12793
12794 static struct type *
12795 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12796 {
12797 struct type *type;
12798 struct type *to_type;
12799 struct type *domain;
12800
12801 to_type = die_type (die, cu);
12802 domain = die_containing_type (die, cu);
12803
12804 /* The calls above may have already set the type for this DIE. */
12805 type = get_die_type (die, cu);
12806 if (type)
12807 return type;
12808
12809 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12810 type = lookup_methodptr_type (to_type);
12811 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12812 {
12813 struct type *new_type = alloc_type (cu->objfile);
12814
12815 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12816 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12817 TYPE_VARARGS (to_type));
12818 type = lookup_methodptr_type (new_type);
12819 }
12820 else
12821 type = lookup_memberptr_type (to_type, domain);
12822
12823 return set_die_type (die, type, cu);
12824 }
12825
12826 /* Extract all information from a DW_TAG_reference_type DIE and add to
12827 the user defined type vector. */
12828
12829 static struct type *
12830 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12831 {
12832 struct comp_unit_head *cu_header = &cu->header;
12833 struct type *type, *target_type;
12834 struct attribute *attr;
12835
12836 target_type = die_type (die, cu);
12837
12838 /* The die_type call above may have already set the type for this DIE. */
12839 type = get_die_type (die, cu);
12840 if (type)
12841 return type;
12842
12843 type = lookup_reference_type (target_type);
12844 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12845 if (attr)
12846 {
12847 TYPE_LENGTH (type) = DW_UNSND (attr);
12848 }
12849 else
12850 {
12851 TYPE_LENGTH (type) = cu_header->addr_size;
12852 }
12853 return set_die_type (die, type, cu);
12854 }
12855
12856 static struct type *
12857 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12858 {
12859 struct type *base_type, *cv_type;
12860
12861 base_type = die_type (die, cu);
12862
12863 /* The die_type call above may have already set the type for this DIE. */
12864 cv_type = get_die_type (die, cu);
12865 if (cv_type)
12866 return cv_type;
12867
12868 /* In case the const qualifier is applied to an array type, the element type
12869 is so qualified, not the array type (section 6.7.3 of C99). */
12870 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12871 {
12872 struct type *el_type, *inner_array;
12873
12874 base_type = copy_type (base_type);
12875 inner_array = base_type;
12876
12877 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12878 {
12879 TYPE_TARGET_TYPE (inner_array) =
12880 copy_type (TYPE_TARGET_TYPE (inner_array));
12881 inner_array = TYPE_TARGET_TYPE (inner_array);
12882 }
12883
12884 el_type = TYPE_TARGET_TYPE (inner_array);
12885 TYPE_TARGET_TYPE (inner_array) =
12886 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12887
12888 return set_die_type (die, base_type, cu);
12889 }
12890
12891 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12892 return set_die_type (die, cv_type, cu);
12893 }
12894
12895 static struct type *
12896 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12897 {
12898 struct type *base_type, *cv_type;
12899
12900 base_type = die_type (die, cu);
12901
12902 /* The die_type call above may have already set the type for this DIE. */
12903 cv_type = get_die_type (die, cu);
12904 if (cv_type)
12905 return cv_type;
12906
12907 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12908 return set_die_type (die, cv_type, cu);
12909 }
12910
12911 /* Handle DW_TAG_restrict_type. */
12912
12913 static struct type *
12914 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12915 {
12916 struct type *base_type, *cv_type;
12917
12918 base_type = die_type (die, cu);
12919
12920 /* The die_type call above may have already set the type for this DIE. */
12921 cv_type = get_die_type (die, cu);
12922 if (cv_type)
12923 return cv_type;
12924
12925 cv_type = make_restrict_type (base_type);
12926 return set_die_type (die, cv_type, cu);
12927 }
12928
12929 /* Extract all information from a DW_TAG_string_type DIE and add to
12930 the user defined type vector. It isn't really a user defined type,
12931 but it behaves like one, with other DIE's using an AT_user_def_type
12932 attribute to reference it. */
12933
12934 static struct type *
12935 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12936 {
12937 struct objfile *objfile = cu->objfile;
12938 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12939 struct type *type, *range_type, *index_type, *char_type;
12940 struct attribute *attr;
12941 unsigned int length;
12942
12943 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12944 if (attr)
12945 {
12946 length = DW_UNSND (attr);
12947 }
12948 else
12949 {
12950 /* Check for the DW_AT_byte_size attribute. */
12951 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12952 if (attr)
12953 {
12954 length = DW_UNSND (attr);
12955 }
12956 else
12957 {
12958 length = 1;
12959 }
12960 }
12961
12962 index_type = objfile_type (objfile)->builtin_int;
12963 range_type = create_range_type (NULL, index_type, 1, length);
12964 char_type = language_string_char_type (cu->language_defn, gdbarch);
12965 type = create_string_type (NULL, char_type, range_type);
12966
12967 return set_die_type (die, type, cu);
12968 }
12969
12970 /* Assuming that DIE corresponds to a function, returns nonzero
12971 if the function is prototyped. */
12972
12973 static int
12974 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
12975 {
12976 struct attribute *attr;
12977
12978 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12979 if (attr && (DW_UNSND (attr) != 0))
12980 return 1;
12981
12982 /* The DWARF standard implies that the DW_AT_prototyped attribute
12983 is only meaninful for C, but the concept also extends to other
12984 languages that allow unprototyped functions (Eg: Objective C).
12985 For all other languages, assume that functions are always
12986 prototyped. */
12987 if (cu->language != language_c
12988 && cu->language != language_objc
12989 && cu->language != language_opencl)
12990 return 1;
12991
12992 /* RealView does not emit DW_AT_prototyped. We can not distinguish
12993 prototyped and unprototyped functions; default to prototyped,
12994 since that is more common in modern code (and RealView warns
12995 about unprototyped functions). */
12996 if (producer_is_realview (cu->producer))
12997 return 1;
12998
12999 return 0;
13000 }
13001
13002 /* Handle DIES due to C code like:
13003
13004 struct foo
13005 {
13006 int (*funcp)(int a, long l);
13007 int b;
13008 };
13009
13010 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13011
13012 static struct type *
13013 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13014 {
13015 struct objfile *objfile = cu->objfile;
13016 struct type *type; /* Type that this function returns. */
13017 struct type *ftype; /* Function that returns above type. */
13018 struct attribute *attr;
13019
13020 type = die_type (die, cu);
13021
13022 /* The die_type call above may have already set the type for this DIE. */
13023 ftype = get_die_type (die, cu);
13024 if (ftype)
13025 return ftype;
13026
13027 ftype = lookup_function_type (type);
13028
13029 if (prototyped_function_p (die, cu))
13030 TYPE_PROTOTYPED (ftype) = 1;
13031
13032 /* Store the calling convention in the type if it's available in
13033 the subroutine die. Otherwise set the calling convention to
13034 the default value DW_CC_normal. */
13035 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13036 if (attr)
13037 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13038 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13039 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13040 else
13041 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13042
13043 /* We need to add the subroutine type to the die immediately so
13044 we don't infinitely recurse when dealing with parameters
13045 declared as the same subroutine type. */
13046 set_die_type (die, ftype, cu);
13047
13048 if (die->child != NULL)
13049 {
13050 struct type *void_type = objfile_type (objfile)->builtin_void;
13051 struct die_info *child_die;
13052 int nparams, iparams;
13053
13054 /* Count the number of parameters.
13055 FIXME: GDB currently ignores vararg functions, but knows about
13056 vararg member functions. */
13057 nparams = 0;
13058 child_die = die->child;
13059 while (child_die && child_die->tag)
13060 {
13061 if (child_die->tag == DW_TAG_formal_parameter)
13062 nparams++;
13063 else if (child_die->tag == DW_TAG_unspecified_parameters)
13064 TYPE_VARARGS (ftype) = 1;
13065 child_die = sibling_die (child_die);
13066 }
13067
13068 /* Allocate storage for parameters and fill them in. */
13069 TYPE_NFIELDS (ftype) = nparams;
13070 TYPE_FIELDS (ftype) = (struct field *)
13071 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13072
13073 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13074 even if we error out during the parameters reading below. */
13075 for (iparams = 0; iparams < nparams; iparams++)
13076 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13077
13078 iparams = 0;
13079 child_die = die->child;
13080 while (child_die && child_die->tag)
13081 {
13082 if (child_die->tag == DW_TAG_formal_parameter)
13083 {
13084 struct type *arg_type;
13085
13086 /* DWARF version 2 has no clean way to discern C++
13087 static and non-static member functions. G++ helps
13088 GDB by marking the first parameter for non-static
13089 member functions (which is the this pointer) as
13090 artificial. We pass this information to
13091 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13092
13093 DWARF version 3 added DW_AT_object_pointer, which GCC
13094 4.5 does not yet generate. */
13095 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13096 if (attr)
13097 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13098 else
13099 {
13100 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13101
13102 /* GCC/43521: In java, the formal parameter
13103 "this" is sometimes not marked with DW_AT_artificial. */
13104 if (cu->language == language_java)
13105 {
13106 const char *name = dwarf2_name (child_die, cu);
13107
13108 if (name && !strcmp (name, "this"))
13109 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13110 }
13111 }
13112 arg_type = die_type (child_die, cu);
13113
13114 /* RealView does not mark THIS as const, which the testsuite
13115 expects. GCC marks THIS as const in method definitions,
13116 but not in the class specifications (GCC PR 43053). */
13117 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13118 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13119 {
13120 int is_this = 0;
13121 struct dwarf2_cu *arg_cu = cu;
13122 const char *name = dwarf2_name (child_die, cu);
13123
13124 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13125 if (attr)
13126 {
13127 /* If the compiler emits this, use it. */
13128 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13129 is_this = 1;
13130 }
13131 else if (name && strcmp (name, "this") == 0)
13132 /* Function definitions will have the argument names. */
13133 is_this = 1;
13134 else if (name == NULL && iparams == 0)
13135 /* Declarations may not have the names, so like
13136 elsewhere in GDB, assume an artificial first
13137 argument is "this". */
13138 is_this = 1;
13139
13140 if (is_this)
13141 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13142 arg_type, 0);
13143 }
13144
13145 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13146 iparams++;
13147 }
13148 child_die = sibling_die (child_die);
13149 }
13150 }
13151
13152 return ftype;
13153 }
13154
13155 static struct type *
13156 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13157 {
13158 struct objfile *objfile = cu->objfile;
13159 const char *name = NULL;
13160 struct type *this_type, *target_type;
13161
13162 name = dwarf2_full_name (NULL, die, cu);
13163 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13164 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13165 TYPE_NAME (this_type) = name;
13166 set_die_type (die, this_type, cu);
13167 target_type = die_type (die, cu);
13168 if (target_type != this_type)
13169 TYPE_TARGET_TYPE (this_type) = target_type;
13170 else
13171 {
13172 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13173 spec and cause infinite loops in GDB. */
13174 complaint (&symfile_complaints,
13175 _("Self-referential DW_TAG_typedef "
13176 "- DIE at 0x%x [in module %s]"),
13177 die->offset.sect_off, objfile->name);
13178 TYPE_TARGET_TYPE (this_type) = NULL;
13179 }
13180 return this_type;
13181 }
13182
13183 /* Find a representation of a given base type and install
13184 it in the TYPE field of the die. */
13185
13186 static struct type *
13187 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13188 {
13189 struct objfile *objfile = cu->objfile;
13190 struct type *type;
13191 struct attribute *attr;
13192 int encoding = 0, size = 0;
13193 const char *name;
13194 enum type_code code = TYPE_CODE_INT;
13195 int type_flags = 0;
13196 struct type *target_type = NULL;
13197
13198 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13199 if (attr)
13200 {
13201 encoding = DW_UNSND (attr);
13202 }
13203 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13204 if (attr)
13205 {
13206 size = DW_UNSND (attr);
13207 }
13208 name = dwarf2_name (die, cu);
13209 if (!name)
13210 {
13211 complaint (&symfile_complaints,
13212 _("DW_AT_name missing from DW_TAG_base_type"));
13213 }
13214
13215 switch (encoding)
13216 {
13217 case DW_ATE_address:
13218 /* Turn DW_ATE_address into a void * pointer. */
13219 code = TYPE_CODE_PTR;
13220 type_flags |= TYPE_FLAG_UNSIGNED;
13221 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13222 break;
13223 case DW_ATE_boolean:
13224 code = TYPE_CODE_BOOL;
13225 type_flags |= TYPE_FLAG_UNSIGNED;
13226 break;
13227 case DW_ATE_complex_float:
13228 code = TYPE_CODE_COMPLEX;
13229 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13230 break;
13231 case DW_ATE_decimal_float:
13232 code = TYPE_CODE_DECFLOAT;
13233 break;
13234 case DW_ATE_float:
13235 code = TYPE_CODE_FLT;
13236 break;
13237 case DW_ATE_signed:
13238 break;
13239 case DW_ATE_unsigned:
13240 type_flags |= TYPE_FLAG_UNSIGNED;
13241 if (cu->language == language_fortran
13242 && name
13243 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13244 code = TYPE_CODE_CHAR;
13245 break;
13246 case DW_ATE_signed_char:
13247 if (cu->language == language_ada || cu->language == language_m2
13248 || cu->language == language_pascal
13249 || cu->language == language_fortran)
13250 code = TYPE_CODE_CHAR;
13251 break;
13252 case DW_ATE_unsigned_char:
13253 if (cu->language == language_ada || cu->language == language_m2
13254 || cu->language == language_pascal
13255 || cu->language == language_fortran)
13256 code = TYPE_CODE_CHAR;
13257 type_flags |= TYPE_FLAG_UNSIGNED;
13258 break;
13259 case DW_ATE_UTF:
13260 /* We just treat this as an integer and then recognize the
13261 type by name elsewhere. */
13262 break;
13263
13264 default:
13265 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13266 dwarf_type_encoding_name (encoding));
13267 break;
13268 }
13269
13270 type = init_type (code, size, type_flags, NULL, objfile);
13271 TYPE_NAME (type) = name;
13272 TYPE_TARGET_TYPE (type) = target_type;
13273
13274 if (name && strcmp (name, "char") == 0)
13275 TYPE_NOSIGN (type) = 1;
13276
13277 return set_die_type (die, type, cu);
13278 }
13279
13280 /* Read the given DW_AT_subrange DIE. */
13281
13282 static struct type *
13283 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13284 {
13285 struct type *base_type, *orig_base_type;
13286 struct type *range_type;
13287 struct attribute *attr;
13288 LONGEST low, high;
13289 int low_default_is_valid;
13290 const char *name;
13291 LONGEST negative_mask;
13292
13293 orig_base_type = die_type (die, cu);
13294 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13295 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13296 creating the range type, but we use the result of check_typedef
13297 when examining properties of the type. */
13298 base_type = check_typedef (orig_base_type);
13299
13300 /* The die_type call above may have already set the type for this DIE. */
13301 range_type = get_die_type (die, cu);
13302 if (range_type)
13303 return range_type;
13304
13305 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13306 omitting DW_AT_lower_bound. */
13307 switch (cu->language)
13308 {
13309 case language_c:
13310 case language_cplus:
13311 low = 0;
13312 low_default_is_valid = 1;
13313 break;
13314 case language_fortran:
13315 low = 1;
13316 low_default_is_valid = 1;
13317 break;
13318 case language_d:
13319 case language_java:
13320 case language_objc:
13321 low = 0;
13322 low_default_is_valid = (cu->header.version >= 4);
13323 break;
13324 case language_ada:
13325 case language_m2:
13326 case language_pascal:
13327 low = 1;
13328 low_default_is_valid = (cu->header.version >= 4);
13329 break;
13330 default:
13331 low = 0;
13332 low_default_is_valid = 0;
13333 break;
13334 }
13335
13336 /* FIXME: For variable sized arrays either of these could be
13337 a variable rather than a constant value. We'll allow it,
13338 but we don't know how to handle it. */
13339 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13340 if (attr)
13341 low = dwarf2_get_attr_constant_value (attr, low);
13342 else if (!low_default_is_valid)
13343 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13344 "- DIE at 0x%x [in module %s]"),
13345 die->offset.sect_off, cu->objfile->name);
13346
13347 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13348 if (attr)
13349 {
13350 if (attr_form_is_block (attr) || is_ref_attr (attr))
13351 {
13352 /* GCC encodes arrays with unspecified or dynamic length
13353 with a DW_FORM_block1 attribute or a reference attribute.
13354 FIXME: GDB does not yet know how to handle dynamic
13355 arrays properly, treat them as arrays with unspecified
13356 length for now.
13357
13358 FIXME: jimb/2003-09-22: GDB does not really know
13359 how to handle arrays of unspecified length
13360 either; we just represent them as zero-length
13361 arrays. Choose an appropriate upper bound given
13362 the lower bound we've computed above. */
13363 high = low - 1;
13364 }
13365 else
13366 high = dwarf2_get_attr_constant_value (attr, 1);
13367 }
13368 else
13369 {
13370 attr = dwarf2_attr (die, DW_AT_count, cu);
13371 if (attr)
13372 {
13373 int count = dwarf2_get_attr_constant_value (attr, 1);
13374 high = low + count - 1;
13375 }
13376 else
13377 {
13378 /* Unspecified array length. */
13379 high = low - 1;
13380 }
13381 }
13382
13383 /* Dwarf-2 specifications explicitly allows to create subrange types
13384 without specifying a base type.
13385 In that case, the base type must be set to the type of
13386 the lower bound, upper bound or count, in that order, if any of these
13387 three attributes references an object that has a type.
13388 If no base type is found, the Dwarf-2 specifications say that
13389 a signed integer type of size equal to the size of an address should
13390 be used.
13391 For the following C code: `extern char gdb_int [];'
13392 GCC produces an empty range DIE.
13393 FIXME: muller/2010-05-28: Possible references to object for low bound,
13394 high bound or count are not yet handled by this code. */
13395 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13396 {
13397 struct objfile *objfile = cu->objfile;
13398 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13399 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13400 struct type *int_type = objfile_type (objfile)->builtin_int;
13401
13402 /* Test "int", "long int", and "long long int" objfile types,
13403 and select the first one having a size above or equal to the
13404 architecture address size. */
13405 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13406 base_type = int_type;
13407 else
13408 {
13409 int_type = objfile_type (objfile)->builtin_long;
13410 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13411 base_type = int_type;
13412 else
13413 {
13414 int_type = objfile_type (objfile)->builtin_long_long;
13415 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13416 base_type = int_type;
13417 }
13418 }
13419 }
13420
13421 negative_mask =
13422 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13423 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13424 low |= negative_mask;
13425 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13426 high |= negative_mask;
13427
13428 range_type = create_range_type (NULL, orig_base_type, low, high);
13429
13430 /* Mark arrays with dynamic length at least as an array of unspecified
13431 length. GDB could check the boundary but before it gets implemented at
13432 least allow accessing the array elements. */
13433 if (attr && attr_form_is_block (attr))
13434 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13435
13436 /* Ada expects an empty array on no boundary attributes. */
13437 if (attr == NULL && cu->language != language_ada)
13438 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13439
13440 name = dwarf2_name (die, cu);
13441 if (name)
13442 TYPE_NAME (range_type) = name;
13443
13444 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13445 if (attr)
13446 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13447
13448 set_die_type (die, range_type, cu);
13449
13450 /* set_die_type should be already done. */
13451 set_descriptive_type (range_type, die, cu);
13452
13453 return range_type;
13454 }
13455
13456 static struct type *
13457 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13458 {
13459 struct type *type;
13460
13461 /* For now, we only support the C meaning of an unspecified type: void. */
13462
13463 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13464 TYPE_NAME (type) = dwarf2_name (die, cu);
13465
13466 return set_die_type (die, type, cu);
13467 }
13468
13469 /* Read a single die and all its descendents. Set the die's sibling
13470 field to NULL; set other fields in the die correctly, and set all
13471 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13472 location of the info_ptr after reading all of those dies. PARENT
13473 is the parent of the die in question. */
13474
13475 static struct die_info *
13476 read_die_and_children (const struct die_reader_specs *reader,
13477 const gdb_byte *info_ptr,
13478 const gdb_byte **new_info_ptr,
13479 struct die_info *parent)
13480 {
13481 struct die_info *die;
13482 const gdb_byte *cur_ptr;
13483 int has_children;
13484
13485 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13486 if (die == NULL)
13487 {
13488 *new_info_ptr = cur_ptr;
13489 return NULL;
13490 }
13491 store_in_ref_table (die, reader->cu);
13492
13493 if (has_children)
13494 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13495 else
13496 {
13497 die->child = NULL;
13498 *new_info_ptr = cur_ptr;
13499 }
13500
13501 die->sibling = NULL;
13502 die->parent = parent;
13503 return die;
13504 }
13505
13506 /* Read a die, all of its descendents, and all of its siblings; set
13507 all of the fields of all of the dies correctly. Arguments are as
13508 in read_die_and_children. */
13509
13510 static struct die_info *
13511 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13512 const gdb_byte *info_ptr,
13513 const gdb_byte **new_info_ptr,
13514 struct die_info *parent)
13515 {
13516 struct die_info *first_die, *last_sibling;
13517 const gdb_byte *cur_ptr;
13518
13519 cur_ptr = info_ptr;
13520 first_die = last_sibling = NULL;
13521
13522 while (1)
13523 {
13524 struct die_info *die
13525 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13526
13527 if (die == NULL)
13528 {
13529 *new_info_ptr = cur_ptr;
13530 return first_die;
13531 }
13532
13533 if (!first_die)
13534 first_die = die;
13535 else
13536 last_sibling->sibling = die;
13537
13538 last_sibling = die;
13539 }
13540 }
13541
13542 /* Read a die, all of its descendents, and all of its siblings; set
13543 all of the fields of all of the dies correctly. Arguments are as
13544 in read_die_and_children.
13545 This the main entry point for reading a DIE and all its children. */
13546
13547 static struct die_info *
13548 read_die_and_siblings (const struct die_reader_specs *reader,
13549 const gdb_byte *info_ptr,
13550 const gdb_byte **new_info_ptr,
13551 struct die_info *parent)
13552 {
13553 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13554 new_info_ptr, parent);
13555
13556 if (dwarf2_die_debug)
13557 {
13558 fprintf_unfiltered (gdb_stdlog,
13559 "Read die from %s@0x%x of %s:\n",
13560 bfd_section_name (reader->abfd,
13561 reader->die_section->asection),
13562 (unsigned) (info_ptr - reader->die_section->buffer),
13563 bfd_get_filename (reader->abfd));
13564 dump_die (die, dwarf2_die_debug);
13565 }
13566
13567 return die;
13568 }
13569
13570 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13571 attributes.
13572 The caller is responsible for filling in the extra attributes
13573 and updating (*DIEP)->num_attrs.
13574 Set DIEP to point to a newly allocated die with its information,
13575 except for its child, sibling, and parent fields.
13576 Set HAS_CHILDREN to tell whether the die has children or not. */
13577
13578 static const gdb_byte *
13579 read_full_die_1 (const struct die_reader_specs *reader,
13580 struct die_info **diep, const gdb_byte *info_ptr,
13581 int *has_children, int num_extra_attrs)
13582 {
13583 unsigned int abbrev_number, bytes_read, i;
13584 sect_offset offset;
13585 struct abbrev_info *abbrev;
13586 struct die_info *die;
13587 struct dwarf2_cu *cu = reader->cu;
13588 bfd *abfd = reader->abfd;
13589
13590 offset.sect_off = info_ptr - reader->buffer;
13591 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13592 info_ptr += bytes_read;
13593 if (!abbrev_number)
13594 {
13595 *diep = NULL;
13596 *has_children = 0;
13597 return info_ptr;
13598 }
13599
13600 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13601 if (!abbrev)
13602 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13603 abbrev_number,
13604 bfd_get_filename (abfd));
13605
13606 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13607 die->offset = offset;
13608 die->tag = abbrev->tag;
13609 die->abbrev = abbrev_number;
13610
13611 /* Make the result usable.
13612 The caller needs to update num_attrs after adding the extra
13613 attributes. */
13614 die->num_attrs = abbrev->num_attrs;
13615
13616 for (i = 0; i < abbrev->num_attrs; ++i)
13617 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13618 info_ptr);
13619
13620 *diep = die;
13621 *has_children = abbrev->has_children;
13622 return info_ptr;
13623 }
13624
13625 /* Read a die and all its attributes.
13626 Set DIEP to point to a newly allocated die with its information,
13627 except for its child, sibling, and parent fields.
13628 Set HAS_CHILDREN to tell whether the die has children or not. */
13629
13630 static const gdb_byte *
13631 read_full_die (const struct die_reader_specs *reader,
13632 struct die_info **diep, const gdb_byte *info_ptr,
13633 int *has_children)
13634 {
13635 const gdb_byte *result;
13636
13637 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13638
13639 if (dwarf2_die_debug)
13640 {
13641 fprintf_unfiltered (gdb_stdlog,
13642 "Read die from %s@0x%x of %s:\n",
13643 bfd_section_name (reader->abfd,
13644 reader->die_section->asection),
13645 (unsigned) (info_ptr - reader->die_section->buffer),
13646 bfd_get_filename (reader->abfd));
13647 dump_die (*diep, dwarf2_die_debug);
13648 }
13649
13650 return result;
13651 }
13652 \f
13653 /* Abbreviation tables.
13654
13655 In DWARF version 2, the description of the debugging information is
13656 stored in a separate .debug_abbrev section. Before we read any
13657 dies from a section we read in all abbreviations and install them
13658 in a hash table. */
13659
13660 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13661
13662 static struct abbrev_info *
13663 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13664 {
13665 struct abbrev_info *abbrev;
13666
13667 abbrev = (struct abbrev_info *)
13668 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13669 memset (abbrev, 0, sizeof (struct abbrev_info));
13670 return abbrev;
13671 }
13672
13673 /* Add an abbreviation to the table. */
13674
13675 static void
13676 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13677 unsigned int abbrev_number,
13678 struct abbrev_info *abbrev)
13679 {
13680 unsigned int hash_number;
13681
13682 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13683 abbrev->next = abbrev_table->abbrevs[hash_number];
13684 abbrev_table->abbrevs[hash_number] = abbrev;
13685 }
13686
13687 /* Look up an abbrev in the table.
13688 Returns NULL if the abbrev is not found. */
13689
13690 static struct abbrev_info *
13691 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13692 unsigned int abbrev_number)
13693 {
13694 unsigned int hash_number;
13695 struct abbrev_info *abbrev;
13696
13697 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13698 abbrev = abbrev_table->abbrevs[hash_number];
13699
13700 while (abbrev)
13701 {
13702 if (abbrev->number == abbrev_number)
13703 return abbrev;
13704 abbrev = abbrev->next;
13705 }
13706 return NULL;
13707 }
13708
13709 /* Read in an abbrev table. */
13710
13711 static struct abbrev_table *
13712 abbrev_table_read_table (struct dwarf2_section_info *section,
13713 sect_offset offset)
13714 {
13715 struct objfile *objfile = dwarf2_per_objfile->objfile;
13716 bfd *abfd = section->asection->owner;
13717 struct abbrev_table *abbrev_table;
13718 const gdb_byte *abbrev_ptr;
13719 struct abbrev_info *cur_abbrev;
13720 unsigned int abbrev_number, bytes_read, abbrev_name;
13721 unsigned int abbrev_form;
13722 struct attr_abbrev *cur_attrs;
13723 unsigned int allocated_attrs;
13724
13725 abbrev_table = XMALLOC (struct abbrev_table);
13726 abbrev_table->offset = offset;
13727 obstack_init (&abbrev_table->abbrev_obstack);
13728 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13729 (ABBREV_HASH_SIZE
13730 * sizeof (struct abbrev_info *)));
13731 memset (abbrev_table->abbrevs, 0,
13732 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13733
13734 dwarf2_read_section (objfile, section);
13735 abbrev_ptr = section->buffer + offset.sect_off;
13736 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13737 abbrev_ptr += bytes_read;
13738
13739 allocated_attrs = ATTR_ALLOC_CHUNK;
13740 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13741
13742 /* Loop until we reach an abbrev number of 0. */
13743 while (abbrev_number)
13744 {
13745 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13746
13747 /* read in abbrev header */
13748 cur_abbrev->number = abbrev_number;
13749 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13750 abbrev_ptr += bytes_read;
13751 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13752 abbrev_ptr += 1;
13753
13754 /* now read in declarations */
13755 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13756 abbrev_ptr += bytes_read;
13757 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13758 abbrev_ptr += bytes_read;
13759 while (abbrev_name)
13760 {
13761 if (cur_abbrev->num_attrs == allocated_attrs)
13762 {
13763 allocated_attrs += ATTR_ALLOC_CHUNK;
13764 cur_attrs
13765 = xrealloc (cur_attrs, (allocated_attrs
13766 * sizeof (struct attr_abbrev)));
13767 }
13768
13769 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13770 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13771 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13772 abbrev_ptr += bytes_read;
13773 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13774 abbrev_ptr += bytes_read;
13775 }
13776
13777 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13778 (cur_abbrev->num_attrs
13779 * sizeof (struct attr_abbrev)));
13780 memcpy (cur_abbrev->attrs, cur_attrs,
13781 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13782
13783 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13784
13785 /* Get next abbreviation.
13786 Under Irix6 the abbreviations for a compilation unit are not
13787 always properly terminated with an abbrev number of 0.
13788 Exit loop if we encounter an abbreviation which we have
13789 already read (which means we are about to read the abbreviations
13790 for the next compile unit) or if the end of the abbreviation
13791 table is reached. */
13792 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13793 break;
13794 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13795 abbrev_ptr += bytes_read;
13796 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13797 break;
13798 }
13799
13800 xfree (cur_attrs);
13801 return abbrev_table;
13802 }
13803
13804 /* Free the resources held by ABBREV_TABLE. */
13805
13806 static void
13807 abbrev_table_free (struct abbrev_table *abbrev_table)
13808 {
13809 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13810 xfree (abbrev_table);
13811 }
13812
13813 /* Same as abbrev_table_free but as a cleanup.
13814 We pass in a pointer to the pointer to the table so that we can
13815 set the pointer to NULL when we're done. It also simplifies
13816 build_type_unit_groups. */
13817
13818 static void
13819 abbrev_table_free_cleanup (void *table_ptr)
13820 {
13821 struct abbrev_table **abbrev_table_ptr = table_ptr;
13822
13823 if (*abbrev_table_ptr != NULL)
13824 abbrev_table_free (*abbrev_table_ptr);
13825 *abbrev_table_ptr = NULL;
13826 }
13827
13828 /* Read the abbrev table for CU from ABBREV_SECTION. */
13829
13830 static void
13831 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13832 struct dwarf2_section_info *abbrev_section)
13833 {
13834 cu->abbrev_table =
13835 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13836 }
13837
13838 /* Release the memory used by the abbrev table for a compilation unit. */
13839
13840 static void
13841 dwarf2_free_abbrev_table (void *ptr_to_cu)
13842 {
13843 struct dwarf2_cu *cu = ptr_to_cu;
13844
13845 if (cu->abbrev_table != NULL)
13846 abbrev_table_free (cu->abbrev_table);
13847 /* Set this to NULL so that we SEGV if we try to read it later,
13848 and also because free_comp_unit verifies this is NULL. */
13849 cu->abbrev_table = NULL;
13850 }
13851 \f
13852 /* Returns nonzero if TAG represents a type that we might generate a partial
13853 symbol for. */
13854
13855 static int
13856 is_type_tag_for_partial (int tag)
13857 {
13858 switch (tag)
13859 {
13860 #if 0
13861 /* Some types that would be reasonable to generate partial symbols for,
13862 that we don't at present. */
13863 case DW_TAG_array_type:
13864 case DW_TAG_file_type:
13865 case DW_TAG_ptr_to_member_type:
13866 case DW_TAG_set_type:
13867 case DW_TAG_string_type:
13868 case DW_TAG_subroutine_type:
13869 #endif
13870 case DW_TAG_base_type:
13871 case DW_TAG_class_type:
13872 case DW_TAG_interface_type:
13873 case DW_TAG_enumeration_type:
13874 case DW_TAG_structure_type:
13875 case DW_TAG_subrange_type:
13876 case DW_TAG_typedef:
13877 case DW_TAG_union_type:
13878 return 1;
13879 default:
13880 return 0;
13881 }
13882 }
13883
13884 /* Load all DIEs that are interesting for partial symbols into memory. */
13885
13886 static struct partial_die_info *
13887 load_partial_dies (const struct die_reader_specs *reader,
13888 const gdb_byte *info_ptr, int building_psymtab)
13889 {
13890 struct dwarf2_cu *cu = reader->cu;
13891 struct objfile *objfile = cu->objfile;
13892 struct partial_die_info *part_die;
13893 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13894 struct abbrev_info *abbrev;
13895 unsigned int bytes_read;
13896 unsigned int load_all = 0;
13897 int nesting_level = 1;
13898
13899 parent_die = NULL;
13900 last_die = NULL;
13901
13902 gdb_assert (cu->per_cu != NULL);
13903 if (cu->per_cu->load_all_dies)
13904 load_all = 1;
13905
13906 cu->partial_dies
13907 = htab_create_alloc_ex (cu->header.length / 12,
13908 partial_die_hash,
13909 partial_die_eq,
13910 NULL,
13911 &cu->comp_unit_obstack,
13912 hashtab_obstack_allocate,
13913 dummy_obstack_deallocate);
13914
13915 part_die = obstack_alloc (&cu->comp_unit_obstack,
13916 sizeof (struct partial_die_info));
13917
13918 while (1)
13919 {
13920 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13921
13922 /* A NULL abbrev means the end of a series of children. */
13923 if (abbrev == NULL)
13924 {
13925 if (--nesting_level == 0)
13926 {
13927 /* PART_DIE was probably the last thing allocated on the
13928 comp_unit_obstack, so we could call obstack_free
13929 here. We don't do that because the waste is small,
13930 and will be cleaned up when we're done with this
13931 compilation unit. This way, we're also more robust
13932 against other users of the comp_unit_obstack. */
13933 return first_die;
13934 }
13935 info_ptr += bytes_read;
13936 last_die = parent_die;
13937 parent_die = parent_die->die_parent;
13938 continue;
13939 }
13940
13941 /* Check for template arguments. We never save these; if
13942 they're seen, we just mark the parent, and go on our way. */
13943 if (parent_die != NULL
13944 && cu->language == language_cplus
13945 && (abbrev->tag == DW_TAG_template_type_param
13946 || abbrev->tag == DW_TAG_template_value_param))
13947 {
13948 parent_die->has_template_arguments = 1;
13949
13950 if (!load_all)
13951 {
13952 /* We don't need a partial DIE for the template argument. */
13953 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13954 continue;
13955 }
13956 }
13957
13958 /* We only recurse into c++ subprograms looking for template arguments.
13959 Skip their other children. */
13960 if (!load_all
13961 && cu->language == language_cplus
13962 && parent_die != NULL
13963 && parent_die->tag == DW_TAG_subprogram)
13964 {
13965 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13966 continue;
13967 }
13968
13969 /* Check whether this DIE is interesting enough to save. Normally
13970 we would not be interested in members here, but there may be
13971 later variables referencing them via DW_AT_specification (for
13972 static members). */
13973 if (!load_all
13974 && !is_type_tag_for_partial (abbrev->tag)
13975 && abbrev->tag != DW_TAG_constant
13976 && abbrev->tag != DW_TAG_enumerator
13977 && abbrev->tag != DW_TAG_subprogram
13978 && abbrev->tag != DW_TAG_lexical_block
13979 && abbrev->tag != DW_TAG_variable
13980 && abbrev->tag != DW_TAG_namespace
13981 && abbrev->tag != DW_TAG_module
13982 && abbrev->tag != DW_TAG_member
13983 && abbrev->tag != DW_TAG_imported_unit)
13984 {
13985 /* Otherwise we skip to the next sibling, if any. */
13986 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13987 continue;
13988 }
13989
13990 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13991 info_ptr);
13992
13993 /* This two-pass algorithm for processing partial symbols has a
13994 high cost in cache pressure. Thus, handle some simple cases
13995 here which cover the majority of C partial symbols. DIEs
13996 which neither have specification tags in them, nor could have
13997 specification tags elsewhere pointing at them, can simply be
13998 processed and discarded.
13999
14000 This segment is also optional; scan_partial_symbols and
14001 add_partial_symbol will handle these DIEs if we chain
14002 them in normally. When compilers which do not emit large
14003 quantities of duplicate debug information are more common,
14004 this code can probably be removed. */
14005
14006 /* Any complete simple types at the top level (pretty much all
14007 of them, for a language without namespaces), can be processed
14008 directly. */
14009 if (parent_die == NULL
14010 && part_die->has_specification == 0
14011 && part_die->is_declaration == 0
14012 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14013 || part_die->tag == DW_TAG_base_type
14014 || part_die->tag == DW_TAG_subrange_type))
14015 {
14016 if (building_psymtab && part_die->name != NULL)
14017 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14018 VAR_DOMAIN, LOC_TYPEDEF,
14019 &objfile->static_psymbols,
14020 0, (CORE_ADDR) 0, cu->language, objfile);
14021 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14022 continue;
14023 }
14024
14025 /* The exception for DW_TAG_typedef with has_children above is
14026 a workaround of GCC PR debug/47510. In the case of this complaint
14027 type_name_no_tag_or_error will error on such types later.
14028
14029 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14030 it could not find the child DIEs referenced later, this is checked
14031 above. In correct DWARF DW_TAG_typedef should have no children. */
14032
14033 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14034 complaint (&symfile_complaints,
14035 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14036 "- DIE at 0x%x [in module %s]"),
14037 part_die->offset.sect_off, objfile->name);
14038
14039 /* If we're at the second level, and we're an enumerator, and
14040 our parent has no specification (meaning possibly lives in a
14041 namespace elsewhere), then we can add the partial symbol now
14042 instead of queueing it. */
14043 if (part_die->tag == DW_TAG_enumerator
14044 && parent_die != NULL
14045 && parent_die->die_parent == NULL
14046 && parent_die->tag == DW_TAG_enumeration_type
14047 && parent_die->has_specification == 0)
14048 {
14049 if (part_die->name == NULL)
14050 complaint (&symfile_complaints,
14051 _("malformed enumerator DIE ignored"));
14052 else if (building_psymtab)
14053 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14054 VAR_DOMAIN, LOC_CONST,
14055 (cu->language == language_cplus
14056 || cu->language == language_java)
14057 ? &objfile->global_psymbols
14058 : &objfile->static_psymbols,
14059 0, (CORE_ADDR) 0, cu->language, objfile);
14060
14061 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14062 continue;
14063 }
14064
14065 /* We'll save this DIE so link it in. */
14066 part_die->die_parent = parent_die;
14067 part_die->die_sibling = NULL;
14068 part_die->die_child = NULL;
14069
14070 if (last_die && last_die == parent_die)
14071 last_die->die_child = part_die;
14072 else if (last_die)
14073 last_die->die_sibling = part_die;
14074
14075 last_die = part_die;
14076
14077 if (first_die == NULL)
14078 first_die = part_die;
14079
14080 /* Maybe add the DIE to the hash table. Not all DIEs that we
14081 find interesting need to be in the hash table, because we
14082 also have the parent/sibling/child chains; only those that we
14083 might refer to by offset later during partial symbol reading.
14084
14085 For now this means things that might have be the target of a
14086 DW_AT_specification, DW_AT_abstract_origin, or
14087 DW_AT_extension. DW_AT_extension will refer only to
14088 namespaces; DW_AT_abstract_origin refers to functions (and
14089 many things under the function DIE, but we do not recurse
14090 into function DIEs during partial symbol reading) and
14091 possibly variables as well; DW_AT_specification refers to
14092 declarations. Declarations ought to have the DW_AT_declaration
14093 flag. It happens that GCC forgets to put it in sometimes, but
14094 only for functions, not for types.
14095
14096 Adding more things than necessary to the hash table is harmless
14097 except for the performance cost. Adding too few will result in
14098 wasted time in find_partial_die, when we reread the compilation
14099 unit with load_all_dies set. */
14100
14101 if (load_all
14102 || abbrev->tag == DW_TAG_constant
14103 || abbrev->tag == DW_TAG_subprogram
14104 || abbrev->tag == DW_TAG_variable
14105 || abbrev->tag == DW_TAG_namespace
14106 || part_die->is_declaration)
14107 {
14108 void **slot;
14109
14110 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14111 part_die->offset.sect_off, INSERT);
14112 *slot = part_die;
14113 }
14114
14115 part_die = obstack_alloc (&cu->comp_unit_obstack,
14116 sizeof (struct partial_die_info));
14117
14118 /* For some DIEs we want to follow their children (if any). For C
14119 we have no reason to follow the children of structures; for other
14120 languages we have to, so that we can get at method physnames
14121 to infer fully qualified class names, for DW_AT_specification,
14122 and for C++ template arguments. For C++, we also look one level
14123 inside functions to find template arguments (if the name of the
14124 function does not already contain the template arguments).
14125
14126 For Ada, we need to scan the children of subprograms and lexical
14127 blocks as well because Ada allows the definition of nested
14128 entities that could be interesting for the debugger, such as
14129 nested subprograms for instance. */
14130 if (last_die->has_children
14131 && (load_all
14132 || last_die->tag == DW_TAG_namespace
14133 || last_die->tag == DW_TAG_module
14134 || last_die->tag == DW_TAG_enumeration_type
14135 || (cu->language == language_cplus
14136 && last_die->tag == DW_TAG_subprogram
14137 && (last_die->name == NULL
14138 || strchr (last_die->name, '<') == NULL))
14139 || (cu->language != language_c
14140 && (last_die->tag == DW_TAG_class_type
14141 || last_die->tag == DW_TAG_interface_type
14142 || last_die->tag == DW_TAG_structure_type
14143 || last_die->tag == DW_TAG_union_type))
14144 || (cu->language == language_ada
14145 && (last_die->tag == DW_TAG_subprogram
14146 || last_die->tag == DW_TAG_lexical_block))))
14147 {
14148 nesting_level++;
14149 parent_die = last_die;
14150 continue;
14151 }
14152
14153 /* Otherwise we skip to the next sibling, if any. */
14154 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14155
14156 /* Back to the top, do it again. */
14157 }
14158 }
14159
14160 /* Read a minimal amount of information into the minimal die structure. */
14161
14162 static const gdb_byte *
14163 read_partial_die (const struct die_reader_specs *reader,
14164 struct partial_die_info *part_die,
14165 struct abbrev_info *abbrev, unsigned int abbrev_len,
14166 const gdb_byte *info_ptr)
14167 {
14168 struct dwarf2_cu *cu = reader->cu;
14169 struct objfile *objfile = cu->objfile;
14170 const gdb_byte *buffer = reader->buffer;
14171 unsigned int i;
14172 struct attribute attr;
14173 int has_low_pc_attr = 0;
14174 int has_high_pc_attr = 0;
14175 int high_pc_relative = 0;
14176
14177 memset (part_die, 0, sizeof (struct partial_die_info));
14178
14179 part_die->offset.sect_off = info_ptr - buffer;
14180
14181 info_ptr += abbrev_len;
14182
14183 if (abbrev == NULL)
14184 return info_ptr;
14185
14186 part_die->tag = abbrev->tag;
14187 part_die->has_children = abbrev->has_children;
14188
14189 for (i = 0; i < abbrev->num_attrs; ++i)
14190 {
14191 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14192
14193 /* Store the data if it is of an attribute we want to keep in a
14194 partial symbol table. */
14195 switch (attr.name)
14196 {
14197 case DW_AT_name:
14198 switch (part_die->tag)
14199 {
14200 case DW_TAG_compile_unit:
14201 case DW_TAG_partial_unit:
14202 case DW_TAG_type_unit:
14203 /* Compilation units have a DW_AT_name that is a filename, not
14204 a source language identifier. */
14205 case DW_TAG_enumeration_type:
14206 case DW_TAG_enumerator:
14207 /* These tags always have simple identifiers already; no need
14208 to canonicalize them. */
14209 part_die->name = DW_STRING (&attr);
14210 break;
14211 default:
14212 part_die->name
14213 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14214 &objfile->objfile_obstack);
14215 break;
14216 }
14217 break;
14218 case DW_AT_linkage_name:
14219 case DW_AT_MIPS_linkage_name:
14220 /* Note that both forms of linkage name might appear. We
14221 assume they will be the same, and we only store the last
14222 one we see. */
14223 if (cu->language == language_ada)
14224 part_die->name = DW_STRING (&attr);
14225 part_die->linkage_name = DW_STRING (&attr);
14226 break;
14227 case DW_AT_low_pc:
14228 has_low_pc_attr = 1;
14229 part_die->lowpc = DW_ADDR (&attr);
14230 break;
14231 case DW_AT_high_pc:
14232 has_high_pc_attr = 1;
14233 if (attr.form == DW_FORM_addr
14234 || attr.form == DW_FORM_GNU_addr_index)
14235 part_die->highpc = DW_ADDR (&attr);
14236 else
14237 {
14238 high_pc_relative = 1;
14239 part_die->highpc = DW_UNSND (&attr);
14240 }
14241 break;
14242 case DW_AT_location:
14243 /* Support the .debug_loc offsets. */
14244 if (attr_form_is_block (&attr))
14245 {
14246 part_die->d.locdesc = DW_BLOCK (&attr);
14247 }
14248 else if (attr_form_is_section_offset (&attr))
14249 {
14250 dwarf2_complex_location_expr_complaint ();
14251 }
14252 else
14253 {
14254 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14255 "partial symbol information");
14256 }
14257 break;
14258 case DW_AT_external:
14259 part_die->is_external = DW_UNSND (&attr);
14260 break;
14261 case DW_AT_declaration:
14262 part_die->is_declaration = DW_UNSND (&attr);
14263 break;
14264 case DW_AT_type:
14265 part_die->has_type = 1;
14266 break;
14267 case DW_AT_abstract_origin:
14268 case DW_AT_specification:
14269 case DW_AT_extension:
14270 part_die->has_specification = 1;
14271 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14272 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14273 || cu->per_cu->is_dwz);
14274 break;
14275 case DW_AT_sibling:
14276 /* Ignore absolute siblings, they might point outside of
14277 the current compile unit. */
14278 if (attr.form == DW_FORM_ref_addr)
14279 complaint (&symfile_complaints,
14280 _("ignoring absolute DW_AT_sibling"));
14281 else
14282 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14283 break;
14284 case DW_AT_byte_size:
14285 part_die->has_byte_size = 1;
14286 break;
14287 case DW_AT_calling_convention:
14288 /* DWARF doesn't provide a way to identify a program's source-level
14289 entry point. DW_AT_calling_convention attributes are only meant
14290 to describe functions' calling conventions.
14291
14292 However, because it's a necessary piece of information in
14293 Fortran, and because DW_CC_program is the only piece of debugging
14294 information whose definition refers to a 'main program' at all,
14295 several compilers have begun marking Fortran main programs with
14296 DW_CC_program --- even when those functions use the standard
14297 calling conventions.
14298
14299 So until DWARF specifies a way to provide this information and
14300 compilers pick up the new representation, we'll support this
14301 practice. */
14302 if (DW_UNSND (&attr) == DW_CC_program
14303 && cu->language == language_fortran)
14304 {
14305 set_main_name (part_die->name);
14306
14307 /* As this DIE has a static linkage the name would be difficult
14308 to look up later. */
14309 language_of_main = language_fortran;
14310 }
14311 break;
14312 case DW_AT_inline:
14313 if (DW_UNSND (&attr) == DW_INL_inlined
14314 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14315 part_die->may_be_inlined = 1;
14316 break;
14317
14318 case DW_AT_import:
14319 if (part_die->tag == DW_TAG_imported_unit)
14320 {
14321 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14322 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14323 || cu->per_cu->is_dwz);
14324 }
14325 break;
14326
14327 default:
14328 break;
14329 }
14330 }
14331
14332 if (high_pc_relative)
14333 part_die->highpc += part_die->lowpc;
14334
14335 if (has_low_pc_attr && has_high_pc_attr)
14336 {
14337 /* When using the GNU linker, .gnu.linkonce. sections are used to
14338 eliminate duplicate copies of functions and vtables and such.
14339 The linker will arbitrarily choose one and discard the others.
14340 The AT_*_pc values for such functions refer to local labels in
14341 these sections. If the section from that file was discarded, the
14342 labels are not in the output, so the relocs get a value of 0.
14343 If this is a discarded function, mark the pc bounds as invalid,
14344 so that GDB will ignore it. */
14345 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14346 {
14347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14348
14349 complaint (&symfile_complaints,
14350 _("DW_AT_low_pc %s is zero "
14351 "for DIE at 0x%x [in module %s]"),
14352 paddress (gdbarch, part_die->lowpc),
14353 part_die->offset.sect_off, objfile->name);
14354 }
14355 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14356 else if (part_die->lowpc >= part_die->highpc)
14357 {
14358 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14359
14360 complaint (&symfile_complaints,
14361 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14362 "for DIE at 0x%x [in module %s]"),
14363 paddress (gdbarch, part_die->lowpc),
14364 paddress (gdbarch, part_die->highpc),
14365 part_die->offset.sect_off, objfile->name);
14366 }
14367 else
14368 part_die->has_pc_info = 1;
14369 }
14370
14371 return info_ptr;
14372 }
14373
14374 /* Find a cached partial DIE at OFFSET in CU. */
14375
14376 static struct partial_die_info *
14377 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14378 {
14379 struct partial_die_info *lookup_die = NULL;
14380 struct partial_die_info part_die;
14381
14382 part_die.offset = offset;
14383 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14384 offset.sect_off);
14385
14386 return lookup_die;
14387 }
14388
14389 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14390 except in the case of .debug_types DIEs which do not reference
14391 outside their CU (they do however referencing other types via
14392 DW_FORM_ref_sig8). */
14393
14394 static struct partial_die_info *
14395 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14396 {
14397 struct objfile *objfile = cu->objfile;
14398 struct dwarf2_per_cu_data *per_cu = NULL;
14399 struct partial_die_info *pd = NULL;
14400
14401 if (offset_in_dwz == cu->per_cu->is_dwz
14402 && offset_in_cu_p (&cu->header, offset))
14403 {
14404 pd = find_partial_die_in_comp_unit (offset, cu);
14405 if (pd != NULL)
14406 return pd;
14407 /* We missed recording what we needed.
14408 Load all dies and try again. */
14409 per_cu = cu->per_cu;
14410 }
14411 else
14412 {
14413 /* TUs don't reference other CUs/TUs (except via type signatures). */
14414 if (cu->per_cu->is_debug_types)
14415 {
14416 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14417 " external reference to offset 0x%lx [in module %s].\n"),
14418 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14419 bfd_get_filename (objfile->obfd));
14420 }
14421 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14422 objfile);
14423
14424 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14425 load_partial_comp_unit (per_cu);
14426
14427 per_cu->cu->last_used = 0;
14428 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14429 }
14430
14431 /* If we didn't find it, and not all dies have been loaded,
14432 load them all and try again. */
14433
14434 if (pd == NULL && per_cu->load_all_dies == 0)
14435 {
14436 per_cu->load_all_dies = 1;
14437
14438 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14439 THIS_CU->cu may already be in use. So we can't just free it and
14440 replace its DIEs with the ones we read in. Instead, we leave those
14441 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14442 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14443 set. */
14444 load_partial_comp_unit (per_cu);
14445
14446 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14447 }
14448
14449 if (pd == NULL)
14450 internal_error (__FILE__, __LINE__,
14451 _("could not find partial DIE 0x%x "
14452 "in cache [from module %s]\n"),
14453 offset.sect_off, bfd_get_filename (objfile->obfd));
14454 return pd;
14455 }
14456
14457 /* See if we can figure out if the class lives in a namespace. We do
14458 this by looking for a member function; its demangled name will
14459 contain namespace info, if there is any. */
14460
14461 static void
14462 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14463 struct dwarf2_cu *cu)
14464 {
14465 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14466 what template types look like, because the demangler
14467 frequently doesn't give the same name as the debug info. We
14468 could fix this by only using the demangled name to get the
14469 prefix (but see comment in read_structure_type). */
14470
14471 struct partial_die_info *real_pdi;
14472 struct partial_die_info *child_pdi;
14473
14474 /* If this DIE (this DIE's specification, if any) has a parent, then
14475 we should not do this. We'll prepend the parent's fully qualified
14476 name when we create the partial symbol. */
14477
14478 real_pdi = struct_pdi;
14479 while (real_pdi->has_specification)
14480 real_pdi = find_partial_die (real_pdi->spec_offset,
14481 real_pdi->spec_is_dwz, cu);
14482
14483 if (real_pdi->die_parent != NULL)
14484 return;
14485
14486 for (child_pdi = struct_pdi->die_child;
14487 child_pdi != NULL;
14488 child_pdi = child_pdi->die_sibling)
14489 {
14490 if (child_pdi->tag == DW_TAG_subprogram
14491 && child_pdi->linkage_name != NULL)
14492 {
14493 char *actual_class_name
14494 = language_class_name_from_physname (cu->language_defn,
14495 child_pdi->linkage_name);
14496 if (actual_class_name != NULL)
14497 {
14498 struct_pdi->name
14499 = obstack_copy0 (&cu->objfile->objfile_obstack,
14500 actual_class_name,
14501 strlen (actual_class_name));
14502 xfree (actual_class_name);
14503 }
14504 break;
14505 }
14506 }
14507 }
14508
14509 /* Adjust PART_DIE before generating a symbol for it. This function
14510 may set the is_external flag or change the DIE's name. */
14511
14512 static void
14513 fixup_partial_die (struct partial_die_info *part_die,
14514 struct dwarf2_cu *cu)
14515 {
14516 /* Once we've fixed up a die, there's no point in doing so again.
14517 This also avoids a memory leak if we were to call
14518 guess_partial_die_structure_name multiple times. */
14519 if (part_die->fixup_called)
14520 return;
14521
14522 /* If we found a reference attribute and the DIE has no name, try
14523 to find a name in the referred to DIE. */
14524
14525 if (part_die->name == NULL && part_die->has_specification)
14526 {
14527 struct partial_die_info *spec_die;
14528
14529 spec_die = find_partial_die (part_die->spec_offset,
14530 part_die->spec_is_dwz, cu);
14531
14532 fixup_partial_die (spec_die, cu);
14533
14534 if (spec_die->name)
14535 {
14536 part_die->name = spec_die->name;
14537
14538 /* Copy DW_AT_external attribute if it is set. */
14539 if (spec_die->is_external)
14540 part_die->is_external = spec_die->is_external;
14541 }
14542 }
14543
14544 /* Set default names for some unnamed DIEs. */
14545
14546 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14547 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14548
14549 /* If there is no parent die to provide a namespace, and there are
14550 children, see if we can determine the namespace from their linkage
14551 name. */
14552 if (cu->language == language_cplus
14553 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14554 && part_die->die_parent == NULL
14555 && part_die->has_children
14556 && (part_die->tag == DW_TAG_class_type
14557 || part_die->tag == DW_TAG_structure_type
14558 || part_die->tag == DW_TAG_union_type))
14559 guess_partial_die_structure_name (part_die, cu);
14560
14561 /* GCC might emit a nameless struct or union that has a linkage
14562 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14563 if (part_die->name == NULL
14564 && (part_die->tag == DW_TAG_class_type
14565 || part_die->tag == DW_TAG_interface_type
14566 || part_die->tag == DW_TAG_structure_type
14567 || part_die->tag == DW_TAG_union_type)
14568 && part_die->linkage_name != NULL)
14569 {
14570 char *demangled;
14571
14572 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14573 if (demangled)
14574 {
14575 const char *base;
14576
14577 /* Strip any leading namespaces/classes, keep only the base name.
14578 DW_AT_name for named DIEs does not contain the prefixes. */
14579 base = strrchr (demangled, ':');
14580 if (base && base > demangled && base[-1] == ':')
14581 base++;
14582 else
14583 base = demangled;
14584
14585 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14586 base, strlen (base));
14587 xfree (demangled);
14588 }
14589 }
14590
14591 part_die->fixup_called = 1;
14592 }
14593
14594 /* Read an attribute value described by an attribute form. */
14595
14596 static const gdb_byte *
14597 read_attribute_value (const struct die_reader_specs *reader,
14598 struct attribute *attr, unsigned form,
14599 const gdb_byte *info_ptr)
14600 {
14601 struct dwarf2_cu *cu = reader->cu;
14602 bfd *abfd = reader->abfd;
14603 struct comp_unit_head *cu_header = &cu->header;
14604 unsigned int bytes_read;
14605 struct dwarf_block *blk;
14606
14607 attr->form = form;
14608 switch (form)
14609 {
14610 case DW_FORM_ref_addr:
14611 if (cu->header.version == 2)
14612 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14613 else
14614 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14615 &cu->header, &bytes_read);
14616 info_ptr += bytes_read;
14617 break;
14618 case DW_FORM_GNU_ref_alt:
14619 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14620 info_ptr += bytes_read;
14621 break;
14622 case DW_FORM_addr:
14623 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14624 info_ptr += bytes_read;
14625 break;
14626 case DW_FORM_block2:
14627 blk = dwarf_alloc_block (cu);
14628 blk->size = read_2_bytes (abfd, info_ptr);
14629 info_ptr += 2;
14630 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14631 info_ptr += blk->size;
14632 DW_BLOCK (attr) = blk;
14633 break;
14634 case DW_FORM_block4:
14635 blk = dwarf_alloc_block (cu);
14636 blk->size = read_4_bytes (abfd, info_ptr);
14637 info_ptr += 4;
14638 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14639 info_ptr += blk->size;
14640 DW_BLOCK (attr) = blk;
14641 break;
14642 case DW_FORM_data2:
14643 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14644 info_ptr += 2;
14645 break;
14646 case DW_FORM_data4:
14647 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14648 info_ptr += 4;
14649 break;
14650 case DW_FORM_data8:
14651 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14652 info_ptr += 8;
14653 break;
14654 case DW_FORM_sec_offset:
14655 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14656 info_ptr += bytes_read;
14657 break;
14658 case DW_FORM_string:
14659 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14660 DW_STRING_IS_CANONICAL (attr) = 0;
14661 info_ptr += bytes_read;
14662 break;
14663 case DW_FORM_strp:
14664 if (!cu->per_cu->is_dwz)
14665 {
14666 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14667 &bytes_read);
14668 DW_STRING_IS_CANONICAL (attr) = 0;
14669 info_ptr += bytes_read;
14670 break;
14671 }
14672 /* FALLTHROUGH */
14673 case DW_FORM_GNU_strp_alt:
14674 {
14675 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14676 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14677 &bytes_read);
14678
14679 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14680 DW_STRING_IS_CANONICAL (attr) = 0;
14681 info_ptr += bytes_read;
14682 }
14683 break;
14684 case DW_FORM_exprloc:
14685 case DW_FORM_block:
14686 blk = dwarf_alloc_block (cu);
14687 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14688 info_ptr += bytes_read;
14689 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14690 info_ptr += blk->size;
14691 DW_BLOCK (attr) = blk;
14692 break;
14693 case DW_FORM_block1:
14694 blk = dwarf_alloc_block (cu);
14695 blk->size = read_1_byte (abfd, info_ptr);
14696 info_ptr += 1;
14697 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14698 info_ptr += blk->size;
14699 DW_BLOCK (attr) = blk;
14700 break;
14701 case DW_FORM_data1:
14702 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14703 info_ptr += 1;
14704 break;
14705 case DW_FORM_flag:
14706 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14707 info_ptr += 1;
14708 break;
14709 case DW_FORM_flag_present:
14710 DW_UNSND (attr) = 1;
14711 break;
14712 case DW_FORM_sdata:
14713 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14714 info_ptr += bytes_read;
14715 break;
14716 case DW_FORM_udata:
14717 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14718 info_ptr += bytes_read;
14719 break;
14720 case DW_FORM_ref1:
14721 DW_UNSND (attr) = (cu->header.offset.sect_off
14722 + read_1_byte (abfd, info_ptr));
14723 info_ptr += 1;
14724 break;
14725 case DW_FORM_ref2:
14726 DW_UNSND (attr) = (cu->header.offset.sect_off
14727 + read_2_bytes (abfd, info_ptr));
14728 info_ptr += 2;
14729 break;
14730 case DW_FORM_ref4:
14731 DW_UNSND (attr) = (cu->header.offset.sect_off
14732 + read_4_bytes (abfd, info_ptr));
14733 info_ptr += 4;
14734 break;
14735 case DW_FORM_ref8:
14736 DW_UNSND (attr) = (cu->header.offset.sect_off
14737 + read_8_bytes (abfd, info_ptr));
14738 info_ptr += 8;
14739 break;
14740 case DW_FORM_ref_sig8:
14741 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14742 info_ptr += 8;
14743 break;
14744 case DW_FORM_ref_udata:
14745 DW_UNSND (attr) = (cu->header.offset.sect_off
14746 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14747 info_ptr += bytes_read;
14748 break;
14749 case DW_FORM_indirect:
14750 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14751 info_ptr += bytes_read;
14752 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14753 break;
14754 case DW_FORM_GNU_addr_index:
14755 if (reader->dwo_file == NULL)
14756 {
14757 /* For now flag a hard error.
14758 Later we can turn this into a complaint. */
14759 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14760 dwarf_form_name (form),
14761 bfd_get_filename (abfd));
14762 }
14763 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14764 info_ptr += bytes_read;
14765 break;
14766 case DW_FORM_GNU_str_index:
14767 if (reader->dwo_file == NULL)
14768 {
14769 /* For now flag a hard error.
14770 Later we can turn this into a complaint if warranted. */
14771 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14772 dwarf_form_name (form),
14773 bfd_get_filename (abfd));
14774 }
14775 {
14776 ULONGEST str_index =
14777 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14778
14779 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14780 DW_STRING_IS_CANONICAL (attr) = 0;
14781 info_ptr += bytes_read;
14782 }
14783 break;
14784 default:
14785 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14786 dwarf_form_name (form),
14787 bfd_get_filename (abfd));
14788 }
14789
14790 /* Super hack. */
14791 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14792 attr->form = DW_FORM_GNU_ref_alt;
14793
14794 /* We have seen instances where the compiler tried to emit a byte
14795 size attribute of -1 which ended up being encoded as an unsigned
14796 0xffffffff. Although 0xffffffff is technically a valid size value,
14797 an object of this size seems pretty unlikely so we can relatively
14798 safely treat these cases as if the size attribute was invalid and
14799 treat them as zero by default. */
14800 if (attr->name == DW_AT_byte_size
14801 && form == DW_FORM_data4
14802 && DW_UNSND (attr) >= 0xffffffff)
14803 {
14804 complaint
14805 (&symfile_complaints,
14806 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14807 hex_string (DW_UNSND (attr)));
14808 DW_UNSND (attr) = 0;
14809 }
14810
14811 return info_ptr;
14812 }
14813
14814 /* Read an attribute described by an abbreviated attribute. */
14815
14816 static const gdb_byte *
14817 read_attribute (const struct die_reader_specs *reader,
14818 struct attribute *attr, struct attr_abbrev *abbrev,
14819 const gdb_byte *info_ptr)
14820 {
14821 attr->name = abbrev->name;
14822 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14823 }
14824
14825 /* Read dwarf information from a buffer. */
14826
14827 static unsigned int
14828 read_1_byte (bfd *abfd, const gdb_byte *buf)
14829 {
14830 return bfd_get_8 (abfd, buf);
14831 }
14832
14833 static int
14834 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14835 {
14836 return bfd_get_signed_8 (abfd, buf);
14837 }
14838
14839 static unsigned int
14840 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14841 {
14842 return bfd_get_16 (abfd, buf);
14843 }
14844
14845 static int
14846 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14847 {
14848 return bfd_get_signed_16 (abfd, buf);
14849 }
14850
14851 static unsigned int
14852 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14853 {
14854 return bfd_get_32 (abfd, buf);
14855 }
14856
14857 static int
14858 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14859 {
14860 return bfd_get_signed_32 (abfd, buf);
14861 }
14862
14863 static ULONGEST
14864 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14865 {
14866 return bfd_get_64 (abfd, buf);
14867 }
14868
14869 static CORE_ADDR
14870 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14871 unsigned int *bytes_read)
14872 {
14873 struct comp_unit_head *cu_header = &cu->header;
14874 CORE_ADDR retval = 0;
14875
14876 if (cu_header->signed_addr_p)
14877 {
14878 switch (cu_header->addr_size)
14879 {
14880 case 2:
14881 retval = bfd_get_signed_16 (abfd, buf);
14882 break;
14883 case 4:
14884 retval = bfd_get_signed_32 (abfd, buf);
14885 break;
14886 case 8:
14887 retval = bfd_get_signed_64 (abfd, buf);
14888 break;
14889 default:
14890 internal_error (__FILE__, __LINE__,
14891 _("read_address: bad switch, signed [in module %s]"),
14892 bfd_get_filename (abfd));
14893 }
14894 }
14895 else
14896 {
14897 switch (cu_header->addr_size)
14898 {
14899 case 2:
14900 retval = bfd_get_16 (abfd, buf);
14901 break;
14902 case 4:
14903 retval = bfd_get_32 (abfd, buf);
14904 break;
14905 case 8:
14906 retval = bfd_get_64 (abfd, buf);
14907 break;
14908 default:
14909 internal_error (__FILE__, __LINE__,
14910 _("read_address: bad switch, "
14911 "unsigned [in module %s]"),
14912 bfd_get_filename (abfd));
14913 }
14914 }
14915
14916 *bytes_read = cu_header->addr_size;
14917 return retval;
14918 }
14919
14920 /* Read the initial length from a section. The (draft) DWARF 3
14921 specification allows the initial length to take up either 4 bytes
14922 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14923 bytes describe the length and all offsets will be 8 bytes in length
14924 instead of 4.
14925
14926 An older, non-standard 64-bit format is also handled by this
14927 function. The older format in question stores the initial length
14928 as an 8-byte quantity without an escape value. Lengths greater
14929 than 2^32 aren't very common which means that the initial 4 bytes
14930 is almost always zero. Since a length value of zero doesn't make
14931 sense for the 32-bit format, this initial zero can be considered to
14932 be an escape value which indicates the presence of the older 64-bit
14933 format. As written, the code can't detect (old format) lengths
14934 greater than 4GB. If it becomes necessary to handle lengths
14935 somewhat larger than 4GB, we could allow other small values (such
14936 as the non-sensical values of 1, 2, and 3) to also be used as
14937 escape values indicating the presence of the old format.
14938
14939 The value returned via bytes_read should be used to increment the
14940 relevant pointer after calling read_initial_length().
14941
14942 [ Note: read_initial_length() and read_offset() are based on the
14943 document entitled "DWARF Debugging Information Format", revision
14944 3, draft 8, dated November 19, 2001. This document was obtained
14945 from:
14946
14947 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14948
14949 This document is only a draft and is subject to change. (So beware.)
14950
14951 Details regarding the older, non-standard 64-bit format were
14952 determined empirically by examining 64-bit ELF files produced by
14953 the SGI toolchain on an IRIX 6.5 machine.
14954
14955 - Kevin, July 16, 2002
14956 ] */
14957
14958 static LONGEST
14959 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14960 {
14961 LONGEST length = bfd_get_32 (abfd, buf);
14962
14963 if (length == 0xffffffff)
14964 {
14965 length = bfd_get_64 (abfd, buf + 4);
14966 *bytes_read = 12;
14967 }
14968 else if (length == 0)
14969 {
14970 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14971 length = bfd_get_64 (abfd, buf);
14972 *bytes_read = 8;
14973 }
14974 else
14975 {
14976 *bytes_read = 4;
14977 }
14978
14979 return length;
14980 }
14981
14982 /* Cover function for read_initial_length.
14983 Returns the length of the object at BUF, and stores the size of the
14984 initial length in *BYTES_READ and stores the size that offsets will be in
14985 *OFFSET_SIZE.
14986 If the initial length size is not equivalent to that specified in
14987 CU_HEADER then issue a complaint.
14988 This is useful when reading non-comp-unit headers. */
14989
14990 static LONGEST
14991 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14992 const struct comp_unit_head *cu_header,
14993 unsigned int *bytes_read,
14994 unsigned int *offset_size)
14995 {
14996 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14997
14998 gdb_assert (cu_header->initial_length_size == 4
14999 || cu_header->initial_length_size == 8
15000 || cu_header->initial_length_size == 12);
15001
15002 if (cu_header->initial_length_size != *bytes_read)
15003 complaint (&symfile_complaints,
15004 _("intermixed 32-bit and 64-bit DWARF sections"));
15005
15006 *offset_size = (*bytes_read == 4) ? 4 : 8;
15007 return length;
15008 }
15009
15010 /* Read an offset from the data stream. The size of the offset is
15011 given by cu_header->offset_size. */
15012
15013 static LONGEST
15014 read_offset (bfd *abfd, const gdb_byte *buf,
15015 const struct comp_unit_head *cu_header,
15016 unsigned int *bytes_read)
15017 {
15018 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15019
15020 *bytes_read = cu_header->offset_size;
15021 return offset;
15022 }
15023
15024 /* Read an offset from the data stream. */
15025
15026 static LONGEST
15027 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15028 {
15029 LONGEST retval = 0;
15030
15031 switch (offset_size)
15032 {
15033 case 4:
15034 retval = bfd_get_32 (abfd, buf);
15035 break;
15036 case 8:
15037 retval = bfd_get_64 (abfd, buf);
15038 break;
15039 default:
15040 internal_error (__FILE__, __LINE__,
15041 _("read_offset_1: bad switch [in module %s]"),
15042 bfd_get_filename (abfd));
15043 }
15044
15045 return retval;
15046 }
15047
15048 static const gdb_byte *
15049 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15050 {
15051 /* If the size of a host char is 8 bits, we can return a pointer
15052 to the buffer, otherwise we have to copy the data to a buffer
15053 allocated on the temporary obstack. */
15054 gdb_assert (HOST_CHAR_BIT == 8);
15055 return buf;
15056 }
15057
15058 static const char *
15059 read_direct_string (bfd *abfd, const gdb_byte *buf,
15060 unsigned int *bytes_read_ptr)
15061 {
15062 /* If the size of a host char is 8 bits, we can return a pointer
15063 to the string, otherwise we have to copy the string to a buffer
15064 allocated on the temporary obstack. */
15065 gdb_assert (HOST_CHAR_BIT == 8);
15066 if (*buf == '\0')
15067 {
15068 *bytes_read_ptr = 1;
15069 return NULL;
15070 }
15071 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15072 return (const char *) buf;
15073 }
15074
15075 static const char *
15076 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15077 {
15078 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15079 if (dwarf2_per_objfile->str.buffer == NULL)
15080 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15081 bfd_get_filename (abfd));
15082 if (str_offset >= dwarf2_per_objfile->str.size)
15083 error (_("DW_FORM_strp pointing outside of "
15084 ".debug_str section [in module %s]"),
15085 bfd_get_filename (abfd));
15086 gdb_assert (HOST_CHAR_BIT == 8);
15087 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15088 return NULL;
15089 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15090 }
15091
15092 /* Read a string at offset STR_OFFSET in the .debug_str section from
15093 the .dwz file DWZ. Throw an error if the offset is too large. If
15094 the string consists of a single NUL byte, return NULL; otherwise
15095 return a pointer to the string. */
15096
15097 static const char *
15098 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15099 {
15100 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15101
15102 if (dwz->str.buffer == NULL)
15103 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15104 "section [in module %s]"),
15105 bfd_get_filename (dwz->dwz_bfd));
15106 if (str_offset >= dwz->str.size)
15107 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15108 ".debug_str section [in module %s]"),
15109 bfd_get_filename (dwz->dwz_bfd));
15110 gdb_assert (HOST_CHAR_BIT == 8);
15111 if (dwz->str.buffer[str_offset] == '\0')
15112 return NULL;
15113 return (const char *) (dwz->str.buffer + str_offset);
15114 }
15115
15116 static const char *
15117 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15118 const struct comp_unit_head *cu_header,
15119 unsigned int *bytes_read_ptr)
15120 {
15121 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15122
15123 return read_indirect_string_at_offset (abfd, str_offset);
15124 }
15125
15126 static ULONGEST
15127 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15128 unsigned int *bytes_read_ptr)
15129 {
15130 ULONGEST result;
15131 unsigned int num_read;
15132 int i, shift;
15133 unsigned char byte;
15134
15135 result = 0;
15136 shift = 0;
15137 num_read = 0;
15138 i = 0;
15139 while (1)
15140 {
15141 byte = bfd_get_8 (abfd, buf);
15142 buf++;
15143 num_read++;
15144 result |= ((ULONGEST) (byte & 127) << shift);
15145 if ((byte & 128) == 0)
15146 {
15147 break;
15148 }
15149 shift += 7;
15150 }
15151 *bytes_read_ptr = num_read;
15152 return result;
15153 }
15154
15155 static LONGEST
15156 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15157 unsigned int *bytes_read_ptr)
15158 {
15159 LONGEST result;
15160 int i, shift, num_read;
15161 unsigned char byte;
15162
15163 result = 0;
15164 shift = 0;
15165 num_read = 0;
15166 i = 0;
15167 while (1)
15168 {
15169 byte = bfd_get_8 (abfd, buf);
15170 buf++;
15171 num_read++;
15172 result |= ((LONGEST) (byte & 127) << shift);
15173 shift += 7;
15174 if ((byte & 128) == 0)
15175 {
15176 break;
15177 }
15178 }
15179 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15180 result |= -(((LONGEST) 1) << shift);
15181 *bytes_read_ptr = num_read;
15182 return result;
15183 }
15184
15185 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15186 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15187 ADDR_SIZE is the size of addresses from the CU header. */
15188
15189 static CORE_ADDR
15190 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15191 {
15192 struct objfile *objfile = dwarf2_per_objfile->objfile;
15193 bfd *abfd = objfile->obfd;
15194 const gdb_byte *info_ptr;
15195
15196 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15197 if (dwarf2_per_objfile->addr.buffer == NULL)
15198 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15199 objfile->name);
15200 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15201 error (_("DW_FORM_addr_index pointing outside of "
15202 ".debug_addr section [in module %s]"),
15203 objfile->name);
15204 info_ptr = (dwarf2_per_objfile->addr.buffer
15205 + addr_base + addr_index * addr_size);
15206 if (addr_size == 4)
15207 return bfd_get_32 (abfd, info_ptr);
15208 else
15209 return bfd_get_64 (abfd, info_ptr);
15210 }
15211
15212 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15213
15214 static CORE_ADDR
15215 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15216 {
15217 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15218 }
15219
15220 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15221
15222 static CORE_ADDR
15223 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15224 unsigned int *bytes_read)
15225 {
15226 bfd *abfd = cu->objfile->obfd;
15227 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15228
15229 return read_addr_index (cu, addr_index);
15230 }
15231
15232 /* Data structure to pass results from dwarf2_read_addr_index_reader
15233 back to dwarf2_read_addr_index. */
15234
15235 struct dwarf2_read_addr_index_data
15236 {
15237 ULONGEST addr_base;
15238 int addr_size;
15239 };
15240
15241 /* die_reader_func for dwarf2_read_addr_index. */
15242
15243 static void
15244 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15245 const gdb_byte *info_ptr,
15246 struct die_info *comp_unit_die,
15247 int has_children,
15248 void *data)
15249 {
15250 struct dwarf2_cu *cu = reader->cu;
15251 struct dwarf2_read_addr_index_data *aidata =
15252 (struct dwarf2_read_addr_index_data *) data;
15253
15254 aidata->addr_base = cu->addr_base;
15255 aidata->addr_size = cu->header.addr_size;
15256 }
15257
15258 /* Given an index in .debug_addr, fetch the value.
15259 NOTE: This can be called during dwarf expression evaluation,
15260 long after the debug information has been read, and thus per_cu->cu
15261 may no longer exist. */
15262
15263 CORE_ADDR
15264 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15265 unsigned int addr_index)
15266 {
15267 struct objfile *objfile = per_cu->objfile;
15268 struct dwarf2_cu *cu = per_cu->cu;
15269 ULONGEST addr_base;
15270 int addr_size;
15271
15272 /* This is intended to be called from outside this file. */
15273 dw2_setup (objfile);
15274
15275 /* We need addr_base and addr_size.
15276 If we don't have PER_CU->cu, we have to get it.
15277 Nasty, but the alternative is storing the needed info in PER_CU,
15278 which at this point doesn't seem justified: it's not clear how frequently
15279 it would get used and it would increase the size of every PER_CU.
15280 Entry points like dwarf2_per_cu_addr_size do a similar thing
15281 so we're not in uncharted territory here.
15282 Alas we need to be a bit more complicated as addr_base is contained
15283 in the DIE.
15284
15285 We don't need to read the entire CU(/TU).
15286 We just need the header and top level die.
15287
15288 IWBN to use the aging mechanism to let us lazily later discard the CU.
15289 For now we skip this optimization. */
15290
15291 if (cu != NULL)
15292 {
15293 addr_base = cu->addr_base;
15294 addr_size = cu->header.addr_size;
15295 }
15296 else
15297 {
15298 struct dwarf2_read_addr_index_data aidata;
15299
15300 /* Note: We can't use init_cutu_and_read_dies_simple here,
15301 we need addr_base. */
15302 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15303 dwarf2_read_addr_index_reader, &aidata);
15304 addr_base = aidata.addr_base;
15305 addr_size = aidata.addr_size;
15306 }
15307
15308 return read_addr_index_1 (addr_index, addr_base, addr_size);
15309 }
15310
15311 /* Given a DW_AT_str_index, fetch the string. */
15312
15313 static const char *
15314 read_str_index (const struct die_reader_specs *reader,
15315 struct dwarf2_cu *cu, ULONGEST str_index)
15316 {
15317 struct objfile *objfile = dwarf2_per_objfile->objfile;
15318 const char *dwo_name = objfile->name;
15319 bfd *abfd = objfile->obfd;
15320 struct dwo_sections *sections = &reader->dwo_file->sections;
15321 const gdb_byte *info_ptr;
15322 ULONGEST str_offset;
15323
15324 dwarf2_read_section (objfile, &sections->str);
15325 dwarf2_read_section (objfile, &sections->str_offsets);
15326 if (sections->str.buffer == NULL)
15327 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15328 " in CU at offset 0x%lx [in module %s]"),
15329 (long) cu->header.offset.sect_off, dwo_name);
15330 if (sections->str_offsets.buffer == NULL)
15331 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15332 " in CU at offset 0x%lx [in module %s]"),
15333 (long) cu->header.offset.sect_off, dwo_name);
15334 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15335 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15336 " section in CU at offset 0x%lx [in module %s]"),
15337 (long) cu->header.offset.sect_off, dwo_name);
15338 info_ptr = (sections->str_offsets.buffer
15339 + str_index * cu->header.offset_size);
15340 if (cu->header.offset_size == 4)
15341 str_offset = bfd_get_32 (abfd, info_ptr);
15342 else
15343 str_offset = bfd_get_64 (abfd, info_ptr);
15344 if (str_offset >= sections->str.size)
15345 error (_("Offset from DW_FORM_str_index pointing outside of"
15346 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15347 (long) cu->header.offset.sect_off, dwo_name);
15348 return (const char *) (sections->str.buffer + str_offset);
15349 }
15350
15351 /* Return the length of an LEB128 number in BUF. */
15352
15353 static int
15354 leb128_size (const gdb_byte *buf)
15355 {
15356 const gdb_byte *begin = buf;
15357 gdb_byte byte;
15358
15359 while (1)
15360 {
15361 byte = *buf++;
15362 if ((byte & 128) == 0)
15363 return buf - begin;
15364 }
15365 }
15366
15367 static void
15368 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15369 {
15370 switch (lang)
15371 {
15372 case DW_LANG_C89:
15373 case DW_LANG_C99:
15374 case DW_LANG_C:
15375 case DW_LANG_UPC:
15376 cu->language = language_c;
15377 break;
15378 case DW_LANG_C_plus_plus:
15379 cu->language = language_cplus;
15380 break;
15381 case DW_LANG_D:
15382 cu->language = language_d;
15383 break;
15384 case DW_LANG_Fortran77:
15385 case DW_LANG_Fortran90:
15386 case DW_LANG_Fortran95:
15387 cu->language = language_fortran;
15388 break;
15389 case DW_LANG_Go:
15390 cu->language = language_go;
15391 break;
15392 case DW_LANG_Mips_Assembler:
15393 cu->language = language_asm;
15394 break;
15395 case DW_LANG_Java:
15396 cu->language = language_java;
15397 break;
15398 case DW_LANG_Ada83:
15399 case DW_LANG_Ada95:
15400 cu->language = language_ada;
15401 break;
15402 case DW_LANG_Modula2:
15403 cu->language = language_m2;
15404 break;
15405 case DW_LANG_Pascal83:
15406 cu->language = language_pascal;
15407 break;
15408 case DW_LANG_ObjC:
15409 cu->language = language_objc;
15410 break;
15411 case DW_LANG_Cobol74:
15412 case DW_LANG_Cobol85:
15413 default:
15414 cu->language = language_minimal;
15415 break;
15416 }
15417 cu->language_defn = language_def (cu->language);
15418 }
15419
15420 /* Return the named attribute or NULL if not there. */
15421
15422 static struct attribute *
15423 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15424 {
15425 for (;;)
15426 {
15427 unsigned int i;
15428 struct attribute *spec = NULL;
15429
15430 for (i = 0; i < die->num_attrs; ++i)
15431 {
15432 if (die->attrs[i].name == name)
15433 return &die->attrs[i];
15434 if (die->attrs[i].name == DW_AT_specification
15435 || die->attrs[i].name == DW_AT_abstract_origin)
15436 spec = &die->attrs[i];
15437 }
15438
15439 if (!spec)
15440 break;
15441
15442 die = follow_die_ref (die, spec, &cu);
15443 }
15444
15445 return NULL;
15446 }
15447
15448 /* Return the named attribute or NULL if not there,
15449 but do not follow DW_AT_specification, etc.
15450 This is for use in contexts where we're reading .debug_types dies.
15451 Following DW_AT_specification, DW_AT_abstract_origin will take us
15452 back up the chain, and we want to go down. */
15453
15454 static struct attribute *
15455 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15456 {
15457 unsigned int i;
15458
15459 for (i = 0; i < die->num_attrs; ++i)
15460 if (die->attrs[i].name == name)
15461 return &die->attrs[i];
15462
15463 return NULL;
15464 }
15465
15466 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15467 and holds a non-zero value. This function should only be used for
15468 DW_FORM_flag or DW_FORM_flag_present attributes. */
15469
15470 static int
15471 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15472 {
15473 struct attribute *attr = dwarf2_attr (die, name, cu);
15474
15475 return (attr && DW_UNSND (attr));
15476 }
15477
15478 static int
15479 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15480 {
15481 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15482 which value is non-zero. However, we have to be careful with
15483 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15484 (via dwarf2_flag_true_p) follows this attribute. So we may
15485 end up accidently finding a declaration attribute that belongs
15486 to a different DIE referenced by the specification attribute,
15487 even though the given DIE does not have a declaration attribute. */
15488 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15489 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15490 }
15491
15492 /* Return the die giving the specification for DIE, if there is
15493 one. *SPEC_CU is the CU containing DIE on input, and the CU
15494 containing the return value on output. If there is no
15495 specification, but there is an abstract origin, that is
15496 returned. */
15497
15498 static struct die_info *
15499 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15500 {
15501 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15502 *spec_cu);
15503
15504 if (spec_attr == NULL)
15505 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15506
15507 if (spec_attr == NULL)
15508 return NULL;
15509 else
15510 return follow_die_ref (die, spec_attr, spec_cu);
15511 }
15512
15513 /* Free the line_header structure *LH, and any arrays and strings it
15514 refers to.
15515 NOTE: This is also used as a "cleanup" function. */
15516
15517 static void
15518 free_line_header (struct line_header *lh)
15519 {
15520 if (lh->standard_opcode_lengths)
15521 xfree (lh->standard_opcode_lengths);
15522
15523 /* Remember that all the lh->file_names[i].name pointers are
15524 pointers into debug_line_buffer, and don't need to be freed. */
15525 if (lh->file_names)
15526 xfree (lh->file_names);
15527
15528 /* Similarly for the include directory names. */
15529 if (lh->include_dirs)
15530 xfree (lh->include_dirs);
15531
15532 xfree (lh);
15533 }
15534
15535 /* Add an entry to LH's include directory table. */
15536
15537 static void
15538 add_include_dir (struct line_header *lh, const char *include_dir)
15539 {
15540 /* Grow the array if necessary. */
15541 if (lh->include_dirs_size == 0)
15542 {
15543 lh->include_dirs_size = 1; /* for testing */
15544 lh->include_dirs = xmalloc (lh->include_dirs_size
15545 * sizeof (*lh->include_dirs));
15546 }
15547 else if (lh->num_include_dirs >= lh->include_dirs_size)
15548 {
15549 lh->include_dirs_size *= 2;
15550 lh->include_dirs = xrealloc (lh->include_dirs,
15551 (lh->include_dirs_size
15552 * sizeof (*lh->include_dirs)));
15553 }
15554
15555 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15556 }
15557
15558 /* Add an entry to LH's file name table. */
15559
15560 static void
15561 add_file_name (struct line_header *lh,
15562 const char *name,
15563 unsigned int dir_index,
15564 unsigned int mod_time,
15565 unsigned int length)
15566 {
15567 struct file_entry *fe;
15568
15569 /* Grow the array if necessary. */
15570 if (lh->file_names_size == 0)
15571 {
15572 lh->file_names_size = 1; /* for testing */
15573 lh->file_names = xmalloc (lh->file_names_size
15574 * sizeof (*lh->file_names));
15575 }
15576 else if (lh->num_file_names >= lh->file_names_size)
15577 {
15578 lh->file_names_size *= 2;
15579 lh->file_names = xrealloc (lh->file_names,
15580 (lh->file_names_size
15581 * sizeof (*lh->file_names)));
15582 }
15583
15584 fe = &lh->file_names[lh->num_file_names++];
15585 fe->name = name;
15586 fe->dir_index = dir_index;
15587 fe->mod_time = mod_time;
15588 fe->length = length;
15589 fe->included_p = 0;
15590 fe->symtab = NULL;
15591 }
15592
15593 /* A convenience function to find the proper .debug_line section for a
15594 CU. */
15595
15596 static struct dwarf2_section_info *
15597 get_debug_line_section (struct dwarf2_cu *cu)
15598 {
15599 struct dwarf2_section_info *section;
15600
15601 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15602 DWO file. */
15603 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15604 section = &cu->dwo_unit->dwo_file->sections.line;
15605 else if (cu->per_cu->is_dwz)
15606 {
15607 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15608
15609 section = &dwz->line;
15610 }
15611 else
15612 section = &dwarf2_per_objfile->line;
15613
15614 return section;
15615 }
15616
15617 /* Read the statement program header starting at OFFSET in
15618 .debug_line, or .debug_line.dwo. Return a pointer
15619 to a struct line_header, allocated using xmalloc.
15620
15621 NOTE: the strings in the include directory and file name tables of
15622 the returned object point into the dwarf line section buffer,
15623 and must not be freed. */
15624
15625 static struct line_header *
15626 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15627 {
15628 struct cleanup *back_to;
15629 struct line_header *lh;
15630 const gdb_byte *line_ptr;
15631 unsigned int bytes_read, offset_size;
15632 int i;
15633 const char *cur_dir, *cur_file;
15634 struct dwarf2_section_info *section;
15635 bfd *abfd;
15636
15637 section = get_debug_line_section (cu);
15638 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15639 if (section->buffer == NULL)
15640 {
15641 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15642 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15643 else
15644 complaint (&symfile_complaints, _("missing .debug_line section"));
15645 return 0;
15646 }
15647
15648 /* We can't do this until we know the section is non-empty.
15649 Only then do we know we have such a section. */
15650 abfd = section->asection->owner;
15651
15652 /* Make sure that at least there's room for the total_length field.
15653 That could be 12 bytes long, but we're just going to fudge that. */
15654 if (offset + 4 >= section->size)
15655 {
15656 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15657 return 0;
15658 }
15659
15660 lh = xmalloc (sizeof (*lh));
15661 memset (lh, 0, sizeof (*lh));
15662 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15663 (void *) lh);
15664
15665 line_ptr = section->buffer + offset;
15666
15667 /* Read in the header. */
15668 lh->total_length =
15669 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15670 &bytes_read, &offset_size);
15671 line_ptr += bytes_read;
15672 if (line_ptr + lh->total_length > (section->buffer + section->size))
15673 {
15674 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15675 return 0;
15676 }
15677 lh->statement_program_end = line_ptr + lh->total_length;
15678 lh->version = read_2_bytes (abfd, line_ptr);
15679 line_ptr += 2;
15680 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15681 line_ptr += offset_size;
15682 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15683 line_ptr += 1;
15684 if (lh->version >= 4)
15685 {
15686 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15687 line_ptr += 1;
15688 }
15689 else
15690 lh->maximum_ops_per_instruction = 1;
15691
15692 if (lh->maximum_ops_per_instruction == 0)
15693 {
15694 lh->maximum_ops_per_instruction = 1;
15695 complaint (&symfile_complaints,
15696 _("invalid maximum_ops_per_instruction "
15697 "in `.debug_line' section"));
15698 }
15699
15700 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15701 line_ptr += 1;
15702 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15703 line_ptr += 1;
15704 lh->line_range = read_1_byte (abfd, line_ptr);
15705 line_ptr += 1;
15706 lh->opcode_base = read_1_byte (abfd, line_ptr);
15707 line_ptr += 1;
15708 lh->standard_opcode_lengths
15709 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15710
15711 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15712 for (i = 1; i < lh->opcode_base; ++i)
15713 {
15714 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15715 line_ptr += 1;
15716 }
15717
15718 /* Read directory table. */
15719 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15720 {
15721 line_ptr += bytes_read;
15722 add_include_dir (lh, cur_dir);
15723 }
15724 line_ptr += bytes_read;
15725
15726 /* Read file name table. */
15727 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15728 {
15729 unsigned int dir_index, mod_time, length;
15730
15731 line_ptr += bytes_read;
15732 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15733 line_ptr += bytes_read;
15734 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15735 line_ptr += bytes_read;
15736 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15737 line_ptr += bytes_read;
15738
15739 add_file_name (lh, cur_file, dir_index, mod_time, length);
15740 }
15741 line_ptr += bytes_read;
15742 lh->statement_program_start = line_ptr;
15743
15744 if (line_ptr > (section->buffer + section->size))
15745 complaint (&symfile_complaints,
15746 _("line number info header doesn't "
15747 "fit in `.debug_line' section"));
15748
15749 discard_cleanups (back_to);
15750 return lh;
15751 }
15752
15753 /* Subroutine of dwarf_decode_lines to simplify it.
15754 Return the file name of the psymtab for included file FILE_INDEX
15755 in line header LH of PST.
15756 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15757 If space for the result is malloc'd, it will be freed by a cleanup.
15758 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15759
15760 The function creates dangling cleanup registration. */
15761
15762 static const char *
15763 psymtab_include_file_name (const struct line_header *lh, int file_index,
15764 const struct partial_symtab *pst,
15765 const char *comp_dir)
15766 {
15767 const struct file_entry fe = lh->file_names [file_index];
15768 const char *include_name = fe.name;
15769 const char *include_name_to_compare = include_name;
15770 const char *dir_name = NULL;
15771 const char *pst_filename;
15772 char *copied_name = NULL;
15773 int file_is_pst;
15774
15775 if (fe.dir_index)
15776 dir_name = lh->include_dirs[fe.dir_index - 1];
15777
15778 if (!IS_ABSOLUTE_PATH (include_name)
15779 && (dir_name != NULL || comp_dir != NULL))
15780 {
15781 /* Avoid creating a duplicate psymtab for PST.
15782 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15783 Before we do the comparison, however, we need to account
15784 for DIR_NAME and COMP_DIR.
15785 First prepend dir_name (if non-NULL). If we still don't
15786 have an absolute path prepend comp_dir (if non-NULL).
15787 However, the directory we record in the include-file's
15788 psymtab does not contain COMP_DIR (to match the
15789 corresponding symtab(s)).
15790
15791 Example:
15792
15793 bash$ cd /tmp
15794 bash$ gcc -g ./hello.c
15795 include_name = "hello.c"
15796 dir_name = "."
15797 DW_AT_comp_dir = comp_dir = "/tmp"
15798 DW_AT_name = "./hello.c" */
15799
15800 if (dir_name != NULL)
15801 {
15802 char *tem = concat (dir_name, SLASH_STRING,
15803 include_name, (char *)NULL);
15804
15805 make_cleanup (xfree, tem);
15806 include_name = tem;
15807 include_name_to_compare = include_name;
15808 }
15809 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15810 {
15811 char *tem = concat (comp_dir, SLASH_STRING,
15812 include_name, (char *)NULL);
15813
15814 make_cleanup (xfree, tem);
15815 include_name_to_compare = tem;
15816 }
15817 }
15818
15819 pst_filename = pst->filename;
15820 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15821 {
15822 copied_name = concat (pst->dirname, SLASH_STRING,
15823 pst_filename, (char *)NULL);
15824 pst_filename = copied_name;
15825 }
15826
15827 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15828
15829 if (copied_name != NULL)
15830 xfree (copied_name);
15831
15832 if (file_is_pst)
15833 return NULL;
15834 return include_name;
15835 }
15836
15837 /* Ignore this record_line request. */
15838
15839 static void
15840 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15841 {
15842 return;
15843 }
15844
15845 /* Subroutine of dwarf_decode_lines to simplify it.
15846 Process the line number information in LH. */
15847
15848 static void
15849 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15850 struct dwarf2_cu *cu, struct partial_symtab *pst)
15851 {
15852 const gdb_byte *line_ptr, *extended_end;
15853 const gdb_byte *line_end;
15854 unsigned int bytes_read, extended_len;
15855 unsigned char op_code, extended_op, adj_opcode;
15856 CORE_ADDR baseaddr;
15857 struct objfile *objfile = cu->objfile;
15858 bfd *abfd = objfile->obfd;
15859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15860 const int decode_for_pst_p = (pst != NULL);
15861 struct subfile *last_subfile = NULL;
15862 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15863 = record_line;
15864
15865 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15866
15867 line_ptr = lh->statement_program_start;
15868 line_end = lh->statement_program_end;
15869
15870 /* Read the statement sequences until there's nothing left. */
15871 while (line_ptr < line_end)
15872 {
15873 /* state machine registers */
15874 CORE_ADDR address = 0;
15875 unsigned int file = 1;
15876 unsigned int line = 1;
15877 unsigned int column = 0;
15878 int is_stmt = lh->default_is_stmt;
15879 int basic_block = 0;
15880 int end_sequence = 0;
15881 CORE_ADDR addr;
15882 unsigned char op_index = 0;
15883
15884 if (!decode_for_pst_p && lh->num_file_names >= file)
15885 {
15886 /* Start a subfile for the current file of the state machine. */
15887 /* lh->include_dirs and lh->file_names are 0-based, but the
15888 directory and file name numbers in the statement program
15889 are 1-based. */
15890 struct file_entry *fe = &lh->file_names[file - 1];
15891 const char *dir = NULL;
15892
15893 if (fe->dir_index)
15894 dir = lh->include_dirs[fe->dir_index - 1];
15895
15896 dwarf2_start_subfile (fe->name, dir, comp_dir);
15897 }
15898
15899 /* Decode the table. */
15900 while (!end_sequence)
15901 {
15902 op_code = read_1_byte (abfd, line_ptr);
15903 line_ptr += 1;
15904 if (line_ptr > line_end)
15905 {
15906 dwarf2_debug_line_missing_end_sequence_complaint ();
15907 break;
15908 }
15909
15910 if (op_code >= lh->opcode_base)
15911 {
15912 /* Special operand. */
15913 adj_opcode = op_code - lh->opcode_base;
15914 address += (((op_index + (adj_opcode / lh->line_range))
15915 / lh->maximum_ops_per_instruction)
15916 * lh->minimum_instruction_length);
15917 op_index = ((op_index + (adj_opcode / lh->line_range))
15918 % lh->maximum_ops_per_instruction);
15919 line += lh->line_base + (adj_opcode % lh->line_range);
15920 if (lh->num_file_names < file || file == 0)
15921 dwarf2_debug_line_missing_file_complaint ();
15922 /* For now we ignore lines not starting on an
15923 instruction boundary. */
15924 else if (op_index == 0)
15925 {
15926 lh->file_names[file - 1].included_p = 1;
15927 if (!decode_for_pst_p && is_stmt)
15928 {
15929 if (last_subfile != current_subfile)
15930 {
15931 addr = gdbarch_addr_bits_remove (gdbarch, address);
15932 if (last_subfile)
15933 (*p_record_line) (last_subfile, 0, addr);
15934 last_subfile = current_subfile;
15935 }
15936 /* Append row to matrix using current values. */
15937 addr = gdbarch_addr_bits_remove (gdbarch, address);
15938 (*p_record_line) (current_subfile, line, addr);
15939 }
15940 }
15941 basic_block = 0;
15942 }
15943 else switch (op_code)
15944 {
15945 case DW_LNS_extended_op:
15946 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15947 &bytes_read);
15948 line_ptr += bytes_read;
15949 extended_end = line_ptr + extended_len;
15950 extended_op = read_1_byte (abfd, line_ptr);
15951 line_ptr += 1;
15952 switch (extended_op)
15953 {
15954 case DW_LNE_end_sequence:
15955 p_record_line = record_line;
15956 end_sequence = 1;
15957 break;
15958 case DW_LNE_set_address:
15959 address = read_address (abfd, line_ptr, cu, &bytes_read);
15960
15961 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15962 {
15963 /* This line table is for a function which has been
15964 GCd by the linker. Ignore it. PR gdb/12528 */
15965
15966 long line_offset
15967 = line_ptr - get_debug_line_section (cu)->buffer;
15968
15969 complaint (&symfile_complaints,
15970 _(".debug_line address at offset 0x%lx is 0 "
15971 "[in module %s]"),
15972 line_offset, objfile->name);
15973 p_record_line = noop_record_line;
15974 }
15975
15976 op_index = 0;
15977 line_ptr += bytes_read;
15978 address += baseaddr;
15979 break;
15980 case DW_LNE_define_file:
15981 {
15982 const char *cur_file;
15983 unsigned int dir_index, mod_time, length;
15984
15985 cur_file = read_direct_string (abfd, line_ptr,
15986 &bytes_read);
15987 line_ptr += bytes_read;
15988 dir_index =
15989 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15990 line_ptr += bytes_read;
15991 mod_time =
15992 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15993 line_ptr += bytes_read;
15994 length =
15995 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15996 line_ptr += bytes_read;
15997 add_file_name (lh, cur_file, dir_index, mod_time, length);
15998 }
15999 break;
16000 case DW_LNE_set_discriminator:
16001 /* The discriminator is not interesting to the debugger;
16002 just ignore it. */
16003 line_ptr = extended_end;
16004 break;
16005 default:
16006 complaint (&symfile_complaints,
16007 _("mangled .debug_line section"));
16008 return;
16009 }
16010 /* Make sure that we parsed the extended op correctly. If e.g.
16011 we expected a different address size than the producer used,
16012 we may have read the wrong number of bytes. */
16013 if (line_ptr != extended_end)
16014 {
16015 complaint (&symfile_complaints,
16016 _("mangled .debug_line section"));
16017 return;
16018 }
16019 break;
16020 case DW_LNS_copy:
16021 if (lh->num_file_names < file || file == 0)
16022 dwarf2_debug_line_missing_file_complaint ();
16023 else
16024 {
16025 lh->file_names[file - 1].included_p = 1;
16026 if (!decode_for_pst_p && is_stmt)
16027 {
16028 if (last_subfile != current_subfile)
16029 {
16030 addr = gdbarch_addr_bits_remove (gdbarch, address);
16031 if (last_subfile)
16032 (*p_record_line) (last_subfile, 0, addr);
16033 last_subfile = current_subfile;
16034 }
16035 addr = gdbarch_addr_bits_remove (gdbarch, address);
16036 (*p_record_line) (current_subfile, line, addr);
16037 }
16038 }
16039 basic_block = 0;
16040 break;
16041 case DW_LNS_advance_pc:
16042 {
16043 CORE_ADDR adjust
16044 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16045
16046 address += (((op_index + adjust)
16047 / lh->maximum_ops_per_instruction)
16048 * lh->minimum_instruction_length);
16049 op_index = ((op_index + adjust)
16050 % lh->maximum_ops_per_instruction);
16051 line_ptr += bytes_read;
16052 }
16053 break;
16054 case DW_LNS_advance_line:
16055 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16056 line_ptr += bytes_read;
16057 break;
16058 case DW_LNS_set_file:
16059 {
16060 /* The arrays lh->include_dirs and lh->file_names are
16061 0-based, but the directory and file name numbers in
16062 the statement program are 1-based. */
16063 struct file_entry *fe;
16064 const char *dir = NULL;
16065
16066 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16067 line_ptr += bytes_read;
16068 if (lh->num_file_names < file || file == 0)
16069 dwarf2_debug_line_missing_file_complaint ();
16070 else
16071 {
16072 fe = &lh->file_names[file - 1];
16073 if (fe->dir_index)
16074 dir = lh->include_dirs[fe->dir_index - 1];
16075 if (!decode_for_pst_p)
16076 {
16077 last_subfile = current_subfile;
16078 dwarf2_start_subfile (fe->name, dir, comp_dir);
16079 }
16080 }
16081 }
16082 break;
16083 case DW_LNS_set_column:
16084 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16085 line_ptr += bytes_read;
16086 break;
16087 case DW_LNS_negate_stmt:
16088 is_stmt = (!is_stmt);
16089 break;
16090 case DW_LNS_set_basic_block:
16091 basic_block = 1;
16092 break;
16093 /* Add to the address register of the state machine the
16094 address increment value corresponding to special opcode
16095 255. I.e., this value is scaled by the minimum
16096 instruction length since special opcode 255 would have
16097 scaled the increment. */
16098 case DW_LNS_const_add_pc:
16099 {
16100 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16101
16102 address += (((op_index + adjust)
16103 / lh->maximum_ops_per_instruction)
16104 * lh->minimum_instruction_length);
16105 op_index = ((op_index + adjust)
16106 % lh->maximum_ops_per_instruction);
16107 }
16108 break;
16109 case DW_LNS_fixed_advance_pc:
16110 address += read_2_bytes (abfd, line_ptr);
16111 op_index = 0;
16112 line_ptr += 2;
16113 break;
16114 default:
16115 {
16116 /* Unknown standard opcode, ignore it. */
16117 int i;
16118
16119 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16120 {
16121 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16122 line_ptr += bytes_read;
16123 }
16124 }
16125 }
16126 }
16127 if (lh->num_file_names < file || file == 0)
16128 dwarf2_debug_line_missing_file_complaint ();
16129 else
16130 {
16131 lh->file_names[file - 1].included_p = 1;
16132 if (!decode_for_pst_p)
16133 {
16134 addr = gdbarch_addr_bits_remove (gdbarch, address);
16135 (*p_record_line) (current_subfile, 0, addr);
16136 }
16137 }
16138 }
16139 }
16140
16141 /* Decode the Line Number Program (LNP) for the given line_header
16142 structure and CU. The actual information extracted and the type
16143 of structures created from the LNP depends on the value of PST.
16144
16145 1. If PST is NULL, then this procedure uses the data from the program
16146 to create all necessary symbol tables, and their linetables.
16147
16148 2. If PST is not NULL, this procedure reads the program to determine
16149 the list of files included by the unit represented by PST, and
16150 builds all the associated partial symbol tables.
16151
16152 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16153 It is used for relative paths in the line table.
16154 NOTE: When processing partial symtabs (pst != NULL),
16155 comp_dir == pst->dirname.
16156
16157 NOTE: It is important that psymtabs have the same file name (via strcmp)
16158 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16159 symtab we don't use it in the name of the psymtabs we create.
16160 E.g. expand_line_sal requires this when finding psymtabs to expand.
16161 A good testcase for this is mb-inline.exp. */
16162
16163 static void
16164 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16165 struct dwarf2_cu *cu, struct partial_symtab *pst,
16166 int want_line_info)
16167 {
16168 struct objfile *objfile = cu->objfile;
16169 const int decode_for_pst_p = (pst != NULL);
16170 struct subfile *first_subfile = current_subfile;
16171
16172 if (want_line_info)
16173 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16174
16175 if (decode_for_pst_p)
16176 {
16177 int file_index;
16178
16179 /* Now that we're done scanning the Line Header Program, we can
16180 create the psymtab of each included file. */
16181 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16182 if (lh->file_names[file_index].included_p == 1)
16183 {
16184 const char *include_name =
16185 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16186 if (include_name != NULL)
16187 dwarf2_create_include_psymtab (include_name, pst, objfile);
16188 }
16189 }
16190 else
16191 {
16192 /* Make sure a symtab is created for every file, even files
16193 which contain only variables (i.e. no code with associated
16194 line numbers). */
16195 int i;
16196
16197 for (i = 0; i < lh->num_file_names; i++)
16198 {
16199 const char *dir = NULL;
16200 struct file_entry *fe;
16201
16202 fe = &lh->file_names[i];
16203 if (fe->dir_index)
16204 dir = lh->include_dirs[fe->dir_index - 1];
16205 dwarf2_start_subfile (fe->name, dir, comp_dir);
16206
16207 /* Skip the main file; we don't need it, and it must be
16208 allocated last, so that it will show up before the
16209 non-primary symtabs in the objfile's symtab list. */
16210 if (current_subfile == first_subfile)
16211 continue;
16212
16213 if (current_subfile->symtab == NULL)
16214 current_subfile->symtab = allocate_symtab (current_subfile->name,
16215 objfile);
16216 fe->symtab = current_subfile->symtab;
16217 }
16218 }
16219 }
16220
16221 /* Start a subfile for DWARF. FILENAME is the name of the file and
16222 DIRNAME the name of the source directory which contains FILENAME
16223 or NULL if not known. COMP_DIR is the compilation directory for the
16224 linetable's compilation unit or NULL if not known.
16225 This routine tries to keep line numbers from identical absolute and
16226 relative file names in a common subfile.
16227
16228 Using the `list' example from the GDB testsuite, which resides in
16229 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16230 of /srcdir/list0.c yields the following debugging information for list0.c:
16231
16232 DW_AT_name: /srcdir/list0.c
16233 DW_AT_comp_dir: /compdir
16234 files.files[0].name: list0.h
16235 files.files[0].dir: /srcdir
16236 files.files[1].name: list0.c
16237 files.files[1].dir: /srcdir
16238
16239 The line number information for list0.c has to end up in a single
16240 subfile, so that `break /srcdir/list0.c:1' works as expected.
16241 start_subfile will ensure that this happens provided that we pass the
16242 concatenation of files.files[1].dir and files.files[1].name as the
16243 subfile's name. */
16244
16245 static void
16246 dwarf2_start_subfile (const char *filename, const char *dirname,
16247 const char *comp_dir)
16248 {
16249 char *copy = NULL;
16250
16251 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16252 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16253 second argument to start_subfile. To be consistent, we do the
16254 same here. In order not to lose the line information directory,
16255 we concatenate it to the filename when it makes sense.
16256 Note that the Dwarf3 standard says (speaking of filenames in line
16257 information): ``The directory index is ignored for file names
16258 that represent full path names''. Thus ignoring dirname in the
16259 `else' branch below isn't an issue. */
16260
16261 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16262 {
16263 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16264 filename = copy;
16265 }
16266
16267 start_subfile (filename, comp_dir);
16268
16269 if (copy != NULL)
16270 xfree (copy);
16271 }
16272
16273 /* Start a symtab for DWARF.
16274 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16275
16276 static void
16277 dwarf2_start_symtab (struct dwarf2_cu *cu,
16278 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16279 {
16280 start_symtab (name, comp_dir, low_pc);
16281 record_debugformat ("DWARF 2");
16282 record_producer (cu->producer);
16283
16284 /* We assume that we're processing GCC output. */
16285 processing_gcc_compilation = 2;
16286
16287 cu->processing_has_namespace_info = 0;
16288 }
16289
16290 static void
16291 var_decode_location (struct attribute *attr, struct symbol *sym,
16292 struct dwarf2_cu *cu)
16293 {
16294 struct objfile *objfile = cu->objfile;
16295 struct comp_unit_head *cu_header = &cu->header;
16296
16297 /* NOTE drow/2003-01-30: There used to be a comment and some special
16298 code here to turn a symbol with DW_AT_external and a
16299 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16300 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16301 with some versions of binutils) where shared libraries could have
16302 relocations against symbols in their debug information - the
16303 minimal symbol would have the right address, but the debug info
16304 would not. It's no longer necessary, because we will explicitly
16305 apply relocations when we read in the debug information now. */
16306
16307 /* A DW_AT_location attribute with no contents indicates that a
16308 variable has been optimized away. */
16309 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16310 {
16311 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16312 return;
16313 }
16314
16315 /* Handle one degenerate form of location expression specially, to
16316 preserve GDB's previous behavior when section offsets are
16317 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16318 then mark this symbol as LOC_STATIC. */
16319
16320 if (attr_form_is_block (attr)
16321 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16322 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16323 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16324 && (DW_BLOCK (attr)->size
16325 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16326 {
16327 unsigned int dummy;
16328
16329 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16330 SYMBOL_VALUE_ADDRESS (sym) =
16331 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16332 else
16333 SYMBOL_VALUE_ADDRESS (sym) =
16334 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16335 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16336 fixup_symbol_section (sym, objfile);
16337 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16338 SYMBOL_SECTION (sym));
16339 return;
16340 }
16341
16342 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16343 expression evaluator, and use LOC_COMPUTED only when necessary
16344 (i.e. when the value of a register or memory location is
16345 referenced, or a thread-local block, etc.). Then again, it might
16346 not be worthwhile. I'm assuming that it isn't unless performance
16347 or memory numbers show me otherwise. */
16348
16349 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16350
16351 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16352 cu->has_loclist = 1;
16353 }
16354
16355 /* Given a pointer to a DWARF information entry, figure out if we need
16356 to make a symbol table entry for it, and if so, create a new entry
16357 and return a pointer to it.
16358 If TYPE is NULL, determine symbol type from the die, otherwise
16359 used the passed type.
16360 If SPACE is not NULL, use it to hold the new symbol. If it is
16361 NULL, allocate a new symbol on the objfile's obstack. */
16362
16363 static struct symbol *
16364 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16365 struct symbol *space)
16366 {
16367 struct objfile *objfile = cu->objfile;
16368 struct symbol *sym = NULL;
16369 const char *name;
16370 struct attribute *attr = NULL;
16371 struct attribute *attr2 = NULL;
16372 CORE_ADDR baseaddr;
16373 struct pending **list_to_add = NULL;
16374
16375 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16376
16377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16378
16379 name = dwarf2_name (die, cu);
16380 if (name)
16381 {
16382 const char *linkagename;
16383 int suppress_add = 0;
16384
16385 if (space)
16386 sym = space;
16387 else
16388 sym = allocate_symbol (objfile);
16389 OBJSTAT (objfile, n_syms++);
16390
16391 /* Cache this symbol's name and the name's demangled form (if any). */
16392 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16393 linkagename = dwarf2_physname (name, die, cu);
16394 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16395
16396 /* Fortran does not have mangling standard and the mangling does differ
16397 between gfortran, iFort etc. */
16398 if (cu->language == language_fortran
16399 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16400 symbol_set_demangled_name (&(sym->ginfo),
16401 dwarf2_full_name (name, die, cu),
16402 NULL);
16403
16404 /* Default assumptions.
16405 Use the passed type or decode it from the die. */
16406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16407 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16408 if (type != NULL)
16409 SYMBOL_TYPE (sym) = type;
16410 else
16411 SYMBOL_TYPE (sym) = die_type (die, cu);
16412 attr = dwarf2_attr (die,
16413 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16414 cu);
16415 if (attr)
16416 {
16417 SYMBOL_LINE (sym) = DW_UNSND (attr);
16418 }
16419
16420 attr = dwarf2_attr (die,
16421 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16422 cu);
16423 if (attr)
16424 {
16425 int file_index = DW_UNSND (attr);
16426
16427 if (cu->line_header == NULL
16428 || file_index > cu->line_header->num_file_names)
16429 complaint (&symfile_complaints,
16430 _("file index out of range"));
16431 else if (file_index > 0)
16432 {
16433 struct file_entry *fe;
16434
16435 fe = &cu->line_header->file_names[file_index - 1];
16436 SYMBOL_SYMTAB (sym) = fe->symtab;
16437 }
16438 }
16439
16440 switch (die->tag)
16441 {
16442 case DW_TAG_label:
16443 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16444 if (attr)
16445 {
16446 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16447 }
16448 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16449 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16450 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16451 add_symbol_to_list (sym, cu->list_in_scope);
16452 break;
16453 case DW_TAG_subprogram:
16454 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16455 finish_block. */
16456 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16457 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16458 if ((attr2 && (DW_UNSND (attr2) != 0))
16459 || cu->language == language_ada)
16460 {
16461 /* Subprograms marked external are stored as a global symbol.
16462 Ada subprograms, whether marked external or not, are always
16463 stored as a global symbol, because we want to be able to
16464 access them globally. For instance, we want to be able
16465 to break on a nested subprogram without having to
16466 specify the context. */
16467 list_to_add = &global_symbols;
16468 }
16469 else
16470 {
16471 list_to_add = cu->list_in_scope;
16472 }
16473 break;
16474 case DW_TAG_inlined_subroutine:
16475 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16476 finish_block. */
16477 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16478 SYMBOL_INLINED (sym) = 1;
16479 list_to_add = cu->list_in_scope;
16480 break;
16481 case DW_TAG_template_value_param:
16482 suppress_add = 1;
16483 /* Fall through. */
16484 case DW_TAG_constant:
16485 case DW_TAG_variable:
16486 case DW_TAG_member:
16487 /* Compilation with minimal debug info may result in
16488 variables with missing type entries. Change the
16489 misleading `void' type to something sensible. */
16490 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16491 SYMBOL_TYPE (sym)
16492 = objfile_type (objfile)->nodebug_data_symbol;
16493
16494 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16495 /* In the case of DW_TAG_member, we should only be called for
16496 static const members. */
16497 if (die->tag == DW_TAG_member)
16498 {
16499 /* dwarf2_add_field uses die_is_declaration,
16500 so we do the same. */
16501 gdb_assert (die_is_declaration (die, cu));
16502 gdb_assert (attr);
16503 }
16504 if (attr)
16505 {
16506 dwarf2_const_value (attr, sym, cu);
16507 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16508 if (!suppress_add)
16509 {
16510 if (attr2 && (DW_UNSND (attr2) != 0))
16511 list_to_add = &global_symbols;
16512 else
16513 list_to_add = cu->list_in_scope;
16514 }
16515 break;
16516 }
16517 attr = dwarf2_attr (die, DW_AT_location, cu);
16518 if (attr)
16519 {
16520 var_decode_location (attr, sym, cu);
16521 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16522
16523 /* Fortran explicitly imports any global symbols to the local
16524 scope by DW_TAG_common_block. */
16525 if (cu->language == language_fortran && die->parent
16526 && die->parent->tag == DW_TAG_common_block)
16527 attr2 = NULL;
16528
16529 if (SYMBOL_CLASS (sym) == LOC_STATIC
16530 && SYMBOL_VALUE_ADDRESS (sym) == 0
16531 && !dwarf2_per_objfile->has_section_at_zero)
16532 {
16533 /* When a static variable is eliminated by the linker,
16534 the corresponding debug information is not stripped
16535 out, but the variable address is set to null;
16536 do not add such variables into symbol table. */
16537 }
16538 else if (attr2 && (DW_UNSND (attr2) != 0))
16539 {
16540 /* Workaround gfortran PR debug/40040 - it uses
16541 DW_AT_location for variables in -fPIC libraries which may
16542 get overriden by other libraries/executable and get
16543 a different address. Resolve it by the minimal symbol
16544 which may come from inferior's executable using copy
16545 relocation. Make this workaround only for gfortran as for
16546 other compilers GDB cannot guess the minimal symbol
16547 Fortran mangling kind. */
16548 if (cu->language == language_fortran && die->parent
16549 && die->parent->tag == DW_TAG_module
16550 && cu->producer
16551 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16552 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16553
16554 /* A variable with DW_AT_external is never static,
16555 but it may be block-scoped. */
16556 list_to_add = (cu->list_in_scope == &file_symbols
16557 ? &global_symbols : cu->list_in_scope);
16558 }
16559 else
16560 list_to_add = cu->list_in_scope;
16561 }
16562 else
16563 {
16564 /* We do not know the address of this symbol.
16565 If it is an external symbol and we have type information
16566 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16567 The address of the variable will then be determined from
16568 the minimal symbol table whenever the variable is
16569 referenced. */
16570 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16571
16572 /* Fortran explicitly imports any global symbols to the local
16573 scope by DW_TAG_common_block. */
16574 if (cu->language == language_fortran && die->parent
16575 && die->parent->tag == DW_TAG_common_block)
16576 {
16577 /* SYMBOL_CLASS doesn't matter here because
16578 read_common_block is going to reset it. */
16579 if (!suppress_add)
16580 list_to_add = cu->list_in_scope;
16581 }
16582 else if (attr2 && (DW_UNSND (attr2) != 0)
16583 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16584 {
16585 /* A variable with DW_AT_external is never static, but it
16586 may be block-scoped. */
16587 list_to_add = (cu->list_in_scope == &file_symbols
16588 ? &global_symbols : cu->list_in_scope);
16589
16590 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16591 }
16592 else if (!die_is_declaration (die, cu))
16593 {
16594 /* Use the default LOC_OPTIMIZED_OUT class. */
16595 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16596 if (!suppress_add)
16597 list_to_add = cu->list_in_scope;
16598 }
16599 }
16600 break;
16601 case DW_TAG_formal_parameter:
16602 /* If we are inside a function, mark this as an argument. If
16603 not, we might be looking at an argument to an inlined function
16604 when we do not have enough information to show inlined frames;
16605 pretend it's a local variable in that case so that the user can
16606 still see it. */
16607 if (context_stack_depth > 0
16608 && context_stack[context_stack_depth - 1].name != NULL)
16609 SYMBOL_IS_ARGUMENT (sym) = 1;
16610 attr = dwarf2_attr (die, DW_AT_location, cu);
16611 if (attr)
16612 {
16613 var_decode_location (attr, sym, cu);
16614 }
16615 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16616 if (attr)
16617 {
16618 dwarf2_const_value (attr, sym, cu);
16619 }
16620
16621 list_to_add = cu->list_in_scope;
16622 break;
16623 case DW_TAG_unspecified_parameters:
16624 /* From varargs functions; gdb doesn't seem to have any
16625 interest in this information, so just ignore it for now.
16626 (FIXME?) */
16627 break;
16628 case DW_TAG_template_type_param:
16629 suppress_add = 1;
16630 /* Fall through. */
16631 case DW_TAG_class_type:
16632 case DW_TAG_interface_type:
16633 case DW_TAG_structure_type:
16634 case DW_TAG_union_type:
16635 case DW_TAG_set_type:
16636 case DW_TAG_enumeration_type:
16637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16638 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16639
16640 {
16641 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16642 really ever be static objects: otherwise, if you try
16643 to, say, break of a class's method and you're in a file
16644 which doesn't mention that class, it won't work unless
16645 the check for all static symbols in lookup_symbol_aux
16646 saves you. See the OtherFileClass tests in
16647 gdb.c++/namespace.exp. */
16648
16649 if (!suppress_add)
16650 {
16651 list_to_add = (cu->list_in_scope == &file_symbols
16652 && (cu->language == language_cplus
16653 || cu->language == language_java)
16654 ? &global_symbols : cu->list_in_scope);
16655
16656 /* The semantics of C++ state that "struct foo {
16657 ... }" also defines a typedef for "foo". A Java
16658 class declaration also defines a typedef for the
16659 class. */
16660 if (cu->language == language_cplus
16661 || cu->language == language_java
16662 || cu->language == language_ada)
16663 {
16664 /* The symbol's name is already allocated along
16665 with this objfile, so we don't need to
16666 duplicate it for the type. */
16667 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16668 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16669 }
16670 }
16671 }
16672 break;
16673 case DW_TAG_typedef:
16674 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16675 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16676 list_to_add = cu->list_in_scope;
16677 break;
16678 case DW_TAG_base_type:
16679 case DW_TAG_subrange_type:
16680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16681 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16682 list_to_add = cu->list_in_scope;
16683 break;
16684 case DW_TAG_enumerator:
16685 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16686 if (attr)
16687 {
16688 dwarf2_const_value (attr, sym, cu);
16689 }
16690 {
16691 /* NOTE: carlton/2003-11-10: See comment above in the
16692 DW_TAG_class_type, etc. block. */
16693
16694 list_to_add = (cu->list_in_scope == &file_symbols
16695 && (cu->language == language_cplus
16696 || cu->language == language_java)
16697 ? &global_symbols : cu->list_in_scope);
16698 }
16699 break;
16700 case DW_TAG_namespace:
16701 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16702 list_to_add = &global_symbols;
16703 break;
16704 case DW_TAG_common_block:
16705 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16706 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16707 add_symbol_to_list (sym, cu->list_in_scope);
16708 break;
16709 default:
16710 /* Not a tag we recognize. Hopefully we aren't processing
16711 trash data, but since we must specifically ignore things
16712 we don't recognize, there is nothing else we should do at
16713 this point. */
16714 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16715 dwarf_tag_name (die->tag));
16716 break;
16717 }
16718
16719 if (suppress_add)
16720 {
16721 sym->hash_next = objfile->template_symbols;
16722 objfile->template_symbols = sym;
16723 list_to_add = NULL;
16724 }
16725
16726 if (list_to_add != NULL)
16727 add_symbol_to_list (sym, list_to_add);
16728
16729 /* For the benefit of old versions of GCC, check for anonymous
16730 namespaces based on the demangled name. */
16731 if (!cu->processing_has_namespace_info
16732 && cu->language == language_cplus)
16733 cp_scan_for_anonymous_namespaces (sym, objfile);
16734 }
16735 return (sym);
16736 }
16737
16738 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16739
16740 static struct symbol *
16741 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16742 {
16743 return new_symbol_full (die, type, cu, NULL);
16744 }
16745
16746 /* Given an attr with a DW_FORM_dataN value in host byte order,
16747 zero-extend it as appropriate for the symbol's type. The DWARF
16748 standard (v4) is not entirely clear about the meaning of using
16749 DW_FORM_dataN for a constant with a signed type, where the type is
16750 wider than the data. The conclusion of a discussion on the DWARF
16751 list was that this is unspecified. We choose to always zero-extend
16752 because that is the interpretation long in use by GCC. */
16753
16754 static gdb_byte *
16755 dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
16756 struct dwarf2_cu *cu, LONGEST *value, int bits)
16757 {
16758 struct objfile *objfile = cu->objfile;
16759 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16760 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16761 LONGEST l = DW_UNSND (attr);
16762
16763 if (bits < sizeof (*value) * 8)
16764 {
16765 l &= ((LONGEST) 1 << bits) - 1;
16766 *value = l;
16767 }
16768 else if (bits == sizeof (*value) * 8)
16769 *value = l;
16770 else
16771 {
16772 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16773 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16774 return bytes;
16775 }
16776
16777 return NULL;
16778 }
16779
16780 /* Read a constant value from an attribute. Either set *VALUE, or if
16781 the value does not fit in *VALUE, set *BYTES - either already
16782 allocated on the objfile obstack, or newly allocated on OBSTACK,
16783 or, set *BATON, if we translated the constant to a location
16784 expression. */
16785
16786 static void
16787 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16788 const char *name, struct obstack *obstack,
16789 struct dwarf2_cu *cu,
16790 LONGEST *value, const gdb_byte **bytes,
16791 struct dwarf2_locexpr_baton **baton)
16792 {
16793 struct objfile *objfile = cu->objfile;
16794 struct comp_unit_head *cu_header = &cu->header;
16795 struct dwarf_block *blk;
16796 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16797 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16798
16799 *value = 0;
16800 *bytes = NULL;
16801 *baton = NULL;
16802
16803 switch (attr->form)
16804 {
16805 case DW_FORM_addr:
16806 case DW_FORM_GNU_addr_index:
16807 {
16808 gdb_byte *data;
16809
16810 if (TYPE_LENGTH (type) != cu_header->addr_size)
16811 dwarf2_const_value_length_mismatch_complaint (name,
16812 cu_header->addr_size,
16813 TYPE_LENGTH (type));
16814 /* Symbols of this form are reasonably rare, so we just
16815 piggyback on the existing location code rather than writing
16816 a new implementation of symbol_computed_ops. */
16817 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16818 (*baton)->per_cu = cu->per_cu;
16819 gdb_assert ((*baton)->per_cu);
16820
16821 (*baton)->size = 2 + cu_header->addr_size;
16822 data = obstack_alloc (obstack, (*baton)->size);
16823 (*baton)->data = data;
16824
16825 data[0] = DW_OP_addr;
16826 store_unsigned_integer (&data[1], cu_header->addr_size,
16827 byte_order, DW_ADDR (attr));
16828 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16829 }
16830 break;
16831 case DW_FORM_string:
16832 case DW_FORM_strp:
16833 case DW_FORM_GNU_str_index:
16834 case DW_FORM_GNU_strp_alt:
16835 /* DW_STRING is already allocated on the objfile obstack, point
16836 directly to it. */
16837 *bytes = (const gdb_byte *) DW_STRING (attr);
16838 break;
16839 case DW_FORM_block1:
16840 case DW_FORM_block2:
16841 case DW_FORM_block4:
16842 case DW_FORM_block:
16843 case DW_FORM_exprloc:
16844 blk = DW_BLOCK (attr);
16845 if (TYPE_LENGTH (type) != blk->size)
16846 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16847 TYPE_LENGTH (type));
16848 *bytes = blk->data;
16849 break;
16850
16851 /* The DW_AT_const_value attributes are supposed to carry the
16852 symbol's value "represented as it would be on the target
16853 architecture." By the time we get here, it's already been
16854 converted to host endianness, so we just need to sign- or
16855 zero-extend it as appropriate. */
16856 case DW_FORM_data1:
16857 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16858 break;
16859 case DW_FORM_data2:
16860 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16861 break;
16862 case DW_FORM_data4:
16863 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16864 break;
16865 case DW_FORM_data8:
16866 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16867 break;
16868
16869 case DW_FORM_sdata:
16870 *value = DW_SND (attr);
16871 break;
16872
16873 case DW_FORM_udata:
16874 *value = DW_UNSND (attr);
16875 break;
16876
16877 default:
16878 complaint (&symfile_complaints,
16879 _("unsupported const value attribute form: '%s'"),
16880 dwarf_form_name (attr->form));
16881 *value = 0;
16882 break;
16883 }
16884 }
16885
16886
16887 /* Copy constant value from an attribute to a symbol. */
16888
16889 static void
16890 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16891 struct dwarf2_cu *cu)
16892 {
16893 struct objfile *objfile = cu->objfile;
16894 struct comp_unit_head *cu_header = &cu->header;
16895 LONGEST value;
16896 const gdb_byte *bytes;
16897 struct dwarf2_locexpr_baton *baton;
16898
16899 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16900 SYMBOL_PRINT_NAME (sym),
16901 &objfile->objfile_obstack, cu,
16902 &value, &bytes, &baton);
16903
16904 if (baton != NULL)
16905 {
16906 SYMBOL_LOCATION_BATON (sym) = baton;
16907 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16908 }
16909 else if (bytes != NULL)
16910 {
16911 SYMBOL_VALUE_BYTES (sym) = bytes;
16912 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16913 }
16914 else
16915 {
16916 SYMBOL_VALUE (sym) = value;
16917 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16918 }
16919 }
16920
16921 /* Return the type of the die in question using its DW_AT_type attribute. */
16922
16923 static struct type *
16924 die_type (struct die_info *die, struct dwarf2_cu *cu)
16925 {
16926 struct attribute *type_attr;
16927
16928 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16929 if (!type_attr)
16930 {
16931 /* A missing DW_AT_type represents a void type. */
16932 return objfile_type (cu->objfile)->builtin_void;
16933 }
16934
16935 return lookup_die_type (die, type_attr, cu);
16936 }
16937
16938 /* True iff CU's producer generates GNAT Ada auxiliary information
16939 that allows to find parallel types through that information instead
16940 of having to do expensive parallel lookups by type name. */
16941
16942 static int
16943 need_gnat_info (struct dwarf2_cu *cu)
16944 {
16945 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16946 of GNAT produces this auxiliary information, without any indication
16947 that it is produced. Part of enhancing the FSF version of GNAT
16948 to produce that information will be to put in place an indicator
16949 that we can use in order to determine whether the descriptive type
16950 info is available or not. One suggestion that has been made is
16951 to use a new attribute, attached to the CU die. For now, assume
16952 that the descriptive type info is not available. */
16953 return 0;
16954 }
16955
16956 /* Return the auxiliary type of the die in question using its
16957 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16958 attribute is not present. */
16959
16960 static struct type *
16961 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16962 {
16963 struct attribute *type_attr;
16964
16965 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16966 if (!type_attr)
16967 return NULL;
16968
16969 return lookup_die_type (die, type_attr, cu);
16970 }
16971
16972 /* If DIE has a descriptive_type attribute, then set the TYPE's
16973 descriptive type accordingly. */
16974
16975 static void
16976 set_descriptive_type (struct type *type, struct die_info *die,
16977 struct dwarf2_cu *cu)
16978 {
16979 struct type *descriptive_type = die_descriptive_type (die, cu);
16980
16981 if (descriptive_type)
16982 {
16983 ALLOCATE_GNAT_AUX_TYPE (type);
16984 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16985 }
16986 }
16987
16988 /* Return the containing type of the die in question using its
16989 DW_AT_containing_type attribute. */
16990
16991 static struct type *
16992 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16993 {
16994 struct attribute *type_attr;
16995
16996 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16997 if (!type_attr)
16998 error (_("Dwarf Error: Problem turning containing type into gdb type "
16999 "[in module %s]"), cu->objfile->name);
17000
17001 return lookup_die_type (die, type_attr, cu);
17002 }
17003
17004 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17005
17006 static struct type *
17007 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17008 {
17009 struct objfile *objfile = dwarf2_per_objfile->objfile;
17010 char *message, *saved;
17011
17012 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17013 objfile->name,
17014 cu->header.offset.sect_off,
17015 die->offset.sect_off);
17016 saved = obstack_copy0 (&objfile->objfile_obstack,
17017 message, strlen (message));
17018 xfree (message);
17019
17020 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17021 }
17022
17023 /* Look up the type of DIE in CU using its type attribute ATTR.
17024 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17025 DW_AT_containing_type.
17026 If there is no type substitute an error marker. */
17027
17028 static struct type *
17029 lookup_die_type (struct die_info *die, struct attribute *attr,
17030 struct dwarf2_cu *cu)
17031 {
17032 struct objfile *objfile = cu->objfile;
17033 struct type *this_type;
17034
17035 gdb_assert (attr->name == DW_AT_type
17036 || attr->name == DW_AT_GNAT_descriptive_type
17037 || attr->name == DW_AT_containing_type);
17038
17039 /* First see if we have it cached. */
17040
17041 if (attr->form == DW_FORM_GNU_ref_alt)
17042 {
17043 struct dwarf2_per_cu_data *per_cu;
17044 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17045
17046 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17047 this_type = get_die_type_at_offset (offset, per_cu);
17048 }
17049 else if (is_ref_attr (attr))
17050 {
17051 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17052
17053 this_type = get_die_type_at_offset (offset, cu->per_cu);
17054 }
17055 else if (attr->form == DW_FORM_ref_sig8)
17056 {
17057 ULONGEST signature = DW_SIGNATURE (attr);
17058
17059 return get_signatured_type (die, signature, cu);
17060 }
17061 else
17062 {
17063 complaint (&symfile_complaints,
17064 _("Dwarf Error: Bad type attribute %s in DIE"
17065 " at 0x%x [in module %s]"),
17066 dwarf_attr_name (attr->name), die->offset.sect_off,
17067 objfile->name);
17068 return build_error_marker_type (cu, die);
17069 }
17070
17071 /* If not cached we need to read it in. */
17072
17073 if (this_type == NULL)
17074 {
17075 struct die_info *type_die = NULL;
17076 struct dwarf2_cu *type_cu = cu;
17077
17078 if (is_ref_attr (attr))
17079 type_die = follow_die_ref (die, attr, &type_cu);
17080 if (type_die == NULL)
17081 return build_error_marker_type (cu, die);
17082 /* If we find the type now, it's probably because the type came
17083 from an inter-CU reference and the type's CU got expanded before
17084 ours. */
17085 this_type = read_type_die (type_die, type_cu);
17086 }
17087
17088 /* If we still don't have a type use an error marker. */
17089
17090 if (this_type == NULL)
17091 return build_error_marker_type (cu, die);
17092
17093 return this_type;
17094 }
17095
17096 /* Return the type in DIE, CU.
17097 Returns NULL for invalid types.
17098
17099 This first does a lookup in die_type_hash,
17100 and only reads the die in if necessary.
17101
17102 NOTE: This can be called when reading in partial or full symbols. */
17103
17104 static struct type *
17105 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17106 {
17107 struct type *this_type;
17108
17109 this_type = get_die_type (die, cu);
17110 if (this_type)
17111 return this_type;
17112
17113 return read_type_die_1 (die, cu);
17114 }
17115
17116 /* Read the type in DIE, CU.
17117 Returns NULL for invalid types. */
17118
17119 static struct type *
17120 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17121 {
17122 struct type *this_type = NULL;
17123
17124 switch (die->tag)
17125 {
17126 case DW_TAG_class_type:
17127 case DW_TAG_interface_type:
17128 case DW_TAG_structure_type:
17129 case DW_TAG_union_type:
17130 this_type = read_structure_type (die, cu);
17131 break;
17132 case DW_TAG_enumeration_type:
17133 this_type = read_enumeration_type (die, cu);
17134 break;
17135 case DW_TAG_subprogram:
17136 case DW_TAG_subroutine_type:
17137 case DW_TAG_inlined_subroutine:
17138 this_type = read_subroutine_type (die, cu);
17139 break;
17140 case DW_TAG_array_type:
17141 this_type = read_array_type (die, cu);
17142 break;
17143 case DW_TAG_set_type:
17144 this_type = read_set_type (die, cu);
17145 break;
17146 case DW_TAG_pointer_type:
17147 this_type = read_tag_pointer_type (die, cu);
17148 break;
17149 case DW_TAG_ptr_to_member_type:
17150 this_type = read_tag_ptr_to_member_type (die, cu);
17151 break;
17152 case DW_TAG_reference_type:
17153 this_type = read_tag_reference_type (die, cu);
17154 break;
17155 case DW_TAG_const_type:
17156 this_type = read_tag_const_type (die, cu);
17157 break;
17158 case DW_TAG_volatile_type:
17159 this_type = read_tag_volatile_type (die, cu);
17160 break;
17161 case DW_TAG_restrict_type:
17162 this_type = read_tag_restrict_type (die, cu);
17163 break;
17164 case DW_TAG_string_type:
17165 this_type = read_tag_string_type (die, cu);
17166 break;
17167 case DW_TAG_typedef:
17168 this_type = read_typedef (die, cu);
17169 break;
17170 case DW_TAG_subrange_type:
17171 this_type = read_subrange_type (die, cu);
17172 break;
17173 case DW_TAG_base_type:
17174 this_type = read_base_type (die, cu);
17175 break;
17176 case DW_TAG_unspecified_type:
17177 this_type = read_unspecified_type (die, cu);
17178 break;
17179 case DW_TAG_namespace:
17180 this_type = read_namespace_type (die, cu);
17181 break;
17182 case DW_TAG_module:
17183 this_type = read_module_type (die, cu);
17184 break;
17185 default:
17186 complaint (&symfile_complaints,
17187 _("unexpected tag in read_type_die: '%s'"),
17188 dwarf_tag_name (die->tag));
17189 break;
17190 }
17191
17192 return this_type;
17193 }
17194
17195 /* See if we can figure out if the class lives in a namespace. We do
17196 this by looking for a member function; its demangled name will
17197 contain namespace info, if there is any.
17198 Return the computed name or NULL.
17199 Space for the result is allocated on the objfile's obstack.
17200 This is the full-die version of guess_partial_die_structure_name.
17201 In this case we know DIE has no useful parent. */
17202
17203 static char *
17204 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17205 {
17206 struct die_info *spec_die;
17207 struct dwarf2_cu *spec_cu;
17208 struct die_info *child;
17209
17210 spec_cu = cu;
17211 spec_die = die_specification (die, &spec_cu);
17212 if (spec_die != NULL)
17213 {
17214 die = spec_die;
17215 cu = spec_cu;
17216 }
17217
17218 for (child = die->child;
17219 child != NULL;
17220 child = child->sibling)
17221 {
17222 if (child->tag == DW_TAG_subprogram)
17223 {
17224 struct attribute *attr;
17225
17226 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17227 if (attr == NULL)
17228 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17229 if (attr != NULL)
17230 {
17231 char *actual_name
17232 = language_class_name_from_physname (cu->language_defn,
17233 DW_STRING (attr));
17234 char *name = NULL;
17235
17236 if (actual_name != NULL)
17237 {
17238 const char *die_name = dwarf2_name (die, cu);
17239
17240 if (die_name != NULL
17241 && strcmp (die_name, actual_name) != 0)
17242 {
17243 /* Strip off the class name from the full name.
17244 We want the prefix. */
17245 int die_name_len = strlen (die_name);
17246 int actual_name_len = strlen (actual_name);
17247
17248 /* Test for '::' as a sanity check. */
17249 if (actual_name_len > die_name_len + 2
17250 && actual_name[actual_name_len
17251 - die_name_len - 1] == ':')
17252 name =
17253 obstack_copy0 (&cu->objfile->objfile_obstack,
17254 actual_name,
17255 actual_name_len - die_name_len - 2);
17256 }
17257 }
17258 xfree (actual_name);
17259 return name;
17260 }
17261 }
17262 }
17263
17264 return NULL;
17265 }
17266
17267 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17268 prefix part in such case. See
17269 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17270
17271 static char *
17272 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17273 {
17274 struct attribute *attr;
17275 char *base;
17276
17277 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17278 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17279 return NULL;
17280
17281 attr = dwarf2_attr (die, DW_AT_name, cu);
17282 if (attr != NULL && DW_STRING (attr) != NULL)
17283 return NULL;
17284
17285 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17286 if (attr == NULL)
17287 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17288 if (attr == NULL || DW_STRING (attr) == NULL)
17289 return NULL;
17290
17291 /* dwarf2_name had to be already called. */
17292 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17293
17294 /* Strip the base name, keep any leading namespaces/classes. */
17295 base = strrchr (DW_STRING (attr), ':');
17296 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17297 return "";
17298
17299 return obstack_copy0 (&cu->objfile->objfile_obstack,
17300 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17301 }
17302
17303 /* Return the name of the namespace/class that DIE is defined within,
17304 or "" if we can't tell. The caller should not xfree the result.
17305
17306 For example, if we're within the method foo() in the following
17307 code:
17308
17309 namespace N {
17310 class C {
17311 void foo () {
17312 }
17313 };
17314 }
17315
17316 then determine_prefix on foo's die will return "N::C". */
17317
17318 static const char *
17319 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17320 {
17321 struct die_info *parent, *spec_die;
17322 struct dwarf2_cu *spec_cu;
17323 struct type *parent_type;
17324 char *retval;
17325
17326 if (cu->language != language_cplus && cu->language != language_java
17327 && cu->language != language_fortran)
17328 return "";
17329
17330 retval = anonymous_struct_prefix (die, cu);
17331 if (retval)
17332 return retval;
17333
17334 /* We have to be careful in the presence of DW_AT_specification.
17335 For example, with GCC 3.4, given the code
17336
17337 namespace N {
17338 void foo() {
17339 // Definition of N::foo.
17340 }
17341 }
17342
17343 then we'll have a tree of DIEs like this:
17344
17345 1: DW_TAG_compile_unit
17346 2: DW_TAG_namespace // N
17347 3: DW_TAG_subprogram // declaration of N::foo
17348 4: DW_TAG_subprogram // definition of N::foo
17349 DW_AT_specification // refers to die #3
17350
17351 Thus, when processing die #4, we have to pretend that we're in
17352 the context of its DW_AT_specification, namely the contex of die
17353 #3. */
17354 spec_cu = cu;
17355 spec_die = die_specification (die, &spec_cu);
17356 if (spec_die == NULL)
17357 parent = die->parent;
17358 else
17359 {
17360 parent = spec_die->parent;
17361 cu = spec_cu;
17362 }
17363
17364 if (parent == NULL)
17365 return "";
17366 else if (parent->building_fullname)
17367 {
17368 const char *name;
17369 const char *parent_name;
17370
17371 /* It has been seen on RealView 2.2 built binaries,
17372 DW_TAG_template_type_param types actually _defined_ as
17373 children of the parent class:
17374
17375 enum E {};
17376 template class <class Enum> Class{};
17377 Class<enum E> class_e;
17378
17379 1: DW_TAG_class_type (Class)
17380 2: DW_TAG_enumeration_type (E)
17381 3: DW_TAG_enumerator (enum1:0)
17382 3: DW_TAG_enumerator (enum2:1)
17383 ...
17384 2: DW_TAG_template_type_param
17385 DW_AT_type DW_FORM_ref_udata (E)
17386
17387 Besides being broken debug info, it can put GDB into an
17388 infinite loop. Consider:
17389
17390 When we're building the full name for Class<E>, we'll start
17391 at Class, and go look over its template type parameters,
17392 finding E. We'll then try to build the full name of E, and
17393 reach here. We're now trying to build the full name of E,
17394 and look over the parent DIE for containing scope. In the
17395 broken case, if we followed the parent DIE of E, we'd again
17396 find Class, and once again go look at its template type
17397 arguments, etc., etc. Simply don't consider such parent die
17398 as source-level parent of this die (it can't be, the language
17399 doesn't allow it), and break the loop here. */
17400 name = dwarf2_name (die, cu);
17401 parent_name = dwarf2_name (parent, cu);
17402 complaint (&symfile_complaints,
17403 _("template param type '%s' defined within parent '%s'"),
17404 name ? name : "<unknown>",
17405 parent_name ? parent_name : "<unknown>");
17406 return "";
17407 }
17408 else
17409 switch (parent->tag)
17410 {
17411 case DW_TAG_namespace:
17412 parent_type = read_type_die (parent, cu);
17413 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17414 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17415 Work around this problem here. */
17416 if (cu->language == language_cplus
17417 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17418 return "";
17419 /* We give a name to even anonymous namespaces. */
17420 return TYPE_TAG_NAME (parent_type);
17421 case DW_TAG_class_type:
17422 case DW_TAG_interface_type:
17423 case DW_TAG_structure_type:
17424 case DW_TAG_union_type:
17425 case DW_TAG_module:
17426 parent_type = read_type_die (parent, cu);
17427 if (TYPE_TAG_NAME (parent_type) != NULL)
17428 return TYPE_TAG_NAME (parent_type);
17429 else
17430 /* An anonymous structure is only allowed non-static data
17431 members; no typedefs, no member functions, et cetera.
17432 So it does not need a prefix. */
17433 return "";
17434 case DW_TAG_compile_unit:
17435 case DW_TAG_partial_unit:
17436 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17437 if (cu->language == language_cplus
17438 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17439 && die->child != NULL
17440 && (die->tag == DW_TAG_class_type
17441 || die->tag == DW_TAG_structure_type
17442 || die->tag == DW_TAG_union_type))
17443 {
17444 char *name = guess_full_die_structure_name (die, cu);
17445 if (name != NULL)
17446 return name;
17447 }
17448 return "";
17449 default:
17450 return determine_prefix (parent, cu);
17451 }
17452 }
17453
17454 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17455 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17456 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17457 an obconcat, otherwise allocate storage for the result. The CU argument is
17458 used to determine the language and hence, the appropriate separator. */
17459
17460 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17461
17462 static char *
17463 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17464 int physname, struct dwarf2_cu *cu)
17465 {
17466 const char *lead = "";
17467 const char *sep;
17468
17469 if (suffix == NULL || suffix[0] == '\0'
17470 || prefix == NULL || prefix[0] == '\0')
17471 sep = "";
17472 else if (cu->language == language_java)
17473 sep = ".";
17474 else if (cu->language == language_fortran && physname)
17475 {
17476 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17477 DW_AT_MIPS_linkage_name is preferred and used instead. */
17478
17479 lead = "__";
17480 sep = "_MOD_";
17481 }
17482 else
17483 sep = "::";
17484
17485 if (prefix == NULL)
17486 prefix = "";
17487 if (suffix == NULL)
17488 suffix = "";
17489
17490 if (obs == NULL)
17491 {
17492 char *retval
17493 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17494
17495 strcpy (retval, lead);
17496 strcat (retval, prefix);
17497 strcat (retval, sep);
17498 strcat (retval, suffix);
17499 return retval;
17500 }
17501 else
17502 {
17503 /* We have an obstack. */
17504 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17505 }
17506 }
17507
17508 /* Return sibling of die, NULL if no sibling. */
17509
17510 static struct die_info *
17511 sibling_die (struct die_info *die)
17512 {
17513 return die->sibling;
17514 }
17515
17516 /* Get name of a die, return NULL if not found. */
17517
17518 static const char *
17519 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17520 struct obstack *obstack)
17521 {
17522 if (name && cu->language == language_cplus)
17523 {
17524 char *canon_name = cp_canonicalize_string (name);
17525
17526 if (canon_name != NULL)
17527 {
17528 if (strcmp (canon_name, name) != 0)
17529 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17530 xfree (canon_name);
17531 }
17532 }
17533
17534 return name;
17535 }
17536
17537 /* Get name of a die, return NULL if not found. */
17538
17539 static const char *
17540 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17541 {
17542 struct attribute *attr;
17543
17544 attr = dwarf2_attr (die, DW_AT_name, cu);
17545 if ((!attr || !DW_STRING (attr))
17546 && die->tag != DW_TAG_class_type
17547 && die->tag != DW_TAG_interface_type
17548 && die->tag != DW_TAG_structure_type
17549 && die->tag != DW_TAG_union_type)
17550 return NULL;
17551
17552 switch (die->tag)
17553 {
17554 case DW_TAG_compile_unit:
17555 case DW_TAG_partial_unit:
17556 /* Compilation units have a DW_AT_name that is a filename, not
17557 a source language identifier. */
17558 case DW_TAG_enumeration_type:
17559 case DW_TAG_enumerator:
17560 /* These tags always have simple identifiers already; no need
17561 to canonicalize them. */
17562 return DW_STRING (attr);
17563
17564 case DW_TAG_subprogram:
17565 /* Java constructors will all be named "<init>", so return
17566 the class name when we see this special case. */
17567 if (cu->language == language_java
17568 && DW_STRING (attr) != NULL
17569 && strcmp (DW_STRING (attr), "<init>") == 0)
17570 {
17571 struct dwarf2_cu *spec_cu = cu;
17572 struct die_info *spec_die;
17573
17574 /* GCJ will output '<init>' for Java constructor names.
17575 For this special case, return the name of the parent class. */
17576
17577 /* GCJ may output suprogram DIEs with AT_specification set.
17578 If so, use the name of the specified DIE. */
17579 spec_die = die_specification (die, &spec_cu);
17580 if (spec_die != NULL)
17581 return dwarf2_name (spec_die, spec_cu);
17582
17583 do
17584 {
17585 die = die->parent;
17586 if (die->tag == DW_TAG_class_type)
17587 return dwarf2_name (die, cu);
17588 }
17589 while (die->tag != DW_TAG_compile_unit
17590 && die->tag != DW_TAG_partial_unit);
17591 }
17592 break;
17593
17594 case DW_TAG_class_type:
17595 case DW_TAG_interface_type:
17596 case DW_TAG_structure_type:
17597 case DW_TAG_union_type:
17598 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17599 structures or unions. These were of the form "._%d" in GCC 4.1,
17600 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17601 and GCC 4.4. We work around this problem by ignoring these. */
17602 if (attr && DW_STRING (attr)
17603 && (strncmp (DW_STRING (attr), "._", 2) == 0
17604 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17605 return NULL;
17606
17607 /* GCC might emit a nameless typedef that has a linkage name. See
17608 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17609 if (!attr || DW_STRING (attr) == NULL)
17610 {
17611 char *demangled = NULL;
17612
17613 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17614 if (attr == NULL)
17615 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17616
17617 if (attr == NULL || DW_STRING (attr) == NULL)
17618 return NULL;
17619
17620 /* Avoid demangling DW_STRING (attr) the second time on a second
17621 call for the same DIE. */
17622 if (!DW_STRING_IS_CANONICAL (attr))
17623 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17624
17625 if (demangled)
17626 {
17627 char *base;
17628
17629 /* FIXME: we already did this for the partial symbol... */
17630 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17631 demangled, strlen (demangled));
17632 DW_STRING_IS_CANONICAL (attr) = 1;
17633 xfree (demangled);
17634
17635 /* Strip any leading namespaces/classes, keep only the base name.
17636 DW_AT_name for named DIEs does not contain the prefixes. */
17637 base = strrchr (DW_STRING (attr), ':');
17638 if (base && base > DW_STRING (attr) && base[-1] == ':')
17639 return &base[1];
17640 else
17641 return DW_STRING (attr);
17642 }
17643 }
17644 break;
17645
17646 default:
17647 break;
17648 }
17649
17650 if (!DW_STRING_IS_CANONICAL (attr))
17651 {
17652 DW_STRING (attr)
17653 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17654 &cu->objfile->objfile_obstack);
17655 DW_STRING_IS_CANONICAL (attr) = 1;
17656 }
17657 return DW_STRING (attr);
17658 }
17659
17660 /* Return the die that this die in an extension of, or NULL if there
17661 is none. *EXT_CU is the CU containing DIE on input, and the CU
17662 containing the return value on output. */
17663
17664 static struct die_info *
17665 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17666 {
17667 struct attribute *attr;
17668
17669 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17670 if (attr == NULL)
17671 return NULL;
17672
17673 return follow_die_ref (die, attr, ext_cu);
17674 }
17675
17676 /* Convert a DIE tag into its string name. */
17677
17678 static const char *
17679 dwarf_tag_name (unsigned tag)
17680 {
17681 const char *name = get_DW_TAG_name (tag);
17682
17683 if (name == NULL)
17684 return "DW_TAG_<unknown>";
17685
17686 return name;
17687 }
17688
17689 /* Convert a DWARF attribute code into its string name. */
17690
17691 static const char *
17692 dwarf_attr_name (unsigned attr)
17693 {
17694 const char *name;
17695
17696 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17697 if (attr == DW_AT_MIPS_fde)
17698 return "DW_AT_MIPS_fde";
17699 #else
17700 if (attr == DW_AT_HP_block_index)
17701 return "DW_AT_HP_block_index";
17702 #endif
17703
17704 name = get_DW_AT_name (attr);
17705
17706 if (name == NULL)
17707 return "DW_AT_<unknown>";
17708
17709 return name;
17710 }
17711
17712 /* Convert a DWARF value form code into its string name. */
17713
17714 static const char *
17715 dwarf_form_name (unsigned form)
17716 {
17717 const char *name = get_DW_FORM_name (form);
17718
17719 if (name == NULL)
17720 return "DW_FORM_<unknown>";
17721
17722 return name;
17723 }
17724
17725 static char *
17726 dwarf_bool_name (unsigned mybool)
17727 {
17728 if (mybool)
17729 return "TRUE";
17730 else
17731 return "FALSE";
17732 }
17733
17734 /* Convert a DWARF type code into its string name. */
17735
17736 static const char *
17737 dwarf_type_encoding_name (unsigned enc)
17738 {
17739 const char *name = get_DW_ATE_name (enc);
17740
17741 if (name == NULL)
17742 return "DW_ATE_<unknown>";
17743
17744 return name;
17745 }
17746
17747 static void
17748 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17749 {
17750 unsigned int i;
17751
17752 print_spaces (indent, f);
17753 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17754 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17755
17756 if (die->parent != NULL)
17757 {
17758 print_spaces (indent, f);
17759 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17760 die->parent->offset.sect_off);
17761 }
17762
17763 print_spaces (indent, f);
17764 fprintf_unfiltered (f, " has children: %s\n",
17765 dwarf_bool_name (die->child != NULL));
17766
17767 print_spaces (indent, f);
17768 fprintf_unfiltered (f, " attributes:\n");
17769
17770 for (i = 0; i < die->num_attrs; ++i)
17771 {
17772 print_spaces (indent, f);
17773 fprintf_unfiltered (f, " %s (%s) ",
17774 dwarf_attr_name (die->attrs[i].name),
17775 dwarf_form_name (die->attrs[i].form));
17776
17777 switch (die->attrs[i].form)
17778 {
17779 case DW_FORM_addr:
17780 case DW_FORM_GNU_addr_index:
17781 fprintf_unfiltered (f, "address: ");
17782 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17783 break;
17784 case DW_FORM_block2:
17785 case DW_FORM_block4:
17786 case DW_FORM_block:
17787 case DW_FORM_block1:
17788 fprintf_unfiltered (f, "block: size %s",
17789 pulongest (DW_BLOCK (&die->attrs[i])->size));
17790 break;
17791 case DW_FORM_exprloc:
17792 fprintf_unfiltered (f, "expression: size %s",
17793 pulongest (DW_BLOCK (&die->attrs[i])->size));
17794 break;
17795 case DW_FORM_ref_addr:
17796 fprintf_unfiltered (f, "ref address: ");
17797 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17798 break;
17799 case DW_FORM_GNU_ref_alt:
17800 fprintf_unfiltered (f, "alt ref address: ");
17801 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17802 break;
17803 case DW_FORM_ref1:
17804 case DW_FORM_ref2:
17805 case DW_FORM_ref4:
17806 case DW_FORM_ref8:
17807 case DW_FORM_ref_udata:
17808 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17809 (long) (DW_UNSND (&die->attrs[i])));
17810 break;
17811 case DW_FORM_data1:
17812 case DW_FORM_data2:
17813 case DW_FORM_data4:
17814 case DW_FORM_data8:
17815 case DW_FORM_udata:
17816 case DW_FORM_sdata:
17817 fprintf_unfiltered (f, "constant: %s",
17818 pulongest (DW_UNSND (&die->attrs[i])));
17819 break;
17820 case DW_FORM_sec_offset:
17821 fprintf_unfiltered (f, "section offset: %s",
17822 pulongest (DW_UNSND (&die->attrs[i])));
17823 break;
17824 case DW_FORM_ref_sig8:
17825 fprintf_unfiltered (f, "signature: %s",
17826 hex_string (DW_SIGNATURE (&die->attrs[i])));
17827 break;
17828 case DW_FORM_string:
17829 case DW_FORM_strp:
17830 case DW_FORM_GNU_str_index:
17831 case DW_FORM_GNU_strp_alt:
17832 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17833 DW_STRING (&die->attrs[i])
17834 ? DW_STRING (&die->attrs[i]) : "",
17835 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17836 break;
17837 case DW_FORM_flag:
17838 if (DW_UNSND (&die->attrs[i]))
17839 fprintf_unfiltered (f, "flag: TRUE");
17840 else
17841 fprintf_unfiltered (f, "flag: FALSE");
17842 break;
17843 case DW_FORM_flag_present:
17844 fprintf_unfiltered (f, "flag: TRUE");
17845 break;
17846 case DW_FORM_indirect:
17847 /* The reader will have reduced the indirect form to
17848 the "base form" so this form should not occur. */
17849 fprintf_unfiltered (f,
17850 "unexpected attribute form: DW_FORM_indirect");
17851 break;
17852 default:
17853 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17854 die->attrs[i].form);
17855 break;
17856 }
17857 fprintf_unfiltered (f, "\n");
17858 }
17859 }
17860
17861 static void
17862 dump_die_for_error (struct die_info *die)
17863 {
17864 dump_die_shallow (gdb_stderr, 0, die);
17865 }
17866
17867 static void
17868 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17869 {
17870 int indent = level * 4;
17871
17872 gdb_assert (die != NULL);
17873
17874 if (level >= max_level)
17875 return;
17876
17877 dump_die_shallow (f, indent, die);
17878
17879 if (die->child != NULL)
17880 {
17881 print_spaces (indent, f);
17882 fprintf_unfiltered (f, " Children:");
17883 if (level + 1 < max_level)
17884 {
17885 fprintf_unfiltered (f, "\n");
17886 dump_die_1 (f, level + 1, max_level, die->child);
17887 }
17888 else
17889 {
17890 fprintf_unfiltered (f,
17891 " [not printed, max nesting level reached]\n");
17892 }
17893 }
17894
17895 if (die->sibling != NULL && level > 0)
17896 {
17897 dump_die_1 (f, level, max_level, die->sibling);
17898 }
17899 }
17900
17901 /* This is called from the pdie macro in gdbinit.in.
17902 It's not static so gcc will keep a copy callable from gdb. */
17903
17904 void
17905 dump_die (struct die_info *die, int max_level)
17906 {
17907 dump_die_1 (gdb_stdlog, 0, max_level, die);
17908 }
17909
17910 static void
17911 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17912 {
17913 void **slot;
17914
17915 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17916 INSERT);
17917
17918 *slot = die;
17919 }
17920
17921 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17922 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17923
17924 static int
17925 is_ref_attr (struct attribute *attr)
17926 {
17927 switch (attr->form)
17928 {
17929 case DW_FORM_ref_addr:
17930 case DW_FORM_ref1:
17931 case DW_FORM_ref2:
17932 case DW_FORM_ref4:
17933 case DW_FORM_ref8:
17934 case DW_FORM_ref_udata:
17935 case DW_FORM_GNU_ref_alt:
17936 return 1;
17937 default:
17938 return 0;
17939 }
17940 }
17941
17942 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17943 required kind. */
17944
17945 static sect_offset
17946 dwarf2_get_ref_die_offset (struct attribute *attr)
17947 {
17948 sect_offset retval = { DW_UNSND (attr) };
17949
17950 if (is_ref_attr (attr))
17951 return retval;
17952
17953 retval.sect_off = 0;
17954 complaint (&symfile_complaints,
17955 _("unsupported die ref attribute form: '%s'"),
17956 dwarf_form_name (attr->form));
17957 return retval;
17958 }
17959
17960 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17961 * the value held by the attribute is not constant. */
17962
17963 static LONGEST
17964 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17965 {
17966 if (attr->form == DW_FORM_sdata)
17967 return DW_SND (attr);
17968 else if (attr->form == DW_FORM_udata
17969 || attr->form == DW_FORM_data1
17970 || attr->form == DW_FORM_data2
17971 || attr->form == DW_FORM_data4
17972 || attr->form == DW_FORM_data8)
17973 return DW_UNSND (attr);
17974 else
17975 {
17976 complaint (&symfile_complaints,
17977 _("Attribute value is not a constant (%s)"),
17978 dwarf_form_name (attr->form));
17979 return default_value;
17980 }
17981 }
17982
17983 /* Follow reference or signature attribute ATTR of SRC_DIE.
17984 On entry *REF_CU is the CU of SRC_DIE.
17985 On exit *REF_CU is the CU of the result. */
17986
17987 static struct die_info *
17988 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17989 struct dwarf2_cu **ref_cu)
17990 {
17991 struct die_info *die;
17992
17993 if (is_ref_attr (attr))
17994 die = follow_die_ref (src_die, attr, ref_cu);
17995 else if (attr->form == DW_FORM_ref_sig8)
17996 die = follow_die_sig (src_die, attr, ref_cu);
17997 else
17998 {
17999 dump_die_for_error (src_die);
18000 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18001 (*ref_cu)->objfile->name);
18002 }
18003
18004 return die;
18005 }
18006
18007 /* Follow reference OFFSET.
18008 On entry *REF_CU is the CU of the source die referencing OFFSET.
18009 On exit *REF_CU is the CU of the result.
18010 Returns NULL if OFFSET is invalid. */
18011
18012 static struct die_info *
18013 follow_die_offset (sect_offset offset, int offset_in_dwz,
18014 struct dwarf2_cu **ref_cu)
18015 {
18016 struct die_info temp_die;
18017 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18018
18019 gdb_assert (cu->per_cu != NULL);
18020
18021 target_cu = cu;
18022
18023 if (cu->per_cu->is_debug_types)
18024 {
18025 /* .debug_types CUs cannot reference anything outside their CU.
18026 If they need to, they have to reference a signatured type via
18027 DW_FORM_ref_sig8. */
18028 if (! offset_in_cu_p (&cu->header, offset))
18029 return NULL;
18030 }
18031 else if (offset_in_dwz != cu->per_cu->is_dwz
18032 || ! offset_in_cu_p (&cu->header, offset))
18033 {
18034 struct dwarf2_per_cu_data *per_cu;
18035
18036 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18037 cu->objfile);
18038
18039 /* If necessary, add it to the queue and load its DIEs. */
18040 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18041 load_full_comp_unit (per_cu, cu->language);
18042
18043 target_cu = per_cu->cu;
18044 }
18045 else if (cu->dies == NULL)
18046 {
18047 /* We're loading full DIEs during partial symbol reading. */
18048 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18049 load_full_comp_unit (cu->per_cu, language_minimal);
18050 }
18051
18052 *ref_cu = target_cu;
18053 temp_die.offset = offset;
18054 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18055 }
18056
18057 /* Follow reference attribute ATTR of SRC_DIE.
18058 On entry *REF_CU is the CU of SRC_DIE.
18059 On exit *REF_CU is the CU of the result. */
18060
18061 static struct die_info *
18062 follow_die_ref (struct die_info *src_die, struct attribute *attr,
18063 struct dwarf2_cu **ref_cu)
18064 {
18065 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18066 struct dwarf2_cu *cu = *ref_cu;
18067 struct die_info *die;
18068
18069 die = follow_die_offset (offset,
18070 (attr->form == DW_FORM_GNU_ref_alt
18071 || cu->per_cu->is_dwz),
18072 ref_cu);
18073 if (!die)
18074 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18075 "at 0x%x [in module %s]"),
18076 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18077
18078 return die;
18079 }
18080
18081 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18082 Returned value is intended for DW_OP_call*. Returned
18083 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18084
18085 struct dwarf2_locexpr_baton
18086 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18087 struct dwarf2_per_cu_data *per_cu,
18088 CORE_ADDR (*get_frame_pc) (void *baton),
18089 void *baton)
18090 {
18091 struct dwarf2_cu *cu;
18092 struct die_info *die;
18093 struct attribute *attr;
18094 struct dwarf2_locexpr_baton retval;
18095
18096 dw2_setup (per_cu->objfile);
18097
18098 if (per_cu->cu == NULL)
18099 load_cu (per_cu);
18100 cu = per_cu->cu;
18101
18102 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18103 if (!die)
18104 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18105 offset.sect_off, per_cu->objfile->name);
18106
18107 attr = dwarf2_attr (die, DW_AT_location, cu);
18108 if (!attr)
18109 {
18110 /* DWARF: "If there is no such attribute, then there is no effect.".
18111 DATA is ignored if SIZE is 0. */
18112
18113 retval.data = NULL;
18114 retval.size = 0;
18115 }
18116 else if (attr_form_is_section_offset (attr))
18117 {
18118 struct dwarf2_loclist_baton loclist_baton;
18119 CORE_ADDR pc = (*get_frame_pc) (baton);
18120 size_t size;
18121
18122 fill_in_loclist_baton (cu, &loclist_baton, attr);
18123
18124 retval.data = dwarf2_find_location_expression (&loclist_baton,
18125 &size, pc);
18126 retval.size = size;
18127 }
18128 else
18129 {
18130 if (!attr_form_is_block (attr))
18131 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18132 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18133 offset.sect_off, per_cu->objfile->name);
18134
18135 retval.data = DW_BLOCK (attr)->data;
18136 retval.size = DW_BLOCK (attr)->size;
18137 }
18138 retval.per_cu = cu->per_cu;
18139
18140 age_cached_comp_units ();
18141
18142 return retval;
18143 }
18144
18145 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18146 offset. */
18147
18148 struct dwarf2_locexpr_baton
18149 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18150 struct dwarf2_per_cu_data *per_cu,
18151 CORE_ADDR (*get_frame_pc) (void *baton),
18152 void *baton)
18153 {
18154 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18155
18156 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18157 }
18158
18159 /* Write a constant of a given type as target-ordered bytes into
18160 OBSTACK. */
18161
18162 static const gdb_byte *
18163 write_constant_as_bytes (struct obstack *obstack,
18164 enum bfd_endian byte_order,
18165 struct type *type,
18166 ULONGEST value,
18167 LONGEST *len)
18168 {
18169 gdb_byte *result;
18170
18171 *len = TYPE_LENGTH (type);
18172 result = obstack_alloc (obstack, *len);
18173 store_unsigned_integer (result, *len, byte_order, value);
18174
18175 return result;
18176 }
18177
18178 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18179 pointer to the constant bytes and set LEN to the length of the
18180 data. If memory is needed, allocate it on OBSTACK. If the DIE
18181 does not have a DW_AT_const_value, return NULL. */
18182
18183 const gdb_byte *
18184 dwarf2_fetch_constant_bytes (sect_offset offset,
18185 struct dwarf2_per_cu_data *per_cu,
18186 struct obstack *obstack,
18187 LONGEST *len)
18188 {
18189 struct dwarf2_cu *cu;
18190 struct die_info *die;
18191 struct attribute *attr;
18192 const gdb_byte *result = NULL;
18193 struct type *type;
18194 LONGEST value;
18195 enum bfd_endian byte_order;
18196
18197 dw2_setup (per_cu->objfile);
18198
18199 if (per_cu->cu == NULL)
18200 load_cu (per_cu);
18201 cu = per_cu->cu;
18202
18203 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18204 if (!die)
18205 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18206 offset.sect_off, per_cu->objfile->name);
18207
18208
18209 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18210 if (attr == NULL)
18211 return NULL;
18212
18213 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18214 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18215
18216 switch (attr->form)
18217 {
18218 case DW_FORM_addr:
18219 case DW_FORM_GNU_addr_index:
18220 {
18221 gdb_byte *tem;
18222
18223 *len = cu->header.addr_size;
18224 tem = obstack_alloc (obstack, *len);
18225 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18226 result = tem;
18227 }
18228 break;
18229 case DW_FORM_string:
18230 case DW_FORM_strp:
18231 case DW_FORM_GNU_str_index:
18232 case DW_FORM_GNU_strp_alt:
18233 /* DW_STRING is already allocated on the objfile obstack, point
18234 directly to it. */
18235 result = (const gdb_byte *) DW_STRING (attr);
18236 *len = strlen (DW_STRING (attr));
18237 break;
18238 case DW_FORM_block1:
18239 case DW_FORM_block2:
18240 case DW_FORM_block4:
18241 case DW_FORM_block:
18242 case DW_FORM_exprloc:
18243 result = DW_BLOCK (attr)->data;
18244 *len = DW_BLOCK (attr)->size;
18245 break;
18246
18247 /* The DW_AT_const_value attributes are supposed to carry the
18248 symbol's value "represented as it would be on the target
18249 architecture." By the time we get here, it's already been
18250 converted to host endianness, so we just need to sign- or
18251 zero-extend it as appropriate. */
18252 case DW_FORM_data1:
18253 type = die_type (die, cu);
18254 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18255 if (result == NULL)
18256 result = write_constant_as_bytes (obstack, byte_order,
18257 type, value, len);
18258 break;
18259 case DW_FORM_data2:
18260 type = die_type (die, cu);
18261 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18262 if (result == NULL)
18263 result = write_constant_as_bytes (obstack, byte_order,
18264 type, value, len);
18265 break;
18266 case DW_FORM_data4:
18267 type = die_type (die, cu);
18268 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18269 if (result == NULL)
18270 result = write_constant_as_bytes (obstack, byte_order,
18271 type, value, len);
18272 break;
18273 case DW_FORM_data8:
18274 type = die_type (die, cu);
18275 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18276 if (result == NULL)
18277 result = write_constant_as_bytes (obstack, byte_order,
18278 type, value, len);
18279 break;
18280
18281 case DW_FORM_sdata:
18282 type = die_type (die, cu);
18283 result = write_constant_as_bytes (obstack, byte_order,
18284 type, DW_SND (attr), len);
18285 break;
18286
18287 case DW_FORM_udata:
18288 type = die_type (die, cu);
18289 result = write_constant_as_bytes (obstack, byte_order,
18290 type, DW_UNSND (attr), len);
18291 break;
18292
18293 default:
18294 complaint (&symfile_complaints,
18295 _("unsupported const value attribute form: '%s'"),
18296 dwarf_form_name (attr->form));
18297 break;
18298 }
18299
18300 return result;
18301 }
18302
18303 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18304 PER_CU. */
18305
18306 struct type *
18307 dwarf2_get_die_type (cu_offset die_offset,
18308 struct dwarf2_per_cu_data *per_cu)
18309 {
18310 sect_offset die_offset_sect;
18311
18312 dw2_setup (per_cu->objfile);
18313
18314 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18315 return get_die_type_at_offset (die_offset_sect, per_cu);
18316 }
18317
18318 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18319 On entry *REF_CU is the CU of SRC_DIE.
18320 On exit *REF_CU is the CU of the result.
18321 Returns NULL if the referenced DIE isn't found. */
18322
18323 static struct die_info *
18324 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18325 struct dwarf2_cu **ref_cu)
18326 {
18327 struct objfile *objfile = (*ref_cu)->objfile;
18328 struct die_info temp_die;
18329 struct dwarf2_cu *sig_cu;
18330 struct die_info *die;
18331
18332 /* While it might be nice to assert sig_type->type == NULL here,
18333 we can get here for DW_AT_imported_declaration where we need
18334 the DIE not the type. */
18335
18336 /* If necessary, add it to the queue and load its DIEs. */
18337
18338 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18339 read_signatured_type (sig_type);
18340
18341 gdb_assert (sig_type->per_cu.cu != NULL);
18342
18343 sig_cu = sig_type->per_cu.cu;
18344 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18345 temp_die.offset = sig_type->type_offset_in_section;
18346 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18347 temp_die.offset.sect_off);
18348 if (die)
18349 {
18350 /* For .gdb_index version 7 keep track of included TUs.
18351 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18352 if (dwarf2_per_objfile->index_table != NULL
18353 && dwarf2_per_objfile->index_table->version <= 7)
18354 {
18355 VEC_safe_push (dwarf2_per_cu_ptr,
18356 (*ref_cu)->per_cu->imported_symtabs,
18357 sig_cu->per_cu);
18358 }
18359
18360 *ref_cu = sig_cu;
18361 return die;
18362 }
18363
18364 return NULL;
18365 }
18366
18367 /* Follow signatured type referenced by ATTR in SRC_DIE.
18368 On entry *REF_CU is the CU of SRC_DIE.
18369 On exit *REF_CU is the CU of the result.
18370 The result is the DIE of the type.
18371 If the referenced type cannot be found an error is thrown. */
18372
18373 static struct die_info *
18374 follow_die_sig (struct die_info *src_die, struct attribute *attr,
18375 struct dwarf2_cu **ref_cu)
18376 {
18377 ULONGEST signature = DW_SIGNATURE (attr);
18378 struct signatured_type *sig_type;
18379 struct die_info *die;
18380
18381 gdb_assert (attr->form == DW_FORM_ref_sig8);
18382
18383 sig_type = lookup_signatured_type (*ref_cu, signature);
18384 /* sig_type will be NULL if the signatured type is missing from
18385 the debug info. */
18386 if (sig_type == NULL)
18387 {
18388 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18389 " from DIE at 0x%x [in module %s]"),
18390 hex_string (signature), src_die->offset.sect_off,
18391 (*ref_cu)->objfile->name);
18392 }
18393
18394 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18395 if (die == NULL)
18396 {
18397 dump_die_for_error (src_die);
18398 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18399 " from DIE at 0x%x [in module %s]"),
18400 hex_string (signature), src_die->offset.sect_off,
18401 (*ref_cu)->objfile->name);
18402 }
18403
18404 return die;
18405 }
18406
18407 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18408 reading in and processing the type unit if necessary. */
18409
18410 static struct type *
18411 get_signatured_type (struct die_info *die, ULONGEST signature,
18412 struct dwarf2_cu *cu)
18413 {
18414 struct signatured_type *sig_type;
18415 struct dwarf2_cu *type_cu;
18416 struct die_info *type_die;
18417 struct type *type;
18418
18419 sig_type = lookup_signatured_type (cu, signature);
18420 /* sig_type will be NULL if the signatured type is missing from
18421 the debug info. */
18422 if (sig_type == NULL)
18423 {
18424 complaint (&symfile_complaints,
18425 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18426 " from DIE at 0x%x [in module %s]"),
18427 hex_string (signature), die->offset.sect_off,
18428 dwarf2_per_objfile->objfile->name);
18429 return build_error_marker_type (cu, die);
18430 }
18431
18432 /* If we already know the type we're done. */
18433 if (sig_type->type != NULL)
18434 return sig_type->type;
18435
18436 type_cu = cu;
18437 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18438 if (type_die != NULL)
18439 {
18440 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18441 is created. This is important, for example, because for c++ classes
18442 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18443 type = read_type_die (type_die, type_cu);
18444 if (type == NULL)
18445 {
18446 complaint (&symfile_complaints,
18447 _("Dwarf Error: Cannot build signatured type %s"
18448 " referenced from DIE at 0x%x [in module %s]"),
18449 hex_string (signature), die->offset.sect_off,
18450 dwarf2_per_objfile->objfile->name);
18451 type = build_error_marker_type (cu, die);
18452 }
18453 }
18454 else
18455 {
18456 complaint (&symfile_complaints,
18457 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18458 " from DIE at 0x%x [in module %s]"),
18459 hex_string (signature), die->offset.sect_off,
18460 dwarf2_per_objfile->objfile->name);
18461 type = build_error_marker_type (cu, die);
18462 }
18463 sig_type->type = type;
18464
18465 return type;
18466 }
18467
18468 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18469 reading in and processing the type unit if necessary. */
18470
18471 static struct type *
18472 get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18473 struct dwarf2_cu *cu) /* ARI: editCase function */
18474 {
18475 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18476 if (is_ref_attr (attr))
18477 {
18478 struct dwarf2_cu *type_cu = cu;
18479 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18480
18481 return read_type_die (type_die, type_cu);
18482 }
18483 else if (attr->form == DW_FORM_ref_sig8)
18484 {
18485 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18486 }
18487 else
18488 {
18489 complaint (&symfile_complaints,
18490 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18491 " at 0x%x [in module %s]"),
18492 dwarf_form_name (attr->form), die->offset.sect_off,
18493 dwarf2_per_objfile->objfile->name);
18494 return build_error_marker_type (cu, die);
18495 }
18496 }
18497
18498 /* Load the DIEs associated with type unit PER_CU into memory. */
18499
18500 static void
18501 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18502 {
18503 struct signatured_type *sig_type;
18504
18505 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18506 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18507
18508 /* We have the per_cu, but we need the signatured_type.
18509 Fortunately this is an easy translation. */
18510 gdb_assert (per_cu->is_debug_types);
18511 sig_type = (struct signatured_type *) per_cu;
18512
18513 gdb_assert (per_cu->cu == NULL);
18514
18515 read_signatured_type (sig_type);
18516
18517 gdb_assert (per_cu->cu != NULL);
18518 }
18519
18520 /* die_reader_func for read_signatured_type.
18521 This is identical to load_full_comp_unit_reader,
18522 but is kept separate for now. */
18523
18524 static void
18525 read_signatured_type_reader (const struct die_reader_specs *reader,
18526 const gdb_byte *info_ptr,
18527 struct die_info *comp_unit_die,
18528 int has_children,
18529 void *data)
18530 {
18531 struct dwarf2_cu *cu = reader->cu;
18532
18533 gdb_assert (cu->die_hash == NULL);
18534 cu->die_hash =
18535 htab_create_alloc_ex (cu->header.length / 12,
18536 die_hash,
18537 die_eq,
18538 NULL,
18539 &cu->comp_unit_obstack,
18540 hashtab_obstack_allocate,
18541 dummy_obstack_deallocate);
18542
18543 if (has_children)
18544 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18545 &info_ptr, comp_unit_die);
18546 cu->dies = comp_unit_die;
18547 /* comp_unit_die is not stored in die_hash, no need. */
18548
18549 /* We try not to read any attributes in this function, because not
18550 all CUs needed for references have been loaded yet, and symbol
18551 table processing isn't initialized. But we have to set the CU language,
18552 or we won't be able to build types correctly.
18553 Similarly, if we do not read the producer, we can not apply
18554 producer-specific interpretation. */
18555 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18556 }
18557
18558 /* Read in a signatured type and build its CU and DIEs.
18559 If the type is a stub for the real type in a DWO file,
18560 read in the real type from the DWO file as well. */
18561
18562 static void
18563 read_signatured_type (struct signatured_type *sig_type)
18564 {
18565 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18566
18567 gdb_assert (per_cu->is_debug_types);
18568 gdb_assert (per_cu->cu == NULL);
18569
18570 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18571 read_signatured_type_reader, NULL);
18572 }
18573
18574 /* Decode simple location descriptions.
18575 Given a pointer to a dwarf block that defines a location, compute
18576 the location and return the value.
18577
18578 NOTE drow/2003-11-18: This function is called in two situations
18579 now: for the address of static or global variables (partial symbols
18580 only) and for offsets into structures which are expected to be
18581 (more or less) constant. The partial symbol case should go away,
18582 and only the constant case should remain. That will let this
18583 function complain more accurately. A few special modes are allowed
18584 without complaint for global variables (for instance, global
18585 register values and thread-local values).
18586
18587 A location description containing no operations indicates that the
18588 object is optimized out. The return value is 0 for that case.
18589 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18590 callers will only want a very basic result and this can become a
18591 complaint.
18592
18593 Note that stack[0] is unused except as a default error return. */
18594
18595 static CORE_ADDR
18596 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18597 {
18598 struct objfile *objfile = cu->objfile;
18599 size_t i;
18600 size_t size = blk->size;
18601 const gdb_byte *data = blk->data;
18602 CORE_ADDR stack[64];
18603 int stacki;
18604 unsigned int bytes_read, unsnd;
18605 gdb_byte op;
18606
18607 i = 0;
18608 stacki = 0;
18609 stack[stacki] = 0;
18610 stack[++stacki] = 0;
18611
18612 while (i < size)
18613 {
18614 op = data[i++];
18615 switch (op)
18616 {
18617 case DW_OP_lit0:
18618 case DW_OP_lit1:
18619 case DW_OP_lit2:
18620 case DW_OP_lit3:
18621 case DW_OP_lit4:
18622 case DW_OP_lit5:
18623 case DW_OP_lit6:
18624 case DW_OP_lit7:
18625 case DW_OP_lit8:
18626 case DW_OP_lit9:
18627 case DW_OP_lit10:
18628 case DW_OP_lit11:
18629 case DW_OP_lit12:
18630 case DW_OP_lit13:
18631 case DW_OP_lit14:
18632 case DW_OP_lit15:
18633 case DW_OP_lit16:
18634 case DW_OP_lit17:
18635 case DW_OP_lit18:
18636 case DW_OP_lit19:
18637 case DW_OP_lit20:
18638 case DW_OP_lit21:
18639 case DW_OP_lit22:
18640 case DW_OP_lit23:
18641 case DW_OP_lit24:
18642 case DW_OP_lit25:
18643 case DW_OP_lit26:
18644 case DW_OP_lit27:
18645 case DW_OP_lit28:
18646 case DW_OP_lit29:
18647 case DW_OP_lit30:
18648 case DW_OP_lit31:
18649 stack[++stacki] = op - DW_OP_lit0;
18650 break;
18651
18652 case DW_OP_reg0:
18653 case DW_OP_reg1:
18654 case DW_OP_reg2:
18655 case DW_OP_reg3:
18656 case DW_OP_reg4:
18657 case DW_OP_reg5:
18658 case DW_OP_reg6:
18659 case DW_OP_reg7:
18660 case DW_OP_reg8:
18661 case DW_OP_reg9:
18662 case DW_OP_reg10:
18663 case DW_OP_reg11:
18664 case DW_OP_reg12:
18665 case DW_OP_reg13:
18666 case DW_OP_reg14:
18667 case DW_OP_reg15:
18668 case DW_OP_reg16:
18669 case DW_OP_reg17:
18670 case DW_OP_reg18:
18671 case DW_OP_reg19:
18672 case DW_OP_reg20:
18673 case DW_OP_reg21:
18674 case DW_OP_reg22:
18675 case DW_OP_reg23:
18676 case DW_OP_reg24:
18677 case DW_OP_reg25:
18678 case DW_OP_reg26:
18679 case DW_OP_reg27:
18680 case DW_OP_reg28:
18681 case DW_OP_reg29:
18682 case DW_OP_reg30:
18683 case DW_OP_reg31:
18684 stack[++stacki] = op - DW_OP_reg0;
18685 if (i < size)
18686 dwarf2_complex_location_expr_complaint ();
18687 break;
18688
18689 case DW_OP_regx:
18690 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18691 i += bytes_read;
18692 stack[++stacki] = unsnd;
18693 if (i < size)
18694 dwarf2_complex_location_expr_complaint ();
18695 break;
18696
18697 case DW_OP_addr:
18698 stack[++stacki] = read_address (objfile->obfd, &data[i],
18699 cu, &bytes_read);
18700 i += bytes_read;
18701 break;
18702
18703 case DW_OP_const1u:
18704 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18705 i += 1;
18706 break;
18707
18708 case DW_OP_const1s:
18709 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18710 i += 1;
18711 break;
18712
18713 case DW_OP_const2u:
18714 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18715 i += 2;
18716 break;
18717
18718 case DW_OP_const2s:
18719 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18720 i += 2;
18721 break;
18722
18723 case DW_OP_const4u:
18724 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18725 i += 4;
18726 break;
18727
18728 case DW_OP_const4s:
18729 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18730 i += 4;
18731 break;
18732
18733 case DW_OP_const8u:
18734 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18735 i += 8;
18736 break;
18737
18738 case DW_OP_constu:
18739 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18740 &bytes_read);
18741 i += bytes_read;
18742 break;
18743
18744 case DW_OP_consts:
18745 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18746 i += bytes_read;
18747 break;
18748
18749 case DW_OP_dup:
18750 stack[stacki + 1] = stack[stacki];
18751 stacki++;
18752 break;
18753
18754 case DW_OP_plus:
18755 stack[stacki - 1] += stack[stacki];
18756 stacki--;
18757 break;
18758
18759 case DW_OP_plus_uconst:
18760 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18761 &bytes_read);
18762 i += bytes_read;
18763 break;
18764
18765 case DW_OP_minus:
18766 stack[stacki - 1] -= stack[stacki];
18767 stacki--;
18768 break;
18769
18770 case DW_OP_deref:
18771 /* If we're not the last op, then we definitely can't encode
18772 this using GDB's address_class enum. This is valid for partial
18773 global symbols, although the variable's address will be bogus
18774 in the psymtab. */
18775 if (i < size)
18776 dwarf2_complex_location_expr_complaint ();
18777 break;
18778
18779 case DW_OP_GNU_push_tls_address:
18780 /* The top of the stack has the offset from the beginning
18781 of the thread control block at which the variable is located. */
18782 /* Nothing should follow this operator, so the top of stack would
18783 be returned. */
18784 /* This is valid for partial global symbols, but the variable's
18785 address will be bogus in the psymtab. Make it always at least
18786 non-zero to not look as a variable garbage collected by linker
18787 which have DW_OP_addr 0. */
18788 if (i < size)
18789 dwarf2_complex_location_expr_complaint ();
18790 stack[stacki]++;
18791 break;
18792
18793 case DW_OP_GNU_uninit:
18794 break;
18795
18796 case DW_OP_GNU_addr_index:
18797 case DW_OP_GNU_const_index:
18798 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18799 &bytes_read);
18800 i += bytes_read;
18801 break;
18802
18803 default:
18804 {
18805 const char *name = get_DW_OP_name (op);
18806
18807 if (name)
18808 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18809 name);
18810 else
18811 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18812 op);
18813 }
18814
18815 return (stack[stacki]);
18816 }
18817
18818 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18819 outside of the allocated space. Also enforce minimum>0. */
18820 if (stacki >= ARRAY_SIZE (stack) - 1)
18821 {
18822 complaint (&symfile_complaints,
18823 _("location description stack overflow"));
18824 return 0;
18825 }
18826
18827 if (stacki <= 0)
18828 {
18829 complaint (&symfile_complaints,
18830 _("location description stack underflow"));
18831 return 0;
18832 }
18833 }
18834 return (stack[stacki]);
18835 }
18836
18837 /* memory allocation interface */
18838
18839 static struct dwarf_block *
18840 dwarf_alloc_block (struct dwarf2_cu *cu)
18841 {
18842 struct dwarf_block *blk;
18843
18844 blk = (struct dwarf_block *)
18845 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18846 return (blk);
18847 }
18848
18849 static struct die_info *
18850 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18851 {
18852 struct die_info *die;
18853 size_t size = sizeof (struct die_info);
18854
18855 if (num_attrs > 1)
18856 size += (num_attrs - 1) * sizeof (struct attribute);
18857
18858 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18859 memset (die, 0, sizeof (struct die_info));
18860 return (die);
18861 }
18862
18863 \f
18864 /* Macro support. */
18865
18866 /* Return file name relative to the compilation directory of file number I in
18867 *LH's file name table. The result is allocated using xmalloc; the caller is
18868 responsible for freeing it. */
18869
18870 static char *
18871 file_file_name (int file, struct line_header *lh)
18872 {
18873 /* Is the file number a valid index into the line header's file name
18874 table? Remember that file numbers start with one, not zero. */
18875 if (1 <= file && file <= lh->num_file_names)
18876 {
18877 struct file_entry *fe = &lh->file_names[file - 1];
18878
18879 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18880 return xstrdup (fe->name);
18881 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18882 fe->name, NULL);
18883 }
18884 else
18885 {
18886 /* The compiler produced a bogus file number. We can at least
18887 record the macro definitions made in the file, even if we
18888 won't be able to find the file by name. */
18889 char fake_name[80];
18890
18891 xsnprintf (fake_name, sizeof (fake_name),
18892 "<bad macro file number %d>", file);
18893
18894 complaint (&symfile_complaints,
18895 _("bad file number in macro information (%d)"),
18896 file);
18897
18898 return xstrdup (fake_name);
18899 }
18900 }
18901
18902 /* Return the full name of file number I in *LH's file name table.
18903 Use COMP_DIR as the name of the current directory of the
18904 compilation. The result is allocated using xmalloc; the caller is
18905 responsible for freeing it. */
18906 static char *
18907 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18908 {
18909 /* Is the file number a valid index into the line header's file name
18910 table? Remember that file numbers start with one, not zero. */
18911 if (1 <= file && file <= lh->num_file_names)
18912 {
18913 char *relative = file_file_name (file, lh);
18914
18915 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18916 return relative;
18917 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18918 }
18919 else
18920 return file_file_name (file, lh);
18921 }
18922
18923
18924 static struct macro_source_file *
18925 macro_start_file (int file, int line,
18926 struct macro_source_file *current_file,
18927 const char *comp_dir,
18928 struct line_header *lh, struct objfile *objfile)
18929 {
18930 /* File name relative to the compilation directory of this source file. */
18931 char *file_name = file_file_name (file, lh);
18932
18933 /* We don't create a macro table for this compilation unit
18934 at all until we actually get a filename. */
18935 if (! pending_macros)
18936 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18937 objfile->per_bfd->macro_cache,
18938 comp_dir);
18939
18940 if (! current_file)
18941 {
18942 /* If we have no current file, then this must be the start_file
18943 directive for the compilation unit's main source file. */
18944 current_file = macro_set_main (pending_macros, file_name);
18945 macro_define_special (pending_macros);
18946 }
18947 else
18948 current_file = macro_include (current_file, line, file_name);
18949
18950 xfree (file_name);
18951
18952 return current_file;
18953 }
18954
18955
18956 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18957 followed by a null byte. */
18958 static char *
18959 copy_string (const char *buf, int len)
18960 {
18961 char *s = xmalloc (len + 1);
18962
18963 memcpy (s, buf, len);
18964 s[len] = '\0';
18965 return s;
18966 }
18967
18968
18969 static const char *
18970 consume_improper_spaces (const char *p, const char *body)
18971 {
18972 if (*p == ' ')
18973 {
18974 complaint (&symfile_complaints,
18975 _("macro definition contains spaces "
18976 "in formal argument list:\n`%s'"),
18977 body);
18978
18979 while (*p == ' ')
18980 p++;
18981 }
18982
18983 return p;
18984 }
18985
18986
18987 static void
18988 parse_macro_definition (struct macro_source_file *file, int line,
18989 const char *body)
18990 {
18991 const char *p;
18992
18993 /* The body string takes one of two forms. For object-like macro
18994 definitions, it should be:
18995
18996 <macro name> " " <definition>
18997
18998 For function-like macro definitions, it should be:
18999
19000 <macro name> "() " <definition>
19001 or
19002 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19003
19004 Spaces may appear only where explicitly indicated, and in the
19005 <definition>.
19006
19007 The Dwarf 2 spec says that an object-like macro's name is always
19008 followed by a space, but versions of GCC around March 2002 omit
19009 the space when the macro's definition is the empty string.
19010
19011 The Dwarf 2 spec says that there should be no spaces between the
19012 formal arguments in a function-like macro's formal argument list,
19013 but versions of GCC around March 2002 include spaces after the
19014 commas. */
19015
19016
19017 /* Find the extent of the macro name. The macro name is terminated
19018 by either a space or null character (for an object-like macro) or
19019 an opening paren (for a function-like macro). */
19020 for (p = body; *p; p++)
19021 if (*p == ' ' || *p == '(')
19022 break;
19023
19024 if (*p == ' ' || *p == '\0')
19025 {
19026 /* It's an object-like macro. */
19027 int name_len = p - body;
19028 char *name = copy_string (body, name_len);
19029 const char *replacement;
19030
19031 if (*p == ' ')
19032 replacement = body + name_len + 1;
19033 else
19034 {
19035 dwarf2_macro_malformed_definition_complaint (body);
19036 replacement = body + name_len;
19037 }
19038
19039 macro_define_object (file, line, name, replacement);
19040
19041 xfree (name);
19042 }
19043 else if (*p == '(')
19044 {
19045 /* It's a function-like macro. */
19046 char *name = copy_string (body, p - body);
19047 int argc = 0;
19048 int argv_size = 1;
19049 char **argv = xmalloc (argv_size * sizeof (*argv));
19050
19051 p++;
19052
19053 p = consume_improper_spaces (p, body);
19054
19055 /* Parse the formal argument list. */
19056 while (*p && *p != ')')
19057 {
19058 /* Find the extent of the current argument name. */
19059 const char *arg_start = p;
19060
19061 while (*p && *p != ',' && *p != ')' && *p != ' ')
19062 p++;
19063
19064 if (! *p || p == arg_start)
19065 dwarf2_macro_malformed_definition_complaint (body);
19066 else
19067 {
19068 /* Make sure argv has room for the new argument. */
19069 if (argc >= argv_size)
19070 {
19071 argv_size *= 2;
19072 argv = xrealloc (argv, argv_size * sizeof (*argv));
19073 }
19074
19075 argv[argc++] = copy_string (arg_start, p - arg_start);
19076 }
19077
19078 p = consume_improper_spaces (p, body);
19079
19080 /* Consume the comma, if present. */
19081 if (*p == ',')
19082 {
19083 p++;
19084
19085 p = consume_improper_spaces (p, body);
19086 }
19087 }
19088
19089 if (*p == ')')
19090 {
19091 p++;
19092
19093 if (*p == ' ')
19094 /* Perfectly formed definition, no complaints. */
19095 macro_define_function (file, line, name,
19096 argc, (const char **) argv,
19097 p + 1);
19098 else if (*p == '\0')
19099 {
19100 /* Complain, but do define it. */
19101 dwarf2_macro_malformed_definition_complaint (body);
19102 macro_define_function (file, line, name,
19103 argc, (const char **) argv,
19104 p);
19105 }
19106 else
19107 /* Just complain. */
19108 dwarf2_macro_malformed_definition_complaint (body);
19109 }
19110 else
19111 /* Just complain. */
19112 dwarf2_macro_malformed_definition_complaint (body);
19113
19114 xfree (name);
19115 {
19116 int i;
19117
19118 for (i = 0; i < argc; i++)
19119 xfree (argv[i]);
19120 }
19121 xfree (argv);
19122 }
19123 else
19124 dwarf2_macro_malformed_definition_complaint (body);
19125 }
19126
19127 /* Skip some bytes from BYTES according to the form given in FORM.
19128 Returns the new pointer. */
19129
19130 static const gdb_byte *
19131 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19132 enum dwarf_form form,
19133 unsigned int offset_size,
19134 struct dwarf2_section_info *section)
19135 {
19136 unsigned int bytes_read;
19137
19138 switch (form)
19139 {
19140 case DW_FORM_data1:
19141 case DW_FORM_flag:
19142 ++bytes;
19143 break;
19144
19145 case DW_FORM_data2:
19146 bytes += 2;
19147 break;
19148
19149 case DW_FORM_data4:
19150 bytes += 4;
19151 break;
19152
19153 case DW_FORM_data8:
19154 bytes += 8;
19155 break;
19156
19157 case DW_FORM_string:
19158 read_direct_string (abfd, bytes, &bytes_read);
19159 bytes += bytes_read;
19160 break;
19161
19162 case DW_FORM_sec_offset:
19163 case DW_FORM_strp:
19164 case DW_FORM_GNU_strp_alt:
19165 bytes += offset_size;
19166 break;
19167
19168 case DW_FORM_block:
19169 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19170 bytes += bytes_read;
19171 break;
19172
19173 case DW_FORM_block1:
19174 bytes += 1 + read_1_byte (abfd, bytes);
19175 break;
19176 case DW_FORM_block2:
19177 bytes += 2 + read_2_bytes (abfd, bytes);
19178 break;
19179 case DW_FORM_block4:
19180 bytes += 4 + read_4_bytes (abfd, bytes);
19181 break;
19182
19183 case DW_FORM_sdata:
19184 case DW_FORM_udata:
19185 case DW_FORM_GNU_addr_index:
19186 case DW_FORM_GNU_str_index:
19187 bytes = gdb_skip_leb128 (bytes, buffer_end);
19188 if (bytes == NULL)
19189 {
19190 dwarf2_section_buffer_overflow_complaint (section);
19191 return NULL;
19192 }
19193 break;
19194
19195 default:
19196 {
19197 complain:
19198 complaint (&symfile_complaints,
19199 _("invalid form 0x%x in `%s'"),
19200 form,
19201 section->asection->name);
19202 return NULL;
19203 }
19204 }
19205
19206 return bytes;
19207 }
19208
19209 /* A helper for dwarf_decode_macros that handles skipping an unknown
19210 opcode. Returns an updated pointer to the macro data buffer; or,
19211 on error, issues a complaint and returns NULL. */
19212
19213 static const gdb_byte *
19214 skip_unknown_opcode (unsigned int opcode,
19215 const gdb_byte **opcode_definitions,
19216 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19217 bfd *abfd,
19218 unsigned int offset_size,
19219 struct dwarf2_section_info *section)
19220 {
19221 unsigned int bytes_read, i;
19222 unsigned long arg;
19223 const gdb_byte *defn;
19224
19225 if (opcode_definitions[opcode] == NULL)
19226 {
19227 complaint (&symfile_complaints,
19228 _("unrecognized DW_MACFINO opcode 0x%x"),
19229 opcode);
19230 return NULL;
19231 }
19232
19233 defn = opcode_definitions[opcode];
19234 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19235 defn += bytes_read;
19236
19237 for (i = 0; i < arg; ++i)
19238 {
19239 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19240 section);
19241 if (mac_ptr == NULL)
19242 {
19243 /* skip_form_bytes already issued the complaint. */
19244 return NULL;
19245 }
19246 }
19247
19248 return mac_ptr;
19249 }
19250
19251 /* A helper function which parses the header of a macro section.
19252 If the macro section is the extended (for now called "GNU") type,
19253 then this updates *OFFSET_SIZE. Returns a pointer to just after
19254 the header, or issues a complaint and returns NULL on error. */
19255
19256 static const gdb_byte *
19257 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19258 bfd *abfd,
19259 const gdb_byte *mac_ptr,
19260 unsigned int *offset_size,
19261 int section_is_gnu)
19262 {
19263 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19264
19265 if (section_is_gnu)
19266 {
19267 unsigned int version, flags;
19268
19269 version = read_2_bytes (abfd, mac_ptr);
19270 if (version != 4)
19271 {
19272 complaint (&symfile_complaints,
19273 _("unrecognized version `%d' in .debug_macro section"),
19274 version);
19275 return NULL;
19276 }
19277 mac_ptr += 2;
19278
19279 flags = read_1_byte (abfd, mac_ptr);
19280 ++mac_ptr;
19281 *offset_size = (flags & 1) ? 8 : 4;
19282
19283 if ((flags & 2) != 0)
19284 /* We don't need the line table offset. */
19285 mac_ptr += *offset_size;
19286
19287 /* Vendor opcode descriptions. */
19288 if ((flags & 4) != 0)
19289 {
19290 unsigned int i, count;
19291
19292 count = read_1_byte (abfd, mac_ptr);
19293 ++mac_ptr;
19294 for (i = 0; i < count; ++i)
19295 {
19296 unsigned int opcode, bytes_read;
19297 unsigned long arg;
19298
19299 opcode = read_1_byte (abfd, mac_ptr);
19300 ++mac_ptr;
19301 opcode_definitions[opcode] = mac_ptr;
19302 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19303 mac_ptr += bytes_read;
19304 mac_ptr += arg;
19305 }
19306 }
19307 }
19308
19309 return mac_ptr;
19310 }
19311
19312 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19313 including DW_MACRO_GNU_transparent_include. */
19314
19315 static void
19316 dwarf_decode_macro_bytes (bfd *abfd,
19317 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19318 struct macro_source_file *current_file,
19319 struct line_header *lh, const char *comp_dir,
19320 struct dwarf2_section_info *section,
19321 int section_is_gnu, int section_is_dwz,
19322 unsigned int offset_size,
19323 struct objfile *objfile,
19324 htab_t include_hash)
19325 {
19326 enum dwarf_macro_record_type macinfo_type;
19327 int at_commandline;
19328 const gdb_byte *opcode_definitions[256];
19329
19330 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19331 &offset_size, section_is_gnu);
19332 if (mac_ptr == NULL)
19333 {
19334 /* We already issued a complaint. */
19335 return;
19336 }
19337
19338 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19339 GDB is still reading the definitions from command line. First
19340 DW_MACINFO_start_file will need to be ignored as it was already executed
19341 to create CURRENT_FILE for the main source holding also the command line
19342 definitions. On first met DW_MACINFO_start_file this flag is reset to
19343 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19344
19345 at_commandline = 1;
19346
19347 do
19348 {
19349 /* Do we at least have room for a macinfo type byte? */
19350 if (mac_ptr >= mac_end)
19351 {
19352 dwarf2_section_buffer_overflow_complaint (section);
19353 break;
19354 }
19355
19356 macinfo_type = read_1_byte (abfd, mac_ptr);
19357 mac_ptr++;
19358
19359 /* Note that we rely on the fact that the corresponding GNU and
19360 DWARF constants are the same. */
19361 switch (macinfo_type)
19362 {
19363 /* A zero macinfo type indicates the end of the macro
19364 information. */
19365 case 0:
19366 break;
19367
19368 case DW_MACRO_GNU_define:
19369 case DW_MACRO_GNU_undef:
19370 case DW_MACRO_GNU_define_indirect:
19371 case DW_MACRO_GNU_undef_indirect:
19372 case DW_MACRO_GNU_define_indirect_alt:
19373 case DW_MACRO_GNU_undef_indirect_alt:
19374 {
19375 unsigned int bytes_read;
19376 int line;
19377 const char *body;
19378 int is_define;
19379
19380 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19381 mac_ptr += bytes_read;
19382
19383 if (macinfo_type == DW_MACRO_GNU_define
19384 || macinfo_type == DW_MACRO_GNU_undef)
19385 {
19386 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19387 mac_ptr += bytes_read;
19388 }
19389 else
19390 {
19391 LONGEST str_offset;
19392
19393 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19394 mac_ptr += offset_size;
19395
19396 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19397 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19398 || section_is_dwz)
19399 {
19400 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19401
19402 body = read_indirect_string_from_dwz (dwz, str_offset);
19403 }
19404 else
19405 body = read_indirect_string_at_offset (abfd, str_offset);
19406 }
19407
19408 is_define = (macinfo_type == DW_MACRO_GNU_define
19409 || macinfo_type == DW_MACRO_GNU_define_indirect
19410 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19411 if (! current_file)
19412 {
19413 /* DWARF violation as no main source is present. */
19414 complaint (&symfile_complaints,
19415 _("debug info with no main source gives macro %s "
19416 "on line %d: %s"),
19417 is_define ? _("definition") : _("undefinition"),
19418 line, body);
19419 break;
19420 }
19421 if ((line == 0 && !at_commandline)
19422 || (line != 0 && at_commandline))
19423 complaint (&symfile_complaints,
19424 _("debug info gives %s macro %s with %s line %d: %s"),
19425 at_commandline ? _("command-line") : _("in-file"),
19426 is_define ? _("definition") : _("undefinition"),
19427 line == 0 ? _("zero") : _("non-zero"), line, body);
19428
19429 if (is_define)
19430 parse_macro_definition (current_file, line, body);
19431 else
19432 {
19433 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19434 || macinfo_type == DW_MACRO_GNU_undef_indirect
19435 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19436 macro_undef (current_file, line, body);
19437 }
19438 }
19439 break;
19440
19441 case DW_MACRO_GNU_start_file:
19442 {
19443 unsigned int bytes_read;
19444 int line, file;
19445
19446 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19447 mac_ptr += bytes_read;
19448 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19449 mac_ptr += bytes_read;
19450
19451 if ((line == 0 && !at_commandline)
19452 || (line != 0 && at_commandline))
19453 complaint (&symfile_complaints,
19454 _("debug info gives source %d included "
19455 "from %s at %s line %d"),
19456 file, at_commandline ? _("command-line") : _("file"),
19457 line == 0 ? _("zero") : _("non-zero"), line);
19458
19459 if (at_commandline)
19460 {
19461 /* This DW_MACRO_GNU_start_file was executed in the
19462 pass one. */
19463 at_commandline = 0;
19464 }
19465 else
19466 current_file = macro_start_file (file, line,
19467 current_file, comp_dir,
19468 lh, objfile);
19469 }
19470 break;
19471
19472 case DW_MACRO_GNU_end_file:
19473 if (! current_file)
19474 complaint (&symfile_complaints,
19475 _("macro debug info has an unmatched "
19476 "`close_file' directive"));
19477 else
19478 {
19479 current_file = current_file->included_by;
19480 if (! current_file)
19481 {
19482 enum dwarf_macro_record_type next_type;
19483
19484 /* GCC circa March 2002 doesn't produce the zero
19485 type byte marking the end of the compilation
19486 unit. Complain if it's not there, but exit no
19487 matter what. */
19488
19489 /* Do we at least have room for a macinfo type byte? */
19490 if (mac_ptr >= mac_end)
19491 {
19492 dwarf2_section_buffer_overflow_complaint (section);
19493 return;
19494 }
19495
19496 /* We don't increment mac_ptr here, so this is just
19497 a look-ahead. */
19498 next_type = read_1_byte (abfd, mac_ptr);
19499 if (next_type != 0)
19500 complaint (&symfile_complaints,
19501 _("no terminating 0-type entry for "
19502 "macros in `.debug_macinfo' section"));
19503
19504 return;
19505 }
19506 }
19507 break;
19508
19509 case DW_MACRO_GNU_transparent_include:
19510 case DW_MACRO_GNU_transparent_include_alt:
19511 {
19512 LONGEST offset;
19513 void **slot;
19514 bfd *include_bfd = abfd;
19515 struct dwarf2_section_info *include_section = section;
19516 struct dwarf2_section_info alt_section;
19517 const gdb_byte *include_mac_end = mac_end;
19518 int is_dwz = section_is_dwz;
19519 const gdb_byte *new_mac_ptr;
19520
19521 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19522 mac_ptr += offset_size;
19523
19524 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19525 {
19526 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19527
19528 dwarf2_read_section (dwarf2_per_objfile->objfile,
19529 &dwz->macro);
19530
19531 include_bfd = dwz->macro.asection->owner;
19532 include_section = &dwz->macro;
19533 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19534 is_dwz = 1;
19535 }
19536
19537 new_mac_ptr = include_section->buffer + offset;
19538 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19539
19540 if (*slot != NULL)
19541 {
19542 /* This has actually happened; see
19543 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19544 complaint (&symfile_complaints,
19545 _("recursive DW_MACRO_GNU_transparent_include in "
19546 ".debug_macro section"));
19547 }
19548 else
19549 {
19550 *slot = (void *) new_mac_ptr;
19551
19552 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19553 include_mac_end, current_file,
19554 lh, comp_dir,
19555 section, section_is_gnu, is_dwz,
19556 offset_size, objfile, include_hash);
19557
19558 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19559 }
19560 }
19561 break;
19562
19563 case DW_MACINFO_vendor_ext:
19564 if (!section_is_gnu)
19565 {
19566 unsigned int bytes_read;
19567 int constant;
19568
19569 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19570 mac_ptr += bytes_read;
19571 read_direct_string (abfd, mac_ptr, &bytes_read);
19572 mac_ptr += bytes_read;
19573
19574 /* We don't recognize any vendor extensions. */
19575 break;
19576 }
19577 /* FALLTHROUGH */
19578
19579 default:
19580 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19581 mac_ptr, mac_end, abfd, offset_size,
19582 section);
19583 if (mac_ptr == NULL)
19584 return;
19585 break;
19586 }
19587 } while (macinfo_type != 0);
19588 }
19589
19590 static void
19591 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19592 const char *comp_dir, int section_is_gnu)
19593 {
19594 struct objfile *objfile = dwarf2_per_objfile->objfile;
19595 struct line_header *lh = cu->line_header;
19596 bfd *abfd;
19597 const gdb_byte *mac_ptr, *mac_end;
19598 struct macro_source_file *current_file = 0;
19599 enum dwarf_macro_record_type macinfo_type;
19600 unsigned int offset_size = cu->header.offset_size;
19601 const gdb_byte *opcode_definitions[256];
19602 struct cleanup *cleanup;
19603 htab_t include_hash;
19604 void **slot;
19605 struct dwarf2_section_info *section;
19606 const char *section_name;
19607
19608 if (cu->dwo_unit != NULL)
19609 {
19610 if (section_is_gnu)
19611 {
19612 section = &cu->dwo_unit->dwo_file->sections.macro;
19613 section_name = ".debug_macro.dwo";
19614 }
19615 else
19616 {
19617 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19618 section_name = ".debug_macinfo.dwo";
19619 }
19620 }
19621 else
19622 {
19623 if (section_is_gnu)
19624 {
19625 section = &dwarf2_per_objfile->macro;
19626 section_name = ".debug_macro";
19627 }
19628 else
19629 {
19630 section = &dwarf2_per_objfile->macinfo;
19631 section_name = ".debug_macinfo";
19632 }
19633 }
19634
19635 dwarf2_read_section (objfile, section);
19636 if (section->buffer == NULL)
19637 {
19638 complaint (&symfile_complaints, _("missing %s section"), section_name);
19639 return;
19640 }
19641 abfd = section->asection->owner;
19642
19643 /* First pass: Find the name of the base filename.
19644 This filename is needed in order to process all macros whose definition
19645 (or undefinition) comes from the command line. These macros are defined
19646 before the first DW_MACINFO_start_file entry, and yet still need to be
19647 associated to the base file.
19648
19649 To determine the base file name, we scan the macro definitions until we
19650 reach the first DW_MACINFO_start_file entry. We then initialize
19651 CURRENT_FILE accordingly so that any macro definition found before the
19652 first DW_MACINFO_start_file can still be associated to the base file. */
19653
19654 mac_ptr = section->buffer + offset;
19655 mac_end = section->buffer + section->size;
19656
19657 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19658 &offset_size, section_is_gnu);
19659 if (mac_ptr == NULL)
19660 {
19661 /* We already issued a complaint. */
19662 return;
19663 }
19664
19665 do
19666 {
19667 /* Do we at least have room for a macinfo type byte? */
19668 if (mac_ptr >= mac_end)
19669 {
19670 /* Complaint is printed during the second pass as GDB will probably
19671 stop the first pass earlier upon finding
19672 DW_MACINFO_start_file. */
19673 break;
19674 }
19675
19676 macinfo_type = read_1_byte (abfd, mac_ptr);
19677 mac_ptr++;
19678
19679 /* Note that we rely on the fact that the corresponding GNU and
19680 DWARF constants are the same. */
19681 switch (macinfo_type)
19682 {
19683 /* A zero macinfo type indicates the end of the macro
19684 information. */
19685 case 0:
19686 break;
19687
19688 case DW_MACRO_GNU_define:
19689 case DW_MACRO_GNU_undef:
19690 /* Only skip the data by MAC_PTR. */
19691 {
19692 unsigned int bytes_read;
19693
19694 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19695 mac_ptr += bytes_read;
19696 read_direct_string (abfd, mac_ptr, &bytes_read);
19697 mac_ptr += bytes_read;
19698 }
19699 break;
19700
19701 case DW_MACRO_GNU_start_file:
19702 {
19703 unsigned int bytes_read;
19704 int line, file;
19705
19706 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19707 mac_ptr += bytes_read;
19708 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19709 mac_ptr += bytes_read;
19710
19711 current_file = macro_start_file (file, line, current_file,
19712 comp_dir, lh, objfile);
19713 }
19714 break;
19715
19716 case DW_MACRO_GNU_end_file:
19717 /* No data to skip by MAC_PTR. */
19718 break;
19719
19720 case DW_MACRO_GNU_define_indirect:
19721 case DW_MACRO_GNU_undef_indirect:
19722 case DW_MACRO_GNU_define_indirect_alt:
19723 case DW_MACRO_GNU_undef_indirect_alt:
19724 {
19725 unsigned int bytes_read;
19726
19727 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19728 mac_ptr += bytes_read;
19729 mac_ptr += offset_size;
19730 }
19731 break;
19732
19733 case DW_MACRO_GNU_transparent_include:
19734 case DW_MACRO_GNU_transparent_include_alt:
19735 /* Note that, according to the spec, a transparent include
19736 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19737 skip this opcode. */
19738 mac_ptr += offset_size;
19739 break;
19740
19741 case DW_MACINFO_vendor_ext:
19742 /* Only skip the data by MAC_PTR. */
19743 if (!section_is_gnu)
19744 {
19745 unsigned int bytes_read;
19746
19747 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19748 mac_ptr += bytes_read;
19749 read_direct_string (abfd, mac_ptr, &bytes_read);
19750 mac_ptr += bytes_read;
19751 }
19752 /* FALLTHROUGH */
19753
19754 default:
19755 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19756 mac_ptr, mac_end, abfd, offset_size,
19757 section);
19758 if (mac_ptr == NULL)
19759 return;
19760 break;
19761 }
19762 } while (macinfo_type != 0 && current_file == NULL);
19763
19764 /* Second pass: Process all entries.
19765
19766 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19767 command-line macro definitions/undefinitions. This flag is unset when we
19768 reach the first DW_MACINFO_start_file entry. */
19769
19770 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19771 NULL, xcalloc, xfree);
19772 cleanup = make_cleanup_htab_delete (include_hash);
19773 mac_ptr = section->buffer + offset;
19774 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19775 *slot = (void *) mac_ptr;
19776 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19777 current_file, lh, comp_dir, section,
19778 section_is_gnu, 0,
19779 offset_size, objfile, include_hash);
19780 do_cleanups (cleanup);
19781 }
19782
19783 /* Check if the attribute's form is a DW_FORM_block*
19784 if so return true else false. */
19785
19786 static int
19787 attr_form_is_block (struct attribute *attr)
19788 {
19789 return (attr == NULL ? 0 :
19790 attr->form == DW_FORM_block1
19791 || attr->form == DW_FORM_block2
19792 || attr->form == DW_FORM_block4
19793 || attr->form == DW_FORM_block
19794 || attr->form == DW_FORM_exprloc);
19795 }
19796
19797 /* Return non-zero if ATTR's value is a section offset --- classes
19798 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19799 You may use DW_UNSND (attr) to retrieve such offsets.
19800
19801 Section 7.5.4, "Attribute Encodings", explains that no attribute
19802 may have a value that belongs to more than one of these classes; it
19803 would be ambiguous if we did, because we use the same forms for all
19804 of them. */
19805
19806 static int
19807 attr_form_is_section_offset (struct attribute *attr)
19808 {
19809 return (attr->form == DW_FORM_data4
19810 || attr->form == DW_FORM_data8
19811 || attr->form == DW_FORM_sec_offset);
19812 }
19813
19814 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19815 zero otherwise. When this function returns true, you can apply
19816 dwarf2_get_attr_constant_value to it.
19817
19818 However, note that for some attributes you must check
19819 attr_form_is_section_offset before using this test. DW_FORM_data4
19820 and DW_FORM_data8 are members of both the constant class, and of
19821 the classes that contain offsets into other debug sections
19822 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19823 that, if an attribute's can be either a constant or one of the
19824 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19825 taken as section offsets, not constants. */
19826
19827 static int
19828 attr_form_is_constant (struct attribute *attr)
19829 {
19830 switch (attr->form)
19831 {
19832 case DW_FORM_sdata:
19833 case DW_FORM_udata:
19834 case DW_FORM_data1:
19835 case DW_FORM_data2:
19836 case DW_FORM_data4:
19837 case DW_FORM_data8:
19838 return 1;
19839 default:
19840 return 0;
19841 }
19842 }
19843
19844 /* Return the .debug_loc section to use for CU.
19845 For DWO files use .debug_loc.dwo. */
19846
19847 static struct dwarf2_section_info *
19848 cu_debug_loc_section (struct dwarf2_cu *cu)
19849 {
19850 if (cu->dwo_unit)
19851 return &cu->dwo_unit->dwo_file->sections.loc;
19852 return &dwarf2_per_objfile->loc;
19853 }
19854
19855 /* A helper function that fills in a dwarf2_loclist_baton. */
19856
19857 static void
19858 fill_in_loclist_baton (struct dwarf2_cu *cu,
19859 struct dwarf2_loclist_baton *baton,
19860 struct attribute *attr)
19861 {
19862 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19863
19864 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19865
19866 baton->per_cu = cu->per_cu;
19867 gdb_assert (baton->per_cu);
19868 /* We don't know how long the location list is, but make sure we
19869 don't run off the edge of the section. */
19870 baton->size = section->size - DW_UNSND (attr);
19871 baton->data = section->buffer + DW_UNSND (attr);
19872 baton->base_address = cu->base_address;
19873 baton->from_dwo = cu->dwo_unit != NULL;
19874 }
19875
19876 static void
19877 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19878 struct dwarf2_cu *cu, int is_block)
19879 {
19880 struct objfile *objfile = dwarf2_per_objfile->objfile;
19881 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19882
19883 if (attr_form_is_section_offset (attr)
19884 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19885 the section. If so, fall through to the complaint in the
19886 other branch. */
19887 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19888 {
19889 struct dwarf2_loclist_baton *baton;
19890
19891 baton = obstack_alloc (&objfile->objfile_obstack,
19892 sizeof (struct dwarf2_loclist_baton));
19893
19894 fill_in_loclist_baton (cu, baton, attr);
19895
19896 if (cu->base_known == 0)
19897 complaint (&symfile_complaints,
19898 _("Location list used without "
19899 "specifying the CU base address."));
19900
19901 SYMBOL_ACLASS_INDEX (sym) = (is_block
19902 ? dwarf2_loclist_block_index
19903 : dwarf2_loclist_index);
19904 SYMBOL_LOCATION_BATON (sym) = baton;
19905 }
19906 else
19907 {
19908 struct dwarf2_locexpr_baton *baton;
19909
19910 baton = obstack_alloc (&objfile->objfile_obstack,
19911 sizeof (struct dwarf2_locexpr_baton));
19912 baton->per_cu = cu->per_cu;
19913 gdb_assert (baton->per_cu);
19914
19915 if (attr_form_is_block (attr))
19916 {
19917 /* Note that we're just copying the block's data pointer
19918 here, not the actual data. We're still pointing into the
19919 info_buffer for SYM's objfile; right now we never release
19920 that buffer, but when we do clean up properly this may
19921 need to change. */
19922 baton->size = DW_BLOCK (attr)->size;
19923 baton->data = DW_BLOCK (attr)->data;
19924 }
19925 else
19926 {
19927 dwarf2_invalid_attrib_class_complaint ("location description",
19928 SYMBOL_NATURAL_NAME (sym));
19929 baton->size = 0;
19930 }
19931
19932 SYMBOL_ACLASS_INDEX (sym) = (is_block
19933 ? dwarf2_locexpr_block_index
19934 : dwarf2_locexpr_index);
19935 SYMBOL_LOCATION_BATON (sym) = baton;
19936 }
19937 }
19938
19939 /* Return the OBJFILE associated with the compilation unit CU. If CU
19940 came from a separate debuginfo file, then the master objfile is
19941 returned. */
19942
19943 struct objfile *
19944 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19945 {
19946 struct objfile *objfile = per_cu->objfile;
19947
19948 /* Return the master objfile, so that we can report and look up the
19949 correct file containing this variable. */
19950 if (objfile->separate_debug_objfile_backlink)
19951 objfile = objfile->separate_debug_objfile_backlink;
19952
19953 return objfile;
19954 }
19955
19956 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19957 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19958 CU_HEADERP first. */
19959
19960 static const struct comp_unit_head *
19961 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19962 struct dwarf2_per_cu_data *per_cu)
19963 {
19964 const gdb_byte *info_ptr;
19965
19966 if (per_cu->cu)
19967 return &per_cu->cu->header;
19968
19969 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19970
19971 memset (cu_headerp, 0, sizeof (*cu_headerp));
19972 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19973
19974 return cu_headerp;
19975 }
19976
19977 /* Return the address size given in the compilation unit header for CU. */
19978
19979 int
19980 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19981 {
19982 struct comp_unit_head cu_header_local;
19983 const struct comp_unit_head *cu_headerp;
19984
19985 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19986
19987 return cu_headerp->addr_size;
19988 }
19989
19990 /* Return the offset size given in the compilation unit header for CU. */
19991
19992 int
19993 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19994 {
19995 struct comp_unit_head cu_header_local;
19996 const struct comp_unit_head *cu_headerp;
19997
19998 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19999
20000 return cu_headerp->offset_size;
20001 }
20002
20003 /* See its dwarf2loc.h declaration. */
20004
20005 int
20006 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20007 {
20008 struct comp_unit_head cu_header_local;
20009 const struct comp_unit_head *cu_headerp;
20010
20011 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20012
20013 if (cu_headerp->version == 2)
20014 return cu_headerp->addr_size;
20015 else
20016 return cu_headerp->offset_size;
20017 }
20018
20019 /* Return the text offset of the CU. The returned offset comes from
20020 this CU's objfile. If this objfile came from a separate debuginfo
20021 file, then the offset may be different from the corresponding
20022 offset in the parent objfile. */
20023
20024 CORE_ADDR
20025 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20026 {
20027 struct objfile *objfile = per_cu->objfile;
20028
20029 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20030 }
20031
20032 /* Locate the .debug_info compilation unit from CU's objfile which contains
20033 the DIE at OFFSET. Raises an error on failure. */
20034
20035 static struct dwarf2_per_cu_data *
20036 dwarf2_find_containing_comp_unit (sect_offset offset,
20037 unsigned int offset_in_dwz,
20038 struct objfile *objfile)
20039 {
20040 struct dwarf2_per_cu_data *this_cu;
20041 int low, high;
20042 const sect_offset *cu_off;
20043
20044 low = 0;
20045 high = dwarf2_per_objfile->n_comp_units - 1;
20046 while (high > low)
20047 {
20048 struct dwarf2_per_cu_data *mid_cu;
20049 int mid = low + (high - low) / 2;
20050
20051 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20052 cu_off = &mid_cu->offset;
20053 if (mid_cu->is_dwz > offset_in_dwz
20054 || (mid_cu->is_dwz == offset_in_dwz
20055 && cu_off->sect_off >= offset.sect_off))
20056 high = mid;
20057 else
20058 low = mid + 1;
20059 }
20060 gdb_assert (low == high);
20061 this_cu = dwarf2_per_objfile->all_comp_units[low];
20062 cu_off = &this_cu->offset;
20063 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20064 {
20065 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20066 error (_("Dwarf Error: could not find partial DIE containing "
20067 "offset 0x%lx [in module %s]"),
20068 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20069
20070 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20071 <= offset.sect_off);
20072 return dwarf2_per_objfile->all_comp_units[low-1];
20073 }
20074 else
20075 {
20076 this_cu = dwarf2_per_objfile->all_comp_units[low];
20077 if (low == dwarf2_per_objfile->n_comp_units - 1
20078 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20079 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20080 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20081 return this_cu;
20082 }
20083 }
20084
20085 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20086
20087 static void
20088 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20089 {
20090 memset (cu, 0, sizeof (*cu));
20091 per_cu->cu = cu;
20092 cu->per_cu = per_cu;
20093 cu->objfile = per_cu->objfile;
20094 obstack_init (&cu->comp_unit_obstack);
20095 }
20096
20097 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20098
20099 static void
20100 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20101 enum language pretend_language)
20102 {
20103 struct attribute *attr;
20104
20105 /* Set the language we're debugging. */
20106 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20107 if (attr)
20108 set_cu_language (DW_UNSND (attr), cu);
20109 else
20110 {
20111 cu->language = pretend_language;
20112 cu->language_defn = language_def (cu->language);
20113 }
20114
20115 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20116 if (attr)
20117 cu->producer = DW_STRING (attr);
20118 }
20119
20120 /* Release one cached compilation unit, CU. We unlink it from the tree
20121 of compilation units, but we don't remove it from the read_in_chain;
20122 the caller is responsible for that.
20123 NOTE: DATA is a void * because this function is also used as a
20124 cleanup routine. */
20125
20126 static void
20127 free_heap_comp_unit (void *data)
20128 {
20129 struct dwarf2_cu *cu = data;
20130
20131 gdb_assert (cu->per_cu != NULL);
20132 cu->per_cu->cu = NULL;
20133 cu->per_cu = NULL;
20134
20135 obstack_free (&cu->comp_unit_obstack, NULL);
20136
20137 xfree (cu);
20138 }
20139
20140 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20141 when we're finished with it. We can't free the pointer itself, but be
20142 sure to unlink it from the cache. Also release any associated storage. */
20143
20144 static void
20145 free_stack_comp_unit (void *data)
20146 {
20147 struct dwarf2_cu *cu = data;
20148
20149 gdb_assert (cu->per_cu != NULL);
20150 cu->per_cu->cu = NULL;
20151 cu->per_cu = NULL;
20152
20153 obstack_free (&cu->comp_unit_obstack, NULL);
20154 cu->partial_dies = NULL;
20155 }
20156
20157 /* Free all cached compilation units. */
20158
20159 static void
20160 free_cached_comp_units (void *data)
20161 {
20162 struct dwarf2_per_cu_data *per_cu, **last_chain;
20163
20164 per_cu = dwarf2_per_objfile->read_in_chain;
20165 last_chain = &dwarf2_per_objfile->read_in_chain;
20166 while (per_cu != NULL)
20167 {
20168 struct dwarf2_per_cu_data *next_cu;
20169
20170 next_cu = per_cu->cu->read_in_chain;
20171
20172 free_heap_comp_unit (per_cu->cu);
20173 *last_chain = next_cu;
20174
20175 per_cu = next_cu;
20176 }
20177 }
20178
20179 /* Increase the age counter on each cached compilation unit, and free
20180 any that are too old. */
20181
20182 static void
20183 age_cached_comp_units (void)
20184 {
20185 struct dwarf2_per_cu_data *per_cu, **last_chain;
20186
20187 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20188 per_cu = dwarf2_per_objfile->read_in_chain;
20189 while (per_cu != NULL)
20190 {
20191 per_cu->cu->last_used ++;
20192 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20193 dwarf2_mark (per_cu->cu);
20194 per_cu = per_cu->cu->read_in_chain;
20195 }
20196
20197 per_cu = dwarf2_per_objfile->read_in_chain;
20198 last_chain = &dwarf2_per_objfile->read_in_chain;
20199 while (per_cu != NULL)
20200 {
20201 struct dwarf2_per_cu_data *next_cu;
20202
20203 next_cu = per_cu->cu->read_in_chain;
20204
20205 if (!per_cu->cu->mark)
20206 {
20207 free_heap_comp_unit (per_cu->cu);
20208 *last_chain = next_cu;
20209 }
20210 else
20211 last_chain = &per_cu->cu->read_in_chain;
20212
20213 per_cu = next_cu;
20214 }
20215 }
20216
20217 /* Remove a single compilation unit from the cache. */
20218
20219 static void
20220 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20221 {
20222 struct dwarf2_per_cu_data *per_cu, **last_chain;
20223
20224 per_cu = dwarf2_per_objfile->read_in_chain;
20225 last_chain = &dwarf2_per_objfile->read_in_chain;
20226 while (per_cu != NULL)
20227 {
20228 struct dwarf2_per_cu_data *next_cu;
20229
20230 next_cu = per_cu->cu->read_in_chain;
20231
20232 if (per_cu == target_per_cu)
20233 {
20234 free_heap_comp_unit (per_cu->cu);
20235 per_cu->cu = NULL;
20236 *last_chain = next_cu;
20237 break;
20238 }
20239 else
20240 last_chain = &per_cu->cu->read_in_chain;
20241
20242 per_cu = next_cu;
20243 }
20244 }
20245
20246 /* Release all extra memory associated with OBJFILE. */
20247
20248 void
20249 dwarf2_free_objfile (struct objfile *objfile)
20250 {
20251 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20252
20253 if (dwarf2_per_objfile == NULL)
20254 return;
20255
20256 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20257 free_cached_comp_units (NULL);
20258
20259 if (dwarf2_per_objfile->quick_file_names_table)
20260 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20261
20262 /* Everything else should be on the objfile obstack. */
20263 }
20264
20265 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20266 We store these in a hash table separate from the DIEs, and preserve them
20267 when the DIEs are flushed out of cache.
20268
20269 The CU "per_cu" pointer is needed because offset alone is not enough to
20270 uniquely identify the type. A file may have multiple .debug_types sections,
20271 or the type may come from a DWO file. Furthermore, while it's more logical
20272 to use per_cu->section+offset, with Fission the section with the data is in
20273 the DWO file but we don't know that section at the point we need it.
20274 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20275 because we can enter the lookup routine, get_die_type_at_offset, from
20276 outside this file, and thus won't necessarily have PER_CU->cu.
20277 Fortunately, PER_CU is stable for the life of the objfile. */
20278
20279 struct dwarf2_per_cu_offset_and_type
20280 {
20281 const struct dwarf2_per_cu_data *per_cu;
20282 sect_offset offset;
20283 struct type *type;
20284 };
20285
20286 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20287
20288 static hashval_t
20289 per_cu_offset_and_type_hash (const void *item)
20290 {
20291 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20292
20293 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20294 }
20295
20296 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20297
20298 static int
20299 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20300 {
20301 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20302 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20303
20304 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20305 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20306 }
20307
20308 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20309 table if necessary. For convenience, return TYPE.
20310
20311 The DIEs reading must have careful ordering to:
20312 * Not cause infite loops trying to read in DIEs as a prerequisite for
20313 reading current DIE.
20314 * Not trying to dereference contents of still incompletely read in types
20315 while reading in other DIEs.
20316 * Enable referencing still incompletely read in types just by a pointer to
20317 the type without accessing its fields.
20318
20319 Therefore caller should follow these rules:
20320 * Try to fetch any prerequisite types we may need to build this DIE type
20321 before building the type and calling set_die_type.
20322 * After building type call set_die_type for current DIE as soon as
20323 possible before fetching more types to complete the current type.
20324 * Make the type as complete as possible before fetching more types. */
20325
20326 static struct type *
20327 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20328 {
20329 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20330 struct objfile *objfile = cu->objfile;
20331
20332 /* For Ada types, make sure that the gnat-specific data is always
20333 initialized (if not already set). There are a few types where
20334 we should not be doing so, because the type-specific area is
20335 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20336 where the type-specific area is used to store the floatformat).
20337 But this is not a problem, because the gnat-specific information
20338 is actually not needed for these types. */
20339 if (need_gnat_info (cu)
20340 && TYPE_CODE (type) != TYPE_CODE_FUNC
20341 && TYPE_CODE (type) != TYPE_CODE_FLT
20342 && !HAVE_GNAT_AUX_INFO (type))
20343 INIT_GNAT_SPECIFIC (type);
20344
20345 if (dwarf2_per_objfile->die_type_hash == NULL)
20346 {
20347 dwarf2_per_objfile->die_type_hash =
20348 htab_create_alloc_ex (127,
20349 per_cu_offset_and_type_hash,
20350 per_cu_offset_and_type_eq,
20351 NULL,
20352 &objfile->objfile_obstack,
20353 hashtab_obstack_allocate,
20354 dummy_obstack_deallocate);
20355 }
20356
20357 ofs.per_cu = cu->per_cu;
20358 ofs.offset = die->offset;
20359 ofs.type = type;
20360 slot = (struct dwarf2_per_cu_offset_and_type **)
20361 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20362 if (*slot)
20363 complaint (&symfile_complaints,
20364 _("A problem internal to GDB: DIE 0x%x has type already set"),
20365 die->offset.sect_off);
20366 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20367 **slot = ofs;
20368 return type;
20369 }
20370
20371 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20372 or return NULL if the die does not have a saved type. */
20373
20374 static struct type *
20375 get_die_type_at_offset (sect_offset offset,
20376 struct dwarf2_per_cu_data *per_cu)
20377 {
20378 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20379
20380 if (dwarf2_per_objfile->die_type_hash == NULL)
20381 return NULL;
20382
20383 ofs.per_cu = per_cu;
20384 ofs.offset = offset;
20385 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20386 if (slot)
20387 return slot->type;
20388 else
20389 return NULL;
20390 }
20391
20392 /* Look up the type for DIE in CU in die_type_hash,
20393 or return NULL if DIE does not have a saved type. */
20394
20395 static struct type *
20396 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20397 {
20398 return get_die_type_at_offset (die->offset, cu->per_cu);
20399 }
20400
20401 /* Add a dependence relationship from CU to REF_PER_CU. */
20402
20403 static void
20404 dwarf2_add_dependence (struct dwarf2_cu *cu,
20405 struct dwarf2_per_cu_data *ref_per_cu)
20406 {
20407 void **slot;
20408
20409 if (cu->dependencies == NULL)
20410 cu->dependencies
20411 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20412 NULL, &cu->comp_unit_obstack,
20413 hashtab_obstack_allocate,
20414 dummy_obstack_deallocate);
20415
20416 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20417 if (*slot == NULL)
20418 *slot = ref_per_cu;
20419 }
20420
20421 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20422 Set the mark field in every compilation unit in the
20423 cache that we must keep because we are keeping CU. */
20424
20425 static int
20426 dwarf2_mark_helper (void **slot, void *data)
20427 {
20428 struct dwarf2_per_cu_data *per_cu;
20429
20430 per_cu = (struct dwarf2_per_cu_data *) *slot;
20431
20432 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20433 reading of the chain. As such dependencies remain valid it is not much
20434 useful to track and undo them during QUIT cleanups. */
20435 if (per_cu->cu == NULL)
20436 return 1;
20437
20438 if (per_cu->cu->mark)
20439 return 1;
20440 per_cu->cu->mark = 1;
20441
20442 if (per_cu->cu->dependencies != NULL)
20443 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20444
20445 return 1;
20446 }
20447
20448 /* Set the mark field in CU and in every other compilation unit in the
20449 cache that we must keep because we are keeping CU. */
20450
20451 static void
20452 dwarf2_mark (struct dwarf2_cu *cu)
20453 {
20454 if (cu->mark)
20455 return;
20456 cu->mark = 1;
20457 if (cu->dependencies != NULL)
20458 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20459 }
20460
20461 static void
20462 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20463 {
20464 while (per_cu)
20465 {
20466 per_cu->cu->mark = 0;
20467 per_cu = per_cu->cu->read_in_chain;
20468 }
20469 }
20470
20471 /* Trivial hash function for partial_die_info: the hash value of a DIE
20472 is its offset in .debug_info for this objfile. */
20473
20474 static hashval_t
20475 partial_die_hash (const void *item)
20476 {
20477 const struct partial_die_info *part_die = item;
20478
20479 return part_die->offset.sect_off;
20480 }
20481
20482 /* Trivial comparison function for partial_die_info structures: two DIEs
20483 are equal if they have the same offset. */
20484
20485 static int
20486 partial_die_eq (const void *item_lhs, const void *item_rhs)
20487 {
20488 const struct partial_die_info *part_die_lhs = item_lhs;
20489 const struct partial_die_info *part_die_rhs = item_rhs;
20490
20491 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20492 }
20493
20494 static struct cmd_list_element *set_dwarf2_cmdlist;
20495 static struct cmd_list_element *show_dwarf2_cmdlist;
20496
20497 static void
20498 set_dwarf2_cmd (char *args, int from_tty)
20499 {
20500 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20501 }
20502
20503 static void
20504 show_dwarf2_cmd (char *args, int from_tty)
20505 {
20506 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20507 }
20508
20509 /* Free data associated with OBJFILE, if necessary. */
20510
20511 static void
20512 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20513 {
20514 struct dwarf2_per_objfile *data = d;
20515 int ix;
20516
20517 for (ix = 0; ix < data->n_comp_units; ++ix)
20518 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20519
20520 for (ix = 0; ix < data->n_type_units; ++ix)
20521 VEC_free (dwarf2_per_cu_ptr,
20522 data->all_type_units[ix]->per_cu.imported_symtabs);
20523 xfree (data->all_type_units);
20524
20525 VEC_free (dwarf2_section_info_def, data->types);
20526
20527 if (data->dwo_files)
20528 free_dwo_files (data->dwo_files, objfile);
20529 if (data->dwp_file)
20530 gdb_bfd_unref (data->dwp_file->dbfd);
20531
20532 if (data->dwz_file && data->dwz_file->dwz_bfd)
20533 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20534 }
20535
20536 \f
20537 /* The "save gdb-index" command. */
20538
20539 /* The contents of the hash table we create when building the string
20540 table. */
20541 struct strtab_entry
20542 {
20543 offset_type offset;
20544 const char *str;
20545 };
20546
20547 /* Hash function for a strtab_entry.
20548
20549 Function is used only during write_hash_table so no index format backward
20550 compatibility is needed. */
20551
20552 static hashval_t
20553 hash_strtab_entry (const void *e)
20554 {
20555 const struct strtab_entry *entry = e;
20556 return mapped_index_string_hash (INT_MAX, entry->str);
20557 }
20558
20559 /* Equality function for a strtab_entry. */
20560
20561 static int
20562 eq_strtab_entry (const void *a, const void *b)
20563 {
20564 const struct strtab_entry *ea = a;
20565 const struct strtab_entry *eb = b;
20566 return !strcmp (ea->str, eb->str);
20567 }
20568
20569 /* Create a strtab_entry hash table. */
20570
20571 static htab_t
20572 create_strtab (void)
20573 {
20574 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20575 xfree, xcalloc, xfree);
20576 }
20577
20578 /* Add a string to the constant pool. Return the string's offset in
20579 host order. */
20580
20581 static offset_type
20582 add_string (htab_t table, struct obstack *cpool, const char *str)
20583 {
20584 void **slot;
20585 struct strtab_entry entry;
20586 struct strtab_entry *result;
20587
20588 entry.str = str;
20589 slot = htab_find_slot (table, &entry, INSERT);
20590 if (*slot)
20591 result = *slot;
20592 else
20593 {
20594 result = XNEW (struct strtab_entry);
20595 result->offset = obstack_object_size (cpool);
20596 result->str = str;
20597 obstack_grow_str0 (cpool, str);
20598 *slot = result;
20599 }
20600 return result->offset;
20601 }
20602
20603 /* An entry in the symbol table. */
20604 struct symtab_index_entry
20605 {
20606 /* The name of the symbol. */
20607 const char *name;
20608 /* The offset of the name in the constant pool. */
20609 offset_type index_offset;
20610 /* A sorted vector of the indices of all the CUs that hold an object
20611 of this name. */
20612 VEC (offset_type) *cu_indices;
20613 };
20614
20615 /* The symbol table. This is a power-of-2-sized hash table. */
20616 struct mapped_symtab
20617 {
20618 offset_type n_elements;
20619 offset_type size;
20620 struct symtab_index_entry **data;
20621 };
20622
20623 /* Hash function for a symtab_index_entry. */
20624
20625 static hashval_t
20626 hash_symtab_entry (const void *e)
20627 {
20628 const struct symtab_index_entry *entry = e;
20629 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20630 sizeof (offset_type) * VEC_length (offset_type,
20631 entry->cu_indices),
20632 0);
20633 }
20634
20635 /* Equality function for a symtab_index_entry. */
20636
20637 static int
20638 eq_symtab_entry (const void *a, const void *b)
20639 {
20640 const struct symtab_index_entry *ea = a;
20641 const struct symtab_index_entry *eb = b;
20642 int len = VEC_length (offset_type, ea->cu_indices);
20643 if (len != VEC_length (offset_type, eb->cu_indices))
20644 return 0;
20645 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20646 VEC_address (offset_type, eb->cu_indices),
20647 sizeof (offset_type) * len);
20648 }
20649
20650 /* Destroy a symtab_index_entry. */
20651
20652 static void
20653 delete_symtab_entry (void *p)
20654 {
20655 struct symtab_index_entry *entry = p;
20656 VEC_free (offset_type, entry->cu_indices);
20657 xfree (entry);
20658 }
20659
20660 /* Create a hash table holding symtab_index_entry objects. */
20661
20662 static htab_t
20663 create_symbol_hash_table (void)
20664 {
20665 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20666 delete_symtab_entry, xcalloc, xfree);
20667 }
20668
20669 /* Create a new mapped symtab object. */
20670
20671 static struct mapped_symtab *
20672 create_mapped_symtab (void)
20673 {
20674 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20675 symtab->n_elements = 0;
20676 symtab->size = 1024;
20677 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20678 return symtab;
20679 }
20680
20681 /* Destroy a mapped_symtab. */
20682
20683 static void
20684 cleanup_mapped_symtab (void *p)
20685 {
20686 struct mapped_symtab *symtab = p;
20687 /* The contents of the array are freed when the other hash table is
20688 destroyed. */
20689 xfree (symtab->data);
20690 xfree (symtab);
20691 }
20692
20693 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20694 the slot.
20695
20696 Function is used only during write_hash_table so no index format backward
20697 compatibility is needed. */
20698
20699 static struct symtab_index_entry **
20700 find_slot (struct mapped_symtab *symtab, const char *name)
20701 {
20702 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20703
20704 index = hash & (symtab->size - 1);
20705 step = ((hash * 17) & (symtab->size - 1)) | 1;
20706
20707 for (;;)
20708 {
20709 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20710 return &symtab->data[index];
20711 index = (index + step) & (symtab->size - 1);
20712 }
20713 }
20714
20715 /* Expand SYMTAB's hash table. */
20716
20717 static void
20718 hash_expand (struct mapped_symtab *symtab)
20719 {
20720 offset_type old_size = symtab->size;
20721 offset_type i;
20722 struct symtab_index_entry **old_entries = symtab->data;
20723
20724 symtab->size *= 2;
20725 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20726
20727 for (i = 0; i < old_size; ++i)
20728 {
20729 if (old_entries[i])
20730 {
20731 struct symtab_index_entry **slot = find_slot (symtab,
20732 old_entries[i]->name);
20733 *slot = old_entries[i];
20734 }
20735 }
20736
20737 xfree (old_entries);
20738 }
20739
20740 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20741 CU_INDEX is the index of the CU in which the symbol appears.
20742 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20743
20744 static void
20745 add_index_entry (struct mapped_symtab *symtab, const char *name,
20746 int is_static, gdb_index_symbol_kind kind,
20747 offset_type cu_index)
20748 {
20749 struct symtab_index_entry **slot;
20750 offset_type cu_index_and_attrs;
20751
20752 ++symtab->n_elements;
20753 if (4 * symtab->n_elements / 3 >= symtab->size)
20754 hash_expand (symtab);
20755
20756 slot = find_slot (symtab, name);
20757 if (!*slot)
20758 {
20759 *slot = XNEW (struct symtab_index_entry);
20760 (*slot)->name = name;
20761 /* index_offset is set later. */
20762 (*slot)->cu_indices = NULL;
20763 }
20764
20765 cu_index_and_attrs = 0;
20766 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20767 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20768 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20769
20770 /* We don't want to record an index value twice as we want to avoid the
20771 duplication.
20772 We process all global symbols and then all static symbols
20773 (which would allow us to avoid the duplication by only having to check
20774 the last entry pushed), but a symbol could have multiple kinds in one CU.
20775 To keep things simple we don't worry about the duplication here and
20776 sort and uniqufy the list after we've processed all symbols. */
20777 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20778 }
20779
20780 /* qsort helper routine for uniquify_cu_indices. */
20781
20782 static int
20783 offset_type_compare (const void *ap, const void *bp)
20784 {
20785 offset_type a = *(offset_type *) ap;
20786 offset_type b = *(offset_type *) bp;
20787
20788 return (a > b) - (b > a);
20789 }
20790
20791 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20792
20793 static void
20794 uniquify_cu_indices (struct mapped_symtab *symtab)
20795 {
20796 int i;
20797
20798 for (i = 0; i < symtab->size; ++i)
20799 {
20800 struct symtab_index_entry *entry = symtab->data[i];
20801
20802 if (entry
20803 && entry->cu_indices != NULL)
20804 {
20805 unsigned int next_to_insert, next_to_check;
20806 offset_type last_value;
20807
20808 qsort (VEC_address (offset_type, entry->cu_indices),
20809 VEC_length (offset_type, entry->cu_indices),
20810 sizeof (offset_type), offset_type_compare);
20811
20812 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20813 next_to_insert = 1;
20814 for (next_to_check = 1;
20815 next_to_check < VEC_length (offset_type, entry->cu_indices);
20816 ++next_to_check)
20817 {
20818 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20819 != last_value)
20820 {
20821 last_value = VEC_index (offset_type, entry->cu_indices,
20822 next_to_check);
20823 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20824 last_value);
20825 ++next_to_insert;
20826 }
20827 }
20828 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20829 }
20830 }
20831 }
20832
20833 /* Add a vector of indices to the constant pool. */
20834
20835 static offset_type
20836 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20837 struct symtab_index_entry *entry)
20838 {
20839 void **slot;
20840
20841 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20842 if (!*slot)
20843 {
20844 offset_type len = VEC_length (offset_type, entry->cu_indices);
20845 offset_type val = MAYBE_SWAP (len);
20846 offset_type iter;
20847 int i;
20848
20849 *slot = entry;
20850 entry->index_offset = obstack_object_size (cpool);
20851
20852 obstack_grow (cpool, &val, sizeof (val));
20853 for (i = 0;
20854 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20855 ++i)
20856 {
20857 val = MAYBE_SWAP (iter);
20858 obstack_grow (cpool, &val, sizeof (val));
20859 }
20860 }
20861 else
20862 {
20863 struct symtab_index_entry *old_entry = *slot;
20864 entry->index_offset = old_entry->index_offset;
20865 entry = old_entry;
20866 }
20867 return entry->index_offset;
20868 }
20869
20870 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20871 constant pool entries going into the obstack CPOOL. */
20872
20873 static void
20874 write_hash_table (struct mapped_symtab *symtab,
20875 struct obstack *output, struct obstack *cpool)
20876 {
20877 offset_type i;
20878 htab_t symbol_hash_table;
20879 htab_t str_table;
20880
20881 symbol_hash_table = create_symbol_hash_table ();
20882 str_table = create_strtab ();
20883
20884 /* We add all the index vectors to the constant pool first, to
20885 ensure alignment is ok. */
20886 for (i = 0; i < symtab->size; ++i)
20887 {
20888 if (symtab->data[i])
20889 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20890 }
20891
20892 /* Now write out the hash table. */
20893 for (i = 0; i < symtab->size; ++i)
20894 {
20895 offset_type str_off, vec_off;
20896
20897 if (symtab->data[i])
20898 {
20899 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20900 vec_off = symtab->data[i]->index_offset;
20901 }
20902 else
20903 {
20904 /* While 0 is a valid constant pool index, it is not valid
20905 to have 0 for both offsets. */
20906 str_off = 0;
20907 vec_off = 0;
20908 }
20909
20910 str_off = MAYBE_SWAP (str_off);
20911 vec_off = MAYBE_SWAP (vec_off);
20912
20913 obstack_grow (output, &str_off, sizeof (str_off));
20914 obstack_grow (output, &vec_off, sizeof (vec_off));
20915 }
20916
20917 htab_delete (str_table);
20918 htab_delete (symbol_hash_table);
20919 }
20920
20921 /* Struct to map psymtab to CU index in the index file. */
20922 struct psymtab_cu_index_map
20923 {
20924 struct partial_symtab *psymtab;
20925 unsigned int cu_index;
20926 };
20927
20928 static hashval_t
20929 hash_psymtab_cu_index (const void *item)
20930 {
20931 const struct psymtab_cu_index_map *map = item;
20932
20933 return htab_hash_pointer (map->psymtab);
20934 }
20935
20936 static int
20937 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20938 {
20939 const struct psymtab_cu_index_map *lhs = item_lhs;
20940 const struct psymtab_cu_index_map *rhs = item_rhs;
20941
20942 return lhs->psymtab == rhs->psymtab;
20943 }
20944
20945 /* Helper struct for building the address table. */
20946 struct addrmap_index_data
20947 {
20948 struct objfile *objfile;
20949 struct obstack *addr_obstack;
20950 htab_t cu_index_htab;
20951
20952 /* Non-zero if the previous_* fields are valid.
20953 We can't write an entry until we see the next entry (since it is only then
20954 that we know the end of the entry). */
20955 int previous_valid;
20956 /* Index of the CU in the table of all CUs in the index file. */
20957 unsigned int previous_cu_index;
20958 /* Start address of the CU. */
20959 CORE_ADDR previous_cu_start;
20960 };
20961
20962 /* Write an address entry to OBSTACK. */
20963
20964 static void
20965 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20966 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20967 {
20968 offset_type cu_index_to_write;
20969 gdb_byte addr[8];
20970 CORE_ADDR baseaddr;
20971
20972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20973
20974 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20975 obstack_grow (obstack, addr, 8);
20976 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20977 obstack_grow (obstack, addr, 8);
20978 cu_index_to_write = MAYBE_SWAP (cu_index);
20979 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20980 }
20981
20982 /* Worker function for traversing an addrmap to build the address table. */
20983
20984 static int
20985 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20986 {
20987 struct addrmap_index_data *data = datap;
20988 struct partial_symtab *pst = obj;
20989
20990 if (data->previous_valid)
20991 add_address_entry (data->objfile, data->addr_obstack,
20992 data->previous_cu_start, start_addr,
20993 data->previous_cu_index);
20994
20995 data->previous_cu_start = start_addr;
20996 if (pst != NULL)
20997 {
20998 struct psymtab_cu_index_map find_map, *map;
20999 find_map.psymtab = pst;
21000 map = htab_find (data->cu_index_htab, &find_map);
21001 gdb_assert (map != NULL);
21002 data->previous_cu_index = map->cu_index;
21003 data->previous_valid = 1;
21004 }
21005 else
21006 data->previous_valid = 0;
21007
21008 return 0;
21009 }
21010
21011 /* Write OBJFILE's address map to OBSTACK.
21012 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21013 in the index file. */
21014
21015 static void
21016 write_address_map (struct objfile *objfile, struct obstack *obstack,
21017 htab_t cu_index_htab)
21018 {
21019 struct addrmap_index_data addrmap_index_data;
21020
21021 /* When writing the address table, we have to cope with the fact that
21022 the addrmap iterator only provides the start of a region; we have to
21023 wait until the next invocation to get the start of the next region. */
21024
21025 addrmap_index_data.objfile = objfile;
21026 addrmap_index_data.addr_obstack = obstack;
21027 addrmap_index_data.cu_index_htab = cu_index_htab;
21028 addrmap_index_data.previous_valid = 0;
21029
21030 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21031 &addrmap_index_data);
21032
21033 /* It's highly unlikely the last entry (end address = 0xff...ff)
21034 is valid, but we should still handle it.
21035 The end address is recorded as the start of the next region, but that
21036 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21037 anyway. */
21038 if (addrmap_index_data.previous_valid)
21039 add_address_entry (objfile, obstack,
21040 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21041 addrmap_index_data.previous_cu_index);
21042 }
21043
21044 /* Return the symbol kind of PSYM. */
21045
21046 static gdb_index_symbol_kind
21047 symbol_kind (struct partial_symbol *psym)
21048 {
21049 domain_enum domain = PSYMBOL_DOMAIN (psym);
21050 enum address_class aclass = PSYMBOL_CLASS (psym);
21051
21052 switch (domain)
21053 {
21054 case VAR_DOMAIN:
21055 switch (aclass)
21056 {
21057 case LOC_BLOCK:
21058 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21059 case LOC_TYPEDEF:
21060 return GDB_INDEX_SYMBOL_KIND_TYPE;
21061 case LOC_COMPUTED:
21062 case LOC_CONST_BYTES:
21063 case LOC_OPTIMIZED_OUT:
21064 case LOC_STATIC:
21065 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21066 case LOC_CONST:
21067 /* Note: It's currently impossible to recognize psyms as enum values
21068 short of reading the type info. For now punt. */
21069 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21070 default:
21071 /* There are other LOC_FOO values that one might want to classify
21072 as variables, but dwarf2read.c doesn't currently use them. */
21073 return GDB_INDEX_SYMBOL_KIND_OTHER;
21074 }
21075 case STRUCT_DOMAIN:
21076 return GDB_INDEX_SYMBOL_KIND_TYPE;
21077 default:
21078 return GDB_INDEX_SYMBOL_KIND_OTHER;
21079 }
21080 }
21081
21082 /* Add a list of partial symbols to SYMTAB. */
21083
21084 static void
21085 write_psymbols (struct mapped_symtab *symtab,
21086 htab_t psyms_seen,
21087 struct partial_symbol **psymp,
21088 int count,
21089 offset_type cu_index,
21090 int is_static)
21091 {
21092 for (; count-- > 0; ++psymp)
21093 {
21094 struct partial_symbol *psym = *psymp;
21095 void **slot;
21096
21097 if (SYMBOL_LANGUAGE (psym) == language_ada)
21098 error (_("Ada is not currently supported by the index"));
21099
21100 /* Only add a given psymbol once. */
21101 slot = htab_find_slot (psyms_seen, psym, INSERT);
21102 if (!*slot)
21103 {
21104 gdb_index_symbol_kind kind = symbol_kind (psym);
21105
21106 *slot = psym;
21107 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21108 is_static, kind, cu_index);
21109 }
21110 }
21111 }
21112
21113 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21114 exception if there is an error. */
21115
21116 static void
21117 write_obstack (FILE *file, struct obstack *obstack)
21118 {
21119 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21120 file)
21121 != obstack_object_size (obstack))
21122 error (_("couldn't data write to file"));
21123 }
21124
21125 /* Unlink a file if the argument is not NULL. */
21126
21127 static void
21128 unlink_if_set (void *p)
21129 {
21130 char **filename = p;
21131 if (*filename)
21132 unlink (*filename);
21133 }
21134
21135 /* A helper struct used when iterating over debug_types. */
21136 struct signatured_type_index_data
21137 {
21138 struct objfile *objfile;
21139 struct mapped_symtab *symtab;
21140 struct obstack *types_list;
21141 htab_t psyms_seen;
21142 int cu_index;
21143 };
21144
21145 /* A helper function that writes a single signatured_type to an
21146 obstack. */
21147
21148 static int
21149 write_one_signatured_type (void **slot, void *d)
21150 {
21151 struct signatured_type_index_data *info = d;
21152 struct signatured_type *entry = (struct signatured_type *) *slot;
21153 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21154 gdb_byte val[8];
21155
21156 write_psymbols (info->symtab,
21157 info->psyms_seen,
21158 info->objfile->global_psymbols.list
21159 + psymtab->globals_offset,
21160 psymtab->n_global_syms, info->cu_index,
21161 0);
21162 write_psymbols (info->symtab,
21163 info->psyms_seen,
21164 info->objfile->static_psymbols.list
21165 + psymtab->statics_offset,
21166 psymtab->n_static_syms, info->cu_index,
21167 1);
21168
21169 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21170 entry->per_cu.offset.sect_off);
21171 obstack_grow (info->types_list, val, 8);
21172 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21173 entry->type_offset_in_tu.cu_off);
21174 obstack_grow (info->types_list, val, 8);
21175 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21176 obstack_grow (info->types_list, val, 8);
21177
21178 ++info->cu_index;
21179
21180 return 1;
21181 }
21182
21183 /* Recurse into all "included" dependencies and write their symbols as
21184 if they appeared in this psymtab. */
21185
21186 static void
21187 recursively_write_psymbols (struct objfile *objfile,
21188 struct partial_symtab *psymtab,
21189 struct mapped_symtab *symtab,
21190 htab_t psyms_seen,
21191 offset_type cu_index)
21192 {
21193 int i;
21194
21195 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21196 if (psymtab->dependencies[i]->user != NULL)
21197 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21198 symtab, psyms_seen, cu_index);
21199
21200 write_psymbols (symtab,
21201 psyms_seen,
21202 objfile->global_psymbols.list + psymtab->globals_offset,
21203 psymtab->n_global_syms, cu_index,
21204 0);
21205 write_psymbols (symtab,
21206 psyms_seen,
21207 objfile->static_psymbols.list + psymtab->statics_offset,
21208 psymtab->n_static_syms, cu_index,
21209 1);
21210 }
21211
21212 /* Create an index file for OBJFILE in the directory DIR. */
21213
21214 static void
21215 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21216 {
21217 struct cleanup *cleanup;
21218 char *filename, *cleanup_filename;
21219 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21220 struct obstack cu_list, types_cu_list;
21221 int i;
21222 FILE *out_file;
21223 struct mapped_symtab *symtab;
21224 offset_type val, size_of_contents, total_len;
21225 struct stat st;
21226 htab_t psyms_seen;
21227 htab_t cu_index_htab;
21228 struct psymtab_cu_index_map *psymtab_cu_index_map;
21229
21230 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21231 return;
21232
21233 if (dwarf2_per_objfile->using_index)
21234 error (_("Cannot use an index to create the index"));
21235
21236 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21237 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21238
21239 if (stat (objfile->name, &st) < 0)
21240 perror_with_name (objfile->name);
21241
21242 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21243 INDEX_SUFFIX, (char *) NULL);
21244 cleanup = make_cleanup (xfree, filename);
21245
21246 out_file = gdb_fopen_cloexec (filename, "wb");
21247 if (!out_file)
21248 error (_("Can't open `%s' for writing"), filename);
21249
21250 cleanup_filename = filename;
21251 make_cleanup (unlink_if_set, &cleanup_filename);
21252
21253 symtab = create_mapped_symtab ();
21254 make_cleanup (cleanup_mapped_symtab, symtab);
21255
21256 obstack_init (&addr_obstack);
21257 make_cleanup_obstack_free (&addr_obstack);
21258
21259 obstack_init (&cu_list);
21260 make_cleanup_obstack_free (&cu_list);
21261
21262 obstack_init (&types_cu_list);
21263 make_cleanup_obstack_free (&types_cu_list);
21264
21265 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21266 NULL, xcalloc, xfree);
21267 make_cleanup_htab_delete (psyms_seen);
21268
21269 /* While we're scanning CU's create a table that maps a psymtab pointer
21270 (which is what addrmap records) to its index (which is what is recorded
21271 in the index file). This will later be needed to write the address
21272 table. */
21273 cu_index_htab = htab_create_alloc (100,
21274 hash_psymtab_cu_index,
21275 eq_psymtab_cu_index,
21276 NULL, xcalloc, xfree);
21277 make_cleanup_htab_delete (cu_index_htab);
21278 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21279 xmalloc (sizeof (struct psymtab_cu_index_map)
21280 * dwarf2_per_objfile->n_comp_units);
21281 make_cleanup (xfree, psymtab_cu_index_map);
21282
21283 /* The CU list is already sorted, so we don't need to do additional
21284 work here. Also, the debug_types entries do not appear in
21285 all_comp_units, but only in their own hash table. */
21286 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21287 {
21288 struct dwarf2_per_cu_data *per_cu
21289 = dwarf2_per_objfile->all_comp_units[i];
21290 struct partial_symtab *psymtab = per_cu->v.psymtab;
21291 gdb_byte val[8];
21292 struct psymtab_cu_index_map *map;
21293 void **slot;
21294
21295 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21296 It may be referenced from a local scope but in such case it does not
21297 need to be present in .gdb_index. */
21298 if (psymtab == NULL)
21299 continue;
21300
21301 if (psymtab->user == NULL)
21302 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21303
21304 map = &psymtab_cu_index_map[i];
21305 map->psymtab = psymtab;
21306 map->cu_index = i;
21307 slot = htab_find_slot (cu_index_htab, map, INSERT);
21308 gdb_assert (slot != NULL);
21309 gdb_assert (*slot == NULL);
21310 *slot = map;
21311
21312 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21313 per_cu->offset.sect_off);
21314 obstack_grow (&cu_list, val, 8);
21315 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21316 obstack_grow (&cu_list, val, 8);
21317 }
21318
21319 /* Dump the address map. */
21320 write_address_map (objfile, &addr_obstack, cu_index_htab);
21321
21322 /* Write out the .debug_type entries, if any. */
21323 if (dwarf2_per_objfile->signatured_types)
21324 {
21325 struct signatured_type_index_data sig_data;
21326
21327 sig_data.objfile = objfile;
21328 sig_data.symtab = symtab;
21329 sig_data.types_list = &types_cu_list;
21330 sig_data.psyms_seen = psyms_seen;
21331 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21332 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21333 write_one_signatured_type, &sig_data);
21334 }
21335
21336 /* Now that we've processed all symbols we can shrink their cu_indices
21337 lists. */
21338 uniquify_cu_indices (symtab);
21339
21340 obstack_init (&constant_pool);
21341 make_cleanup_obstack_free (&constant_pool);
21342 obstack_init (&symtab_obstack);
21343 make_cleanup_obstack_free (&symtab_obstack);
21344 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21345
21346 obstack_init (&contents);
21347 make_cleanup_obstack_free (&contents);
21348 size_of_contents = 6 * sizeof (offset_type);
21349 total_len = size_of_contents;
21350
21351 /* The version number. */
21352 val = MAYBE_SWAP (8);
21353 obstack_grow (&contents, &val, sizeof (val));
21354
21355 /* The offset of the CU list from the start of the file. */
21356 val = MAYBE_SWAP (total_len);
21357 obstack_grow (&contents, &val, sizeof (val));
21358 total_len += obstack_object_size (&cu_list);
21359
21360 /* The offset of the types CU list from the start of the file. */
21361 val = MAYBE_SWAP (total_len);
21362 obstack_grow (&contents, &val, sizeof (val));
21363 total_len += obstack_object_size (&types_cu_list);
21364
21365 /* The offset of the address table from the start of the file. */
21366 val = MAYBE_SWAP (total_len);
21367 obstack_grow (&contents, &val, sizeof (val));
21368 total_len += obstack_object_size (&addr_obstack);
21369
21370 /* The offset of the symbol table from the start of the file. */
21371 val = MAYBE_SWAP (total_len);
21372 obstack_grow (&contents, &val, sizeof (val));
21373 total_len += obstack_object_size (&symtab_obstack);
21374
21375 /* The offset of the constant pool from the start of the file. */
21376 val = MAYBE_SWAP (total_len);
21377 obstack_grow (&contents, &val, sizeof (val));
21378 total_len += obstack_object_size (&constant_pool);
21379
21380 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21381
21382 write_obstack (out_file, &contents);
21383 write_obstack (out_file, &cu_list);
21384 write_obstack (out_file, &types_cu_list);
21385 write_obstack (out_file, &addr_obstack);
21386 write_obstack (out_file, &symtab_obstack);
21387 write_obstack (out_file, &constant_pool);
21388
21389 fclose (out_file);
21390
21391 /* We want to keep the file, so we set cleanup_filename to NULL
21392 here. See unlink_if_set. */
21393 cleanup_filename = NULL;
21394
21395 do_cleanups (cleanup);
21396 }
21397
21398 /* Implementation of the `save gdb-index' command.
21399
21400 Note that the file format used by this command is documented in the
21401 GDB manual. Any changes here must be documented there. */
21402
21403 static void
21404 save_gdb_index_command (char *arg, int from_tty)
21405 {
21406 struct objfile *objfile;
21407
21408 if (!arg || !*arg)
21409 error (_("usage: save gdb-index DIRECTORY"));
21410
21411 ALL_OBJFILES (objfile)
21412 {
21413 struct stat st;
21414
21415 /* If the objfile does not correspond to an actual file, skip it. */
21416 if (stat (objfile->name, &st) < 0)
21417 continue;
21418
21419 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21420 if (dwarf2_per_objfile)
21421 {
21422 volatile struct gdb_exception except;
21423
21424 TRY_CATCH (except, RETURN_MASK_ERROR)
21425 {
21426 write_psymtabs_to_index (objfile, arg);
21427 }
21428 if (except.reason < 0)
21429 exception_fprintf (gdb_stderr, except,
21430 _("Error while writing index for `%s': "),
21431 objfile->name);
21432 }
21433 }
21434 }
21435
21436 \f
21437
21438 int dwarf2_always_disassemble;
21439
21440 static void
21441 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21442 struct cmd_list_element *c, const char *value)
21443 {
21444 fprintf_filtered (file,
21445 _("Whether to always disassemble "
21446 "DWARF expressions is %s.\n"),
21447 value);
21448 }
21449
21450 static void
21451 show_check_physname (struct ui_file *file, int from_tty,
21452 struct cmd_list_element *c, const char *value)
21453 {
21454 fprintf_filtered (file,
21455 _("Whether to check \"physname\" is %s.\n"),
21456 value);
21457 }
21458
21459 void _initialize_dwarf2_read (void);
21460
21461 void
21462 _initialize_dwarf2_read (void)
21463 {
21464 struct cmd_list_element *c;
21465
21466 dwarf2_objfile_data_key
21467 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21468
21469 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21470 Set DWARF 2 specific variables.\n\
21471 Configure DWARF 2 variables such as the cache size"),
21472 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21473 0/*allow-unknown*/, &maintenance_set_cmdlist);
21474
21475 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21476 Show DWARF 2 specific variables\n\
21477 Show DWARF 2 variables such as the cache size"),
21478 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21479 0/*allow-unknown*/, &maintenance_show_cmdlist);
21480
21481 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21482 &dwarf2_max_cache_age, _("\
21483 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21484 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21485 A higher limit means that cached compilation units will be stored\n\
21486 in memory longer, and more total memory will be used. Zero disables\n\
21487 caching, which can slow down startup."),
21488 NULL,
21489 show_dwarf2_max_cache_age,
21490 &set_dwarf2_cmdlist,
21491 &show_dwarf2_cmdlist);
21492
21493 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21494 &dwarf2_always_disassemble, _("\
21495 Set whether `info address' always disassembles DWARF expressions."), _("\
21496 Show whether `info address' always disassembles DWARF expressions."), _("\
21497 When enabled, DWARF expressions are always printed in an assembly-like\n\
21498 syntax. When disabled, expressions will be printed in a more\n\
21499 conversational style, when possible."),
21500 NULL,
21501 show_dwarf2_always_disassemble,
21502 &set_dwarf2_cmdlist,
21503 &show_dwarf2_cmdlist);
21504
21505 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21506 Set debugging of the dwarf2 reader."), _("\
21507 Show debugging of the dwarf2 reader."), _("\
21508 When enabled, debugging messages are printed during dwarf2 reading\n\
21509 and symtab expansion."),
21510 NULL,
21511 NULL,
21512 &setdebuglist, &showdebuglist);
21513
21514 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21515 Set debugging of the dwarf2 DIE reader."), _("\
21516 Show debugging of the dwarf2 DIE reader."), _("\
21517 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21518 The value is the maximum depth to print."),
21519 NULL,
21520 NULL,
21521 &setdebuglist, &showdebuglist);
21522
21523 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21524 Set cross-checking of \"physname\" code against demangler."), _("\
21525 Show cross-checking of \"physname\" code against demangler."), _("\
21526 When enabled, GDB's internal \"physname\" code is checked against\n\
21527 the demangler."),
21528 NULL, show_check_physname,
21529 &setdebuglist, &showdebuglist);
21530
21531 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21532 no_class, &use_deprecated_index_sections, _("\
21533 Set whether to use deprecated gdb_index sections."), _("\
21534 Show whether to use deprecated gdb_index sections."), _("\
21535 When enabled, deprecated .gdb_index sections are used anyway.\n\
21536 Normally they are ignored either because of a missing feature or\n\
21537 performance issue.\n\
21538 Warning: This option must be enabled before gdb reads the file."),
21539 NULL,
21540 NULL,
21541 &setlist, &showlist);
21542
21543 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21544 _("\
21545 Save a gdb-index file.\n\
21546 Usage: save gdb-index DIRECTORY"),
21547 &save_cmdlist);
21548 set_cmd_completer (c, filename_completer);
21549
21550 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21551 &dwarf2_locexpr_funcs);
21552 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21553 &dwarf2_loclist_funcs);
21554
21555 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21556 &dwarf2_block_frame_base_locexpr_funcs);
21557 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21558 &dwarf2_block_frame_base_loclist_funcs);
21559 }
This page took 0.537731 seconds and 4 git commands to generate.