gdb: Add riscv to list of architectures with a save_reggroup
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89 #include "rust-lang.h"
90 #include "common/pathstuff.h"
91
92 /* When == 1, print basic high level tracing messages.
93 When > 1, be more verbose.
94 This is in contrast to the low level DIE reading of dwarf_die_debug. */
95 static unsigned int dwarf_read_debug = 0;
96
97 /* When non-zero, dump DIEs after they are read in. */
98 static unsigned int dwarf_die_debug = 0;
99
100 /* When non-zero, dump line number entries as they are read in. */
101 static unsigned int dwarf_line_debug = 0;
102
103 /* When non-zero, cross-check physname against demangler. */
104 static int check_physname = 0;
105
106 /* When non-zero, do not reject deprecated .gdb_index sections. */
107 static int use_deprecated_index_sections = 0;
108
109 static const struct objfile_data *dwarf2_objfile_data_key;
110
111 /* The "aclass" indices for various kinds of computed DWARF symbols. */
112
113 static int dwarf2_locexpr_index;
114 static int dwarf2_loclist_index;
115 static int dwarf2_locexpr_block_index;
116 static int dwarf2_loclist_block_index;
117
118 /* A descriptor for dwarf sections.
119
120 S.ASECTION, SIZE are typically initialized when the objfile is first
121 scanned. BUFFER, READIN are filled in later when the section is read.
122 If the section contained compressed data then SIZE is updated to record
123 the uncompressed size of the section.
124
125 DWP file format V2 introduces a wrinkle that is easiest to handle by
126 creating the concept of virtual sections contained within a real section.
127 In DWP V2 the sections of the input DWO files are concatenated together
128 into one section, but section offsets are kept relative to the original
129 input section.
130 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
131 the real section this "virtual" section is contained in, and BUFFER,SIZE
132 describe the virtual section. */
133
134 struct dwarf2_section_info
135 {
136 union
137 {
138 /* If this is a real section, the bfd section. */
139 asection *section;
140 /* If this is a virtual section, pointer to the containing ("real")
141 section. */
142 struct dwarf2_section_info *containing_section;
143 } s;
144 /* Pointer to section data, only valid if readin. */
145 const gdb_byte *buffer;
146 /* The size of the section, real or virtual. */
147 bfd_size_type size;
148 /* If this is a virtual section, the offset in the real section.
149 Only valid if is_virtual. */
150 bfd_size_type virtual_offset;
151 /* True if we have tried to read this section. */
152 char readin;
153 /* True if this is a virtual section, False otherwise.
154 This specifies which of s.section and s.containing_section to use. */
155 char is_virtual;
156 };
157
158 typedef struct dwarf2_section_info dwarf2_section_info_def;
159 DEF_VEC_O (dwarf2_section_info_def);
160
161 /* All offsets in the index are of this type. It must be
162 architecture-independent. */
163 typedef uint32_t offset_type;
164
165 DEF_VEC_I (offset_type);
166
167 /* Ensure only legit values are used. */
168 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert ((unsigned int) (value) <= 1); \
171 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
174 /* Ensure only legit values are used. */
175 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
176 do { \
177 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
178 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
179 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
180 } while (0)
181
182 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
183 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
184 do { \
185 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
186 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
187 } while (0)
188
189 #if WORDS_BIGENDIAN
190
191 /* Convert VALUE between big- and little-endian. */
192
193 static offset_type
194 byte_swap (offset_type value)
195 {
196 offset_type result;
197
198 result = (value & 0xff) << 24;
199 result |= (value & 0xff00) << 8;
200 result |= (value & 0xff0000) >> 8;
201 result |= (value & 0xff000000) >> 24;
202 return result;
203 }
204
205 #define MAYBE_SWAP(V) byte_swap (V)
206
207 #else
208 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
209 #endif /* WORDS_BIGENDIAN */
210
211 /* An index into a (C++) symbol name component in a symbol name as
212 recorded in the mapped_index's symbol table. For each C++ symbol
213 in the symbol table, we record one entry for the start of each
214 component in the symbol in a table of name components, and then
215 sort the table, in order to be able to binary search symbol names,
216 ignoring leading namespaces, both completion and regular look up.
217 For example, for symbol "A::B::C", we'll have an entry that points
218 to "A::B::C", another that points to "B::C", and another for "C".
219 Note that function symbols in GDB index have no parameter
220 information, just the function/method names. You can convert a
221 name_component to a "const char *" using the
222 'mapped_index::symbol_name_at(offset_type)' method. */
223
224 struct name_component
225 {
226 /* Offset in the symbol name where the component starts. Stored as
227 a (32-bit) offset instead of a pointer to save memory and improve
228 locality on 64-bit architectures. */
229 offset_type name_offset;
230
231 /* The symbol's index in the symbol and constant pool tables of a
232 mapped_index. */
233 offset_type idx;
234 };
235
236 /* Base class containing bits shared by both .gdb_index and
237 .debug_name indexes. */
238
239 struct mapped_index_base
240 {
241 /* The name_component table (a sorted vector). See name_component's
242 description above. */
243 std::vector<name_component> name_components;
244
245 /* How NAME_COMPONENTS is sorted. */
246 enum case_sensitivity name_components_casing;
247
248 /* Return the number of names in the symbol table. */
249 virtual size_t symbol_name_count () const = 0;
250
251 /* Get the name of the symbol at IDX in the symbol table. */
252 virtual const char *symbol_name_at (offset_type idx) const = 0;
253
254 /* Return whether the name at IDX in the symbol table should be
255 ignored. */
256 virtual bool symbol_name_slot_invalid (offset_type idx) const
257 {
258 return false;
259 }
260
261 /* Build the symbol name component sorted vector, if we haven't
262 yet. */
263 void build_name_components ();
264
265 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
266 possible matches for LN_NO_PARAMS in the name component
267 vector. */
268 std::pair<std::vector<name_component>::const_iterator,
269 std::vector<name_component>::const_iterator>
270 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
271
272 /* Prevent deleting/destroying via a base class pointer. */
273 protected:
274 ~mapped_index_base() = default;
275 };
276
277 /* A description of the mapped index. The file format is described in
278 a comment by the code that writes the index. */
279 struct mapped_index final : public mapped_index_base
280 {
281 /* A slot/bucket in the symbol table hash. */
282 struct symbol_table_slot
283 {
284 const offset_type name;
285 const offset_type vec;
286 };
287
288 /* Index data format version. */
289 int version;
290
291 /* The total length of the buffer. */
292 off_t total_size;
293
294 /* The address table data. */
295 gdb::array_view<const gdb_byte> address_table;
296
297 /* The symbol table, implemented as a hash table. */
298 gdb::array_view<symbol_table_slot> symbol_table;
299
300 /* A pointer to the constant pool. */
301 const char *constant_pool;
302
303 bool symbol_name_slot_invalid (offset_type idx) const override
304 {
305 const auto &bucket = this->symbol_table[idx];
306 return bucket.name == 0 && bucket.vec;
307 }
308
309 /* Convenience method to get at the name of the symbol at IDX in the
310 symbol table. */
311 const char *symbol_name_at (offset_type idx) const override
312 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
313
314 size_t symbol_name_count () const override
315 { return this->symbol_table.size (); }
316 };
317
318 /* A description of the mapped .debug_names.
319 Uninitialized map has CU_COUNT 0. */
320 struct mapped_debug_names final : public mapped_index_base
321 {
322 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
323 : dwarf2_per_objfile (dwarf2_per_objfile_)
324 {}
325
326 struct dwarf2_per_objfile *dwarf2_per_objfile;
327 bfd_endian dwarf5_byte_order;
328 bool dwarf5_is_dwarf64;
329 bool augmentation_is_gdb;
330 uint8_t offset_size;
331 uint32_t cu_count = 0;
332 uint32_t tu_count, bucket_count, name_count;
333 const gdb_byte *cu_table_reordered, *tu_table_reordered;
334 const uint32_t *bucket_table_reordered, *hash_table_reordered;
335 const gdb_byte *name_table_string_offs_reordered;
336 const gdb_byte *name_table_entry_offs_reordered;
337 const gdb_byte *entry_pool;
338
339 struct index_val
340 {
341 ULONGEST dwarf_tag;
342 struct attr
343 {
344 /* Attribute name DW_IDX_*. */
345 ULONGEST dw_idx;
346
347 /* Attribute form DW_FORM_*. */
348 ULONGEST form;
349
350 /* Value if FORM is DW_FORM_implicit_const. */
351 LONGEST implicit_const;
352 };
353 std::vector<attr> attr_vec;
354 };
355
356 std::unordered_map<ULONGEST, index_val> abbrev_map;
357
358 const char *namei_to_name (uint32_t namei) const;
359
360 /* Implementation of the mapped_index_base virtual interface, for
361 the name_components cache. */
362
363 const char *symbol_name_at (offset_type idx) const override
364 { return namei_to_name (idx); }
365
366 size_t symbol_name_count () const override
367 { return this->name_count; }
368 };
369
370 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
371 DEF_VEC_P (dwarf2_per_cu_ptr);
372
373 struct tu_stats
374 {
375 int nr_uniq_abbrev_tables;
376 int nr_symtabs;
377 int nr_symtab_sharers;
378 int nr_stmt_less_type_units;
379 int nr_all_type_units_reallocs;
380 };
381
382 /* Collection of data recorded per objfile.
383 This hangs off of dwarf2_objfile_data_key. */
384
385 struct dwarf2_per_objfile : public allocate_on_obstack
386 {
387 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
388 dwarf2 section names, or is NULL if the standard ELF names are
389 used. */
390 dwarf2_per_objfile (struct objfile *objfile,
391 const dwarf2_debug_sections *names);
392
393 ~dwarf2_per_objfile ();
394
395 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
396
397 /* Free all cached compilation units. */
398 void free_cached_comp_units ();
399 private:
400 /* This function is mapped across the sections and remembers the
401 offset and size of each of the debugging sections we are
402 interested in. */
403 void locate_sections (bfd *abfd, asection *sectp,
404 const dwarf2_debug_sections &names);
405
406 public:
407 dwarf2_section_info info {};
408 dwarf2_section_info abbrev {};
409 dwarf2_section_info line {};
410 dwarf2_section_info loc {};
411 dwarf2_section_info loclists {};
412 dwarf2_section_info macinfo {};
413 dwarf2_section_info macro {};
414 dwarf2_section_info str {};
415 dwarf2_section_info line_str {};
416 dwarf2_section_info ranges {};
417 dwarf2_section_info rnglists {};
418 dwarf2_section_info addr {};
419 dwarf2_section_info frame {};
420 dwarf2_section_info eh_frame {};
421 dwarf2_section_info gdb_index {};
422 dwarf2_section_info debug_names {};
423 dwarf2_section_info debug_aranges {};
424
425 VEC (dwarf2_section_info_def) *types = NULL;
426
427 /* Back link. */
428 struct objfile *objfile = NULL;
429
430 /* Table of all the compilation units. This is used to locate
431 the target compilation unit of a particular reference. */
432 struct dwarf2_per_cu_data **all_comp_units = NULL;
433
434 /* The number of compilation units in ALL_COMP_UNITS. */
435 int n_comp_units = 0;
436
437 /* The number of .debug_types-related CUs. */
438 int n_type_units = 0;
439
440 /* The number of elements allocated in all_type_units.
441 If there are skeleton-less TUs, we add them to all_type_units lazily. */
442 int n_allocated_type_units = 0;
443
444 /* The .debug_types-related CUs (TUs).
445 This is stored in malloc space because we may realloc it. */
446 struct signatured_type **all_type_units = NULL;
447
448 /* Table of struct type_unit_group objects.
449 The hash key is the DW_AT_stmt_list value. */
450 htab_t type_unit_groups {};
451
452 /* A table mapping .debug_types signatures to its signatured_type entry.
453 This is NULL if the .debug_types section hasn't been read in yet. */
454 htab_t signatured_types {};
455
456 /* Type unit statistics, to see how well the scaling improvements
457 are doing. */
458 struct tu_stats tu_stats {};
459
460 /* A chain of compilation units that are currently read in, so that
461 they can be freed later. */
462 dwarf2_per_cu_data *read_in_chain = NULL;
463
464 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
465 This is NULL if the table hasn't been allocated yet. */
466 htab_t dwo_files {};
467
468 /* True if we've checked for whether there is a DWP file. */
469 bool dwp_checked = false;
470
471 /* The DWP file if there is one, or NULL. */
472 struct dwp_file *dwp_file = NULL;
473
474 /* The shared '.dwz' file, if one exists. This is used when the
475 original data was compressed using 'dwz -m'. */
476 struct dwz_file *dwz_file = NULL;
477
478 /* A flag indicating whether this objfile has a section loaded at a
479 VMA of 0. */
480 bool has_section_at_zero = false;
481
482 /* True if we are using the mapped index,
483 or we are faking it for OBJF_READNOW's sake. */
484 bool using_index = false;
485
486 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
487 mapped_index *index_table = NULL;
488
489 /* The mapped index, or NULL if .debug_names is missing or not being used. */
490 std::unique_ptr<mapped_debug_names> debug_names_table;
491
492 /* When using index_table, this keeps track of all quick_file_names entries.
493 TUs typically share line table entries with a CU, so we maintain a
494 separate table of all line table entries to support the sharing.
495 Note that while there can be way more TUs than CUs, we've already
496 sorted all the TUs into "type unit groups", grouped by their
497 DW_AT_stmt_list value. Therefore the only sharing done here is with a
498 CU and its associated TU group if there is one. */
499 htab_t quick_file_names_table {};
500
501 /* Set during partial symbol reading, to prevent queueing of full
502 symbols. */
503 bool reading_partial_symbols = false;
504
505 /* Table mapping type DIEs to their struct type *.
506 This is NULL if not allocated yet.
507 The mapping is done via (CU/TU + DIE offset) -> type. */
508 htab_t die_type_hash {};
509
510 /* The CUs we recently read. */
511 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
512
513 /* Table containing line_header indexed by offset and offset_in_dwz. */
514 htab_t line_header_hash {};
515
516 /* Table containing all filenames. This is an optional because the
517 table is lazily constructed on first access. */
518 gdb::optional<filename_seen_cache> filenames_cache;
519 };
520
521 /* Get the dwarf2_per_objfile associated to OBJFILE. */
522
523 struct dwarf2_per_objfile *
524 get_dwarf2_per_objfile (struct objfile *objfile)
525 {
526 return ((struct dwarf2_per_objfile *)
527 objfile_data (objfile, dwarf2_objfile_data_key));
528 }
529
530 /* Set the dwarf2_per_objfile associated to OBJFILE. */
531
532 void
533 set_dwarf2_per_objfile (struct objfile *objfile,
534 struct dwarf2_per_objfile *dwarf2_per_objfile)
535 {
536 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
537 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
538 }
539
540 /* Default names of the debugging sections. */
541
542 /* Note that if the debugging section has been compressed, it might
543 have a name like .zdebug_info. */
544
545 static const struct dwarf2_debug_sections dwarf2_elf_names =
546 {
547 { ".debug_info", ".zdebug_info" },
548 { ".debug_abbrev", ".zdebug_abbrev" },
549 { ".debug_line", ".zdebug_line" },
550 { ".debug_loc", ".zdebug_loc" },
551 { ".debug_loclists", ".zdebug_loclists" },
552 { ".debug_macinfo", ".zdebug_macinfo" },
553 { ".debug_macro", ".zdebug_macro" },
554 { ".debug_str", ".zdebug_str" },
555 { ".debug_line_str", ".zdebug_line_str" },
556 { ".debug_ranges", ".zdebug_ranges" },
557 { ".debug_rnglists", ".zdebug_rnglists" },
558 { ".debug_types", ".zdebug_types" },
559 { ".debug_addr", ".zdebug_addr" },
560 { ".debug_frame", ".zdebug_frame" },
561 { ".eh_frame", NULL },
562 { ".gdb_index", ".zgdb_index" },
563 { ".debug_names", ".zdebug_names" },
564 { ".debug_aranges", ".zdebug_aranges" },
565 23
566 };
567
568 /* List of DWO/DWP sections. */
569
570 static const struct dwop_section_names
571 {
572 struct dwarf2_section_names abbrev_dwo;
573 struct dwarf2_section_names info_dwo;
574 struct dwarf2_section_names line_dwo;
575 struct dwarf2_section_names loc_dwo;
576 struct dwarf2_section_names loclists_dwo;
577 struct dwarf2_section_names macinfo_dwo;
578 struct dwarf2_section_names macro_dwo;
579 struct dwarf2_section_names str_dwo;
580 struct dwarf2_section_names str_offsets_dwo;
581 struct dwarf2_section_names types_dwo;
582 struct dwarf2_section_names cu_index;
583 struct dwarf2_section_names tu_index;
584 }
585 dwop_section_names =
586 {
587 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
588 { ".debug_info.dwo", ".zdebug_info.dwo" },
589 { ".debug_line.dwo", ".zdebug_line.dwo" },
590 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
591 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
592 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
593 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
594 { ".debug_str.dwo", ".zdebug_str.dwo" },
595 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
596 { ".debug_types.dwo", ".zdebug_types.dwo" },
597 { ".debug_cu_index", ".zdebug_cu_index" },
598 { ".debug_tu_index", ".zdebug_tu_index" },
599 };
600
601 /* local data types */
602
603 /* The data in a compilation unit header, after target2host
604 translation, looks like this. */
605 struct comp_unit_head
606 {
607 unsigned int length;
608 short version;
609 unsigned char addr_size;
610 unsigned char signed_addr_p;
611 sect_offset abbrev_sect_off;
612
613 /* Size of file offsets; either 4 or 8. */
614 unsigned int offset_size;
615
616 /* Size of the length field; either 4 or 12. */
617 unsigned int initial_length_size;
618
619 enum dwarf_unit_type unit_type;
620
621 /* Offset to the first byte of this compilation unit header in the
622 .debug_info section, for resolving relative reference dies. */
623 sect_offset sect_off;
624
625 /* Offset to first die in this cu from the start of the cu.
626 This will be the first byte following the compilation unit header. */
627 cu_offset first_die_cu_offset;
628
629 /* 64-bit signature of this type unit - it is valid only for
630 UNIT_TYPE DW_UT_type. */
631 ULONGEST signature;
632
633 /* For types, offset in the type's DIE of the type defined by this TU. */
634 cu_offset type_cu_offset_in_tu;
635 };
636
637 /* Type used for delaying computation of method physnames.
638 See comments for compute_delayed_physnames. */
639 struct delayed_method_info
640 {
641 /* The type to which the method is attached, i.e., its parent class. */
642 struct type *type;
643
644 /* The index of the method in the type's function fieldlists. */
645 int fnfield_index;
646
647 /* The index of the method in the fieldlist. */
648 int index;
649
650 /* The name of the DIE. */
651 const char *name;
652
653 /* The DIE associated with this method. */
654 struct die_info *die;
655 };
656
657 /* Internal state when decoding a particular compilation unit. */
658 struct dwarf2_cu
659 {
660 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
661 ~dwarf2_cu ();
662
663 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
664
665 /* The header of the compilation unit. */
666 struct comp_unit_head header {};
667
668 /* Base address of this compilation unit. */
669 CORE_ADDR base_address = 0;
670
671 /* Non-zero if base_address has been set. */
672 int base_known = 0;
673
674 /* The language we are debugging. */
675 enum language language = language_unknown;
676 const struct language_defn *language_defn = nullptr;
677
678 const char *producer = nullptr;
679
680 /* The generic symbol table building routines have separate lists for
681 file scope symbols and all all other scopes (local scopes). So
682 we need to select the right one to pass to add_symbol_to_list().
683 We do it by keeping a pointer to the correct list in list_in_scope.
684
685 FIXME: The original dwarf code just treated the file scope as the
686 first local scope, and all other local scopes as nested local
687 scopes, and worked fine. Check to see if we really need to
688 distinguish these in buildsym.c. */
689 struct pending **list_in_scope = nullptr;
690
691 /* Hash table holding all the loaded partial DIEs
692 with partial_die->offset.SECT_OFF as hash. */
693 htab_t partial_dies = nullptr;
694
695 /* Storage for things with the same lifetime as this read-in compilation
696 unit, including partial DIEs. */
697 auto_obstack comp_unit_obstack;
698
699 /* When multiple dwarf2_cu structures are living in memory, this field
700 chains them all together, so that they can be released efficiently.
701 We will probably also want a generation counter so that most-recently-used
702 compilation units are cached... */
703 struct dwarf2_per_cu_data *read_in_chain = nullptr;
704
705 /* Backlink to our per_cu entry. */
706 struct dwarf2_per_cu_data *per_cu;
707
708 /* How many compilation units ago was this CU last referenced? */
709 int last_used = 0;
710
711 /* A hash table of DIE cu_offset for following references with
712 die_info->offset.sect_off as hash. */
713 htab_t die_hash = nullptr;
714
715 /* Full DIEs if read in. */
716 struct die_info *dies = nullptr;
717
718 /* A set of pointers to dwarf2_per_cu_data objects for compilation
719 units referenced by this one. Only set during full symbol processing;
720 partial symbol tables do not have dependencies. */
721 htab_t dependencies = nullptr;
722
723 /* Header data from the line table, during full symbol processing. */
724 struct line_header *line_header = nullptr;
725 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
726 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
727 this is the DW_TAG_compile_unit die for this CU. We'll hold on
728 to the line header as long as this DIE is being processed. See
729 process_die_scope. */
730 die_info *line_header_die_owner = nullptr;
731
732 /* A list of methods which need to have physnames computed
733 after all type information has been read. */
734 std::vector<delayed_method_info> method_list;
735
736 /* To be copied to symtab->call_site_htab. */
737 htab_t call_site_htab = nullptr;
738
739 /* Non-NULL if this CU came from a DWO file.
740 There is an invariant here that is important to remember:
741 Except for attributes copied from the top level DIE in the "main"
742 (or "stub") file in preparation for reading the DWO file
743 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
744 Either there isn't a DWO file (in which case this is NULL and the point
745 is moot), or there is and either we're not going to read it (in which
746 case this is NULL) or there is and we are reading it (in which case this
747 is non-NULL). */
748 struct dwo_unit *dwo_unit = nullptr;
749
750 /* The DW_AT_addr_base attribute if present, zero otherwise
751 (zero is a valid value though).
752 Note this value comes from the Fission stub CU/TU's DIE. */
753 ULONGEST addr_base = 0;
754
755 /* The DW_AT_ranges_base attribute if present, zero otherwise
756 (zero is a valid value though).
757 Note this value comes from the Fission stub CU/TU's DIE.
758 Also note that the value is zero in the non-DWO case so this value can
759 be used without needing to know whether DWO files are in use or not.
760 N.B. This does not apply to DW_AT_ranges appearing in
761 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
762 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
763 DW_AT_ranges_base *would* have to be applied, and we'd have to care
764 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
765 ULONGEST ranges_base = 0;
766
767 /* When reading debug info generated by older versions of rustc, we
768 have to rewrite some union types to be struct types with a
769 variant part. This rewriting must be done after the CU is fully
770 read in, because otherwise at the point of rewriting some struct
771 type might not have been fully processed. So, we keep a list of
772 all such types here and process them after expansion. */
773 std::vector<struct type *> rust_unions;
774
775 /* Mark used when releasing cached dies. */
776 unsigned int mark : 1;
777
778 /* This CU references .debug_loc. See the symtab->locations_valid field.
779 This test is imperfect as there may exist optimized debug code not using
780 any location list and still facing inlining issues if handled as
781 unoptimized code. For a future better test see GCC PR other/32998. */
782 unsigned int has_loclist : 1;
783
784 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
785 if all the producer_is_* fields are valid. This information is cached
786 because profiling CU expansion showed excessive time spent in
787 producer_is_gxx_lt_4_6. */
788 unsigned int checked_producer : 1;
789 unsigned int producer_is_gxx_lt_4_6 : 1;
790 unsigned int producer_is_gcc_lt_4_3 : 1;
791 unsigned int producer_is_icc_lt_14 : 1;
792
793 /* When set, the file that we're processing is known to have
794 debugging info for C++ namespaces. GCC 3.3.x did not produce
795 this information, but later versions do. */
796
797 unsigned int processing_has_namespace_info : 1;
798
799 struct partial_die_info *find_partial_die (sect_offset sect_off);
800 };
801
802 /* Persistent data held for a compilation unit, even when not
803 processing it. We put a pointer to this structure in the
804 read_symtab_private field of the psymtab. */
805
806 struct dwarf2_per_cu_data
807 {
808 /* The start offset and length of this compilation unit.
809 NOTE: Unlike comp_unit_head.length, this length includes
810 initial_length_size.
811 If the DIE refers to a DWO file, this is always of the original die,
812 not the DWO file. */
813 sect_offset sect_off;
814 unsigned int length;
815
816 /* DWARF standard version this data has been read from (such as 4 or 5). */
817 short dwarf_version;
818
819 /* Flag indicating this compilation unit will be read in before
820 any of the current compilation units are processed. */
821 unsigned int queued : 1;
822
823 /* This flag will be set when reading partial DIEs if we need to load
824 absolutely all DIEs for this compilation unit, instead of just the ones
825 we think are interesting. It gets set if we look for a DIE in the
826 hash table and don't find it. */
827 unsigned int load_all_dies : 1;
828
829 /* Non-zero if this CU is from .debug_types.
830 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
831 this is non-zero. */
832 unsigned int is_debug_types : 1;
833
834 /* Non-zero if this CU is from the .dwz file. */
835 unsigned int is_dwz : 1;
836
837 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
838 This flag is only valid if is_debug_types is true.
839 We can't read a CU directly from a DWO file: There are required
840 attributes in the stub. */
841 unsigned int reading_dwo_directly : 1;
842
843 /* Non-zero if the TU has been read.
844 This is used to assist the "Stay in DWO Optimization" for Fission:
845 When reading a DWO, it's faster to read TUs from the DWO instead of
846 fetching them from random other DWOs (due to comdat folding).
847 If the TU has already been read, the optimization is unnecessary
848 (and unwise - we don't want to change where gdb thinks the TU lives
849 "midflight").
850 This flag is only valid if is_debug_types is true. */
851 unsigned int tu_read : 1;
852
853 /* The section this CU/TU lives in.
854 If the DIE refers to a DWO file, this is always the original die,
855 not the DWO file. */
856 struct dwarf2_section_info *section;
857
858 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
859 of the CU cache it gets reset to NULL again. This is left as NULL for
860 dummy CUs (a CU header, but nothing else). */
861 struct dwarf2_cu *cu;
862
863 /* The corresponding dwarf2_per_objfile. */
864 struct dwarf2_per_objfile *dwarf2_per_objfile;
865
866 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
867 is active. Otherwise, the 'psymtab' field is active. */
868 union
869 {
870 /* The partial symbol table associated with this compilation unit,
871 or NULL for unread partial units. */
872 struct partial_symtab *psymtab;
873
874 /* Data needed by the "quick" functions. */
875 struct dwarf2_per_cu_quick_data *quick;
876 } v;
877
878 /* The CUs we import using DW_TAG_imported_unit. This is filled in
879 while reading psymtabs, used to compute the psymtab dependencies,
880 and then cleared. Then it is filled in again while reading full
881 symbols, and only deleted when the objfile is destroyed.
882
883 This is also used to work around a difference between the way gold
884 generates .gdb_index version <=7 and the way gdb does. Arguably this
885 is a gold bug. For symbols coming from TUs, gold records in the index
886 the CU that includes the TU instead of the TU itself. This breaks
887 dw2_lookup_symbol: It assumes that if the index says symbol X lives
888 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
889 will find X. Alas TUs live in their own symtab, so after expanding CU Y
890 we need to look in TU Z to find X. Fortunately, this is akin to
891 DW_TAG_imported_unit, so we just use the same mechanism: For
892 .gdb_index version <=7 this also records the TUs that the CU referred
893 to. Concurrently with this change gdb was modified to emit version 8
894 indices so we only pay a price for gold generated indices.
895 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
896 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
897 };
898
899 /* Entry in the signatured_types hash table. */
900
901 struct signatured_type
902 {
903 /* The "per_cu" object of this type.
904 This struct is used iff per_cu.is_debug_types.
905 N.B.: This is the first member so that it's easy to convert pointers
906 between them. */
907 struct dwarf2_per_cu_data per_cu;
908
909 /* The type's signature. */
910 ULONGEST signature;
911
912 /* Offset in the TU of the type's DIE, as read from the TU header.
913 If this TU is a DWO stub and the definition lives in a DWO file
914 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
915 cu_offset type_offset_in_tu;
916
917 /* Offset in the section of the type's DIE.
918 If the definition lives in a DWO file, this is the offset in the
919 .debug_types.dwo section.
920 The value is zero until the actual value is known.
921 Zero is otherwise not a valid section offset. */
922 sect_offset type_offset_in_section;
923
924 /* Type units are grouped by their DW_AT_stmt_list entry so that they
925 can share them. This points to the containing symtab. */
926 struct type_unit_group *type_unit_group;
927
928 /* The type.
929 The first time we encounter this type we fully read it in and install it
930 in the symbol tables. Subsequent times we only need the type. */
931 struct type *type;
932
933 /* Containing DWO unit.
934 This field is valid iff per_cu.reading_dwo_directly. */
935 struct dwo_unit *dwo_unit;
936 };
937
938 typedef struct signatured_type *sig_type_ptr;
939 DEF_VEC_P (sig_type_ptr);
940
941 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
942 This includes type_unit_group and quick_file_names. */
943
944 struct stmt_list_hash
945 {
946 /* The DWO unit this table is from or NULL if there is none. */
947 struct dwo_unit *dwo_unit;
948
949 /* Offset in .debug_line or .debug_line.dwo. */
950 sect_offset line_sect_off;
951 };
952
953 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
954 an object of this type. */
955
956 struct type_unit_group
957 {
958 /* dwarf2read.c's main "handle" on a TU symtab.
959 To simplify things we create an artificial CU that "includes" all the
960 type units using this stmt_list so that the rest of the code still has
961 a "per_cu" handle on the symtab.
962 This PER_CU is recognized by having no section. */
963 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
964 struct dwarf2_per_cu_data per_cu;
965
966 /* The TUs that share this DW_AT_stmt_list entry.
967 This is added to while parsing type units to build partial symtabs,
968 and is deleted afterwards and not used again. */
969 VEC (sig_type_ptr) *tus;
970
971 /* The compunit symtab.
972 Type units in a group needn't all be defined in the same source file,
973 so we create an essentially anonymous symtab as the compunit symtab. */
974 struct compunit_symtab *compunit_symtab;
975
976 /* The data used to construct the hash key. */
977 struct stmt_list_hash hash;
978
979 /* The number of symtabs from the line header.
980 The value here must match line_header.num_file_names. */
981 unsigned int num_symtabs;
982
983 /* The symbol tables for this TU (obtained from the files listed in
984 DW_AT_stmt_list).
985 WARNING: The order of entries here must match the order of entries
986 in the line header. After the first TU using this type_unit_group, the
987 line header for the subsequent TUs is recreated from this. This is done
988 because we need to use the same symtabs for each TU using the same
989 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
990 there's no guarantee the line header doesn't have duplicate entries. */
991 struct symtab **symtabs;
992 };
993
994 /* These sections are what may appear in a (real or virtual) DWO file. */
995
996 struct dwo_sections
997 {
998 struct dwarf2_section_info abbrev;
999 struct dwarf2_section_info line;
1000 struct dwarf2_section_info loc;
1001 struct dwarf2_section_info loclists;
1002 struct dwarf2_section_info macinfo;
1003 struct dwarf2_section_info macro;
1004 struct dwarf2_section_info str;
1005 struct dwarf2_section_info str_offsets;
1006 /* In the case of a virtual DWO file, these two are unused. */
1007 struct dwarf2_section_info info;
1008 VEC (dwarf2_section_info_def) *types;
1009 };
1010
1011 /* CUs/TUs in DWP/DWO files. */
1012
1013 struct dwo_unit
1014 {
1015 /* Backlink to the containing struct dwo_file. */
1016 struct dwo_file *dwo_file;
1017
1018 /* The "id" that distinguishes this CU/TU.
1019 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1020 Since signatures came first, we stick with it for consistency. */
1021 ULONGEST signature;
1022
1023 /* The section this CU/TU lives in, in the DWO file. */
1024 struct dwarf2_section_info *section;
1025
1026 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1027 sect_offset sect_off;
1028 unsigned int length;
1029
1030 /* For types, offset in the type's DIE of the type defined by this TU. */
1031 cu_offset type_offset_in_tu;
1032 };
1033
1034 /* include/dwarf2.h defines the DWP section codes.
1035 It defines a max value but it doesn't define a min value, which we
1036 use for error checking, so provide one. */
1037
1038 enum dwp_v2_section_ids
1039 {
1040 DW_SECT_MIN = 1
1041 };
1042
1043 /* Data for one DWO file.
1044
1045 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1046 appears in a DWP file). DWP files don't really have DWO files per se -
1047 comdat folding of types "loses" the DWO file they came from, and from
1048 a high level view DWP files appear to contain a mass of random types.
1049 However, to maintain consistency with the non-DWP case we pretend DWP
1050 files contain virtual DWO files, and we assign each TU with one virtual
1051 DWO file (generally based on the line and abbrev section offsets -
1052 a heuristic that seems to work in practice). */
1053
1054 struct dwo_file
1055 {
1056 /* The DW_AT_GNU_dwo_name attribute.
1057 For virtual DWO files the name is constructed from the section offsets
1058 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1059 from related CU+TUs. */
1060 const char *dwo_name;
1061
1062 /* The DW_AT_comp_dir attribute. */
1063 const char *comp_dir;
1064
1065 /* The bfd, when the file is open. Otherwise this is NULL.
1066 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1067 bfd *dbfd;
1068
1069 /* The sections that make up this DWO file.
1070 Remember that for virtual DWO files in DWP V2, these are virtual
1071 sections (for lack of a better name). */
1072 struct dwo_sections sections;
1073
1074 /* The CUs in the file.
1075 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1076 an extension to handle LLVM's Link Time Optimization output (where
1077 multiple source files may be compiled into a single object/dwo pair). */
1078 htab_t cus;
1079
1080 /* Table of TUs in the file.
1081 Each element is a struct dwo_unit. */
1082 htab_t tus;
1083 };
1084
1085 /* These sections are what may appear in a DWP file. */
1086
1087 struct dwp_sections
1088 {
1089 /* These are used by both DWP version 1 and 2. */
1090 struct dwarf2_section_info str;
1091 struct dwarf2_section_info cu_index;
1092 struct dwarf2_section_info tu_index;
1093
1094 /* These are only used by DWP version 2 files.
1095 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1096 sections are referenced by section number, and are not recorded here.
1097 In DWP version 2 there is at most one copy of all these sections, each
1098 section being (effectively) comprised of the concatenation of all of the
1099 individual sections that exist in the version 1 format.
1100 To keep the code simple we treat each of these concatenated pieces as a
1101 section itself (a virtual section?). */
1102 struct dwarf2_section_info abbrev;
1103 struct dwarf2_section_info info;
1104 struct dwarf2_section_info line;
1105 struct dwarf2_section_info loc;
1106 struct dwarf2_section_info macinfo;
1107 struct dwarf2_section_info macro;
1108 struct dwarf2_section_info str_offsets;
1109 struct dwarf2_section_info types;
1110 };
1111
1112 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1113 A virtual DWO file is a DWO file as it appears in a DWP file. */
1114
1115 struct virtual_v1_dwo_sections
1116 {
1117 struct dwarf2_section_info abbrev;
1118 struct dwarf2_section_info line;
1119 struct dwarf2_section_info loc;
1120 struct dwarf2_section_info macinfo;
1121 struct dwarf2_section_info macro;
1122 struct dwarf2_section_info str_offsets;
1123 /* Each DWP hash table entry records one CU or one TU.
1124 That is recorded here, and copied to dwo_unit.section. */
1125 struct dwarf2_section_info info_or_types;
1126 };
1127
1128 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1129 In version 2, the sections of the DWO files are concatenated together
1130 and stored in one section of that name. Thus each ELF section contains
1131 several "virtual" sections. */
1132
1133 struct virtual_v2_dwo_sections
1134 {
1135 bfd_size_type abbrev_offset;
1136 bfd_size_type abbrev_size;
1137
1138 bfd_size_type line_offset;
1139 bfd_size_type line_size;
1140
1141 bfd_size_type loc_offset;
1142 bfd_size_type loc_size;
1143
1144 bfd_size_type macinfo_offset;
1145 bfd_size_type macinfo_size;
1146
1147 bfd_size_type macro_offset;
1148 bfd_size_type macro_size;
1149
1150 bfd_size_type str_offsets_offset;
1151 bfd_size_type str_offsets_size;
1152
1153 /* Each DWP hash table entry records one CU or one TU.
1154 That is recorded here, and copied to dwo_unit.section. */
1155 bfd_size_type info_or_types_offset;
1156 bfd_size_type info_or_types_size;
1157 };
1158
1159 /* Contents of DWP hash tables. */
1160
1161 struct dwp_hash_table
1162 {
1163 uint32_t version, nr_columns;
1164 uint32_t nr_units, nr_slots;
1165 const gdb_byte *hash_table, *unit_table;
1166 union
1167 {
1168 struct
1169 {
1170 const gdb_byte *indices;
1171 } v1;
1172 struct
1173 {
1174 /* This is indexed by column number and gives the id of the section
1175 in that column. */
1176 #define MAX_NR_V2_DWO_SECTIONS \
1177 (1 /* .debug_info or .debug_types */ \
1178 + 1 /* .debug_abbrev */ \
1179 + 1 /* .debug_line */ \
1180 + 1 /* .debug_loc */ \
1181 + 1 /* .debug_str_offsets */ \
1182 + 1 /* .debug_macro or .debug_macinfo */)
1183 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1184 const gdb_byte *offsets;
1185 const gdb_byte *sizes;
1186 } v2;
1187 } section_pool;
1188 };
1189
1190 /* Data for one DWP file. */
1191
1192 struct dwp_file
1193 {
1194 /* Name of the file. */
1195 const char *name;
1196
1197 /* File format version. */
1198 int version;
1199
1200 /* The bfd. */
1201 bfd *dbfd;
1202
1203 /* Section info for this file. */
1204 struct dwp_sections sections;
1205
1206 /* Table of CUs in the file. */
1207 const struct dwp_hash_table *cus;
1208
1209 /* Table of TUs in the file. */
1210 const struct dwp_hash_table *tus;
1211
1212 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1213 htab_t loaded_cus;
1214 htab_t loaded_tus;
1215
1216 /* Table to map ELF section numbers to their sections.
1217 This is only needed for the DWP V1 file format. */
1218 unsigned int num_sections;
1219 asection **elf_sections;
1220 };
1221
1222 /* This represents a '.dwz' file. */
1223
1224 struct dwz_file
1225 {
1226 /* A dwz file can only contain a few sections. */
1227 struct dwarf2_section_info abbrev;
1228 struct dwarf2_section_info info;
1229 struct dwarf2_section_info str;
1230 struct dwarf2_section_info line;
1231 struct dwarf2_section_info macro;
1232 struct dwarf2_section_info gdb_index;
1233 struct dwarf2_section_info debug_names;
1234
1235 /* The dwz's BFD. */
1236 bfd *dwz_bfd;
1237 };
1238
1239 /* Struct used to pass misc. parameters to read_die_and_children, et
1240 al. which are used for both .debug_info and .debug_types dies.
1241 All parameters here are unchanging for the life of the call. This
1242 struct exists to abstract away the constant parameters of die reading. */
1243
1244 struct die_reader_specs
1245 {
1246 /* The bfd of die_section. */
1247 bfd* abfd;
1248
1249 /* The CU of the DIE we are parsing. */
1250 struct dwarf2_cu *cu;
1251
1252 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1253 struct dwo_file *dwo_file;
1254
1255 /* The section the die comes from.
1256 This is either .debug_info or .debug_types, or the .dwo variants. */
1257 struct dwarf2_section_info *die_section;
1258
1259 /* die_section->buffer. */
1260 const gdb_byte *buffer;
1261
1262 /* The end of the buffer. */
1263 const gdb_byte *buffer_end;
1264
1265 /* The value of the DW_AT_comp_dir attribute. */
1266 const char *comp_dir;
1267
1268 /* The abbreviation table to use when reading the DIEs. */
1269 struct abbrev_table *abbrev_table;
1270 };
1271
1272 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1273 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1274 const gdb_byte *info_ptr,
1275 struct die_info *comp_unit_die,
1276 int has_children,
1277 void *data);
1278
1279 /* A 1-based directory index. This is a strong typedef to prevent
1280 accidentally using a directory index as a 0-based index into an
1281 array/vector. */
1282 enum class dir_index : unsigned int {};
1283
1284 /* Likewise, a 1-based file name index. */
1285 enum class file_name_index : unsigned int {};
1286
1287 struct file_entry
1288 {
1289 file_entry () = default;
1290
1291 file_entry (const char *name_, dir_index d_index_,
1292 unsigned int mod_time_, unsigned int length_)
1293 : name (name_),
1294 d_index (d_index_),
1295 mod_time (mod_time_),
1296 length (length_)
1297 {}
1298
1299 /* Return the include directory at D_INDEX stored in LH. Returns
1300 NULL if D_INDEX is out of bounds. */
1301 const char *include_dir (const line_header *lh) const;
1302
1303 /* The file name. Note this is an observing pointer. The memory is
1304 owned by debug_line_buffer. */
1305 const char *name {};
1306
1307 /* The directory index (1-based). */
1308 dir_index d_index {};
1309
1310 unsigned int mod_time {};
1311
1312 unsigned int length {};
1313
1314 /* True if referenced by the Line Number Program. */
1315 bool included_p {};
1316
1317 /* The associated symbol table, if any. */
1318 struct symtab *symtab {};
1319 };
1320
1321 /* The line number information for a compilation unit (found in the
1322 .debug_line section) begins with a "statement program header",
1323 which contains the following information. */
1324 struct line_header
1325 {
1326 line_header ()
1327 : offset_in_dwz {}
1328 {}
1329
1330 /* Add an entry to the include directory table. */
1331 void add_include_dir (const char *include_dir);
1332
1333 /* Add an entry to the file name table. */
1334 void add_file_name (const char *name, dir_index d_index,
1335 unsigned int mod_time, unsigned int length);
1336
1337 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1338 is out of bounds. */
1339 const char *include_dir_at (dir_index index) const
1340 {
1341 /* Convert directory index number (1-based) to vector index
1342 (0-based). */
1343 size_t vec_index = to_underlying (index) - 1;
1344
1345 if (vec_index >= include_dirs.size ())
1346 return NULL;
1347 return include_dirs[vec_index];
1348 }
1349
1350 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1351 is out of bounds. */
1352 file_entry *file_name_at (file_name_index index)
1353 {
1354 /* Convert file name index number (1-based) to vector index
1355 (0-based). */
1356 size_t vec_index = to_underlying (index) - 1;
1357
1358 if (vec_index >= file_names.size ())
1359 return NULL;
1360 return &file_names[vec_index];
1361 }
1362
1363 /* Const version of the above. */
1364 const file_entry *file_name_at (unsigned int index) const
1365 {
1366 if (index >= file_names.size ())
1367 return NULL;
1368 return &file_names[index];
1369 }
1370
1371 /* Offset of line number information in .debug_line section. */
1372 sect_offset sect_off {};
1373
1374 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1375 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1376
1377 unsigned int total_length {};
1378 unsigned short version {};
1379 unsigned int header_length {};
1380 unsigned char minimum_instruction_length {};
1381 unsigned char maximum_ops_per_instruction {};
1382 unsigned char default_is_stmt {};
1383 int line_base {};
1384 unsigned char line_range {};
1385 unsigned char opcode_base {};
1386
1387 /* standard_opcode_lengths[i] is the number of operands for the
1388 standard opcode whose value is i. This means that
1389 standard_opcode_lengths[0] is unused, and the last meaningful
1390 element is standard_opcode_lengths[opcode_base - 1]. */
1391 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1392
1393 /* The include_directories table. Note these are observing
1394 pointers. The memory is owned by debug_line_buffer. */
1395 std::vector<const char *> include_dirs;
1396
1397 /* The file_names table. */
1398 std::vector<file_entry> file_names;
1399
1400 /* The start and end of the statement program following this
1401 header. These point into dwarf2_per_objfile->line_buffer. */
1402 const gdb_byte *statement_program_start {}, *statement_program_end {};
1403 };
1404
1405 typedef std::unique_ptr<line_header> line_header_up;
1406
1407 const char *
1408 file_entry::include_dir (const line_header *lh) const
1409 {
1410 return lh->include_dir_at (d_index);
1411 }
1412
1413 /* When we construct a partial symbol table entry we only
1414 need this much information. */
1415 struct partial_die_info : public allocate_on_obstack
1416 {
1417 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1418
1419 /* Disable assign but still keep copy ctor, which is needed
1420 load_partial_dies. */
1421 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1422
1423 /* Adjust the partial die before generating a symbol for it. This
1424 function may set the is_external flag or change the DIE's
1425 name. */
1426 void fixup (struct dwarf2_cu *cu);
1427
1428 /* Read a minimal amount of information into the minimal die
1429 structure. */
1430 const gdb_byte *read (const struct die_reader_specs *reader,
1431 const struct abbrev_info &abbrev,
1432 const gdb_byte *info_ptr);
1433
1434 /* Offset of this DIE. */
1435 const sect_offset sect_off;
1436
1437 /* DWARF-2 tag for this DIE. */
1438 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1439
1440 /* Assorted flags describing the data found in this DIE. */
1441 const unsigned int has_children : 1;
1442
1443 unsigned int is_external : 1;
1444 unsigned int is_declaration : 1;
1445 unsigned int has_type : 1;
1446 unsigned int has_specification : 1;
1447 unsigned int has_pc_info : 1;
1448 unsigned int may_be_inlined : 1;
1449
1450 /* This DIE has been marked DW_AT_main_subprogram. */
1451 unsigned int main_subprogram : 1;
1452
1453 /* Flag set if the SCOPE field of this structure has been
1454 computed. */
1455 unsigned int scope_set : 1;
1456
1457 /* Flag set if the DIE has a byte_size attribute. */
1458 unsigned int has_byte_size : 1;
1459
1460 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1461 unsigned int has_const_value : 1;
1462
1463 /* Flag set if any of the DIE's children are template arguments. */
1464 unsigned int has_template_arguments : 1;
1465
1466 /* Flag set if fixup has been called on this die. */
1467 unsigned int fixup_called : 1;
1468
1469 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1470 unsigned int is_dwz : 1;
1471
1472 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1473 unsigned int spec_is_dwz : 1;
1474
1475 /* The name of this DIE. Normally the value of DW_AT_name, but
1476 sometimes a default name for unnamed DIEs. */
1477 const char *name = nullptr;
1478
1479 /* The linkage name, if present. */
1480 const char *linkage_name = nullptr;
1481
1482 /* The scope to prepend to our children. This is generally
1483 allocated on the comp_unit_obstack, so will disappear
1484 when this compilation unit leaves the cache. */
1485 const char *scope = nullptr;
1486
1487 /* Some data associated with the partial DIE. The tag determines
1488 which field is live. */
1489 union
1490 {
1491 /* The location description associated with this DIE, if any. */
1492 struct dwarf_block *locdesc;
1493 /* The offset of an import, for DW_TAG_imported_unit. */
1494 sect_offset sect_off;
1495 } d {};
1496
1497 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1498 CORE_ADDR lowpc = 0;
1499 CORE_ADDR highpc = 0;
1500
1501 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1502 DW_AT_sibling, if any. */
1503 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1504 could return DW_AT_sibling values to its caller load_partial_dies. */
1505 const gdb_byte *sibling = nullptr;
1506
1507 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1508 DW_AT_specification (or DW_AT_abstract_origin or
1509 DW_AT_extension). */
1510 sect_offset spec_offset {};
1511
1512 /* Pointers to this DIE's parent, first child, and next sibling,
1513 if any. */
1514 struct partial_die_info *die_parent = nullptr;
1515 struct partial_die_info *die_child = nullptr;
1516 struct partial_die_info *die_sibling = nullptr;
1517
1518 friend struct partial_die_info *
1519 dwarf2_cu::find_partial_die (sect_offset sect_off);
1520
1521 private:
1522 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1523 partial_die_info (sect_offset sect_off)
1524 : partial_die_info (sect_off, DW_TAG_padding, 0)
1525 {
1526 }
1527
1528 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1529 int has_children_)
1530 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1531 {
1532 is_external = 0;
1533 is_declaration = 0;
1534 has_type = 0;
1535 has_specification = 0;
1536 has_pc_info = 0;
1537 may_be_inlined = 0;
1538 main_subprogram = 0;
1539 scope_set = 0;
1540 has_byte_size = 0;
1541 has_const_value = 0;
1542 has_template_arguments = 0;
1543 fixup_called = 0;
1544 is_dwz = 0;
1545 spec_is_dwz = 0;
1546 }
1547 };
1548
1549 /* This data structure holds the information of an abbrev. */
1550 struct abbrev_info
1551 {
1552 unsigned int number; /* number identifying abbrev */
1553 enum dwarf_tag tag; /* dwarf tag */
1554 unsigned short has_children; /* boolean */
1555 unsigned short num_attrs; /* number of attributes */
1556 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1557 struct abbrev_info *next; /* next in chain */
1558 };
1559
1560 struct attr_abbrev
1561 {
1562 ENUM_BITFIELD(dwarf_attribute) name : 16;
1563 ENUM_BITFIELD(dwarf_form) form : 16;
1564
1565 /* It is valid only if FORM is DW_FORM_implicit_const. */
1566 LONGEST implicit_const;
1567 };
1568
1569 /* Size of abbrev_table.abbrev_hash_table. */
1570 #define ABBREV_HASH_SIZE 121
1571
1572 /* Top level data structure to contain an abbreviation table. */
1573
1574 struct abbrev_table
1575 {
1576 explicit abbrev_table (sect_offset off)
1577 : sect_off (off)
1578 {
1579 m_abbrevs =
1580 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1581 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1582 }
1583
1584 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1585
1586 /* Allocate space for a struct abbrev_info object in
1587 ABBREV_TABLE. */
1588 struct abbrev_info *alloc_abbrev ();
1589
1590 /* Add an abbreviation to the table. */
1591 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1592
1593 /* Look up an abbrev in the table.
1594 Returns NULL if the abbrev is not found. */
1595
1596 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1597
1598
1599 /* Where the abbrev table came from.
1600 This is used as a sanity check when the table is used. */
1601 const sect_offset sect_off;
1602
1603 /* Storage for the abbrev table. */
1604 auto_obstack abbrev_obstack;
1605
1606 private:
1607
1608 /* Hash table of abbrevs.
1609 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1610 It could be statically allocated, but the previous code didn't so we
1611 don't either. */
1612 struct abbrev_info **m_abbrevs;
1613 };
1614
1615 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1616
1617 /* Attributes have a name and a value. */
1618 struct attribute
1619 {
1620 ENUM_BITFIELD(dwarf_attribute) name : 16;
1621 ENUM_BITFIELD(dwarf_form) form : 15;
1622
1623 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1624 field should be in u.str (existing only for DW_STRING) but it is kept
1625 here for better struct attribute alignment. */
1626 unsigned int string_is_canonical : 1;
1627
1628 union
1629 {
1630 const char *str;
1631 struct dwarf_block *blk;
1632 ULONGEST unsnd;
1633 LONGEST snd;
1634 CORE_ADDR addr;
1635 ULONGEST signature;
1636 }
1637 u;
1638 };
1639
1640 /* This data structure holds a complete die structure. */
1641 struct die_info
1642 {
1643 /* DWARF-2 tag for this DIE. */
1644 ENUM_BITFIELD(dwarf_tag) tag : 16;
1645
1646 /* Number of attributes */
1647 unsigned char num_attrs;
1648
1649 /* True if we're presently building the full type name for the
1650 type derived from this DIE. */
1651 unsigned char building_fullname : 1;
1652
1653 /* True if this die is in process. PR 16581. */
1654 unsigned char in_process : 1;
1655
1656 /* Abbrev number */
1657 unsigned int abbrev;
1658
1659 /* Offset in .debug_info or .debug_types section. */
1660 sect_offset sect_off;
1661
1662 /* The dies in a compilation unit form an n-ary tree. PARENT
1663 points to this die's parent; CHILD points to the first child of
1664 this node; and all the children of a given node are chained
1665 together via their SIBLING fields. */
1666 struct die_info *child; /* Its first child, if any. */
1667 struct die_info *sibling; /* Its next sibling, if any. */
1668 struct die_info *parent; /* Its parent, if any. */
1669
1670 /* An array of attributes, with NUM_ATTRS elements. There may be
1671 zero, but it's not common and zero-sized arrays are not
1672 sufficiently portable C. */
1673 struct attribute attrs[1];
1674 };
1675
1676 /* Get at parts of an attribute structure. */
1677
1678 #define DW_STRING(attr) ((attr)->u.str)
1679 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1680 #define DW_UNSND(attr) ((attr)->u.unsnd)
1681 #define DW_BLOCK(attr) ((attr)->u.blk)
1682 #define DW_SND(attr) ((attr)->u.snd)
1683 #define DW_ADDR(attr) ((attr)->u.addr)
1684 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1685
1686 /* Blocks are a bunch of untyped bytes. */
1687 struct dwarf_block
1688 {
1689 size_t size;
1690
1691 /* Valid only if SIZE is not zero. */
1692 const gdb_byte *data;
1693 };
1694
1695 #ifndef ATTR_ALLOC_CHUNK
1696 #define ATTR_ALLOC_CHUNK 4
1697 #endif
1698
1699 /* Allocate fields for structs, unions and enums in this size. */
1700 #ifndef DW_FIELD_ALLOC_CHUNK
1701 #define DW_FIELD_ALLOC_CHUNK 4
1702 #endif
1703
1704 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1705 but this would require a corresponding change in unpack_field_as_long
1706 and friends. */
1707 static int bits_per_byte = 8;
1708
1709 /* When reading a variant or variant part, we track a bit more
1710 information about the field, and store it in an object of this
1711 type. */
1712
1713 struct variant_field
1714 {
1715 /* If we see a DW_TAG_variant, then this will be the discriminant
1716 value. */
1717 ULONGEST discriminant_value;
1718 /* If we see a DW_TAG_variant, then this will be set if this is the
1719 default branch. */
1720 bool default_branch;
1721 /* While reading a DW_TAG_variant_part, this will be set if this
1722 field is the discriminant. */
1723 bool is_discriminant;
1724 };
1725
1726 struct nextfield
1727 {
1728 struct nextfield *next;
1729 int accessibility;
1730 int virtuality;
1731 /* Extra information to describe a variant or variant part. */
1732 struct variant_field variant;
1733 struct field field;
1734 };
1735
1736 struct nextfnfield
1737 {
1738 struct nextfnfield *next;
1739 struct fn_field fnfield;
1740 };
1741
1742 struct fnfieldlist
1743 {
1744 const char *name;
1745 int length;
1746 struct nextfnfield *head;
1747 };
1748
1749 struct decl_field_list
1750 {
1751 struct decl_field field;
1752 struct decl_field_list *next;
1753 };
1754
1755 /* The routines that read and process dies for a C struct or C++ class
1756 pass lists of data member fields and lists of member function fields
1757 in an instance of a field_info structure, as defined below. */
1758 struct field_info
1759 {
1760 /* List of data member and baseclasses fields. */
1761 struct nextfield *fields, *baseclasses;
1762
1763 /* Number of fields (including baseclasses). */
1764 int nfields;
1765
1766 /* Number of baseclasses. */
1767 int nbaseclasses;
1768
1769 /* Set if the accesibility of one of the fields is not public. */
1770 int non_public_fields;
1771
1772 /* Member function fieldlist array, contains name of possibly overloaded
1773 member function, number of overloaded member functions and a pointer
1774 to the head of the member function field chain. */
1775 struct fnfieldlist *fnfieldlists;
1776
1777 /* Number of entries in the fnfieldlists array. */
1778 int nfnfields;
1779
1780 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1781 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1782 struct decl_field_list *typedef_field_list;
1783 unsigned typedef_field_list_count;
1784
1785 /* Nested types defined by this class and the number of elements in this
1786 list. */
1787 struct decl_field_list *nested_types_list;
1788 unsigned nested_types_list_count;
1789 };
1790
1791 /* One item on the queue of compilation units to read in full symbols
1792 for. */
1793 struct dwarf2_queue_item
1794 {
1795 struct dwarf2_per_cu_data *per_cu;
1796 enum language pretend_language;
1797 struct dwarf2_queue_item *next;
1798 };
1799
1800 /* The current queue. */
1801 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1802
1803 /* Loaded secondary compilation units are kept in memory until they
1804 have not been referenced for the processing of this many
1805 compilation units. Set this to zero to disable caching. Cache
1806 sizes of up to at least twenty will improve startup time for
1807 typical inter-CU-reference binaries, at an obvious memory cost. */
1808 static int dwarf_max_cache_age = 5;
1809 static void
1810 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1811 struct cmd_list_element *c, const char *value)
1812 {
1813 fprintf_filtered (file, _("The upper bound on the age of cached "
1814 "DWARF compilation units is %s.\n"),
1815 value);
1816 }
1817 \f
1818 /* local function prototypes */
1819
1820 static const char *get_section_name (const struct dwarf2_section_info *);
1821
1822 static const char *get_section_file_name (const struct dwarf2_section_info *);
1823
1824 static void dwarf2_find_base_address (struct die_info *die,
1825 struct dwarf2_cu *cu);
1826
1827 static struct partial_symtab *create_partial_symtab
1828 (struct dwarf2_per_cu_data *per_cu, const char *name);
1829
1830 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1831 const gdb_byte *info_ptr,
1832 struct die_info *type_unit_die,
1833 int has_children, void *data);
1834
1835 static void dwarf2_build_psymtabs_hard
1836 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1837
1838 static void scan_partial_symbols (struct partial_die_info *,
1839 CORE_ADDR *, CORE_ADDR *,
1840 int, struct dwarf2_cu *);
1841
1842 static void add_partial_symbol (struct partial_die_info *,
1843 struct dwarf2_cu *);
1844
1845 static void add_partial_namespace (struct partial_die_info *pdi,
1846 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1847 int set_addrmap, struct dwarf2_cu *cu);
1848
1849 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1850 CORE_ADDR *highpc, int set_addrmap,
1851 struct dwarf2_cu *cu);
1852
1853 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1854 struct dwarf2_cu *cu);
1855
1856 static void add_partial_subprogram (struct partial_die_info *pdi,
1857 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1858 int need_pc, struct dwarf2_cu *cu);
1859
1860 static void dwarf2_read_symtab (struct partial_symtab *,
1861 struct objfile *);
1862
1863 static void psymtab_to_symtab_1 (struct partial_symtab *);
1864
1865 static abbrev_table_up abbrev_table_read_table
1866 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1867 sect_offset);
1868
1869 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1870
1871 static struct partial_die_info *load_partial_dies
1872 (const struct die_reader_specs *, const gdb_byte *, int);
1873
1874 static struct partial_die_info *find_partial_die (sect_offset, int,
1875 struct dwarf2_cu *);
1876
1877 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1878 struct attribute *, struct attr_abbrev *,
1879 const gdb_byte *);
1880
1881 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1882
1883 static int read_1_signed_byte (bfd *, const gdb_byte *);
1884
1885 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1886
1887 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1888
1889 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1890
1891 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1892 unsigned int *);
1893
1894 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1895
1896 static LONGEST read_checked_initial_length_and_offset
1897 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1898 unsigned int *, unsigned int *);
1899
1900 static LONGEST read_offset (bfd *, const gdb_byte *,
1901 const struct comp_unit_head *,
1902 unsigned int *);
1903
1904 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1905
1906 static sect_offset read_abbrev_offset
1907 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1908 struct dwarf2_section_info *, sect_offset);
1909
1910 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1911
1912 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1913
1914 static const char *read_indirect_string
1915 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1916 const struct comp_unit_head *, unsigned int *);
1917
1918 static const char *read_indirect_line_string
1919 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1920 const struct comp_unit_head *, unsigned int *);
1921
1922 static const char *read_indirect_string_at_offset
1923 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1924 LONGEST str_offset);
1925
1926 static const char *read_indirect_string_from_dwz
1927 (struct objfile *objfile, struct dwz_file *, LONGEST);
1928
1929 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1930
1931 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1932 const gdb_byte *,
1933 unsigned int *);
1934
1935 static const char *read_str_index (const struct die_reader_specs *reader,
1936 ULONGEST str_index);
1937
1938 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1939
1940 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1941 struct dwarf2_cu *);
1942
1943 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1944 unsigned int);
1945
1946 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1947 struct dwarf2_cu *cu);
1948
1949 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1950 struct dwarf2_cu *cu);
1951
1952 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1953
1954 static struct die_info *die_specification (struct die_info *die,
1955 struct dwarf2_cu **);
1956
1957 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1958 struct dwarf2_cu *cu);
1959
1960 static void dwarf_decode_lines (struct line_header *, const char *,
1961 struct dwarf2_cu *, struct partial_symtab *,
1962 CORE_ADDR, int decode_mapping);
1963
1964 static void dwarf2_start_subfile (const char *, const char *);
1965
1966 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1967 const char *, const char *,
1968 CORE_ADDR);
1969
1970 static struct symbol *new_symbol (struct die_info *, struct type *,
1971 struct dwarf2_cu *, struct symbol * = NULL);
1972
1973 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1974 struct dwarf2_cu *);
1975
1976 static void dwarf2_const_value_attr (const struct attribute *attr,
1977 struct type *type,
1978 const char *name,
1979 struct obstack *obstack,
1980 struct dwarf2_cu *cu, LONGEST *value,
1981 const gdb_byte **bytes,
1982 struct dwarf2_locexpr_baton **baton);
1983
1984 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1985
1986 static int need_gnat_info (struct dwarf2_cu *);
1987
1988 static struct type *die_descriptive_type (struct die_info *,
1989 struct dwarf2_cu *);
1990
1991 static void set_descriptive_type (struct type *, struct die_info *,
1992 struct dwarf2_cu *);
1993
1994 static struct type *die_containing_type (struct die_info *,
1995 struct dwarf2_cu *);
1996
1997 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1998 struct dwarf2_cu *);
1999
2000 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
2001
2002 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
2003
2004 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
2005
2006 static char *typename_concat (struct obstack *obs, const char *prefix,
2007 const char *suffix, int physname,
2008 struct dwarf2_cu *cu);
2009
2010 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
2011
2012 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
2013
2014 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
2015
2016 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
2017
2018 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
2019
2020 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
2021
2022 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
2023 struct dwarf2_cu *, struct partial_symtab *);
2024
2025 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
2026 values. Keep the items ordered with increasing constraints compliance. */
2027 enum pc_bounds_kind
2028 {
2029 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
2030 PC_BOUNDS_NOT_PRESENT,
2031
2032 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
2033 were present but they do not form a valid range of PC addresses. */
2034 PC_BOUNDS_INVALID,
2035
2036 /* Discontiguous range was found - that is DW_AT_ranges was found. */
2037 PC_BOUNDS_RANGES,
2038
2039 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
2040 PC_BOUNDS_HIGH_LOW,
2041 };
2042
2043 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
2044 CORE_ADDR *, CORE_ADDR *,
2045 struct dwarf2_cu *,
2046 struct partial_symtab *);
2047
2048 static void get_scope_pc_bounds (struct die_info *,
2049 CORE_ADDR *, CORE_ADDR *,
2050 struct dwarf2_cu *);
2051
2052 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
2053 CORE_ADDR, struct dwarf2_cu *);
2054
2055 static void dwarf2_add_field (struct field_info *, struct die_info *,
2056 struct dwarf2_cu *);
2057
2058 static void dwarf2_attach_fields_to_type (struct field_info *,
2059 struct type *, struct dwarf2_cu *);
2060
2061 static void dwarf2_add_member_fn (struct field_info *,
2062 struct die_info *, struct type *,
2063 struct dwarf2_cu *);
2064
2065 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
2066 struct type *,
2067 struct dwarf2_cu *);
2068
2069 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
2070
2071 static void read_common_block (struct die_info *, struct dwarf2_cu *);
2072
2073 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
2074
2075 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
2076
2077 static struct using_direct **using_directives (enum language);
2078
2079 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
2080
2081 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2082
2083 static struct type *read_module_type (struct die_info *die,
2084 struct dwarf2_cu *cu);
2085
2086 static const char *namespace_name (struct die_info *die,
2087 int *is_anonymous, struct dwarf2_cu *);
2088
2089 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2090
2091 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2092
2093 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2094 struct dwarf2_cu *);
2095
2096 static struct die_info *read_die_and_siblings_1
2097 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2098 struct die_info *);
2099
2100 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2101 const gdb_byte *info_ptr,
2102 const gdb_byte **new_info_ptr,
2103 struct die_info *parent);
2104
2105 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2106 struct die_info **, const gdb_byte *,
2107 int *, int);
2108
2109 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2110 struct die_info **, const gdb_byte *,
2111 int *);
2112
2113 static void process_die (struct die_info *, struct dwarf2_cu *);
2114
2115 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2116 struct obstack *);
2117
2118 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2119
2120 static const char *dwarf2_full_name (const char *name,
2121 struct die_info *die,
2122 struct dwarf2_cu *cu);
2123
2124 static const char *dwarf2_physname (const char *name, struct die_info *die,
2125 struct dwarf2_cu *cu);
2126
2127 static struct die_info *dwarf2_extension (struct die_info *die,
2128 struct dwarf2_cu **);
2129
2130 static const char *dwarf_tag_name (unsigned int);
2131
2132 static const char *dwarf_attr_name (unsigned int);
2133
2134 static const char *dwarf_form_name (unsigned int);
2135
2136 static const char *dwarf_bool_name (unsigned int);
2137
2138 static const char *dwarf_type_encoding_name (unsigned int);
2139
2140 static struct die_info *sibling_die (struct die_info *);
2141
2142 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2143
2144 static void dump_die_for_error (struct die_info *);
2145
2146 static void dump_die_1 (struct ui_file *, int level, int max_level,
2147 struct die_info *);
2148
2149 /*static*/ void dump_die (struct die_info *, int max_level);
2150
2151 static void store_in_ref_table (struct die_info *,
2152 struct dwarf2_cu *);
2153
2154 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2155
2156 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2157
2158 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2159 const struct attribute *,
2160 struct dwarf2_cu **);
2161
2162 static struct die_info *follow_die_ref (struct die_info *,
2163 const struct attribute *,
2164 struct dwarf2_cu **);
2165
2166 static struct die_info *follow_die_sig (struct die_info *,
2167 const struct attribute *,
2168 struct dwarf2_cu **);
2169
2170 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2171 struct dwarf2_cu *);
2172
2173 static struct type *get_DW_AT_signature_type (struct die_info *,
2174 const struct attribute *,
2175 struct dwarf2_cu *);
2176
2177 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2178
2179 static void read_signatured_type (struct signatured_type *);
2180
2181 static int attr_to_dynamic_prop (const struct attribute *attr,
2182 struct die_info *die, struct dwarf2_cu *cu,
2183 struct dynamic_prop *prop);
2184
2185 /* memory allocation interface */
2186
2187 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2188
2189 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2190
2191 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2192
2193 static int attr_form_is_block (const struct attribute *);
2194
2195 static int attr_form_is_section_offset (const struct attribute *);
2196
2197 static int attr_form_is_constant (const struct attribute *);
2198
2199 static int attr_form_is_ref (const struct attribute *);
2200
2201 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2202 struct dwarf2_loclist_baton *baton,
2203 const struct attribute *attr);
2204
2205 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2206 struct symbol *sym,
2207 struct dwarf2_cu *cu,
2208 int is_block);
2209
2210 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2211 const gdb_byte *info_ptr,
2212 struct abbrev_info *abbrev);
2213
2214 static hashval_t partial_die_hash (const void *item);
2215
2216 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2217
2218 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2219 (sect_offset sect_off, unsigned int offset_in_dwz,
2220 struct dwarf2_per_objfile *dwarf2_per_objfile);
2221
2222 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2223 struct die_info *comp_unit_die,
2224 enum language pretend_language);
2225
2226 static void free_cached_comp_units (void *);
2227
2228 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2229
2230 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2231
2232 static struct type *set_die_type (struct die_info *, struct type *,
2233 struct dwarf2_cu *);
2234
2235 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2236
2237 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2238
2239 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2240 enum language);
2241
2242 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2243 enum language);
2244
2245 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2246 enum language);
2247
2248 static void dwarf2_add_dependence (struct dwarf2_cu *,
2249 struct dwarf2_per_cu_data *);
2250
2251 static void dwarf2_mark (struct dwarf2_cu *);
2252
2253 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2254
2255 static struct type *get_die_type_at_offset (sect_offset,
2256 struct dwarf2_per_cu_data *);
2257
2258 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2259
2260 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2261 enum language pretend_language);
2262
2263 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2264
2265 /* Class, the destructor of which frees all allocated queue entries. This
2266 will only have work to do if an error was thrown while processing the
2267 dwarf. If no error was thrown then the queue entries should have all
2268 been processed, and freed, as we went along. */
2269
2270 class dwarf2_queue_guard
2271 {
2272 public:
2273 dwarf2_queue_guard () = default;
2274
2275 /* Free any entries remaining on the queue. There should only be
2276 entries left if we hit an error while processing the dwarf. */
2277 ~dwarf2_queue_guard ()
2278 {
2279 struct dwarf2_queue_item *item, *last;
2280
2281 item = dwarf2_queue;
2282 while (item)
2283 {
2284 /* Anything still marked queued is likely to be in an
2285 inconsistent state, so discard it. */
2286 if (item->per_cu->queued)
2287 {
2288 if (item->per_cu->cu != NULL)
2289 free_one_cached_comp_unit (item->per_cu);
2290 item->per_cu->queued = 0;
2291 }
2292
2293 last = item;
2294 item = item->next;
2295 xfree (last);
2296 }
2297
2298 dwarf2_queue = dwarf2_queue_tail = NULL;
2299 }
2300 };
2301
2302 /* The return type of find_file_and_directory. Note, the enclosed
2303 string pointers are only valid while this object is valid. */
2304
2305 struct file_and_directory
2306 {
2307 /* The filename. This is never NULL. */
2308 const char *name;
2309
2310 /* The compilation directory. NULL if not known. If we needed to
2311 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2312 points directly to the DW_AT_comp_dir string attribute owned by
2313 the obstack that owns the DIE. */
2314 const char *comp_dir;
2315
2316 /* If we needed to build a new string for comp_dir, this is what
2317 owns the storage. */
2318 std::string comp_dir_storage;
2319 };
2320
2321 static file_and_directory find_file_and_directory (struct die_info *die,
2322 struct dwarf2_cu *cu);
2323
2324 static char *file_full_name (int file, struct line_header *lh,
2325 const char *comp_dir);
2326
2327 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2328 enum class rcuh_kind { COMPILE, TYPE };
2329
2330 static const gdb_byte *read_and_check_comp_unit_head
2331 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2332 struct comp_unit_head *header,
2333 struct dwarf2_section_info *section,
2334 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2335 rcuh_kind section_kind);
2336
2337 static void init_cutu_and_read_dies
2338 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2339 int use_existing_cu, int keep,
2340 die_reader_func_ftype *die_reader_func, void *data);
2341
2342 static void init_cutu_and_read_dies_simple
2343 (struct dwarf2_per_cu_data *this_cu,
2344 die_reader_func_ftype *die_reader_func, void *data);
2345
2346 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2347
2348 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2349
2350 static struct dwo_unit *lookup_dwo_unit_in_dwp
2351 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2352 struct dwp_file *dwp_file, const char *comp_dir,
2353 ULONGEST signature, int is_debug_types);
2354
2355 static struct dwp_file *get_dwp_file
2356 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2357
2358 static struct dwo_unit *lookup_dwo_comp_unit
2359 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2360
2361 static struct dwo_unit *lookup_dwo_type_unit
2362 (struct signatured_type *, const char *, const char *);
2363
2364 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2365
2366 static void free_dwo_file_cleanup (void *);
2367
2368 struct free_dwo_file_cleanup_data
2369 {
2370 struct dwo_file *dwo_file;
2371 struct dwarf2_per_objfile *dwarf2_per_objfile;
2372 };
2373
2374 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2375
2376 static void check_producer (struct dwarf2_cu *cu);
2377
2378 static void free_line_header_voidp (void *arg);
2379 \f
2380 /* Various complaints about symbol reading that don't abort the process. */
2381
2382 static void
2383 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2384 {
2385 complaint (&symfile_complaints,
2386 _("statement list doesn't fit in .debug_line section"));
2387 }
2388
2389 static void
2390 dwarf2_debug_line_missing_file_complaint (void)
2391 {
2392 complaint (&symfile_complaints,
2393 _(".debug_line section has line data without a file"));
2394 }
2395
2396 static void
2397 dwarf2_debug_line_missing_end_sequence_complaint (void)
2398 {
2399 complaint (&symfile_complaints,
2400 _(".debug_line section has line "
2401 "program sequence without an end"));
2402 }
2403
2404 static void
2405 dwarf2_complex_location_expr_complaint (void)
2406 {
2407 complaint (&symfile_complaints, _("location expression too complex"));
2408 }
2409
2410 static void
2411 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2412 int arg3)
2413 {
2414 complaint (&symfile_complaints,
2415 _("const value length mismatch for '%s', got %d, expected %d"),
2416 arg1, arg2, arg3);
2417 }
2418
2419 static void
2420 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2421 {
2422 complaint (&symfile_complaints,
2423 _("debug info runs off end of %s section"
2424 " [in module %s]"),
2425 get_section_name (section),
2426 get_section_file_name (section));
2427 }
2428
2429 static void
2430 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2431 {
2432 complaint (&symfile_complaints,
2433 _("macro debug info contains a "
2434 "malformed macro definition:\n`%s'"),
2435 arg1);
2436 }
2437
2438 static void
2439 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2440 {
2441 complaint (&symfile_complaints,
2442 _("invalid attribute class or form for '%s' in '%s'"),
2443 arg1, arg2);
2444 }
2445
2446 /* Hash function for line_header_hash. */
2447
2448 static hashval_t
2449 line_header_hash (const struct line_header *ofs)
2450 {
2451 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2452 }
2453
2454 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2455
2456 static hashval_t
2457 line_header_hash_voidp (const void *item)
2458 {
2459 const struct line_header *ofs = (const struct line_header *) item;
2460
2461 return line_header_hash (ofs);
2462 }
2463
2464 /* Equality function for line_header_hash. */
2465
2466 static int
2467 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2468 {
2469 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2470 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2471
2472 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2473 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2474 }
2475
2476 \f
2477
2478 /* Read the given attribute value as an address, taking the attribute's
2479 form into account. */
2480
2481 static CORE_ADDR
2482 attr_value_as_address (struct attribute *attr)
2483 {
2484 CORE_ADDR addr;
2485
2486 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2487 {
2488 /* Aside from a few clearly defined exceptions, attributes that
2489 contain an address must always be in DW_FORM_addr form.
2490 Unfortunately, some compilers happen to be violating this
2491 requirement by encoding addresses using other forms, such
2492 as DW_FORM_data4 for example. For those broken compilers,
2493 we try to do our best, without any guarantee of success,
2494 to interpret the address correctly. It would also be nice
2495 to generate a complaint, but that would require us to maintain
2496 a list of legitimate cases where a non-address form is allowed,
2497 as well as update callers to pass in at least the CU's DWARF
2498 version. This is more overhead than what we're willing to
2499 expand for a pretty rare case. */
2500 addr = DW_UNSND (attr);
2501 }
2502 else
2503 addr = DW_ADDR (attr);
2504
2505 return addr;
2506 }
2507
2508 /* The suffix for an index file. */
2509 #define INDEX4_SUFFIX ".gdb-index"
2510 #define INDEX5_SUFFIX ".debug_names"
2511 #define DEBUG_STR_SUFFIX ".debug_str"
2512
2513 /* See declaration. */
2514
2515 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2516 const dwarf2_debug_sections *names)
2517 : objfile (objfile_)
2518 {
2519 if (names == NULL)
2520 names = &dwarf2_elf_names;
2521
2522 bfd *obfd = objfile->obfd;
2523
2524 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2525 locate_sections (obfd, sec, *names);
2526 }
2527
2528 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2529
2530 dwarf2_per_objfile::~dwarf2_per_objfile ()
2531 {
2532 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2533 free_cached_comp_units ();
2534
2535 if (quick_file_names_table)
2536 htab_delete (quick_file_names_table);
2537
2538 if (line_header_hash)
2539 htab_delete (line_header_hash);
2540
2541 for (int ix = 0; ix < n_comp_units; ++ix)
2542 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2543
2544 for (int ix = 0; ix < n_type_units; ++ix)
2545 VEC_free (dwarf2_per_cu_ptr,
2546 all_type_units[ix]->per_cu.imported_symtabs);
2547 xfree (all_type_units);
2548
2549 VEC_free (dwarf2_section_info_def, types);
2550
2551 if (dwo_files != NULL)
2552 free_dwo_files (dwo_files, objfile);
2553 if (dwp_file != NULL)
2554 gdb_bfd_unref (dwp_file->dbfd);
2555
2556 if (dwz_file != NULL && dwz_file->dwz_bfd)
2557 gdb_bfd_unref (dwz_file->dwz_bfd);
2558
2559 if (index_table != NULL)
2560 index_table->~mapped_index ();
2561
2562 /* Everything else should be on the objfile obstack. */
2563 }
2564
2565 /* See declaration. */
2566
2567 void
2568 dwarf2_per_objfile::free_cached_comp_units ()
2569 {
2570 dwarf2_per_cu_data *per_cu = read_in_chain;
2571 dwarf2_per_cu_data **last_chain = &read_in_chain;
2572 while (per_cu != NULL)
2573 {
2574 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2575
2576 delete per_cu->cu;
2577 *last_chain = next_cu;
2578 per_cu = next_cu;
2579 }
2580 }
2581
2582 /* Try to locate the sections we need for DWARF 2 debugging
2583 information and return true if we have enough to do something.
2584 NAMES points to the dwarf2 section names, or is NULL if the standard
2585 ELF names are used. */
2586
2587 int
2588 dwarf2_has_info (struct objfile *objfile,
2589 const struct dwarf2_debug_sections *names)
2590 {
2591 if (objfile->flags & OBJF_READNEVER)
2592 return 0;
2593
2594 struct dwarf2_per_objfile *dwarf2_per_objfile
2595 = get_dwarf2_per_objfile (objfile);
2596
2597 if (dwarf2_per_objfile == NULL)
2598 {
2599 /* Initialize per-objfile state. */
2600 dwarf2_per_objfile
2601 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2602 names);
2603 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2604 }
2605 return (!dwarf2_per_objfile->info.is_virtual
2606 && dwarf2_per_objfile->info.s.section != NULL
2607 && !dwarf2_per_objfile->abbrev.is_virtual
2608 && dwarf2_per_objfile->abbrev.s.section != NULL);
2609 }
2610
2611 /* Return the containing section of virtual section SECTION. */
2612
2613 static struct dwarf2_section_info *
2614 get_containing_section (const struct dwarf2_section_info *section)
2615 {
2616 gdb_assert (section->is_virtual);
2617 return section->s.containing_section;
2618 }
2619
2620 /* Return the bfd owner of SECTION. */
2621
2622 static struct bfd *
2623 get_section_bfd_owner (const struct dwarf2_section_info *section)
2624 {
2625 if (section->is_virtual)
2626 {
2627 section = get_containing_section (section);
2628 gdb_assert (!section->is_virtual);
2629 }
2630 return section->s.section->owner;
2631 }
2632
2633 /* Return the bfd section of SECTION.
2634 Returns NULL if the section is not present. */
2635
2636 static asection *
2637 get_section_bfd_section (const struct dwarf2_section_info *section)
2638 {
2639 if (section->is_virtual)
2640 {
2641 section = get_containing_section (section);
2642 gdb_assert (!section->is_virtual);
2643 }
2644 return section->s.section;
2645 }
2646
2647 /* Return the name of SECTION. */
2648
2649 static const char *
2650 get_section_name (const struct dwarf2_section_info *section)
2651 {
2652 asection *sectp = get_section_bfd_section (section);
2653
2654 gdb_assert (sectp != NULL);
2655 return bfd_section_name (get_section_bfd_owner (section), sectp);
2656 }
2657
2658 /* Return the name of the file SECTION is in. */
2659
2660 static const char *
2661 get_section_file_name (const struct dwarf2_section_info *section)
2662 {
2663 bfd *abfd = get_section_bfd_owner (section);
2664
2665 return bfd_get_filename (abfd);
2666 }
2667
2668 /* Return the id of SECTION.
2669 Returns 0 if SECTION doesn't exist. */
2670
2671 static int
2672 get_section_id (const struct dwarf2_section_info *section)
2673 {
2674 asection *sectp = get_section_bfd_section (section);
2675
2676 if (sectp == NULL)
2677 return 0;
2678 return sectp->id;
2679 }
2680
2681 /* Return the flags of SECTION.
2682 SECTION (or containing section if this is a virtual section) must exist. */
2683
2684 static int
2685 get_section_flags (const struct dwarf2_section_info *section)
2686 {
2687 asection *sectp = get_section_bfd_section (section);
2688
2689 gdb_assert (sectp != NULL);
2690 return bfd_get_section_flags (sectp->owner, sectp);
2691 }
2692
2693 /* When loading sections, we look either for uncompressed section or for
2694 compressed section names. */
2695
2696 static int
2697 section_is_p (const char *section_name,
2698 const struct dwarf2_section_names *names)
2699 {
2700 if (names->normal != NULL
2701 && strcmp (section_name, names->normal) == 0)
2702 return 1;
2703 if (names->compressed != NULL
2704 && strcmp (section_name, names->compressed) == 0)
2705 return 1;
2706 return 0;
2707 }
2708
2709 /* See declaration. */
2710
2711 void
2712 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2713 const dwarf2_debug_sections &names)
2714 {
2715 flagword aflag = bfd_get_section_flags (abfd, sectp);
2716
2717 if ((aflag & SEC_HAS_CONTENTS) == 0)
2718 {
2719 }
2720 else if (section_is_p (sectp->name, &names.info))
2721 {
2722 this->info.s.section = sectp;
2723 this->info.size = bfd_get_section_size (sectp);
2724 }
2725 else if (section_is_p (sectp->name, &names.abbrev))
2726 {
2727 this->abbrev.s.section = sectp;
2728 this->abbrev.size = bfd_get_section_size (sectp);
2729 }
2730 else if (section_is_p (sectp->name, &names.line))
2731 {
2732 this->line.s.section = sectp;
2733 this->line.size = bfd_get_section_size (sectp);
2734 }
2735 else if (section_is_p (sectp->name, &names.loc))
2736 {
2737 this->loc.s.section = sectp;
2738 this->loc.size = bfd_get_section_size (sectp);
2739 }
2740 else if (section_is_p (sectp->name, &names.loclists))
2741 {
2742 this->loclists.s.section = sectp;
2743 this->loclists.size = bfd_get_section_size (sectp);
2744 }
2745 else if (section_is_p (sectp->name, &names.macinfo))
2746 {
2747 this->macinfo.s.section = sectp;
2748 this->macinfo.size = bfd_get_section_size (sectp);
2749 }
2750 else if (section_is_p (sectp->name, &names.macro))
2751 {
2752 this->macro.s.section = sectp;
2753 this->macro.size = bfd_get_section_size (sectp);
2754 }
2755 else if (section_is_p (sectp->name, &names.str))
2756 {
2757 this->str.s.section = sectp;
2758 this->str.size = bfd_get_section_size (sectp);
2759 }
2760 else if (section_is_p (sectp->name, &names.line_str))
2761 {
2762 this->line_str.s.section = sectp;
2763 this->line_str.size = bfd_get_section_size (sectp);
2764 }
2765 else if (section_is_p (sectp->name, &names.addr))
2766 {
2767 this->addr.s.section = sectp;
2768 this->addr.size = bfd_get_section_size (sectp);
2769 }
2770 else if (section_is_p (sectp->name, &names.frame))
2771 {
2772 this->frame.s.section = sectp;
2773 this->frame.size = bfd_get_section_size (sectp);
2774 }
2775 else if (section_is_p (sectp->name, &names.eh_frame))
2776 {
2777 this->eh_frame.s.section = sectp;
2778 this->eh_frame.size = bfd_get_section_size (sectp);
2779 }
2780 else if (section_is_p (sectp->name, &names.ranges))
2781 {
2782 this->ranges.s.section = sectp;
2783 this->ranges.size = bfd_get_section_size (sectp);
2784 }
2785 else if (section_is_p (sectp->name, &names.rnglists))
2786 {
2787 this->rnglists.s.section = sectp;
2788 this->rnglists.size = bfd_get_section_size (sectp);
2789 }
2790 else if (section_is_p (sectp->name, &names.types))
2791 {
2792 struct dwarf2_section_info type_section;
2793
2794 memset (&type_section, 0, sizeof (type_section));
2795 type_section.s.section = sectp;
2796 type_section.size = bfd_get_section_size (sectp);
2797
2798 VEC_safe_push (dwarf2_section_info_def, this->types,
2799 &type_section);
2800 }
2801 else if (section_is_p (sectp->name, &names.gdb_index))
2802 {
2803 this->gdb_index.s.section = sectp;
2804 this->gdb_index.size = bfd_get_section_size (sectp);
2805 }
2806 else if (section_is_p (sectp->name, &names.debug_names))
2807 {
2808 this->debug_names.s.section = sectp;
2809 this->debug_names.size = bfd_get_section_size (sectp);
2810 }
2811 else if (section_is_p (sectp->name, &names.debug_aranges))
2812 {
2813 this->debug_aranges.s.section = sectp;
2814 this->debug_aranges.size = bfd_get_section_size (sectp);
2815 }
2816
2817 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2818 && bfd_section_vma (abfd, sectp) == 0)
2819 this->has_section_at_zero = true;
2820 }
2821
2822 /* A helper function that decides whether a section is empty,
2823 or not present. */
2824
2825 static int
2826 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2827 {
2828 if (section->is_virtual)
2829 return section->size == 0;
2830 return section->s.section == NULL || section->size == 0;
2831 }
2832
2833 /* Read the contents of the section INFO.
2834 OBJFILE is the main object file, but not necessarily the file where
2835 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2836 of the DWO file.
2837 If the section is compressed, uncompress it before returning. */
2838
2839 static void
2840 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2841 {
2842 asection *sectp;
2843 bfd *abfd;
2844 gdb_byte *buf, *retbuf;
2845
2846 if (info->readin)
2847 return;
2848 info->buffer = NULL;
2849 info->readin = 1;
2850
2851 if (dwarf2_section_empty_p (info))
2852 return;
2853
2854 sectp = get_section_bfd_section (info);
2855
2856 /* If this is a virtual section we need to read in the real one first. */
2857 if (info->is_virtual)
2858 {
2859 struct dwarf2_section_info *containing_section =
2860 get_containing_section (info);
2861
2862 gdb_assert (sectp != NULL);
2863 if ((sectp->flags & SEC_RELOC) != 0)
2864 {
2865 error (_("Dwarf Error: DWP format V2 with relocations is not"
2866 " supported in section %s [in module %s]"),
2867 get_section_name (info), get_section_file_name (info));
2868 }
2869 dwarf2_read_section (objfile, containing_section);
2870 /* Other code should have already caught virtual sections that don't
2871 fit. */
2872 gdb_assert (info->virtual_offset + info->size
2873 <= containing_section->size);
2874 /* If the real section is empty or there was a problem reading the
2875 section we shouldn't get here. */
2876 gdb_assert (containing_section->buffer != NULL);
2877 info->buffer = containing_section->buffer + info->virtual_offset;
2878 return;
2879 }
2880
2881 /* If the section has relocations, we must read it ourselves.
2882 Otherwise we attach it to the BFD. */
2883 if ((sectp->flags & SEC_RELOC) == 0)
2884 {
2885 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2886 return;
2887 }
2888
2889 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2890 info->buffer = buf;
2891
2892 /* When debugging .o files, we may need to apply relocations; see
2893 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2894 We never compress sections in .o files, so we only need to
2895 try this when the section is not compressed. */
2896 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2897 if (retbuf != NULL)
2898 {
2899 info->buffer = retbuf;
2900 return;
2901 }
2902
2903 abfd = get_section_bfd_owner (info);
2904 gdb_assert (abfd != NULL);
2905
2906 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2907 || bfd_bread (buf, info->size, abfd) != info->size)
2908 {
2909 error (_("Dwarf Error: Can't read DWARF data"
2910 " in section %s [in module %s]"),
2911 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2912 }
2913 }
2914
2915 /* A helper function that returns the size of a section in a safe way.
2916 If you are positive that the section has been read before using the
2917 size, then it is safe to refer to the dwarf2_section_info object's
2918 "size" field directly. In other cases, you must call this
2919 function, because for compressed sections the size field is not set
2920 correctly until the section has been read. */
2921
2922 static bfd_size_type
2923 dwarf2_section_size (struct objfile *objfile,
2924 struct dwarf2_section_info *info)
2925 {
2926 if (!info->readin)
2927 dwarf2_read_section (objfile, info);
2928 return info->size;
2929 }
2930
2931 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2932 SECTION_NAME. */
2933
2934 void
2935 dwarf2_get_section_info (struct objfile *objfile,
2936 enum dwarf2_section_enum sect,
2937 asection **sectp, const gdb_byte **bufp,
2938 bfd_size_type *sizep)
2939 {
2940 struct dwarf2_per_objfile *data
2941 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2942 dwarf2_objfile_data_key);
2943 struct dwarf2_section_info *info;
2944
2945 /* We may see an objfile without any DWARF, in which case we just
2946 return nothing. */
2947 if (data == NULL)
2948 {
2949 *sectp = NULL;
2950 *bufp = NULL;
2951 *sizep = 0;
2952 return;
2953 }
2954 switch (sect)
2955 {
2956 case DWARF2_DEBUG_FRAME:
2957 info = &data->frame;
2958 break;
2959 case DWARF2_EH_FRAME:
2960 info = &data->eh_frame;
2961 break;
2962 default:
2963 gdb_assert_not_reached ("unexpected section");
2964 }
2965
2966 dwarf2_read_section (objfile, info);
2967
2968 *sectp = get_section_bfd_section (info);
2969 *bufp = info->buffer;
2970 *sizep = info->size;
2971 }
2972
2973 /* A helper function to find the sections for a .dwz file. */
2974
2975 static void
2976 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2977 {
2978 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2979
2980 /* Note that we only support the standard ELF names, because .dwz
2981 is ELF-only (at the time of writing). */
2982 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2983 {
2984 dwz_file->abbrev.s.section = sectp;
2985 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2986 }
2987 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2988 {
2989 dwz_file->info.s.section = sectp;
2990 dwz_file->info.size = bfd_get_section_size (sectp);
2991 }
2992 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2993 {
2994 dwz_file->str.s.section = sectp;
2995 dwz_file->str.size = bfd_get_section_size (sectp);
2996 }
2997 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2998 {
2999 dwz_file->line.s.section = sectp;
3000 dwz_file->line.size = bfd_get_section_size (sectp);
3001 }
3002 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
3003 {
3004 dwz_file->macro.s.section = sectp;
3005 dwz_file->macro.size = bfd_get_section_size (sectp);
3006 }
3007 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
3008 {
3009 dwz_file->gdb_index.s.section = sectp;
3010 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
3011 }
3012 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
3013 {
3014 dwz_file->debug_names.s.section = sectp;
3015 dwz_file->debug_names.size = bfd_get_section_size (sectp);
3016 }
3017 }
3018
3019 /* Open the separate '.dwz' debug file, if needed. Return NULL if
3020 there is no .gnu_debugaltlink section in the file. Error if there
3021 is such a section but the file cannot be found. */
3022
3023 static struct dwz_file *
3024 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
3025 {
3026 const char *filename;
3027 struct dwz_file *result;
3028 bfd_size_type buildid_len_arg;
3029 size_t buildid_len;
3030 bfd_byte *buildid;
3031
3032 if (dwarf2_per_objfile->dwz_file != NULL)
3033 return dwarf2_per_objfile->dwz_file;
3034
3035 bfd_set_error (bfd_error_no_error);
3036 gdb::unique_xmalloc_ptr<char> data
3037 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
3038 &buildid_len_arg, &buildid));
3039 if (data == NULL)
3040 {
3041 if (bfd_get_error () == bfd_error_no_error)
3042 return NULL;
3043 error (_("could not read '.gnu_debugaltlink' section: %s"),
3044 bfd_errmsg (bfd_get_error ()));
3045 }
3046
3047 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
3048
3049 buildid_len = (size_t) buildid_len_arg;
3050
3051 filename = data.get ();
3052
3053 std::string abs_storage;
3054 if (!IS_ABSOLUTE_PATH (filename))
3055 {
3056 gdb::unique_xmalloc_ptr<char> abs
3057 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
3058
3059 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
3060 filename = abs_storage.c_str ();
3061 }
3062
3063 /* First try the file name given in the section. If that doesn't
3064 work, try to use the build-id instead. */
3065 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
3066 if (dwz_bfd != NULL)
3067 {
3068 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
3069 dwz_bfd.release ();
3070 }
3071
3072 if (dwz_bfd == NULL)
3073 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
3074
3075 if (dwz_bfd == NULL)
3076 error (_("could not find '.gnu_debugaltlink' file for %s"),
3077 objfile_name (dwarf2_per_objfile->objfile));
3078
3079 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
3080 struct dwz_file);
3081 result->dwz_bfd = dwz_bfd.release ();
3082
3083 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
3084
3085 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
3086 dwarf2_per_objfile->dwz_file = result;
3087 return result;
3088 }
3089 \f
3090 /* DWARF quick_symbols_functions support. */
3091
3092 /* TUs can share .debug_line entries, and there can be a lot more TUs than
3093 unique line tables, so we maintain a separate table of all .debug_line
3094 derived entries to support the sharing.
3095 All the quick functions need is the list of file names. We discard the
3096 line_header when we're done and don't need to record it here. */
3097 struct quick_file_names
3098 {
3099 /* The data used to construct the hash key. */
3100 struct stmt_list_hash hash;
3101
3102 /* The number of entries in file_names, real_names. */
3103 unsigned int num_file_names;
3104
3105 /* The file names from the line table, after being run through
3106 file_full_name. */
3107 const char **file_names;
3108
3109 /* The file names from the line table after being run through
3110 gdb_realpath. These are computed lazily. */
3111 const char **real_names;
3112 };
3113
3114 /* When using the index (and thus not using psymtabs), each CU has an
3115 object of this type. This is used to hold information needed by
3116 the various "quick" methods. */
3117 struct dwarf2_per_cu_quick_data
3118 {
3119 /* The file table. This can be NULL if there was no file table
3120 or it's currently not read in.
3121 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3122 struct quick_file_names *file_names;
3123
3124 /* The corresponding symbol table. This is NULL if symbols for this
3125 CU have not yet been read. */
3126 struct compunit_symtab *compunit_symtab;
3127
3128 /* A temporary mark bit used when iterating over all CUs in
3129 expand_symtabs_matching. */
3130 unsigned int mark : 1;
3131
3132 /* True if we've tried to read the file table and found there isn't one.
3133 There will be no point in trying to read it again next time. */
3134 unsigned int no_file_data : 1;
3135 };
3136
3137 /* Utility hash function for a stmt_list_hash. */
3138
3139 static hashval_t
3140 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3141 {
3142 hashval_t v = 0;
3143
3144 if (stmt_list_hash->dwo_unit != NULL)
3145 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3146 v += to_underlying (stmt_list_hash->line_sect_off);
3147 return v;
3148 }
3149
3150 /* Utility equality function for a stmt_list_hash. */
3151
3152 static int
3153 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3154 const struct stmt_list_hash *rhs)
3155 {
3156 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3157 return 0;
3158 if (lhs->dwo_unit != NULL
3159 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3160 return 0;
3161
3162 return lhs->line_sect_off == rhs->line_sect_off;
3163 }
3164
3165 /* Hash function for a quick_file_names. */
3166
3167 static hashval_t
3168 hash_file_name_entry (const void *e)
3169 {
3170 const struct quick_file_names *file_data
3171 = (const struct quick_file_names *) e;
3172
3173 return hash_stmt_list_entry (&file_data->hash);
3174 }
3175
3176 /* Equality function for a quick_file_names. */
3177
3178 static int
3179 eq_file_name_entry (const void *a, const void *b)
3180 {
3181 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3182 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3183
3184 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3185 }
3186
3187 /* Delete function for a quick_file_names. */
3188
3189 static void
3190 delete_file_name_entry (void *e)
3191 {
3192 struct quick_file_names *file_data = (struct quick_file_names *) e;
3193 int i;
3194
3195 for (i = 0; i < file_data->num_file_names; ++i)
3196 {
3197 xfree ((void*) file_data->file_names[i]);
3198 if (file_data->real_names)
3199 xfree ((void*) file_data->real_names[i]);
3200 }
3201
3202 /* The space for the struct itself lives on objfile_obstack,
3203 so we don't free it here. */
3204 }
3205
3206 /* Create a quick_file_names hash table. */
3207
3208 static htab_t
3209 create_quick_file_names_table (unsigned int nr_initial_entries)
3210 {
3211 return htab_create_alloc (nr_initial_entries,
3212 hash_file_name_entry, eq_file_name_entry,
3213 delete_file_name_entry, xcalloc, xfree);
3214 }
3215
3216 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3217 have to be created afterwards. You should call age_cached_comp_units after
3218 processing PER_CU->CU. dw2_setup must have been already called. */
3219
3220 static void
3221 load_cu (struct dwarf2_per_cu_data *per_cu)
3222 {
3223 if (per_cu->is_debug_types)
3224 load_full_type_unit (per_cu);
3225 else
3226 load_full_comp_unit (per_cu, language_minimal);
3227
3228 if (per_cu->cu == NULL)
3229 return; /* Dummy CU. */
3230
3231 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3232 }
3233
3234 /* Read in the symbols for PER_CU. */
3235
3236 static void
3237 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3238 {
3239 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3240
3241 /* Skip type_unit_groups, reading the type units they contain
3242 is handled elsewhere. */
3243 if (IS_TYPE_UNIT_GROUP (per_cu))
3244 return;
3245
3246 /* The destructor of dwarf2_queue_guard frees any entries left on
3247 the queue. After this point we're guaranteed to leave this function
3248 with the dwarf queue empty. */
3249 dwarf2_queue_guard q_guard;
3250
3251 if (dwarf2_per_objfile->using_index
3252 ? per_cu->v.quick->compunit_symtab == NULL
3253 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3254 {
3255 queue_comp_unit (per_cu, language_minimal);
3256 load_cu (per_cu);
3257
3258 /* If we just loaded a CU from a DWO, and we're working with an index
3259 that may badly handle TUs, load all the TUs in that DWO as well.
3260 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3261 if (!per_cu->is_debug_types
3262 && per_cu->cu != NULL
3263 && per_cu->cu->dwo_unit != NULL
3264 && dwarf2_per_objfile->index_table != NULL
3265 && dwarf2_per_objfile->index_table->version <= 7
3266 /* DWP files aren't supported yet. */
3267 && get_dwp_file (dwarf2_per_objfile) == NULL)
3268 queue_and_load_all_dwo_tus (per_cu);
3269 }
3270
3271 process_queue (dwarf2_per_objfile);
3272
3273 /* Age the cache, releasing compilation units that have not
3274 been used recently. */
3275 age_cached_comp_units (dwarf2_per_objfile);
3276 }
3277
3278 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3279 the objfile from which this CU came. Returns the resulting symbol
3280 table. */
3281
3282 static struct compunit_symtab *
3283 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3284 {
3285 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3286
3287 gdb_assert (dwarf2_per_objfile->using_index);
3288 if (!per_cu->v.quick->compunit_symtab)
3289 {
3290 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3291 dwarf2_per_objfile);
3292 scoped_restore decrementer = increment_reading_symtab ();
3293 dw2_do_instantiate_symtab (per_cu);
3294 process_cu_includes (dwarf2_per_objfile);
3295 do_cleanups (back_to);
3296 }
3297
3298 return per_cu->v.quick->compunit_symtab;
3299 }
3300
3301 /* Return the CU/TU given its index.
3302
3303 This is intended for loops like:
3304
3305 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3306 + dwarf2_per_objfile->n_type_units); ++i)
3307 {
3308 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3309
3310 ...;
3311 }
3312 */
3313
3314 static struct dwarf2_per_cu_data *
3315 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3316 int index)
3317 {
3318 if (index >= dwarf2_per_objfile->n_comp_units)
3319 {
3320 index -= dwarf2_per_objfile->n_comp_units;
3321 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3322 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3323 }
3324
3325 return dwarf2_per_objfile->all_comp_units[index];
3326 }
3327
3328 /* Return the CU given its index.
3329 This differs from dw2_get_cutu in that it's for when you know INDEX
3330 refers to a CU. */
3331
3332 static struct dwarf2_per_cu_data *
3333 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3334 {
3335 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3336
3337 return dwarf2_per_objfile->all_comp_units[index];
3338 }
3339
3340 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3341 objfile_obstack, and constructed with the specified field
3342 values. */
3343
3344 static dwarf2_per_cu_data *
3345 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3346 struct dwarf2_section_info *section,
3347 int is_dwz,
3348 sect_offset sect_off, ULONGEST length)
3349 {
3350 struct objfile *objfile = dwarf2_per_objfile->objfile;
3351 dwarf2_per_cu_data *the_cu
3352 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3353 struct dwarf2_per_cu_data);
3354 the_cu->sect_off = sect_off;
3355 the_cu->length = length;
3356 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3357 the_cu->section = section;
3358 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3359 struct dwarf2_per_cu_quick_data);
3360 the_cu->is_dwz = is_dwz;
3361 return the_cu;
3362 }
3363
3364 /* A helper for create_cus_from_index that handles a given list of
3365 CUs. */
3366
3367 static void
3368 create_cus_from_index_list (struct objfile *objfile,
3369 const gdb_byte *cu_list, offset_type n_elements,
3370 struct dwarf2_section_info *section,
3371 int is_dwz,
3372 int base_offset)
3373 {
3374 offset_type i;
3375 struct dwarf2_per_objfile *dwarf2_per_objfile
3376 = get_dwarf2_per_objfile (objfile);
3377
3378 for (i = 0; i < n_elements; i += 2)
3379 {
3380 gdb_static_assert (sizeof (ULONGEST) >= 8);
3381
3382 sect_offset sect_off
3383 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3384 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3385 cu_list += 2 * 8;
3386
3387 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3388 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3389 sect_off, length);
3390 }
3391 }
3392
3393 /* Read the CU list from the mapped index, and use it to create all
3394 the CU objects for this objfile. */
3395
3396 static void
3397 create_cus_from_index (struct objfile *objfile,
3398 const gdb_byte *cu_list, offset_type cu_list_elements,
3399 const gdb_byte *dwz_list, offset_type dwz_elements)
3400 {
3401 struct dwz_file *dwz;
3402 struct dwarf2_per_objfile *dwarf2_per_objfile
3403 = get_dwarf2_per_objfile (objfile);
3404
3405 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3406 dwarf2_per_objfile->all_comp_units =
3407 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3408 dwarf2_per_objfile->n_comp_units);
3409
3410 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3411 &dwarf2_per_objfile->info, 0, 0);
3412
3413 if (dwz_elements == 0)
3414 return;
3415
3416 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3417 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3418 cu_list_elements / 2);
3419 }
3420
3421 /* Create the signatured type hash table from the index. */
3422
3423 static void
3424 create_signatured_type_table_from_index (struct objfile *objfile,
3425 struct dwarf2_section_info *section,
3426 const gdb_byte *bytes,
3427 offset_type elements)
3428 {
3429 offset_type i;
3430 htab_t sig_types_hash;
3431 struct dwarf2_per_objfile *dwarf2_per_objfile
3432 = get_dwarf2_per_objfile (objfile);
3433
3434 dwarf2_per_objfile->n_type_units
3435 = dwarf2_per_objfile->n_allocated_type_units
3436 = elements / 3;
3437 dwarf2_per_objfile->all_type_units =
3438 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3439
3440 sig_types_hash = allocate_signatured_type_table (objfile);
3441
3442 for (i = 0; i < elements; i += 3)
3443 {
3444 struct signatured_type *sig_type;
3445 ULONGEST signature;
3446 void **slot;
3447 cu_offset type_offset_in_tu;
3448
3449 gdb_static_assert (sizeof (ULONGEST) >= 8);
3450 sect_offset sect_off
3451 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3452 type_offset_in_tu
3453 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3454 BFD_ENDIAN_LITTLE);
3455 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3456 bytes += 3 * 8;
3457
3458 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3459 struct signatured_type);
3460 sig_type->signature = signature;
3461 sig_type->type_offset_in_tu = type_offset_in_tu;
3462 sig_type->per_cu.is_debug_types = 1;
3463 sig_type->per_cu.section = section;
3464 sig_type->per_cu.sect_off = sect_off;
3465 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3466 sig_type->per_cu.v.quick
3467 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3468 struct dwarf2_per_cu_quick_data);
3469
3470 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3471 *slot = sig_type;
3472
3473 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3474 }
3475
3476 dwarf2_per_objfile->signatured_types = sig_types_hash;
3477 }
3478
3479 /* Create the signatured type hash table from .debug_names. */
3480
3481 static void
3482 create_signatured_type_table_from_debug_names
3483 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3484 const mapped_debug_names &map,
3485 struct dwarf2_section_info *section,
3486 struct dwarf2_section_info *abbrev_section)
3487 {
3488 struct objfile *objfile = dwarf2_per_objfile->objfile;
3489
3490 dwarf2_read_section (objfile, section);
3491 dwarf2_read_section (objfile, abbrev_section);
3492
3493 dwarf2_per_objfile->n_type_units
3494 = dwarf2_per_objfile->n_allocated_type_units
3495 = map.tu_count;
3496 dwarf2_per_objfile->all_type_units
3497 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3498
3499 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3500
3501 for (uint32_t i = 0; i < map.tu_count; ++i)
3502 {
3503 struct signatured_type *sig_type;
3504 ULONGEST signature;
3505 void **slot;
3506 cu_offset type_offset_in_tu;
3507
3508 sect_offset sect_off
3509 = (sect_offset) (extract_unsigned_integer
3510 (map.tu_table_reordered + i * map.offset_size,
3511 map.offset_size,
3512 map.dwarf5_byte_order));
3513
3514 comp_unit_head cu_header;
3515 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3516 abbrev_section,
3517 section->buffer + to_underlying (sect_off),
3518 rcuh_kind::TYPE);
3519
3520 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3521 struct signatured_type);
3522 sig_type->signature = cu_header.signature;
3523 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3524 sig_type->per_cu.is_debug_types = 1;
3525 sig_type->per_cu.section = section;
3526 sig_type->per_cu.sect_off = sect_off;
3527 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3528 sig_type->per_cu.v.quick
3529 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3530 struct dwarf2_per_cu_quick_data);
3531
3532 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3533 *slot = sig_type;
3534
3535 dwarf2_per_objfile->all_type_units[i] = sig_type;
3536 }
3537
3538 dwarf2_per_objfile->signatured_types = sig_types_hash;
3539 }
3540
3541 /* Read the address map data from the mapped index, and use it to
3542 populate the objfile's psymtabs_addrmap. */
3543
3544 static void
3545 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 struct mapped_index *index)
3547 {
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3550 const gdb_byte *iter, *end;
3551 struct addrmap *mutable_map;
3552 CORE_ADDR baseaddr;
3553
3554 auto_obstack temp_obstack;
3555
3556 mutable_map = addrmap_create_mutable (&temp_obstack);
3557
3558 iter = index->address_table.data ();
3559 end = iter + index->address_table.size ();
3560
3561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3562
3563 while (iter < end)
3564 {
3565 ULONGEST hi, lo, cu_index;
3566 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3567 iter += 8;
3568 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3569 iter += 8;
3570 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3571 iter += 4;
3572
3573 if (lo > hi)
3574 {
3575 complaint (&symfile_complaints,
3576 _(".gdb_index address table has invalid range (%s - %s)"),
3577 hex_string (lo), hex_string (hi));
3578 continue;
3579 }
3580
3581 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3582 {
3583 complaint (&symfile_complaints,
3584 _(".gdb_index address table has invalid CU number %u"),
3585 (unsigned) cu_index);
3586 continue;
3587 }
3588
3589 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3590 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3591 addrmap_set_empty (mutable_map, lo, hi - 1,
3592 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3593 }
3594
3595 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3596 &objfile->objfile_obstack);
3597 }
3598
3599 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3600 populate the objfile's psymtabs_addrmap. */
3601
3602 static void
3603 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3604 struct dwarf2_section_info *section)
3605 {
3606 struct objfile *objfile = dwarf2_per_objfile->objfile;
3607 bfd *abfd = objfile->obfd;
3608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3609 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3610 SECT_OFF_TEXT (objfile));
3611
3612 auto_obstack temp_obstack;
3613 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3614
3615 std::unordered_map<sect_offset,
3616 dwarf2_per_cu_data *,
3617 gdb::hash_enum<sect_offset>>
3618 debug_info_offset_to_per_cu;
3619 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3620 {
3621 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3622 const auto insertpair
3623 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3624 if (!insertpair.second)
3625 {
3626 warning (_("Section .debug_aranges in %s has duplicate "
3627 "debug_info_offset %s, ignoring .debug_aranges."),
3628 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3629 return;
3630 }
3631 }
3632
3633 dwarf2_read_section (objfile, section);
3634
3635 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3636
3637 const gdb_byte *addr = section->buffer;
3638
3639 while (addr < section->buffer + section->size)
3640 {
3641 const gdb_byte *const entry_addr = addr;
3642 unsigned int bytes_read;
3643
3644 const LONGEST entry_length = read_initial_length (abfd, addr,
3645 &bytes_read);
3646 addr += bytes_read;
3647
3648 const gdb_byte *const entry_end = addr + entry_length;
3649 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3650 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3651 if (addr + entry_length > section->buffer + section->size)
3652 {
3653 warning (_("Section .debug_aranges in %s entry at offset %zu "
3654 "length %s exceeds section length %s, "
3655 "ignoring .debug_aranges."),
3656 objfile_name (objfile), entry_addr - section->buffer,
3657 plongest (bytes_read + entry_length),
3658 pulongest (section->size));
3659 return;
3660 }
3661
3662 /* The version number. */
3663 const uint16_t version = read_2_bytes (abfd, addr);
3664 addr += 2;
3665 if (version != 2)
3666 {
3667 warning (_("Section .debug_aranges in %s entry at offset %zu "
3668 "has unsupported version %d, ignoring .debug_aranges."),
3669 objfile_name (objfile), entry_addr - section->buffer,
3670 version);
3671 return;
3672 }
3673
3674 const uint64_t debug_info_offset
3675 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3676 addr += offset_size;
3677 const auto per_cu_it
3678 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3679 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3680 {
3681 warning (_("Section .debug_aranges in %s entry at offset %zu "
3682 "debug_info_offset %s does not exists, "
3683 "ignoring .debug_aranges."),
3684 objfile_name (objfile), entry_addr - section->buffer,
3685 pulongest (debug_info_offset));
3686 return;
3687 }
3688 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3689
3690 const uint8_t address_size = *addr++;
3691 if (address_size < 1 || address_size > 8)
3692 {
3693 warning (_("Section .debug_aranges in %s entry at offset %zu "
3694 "address_size %u is invalid, ignoring .debug_aranges."),
3695 objfile_name (objfile), entry_addr - section->buffer,
3696 address_size);
3697 return;
3698 }
3699
3700 const uint8_t segment_selector_size = *addr++;
3701 if (segment_selector_size != 0)
3702 {
3703 warning (_("Section .debug_aranges in %s entry at offset %zu "
3704 "segment_selector_size %u is not supported, "
3705 "ignoring .debug_aranges."),
3706 objfile_name (objfile), entry_addr - section->buffer,
3707 segment_selector_size);
3708 return;
3709 }
3710
3711 /* Must pad to an alignment boundary that is twice the address
3712 size. It is undocumented by the DWARF standard but GCC does
3713 use it. */
3714 for (size_t padding = ((-(addr - section->buffer))
3715 & (2 * address_size - 1));
3716 padding > 0; padding--)
3717 if (*addr++ != 0)
3718 {
3719 warning (_("Section .debug_aranges in %s entry at offset %zu "
3720 "padding is not zero, ignoring .debug_aranges."),
3721 objfile_name (objfile), entry_addr - section->buffer);
3722 return;
3723 }
3724
3725 for (;;)
3726 {
3727 if (addr + 2 * address_size > entry_end)
3728 {
3729 warning (_("Section .debug_aranges in %s entry at offset %zu "
3730 "address list is not properly terminated, "
3731 "ignoring .debug_aranges."),
3732 objfile_name (objfile), entry_addr - section->buffer);
3733 return;
3734 }
3735 ULONGEST start = extract_unsigned_integer (addr, address_size,
3736 dwarf5_byte_order);
3737 addr += address_size;
3738 ULONGEST length = extract_unsigned_integer (addr, address_size,
3739 dwarf5_byte_order);
3740 addr += address_size;
3741 if (start == 0 && length == 0)
3742 break;
3743 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3744 {
3745 /* Symbol was eliminated due to a COMDAT group. */
3746 continue;
3747 }
3748 ULONGEST end = start + length;
3749 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3750 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3751 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3752 }
3753 }
3754
3755 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3756 &objfile->objfile_obstack);
3757 }
3758
3759 /* The hash function for strings in the mapped index. This is the same as
3760 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3761 implementation. This is necessary because the hash function is tied to the
3762 format of the mapped index file. The hash values do not have to match with
3763 SYMBOL_HASH_NEXT.
3764
3765 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3766
3767 static hashval_t
3768 mapped_index_string_hash (int index_version, const void *p)
3769 {
3770 const unsigned char *str = (const unsigned char *) p;
3771 hashval_t r = 0;
3772 unsigned char c;
3773
3774 while ((c = *str++) != 0)
3775 {
3776 if (index_version >= 5)
3777 c = tolower (c);
3778 r = r * 67 + c - 113;
3779 }
3780
3781 return r;
3782 }
3783
3784 /* Find a slot in the mapped index INDEX for the object named NAME.
3785 If NAME is found, set *VEC_OUT to point to the CU vector in the
3786 constant pool and return true. If NAME cannot be found, return
3787 false. */
3788
3789 static bool
3790 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3791 offset_type **vec_out)
3792 {
3793 offset_type hash;
3794 offset_type slot, step;
3795 int (*cmp) (const char *, const char *);
3796
3797 gdb::unique_xmalloc_ptr<char> without_params;
3798 if (current_language->la_language == language_cplus
3799 || current_language->la_language == language_fortran
3800 || current_language->la_language == language_d)
3801 {
3802 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3803 not contain any. */
3804
3805 if (strchr (name, '(') != NULL)
3806 {
3807 without_params = cp_remove_params (name);
3808
3809 if (without_params != NULL)
3810 name = without_params.get ();
3811 }
3812 }
3813
3814 /* Index version 4 did not support case insensitive searches. But the
3815 indices for case insensitive languages are built in lowercase, therefore
3816 simulate our NAME being searched is also lowercased. */
3817 hash = mapped_index_string_hash ((index->version == 4
3818 && case_sensitivity == case_sensitive_off
3819 ? 5 : index->version),
3820 name);
3821
3822 slot = hash & (index->symbol_table.size () - 1);
3823 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3824 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3825
3826 for (;;)
3827 {
3828 const char *str;
3829
3830 const auto &bucket = index->symbol_table[slot];
3831 if (bucket.name == 0 && bucket.vec == 0)
3832 return false;
3833
3834 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3835 if (!cmp (name, str))
3836 {
3837 *vec_out = (offset_type *) (index->constant_pool
3838 + MAYBE_SWAP (bucket.vec));
3839 return true;
3840 }
3841
3842 slot = (slot + step) & (index->symbol_table.size () - 1);
3843 }
3844 }
3845
3846 /* A helper function that reads the .gdb_index from SECTION and fills
3847 in MAP. FILENAME is the name of the file containing the section;
3848 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3849 ok to use deprecated sections.
3850
3851 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3852 out parameters that are filled in with information about the CU and
3853 TU lists in the section.
3854
3855 Returns 1 if all went well, 0 otherwise. */
3856
3857 static int
3858 read_index_from_section (struct objfile *objfile,
3859 const char *filename,
3860 int deprecated_ok,
3861 struct dwarf2_section_info *section,
3862 struct mapped_index *map,
3863 const gdb_byte **cu_list,
3864 offset_type *cu_list_elements,
3865 const gdb_byte **types_list,
3866 offset_type *types_list_elements)
3867 {
3868 const gdb_byte *addr;
3869 offset_type version;
3870 offset_type *metadata;
3871 int i;
3872
3873 if (dwarf2_section_empty_p (section))
3874 return 0;
3875
3876 /* Older elfutils strip versions could keep the section in the main
3877 executable while splitting it for the separate debug info file. */
3878 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3879 return 0;
3880
3881 dwarf2_read_section (objfile, section);
3882
3883 addr = section->buffer;
3884 /* Version check. */
3885 version = MAYBE_SWAP (*(offset_type *) addr);
3886 /* Versions earlier than 3 emitted every copy of a psymbol. This
3887 causes the index to behave very poorly for certain requests. Version 3
3888 contained incomplete addrmap. So, it seems better to just ignore such
3889 indices. */
3890 if (version < 4)
3891 {
3892 static int warning_printed = 0;
3893 if (!warning_printed)
3894 {
3895 warning (_("Skipping obsolete .gdb_index section in %s."),
3896 filename);
3897 warning_printed = 1;
3898 }
3899 return 0;
3900 }
3901 /* Index version 4 uses a different hash function than index version
3902 5 and later.
3903
3904 Versions earlier than 6 did not emit psymbols for inlined
3905 functions. Using these files will cause GDB not to be able to
3906 set breakpoints on inlined functions by name, so we ignore these
3907 indices unless the user has done
3908 "set use-deprecated-index-sections on". */
3909 if (version < 6 && !deprecated_ok)
3910 {
3911 static int warning_printed = 0;
3912 if (!warning_printed)
3913 {
3914 warning (_("\
3915 Skipping deprecated .gdb_index section in %s.\n\
3916 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3917 to use the section anyway."),
3918 filename);
3919 warning_printed = 1;
3920 }
3921 return 0;
3922 }
3923 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3924 of the TU (for symbols coming from TUs),
3925 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3926 Plus gold-generated indices can have duplicate entries for global symbols,
3927 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3928 These are just performance bugs, and we can't distinguish gdb-generated
3929 indices from gold-generated ones, so issue no warning here. */
3930
3931 /* Indexes with higher version than the one supported by GDB may be no
3932 longer backward compatible. */
3933 if (version > 8)
3934 return 0;
3935
3936 map->version = version;
3937 map->total_size = section->size;
3938
3939 metadata = (offset_type *) (addr + sizeof (offset_type));
3940
3941 i = 0;
3942 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3943 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3944 / 8);
3945 ++i;
3946
3947 *types_list = addr + MAYBE_SWAP (metadata[i]);
3948 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3949 - MAYBE_SWAP (metadata[i]))
3950 / 8);
3951 ++i;
3952
3953 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3954 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3955 map->address_table
3956 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3957 ++i;
3958
3959 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3960 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3961 map->symbol_table
3962 = gdb::array_view<mapped_index::symbol_table_slot>
3963 ((mapped_index::symbol_table_slot *) symbol_table,
3964 (mapped_index::symbol_table_slot *) symbol_table_end);
3965
3966 ++i;
3967 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3968
3969 return 1;
3970 }
3971
3972 /* Read .gdb_index. If everything went ok, initialize the "quick"
3973 elements of all the CUs and return 1. Otherwise, return 0. */
3974
3975 static int
3976 dwarf2_read_index (struct objfile *objfile)
3977 {
3978 struct mapped_index local_map, *map;
3979 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3980 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3981 struct dwz_file *dwz;
3982 struct dwarf2_per_objfile *dwarf2_per_objfile
3983 = get_dwarf2_per_objfile (objfile);
3984
3985 if (!read_index_from_section (objfile, objfile_name (objfile),
3986 use_deprecated_index_sections,
3987 &dwarf2_per_objfile->gdb_index, &local_map,
3988 &cu_list, &cu_list_elements,
3989 &types_list, &types_list_elements))
3990 return 0;
3991
3992 /* Don't use the index if it's empty. */
3993 if (local_map.symbol_table.empty ())
3994 return 0;
3995
3996 /* If there is a .dwz file, read it so we can get its CU list as
3997 well. */
3998 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3999 if (dwz != NULL)
4000 {
4001 struct mapped_index dwz_map;
4002 const gdb_byte *dwz_types_ignore;
4003 offset_type dwz_types_elements_ignore;
4004
4005 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
4006 1,
4007 &dwz->gdb_index, &dwz_map,
4008 &dwz_list, &dwz_list_elements,
4009 &dwz_types_ignore,
4010 &dwz_types_elements_ignore))
4011 {
4012 warning (_("could not read '.gdb_index' section from %s; skipping"),
4013 bfd_get_filename (dwz->dwz_bfd));
4014 return 0;
4015 }
4016 }
4017
4018 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
4019 dwz_list_elements);
4020
4021 if (types_list_elements)
4022 {
4023 struct dwarf2_section_info *section;
4024
4025 /* We can only handle a single .debug_types when we have an
4026 index. */
4027 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
4028 return 0;
4029
4030 section = VEC_index (dwarf2_section_info_def,
4031 dwarf2_per_objfile->types, 0);
4032
4033 create_signatured_type_table_from_index (objfile, section, types_list,
4034 types_list_elements);
4035 }
4036
4037 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
4038
4039 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
4040 map = new (map) mapped_index ();
4041 *map = local_map;
4042
4043 dwarf2_per_objfile->index_table = map;
4044 dwarf2_per_objfile->using_index = 1;
4045 dwarf2_per_objfile->quick_file_names_table =
4046 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4047
4048 return 1;
4049 }
4050
4051 /* die_reader_func for dw2_get_file_names. */
4052
4053 static void
4054 dw2_get_file_names_reader (const struct die_reader_specs *reader,
4055 const gdb_byte *info_ptr,
4056 struct die_info *comp_unit_die,
4057 int has_children,
4058 void *data)
4059 {
4060 struct dwarf2_cu *cu = reader->cu;
4061 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
4062 struct dwarf2_per_objfile *dwarf2_per_objfile
4063 = cu->per_cu->dwarf2_per_objfile;
4064 struct objfile *objfile = dwarf2_per_objfile->objfile;
4065 struct dwarf2_per_cu_data *lh_cu;
4066 struct attribute *attr;
4067 int i;
4068 void **slot;
4069 struct quick_file_names *qfn;
4070
4071 gdb_assert (! this_cu->is_debug_types);
4072
4073 /* Our callers never want to match partial units -- instead they
4074 will match the enclosing full CU. */
4075 if (comp_unit_die->tag == DW_TAG_partial_unit)
4076 {
4077 this_cu->v.quick->no_file_data = 1;
4078 return;
4079 }
4080
4081 lh_cu = this_cu;
4082 slot = NULL;
4083
4084 line_header_up lh;
4085 sect_offset line_offset {};
4086
4087 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4088 if (attr)
4089 {
4090 struct quick_file_names find_entry;
4091
4092 line_offset = (sect_offset) DW_UNSND (attr);
4093
4094 /* We may have already read in this line header (TU line header sharing).
4095 If we have we're done. */
4096 find_entry.hash.dwo_unit = cu->dwo_unit;
4097 find_entry.hash.line_sect_off = line_offset;
4098 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
4099 &find_entry, INSERT);
4100 if (*slot != NULL)
4101 {
4102 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
4103 return;
4104 }
4105
4106 lh = dwarf_decode_line_header (line_offset, cu);
4107 }
4108 if (lh == NULL)
4109 {
4110 lh_cu->v.quick->no_file_data = 1;
4111 return;
4112 }
4113
4114 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
4115 qfn->hash.dwo_unit = cu->dwo_unit;
4116 qfn->hash.line_sect_off = line_offset;
4117 gdb_assert (slot != NULL);
4118 *slot = qfn;
4119
4120 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
4121
4122 qfn->num_file_names = lh->file_names.size ();
4123 qfn->file_names =
4124 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
4125 for (i = 0; i < lh->file_names.size (); ++i)
4126 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
4127 qfn->real_names = NULL;
4128
4129 lh_cu->v.quick->file_names = qfn;
4130 }
4131
4132 /* A helper for the "quick" functions which attempts to read the line
4133 table for THIS_CU. */
4134
4135 static struct quick_file_names *
4136 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4137 {
4138 /* This should never be called for TUs. */
4139 gdb_assert (! this_cu->is_debug_types);
4140 /* Nor type unit groups. */
4141 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4142
4143 if (this_cu->v.quick->file_names != NULL)
4144 return this_cu->v.quick->file_names;
4145 /* If we know there is no line data, no point in looking again. */
4146 if (this_cu->v.quick->no_file_data)
4147 return NULL;
4148
4149 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4150
4151 if (this_cu->v.quick->no_file_data)
4152 return NULL;
4153 return this_cu->v.quick->file_names;
4154 }
4155
4156 /* A helper for the "quick" functions which computes and caches the
4157 real path for a given file name from the line table. */
4158
4159 static const char *
4160 dw2_get_real_path (struct objfile *objfile,
4161 struct quick_file_names *qfn, int index)
4162 {
4163 if (qfn->real_names == NULL)
4164 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4165 qfn->num_file_names, const char *);
4166
4167 if (qfn->real_names[index] == NULL)
4168 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4169
4170 return qfn->real_names[index];
4171 }
4172
4173 static struct symtab *
4174 dw2_find_last_source_symtab (struct objfile *objfile)
4175 {
4176 struct dwarf2_per_objfile *dwarf2_per_objfile
4177 = get_dwarf2_per_objfile (objfile);
4178 int index = dwarf2_per_objfile->n_comp_units - 1;
4179 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4180 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4181
4182 if (cust == NULL)
4183 return NULL;
4184
4185 return compunit_primary_filetab (cust);
4186 }
4187
4188 /* Traversal function for dw2_forget_cached_source_info. */
4189
4190 static int
4191 dw2_free_cached_file_names (void **slot, void *info)
4192 {
4193 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4194
4195 if (file_data->real_names)
4196 {
4197 int i;
4198
4199 for (i = 0; i < file_data->num_file_names; ++i)
4200 {
4201 xfree ((void*) file_data->real_names[i]);
4202 file_data->real_names[i] = NULL;
4203 }
4204 }
4205
4206 return 1;
4207 }
4208
4209 static void
4210 dw2_forget_cached_source_info (struct objfile *objfile)
4211 {
4212 struct dwarf2_per_objfile *dwarf2_per_objfile
4213 = get_dwarf2_per_objfile (objfile);
4214
4215 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4216 dw2_free_cached_file_names, NULL);
4217 }
4218
4219 /* Helper function for dw2_map_symtabs_matching_filename that expands
4220 the symtabs and calls the iterator. */
4221
4222 static int
4223 dw2_map_expand_apply (struct objfile *objfile,
4224 struct dwarf2_per_cu_data *per_cu,
4225 const char *name, const char *real_path,
4226 gdb::function_view<bool (symtab *)> callback)
4227 {
4228 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4229
4230 /* Don't visit already-expanded CUs. */
4231 if (per_cu->v.quick->compunit_symtab)
4232 return 0;
4233
4234 /* This may expand more than one symtab, and we want to iterate over
4235 all of them. */
4236 dw2_instantiate_symtab (per_cu);
4237
4238 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4239 last_made, callback);
4240 }
4241
4242 /* Implementation of the map_symtabs_matching_filename method. */
4243
4244 static bool
4245 dw2_map_symtabs_matching_filename
4246 (struct objfile *objfile, const char *name, const char *real_path,
4247 gdb::function_view<bool (symtab *)> callback)
4248 {
4249 int i;
4250 const char *name_basename = lbasename (name);
4251 struct dwarf2_per_objfile *dwarf2_per_objfile
4252 = get_dwarf2_per_objfile (objfile);
4253
4254 /* The rule is CUs specify all the files, including those used by
4255 any TU, so there's no need to scan TUs here. */
4256
4257 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4258 {
4259 int j;
4260 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4261 struct quick_file_names *file_data;
4262
4263 /* We only need to look at symtabs not already expanded. */
4264 if (per_cu->v.quick->compunit_symtab)
4265 continue;
4266
4267 file_data = dw2_get_file_names (per_cu);
4268 if (file_data == NULL)
4269 continue;
4270
4271 for (j = 0; j < file_data->num_file_names; ++j)
4272 {
4273 const char *this_name = file_data->file_names[j];
4274 const char *this_real_name;
4275
4276 if (compare_filenames_for_search (this_name, name))
4277 {
4278 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4279 callback))
4280 return true;
4281 continue;
4282 }
4283
4284 /* Before we invoke realpath, which can get expensive when many
4285 files are involved, do a quick comparison of the basenames. */
4286 if (! basenames_may_differ
4287 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4288 continue;
4289
4290 this_real_name = dw2_get_real_path (objfile, file_data, j);
4291 if (compare_filenames_for_search (this_real_name, name))
4292 {
4293 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4294 callback))
4295 return true;
4296 continue;
4297 }
4298
4299 if (real_path != NULL)
4300 {
4301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4302 gdb_assert (IS_ABSOLUTE_PATH (name));
4303 if (this_real_name != NULL
4304 && FILENAME_CMP (real_path, this_real_name) == 0)
4305 {
4306 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4307 callback))
4308 return true;
4309 continue;
4310 }
4311 }
4312 }
4313 }
4314
4315 return false;
4316 }
4317
4318 /* Struct used to manage iterating over all CUs looking for a symbol. */
4319
4320 struct dw2_symtab_iterator
4321 {
4322 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4323 struct dwarf2_per_objfile *dwarf2_per_objfile;
4324 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4325 int want_specific_block;
4326 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4327 Unused if !WANT_SPECIFIC_BLOCK. */
4328 int block_index;
4329 /* The kind of symbol we're looking for. */
4330 domain_enum domain;
4331 /* The list of CUs from the index entry of the symbol,
4332 or NULL if not found. */
4333 offset_type *vec;
4334 /* The next element in VEC to look at. */
4335 int next;
4336 /* The number of elements in VEC, or zero if there is no match. */
4337 int length;
4338 /* Have we seen a global version of the symbol?
4339 If so we can ignore all further global instances.
4340 This is to work around gold/15646, inefficient gold-generated
4341 indices. */
4342 int global_seen;
4343 };
4344
4345 /* Initialize the index symtab iterator ITER.
4346 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4347 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4348
4349 static void
4350 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4351 struct dwarf2_per_objfile *dwarf2_per_objfile,
4352 int want_specific_block,
4353 int block_index,
4354 domain_enum domain,
4355 const char *name)
4356 {
4357 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4358 iter->want_specific_block = want_specific_block;
4359 iter->block_index = block_index;
4360 iter->domain = domain;
4361 iter->next = 0;
4362 iter->global_seen = 0;
4363
4364 mapped_index *index = dwarf2_per_objfile->index_table;
4365
4366 /* index is NULL if OBJF_READNOW. */
4367 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4368 iter->length = MAYBE_SWAP (*iter->vec);
4369 else
4370 {
4371 iter->vec = NULL;
4372 iter->length = 0;
4373 }
4374 }
4375
4376 /* Return the next matching CU or NULL if there are no more. */
4377
4378 static struct dwarf2_per_cu_data *
4379 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4380 {
4381 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4382
4383 for ( ; iter->next < iter->length; ++iter->next)
4384 {
4385 offset_type cu_index_and_attrs =
4386 MAYBE_SWAP (iter->vec[iter->next + 1]);
4387 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4388 struct dwarf2_per_cu_data *per_cu;
4389 int want_static = iter->block_index != GLOBAL_BLOCK;
4390 /* This value is only valid for index versions >= 7. */
4391 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4392 gdb_index_symbol_kind symbol_kind =
4393 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4394 /* Only check the symbol attributes if they're present.
4395 Indices prior to version 7 don't record them,
4396 and indices >= 7 may elide them for certain symbols
4397 (gold does this). */
4398 int attrs_valid =
4399 (dwarf2_per_objfile->index_table->version >= 7
4400 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4401
4402 /* Don't crash on bad data. */
4403 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4404 + dwarf2_per_objfile->n_type_units))
4405 {
4406 complaint (&symfile_complaints,
4407 _(".gdb_index entry has bad CU index"
4408 " [in module %s]"),
4409 objfile_name (dwarf2_per_objfile->objfile));
4410 continue;
4411 }
4412
4413 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4414
4415 /* Skip if already read in. */
4416 if (per_cu->v.quick->compunit_symtab)
4417 continue;
4418
4419 /* Check static vs global. */
4420 if (attrs_valid)
4421 {
4422 if (iter->want_specific_block
4423 && want_static != is_static)
4424 continue;
4425 /* Work around gold/15646. */
4426 if (!is_static && iter->global_seen)
4427 continue;
4428 if (!is_static)
4429 iter->global_seen = 1;
4430 }
4431
4432 /* Only check the symbol's kind if it has one. */
4433 if (attrs_valid)
4434 {
4435 switch (iter->domain)
4436 {
4437 case VAR_DOMAIN:
4438 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4439 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4440 /* Some types are also in VAR_DOMAIN. */
4441 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4442 continue;
4443 break;
4444 case STRUCT_DOMAIN:
4445 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4446 continue;
4447 break;
4448 case LABEL_DOMAIN:
4449 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4450 continue;
4451 break;
4452 default:
4453 break;
4454 }
4455 }
4456
4457 ++iter->next;
4458 return per_cu;
4459 }
4460
4461 return NULL;
4462 }
4463
4464 static struct compunit_symtab *
4465 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4466 const char *name, domain_enum domain)
4467 {
4468 struct compunit_symtab *stab_best = NULL;
4469 struct dwarf2_per_objfile *dwarf2_per_objfile
4470 = get_dwarf2_per_objfile (objfile);
4471
4472 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4473
4474 struct dw2_symtab_iterator iter;
4475 struct dwarf2_per_cu_data *per_cu;
4476
4477 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4478
4479 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4480 {
4481 struct symbol *sym, *with_opaque = NULL;
4482 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4483 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4484 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4485
4486 sym = block_find_symbol (block, name, domain,
4487 block_find_non_opaque_type_preferred,
4488 &with_opaque);
4489
4490 /* Some caution must be observed with overloaded functions
4491 and methods, since the index will not contain any overload
4492 information (but NAME might contain it). */
4493
4494 if (sym != NULL
4495 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4496 return stab;
4497 if (with_opaque != NULL
4498 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4499 stab_best = stab;
4500
4501 /* Keep looking through other CUs. */
4502 }
4503
4504 return stab_best;
4505 }
4506
4507 static void
4508 dw2_print_stats (struct objfile *objfile)
4509 {
4510 struct dwarf2_per_objfile *dwarf2_per_objfile
4511 = get_dwarf2_per_objfile (objfile);
4512 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4513 int count = 0;
4514
4515 for (int i = 0; i < total; ++i)
4516 {
4517 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4518
4519 if (!per_cu->v.quick->compunit_symtab)
4520 ++count;
4521 }
4522 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4523 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4524 }
4525
4526 /* This dumps minimal information about the index.
4527 It is called via "mt print objfiles".
4528 One use is to verify .gdb_index has been loaded by the
4529 gdb.dwarf2/gdb-index.exp testcase. */
4530
4531 static void
4532 dw2_dump (struct objfile *objfile)
4533 {
4534 struct dwarf2_per_objfile *dwarf2_per_objfile
4535 = get_dwarf2_per_objfile (objfile);
4536
4537 gdb_assert (dwarf2_per_objfile->using_index);
4538 printf_filtered (".gdb_index:");
4539 if (dwarf2_per_objfile->index_table != NULL)
4540 {
4541 printf_filtered (" version %d\n",
4542 dwarf2_per_objfile->index_table->version);
4543 }
4544 else
4545 printf_filtered (" faked for \"readnow\"\n");
4546 printf_filtered ("\n");
4547 }
4548
4549 static void
4550 dw2_relocate (struct objfile *objfile,
4551 const struct section_offsets *new_offsets,
4552 const struct section_offsets *delta)
4553 {
4554 /* There's nothing to relocate here. */
4555 }
4556
4557 static void
4558 dw2_expand_symtabs_for_function (struct objfile *objfile,
4559 const char *func_name)
4560 {
4561 struct dwarf2_per_objfile *dwarf2_per_objfile
4562 = get_dwarf2_per_objfile (objfile);
4563
4564 struct dw2_symtab_iterator iter;
4565 struct dwarf2_per_cu_data *per_cu;
4566
4567 /* Note: It doesn't matter what we pass for block_index here. */
4568 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4569 func_name);
4570
4571 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4572 dw2_instantiate_symtab (per_cu);
4573
4574 }
4575
4576 static void
4577 dw2_expand_all_symtabs (struct objfile *objfile)
4578 {
4579 struct dwarf2_per_objfile *dwarf2_per_objfile
4580 = get_dwarf2_per_objfile (objfile);
4581 int total_units = (dwarf2_per_objfile->n_comp_units
4582 + dwarf2_per_objfile->n_type_units);
4583
4584 for (int i = 0; i < total_units; ++i)
4585 {
4586 struct dwarf2_per_cu_data *per_cu
4587 = dw2_get_cutu (dwarf2_per_objfile, i);
4588
4589 dw2_instantiate_symtab (per_cu);
4590 }
4591 }
4592
4593 static void
4594 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4595 const char *fullname)
4596 {
4597 struct dwarf2_per_objfile *dwarf2_per_objfile
4598 = get_dwarf2_per_objfile (objfile);
4599
4600 /* We don't need to consider type units here.
4601 This is only called for examining code, e.g. expand_line_sal.
4602 There can be an order of magnitude (or more) more type units
4603 than comp units, and we avoid them if we can. */
4604
4605 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4606 {
4607 int j;
4608 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4609 struct quick_file_names *file_data;
4610
4611 /* We only need to look at symtabs not already expanded. */
4612 if (per_cu->v.quick->compunit_symtab)
4613 continue;
4614
4615 file_data = dw2_get_file_names (per_cu);
4616 if (file_data == NULL)
4617 continue;
4618
4619 for (j = 0; j < file_data->num_file_names; ++j)
4620 {
4621 const char *this_fullname = file_data->file_names[j];
4622
4623 if (filename_cmp (this_fullname, fullname) == 0)
4624 {
4625 dw2_instantiate_symtab (per_cu);
4626 break;
4627 }
4628 }
4629 }
4630 }
4631
4632 static void
4633 dw2_map_matching_symbols (struct objfile *objfile,
4634 const char * name, domain_enum domain,
4635 int global,
4636 int (*callback) (struct block *,
4637 struct symbol *, void *),
4638 void *data, symbol_name_match_type match,
4639 symbol_compare_ftype *ordered_compare)
4640 {
4641 /* Currently unimplemented; used for Ada. The function can be called if the
4642 current language is Ada for a non-Ada objfile using GNU index. As Ada
4643 does not look for non-Ada symbols this function should just return. */
4644 }
4645
4646 /* Symbol name matcher for .gdb_index names.
4647
4648 Symbol names in .gdb_index have a few particularities:
4649
4650 - There's no indication of which is the language of each symbol.
4651
4652 Since each language has its own symbol name matching algorithm,
4653 and we don't know which language is the right one, we must match
4654 each symbol against all languages. This would be a potential
4655 performance problem if it were not mitigated by the
4656 mapped_index::name_components lookup table, which significantly
4657 reduces the number of times we need to call into this matcher,
4658 making it a non-issue.
4659
4660 - Symbol names in the index have no overload (parameter)
4661 information. I.e., in C++, "foo(int)" and "foo(long)" both
4662 appear as "foo" in the index, for example.
4663
4664 This means that the lookup names passed to the symbol name
4665 matcher functions must have no parameter information either
4666 because (e.g.) symbol search name "foo" does not match
4667 lookup-name "foo(int)" [while swapping search name for lookup
4668 name would match].
4669 */
4670 class gdb_index_symbol_name_matcher
4671 {
4672 public:
4673 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4674 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4675
4676 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4677 Returns true if any matcher matches. */
4678 bool matches (const char *symbol_name);
4679
4680 private:
4681 /* A reference to the lookup name we're matching against. */
4682 const lookup_name_info &m_lookup_name;
4683
4684 /* A vector holding all the different symbol name matchers, for all
4685 languages. */
4686 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4687 };
4688
4689 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4690 (const lookup_name_info &lookup_name)
4691 : m_lookup_name (lookup_name)
4692 {
4693 /* Prepare the vector of comparison functions upfront, to avoid
4694 doing the same work for each symbol. Care is taken to avoid
4695 matching with the same matcher more than once if/when multiple
4696 languages use the same matcher function. */
4697 auto &matchers = m_symbol_name_matcher_funcs;
4698 matchers.reserve (nr_languages);
4699
4700 matchers.push_back (default_symbol_name_matcher);
4701
4702 for (int i = 0; i < nr_languages; i++)
4703 {
4704 const language_defn *lang = language_def ((enum language) i);
4705 symbol_name_matcher_ftype *name_matcher
4706 = get_symbol_name_matcher (lang, m_lookup_name);
4707
4708 /* Don't insert the same comparison routine more than once.
4709 Note that we do this linear walk instead of a seemingly
4710 cheaper sorted insert, or use a std::set or something like
4711 that, because relative order of function addresses is not
4712 stable. This is not a problem in practice because the number
4713 of supported languages is low, and the cost here is tiny
4714 compared to the number of searches we'll do afterwards using
4715 this object. */
4716 if (name_matcher != default_symbol_name_matcher
4717 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4718 == matchers.end ()))
4719 matchers.push_back (name_matcher);
4720 }
4721 }
4722
4723 bool
4724 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4725 {
4726 for (auto matches_name : m_symbol_name_matcher_funcs)
4727 if (matches_name (symbol_name, m_lookup_name, NULL))
4728 return true;
4729
4730 return false;
4731 }
4732
4733 /* Starting from a search name, return the string that finds the upper
4734 bound of all strings that start with SEARCH_NAME in a sorted name
4735 list. Returns the empty string to indicate that the upper bound is
4736 the end of the list. */
4737
4738 static std::string
4739 make_sort_after_prefix_name (const char *search_name)
4740 {
4741 /* When looking to complete "func", we find the upper bound of all
4742 symbols that start with "func" by looking for where we'd insert
4743 the closest string that would follow "func" in lexicographical
4744 order. Usually, that's "func"-with-last-character-incremented,
4745 i.e. "fund". Mind non-ASCII characters, though. Usually those
4746 will be UTF-8 multi-byte sequences, but we can't be certain.
4747 Especially mind the 0xff character, which is a valid character in
4748 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4749 rule out compilers allowing it in identifiers. Note that
4750 conveniently, strcmp/strcasecmp are specified to compare
4751 characters interpreted as unsigned char. So what we do is treat
4752 the whole string as a base 256 number composed of a sequence of
4753 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4754 to 0, and carries 1 to the following more-significant position.
4755 If the very first character in SEARCH_NAME ends up incremented
4756 and carries/overflows, then the upper bound is the end of the
4757 list. The string after the empty string is also the empty
4758 string.
4759
4760 Some examples of this operation:
4761
4762 SEARCH_NAME => "+1" RESULT
4763
4764 "abc" => "abd"
4765 "ab\xff" => "ac"
4766 "\xff" "a" "\xff" => "\xff" "b"
4767 "\xff" => ""
4768 "\xff\xff" => ""
4769 "" => ""
4770
4771 Then, with these symbols for example:
4772
4773 func
4774 func1
4775 fund
4776
4777 completing "func" looks for symbols between "func" and
4778 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4779 which finds "func" and "func1", but not "fund".
4780
4781 And with:
4782
4783 funcÿ (Latin1 'ÿ' [0xff])
4784 funcÿ1
4785 fund
4786
4787 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4788 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4789
4790 And with:
4791
4792 ÿÿ (Latin1 'ÿ' [0xff])
4793 ÿÿ1
4794
4795 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4796 the end of the list.
4797 */
4798 std::string after = search_name;
4799 while (!after.empty () && (unsigned char) after.back () == 0xff)
4800 after.pop_back ();
4801 if (!after.empty ())
4802 after.back () = (unsigned char) after.back () + 1;
4803 return after;
4804 }
4805
4806 /* See declaration. */
4807
4808 std::pair<std::vector<name_component>::const_iterator,
4809 std::vector<name_component>::const_iterator>
4810 mapped_index_base::find_name_components_bounds
4811 (const lookup_name_info &lookup_name_without_params) const
4812 {
4813 auto *name_cmp
4814 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4815
4816 const char *cplus
4817 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4818
4819 /* Comparison function object for lower_bound that matches against a
4820 given symbol name. */
4821 auto lookup_compare_lower = [&] (const name_component &elem,
4822 const char *name)
4823 {
4824 const char *elem_qualified = this->symbol_name_at (elem.idx);
4825 const char *elem_name = elem_qualified + elem.name_offset;
4826 return name_cmp (elem_name, name) < 0;
4827 };
4828
4829 /* Comparison function object for upper_bound that matches against a
4830 given symbol name. */
4831 auto lookup_compare_upper = [&] (const char *name,
4832 const name_component &elem)
4833 {
4834 const char *elem_qualified = this->symbol_name_at (elem.idx);
4835 const char *elem_name = elem_qualified + elem.name_offset;
4836 return name_cmp (name, elem_name) < 0;
4837 };
4838
4839 auto begin = this->name_components.begin ();
4840 auto end = this->name_components.end ();
4841
4842 /* Find the lower bound. */
4843 auto lower = [&] ()
4844 {
4845 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4846 return begin;
4847 else
4848 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4849 } ();
4850
4851 /* Find the upper bound. */
4852 auto upper = [&] ()
4853 {
4854 if (lookup_name_without_params.completion_mode ())
4855 {
4856 /* In completion mode, we want UPPER to point past all
4857 symbols names that have the same prefix. I.e., with
4858 these symbols, and completing "func":
4859
4860 function << lower bound
4861 function1
4862 other_function << upper bound
4863
4864 We find the upper bound by looking for the insertion
4865 point of "func"-with-last-character-incremented,
4866 i.e. "fund". */
4867 std::string after = make_sort_after_prefix_name (cplus);
4868 if (after.empty ())
4869 return end;
4870 return std::lower_bound (lower, end, after.c_str (),
4871 lookup_compare_lower);
4872 }
4873 else
4874 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4875 } ();
4876
4877 return {lower, upper};
4878 }
4879
4880 /* See declaration. */
4881
4882 void
4883 mapped_index_base::build_name_components ()
4884 {
4885 if (!this->name_components.empty ())
4886 return;
4887
4888 this->name_components_casing = case_sensitivity;
4889 auto *name_cmp
4890 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4891
4892 /* The code below only knows how to break apart components of C++
4893 symbol names (and other languages that use '::' as
4894 namespace/module separator). If we add support for wild matching
4895 to some language that uses some other operator (E.g., Ada, Go and
4896 D use '.'), then we'll need to try splitting the symbol name
4897 according to that language too. Note that Ada does support wild
4898 matching, but doesn't currently support .gdb_index. */
4899 auto count = this->symbol_name_count ();
4900 for (offset_type idx = 0; idx < count; idx++)
4901 {
4902 if (this->symbol_name_slot_invalid (idx))
4903 continue;
4904
4905 const char *name = this->symbol_name_at (idx);
4906
4907 /* Add each name component to the name component table. */
4908 unsigned int previous_len = 0;
4909 for (unsigned int current_len = cp_find_first_component (name);
4910 name[current_len] != '\0';
4911 current_len += cp_find_first_component (name + current_len))
4912 {
4913 gdb_assert (name[current_len] == ':');
4914 this->name_components.push_back ({previous_len, idx});
4915 /* Skip the '::'. */
4916 current_len += 2;
4917 previous_len = current_len;
4918 }
4919 this->name_components.push_back ({previous_len, idx});
4920 }
4921
4922 /* Sort name_components elements by name. */
4923 auto name_comp_compare = [&] (const name_component &left,
4924 const name_component &right)
4925 {
4926 const char *left_qualified = this->symbol_name_at (left.idx);
4927 const char *right_qualified = this->symbol_name_at (right.idx);
4928
4929 const char *left_name = left_qualified + left.name_offset;
4930 const char *right_name = right_qualified + right.name_offset;
4931
4932 return name_cmp (left_name, right_name) < 0;
4933 };
4934
4935 std::sort (this->name_components.begin (),
4936 this->name_components.end (),
4937 name_comp_compare);
4938 }
4939
4940 /* Helper for dw2_expand_symtabs_matching that works with a
4941 mapped_index_base instead of the containing objfile. This is split
4942 to a separate function in order to be able to unit test the
4943 name_components matching using a mock mapped_index_base. For each
4944 symbol name that matches, calls MATCH_CALLBACK, passing it the
4945 symbol's index in the mapped_index_base symbol table. */
4946
4947 static void
4948 dw2_expand_symtabs_matching_symbol
4949 (mapped_index_base &index,
4950 const lookup_name_info &lookup_name_in,
4951 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4952 enum search_domain kind,
4953 gdb::function_view<void (offset_type)> match_callback)
4954 {
4955 lookup_name_info lookup_name_without_params
4956 = lookup_name_in.make_ignore_params ();
4957 gdb_index_symbol_name_matcher lookup_name_matcher
4958 (lookup_name_without_params);
4959
4960 /* Build the symbol name component sorted vector, if we haven't
4961 yet. */
4962 index.build_name_components ();
4963
4964 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4965
4966 /* Now for each symbol name in range, check to see if we have a name
4967 match, and if so, call the MATCH_CALLBACK callback. */
4968
4969 /* The same symbol may appear more than once in the range though.
4970 E.g., if we're looking for symbols that complete "w", and we have
4971 a symbol named "w1::w2", we'll find the two name components for
4972 that same symbol in the range. To be sure we only call the
4973 callback once per symbol, we first collect the symbol name
4974 indexes that matched in a temporary vector and ignore
4975 duplicates. */
4976 std::vector<offset_type> matches;
4977 matches.reserve (std::distance (bounds.first, bounds.second));
4978
4979 for (; bounds.first != bounds.second; ++bounds.first)
4980 {
4981 const char *qualified = index.symbol_name_at (bounds.first->idx);
4982
4983 if (!lookup_name_matcher.matches (qualified)
4984 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4985 continue;
4986
4987 matches.push_back (bounds.first->idx);
4988 }
4989
4990 std::sort (matches.begin (), matches.end ());
4991
4992 /* Finally call the callback, once per match. */
4993 ULONGEST prev = -1;
4994 for (offset_type idx : matches)
4995 {
4996 if (prev != idx)
4997 {
4998 match_callback (idx);
4999 prev = idx;
5000 }
5001 }
5002
5003 /* Above we use a type wider than idx's for 'prev', since 0 and
5004 (offset_type)-1 are both possible values. */
5005 static_assert (sizeof (prev) > sizeof (offset_type), "");
5006 }
5007
5008 #if GDB_SELF_TEST
5009
5010 namespace selftests { namespace dw2_expand_symtabs_matching {
5011
5012 /* A mock .gdb_index/.debug_names-like name index table, enough to
5013 exercise dw2_expand_symtabs_matching_symbol, which works with the
5014 mapped_index_base interface. Builds an index from the symbol list
5015 passed as parameter to the constructor. */
5016 class mock_mapped_index : public mapped_index_base
5017 {
5018 public:
5019 mock_mapped_index (gdb::array_view<const char *> symbols)
5020 : m_symbol_table (symbols)
5021 {}
5022
5023 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
5024
5025 /* Return the number of names in the symbol table. */
5026 virtual size_t symbol_name_count () const
5027 {
5028 return m_symbol_table.size ();
5029 }
5030
5031 /* Get the name of the symbol at IDX in the symbol table. */
5032 virtual const char *symbol_name_at (offset_type idx) const
5033 {
5034 return m_symbol_table[idx];
5035 }
5036
5037 private:
5038 gdb::array_view<const char *> m_symbol_table;
5039 };
5040
5041 /* Convenience function that converts a NULL pointer to a "<null>"
5042 string, to pass to print routines. */
5043
5044 static const char *
5045 string_or_null (const char *str)
5046 {
5047 return str != NULL ? str : "<null>";
5048 }
5049
5050 /* Check if a lookup_name_info built from
5051 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
5052 index. EXPECTED_LIST is the list of expected matches, in expected
5053 matching order. If no match expected, then an empty list is
5054 specified. Returns true on success. On failure prints a warning
5055 indicating the file:line that failed, and returns false. */
5056
5057 static bool
5058 check_match (const char *file, int line,
5059 mock_mapped_index &mock_index,
5060 const char *name, symbol_name_match_type match_type,
5061 bool completion_mode,
5062 std::initializer_list<const char *> expected_list)
5063 {
5064 lookup_name_info lookup_name (name, match_type, completion_mode);
5065
5066 bool matched = true;
5067
5068 auto mismatch = [&] (const char *expected_str,
5069 const char *got)
5070 {
5071 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
5072 "expected=\"%s\", got=\"%s\"\n"),
5073 file, line,
5074 (match_type == symbol_name_match_type::FULL
5075 ? "FULL" : "WILD"),
5076 name, string_or_null (expected_str), string_or_null (got));
5077 matched = false;
5078 };
5079
5080 auto expected_it = expected_list.begin ();
5081 auto expected_end = expected_list.end ();
5082
5083 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
5084 NULL, ALL_DOMAIN,
5085 [&] (offset_type idx)
5086 {
5087 const char *matched_name = mock_index.symbol_name_at (idx);
5088 const char *expected_str
5089 = expected_it == expected_end ? NULL : *expected_it++;
5090
5091 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
5092 mismatch (expected_str, matched_name);
5093 });
5094
5095 const char *expected_str
5096 = expected_it == expected_end ? NULL : *expected_it++;
5097 if (expected_str != NULL)
5098 mismatch (expected_str, NULL);
5099
5100 return matched;
5101 }
5102
5103 /* The symbols added to the mock mapped_index for testing (in
5104 canonical form). */
5105 static const char *test_symbols[] = {
5106 "function",
5107 "std::bar",
5108 "std::zfunction",
5109 "std::zfunction2",
5110 "w1::w2",
5111 "ns::foo<char*>",
5112 "ns::foo<int>",
5113 "ns::foo<long>",
5114 "ns2::tmpl<int>::foo2",
5115 "(anonymous namespace)::A::B::C",
5116
5117 /* These are used to check that the increment-last-char in the
5118 matching algorithm for completion doesn't match "t1_fund" when
5119 completing "t1_func". */
5120 "t1_func",
5121 "t1_func1",
5122 "t1_fund",
5123 "t1_fund1",
5124
5125 /* A UTF-8 name with multi-byte sequences to make sure that
5126 cp-name-parser understands this as a single identifier ("função"
5127 is "function" in PT). */
5128 u8"u8função",
5129
5130 /* \377 (0xff) is Latin1 'ÿ'. */
5131 "yfunc\377",
5132
5133 /* \377 (0xff) is Latin1 'ÿ'. */
5134 "\377",
5135 "\377\377123",
5136
5137 /* A name with all sorts of complications. Starts with "z" to make
5138 it easier for the completion tests below. */
5139 #define Z_SYM_NAME \
5140 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5141 "::tuple<(anonymous namespace)::ui*, " \
5142 "std::default_delete<(anonymous namespace)::ui>, void>"
5143
5144 Z_SYM_NAME
5145 };
5146
5147 /* Returns true if the mapped_index_base::find_name_component_bounds
5148 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5149 in completion mode. */
5150
5151 static bool
5152 check_find_bounds_finds (mapped_index_base &index,
5153 const char *search_name,
5154 gdb::array_view<const char *> expected_syms)
5155 {
5156 lookup_name_info lookup_name (search_name,
5157 symbol_name_match_type::FULL, true);
5158
5159 auto bounds = index.find_name_components_bounds (lookup_name);
5160
5161 size_t distance = std::distance (bounds.first, bounds.second);
5162 if (distance != expected_syms.size ())
5163 return false;
5164
5165 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5166 {
5167 auto nc_elem = bounds.first + exp_elem;
5168 const char *qualified = index.symbol_name_at (nc_elem->idx);
5169 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5170 return false;
5171 }
5172
5173 return true;
5174 }
5175
5176 /* Test the lower-level mapped_index::find_name_component_bounds
5177 method. */
5178
5179 static void
5180 test_mapped_index_find_name_component_bounds ()
5181 {
5182 mock_mapped_index mock_index (test_symbols);
5183
5184 mock_index.build_name_components ();
5185
5186 /* Test the lower-level mapped_index::find_name_component_bounds
5187 method in completion mode. */
5188 {
5189 static const char *expected_syms[] = {
5190 "t1_func",
5191 "t1_func1",
5192 };
5193
5194 SELF_CHECK (check_find_bounds_finds (mock_index,
5195 "t1_func", expected_syms));
5196 }
5197
5198 /* Check that the increment-last-char in the name matching algorithm
5199 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5200 {
5201 static const char *expected_syms1[] = {
5202 "\377",
5203 "\377\377123",
5204 };
5205 SELF_CHECK (check_find_bounds_finds (mock_index,
5206 "\377", expected_syms1));
5207
5208 static const char *expected_syms2[] = {
5209 "\377\377123",
5210 };
5211 SELF_CHECK (check_find_bounds_finds (mock_index,
5212 "\377\377", expected_syms2));
5213 }
5214 }
5215
5216 /* Test dw2_expand_symtabs_matching_symbol. */
5217
5218 static void
5219 test_dw2_expand_symtabs_matching_symbol ()
5220 {
5221 mock_mapped_index mock_index (test_symbols);
5222
5223 /* We let all tests run until the end even if some fails, for debug
5224 convenience. */
5225 bool any_mismatch = false;
5226
5227 /* Create the expected symbols list (an initializer_list). Needed
5228 because lists have commas, and we need to pass them to CHECK,
5229 which is a macro. */
5230 #define EXPECT(...) { __VA_ARGS__ }
5231
5232 /* Wrapper for check_match that passes down the current
5233 __FILE__/__LINE__. */
5234 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5235 any_mismatch |= !check_match (__FILE__, __LINE__, \
5236 mock_index, \
5237 NAME, MATCH_TYPE, COMPLETION_MODE, \
5238 EXPECTED_LIST)
5239
5240 /* Identity checks. */
5241 for (const char *sym : test_symbols)
5242 {
5243 /* Should be able to match all existing symbols. */
5244 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5245 EXPECT (sym));
5246
5247 /* Should be able to match all existing symbols with
5248 parameters. */
5249 std::string with_params = std::string (sym) + "(int)";
5250 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5251 EXPECT (sym));
5252
5253 /* Should be able to match all existing symbols with
5254 parameters and qualifiers. */
5255 with_params = std::string (sym) + " ( int ) const";
5256 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5257 EXPECT (sym));
5258
5259 /* This should really find sym, but cp-name-parser.y doesn't
5260 know about lvalue/rvalue qualifiers yet. */
5261 with_params = std::string (sym) + " ( int ) &&";
5262 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5263 {});
5264 }
5265
5266 /* Check that the name matching algorithm for completion doesn't get
5267 confused with Latin1 'ÿ' / 0xff. */
5268 {
5269 static const char str[] = "\377";
5270 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5271 EXPECT ("\377", "\377\377123"));
5272 }
5273
5274 /* Check that the increment-last-char in the matching algorithm for
5275 completion doesn't match "t1_fund" when completing "t1_func". */
5276 {
5277 static const char str[] = "t1_func";
5278 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5279 EXPECT ("t1_func", "t1_func1"));
5280 }
5281
5282 /* Check that completion mode works at each prefix of the expected
5283 symbol name. */
5284 {
5285 static const char str[] = "function(int)";
5286 size_t len = strlen (str);
5287 std::string lookup;
5288
5289 for (size_t i = 1; i < len; i++)
5290 {
5291 lookup.assign (str, i);
5292 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5293 EXPECT ("function"));
5294 }
5295 }
5296
5297 /* While "w" is a prefix of both components, the match function
5298 should still only be called once. */
5299 {
5300 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5301 EXPECT ("w1::w2"));
5302 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5303 EXPECT ("w1::w2"));
5304 }
5305
5306 /* Same, with a "complicated" symbol. */
5307 {
5308 static const char str[] = Z_SYM_NAME;
5309 size_t len = strlen (str);
5310 std::string lookup;
5311
5312 for (size_t i = 1; i < len; i++)
5313 {
5314 lookup.assign (str, i);
5315 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5316 EXPECT (Z_SYM_NAME));
5317 }
5318 }
5319
5320 /* In FULL mode, an incomplete symbol doesn't match. */
5321 {
5322 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5323 {});
5324 }
5325
5326 /* A complete symbol with parameters matches any overload, since the
5327 index has no overload info. */
5328 {
5329 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5330 EXPECT ("std::zfunction", "std::zfunction2"));
5331 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5332 EXPECT ("std::zfunction", "std::zfunction2"));
5333 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5334 EXPECT ("std::zfunction", "std::zfunction2"));
5335 }
5336
5337 /* Check that whitespace is ignored appropriately. A symbol with a
5338 template argument list. */
5339 {
5340 static const char expected[] = "ns::foo<int>";
5341 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5342 EXPECT (expected));
5343 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5344 EXPECT (expected));
5345 }
5346
5347 /* Check that whitespace is ignored appropriately. A symbol with a
5348 template argument list that includes a pointer. */
5349 {
5350 static const char expected[] = "ns::foo<char*>";
5351 /* Try both completion and non-completion modes. */
5352 static const bool completion_mode[2] = {false, true};
5353 for (size_t i = 0; i < 2; i++)
5354 {
5355 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5356 completion_mode[i], EXPECT (expected));
5357 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5358 completion_mode[i], EXPECT (expected));
5359
5360 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5361 completion_mode[i], EXPECT (expected));
5362 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5363 completion_mode[i], EXPECT (expected));
5364 }
5365 }
5366
5367 {
5368 /* Check method qualifiers are ignored. */
5369 static const char expected[] = "ns::foo<char*>";
5370 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5371 symbol_name_match_type::FULL, true, EXPECT (expected));
5372 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5373 symbol_name_match_type::FULL, true, EXPECT (expected));
5374 CHECK_MATCH ("foo < char * > ( int ) const",
5375 symbol_name_match_type::WILD, true, EXPECT (expected));
5376 CHECK_MATCH ("foo < char * > ( int ) &&",
5377 symbol_name_match_type::WILD, true, EXPECT (expected));
5378 }
5379
5380 /* Test lookup names that don't match anything. */
5381 {
5382 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5383 {});
5384
5385 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5386 {});
5387 }
5388
5389 /* Some wild matching tests, exercising "(anonymous namespace)",
5390 which should not be confused with a parameter list. */
5391 {
5392 static const char *syms[] = {
5393 "A::B::C",
5394 "B::C",
5395 "C",
5396 "A :: B :: C ( int )",
5397 "B :: C ( int )",
5398 "C ( int )",
5399 };
5400
5401 for (const char *s : syms)
5402 {
5403 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5404 EXPECT ("(anonymous namespace)::A::B::C"));
5405 }
5406 }
5407
5408 {
5409 static const char expected[] = "ns2::tmpl<int>::foo2";
5410 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5411 EXPECT (expected));
5412 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5413 EXPECT (expected));
5414 }
5415
5416 SELF_CHECK (!any_mismatch);
5417
5418 #undef EXPECT
5419 #undef CHECK_MATCH
5420 }
5421
5422 static void
5423 run_test ()
5424 {
5425 test_mapped_index_find_name_component_bounds ();
5426 test_dw2_expand_symtabs_matching_symbol ();
5427 }
5428
5429 }} // namespace selftests::dw2_expand_symtabs_matching
5430
5431 #endif /* GDB_SELF_TEST */
5432
5433 /* If FILE_MATCHER is NULL or if PER_CU has
5434 dwarf2_per_cu_quick_data::MARK set (see
5435 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5436 EXPANSION_NOTIFY on it. */
5437
5438 static void
5439 dw2_expand_symtabs_matching_one
5440 (struct dwarf2_per_cu_data *per_cu,
5441 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5442 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5443 {
5444 if (file_matcher == NULL || per_cu->v.quick->mark)
5445 {
5446 bool symtab_was_null
5447 = (per_cu->v.quick->compunit_symtab == NULL);
5448
5449 dw2_instantiate_symtab (per_cu);
5450
5451 if (expansion_notify != NULL
5452 && symtab_was_null
5453 && per_cu->v.quick->compunit_symtab != NULL)
5454 expansion_notify (per_cu->v.quick->compunit_symtab);
5455 }
5456 }
5457
5458 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5459 matched, to expand corresponding CUs that were marked. IDX is the
5460 index of the symbol name that matched. */
5461
5462 static void
5463 dw2_expand_marked_cus
5464 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5465 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5466 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5467 search_domain kind)
5468 {
5469 offset_type *vec, vec_len, vec_idx;
5470 bool global_seen = false;
5471 mapped_index &index = *dwarf2_per_objfile->index_table;
5472
5473 vec = (offset_type *) (index.constant_pool
5474 + MAYBE_SWAP (index.symbol_table[idx].vec));
5475 vec_len = MAYBE_SWAP (vec[0]);
5476 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5477 {
5478 struct dwarf2_per_cu_data *per_cu;
5479 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5480 /* This value is only valid for index versions >= 7. */
5481 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5482 gdb_index_symbol_kind symbol_kind =
5483 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5484 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5485 /* Only check the symbol attributes if they're present.
5486 Indices prior to version 7 don't record them,
5487 and indices >= 7 may elide them for certain symbols
5488 (gold does this). */
5489 int attrs_valid =
5490 (index.version >= 7
5491 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5492
5493 /* Work around gold/15646. */
5494 if (attrs_valid)
5495 {
5496 if (!is_static && global_seen)
5497 continue;
5498 if (!is_static)
5499 global_seen = true;
5500 }
5501
5502 /* Only check the symbol's kind if it has one. */
5503 if (attrs_valid)
5504 {
5505 switch (kind)
5506 {
5507 case VARIABLES_DOMAIN:
5508 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5509 continue;
5510 break;
5511 case FUNCTIONS_DOMAIN:
5512 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5513 continue;
5514 break;
5515 case TYPES_DOMAIN:
5516 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5517 continue;
5518 break;
5519 default:
5520 break;
5521 }
5522 }
5523
5524 /* Don't crash on bad data. */
5525 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5526 + dwarf2_per_objfile->n_type_units))
5527 {
5528 complaint (&symfile_complaints,
5529 _(".gdb_index entry has bad CU index"
5530 " [in module %s]"),
5531 objfile_name (dwarf2_per_objfile->objfile));
5532 continue;
5533 }
5534
5535 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5536 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5537 expansion_notify);
5538 }
5539 }
5540
5541 /* If FILE_MATCHER is non-NULL, set all the
5542 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5543 that match FILE_MATCHER. */
5544
5545 static void
5546 dw_expand_symtabs_matching_file_matcher
5547 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5548 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5549 {
5550 if (file_matcher == NULL)
5551 return;
5552
5553 objfile *const objfile = dwarf2_per_objfile->objfile;
5554
5555 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5556 htab_eq_pointer,
5557 NULL, xcalloc, xfree));
5558 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5559 htab_eq_pointer,
5560 NULL, xcalloc, xfree));
5561
5562 /* The rule is CUs specify all the files, including those used by
5563 any TU, so there's no need to scan TUs here. */
5564
5565 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5566 {
5567 int j;
5568 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5569 struct quick_file_names *file_data;
5570 void **slot;
5571
5572 QUIT;
5573
5574 per_cu->v.quick->mark = 0;
5575
5576 /* We only need to look at symtabs not already expanded. */
5577 if (per_cu->v.quick->compunit_symtab)
5578 continue;
5579
5580 file_data = dw2_get_file_names (per_cu);
5581 if (file_data == NULL)
5582 continue;
5583
5584 if (htab_find (visited_not_found.get (), file_data) != NULL)
5585 continue;
5586 else if (htab_find (visited_found.get (), file_data) != NULL)
5587 {
5588 per_cu->v.quick->mark = 1;
5589 continue;
5590 }
5591
5592 for (j = 0; j < file_data->num_file_names; ++j)
5593 {
5594 const char *this_real_name;
5595
5596 if (file_matcher (file_data->file_names[j], false))
5597 {
5598 per_cu->v.quick->mark = 1;
5599 break;
5600 }
5601
5602 /* Before we invoke realpath, which can get expensive when many
5603 files are involved, do a quick comparison of the basenames. */
5604 if (!basenames_may_differ
5605 && !file_matcher (lbasename (file_data->file_names[j]),
5606 true))
5607 continue;
5608
5609 this_real_name = dw2_get_real_path (objfile, file_data, j);
5610 if (file_matcher (this_real_name, false))
5611 {
5612 per_cu->v.quick->mark = 1;
5613 break;
5614 }
5615 }
5616
5617 slot = htab_find_slot (per_cu->v.quick->mark
5618 ? visited_found.get ()
5619 : visited_not_found.get (),
5620 file_data, INSERT);
5621 *slot = file_data;
5622 }
5623 }
5624
5625 static void
5626 dw2_expand_symtabs_matching
5627 (struct objfile *objfile,
5628 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5629 const lookup_name_info &lookup_name,
5630 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5631 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5632 enum search_domain kind)
5633 {
5634 struct dwarf2_per_objfile *dwarf2_per_objfile
5635 = get_dwarf2_per_objfile (objfile);
5636
5637 /* index_table is NULL if OBJF_READNOW. */
5638 if (!dwarf2_per_objfile->index_table)
5639 return;
5640
5641 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5642
5643 mapped_index &index = *dwarf2_per_objfile->index_table;
5644
5645 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5646 symbol_matcher,
5647 kind, [&] (offset_type idx)
5648 {
5649 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5650 expansion_notify, kind);
5651 });
5652 }
5653
5654 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5655 symtab. */
5656
5657 static struct compunit_symtab *
5658 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5659 CORE_ADDR pc)
5660 {
5661 int i;
5662
5663 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5664 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5665 return cust;
5666
5667 if (cust->includes == NULL)
5668 return NULL;
5669
5670 for (i = 0; cust->includes[i]; ++i)
5671 {
5672 struct compunit_symtab *s = cust->includes[i];
5673
5674 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5675 if (s != NULL)
5676 return s;
5677 }
5678
5679 return NULL;
5680 }
5681
5682 static struct compunit_symtab *
5683 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5684 struct bound_minimal_symbol msymbol,
5685 CORE_ADDR pc,
5686 struct obj_section *section,
5687 int warn_if_readin)
5688 {
5689 struct dwarf2_per_cu_data *data;
5690 struct compunit_symtab *result;
5691
5692 if (!objfile->psymtabs_addrmap)
5693 return NULL;
5694
5695 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5696 pc);
5697 if (!data)
5698 return NULL;
5699
5700 if (warn_if_readin && data->v.quick->compunit_symtab)
5701 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5702 paddress (get_objfile_arch (objfile), pc));
5703
5704 result
5705 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5706 pc);
5707 gdb_assert (result != NULL);
5708 return result;
5709 }
5710
5711 static void
5712 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5713 void *data, int need_fullname)
5714 {
5715 struct dwarf2_per_objfile *dwarf2_per_objfile
5716 = get_dwarf2_per_objfile (objfile);
5717
5718 if (!dwarf2_per_objfile->filenames_cache)
5719 {
5720 dwarf2_per_objfile->filenames_cache.emplace ();
5721
5722 htab_up visited (htab_create_alloc (10,
5723 htab_hash_pointer, htab_eq_pointer,
5724 NULL, xcalloc, xfree));
5725
5726 /* The rule is CUs specify all the files, including those used
5727 by any TU, so there's no need to scan TUs here. We can
5728 ignore file names coming from already-expanded CUs. */
5729
5730 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5731 {
5732 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5733
5734 if (per_cu->v.quick->compunit_symtab)
5735 {
5736 void **slot = htab_find_slot (visited.get (),
5737 per_cu->v.quick->file_names,
5738 INSERT);
5739
5740 *slot = per_cu->v.quick->file_names;
5741 }
5742 }
5743
5744 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5745 {
5746 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5747 struct quick_file_names *file_data;
5748 void **slot;
5749
5750 /* We only need to look at symtabs not already expanded. */
5751 if (per_cu->v.quick->compunit_symtab)
5752 continue;
5753
5754 file_data = dw2_get_file_names (per_cu);
5755 if (file_data == NULL)
5756 continue;
5757
5758 slot = htab_find_slot (visited.get (), file_data, INSERT);
5759 if (*slot)
5760 {
5761 /* Already visited. */
5762 continue;
5763 }
5764 *slot = file_data;
5765
5766 for (int j = 0; j < file_data->num_file_names; ++j)
5767 {
5768 const char *filename = file_data->file_names[j];
5769 dwarf2_per_objfile->filenames_cache->seen (filename);
5770 }
5771 }
5772 }
5773
5774 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5775 {
5776 gdb::unique_xmalloc_ptr<char> this_real_name;
5777
5778 if (need_fullname)
5779 this_real_name = gdb_realpath (filename);
5780 (*fun) (filename, this_real_name.get (), data);
5781 });
5782 }
5783
5784 static int
5785 dw2_has_symbols (struct objfile *objfile)
5786 {
5787 return 1;
5788 }
5789
5790 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5791 {
5792 dw2_has_symbols,
5793 dw2_find_last_source_symtab,
5794 dw2_forget_cached_source_info,
5795 dw2_map_symtabs_matching_filename,
5796 dw2_lookup_symbol,
5797 dw2_print_stats,
5798 dw2_dump,
5799 dw2_relocate,
5800 dw2_expand_symtabs_for_function,
5801 dw2_expand_all_symtabs,
5802 dw2_expand_symtabs_with_fullname,
5803 dw2_map_matching_symbols,
5804 dw2_expand_symtabs_matching,
5805 dw2_find_pc_sect_compunit_symtab,
5806 NULL,
5807 dw2_map_symbol_filenames
5808 };
5809
5810 /* DWARF-5 debug_names reader. */
5811
5812 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5813 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5814
5815 /* A helper function that reads the .debug_names section in SECTION
5816 and fills in MAP. FILENAME is the name of the file containing the
5817 section; it is used for error reporting.
5818
5819 Returns true if all went well, false otherwise. */
5820
5821 static bool
5822 read_debug_names_from_section (struct objfile *objfile,
5823 const char *filename,
5824 struct dwarf2_section_info *section,
5825 mapped_debug_names &map)
5826 {
5827 if (dwarf2_section_empty_p (section))
5828 return false;
5829
5830 /* Older elfutils strip versions could keep the section in the main
5831 executable while splitting it for the separate debug info file. */
5832 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5833 return false;
5834
5835 dwarf2_read_section (objfile, section);
5836
5837 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5838
5839 const gdb_byte *addr = section->buffer;
5840
5841 bfd *const abfd = get_section_bfd_owner (section);
5842
5843 unsigned int bytes_read;
5844 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5845 addr += bytes_read;
5846
5847 map.dwarf5_is_dwarf64 = bytes_read != 4;
5848 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5849 if (bytes_read + length != section->size)
5850 {
5851 /* There may be multiple per-CU indices. */
5852 warning (_("Section .debug_names in %s length %s does not match "
5853 "section length %s, ignoring .debug_names."),
5854 filename, plongest (bytes_read + length),
5855 pulongest (section->size));
5856 return false;
5857 }
5858
5859 /* The version number. */
5860 uint16_t version = read_2_bytes (abfd, addr);
5861 addr += 2;
5862 if (version != 5)
5863 {
5864 warning (_("Section .debug_names in %s has unsupported version %d, "
5865 "ignoring .debug_names."),
5866 filename, version);
5867 return false;
5868 }
5869
5870 /* Padding. */
5871 uint16_t padding = read_2_bytes (abfd, addr);
5872 addr += 2;
5873 if (padding != 0)
5874 {
5875 warning (_("Section .debug_names in %s has unsupported padding %d, "
5876 "ignoring .debug_names."),
5877 filename, padding);
5878 return false;
5879 }
5880
5881 /* comp_unit_count - The number of CUs in the CU list. */
5882 map.cu_count = read_4_bytes (abfd, addr);
5883 addr += 4;
5884
5885 /* local_type_unit_count - The number of TUs in the local TU
5886 list. */
5887 map.tu_count = read_4_bytes (abfd, addr);
5888 addr += 4;
5889
5890 /* foreign_type_unit_count - The number of TUs in the foreign TU
5891 list. */
5892 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5893 addr += 4;
5894 if (foreign_tu_count != 0)
5895 {
5896 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5897 "ignoring .debug_names."),
5898 filename, static_cast<unsigned long> (foreign_tu_count));
5899 return false;
5900 }
5901
5902 /* bucket_count - The number of hash buckets in the hash lookup
5903 table. */
5904 map.bucket_count = read_4_bytes (abfd, addr);
5905 addr += 4;
5906
5907 /* name_count - The number of unique names in the index. */
5908 map.name_count = read_4_bytes (abfd, addr);
5909 addr += 4;
5910
5911 /* abbrev_table_size - The size in bytes of the abbreviations
5912 table. */
5913 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5914 addr += 4;
5915
5916 /* augmentation_string_size - The size in bytes of the augmentation
5917 string. This value is rounded up to a multiple of 4. */
5918 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5919 addr += 4;
5920 map.augmentation_is_gdb = ((augmentation_string_size
5921 == sizeof (dwarf5_augmentation))
5922 && memcmp (addr, dwarf5_augmentation,
5923 sizeof (dwarf5_augmentation)) == 0);
5924 augmentation_string_size += (-augmentation_string_size) & 3;
5925 addr += augmentation_string_size;
5926
5927 /* List of CUs */
5928 map.cu_table_reordered = addr;
5929 addr += map.cu_count * map.offset_size;
5930
5931 /* List of Local TUs */
5932 map.tu_table_reordered = addr;
5933 addr += map.tu_count * map.offset_size;
5934
5935 /* Hash Lookup Table */
5936 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5937 addr += map.bucket_count * 4;
5938 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5939 addr += map.name_count * 4;
5940
5941 /* Name Table */
5942 map.name_table_string_offs_reordered = addr;
5943 addr += map.name_count * map.offset_size;
5944 map.name_table_entry_offs_reordered = addr;
5945 addr += map.name_count * map.offset_size;
5946
5947 const gdb_byte *abbrev_table_start = addr;
5948 for (;;)
5949 {
5950 unsigned int bytes_read;
5951 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5952 addr += bytes_read;
5953 if (index_num == 0)
5954 break;
5955
5956 const auto insertpair
5957 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5958 if (!insertpair.second)
5959 {
5960 warning (_("Section .debug_names in %s has duplicate index %s, "
5961 "ignoring .debug_names."),
5962 filename, pulongest (index_num));
5963 return false;
5964 }
5965 mapped_debug_names::index_val &indexval = insertpair.first->second;
5966 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5967 addr += bytes_read;
5968
5969 for (;;)
5970 {
5971 mapped_debug_names::index_val::attr attr;
5972 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5973 addr += bytes_read;
5974 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5975 addr += bytes_read;
5976 if (attr.form == DW_FORM_implicit_const)
5977 {
5978 attr.implicit_const = read_signed_leb128 (abfd, addr,
5979 &bytes_read);
5980 addr += bytes_read;
5981 }
5982 if (attr.dw_idx == 0 && attr.form == 0)
5983 break;
5984 indexval.attr_vec.push_back (std::move (attr));
5985 }
5986 }
5987 if (addr != abbrev_table_start + abbrev_table_size)
5988 {
5989 warning (_("Section .debug_names in %s has abbreviation_table "
5990 "of size %zu vs. written as %u, ignoring .debug_names."),
5991 filename, addr - abbrev_table_start, abbrev_table_size);
5992 return false;
5993 }
5994 map.entry_pool = addr;
5995
5996 return true;
5997 }
5998
5999 /* A helper for create_cus_from_debug_names that handles the MAP's CU
6000 list. */
6001
6002 static void
6003 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
6004 const mapped_debug_names &map,
6005 dwarf2_section_info &section,
6006 bool is_dwz, int base_offset)
6007 {
6008 sect_offset sect_off_prev;
6009 for (uint32_t i = 0; i <= map.cu_count; ++i)
6010 {
6011 sect_offset sect_off_next;
6012 if (i < map.cu_count)
6013 {
6014 sect_off_next
6015 = (sect_offset) (extract_unsigned_integer
6016 (map.cu_table_reordered + i * map.offset_size,
6017 map.offset_size,
6018 map.dwarf5_byte_order));
6019 }
6020 else
6021 sect_off_next = (sect_offset) section.size;
6022 if (i >= 1)
6023 {
6024 const ULONGEST length = sect_off_next - sect_off_prev;
6025 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
6026 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
6027 sect_off_prev, length);
6028 }
6029 sect_off_prev = sect_off_next;
6030 }
6031 }
6032
6033 /* Read the CU list from the mapped index, and use it to create all
6034 the CU objects for this dwarf2_per_objfile. */
6035
6036 static void
6037 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
6038 const mapped_debug_names &map,
6039 const mapped_debug_names &dwz_map)
6040 {
6041 struct objfile *objfile = dwarf2_per_objfile->objfile;
6042
6043 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
6044 dwarf2_per_objfile->all_comp_units
6045 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
6046 dwarf2_per_objfile->n_comp_units);
6047
6048 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
6049 dwarf2_per_objfile->info,
6050 false /* is_dwz */,
6051 0 /* base_offset */);
6052
6053 if (dwz_map.cu_count == 0)
6054 return;
6055
6056 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6057 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
6058 true /* is_dwz */,
6059 map.cu_count /* base_offset */);
6060 }
6061
6062 /* Read .debug_names. If everything went ok, initialize the "quick"
6063 elements of all the CUs and return true. Otherwise, return false. */
6064
6065 static bool
6066 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
6067 {
6068 mapped_debug_names local_map (dwarf2_per_objfile);
6069 mapped_debug_names dwz_map (dwarf2_per_objfile);
6070 struct objfile *objfile = dwarf2_per_objfile->objfile;
6071
6072 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
6073 &dwarf2_per_objfile->debug_names,
6074 local_map))
6075 return false;
6076
6077 /* Don't use the index if it's empty. */
6078 if (local_map.name_count == 0)
6079 return false;
6080
6081 /* If there is a .dwz file, read it so we can get its CU list as
6082 well. */
6083 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6084 if (dwz != NULL)
6085 {
6086 if (!read_debug_names_from_section (objfile,
6087 bfd_get_filename (dwz->dwz_bfd),
6088 &dwz->debug_names, dwz_map))
6089 {
6090 warning (_("could not read '.debug_names' section from %s; skipping"),
6091 bfd_get_filename (dwz->dwz_bfd));
6092 return false;
6093 }
6094 }
6095
6096 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
6097
6098 if (local_map.tu_count != 0)
6099 {
6100 /* We can only handle a single .debug_types when we have an
6101 index. */
6102 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
6103 return false;
6104
6105 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
6106 dwarf2_per_objfile->types, 0);
6107
6108 create_signatured_type_table_from_debug_names
6109 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
6110 }
6111
6112 create_addrmap_from_aranges (dwarf2_per_objfile,
6113 &dwarf2_per_objfile->debug_aranges);
6114
6115 dwarf2_per_objfile->debug_names_table.reset
6116 (new mapped_debug_names (dwarf2_per_objfile));
6117 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
6118 dwarf2_per_objfile->using_index = 1;
6119 dwarf2_per_objfile->quick_file_names_table =
6120 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6121
6122 return true;
6123 }
6124
6125 /* Symbol name hashing function as specified by DWARF-5. */
6126
6127 static uint32_t
6128 dwarf5_djb_hash (const char *str_)
6129 {
6130 const unsigned char *str = (const unsigned char *) str_;
6131
6132 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6133 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6134
6135 uint32_t hash = 5381;
6136 while (int c = *str++)
6137 hash = hash * 33 + tolower (c);
6138 return hash;
6139 }
6140
6141 /* Type used to manage iterating over all CUs looking for a symbol for
6142 .debug_names. */
6143
6144 class dw2_debug_names_iterator
6145 {
6146 public:
6147 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6148 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6149 dw2_debug_names_iterator (const mapped_debug_names &map,
6150 bool want_specific_block,
6151 block_enum block_index, domain_enum domain,
6152 const char *name)
6153 : m_map (map), m_want_specific_block (want_specific_block),
6154 m_block_index (block_index), m_domain (domain),
6155 m_addr (find_vec_in_debug_names (map, name))
6156 {}
6157
6158 dw2_debug_names_iterator (const mapped_debug_names &map,
6159 search_domain search, uint32_t namei)
6160 : m_map (map),
6161 m_search (search),
6162 m_addr (find_vec_in_debug_names (map, namei))
6163 {}
6164
6165 /* Return the next matching CU or NULL if there are no more. */
6166 dwarf2_per_cu_data *next ();
6167
6168 private:
6169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6170 const char *name);
6171 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6172 uint32_t namei);
6173
6174 /* The internalized form of .debug_names. */
6175 const mapped_debug_names &m_map;
6176
6177 /* If true, only look for symbols that match BLOCK_INDEX. */
6178 const bool m_want_specific_block = false;
6179
6180 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6181 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6182 value. */
6183 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6184
6185 /* The kind of symbol we're looking for. */
6186 const domain_enum m_domain = UNDEF_DOMAIN;
6187 const search_domain m_search = ALL_DOMAIN;
6188
6189 /* The list of CUs from the index entry of the symbol, or NULL if
6190 not found. */
6191 const gdb_byte *m_addr;
6192 };
6193
6194 const char *
6195 mapped_debug_names::namei_to_name (uint32_t namei) const
6196 {
6197 const ULONGEST namei_string_offs
6198 = extract_unsigned_integer ((name_table_string_offs_reordered
6199 + namei * offset_size),
6200 offset_size,
6201 dwarf5_byte_order);
6202 return read_indirect_string_at_offset
6203 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6204 }
6205
6206 /* Find a slot in .debug_names for the object named NAME. If NAME is
6207 found, return pointer to its pool data. If NAME cannot be found,
6208 return NULL. */
6209
6210 const gdb_byte *
6211 dw2_debug_names_iterator::find_vec_in_debug_names
6212 (const mapped_debug_names &map, const char *name)
6213 {
6214 int (*cmp) (const char *, const char *);
6215
6216 if (current_language->la_language == language_cplus
6217 || current_language->la_language == language_fortran
6218 || current_language->la_language == language_d)
6219 {
6220 /* NAME is already canonical. Drop any qualifiers as
6221 .debug_names does not contain any. */
6222
6223 if (strchr (name, '(') != NULL)
6224 {
6225 gdb::unique_xmalloc_ptr<char> without_params
6226 = cp_remove_params (name);
6227
6228 if (without_params != NULL)
6229 {
6230 name = without_params.get();
6231 }
6232 }
6233 }
6234
6235 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6236
6237 const uint32_t full_hash = dwarf5_djb_hash (name);
6238 uint32_t namei
6239 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6240 (map.bucket_table_reordered
6241 + (full_hash % map.bucket_count)), 4,
6242 map.dwarf5_byte_order);
6243 if (namei == 0)
6244 return NULL;
6245 --namei;
6246 if (namei >= map.name_count)
6247 {
6248 complaint (&symfile_complaints,
6249 _("Wrong .debug_names with name index %u but name_count=%u "
6250 "[in module %s]"),
6251 namei, map.name_count,
6252 objfile_name (map.dwarf2_per_objfile->objfile));
6253 return NULL;
6254 }
6255
6256 for (;;)
6257 {
6258 const uint32_t namei_full_hash
6259 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6260 (map.hash_table_reordered + namei), 4,
6261 map.dwarf5_byte_order);
6262 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6263 return NULL;
6264
6265 if (full_hash == namei_full_hash)
6266 {
6267 const char *const namei_string = map.namei_to_name (namei);
6268
6269 #if 0 /* An expensive sanity check. */
6270 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6271 {
6272 complaint (&symfile_complaints,
6273 _("Wrong .debug_names hash for string at index %u "
6274 "[in module %s]"),
6275 namei, objfile_name (dwarf2_per_objfile->objfile));
6276 return NULL;
6277 }
6278 #endif
6279
6280 if (cmp (namei_string, name) == 0)
6281 {
6282 const ULONGEST namei_entry_offs
6283 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6284 + namei * map.offset_size),
6285 map.offset_size, map.dwarf5_byte_order);
6286 return map.entry_pool + namei_entry_offs;
6287 }
6288 }
6289
6290 ++namei;
6291 if (namei >= map.name_count)
6292 return NULL;
6293 }
6294 }
6295
6296 const gdb_byte *
6297 dw2_debug_names_iterator::find_vec_in_debug_names
6298 (const mapped_debug_names &map, uint32_t namei)
6299 {
6300 if (namei >= map.name_count)
6301 {
6302 complaint (&symfile_complaints,
6303 _("Wrong .debug_names with name index %u but name_count=%u "
6304 "[in module %s]"),
6305 namei, map.name_count,
6306 objfile_name (map.dwarf2_per_objfile->objfile));
6307 return NULL;
6308 }
6309
6310 const ULONGEST namei_entry_offs
6311 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6312 + namei * map.offset_size),
6313 map.offset_size, map.dwarf5_byte_order);
6314 return map.entry_pool + namei_entry_offs;
6315 }
6316
6317 /* See dw2_debug_names_iterator. */
6318
6319 dwarf2_per_cu_data *
6320 dw2_debug_names_iterator::next ()
6321 {
6322 if (m_addr == NULL)
6323 return NULL;
6324
6325 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6326 struct objfile *objfile = dwarf2_per_objfile->objfile;
6327 bfd *const abfd = objfile->obfd;
6328
6329 again:
6330
6331 unsigned int bytes_read;
6332 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6333 m_addr += bytes_read;
6334 if (abbrev == 0)
6335 return NULL;
6336
6337 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6338 if (indexval_it == m_map.abbrev_map.cend ())
6339 {
6340 complaint (&symfile_complaints,
6341 _("Wrong .debug_names undefined abbrev code %s "
6342 "[in module %s]"),
6343 pulongest (abbrev), objfile_name (objfile));
6344 return NULL;
6345 }
6346 const mapped_debug_names::index_val &indexval = indexval_it->second;
6347 bool have_is_static = false;
6348 bool is_static;
6349 dwarf2_per_cu_data *per_cu = NULL;
6350 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6351 {
6352 ULONGEST ull;
6353 switch (attr.form)
6354 {
6355 case DW_FORM_implicit_const:
6356 ull = attr.implicit_const;
6357 break;
6358 case DW_FORM_flag_present:
6359 ull = 1;
6360 break;
6361 case DW_FORM_udata:
6362 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6363 m_addr += bytes_read;
6364 break;
6365 default:
6366 complaint (&symfile_complaints,
6367 _("Unsupported .debug_names form %s [in module %s]"),
6368 dwarf_form_name (attr.form),
6369 objfile_name (objfile));
6370 return NULL;
6371 }
6372 switch (attr.dw_idx)
6373 {
6374 case DW_IDX_compile_unit:
6375 /* Don't crash on bad data. */
6376 if (ull >= dwarf2_per_objfile->n_comp_units)
6377 {
6378 complaint (&symfile_complaints,
6379 _(".debug_names entry has bad CU index %s"
6380 " [in module %s]"),
6381 pulongest (ull),
6382 objfile_name (dwarf2_per_objfile->objfile));
6383 continue;
6384 }
6385 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6386 break;
6387 case DW_IDX_type_unit:
6388 /* Don't crash on bad data. */
6389 if (ull >= dwarf2_per_objfile->n_type_units)
6390 {
6391 complaint (&symfile_complaints,
6392 _(".debug_names entry has bad TU index %s"
6393 " [in module %s]"),
6394 pulongest (ull),
6395 objfile_name (dwarf2_per_objfile->objfile));
6396 continue;
6397 }
6398 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6399 dwarf2_per_objfile->n_comp_units + ull);
6400 break;
6401 case DW_IDX_GNU_internal:
6402 if (!m_map.augmentation_is_gdb)
6403 break;
6404 have_is_static = true;
6405 is_static = true;
6406 break;
6407 case DW_IDX_GNU_external:
6408 if (!m_map.augmentation_is_gdb)
6409 break;
6410 have_is_static = true;
6411 is_static = false;
6412 break;
6413 }
6414 }
6415
6416 /* Skip if already read in. */
6417 if (per_cu->v.quick->compunit_symtab)
6418 goto again;
6419
6420 /* Check static vs global. */
6421 if (have_is_static)
6422 {
6423 const bool want_static = m_block_index != GLOBAL_BLOCK;
6424 if (m_want_specific_block && want_static != is_static)
6425 goto again;
6426 }
6427
6428 /* Match dw2_symtab_iter_next, symbol_kind
6429 and debug_names::psymbol_tag. */
6430 switch (m_domain)
6431 {
6432 case VAR_DOMAIN:
6433 switch (indexval.dwarf_tag)
6434 {
6435 case DW_TAG_variable:
6436 case DW_TAG_subprogram:
6437 /* Some types are also in VAR_DOMAIN. */
6438 case DW_TAG_typedef:
6439 case DW_TAG_structure_type:
6440 break;
6441 default:
6442 goto again;
6443 }
6444 break;
6445 case STRUCT_DOMAIN:
6446 switch (indexval.dwarf_tag)
6447 {
6448 case DW_TAG_typedef:
6449 case DW_TAG_structure_type:
6450 break;
6451 default:
6452 goto again;
6453 }
6454 break;
6455 case LABEL_DOMAIN:
6456 switch (indexval.dwarf_tag)
6457 {
6458 case 0:
6459 case DW_TAG_variable:
6460 break;
6461 default:
6462 goto again;
6463 }
6464 break;
6465 default:
6466 break;
6467 }
6468
6469 /* Match dw2_expand_symtabs_matching, symbol_kind and
6470 debug_names::psymbol_tag. */
6471 switch (m_search)
6472 {
6473 case VARIABLES_DOMAIN:
6474 switch (indexval.dwarf_tag)
6475 {
6476 case DW_TAG_variable:
6477 break;
6478 default:
6479 goto again;
6480 }
6481 break;
6482 case FUNCTIONS_DOMAIN:
6483 switch (indexval.dwarf_tag)
6484 {
6485 case DW_TAG_subprogram:
6486 break;
6487 default:
6488 goto again;
6489 }
6490 break;
6491 case TYPES_DOMAIN:
6492 switch (indexval.dwarf_tag)
6493 {
6494 case DW_TAG_typedef:
6495 case DW_TAG_structure_type:
6496 break;
6497 default:
6498 goto again;
6499 }
6500 break;
6501 default:
6502 break;
6503 }
6504
6505 return per_cu;
6506 }
6507
6508 static struct compunit_symtab *
6509 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6510 const char *name, domain_enum domain)
6511 {
6512 const block_enum block_index = static_cast<block_enum> (block_index_int);
6513 struct dwarf2_per_objfile *dwarf2_per_objfile
6514 = get_dwarf2_per_objfile (objfile);
6515
6516 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6517 if (!mapp)
6518 {
6519 /* index is NULL if OBJF_READNOW. */
6520 return NULL;
6521 }
6522 const auto &map = *mapp;
6523
6524 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6525 block_index, domain, name);
6526
6527 struct compunit_symtab *stab_best = NULL;
6528 struct dwarf2_per_cu_data *per_cu;
6529 while ((per_cu = iter.next ()) != NULL)
6530 {
6531 struct symbol *sym, *with_opaque = NULL;
6532 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6533 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6534 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6535
6536 sym = block_find_symbol (block, name, domain,
6537 block_find_non_opaque_type_preferred,
6538 &with_opaque);
6539
6540 /* Some caution must be observed with overloaded functions and
6541 methods, since the index will not contain any overload
6542 information (but NAME might contain it). */
6543
6544 if (sym != NULL
6545 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6546 return stab;
6547 if (with_opaque != NULL
6548 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6549 stab_best = stab;
6550
6551 /* Keep looking through other CUs. */
6552 }
6553
6554 return stab_best;
6555 }
6556
6557 /* This dumps minimal information about .debug_names. It is called
6558 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6559 uses this to verify that .debug_names has been loaded. */
6560
6561 static void
6562 dw2_debug_names_dump (struct objfile *objfile)
6563 {
6564 struct dwarf2_per_objfile *dwarf2_per_objfile
6565 = get_dwarf2_per_objfile (objfile);
6566
6567 gdb_assert (dwarf2_per_objfile->using_index);
6568 printf_filtered (".debug_names:");
6569 if (dwarf2_per_objfile->debug_names_table)
6570 printf_filtered (" exists\n");
6571 else
6572 printf_filtered (" faked for \"readnow\"\n");
6573 printf_filtered ("\n");
6574 }
6575
6576 static void
6577 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6578 const char *func_name)
6579 {
6580 struct dwarf2_per_objfile *dwarf2_per_objfile
6581 = get_dwarf2_per_objfile (objfile);
6582
6583 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6584 if (dwarf2_per_objfile->debug_names_table)
6585 {
6586 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6587
6588 /* Note: It doesn't matter what we pass for block_index here. */
6589 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6590 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6591
6592 struct dwarf2_per_cu_data *per_cu;
6593 while ((per_cu = iter.next ()) != NULL)
6594 dw2_instantiate_symtab (per_cu);
6595 }
6596 }
6597
6598 static void
6599 dw2_debug_names_expand_symtabs_matching
6600 (struct objfile *objfile,
6601 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6602 const lookup_name_info &lookup_name,
6603 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6604 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6605 enum search_domain kind)
6606 {
6607 struct dwarf2_per_objfile *dwarf2_per_objfile
6608 = get_dwarf2_per_objfile (objfile);
6609
6610 /* debug_names_table is NULL if OBJF_READNOW. */
6611 if (!dwarf2_per_objfile->debug_names_table)
6612 return;
6613
6614 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6615
6616 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6617
6618 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6619 symbol_matcher,
6620 kind, [&] (offset_type namei)
6621 {
6622 /* The name was matched, now expand corresponding CUs that were
6623 marked. */
6624 dw2_debug_names_iterator iter (map, kind, namei);
6625
6626 struct dwarf2_per_cu_data *per_cu;
6627 while ((per_cu = iter.next ()) != NULL)
6628 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6629 expansion_notify);
6630 });
6631 }
6632
6633 const struct quick_symbol_functions dwarf2_debug_names_functions =
6634 {
6635 dw2_has_symbols,
6636 dw2_find_last_source_symtab,
6637 dw2_forget_cached_source_info,
6638 dw2_map_symtabs_matching_filename,
6639 dw2_debug_names_lookup_symbol,
6640 dw2_print_stats,
6641 dw2_debug_names_dump,
6642 dw2_relocate,
6643 dw2_debug_names_expand_symtabs_for_function,
6644 dw2_expand_all_symtabs,
6645 dw2_expand_symtabs_with_fullname,
6646 dw2_map_matching_symbols,
6647 dw2_debug_names_expand_symtabs_matching,
6648 dw2_find_pc_sect_compunit_symtab,
6649 NULL,
6650 dw2_map_symbol_filenames
6651 };
6652
6653 /* See symfile.h. */
6654
6655 bool
6656 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6657 {
6658 struct dwarf2_per_objfile *dwarf2_per_objfile
6659 = get_dwarf2_per_objfile (objfile);
6660
6661 /* If we're about to read full symbols, don't bother with the
6662 indices. In this case we also don't care if some other debug
6663 format is making psymtabs, because they are all about to be
6664 expanded anyway. */
6665 if ((objfile->flags & OBJF_READNOW))
6666 {
6667 int i;
6668
6669 dwarf2_per_objfile->using_index = 1;
6670 create_all_comp_units (dwarf2_per_objfile);
6671 create_all_type_units (dwarf2_per_objfile);
6672 dwarf2_per_objfile->quick_file_names_table =
6673 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6674
6675 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6676 + dwarf2_per_objfile->n_type_units); ++i)
6677 {
6678 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6679
6680 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6681 struct dwarf2_per_cu_quick_data);
6682 }
6683
6684 /* Return 1 so that gdb sees the "quick" functions. However,
6685 these functions will be no-ops because we will have expanded
6686 all symtabs. */
6687 *index_kind = dw_index_kind::GDB_INDEX;
6688 return true;
6689 }
6690
6691 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6692 {
6693 *index_kind = dw_index_kind::DEBUG_NAMES;
6694 return true;
6695 }
6696
6697 if (dwarf2_read_index (objfile))
6698 {
6699 *index_kind = dw_index_kind::GDB_INDEX;
6700 return true;
6701 }
6702
6703 return false;
6704 }
6705
6706 \f
6707
6708 /* Build a partial symbol table. */
6709
6710 void
6711 dwarf2_build_psymtabs (struct objfile *objfile)
6712 {
6713 struct dwarf2_per_objfile *dwarf2_per_objfile
6714 = get_dwarf2_per_objfile (objfile);
6715
6716 if (objfile->global_psymbols.capacity () == 0
6717 && objfile->static_psymbols.capacity () == 0)
6718 init_psymbol_list (objfile, 1024);
6719
6720 TRY
6721 {
6722 /* This isn't really ideal: all the data we allocate on the
6723 objfile's obstack is still uselessly kept around. However,
6724 freeing it seems unsafe. */
6725 psymtab_discarder psymtabs (objfile);
6726 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6727 psymtabs.keep ();
6728 }
6729 CATCH (except, RETURN_MASK_ERROR)
6730 {
6731 exception_print (gdb_stderr, except);
6732 }
6733 END_CATCH
6734 }
6735
6736 /* Return the total length of the CU described by HEADER. */
6737
6738 static unsigned int
6739 get_cu_length (const struct comp_unit_head *header)
6740 {
6741 return header->initial_length_size + header->length;
6742 }
6743
6744 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6745
6746 static inline bool
6747 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6748 {
6749 sect_offset bottom = cu_header->sect_off;
6750 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6751
6752 return sect_off >= bottom && sect_off < top;
6753 }
6754
6755 /* Find the base address of the compilation unit for range lists and
6756 location lists. It will normally be specified by DW_AT_low_pc.
6757 In DWARF-3 draft 4, the base address could be overridden by
6758 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6759 compilation units with discontinuous ranges. */
6760
6761 static void
6762 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6763 {
6764 struct attribute *attr;
6765
6766 cu->base_known = 0;
6767 cu->base_address = 0;
6768
6769 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6770 if (attr)
6771 {
6772 cu->base_address = attr_value_as_address (attr);
6773 cu->base_known = 1;
6774 }
6775 else
6776 {
6777 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6778 if (attr)
6779 {
6780 cu->base_address = attr_value_as_address (attr);
6781 cu->base_known = 1;
6782 }
6783 }
6784 }
6785
6786 /* Read in the comp unit header information from the debug_info at info_ptr.
6787 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6788 NOTE: This leaves members offset, first_die_offset to be filled in
6789 by the caller. */
6790
6791 static const gdb_byte *
6792 read_comp_unit_head (struct comp_unit_head *cu_header,
6793 const gdb_byte *info_ptr,
6794 struct dwarf2_section_info *section,
6795 rcuh_kind section_kind)
6796 {
6797 int signed_addr;
6798 unsigned int bytes_read;
6799 const char *filename = get_section_file_name (section);
6800 bfd *abfd = get_section_bfd_owner (section);
6801
6802 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6803 cu_header->initial_length_size = bytes_read;
6804 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6805 info_ptr += bytes_read;
6806 cu_header->version = read_2_bytes (abfd, info_ptr);
6807 info_ptr += 2;
6808 if (cu_header->version < 5)
6809 switch (section_kind)
6810 {
6811 case rcuh_kind::COMPILE:
6812 cu_header->unit_type = DW_UT_compile;
6813 break;
6814 case rcuh_kind::TYPE:
6815 cu_header->unit_type = DW_UT_type;
6816 break;
6817 default:
6818 internal_error (__FILE__, __LINE__,
6819 _("read_comp_unit_head: invalid section_kind"));
6820 }
6821 else
6822 {
6823 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6824 (read_1_byte (abfd, info_ptr));
6825 info_ptr += 1;
6826 switch (cu_header->unit_type)
6827 {
6828 case DW_UT_compile:
6829 if (section_kind != rcuh_kind::COMPILE)
6830 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6831 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6832 filename);
6833 break;
6834 case DW_UT_type:
6835 section_kind = rcuh_kind::TYPE;
6836 break;
6837 default:
6838 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6839 "(is %d, should be %d or %d) [in module %s]"),
6840 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6841 }
6842
6843 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6844 info_ptr += 1;
6845 }
6846 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6847 cu_header,
6848 &bytes_read);
6849 info_ptr += bytes_read;
6850 if (cu_header->version < 5)
6851 {
6852 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6853 info_ptr += 1;
6854 }
6855 signed_addr = bfd_get_sign_extend_vma (abfd);
6856 if (signed_addr < 0)
6857 internal_error (__FILE__, __LINE__,
6858 _("read_comp_unit_head: dwarf from non elf file"));
6859 cu_header->signed_addr_p = signed_addr;
6860
6861 if (section_kind == rcuh_kind::TYPE)
6862 {
6863 LONGEST type_offset;
6864
6865 cu_header->signature = read_8_bytes (abfd, info_ptr);
6866 info_ptr += 8;
6867
6868 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6869 info_ptr += bytes_read;
6870 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6871 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6872 error (_("Dwarf Error: Too big type_offset in compilation unit "
6873 "header (is %s) [in module %s]"), plongest (type_offset),
6874 filename);
6875 }
6876
6877 return info_ptr;
6878 }
6879
6880 /* Helper function that returns the proper abbrev section for
6881 THIS_CU. */
6882
6883 static struct dwarf2_section_info *
6884 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6885 {
6886 struct dwarf2_section_info *abbrev;
6887 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6888
6889 if (this_cu->is_dwz)
6890 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6891 else
6892 abbrev = &dwarf2_per_objfile->abbrev;
6893
6894 return abbrev;
6895 }
6896
6897 /* Subroutine of read_and_check_comp_unit_head and
6898 read_and_check_type_unit_head to simplify them.
6899 Perform various error checking on the header. */
6900
6901 static void
6902 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6903 struct comp_unit_head *header,
6904 struct dwarf2_section_info *section,
6905 struct dwarf2_section_info *abbrev_section)
6906 {
6907 const char *filename = get_section_file_name (section);
6908
6909 if (header->version < 2 || header->version > 5)
6910 error (_("Dwarf Error: wrong version in compilation unit header "
6911 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6912 filename);
6913
6914 if (to_underlying (header->abbrev_sect_off)
6915 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6916 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6917 "(offset %s + 6) [in module %s]"),
6918 sect_offset_str (header->abbrev_sect_off),
6919 sect_offset_str (header->sect_off),
6920 filename);
6921
6922 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6923 avoid potential 32-bit overflow. */
6924 if (((ULONGEST) header->sect_off + get_cu_length (header))
6925 > section->size)
6926 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6927 "(offset %s + 0) [in module %s]"),
6928 header->length, sect_offset_str (header->sect_off),
6929 filename);
6930 }
6931
6932 /* Read in a CU/TU header and perform some basic error checking.
6933 The contents of the header are stored in HEADER.
6934 The result is a pointer to the start of the first DIE. */
6935
6936 static const gdb_byte *
6937 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6938 struct comp_unit_head *header,
6939 struct dwarf2_section_info *section,
6940 struct dwarf2_section_info *abbrev_section,
6941 const gdb_byte *info_ptr,
6942 rcuh_kind section_kind)
6943 {
6944 const gdb_byte *beg_of_comp_unit = info_ptr;
6945
6946 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6947
6948 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6949
6950 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6951
6952 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6953 abbrev_section);
6954
6955 return info_ptr;
6956 }
6957
6958 /* Fetch the abbreviation table offset from a comp or type unit header. */
6959
6960 static sect_offset
6961 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6962 struct dwarf2_section_info *section,
6963 sect_offset sect_off)
6964 {
6965 bfd *abfd = get_section_bfd_owner (section);
6966 const gdb_byte *info_ptr;
6967 unsigned int initial_length_size, offset_size;
6968 uint16_t version;
6969
6970 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6971 info_ptr = section->buffer + to_underlying (sect_off);
6972 read_initial_length (abfd, info_ptr, &initial_length_size);
6973 offset_size = initial_length_size == 4 ? 4 : 8;
6974 info_ptr += initial_length_size;
6975
6976 version = read_2_bytes (abfd, info_ptr);
6977 info_ptr += 2;
6978 if (version >= 5)
6979 {
6980 /* Skip unit type and address size. */
6981 info_ptr += 2;
6982 }
6983
6984 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6985 }
6986
6987 /* Allocate a new partial symtab for file named NAME and mark this new
6988 partial symtab as being an include of PST. */
6989
6990 static void
6991 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6992 struct objfile *objfile)
6993 {
6994 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6995
6996 if (!IS_ABSOLUTE_PATH (subpst->filename))
6997 {
6998 /* It shares objfile->objfile_obstack. */
6999 subpst->dirname = pst->dirname;
7000 }
7001
7002 subpst->textlow = 0;
7003 subpst->texthigh = 0;
7004
7005 subpst->dependencies
7006 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
7007 subpst->dependencies[0] = pst;
7008 subpst->number_of_dependencies = 1;
7009
7010 subpst->globals_offset = 0;
7011 subpst->n_global_syms = 0;
7012 subpst->statics_offset = 0;
7013 subpst->n_static_syms = 0;
7014 subpst->compunit_symtab = NULL;
7015 subpst->read_symtab = pst->read_symtab;
7016 subpst->readin = 0;
7017
7018 /* No private part is necessary for include psymtabs. This property
7019 can be used to differentiate between such include psymtabs and
7020 the regular ones. */
7021 subpst->read_symtab_private = NULL;
7022 }
7023
7024 /* Read the Line Number Program data and extract the list of files
7025 included by the source file represented by PST. Build an include
7026 partial symtab for each of these included files. */
7027
7028 static void
7029 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
7030 struct die_info *die,
7031 struct partial_symtab *pst)
7032 {
7033 line_header_up lh;
7034 struct attribute *attr;
7035
7036 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7037 if (attr)
7038 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
7039 if (lh == NULL)
7040 return; /* No linetable, so no includes. */
7041
7042 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
7043 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
7044 }
7045
7046 static hashval_t
7047 hash_signatured_type (const void *item)
7048 {
7049 const struct signatured_type *sig_type
7050 = (const struct signatured_type *) item;
7051
7052 /* This drops the top 32 bits of the signature, but is ok for a hash. */
7053 return sig_type->signature;
7054 }
7055
7056 static int
7057 eq_signatured_type (const void *item_lhs, const void *item_rhs)
7058 {
7059 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
7060 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
7061
7062 return lhs->signature == rhs->signature;
7063 }
7064
7065 /* Allocate a hash table for signatured types. */
7066
7067 static htab_t
7068 allocate_signatured_type_table (struct objfile *objfile)
7069 {
7070 return htab_create_alloc_ex (41,
7071 hash_signatured_type,
7072 eq_signatured_type,
7073 NULL,
7074 &objfile->objfile_obstack,
7075 hashtab_obstack_allocate,
7076 dummy_obstack_deallocate);
7077 }
7078
7079 /* A helper function to add a signatured type CU to a table. */
7080
7081 static int
7082 add_signatured_type_cu_to_table (void **slot, void *datum)
7083 {
7084 struct signatured_type *sigt = (struct signatured_type *) *slot;
7085 struct signatured_type ***datap = (struct signatured_type ***) datum;
7086
7087 **datap = sigt;
7088 ++*datap;
7089
7090 return 1;
7091 }
7092
7093 /* A helper for create_debug_types_hash_table. Read types from SECTION
7094 and fill them into TYPES_HTAB. It will process only type units,
7095 therefore DW_UT_type. */
7096
7097 static void
7098 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7099 struct dwo_file *dwo_file,
7100 dwarf2_section_info *section, htab_t &types_htab,
7101 rcuh_kind section_kind)
7102 {
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_section_info *abbrev_section;
7105 bfd *abfd;
7106 const gdb_byte *info_ptr, *end_ptr;
7107
7108 abbrev_section = (dwo_file != NULL
7109 ? &dwo_file->sections.abbrev
7110 : &dwarf2_per_objfile->abbrev);
7111
7112 if (dwarf_read_debug)
7113 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
7114 get_section_name (section),
7115 get_section_file_name (abbrev_section));
7116
7117 dwarf2_read_section (objfile, section);
7118 info_ptr = section->buffer;
7119
7120 if (info_ptr == NULL)
7121 return;
7122
7123 /* We can't set abfd until now because the section may be empty or
7124 not present, in which case the bfd is unknown. */
7125 abfd = get_section_bfd_owner (section);
7126
7127 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7128 because we don't need to read any dies: the signature is in the
7129 header. */
7130
7131 end_ptr = info_ptr + section->size;
7132 while (info_ptr < end_ptr)
7133 {
7134 struct signatured_type *sig_type;
7135 struct dwo_unit *dwo_tu;
7136 void **slot;
7137 const gdb_byte *ptr = info_ptr;
7138 struct comp_unit_head header;
7139 unsigned int length;
7140
7141 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7142
7143 /* Initialize it due to a false compiler warning. */
7144 header.signature = -1;
7145 header.type_cu_offset_in_tu = (cu_offset) -1;
7146
7147 /* We need to read the type's signature in order to build the hash
7148 table, but we don't need anything else just yet. */
7149
7150 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7151 abbrev_section, ptr, section_kind);
7152
7153 length = get_cu_length (&header);
7154
7155 /* Skip dummy type units. */
7156 if (ptr >= info_ptr + length
7157 || peek_abbrev_code (abfd, ptr) == 0
7158 || header.unit_type != DW_UT_type)
7159 {
7160 info_ptr += length;
7161 continue;
7162 }
7163
7164 if (types_htab == NULL)
7165 {
7166 if (dwo_file)
7167 types_htab = allocate_dwo_unit_table (objfile);
7168 else
7169 types_htab = allocate_signatured_type_table (objfile);
7170 }
7171
7172 if (dwo_file)
7173 {
7174 sig_type = NULL;
7175 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7176 struct dwo_unit);
7177 dwo_tu->dwo_file = dwo_file;
7178 dwo_tu->signature = header.signature;
7179 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7180 dwo_tu->section = section;
7181 dwo_tu->sect_off = sect_off;
7182 dwo_tu->length = length;
7183 }
7184 else
7185 {
7186 /* N.B.: type_offset is not usable if this type uses a DWO file.
7187 The real type_offset is in the DWO file. */
7188 dwo_tu = NULL;
7189 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7190 struct signatured_type);
7191 sig_type->signature = header.signature;
7192 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7193 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7194 sig_type->per_cu.is_debug_types = 1;
7195 sig_type->per_cu.section = section;
7196 sig_type->per_cu.sect_off = sect_off;
7197 sig_type->per_cu.length = length;
7198 }
7199
7200 slot = htab_find_slot (types_htab,
7201 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7202 INSERT);
7203 gdb_assert (slot != NULL);
7204 if (*slot != NULL)
7205 {
7206 sect_offset dup_sect_off;
7207
7208 if (dwo_file)
7209 {
7210 const struct dwo_unit *dup_tu
7211 = (const struct dwo_unit *) *slot;
7212
7213 dup_sect_off = dup_tu->sect_off;
7214 }
7215 else
7216 {
7217 const struct signatured_type *dup_tu
7218 = (const struct signatured_type *) *slot;
7219
7220 dup_sect_off = dup_tu->per_cu.sect_off;
7221 }
7222
7223 complaint (&symfile_complaints,
7224 _("debug type entry at offset %s is duplicate to"
7225 " the entry at offset %s, signature %s"),
7226 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
7227 hex_string (header.signature));
7228 }
7229 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7230
7231 if (dwarf_read_debug > 1)
7232 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
7233 sect_offset_str (sect_off),
7234 hex_string (header.signature));
7235
7236 info_ptr += length;
7237 }
7238 }
7239
7240 /* Create the hash table of all entries in the .debug_types
7241 (or .debug_types.dwo) section(s).
7242 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7243 otherwise it is NULL.
7244
7245 The result is a pointer to the hash table or NULL if there are no types.
7246
7247 Note: This function processes DWO files only, not DWP files. */
7248
7249 static void
7250 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7251 struct dwo_file *dwo_file,
7252 VEC (dwarf2_section_info_def) *types,
7253 htab_t &types_htab)
7254 {
7255 int ix;
7256 struct dwarf2_section_info *section;
7257
7258 if (VEC_empty (dwarf2_section_info_def, types))
7259 return;
7260
7261 for (ix = 0;
7262 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7263 ++ix)
7264 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7265 types_htab, rcuh_kind::TYPE);
7266 }
7267
7268 /* Create the hash table of all entries in the .debug_types section,
7269 and initialize all_type_units.
7270 The result is zero if there is an error (e.g. missing .debug_types section),
7271 otherwise non-zero. */
7272
7273 static int
7274 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7275 {
7276 htab_t types_htab = NULL;
7277 struct signatured_type **iter;
7278
7279 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7280 &dwarf2_per_objfile->info, types_htab,
7281 rcuh_kind::COMPILE);
7282 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7283 dwarf2_per_objfile->types, types_htab);
7284 if (types_htab == NULL)
7285 {
7286 dwarf2_per_objfile->signatured_types = NULL;
7287 return 0;
7288 }
7289
7290 dwarf2_per_objfile->signatured_types = types_htab;
7291
7292 dwarf2_per_objfile->n_type_units
7293 = dwarf2_per_objfile->n_allocated_type_units
7294 = htab_elements (types_htab);
7295 dwarf2_per_objfile->all_type_units =
7296 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7297 iter = &dwarf2_per_objfile->all_type_units[0];
7298 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7299 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7300 == dwarf2_per_objfile->n_type_units);
7301
7302 return 1;
7303 }
7304
7305 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7306 If SLOT is non-NULL, it is the entry to use in the hash table.
7307 Otherwise we find one. */
7308
7309 static struct signatured_type *
7310 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7311 void **slot)
7312 {
7313 struct objfile *objfile = dwarf2_per_objfile->objfile;
7314 int n_type_units = dwarf2_per_objfile->n_type_units;
7315 struct signatured_type *sig_type;
7316
7317 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7318 ++n_type_units;
7319 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7320 {
7321 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7322 dwarf2_per_objfile->n_allocated_type_units = 1;
7323 dwarf2_per_objfile->n_allocated_type_units *= 2;
7324 dwarf2_per_objfile->all_type_units
7325 = XRESIZEVEC (struct signatured_type *,
7326 dwarf2_per_objfile->all_type_units,
7327 dwarf2_per_objfile->n_allocated_type_units);
7328 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7329 }
7330 dwarf2_per_objfile->n_type_units = n_type_units;
7331
7332 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7333 struct signatured_type);
7334 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7335 sig_type->signature = sig;
7336 sig_type->per_cu.is_debug_types = 1;
7337 if (dwarf2_per_objfile->using_index)
7338 {
7339 sig_type->per_cu.v.quick =
7340 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7341 struct dwarf2_per_cu_quick_data);
7342 }
7343
7344 if (slot == NULL)
7345 {
7346 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7347 sig_type, INSERT);
7348 }
7349 gdb_assert (*slot == NULL);
7350 *slot = sig_type;
7351 /* The rest of sig_type must be filled in by the caller. */
7352 return sig_type;
7353 }
7354
7355 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7356 Fill in SIG_ENTRY with DWO_ENTRY. */
7357
7358 static void
7359 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7360 struct signatured_type *sig_entry,
7361 struct dwo_unit *dwo_entry)
7362 {
7363 /* Make sure we're not clobbering something we don't expect to. */
7364 gdb_assert (! sig_entry->per_cu.queued);
7365 gdb_assert (sig_entry->per_cu.cu == NULL);
7366 if (dwarf2_per_objfile->using_index)
7367 {
7368 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7369 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7370 }
7371 else
7372 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7373 gdb_assert (sig_entry->signature == dwo_entry->signature);
7374 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7375 gdb_assert (sig_entry->type_unit_group == NULL);
7376 gdb_assert (sig_entry->dwo_unit == NULL);
7377
7378 sig_entry->per_cu.section = dwo_entry->section;
7379 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7380 sig_entry->per_cu.length = dwo_entry->length;
7381 sig_entry->per_cu.reading_dwo_directly = 1;
7382 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7383 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7384 sig_entry->dwo_unit = dwo_entry;
7385 }
7386
7387 /* Subroutine of lookup_signatured_type.
7388 If we haven't read the TU yet, create the signatured_type data structure
7389 for a TU to be read in directly from a DWO file, bypassing the stub.
7390 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7391 using .gdb_index, then when reading a CU we want to stay in the DWO file
7392 containing that CU. Otherwise we could end up reading several other DWO
7393 files (due to comdat folding) to process the transitive closure of all the
7394 mentioned TUs, and that can be slow. The current DWO file will have every
7395 type signature that it needs.
7396 We only do this for .gdb_index because in the psymtab case we already have
7397 to read all the DWOs to build the type unit groups. */
7398
7399 static struct signatured_type *
7400 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7401 {
7402 struct dwarf2_per_objfile *dwarf2_per_objfile
7403 = cu->per_cu->dwarf2_per_objfile;
7404 struct objfile *objfile = dwarf2_per_objfile->objfile;
7405 struct dwo_file *dwo_file;
7406 struct dwo_unit find_dwo_entry, *dwo_entry;
7407 struct signatured_type find_sig_entry, *sig_entry;
7408 void **slot;
7409
7410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7411
7412 /* If TU skeletons have been removed then we may not have read in any
7413 TUs yet. */
7414 if (dwarf2_per_objfile->signatured_types == NULL)
7415 {
7416 dwarf2_per_objfile->signatured_types
7417 = allocate_signatured_type_table (objfile);
7418 }
7419
7420 /* We only ever need to read in one copy of a signatured type.
7421 Use the global signatured_types array to do our own comdat-folding
7422 of types. If this is the first time we're reading this TU, and
7423 the TU has an entry in .gdb_index, replace the recorded data from
7424 .gdb_index with this TU. */
7425
7426 find_sig_entry.signature = sig;
7427 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7428 &find_sig_entry, INSERT);
7429 sig_entry = (struct signatured_type *) *slot;
7430
7431 /* We can get here with the TU already read, *or* in the process of being
7432 read. Don't reassign the global entry to point to this DWO if that's
7433 the case. Also note that if the TU is already being read, it may not
7434 have come from a DWO, the program may be a mix of Fission-compiled
7435 code and non-Fission-compiled code. */
7436
7437 /* Have we already tried to read this TU?
7438 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7439 needn't exist in the global table yet). */
7440 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7441 return sig_entry;
7442
7443 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7444 dwo_unit of the TU itself. */
7445 dwo_file = cu->dwo_unit->dwo_file;
7446
7447 /* Ok, this is the first time we're reading this TU. */
7448 if (dwo_file->tus == NULL)
7449 return NULL;
7450 find_dwo_entry.signature = sig;
7451 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7452 if (dwo_entry == NULL)
7453 return NULL;
7454
7455 /* If the global table doesn't have an entry for this TU, add one. */
7456 if (sig_entry == NULL)
7457 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7458
7459 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7460 sig_entry->per_cu.tu_read = 1;
7461 return sig_entry;
7462 }
7463
7464 /* Subroutine of lookup_signatured_type.
7465 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7466 then try the DWP file. If the TU stub (skeleton) has been removed then
7467 it won't be in .gdb_index. */
7468
7469 static struct signatured_type *
7470 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7471 {
7472 struct dwarf2_per_objfile *dwarf2_per_objfile
7473 = cu->per_cu->dwarf2_per_objfile;
7474 struct objfile *objfile = dwarf2_per_objfile->objfile;
7475 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7476 struct dwo_unit *dwo_entry;
7477 struct signatured_type find_sig_entry, *sig_entry;
7478 void **slot;
7479
7480 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7481 gdb_assert (dwp_file != NULL);
7482
7483 /* If TU skeletons have been removed then we may not have read in any
7484 TUs yet. */
7485 if (dwarf2_per_objfile->signatured_types == NULL)
7486 {
7487 dwarf2_per_objfile->signatured_types
7488 = allocate_signatured_type_table (objfile);
7489 }
7490
7491 find_sig_entry.signature = sig;
7492 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7493 &find_sig_entry, INSERT);
7494 sig_entry = (struct signatured_type *) *slot;
7495
7496 /* Have we already tried to read this TU?
7497 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7498 needn't exist in the global table yet). */
7499 if (sig_entry != NULL)
7500 return sig_entry;
7501
7502 if (dwp_file->tus == NULL)
7503 return NULL;
7504 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7505 sig, 1 /* is_debug_types */);
7506 if (dwo_entry == NULL)
7507 return NULL;
7508
7509 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7510 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7511
7512 return sig_entry;
7513 }
7514
7515 /* Lookup a signature based type for DW_FORM_ref_sig8.
7516 Returns NULL if signature SIG is not present in the table.
7517 It is up to the caller to complain about this. */
7518
7519 static struct signatured_type *
7520 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7521 {
7522 struct dwarf2_per_objfile *dwarf2_per_objfile
7523 = cu->per_cu->dwarf2_per_objfile;
7524
7525 if (cu->dwo_unit
7526 && dwarf2_per_objfile->using_index)
7527 {
7528 /* We're in a DWO/DWP file, and we're using .gdb_index.
7529 These cases require special processing. */
7530 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7531 return lookup_dwo_signatured_type (cu, sig);
7532 else
7533 return lookup_dwp_signatured_type (cu, sig);
7534 }
7535 else
7536 {
7537 struct signatured_type find_entry, *entry;
7538
7539 if (dwarf2_per_objfile->signatured_types == NULL)
7540 return NULL;
7541 find_entry.signature = sig;
7542 entry = ((struct signatured_type *)
7543 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7544 return entry;
7545 }
7546 }
7547 \f
7548 /* Low level DIE reading support. */
7549
7550 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7551
7552 static void
7553 init_cu_die_reader (struct die_reader_specs *reader,
7554 struct dwarf2_cu *cu,
7555 struct dwarf2_section_info *section,
7556 struct dwo_file *dwo_file,
7557 struct abbrev_table *abbrev_table)
7558 {
7559 gdb_assert (section->readin && section->buffer != NULL);
7560 reader->abfd = get_section_bfd_owner (section);
7561 reader->cu = cu;
7562 reader->dwo_file = dwo_file;
7563 reader->die_section = section;
7564 reader->buffer = section->buffer;
7565 reader->buffer_end = section->buffer + section->size;
7566 reader->comp_dir = NULL;
7567 reader->abbrev_table = abbrev_table;
7568 }
7569
7570 /* Subroutine of init_cutu_and_read_dies to simplify it.
7571 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7572 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7573 already.
7574
7575 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7576 from it to the DIE in the DWO. If NULL we are skipping the stub.
7577 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7578 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7579 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7580 STUB_COMP_DIR may be non-NULL.
7581 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7582 are filled in with the info of the DIE from the DWO file.
7583 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7584 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7585 kept around for at least as long as *RESULT_READER.
7586
7587 The result is non-zero if a valid (non-dummy) DIE was found. */
7588
7589 static int
7590 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7591 struct dwo_unit *dwo_unit,
7592 struct die_info *stub_comp_unit_die,
7593 const char *stub_comp_dir,
7594 struct die_reader_specs *result_reader,
7595 const gdb_byte **result_info_ptr,
7596 struct die_info **result_comp_unit_die,
7597 int *result_has_children,
7598 abbrev_table_up *result_dwo_abbrev_table)
7599 {
7600 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7601 struct objfile *objfile = dwarf2_per_objfile->objfile;
7602 struct dwarf2_cu *cu = this_cu->cu;
7603 bfd *abfd;
7604 const gdb_byte *begin_info_ptr, *info_ptr;
7605 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7606 int i,num_extra_attrs;
7607 struct dwarf2_section_info *dwo_abbrev_section;
7608 struct attribute *attr;
7609 struct die_info *comp_unit_die;
7610
7611 /* At most one of these may be provided. */
7612 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7613
7614 /* These attributes aren't processed until later:
7615 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7616 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7617 referenced later. However, these attributes are found in the stub
7618 which we won't have later. In order to not impose this complication
7619 on the rest of the code, we read them here and copy them to the
7620 DWO CU/TU die. */
7621
7622 stmt_list = NULL;
7623 low_pc = NULL;
7624 high_pc = NULL;
7625 ranges = NULL;
7626 comp_dir = NULL;
7627
7628 if (stub_comp_unit_die != NULL)
7629 {
7630 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7631 DWO file. */
7632 if (! this_cu->is_debug_types)
7633 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7634 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7635 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7636 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7637 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7638
7639 /* There should be a DW_AT_addr_base attribute here (if needed).
7640 We need the value before we can process DW_FORM_GNU_addr_index. */
7641 cu->addr_base = 0;
7642 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7643 if (attr)
7644 cu->addr_base = DW_UNSND (attr);
7645
7646 /* There should be a DW_AT_ranges_base attribute here (if needed).
7647 We need the value before we can process DW_AT_ranges. */
7648 cu->ranges_base = 0;
7649 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7650 if (attr)
7651 cu->ranges_base = DW_UNSND (attr);
7652 }
7653 else if (stub_comp_dir != NULL)
7654 {
7655 /* Reconstruct the comp_dir attribute to simplify the code below. */
7656 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7657 comp_dir->name = DW_AT_comp_dir;
7658 comp_dir->form = DW_FORM_string;
7659 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7660 DW_STRING (comp_dir) = stub_comp_dir;
7661 }
7662
7663 /* Set up for reading the DWO CU/TU. */
7664 cu->dwo_unit = dwo_unit;
7665 dwarf2_section_info *section = dwo_unit->section;
7666 dwarf2_read_section (objfile, section);
7667 abfd = get_section_bfd_owner (section);
7668 begin_info_ptr = info_ptr = (section->buffer
7669 + to_underlying (dwo_unit->sect_off));
7670 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7671
7672 if (this_cu->is_debug_types)
7673 {
7674 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7675
7676 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7677 &cu->header, section,
7678 dwo_abbrev_section,
7679 info_ptr, rcuh_kind::TYPE);
7680 /* This is not an assert because it can be caused by bad debug info. */
7681 if (sig_type->signature != cu->header.signature)
7682 {
7683 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7684 " TU at offset %s [in module %s]"),
7685 hex_string (sig_type->signature),
7686 hex_string (cu->header.signature),
7687 sect_offset_str (dwo_unit->sect_off),
7688 bfd_get_filename (abfd));
7689 }
7690 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7691 /* For DWOs coming from DWP files, we don't know the CU length
7692 nor the type's offset in the TU until now. */
7693 dwo_unit->length = get_cu_length (&cu->header);
7694 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7695
7696 /* Establish the type offset that can be used to lookup the type.
7697 For DWO files, we don't know it until now. */
7698 sig_type->type_offset_in_section
7699 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7700 }
7701 else
7702 {
7703 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7704 &cu->header, section,
7705 dwo_abbrev_section,
7706 info_ptr, rcuh_kind::COMPILE);
7707 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7708 /* For DWOs coming from DWP files, we don't know the CU length
7709 until now. */
7710 dwo_unit->length = get_cu_length (&cu->header);
7711 }
7712
7713 *result_dwo_abbrev_table
7714 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7715 cu->header.abbrev_sect_off);
7716 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7717 result_dwo_abbrev_table->get ());
7718
7719 /* Read in the die, but leave space to copy over the attributes
7720 from the stub. This has the benefit of simplifying the rest of
7721 the code - all the work to maintain the illusion of a single
7722 DW_TAG_{compile,type}_unit DIE is done here. */
7723 num_extra_attrs = ((stmt_list != NULL)
7724 + (low_pc != NULL)
7725 + (high_pc != NULL)
7726 + (ranges != NULL)
7727 + (comp_dir != NULL));
7728 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7729 result_has_children, num_extra_attrs);
7730
7731 /* Copy over the attributes from the stub to the DIE we just read in. */
7732 comp_unit_die = *result_comp_unit_die;
7733 i = comp_unit_die->num_attrs;
7734 if (stmt_list != NULL)
7735 comp_unit_die->attrs[i++] = *stmt_list;
7736 if (low_pc != NULL)
7737 comp_unit_die->attrs[i++] = *low_pc;
7738 if (high_pc != NULL)
7739 comp_unit_die->attrs[i++] = *high_pc;
7740 if (ranges != NULL)
7741 comp_unit_die->attrs[i++] = *ranges;
7742 if (comp_dir != NULL)
7743 comp_unit_die->attrs[i++] = *comp_dir;
7744 comp_unit_die->num_attrs += num_extra_attrs;
7745
7746 if (dwarf_die_debug)
7747 {
7748 fprintf_unfiltered (gdb_stdlog,
7749 "Read die from %s@0x%x of %s:\n",
7750 get_section_name (section),
7751 (unsigned) (begin_info_ptr - section->buffer),
7752 bfd_get_filename (abfd));
7753 dump_die (comp_unit_die, dwarf_die_debug);
7754 }
7755
7756 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7757 TUs by skipping the stub and going directly to the entry in the DWO file.
7758 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7759 to get it via circuitous means. Blech. */
7760 if (comp_dir != NULL)
7761 result_reader->comp_dir = DW_STRING (comp_dir);
7762
7763 /* Skip dummy compilation units. */
7764 if (info_ptr >= begin_info_ptr + dwo_unit->length
7765 || peek_abbrev_code (abfd, info_ptr) == 0)
7766 return 0;
7767
7768 *result_info_ptr = info_ptr;
7769 return 1;
7770 }
7771
7772 /* Subroutine of init_cutu_and_read_dies to simplify it.
7773 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7774 Returns NULL if the specified DWO unit cannot be found. */
7775
7776 static struct dwo_unit *
7777 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7778 struct die_info *comp_unit_die)
7779 {
7780 struct dwarf2_cu *cu = this_cu->cu;
7781 ULONGEST signature;
7782 struct dwo_unit *dwo_unit;
7783 const char *comp_dir, *dwo_name;
7784
7785 gdb_assert (cu != NULL);
7786
7787 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7788 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7789 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7790
7791 if (this_cu->is_debug_types)
7792 {
7793 struct signatured_type *sig_type;
7794
7795 /* Since this_cu is the first member of struct signatured_type,
7796 we can go from a pointer to one to a pointer to the other. */
7797 sig_type = (struct signatured_type *) this_cu;
7798 signature = sig_type->signature;
7799 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7800 }
7801 else
7802 {
7803 struct attribute *attr;
7804
7805 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7806 if (! attr)
7807 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7808 " [in module %s]"),
7809 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7810 signature = DW_UNSND (attr);
7811 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7812 signature);
7813 }
7814
7815 return dwo_unit;
7816 }
7817
7818 /* Subroutine of init_cutu_and_read_dies to simplify it.
7819 See it for a description of the parameters.
7820 Read a TU directly from a DWO file, bypassing the stub. */
7821
7822 static void
7823 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7824 int use_existing_cu, int keep,
7825 die_reader_func_ftype *die_reader_func,
7826 void *data)
7827 {
7828 std::unique_ptr<dwarf2_cu> new_cu;
7829 struct signatured_type *sig_type;
7830 struct die_reader_specs reader;
7831 const gdb_byte *info_ptr;
7832 struct die_info *comp_unit_die;
7833 int has_children;
7834 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7835
7836 /* Verify we can do the following downcast, and that we have the
7837 data we need. */
7838 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7839 sig_type = (struct signatured_type *) this_cu;
7840 gdb_assert (sig_type->dwo_unit != NULL);
7841
7842 if (use_existing_cu && this_cu->cu != NULL)
7843 {
7844 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7845 /* There's no need to do the rereading_dwo_cu handling that
7846 init_cutu_and_read_dies does since we don't read the stub. */
7847 }
7848 else
7849 {
7850 /* If !use_existing_cu, this_cu->cu must be NULL. */
7851 gdb_assert (this_cu->cu == NULL);
7852 new_cu.reset (new dwarf2_cu (this_cu));
7853 }
7854
7855 /* A future optimization, if needed, would be to use an existing
7856 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7857 could share abbrev tables. */
7858
7859 /* The abbreviation table used by READER, this must live at least as long as
7860 READER. */
7861 abbrev_table_up dwo_abbrev_table;
7862
7863 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7864 NULL /* stub_comp_unit_die */,
7865 sig_type->dwo_unit->dwo_file->comp_dir,
7866 &reader, &info_ptr,
7867 &comp_unit_die, &has_children,
7868 &dwo_abbrev_table) == 0)
7869 {
7870 /* Dummy die. */
7871 return;
7872 }
7873
7874 /* All the "real" work is done here. */
7875 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7876
7877 /* This duplicates the code in init_cutu_and_read_dies,
7878 but the alternative is making the latter more complex.
7879 This function is only for the special case of using DWO files directly:
7880 no point in overly complicating the general case just to handle this. */
7881 if (new_cu != NULL && keep)
7882 {
7883 /* Link this CU into read_in_chain. */
7884 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7885 dwarf2_per_objfile->read_in_chain = this_cu;
7886 /* The chain owns it now. */
7887 new_cu.release ();
7888 }
7889 }
7890
7891 /* Initialize a CU (or TU) and read its DIEs.
7892 If the CU defers to a DWO file, read the DWO file as well.
7893
7894 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7895 Otherwise the table specified in the comp unit header is read in and used.
7896 This is an optimization for when we already have the abbrev table.
7897
7898 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7899 Otherwise, a new CU is allocated with xmalloc.
7900
7901 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7902 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7903
7904 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7905 linker) then DIE_READER_FUNC will not get called. */
7906
7907 static void
7908 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7909 struct abbrev_table *abbrev_table,
7910 int use_existing_cu, int keep,
7911 die_reader_func_ftype *die_reader_func,
7912 void *data)
7913 {
7914 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7915 struct objfile *objfile = dwarf2_per_objfile->objfile;
7916 struct dwarf2_section_info *section = this_cu->section;
7917 bfd *abfd = get_section_bfd_owner (section);
7918 struct dwarf2_cu *cu;
7919 const gdb_byte *begin_info_ptr, *info_ptr;
7920 struct die_reader_specs reader;
7921 struct die_info *comp_unit_die;
7922 int has_children;
7923 struct attribute *attr;
7924 struct signatured_type *sig_type = NULL;
7925 struct dwarf2_section_info *abbrev_section;
7926 /* Non-zero if CU currently points to a DWO file and we need to
7927 reread it. When this happens we need to reread the skeleton die
7928 before we can reread the DWO file (this only applies to CUs, not TUs). */
7929 int rereading_dwo_cu = 0;
7930
7931 if (dwarf_die_debug)
7932 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7933 this_cu->is_debug_types ? "type" : "comp",
7934 sect_offset_str (this_cu->sect_off));
7935
7936 if (use_existing_cu)
7937 gdb_assert (keep);
7938
7939 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7940 file (instead of going through the stub), short-circuit all of this. */
7941 if (this_cu->reading_dwo_directly)
7942 {
7943 /* Narrow down the scope of possibilities to have to understand. */
7944 gdb_assert (this_cu->is_debug_types);
7945 gdb_assert (abbrev_table == NULL);
7946 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7947 die_reader_func, data);
7948 return;
7949 }
7950
7951 /* This is cheap if the section is already read in. */
7952 dwarf2_read_section (objfile, section);
7953
7954 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7955
7956 abbrev_section = get_abbrev_section_for_cu (this_cu);
7957
7958 std::unique_ptr<dwarf2_cu> new_cu;
7959 if (use_existing_cu && this_cu->cu != NULL)
7960 {
7961 cu = this_cu->cu;
7962 /* If this CU is from a DWO file we need to start over, we need to
7963 refetch the attributes from the skeleton CU.
7964 This could be optimized by retrieving those attributes from when we
7965 were here the first time: the previous comp_unit_die was stored in
7966 comp_unit_obstack. But there's no data yet that we need this
7967 optimization. */
7968 if (cu->dwo_unit != NULL)
7969 rereading_dwo_cu = 1;
7970 }
7971 else
7972 {
7973 /* If !use_existing_cu, this_cu->cu must be NULL. */
7974 gdb_assert (this_cu->cu == NULL);
7975 new_cu.reset (new dwarf2_cu (this_cu));
7976 cu = new_cu.get ();
7977 }
7978
7979 /* Get the header. */
7980 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7981 {
7982 /* We already have the header, there's no need to read it in again. */
7983 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7984 }
7985 else
7986 {
7987 if (this_cu->is_debug_types)
7988 {
7989 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7990 &cu->header, section,
7991 abbrev_section, info_ptr,
7992 rcuh_kind::TYPE);
7993
7994 /* Since per_cu is the first member of struct signatured_type,
7995 we can go from a pointer to one to a pointer to the other. */
7996 sig_type = (struct signatured_type *) this_cu;
7997 gdb_assert (sig_type->signature == cu->header.signature);
7998 gdb_assert (sig_type->type_offset_in_tu
7999 == cu->header.type_cu_offset_in_tu);
8000 gdb_assert (this_cu->sect_off == cu->header.sect_off);
8001
8002 /* LENGTH has not been set yet for type units if we're
8003 using .gdb_index. */
8004 this_cu->length = get_cu_length (&cu->header);
8005
8006 /* Establish the type offset that can be used to lookup the type. */
8007 sig_type->type_offset_in_section =
8008 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
8009
8010 this_cu->dwarf_version = cu->header.version;
8011 }
8012 else
8013 {
8014 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8015 &cu->header, section,
8016 abbrev_section,
8017 info_ptr,
8018 rcuh_kind::COMPILE);
8019
8020 gdb_assert (this_cu->sect_off == cu->header.sect_off);
8021 gdb_assert (this_cu->length == get_cu_length (&cu->header));
8022 this_cu->dwarf_version = cu->header.version;
8023 }
8024 }
8025
8026 /* Skip dummy compilation units. */
8027 if (info_ptr >= begin_info_ptr + this_cu->length
8028 || peek_abbrev_code (abfd, info_ptr) == 0)
8029 return;
8030
8031 /* If we don't have them yet, read the abbrevs for this compilation unit.
8032 And if we need to read them now, make sure they're freed when we're
8033 done (own the table through ABBREV_TABLE_HOLDER). */
8034 abbrev_table_up abbrev_table_holder;
8035 if (abbrev_table != NULL)
8036 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
8037 else
8038 {
8039 abbrev_table_holder
8040 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8041 cu->header.abbrev_sect_off);
8042 abbrev_table = abbrev_table_holder.get ();
8043 }
8044
8045 /* Read the top level CU/TU die. */
8046 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
8047 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8048
8049 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
8050 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
8051 table from the DWO file and pass the ownership over to us. It will be
8052 referenced from READER, so we must make sure to free it after we're done
8053 with READER.
8054
8055 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
8056 DWO CU, that this test will fail (the attribute will not be present). */
8057 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
8058 abbrev_table_up dwo_abbrev_table;
8059 if (attr)
8060 {
8061 struct dwo_unit *dwo_unit;
8062 struct die_info *dwo_comp_unit_die;
8063
8064 if (has_children)
8065 {
8066 complaint (&symfile_complaints,
8067 _("compilation unit with DW_AT_GNU_dwo_name"
8068 " has children (offset %s) [in module %s]"),
8069 sect_offset_str (this_cu->sect_off),
8070 bfd_get_filename (abfd));
8071 }
8072 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
8073 if (dwo_unit != NULL)
8074 {
8075 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
8076 comp_unit_die, NULL,
8077 &reader, &info_ptr,
8078 &dwo_comp_unit_die, &has_children,
8079 &dwo_abbrev_table) == 0)
8080 {
8081 /* Dummy die. */
8082 return;
8083 }
8084 comp_unit_die = dwo_comp_unit_die;
8085 }
8086 else
8087 {
8088 /* Yikes, we couldn't find the rest of the DIE, we only have
8089 the stub. A complaint has already been logged. There's
8090 not much more we can do except pass on the stub DIE to
8091 die_reader_func. We don't want to throw an error on bad
8092 debug info. */
8093 }
8094 }
8095
8096 /* All of the above is setup for this call. Yikes. */
8097 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8098
8099 /* Done, clean up. */
8100 if (new_cu != NULL && keep)
8101 {
8102 /* Link this CU into read_in_chain. */
8103 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8104 dwarf2_per_objfile->read_in_chain = this_cu;
8105 /* The chain owns it now. */
8106 new_cu.release ();
8107 }
8108 }
8109
8110 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8111 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8112 to have already done the lookup to find the DWO file).
8113
8114 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8115 THIS_CU->is_debug_types, but nothing else.
8116
8117 We fill in THIS_CU->length.
8118
8119 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8120 linker) then DIE_READER_FUNC will not get called.
8121
8122 THIS_CU->cu is always freed when done.
8123 This is done in order to not leave THIS_CU->cu in a state where we have
8124 to care whether it refers to the "main" CU or the DWO CU. */
8125
8126 static void
8127 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8128 struct dwo_file *dwo_file,
8129 die_reader_func_ftype *die_reader_func,
8130 void *data)
8131 {
8132 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8133 struct objfile *objfile = dwarf2_per_objfile->objfile;
8134 struct dwarf2_section_info *section = this_cu->section;
8135 bfd *abfd = get_section_bfd_owner (section);
8136 struct dwarf2_section_info *abbrev_section;
8137 const gdb_byte *begin_info_ptr, *info_ptr;
8138 struct die_reader_specs reader;
8139 struct die_info *comp_unit_die;
8140 int has_children;
8141
8142 if (dwarf_die_debug)
8143 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
8144 this_cu->is_debug_types ? "type" : "comp",
8145 sect_offset_str (this_cu->sect_off));
8146
8147 gdb_assert (this_cu->cu == NULL);
8148
8149 abbrev_section = (dwo_file != NULL
8150 ? &dwo_file->sections.abbrev
8151 : get_abbrev_section_for_cu (this_cu));
8152
8153 /* This is cheap if the section is already read in. */
8154 dwarf2_read_section (objfile, section);
8155
8156 struct dwarf2_cu cu (this_cu);
8157
8158 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8159 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8160 &cu.header, section,
8161 abbrev_section, info_ptr,
8162 (this_cu->is_debug_types
8163 ? rcuh_kind::TYPE
8164 : rcuh_kind::COMPILE));
8165
8166 this_cu->length = get_cu_length (&cu.header);
8167
8168 /* Skip dummy compilation units. */
8169 if (info_ptr >= begin_info_ptr + this_cu->length
8170 || peek_abbrev_code (abfd, info_ptr) == 0)
8171 return;
8172
8173 abbrev_table_up abbrev_table
8174 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8175 cu.header.abbrev_sect_off);
8176
8177 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
8178 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8179
8180 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8181 }
8182
8183 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8184 does not lookup the specified DWO file.
8185 This cannot be used to read DWO files.
8186
8187 THIS_CU->cu is always freed when done.
8188 This is done in order to not leave THIS_CU->cu in a state where we have
8189 to care whether it refers to the "main" CU or the DWO CU.
8190 We can revisit this if the data shows there's a performance issue. */
8191
8192 static void
8193 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8194 die_reader_func_ftype *die_reader_func,
8195 void *data)
8196 {
8197 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8198 }
8199 \f
8200 /* Type Unit Groups.
8201
8202 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8203 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8204 so that all types coming from the same compilation (.o file) are grouped
8205 together. A future step could be to put the types in the same symtab as
8206 the CU the types ultimately came from. */
8207
8208 static hashval_t
8209 hash_type_unit_group (const void *item)
8210 {
8211 const struct type_unit_group *tu_group
8212 = (const struct type_unit_group *) item;
8213
8214 return hash_stmt_list_entry (&tu_group->hash);
8215 }
8216
8217 static int
8218 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8219 {
8220 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8221 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8222
8223 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8224 }
8225
8226 /* Allocate a hash table for type unit groups. */
8227
8228 static htab_t
8229 allocate_type_unit_groups_table (struct objfile *objfile)
8230 {
8231 return htab_create_alloc_ex (3,
8232 hash_type_unit_group,
8233 eq_type_unit_group,
8234 NULL,
8235 &objfile->objfile_obstack,
8236 hashtab_obstack_allocate,
8237 dummy_obstack_deallocate);
8238 }
8239
8240 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8241 partial symtabs. We combine several TUs per psymtab to not let the size
8242 of any one psymtab grow too big. */
8243 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8244 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8245
8246 /* Helper routine for get_type_unit_group.
8247 Create the type_unit_group object used to hold one or more TUs. */
8248
8249 static struct type_unit_group *
8250 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8251 {
8252 struct dwarf2_per_objfile *dwarf2_per_objfile
8253 = cu->per_cu->dwarf2_per_objfile;
8254 struct objfile *objfile = dwarf2_per_objfile->objfile;
8255 struct dwarf2_per_cu_data *per_cu;
8256 struct type_unit_group *tu_group;
8257
8258 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8259 struct type_unit_group);
8260 per_cu = &tu_group->per_cu;
8261 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8262
8263 if (dwarf2_per_objfile->using_index)
8264 {
8265 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8266 struct dwarf2_per_cu_quick_data);
8267 }
8268 else
8269 {
8270 unsigned int line_offset = to_underlying (line_offset_struct);
8271 struct partial_symtab *pst;
8272 char *name;
8273
8274 /* Give the symtab a useful name for debug purposes. */
8275 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8276 name = xstrprintf ("<type_units_%d>",
8277 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8278 else
8279 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8280
8281 pst = create_partial_symtab (per_cu, name);
8282 pst->anonymous = 1;
8283
8284 xfree (name);
8285 }
8286
8287 tu_group->hash.dwo_unit = cu->dwo_unit;
8288 tu_group->hash.line_sect_off = line_offset_struct;
8289
8290 return tu_group;
8291 }
8292
8293 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8294 STMT_LIST is a DW_AT_stmt_list attribute. */
8295
8296 static struct type_unit_group *
8297 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8298 {
8299 struct dwarf2_per_objfile *dwarf2_per_objfile
8300 = cu->per_cu->dwarf2_per_objfile;
8301 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8302 struct type_unit_group *tu_group;
8303 void **slot;
8304 unsigned int line_offset;
8305 struct type_unit_group type_unit_group_for_lookup;
8306
8307 if (dwarf2_per_objfile->type_unit_groups == NULL)
8308 {
8309 dwarf2_per_objfile->type_unit_groups =
8310 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8311 }
8312
8313 /* Do we need to create a new group, or can we use an existing one? */
8314
8315 if (stmt_list)
8316 {
8317 line_offset = DW_UNSND (stmt_list);
8318 ++tu_stats->nr_symtab_sharers;
8319 }
8320 else
8321 {
8322 /* Ugh, no stmt_list. Rare, but we have to handle it.
8323 We can do various things here like create one group per TU or
8324 spread them over multiple groups to split up the expansion work.
8325 To avoid worst case scenarios (too many groups or too large groups)
8326 we, umm, group them in bunches. */
8327 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8328 | (tu_stats->nr_stmt_less_type_units
8329 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8330 ++tu_stats->nr_stmt_less_type_units;
8331 }
8332
8333 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8334 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8335 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8336 &type_unit_group_for_lookup, INSERT);
8337 if (*slot != NULL)
8338 {
8339 tu_group = (struct type_unit_group *) *slot;
8340 gdb_assert (tu_group != NULL);
8341 }
8342 else
8343 {
8344 sect_offset line_offset_struct = (sect_offset) line_offset;
8345 tu_group = create_type_unit_group (cu, line_offset_struct);
8346 *slot = tu_group;
8347 ++tu_stats->nr_symtabs;
8348 }
8349
8350 return tu_group;
8351 }
8352 \f
8353 /* Partial symbol tables. */
8354
8355 /* Create a psymtab named NAME and assign it to PER_CU.
8356
8357 The caller must fill in the following details:
8358 dirname, textlow, texthigh. */
8359
8360 static struct partial_symtab *
8361 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8362 {
8363 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8364 struct partial_symtab *pst;
8365
8366 pst = start_psymtab_common (objfile, name, 0,
8367 objfile->global_psymbols,
8368 objfile->static_psymbols);
8369
8370 pst->psymtabs_addrmap_supported = 1;
8371
8372 /* This is the glue that links PST into GDB's symbol API. */
8373 pst->read_symtab_private = per_cu;
8374 pst->read_symtab = dwarf2_read_symtab;
8375 per_cu->v.psymtab = pst;
8376
8377 return pst;
8378 }
8379
8380 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8381 type. */
8382
8383 struct process_psymtab_comp_unit_data
8384 {
8385 /* True if we are reading a DW_TAG_partial_unit. */
8386
8387 int want_partial_unit;
8388
8389 /* The "pretend" language that is used if the CU doesn't declare a
8390 language. */
8391
8392 enum language pretend_language;
8393 };
8394
8395 /* die_reader_func for process_psymtab_comp_unit. */
8396
8397 static void
8398 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8399 const gdb_byte *info_ptr,
8400 struct die_info *comp_unit_die,
8401 int has_children,
8402 void *data)
8403 {
8404 struct dwarf2_cu *cu = reader->cu;
8405 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8407 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8408 CORE_ADDR baseaddr;
8409 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8410 struct partial_symtab *pst;
8411 enum pc_bounds_kind cu_bounds_kind;
8412 const char *filename;
8413 struct process_psymtab_comp_unit_data *info
8414 = (struct process_psymtab_comp_unit_data *) data;
8415
8416 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8417 return;
8418
8419 gdb_assert (! per_cu->is_debug_types);
8420
8421 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8422
8423 cu->list_in_scope = &file_symbols;
8424
8425 /* Allocate a new partial symbol table structure. */
8426 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8427 if (filename == NULL)
8428 filename = "";
8429
8430 pst = create_partial_symtab (per_cu, filename);
8431
8432 /* This must be done before calling dwarf2_build_include_psymtabs. */
8433 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8434
8435 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8436
8437 dwarf2_find_base_address (comp_unit_die, cu);
8438
8439 /* Possibly set the default values of LOWPC and HIGHPC from
8440 `DW_AT_ranges'. */
8441 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8442 &best_highpc, cu, pst);
8443 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8444 /* Store the contiguous range if it is not empty; it can be empty for
8445 CUs with no code. */
8446 addrmap_set_empty (objfile->psymtabs_addrmap,
8447 gdbarch_adjust_dwarf2_addr (gdbarch,
8448 best_lowpc + baseaddr),
8449 gdbarch_adjust_dwarf2_addr (gdbarch,
8450 best_highpc + baseaddr) - 1,
8451 pst);
8452
8453 /* Check if comp unit has_children.
8454 If so, read the rest of the partial symbols from this comp unit.
8455 If not, there's no more debug_info for this comp unit. */
8456 if (has_children)
8457 {
8458 struct partial_die_info *first_die;
8459 CORE_ADDR lowpc, highpc;
8460
8461 lowpc = ((CORE_ADDR) -1);
8462 highpc = ((CORE_ADDR) 0);
8463
8464 first_die = load_partial_dies (reader, info_ptr, 1);
8465
8466 scan_partial_symbols (first_die, &lowpc, &highpc,
8467 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8468
8469 /* If we didn't find a lowpc, set it to highpc to avoid
8470 complaints from `maint check'. */
8471 if (lowpc == ((CORE_ADDR) -1))
8472 lowpc = highpc;
8473
8474 /* If the compilation unit didn't have an explicit address range,
8475 then use the information extracted from its child dies. */
8476 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8477 {
8478 best_lowpc = lowpc;
8479 best_highpc = highpc;
8480 }
8481 }
8482 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8483 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8484
8485 end_psymtab_common (objfile, pst);
8486
8487 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8488 {
8489 int i;
8490 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8491 struct dwarf2_per_cu_data *iter;
8492
8493 /* Fill in 'dependencies' here; we fill in 'users' in a
8494 post-pass. */
8495 pst->number_of_dependencies = len;
8496 pst->dependencies =
8497 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8498 for (i = 0;
8499 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8500 i, iter);
8501 ++i)
8502 pst->dependencies[i] = iter->v.psymtab;
8503
8504 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8505 }
8506
8507 /* Get the list of files included in the current compilation unit,
8508 and build a psymtab for each of them. */
8509 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8510
8511 if (dwarf_read_debug)
8512 {
8513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8514
8515 fprintf_unfiltered (gdb_stdlog,
8516 "Psymtab for %s unit @%s: %s - %s"
8517 ", %d global, %d static syms\n",
8518 per_cu->is_debug_types ? "type" : "comp",
8519 sect_offset_str (per_cu->sect_off),
8520 paddress (gdbarch, pst->textlow),
8521 paddress (gdbarch, pst->texthigh),
8522 pst->n_global_syms, pst->n_static_syms);
8523 }
8524 }
8525
8526 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8527 Process compilation unit THIS_CU for a psymtab. */
8528
8529 static void
8530 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8531 int want_partial_unit,
8532 enum language pretend_language)
8533 {
8534 /* If this compilation unit was already read in, free the
8535 cached copy in order to read it in again. This is
8536 necessary because we skipped some symbols when we first
8537 read in the compilation unit (see load_partial_dies).
8538 This problem could be avoided, but the benefit is unclear. */
8539 if (this_cu->cu != NULL)
8540 free_one_cached_comp_unit (this_cu);
8541
8542 if (this_cu->is_debug_types)
8543 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8544 NULL);
8545 else
8546 {
8547 process_psymtab_comp_unit_data info;
8548 info.want_partial_unit = want_partial_unit;
8549 info.pretend_language = pretend_language;
8550 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8551 process_psymtab_comp_unit_reader, &info);
8552 }
8553
8554 /* Age out any secondary CUs. */
8555 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8556 }
8557
8558 /* Reader function for build_type_psymtabs. */
8559
8560 static void
8561 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8562 const gdb_byte *info_ptr,
8563 struct die_info *type_unit_die,
8564 int has_children,
8565 void *data)
8566 {
8567 struct dwarf2_per_objfile *dwarf2_per_objfile
8568 = reader->cu->per_cu->dwarf2_per_objfile;
8569 struct objfile *objfile = dwarf2_per_objfile->objfile;
8570 struct dwarf2_cu *cu = reader->cu;
8571 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8572 struct signatured_type *sig_type;
8573 struct type_unit_group *tu_group;
8574 struct attribute *attr;
8575 struct partial_die_info *first_die;
8576 CORE_ADDR lowpc, highpc;
8577 struct partial_symtab *pst;
8578
8579 gdb_assert (data == NULL);
8580 gdb_assert (per_cu->is_debug_types);
8581 sig_type = (struct signatured_type *) per_cu;
8582
8583 if (! has_children)
8584 return;
8585
8586 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8587 tu_group = get_type_unit_group (cu, attr);
8588
8589 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8590
8591 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8592 cu->list_in_scope = &file_symbols;
8593 pst = create_partial_symtab (per_cu, "");
8594 pst->anonymous = 1;
8595
8596 first_die = load_partial_dies (reader, info_ptr, 1);
8597
8598 lowpc = (CORE_ADDR) -1;
8599 highpc = (CORE_ADDR) 0;
8600 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8601
8602 end_psymtab_common (objfile, pst);
8603 }
8604
8605 /* Struct used to sort TUs by their abbreviation table offset. */
8606
8607 struct tu_abbrev_offset
8608 {
8609 struct signatured_type *sig_type;
8610 sect_offset abbrev_offset;
8611 };
8612
8613 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8614
8615 static int
8616 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8617 {
8618 const struct tu_abbrev_offset * const *a
8619 = (const struct tu_abbrev_offset * const*) ap;
8620 const struct tu_abbrev_offset * const *b
8621 = (const struct tu_abbrev_offset * const*) bp;
8622 sect_offset aoff = (*a)->abbrev_offset;
8623 sect_offset boff = (*b)->abbrev_offset;
8624
8625 return (aoff > boff) - (aoff < boff);
8626 }
8627
8628 /* Efficiently read all the type units.
8629 This does the bulk of the work for build_type_psymtabs.
8630
8631 The efficiency is because we sort TUs by the abbrev table they use and
8632 only read each abbrev table once. In one program there are 200K TUs
8633 sharing 8K abbrev tables.
8634
8635 The main purpose of this function is to support building the
8636 dwarf2_per_objfile->type_unit_groups table.
8637 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8638 can collapse the search space by grouping them by stmt_list.
8639 The savings can be significant, in the same program from above the 200K TUs
8640 share 8K stmt_list tables.
8641
8642 FUNC is expected to call get_type_unit_group, which will create the
8643 struct type_unit_group if necessary and add it to
8644 dwarf2_per_objfile->type_unit_groups. */
8645
8646 static void
8647 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8648 {
8649 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8650 struct cleanup *cleanups;
8651 abbrev_table_up abbrev_table;
8652 sect_offset abbrev_offset;
8653 struct tu_abbrev_offset *sorted_by_abbrev;
8654 int i;
8655
8656 /* It's up to the caller to not call us multiple times. */
8657 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8658
8659 if (dwarf2_per_objfile->n_type_units == 0)
8660 return;
8661
8662 /* TUs typically share abbrev tables, and there can be way more TUs than
8663 abbrev tables. Sort by abbrev table to reduce the number of times we
8664 read each abbrev table in.
8665 Alternatives are to punt or to maintain a cache of abbrev tables.
8666 This is simpler and efficient enough for now.
8667
8668 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8669 symtab to use). Typically TUs with the same abbrev offset have the same
8670 stmt_list value too so in practice this should work well.
8671
8672 The basic algorithm here is:
8673
8674 sort TUs by abbrev table
8675 for each TU with same abbrev table:
8676 read abbrev table if first user
8677 read TU top level DIE
8678 [IWBN if DWO skeletons had DW_AT_stmt_list]
8679 call FUNC */
8680
8681 if (dwarf_read_debug)
8682 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8683
8684 /* Sort in a separate table to maintain the order of all_type_units
8685 for .gdb_index: TU indices directly index all_type_units. */
8686 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8687 dwarf2_per_objfile->n_type_units);
8688 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8689 {
8690 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8691
8692 sorted_by_abbrev[i].sig_type = sig_type;
8693 sorted_by_abbrev[i].abbrev_offset =
8694 read_abbrev_offset (dwarf2_per_objfile,
8695 sig_type->per_cu.section,
8696 sig_type->per_cu.sect_off);
8697 }
8698 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8699 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8700 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8701
8702 abbrev_offset = (sect_offset) ~(unsigned) 0;
8703
8704 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8705 {
8706 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8707
8708 /* Switch to the next abbrev table if necessary. */
8709 if (abbrev_table == NULL
8710 || tu->abbrev_offset != abbrev_offset)
8711 {
8712 abbrev_offset = tu->abbrev_offset;
8713 abbrev_table =
8714 abbrev_table_read_table (dwarf2_per_objfile,
8715 &dwarf2_per_objfile->abbrev,
8716 abbrev_offset);
8717 ++tu_stats->nr_uniq_abbrev_tables;
8718 }
8719
8720 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8721 0, 0, build_type_psymtabs_reader, NULL);
8722 }
8723
8724 do_cleanups (cleanups);
8725 }
8726
8727 /* Print collected type unit statistics. */
8728
8729 static void
8730 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8731 {
8732 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8733
8734 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8735 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8736 dwarf2_per_objfile->n_type_units);
8737 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8738 tu_stats->nr_uniq_abbrev_tables);
8739 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8740 tu_stats->nr_symtabs);
8741 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8742 tu_stats->nr_symtab_sharers);
8743 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8744 tu_stats->nr_stmt_less_type_units);
8745 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8746 tu_stats->nr_all_type_units_reallocs);
8747 }
8748
8749 /* Traversal function for build_type_psymtabs. */
8750
8751 static int
8752 build_type_psymtab_dependencies (void **slot, void *info)
8753 {
8754 struct dwarf2_per_objfile *dwarf2_per_objfile
8755 = (struct dwarf2_per_objfile *) info;
8756 struct objfile *objfile = dwarf2_per_objfile->objfile;
8757 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8758 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8759 struct partial_symtab *pst = per_cu->v.psymtab;
8760 int len = VEC_length (sig_type_ptr, tu_group->tus);
8761 struct signatured_type *iter;
8762 int i;
8763
8764 gdb_assert (len > 0);
8765 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8766
8767 pst->number_of_dependencies = len;
8768 pst->dependencies =
8769 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8770 for (i = 0;
8771 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8772 ++i)
8773 {
8774 gdb_assert (iter->per_cu.is_debug_types);
8775 pst->dependencies[i] = iter->per_cu.v.psymtab;
8776 iter->type_unit_group = tu_group;
8777 }
8778
8779 VEC_free (sig_type_ptr, tu_group->tus);
8780
8781 return 1;
8782 }
8783
8784 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8785 Build partial symbol tables for the .debug_types comp-units. */
8786
8787 static void
8788 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8789 {
8790 if (! create_all_type_units (dwarf2_per_objfile))
8791 return;
8792
8793 build_type_psymtabs_1 (dwarf2_per_objfile);
8794 }
8795
8796 /* Traversal function for process_skeletonless_type_unit.
8797 Read a TU in a DWO file and build partial symbols for it. */
8798
8799 static int
8800 process_skeletonless_type_unit (void **slot, void *info)
8801 {
8802 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8803 struct dwarf2_per_objfile *dwarf2_per_objfile
8804 = (struct dwarf2_per_objfile *) info;
8805 struct signatured_type find_entry, *entry;
8806
8807 /* If this TU doesn't exist in the global table, add it and read it in. */
8808
8809 if (dwarf2_per_objfile->signatured_types == NULL)
8810 {
8811 dwarf2_per_objfile->signatured_types
8812 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8813 }
8814
8815 find_entry.signature = dwo_unit->signature;
8816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8817 INSERT);
8818 /* If we've already seen this type there's nothing to do. What's happening
8819 is we're doing our own version of comdat-folding here. */
8820 if (*slot != NULL)
8821 return 1;
8822
8823 /* This does the job that create_all_type_units would have done for
8824 this TU. */
8825 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8826 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8827 *slot = entry;
8828
8829 /* This does the job that build_type_psymtabs_1 would have done. */
8830 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8831 build_type_psymtabs_reader, NULL);
8832
8833 return 1;
8834 }
8835
8836 /* Traversal function for process_skeletonless_type_units. */
8837
8838 static int
8839 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8840 {
8841 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8842
8843 if (dwo_file->tus != NULL)
8844 {
8845 htab_traverse_noresize (dwo_file->tus,
8846 process_skeletonless_type_unit, info);
8847 }
8848
8849 return 1;
8850 }
8851
8852 /* Scan all TUs of DWO files, verifying we've processed them.
8853 This is needed in case a TU was emitted without its skeleton.
8854 Note: This can't be done until we know what all the DWO files are. */
8855
8856 static void
8857 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8858 {
8859 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8860 if (get_dwp_file (dwarf2_per_objfile) == NULL
8861 && dwarf2_per_objfile->dwo_files != NULL)
8862 {
8863 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8864 process_dwo_file_for_skeletonless_type_units,
8865 dwarf2_per_objfile);
8866 }
8867 }
8868
8869 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8870
8871 static void
8872 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8873 {
8874 int i;
8875
8876 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8877 {
8878 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8879 struct partial_symtab *pst = per_cu->v.psymtab;
8880 int j;
8881
8882 if (pst == NULL)
8883 continue;
8884
8885 for (j = 0; j < pst->number_of_dependencies; ++j)
8886 {
8887 /* Set the 'user' field only if it is not already set. */
8888 if (pst->dependencies[j]->user == NULL)
8889 pst->dependencies[j]->user = pst;
8890 }
8891 }
8892 }
8893
8894 /* Build the partial symbol table by doing a quick pass through the
8895 .debug_info and .debug_abbrev sections. */
8896
8897 static void
8898 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8899 {
8900 struct cleanup *back_to;
8901 int i;
8902 struct objfile *objfile = dwarf2_per_objfile->objfile;
8903
8904 if (dwarf_read_debug)
8905 {
8906 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8907 objfile_name (objfile));
8908 }
8909
8910 dwarf2_per_objfile->reading_partial_symbols = 1;
8911
8912 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8913
8914 /* Any cached compilation units will be linked by the per-objfile
8915 read_in_chain. Make sure to free them when we're done. */
8916 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8917
8918 build_type_psymtabs (dwarf2_per_objfile);
8919
8920 create_all_comp_units (dwarf2_per_objfile);
8921
8922 /* Create a temporary address map on a temporary obstack. We later
8923 copy this to the final obstack. */
8924 auto_obstack temp_obstack;
8925
8926 scoped_restore save_psymtabs_addrmap
8927 = make_scoped_restore (&objfile->psymtabs_addrmap,
8928 addrmap_create_mutable (&temp_obstack));
8929
8930 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8931 {
8932 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8933
8934 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8935 }
8936
8937 /* This has to wait until we read the CUs, we need the list of DWOs. */
8938 process_skeletonless_type_units (dwarf2_per_objfile);
8939
8940 /* Now that all TUs have been processed we can fill in the dependencies. */
8941 if (dwarf2_per_objfile->type_unit_groups != NULL)
8942 {
8943 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8944 build_type_psymtab_dependencies, dwarf2_per_objfile);
8945 }
8946
8947 if (dwarf_read_debug)
8948 print_tu_stats (dwarf2_per_objfile);
8949
8950 set_partial_user (dwarf2_per_objfile);
8951
8952 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8953 &objfile->objfile_obstack);
8954 /* At this point we want to keep the address map. */
8955 save_psymtabs_addrmap.release ();
8956
8957 do_cleanups (back_to);
8958
8959 if (dwarf_read_debug)
8960 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8961 objfile_name (objfile));
8962 }
8963
8964 /* die_reader_func for load_partial_comp_unit. */
8965
8966 static void
8967 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8968 const gdb_byte *info_ptr,
8969 struct die_info *comp_unit_die,
8970 int has_children,
8971 void *data)
8972 {
8973 struct dwarf2_cu *cu = reader->cu;
8974
8975 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8976
8977 /* Check if comp unit has_children.
8978 If so, read the rest of the partial symbols from this comp unit.
8979 If not, there's no more debug_info for this comp unit. */
8980 if (has_children)
8981 load_partial_dies (reader, info_ptr, 0);
8982 }
8983
8984 /* Load the partial DIEs for a secondary CU into memory.
8985 This is also used when rereading a primary CU with load_all_dies. */
8986
8987 static void
8988 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8989 {
8990 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8991 load_partial_comp_unit_reader, NULL);
8992 }
8993
8994 static void
8995 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8996 struct dwarf2_section_info *section,
8997 struct dwarf2_section_info *abbrev_section,
8998 unsigned int is_dwz,
8999 int *n_allocated,
9000 int *n_comp_units,
9001 struct dwarf2_per_cu_data ***all_comp_units)
9002 {
9003 const gdb_byte *info_ptr;
9004 struct objfile *objfile = dwarf2_per_objfile->objfile;
9005
9006 if (dwarf_read_debug)
9007 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
9008 get_section_name (section),
9009 get_section_file_name (section));
9010
9011 dwarf2_read_section (objfile, section);
9012
9013 info_ptr = section->buffer;
9014
9015 while (info_ptr < section->buffer + section->size)
9016 {
9017 struct dwarf2_per_cu_data *this_cu;
9018
9019 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
9020
9021 comp_unit_head cu_header;
9022 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
9023 abbrev_section, info_ptr,
9024 rcuh_kind::COMPILE);
9025
9026 /* Save the compilation unit for later lookup. */
9027 if (cu_header.unit_type != DW_UT_type)
9028 {
9029 this_cu = XOBNEW (&objfile->objfile_obstack,
9030 struct dwarf2_per_cu_data);
9031 memset (this_cu, 0, sizeof (*this_cu));
9032 }
9033 else
9034 {
9035 auto sig_type = XOBNEW (&objfile->objfile_obstack,
9036 struct signatured_type);
9037 memset (sig_type, 0, sizeof (*sig_type));
9038 sig_type->signature = cu_header.signature;
9039 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
9040 this_cu = &sig_type->per_cu;
9041 }
9042 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9043 this_cu->sect_off = sect_off;
9044 this_cu->length = cu_header.length + cu_header.initial_length_size;
9045 this_cu->is_dwz = is_dwz;
9046 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
9047 this_cu->section = section;
9048
9049 if (*n_comp_units == *n_allocated)
9050 {
9051 *n_allocated *= 2;
9052 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
9053 *all_comp_units, *n_allocated);
9054 }
9055 (*all_comp_units)[*n_comp_units] = this_cu;
9056 ++*n_comp_units;
9057
9058 info_ptr = info_ptr + this_cu->length;
9059 }
9060 }
9061
9062 /* Create a list of all compilation units in OBJFILE.
9063 This is only done for -readnow and building partial symtabs. */
9064
9065 static void
9066 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
9067 {
9068 int n_allocated;
9069 int n_comp_units;
9070 struct dwarf2_per_cu_data **all_comp_units;
9071 struct dwz_file *dwz;
9072 struct objfile *objfile = dwarf2_per_objfile->objfile;
9073
9074 n_comp_units = 0;
9075 n_allocated = 10;
9076 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
9077
9078 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
9079 &dwarf2_per_objfile->abbrev, 0,
9080 &n_allocated, &n_comp_units, &all_comp_units);
9081
9082 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
9083 if (dwz != NULL)
9084 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
9085 1, &n_allocated, &n_comp_units,
9086 &all_comp_units);
9087
9088 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
9089 struct dwarf2_per_cu_data *,
9090 n_comp_units);
9091 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
9092 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
9093 xfree (all_comp_units);
9094 dwarf2_per_objfile->n_comp_units = n_comp_units;
9095 }
9096
9097 /* Process all loaded DIEs for compilation unit CU, starting at
9098 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9099 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9100 DW_AT_ranges). See the comments of add_partial_subprogram on how
9101 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9102
9103 static void
9104 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
9105 CORE_ADDR *highpc, int set_addrmap,
9106 struct dwarf2_cu *cu)
9107 {
9108 struct partial_die_info *pdi;
9109
9110 /* Now, march along the PDI's, descending into ones which have
9111 interesting children but skipping the children of the other ones,
9112 until we reach the end of the compilation unit. */
9113
9114 pdi = first_die;
9115
9116 while (pdi != NULL)
9117 {
9118 pdi->fixup (cu);
9119
9120 /* Anonymous namespaces or modules have no name but have interesting
9121 children, so we need to look at them. Ditto for anonymous
9122 enums. */
9123
9124 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9125 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9126 || pdi->tag == DW_TAG_imported_unit
9127 || pdi->tag == DW_TAG_inlined_subroutine)
9128 {
9129 switch (pdi->tag)
9130 {
9131 case DW_TAG_subprogram:
9132 case DW_TAG_inlined_subroutine:
9133 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9134 break;
9135 case DW_TAG_constant:
9136 case DW_TAG_variable:
9137 case DW_TAG_typedef:
9138 case DW_TAG_union_type:
9139 if (!pdi->is_declaration)
9140 {
9141 add_partial_symbol (pdi, cu);
9142 }
9143 break;
9144 case DW_TAG_class_type:
9145 case DW_TAG_interface_type:
9146 case DW_TAG_structure_type:
9147 if (!pdi->is_declaration)
9148 {
9149 add_partial_symbol (pdi, cu);
9150 }
9151 if (cu->language == language_rust && pdi->has_children)
9152 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9153 set_addrmap, cu);
9154 break;
9155 case DW_TAG_enumeration_type:
9156 if (!pdi->is_declaration)
9157 add_partial_enumeration (pdi, cu);
9158 break;
9159 case DW_TAG_base_type:
9160 case DW_TAG_subrange_type:
9161 /* File scope base type definitions are added to the partial
9162 symbol table. */
9163 add_partial_symbol (pdi, cu);
9164 break;
9165 case DW_TAG_namespace:
9166 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9167 break;
9168 case DW_TAG_module:
9169 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9170 break;
9171 case DW_TAG_imported_unit:
9172 {
9173 struct dwarf2_per_cu_data *per_cu;
9174
9175 /* For now we don't handle imported units in type units. */
9176 if (cu->per_cu->is_debug_types)
9177 {
9178 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9179 " supported in type units [in module %s]"),
9180 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9181 }
9182
9183 per_cu = dwarf2_find_containing_comp_unit
9184 (pdi->d.sect_off, pdi->is_dwz,
9185 cu->per_cu->dwarf2_per_objfile);
9186
9187 /* Go read the partial unit, if needed. */
9188 if (per_cu->v.psymtab == NULL)
9189 process_psymtab_comp_unit (per_cu, 1, cu->language);
9190
9191 VEC_safe_push (dwarf2_per_cu_ptr,
9192 cu->per_cu->imported_symtabs, per_cu);
9193 }
9194 break;
9195 case DW_TAG_imported_declaration:
9196 add_partial_symbol (pdi, cu);
9197 break;
9198 default:
9199 break;
9200 }
9201 }
9202
9203 /* If the die has a sibling, skip to the sibling. */
9204
9205 pdi = pdi->die_sibling;
9206 }
9207 }
9208
9209 /* Functions used to compute the fully scoped name of a partial DIE.
9210
9211 Normally, this is simple. For C++, the parent DIE's fully scoped
9212 name is concatenated with "::" and the partial DIE's name.
9213 Enumerators are an exception; they use the scope of their parent
9214 enumeration type, i.e. the name of the enumeration type is not
9215 prepended to the enumerator.
9216
9217 There are two complexities. One is DW_AT_specification; in this
9218 case "parent" means the parent of the target of the specification,
9219 instead of the direct parent of the DIE. The other is compilers
9220 which do not emit DW_TAG_namespace; in this case we try to guess
9221 the fully qualified name of structure types from their members'
9222 linkage names. This must be done using the DIE's children rather
9223 than the children of any DW_AT_specification target. We only need
9224 to do this for structures at the top level, i.e. if the target of
9225 any DW_AT_specification (if any; otherwise the DIE itself) does not
9226 have a parent. */
9227
9228 /* Compute the scope prefix associated with PDI's parent, in
9229 compilation unit CU. The result will be allocated on CU's
9230 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9231 field. NULL is returned if no prefix is necessary. */
9232 static const char *
9233 partial_die_parent_scope (struct partial_die_info *pdi,
9234 struct dwarf2_cu *cu)
9235 {
9236 const char *grandparent_scope;
9237 struct partial_die_info *parent, *real_pdi;
9238
9239 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9240 then this means the parent of the specification DIE. */
9241
9242 real_pdi = pdi;
9243 while (real_pdi->has_specification)
9244 real_pdi = find_partial_die (real_pdi->spec_offset,
9245 real_pdi->spec_is_dwz, cu);
9246
9247 parent = real_pdi->die_parent;
9248 if (parent == NULL)
9249 return NULL;
9250
9251 if (parent->scope_set)
9252 return parent->scope;
9253
9254 parent->fixup (cu);
9255
9256 grandparent_scope = partial_die_parent_scope (parent, cu);
9257
9258 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9259 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9260 Work around this problem here. */
9261 if (cu->language == language_cplus
9262 && parent->tag == DW_TAG_namespace
9263 && strcmp (parent->name, "::") == 0
9264 && grandparent_scope == NULL)
9265 {
9266 parent->scope = NULL;
9267 parent->scope_set = 1;
9268 return NULL;
9269 }
9270
9271 if (pdi->tag == DW_TAG_enumerator)
9272 /* Enumerators should not get the name of the enumeration as a prefix. */
9273 parent->scope = grandparent_scope;
9274 else if (parent->tag == DW_TAG_namespace
9275 || parent->tag == DW_TAG_module
9276 || parent->tag == DW_TAG_structure_type
9277 || parent->tag == DW_TAG_class_type
9278 || parent->tag == DW_TAG_interface_type
9279 || parent->tag == DW_TAG_union_type
9280 || parent->tag == DW_TAG_enumeration_type)
9281 {
9282 if (grandparent_scope == NULL)
9283 parent->scope = parent->name;
9284 else
9285 parent->scope = typename_concat (&cu->comp_unit_obstack,
9286 grandparent_scope,
9287 parent->name, 0, cu);
9288 }
9289 else
9290 {
9291 /* FIXME drow/2004-04-01: What should we be doing with
9292 function-local names? For partial symbols, we should probably be
9293 ignoring them. */
9294 complaint (&symfile_complaints,
9295 _("unhandled containing DIE tag %d for DIE at %s"),
9296 parent->tag, sect_offset_str (pdi->sect_off));
9297 parent->scope = grandparent_scope;
9298 }
9299
9300 parent->scope_set = 1;
9301 return parent->scope;
9302 }
9303
9304 /* Return the fully scoped name associated with PDI, from compilation unit
9305 CU. The result will be allocated with malloc. */
9306
9307 static char *
9308 partial_die_full_name (struct partial_die_info *pdi,
9309 struct dwarf2_cu *cu)
9310 {
9311 const char *parent_scope;
9312
9313 /* If this is a template instantiation, we can not work out the
9314 template arguments from partial DIEs. So, unfortunately, we have
9315 to go through the full DIEs. At least any work we do building
9316 types here will be reused if full symbols are loaded later. */
9317 if (pdi->has_template_arguments)
9318 {
9319 pdi->fixup (cu);
9320
9321 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9322 {
9323 struct die_info *die;
9324 struct attribute attr;
9325 struct dwarf2_cu *ref_cu = cu;
9326
9327 /* DW_FORM_ref_addr is using section offset. */
9328 attr.name = (enum dwarf_attribute) 0;
9329 attr.form = DW_FORM_ref_addr;
9330 attr.u.unsnd = to_underlying (pdi->sect_off);
9331 die = follow_die_ref (NULL, &attr, &ref_cu);
9332
9333 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9334 }
9335 }
9336
9337 parent_scope = partial_die_parent_scope (pdi, cu);
9338 if (parent_scope == NULL)
9339 return NULL;
9340 else
9341 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9342 }
9343
9344 static void
9345 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9346 {
9347 struct dwarf2_per_objfile *dwarf2_per_objfile
9348 = cu->per_cu->dwarf2_per_objfile;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9351 CORE_ADDR addr = 0;
9352 const char *actual_name = NULL;
9353 CORE_ADDR baseaddr;
9354 char *built_actual_name;
9355
9356 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9357
9358 built_actual_name = partial_die_full_name (pdi, cu);
9359 if (built_actual_name != NULL)
9360 actual_name = built_actual_name;
9361
9362 if (actual_name == NULL)
9363 actual_name = pdi->name;
9364
9365 switch (pdi->tag)
9366 {
9367 case DW_TAG_inlined_subroutine:
9368 case DW_TAG_subprogram:
9369 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9370 if (pdi->is_external || cu->language == language_ada)
9371 {
9372 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9373 of the global scope. But in Ada, we want to be able to access
9374 nested procedures globally. So all Ada subprograms are stored
9375 in the global scope. */
9376 add_psymbol_to_list (actual_name, strlen (actual_name),
9377 built_actual_name != NULL,
9378 VAR_DOMAIN, LOC_BLOCK,
9379 &objfile->global_psymbols,
9380 addr, cu->language, objfile);
9381 }
9382 else
9383 {
9384 add_psymbol_to_list (actual_name, strlen (actual_name),
9385 built_actual_name != NULL,
9386 VAR_DOMAIN, LOC_BLOCK,
9387 &objfile->static_psymbols,
9388 addr, cu->language, objfile);
9389 }
9390
9391 if (pdi->main_subprogram && actual_name != NULL)
9392 set_objfile_main_name (objfile, actual_name, cu->language);
9393 break;
9394 case DW_TAG_constant:
9395 {
9396 std::vector<partial_symbol *> *list;
9397
9398 if (pdi->is_external)
9399 list = &objfile->global_psymbols;
9400 else
9401 list = &objfile->static_psymbols;
9402 add_psymbol_to_list (actual_name, strlen (actual_name),
9403 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9404 list, 0, cu->language, objfile);
9405 }
9406 break;
9407 case DW_TAG_variable:
9408 if (pdi->d.locdesc)
9409 addr = decode_locdesc (pdi->d.locdesc, cu);
9410
9411 if (pdi->d.locdesc
9412 && addr == 0
9413 && !dwarf2_per_objfile->has_section_at_zero)
9414 {
9415 /* A global or static variable may also have been stripped
9416 out by the linker if unused, in which case its address
9417 will be nullified; do not add such variables into partial
9418 symbol table then. */
9419 }
9420 else if (pdi->is_external)
9421 {
9422 /* Global Variable.
9423 Don't enter into the minimal symbol tables as there is
9424 a minimal symbol table entry from the ELF symbols already.
9425 Enter into partial symbol table if it has a location
9426 descriptor or a type.
9427 If the location descriptor is missing, new_symbol will create
9428 a LOC_UNRESOLVED symbol, the address of the variable will then
9429 be determined from the minimal symbol table whenever the variable
9430 is referenced.
9431 The address for the partial symbol table entry is not
9432 used by GDB, but it comes in handy for debugging partial symbol
9433 table building. */
9434
9435 if (pdi->d.locdesc || pdi->has_type)
9436 add_psymbol_to_list (actual_name, strlen (actual_name),
9437 built_actual_name != NULL,
9438 VAR_DOMAIN, LOC_STATIC,
9439 &objfile->global_psymbols,
9440 addr + baseaddr,
9441 cu->language, objfile);
9442 }
9443 else
9444 {
9445 int has_loc = pdi->d.locdesc != NULL;
9446
9447 /* Static Variable. Skip symbols whose value we cannot know (those
9448 without location descriptors or constant values). */
9449 if (!has_loc && !pdi->has_const_value)
9450 {
9451 xfree (built_actual_name);
9452 return;
9453 }
9454
9455 add_psymbol_to_list (actual_name, strlen (actual_name),
9456 built_actual_name != NULL,
9457 VAR_DOMAIN, LOC_STATIC,
9458 &objfile->static_psymbols,
9459 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9460 cu->language, objfile);
9461 }
9462 break;
9463 case DW_TAG_typedef:
9464 case DW_TAG_base_type:
9465 case DW_TAG_subrange_type:
9466 add_psymbol_to_list (actual_name, strlen (actual_name),
9467 built_actual_name != NULL,
9468 VAR_DOMAIN, LOC_TYPEDEF,
9469 &objfile->static_psymbols,
9470 0, cu->language, objfile);
9471 break;
9472 case DW_TAG_imported_declaration:
9473 case DW_TAG_namespace:
9474 add_psymbol_to_list (actual_name, strlen (actual_name),
9475 built_actual_name != NULL,
9476 VAR_DOMAIN, LOC_TYPEDEF,
9477 &objfile->global_psymbols,
9478 0, cu->language, objfile);
9479 break;
9480 case DW_TAG_module:
9481 add_psymbol_to_list (actual_name, strlen (actual_name),
9482 built_actual_name != NULL,
9483 MODULE_DOMAIN, LOC_TYPEDEF,
9484 &objfile->global_psymbols,
9485 0, cu->language, objfile);
9486 break;
9487 case DW_TAG_class_type:
9488 case DW_TAG_interface_type:
9489 case DW_TAG_structure_type:
9490 case DW_TAG_union_type:
9491 case DW_TAG_enumeration_type:
9492 /* Skip external references. The DWARF standard says in the section
9493 about "Structure, Union, and Class Type Entries": "An incomplete
9494 structure, union or class type is represented by a structure,
9495 union or class entry that does not have a byte size attribute
9496 and that has a DW_AT_declaration attribute." */
9497 if (!pdi->has_byte_size && pdi->is_declaration)
9498 {
9499 xfree (built_actual_name);
9500 return;
9501 }
9502
9503 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9504 static vs. global. */
9505 add_psymbol_to_list (actual_name, strlen (actual_name),
9506 built_actual_name != NULL,
9507 STRUCT_DOMAIN, LOC_TYPEDEF,
9508 cu->language == language_cplus
9509 ? &objfile->global_psymbols
9510 : &objfile->static_psymbols,
9511 0, cu->language, objfile);
9512
9513 break;
9514 case DW_TAG_enumerator:
9515 add_psymbol_to_list (actual_name, strlen (actual_name),
9516 built_actual_name != NULL,
9517 VAR_DOMAIN, LOC_CONST,
9518 cu->language == language_cplus
9519 ? &objfile->global_psymbols
9520 : &objfile->static_psymbols,
9521 0, cu->language, objfile);
9522 break;
9523 default:
9524 break;
9525 }
9526
9527 xfree (built_actual_name);
9528 }
9529
9530 /* Read a partial die corresponding to a namespace; also, add a symbol
9531 corresponding to that namespace to the symbol table. NAMESPACE is
9532 the name of the enclosing namespace. */
9533
9534 static void
9535 add_partial_namespace (struct partial_die_info *pdi,
9536 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9537 int set_addrmap, struct dwarf2_cu *cu)
9538 {
9539 /* Add a symbol for the namespace. */
9540
9541 add_partial_symbol (pdi, cu);
9542
9543 /* Now scan partial symbols in that namespace. */
9544
9545 if (pdi->has_children)
9546 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9547 }
9548
9549 /* Read a partial die corresponding to a Fortran module. */
9550
9551 static void
9552 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9553 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9554 {
9555 /* Add a symbol for the namespace. */
9556
9557 add_partial_symbol (pdi, cu);
9558
9559 /* Now scan partial symbols in that module. */
9560
9561 if (pdi->has_children)
9562 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9563 }
9564
9565 /* Read a partial die corresponding to a subprogram or an inlined
9566 subprogram and create a partial symbol for that subprogram.
9567 When the CU language allows it, this routine also defines a partial
9568 symbol for each nested subprogram that this subprogram contains.
9569 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9570 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9571
9572 PDI may also be a lexical block, in which case we simply search
9573 recursively for subprograms defined inside that lexical block.
9574 Again, this is only performed when the CU language allows this
9575 type of definitions. */
9576
9577 static void
9578 add_partial_subprogram (struct partial_die_info *pdi,
9579 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9580 int set_addrmap, struct dwarf2_cu *cu)
9581 {
9582 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9583 {
9584 if (pdi->has_pc_info)
9585 {
9586 if (pdi->lowpc < *lowpc)
9587 *lowpc = pdi->lowpc;
9588 if (pdi->highpc > *highpc)
9589 *highpc = pdi->highpc;
9590 if (set_addrmap)
9591 {
9592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9593 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9594 CORE_ADDR baseaddr;
9595 CORE_ADDR highpc;
9596 CORE_ADDR lowpc;
9597
9598 baseaddr = ANOFFSET (objfile->section_offsets,
9599 SECT_OFF_TEXT (objfile));
9600 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9601 pdi->lowpc + baseaddr);
9602 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9603 pdi->highpc + baseaddr);
9604 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9605 cu->per_cu->v.psymtab);
9606 }
9607 }
9608
9609 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9610 {
9611 if (!pdi->is_declaration)
9612 /* Ignore subprogram DIEs that do not have a name, they are
9613 illegal. Do not emit a complaint at this point, we will
9614 do so when we convert this psymtab into a symtab. */
9615 if (pdi->name)
9616 add_partial_symbol (pdi, cu);
9617 }
9618 }
9619
9620 if (! pdi->has_children)
9621 return;
9622
9623 if (cu->language == language_ada)
9624 {
9625 pdi = pdi->die_child;
9626 while (pdi != NULL)
9627 {
9628 pdi->fixup (cu);
9629 if (pdi->tag == DW_TAG_subprogram
9630 || pdi->tag == DW_TAG_inlined_subroutine
9631 || pdi->tag == DW_TAG_lexical_block)
9632 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9633 pdi = pdi->die_sibling;
9634 }
9635 }
9636 }
9637
9638 /* Read a partial die corresponding to an enumeration type. */
9639
9640 static void
9641 add_partial_enumeration (struct partial_die_info *enum_pdi,
9642 struct dwarf2_cu *cu)
9643 {
9644 struct partial_die_info *pdi;
9645
9646 if (enum_pdi->name != NULL)
9647 add_partial_symbol (enum_pdi, cu);
9648
9649 pdi = enum_pdi->die_child;
9650 while (pdi)
9651 {
9652 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9653 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9654 else
9655 add_partial_symbol (pdi, cu);
9656 pdi = pdi->die_sibling;
9657 }
9658 }
9659
9660 /* Return the initial uleb128 in the die at INFO_PTR. */
9661
9662 static unsigned int
9663 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9664 {
9665 unsigned int bytes_read;
9666
9667 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9668 }
9669
9670 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9671 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9672
9673 Return the corresponding abbrev, or NULL if the number is zero (indicating
9674 an empty DIE). In either case *BYTES_READ will be set to the length of
9675 the initial number. */
9676
9677 static struct abbrev_info *
9678 peek_die_abbrev (const die_reader_specs &reader,
9679 const gdb_byte *info_ptr, unsigned int *bytes_read)
9680 {
9681 dwarf2_cu *cu = reader.cu;
9682 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9683 unsigned int abbrev_number
9684 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9685
9686 if (abbrev_number == 0)
9687 return NULL;
9688
9689 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9690 if (!abbrev)
9691 {
9692 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9693 " at offset %s [in module %s]"),
9694 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9695 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9696 }
9697
9698 return abbrev;
9699 }
9700
9701 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9702 Returns a pointer to the end of a series of DIEs, terminated by an empty
9703 DIE. Any children of the skipped DIEs will also be skipped. */
9704
9705 static const gdb_byte *
9706 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9707 {
9708 while (1)
9709 {
9710 unsigned int bytes_read;
9711 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9712
9713 if (abbrev == NULL)
9714 return info_ptr + bytes_read;
9715 else
9716 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9717 }
9718 }
9719
9720 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9721 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9722 abbrev corresponding to that skipped uleb128 should be passed in
9723 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9724 children. */
9725
9726 static const gdb_byte *
9727 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9728 struct abbrev_info *abbrev)
9729 {
9730 unsigned int bytes_read;
9731 struct attribute attr;
9732 bfd *abfd = reader->abfd;
9733 struct dwarf2_cu *cu = reader->cu;
9734 const gdb_byte *buffer = reader->buffer;
9735 const gdb_byte *buffer_end = reader->buffer_end;
9736 unsigned int form, i;
9737
9738 for (i = 0; i < abbrev->num_attrs; i++)
9739 {
9740 /* The only abbrev we care about is DW_AT_sibling. */
9741 if (abbrev->attrs[i].name == DW_AT_sibling)
9742 {
9743 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9744 if (attr.form == DW_FORM_ref_addr)
9745 complaint (&symfile_complaints,
9746 _("ignoring absolute DW_AT_sibling"));
9747 else
9748 {
9749 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9750 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9751
9752 if (sibling_ptr < info_ptr)
9753 complaint (&symfile_complaints,
9754 _("DW_AT_sibling points backwards"));
9755 else if (sibling_ptr > reader->buffer_end)
9756 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9757 else
9758 return sibling_ptr;
9759 }
9760 }
9761
9762 /* If it isn't DW_AT_sibling, skip this attribute. */
9763 form = abbrev->attrs[i].form;
9764 skip_attribute:
9765 switch (form)
9766 {
9767 case DW_FORM_ref_addr:
9768 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9769 and later it is offset sized. */
9770 if (cu->header.version == 2)
9771 info_ptr += cu->header.addr_size;
9772 else
9773 info_ptr += cu->header.offset_size;
9774 break;
9775 case DW_FORM_GNU_ref_alt:
9776 info_ptr += cu->header.offset_size;
9777 break;
9778 case DW_FORM_addr:
9779 info_ptr += cu->header.addr_size;
9780 break;
9781 case DW_FORM_data1:
9782 case DW_FORM_ref1:
9783 case DW_FORM_flag:
9784 info_ptr += 1;
9785 break;
9786 case DW_FORM_flag_present:
9787 case DW_FORM_implicit_const:
9788 break;
9789 case DW_FORM_data2:
9790 case DW_FORM_ref2:
9791 info_ptr += 2;
9792 break;
9793 case DW_FORM_data4:
9794 case DW_FORM_ref4:
9795 info_ptr += 4;
9796 break;
9797 case DW_FORM_data8:
9798 case DW_FORM_ref8:
9799 case DW_FORM_ref_sig8:
9800 info_ptr += 8;
9801 break;
9802 case DW_FORM_data16:
9803 info_ptr += 16;
9804 break;
9805 case DW_FORM_string:
9806 read_direct_string (abfd, info_ptr, &bytes_read);
9807 info_ptr += bytes_read;
9808 break;
9809 case DW_FORM_sec_offset:
9810 case DW_FORM_strp:
9811 case DW_FORM_GNU_strp_alt:
9812 info_ptr += cu->header.offset_size;
9813 break;
9814 case DW_FORM_exprloc:
9815 case DW_FORM_block:
9816 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9817 info_ptr += bytes_read;
9818 break;
9819 case DW_FORM_block1:
9820 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9821 break;
9822 case DW_FORM_block2:
9823 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9824 break;
9825 case DW_FORM_block4:
9826 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9827 break;
9828 case DW_FORM_sdata:
9829 case DW_FORM_udata:
9830 case DW_FORM_ref_udata:
9831 case DW_FORM_GNU_addr_index:
9832 case DW_FORM_GNU_str_index:
9833 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9834 break;
9835 case DW_FORM_indirect:
9836 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9837 info_ptr += bytes_read;
9838 /* We need to continue parsing from here, so just go back to
9839 the top. */
9840 goto skip_attribute;
9841
9842 default:
9843 error (_("Dwarf Error: Cannot handle %s "
9844 "in DWARF reader [in module %s]"),
9845 dwarf_form_name (form),
9846 bfd_get_filename (abfd));
9847 }
9848 }
9849
9850 if (abbrev->has_children)
9851 return skip_children (reader, info_ptr);
9852 else
9853 return info_ptr;
9854 }
9855
9856 /* Locate ORIG_PDI's sibling.
9857 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9858
9859 static const gdb_byte *
9860 locate_pdi_sibling (const struct die_reader_specs *reader,
9861 struct partial_die_info *orig_pdi,
9862 const gdb_byte *info_ptr)
9863 {
9864 /* Do we know the sibling already? */
9865
9866 if (orig_pdi->sibling)
9867 return orig_pdi->sibling;
9868
9869 /* Are there any children to deal with? */
9870
9871 if (!orig_pdi->has_children)
9872 return info_ptr;
9873
9874 /* Skip the children the long way. */
9875
9876 return skip_children (reader, info_ptr);
9877 }
9878
9879 /* Expand this partial symbol table into a full symbol table. SELF is
9880 not NULL. */
9881
9882 static void
9883 dwarf2_read_symtab (struct partial_symtab *self,
9884 struct objfile *objfile)
9885 {
9886 struct dwarf2_per_objfile *dwarf2_per_objfile
9887 = get_dwarf2_per_objfile (objfile);
9888
9889 if (self->readin)
9890 {
9891 warning (_("bug: psymtab for %s is already read in."),
9892 self->filename);
9893 }
9894 else
9895 {
9896 if (info_verbose)
9897 {
9898 printf_filtered (_("Reading in symbols for %s..."),
9899 self->filename);
9900 gdb_flush (gdb_stdout);
9901 }
9902
9903 /* If this psymtab is constructed from a debug-only objfile, the
9904 has_section_at_zero flag will not necessarily be correct. We
9905 can get the correct value for this flag by looking at the data
9906 associated with the (presumably stripped) associated objfile. */
9907 if (objfile->separate_debug_objfile_backlink)
9908 {
9909 struct dwarf2_per_objfile *dpo_backlink
9910 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9911
9912 dwarf2_per_objfile->has_section_at_zero
9913 = dpo_backlink->has_section_at_zero;
9914 }
9915
9916 dwarf2_per_objfile->reading_partial_symbols = 0;
9917
9918 psymtab_to_symtab_1 (self);
9919
9920 /* Finish up the debug error message. */
9921 if (info_verbose)
9922 printf_filtered (_("done.\n"));
9923 }
9924
9925 process_cu_includes (dwarf2_per_objfile);
9926 }
9927 \f
9928 /* Reading in full CUs. */
9929
9930 /* Add PER_CU to the queue. */
9931
9932 static void
9933 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9934 enum language pretend_language)
9935 {
9936 struct dwarf2_queue_item *item;
9937
9938 per_cu->queued = 1;
9939 item = XNEW (struct dwarf2_queue_item);
9940 item->per_cu = per_cu;
9941 item->pretend_language = pretend_language;
9942 item->next = NULL;
9943
9944 if (dwarf2_queue == NULL)
9945 dwarf2_queue = item;
9946 else
9947 dwarf2_queue_tail->next = item;
9948
9949 dwarf2_queue_tail = item;
9950 }
9951
9952 /* If PER_CU is not yet queued, add it to the queue.
9953 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9954 dependency.
9955 The result is non-zero if PER_CU was queued, otherwise the result is zero
9956 meaning either PER_CU is already queued or it is already loaded.
9957
9958 N.B. There is an invariant here that if a CU is queued then it is loaded.
9959 The caller is required to load PER_CU if we return non-zero. */
9960
9961 static int
9962 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9963 struct dwarf2_per_cu_data *per_cu,
9964 enum language pretend_language)
9965 {
9966 /* We may arrive here during partial symbol reading, if we need full
9967 DIEs to process an unusual case (e.g. template arguments). Do
9968 not queue PER_CU, just tell our caller to load its DIEs. */
9969 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9970 {
9971 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9972 return 1;
9973 return 0;
9974 }
9975
9976 /* Mark the dependence relation so that we don't flush PER_CU
9977 too early. */
9978 if (dependent_cu != NULL)
9979 dwarf2_add_dependence (dependent_cu, per_cu);
9980
9981 /* If it's already on the queue, we have nothing to do. */
9982 if (per_cu->queued)
9983 return 0;
9984
9985 /* If the compilation unit is already loaded, just mark it as
9986 used. */
9987 if (per_cu->cu != NULL)
9988 {
9989 per_cu->cu->last_used = 0;
9990 return 0;
9991 }
9992
9993 /* Add it to the queue. */
9994 queue_comp_unit (per_cu, pretend_language);
9995
9996 return 1;
9997 }
9998
9999 /* Process the queue. */
10000
10001 static void
10002 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10003 {
10004 struct dwarf2_queue_item *item, *next_item;
10005
10006 if (dwarf_read_debug)
10007 {
10008 fprintf_unfiltered (gdb_stdlog,
10009 "Expanding one or more symtabs of objfile %s ...\n",
10010 objfile_name (dwarf2_per_objfile->objfile));
10011 }
10012
10013 /* The queue starts out with one item, but following a DIE reference
10014 may load a new CU, adding it to the end of the queue. */
10015 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
10016 {
10017 if ((dwarf2_per_objfile->using_index
10018 ? !item->per_cu->v.quick->compunit_symtab
10019 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10020 /* Skip dummy CUs. */
10021 && item->per_cu->cu != NULL)
10022 {
10023 struct dwarf2_per_cu_data *per_cu = item->per_cu;
10024 unsigned int debug_print_threshold;
10025 char buf[100];
10026
10027 if (per_cu->is_debug_types)
10028 {
10029 struct signatured_type *sig_type =
10030 (struct signatured_type *) per_cu;
10031
10032 sprintf (buf, "TU %s at offset %s",
10033 hex_string (sig_type->signature),
10034 sect_offset_str (per_cu->sect_off));
10035 /* There can be 100s of TUs.
10036 Only print them in verbose mode. */
10037 debug_print_threshold = 2;
10038 }
10039 else
10040 {
10041 sprintf (buf, "CU at offset %s",
10042 sect_offset_str (per_cu->sect_off));
10043 debug_print_threshold = 1;
10044 }
10045
10046 if (dwarf_read_debug >= debug_print_threshold)
10047 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
10048
10049 if (per_cu->is_debug_types)
10050 process_full_type_unit (per_cu, item->pretend_language);
10051 else
10052 process_full_comp_unit (per_cu, item->pretend_language);
10053
10054 if (dwarf_read_debug >= debug_print_threshold)
10055 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
10056 }
10057
10058 item->per_cu->queued = 0;
10059 next_item = item->next;
10060 xfree (item);
10061 }
10062
10063 dwarf2_queue_tail = NULL;
10064
10065 if (dwarf_read_debug)
10066 {
10067 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
10068 objfile_name (dwarf2_per_objfile->objfile));
10069 }
10070 }
10071
10072 /* Read in full symbols for PST, and anything it depends on. */
10073
10074 static void
10075 psymtab_to_symtab_1 (struct partial_symtab *pst)
10076 {
10077 struct dwarf2_per_cu_data *per_cu;
10078 int i;
10079
10080 if (pst->readin)
10081 return;
10082
10083 for (i = 0; i < pst->number_of_dependencies; i++)
10084 if (!pst->dependencies[i]->readin
10085 && pst->dependencies[i]->user == NULL)
10086 {
10087 /* Inform about additional files that need to be read in. */
10088 if (info_verbose)
10089 {
10090 /* FIXME: i18n: Need to make this a single string. */
10091 fputs_filtered (" ", gdb_stdout);
10092 wrap_here ("");
10093 fputs_filtered ("and ", gdb_stdout);
10094 wrap_here ("");
10095 printf_filtered ("%s...", pst->dependencies[i]->filename);
10096 wrap_here (""); /* Flush output. */
10097 gdb_flush (gdb_stdout);
10098 }
10099 psymtab_to_symtab_1 (pst->dependencies[i]);
10100 }
10101
10102 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10103
10104 if (per_cu == NULL)
10105 {
10106 /* It's an include file, no symbols to read for it.
10107 Everything is in the parent symtab. */
10108 pst->readin = 1;
10109 return;
10110 }
10111
10112 dw2_do_instantiate_symtab (per_cu);
10113 }
10114
10115 /* Trivial hash function for die_info: the hash value of a DIE
10116 is its offset in .debug_info for this objfile. */
10117
10118 static hashval_t
10119 die_hash (const void *item)
10120 {
10121 const struct die_info *die = (const struct die_info *) item;
10122
10123 return to_underlying (die->sect_off);
10124 }
10125
10126 /* Trivial comparison function for die_info structures: two DIEs
10127 are equal if they have the same offset. */
10128
10129 static int
10130 die_eq (const void *item_lhs, const void *item_rhs)
10131 {
10132 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10133 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10134
10135 return die_lhs->sect_off == die_rhs->sect_off;
10136 }
10137
10138 /* die_reader_func for load_full_comp_unit.
10139 This is identical to read_signatured_type_reader,
10140 but is kept separate for now. */
10141
10142 static void
10143 load_full_comp_unit_reader (const struct die_reader_specs *reader,
10144 const gdb_byte *info_ptr,
10145 struct die_info *comp_unit_die,
10146 int has_children,
10147 void *data)
10148 {
10149 struct dwarf2_cu *cu = reader->cu;
10150 enum language *language_ptr = (enum language *) data;
10151
10152 gdb_assert (cu->die_hash == NULL);
10153 cu->die_hash =
10154 htab_create_alloc_ex (cu->header.length / 12,
10155 die_hash,
10156 die_eq,
10157 NULL,
10158 &cu->comp_unit_obstack,
10159 hashtab_obstack_allocate,
10160 dummy_obstack_deallocate);
10161
10162 if (has_children)
10163 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10164 &info_ptr, comp_unit_die);
10165 cu->dies = comp_unit_die;
10166 /* comp_unit_die is not stored in die_hash, no need. */
10167
10168 /* We try not to read any attributes in this function, because not
10169 all CUs needed for references have been loaded yet, and symbol
10170 table processing isn't initialized. But we have to set the CU language,
10171 or we won't be able to build types correctly.
10172 Similarly, if we do not read the producer, we can not apply
10173 producer-specific interpretation. */
10174 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10175 }
10176
10177 /* Load the DIEs associated with PER_CU into memory. */
10178
10179 static void
10180 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10181 enum language pretend_language)
10182 {
10183 gdb_assert (! this_cu->is_debug_types);
10184
10185 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10186 load_full_comp_unit_reader, &pretend_language);
10187 }
10188
10189 /* Add a DIE to the delayed physname list. */
10190
10191 static void
10192 add_to_method_list (struct type *type, int fnfield_index, int index,
10193 const char *name, struct die_info *die,
10194 struct dwarf2_cu *cu)
10195 {
10196 struct delayed_method_info mi;
10197 mi.type = type;
10198 mi.fnfield_index = fnfield_index;
10199 mi.index = index;
10200 mi.name = name;
10201 mi.die = die;
10202 cu->method_list.push_back (mi);
10203 }
10204
10205 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10206 "const" / "volatile". If so, decrements LEN by the length of the
10207 modifier and return true. Otherwise return false. */
10208
10209 template<size_t N>
10210 static bool
10211 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10212 {
10213 size_t mod_len = sizeof (mod) - 1;
10214 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10215 {
10216 len -= mod_len;
10217 return true;
10218 }
10219 return false;
10220 }
10221
10222 /* Compute the physnames of any methods on the CU's method list.
10223
10224 The computation of method physnames is delayed in order to avoid the
10225 (bad) condition that one of the method's formal parameters is of an as yet
10226 incomplete type. */
10227
10228 static void
10229 compute_delayed_physnames (struct dwarf2_cu *cu)
10230 {
10231 /* Only C++ delays computing physnames. */
10232 if (cu->method_list.empty ())
10233 return;
10234 gdb_assert (cu->language == language_cplus);
10235
10236 for (struct delayed_method_info &mi : cu->method_list)
10237 {
10238 const char *physname;
10239 struct fn_fieldlist *fn_flp
10240 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
10241 physname = dwarf2_physname (mi.name, mi.die, cu);
10242 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
10243 = physname ? physname : "";
10244
10245 /* Since there's no tag to indicate whether a method is a
10246 const/volatile overload, extract that information out of the
10247 demangled name. */
10248 if (physname != NULL)
10249 {
10250 size_t len = strlen (physname);
10251
10252 while (1)
10253 {
10254 if (physname[len] == ')') /* shortcut */
10255 break;
10256 else if (check_modifier (physname, len, " const"))
10257 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
10258 else if (check_modifier (physname, len, " volatile"))
10259 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
10260 else
10261 break;
10262 }
10263 }
10264 }
10265
10266 /* The list is no longer needed. */
10267 cu->method_list.clear ();
10268 }
10269
10270 /* Go objects should be embedded in a DW_TAG_module DIE,
10271 and it's not clear if/how imported objects will appear.
10272 To keep Go support simple until that's worked out,
10273 go back through what we've read and create something usable.
10274 We could do this while processing each DIE, and feels kinda cleaner,
10275 but that way is more invasive.
10276 This is to, for example, allow the user to type "p var" or "b main"
10277 without having to specify the package name, and allow lookups
10278 of module.object to work in contexts that use the expression
10279 parser. */
10280
10281 static void
10282 fixup_go_packaging (struct dwarf2_cu *cu)
10283 {
10284 char *package_name = NULL;
10285 struct pending *list;
10286 int i;
10287
10288 for (list = global_symbols; list != NULL; list = list->next)
10289 {
10290 for (i = 0; i < list->nsyms; ++i)
10291 {
10292 struct symbol *sym = list->symbol[i];
10293
10294 if (SYMBOL_LANGUAGE (sym) == language_go
10295 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10296 {
10297 char *this_package_name = go_symbol_package_name (sym);
10298
10299 if (this_package_name == NULL)
10300 continue;
10301 if (package_name == NULL)
10302 package_name = this_package_name;
10303 else
10304 {
10305 struct objfile *objfile
10306 = cu->per_cu->dwarf2_per_objfile->objfile;
10307 if (strcmp (package_name, this_package_name) != 0)
10308 complaint (&symfile_complaints,
10309 _("Symtab %s has objects from two different Go packages: %s and %s"),
10310 (symbol_symtab (sym) != NULL
10311 ? symtab_to_filename_for_display
10312 (symbol_symtab (sym))
10313 : objfile_name (objfile)),
10314 this_package_name, package_name);
10315 xfree (this_package_name);
10316 }
10317 }
10318 }
10319 }
10320
10321 if (package_name != NULL)
10322 {
10323 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10324 const char *saved_package_name
10325 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10326 package_name,
10327 strlen (package_name));
10328 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10329 saved_package_name);
10330 struct symbol *sym;
10331
10332 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10333
10334 sym = allocate_symbol (objfile);
10335 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10336 SYMBOL_SET_NAMES (sym, saved_package_name,
10337 strlen (saved_package_name), 0, objfile);
10338 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10339 e.g., "main" finds the "main" module and not C's main(). */
10340 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10341 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10342 SYMBOL_TYPE (sym) = type;
10343
10344 add_symbol_to_list (sym, &global_symbols);
10345
10346 xfree (package_name);
10347 }
10348 }
10349
10350 /* Allocate a fully-qualified name consisting of the two parts on the
10351 obstack. */
10352
10353 static const char *
10354 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
10355 {
10356 return obconcat (obstack, p1, "::", p2, (char *) NULL);
10357 }
10358
10359 /* A helper that allocates a struct discriminant_info to attach to a
10360 union type. */
10361
10362 static struct discriminant_info *
10363 alloc_discriminant_info (struct type *type, int discriminant_index,
10364 int default_index)
10365 {
10366 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10367 gdb_assert (discriminant_index == -1
10368 || (discriminant_index >= 0
10369 && discriminant_index < TYPE_NFIELDS (type)));
10370 gdb_assert (default_index == -1
10371 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
10372
10373 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
10374
10375 struct discriminant_info *disc
10376 = ((struct discriminant_info *)
10377 TYPE_ZALLOC (type,
10378 offsetof (struct discriminant_info, discriminants)
10379 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
10380 disc->default_index = default_index;
10381 disc->discriminant_index = discriminant_index;
10382
10383 struct dynamic_prop prop;
10384 prop.kind = PROP_UNDEFINED;
10385 prop.data.baton = disc;
10386
10387 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10388
10389 return disc;
10390 }
10391
10392 /* Some versions of rustc emitted enums in an unusual way.
10393
10394 Ordinary enums were emitted as unions. The first element of each
10395 structure in the union was named "RUST$ENUM$DISR". This element
10396 held the discriminant.
10397
10398 These versions of Rust also implemented the "non-zero"
10399 optimization. When the enum had two values, and one is empty and
10400 the other holds a pointer that cannot be zero, the pointer is used
10401 as the discriminant, with a zero value meaning the empty variant.
10402 Here, the union's first member is of the form
10403 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10404 where the fieldnos are the indices of the fields that should be
10405 traversed in order to find the field (which may be several fields deep)
10406 and the variantname is the name of the variant of the case when the
10407 field is zero.
10408
10409 This function recognizes whether TYPE is of one of these forms,
10410 and, if so, smashes it to be a variant type. */
10411
10412 static void
10413 quirk_rust_enum (struct type *type, struct objfile *objfile)
10414 {
10415 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10416
10417 /* We don't need to deal with empty enums. */
10418 if (TYPE_NFIELDS (type) == 0)
10419 return;
10420
10421 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10422 if (TYPE_NFIELDS (type) == 1
10423 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10424 {
10425 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10426
10427 /* Decode the field name to find the offset of the
10428 discriminant. */
10429 ULONGEST bit_offset = 0;
10430 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10431 while (name[0] >= '0' && name[0] <= '9')
10432 {
10433 char *tail;
10434 unsigned long index = strtoul (name, &tail, 10);
10435 name = tail;
10436 if (*name != '$'
10437 || index >= TYPE_NFIELDS (field_type)
10438 || (TYPE_FIELD_LOC_KIND (field_type, index)
10439 != FIELD_LOC_KIND_BITPOS))
10440 {
10441 complaint (&symfile_complaints,
10442 _("Could not parse Rust enum encoding string \"%s\""
10443 "[in module %s]"),
10444 TYPE_FIELD_NAME (type, 0),
10445 objfile_name (objfile));
10446 return;
10447 }
10448 ++name;
10449
10450 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10451 field_type = TYPE_FIELD_TYPE (field_type, index);
10452 }
10453
10454 /* Make a union to hold the variants. */
10455 struct type *union_type = alloc_type (objfile);
10456 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10457 TYPE_NFIELDS (union_type) = 3;
10458 TYPE_FIELDS (union_type)
10459 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10460 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10461
10462 /* Put the discriminant must at index 0. */
10463 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10464 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10465 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10466 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10467
10468 /* The order of fields doesn't really matter, so put the real
10469 field at index 1 and the data-less field at index 2. */
10470 struct discriminant_info *disc
10471 = alloc_discriminant_info (union_type, 0, 1);
10472 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10473 TYPE_FIELD_NAME (union_type, 1)
10474 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10475 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10476 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10477 TYPE_FIELD_NAME (union_type, 1));
10478
10479 const char *dataless_name
10480 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10481 name);
10482 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10483 dataless_name);
10484 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10485 /* NAME points into the original discriminant name, which
10486 already has the correct lifetime. */
10487 TYPE_FIELD_NAME (union_type, 2) = name;
10488 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10489 disc->discriminants[2] = 0;
10490
10491 /* Smash this type to be a structure type. We have to do this
10492 because the type has already been recorded. */
10493 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10494 TYPE_NFIELDS (type) = 1;
10495 TYPE_FIELDS (type)
10496 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10497
10498 /* Install the variant part. */
10499 TYPE_FIELD_TYPE (type, 0) = union_type;
10500 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10501 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10502 }
10503 else if (TYPE_NFIELDS (type) == 1)
10504 {
10505 /* We assume that a union with a single field is a univariant
10506 enum. */
10507 /* Smash this type to be a structure type. We have to do this
10508 because the type has already been recorded. */
10509 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10510
10511 /* Make a union to hold the variants. */
10512 struct type *union_type = alloc_type (objfile);
10513 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10514 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10515 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10516 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10517
10518 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10519 const char *variant_name
10520 = rust_last_path_segment (TYPE_NAME (field_type));
10521 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10522 TYPE_NAME (field_type)
10523 = rust_fully_qualify (&objfile->objfile_obstack,
10524 TYPE_NAME (type), variant_name);
10525
10526 /* Install the union in the outer struct type. */
10527 TYPE_NFIELDS (type) = 1;
10528 TYPE_FIELDS (type)
10529 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10530 TYPE_FIELD_TYPE (type, 0) = union_type;
10531 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10532 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10533
10534 alloc_discriminant_info (union_type, -1, 0);
10535 }
10536 else
10537 {
10538 struct type *disr_type = nullptr;
10539 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10540 {
10541 disr_type = TYPE_FIELD_TYPE (type, i);
10542
10543 if (TYPE_NFIELDS (disr_type) == 0)
10544 {
10545 /* Could be data-less variant, so keep going. */
10546 }
10547 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10548 "RUST$ENUM$DISR") != 0)
10549 {
10550 /* Not a Rust enum. */
10551 return;
10552 }
10553 else
10554 {
10555 /* Found one. */
10556 break;
10557 }
10558 }
10559
10560 /* If we got here without a discriminant, then it's probably
10561 just a union. */
10562 if (disr_type == nullptr)
10563 return;
10564
10565 /* Smash this type to be a structure type. We have to do this
10566 because the type has already been recorded. */
10567 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10568
10569 /* Make a union to hold the variants. */
10570 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10571 struct type *union_type = alloc_type (objfile);
10572 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10573 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10574 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10575 TYPE_FIELDS (union_type)
10576 = (struct field *) TYPE_ZALLOC (union_type,
10577 (TYPE_NFIELDS (union_type)
10578 * sizeof (struct field)));
10579
10580 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10581 TYPE_NFIELDS (type) * sizeof (struct field));
10582
10583 /* Install the discriminant at index 0 in the union. */
10584 TYPE_FIELD (union_type, 0) = *disr_field;
10585 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10586 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10587
10588 /* Install the union in the outer struct type. */
10589 TYPE_FIELD_TYPE (type, 0) = union_type;
10590 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10591 TYPE_NFIELDS (type) = 1;
10592
10593 /* Set the size and offset of the union type. */
10594 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10595
10596 /* We need a way to find the correct discriminant given a
10597 variant name. For convenience we build a map here. */
10598 struct type *enum_type = FIELD_TYPE (*disr_field);
10599 std::unordered_map<std::string, ULONGEST> discriminant_map;
10600 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10601 {
10602 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10603 {
10604 const char *name
10605 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10606 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10607 }
10608 }
10609
10610 int n_fields = TYPE_NFIELDS (union_type);
10611 struct discriminant_info *disc
10612 = alloc_discriminant_info (union_type, 0, -1);
10613 /* Skip the discriminant here. */
10614 for (int i = 1; i < n_fields; ++i)
10615 {
10616 /* Find the final word in the name of this variant's type.
10617 That name can be used to look up the correct
10618 discriminant. */
10619 const char *variant_name
10620 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10621 i)));
10622
10623 auto iter = discriminant_map.find (variant_name);
10624 if (iter != discriminant_map.end ())
10625 disc->discriminants[i] = iter->second;
10626
10627 /* Remove the discriminant field. */
10628 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10629 --TYPE_NFIELDS (sub_type);
10630 ++TYPE_FIELDS (sub_type);
10631 TYPE_FIELD_NAME (union_type, i) = variant_name;
10632 TYPE_NAME (sub_type)
10633 = rust_fully_qualify (&objfile->objfile_obstack,
10634 TYPE_NAME (type), variant_name);
10635 }
10636 }
10637 }
10638
10639 /* Rewrite some Rust unions to be structures with variants parts. */
10640
10641 static void
10642 rust_union_quirks (struct dwarf2_cu *cu)
10643 {
10644 gdb_assert (cu->language == language_rust);
10645 for (struct type *type : cu->rust_unions)
10646 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10647 }
10648
10649 /* Return the symtab for PER_CU. This works properly regardless of
10650 whether we're using the index or psymtabs. */
10651
10652 static struct compunit_symtab *
10653 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10654 {
10655 return (per_cu->dwarf2_per_objfile->using_index
10656 ? per_cu->v.quick->compunit_symtab
10657 : per_cu->v.psymtab->compunit_symtab);
10658 }
10659
10660 /* A helper function for computing the list of all symbol tables
10661 included by PER_CU. */
10662
10663 static void
10664 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10665 htab_t all_children, htab_t all_type_symtabs,
10666 struct dwarf2_per_cu_data *per_cu,
10667 struct compunit_symtab *immediate_parent)
10668 {
10669 void **slot;
10670 int ix;
10671 struct compunit_symtab *cust;
10672 struct dwarf2_per_cu_data *iter;
10673
10674 slot = htab_find_slot (all_children, per_cu, INSERT);
10675 if (*slot != NULL)
10676 {
10677 /* This inclusion and its children have been processed. */
10678 return;
10679 }
10680
10681 *slot = per_cu;
10682 /* Only add a CU if it has a symbol table. */
10683 cust = get_compunit_symtab (per_cu);
10684 if (cust != NULL)
10685 {
10686 /* If this is a type unit only add its symbol table if we haven't
10687 seen it yet (type unit per_cu's can share symtabs). */
10688 if (per_cu->is_debug_types)
10689 {
10690 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10691 if (*slot == NULL)
10692 {
10693 *slot = cust;
10694 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10695 if (cust->user == NULL)
10696 cust->user = immediate_parent;
10697 }
10698 }
10699 else
10700 {
10701 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10702 if (cust->user == NULL)
10703 cust->user = immediate_parent;
10704 }
10705 }
10706
10707 for (ix = 0;
10708 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10709 ++ix)
10710 {
10711 recursively_compute_inclusions (result, all_children,
10712 all_type_symtabs, iter, cust);
10713 }
10714 }
10715
10716 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10717 PER_CU. */
10718
10719 static void
10720 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10721 {
10722 gdb_assert (! per_cu->is_debug_types);
10723
10724 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10725 {
10726 int ix, len;
10727 struct dwarf2_per_cu_data *per_cu_iter;
10728 struct compunit_symtab *compunit_symtab_iter;
10729 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10730 htab_t all_children, all_type_symtabs;
10731 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10732
10733 /* If we don't have a symtab, we can just skip this case. */
10734 if (cust == NULL)
10735 return;
10736
10737 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10738 NULL, xcalloc, xfree);
10739 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10740 NULL, xcalloc, xfree);
10741
10742 for (ix = 0;
10743 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10744 ix, per_cu_iter);
10745 ++ix)
10746 {
10747 recursively_compute_inclusions (&result_symtabs, all_children,
10748 all_type_symtabs, per_cu_iter,
10749 cust);
10750 }
10751
10752 /* Now we have a transitive closure of all the included symtabs. */
10753 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10754 cust->includes
10755 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10756 struct compunit_symtab *, len + 1);
10757 for (ix = 0;
10758 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10759 compunit_symtab_iter);
10760 ++ix)
10761 cust->includes[ix] = compunit_symtab_iter;
10762 cust->includes[len] = NULL;
10763
10764 VEC_free (compunit_symtab_ptr, result_symtabs);
10765 htab_delete (all_children);
10766 htab_delete (all_type_symtabs);
10767 }
10768 }
10769
10770 /* Compute the 'includes' field for the symtabs of all the CUs we just
10771 read. */
10772
10773 static void
10774 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10775 {
10776 int ix;
10777 struct dwarf2_per_cu_data *iter;
10778
10779 for (ix = 0;
10780 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10781 ix, iter);
10782 ++ix)
10783 {
10784 if (! iter->is_debug_types)
10785 compute_compunit_symtab_includes (iter);
10786 }
10787
10788 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10789 }
10790
10791 /* Generate full symbol information for PER_CU, whose DIEs have
10792 already been loaded into memory. */
10793
10794 static void
10795 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10796 enum language pretend_language)
10797 {
10798 struct dwarf2_cu *cu = per_cu->cu;
10799 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10800 struct objfile *objfile = dwarf2_per_objfile->objfile;
10801 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10802 CORE_ADDR lowpc, highpc;
10803 struct compunit_symtab *cust;
10804 CORE_ADDR baseaddr;
10805 struct block *static_block;
10806 CORE_ADDR addr;
10807
10808 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10809
10810 buildsym_init ();
10811 scoped_free_pendings free_pending;
10812
10813 /* Clear the list here in case something was left over. */
10814 cu->method_list.clear ();
10815
10816 cu->list_in_scope = &file_symbols;
10817
10818 cu->language = pretend_language;
10819 cu->language_defn = language_def (cu->language);
10820
10821 /* Do line number decoding in read_file_scope () */
10822 process_die (cu->dies, cu);
10823
10824 /* For now fudge the Go package. */
10825 if (cu->language == language_go)
10826 fixup_go_packaging (cu);
10827
10828 /* Now that we have processed all the DIEs in the CU, all the types
10829 should be complete, and it should now be safe to compute all of the
10830 physnames. */
10831 compute_delayed_physnames (cu);
10832
10833 if (cu->language == language_rust)
10834 rust_union_quirks (cu);
10835
10836 /* Some compilers don't define a DW_AT_high_pc attribute for the
10837 compilation unit. If the DW_AT_high_pc is missing, synthesize
10838 it, by scanning the DIE's below the compilation unit. */
10839 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10840
10841 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10842 static_block = end_symtab_get_static_block (addr, 0, 1);
10843
10844 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10845 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10846 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10847 addrmap to help ensure it has an accurate map of pc values belonging to
10848 this comp unit. */
10849 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10850
10851 cust = end_symtab_from_static_block (static_block,
10852 SECT_OFF_TEXT (objfile), 0);
10853
10854 if (cust != NULL)
10855 {
10856 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10857
10858 /* Set symtab language to language from DW_AT_language. If the
10859 compilation is from a C file generated by language preprocessors, do
10860 not set the language if it was already deduced by start_subfile. */
10861 if (!(cu->language == language_c
10862 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10863 COMPUNIT_FILETABS (cust)->language = cu->language;
10864
10865 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10866 produce DW_AT_location with location lists but it can be possibly
10867 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10868 there were bugs in prologue debug info, fixed later in GCC-4.5
10869 by "unwind info for epilogues" patch (which is not directly related).
10870
10871 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10872 needed, it would be wrong due to missing DW_AT_producer there.
10873
10874 Still one can confuse GDB by using non-standard GCC compilation
10875 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10876 */
10877 if (cu->has_loclist && gcc_4_minor >= 5)
10878 cust->locations_valid = 1;
10879
10880 if (gcc_4_minor >= 5)
10881 cust->epilogue_unwind_valid = 1;
10882
10883 cust->call_site_htab = cu->call_site_htab;
10884 }
10885
10886 if (dwarf2_per_objfile->using_index)
10887 per_cu->v.quick->compunit_symtab = cust;
10888 else
10889 {
10890 struct partial_symtab *pst = per_cu->v.psymtab;
10891 pst->compunit_symtab = cust;
10892 pst->readin = 1;
10893 }
10894
10895 /* Push it for inclusion processing later. */
10896 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10897 }
10898
10899 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10900 already been loaded into memory. */
10901
10902 static void
10903 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10904 enum language pretend_language)
10905 {
10906 struct dwarf2_cu *cu = per_cu->cu;
10907 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10908 struct objfile *objfile = dwarf2_per_objfile->objfile;
10909 struct compunit_symtab *cust;
10910 struct signatured_type *sig_type;
10911
10912 gdb_assert (per_cu->is_debug_types);
10913 sig_type = (struct signatured_type *) per_cu;
10914
10915 buildsym_init ();
10916 scoped_free_pendings free_pending;
10917
10918 /* Clear the list here in case something was left over. */
10919 cu->method_list.clear ();
10920
10921 cu->list_in_scope = &file_symbols;
10922
10923 cu->language = pretend_language;
10924 cu->language_defn = language_def (cu->language);
10925
10926 /* The symbol tables are set up in read_type_unit_scope. */
10927 process_die (cu->dies, cu);
10928
10929 /* For now fudge the Go package. */
10930 if (cu->language == language_go)
10931 fixup_go_packaging (cu);
10932
10933 /* Now that we have processed all the DIEs in the CU, all the types
10934 should be complete, and it should now be safe to compute all of the
10935 physnames. */
10936 compute_delayed_physnames (cu);
10937
10938 if (cu->language == language_rust)
10939 rust_union_quirks (cu);
10940
10941 /* TUs share symbol tables.
10942 If this is the first TU to use this symtab, complete the construction
10943 of it with end_expandable_symtab. Otherwise, complete the addition of
10944 this TU's symbols to the existing symtab. */
10945 if (sig_type->type_unit_group->compunit_symtab == NULL)
10946 {
10947 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10948 sig_type->type_unit_group->compunit_symtab = cust;
10949
10950 if (cust != NULL)
10951 {
10952 /* Set symtab language to language from DW_AT_language. If the
10953 compilation is from a C file generated by language preprocessors,
10954 do not set the language if it was already deduced by
10955 start_subfile. */
10956 if (!(cu->language == language_c
10957 && COMPUNIT_FILETABS (cust)->language != language_c))
10958 COMPUNIT_FILETABS (cust)->language = cu->language;
10959 }
10960 }
10961 else
10962 {
10963 augment_type_symtab ();
10964 cust = sig_type->type_unit_group->compunit_symtab;
10965 }
10966
10967 if (dwarf2_per_objfile->using_index)
10968 per_cu->v.quick->compunit_symtab = cust;
10969 else
10970 {
10971 struct partial_symtab *pst = per_cu->v.psymtab;
10972 pst->compunit_symtab = cust;
10973 pst->readin = 1;
10974 }
10975 }
10976
10977 /* Process an imported unit DIE. */
10978
10979 static void
10980 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10981 {
10982 struct attribute *attr;
10983
10984 /* For now we don't handle imported units in type units. */
10985 if (cu->per_cu->is_debug_types)
10986 {
10987 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10988 " supported in type units [in module %s]"),
10989 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10990 }
10991
10992 attr = dwarf2_attr (die, DW_AT_import, cu);
10993 if (attr != NULL)
10994 {
10995 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10996 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10997 dwarf2_per_cu_data *per_cu
10998 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10999 cu->per_cu->dwarf2_per_objfile);
11000
11001 /* If necessary, add it to the queue and load its DIEs. */
11002 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
11003 load_full_comp_unit (per_cu, cu->language);
11004
11005 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
11006 per_cu);
11007 }
11008 }
11009
11010 /* RAII object that represents a process_die scope: i.e.,
11011 starts/finishes processing a DIE. */
11012 class process_die_scope
11013 {
11014 public:
11015 process_die_scope (die_info *die, dwarf2_cu *cu)
11016 : m_die (die), m_cu (cu)
11017 {
11018 /* We should only be processing DIEs not already in process. */
11019 gdb_assert (!m_die->in_process);
11020 m_die->in_process = true;
11021 }
11022
11023 ~process_die_scope ()
11024 {
11025 m_die->in_process = false;
11026
11027 /* If we're done processing the DIE for the CU that owns the line
11028 header, we don't need the line header anymore. */
11029 if (m_cu->line_header_die_owner == m_die)
11030 {
11031 delete m_cu->line_header;
11032 m_cu->line_header = NULL;
11033 m_cu->line_header_die_owner = NULL;
11034 }
11035 }
11036
11037 private:
11038 die_info *m_die;
11039 dwarf2_cu *m_cu;
11040 };
11041
11042 /* Process a die and its children. */
11043
11044 static void
11045 process_die (struct die_info *die, struct dwarf2_cu *cu)
11046 {
11047 process_die_scope scope (die, cu);
11048
11049 switch (die->tag)
11050 {
11051 case DW_TAG_padding:
11052 break;
11053 case DW_TAG_compile_unit:
11054 case DW_TAG_partial_unit:
11055 read_file_scope (die, cu);
11056 break;
11057 case DW_TAG_type_unit:
11058 read_type_unit_scope (die, cu);
11059 break;
11060 case DW_TAG_subprogram:
11061 case DW_TAG_inlined_subroutine:
11062 read_func_scope (die, cu);
11063 break;
11064 case DW_TAG_lexical_block:
11065 case DW_TAG_try_block:
11066 case DW_TAG_catch_block:
11067 read_lexical_block_scope (die, cu);
11068 break;
11069 case DW_TAG_call_site:
11070 case DW_TAG_GNU_call_site:
11071 read_call_site_scope (die, cu);
11072 break;
11073 case DW_TAG_class_type:
11074 case DW_TAG_interface_type:
11075 case DW_TAG_structure_type:
11076 case DW_TAG_union_type:
11077 process_structure_scope (die, cu);
11078 break;
11079 case DW_TAG_enumeration_type:
11080 process_enumeration_scope (die, cu);
11081 break;
11082
11083 /* These dies have a type, but processing them does not create
11084 a symbol or recurse to process the children. Therefore we can
11085 read them on-demand through read_type_die. */
11086 case DW_TAG_subroutine_type:
11087 case DW_TAG_set_type:
11088 case DW_TAG_array_type:
11089 case DW_TAG_pointer_type:
11090 case DW_TAG_ptr_to_member_type:
11091 case DW_TAG_reference_type:
11092 case DW_TAG_rvalue_reference_type:
11093 case DW_TAG_string_type:
11094 break;
11095
11096 case DW_TAG_base_type:
11097 case DW_TAG_subrange_type:
11098 case DW_TAG_typedef:
11099 /* Add a typedef symbol for the type definition, if it has a
11100 DW_AT_name. */
11101 new_symbol (die, read_type_die (die, cu), cu);
11102 break;
11103 case DW_TAG_common_block:
11104 read_common_block (die, cu);
11105 break;
11106 case DW_TAG_common_inclusion:
11107 break;
11108 case DW_TAG_namespace:
11109 cu->processing_has_namespace_info = 1;
11110 read_namespace (die, cu);
11111 break;
11112 case DW_TAG_module:
11113 cu->processing_has_namespace_info = 1;
11114 read_module (die, cu);
11115 break;
11116 case DW_TAG_imported_declaration:
11117 cu->processing_has_namespace_info = 1;
11118 if (read_namespace_alias (die, cu))
11119 break;
11120 /* The declaration is not a global namespace alias: fall through. */
11121 case DW_TAG_imported_module:
11122 cu->processing_has_namespace_info = 1;
11123 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
11124 || cu->language != language_fortran))
11125 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
11126 dwarf_tag_name (die->tag));
11127 read_import_statement (die, cu);
11128 break;
11129
11130 case DW_TAG_imported_unit:
11131 process_imported_unit_die (die, cu);
11132 break;
11133
11134 case DW_TAG_variable:
11135 read_variable (die, cu);
11136 break;
11137
11138 default:
11139 new_symbol (die, NULL, cu);
11140 break;
11141 }
11142 }
11143 \f
11144 /* DWARF name computation. */
11145
11146 /* A helper function for dwarf2_compute_name which determines whether DIE
11147 needs to have the name of the scope prepended to the name listed in the
11148 die. */
11149
11150 static int
11151 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
11152 {
11153 struct attribute *attr;
11154
11155 switch (die->tag)
11156 {
11157 case DW_TAG_namespace:
11158 case DW_TAG_typedef:
11159 case DW_TAG_class_type:
11160 case DW_TAG_interface_type:
11161 case DW_TAG_structure_type:
11162 case DW_TAG_union_type:
11163 case DW_TAG_enumeration_type:
11164 case DW_TAG_enumerator:
11165 case DW_TAG_subprogram:
11166 case DW_TAG_inlined_subroutine:
11167 case DW_TAG_member:
11168 case DW_TAG_imported_declaration:
11169 return 1;
11170
11171 case DW_TAG_variable:
11172 case DW_TAG_constant:
11173 /* We only need to prefix "globally" visible variables. These include
11174 any variable marked with DW_AT_external or any variable that
11175 lives in a namespace. [Variables in anonymous namespaces
11176 require prefixing, but they are not DW_AT_external.] */
11177
11178 if (dwarf2_attr (die, DW_AT_specification, cu))
11179 {
11180 struct dwarf2_cu *spec_cu = cu;
11181
11182 return die_needs_namespace (die_specification (die, &spec_cu),
11183 spec_cu);
11184 }
11185
11186 attr = dwarf2_attr (die, DW_AT_external, cu);
11187 if (attr == NULL && die->parent->tag != DW_TAG_namespace
11188 && die->parent->tag != DW_TAG_module)
11189 return 0;
11190 /* A variable in a lexical block of some kind does not need a
11191 namespace, even though in C++ such variables may be external
11192 and have a mangled name. */
11193 if (die->parent->tag == DW_TAG_lexical_block
11194 || die->parent->tag == DW_TAG_try_block
11195 || die->parent->tag == DW_TAG_catch_block
11196 || die->parent->tag == DW_TAG_subprogram)
11197 return 0;
11198 return 1;
11199
11200 default:
11201 return 0;
11202 }
11203 }
11204
11205 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
11206 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
11207 defined for the given DIE. */
11208
11209 static struct attribute *
11210 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
11211 {
11212 struct attribute *attr;
11213
11214 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
11215 if (attr == NULL)
11216 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
11217
11218 return attr;
11219 }
11220
11221 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
11222 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
11223 defined for the given DIE. */
11224
11225 static const char *
11226 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
11227 {
11228 const char *linkage_name;
11229
11230 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
11231 if (linkage_name == NULL)
11232 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
11233
11234 return linkage_name;
11235 }
11236
11237 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
11238 compute the physname for the object, which include a method's:
11239 - formal parameters (C++),
11240 - receiver type (Go),
11241
11242 The term "physname" is a bit confusing.
11243 For C++, for example, it is the demangled name.
11244 For Go, for example, it's the mangled name.
11245
11246 For Ada, return the DIE's linkage name rather than the fully qualified
11247 name. PHYSNAME is ignored..
11248
11249 The result is allocated on the objfile_obstack and canonicalized. */
11250
11251 static const char *
11252 dwarf2_compute_name (const char *name,
11253 struct die_info *die, struct dwarf2_cu *cu,
11254 int physname)
11255 {
11256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11257
11258 if (name == NULL)
11259 name = dwarf2_name (die, cu);
11260
11261 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
11262 but otherwise compute it by typename_concat inside GDB.
11263 FIXME: Actually this is not really true, or at least not always true.
11264 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
11265 Fortran names because there is no mangling standard. So new_symbol
11266 will set the demangled name to the result of dwarf2_full_name, and it is
11267 the demangled name that GDB uses if it exists. */
11268 if (cu->language == language_ada
11269 || (cu->language == language_fortran && physname))
11270 {
11271 /* For Ada unit, we prefer the linkage name over the name, as
11272 the former contains the exported name, which the user expects
11273 to be able to reference. Ideally, we want the user to be able
11274 to reference this entity using either natural or linkage name,
11275 but we haven't started looking at this enhancement yet. */
11276 const char *linkage_name = dw2_linkage_name (die, cu);
11277
11278 if (linkage_name != NULL)
11279 return linkage_name;
11280 }
11281
11282 /* These are the only languages we know how to qualify names in. */
11283 if (name != NULL
11284 && (cu->language == language_cplus
11285 || cu->language == language_fortran || cu->language == language_d
11286 || cu->language == language_rust))
11287 {
11288 if (die_needs_namespace (die, cu))
11289 {
11290 const char *prefix;
11291 const char *canonical_name = NULL;
11292
11293 string_file buf;
11294
11295 prefix = determine_prefix (die, cu);
11296 if (*prefix != '\0')
11297 {
11298 char *prefixed_name = typename_concat (NULL, prefix, name,
11299 physname, cu);
11300
11301 buf.puts (prefixed_name);
11302 xfree (prefixed_name);
11303 }
11304 else
11305 buf.puts (name);
11306
11307 /* Template parameters may be specified in the DIE's DW_AT_name, or
11308 as children with DW_TAG_template_type_param or
11309 DW_TAG_value_type_param. If the latter, add them to the name
11310 here. If the name already has template parameters, then
11311 skip this step; some versions of GCC emit both, and
11312 it is more efficient to use the pre-computed name.
11313
11314 Something to keep in mind about this process: it is very
11315 unlikely, or in some cases downright impossible, to produce
11316 something that will match the mangled name of a function.
11317 If the definition of the function has the same debug info,
11318 we should be able to match up with it anyway. But fallbacks
11319 using the minimal symbol, for instance to find a method
11320 implemented in a stripped copy of libstdc++, will not work.
11321 If we do not have debug info for the definition, we will have to
11322 match them up some other way.
11323
11324 When we do name matching there is a related problem with function
11325 templates; two instantiated function templates are allowed to
11326 differ only by their return types, which we do not add here. */
11327
11328 if (cu->language == language_cplus && strchr (name, '<') == NULL)
11329 {
11330 struct attribute *attr;
11331 struct die_info *child;
11332 int first = 1;
11333
11334 die->building_fullname = 1;
11335
11336 for (child = die->child; child != NULL; child = child->sibling)
11337 {
11338 struct type *type;
11339 LONGEST value;
11340 const gdb_byte *bytes;
11341 struct dwarf2_locexpr_baton *baton;
11342 struct value *v;
11343
11344 if (child->tag != DW_TAG_template_type_param
11345 && child->tag != DW_TAG_template_value_param)
11346 continue;
11347
11348 if (first)
11349 {
11350 buf.puts ("<");
11351 first = 0;
11352 }
11353 else
11354 buf.puts (", ");
11355
11356 attr = dwarf2_attr (child, DW_AT_type, cu);
11357 if (attr == NULL)
11358 {
11359 complaint (&symfile_complaints,
11360 _("template parameter missing DW_AT_type"));
11361 buf.puts ("UNKNOWN_TYPE");
11362 continue;
11363 }
11364 type = die_type (child, cu);
11365
11366 if (child->tag == DW_TAG_template_type_param)
11367 {
11368 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
11369 continue;
11370 }
11371
11372 attr = dwarf2_attr (child, DW_AT_const_value, cu);
11373 if (attr == NULL)
11374 {
11375 complaint (&symfile_complaints,
11376 _("template parameter missing "
11377 "DW_AT_const_value"));
11378 buf.puts ("UNKNOWN_VALUE");
11379 continue;
11380 }
11381
11382 dwarf2_const_value_attr (attr, type, name,
11383 &cu->comp_unit_obstack, cu,
11384 &value, &bytes, &baton);
11385
11386 if (TYPE_NOSIGN (type))
11387 /* GDB prints characters as NUMBER 'CHAR'. If that's
11388 changed, this can use value_print instead. */
11389 c_printchar (value, type, &buf);
11390 else
11391 {
11392 struct value_print_options opts;
11393
11394 if (baton != NULL)
11395 v = dwarf2_evaluate_loc_desc (type, NULL,
11396 baton->data,
11397 baton->size,
11398 baton->per_cu);
11399 else if (bytes != NULL)
11400 {
11401 v = allocate_value (type);
11402 memcpy (value_contents_writeable (v), bytes,
11403 TYPE_LENGTH (type));
11404 }
11405 else
11406 v = value_from_longest (type, value);
11407
11408 /* Specify decimal so that we do not depend on
11409 the radix. */
11410 get_formatted_print_options (&opts, 'd');
11411 opts.raw = 1;
11412 value_print (v, &buf, &opts);
11413 release_value (v);
11414 value_free (v);
11415 }
11416 }
11417
11418 die->building_fullname = 0;
11419
11420 if (!first)
11421 {
11422 /* Close the argument list, with a space if necessary
11423 (nested templates). */
11424 if (!buf.empty () && buf.string ().back () == '>')
11425 buf.puts (" >");
11426 else
11427 buf.puts (">");
11428 }
11429 }
11430
11431 /* For C++ methods, append formal parameter type
11432 information, if PHYSNAME. */
11433
11434 if (physname && die->tag == DW_TAG_subprogram
11435 && cu->language == language_cplus)
11436 {
11437 struct type *type = read_type_die (die, cu);
11438
11439 c_type_print_args (type, &buf, 1, cu->language,
11440 &type_print_raw_options);
11441
11442 if (cu->language == language_cplus)
11443 {
11444 /* Assume that an artificial first parameter is
11445 "this", but do not crash if it is not. RealView
11446 marks unnamed (and thus unused) parameters as
11447 artificial; there is no way to differentiate
11448 the two cases. */
11449 if (TYPE_NFIELDS (type) > 0
11450 && TYPE_FIELD_ARTIFICIAL (type, 0)
11451 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11452 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11453 0))))
11454 buf.puts (" const");
11455 }
11456 }
11457
11458 const std::string &intermediate_name = buf.string ();
11459
11460 if (cu->language == language_cplus)
11461 canonical_name
11462 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11463 &objfile->per_bfd->storage_obstack);
11464
11465 /* If we only computed INTERMEDIATE_NAME, or if
11466 INTERMEDIATE_NAME is already canonical, then we need to
11467 copy it to the appropriate obstack. */
11468 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11469 name = ((const char *)
11470 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11471 intermediate_name.c_str (),
11472 intermediate_name.length ()));
11473 else
11474 name = canonical_name;
11475 }
11476 }
11477
11478 return name;
11479 }
11480
11481 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11482 If scope qualifiers are appropriate they will be added. The result
11483 will be allocated on the storage_obstack, or NULL if the DIE does
11484 not have a name. NAME may either be from a previous call to
11485 dwarf2_name or NULL.
11486
11487 The output string will be canonicalized (if C++). */
11488
11489 static const char *
11490 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11491 {
11492 return dwarf2_compute_name (name, die, cu, 0);
11493 }
11494
11495 /* Construct a physname for the given DIE in CU. NAME may either be
11496 from a previous call to dwarf2_name or NULL. The result will be
11497 allocated on the objfile_objstack or NULL if the DIE does not have a
11498 name.
11499
11500 The output string will be canonicalized (if C++). */
11501
11502 static const char *
11503 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11504 {
11505 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11506 const char *retval, *mangled = NULL, *canon = NULL;
11507 int need_copy = 1;
11508
11509 /* In this case dwarf2_compute_name is just a shortcut not building anything
11510 on its own. */
11511 if (!die_needs_namespace (die, cu))
11512 return dwarf2_compute_name (name, die, cu, 1);
11513
11514 mangled = dw2_linkage_name (die, cu);
11515
11516 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11517 See https://github.com/rust-lang/rust/issues/32925. */
11518 if (cu->language == language_rust && mangled != NULL
11519 && strchr (mangled, '{') != NULL)
11520 mangled = NULL;
11521
11522 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11523 has computed. */
11524 gdb::unique_xmalloc_ptr<char> demangled;
11525 if (mangled != NULL)
11526 {
11527
11528 if (cu->language == language_go)
11529 {
11530 /* This is a lie, but we already lie to the caller new_symbol.
11531 new_symbol assumes we return the mangled name.
11532 This just undoes that lie until things are cleaned up. */
11533 }
11534 else
11535 {
11536 /* Use DMGL_RET_DROP for C++ template functions to suppress
11537 their return type. It is easier for GDB users to search
11538 for such functions as `name(params)' than `long name(params)'.
11539 In such case the minimal symbol names do not match the full
11540 symbol names but for template functions there is never a need
11541 to look up their definition from their declaration so
11542 the only disadvantage remains the minimal symbol variant
11543 `long name(params)' does not have the proper inferior type. */
11544 demangled.reset (gdb_demangle (mangled,
11545 (DMGL_PARAMS | DMGL_ANSI
11546 | DMGL_RET_DROP)));
11547 }
11548 if (demangled)
11549 canon = demangled.get ();
11550 else
11551 {
11552 canon = mangled;
11553 need_copy = 0;
11554 }
11555 }
11556
11557 if (canon == NULL || check_physname)
11558 {
11559 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11560
11561 if (canon != NULL && strcmp (physname, canon) != 0)
11562 {
11563 /* It may not mean a bug in GDB. The compiler could also
11564 compute DW_AT_linkage_name incorrectly. But in such case
11565 GDB would need to be bug-to-bug compatible. */
11566
11567 complaint (&symfile_complaints,
11568 _("Computed physname <%s> does not match demangled <%s> "
11569 "(from linkage <%s>) - DIE at %s [in module %s]"),
11570 physname, canon, mangled, sect_offset_str (die->sect_off),
11571 objfile_name (objfile));
11572
11573 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11574 is available here - over computed PHYSNAME. It is safer
11575 against both buggy GDB and buggy compilers. */
11576
11577 retval = canon;
11578 }
11579 else
11580 {
11581 retval = physname;
11582 need_copy = 0;
11583 }
11584 }
11585 else
11586 retval = canon;
11587
11588 if (need_copy)
11589 retval = ((const char *)
11590 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11591 retval, strlen (retval)));
11592
11593 return retval;
11594 }
11595
11596 /* Inspect DIE in CU for a namespace alias. If one exists, record
11597 a new symbol for it.
11598
11599 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11600
11601 static int
11602 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11603 {
11604 struct attribute *attr;
11605
11606 /* If the die does not have a name, this is not a namespace
11607 alias. */
11608 attr = dwarf2_attr (die, DW_AT_name, cu);
11609 if (attr != NULL)
11610 {
11611 int num;
11612 struct die_info *d = die;
11613 struct dwarf2_cu *imported_cu = cu;
11614
11615 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11616 keep inspecting DIEs until we hit the underlying import. */
11617 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11618 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11619 {
11620 attr = dwarf2_attr (d, DW_AT_import, cu);
11621 if (attr == NULL)
11622 break;
11623
11624 d = follow_die_ref (d, attr, &imported_cu);
11625 if (d->tag != DW_TAG_imported_declaration)
11626 break;
11627 }
11628
11629 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11630 {
11631 complaint (&symfile_complaints,
11632 _("DIE at %s has too many recursively imported "
11633 "declarations"), sect_offset_str (d->sect_off));
11634 return 0;
11635 }
11636
11637 if (attr != NULL)
11638 {
11639 struct type *type;
11640 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11641
11642 type = get_die_type_at_offset (sect_off, cu->per_cu);
11643 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11644 {
11645 /* This declaration is a global namespace alias. Add
11646 a symbol for it whose type is the aliased namespace. */
11647 new_symbol (die, type, cu);
11648 return 1;
11649 }
11650 }
11651 }
11652
11653 return 0;
11654 }
11655
11656 /* Return the using directives repository (global or local?) to use in the
11657 current context for LANGUAGE.
11658
11659 For Ada, imported declarations can materialize renamings, which *may* be
11660 global. However it is impossible (for now?) in DWARF to distinguish
11661 "external" imported declarations and "static" ones. As all imported
11662 declarations seem to be static in all other languages, make them all CU-wide
11663 global only in Ada. */
11664
11665 static struct using_direct **
11666 using_directives (enum language language)
11667 {
11668 if (language == language_ada && context_stack_depth == 0)
11669 return &global_using_directives;
11670 else
11671 return &local_using_directives;
11672 }
11673
11674 /* Read the import statement specified by the given die and record it. */
11675
11676 static void
11677 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11678 {
11679 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11680 struct attribute *import_attr;
11681 struct die_info *imported_die, *child_die;
11682 struct dwarf2_cu *imported_cu;
11683 const char *imported_name;
11684 const char *imported_name_prefix;
11685 const char *canonical_name;
11686 const char *import_alias;
11687 const char *imported_declaration = NULL;
11688 const char *import_prefix;
11689 std::vector<const char *> excludes;
11690
11691 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11692 if (import_attr == NULL)
11693 {
11694 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11695 dwarf_tag_name (die->tag));
11696 return;
11697 }
11698
11699 imported_cu = cu;
11700 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11701 imported_name = dwarf2_name (imported_die, imported_cu);
11702 if (imported_name == NULL)
11703 {
11704 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11705
11706 The import in the following code:
11707 namespace A
11708 {
11709 typedef int B;
11710 }
11711
11712 int main ()
11713 {
11714 using A::B;
11715 B b;
11716 return b;
11717 }
11718
11719 ...
11720 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11721 <52> DW_AT_decl_file : 1
11722 <53> DW_AT_decl_line : 6
11723 <54> DW_AT_import : <0x75>
11724 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11725 <59> DW_AT_name : B
11726 <5b> DW_AT_decl_file : 1
11727 <5c> DW_AT_decl_line : 2
11728 <5d> DW_AT_type : <0x6e>
11729 ...
11730 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11731 <76> DW_AT_byte_size : 4
11732 <77> DW_AT_encoding : 5 (signed)
11733
11734 imports the wrong die ( 0x75 instead of 0x58 ).
11735 This case will be ignored until the gcc bug is fixed. */
11736 return;
11737 }
11738
11739 /* Figure out the local name after import. */
11740 import_alias = dwarf2_name (die, cu);
11741
11742 /* Figure out where the statement is being imported to. */
11743 import_prefix = determine_prefix (die, cu);
11744
11745 /* Figure out what the scope of the imported die is and prepend it
11746 to the name of the imported die. */
11747 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11748
11749 if (imported_die->tag != DW_TAG_namespace
11750 && imported_die->tag != DW_TAG_module)
11751 {
11752 imported_declaration = imported_name;
11753 canonical_name = imported_name_prefix;
11754 }
11755 else if (strlen (imported_name_prefix) > 0)
11756 canonical_name = obconcat (&objfile->objfile_obstack,
11757 imported_name_prefix,
11758 (cu->language == language_d ? "." : "::"),
11759 imported_name, (char *) NULL);
11760 else
11761 canonical_name = imported_name;
11762
11763 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11764 for (child_die = die->child; child_die && child_die->tag;
11765 child_die = sibling_die (child_die))
11766 {
11767 /* DWARF-4: A Fortran use statement with a “rename list” may be
11768 represented by an imported module entry with an import attribute
11769 referring to the module and owned entries corresponding to those
11770 entities that are renamed as part of being imported. */
11771
11772 if (child_die->tag != DW_TAG_imported_declaration)
11773 {
11774 complaint (&symfile_complaints,
11775 _("child DW_TAG_imported_declaration expected "
11776 "- DIE at %s [in module %s]"),
11777 sect_offset_str (child_die->sect_off),
11778 objfile_name (objfile));
11779 continue;
11780 }
11781
11782 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11783 if (import_attr == NULL)
11784 {
11785 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11786 dwarf_tag_name (child_die->tag));
11787 continue;
11788 }
11789
11790 imported_cu = cu;
11791 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11792 &imported_cu);
11793 imported_name = dwarf2_name (imported_die, imported_cu);
11794 if (imported_name == NULL)
11795 {
11796 complaint (&symfile_complaints,
11797 _("child DW_TAG_imported_declaration has unknown "
11798 "imported name - DIE at %s [in module %s]"),
11799 sect_offset_str (child_die->sect_off),
11800 objfile_name (objfile));
11801 continue;
11802 }
11803
11804 excludes.push_back (imported_name);
11805
11806 process_die (child_die, cu);
11807 }
11808
11809 add_using_directive (using_directives (cu->language),
11810 import_prefix,
11811 canonical_name,
11812 import_alias,
11813 imported_declaration,
11814 excludes,
11815 0,
11816 &objfile->objfile_obstack);
11817 }
11818
11819 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11820 types, but gives them a size of zero. Starting with version 14,
11821 ICC is compatible with GCC. */
11822
11823 static int
11824 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11825 {
11826 if (!cu->checked_producer)
11827 check_producer (cu);
11828
11829 return cu->producer_is_icc_lt_14;
11830 }
11831
11832 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11833 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11834 this, it was first present in GCC release 4.3.0. */
11835
11836 static int
11837 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11838 {
11839 if (!cu->checked_producer)
11840 check_producer (cu);
11841
11842 return cu->producer_is_gcc_lt_4_3;
11843 }
11844
11845 static file_and_directory
11846 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11847 {
11848 file_and_directory res;
11849
11850 /* Find the filename. Do not use dwarf2_name here, since the filename
11851 is not a source language identifier. */
11852 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11853 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11854
11855 if (res.comp_dir == NULL
11856 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11857 && IS_ABSOLUTE_PATH (res.name))
11858 {
11859 res.comp_dir_storage = ldirname (res.name);
11860 if (!res.comp_dir_storage.empty ())
11861 res.comp_dir = res.comp_dir_storage.c_str ();
11862 }
11863 if (res.comp_dir != NULL)
11864 {
11865 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11866 directory, get rid of it. */
11867 const char *cp = strchr (res.comp_dir, ':');
11868
11869 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11870 res.comp_dir = cp + 1;
11871 }
11872
11873 if (res.name == NULL)
11874 res.name = "<unknown>";
11875
11876 return res;
11877 }
11878
11879 /* Handle DW_AT_stmt_list for a compilation unit.
11880 DIE is the DW_TAG_compile_unit die for CU.
11881 COMP_DIR is the compilation directory. LOWPC is passed to
11882 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11883
11884 static void
11885 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11886 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11887 {
11888 struct dwarf2_per_objfile *dwarf2_per_objfile
11889 = cu->per_cu->dwarf2_per_objfile;
11890 struct objfile *objfile = dwarf2_per_objfile->objfile;
11891 struct attribute *attr;
11892 struct line_header line_header_local;
11893 hashval_t line_header_local_hash;
11894 void **slot;
11895 int decode_mapping;
11896
11897 gdb_assert (! cu->per_cu->is_debug_types);
11898
11899 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11900 if (attr == NULL)
11901 return;
11902
11903 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11904
11905 /* The line header hash table is only created if needed (it exists to
11906 prevent redundant reading of the line table for partial_units).
11907 If we're given a partial_unit, we'll need it. If we're given a
11908 compile_unit, then use the line header hash table if it's already
11909 created, but don't create one just yet. */
11910
11911 if (dwarf2_per_objfile->line_header_hash == NULL
11912 && die->tag == DW_TAG_partial_unit)
11913 {
11914 dwarf2_per_objfile->line_header_hash
11915 = htab_create_alloc_ex (127, line_header_hash_voidp,
11916 line_header_eq_voidp,
11917 free_line_header_voidp,
11918 &objfile->objfile_obstack,
11919 hashtab_obstack_allocate,
11920 dummy_obstack_deallocate);
11921 }
11922
11923 line_header_local.sect_off = line_offset;
11924 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11925 line_header_local_hash = line_header_hash (&line_header_local);
11926 if (dwarf2_per_objfile->line_header_hash != NULL)
11927 {
11928 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11929 &line_header_local,
11930 line_header_local_hash, NO_INSERT);
11931
11932 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11933 is not present in *SLOT (since if there is something in *SLOT then
11934 it will be for a partial_unit). */
11935 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11936 {
11937 gdb_assert (*slot != NULL);
11938 cu->line_header = (struct line_header *) *slot;
11939 return;
11940 }
11941 }
11942
11943 /* dwarf_decode_line_header does not yet provide sufficient information.
11944 We always have to call also dwarf_decode_lines for it. */
11945 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11946 if (lh == NULL)
11947 return;
11948
11949 cu->line_header = lh.release ();
11950 cu->line_header_die_owner = die;
11951
11952 if (dwarf2_per_objfile->line_header_hash == NULL)
11953 slot = NULL;
11954 else
11955 {
11956 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11957 &line_header_local,
11958 line_header_local_hash, INSERT);
11959 gdb_assert (slot != NULL);
11960 }
11961 if (slot != NULL && *slot == NULL)
11962 {
11963 /* This newly decoded line number information unit will be owned
11964 by line_header_hash hash table. */
11965 *slot = cu->line_header;
11966 cu->line_header_die_owner = NULL;
11967 }
11968 else
11969 {
11970 /* We cannot free any current entry in (*slot) as that struct line_header
11971 may be already used by multiple CUs. Create only temporary decoded
11972 line_header for this CU - it may happen at most once for each line
11973 number information unit. And if we're not using line_header_hash
11974 then this is what we want as well. */
11975 gdb_assert (die->tag != DW_TAG_partial_unit);
11976 }
11977 decode_mapping = (die->tag != DW_TAG_partial_unit);
11978 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11979 decode_mapping);
11980
11981 }
11982
11983 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11984
11985 static void
11986 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11987 {
11988 struct dwarf2_per_objfile *dwarf2_per_objfile
11989 = cu->per_cu->dwarf2_per_objfile;
11990 struct objfile *objfile = dwarf2_per_objfile->objfile;
11991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11992 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11993 CORE_ADDR highpc = ((CORE_ADDR) 0);
11994 struct attribute *attr;
11995 struct die_info *child_die;
11996 CORE_ADDR baseaddr;
11997
11998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11999
12000 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
12001
12002 /* If we didn't find a lowpc, set it to highpc to avoid complaints
12003 from finish_block. */
12004 if (lowpc == ((CORE_ADDR) -1))
12005 lowpc = highpc;
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12007
12008 file_and_directory fnd = find_file_and_directory (die, cu);
12009
12010 prepare_one_comp_unit (cu, die, cu->language);
12011
12012 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
12013 standardised yet. As a workaround for the language detection we fall
12014 back to the DW_AT_producer string. */
12015 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
12016 cu->language = language_opencl;
12017
12018 /* Similar hack for Go. */
12019 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
12020 set_cu_language (DW_LANG_Go, cu);
12021
12022 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
12023
12024 /* Decode line number information if present. We do this before
12025 processing child DIEs, so that the line header table is available
12026 for DW_AT_decl_file. */
12027 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
12028
12029 /* Process all dies in compilation unit. */
12030 if (die->child != NULL)
12031 {
12032 child_die = die->child;
12033 while (child_die && child_die->tag)
12034 {
12035 process_die (child_die, cu);
12036 child_die = sibling_die (child_die);
12037 }
12038 }
12039
12040 /* Decode macro information, if present. Dwarf 2 macro information
12041 refers to information in the line number info statement program
12042 header, so we can only read it if we've read the header
12043 successfully. */
12044 attr = dwarf2_attr (die, DW_AT_macros, cu);
12045 if (attr == NULL)
12046 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
12047 if (attr && cu->line_header)
12048 {
12049 if (dwarf2_attr (die, DW_AT_macro_info, cu))
12050 complaint (&symfile_complaints,
12051 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
12052
12053 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
12054 }
12055 else
12056 {
12057 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
12058 if (attr && cu->line_header)
12059 {
12060 unsigned int macro_offset = DW_UNSND (attr);
12061
12062 dwarf_decode_macros (cu, macro_offset, 0);
12063 }
12064 }
12065 }
12066
12067 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
12068 Create the set of symtabs used by this TU, or if this TU is sharing
12069 symtabs with another TU and the symtabs have already been created
12070 then restore those symtabs in the line header.
12071 We don't need the pc/line-number mapping for type units. */
12072
12073 static void
12074 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
12075 {
12076 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
12077 struct type_unit_group *tu_group;
12078 int first_time;
12079 struct attribute *attr;
12080 unsigned int i;
12081 struct signatured_type *sig_type;
12082
12083 gdb_assert (per_cu->is_debug_types);
12084 sig_type = (struct signatured_type *) per_cu;
12085
12086 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
12087
12088 /* If we're using .gdb_index (includes -readnow) then
12089 per_cu->type_unit_group may not have been set up yet. */
12090 if (sig_type->type_unit_group == NULL)
12091 sig_type->type_unit_group = get_type_unit_group (cu, attr);
12092 tu_group = sig_type->type_unit_group;
12093
12094 /* If we've already processed this stmt_list there's no real need to
12095 do it again, we could fake it and just recreate the part we need
12096 (file name,index -> symtab mapping). If data shows this optimization
12097 is useful we can do it then. */
12098 first_time = tu_group->compunit_symtab == NULL;
12099
12100 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
12101 debug info. */
12102 line_header_up lh;
12103 if (attr != NULL)
12104 {
12105 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
12106 lh = dwarf_decode_line_header (line_offset, cu);
12107 }
12108 if (lh == NULL)
12109 {
12110 if (first_time)
12111 dwarf2_start_symtab (cu, "", NULL, 0);
12112 else
12113 {
12114 gdb_assert (tu_group->symtabs == NULL);
12115 restart_symtab (tu_group->compunit_symtab, "", 0);
12116 }
12117 return;
12118 }
12119
12120 cu->line_header = lh.release ();
12121 cu->line_header_die_owner = die;
12122
12123 if (first_time)
12124 {
12125 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
12126
12127 /* Note: We don't assign tu_group->compunit_symtab yet because we're
12128 still initializing it, and our caller (a few levels up)
12129 process_full_type_unit still needs to know if this is the first
12130 time. */
12131
12132 tu_group->num_symtabs = cu->line_header->file_names.size ();
12133 tu_group->symtabs = XNEWVEC (struct symtab *,
12134 cu->line_header->file_names.size ());
12135
12136 for (i = 0; i < cu->line_header->file_names.size (); ++i)
12137 {
12138 file_entry &fe = cu->line_header->file_names[i];
12139
12140 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
12141
12142 if (current_subfile->symtab == NULL)
12143 {
12144 /* NOTE: start_subfile will recognize when it's been
12145 passed a file it has already seen. So we can't
12146 assume there's a simple mapping from
12147 cu->line_header->file_names to subfiles, plus
12148 cu->line_header->file_names may contain dups. */
12149 current_subfile->symtab
12150 = allocate_symtab (cust, current_subfile->name);
12151 }
12152
12153 fe.symtab = current_subfile->symtab;
12154 tu_group->symtabs[i] = fe.symtab;
12155 }
12156 }
12157 else
12158 {
12159 restart_symtab (tu_group->compunit_symtab, "", 0);
12160
12161 for (i = 0; i < cu->line_header->file_names.size (); ++i)
12162 {
12163 file_entry &fe = cu->line_header->file_names[i];
12164
12165 fe.symtab = tu_group->symtabs[i];
12166 }
12167 }
12168
12169 /* The main symtab is allocated last. Type units don't have DW_AT_name
12170 so they don't have a "real" (so to speak) symtab anyway.
12171 There is later code that will assign the main symtab to all symbols
12172 that don't have one. We need to handle the case of a symbol with a
12173 missing symtab (DW_AT_decl_file) anyway. */
12174 }
12175
12176 /* Process DW_TAG_type_unit.
12177 For TUs we want to skip the first top level sibling if it's not the
12178 actual type being defined by this TU. In this case the first top
12179 level sibling is there to provide context only. */
12180
12181 static void
12182 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
12183 {
12184 struct die_info *child_die;
12185
12186 prepare_one_comp_unit (cu, die, language_minimal);
12187
12188 /* Initialize (or reinitialize) the machinery for building symtabs.
12189 We do this before processing child DIEs, so that the line header table
12190 is available for DW_AT_decl_file. */
12191 setup_type_unit_groups (die, cu);
12192
12193 if (die->child != NULL)
12194 {
12195 child_die = die->child;
12196 while (child_die && child_die->tag)
12197 {
12198 process_die (child_die, cu);
12199 child_die = sibling_die (child_die);
12200 }
12201 }
12202 }
12203 \f
12204 /* DWO/DWP files.
12205
12206 http://gcc.gnu.org/wiki/DebugFission
12207 http://gcc.gnu.org/wiki/DebugFissionDWP
12208
12209 To simplify handling of both DWO files ("object" files with the DWARF info)
12210 and DWP files (a file with the DWOs packaged up into one file), we treat
12211 DWP files as having a collection of virtual DWO files. */
12212
12213 static hashval_t
12214 hash_dwo_file (const void *item)
12215 {
12216 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
12217 hashval_t hash;
12218
12219 hash = htab_hash_string (dwo_file->dwo_name);
12220 if (dwo_file->comp_dir != NULL)
12221 hash += htab_hash_string (dwo_file->comp_dir);
12222 return hash;
12223 }
12224
12225 static int
12226 eq_dwo_file (const void *item_lhs, const void *item_rhs)
12227 {
12228 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
12229 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
12230
12231 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
12232 return 0;
12233 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
12234 return lhs->comp_dir == rhs->comp_dir;
12235 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
12236 }
12237
12238 /* Allocate a hash table for DWO files. */
12239
12240 static htab_t
12241 allocate_dwo_file_hash_table (struct objfile *objfile)
12242 {
12243 return htab_create_alloc_ex (41,
12244 hash_dwo_file,
12245 eq_dwo_file,
12246 NULL,
12247 &objfile->objfile_obstack,
12248 hashtab_obstack_allocate,
12249 dummy_obstack_deallocate);
12250 }
12251
12252 /* Lookup DWO file DWO_NAME. */
12253
12254 static void **
12255 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
12256 const char *dwo_name,
12257 const char *comp_dir)
12258 {
12259 struct dwo_file find_entry;
12260 void **slot;
12261
12262 if (dwarf2_per_objfile->dwo_files == NULL)
12263 dwarf2_per_objfile->dwo_files
12264 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
12265
12266 memset (&find_entry, 0, sizeof (find_entry));
12267 find_entry.dwo_name = dwo_name;
12268 find_entry.comp_dir = comp_dir;
12269 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
12270
12271 return slot;
12272 }
12273
12274 static hashval_t
12275 hash_dwo_unit (const void *item)
12276 {
12277 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12278
12279 /* This drops the top 32 bits of the id, but is ok for a hash. */
12280 return dwo_unit->signature;
12281 }
12282
12283 static int
12284 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
12285 {
12286 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
12287 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
12288
12289 /* The signature is assumed to be unique within the DWO file.
12290 So while object file CU dwo_id's always have the value zero,
12291 that's OK, assuming each object file DWO file has only one CU,
12292 and that's the rule for now. */
12293 return lhs->signature == rhs->signature;
12294 }
12295
12296 /* Allocate a hash table for DWO CUs,TUs.
12297 There is one of these tables for each of CUs,TUs for each DWO file. */
12298
12299 static htab_t
12300 allocate_dwo_unit_table (struct objfile *objfile)
12301 {
12302 /* Start out with a pretty small number.
12303 Generally DWO files contain only one CU and maybe some TUs. */
12304 return htab_create_alloc_ex (3,
12305 hash_dwo_unit,
12306 eq_dwo_unit,
12307 NULL,
12308 &objfile->objfile_obstack,
12309 hashtab_obstack_allocate,
12310 dummy_obstack_deallocate);
12311 }
12312
12313 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
12314
12315 struct create_dwo_cu_data
12316 {
12317 struct dwo_file *dwo_file;
12318 struct dwo_unit dwo_unit;
12319 };
12320
12321 /* die_reader_func for create_dwo_cu. */
12322
12323 static void
12324 create_dwo_cu_reader (const struct die_reader_specs *reader,
12325 const gdb_byte *info_ptr,
12326 struct die_info *comp_unit_die,
12327 int has_children,
12328 void *datap)
12329 {
12330 struct dwarf2_cu *cu = reader->cu;
12331 sect_offset sect_off = cu->per_cu->sect_off;
12332 struct dwarf2_section_info *section = cu->per_cu->section;
12333 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
12334 struct dwo_file *dwo_file = data->dwo_file;
12335 struct dwo_unit *dwo_unit = &data->dwo_unit;
12336 struct attribute *attr;
12337
12338 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
12339 if (attr == NULL)
12340 {
12341 complaint (&symfile_complaints,
12342 _("Dwarf Error: debug entry at offset %s is missing"
12343 " its dwo_id [in module %s]"),
12344 sect_offset_str (sect_off), dwo_file->dwo_name);
12345 return;
12346 }
12347
12348 dwo_unit->dwo_file = dwo_file;
12349 dwo_unit->signature = DW_UNSND (attr);
12350 dwo_unit->section = section;
12351 dwo_unit->sect_off = sect_off;
12352 dwo_unit->length = cu->per_cu->length;
12353
12354 if (dwarf_read_debug)
12355 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
12356 sect_offset_str (sect_off),
12357 hex_string (dwo_unit->signature));
12358 }
12359
12360 /* Create the dwo_units for the CUs in a DWO_FILE.
12361 Note: This function processes DWO files only, not DWP files. */
12362
12363 static void
12364 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12365 struct dwo_file &dwo_file, dwarf2_section_info &section,
12366 htab_t &cus_htab)
12367 {
12368 struct objfile *objfile = dwarf2_per_objfile->objfile;
12369 const gdb_byte *info_ptr, *end_ptr;
12370
12371 dwarf2_read_section (objfile, &section);
12372 info_ptr = section.buffer;
12373
12374 if (info_ptr == NULL)
12375 return;
12376
12377 if (dwarf_read_debug)
12378 {
12379 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12380 get_section_name (&section),
12381 get_section_file_name (&section));
12382 }
12383
12384 end_ptr = info_ptr + section.size;
12385 while (info_ptr < end_ptr)
12386 {
12387 struct dwarf2_per_cu_data per_cu;
12388 struct create_dwo_cu_data create_dwo_cu_data;
12389 struct dwo_unit *dwo_unit;
12390 void **slot;
12391 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12392
12393 memset (&create_dwo_cu_data.dwo_unit, 0,
12394 sizeof (create_dwo_cu_data.dwo_unit));
12395 memset (&per_cu, 0, sizeof (per_cu));
12396 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12397 per_cu.is_debug_types = 0;
12398 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12399 per_cu.section = &section;
12400 create_dwo_cu_data.dwo_file = &dwo_file;
12401
12402 init_cutu_and_read_dies_no_follow (
12403 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12404 info_ptr += per_cu.length;
12405
12406 // If the unit could not be parsed, skip it.
12407 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12408 continue;
12409
12410 if (cus_htab == NULL)
12411 cus_htab = allocate_dwo_unit_table (objfile);
12412
12413 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12414 *dwo_unit = create_dwo_cu_data.dwo_unit;
12415 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12416 gdb_assert (slot != NULL);
12417 if (*slot != NULL)
12418 {
12419 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12420 sect_offset dup_sect_off = dup_cu->sect_off;
12421
12422 complaint (&symfile_complaints,
12423 _("debug cu entry at offset %s is duplicate to"
12424 " the entry at offset %s, signature %s"),
12425 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12426 hex_string (dwo_unit->signature));
12427 }
12428 *slot = (void *)dwo_unit;
12429 }
12430 }
12431
12432 /* DWP file .debug_{cu,tu}_index section format:
12433 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12434
12435 DWP Version 1:
12436
12437 Both index sections have the same format, and serve to map a 64-bit
12438 signature to a set of section numbers. Each section begins with a header,
12439 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12440 indexes, and a pool of 32-bit section numbers. The index sections will be
12441 aligned at 8-byte boundaries in the file.
12442
12443 The index section header consists of:
12444
12445 V, 32 bit version number
12446 -, 32 bits unused
12447 N, 32 bit number of compilation units or type units in the index
12448 M, 32 bit number of slots in the hash table
12449
12450 Numbers are recorded using the byte order of the application binary.
12451
12452 The hash table begins at offset 16 in the section, and consists of an array
12453 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12454 order of the application binary). Unused slots in the hash table are 0.
12455 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12456
12457 The parallel table begins immediately after the hash table
12458 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12459 array of 32-bit indexes (using the byte order of the application binary),
12460 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12461 table contains a 32-bit index into the pool of section numbers. For unused
12462 hash table slots, the corresponding entry in the parallel table will be 0.
12463
12464 The pool of section numbers begins immediately following the hash table
12465 (at offset 16 + 12 * M from the beginning of the section). The pool of
12466 section numbers consists of an array of 32-bit words (using the byte order
12467 of the application binary). Each item in the array is indexed starting
12468 from 0. The hash table entry provides the index of the first section
12469 number in the set. Additional section numbers in the set follow, and the
12470 set is terminated by a 0 entry (section number 0 is not used in ELF).
12471
12472 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12473 section must be the first entry in the set, and the .debug_abbrev.dwo must
12474 be the second entry. Other members of the set may follow in any order.
12475
12476 ---
12477
12478 DWP Version 2:
12479
12480 DWP Version 2 combines all the .debug_info, etc. sections into one,
12481 and the entries in the index tables are now offsets into these sections.
12482 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12483 section.
12484
12485 Index Section Contents:
12486 Header
12487 Hash Table of Signatures dwp_hash_table.hash_table
12488 Parallel Table of Indices dwp_hash_table.unit_table
12489 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12490 Table of Section Sizes dwp_hash_table.v2.sizes
12491
12492 The index section header consists of:
12493
12494 V, 32 bit version number
12495 L, 32 bit number of columns in the table of section offsets
12496 N, 32 bit number of compilation units or type units in the index
12497 M, 32 bit number of slots in the hash table
12498
12499 Numbers are recorded using the byte order of the application binary.
12500
12501 The hash table has the same format as version 1.
12502 The parallel table of indices has the same format as version 1,
12503 except that the entries are origin-1 indices into the table of sections
12504 offsets and the table of section sizes.
12505
12506 The table of offsets begins immediately following the parallel table
12507 (at offset 16 + 12 * M from the beginning of the section). The table is
12508 a two-dimensional array of 32-bit words (using the byte order of the
12509 application binary), with L columns and N+1 rows, in row-major order.
12510 Each row in the array is indexed starting from 0. The first row provides
12511 a key to the remaining rows: each column in this row provides an identifier
12512 for a debug section, and the offsets in the same column of subsequent rows
12513 refer to that section. The section identifiers are:
12514
12515 DW_SECT_INFO 1 .debug_info.dwo
12516 DW_SECT_TYPES 2 .debug_types.dwo
12517 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12518 DW_SECT_LINE 4 .debug_line.dwo
12519 DW_SECT_LOC 5 .debug_loc.dwo
12520 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12521 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12522 DW_SECT_MACRO 8 .debug_macro.dwo
12523
12524 The offsets provided by the CU and TU index sections are the base offsets
12525 for the contributions made by each CU or TU to the corresponding section
12526 in the package file. Each CU and TU header contains an abbrev_offset
12527 field, used to find the abbreviations table for that CU or TU within the
12528 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12529 be interpreted as relative to the base offset given in the index section.
12530 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12531 should be interpreted as relative to the base offset for .debug_line.dwo,
12532 and offsets into other debug sections obtained from DWARF attributes should
12533 also be interpreted as relative to the corresponding base offset.
12534
12535 The table of sizes begins immediately following the table of offsets.
12536 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12537 with L columns and N rows, in row-major order. Each row in the array is
12538 indexed starting from 1 (row 0 is shared by the two tables).
12539
12540 ---
12541
12542 Hash table lookup is handled the same in version 1 and 2:
12543
12544 We assume that N and M will not exceed 2^32 - 1.
12545 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12546
12547 Given a 64-bit compilation unit signature or a type signature S, an entry
12548 in the hash table is located as follows:
12549
12550 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12551 the low-order k bits all set to 1.
12552
12553 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12554
12555 3) If the hash table entry at index H matches the signature, use that
12556 entry. If the hash table entry at index H is unused (all zeroes),
12557 terminate the search: the signature is not present in the table.
12558
12559 4) Let H = (H + H') modulo M. Repeat at Step 3.
12560
12561 Because M > N and H' and M are relatively prime, the search is guaranteed
12562 to stop at an unused slot or find the match. */
12563
12564 /* Create a hash table to map DWO IDs to their CU/TU entry in
12565 .debug_{info,types}.dwo in DWP_FILE.
12566 Returns NULL if there isn't one.
12567 Note: This function processes DWP files only, not DWO files. */
12568
12569 static struct dwp_hash_table *
12570 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12571 struct dwp_file *dwp_file, int is_debug_types)
12572 {
12573 struct objfile *objfile = dwarf2_per_objfile->objfile;
12574 bfd *dbfd = dwp_file->dbfd;
12575 const gdb_byte *index_ptr, *index_end;
12576 struct dwarf2_section_info *index;
12577 uint32_t version, nr_columns, nr_units, nr_slots;
12578 struct dwp_hash_table *htab;
12579
12580 if (is_debug_types)
12581 index = &dwp_file->sections.tu_index;
12582 else
12583 index = &dwp_file->sections.cu_index;
12584
12585 if (dwarf2_section_empty_p (index))
12586 return NULL;
12587 dwarf2_read_section (objfile, index);
12588
12589 index_ptr = index->buffer;
12590 index_end = index_ptr + index->size;
12591
12592 version = read_4_bytes (dbfd, index_ptr);
12593 index_ptr += 4;
12594 if (version == 2)
12595 nr_columns = read_4_bytes (dbfd, index_ptr);
12596 else
12597 nr_columns = 0;
12598 index_ptr += 4;
12599 nr_units = read_4_bytes (dbfd, index_ptr);
12600 index_ptr += 4;
12601 nr_slots = read_4_bytes (dbfd, index_ptr);
12602 index_ptr += 4;
12603
12604 if (version != 1 && version != 2)
12605 {
12606 error (_("Dwarf Error: unsupported DWP file version (%s)"
12607 " [in module %s]"),
12608 pulongest (version), dwp_file->name);
12609 }
12610 if (nr_slots != (nr_slots & -nr_slots))
12611 {
12612 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12613 " is not power of 2 [in module %s]"),
12614 pulongest (nr_slots), dwp_file->name);
12615 }
12616
12617 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12618 htab->version = version;
12619 htab->nr_columns = nr_columns;
12620 htab->nr_units = nr_units;
12621 htab->nr_slots = nr_slots;
12622 htab->hash_table = index_ptr;
12623 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12624
12625 /* Exit early if the table is empty. */
12626 if (nr_slots == 0 || nr_units == 0
12627 || (version == 2 && nr_columns == 0))
12628 {
12629 /* All must be zero. */
12630 if (nr_slots != 0 || nr_units != 0
12631 || (version == 2 && nr_columns != 0))
12632 {
12633 complaint (&symfile_complaints,
12634 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12635 " all zero [in modules %s]"),
12636 dwp_file->name);
12637 }
12638 return htab;
12639 }
12640
12641 if (version == 1)
12642 {
12643 htab->section_pool.v1.indices =
12644 htab->unit_table + sizeof (uint32_t) * nr_slots;
12645 /* It's harder to decide whether the section is too small in v1.
12646 V1 is deprecated anyway so we punt. */
12647 }
12648 else
12649 {
12650 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12651 int *ids = htab->section_pool.v2.section_ids;
12652 /* Reverse map for error checking. */
12653 int ids_seen[DW_SECT_MAX + 1];
12654 int i;
12655
12656 if (nr_columns < 2)
12657 {
12658 error (_("Dwarf Error: bad DWP hash table, too few columns"
12659 " in section table [in module %s]"),
12660 dwp_file->name);
12661 }
12662 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12663 {
12664 error (_("Dwarf Error: bad DWP hash table, too many columns"
12665 " in section table [in module %s]"),
12666 dwp_file->name);
12667 }
12668 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12669 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12670 for (i = 0; i < nr_columns; ++i)
12671 {
12672 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12673
12674 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12675 {
12676 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12677 " in section table [in module %s]"),
12678 id, dwp_file->name);
12679 }
12680 if (ids_seen[id] != -1)
12681 {
12682 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12683 " id %d in section table [in module %s]"),
12684 id, dwp_file->name);
12685 }
12686 ids_seen[id] = i;
12687 ids[i] = id;
12688 }
12689 /* Must have exactly one info or types section. */
12690 if (((ids_seen[DW_SECT_INFO] != -1)
12691 + (ids_seen[DW_SECT_TYPES] != -1))
12692 != 1)
12693 {
12694 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12695 " DWO info/types section [in module %s]"),
12696 dwp_file->name);
12697 }
12698 /* Must have an abbrev section. */
12699 if (ids_seen[DW_SECT_ABBREV] == -1)
12700 {
12701 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12702 " section [in module %s]"),
12703 dwp_file->name);
12704 }
12705 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12706 htab->section_pool.v2.sizes =
12707 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12708 * nr_units * nr_columns);
12709 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12710 * nr_units * nr_columns))
12711 > index_end)
12712 {
12713 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12714 " [in module %s]"),
12715 dwp_file->name);
12716 }
12717 }
12718
12719 return htab;
12720 }
12721
12722 /* Update SECTIONS with the data from SECTP.
12723
12724 This function is like the other "locate" section routines that are
12725 passed to bfd_map_over_sections, but in this context the sections to
12726 read comes from the DWP V1 hash table, not the full ELF section table.
12727
12728 The result is non-zero for success, or zero if an error was found. */
12729
12730 static int
12731 locate_v1_virtual_dwo_sections (asection *sectp,
12732 struct virtual_v1_dwo_sections *sections)
12733 {
12734 const struct dwop_section_names *names = &dwop_section_names;
12735
12736 if (section_is_p (sectp->name, &names->abbrev_dwo))
12737 {
12738 /* There can be only one. */
12739 if (sections->abbrev.s.section != NULL)
12740 return 0;
12741 sections->abbrev.s.section = sectp;
12742 sections->abbrev.size = bfd_get_section_size (sectp);
12743 }
12744 else if (section_is_p (sectp->name, &names->info_dwo)
12745 || section_is_p (sectp->name, &names->types_dwo))
12746 {
12747 /* There can be only one. */
12748 if (sections->info_or_types.s.section != NULL)
12749 return 0;
12750 sections->info_or_types.s.section = sectp;
12751 sections->info_or_types.size = bfd_get_section_size (sectp);
12752 }
12753 else if (section_is_p (sectp->name, &names->line_dwo))
12754 {
12755 /* There can be only one. */
12756 if (sections->line.s.section != NULL)
12757 return 0;
12758 sections->line.s.section = sectp;
12759 sections->line.size = bfd_get_section_size (sectp);
12760 }
12761 else if (section_is_p (sectp->name, &names->loc_dwo))
12762 {
12763 /* There can be only one. */
12764 if (sections->loc.s.section != NULL)
12765 return 0;
12766 sections->loc.s.section = sectp;
12767 sections->loc.size = bfd_get_section_size (sectp);
12768 }
12769 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12770 {
12771 /* There can be only one. */
12772 if (sections->macinfo.s.section != NULL)
12773 return 0;
12774 sections->macinfo.s.section = sectp;
12775 sections->macinfo.size = bfd_get_section_size (sectp);
12776 }
12777 else if (section_is_p (sectp->name, &names->macro_dwo))
12778 {
12779 /* There can be only one. */
12780 if (sections->macro.s.section != NULL)
12781 return 0;
12782 sections->macro.s.section = sectp;
12783 sections->macro.size = bfd_get_section_size (sectp);
12784 }
12785 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12786 {
12787 /* There can be only one. */
12788 if (sections->str_offsets.s.section != NULL)
12789 return 0;
12790 sections->str_offsets.s.section = sectp;
12791 sections->str_offsets.size = bfd_get_section_size (sectp);
12792 }
12793 else
12794 {
12795 /* No other kind of section is valid. */
12796 return 0;
12797 }
12798
12799 return 1;
12800 }
12801
12802 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12803 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12804 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12805 This is for DWP version 1 files. */
12806
12807 static struct dwo_unit *
12808 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12809 struct dwp_file *dwp_file,
12810 uint32_t unit_index,
12811 const char *comp_dir,
12812 ULONGEST signature, int is_debug_types)
12813 {
12814 struct objfile *objfile = dwarf2_per_objfile->objfile;
12815 const struct dwp_hash_table *dwp_htab =
12816 is_debug_types ? dwp_file->tus : dwp_file->cus;
12817 bfd *dbfd = dwp_file->dbfd;
12818 const char *kind = is_debug_types ? "TU" : "CU";
12819 struct dwo_file *dwo_file;
12820 struct dwo_unit *dwo_unit;
12821 struct virtual_v1_dwo_sections sections;
12822 void **dwo_file_slot;
12823 int i;
12824
12825 gdb_assert (dwp_file->version == 1);
12826
12827 if (dwarf_read_debug)
12828 {
12829 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12830 kind,
12831 pulongest (unit_index), hex_string (signature),
12832 dwp_file->name);
12833 }
12834
12835 /* Fetch the sections of this DWO unit.
12836 Put a limit on the number of sections we look for so that bad data
12837 doesn't cause us to loop forever. */
12838
12839 #define MAX_NR_V1_DWO_SECTIONS \
12840 (1 /* .debug_info or .debug_types */ \
12841 + 1 /* .debug_abbrev */ \
12842 + 1 /* .debug_line */ \
12843 + 1 /* .debug_loc */ \
12844 + 1 /* .debug_str_offsets */ \
12845 + 1 /* .debug_macro or .debug_macinfo */ \
12846 + 1 /* trailing zero */)
12847
12848 memset (&sections, 0, sizeof (sections));
12849
12850 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12851 {
12852 asection *sectp;
12853 uint32_t section_nr =
12854 read_4_bytes (dbfd,
12855 dwp_htab->section_pool.v1.indices
12856 + (unit_index + i) * sizeof (uint32_t));
12857
12858 if (section_nr == 0)
12859 break;
12860 if (section_nr >= dwp_file->num_sections)
12861 {
12862 error (_("Dwarf Error: bad DWP hash table, section number too large"
12863 " [in module %s]"),
12864 dwp_file->name);
12865 }
12866
12867 sectp = dwp_file->elf_sections[section_nr];
12868 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12869 {
12870 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12871 " [in module %s]"),
12872 dwp_file->name);
12873 }
12874 }
12875
12876 if (i < 2
12877 || dwarf2_section_empty_p (&sections.info_or_types)
12878 || dwarf2_section_empty_p (&sections.abbrev))
12879 {
12880 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12881 " [in module %s]"),
12882 dwp_file->name);
12883 }
12884 if (i == MAX_NR_V1_DWO_SECTIONS)
12885 {
12886 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12887 " [in module %s]"),
12888 dwp_file->name);
12889 }
12890
12891 /* It's easier for the rest of the code if we fake a struct dwo_file and
12892 have dwo_unit "live" in that. At least for now.
12893
12894 The DWP file can be made up of a random collection of CUs and TUs.
12895 However, for each CU + set of TUs that came from the same original DWO
12896 file, we can combine them back into a virtual DWO file to save space
12897 (fewer struct dwo_file objects to allocate). Remember that for really
12898 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12899
12900 std::string virtual_dwo_name =
12901 string_printf ("virtual-dwo/%d-%d-%d-%d",
12902 get_section_id (&sections.abbrev),
12903 get_section_id (&sections.line),
12904 get_section_id (&sections.loc),
12905 get_section_id (&sections.str_offsets));
12906 /* Can we use an existing virtual DWO file? */
12907 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12908 virtual_dwo_name.c_str (),
12909 comp_dir);
12910 /* Create one if necessary. */
12911 if (*dwo_file_slot == NULL)
12912 {
12913 if (dwarf_read_debug)
12914 {
12915 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12916 virtual_dwo_name.c_str ());
12917 }
12918 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12919 dwo_file->dwo_name
12920 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12921 virtual_dwo_name.c_str (),
12922 virtual_dwo_name.size ());
12923 dwo_file->comp_dir = comp_dir;
12924 dwo_file->sections.abbrev = sections.abbrev;
12925 dwo_file->sections.line = sections.line;
12926 dwo_file->sections.loc = sections.loc;
12927 dwo_file->sections.macinfo = sections.macinfo;
12928 dwo_file->sections.macro = sections.macro;
12929 dwo_file->sections.str_offsets = sections.str_offsets;
12930 /* The "str" section is global to the entire DWP file. */
12931 dwo_file->sections.str = dwp_file->sections.str;
12932 /* The info or types section is assigned below to dwo_unit,
12933 there's no need to record it in dwo_file.
12934 Also, we can't simply record type sections in dwo_file because
12935 we record a pointer into the vector in dwo_unit. As we collect more
12936 types we'll grow the vector and eventually have to reallocate space
12937 for it, invalidating all copies of pointers into the previous
12938 contents. */
12939 *dwo_file_slot = dwo_file;
12940 }
12941 else
12942 {
12943 if (dwarf_read_debug)
12944 {
12945 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12946 virtual_dwo_name.c_str ());
12947 }
12948 dwo_file = (struct dwo_file *) *dwo_file_slot;
12949 }
12950
12951 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12952 dwo_unit->dwo_file = dwo_file;
12953 dwo_unit->signature = signature;
12954 dwo_unit->section =
12955 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12956 *dwo_unit->section = sections.info_or_types;
12957 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12958
12959 return dwo_unit;
12960 }
12961
12962 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12963 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12964 piece within that section used by a TU/CU, return a virtual section
12965 of just that piece. */
12966
12967 static struct dwarf2_section_info
12968 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12969 struct dwarf2_section_info *section,
12970 bfd_size_type offset, bfd_size_type size)
12971 {
12972 struct dwarf2_section_info result;
12973 asection *sectp;
12974
12975 gdb_assert (section != NULL);
12976 gdb_assert (!section->is_virtual);
12977
12978 memset (&result, 0, sizeof (result));
12979 result.s.containing_section = section;
12980 result.is_virtual = 1;
12981
12982 if (size == 0)
12983 return result;
12984
12985 sectp = get_section_bfd_section (section);
12986
12987 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12988 bounds of the real section. This is a pretty-rare event, so just
12989 flag an error (easier) instead of a warning and trying to cope. */
12990 if (sectp == NULL
12991 || offset + size > bfd_get_section_size (sectp))
12992 {
12993 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12994 " in section %s [in module %s]"),
12995 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12996 objfile_name (dwarf2_per_objfile->objfile));
12997 }
12998
12999 result.virtual_offset = offset;
13000 result.size = size;
13001 return result;
13002 }
13003
13004 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
13005 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
13006 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
13007 This is for DWP version 2 files. */
13008
13009 static struct dwo_unit *
13010 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
13011 struct dwp_file *dwp_file,
13012 uint32_t unit_index,
13013 const char *comp_dir,
13014 ULONGEST signature, int is_debug_types)
13015 {
13016 struct objfile *objfile = dwarf2_per_objfile->objfile;
13017 const struct dwp_hash_table *dwp_htab =
13018 is_debug_types ? dwp_file->tus : dwp_file->cus;
13019 bfd *dbfd = dwp_file->dbfd;
13020 const char *kind = is_debug_types ? "TU" : "CU";
13021 struct dwo_file *dwo_file;
13022 struct dwo_unit *dwo_unit;
13023 struct virtual_v2_dwo_sections sections;
13024 void **dwo_file_slot;
13025 int i;
13026
13027 gdb_assert (dwp_file->version == 2);
13028
13029 if (dwarf_read_debug)
13030 {
13031 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
13032 kind,
13033 pulongest (unit_index), hex_string (signature),
13034 dwp_file->name);
13035 }
13036
13037 /* Fetch the section offsets of this DWO unit. */
13038
13039 memset (&sections, 0, sizeof (sections));
13040
13041 for (i = 0; i < dwp_htab->nr_columns; ++i)
13042 {
13043 uint32_t offset = read_4_bytes (dbfd,
13044 dwp_htab->section_pool.v2.offsets
13045 + (((unit_index - 1) * dwp_htab->nr_columns
13046 + i)
13047 * sizeof (uint32_t)));
13048 uint32_t size = read_4_bytes (dbfd,
13049 dwp_htab->section_pool.v2.sizes
13050 + (((unit_index - 1) * dwp_htab->nr_columns
13051 + i)
13052 * sizeof (uint32_t)));
13053
13054 switch (dwp_htab->section_pool.v2.section_ids[i])
13055 {
13056 case DW_SECT_INFO:
13057 case DW_SECT_TYPES:
13058 sections.info_or_types_offset = offset;
13059 sections.info_or_types_size = size;
13060 break;
13061 case DW_SECT_ABBREV:
13062 sections.abbrev_offset = offset;
13063 sections.abbrev_size = size;
13064 break;
13065 case DW_SECT_LINE:
13066 sections.line_offset = offset;
13067 sections.line_size = size;
13068 break;
13069 case DW_SECT_LOC:
13070 sections.loc_offset = offset;
13071 sections.loc_size = size;
13072 break;
13073 case DW_SECT_STR_OFFSETS:
13074 sections.str_offsets_offset = offset;
13075 sections.str_offsets_size = size;
13076 break;
13077 case DW_SECT_MACINFO:
13078 sections.macinfo_offset = offset;
13079 sections.macinfo_size = size;
13080 break;
13081 case DW_SECT_MACRO:
13082 sections.macro_offset = offset;
13083 sections.macro_size = size;
13084 break;
13085 }
13086 }
13087
13088 /* It's easier for the rest of the code if we fake a struct dwo_file and
13089 have dwo_unit "live" in that. At least for now.
13090
13091 The DWP file can be made up of a random collection of CUs and TUs.
13092 However, for each CU + set of TUs that came from the same original DWO
13093 file, we can combine them back into a virtual DWO file to save space
13094 (fewer struct dwo_file objects to allocate). Remember that for really
13095 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
13096
13097 std::string virtual_dwo_name =
13098 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
13099 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
13100 (long) (sections.line_size ? sections.line_offset : 0),
13101 (long) (sections.loc_size ? sections.loc_offset : 0),
13102 (long) (sections.str_offsets_size
13103 ? sections.str_offsets_offset : 0));
13104 /* Can we use an existing virtual DWO file? */
13105 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13106 virtual_dwo_name.c_str (),
13107 comp_dir);
13108 /* Create one if necessary. */
13109 if (*dwo_file_slot == NULL)
13110 {
13111 if (dwarf_read_debug)
13112 {
13113 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
13114 virtual_dwo_name.c_str ());
13115 }
13116 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13117 dwo_file->dwo_name
13118 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
13119 virtual_dwo_name.c_str (),
13120 virtual_dwo_name.size ());
13121 dwo_file->comp_dir = comp_dir;
13122 dwo_file->sections.abbrev =
13123 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
13124 sections.abbrev_offset, sections.abbrev_size);
13125 dwo_file->sections.line =
13126 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
13127 sections.line_offset, sections.line_size);
13128 dwo_file->sections.loc =
13129 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
13130 sections.loc_offset, sections.loc_size);
13131 dwo_file->sections.macinfo =
13132 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
13133 sections.macinfo_offset, sections.macinfo_size);
13134 dwo_file->sections.macro =
13135 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
13136 sections.macro_offset, sections.macro_size);
13137 dwo_file->sections.str_offsets =
13138 create_dwp_v2_section (dwarf2_per_objfile,
13139 &dwp_file->sections.str_offsets,
13140 sections.str_offsets_offset,
13141 sections.str_offsets_size);
13142 /* The "str" section is global to the entire DWP file. */
13143 dwo_file->sections.str = dwp_file->sections.str;
13144 /* The info or types section is assigned below to dwo_unit,
13145 there's no need to record it in dwo_file.
13146 Also, we can't simply record type sections in dwo_file because
13147 we record a pointer into the vector in dwo_unit. As we collect more
13148 types we'll grow the vector and eventually have to reallocate space
13149 for it, invalidating all copies of pointers into the previous
13150 contents. */
13151 *dwo_file_slot = dwo_file;
13152 }
13153 else
13154 {
13155 if (dwarf_read_debug)
13156 {
13157 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
13158 virtual_dwo_name.c_str ());
13159 }
13160 dwo_file = (struct dwo_file *) *dwo_file_slot;
13161 }
13162
13163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
13164 dwo_unit->dwo_file = dwo_file;
13165 dwo_unit->signature = signature;
13166 dwo_unit->section =
13167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
13168 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
13169 is_debug_types
13170 ? &dwp_file->sections.types
13171 : &dwp_file->sections.info,
13172 sections.info_or_types_offset,
13173 sections.info_or_types_size);
13174 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
13175
13176 return dwo_unit;
13177 }
13178
13179 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
13180 Returns NULL if the signature isn't found. */
13181
13182 static struct dwo_unit *
13183 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
13184 struct dwp_file *dwp_file, const char *comp_dir,
13185 ULONGEST signature, int is_debug_types)
13186 {
13187 const struct dwp_hash_table *dwp_htab =
13188 is_debug_types ? dwp_file->tus : dwp_file->cus;
13189 bfd *dbfd = dwp_file->dbfd;
13190 uint32_t mask = dwp_htab->nr_slots - 1;
13191 uint32_t hash = signature & mask;
13192 uint32_t hash2 = ((signature >> 32) & mask) | 1;
13193 unsigned int i;
13194 void **slot;
13195 struct dwo_unit find_dwo_cu;
13196
13197 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
13198 find_dwo_cu.signature = signature;
13199 slot = htab_find_slot (is_debug_types
13200 ? dwp_file->loaded_tus
13201 : dwp_file->loaded_cus,
13202 &find_dwo_cu, INSERT);
13203
13204 if (*slot != NULL)
13205 return (struct dwo_unit *) *slot;
13206
13207 /* Use a for loop so that we don't loop forever on bad debug info. */
13208 for (i = 0; i < dwp_htab->nr_slots; ++i)
13209 {
13210 ULONGEST signature_in_table;
13211
13212 signature_in_table =
13213 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
13214 if (signature_in_table == signature)
13215 {
13216 uint32_t unit_index =
13217 read_4_bytes (dbfd,
13218 dwp_htab->unit_table + hash * sizeof (uint32_t));
13219
13220 if (dwp_file->version == 1)
13221 {
13222 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
13223 dwp_file, unit_index,
13224 comp_dir, signature,
13225 is_debug_types);
13226 }
13227 else
13228 {
13229 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
13230 dwp_file, unit_index,
13231 comp_dir, signature,
13232 is_debug_types);
13233 }
13234 return (struct dwo_unit *) *slot;
13235 }
13236 if (signature_in_table == 0)
13237 return NULL;
13238 hash = (hash + hash2) & mask;
13239 }
13240
13241 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
13242 " [in module %s]"),
13243 dwp_file->name);
13244 }
13245
13246 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
13247 Open the file specified by FILE_NAME and hand it off to BFD for
13248 preliminary analysis. Return a newly initialized bfd *, which
13249 includes a canonicalized copy of FILE_NAME.
13250 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
13251 SEARCH_CWD is true if the current directory is to be searched.
13252 It will be searched before debug-file-directory.
13253 If successful, the file is added to the bfd include table of the
13254 objfile's bfd (see gdb_bfd_record_inclusion).
13255 If unable to find/open the file, return NULL.
13256 NOTE: This function is derived from symfile_bfd_open. */
13257
13258 static gdb_bfd_ref_ptr
13259 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13260 const char *file_name, int is_dwp, int search_cwd)
13261 {
13262 int desc;
13263 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
13264 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
13265 to debug_file_directory. */
13266 const char *search_path;
13267 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
13268
13269 gdb::unique_xmalloc_ptr<char> search_path_holder;
13270 if (search_cwd)
13271 {
13272 if (*debug_file_directory != '\0')
13273 {
13274 search_path_holder.reset (concat (".", dirname_separator_string,
13275 debug_file_directory,
13276 (char *) NULL));
13277 search_path = search_path_holder.get ();
13278 }
13279 else
13280 search_path = ".";
13281 }
13282 else
13283 search_path = debug_file_directory;
13284
13285 openp_flags flags = OPF_RETURN_REALPATH;
13286 if (is_dwp)
13287 flags |= OPF_SEARCH_IN_PATH;
13288
13289 gdb::unique_xmalloc_ptr<char> absolute_name;
13290 desc = openp (search_path, flags, file_name,
13291 O_RDONLY | O_BINARY, &absolute_name);
13292 if (desc < 0)
13293 return NULL;
13294
13295 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
13296 gnutarget, desc));
13297 if (sym_bfd == NULL)
13298 return NULL;
13299 bfd_set_cacheable (sym_bfd.get (), 1);
13300
13301 if (!bfd_check_format (sym_bfd.get (), bfd_object))
13302 return NULL;
13303
13304 /* Success. Record the bfd as having been included by the objfile's bfd.
13305 This is important because things like demangled_names_hash lives in the
13306 objfile's per_bfd space and may have references to things like symbol
13307 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
13308 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13309
13310 return sym_bfd;
13311 }
13312
13313 /* Try to open DWO file FILE_NAME.
13314 COMP_DIR is the DW_AT_comp_dir attribute.
13315 The result is the bfd handle of the file.
13316 If there is a problem finding or opening the file, return NULL.
13317 Upon success, the canonicalized path of the file is stored in the bfd,
13318 same as symfile_bfd_open. */
13319
13320 static gdb_bfd_ref_ptr
13321 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13322 const char *file_name, const char *comp_dir)
13323 {
13324 if (IS_ABSOLUTE_PATH (file_name))
13325 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13326 0 /*is_dwp*/, 0 /*search_cwd*/);
13327
13328 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
13329
13330 if (comp_dir != NULL)
13331 {
13332 char *path_to_try = concat (comp_dir, SLASH_STRING,
13333 file_name, (char *) NULL);
13334
13335 /* NOTE: If comp_dir is a relative path, this will also try the
13336 search path, which seems useful. */
13337 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
13338 path_to_try,
13339 0 /*is_dwp*/,
13340 1 /*search_cwd*/));
13341 xfree (path_to_try);
13342 if (abfd != NULL)
13343 return abfd;
13344 }
13345
13346 /* That didn't work, try debug-file-directory, which, despite its name,
13347 is a list of paths. */
13348
13349 if (*debug_file_directory == '\0')
13350 return NULL;
13351
13352 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13353 0 /*is_dwp*/, 1 /*search_cwd*/);
13354 }
13355
13356 /* This function is mapped across the sections and remembers the offset and
13357 size of each of the DWO debugging sections we are interested in. */
13358
13359 static void
13360 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
13361 {
13362 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
13363 const struct dwop_section_names *names = &dwop_section_names;
13364
13365 if (section_is_p (sectp->name, &names->abbrev_dwo))
13366 {
13367 dwo_sections->abbrev.s.section = sectp;
13368 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
13369 }
13370 else if (section_is_p (sectp->name, &names->info_dwo))
13371 {
13372 dwo_sections->info.s.section = sectp;
13373 dwo_sections->info.size = bfd_get_section_size (sectp);
13374 }
13375 else if (section_is_p (sectp->name, &names->line_dwo))
13376 {
13377 dwo_sections->line.s.section = sectp;
13378 dwo_sections->line.size = bfd_get_section_size (sectp);
13379 }
13380 else if (section_is_p (sectp->name, &names->loc_dwo))
13381 {
13382 dwo_sections->loc.s.section = sectp;
13383 dwo_sections->loc.size = bfd_get_section_size (sectp);
13384 }
13385 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13386 {
13387 dwo_sections->macinfo.s.section = sectp;
13388 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
13389 }
13390 else if (section_is_p (sectp->name, &names->macro_dwo))
13391 {
13392 dwo_sections->macro.s.section = sectp;
13393 dwo_sections->macro.size = bfd_get_section_size (sectp);
13394 }
13395 else if (section_is_p (sectp->name, &names->str_dwo))
13396 {
13397 dwo_sections->str.s.section = sectp;
13398 dwo_sections->str.size = bfd_get_section_size (sectp);
13399 }
13400 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13401 {
13402 dwo_sections->str_offsets.s.section = sectp;
13403 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13404 }
13405 else if (section_is_p (sectp->name, &names->types_dwo))
13406 {
13407 struct dwarf2_section_info type_section;
13408
13409 memset (&type_section, 0, sizeof (type_section));
13410 type_section.s.section = sectp;
13411 type_section.size = bfd_get_section_size (sectp);
13412 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13413 &type_section);
13414 }
13415 }
13416
13417 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13418 by PER_CU. This is for the non-DWP case.
13419 The result is NULL if DWO_NAME can't be found. */
13420
13421 static struct dwo_file *
13422 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13423 const char *dwo_name, const char *comp_dir)
13424 {
13425 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13426 struct objfile *objfile = dwarf2_per_objfile->objfile;
13427 struct dwo_file *dwo_file;
13428 struct cleanup *cleanups;
13429
13430 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13431 if (dbfd == NULL)
13432 {
13433 if (dwarf_read_debug)
13434 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13435 return NULL;
13436 }
13437 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13438 dwo_file->dwo_name = dwo_name;
13439 dwo_file->comp_dir = comp_dir;
13440 dwo_file->dbfd = dbfd.release ();
13441
13442 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13443 cleanup_data->dwo_file = dwo_file;
13444 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13445
13446 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13447
13448 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13449 &dwo_file->sections);
13450
13451 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13452 dwo_file->cus);
13453
13454 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13455 dwo_file->sections.types, dwo_file->tus);
13456
13457 discard_cleanups (cleanups);
13458
13459 if (dwarf_read_debug)
13460 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13461
13462 return dwo_file;
13463 }
13464
13465 /* This function is mapped across the sections and remembers the offset and
13466 size of each of the DWP debugging sections common to version 1 and 2 that
13467 we are interested in. */
13468
13469 static void
13470 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13471 void *dwp_file_ptr)
13472 {
13473 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13474 const struct dwop_section_names *names = &dwop_section_names;
13475 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13476
13477 /* Record the ELF section number for later lookup: this is what the
13478 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13479 gdb_assert (elf_section_nr < dwp_file->num_sections);
13480 dwp_file->elf_sections[elf_section_nr] = sectp;
13481
13482 /* Look for specific sections that we need. */
13483 if (section_is_p (sectp->name, &names->str_dwo))
13484 {
13485 dwp_file->sections.str.s.section = sectp;
13486 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13487 }
13488 else if (section_is_p (sectp->name, &names->cu_index))
13489 {
13490 dwp_file->sections.cu_index.s.section = sectp;
13491 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13492 }
13493 else if (section_is_p (sectp->name, &names->tu_index))
13494 {
13495 dwp_file->sections.tu_index.s.section = sectp;
13496 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13497 }
13498 }
13499
13500 /* This function is mapped across the sections and remembers the offset and
13501 size of each of the DWP version 2 debugging sections that we are interested
13502 in. This is split into a separate function because we don't know if we
13503 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13504
13505 static void
13506 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13507 {
13508 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13509 const struct dwop_section_names *names = &dwop_section_names;
13510 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13511
13512 /* Record the ELF section number for later lookup: this is what the
13513 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13514 gdb_assert (elf_section_nr < dwp_file->num_sections);
13515 dwp_file->elf_sections[elf_section_nr] = sectp;
13516
13517 /* Look for specific sections that we need. */
13518 if (section_is_p (sectp->name, &names->abbrev_dwo))
13519 {
13520 dwp_file->sections.abbrev.s.section = sectp;
13521 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13522 }
13523 else if (section_is_p (sectp->name, &names->info_dwo))
13524 {
13525 dwp_file->sections.info.s.section = sectp;
13526 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13527 }
13528 else if (section_is_p (sectp->name, &names->line_dwo))
13529 {
13530 dwp_file->sections.line.s.section = sectp;
13531 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13532 }
13533 else if (section_is_p (sectp->name, &names->loc_dwo))
13534 {
13535 dwp_file->sections.loc.s.section = sectp;
13536 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13537 }
13538 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13539 {
13540 dwp_file->sections.macinfo.s.section = sectp;
13541 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13542 }
13543 else if (section_is_p (sectp->name, &names->macro_dwo))
13544 {
13545 dwp_file->sections.macro.s.section = sectp;
13546 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13547 }
13548 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13549 {
13550 dwp_file->sections.str_offsets.s.section = sectp;
13551 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13552 }
13553 else if (section_is_p (sectp->name, &names->types_dwo))
13554 {
13555 dwp_file->sections.types.s.section = sectp;
13556 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13557 }
13558 }
13559
13560 /* Hash function for dwp_file loaded CUs/TUs. */
13561
13562 static hashval_t
13563 hash_dwp_loaded_cutus (const void *item)
13564 {
13565 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13566
13567 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13568 return dwo_unit->signature;
13569 }
13570
13571 /* Equality function for dwp_file loaded CUs/TUs. */
13572
13573 static int
13574 eq_dwp_loaded_cutus (const void *a, const void *b)
13575 {
13576 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13577 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13578
13579 return dua->signature == dub->signature;
13580 }
13581
13582 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13583
13584 static htab_t
13585 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13586 {
13587 return htab_create_alloc_ex (3,
13588 hash_dwp_loaded_cutus,
13589 eq_dwp_loaded_cutus,
13590 NULL,
13591 &objfile->objfile_obstack,
13592 hashtab_obstack_allocate,
13593 dummy_obstack_deallocate);
13594 }
13595
13596 /* Try to open DWP file FILE_NAME.
13597 The result is the bfd handle of the file.
13598 If there is a problem finding or opening the file, return NULL.
13599 Upon success, the canonicalized path of the file is stored in the bfd,
13600 same as symfile_bfd_open. */
13601
13602 static gdb_bfd_ref_ptr
13603 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13604 const char *file_name)
13605 {
13606 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13607 1 /*is_dwp*/,
13608 1 /*search_cwd*/));
13609 if (abfd != NULL)
13610 return abfd;
13611
13612 /* Work around upstream bug 15652.
13613 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13614 [Whether that's a "bug" is debatable, but it is getting in our way.]
13615 We have no real idea where the dwp file is, because gdb's realpath-ing
13616 of the executable's path may have discarded the needed info.
13617 [IWBN if the dwp file name was recorded in the executable, akin to
13618 .gnu_debuglink, but that doesn't exist yet.]
13619 Strip the directory from FILE_NAME and search again. */
13620 if (*debug_file_directory != '\0')
13621 {
13622 /* Don't implicitly search the current directory here.
13623 If the user wants to search "." to handle this case,
13624 it must be added to debug-file-directory. */
13625 return try_open_dwop_file (dwarf2_per_objfile,
13626 lbasename (file_name), 1 /*is_dwp*/,
13627 0 /*search_cwd*/);
13628 }
13629
13630 return NULL;
13631 }
13632
13633 /* Initialize the use of the DWP file for the current objfile.
13634 By convention the name of the DWP file is ${objfile}.dwp.
13635 The result is NULL if it can't be found. */
13636
13637 static struct dwp_file *
13638 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13639 {
13640 struct objfile *objfile = dwarf2_per_objfile->objfile;
13641 struct dwp_file *dwp_file;
13642
13643 /* Try to find first .dwp for the binary file before any symbolic links
13644 resolving. */
13645
13646 /* If the objfile is a debug file, find the name of the real binary
13647 file and get the name of dwp file from there. */
13648 std::string dwp_name;
13649 if (objfile->separate_debug_objfile_backlink != NULL)
13650 {
13651 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13652 const char *backlink_basename = lbasename (backlink->original_name);
13653
13654 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13655 }
13656 else
13657 dwp_name = objfile->original_name;
13658
13659 dwp_name += ".dwp";
13660
13661 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13662 if (dbfd == NULL
13663 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13664 {
13665 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13666 dwp_name = objfile_name (objfile);
13667 dwp_name += ".dwp";
13668 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13669 }
13670
13671 if (dbfd == NULL)
13672 {
13673 if (dwarf_read_debug)
13674 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13675 return NULL;
13676 }
13677 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13678 dwp_file->name = bfd_get_filename (dbfd.get ());
13679 dwp_file->dbfd = dbfd.release ();
13680
13681 /* +1: section 0 is unused */
13682 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13683 dwp_file->elf_sections =
13684 OBSTACK_CALLOC (&objfile->objfile_obstack,
13685 dwp_file->num_sections, asection *);
13686
13687 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13688 dwp_file);
13689
13690 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13691
13692 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13693
13694 /* The DWP file version is stored in the hash table. Oh well. */
13695 if (dwp_file->cus && dwp_file->tus
13696 && dwp_file->cus->version != dwp_file->tus->version)
13697 {
13698 /* Technically speaking, we should try to limp along, but this is
13699 pretty bizarre. We use pulongest here because that's the established
13700 portability solution (e.g, we cannot use %u for uint32_t). */
13701 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13702 " TU version %s [in DWP file %s]"),
13703 pulongest (dwp_file->cus->version),
13704 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13705 }
13706
13707 if (dwp_file->cus)
13708 dwp_file->version = dwp_file->cus->version;
13709 else if (dwp_file->tus)
13710 dwp_file->version = dwp_file->tus->version;
13711 else
13712 dwp_file->version = 2;
13713
13714 if (dwp_file->version == 2)
13715 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13716 dwp_file);
13717
13718 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13719 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13720
13721 if (dwarf_read_debug)
13722 {
13723 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13724 fprintf_unfiltered (gdb_stdlog,
13725 " %s CUs, %s TUs\n",
13726 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13727 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13728 }
13729
13730 return dwp_file;
13731 }
13732
13733 /* Wrapper around open_and_init_dwp_file, only open it once. */
13734
13735 static struct dwp_file *
13736 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13737 {
13738 if (! dwarf2_per_objfile->dwp_checked)
13739 {
13740 dwarf2_per_objfile->dwp_file
13741 = open_and_init_dwp_file (dwarf2_per_objfile);
13742 dwarf2_per_objfile->dwp_checked = 1;
13743 }
13744 return dwarf2_per_objfile->dwp_file;
13745 }
13746
13747 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13748 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13749 or in the DWP file for the objfile, referenced by THIS_UNIT.
13750 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13751 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13752
13753 This is called, for example, when wanting to read a variable with a
13754 complex location. Therefore we don't want to do file i/o for every call.
13755 Therefore we don't want to look for a DWO file on every call.
13756 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13757 then we check if we've already seen DWO_NAME, and only THEN do we check
13758 for a DWO file.
13759
13760 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13761 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13762
13763 static struct dwo_unit *
13764 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13765 const char *dwo_name, const char *comp_dir,
13766 ULONGEST signature, int is_debug_types)
13767 {
13768 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13769 struct objfile *objfile = dwarf2_per_objfile->objfile;
13770 const char *kind = is_debug_types ? "TU" : "CU";
13771 void **dwo_file_slot;
13772 struct dwo_file *dwo_file;
13773 struct dwp_file *dwp_file;
13774
13775 /* First see if there's a DWP file.
13776 If we have a DWP file but didn't find the DWO inside it, don't
13777 look for the original DWO file. It makes gdb behave differently
13778 depending on whether one is debugging in the build tree. */
13779
13780 dwp_file = get_dwp_file (dwarf2_per_objfile);
13781 if (dwp_file != NULL)
13782 {
13783 const struct dwp_hash_table *dwp_htab =
13784 is_debug_types ? dwp_file->tus : dwp_file->cus;
13785
13786 if (dwp_htab != NULL)
13787 {
13788 struct dwo_unit *dwo_cutu =
13789 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13790 signature, is_debug_types);
13791
13792 if (dwo_cutu != NULL)
13793 {
13794 if (dwarf_read_debug)
13795 {
13796 fprintf_unfiltered (gdb_stdlog,
13797 "Virtual DWO %s %s found: @%s\n",
13798 kind, hex_string (signature),
13799 host_address_to_string (dwo_cutu));
13800 }
13801 return dwo_cutu;
13802 }
13803 }
13804 }
13805 else
13806 {
13807 /* No DWP file, look for the DWO file. */
13808
13809 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13810 dwo_name, comp_dir);
13811 if (*dwo_file_slot == NULL)
13812 {
13813 /* Read in the file and build a table of the CUs/TUs it contains. */
13814 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13815 }
13816 /* NOTE: This will be NULL if unable to open the file. */
13817 dwo_file = (struct dwo_file *) *dwo_file_slot;
13818
13819 if (dwo_file != NULL)
13820 {
13821 struct dwo_unit *dwo_cutu = NULL;
13822
13823 if (is_debug_types && dwo_file->tus)
13824 {
13825 struct dwo_unit find_dwo_cutu;
13826
13827 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13828 find_dwo_cutu.signature = signature;
13829 dwo_cutu
13830 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13831 }
13832 else if (!is_debug_types && dwo_file->cus)
13833 {
13834 struct dwo_unit find_dwo_cutu;
13835
13836 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13837 find_dwo_cutu.signature = signature;
13838 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13839 &find_dwo_cutu);
13840 }
13841
13842 if (dwo_cutu != NULL)
13843 {
13844 if (dwarf_read_debug)
13845 {
13846 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13847 kind, dwo_name, hex_string (signature),
13848 host_address_to_string (dwo_cutu));
13849 }
13850 return dwo_cutu;
13851 }
13852 }
13853 }
13854
13855 /* We didn't find it. This could mean a dwo_id mismatch, or
13856 someone deleted the DWO/DWP file, or the search path isn't set up
13857 correctly to find the file. */
13858
13859 if (dwarf_read_debug)
13860 {
13861 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13862 kind, dwo_name, hex_string (signature));
13863 }
13864
13865 /* This is a warning and not a complaint because it can be caused by
13866 pilot error (e.g., user accidentally deleting the DWO). */
13867 {
13868 /* Print the name of the DWP file if we looked there, helps the user
13869 better diagnose the problem. */
13870 std::string dwp_text;
13871
13872 if (dwp_file != NULL)
13873 dwp_text = string_printf (" [in DWP file %s]",
13874 lbasename (dwp_file->name));
13875
13876 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13877 " [in module %s]"),
13878 kind, dwo_name, hex_string (signature),
13879 dwp_text.c_str (),
13880 this_unit->is_debug_types ? "TU" : "CU",
13881 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13882 }
13883 return NULL;
13884 }
13885
13886 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13887 See lookup_dwo_cutu_unit for details. */
13888
13889 static struct dwo_unit *
13890 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13891 const char *dwo_name, const char *comp_dir,
13892 ULONGEST signature)
13893 {
13894 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13895 }
13896
13897 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13898 See lookup_dwo_cutu_unit for details. */
13899
13900 static struct dwo_unit *
13901 lookup_dwo_type_unit (struct signatured_type *this_tu,
13902 const char *dwo_name, const char *comp_dir)
13903 {
13904 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13905 }
13906
13907 /* Traversal function for queue_and_load_all_dwo_tus. */
13908
13909 static int
13910 queue_and_load_dwo_tu (void **slot, void *info)
13911 {
13912 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13913 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13914 ULONGEST signature = dwo_unit->signature;
13915 struct signatured_type *sig_type =
13916 lookup_dwo_signatured_type (per_cu->cu, signature);
13917
13918 if (sig_type != NULL)
13919 {
13920 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13921
13922 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13923 a real dependency of PER_CU on SIG_TYPE. That is detected later
13924 while processing PER_CU. */
13925 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13926 load_full_type_unit (sig_cu);
13927 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13928 }
13929
13930 return 1;
13931 }
13932
13933 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13934 The DWO may have the only definition of the type, though it may not be
13935 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13936 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13937
13938 static void
13939 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13940 {
13941 struct dwo_unit *dwo_unit;
13942 struct dwo_file *dwo_file;
13943
13944 gdb_assert (!per_cu->is_debug_types);
13945 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13946 gdb_assert (per_cu->cu != NULL);
13947
13948 dwo_unit = per_cu->cu->dwo_unit;
13949 gdb_assert (dwo_unit != NULL);
13950
13951 dwo_file = dwo_unit->dwo_file;
13952 if (dwo_file->tus != NULL)
13953 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13954 }
13955
13956 /* Free all resources associated with DWO_FILE.
13957 Close the DWO file and munmap the sections.
13958 All memory should be on the objfile obstack. */
13959
13960 static void
13961 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13962 {
13963
13964 /* Note: dbfd is NULL for virtual DWO files. */
13965 gdb_bfd_unref (dwo_file->dbfd);
13966
13967 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13968 }
13969
13970 /* Wrapper for free_dwo_file for use in cleanups. */
13971
13972 static void
13973 free_dwo_file_cleanup (void *arg)
13974 {
13975 struct free_dwo_file_cleanup_data *data
13976 = (struct free_dwo_file_cleanup_data *) arg;
13977 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13978
13979 free_dwo_file (data->dwo_file, objfile);
13980
13981 xfree (data);
13982 }
13983
13984 /* Traversal function for free_dwo_files. */
13985
13986 static int
13987 free_dwo_file_from_slot (void **slot, void *info)
13988 {
13989 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13990 struct objfile *objfile = (struct objfile *) info;
13991
13992 free_dwo_file (dwo_file, objfile);
13993
13994 return 1;
13995 }
13996
13997 /* Free all resources associated with DWO_FILES. */
13998
13999 static void
14000 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
14001 {
14002 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
14003 }
14004 \f
14005 /* Read in various DIEs. */
14006
14007 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
14008 Inherit only the children of the DW_AT_abstract_origin DIE not being
14009 already referenced by DW_AT_abstract_origin from the children of the
14010 current DIE. */
14011
14012 static void
14013 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
14014 {
14015 struct die_info *child_die;
14016 sect_offset *offsetp;
14017 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
14018 struct die_info *origin_die;
14019 /* Iterator of the ORIGIN_DIE children. */
14020 struct die_info *origin_child_die;
14021 struct attribute *attr;
14022 struct dwarf2_cu *origin_cu;
14023 struct pending **origin_previous_list_in_scope;
14024
14025 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14026 if (!attr)
14027 return;
14028
14029 /* Note that following die references may follow to a die in a
14030 different cu. */
14031
14032 origin_cu = cu;
14033 origin_die = follow_die_ref (die, attr, &origin_cu);
14034
14035 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
14036 symbols in. */
14037 origin_previous_list_in_scope = origin_cu->list_in_scope;
14038 origin_cu->list_in_scope = cu->list_in_scope;
14039
14040 if (die->tag != origin_die->tag
14041 && !(die->tag == DW_TAG_inlined_subroutine
14042 && origin_die->tag == DW_TAG_subprogram))
14043 complaint (&symfile_complaints,
14044 _("DIE %s and its abstract origin %s have different tags"),
14045 sect_offset_str (die->sect_off),
14046 sect_offset_str (origin_die->sect_off));
14047
14048 std::vector<sect_offset> offsets;
14049
14050 for (child_die = die->child;
14051 child_die && child_die->tag;
14052 child_die = sibling_die (child_die))
14053 {
14054 struct die_info *child_origin_die;
14055 struct dwarf2_cu *child_origin_cu;
14056
14057 /* We are trying to process concrete instance entries:
14058 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
14059 it's not relevant to our analysis here. i.e. detecting DIEs that are
14060 present in the abstract instance but not referenced in the concrete
14061 one. */
14062 if (child_die->tag == DW_TAG_call_site
14063 || child_die->tag == DW_TAG_GNU_call_site)
14064 continue;
14065
14066 /* For each CHILD_DIE, find the corresponding child of
14067 ORIGIN_DIE. If there is more than one layer of
14068 DW_AT_abstract_origin, follow them all; there shouldn't be,
14069 but GCC versions at least through 4.4 generate this (GCC PR
14070 40573). */
14071 child_origin_die = child_die;
14072 child_origin_cu = cu;
14073 while (1)
14074 {
14075 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
14076 child_origin_cu);
14077 if (attr == NULL)
14078 break;
14079 child_origin_die = follow_die_ref (child_origin_die, attr,
14080 &child_origin_cu);
14081 }
14082
14083 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
14084 counterpart may exist. */
14085 if (child_origin_die != child_die)
14086 {
14087 if (child_die->tag != child_origin_die->tag
14088 && !(child_die->tag == DW_TAG_inlined_subroutine
14089 && child_origin_die->tag == DW_TAG_subprogram))
14090 complaint (&symfile_complaints,
14091 _("Child DIE %s and its abstract origin %s have "
14092 "different tags"),
14093 sect_offset_str (child_die->sect_off),
14094 sect_offset_str (child_origin_die->sect_off));
14095 if (child_origin_die->parent != origin_die)
14096 complaint (&symfile_complaints,
14097 _("Child DIE %s and its abstract origin %s have "
14098 "different parents"),
14099 sect_offset_str (child_die->sect_off),
14100 sect_offset_str (child_origin_die->sect_off));
14101 else
14102 offsets.push_back (child_origin_die->sect_off);
14103 }
14104 }
14105 std::sort (offsets.begin (), offsets.end ());
14106 sect_offset *offsets_end = offsets.data () + offsets.size ();
14107 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
14108 if (offsetp[-1] == *offsetp)
14109 complaint (&symfile_complaints,
14110 _("Multiple children of DIE %s refer "
14111 "to DIE %s as their abstract origin"),
14112 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
14113
14114 offsetp = offsets.data ();
14115 origin_child_die = origin_die->child;
14116 while (origin_child_die && origin_child_die->tag)
14117 {
14118 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
14119 while (offsetp < offsets_end
14120 && *offsetp < origin_child_die->sect_off)
14121 offsetp++;
14122 if (offsetp >= offsets_end
14123 || *offsetp > origin_child_die->sect_off)
14124 {
14125 /* Found that ORIGIN_CHILD_DIE is really not referenced.
14126 Check whether we're already processing ORIGIN_CHILD_DIE.
14127 This can happen with mutually referenced abstract_origins.
14128 PR 16581. */
14129 if (!origin_child_die->in_process)
14130 process_die (origin_child_die, origin_cu);
14131 }
14132 origin_child_die = sibling_die (origin_child_die);
14133 }
14134 origin_cu->list_in_scope = origin_previous_list_in_scope;
14135 }
14136
14137 static void
14138 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
14139 {
14140 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14142 struct context_stack *newobj;
14143 CORE_ADDR lowpc;
14144 CORE_ADDR highpc;
14145 struct die_info *child_die;
14146 struct attribute *attr, *call_line, *call_file;
14147 const char *name;
14148 CORE_ADDR baseaddr;
14149 struct block *block;
14150 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14151 std::vector<struct symbol *> template_args;
14152 struct template_symbol *templ_func = NULL;
14153
14154 if (inlined_func)
14155 {
14156 /* If we do not have call site information, we can't show the
14157 caller of this inlined function. That's too confusing, so
14158 only use the scope for local variables. */
14159 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
14160 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
14161 if (call_line == NULL || call_file == NULL)
14162 {
14163 read_lexical_block_scope (die, cu);
14164 return;
14165 }
14166 }
14167
14168 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14169
14170 name = dwarf2_name (die, cu);
14171
14172 /* Ignore functions with missing or empty names. These are actually
14173 illegal according to the DWARF standard. */
14174 if (name == NULL)
14175 {
14176 complaint (&symfile_complaints,
14177 _("missing name for subprogram DIE at %s"),
14178 sect_offset_str (die->sect_off));
14179 return;
14180 }
14181
14182 /* Ignore functions with missing or invalid low and high pc attributes. */
14183 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
14184 <= PC_BOUNDS_INVALID)
14185 {
14186 attr = dwarf2_attr (die, DW_AT_external, cu);
14187 if (!attr || !DW_UNSND (attr))
14188 complaint (&symfile_complaints,
14189 _("cannot get low and high bounds "
14190 "for subprogram DIE at %s"),
14191 sect_offset_str (die->sect_off));
14192 return;
14193 }
14194
14195 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14196 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14197
14198 /* If we have any template arguments, then we must allocate a
14199 different sort of symbol. */
14200 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
14201 {
14202 if (child_die->tag == DW_TAG_template_type_param
14203 || child_die->tag == DW_TAG_template_value_param)
14204 {
14205 templ_func = allocate_template_symbol (objfile);
14206 templ_func->subclass = SYMBOL_TEMPLATE;
14207 break;
14208 }
14209 }
14210
14211 newobj = push_context (0, lowpc);
14212 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
14213 (struct symbol *) templ_func);
14214
14215 /* If there is a location expression for DW_AT_frame_base, record
14216 it. */
14217 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
14218 if (attr)
14219 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
14220
14221 /* If there is a location for the static link, record it. */
14222 newobj->static_link = NULL;
14223 attr = dwarf2_attr (die, DW_AT_static_link, cu);
14224 if (attr)
14225 {
14226 newobj->static_link
14227 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
14228 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
14229 }
14230
14231 cu->list_in_scope = &local_symbols;
14232
14233 if (die->child != NULL)
14234 {
14235 child_die = die->child;
14236 while (child_die && child_die->tag)
14237 {
14238 if (child_die->tag == DW_TAG_template_type_param
14239 || child_die->tag == DW_TAG_template_value_param)
14240 {
14241 struct symbol *arg = new_symbol (child_die, NULL, cu);
14242
14243 if (arg != NULL)
14244 template_args.push_back (arg);
14245 }
14246 else
14247 process_die (child_die, cu);
14248 child_die = sibling_die (child_die);
14249 }
14250 }
14251
14252 inherit_abstract_dies (die, cu);
14253
14254 /* If we have a DW_AT_specification, we might need to import using
14255 directives from the context of the specification DIE. See the
14256 comment in determine_prefix. */
14257 if (cu->language == language_cplus
14258 && dwarf2_attr (die, DW_AT_specification, cu))
14259 {
14260 struct dwarf2_cu *spec_cu = cu;
14261 struct die_info *spec_die = die_specification (die, &spec_cu);
14262
14263 while (spec_die)
14264 {
14265 child_die = spec_die->child;
14266 while (child_die && child_die->tag)
14267 {
14268 if (child_die->tag == DW_TAG_imported_module)
14269 process_die (child_die, spec_cu);
14270 child_die = sibling_die (child_die);
14271 }
14272
14273 /* In some cases, GCC generates specification DIEs that
14274 themselves contain DW_AT_specification attributes. */
14275 spec_die = die_specification (spec_die, &spec_cu);
14276 }
14277 }
14278
14279 newobj = pop_context ();
14280 /* Make a block for the local symbols within. */
14281 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
14282 newobj->static_link, lowpc, highpc);
14283
14284 /* For C++, set the block's scope. */
14285 if ((cu->language == language_cplus
14286 || cu->language == language_fortran
14287 || cu->language == language_d
14288 || cu->language == language_rust)
14289 && cu->processing_has_namespace_info)
14290 block_set_scope (block, determine_prefix (die, cu),
14291 &objfile->objfile_obstack);
14292
14293 /* If we have address ranges, record them. */
14294 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14295
14296 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
14297
14298 /* Attach template arguments to function. */
14299 if (!template_args.empty ())
14300 {
14301 gdb_assert (templ_func != NULL);
14302
14303 templ_func->n_template_arguments = template_args.size ();
14304 templ_func->template_arguments
14305 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
14306 templ_func->n_template_arguments);
14307 memcpy (templ_func->template_arguments,
14308 template_args.data (),
14309 (templ_func->n_template_arguments * sizeof (struct symbol *)));
14310 }
14311
14312 /* In C++, we can have functions nested inside functions (e.g., when
14313 a function declares a class that has methods). This means that
14314 when we finish processing a function scope, we may need to go
14315 back to building a containing block's symbol lists. */
14316 local_symbols = newobj->locals;
14317 local_using_directives = newobj->local_using_directives;
14318
14319 /* If we've finished processing a top-level function, subsequent
14320 symbols go in the file symbol list. */
14321 if (outermost_context_p ())
14322 cu->list_in_scope = &file_symbols;
14323 }
14324
14325 /* Process all the DIES contained within a lexical block scope. Start
14326 a new scope, process the dies, and then close the scope. */
14327
14328 static void
14329 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
14330 {
14331 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14332 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14333 struct context_stack *newobj;
14334 CORE_ADDR lowpc, highpc;
14335 struct die_info *child_die;
14336 CORE_ADDR baseaddr;
14337
14338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14339
14340 /* Ignore blocks with missing or invalid low and high pc attributes. */
14341 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
14342 as multiple lexical blocks? Handling children in a sane way would
14343 be nasty. Might be easier to properly extend generic blocks to
14344 describe ranges. */
14345 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
14346 {
14347 case PC_BOUNDS_NOT_PRESENT:
14348 /* DW_TAG_lexical_block has no attributes, process its children as if
14349 there was no wrapping by that DW_TAG_lexical_block.
14350 GCC does no longer produces such DWARF since GCC r224161. */
14351 for (child_die = die->child;
14352 child_die != NULL && child_die->tag;
14353 child_die = sibling_die (child_die))
14354 process_die (child_die, cu);
14355 return;
14356 case PC_BOUNDS_INVALID:
14357 return;
14358 }
14359 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14360 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14361
14362 push_context (0, lowpc);
14363 if (die->child != NULL)
14364 {
14365 child_die = die->child;
14366 while (child_die && child_die->tag)
14367 {
14368 process_die (child_die, cu);
14369 child_die = sibling_die (child_die);
14370 }
14371 }
14372 inherit_abstract_dies (die, cu);
14373 newobj = pop_context ();
14374
14375 if (local_symbols != NULL || local_using_directives != NULL)
14376 {
14377 struct block *block
14378 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
14379 newobj->start_addr, highpc);
14380
14381 /* Note that recording ranges after traversing children, as we
14382 do here, means that recording a parent's ranges entails
14383 walking across all its children's ranges as they appear in
14384 the address map, which is quadratic behavior.
14385
14386 It would be nicer to record the parent's ranges before
14387 traversing its children, simply overriding whatever you find
14388 there. But since we don't even decide whether to create a
14389 block until after we've traversed its children, that's hard
14390 to do. */
14391 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14392 }
14393 local_symbols = newobj->locals;
14394 local_using_directives = newobj->local_using_directives;
14395 }
14396
14397 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14398
14399 static void
14400 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14401 {
14402 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14403 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14404 CORE_ADDR pc, baseaddr;
14405 struct attribute *attr;
14406 struct call_site *call_site, call_site_local;
14407 void **slot;
14408 int nparams;
14409 struct die_info *child_die;
14410
14411 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14412
14413 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14414 if (attr == NULL)
14415 {
14416 /* This was a pre-DWARF-5 GNU extension alias
14417 for DW_AT_call_return_pc. */
14418 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14419 }
14420 if (!attr)
14421 {
14422 complaint (&symfile_complaints,
14423 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14424 "DIE %s [in module %s]"),
14425 sect_offset_str (die->sect_off), objfile_name (objfile));
14426 return;
14427 }
14428 pc = attr_value_as_address (attr) + baseaddr;
14429 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14430
14431 if (cu->call_site_htab == NULL)
14432 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14433 NULL, &objfile->objfile_obstack,
14434 hashtab_obstack_allocate, NULL);
14435 call_site_local.pc = pc;
14436 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14437 if (*slot != NULL)
14438 {
14439 complaint (&symfile_complaints,
14440 _("Duplicate PC %s for DW_TAG_call_site "
14441 "DIE %s [in module %s]"),
14442 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14443 objfile_name (objfile));
14444 return;
14445 }
14446
14447 /* Count parameters at the caller. */
14448
14449 nparams = 0;
14450 for (child_die = die->child; child_die && child_die->tag;
14451 child_die = sibling_die (child_die))
14452 {
14453 if (child_die->tag != DW_TAG_call_site_parameter
14454 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14455 {
14456 complaint (&symfile_complaints,
14457 _("Tag %d is not DW_TAG_call_site_parameter in "
14458 "DW_TAG_call_site child DIE %s [in module %s]"),
14459 child_die->tag, sect_offset_str (child_die->sect_off),
14460 objfile_name (objfile));
14461 continue;
14462 }
14463
14464 nparams++;
14465 }
14466
14467 call_site
14468 = ((struct call_site *)
14469 obstack_alloc (&objfile->objfile_obstack,
14470 sizeof (*call_site)
14471 + (sizeof (*call_site->parameter) * (nparams - 1))));
14472 *slot = call_site;
14473 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14474 call_site->pc = pc;
14475
14476 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14477 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14478 {
14479 struct die_info *func_die;
14480
14481 /* Skip also over DW_TAG_inlined_subroutine. */
14482 for (func_die = die->parent;
14483 func_die && func_die->tag != DW_TAG_subprogram
14484 && func_die->tag != DW_TAG_subroutine_type;
14485 func_die = func_die->parent);
14486
14487 /* DW_AT_call_all_calls is a superset
14488 of DW_AT_call_all_tail_calls. */
14489 if (func_die
14490 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14491 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14492 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14493 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14494 {
14495 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14496 not complete. But keep CALL_SITE for look ups via call_site_htab,
14497 both the initial caller containing the real return address PC and
14498 the final callee containing the current PC of a chain of tail
14499 calls do not need to have the tail call list complete. But any
14500 function candidate for a virtual tail call frame searched via
14501 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14502 determined unambiguously. */
14503 }
14504 else
14505 {
14506 struct type *func_type = NULL;
14507
14508 if (func_die)
14509 func_type = get_die_type (func_die, cu);
14510 if (func_type != NULL)
14511 {
14512 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14513
14514 /* Enlist this call site to the function. */
14515 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14516 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14517 }
14518 else
14519 complaint (&symfile_complaints,
14520 _("Cannot find function owning DW_TAG_call_site "
14521 "DIE %s [in module %s]"),
14522 sect_offset_str (die->sect_off), objfile_name (objfile));
14523 }
14524 }
14525
14526 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14527 if (attr == NULL)
14528 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14529 if (attr == NULL)
14530 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14531 if (attr == NULL)
14532 {
14533 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14534 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14535 }
14536 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14537 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14538 /* Keep NULL DWARF_BLOCK. */;
14539 else if (attr_form_is_block (attr))
14540 {
14541 struct dwarf2_locexpr_baton *dlbaton;
14542
14543 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14544 dlbaton->data = DW_BLOCK (attr)->data;
14545 dlbaton->size = DW_BLOCK (attr)->size;
14546 dlbaton->per_cu = cu->per_cu;
14547
14548 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14549 }
14550 else if (attr_form_is_ref (attr))
14551 {
14552 struct dwarf2_cu *target_cu = cu;
14553 struct die_info *target_die;
14554
14555 target_die = follow_die_ref (die, attr, &target_cu);
14556 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14557 if (die_is_declaration (target_die, target_cu))
14558 {
14559 const char *target_physname;
14560
14561 /* Prefer the mangled name; otherwise compute the demangled one. */
14562 target_physname = dw2_linkage_name (target_die, target_cu);
14563 if (target_physname == NULL)
14564 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14565 if (target_physname == NULL)
14566 complaint (&symfile_complaints,
14567 _("DW_AT_call_target target DIE has invalid "
14568 "physname, for referencing DIE %s [in module %s]"),
14569 sect_offset_str (die->sect_off), objfile_name (objfile));
14570 else
14571 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14572 }
14573 else
14574 {
14575 CORE_ADDR lowpc;
14576
14577 /* DW_AT_entry_pc should be preferred. */
14578 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14579 <= PC_BOUNDS_INVALID)
14580 complaint (&symfile_complaints,
14581 _("DW_AT_call_target target DIE has invalid "
14582 "low pc, for referencing DIE %s [in module %s]"),
14583 sect_offset_str (die->sect_off), objfile_name (objfile));
14584 else
14585 {
14586 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14587 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14588 }
14589 }
14590 }
14591 else
14592 complaint (&symfile_complaints,
14593 _("DW_TAG_call_site DW_AT_call_target is neither "
14594 "block nor reference, for DIE %s [in module %s]"),
14595 sect_offset_str (die->sect_off), objfile_name (objfile));
14596
14597 call_site->per_cu = cu->per_cu;
14598
14599 for (child_die = die->child;
14600 child_die && child_die->tag;
14601 child_die = sibling_die (child_die))
14602 {
14603 struct call_site_parameter *parameter;
14604 struct attribute *loc, *origin;
14605
14606 if (child_die->tag != DW_TAG_call_site_parameter
14607 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14608 {
14609 /* Already printed the complaint above. */
14610 continue;
14611 }
14612
14613 gdb_assert (call_site->parameter_count < nparams);
14614 parameter = &call_site->parameter[call_site->parameter_count];
14615
14616 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14617 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14618 register is contained in DW_AT_call_value. */
14619
14620 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14621 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14622 if (origin == NULL)
14623 {
14624 /* This was a pre-DWARF-5 GNU extension alias
14625 for DW_AT_call_parameter. */
14626 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14627 }
14628 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14629 {
14630 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14631
14632 sect_offset sect_off
14633 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14634 if (!offset_in_cu_p (&cu->header, sect_off))
14635 {
14636 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14637 binding can be done only inside one CU. Such referenced DIE
14638 therefore cannot be even moved to DW_TAG_partial_unit. */
14639 complaint (&symfile_complaints,
14640 _("DW_AT_call_parameter offset is not in CU for "
14641 "DW_TAG_call_site child DIE %s [in module %s]"),
14642 sect_offset_str (child_die->sect_off),
14643 objfile_name (objfile));
14644 continue;
14645 }
14646 parameter->u.param_cu_off
14647 = (cu_offset) (sect_off - cu->header.sect_off);
14648 }
14649 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14650 {
14651 complaint (&symfile_complaints,
14652 _("No DW_FORM_block* DW_AT_location for "
14653 "DW_TAG_call_site child DIE %s [in module %s]"),
14654 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14655 continue;
14656 }
14657 else
14658 {
14659 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14660 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14661 if (parameter->u.dwarf_reg != -1)
14662 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14663 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14664 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14665 &parameter->u.fb_offset))
14666 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14667 else
14668 {
14669 complaint (&symfile_complaints,
14670 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14671 "for DW_FORM_block* DW_AT_location is supported for "
14672 "DW_TAG_call_site child DIE %s "
14673 "[in module %s]"),
14674 sect_offset_str (child_die->sect_off),
14675 objfile_name (objfile));
14676 continue;
14677 }
14678 }
14679
14680 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14681 if (attr == NULL)
14682 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14683 if (!attr_form_is_block (attr))
14684 {
14685 complaint (&symfile_complaints,
14686 _("No DW_FORM_block* DW_AT_call_value for "
14687 "DW_TAG_call_site child DIE %s [in module %s]"),
14688 sect_offset_str (child_die->sect_off),
14689 objfile_name (objfile));
14690 continue;
14691 }
14692 parameter->value = DW_BLOCK (attr)->data;
14693 parameter->value_size = DW_BLOCK (attr)->size;
14694
14695 /* Parameters are not pre-cleared by memset above. */
14696 parameter->data_value = NULL;
14697 parameter->data_value_size = 0;
14698 call_site->parameter_count++;
14699
14700 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14701 if (attr == NULL)
14702 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14703 if (attr)
14704 {
14705 if (!attr_form_is_block (attr))
14706 complaint (&symfile_complaints,
14707 _("No DW_FORM_block* DW_AT_call_data_value for "
14708 "DW_TAG_call_site child DIE %s [in module %s]"),
14709 sect_offset_str (child_die->sect_off),
14710 objfile_name (objfile));
14711 else
14712 {
14713 parameter->data_value = DW_BLOCK (attr)->data;
14714 parameter->data_value_size = DW_BLOCK (attr)->size;
14715 }
14716 }
14717 }
14718 }
14719
14720 /* Helper function for read_variable. If DIE represents a virtual
14721 table, then return the type of the concrete object that is
14722 associated with the virtual table. Otherwise, return NULL. */
14723
14724 static struct type *
14725 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14726 {
14727 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14728 if (attr == NULL)
14729 return NULL;
14730
14731 /* Find the type DIE. */
14732 struct die_info *type_die = NULL;
14733 struct dwarf2_cu *type_cu = cu;
14734
14735 if (attr_form_is_ref (attr))
14736 type_die = follow_die_ref (die, attr, &type_cu);
14737 if (type_die == NULL)
14738 return NULL;
14739
14740 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14741 return NULL;
14742 return die_containing_type (type_die, type_cu);
14743 }
14744
14745 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14746
14747 static void
14748 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14749 {
14750 struct rust_vtable_symbol *storage = NULL;
14751
14752 if (cu->language == language_rust)
14753 {
14754 struct type *containing_type = rust_containing_type (die, cu);
14755
14756 if (containing_type != NULL)
14757 {
14758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14759
14760 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14761 struct rust_vtable_symbol);
14762 initialize_objfile_symbol (storage);
14763 storage->concrete_type = containing_type;
14764 storage->subclass = SYMBOL_RUST_VTABLE;
14765 }
14766 }
14767
14768 new_symbol (die, NULL, cu, storage);
14769 }
14770
14771 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14772 reading .debug_rnglists.
14773 Callback's type should be:
14774 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14775 Return true if the attributes are present and valid, otherwise,
14776 return false. */
14777
14778 template <typename Callback>
14779 static bool
14780 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14781 Callback &&callback)
14782 {
14783 struct dwarf2_per_objfile *dwarf2_per_objfile
14784 = cu->per_cu->dwarf2_per_objfile;
14785 struct objfile *objfile = dwarf2_per_objfile->objfile;
14786 bfd *obfd = objfile->obfd;
14787 /* Base address selection entry. */
14788 CORE_ADDR base;
14789 int found_base;
14790 const gdb_byte *buffer;
14791 CORE_ADDR baseaddr;
14792 bool overflow = false;
14793
14794 found_base = cu->base_known;
14795 base = cu->base_address;
14796
14797 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14798 if (offset >= dwarf2_per_objfile->rnglists.size)
14799 {
14800 complaint (&symfile_complaints,
14801 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14802 offset);
14803 return false;
14804 }
14805 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14806
14807 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14808
14809 while (1)
14810 {
14811 /* Initialize it due to a false compiler warning. */
14812 CORE_ADDR range_beginning = 0, range_end = 0;
14813 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14814 + dwarf2_per_objfile->rnglists.size);
14815 unsigned int bytes_read;
14816
14817 if (buffer == buf_end)
14818 {
14819 overflow = true;
14820 break;
14821 }
14822 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14823 switch (rlet)
14824 {
14825 case DW_RLE_end_of_list:
14826 break;
14827 case DW_RLE_base_address:
14828 if (buffer + cu->header.addr_size > buf_end)
14829 {
14830 overflow = true;
14831 break;
14832 }
14833 base = read_address (obfd, buffer, cu, &bytes_read);
14834 found_base = 1;
14835 buffer += bytes_read;
14836 break;
14837 case DW_RLE_start_length:
14838 if (buffer + cu->header.addr_size > buf_end)
14839 {
14840 overflow = true;
14841 break;
14842 }
14843 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14844 buffer += bytes_read;
14845 range_end = (range_beginning
14846 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14847 buffer += bytes_read;
14848 if (buffer > buf_end)
14849 {
14850 overflow = true;
14851 break;
14852 }
14853 break;
14854 case DW_RLE_offset_pair:
14855 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14856 buffer += bytes_read;
14857 if (buffer > buf_end)
14858 {
14859 overflow = true;
14860 break;
14861 }
14862 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14863 buffer += bytes_read;
14864 if (buffer > buf_end)
14865 {
14866 overflow = true;
14867 break;
14868 }
14869 break;
14870 case DW_RLE_start_end:
14871 if (buffer + 2 * cu->header.addr_size > buf_end)
14872 {
14873 overflow = true;
14874 break;
14875 }
14876 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14877 buffer += bytes_read;
14878 range_end = read_address (obfd, buffer, cu, &bytes_read);
14879 buffer += bytes_read;
14880 break;
14881 default:
14882 complaint (&symfile_complaints,
14883 _("Invalid .debug_rnglists data (no base address)"));
14884 return false;
14885 }
14886 if (rlet == DW_RLE_end_of_list || overflow)
14887 break;
14888 if (rlet == DW_RLE_base_address)
14889 continue;
14890
14891 if (!found_base)
14892 {
14893 /* We have no valid base address for the ranges
14894 data. */
14895 complaint (&symfile_complaints,
14896 _("Invalid .debug_rnglists data (no base address)"));
14897 return false;
14898 }
14899
14900 if (range_beginning > range_end)
14901 {
14902 /* Inverted range entries are invalid. */
14903 complaint (&symfile_complaints,
14904 _("Invalid .debug_rnglists data (inverted range)"));
14905 return false;
14906 }
14907
14908 /* Empty range entries have no effect. */
14909 if (range_beginning == range_end)
14910 continue;
14911
14912 range_beginning += base;
14913 range_end += base;
14914
14915 /* A not-uncommon case of bad debug info.
14916 Don't pollute the addrmap with bad data. */
14917 if (range_beginning + baseaddr == 0
14918 && !dwarf2_per_objfile->has_section_at_zero)
14919 {
14920 complaint (&symfile_complaints,
14921 _(".debug_rnglists entry has start address of zero"
14922 " [in module %s]"), objfile_name (objfile));
14923 continue;
14924 }
14925
14926 callback (range_beginning, range_end);
14927 }
14928
14929 if (overflow)
14930 {
14931 complaint (&symfile_complaints,
14932 _("Offset %d is not terminated "
14933 "for DW_AT_ranges attribute"),
14934 offset);
14935 return false;
14936 }
14937
14938 return true;
14939 }
14940
14941 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14942 Callback's type should be:
14943 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14944 Return 1 if the attributes are present and valid, otherwise, return 0. */
14945
14946 template <typename Callback>
14947 static int
14948 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14949 Callback &&callback)
14950 {
14951 struct dwarf2_per_objfile *dwarf2_per_objfile
14952 = cu->per_cu->dwarf2_per_objfile;
14953 struct objfile *objfile = dwarf2_per_objfile->objfile;
14954 struct comp_unit_head *cu_header = &cu->header;
14955 bfd *obfd = objfile->obfd;
14956 unsigned int addr_size = cu_header->addr_size;
14957 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14958 /* Base address selection entry. */
14959 CORE_ADDR base;
14960 int found_base;
14961 unsigned int dummy;
14962 const gdb_byte *buffer;
14963 CORE_ADDR baseaddr;
14964
14965 if (cu_header->version >= 5)
14966 return dwarf2_rnglists_process (offset, cu, callback);
14967
14968 found_base = cu->base_known;
14969 base = cu->base_address;
14970
14971 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14972 if (offset >= dwarf2_per_objfile->ranges.size)
14973 {
14974 complaint (&symfile_complaints,
14975 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14976 offset);
14977 return 0;
14978 }
14979 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14980
14981 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14982
14983 while (1)
14984 {
14985 CORE_ADDR range_beginning, range_end;
14986
14987 range_beginning = read_address (obfd, buffer, cu, &dummy);
14988 buffer += addr_size;
14989 range_end = read_address (obfd, buffer, cu, &dummy);
14990 buffer += addr_size;
14991 offset += 2 * addr_size;
14992
14993 /* An end of list marker is a pair of zero addresses. */
14994 if (range_beginning == 0 && range_end == 0)
14995 /* Found the end of list entry. */
14996 break;
14997
14998 /* Each base address selection entry is a pair of 2 values.
14999 The first is the largest possible address, the second is
15000 the base address. Check for a base address here. */
15001 if ((range_beginning & mask) == mask)
15002 {
15003 /* If we found the largest possible address, then we already
15004 have the base address in range_end. */
15005 base = range_end;
15006 found_base = 1;
15007 continue;
15008 }
15009
15010 if (!found_base)
15011 {
15012 /* We have no valid base address for the ranges
15013 data. */
15014 complaint (&symfile_complaints,
15015 _("Invalid .debug_ranges data (no base address)"));
15016 return 0;
15017 }
15018
15019 if (range_beginning > range_end)
15020 {
15021 /* Inverted range entries are invalid. */
15022 complaint (&symfile_complaints,
15023 _("Invalid .debug_ranges data (inverted range)"));
15024 return 0;
15025 }
15026
15027 /* Empty range entries have no effect. */
15028 if (range_beginning == range_end)
15029 continue;
15030
15031 range_beginning += base;
15032 range_end += base;
15033
15034 /* A not-uncommon case of bad debug info.
15035 Don't pollute the addrmap with bad data. */
15036 if (range_beginning + baseaddr == 0
15037 && !dwarf2_per_objfile->has_section_at_zero)
15038 {
15039 complaint (&symfile_complaints,
15040 _(".debug_ranges entry has start address of zero"
15041 " [in module %s]"), objfile_name (objfile));
15042 continue;
15043 }
15044
15045 callback (range_beginning, range_end);
15046 }
15047
15048 return 1;
15049 }
15050
15051 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
15052 Return 1 if the attributes are present and valid, otherwise, return 0.
15053 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
15054
15055 static int
15056 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
15057 CORE_ADDR *high_return, struct dwarf2_cu *cu,
15058 struct partial_symtab *ranges_pst)
15059 {
15060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15062 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
15063 SECT_OFF_TEXT (objfile));
15064 int low_set = 0;
15065 CORE_ADDR low = 0;
15066 CORE_ADDR high = 0;
15067 int retval;
15068
15069 retval = dwarf2_ranges_process (offset, cu,
15070 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
15071 {
15072 if (ranges_pst != NULL)
15073 {
15074 CORE_ADDR lowpc;
15075 CORE_ADDR highpc;
15076
15077 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
15078 range_beginning + baseaddr);
15079 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
15080 range_end + baseaddr);
15081 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
15082 ranges_pst);
15083 }
15084
15085 /* FIXME: This is recording everything as a low-high
15086 segment of consecutive addresses. We should have a
15087 data structure for discontiguous block ranges
15088 instead. */
15089 if (! low_set)
15090 {
15091 low = range_beginning;
15092 high = range_end;
15093 low_set = 1;
15094 }
15095 else
15096 {
15097 if (range_beginning < low)
15098 low = range_beginning;
15099 if (range_end > high)
15100 high = range_end;
15101 }
15102 });
15103 if (!retval)
15104 return 0;
15105
15106 if (! low_set)
15107 /* If the first entry is an end-of-list marker, the range
15108 describes an empty scope, i.e. no instructions. */
15109 return 0;
15110
15111 if (low_return)
15112 *low_return = low;
15113 if (high_return)
15114 *high_return = high;
15115 return 1;
15116 }
15117
15118 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
15119 definition for the return value. *LOWPC and *HIGHPC are set iff
15120 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
15121
15122 static enum pc_bounds_kind
15123 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
15124 CORE_ADDR *highpc, struct dwarf2_cu *cu,
15125 struct partial_symtab *pst)
15126 {
15127 struct dwarf2_per_objfile *dwarf2_per_objfile
15128 = cu->per_cu->dwarf2_per_objfile;
15129 struct attribute *attr;
15130 struct attribute *attr_high;
15131 CORE_ADDR low = 0;
15132 CORE_ADDR high = 0;
15133 enum pc_bounds_kind ret;
15134
15135 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
15136 if (attr_high)
15137 {
15138 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15139 if (attr)
15140 {
15141 low = attr_value_as_address (attr);
15142 high = attr_value_as_address (attr_high);
15143 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
15144 high += low;
15145 }
15146 else
15147 /* Found high w/o low attribute. */
15148 return PC_BOUNDS_INVALID;
15149
15150 /* Found consecutive range of addresses. */
15151 ret = PC_BOUNDS_HIGH_LOW;
15152 }
15153 else
15154 {
15155 attr = dwarf2_attr (die, DW_AT_ranges, cu);
15156 if (attr != NULL)
15157 {
15158 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
15159 We take advantage of the fact that DW_AT_ranges does not appear
15160 in DW_TAG_compile_unit of DWO files. */
15161 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15162 unsigned int ranges_offset = (DW_UNSND (attr)
15163 + (need_ranges_base
15164 ? cu->ranges_base
15165 : 0));
15166
15167 /* Value of the DW_AT_ranges attribute is the offset in the
15168 .debug_ranges section. */
15169 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
15170 return PC_BOUNDS_INVALID;
15171 /* Found discontinuous range of addresses. */
15172 ret = PC_BOUNDS_RANGES;
15173 }
15174 else
15175 return PC_BOUNDS_NOT_PRESENT;
15176 }
15177
15178 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
15179 if (high <= low)
15180 return PC_BOUNDS_INVALID;
15181
15182 /* When using the GNU linker, .gnu.linkonce. sections are used to
15183 eliminate duplicate copies of functions and vtables and such.
15184 The linker will arbitrarily choose one and discard the others.
15185 The AT_*_pc values for such functions refer to local labels in
15186 these sections. If the section from that file was discarded, the
15187 labels are not in the output, so the relocs get a value of 0.
15188 If this is a discarded function, mark the pc bounds as invalid,
15189 so that GDB will ignore it. */
15190 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
15191 return PC_BOUNDS_INVALID;
15192
15193 *lowpc = low;
15194 if (highpc)
15195 *highpc = high;
15196 return ret;
15197 }
15198
15199 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
15200 its low and high PC addresses. Do nothing if these addresses could not
15201 be determined. Otherwise, set LOWPC to the low address if it is smaller,
15202 and HIGHPC to the high address if greater than HIGHPC. */
15203
15204 static void
15205 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
15206 CORE_ADDR *lowpc, CORE_ADDR *highpc,
15207 struct dwarf2_cu *cu)
15208 {
15209 CORE_ADDR low, high;
15210 struct die_info *child = die->child;
15211
15212 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
15213 {
15214 *lowpc = std::min (*lowpc, low);
15215 *highpc = std::max (*highpc, high);
15216 }
15217
15218 /* If the language does not allow nested subprograms (either inside
15219 subprograms or lexical blocks), we're done. */
15220 if (cu->language != language_ada)
15221 return;
15222
15223 /* Check all the children of the given DIE. If it contains nested
15224 subprograms, then check their pc bounds. Likewise, we need to
15225 check lexical blocks as well, as they may also contain subprogram
15226 definitions. */
15227 while (child && child->tag)
15228 {
15229 if (child->tag == DW_TAG_subprogram
15230 || child->tag == DW_TAG_lexical_block)
15231 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
15232 child = sibling_die (child);
15233 }
15234 }
15235
15236 /* Get the low and high pc's represented by the scope DIE, and store
15237 them in *LOWPC and *HIGHPC. If the correct values can't be
15238 determined, set *LOWPC to -1 and *HIGHPC to 0. */
15239
15240 static void
15241 get_scope_pc_bounds (struct die_info *die,
15242 CORE_ADDR *lowpc, CORE_ADDR *highpc,
15243 struct dwarf2_cu *cu)
15244 {
15245 CORE_ADDR best_low = (CORE_ADDR) -1;
15246 CORE_ADDR best_high = (CORE_ADDR) 0;
15247 CORE_ADDR current_low, current_high;
15248
15249 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
15250 >= PC_BOUNDS_RANGES)
15251 {
15252 best_low = current_low;
15253 best_high = current_high;
15254 }
15255 else
15256 {
15257 struct die_info *child = die->child;
15258
15259 while (child && child->tag)
15260 {
15261 switch (child->tag) {
15262 case DW_TAG_subprogram:
15263 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
15264 break;
15265 case DW_TAG_namespace:
15266 case DW_TAG_module:
15267 /* FIXME: carlton/2004-01-16: Should we do this for
15268 DW_TAG_class_type/DW_TAG_structure_type, too? I think
15269 that current GCC's always emit the DIEs corresponding
15270 to definitions of methods of classes as children of a
15271 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
15272 the DIEs giving the declarations, which could be
15273 anywhere). But I don't see any reason why the
15274 standards says that they have to be there. */
15275 get_scope_pc_bounds (child, &current_low, &current_high, cu);
15276
15277 if (current_low != ((CORE_ADDR) -1))
15278 {
15279 best_low = std::min (best_low, current_low);
15280 best_high = std::max (best_high, current_high);
15281 }
15282 break;
15283 default:
15284 /* Ignore. */
15285 break;
15286 }
15287
15288 child = sibling_die (child);
15289 }
15290 }
15291
15292 *lowpc = best_low;
15293 *highpc = best_high;
15294 }
15295
15296 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
15297 in DIE. */
15298
15299 static void
15300 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
15301 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
15302 {
15303 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15305 struct attribute *attr;
15306 struct attribute *attr_high;
15307
15308 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
15309 if (attr_high)
15310 {
15311 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15312 if (attr)
15313 {
15314 CORE_ADDR low = attr_value_as_address (attr);
15315 CORE_ADDR high = attr_value_as_address (attr_high);
15316
15317 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
15318 high += low;
15319
15320 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
15321 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
15322 record_block_range (block, low, high - 1);
15323 }
15324 }
15325
15326 attr = dwarf2_attr (die, DW_AT_ranges, cu);
15327 if (attr)
15328 {
15329 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
15330 We take advantage of the fact that DW_AT_ranges does not appear
15331 in DW_TAG_compile_unit of DWO files. */
15332 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15333
15334 /* The value of the DW_AT_ranges attribute is the offset of the
15335 address range list in the .debug_ranges section. */
15336 unsigned long offset = (DW_UNSND (attr)
15337 + (need_ranges_base ? cu->ranges_base : 0));
15338 const gdb_byte *buffer;
15339
15340 /* For some target architectures, but not others, the
15341 read_address function sign-extends the addresses it returns.
15342 To recognize base address selection entries, we need a
15343 mask. */
15344 unsigned int addr_size = cu->header.addr_size;
15345 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
15346
15347 /* The base address, to which the next pair is relative. Note
15348 that this 'base' is a DWARF concept: most entries in a range
15349 list are relative, to reduce the number of relocs against the
15350 debugging information. This is separate from this function's
15351 'baseaddr' argument, which GDB uses to relocate debugging
15352 information from a shared library based on the address at
15353 which the library was loaded. */
15354 CORE_ADDR base = cu->base_address;
15355 int base_known = cu->base_known;
15356
15357 dwarf2_ranges_process (offset, cu,
15358 [&] (CORE_ADDR start, CORE_ADDR end)
15359 {
15360 start += baseaddr;
15361 end += baseaddr;
15362 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
15363 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
15364 record_block_range (block, start, end - 1);
15365 });
15366 }
15367 }
15368
15369 /* Check whether the producer field indicates either of GCC < 4.6, or the
15370 Intel C/C++ compiler, and cache the result in CU. */
15371
15372 static void
15373 check_producer (struct dwarf2_cu *cu)
15374 {
15375 int major, minor;
15376
15377 if (cu->producer == NULL)
15378 {
15379 /* For unknown compilers expect their behavior is DWARF version
15380 compliant.
15381
15382 GCC started to support .debug_types sections by -gdwarf-4 since
15383 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15384 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15385 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15386 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15387 }
15388 else if (producer_is_gcc (cu->producer, &major, &minor))
15389 {
15390 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15391 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15392 }
15393 else if (producer_is_icc (cu->producer, &major, &minor))
15394 cu->producer_is_icc_lt_14 = major < 14;
15395 else
15396 {
15397 /* For other non-GCC compilers, expect their behavior is DWARF version
15398 compliant. */
15399 }
15400
15401 cu->checked_producer = 1;
15402 }
15403
15404 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15405 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15406 during 4.6.0 experimental. */
15407
15408 static int
15409 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15410 {
15411 if (!cu->checked_producer)
15412 check_producer (cu);
15413
15414 return cu->producer_is_gxx_lt_4_6;
15415 }
15416
15417 /* Return the default accessibility type if it is not overriden by
15418 DW_AT_accessibility. */
15419
15420 static enum dwarf_access_attribute
15421 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15422 {
15423 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15424 {
15425 /* The default DWARF 2 accessibility for members is public, the default
15426 accessibility for inheritance is private. */
15427
15428 if (die->tag != DW_TAG_inheritance)
15429 return DW_ACCESS_public;
15430 else
15431 return DW_ACCESS_private;
15432 }
15433 else
15434 {
15435 /* DWARF 3+ defines the default accessibility a different way. The same
15436 rules apply now for DW_TAG_inheritance as for the members and it only
15437 depends on the container kind. */
15438
15439 if (die->parent->tag == DW_TAG_class_type)
15440 return DW_ACCESS_private;
15441 else
15442 return DW_ACCESS_public;
15443 }
15444 }
15445
15446 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15447 offset. If the attribute was not found return 0, otherwise return
15448 1. If it was found but could not properly be handled, set *OFFSET
15449 to 0. */
15450
15451 static int
15452 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15453 LONGEST *offset)
15454 {
15455 struct attribute *attr;
15456
15457 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15458 if (attr != NULL)
15459 {
15460 *offset = 0;
15461
15462 /* Note that we do not check for a section offset first here.
15463 This is because DW_AT_data_member_location is new in DWARF 4,
15464 so if we see it, we can assume that a constant form is really
15465 a constant and not a section offset. */
15466 if (attr_form_is_constant (attr))
15467 *offset = dwarf2_get_attr_constant_value (attr, 0);
15468 else if (attr_form_is_section_offset (attr))
15469 dwarf2_complex_location_expr_complaint ();
15470 else if (attr_form_is_block (attr))
15471 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15472 else
15473 dwarf2_complex_location_expr_complaint ();
15474
15475 return 1;
15476 }
15477
15478 return 0;
15479 }
15480
15481 /* Add an aggregate field to the field list. */
15482
15483 static void
15484 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15485 struct dwarf2_cu *cu)
15486 {
15487 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15489 struct nextfield *new_field;
15490 struct attribute *attr;
15491 struct field *fp;
15492 const char *fieldname = "";
15493
15494 /* Allocate a new field list entry and link it in. */
15495 new_field = XNEW (struct nextfield);
15496 make_cleanup (xfree, new_field);
15497 memset (new_field, 0, sizeof (struct nextfield));
15498
15499 if (die->tag == DW_TAG_inheritance)
15500 {
15501 new_field->next = fip->baseclasses;
15502 fip->baseclasses = new_field;
15503 }
15504 else
15505 {
15506 new_field->next = fip->fields;
15507 fip->fields = new_field;
15508 }
15509 fip->nfields++;
15510
15511 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15512 if (attr)
15513 new_field->accessibility = DW_UNSND (attr);
15514 else
15515 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15516 if (new_field->accessibility != DW_ACCESS_public)
15517 fip->non_public_fields = 1;
15518
15519 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15520 if (attr)
15521 new_field->virtuality = DW_UNSND (attr);
15522 else
15523 new_field->virtuality = DW_VIRTUALITY_none;
15524
15525 fp = &new_field->field;
15526
15527 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15528 {
15529 LONGEST offset;
15530
15531 /* Data member other than a C++ static data member. */
15532
15533 /* Get type of field. */
15534 fp->type = die_type (die, cu);
15535
15536 SET_FIELD_BITPOS (*fp, 0);
15537
15538 /* Get bit size of field (zero if none). */
15539 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15540 if (attr)
15541 {
15542 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15543 }
15544 else
15545 {
15546 FIELD_BITSIZE (*fp) = 0;
15547 }
15548
15549 /* Get bit offset of field. */
15550 if (handle_data_member_location (die, cu, &offset))
15551 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15552 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15553 if (attr)
15554 {
15555 if (gdbarch_bits_big_endian (gdbarch))
15556 {
15557 /* For big endian bits, the DW_AT_bit_offset gives the
15558 additional bit offset from the MSB of the containing
15559 anonymous object to the MSB of the field. We don't
15560 have to do anything special since we don't need to
15561 know the size of the anonymous object. */
15562 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15563 }
15564 else
15565 {
15566 /* For little endian bits, compute the bit offset to the
15567 MSB of the anonymous object, subtract off the number of
15568 bits from the MSB of the field to the MSB of the
15569 object, and then subtract off the number of bits of
15570 the field itself. The result is the bit offset of
15571 the LSB of the field. */
15572 int anonymous_size;
15573 int bit_offset = DW_UNSND (attr);
15574
15575 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15576 if (attr)
15577 {
15578 /* The size of the anonymous object containing
15579 the bit field is explicit, so use the
15580 indicated size (in bytes). */
15581 anonymous_size = DW_UNSND (attr);
15582 }
15583 else
15584 {
15585 /* The size of the anonymous object containing
15586 the bit field must be inferred from the type
15587 attribute of the data member containing the
15588 bit field. */
15589 anonymous_size = TYPE_LENGTH (fp->type);
15590 }
15591 SET_FIELD_BITPOS (*fp,
15592 (FIELD_BITPOS (*fp)
15593 + anonymous_size * bits_per_byte
15594 - bit_offset - FIELD_BITSIZE (*fp)));
15595 }
15596 }
15597 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15598 if (attr != NULL)
15599 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15600 + dwarf2_get_attr_constant_value (attr, 0)));
15601
15602 /* Get name of field. */
15603 fieldname = dwarf2_name (die, cu);
15604 if (fieldname == NULL)
15605 fieldname = "";
15606
15607 /* The name is already allocated along with this objfile, so we don't
15608 need to duplicate it for the type. */
15609 fp->name = fieldname;
15610
15611 /* Change accessibility for artificial fields (e.g. virtual table
15612 pointer or virtual base class pointer) to private. */
15613 if (dwarf2_attr (die, DW_AT_artificial, cu))
15614 {
15615 FIELD_ARTIFICIAL (*fp) = 1;
15616 new_field->accessibility = DW_ACCESS_private;
15617 fip->non_public_fields = 1;
15618 }
15619 }
15620 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15621 {
15622 /* C++ static member. */
15623
15624 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15625 is a declaration, but all versions of G++ as of this writing
15626 (so through at least 3.2.1) incorrectly generate
15627 DW_TAG_variable tags. */
15628
15629 const char *physname;
15630
15631 /* Get name of field. */
15632 fieldname = dwarf2_name (die, cu);
15633 if (fieldname == NULL)
15634 return;
15635
15636 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15637 if (attr
15638 /* Only create a symbol if this is an external value.
15639 new_symbol checks this and puts the value in the global symbol
15640 table, which we want. If it is not external, new_symbol
15641 will try to put the value in cu->list_in_scope which is wrong. */
15642 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15643 {
15644 /* A static const member, not much different than an enum as far as
15645 we're concerned, except that we can support more types. */
15646 new_symbol (die, NULL, cu);
15647 }
15648
15649 /* Get physical name. */
15650 physname = dwarf2_physname (fieldname, die, cu);
15651
15652 /* The name is already allocated along with this objfile, so we don't
15653 need to duplicate it for the type. */
15654 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15655 FIELD_TYPE (*fp) = die_type (die, cu);
15656 FIELD_NAME (*fp) = fieldname;
15657 }
15658 else if (die->tag == DW_TAG_inheritance)
15659 {
15660 LONGEST offset;
15661
15662 /* C++ base class field. */
15663 if (handle_data_member_location (die, cu, &offset))
15664 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15665 FIELD_BITSIZE (*fp) = 0;
15666 FIELD_TYPE (*fp) = die_type (die, cu);
15667 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15668 fip->nbaseclasses++;
15669 }
15670 else if (die->tag == DW_TAG_variant_part)
15671 {
15672 /* process_structure_scope will treat this DIE as a union. */
15673 process_structure_scope (die, cu);
15674
15675 /* The variant part is relative to the start of the enclosing
15676 structure. */
15677 SET_FIELD_BITPOS (*fp, 0);
15678 fp->type = get_die_type (die, cu);
15679 fp->artificial = 1;
15680 fp->name = "<<variant>>";
15681 }
15682 else
15683 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15684 }
15685
15686 /* Can the type given by DIE define another type? */
15687
15688 static bool
15689 type_can_define_types (const struct die_info *die)
15690 {
15691 switch (die->tag)
15692 {
15693 case DW_TAG_typedef:
15694 case DW_TAG_class_type:
15695 case DW_TAG_structure_type:
15696 case DW_TAG_union_type:
15697 case DW_TAG_enumeration_type:
15698 return true;
15699
15700 default:
15701 return false;
15702 }
15703 }
15704
15705 /* Add a type definition defined in the scope of the FIP's class. */
15706
15707 static void
15708 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15709 struct dwarf2_cu *cu)
15710 {
15711 struct decl_field_list *new_field;
15712 struct decl_field *fp;
15713
15714 /* Allocate a new field list entry and link it in. */
15715 new_field = XCNEW (struct decl_field_list);
15716 make_cleanup (xfree, new_field);
15717
15718 gdb_assert (type_can_define_types (die));
15719
15720 fp = &new_field->field;
15721
15722 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15723 fp->name = dwarf2_name (die, cu);
15724 fp->type = read_type_die (die, cu);
15725
15726 /* Save accessibility. */
15727 enum dwarf_access_attribute accessibility;
15728 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15729 if (attr != NULL)
15730 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15731 else
15732 accessibility = dwarf2_default_access_attribute (die, cu);
15733 switch (accessibility)
15734 {
15735 case DW_ACCESS_public:
15736 /* The assumed value if neither private nor protected. */
15737 break;
15738 case DW_ACCESS_private:
15739 fp->is_private = 1;
15740 break;
15741 case DW_ACCESS_protected:
15742 fp->is_protected = 1;
15743 break;
15744 default:
15745 complaint (&symfile_complaints,
15746 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15747 }
15748
15749 if (die->tag == DW_TAG_typedef)
15750 {
15751 new_field->next = fip->typedef_field_list;
15752 fip->typedef_field_list = new_field;
15753 fip->typedef_field_list_count++;
15754 }
15755 else
15756 {
15757 new_field->next = fip->nested_types_list;
15758 fip->nested_types_list = new_field;
15759 fip->nested_types_list_count++;
15760 }
15761 }
15762
15763 /* Create the vector of fields, and attach it to the type. */
15764
15765 static void
15766 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15767 struct dwarf2_cu *cu)
15768 {
15769 int nfields = fip->nfields;
15770
15771 /* Record the field count, allocate space for the array of fields,
15772 and create blank accessibility bitfields if necessary. */
15773 TYPE_NFIELDS (type) = nfields;
15774 TYPE_FIELDS (type) = (struct field *)
15775 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15776 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15777
15778 if (fip->non_public_fields && cu->language != language_ada)
15779 {
15780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15781
15782 TYPE_FIELD_PRIVATE_BITS (type) =
15783 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15784 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15785
15786 TYPE_FIELD_PROTECTED_BITS (type) =
15787 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15788 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15789
15790 TYPE_FIELD_IGNORE_BITS (type) =
15791 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15792 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15793 }
15794
15795 /* If the type has baseclasses, allocate and clear a bit vector for
15796 TYPE_FIELD_VIRTUAL_BITS. */
15797 if (fip->nbaseclasses && cu->language != language_ada)
15798 {
15799 int num_bytes = B_BYTES (fip->nbaseclasses);
15800 unsigned char *pointer;
15801
15802 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15803 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15804 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15805 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15806 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15807 }
15808
15809 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15810 {
15811 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15812
15813 int index = nfields - 1;
15814 struct nextfield *field = fip->fields;
15815
15816 while (index >= 0)
15817 {
15818 if (field->variant.is_discriminant)
15819 di->discriminant_index = index;
15820 else if (field->variant.default_branch)
15821 di->default_index = index;
15822 else
15823 di->discriminants[index] = field->variant.discriminant_value;
15824
15825 --index;
15826 field = field->next;
15827 }
15828 }
15829
15830 /* Copy the saved-up fields into the field vector. Start from the head of
15831 the list, adding to the tail of the field array, so that they end up in
15832 the same order in the array in which they were added to the list. */
15833 while (nfields-- > 0)
15834 {
15835 struct nextfield *fieldp;
15836
15837 if (fip->fields)
15838 {
15839 fieldp = fip->fields;
15840 fip->fields = fieldp->next;
15841 }
15842 else
15843 {
15844 fieldp = fip->baseclasses;
15845 fip->baseclasses = fieldp->next;
15846 }
15847
15848 TYPE_FIELD (type, nfields) = fieldp->field;
15849 switch (fieldp->accessibility)
15850 {
15851 case DW_ACCESS_private:
15852 if (cu->language != language_ada)
15853 SET_TYPE_FIELD_PRIVATE (type, nfields);
15854 break;
15855
15856 case DW_ACCESS_protected:
15857 if (cu->language != language_ada)
15858 SET_TYPE_FIELD_PROTECTED (type, nfields);
15859 break;
15860
15861 case DW_ACCESS_public:
15862 break;
15863
15864 default:
15865 /* Unknown accessibility. Complain and treat it as public. */
15866 {
15867 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15868 fieldp->accessibility);
15869 }
15870 break;
15871 }
15872 if (nfields < fip->nbaseclasses)
15873 {
15874 switch (fieldp->virtuality)
15875 {
15876 case DW_VIRTUALITY_virtual:
15877 case DW_VIRTUALITY_pure_virtual:
15878 if (cu->language == language_ada)
15879 error (_("unexpected virtuality in component of Ada type"));
15880 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15881 break;
15882 }
15883 }
15884 }
15885 }
15886
15887 /* Return true if this member function is a constructor, false
15888 otherwise. */
15889
15890 static int
15891 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15892 {
15893 const char *fieldname;
15894 const char *type_name;
15895 int len;
15896
15897 if (die->parent == NULL)
15898 return 0;
15899
15900 if (die->parent->tag != DW_TAG_structure_type
15901 && die->parent->tag != DW_TAG_union_type
15902 && die->parent->tag != DW_TAG_class_type)
15903 return 0;
15904
15905 fieldname = dwarf2_name (die, cu);
15906 type_name = dwarf2_name (die->parent, cu);
15907 if (fieldname == NULL || type_name == NULL)
15908 return 0;
15909
15910 len = strlen (fieldname);
15911 return (strncmp (fieldname, type_name, len) == 0
15912 && (type_name[len] == '\0' || type_name[len] == '<'));
15913 }
15914
15915 /* Add a member function to the proper fieldlist. */
15916
15917 static void
15918 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15919 struct type *type, struct dwarf2_cu *cu)
15920 {
15921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15922 struct attribute *attr;
15923 struct fnfieldlist *flp;
15924 int i;
15925 struct fn_field *fnp;
15926 const char *fieldname;
15927 struct nextfnfield *new_fnfield;
15928 struct type *this_type;
15929 enum dwarf_access_attribute accessibility;
15930
15931 if (cu->language == language_ada)
15932 error (_("unexpected member function in Ada type"));
15933
15934 /* Get name of member function. */
15935 fieldname = dwarf2_name (die, cu);
15936 if (fieldname == NULL)
15937 return;
15938
15939 /* Look up member function name in fieldlist. */
15940 for (i = 0; i < fip->nfnfields; i++)
15941 {
15942 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15943 break;
15944 }
15945
15946 /* Create new list element if necessary. */
15947 if (i < fip->nfnfields)
15948 flp = &fip->fnfieldlists[i];
15949 else
15950 {
15951 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15952 {
15953 fip->fnfieldlists = (struct fnfieldlist *)
15954 xrealloc (fip->fnfieldlists,
15955 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15956 * sizeof (struct fnfieldlist));
15957 if (fip->nfnfields == 0)
15958 make_cleanup (free_current_contents, &fip->fnfieldlists);
15959 }
15960 flp = &fip->fnfieldlists[fip->nfnfields];
15961 flp->name = fieldname;
15962 flp->length = 0;
15963 flp->head = NULL;
15964 i = fip->nfnfields++;
15965 }
15966
15967 /* Create a new member function field and chain it to the field list
15968 entry. */
15969 new_fnfield = XNEW (struct nextfnfield);
15970 make_cleanup (xfree, new_fnfield);
15971 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15972 new_fnfield->next = flp->head;
15973 flp->head = new_fnfield;
15974 flp->length++;
15975
15976 /* Fill in the member function field info. */
15977 fnp = &new_fnfield->fnfield;
15978
15979 /* Delay processing of the physname until later. */
15980 if (cu->language == language_cplus)
15981 {
15982 add_to_method_list (type, i, flp->length - 1, fieldname,
15983 die, cu);
15984 }
15985 else
15986 {
15987 const char *physname = dwarf2_physname (fieldname, die, cu);
15988 fnp->physname = physname ? physname : "";
15989 }
15990
15991 fnp->type = alloc_type (objfile);
15992 this_type = read_type_die (die, cu);
15993 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15994 {
15995 int nparams = TYPE_NFIELDS (this_type);
15996
15997 /* TYPE is the domain of this method, and THIS_TYPE is the type
15998 of the method itself (TYPE_CODE_METHOD). */
15999 smash_to_method_type (fnp->type, type,
16000 TYPE_TARGET_TYPE (this_type),
16001 TYPE_FIELDS (this_type),
16002 TYPE_NFIELDS (this_type),
16003 TYPE_VARARGS (this_type));
16004
16005 /* Handle static member functions.
16006 Dwarf2 has no clean way to discern C++ static and non-static
16007 member functions. G++ helps GDB by marking the first
16008 parameter for non-static member functions (which is the this
16009 pointer) as artificial. We obtain this information from
16010 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
16011 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
16012 fnp->voffset = VOFFSET_STATIC;
16013 }
16014 else
16015 complaint (&symfile_complaints, _("member function type missing for '%s'"),
16016 dwarf2_full_name (fieldname, die, cu));
16017
16018 /* Get fcontext from DW_AT_containing_type if present. */
16019 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16020 fnp->fcontext = die_containing_type (die, cu);
16021
16022 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
16023 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
16024
16025 /* Get accessibility. */
16026 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
16027 if (attr)
16028 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
16029 else
16030 accessibility = dwarf2_default_access_attribute (die, cu);
16031 switch (accessibility)
16032 {
16033 case DW_ACCESS_private:
16034 fnp->is_private = 1;
16035 break;
16036 case DW_ACCESS_protected:
16037 fnp->is_protected = 1;
16038 break;
16039 }
16040
16041 /* Check for artificial methods. */
16042 attr = dwarf2_attr (die, DW_AT_artificial, cu);
16043 if (attr && DW_UNSND (attr) != 0)
16044 fnp->is_artificial = 1;
16045
16046 fnp->is_constructor = dwarf2_is_constructor (die, cu);
16047
16048 /* Get index in virtual function table if it is a virtual member
16049 function. For older versions of GCC, this is an offset in the
16050 appropriate virtual table, as specified by DW_AT_containing_type.
16051 For everyone else, it is an expression to be evaluated relative
16052 to the object address. */
16053
16054 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
16055 if (attr)
16056 {
16057 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
16058 {
16059 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
16060 {
16061 /* Old-style GCC. */
16062 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
16063 }
16064 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
16065 || (DW_BLOCK (attr)->size > 1
16066 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
16067 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
16068 {
16069 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
16070 if ((fnp->voffset % cu->header.addr_size) != 0)
16071 dwarf2_complex_location_expr_complaint ();
16072 else
16073 fnp->voffset /= cu->header.addr_size;
16074 fnp->voffset += 2;
16075 }
16076 else
16077 dwarf2_complex_location_expr_complaint ();
16078
16079 if (!fnp->fcontext)
16080 {
16081 /* If there is no `this' field and no DW_AT_containing_type,
16082 we cannot actually find a base class context for the
16083 vtable! */
16084 if (TYPE_NFIELDS (this_type) == 0
16085 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
16086 {
16087 complaint (&symfile_complaints,
16088 _("cannot determine context for virtual member "
16089 "function \"%s\" (offset %s)"),
16090 fieldname, sect_offset_str (die->sect_off));
16091 }
16092 else
16093 {
16094 fnp->fcontext
16095 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
16096 }
16097 }
16098 }
16099 else if (attr_form_is_section_offset (attr))
16100 {
16101 dwarf2_complex_location_expr_complaint ();
16102 }
16103 else
16104 {
16105 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
16106 fieldname);
16107 }
16108 }
16109 else
16110 {
16111 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
16112 if (attr && DW_UNSND (attr))
16113 {
16114 /* GCC does this, as of 2008-08-25; PR debug/37237. */
16115 complaint (&symfile_complaints,
16116 _("Member function \"%s\" (offset %s) is virtual "
16117 "but the vtable offset is not specified"),
16118 fieldname, sect_offset_str (die->sect_off));
16119 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16120 TYPE_CPLUS_DYNAMIC (type) = 1;
16121 }
16122 }
16123 }
16124
16125 /* Create the vector of member function fields, and attach it to the type. */
16126
16127 static void
16128 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
16129 struct dwarf2_cu *cu)
16130 {
16131 struct fnfieldlist *flp;
16132 int i;
16133
16134 if (cu->language == language_ada)
16135 error (_("unexpected member functions in Ada type"));
16136
16137 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16138 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
16139 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
16140
16141 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
16142 {
16143 struct nextfnfield *nfp = flp->head;
16144 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
16145 int k;
16146
16147 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
16148 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
16149 fn_flp->fn_fields = (struct fn_field *)
16150 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
16151 for (k = flp->length; (k--, nfp); nfp = nfp->next)
16152 fn_flp->fn_fields[k] = nfp->fnfield;
16153 }
16154
16155 TYPE_NFN_FIELDS (type) = fip->nfnfields;
16156 }
16157
16158 /* Returns non-zero if NAME is the name of a vtable member in CU's
16159 language, zero otherwise. */
16160 static int
16161 is_vtable_name (const char *name, struct dwarf2_cu *cu)
16162 {
16163 static const char vptr[] = "_vptr";
16164
16165 /* Look for the C++ form of the vtable. */
16166 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
16167 return 1;
16168
16169 return 0;
16170 }
16171
16172 /* GCC outputs unnamed structures that are really pointers to member
16173 functions, with the ABI-specified layout. If TYPE describes
16174 such a structure, smash it into a member function type.
16175
16176 GCC shouldn't do this; it should just output pointer to member DIEs.
16177 This is GCC PR debug/28767. */
16178
16179 static void
16180 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
16181 {
16182 struct type *pfn_type, *self_type, *new_type;
16183
16184 /* Check for a structure with no name and two children. */
16185 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
16186 return;
16187
16188 /* Check for __pfn and __delta members. */
16189 if (TYPE_FIELD_NAME (type, 0) == NULL
16190 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
16191 || TYPE_FIELD_NAME (type, 1) == NULL
16192 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
16193 return;
16194
16195 /* Find the type of the method. */
16196 pfn_type = TYPE_FIELD_TYPE (type, 0);
16197 if (pfn_type == NULL
16198 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
16199 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
16200 return;
16201
16202 /* Look for the "this" argument. */
16203 pfn_type = TYPE_TARGET_TYPE (pfn_type);
16204 if (TYPE_NFIELDS (pfn_type) == 0
16205 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
16206 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
16207 return;
16208
16209 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
16210 new_type = alloc_type (objfile);
16211 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
16212 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
16213 TYPE_VARARGS (pfn_type));
16214 smash_to_methodptr_type (type, new_type);
16215 }
16216
16217
16218 /* Called when we find the DIE that starts a structure or union scope
16219 (definition) to create a type for the structure or union. Fill in
16220 the type's name and general properties; the members will not be
16221 processed until process_structure_scope. A symbol table entry for
16222 the type will also not be done until process_structure_scope (assuming
16223 the type has a name).
16224
16225 NOTE: we need to call these functions regardless of whether or not the
16226 DIE has a DW_AT_name attribute, since it might be an anonymous
16227 structure or union. This gets the type entered into our set of
16228 user defined types. */
16229
16230 static struct type *
16231 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
16232 {
16233 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16234 struct type *type;
16235 struct attribute *attr;
16236 const char *name;
16237
16238 /* If the definition of this type lives in .debug_types, read that type.
16239 Don't follow DW_AT_specification though, that will take us back up
16240 the chain and we want to go down. */
16241 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16242 if (attr)
16243 {
16244 type = get_DW_AT_signature_type (die, attr, cu);
16245
16246 /* The type's CU may not be the same as CU.
16247 Ensure TYPE is recorded with CU in die_type_hash. */
16248 return set_die_type (die, type, cu);
16249 }
16250
16251 type = alloc_type (objfile);
16252 INIT_CPLUS_SPECIFIC (type);
16253
16254 name = dwarf2_name (die, cu);
16255 if (name != NULL)
16256 {
16257 if (cu->language == language_cplus
16258 || cu->language == language_d
16259 || cu->language == language_rust)
16260 {
16261 const char *full_name = dwarf2_full_name (name, die, cu);
16262
16263 /* dwarf2_full_name might have already finished building the DIE's
16264 type. If so, there is no need to continue. */
16265 if (get_die_type (die, cu) != NULL)
16266 return get_die_type (die, cu);
16267
16268 TYPE_TAG_NAME (type) = full_name;
16269 if (die->tag == DW_TAG_structure_type
16270 || die->tag == DW_TAG_class_type)
16271 TYPE_NAME (type) = TYPE_TAG_NAME (type);
16272 }
16273 else
16274 {
16275 /* The name is already allocated along with this objfile, so
16276 we don't need to duplicate it for the type. */
16277 TYPE_TAG_NAME (type) = name;
16278 if (die->tag == DW_TAG_class_type)
16279 TYPE_NAME (type) = TYPE_TAG_NAME (type);
16280 }
16281 }
16282
16283 if (die->tag == DW_TAG_structure_type)
16284 {
16285 TYPE_CODE (type) = TYPE_CODE_STRUCT;
16286 }
16287 else if (die->tag == DW_TAG_union_type)
16288 {
16289 TYPE_CODE (type) = TYPE_CODE_UNION;
16290 }
16291 else if (die->tag == DW_TAG_variant_part)
16292 {
16293 TYPE_CODE (type) = TYPE_CODE_UNION;
16294 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
16295 }
16296 else
16297 {
16298 TYPE_CODE (type) = TYPE_CODE_STRUCT;
16299 }
16300
16301 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
16302 TYPE_DECLARED_CLASS (type) = 1;
16303
16304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16305 if (attr)
16306 {
16307 if (attr_form_is_constant (attr))
16308 TYPE_LENGTH (type) = DW_UNSND (attr);
16309 else
16310 {
16311 /* For the moment, dynamic type sizes are not supported
16312 by GDB's struct type. The actual size is determined
16313 on-demand when resolving the type of a given object,
16314 so set the type's length to zero for now. Otherwise,
16315 we record an expression as the length, and that expression
16316 could lead to a very large value, which could eventually
16317 lead to us trying to allocate that much memory when creating
16318 a value of that type. */
16319 TYPE_LENGTH (type) = 0;
16320 }
16321 }
16322 else
16323 {
16324 TYPE_LENGTH (type) = 0;
16325 }
16326
16327 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
16328 {
16329 /* ICC<14 does not output the required DW_AT_declaration on
16330 incomplete types, but gives them a size of zero. */
16331 TYPE_STUB (type) = 1;
16332 }
16333 else
16334 TYPE_STUB_SUPPORTED (type) = 1;
16335
16336 if (die_is_declaration (die, cu))
16337 TYPE_STUB (type) = 1;
16338 else if (attr == NULL && die->child == NULL
16339 && producer_is_realview (cu->producer))
16340 /* RealView does not output the required DW_AT_declaration
16341 on incomplete types. */
16342 TYPE_STUB (type) = 1;
16343
16344 /* We need to add the type field to the die immediately so we don't
16345 infinitely recurse when dealing with pointers to the structure
16346 type within the structure itself. */
16347 set_die_type (die, type, cu);
16348
16349 /* set_die_type should be already done. */
16350 set_descriptive_type (type, die, cu);
16351
16352 return type;
16353 }
16354
16355 /* A helper for process_structure_scope that handles a single member
16356 DIE. */
16357
16358 static void
16359 handle_struct_member_die (struct die_info *child_die, struct type *type,
16360 struct field_info *fi,
16361 std::vector<struct symbol *> *template_args,
16362 struct dwarf2_cu *cu)
16363 {
16364 if (child_die->tag == DW_TAG_member
16365 || child_die->tag == DW_TAG_variable
16366 || child_die->tag == DW_TAG_variant_part)
16367 {
16368 /* NOTE: carlton/2002-11-05: A C++ static data member
16369 should be a DW_TAG_member that is a declaration, but
16370 all versions of G++ as of this writing (so through at
16371 least 3.2.1) incorrectly generate DW_TAG_variable
16372 tags for them instead. */
16373 dwarf2_add_field (fi, child_die, cu);
16374 }
16375 else if (child_die->tag == DW_TAG_subprogram)
16376 {
16377 /* Rust doesn't have member functions in the C++ sense.
16378 However, it does emit ordinary functions as children
16379 of a struct DIE. */
16380 if (cu->language == language_rust)
16381 read_func_scope (child_die, cu);
16382 else
16383 {
16384 /* C++ member function. */
16385 dwarf2_add_member_fn (fi, child_die, type, cu);
16386 }
16387 }
16388 else if (child_die->tag == DW_TAG_inheritance)
16389 {
16390 /* C++ base class field. */
16391 dwarf2_add_field (fi, child_die, cu);
16392 }
16393 else if (type_can_define_types (child_die))
16394 dwarf2_add_type_defn (fi, child_die, cu);
16395 else if (child_die->tag == DW_TAG_template_type_param
16396 || child_die->tag == DW_TAG_template_value_param)
16397 {
16398 struct symbol *arg = new_symbol (child_die, NULL, cu);
16399
16400 if (arg != NULL)
16401 template_args->push_back (arg);
16402 }
16403 else if (child_die->tag == DW_TAG_variant)
16404 {
16405 /* In a variant we want to get the discriminant and also add a
16406 field for our sole member child. */
16407 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
16408
16409 for (struct die_info *variant_child = child_die->child;
16410 variant_child != NULL;
16411 variant_child = sibling_die (variant_child))
16412 {
16413 if (variant_child->tag == DW_TAG_member)
16414 {
16415 handle_struct_member_die (variant_child, type, fi,
16416 template_args, cu);
16417 /* Only handle the one. */
16418 break;
16419 }
16420 }
16421
16422 /* We don't handle this but we might as well report it if we see
16423 it. */
16424 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
16425 complaint (&symfile_complaints,
16426 _("DW_AT_discr_list is not supported yet"
16427 " - DIE at %s [in module %s]"),
16428 sect_offset_str (child_die->sect_off),
16429 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16430
16431 /* The first field was just added, so we can stash the
16432 discriminant there. */
16433 gdb_assert (fi->fields != NULL);
16434 if (discr == NULL)
16435 fi->fields->variant.default_branch = true;
16436 else
16437 fi->fields->variant.discriminant_value = DW_UNSND (discr);
16438 }
16439 }
16440
16441 /* Finish creating a structure or union type, including filling in
16442 its members and creating a symbol for it. */
16443
16444 static void
16445 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16446 {
16447 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16448 struct die_info *child_die;
16449 struct type *type;
16450
16451 type = get_die_type (die, cu);
16452 if (type == NULL)
16453 type = read_structure_type (die, cu);
16454
16455 /* When reading a DW_TAG_variant_part, we need to notice when we
16456 read the discriminant member, so we can record it later in the
16457 discriminant_info. */
16458 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16459 sect_offset discr_offset;
16460
16461 if (is_variant_part)
16462 {
16463 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16464 if (discr == NULL)
16465 {
16466 /* Maybe it's a univariant form, an extension we support.
16467 In this case arrange not to check the offset. */
16468 is_variant_part = false;
16469 }
16470 else if (attr_form_is_ref (discr))
16471 {
16472 struct dwarf2_cu *target_cu = cu;
16473 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16474
16475 discr_offset = target_die->sect_off;
16476 }
16477 else
16478 {
16479 complaint (&symfile_complaints,
16480 _("DW_AT_discr does not have DIE reference form"
16481 " - DIE at %s [in module %s]"),
16482 sect_offset_str (die->sect_off),
16483 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16484 is_variant_part = false;
16485 }
16486 }
16487
16488 if (die->child != NULL && ! die_is_declaration (die, cu))
16489 {
16490 struct field_info fi;
16491 std::vector<struct symbol *> template_args;
16492 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
16493
16494 memset (&fi, 0, sizeof (struct field_info));
16495
16496 child_die = die->child;
16497
16498 while (child_die && child_die->tag)
16499 {
16500 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16501
16502 if (is_variant_part && discr_offset == child_die->sect_off)
16503 fi.fields->variant.is_discriminant = true;
16504
16505 child_die = sibling_die (child_die);
16506 }
16507
16508 /* Attach template arguments to type. */
16509 if (!template_args.empty ())
16510 {
16511 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16512 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16513 TYPE_TEMPLATE_ARGUMENTS (type)
16514 = XOBNEWVEC (&objfile->objfile_obstack,
16515 struct symbol *,
16516 TYPE_N_TEMPLATE_ARGUMENTS (type));
16517 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16518 template_args.data (),
16519 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16520 * sizeof (struct symbol *)));
16521 }
16522
16523 /* Attach fields and member functions to the type. */
16524 if (fi.nfields)
16525 dwarf2_attach_fields_to_type (&fi, type, cu);
16526 if (fi.nfnfields)
16527 {
16528 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16529
16530 /* Get the type which refers to the base class (possibly this
16531 class itself) which contains the vtable pointer for the current
16532 class from the DW_AT_containing_type attribute. This use of
16533 DW_AT_containing_type is a GNU extension. */
16534
16535 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16536 {
16537 struct type *t = die_containing_type (die, cu);
16538
16539 set_type_vptr_basetype (type, t);
16540 if (type == t)
16541 {
16542 int i;
16543
16544 /* Our own class provides vtbl ptr. */
16545 for (i = TYPE_NFIELDS (t) - 1;
16546 i >= TYPE_N_BASECLASSES (t);
16547 --i)
16548 {
16549 const char *fieldname = TYPE_FIELD_NAME (t, i);
16550
16551 if (is_vtable_name (fieldname, cu))
16552 {
16553 set_type_vptr_fieldno (type, i);
16554 break;
16555 }
16556 }
16557
16558 /* Complain if virtual function table field not found. */
16559 if (i < TYPE_N_BASECLASSES (t))
16560 complaint (&symfile_complaints,
16561 _("virtual function table pointer "
16562 "not found when defining class '%s'"),
16563 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16564 "");
16565 }
16566 else
16567 {
16568 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16569 }
16570 }
16571 else if (cu->producer
16572 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16573 {
16574 /* The IBM XLC compiler does not provide direct indication
16575 of the containing type, but the vtable pointer is
16576 always named __vfp. */
16577
16578 int i;
16579
16580 for (i = TYPE_NFIELDS (type) - 1;
16581 i >= TYPE_N_BASECLASSES (type);
16582 --i)
16583 {
16584 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16585 {
16586 set_type_vptr_fieldno (type, i);
16587 set_type_vptr_basetype (type, type);
16588 break;
16589 }
16590 }
16591 }
16592 }
16593
16594 /* Copy fi.typedef_field_list linked list elements content into the
16595 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16596 if (fi.typedef_field_list)
16597 {
16598 int i = fi.typedef_field_list_count;
16599
16600 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16601 TYPE_TYPEDEF_FIELD_ARRAY (type)
16602 = ((struct decl_field *)
16603 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16604 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16605
16606 /* Reverse the list order to keep the debug info elements order. */
16607 while (--i >= 0)
16608 {
16609 struct decl_field *dest, *src;
16610
16611 dest = &TYPE_TYPEDEF_FIELD (type, i);
16612 src = &fi.typedef_field_list->field;
16613 fi.typedef_field_list = fi.typedef_field_list->next;
16614 *dest = *src;
16615 }
16616 }
16617
16618 /* Copy fi.nested_types_list linked list elements content into the
16619 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16620 if (fi.nested_types_list != NULL && cu->language != language_ada)
16621 {
16622 int i = fi.nested_types_list_count;
16623
16624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16625 TYPE_NESTED_TYPES_ARRAY (type)
16626 = ((struct decl_field *)
16627 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16628 TYPE_NESTED_TYPES_COUNT (type) = i;
16629
16630 /* Reverse the list order to keep the debug info elements order. */
16631 while (--i >= 0)
16632 {
16633 struct decl_field *dest, *src;
16634
16635 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16636 src = &fi.nested_types_list->field;
16637 fi.nested_types_list = fi.nested_types_list->next;
16638 *dest = *src;
16639 }
16640 }
16641
16642 do_cleanups (back_to);
16643 }
16644
16645 quirk_gcc_member_function_pointer (type, objfile);
16646 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16647 cu->rust_unions.push_back (type);
16648
16649 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16650 snapshots) has been known to create a die giving a declaration
16651 for a class that has, as a child, a die giving a definition for a
16652 nested class. So we have to process our children even if the
16653 current die is a declaration. Normally, of course, a declaration
16654 won't have any children at all. */
16655
16656 child_die = die->child;
16657
16658 while (child_die != NULL && child_die->tag)
16659 {
16660 if (child_die->tag == DW_TAG_member
16661 || child_die->tag == DW_TAG_variable
16662 || child_die->tag == DW_TAG_inheritance
16663 || child_die->tag == DW_TAG_template_value_param
16664 || child_die->tag == DW_TAG_template_type_param)
16665 {
16666 /* Do nothing. */
16667 }
16668 else
16669 process_die (child_die, cu);
16670
16671 child_die = sibling_die (child_die);
16672 }
16673
16674 /* Do not consider external references. According to the DWARF standard,
16675 these DIEs are identified by the fact that they have no byte_size
16676 attribute, and a declaration attribute. */
16677 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16678 || !die_is_declaration (die, cu))
16679 new_symbol (die, type, cu);
16680 }
16681
16682 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16683 update TYPE using some information only available in DIE's children. */
16684
16685 static void
16686 update_enumeration_type_from_children (struct die_info *die,
16687 struct type *type,
16688 struct dwarf2_cu *cu)
16689 {
16690 struct die_info *child_die;
16691 int unsigned_enum = 1;
16692 int flag_enum = 1;
16693 ULONGEST mask = 0;
16694
16695 auto_obstack obstack;
16696
16697 for (child_die = die->child;
16698 child_die != NULL && child_die->tag;
16699 child_die = sibling_die (child_die))
16700 {
16701 struct attribute *attr;
16702 LONGEST value;
16703 const gdb_byte *bytes;
16704 struct dwarf2_locexpr_baton *baton;
16705 const char *name;
16706
16707 if (child_die->tag != DW_TAG_enumerator)
16708 continue;
16709
16710 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16711 if (attr == NULL)
16712 continue;
16713
16714 name = dwarf2_name (child_die, cu);
16715 if (name == NULL)
16716 name = "<anonymous enumerator>";
16717
16718 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16719 &value, &bytes, &baton);
16720 if (value < 0)
16721 {
16722 unsigned_enum = 0;
16723 flag_enum = 0;
16724 }
16725 else if ((mask & value) != 0)
16726 flag_enum = 0;
16727 else
16728 mask |= value;
16729
16730 /* If we already know that the enum type is neither unsigned, nor
16731 a flag type, no need to look at the rest of the enumerates. */
16732 if (!unsigned_enum && !flag_enum)
16733 break;
16734 }
16735
16736 if (unsigned_enum)
16737 TYPE_UNSIGNED (type) = 1;
16738 if (flag_enum)
16739 TYPE_FLAG_ENUM (type) = 1;
16740 }
16741
16742 /* Given a DW_AT_enumeration_type die, set its type. We do not
16743 complete the type's fields yet, or create any symbols. */
16744
16745 static struct type *
16746 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16747 {
16748 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16749 struct type *type;
16750 struct attribute *attr;
16751 const char *name;
16752
16753 /* If the definition of this type lives in .debug_types, read that type.
16754 Don't follow DW_AT_specification though, that will take us back up
16755 the chain and we want to go down. */
16756 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16757 if (attr)
16758 {
16759 type = get_DW_AT_signature_type (die, attr, cu);
16760
16761 /* The type's CU may not be the same as CU.
16762 Ensure TYPE is recorded with CU in die_type_hash. */
16763 return set_die_type (die, type, cu);
16764 }
16765
16766 type = alloc_type (objfile);
16767
16768 TYPE_CODE (type) = TYPE_CODE_ENUM;
16769 name = dwarf2_full_name (NULL, die, cu);
16770 if (name != NULL)
16771 TYPE_TAG_NAME (type) = name;
16772
16773 attr = dwarf2_attr (die, DW_AT_type, cu);
16774 if (attr != NULL)
16775 {
16776 struct type *underlying_type = die_type (die, cu);
16777
16778 TYPE_TARGET_TYPE (type) = underlying_type;
16779 }
16780
16781 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16782 if (attr)
16783 {
16784 TYPE_LENGTH (type) = DW_UNSND (attr);
16785 }
16786 else
16787 {
16788 TYPE_LENGTH (type) = 0;
16789 }
16790
16791 /* The enumeration DIE can be incomplete. In Ada, any type can be
16792 declared as private in the package spec, and then defined only
16793 inside the package body. Such types are known as Taft Amendment
16794 Types. When another package uses such a type, an incomplete DIE
16795 may be generated by the compiler. */
16796 if (die_is_declaration (die, cu))
16797 TYPE_STUB (type) = 1;
16798
16799 /* Finish the creation of this type by using the enum's children.
16800 We must call this even when the underlying type has been provided
16801 so that we can determine if we're looking at a "flag" enum. */
16802 update_enumeration_type_from_children (die, type, cu);
16803
16804 /* If this type has an underlying type that is not a stub, then we
16805 may use its attributes. We always use the "unsigned" attribute
16806 in this situation, because ordinarily we guess whether the type
16807 is unsigned -- but the guess can be wrong and the underlying type
16808 can tell us the reality. However, we defer to a local size
16809 attribute if one exists, because this lets the compiler override
16810 the underlying type if needed. */
16811 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16812 {
16813 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16814 if (TYPE_LENGTH (type) == 0)
16815 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16816 }
16817
16818 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16819
16820 return set_die_type (die, type, cu);
16821 }
16822
16823 /* Given a pointer to a die which begins an enumeration, process all
16824 the dies that define the members of the enumeration, and create the
16825 symbol for the enumeration type.
16826
16827 NOTE: We reverse the order of the element list. */
16828
16829 static void
16830 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16831 {
16832 struct type *this_type;
16833
16834 this_type = get_die_type (die, cu);
16835 if (this_type == NULL)
16836 this_type = read_enumeration_type (die, cu);
16837
16838 if (die->child != NULL)
16839 {
16840 struct die_info *child_die;
16841 struct symbol *sym;
16842 struct field *fields = NULL;
16843 int num_fields = 0;
16844 const char *name;
16845
16846 child_die = die->child;
16847 while (child_die && child_die->tag)
16848 {
16849 if (child_die->tag != DW_TAG_enumerator)
16850 {
16851 process_die (child_die, cu);
16852 }
16853 else
16854 {
16855 name = dwarf2_name (child_die, cu);
16856 if (name)
16857 {
16858 sym = new_symbol (child_die, this_type, cu);
16859
16860 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16861 {
16862 fields = (struct field *)
16863 xrealloc (fields,
16864 (num_fields + DW_FIELD_ALLOC_CHUNK)
16865 * sizeof (struct field));
16866 }
16867
16868 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16869 FIELD_TYPE (fields[num_fields]) = NULL;
16870 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16871 FIELD_BITSIZE (fields[num_fields]) = 0;
16872
16873 num_fields++;
16874 }
16875 }
16876
16877 child_die = sibling_die (child_die);
16878 }
16879
16880 if (num_fields)
16881 {
16882 TYPE_NFIELDS (this_type) = num_fields;
16883 TYPE_FIELDS (this_type) = (struct field *)
16884 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16885 memcpy (TYPE_FIELDS (this_type), fields,
16886 sizeof (struct field) * num_fields);
16887 xfree (fields);
16888 }
16889 }
16890
16891 /* If we are reading an enum from a .debug_types unit, and the enum
16892 is a declaration, and the enum is not the signatured type in the
16893 unit, then we do not want to add a symbol for it. Adding a
16894 symbol would in some cases obscure the true definition of the
16895 enum, giving users an incomplete type when the definition is
16896 actually available. Note that we do not want to do this for all
16897 enums which are just declarations, because C++0x allows forward
16898 enum declarations. */
16899 if (cu->per_cu->is_debug_types
16900 && die_is_declaration (die, cu))
16901 {
16902 struct signatured_type *sig_type;
16903
16904 sig_type = (struct signatured_type *) cu->per_cu;
16905 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16906 if (sig_type->type_offset_in_section != die->sect_off)
16907 return;
16908 }
16909
16910 new_symbol (die, this_type, cu);
16911 }
16912
16913 /* Extract all information from a DW_TAG_array_type DIE and put it in
16914 the DIE's type field. For now, this only handles one dimensional
16915 arrays. */
16916
16917 static struct type *
16918 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16919 {
16920 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16921 struct die_info *child_die;
16922 struct type *type;
16923 struct type *element_type, *range_type, *index_type;
16924 struct attribute *attr;
16925 const char *name;
16926 struct dynamic_prop *byte_stride_prop = NULL;
16927 unsigned int bit_stride = 0;
16928
16929 element_type = die_type (die, cu);
16930
16931 /* The die_type call above may have already set the type for this DIE. */
16932 type = get_die_type (die, cu);
16933 if (type)
16934 return type;
16935
16936 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16937 if (attr != NULL)
16938 {
16939 int stride_ok;
16940
16941 byte_stride_prop
16942 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16943 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16944 if (!stride_ok)
16945 {
16946 complaint (&symfile_complaints,
16947 _("unable to read array DW_AT_byte_stride "
16948 " - DIE at %s [in module %s]"),
16949 sect_offset_str (die->sect_off),
16950 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16951 /* Ignore this attribute. We will likely not be able to print
16952 arrays of this type correctly, but there is little we can do
16953 to help if we cannot read the attribute's value. */
16954 byte_stride_prop = NULL;
16955 }
16956 }
16957
16958 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16959 if (attr != NULL)
16960 bit_stride = DW_UNSND (attr);
16961
16962 /* Irix 6.2 native cc creates array types without children for
16963 arrays with unspecified length. */
16964 if (die->child == NULL)
16965 {
16966 index_type = objfile_type (objfile)->builtin_int;
16967 range_type = create_static_range_type (NULL, index_type, 0, -1);
16968 type = create_array_type_with_stride (NULL, element_type, range_type,
16969 byte_stride_prop, bit_stride);
16970 return set_die_type (die, type, cu);
16971 }
16972
16973 std::vector<struct type *> range_types;
16974 child_die = die->child;
16975 while (child_die && child_die->tag)
16976 {
16977 if (child_die->tag == DW_TAG_subrange_type)
16978 {
16979 struct type *child_type = read_type_die (child_die, cu);
16980
16981 if (child_type != NULL)
16982 {
16983 /* The range type was succesfully read. Save it for the
16984 array type creation. */
16985 range_types.push_back (child_type);
16986 }
16987 }
16988 child_die = sibling_die (child_die);
16989 }
16990
16991 /* Dwarf2 dimensions are output from left to right, create the
16992 necessary array types in backwards order. */
16993
16994 type = element_type;
16995
16996 if (read_array_order (die, cu) == DW_ORD_col_major)
16997 {
16998 int i = 0;
16999
17000 while (i < range_types.size ())
17001 type = create_array_type_with_stride (NULL, type, range_types[i++],
17002 byte_stride_prop, bit_stride);
17003 }
17004 else
17005 {
17006 size_t ndim = range_types.size ();
17007 while (ndim-- > 0)
17008 type = create_array_type_with_stride (NULL, type, range_types[ndim],
17009 byte_stride_prop, bit_stride);
17010 }
17011
17012 /* Understand Dwarf2 support for vector types (like they occur on
17013 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
17014 array type. This is not part of the Dwarf2/3 standard yet, but a
17015 custom vendor extension. The main difference between a regular
17016 array and the vector variant is that vectors are passed by value
17017 to functions. */
17018 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
17019 if (attr)
17020 make_vector_type (type);
17021
17022 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
17023 implementation may choose to implement triple vectors using this
17024 attribute. */
17025 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17026 if (attr)
17027 {
17028 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
17029 TYPE_LENGTH (type) = DW_UNSND (attr);
17030 else
17031 complaint (&symfile_complaints,
17032 _("DW_AT_byte_size for array type smaller "
17033 "than the total size of elements"));
17034 }
17035
17036 name = dwarf2_name (die, cu);
17037 if (name)
17038 TYPE_NAME (type) = name;
17039
17040 /* Install the type in the die. */
17041 set_die_type (die, type, cu);
17042
17043 /* set_die_type should be already done. */
17044 set_descriptive_type (type, die, cu);
17045
17046 return type;
17047 }
17048
17049 static enum dwarf_array_dim_ordering
17050 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
17051 {
17052 struct attribute *attr;
17053
17054 attr = dwarf2_attr (die, DW_AT_ordering, cu);
17055
17056 if (attr)
17057 return (enum dwarf_array_dim_ordering) DW_SND (attr);
17058
17059 /* GNU F77 is a special case, as at 08/2004 array type info is the
17060 opposite order to the dwarf2 specification, but data is still
17061 laid out as per normal fortran.
17062
17063 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
17064 version checking. */
17065
17066 if (cu->language == language_fortran
17067 && cu->producer && strstr (cu->producer, "GNU F77"))
17068 {
17069 return DW_ORD_row_major;
17070 }
17071
17072 switch (cu->language_defn->la_array_ordering)
17073 {
17074 case array_column_major:
17075 return DW_ORD_col_major;
17076 case array_row_major:
17077 default:
17078 return DW_ORD_row_major;
17079 };
17080 }
17081
17082 /* Extract all information from a DW_TAG_set_type DIE and put it in
17083 the DIE's type field. */
17084
17085 static struct type *
17086 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
17087 {
17088 struct type *domain_type, *set_type;
17089 struct attribute *attr;
17090
17091 domain_type = die_type (die, cu);
17092
17093 /* The die_type call above may have already set the type for this DIE. */
17094 set_type = get_die_type (die, cu);
17095 if (set_type)
17096 return set_type;
17097
17098 set_type = create_set_type (NULL, domain_type);
17099
17100 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17101 if (attr)
17102 TYPE_LENGTH (set_type) = DW_UNSND (attr);
17103
17104 return set_die_type (die, set_type, cu);
17105 }
17106
17107 /* A helper for read_common_block that creates a locexpr baton.
17108 SYM is the symbol which we are marking as computed.
17109 COMMON_DIE is the DIE for the common block.
17110 COMMON_LOC is the location expression attribute for the common
17111 block itself.
17112 MEMBER_LOC is the location expression attribute for the particular
17113 member of the common block that we are processing.
17114 CU is the CU from which the above come. */
17115
17116 static void
17117 mark_common_block_symbol_computed (struct symbol *sym,
17118 struct die_info *common_die,
17119 struct attribute *common_loc,
17120 struct attribute *member_loc,
17121 struct dwarf2_cu *cu)
17122 {
17123 struct dwarf2_per_objfile *dwarf2_per_objfile
17124 = cu->per_cu->dwarf2_per_objfile;
17125 struct objfile *objfile = dwarf2_per_objfile->objfile;
17126 struct dwarf2_locexpr_baton *baton;
17127 gdb_byte *ptr;
17128 unsigned int cu_off;
17129 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
17130 LONGEST offset = 0;
17131
17132 gdb_assert (common_loc && member_loc);
17133 gdb_assert (attr_form_is_block (common_loc));
17134 gdb_assert (attr_form_is_block (member_loc)
17135 || attr_form_is_constant (member_loc));
17136
17137 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
17138 baton->per_cu = cu->per_cu;
17139 gdb_assert (baton->per_cu);
17140
17141 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
17142
17143 if (attr_form_is_constant (member_loc))
17144 {
17145 offset = dwarf2_get_attr_constant_value (member_loc, 0);
17146 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
17147 }
17148 else
17149 baton->size += DW_BLOCK (member_loc)->size;
17150
17151 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
17152 baton->data = ptr;
17153
17154 *ptr++ = DW_OP_call4;
17155 cu_off = common_die->sect_off - cu->per_cu->sect_off;
17156 store_unsigned_integer (ptr, 4, byte_order, cu_off);
17157 ptr += 4;
17158
17159 if (attr_form_is_constant (member_loc))
17160 {
17161 *ptr++ = DW_OP_addr;
17162 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
17163 ptr += cu->header.addr_size;
17164 }
17165 else
17166 {
17167 /* We have to copy the data here, because DW_OP_call4 will only
17168 use a DW_AT_location attribute. */
17169 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
17170 ptr += DW_BLOCK (member_loc)->size;
17171 }
17172
17173 *ptr++ = DW_OP_plus;
17174 gdb_assert (ptr - baton->data == baton->size);
17175
17176 SYMBOL_LOCATION_BATON (sym) = baton;
17177 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17178 }
17179
17180 /* Create appropriate locally-scoped variables for all the
17181 DW_TAG_common_block entries. Also create a struct common_block
17182 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
17183 is used to sepate the common blocks name namespace from regular
17184 variable names. */
17185
17186 static void
17187 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
17188 {
17189 struct attribute *attr;
17190
17191 attr = dwarf2_attr (die, DW_AT_location, cu);
17192 if (attr)
17193 {
17194 /* Support the .debug_loc offsets. */
17195 if (attr_form_is_block (attr))
17196 {
17197 /* Ok. */
17198 }
17199 else if (attr_form_is_section_offset (attr))
17200 {
17201 dwarf2_complex_location_expr_complaint ();
17202 attr = NULL;
17203 }
17204 else
17205 {
17206 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17207 "common block member");
17208 attr = NULL;
17209 }
17210 }
17211
17212 if (die->child != NULL)
17213 {
17214 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17215 struct die_info *child_die;
17216 size_t n_entries = 0, size;
17217 struct common_block *common_block;
17218 struct symbol *sym;
17219
17220 for (child_die = die->child;
17221 child_die && child_die->tag;
17222 child_die = sibling_die (child_die))
17223 ++n_entries;
17224
17225 size = (sizeof (struct common_block)
17226 + (n_entries - 1) * sizeof (struct symbol *));
17227 common_block
17228 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
17229 size);
17230 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
17231 common_block->n_entries = 0;
17232
17233 for (child_die = die->child;
17234 child_die && child_die->tag;
17235 child_die = sibling_die (child_die))
17236 {
17237 /* Create the symbol in the DW_TAG_common_block block in the current
17238 symbol scope. */
17239 sym = new_symbol (child_die, NULL, cu);
17240 if (sym != NULL)
17241 {
17242 struct attribute *member_loc;
17243
17244 common_block->contents[common_block->n_entries++] = sym;
17245
17246 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
17247 cu);
17248 if (member_loc)
17249 {
17250 /* GDB has handled this for a long time, but it is
17251 not specified by DWARF. It seems to have been
17252 emitted by gfortran at least as recently as:
17253 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
17254 complaint (&symfile_complaints,
17255 _("Variable in common block has "
17256 "DW_AT_data_member_location "
17257 "- DIE at %s [in module %s]"),
17258 sect_offset_str (child_die->sect_off),
17259 objfile_name (objfile));
17260
17261 if (attr_form_is_section_offset (member_loc))
17262 dwarf2_complex_location_expr_complaint ();
17263 else if (attr_form_is_constant (member_loc)
17264 || attr_form_is_block (member_loc))
17265 {
17266 if (attr)
17267 mark_common_block_symbol_computed (sym, die, attr,
17268 member_loc, cu);
17269 }
17270 else
17271 dwarf2_complex_location_expr_complaint ();
17272 }
17273 }
17274 }
17275
17276 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
17277 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
17278 }
17279 }
17280
17281 /* Create a type for a C++ namespace. */
17282
17283 static struct type *
17284 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
17285 {
17286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17287 const char *previous_prefix, *name;
17288 int is_anonymous;
17289 struct type *type;
17290
17291 /* For extensions, reuse the type of the original namespace. */
17292 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17293 {
17294 struct die_info *ext_die;
17295 struct dwarf2_cu *ext_cu = cu;
17296
17297 ext_die = dwarf2_extension (die, &ext_cu);
17298 type = read_type_die (ext_die, ext_cu);
17299
17300 /* EXT_CU may not be the same as CU.
17301 Ensure TYPE is recorded with CU in die_type_hash. */
17302 return set_die_type (die, type, cu);
17303 }
17304
17305 name = namespace_name (die, &is_anonymous, cu);
17306
17307 /* Now build the name of the current namespace. */
17308
17309 previous_prefix = determine_prefix (die, cu);
17310 if (previous_prefix[0] != '\0')
17311 name = typename_concat (&objfile->objfile_obstack,
17312 previous_prefix, name, 0, cu);
17313
17314 /* Create the type. */
17315 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17316 TYPE_TAG_NAME (type) = TYPE_NAME (type);
17317
17318 return set_die_type (die, type, cu);
17319 }
17320
17321 /* Read a namespace scope. */
17322
17323 static void
17324 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17325 {
17326 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17327 int is_anonymous;
17328
17329 /* Add a symbol associated to this if we haven't seen the namespace
17330 before. Also, add a using directive if it's an anonymous
17331 namespace. */
17332
17333 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17334 {
17335 struct type *type;
17336
17337 type = read_type_die (die, cu);
17338 new_symbol (die, type, cu);
17339
17340 namespace_name (die, &is_anonymous, cu);
17341 if (is_anonymous)
17342 {
17343 const char *previous_prefix = determine_prefix (die, cu);
17344
17345 std::vector<const char *> excludes;
17346 add_using_directive (using_directives (cu->language),
17347 previous_prefix, TYPE_NAME (type), NULL,
17348 NULL, excludes, 0, &objfile->objfile_obstack);
17349 }
17350 }
17351
17352 if (die->child != NULL)
17353 {
17354 struct die_info *child_die = die->child;
17355
17356 while (child_die && child_die->tag)
17357 {
17358 process_die (child_die, cu);
17359 child_die = sibling_die (child_die);
17360 }
17361 }
17362 }
17363
17364 /* Read a Fortran module as type. This DIE can be only a declaration used for
17365 imported module. Still we need that type as local Fortran "use ... only"
17366 declaration imports depend on the created type in determine_prefix. */
17367
17368 static struct type *
17369 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17370 {
17371 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17372 const char *module_name;
17373 struct type *type;
17374
17375 module_name = dwarf2_name (die, cu);
17376 if (!module_name)
17377 complaint (&symfile_complaints,
17378 _("DW_TAG_module has no name, offset %s"),
17379 sect_offset_str (die->sect_off));
17380 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17381
17382 /* determine_prefix uses TYPE_TAG_NAME. */
17383 TYPE_TAG_NAME (type) = TYPE_NAME (type);
17384
17385 return set_die_type (die, type, cu);
17386 }
17387
17388 /* Read a Fortran module. */
17389
17390 static void
17391 read_module (struct die_info *die, struct dwarf2_cu *cu)
17392 {
17393 struct die_info *child_die = die->child;
17394 struct type *type;
17395
17396 type = read_type_die (die, cu);
17397 new_symbol (die, type, cu);
17398
17399 while (child_die && child_die->tag)
17400 {
17401 process_die (child_die, cu);
17402 child_die = sibling_die (child_die);
17403 }
17404 }
17405
17406 /* Return the name of the namespace represented by DIE. Set
17407 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17408 namespace. */
17409
17410 static const char *
17411 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17412 {
17413 struct die_info *current_die;
17414 const char *name = NULL;
17415
17416 /* Loop through the extensions until we find a name. */
17417
17418 for (current_die = die;
17419 current_die != NULL;
17420 current_die = dwarf2_extension (die, &cu))
17421 {
17422 /* We don't use dwarf2_name here so that we can detect the absence
17423 of a name -> anonymous namespace. */
17424 name = dwarf2_string_attr (die, DW_AT_name, cu);
17425
17426 if (name != NULL)
17427 break;
17428 }
17429
17430 /* Is it an anonymous namespace? */
17431
17432 *is_anonymous = (name == NULL);
17433 if (*is_anonymous)
17434 name = CP_ANONYMOUS_NAMESPACE_STR;
17435
17436 return name;
17437 }
17438
17439 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17440 the user defined type vector. */
17441
17442 static struct type *
17443 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17444 {
17445 struct gdbarch *gdbarch
17446 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17447 struct comp_unit_head *cu_header = &cu->header;
17448 struct type *type;
17449 struct attribute *attr_byte_size;
17450 struct attribute *attr_address_class;
17451 int byte_size, addr_class;
17452 struct type *target_type;
17453
17454 target_type = die_type (die, cu);
17455
17456 /* The die_type call above may have already set the type for this DIE. */
17457 type = get_die_type (die, cu);
17458 if (type)
17459 return type;
17460
17461 type = lookup_pointer_type (target_type);
17462
17463 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17464 if (attr_byte_size)
17465 byte_size = DW_UNSND (attr_byte_size);
17466 else
17467 byte_size = cu_header->addr_size;
17468
17469 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17470 if (attr_address_class)
17471 addr_class = DW_UNSND (attr_address_class);
17472 else
17473 addr_class = DW_ADDR_none;
17474
17475 /* If the pointer size or address class is different than the
17476 default, create a type variant marked as such and set the
17477 length accordingly. */
17478 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
17479 {
17480 if (gdbarch_address_class_type_flags_p (gdbarch))
17481 {
17482 int type_flags;
17483
17484 type_flags = gdbarch_address_class_type_flags
17485 (gdbarch, byte_size, addr_class);
17486 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17487 == 0);
17488 type = make_type_with_address_space (type, type_flags);
17489 }
17490 else if (TYPE_LENGTH (type) != byte_size)
17491 {
17492 complaint (&symfile_complaints,
17493 _("invalid pointer size %d"), byte_size);
17494 }
17495 else
17496 {
17497 /* Should we also complain about unhandled address classes? */
17498 }
17499 }
17500
17501 TYPE_LENGTH (type) = byte_size;
17502 return set_die_type (die, type, cu);
17503 }
17504
17505 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17506 the user defined type vector. */
17507
17508 static struct type *
17509 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17510 {
17511 struct type *type;
17512 struct type *to_type;
17513 struct type *domain;
17514
17515 to_type = die_type (die, cu);
17516 domain = die_containing_type (die, cu);
17517
17518 /* The calls above may have already set the type for this DIE. */
17519 type = get_die_type (die, cu);
17520 if (type)
17521 return type;
17522
17523 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17524 type = lookup_methodptr_type (to_type);
17525 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17526 {
17527 struct type *new_type
17528 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17529
17530 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17531 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17532 TYPE_VARARGS (to_type));
17533 type = lookup_methodptr_type (new_type);
17534 }
17535 else
17536 type = lookup_memberptr_type (to_type, domain);
17537
17538 return set_die_type (die, type, cu);
17539 }
17540
17541 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17542 the user defined type vector. */
17543
17544 static struct type *
17545 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17546 enum type_code refcode)
17547 {
17548 struct comp_unit_head *cu_header = &cu->header;
17549 struct type *type, *target_type;
17550 struct attribute *attr;
17551
17552 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17553
17554 target_type = die_type (die, cu);
17555
17556 /* The die_type call above may have already set the type for this DIE. */
17557 type = get_die_type (die, cu);
17558 if (type)
17559 return type;
17560
17561 type = lookup_reference_type (target_type, refcode);
17562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17563 if (attr)
17564 {
17565 TYPE_LENGTH (type) = DW_UNSND (attr);
17566 }
17567 else
17568 {
17569 TYPE_LENGTH (type) = cu_header->addr_size;
17570 }
17571 return set_die_type (die, type, cu);
17572 }
17573
17574 /* Add the given cv-qualifiers to the element type of the array. GCC
17575 outputs DWARF type qualifiers that apply to an array, not the
17576 element type. But GDB relies on the array element type to carry
17577 the cv-qualifiers. This mimics section 6.7.3 of the C99
17578 specification. */
17579
17580 static struct type *
17581 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17582 struct type *base_type, int cnst, int voltl)
17583 {
17584 struct type *el_type, *inner_array;
17585
17586 base_type = copy_type (base_type);
17587 inner_array = base_type;
17588
17589 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17590 {
17591 TYPE_TARGET_TYPE (inner_array) =
17592 copy_type (TYPE_TARGET_TYPE (inner_array));
17593 inner_array = TYPE_TARGET_TYPE (inner_array);
17594 }
17595
17596 el_type = TYPE_TARGET_TYPE (inner_array);
17597 cnst |= TYPE_CONST (el_type);
17598 voltl |= TYPE_VOLATILE (el_type);
17599 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17600
17601 return set_die_type (die, base_type, cu);
17602 }
17603
17604 static struct type *
17605 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17606 {
17607 struct type *base_type, *cv_type;
17608
17609 base_type = die_type (die, cu);
17610
17611 /* The die_type call above may have already set the type for this DIE. */
17612 cv_type = get_die_type (die, cu);
17613 if (cv_type)
17614 return cv_type;
17615
17616 /* In case the const qualifier is applied to an array type, the element type
17617 is so qualified, not the array type (section 6.7.3 of C99). */
17618 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17619 return add_array_cv_type (die, cu, base_type, 1, 0);
17620
17621 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17622 return set_die_type (die, cv_type, cu);
17623 }
17624
17625 static struct type *
17626 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17627 {
17628 struct type *base_type, *cv_type;
17629
17630 base_type = die_type (die, cu);
17631
17632 /* The die_type call above may have already set the type for this DIE. */
17633 cv_type = get_die_type (die, cu);
17634 if (cv_type)
17635 return cv_type;
17636
17637 /* In case the volatile qualifier is applied to an array type, the
17638 element type is so qualified, not the array type (section 6.7.3
17639 of C99). */
17640 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17641 return add_array_cv_type (die, cu, base_type, 0, 1);
17642
17643 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17644 return set_die_type (die, cv_type, cu);
17645 }
17646
17647 /* Handle DW_TAG_restrict_type. */
17648
17649 static struct type *
17650 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17651 {
17652 struct type *base_type, *cv_type;
17653
17654 base_type = die_type (die, cu);
17655
17656 /* The die_type call above may have already set the type for this DIE. */
17657 cv_type = get_die_type (die, cu);
17658 if (cv_type)
17659 return cv_type;
17660
17661 cv_type = make_restrict_type (base_type);
17662 return set_die_type (die, cv_type, cu);
17663 }
17664
17665 /* Handle DW_TAG_atomic_type. */
17666
17667 static struct type *
17668 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17669 {
17670 struct type *base_type, *cv_type;
17671
17672 base_type = die_type (die, cu);
17673
17674 /* The die_type call above may have already set the type for this DIE. */
17675 cv_type = get_die_type (die, cu);
17676 if (cv_type)
17677 return cv_type;
17678
17679 cv_type = make_atomic_type (base_type);
17680 return set_die_type (die, cv_type, cu);
17681 }
17682
17683 /* Extract all information from a DW_TAG_string_type DIE and add to
17684 the user defined type vector. It isn't really a user defined type,
17685 but it behaves like one, with other DIE's using an AT_user_def_type
17686 attribute to reference it. */
17687
17688 static struct type *
17689 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17690 {
17691 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17692 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17693 struct type *type, *range_type, *index_type, *char_type;
17694 struct attribute *attr;
17695 unsigned int length;
17696
17697 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17698 if (attr)
17699 {
17700 length = DW_UNSND (attr);
17701 }
17702 else
17703 {
17704 /* Check for the DW_AT_byte_size attribute. */
17705 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17706 if (attr)
17707 {
17708 length = DW_UNSND (attr);
17709 }
17710 else
17711 {
17712 length = 1;
17713 }
17714 }
17715
17716 index_type = objfile_type (objfile)->builtin_int;
17717 range_type = create_static_range_type (NULL, index_type, 1, length);
17718 char_type = language_string_char_type (cu->language_defn, gdbarch);
17719 type = create_string_type (NULL, char_type, range_type);
17720
17721 return set_die_type (die, type, cu);
17722 }
17723
17724 /* Assuming that DIE corresponds to a function, returns nonzero
17725 if the function is prototyped. */
17726
17727 static int
17728 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17729 {
17730 struct attribute *attr;
17731
17732 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17733 if (attr && (DW_UNSND (attr) != 0))
17734 return 1;
17735
17736 /* The DWARF standard implies that the DW_AT_prototyped attribute
17737 is only meaninful for C, but the concept also extends to other
17738 languages that allow unprototyped functions (Eg: Objective C).
17739 For all other languages, assume that functions are always
17740 prototyped. */
17741 if (cu->language != language_c
17742 && cu->language != language_objc
17743 && cu->language != language_opencl)
17744 return 1;
17745
17746 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17747 prototyped and unprototyped functions; default to prototyped,
17748 since that is more common in modern code (and RealView warns
17749 about unprototyped functions). */
17750 if (producer_is_realview (cu->producer))
17751 return 1;
17752
17753 return 0;
17754 }
17755
17756 /* Handle DIES due to C code like:
17757
17758 struct foo
17759 {
17760 int (*funcp)(int a, long l);
17761 int b;
17762 };
17763
17764 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17765
17766 static struct type *
17767 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17768 {
17769 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17770 struct type *type; /* Type that this function returns. */
17771 struct type *ftype; /* Function that returns above type. */
17772 struct attribute *attr;
17773
17774 type = die_type (die, cu);
17775
17776 /* The die_type call above may have already set the type for this DIE. */
17777 ftype = get_die_type (die, cu);
17778 if (ftype)
17779 return ftype;
17780
17781 ftype = lookup_function_type (type);
17782
17783 if (prototyped_function_p (die, cu))
17784 TYPE_PROTOTYPED (ftype) = 1;
17785
17786 /* Store the calling convention in the type if it's available in
17787 the subroutine die. Otherwise set the calling convention to
17788 the default value DW_CC_normal. */
17789 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17790 if (attr)
17791 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17792 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17793 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17794 else
17795 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17796
17797 /* Record whether the function returns normally to its caller or not
17798 if the DWARF producer set that information. */
17799 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17800 if (attr && (DW_UNSND (attr) != 0))
17801 TYPE_NO_RETURN (ftype) = 1;
17802
17803 /* We need to add the subroutine type to the die immediately so
17804 we don't infinitely recurse when dealing with parameters
17805 declared as the same subroutine type. */
17806 set_die_type (die, ftype, cu);
17807
17808 if (die->child != NULL)
17809 {
17810 struct type *void_type = objfile_type (objfile)->builtin_void;
17811 struct die_info *child_die;
17812 int nparams, iparams;
17813
17814 /* Count the number of parameters.
17815 FIXME: GDB currently ignores vararg functions, but knows about
17816 vararg member functions. */
17817 nparams = 0;
17818 child_die = die->child;
17819 while (child_die && child_die->tag)
17820 {
17821 if (child_die->tag == DW_TAG_formal_parameter)
17822 nparams++;
17823 else if (child_die->tag == DW_TAG_unspecified_parameters)
17824 TYPE_VARARGS (ftype) = 1;
17825 child_die = sibling_die (child_die);
17826 }
17827
17828 /* Allocate storage for parameters and fill them in. */
17829 TYPE_NFIELDS (ftype) = nparams;
17830 TYPE_FIELDS (ftype) = (struct field *)
17831 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17832
17833 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17834 even if we error out during the parameters reading below. */
17835 for (iparams = 0; iparams < nparams; iparams++)
17836 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17837
17838 iparams = 0;
17839 child_die = die->child;
17840 while (child_die && child_die->tag)
17841 {
17842 if (child_die->tag == DW_TAG_formal_parameter)
17843 {
17844 struct type *arg_type;
17845
17846 /* DWARF version 2 has no clean way to discern C++
17847 static and non-static member functions. G++ helps
17848 GDB by marking the first parameter for non-static
17849 member functions (which is the this pointer) as
17850 artificial. We pass this information to
17851 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17852
17853 DWARF version 3 added DW_AT_object_pointer, which GCC
17854 4.5 does not yet generate. */
17855 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17856 if (attr)
17857 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17858 else
17859 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17860 arg_type = die_type (child_die, cu);
17861
17862 /* RealView does not mark THIS as const, which the testsuite
17863 expects. GCC marks THIS as const in method definitions,
17864 but not in the class specifications (GCC PR 43053). */
17865 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17866 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17867 {
17868 int is_this = 0;
17869 struct dwarf2_cu *arg_cu = cu;
17870 const char *name = dwarf2_name (child_die, cu);
17871
17872 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17873 if (attr)
17874 {
17875 /* If the compiler emits this, use it. */
17876 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17877 is_this = 1;
17878 }
17879 else if (name && strcmp (name, "this") == 0)
17880 /* Function definitions will have the argument names. */
17881 is_this = 1;
17882 else if (name == NULL && iparams == 0)
17883 /* Declarations may not have the names, so like
17884 elsewhere in GDB, assume an artificial first
17885 argument is "this". */
17886 is_this = 1;
17887
17888 if (is_this)
17889 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17890 arg_type, 0);
17891 }
17892
17893 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17894 iparams++;
17895 }
17896 child_die = sibling_die (child_die);
17897 }
17898 }
17899
17900 return ftype;
17901 }
17902
17903 static struct type *
17904 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17905 {
17906 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17907 const char *name = NULL;
17908 struct type *this_type, *target_type;
17909
17910 name = dwarf2_full_name (NULL, die, cu);
17911 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17912 TYPE_TARGET_STUB (this_type) = 1;
17913 set_die_type (die, this_type, cu);
17914 target_type = die_type (die, cu);
17915 if (target_type != this_type)
17916 TYPE_TARGET_TYPE (this_type) = target_type;
17917 else
17918 {
17919 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17920 spec and cause infinite loops in GDB. */
17921 complaint (&symfile_complaints,
17922 _("Self-referential DW_TAG_typedef "
17923 "- DIE at %s [in module %s]"),
17924 sect_offset_str (die->sect_off), objfile_name (objfile));
17925 TYPE_TARGET_TYPE (this_type) = NULL;
17926 }
17927 return this_type;
17928 }
17929
17930 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17931 (which may be different from NAME) to the architecture back-end to allow
17932 it to guess the correct format if necessary. */
17933
17934 static struct type *
17935 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17936 const char *name_hint)
17937 {
17938 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17939 const struct floatformat **format;
17940 struct type *type;
17941
17942 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17943 if (format)
17944 type = init_float_type (objfile, bits, name, format);
17945 else
17946 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17947
17948 return type;
17949 }
17950
17951 /* Find a representation of a given base type and install
17952 it in the TYPE field of the die. */
17953
17954 static struct type *
17955 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17956 {
17957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17958 struct type *type;
17959 struct attribute *attr;
17960 int encoding = 0, bits = 0;
17961 const char *name;
17962
17963 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17964 if (attr)
17965 {
17966 encoding = DW_UNSND (attr);
17967 }
17968 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17969 if (attr)
17970 {
17971 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17972 }
17973 name = dwarf2_name (die, cu);
17974 if (!name)
17975 {
17976 complaint (&symfile_complaints,
17977 _("DW_AT_name missing from DW_TAG_base_type"));
17978 }
17979
17980 switch (encoding)
17981 {
17982 case DW_ATE_address:
17983 /* Turn DW_ATE_address into a void * pointer. */
17984 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17985 type = init_pointer_type (objfile, bits, name, type);
17986 break;
17987 case DW_ATE_boolean:
17988 type = init_boolean_type (objfile, bits, 1, name);
17989 break;
17990 case DW_ATE_complex_float:
17991 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17992 type = init_complex_type (objfile, name, type);
17993 break;
17994 case DW_ATE_decimal_float:
17995 type = init_decfloat_type (objfile, bits, name);
17996 break;
17997 case DW_ATE_float:
17998 type = dwarf2_init_float_type (objfile, bits, name, name);
17999 break;
18000 case DW_ATE_signed:
18001 type = init_integer_type (objfile, bits, 0, name);
18002 break;
18003 case DW_ATE_unsigned:
18004 if (cu->language == language_fortran
18005 && name
18006 && startswith (name, "character("))
18007 type = init_character_type (objfile, bits, 1, name);
18008 else
18009 type = init_integer_type (objfile, bits, 1, name);
18010 break;
18011 case DW_ATE_signed_char:
18012 if (cu->language == language_ada || cu->language == language_m2
18013 || cu->language == language_pascal
18014 || cu->language == language_fortran)
18015 type = init_character_type (objfile, bits, 0, name);
18016 else
18017 type = init_integer_type (objfile, bits, 0, name);
18018 break;
18019 case DW_ATE_unsigned_char:
18020 if (cu->language == language_ada || cu->language == language_m2
18021 || cu->language == language_pascal
18022 || cu->language == language_fortran
18023 || cu->language == language_rust)
18024 type = init_character_type (objfile, bits, 1, name);
18025 else
18026 type = init_integer_type (objfile, bits, 1, name);
18027 break;
18028 case DW_ATE_UTF:
18029 {
18030 gdbarch *arch = get_objfile_arch (objfile);
18031
18032 if (bits == 16)
18033 type = builtin_type (arch)->builtin_char16;
18034 else if (bits == 32)
18035 type = builtin_type (arch)->builtin_char32;
18036 else
18037 {
18038 complaint (&symfile_complaints,
18039 _("unsupported DW_ATE_UTF bit size: '%d'"),
18040 bits);
18041 type = init_integer_type (objfile, bits, 1, name);
18042 }
18043 return set_die_type (die, type, cu);
18044 }
18045 break;
18046
18047 default:
18048 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
18049 dwarf_type_encoding_name (encoding));
18050 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18051 break;
18052 }
18053
18054 if (name && strcmp (name, "char") == 0)
18055 TYPE_NOSIGN (type) = 1;
18056
18057 return set_die_type (die, type, cu);
18058 }
18059
18060 /* Parse dwarf attribute if it's a block, reference or constant and put the
18061 resulting value of the attribute into struct bound_prop.
18062 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18063
18064 static int
18065 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18066 struct dwarf2_cu *cu, struct dynamic_prop *prop)
18067 {
18068 struct dwarf2_property_baton *baton;
18069 struct obstack *obstack
18070 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
18071
18072 if (attr == NULL || prop == NULL)
18073 return 0;
18074
18075 if (attr_form_is_block (attr))
18076 {
18077 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18078 baton->referenced_type = NULL;
18079 baton->locexpr.per_cu = cu->per_cu;
18080 baton->locexpr.size = DW_BLOCK (attr)->size;
18081 baton->locexpr.data = DW_BLOCK (attr)->data;
18082 prop->data.baton = baton;
18083 prop->kind = PROP_LOCEXPR;
18084 gdb_assert (prop->data.baton != NULL);
18085 }
18086 else if (attr_form_is_ref (attr))
18087 {
18088 struct dwarf2_cu *target_cu = cu;
18089 struct die_info *target_die;
18090 struct attribute *target_attr;
18091
18092 target_die = follow_die_ref (die, attr, &target_cu);
18093 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18094 if (target_attr == NULL)
18095 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18096 target_cu);
18097 if (target_attr == NULL)
18098 return 0;
18099
18100 switch (target_attr->name)
18101 {
18102 case DW_AT_location:
18103 if (attr_form_is_section_offset (target_attr))
18104 {
18105 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18106 baton->referenced_type = die_type (target_die, target_cu);
18107 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18108 prop->data.baton = baton;
18109 prop->kind = PROP_LOCLIST;
18110 gdb_assert (prop->data.baton != NULL);
18111 }
18112 else if (attr_form_is_block (target_attr))
18113 {
18114 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18115 baton->referenced_type = die_type (target_die, target_cu);
18116 baton->locexpr.per_cu = cu->per_cu;
18117 baton->locexpr.size = DW_BLOCK (target_attr)->size;
18118 baton->locexpr.data = DW_BLOCK (target_attr)->data;
18119 prop->data.baton = baton;
18120 prop->kind = PROP_LOCEXPR;
18121 gdb_assert (prop->data.baton != NULL);
18122 }
18123 else
18124 {
18125 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18126 "dynamic property");
18127 return 0;
18128 }
18129 break;
18130 case DW_AT_data_member_location:
18131 {
18132 LONGEST offset;
18133
18134 if (!handle_data_member_location (target_die, target_cu,
18135 &offset))
18136 return 0;
18137
18138 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18139 baton->referenced_type = read_type_die (target_die->parent,
18140 target_cu);
18141 baton->offset_info.offset = offset;
18142 baton->offset_info.type = die_type (target_die, target_cu);
18143 prop->data.baton = baton;
18144 prop->kind = PROP_ADDR_OFFSET;
18145 break;
18146 }
18147 }
18148 }
18149 else if (attr_form_is_constant (attr))
18150 {
18151 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
18152 prop->kind = PROP_CONST;
18153 }
18154 else
18155 {
18156 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18157 dwarf2_name (die, cu));
18158 return 0;
18159 }
18160
18161 return 1;
18162 }
18163
18164 /* Read the given DW_AT_subrange DIE. */
18165
18166 static struct type *
18167 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18168 {
18169 struct type *base_type, *orig_base_type;
18170 struct type *range_type;
18171 struct attribute *attr;
18172 struct dynamic_prop low, high;
18173 int low_default_is_valid;
18174 int high_bound_is_count = 0;
18175 const char *name;
18176 LONGEST negative_mask;
18177
18178 orig_base_type = die_type (die, cu);
18179 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18180 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18181 creating the range type, but we use the result of check_typedef
18182 when examining properties of the type. */
18183 base_type = check_typedef (orig_base_type);
18184
18185 /* The die_type call above may have already set the type for this DIE. */
18186 range_type = get_die_type (die, cu);
18187 if (range_type)
18188 return range_type;
18189
18190 low.kind = PROP_CONST;
18191 high.kind = PROP_CONST;
18192 high.data.const_val = 0;
18193
18194 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18195 omitting DW_AT_lower_bound. */
18196 switch (cu->language)
18197 {
18198 case language_c:
18199 case language_cplus:
18200 low.data.const_val = 0;
18201 low_default_is_valid = 1;
18202 break;
18203 case language_fortran:
18204 low.data.const_val = 1;
18205 low_default_is_valid = 1;
18206 break;
18207 case language_d:
18208 case language_objc:
18209 case language_rust:
18210 low.data.const_val = 0;
18211 low_default_is_valid = (cu->header.version >= 4);
18212 break;
18213 case language_ada:
18214 case language_m2:
18215 case language_pascal:
18216 low.data.const_val = 1;
18217 low_default_is_valid = (cu->header.version >= 4);
18218 break;
18219 default:
18220 low.data.const_val = 0;
18221 low_default_is_valid = 0;
18222 break;
18223 }
18224
18225 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18226 if (attr)
18227 attr_to_dynamic_prop (attr, die, cu, &low);
18228 else if (!low_default_is_valid)
18229 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
18230 "- DIE at %s [in module %s]"),
18231 sect_offset_str (die->sect_off),
18232 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18233
18234 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
18235 if (!attr_to_dynamic_prop (attr, die, cu, &high))
18236 {
18237 attr = dwarf2_attr (die, DW_AT_count, cu);
18238 if (attr_to_dynamic_prop (attr, die, cu, &high))
18239 {
18240 /* If bounds are constant do the final calculation here. */
18241 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18242 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18243 else
18244 high_bound_is_count = 1;
18245 }
18246 }
18247
18248 /* Dwarf-2 specifications explicitly allows to create subrange types
18249 without specifying a base type.
18250 In that case, the base type must be set to the type of
18251 the lower bound, upper bound or count, in that order, if any of these
18252 three attributes references an object that has a type.
18253 If no base type is found, the Dwarf-2 specifications say that
18254 a signed integer type of size equal to the size of an address should
18255 be used.
18256 For the following C code: `extern char gdb_int [];'
18257 GCC produces an empty range DIE.
18258 FIXME: muller/2010-05-28: Possible references to object for low bound,
18259 high bound or count are not yet handled by this code. */
18260 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
18261 {
18262 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18264 int addr_size = gdbarch_addr_bit (gdbarch) /8;
18265 struct type *int_type = objfile_type (objfile)->builtin_int;
18266
18267 /* Test "int", "long int", and "long long int" objfile types,
18268 and select the first one having a size above or equal to the
18269 architecture address size. */
18270 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18271 base_type = int_type;
18272 else
18273 {
18274 int_type = objfile_type (objfile)->builtin_long;
18275 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18276 base_type = int_type;
18277 else
18278 {
18279 int_type = objfile_type (objfile)->builtin_long_long;
18280 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18281 base_type = int_type;
18282 }
18283 }
18284 }
18285
18286 /* Normally, the DWARF producers are expected to use a signed
18287 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18288 But this is unfortunately not always the case, as witnessed
18289 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18290 is used instead. To work around that ambiguity, we treat
18291 the bounds as signed, and thus sign-extend their values, when
18292 the base type is signed. */
18293 negative_mask =
18294 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18295 if (low.kind == PROP_CONST
18296 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18297 low.data.const_val |= negative_mask;
18298 if (high.kind == PROP_CONST
18299 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18300 high.data.const_val |= negative_mask;
18301
18302 range_type = create_range_type (NULL, orig_base_type, &low, &high);
18303
18304 if (high_bound_is_count)
18305 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18306
18307 /* Ada expects an empty array on no boundary attributes. */
18308 if (attr == NULL && cu->language != language_ada)
18309 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18310
18311 name = dwarf2_name (die, cu);
18312 if (name)
18313 TYPE_NAME (range_type) = name;
18314
18315 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18316 if (attr)
18317 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18318
18319 set_die_type (die, range_type, cu);
18320
18321 /* set_die_type should be already done. */
18322 set_descriptive_type (range_type, die, cu);
18323
18324 return range_type;
18325 }
18326
18327 static struct type *
18328 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18329 {
18330 struct type *type;
18331
18332 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18333 NULL);
18334 TYPE_NAME (type) = dwarf2_name (die, cu);
18335
18336 /* In Ada, an unspecified type is typically used when the description
18337 of the type is defered to a different unit. When encountering
18338 such a type, we treat it as a stub, and try to resolve it later on,
18339 when needed. */
18340 if (cu->language == language_ada)
18341 TYPE_STUB (type) = 1;
18342
18343 return set_die_type (die, type, cu);
18344 }
18345
18346 /* Read a single die and all its descendents. Set the die's sibling
18347 field to NULL; set other fields in the die correctly, and set all
18348 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18349 location of the info_ptr after reading all of those dies. PARENT
18350 is the parent of the die in question. */
18351
18352 static struct die_info *
18353 read_die_and_children (const struct die_reader_specs *reader,
18354 const gdb_byte *info_ptr,
18355 const gdb_byte **new_info_ptr,
18356 struct die_info *parent)
18357 {
18358 struct die_info *die;
18359 const gdb_byte *cur_ptr;
18360 int has_children;
18361
18362 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18363 if (die == NULL)
18364 {
18365 *new_info_ptr = cur_ptr;
18366 return NULL;
18367 }
18368 store_in_ref_table (die, reader->cu);
18369
18370 if (has_children)
18371 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18372 else
18373 {
18374 die->child = NULL;
18375 *new_info_ptr = cur_ptr;
18376 }
18377
18378 die->sibling = NULL;
18379 die->parent = parent;
18380 return die;
18381 }
18382
18383 /* Read a die, all of its descendents, and all of its siblings; set
18384 all of the fields of all of the dies correctly. Arguments are as
18385 in read_die_and_children. */
18386
18387 static struct die_info *
18388 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18389 const gdb_byte *info_ptr,
18390 const gdb_byte **new_info_ptr,
18391 struct die_info *parent)
18392 {
18393 struct die_info *first_die, *last_sibling;
18394 const gdb_byte *cur_ptr;
18395
18396 cur_ptr = info_ptr;
18397 first_die = last_sibling = NULL;
18398
18399 while (1)
18400 {
18401 struct die_info *die
18402 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18403
18404 if (die == NULL)
18405 {
18406 *new_info_ptr = cur_ptr;
18407 return first_die;
18408 }
18409
18410 if (!first_die)
18411 first_die = die;
18412 else
18413 last_sibling->sibling = die;
18414
18415 last_sibling = die;
18416 }
18417 }
18418
18419 /* Read a die, all of its descendents, and all of its siblings; set
18420 all of the fields of all of the dies correctly. Arguments are as
18421 in read_die_and_children.
18422 This the main entry point for reading a DIE and all its children. */
18423
18424 static struct die_info *
18425 read_die_and_siblings (const struct die_reader_specs *reader,
18426 const gdb_byte *info_ptr,
18427 const gdb_byte **new_info_ptr,
18428 struct die_info *parent)
18429 {
18430 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18431 new_info_ptr, parent);
18432
18433 if (dwarf_die_debug)
18434 {
18435 fprintf_unfiltered (gdb_stdlog,
18436 "Read die from %s@0x%x of %s:\n",
18437 get_section_name (reader->die_section),
18438 (unsigned) (info_ptr - reader->die_section->buffer),
18439 bfd_get_filename (reader->abfd));
18440 dump_die (die, dwarf_die_debug);
18441 }
18442
18443 return die;
18444 }
18445
18446 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18447 attributes.
18448 The caller is responsible for filling in the extra attributes
18449 and updating (*DIEP)->num_attrs.
18450 Set DIEP to point to a newly allocated die with its information,
18451 except for its child, sibling, and parent fields.
18452 Set HAS_CHILDREN to tell whether the die has children or not. */
18453
18454 static const gdb_byte *
18455 read_full_die_1 (const struct die_reader_specs *reader,
18456 struct die_info **diep, const gdb_byte *info_ptr,
18457 int *has_children, int num_extra_attrs)
18458 {
18459 unsigned int abbrev_number, bytes_read, i;
18460 struct abbrev_info *abbrev;
18461 struct die_info *die;
18462 struct dwarf2_cu *cu = reader->cu;
18463 bfd *abfd = reader->abfd;
18464
18465 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18466 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18467 info_ptr += bytes_read;
18468 if (!abbrev_number)
18469 {
18470 *diep = NULL;
18471 *has_children = 0;
18472 return info_ptr;
18473 }
18474
18475 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18476 if (!abbrev)
18477 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18478 abbrev_number,
18479 bfd_get_filename (abfd));
18480
18481 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18482 die->sect_off = sect_off;
18483 die->tag = abbrev->tag;
18484 die->abbrev = abbrev_number;
18485
18486 /* Make the result usable.
18487 The caller needs to update num_attrs after adding the extra
18488 attributes. */
18489 die->num_attrs = abbrev->num_attrs;
18490
18491 for (i = 0; i < abbrev->num_attrs; ++i)
18492 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18493 info_ptr);
18494
18495 *diep = die;
18496 *has_children = abbrev->has_children;
18497 return info_ptr;
18498 }
18499
18500 /* Read a die and all its attributes.
18501 Set DIEP to point to a newly allocated die with its information,
18502 except for its child, sibling, and parent fields.
18503 Set HAS_CHILDREN to tell whether the die has children or not. */
18504
18505 static const gdb_byte *
18506 read_full_die (const struct die_reader_specs *reader,
18507 struct die_info **diep, const gdb_byte *info_ptr,
18508 int *has_children)
18509 {
18510 const gdb_byte *result;
18511
18512 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18513
18514 if (dwarf_die_debug)
18515 {
18516 fprintf_unfiltered (gdb_stdlog,
18517 "Read die from %s@0x%x of %s:\n",
18518 get_section_name (reader->die_section),
18519 (unsigned) (info_ptr - reader->die_section->buffer),
18520 bfd_get_filename (reader->abfd));
18521 dump_die (*diep, dwarf_die_debug);
18522 }
18523
18524 return result;
18525 }
18526 \f
18527 /* Abbreviation tables.
18528
18529 In DWARF version 2, the description of the debugging information is
18530 stored in a separate .debug_abbrev section. Before we read any
18531 dies from a section we read in all abbreviations and install them
18532 in a hash table. */
18533
18534 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18535
18536 struct abbrev_info *
18537 abbrev_table::alloc_abbrev ()
18538 {
18539 struct abbrev_info *abbrev;
18540
18541 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18542 memset (abbrev, 0, sizeof (struct abbrev_info));
18543
18544 return abbrev;
18545 }
18546
18547 /* Add an abbreviation to the table. */
18548
18549 void
18550 abbrev_table::add_abbrev (unsigned int abbrev_number,
18551 struct abbrev_info *abbrev)
18552 {
18553 unsigned int hash_number;
18554
18555 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18556 abbrev->next = m_abbrevs[hash_number];
18557 m_abbrevs[hash_number] = abbrev;
18558 }
18559
18560 /* Look up an abbrev in the table.
18561 Returns NULL if the abbrev is not found. */
18562
18563 struct abbrev_info *
18564 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18565 {
18566 unsigned int hash_number;
18567 struct abbrev_info *abbrev;
18568
18569 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18570 abbrev = m_abbrevs[hash_number];
18571
18572 while (abbrev)
18573 {
18574 if (abbrev->number == abbrev_number)
18575 return abbrev;
18576 abbrev = abbrev->next;
18577 }
18578 return NULL;
18579 }
18580
18581 /* Read in an abbrev table. */
18582
18583 static abbrev_table_up
18584 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18585 struct dwarf2_section_info *section,
18586 sect_offset sect_off)
18587 {
18588 struct objfile *objfile = dwarf2_per_objfile->objfile;
18589 bfd *abfd = get_section_bfd_owner (section);
18590 const gdb_byte *abbrev_ptr;
18591 struct abbrev_info *cur_abbrev;
18592 unsigned int abbrev_number, bytes_read, abbrev_name;
18593 unsigned int abbrev_form;
18594 struct attr_abbrev *cur_attrs;
18595 unsigned int allocated_attrs;
18596
18597 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18598
18599 dwarf2_read_section (objfile, section);
18600 abbrev_ptr = section->buffer + to_underlying (sect_off);
18601 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18602 abbrev_ptr += bytes_read;
18603
18604 allocated_attrs = ATTR_ALLOC_CHUNK;
18605 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18606
18607 /* Loop until we reach an abbrev number of 0. */
18608 while (abbrev_number)
18609 {
18610 cur_abbrev = abbrev_table->alloc_abbrev ();
18611
18612 /* read in abbrev header */
18613 cur_abbrev->number = abbrev_number;
18614 cur_abbrev->tag
18615 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18616 abbrev_ptr += bytes_read;
18617 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18618 abbrev_ptr += 1;
18619
18620 /* now read in declarations */
18621 for (;;)
18622 {
18623 LONGEST implicit_const;
18624
18625 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18626 abbrev_ptr += bytes_read;
18627 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18628 abbrev_ptr += bytes_read;
18629 if (abbrev_form == DW_FORM_implicit_const)
18630 {
18631 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18632 &bytes_read);
18633 abbrev_ptr += bytes_read;
18634 }
18635 else
18636 {
18637 /* Initialize it due to a false compiler warning. */
18638 implicit_const = -1;
18639 }
18640
18641 if (abbrev_name == 0)
18642 break;
18643
18644 if (cur_abbrev->num_attrs == allocated_attrs)
18645 {
18646 allocated_attrs += ATTR_ALLOC_CHUNK;
18647 cur_attrs
18648 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18649 }
18650
18651 cur_attrs[cur_abbrev->num_attrs].name
18652 = (enum dwarf_attribute) abbrev_name;
18653 cur_attrs[cur_abbrev->num_attrs].form
18654 = (enum dwarf_form) abbrev_form;
18655 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18656 ++cur_abbrev->num_attrs;
18657 }
18658
18659 cur_abbrev->attrs =
18660 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18661 cur_abbrev->num_attrs);
18662 memcpy (cur_abbrev->attrs, cur_attrs,
18663 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18664
18665 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18666
18667 /* Get next abbreviation.
18668 Under Irix6 the abbreviations for a compilation unit are not
18669 always properly terminated with an abbrev number of 0.
18670 Exit loop if we encounter an abbreviation which we have
18671 already read (which means we are about to read the abbreviations
18672 for the next compile unit) or if the end of the abbreviation
18673 table is reached. */
18674 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18675 break;
18676 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18677 abbrev_ptr += bytes_read;
18678 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18679 break;
18680 }
18681
18682 xfree (cur_attrs);
18683 return abbrev_table;
18684 }
18685
18686 /* Returns nonzero if TAG represents a type that we might generate a partial
18687 symbol for. */
18688
18689 static int
18690 is_type_tag_for_partial (int tag)
18691 {
18692 switch (tag)
18693 {
18694 #if 0
18695 /* Some types that would be reasonable to generate partial symbols for,
18696 that we don't at present. */
18697 case DW_TAG_array_type:
18698 case DW_TAG_file_type:
18699 case DW_TAG_ptr_to_member_type:
18700 case DW_TAG_set_type:
18701 case DW_TAG_string_type:
18702 case DW_TAG_subroutine_type:
18703 #endif
18704 case DW_TAG_base_type:
18705 case DW_TAG_class_type:
18706 case DW_TAG_interface_type:
18707 case DW_TAG_enumeration_type:
18708 case DW_TAG_structure_type:
18709 case DW_TAG_subrange_type:
18710 case DW_TAG_typedef:
18711 case DW_TAG_union_type:
18712 return 1;
18713 default:
18714 return 0;
18715 }
18716 }
18717
18718 /* Load all DIEs that are interesting for partial symbols into memory. */
18719
18720 static struct partial_die_info *
18721 load_partial_dies (const struct die_reader_specs *reader,
18722 const gdb_byte *info_ptr, int building_psymtab)
18723 {
18724 struct dwarf2_cu *cu = reader->cu;
18725 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18726 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18727 unsigned int bytes_read;
18728 unsigned int load_all = 0;
18729 int nesting_level = 1;
18730
18731 parent_die = NULL;
18732 last_die = NULL;
18733
18734 gdb_assert (cu->per_cu != NULL);
18735 if (cu->per_cu->load_all_dies)
18736 load_all = 1;
18737
18738 cu->partial_dies
18739 = htab_create_alloc_ex (cu->header.length / 12,
18740 partial_die_hash,
18741 partial_die_eq,
18742 NULL,
18743 &cu->comp_unit_obstack,
18744 hashtab_obstack_allocate,
18745 dummy_obstack_deallocate);
18746
18747 while (1)
18748 {
18749 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18750
18751 /* A NULL abbrev means the end of a series of children. */
18752 if (abbrev == NULL)
18753 {
18754 if (--nesting_level == 0)
18755 return first_die;
18756
18757 info_ptr += bytes_read;
18758 last_die = parent_die;
18759 parent_die = parent_die->die_parent;
18760 continue;
18761 }
18762
18763 /* Check for template arguments. We never save these; if
18764 they're seen, we just mark the parent, and go on our way. */
18765 if (parent_die != NULL
18766 && cu->language == language_cplus
18767 && (abbrev->tag == DW_TAG_template_type_param
18768 || abbrev->tag == DW_TAG_template_value_param))
18769 {
18770 parent_die->has_template_arguments = 1;
18771
18772 if (!load_all)
18773 {
18774 /* We don't need a partial DIE for the template argument. */
18775 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18776 continue;
18777 }
18778 }
18779
18780 /* We only recurse into c++ subprograms looking for template arguments.
18781 Skip their other children. */
18782 if (!load_all
18783 && cu->language == language_cplus
18784 && parent_die != NULL
18785 && parent_die->tag == DW_TAG_subprogram)
18786 {
18787 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18788 continue;
18789 }
18790
18791 /* Check whether this DIE is interesting enough to save. Normally
18792 we would not be interested in members here, but there may be
18793 later variables referencing them via DW_AT_specification (for
18794 static members). */
18795 if (!load_all
18796 && !is_type_tag_for_partial (abbrev->tag)
18797 && abbrev->tag != DW_TAG_constant
18798 && abbrev->tag != DW_TAG_enumerator
18799 && abbrev->tag != DW_TAG_subprogram
18800 && abbrev->tag != DW_TAG_inlined_subroutine
18801 && abbrev->tag != DW_TAG_lexical_block
18802 && abbrev->tag != DW_TAG_variable
18803 && abbrev->tag != DW_TAG_namespace
18804 && abbrev->tag != DW_TAG_module
18805 && abbrev->tag != DW_TAG_member
18806 && abbrev->tag != DW_TAG_imported_unit
18807 && abbrev->tag != DW_TAG_imported_declaration)
18808 {
18809 /* Otherwise we skip to the next sibling, if any. */
18810 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18811 continue;
18812 }
18813
18814 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18815 abbrev);
18816
18817 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18818
18819 /* This two-pass algorithm for processing partial symbols has a
18820 high cost in cache pressure. Thus, handle some simple cases
18821 here which cover the majority of C partial symbols. DIEs
18822 which neither have specification tags in them, nor could have
18823 specification tags elsewhere pointing at them, can simply be
18824 processed and discarded.
18825
18826 This segment is also optional; scan_partial_symbols and
18827 add_partial_symbol will handle these DIEs if we chain
18828 them in normally. When compilers which do not emit large
18829 quantities of duplicate debug information are more common,
18830 this code can probably be removed. */
18831
18832 /* Any complete simple types at the top level (pretty much all
18833 of them, for a language without namespaces), can be processed
18834 directly. */
18835 if (parent_die == NULL
18836 && pdi.has_specification == 0
18837 && pdi.is_declaration == 0
18838 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18839 || pdi.tag == DW_TAG_base_type
18840 || pdi.tag == DW_TAG_subrange_type))
18841 {
18842 if (building_psymtab && pdi.name != NULL)
18843 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18844 VAR_DOMAIN, LOC_TYPEDEF,
18845 &objfile->static_psymbols,
18846 0, cu->language, objfile);
18847 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18848 continue;
18849 }
18850
18851 /* The exception for DW_TAG_typedef with has_children above is
18852 a workaround of GCC PR debug/47510. In the case of this complaint
18853 type_name_no_tag_or_error will error on such types later.
18854
18855 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18856 it could not find the child DIEs referenced later, this is checked
18857 above. In correct DWARF DW_TAG_typedef should have no children. */
18858
18859 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18860 complaint (&symfile_complaints,
18861 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18862 "- DIE at %s [in module %s]"),
18863 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18864
18865 /* If we're at the second level, and we're an enumerator, and
18866 our parent has no specification (meaning possibly lives in a
18867 namespace elsewhere), then we can add the partial symbol now
18868 instead of queueing it. */
18869 if (pdi.tag == DW_TAG_enumerator
18870 && parent_die != NULL
18871 && parent_die->die_parent == NULL
18872 && parent_die->tag == DW_TAG_enumeration_type
18873 && parent_die->has_specification == 0)
18874 {
18875 if (pdi.name == NULL)
18876 complaint (&symfile_complaints,
18877 _("malformed enumerator DIE ignored"));
18878 else if (building_psymtab)
18879 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18880 VAR_DOMAIN, LOC_CONST,
18881 cu->language == language_cplus
18882 ? &objfile->global_psymbols
18883 : &objfile->static_psymbols,
18884 0, cu->language, objfile);
18885
18886 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18887 continue;
18888 }
18889
18890 struct partial_die_info *part_die
18891 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18892
18893 /* We'll save this DIE so link it in. */
18894 part_die->die_parent = parent_die;
18895 part_die->die_sibling = NULL;
18896 part_die->die_child = NULL;
18897
18898 if (last_die && last_die == parent_die)
18899 last_die->die_child = part_die;
18900 else if (last_die)
18901 last_die->die_sibling = part_die;
18902
18903 last_die = part_die;
18904
18905 if (first_die == NULL)
18906 first_die = part_die;
18907
18908 /* Maybe add the DIE to the hash table. Not all DIEs that we
18909 find interesting need to be in the hash table, because we
18910 also have the parent/sibling/child chains; only those that we
18911 might refer to by offset later during partial symbol reading.
18912
18913 For now this means things that might have be the target of a
18914 DW_AT_specification, DW_AT_abstract_origin, or
18915 DW_AT_extension. DW_AT_extension will refer only to
18916 namespaces; DW_AT_abstract_origin refers to functions (and
18917 many things under the function DIE, but we do not recurse
18918 into function DIEs during partial symbol reading) and
18919 possibly variables as well; DW_AT_specification refers to
18920 declarations. Declarations ought to have the DW_AT_declaration
18921 flag. It happens that GCC forgets to put it in sometimes, but
18922 only for functions, not for types.
18923
18924 Adding more things than necessary to the hash table is harmless
18925 except for the performance cost. Adding too few will result in
18926 wasted time in find_partial_die, when we reread the compilation
18927 unit with load_all_dies set. */
18928
18929 if (load_all
18930 || abbrev->tag == DW_TAG_constant
18931 || abbrev->tag == DW_TAG_subprogram
18932 || abbrev->tag == DW_TAG_variable
18933 || abbrev->tag == DW_TAG_namespace
18934 || part_die->is_declaration)
18935 {
18936 void **slot;
18937
18938 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18939 to_underlying (part_die->sect_off),
18940 INSERT);
18941 *slot = part_die;
18942 }
18943
18944 /* For some DIEs we want to follow their children (if any). For C
18945 we have no reason to follow the children of structures; for other
18946 languages we have to, so that we can get at method physnames
18947 to infer fully qualified class names, for DW_AT_specification,
18948 and for C++ template arguments. For C++, we also look one level
18949 inside functions to find template arguments (if the name of the
18950 function does not already contain the template arguments).
18951
18952 For Ada, we need to scan the children of subprograms and lexical
18953 blocks as well because Ada allows the definition of nested
18954 entities that could be interesting for the debugger, such as
18955 nested subprograms for instance. */
18956 if (last_die->has_children
18957 && (load_all
18958 || last_die->tag == DW_TAG_namespace
18959 || last_die->tag == DW_TAG_module
18960 || last_die->tag == DW_TAG_enumeration_type
18961 || (cu->language == language_cplus
18962 && last_die->tag == DW_TAG_subprogram
18963 && (last_die->name == NULL
18964 || strchr (last_die->name, '<') == NULL))
18965 || (cu->language != language_c
18966 && (last_die->tag == DW_TAG_class_type
18967 || last_die->tag == DW_TAG_interface_type
18968 || last_die->tag == DW_TAG_structure_type
18969 || last_die->tag == DW_TAG_union_type))
18970 || (cu->language == language_ada
18971 && (last_die->tag == DW_TAG_subprogram
18972 || last_die->tag == DW_TAG_lexical_block))))
18973 {
18974 nesting_level++;
18975 parent_die = last_die;
18976 continue;
18977 }
18978
18979 /* Otherwise we skip to the next sibling, if any. */
18980 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18981
18982 /* Back to the top, do it again. */
18983 }
18984 }
18985
18986 partial_die_info::partial_die_info (sect_offset sect_off_,
18987 struct abbrev_info *abbrev)
18988 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18989 {
18990 }
18991
18992 /* Read a minimal amount of information into the minimal die structure.
18993 INFO_PTR should point just after the initial uleb128 of a DIE. */
18994
18995 const gdb_byte *
18996 partial_die_info::read (const struct die_reader_specs *reader,
18997 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18998 {
18999 struct dwarf2_cu *cu = reader->cu;
19000 struct dwarf2_per_objfile *dwarf2_per_objfile
19001 = cu->per_cu->dwarf2_per_objfile;
19002 unsigned int i;
19003 int has_low_pc_attr = 0;
19004 int has_high_pc_attr = 0;
19005 int high_pc_relative = 0;
19006
19007 for (i = 0; i < abbrev.num_attrs; ++i)
19008 {
19009 struct attribute attr;
19010
19011 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
19012
19013 /* Store the data if it is of an attribute we want to keep in a
19014 partial symbol table. */
19015 switch (attr.name)
19016 {
19017 case DW_AT_name:
19018 switch (tag)
19019 {
19020 case DW_TAG_compile_unit:
19021 case DW_TAG_partial_unit:
19022 case DW_TAG_type_unit:
19023 /* Compilation units have a DW_AT_name that is a filename, not
19024 a source language identifier. */
19025 case DW_TAG_enumeration_type:
19026 case DW_TAG_enumerator:
19027 /* These tags always have simple identifiers already; no need
19028 to canonicalize them. */
19029 name = DW_STRING (&attr);
19030 break;
19031 default:
19032 {
19033 struct objfile *objfile = dwarf2_per_objfile->objfile;
19034
19035 name
19036 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
19037 &objfile->per_bfd->storage_obstack);
19038 }
19039 break;
19040 }
19041 break;
19042 case DW_AT_linkage_name:
19043 case DW_AT_MIPS_linkage_name:
19044 /* Note that both forms of linkage name might appear. We
19045 assume they will be the same, and we only store the last
19046 one we see. */
19047 if (cu->language == language_ada)
19048 name = DW_STRING (&attr);
19049 linkage_name = DW_STRING (&attr);
19050 break;
19051 case DW_AT_low_pc:
19052 has_low_pc_attr = 1;
19053 lowpc = attr_value_as_address (&attr);
19054 break;
19055 case DW_AT_high_pc:
19056 has_high_pc_attr = 1;
19057 highpc = attr_value_as_address (&attr);
19058 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
19059 high_pc_relative = 1;
19060 break;
19061 case DW_AT_location:
19062 /* Support the .debug_loc offsets. */
19063 if (attr_form_is_block (&attr))
19064 {
19065 d.locdesc = DW_BLOCK (&attr);
19066 }
19067 else if (attr_form_is_section_offset (&attr))
19068 {
19069 dwarf2_complex_location_expr_complaint ();
19070 }
19071 else
19072 {
19073 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19074 "partial symbol information");
19075 }
19076 break;
19077 case DW_AT_external:
19078 is_external = DW_UNSND (&attr);
19079 break;
19080 case DW_AT_declaration:
19081 is_declaration = DW_UNSND (&attr);
19082 break;
19083 case DW_AT_type:
19084 has_type = 1;
19085 break;
19086 case DW_AT_abstract_origin:
19087 case DW_AT_specification:
19088 case DW_AT_extension:
19089 has_specification = 1;
19090 spec_offset = dwarf2_get_ref_die_offset (&attr);
19091 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19092 || cu->per_cu->is_dwz);
19093 break;
19094 case DW_AT_sibling:
19095 /* Ignore absolute siblings, they might point outside of
19096 the current compile unit. */
19097 if (attr.form == DW_FORM_ref_addr)
19098 complaint (&symfile_complaints,
19099 _("ignoring absolute DW_AT_sibling"));
19100 else
19101 {
19102 const gdb_byte *buffer = reader->buffer;
19103 sect_offset off = dwarf2_get_ref_die_offset (&attr);
19104 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19105
19106 if (sibling_ptr < info_ptr)
19107 complaint (&symfile_complaints,
19108 _("DW_AT_sibling points backwards"));
19109 else if (sibling_ptr > reader->buffer_end)
19110 dwarf2_section_buffer_overflow_complaint (reader->die_section);
19111 else
19112 sibling = sibling_ptr;
19113 }
19114 break;
19115 case DW_AT_byte_size:
19116 has_byte_size = 1;
19117 break;
19118 case DW_AT_const_value:
19119 has_const_value = 1;
19120 break;
19121 case DW_AT_calling_convention:
19122 /* DWARF doesn't provide a way to identify a program's source-level
19123 entry point. DW_AT_calling_convention attributes are only meant
19124 to describe functions' calling conventions.
19125
19126 However, because it's a necessary piece of information in
19127 Fortran, and before DWARF 4 DW_CC_program was the only
19128 piece of debugging information whose definition refers to
19129 a 'main program' at all, several compilers marked Fortran
19130 main programs with DW_CC_program --- even when those
19131 functions use the standard calling conventions.
19132
19133 Although DWARF now specifies a way to provide this
19134 information, we support this practice for backward
19135 compatibility. */
19136 if (DW_UNSND (&attr) == DW_CC_program
19137 && cu->language == language_fortran)
19138 main_subprogram = 1;
19139 break;
19140 case DW_AT_inline:
19141 if (DW_UNSND (&attr) == DW_INL_inlined
19142 || DW_UNSND (&attr) == DW_INL_declared_inlined)
19143 may_be_inlined = 1;
19144 break;
19145
19146 case DW_AT_import:
19147 if (tag == DW_TAG_imported_unit)
19148 {
19149 d.sect_off = dwarf2_get_ref_die_offset (&attr);
19150 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19151 || cu->per_cu->is_dwz);
19152 }
19153 break;
19154
19155 case DW_AT_main_subprogram:
19156 main_subprogram = DW_UNSND (&attr);
19157 break;
19158
19159 default:
19160 break;
19161 }
19162 }
19163
19164 if (high_pc_relative)
19165 highpc += lowpc;
19166
19167 if (has_low_pc_attr && has_high_pc_attr)
19168 {
19169 /* When using the GNU linker, .gnu.linkonce. sections are used to
19170 eliminate duplicate copies of functions and vtables and such.
19171 The linker will arbitrarily choose one and discard the others.
19172 The AT_*_pc values for such functions refer to local labels in
19173 these sections. If the section from that file was discarded, the
19174 labels are not in the output, so the relocs get a value of 0.
19175 If this is a discarded function, mark the pc bounds as invalid,
19176 so that GDB will ignore it. */
19177 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
19178 {
19179 struct objfile *objfile = dwarf2_per_objfile->objfile;
19180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19181
19182 complaint (&symfile_complaints,
19183 _("DW_AT_low_pc %s is zero "
19184 "for DIE at %s [in module %s]"),
19185 paddress (gdbarch, lowpc),
19186 sect_offset_str (sect_off),
19187 objfile_name (objfile));
19188 }
19189 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19190 else if (lowpc >= highpc)
19191 {
19192 struct objfile *objfile = dwarf2_per_objfile->objfile;
19193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19194
19195 complaint (&symfile_complaints,
19196 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19197 "for DIE at %s [in module %s]"),
19198 paddress (gdbarch, lowpc),
19199 paddress (gdbarch, highpc),
19200 sect_offset_str (sect_off),
19201 objfile_name (objfile));
19202 }
19203 else
19204 has_pc_info = 1;
19205 }
19206
19207 return info_ptr;
19208 }
19209
19210 /* Find a cached partial DIE at OFFSET in CU. */
19211
19212 struct partial_die_info *
19213 dwarf2_cu::find_partial_die (sect_offset sect_off)
19214 {
19215 struct partial_die_info *lookup_die = NULL;
19216 struct partial_die_info part_die (sect_off);
19217
19218 lookup_die = ((struct partial_die_info *)
19219 htab_find_with_hash (partial_dies, &part_die,
19220 to_underlying (sect_off)));
19221
19222 return lookup_die;
19223 }
19224
19225 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19226 except in the case of .debug_types DIEs which do not reference
19227 outside their CU (they do however referencing other types via
19228 DW_FORM_ref_sig8). */
19229
19230 static struct partial_die_info *
19231 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19232 {
19233 struct dwarf2_per_objfile *dwarf2_per_objfile
19234 = cu->per_cu->dwarf2_per_objfile;
19235 struct objfile *objfile = dwarf2_per_objfile->objfile;
19236 struct dwarf2_per_cu_data *per_cu = NULL;
19237 struct partial_die_info *pd = NULL;
19238
19239 if (offset_in_dwz == cu->per_cu->is_dwz
19240 && offset_in_cu_p (&cu->header, sect_off))
19241 {
19242 pd = cu->find_partial_die (sect_off);
19243 if (pd != NULL)
19244 return pd;
19245 /* We missed recording what we needed.
19246 Load all dies and try again. */
19247 per_cu = cu->per_cu;
19248 }
19249 else
19250 {
19251 /* TUs don't reference other CUs/TUs (except via type signatures). */
19252 if (cu->per_cu->is_debug_types)
19253 {
19254 error (_("Dwarf Error: Type Unit at offset %s contains"
19255 " external reference to offset %s [in module %s].\n"),
19256 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19257 bfd_get_filename (objfile->obfd));
19258 }
19259 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19260 dwarf2_per_objfile);
19261
19262 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19263 load_partial_comp_unit (per_cu);
19264
19265 per_cu->cu->last_used = 0;
19266 pd = per_cu->cu->find_partial_die (sect_off);
19267 }
19268
19269 /* If we didn't find it, and not all dies have been loaded,
19270 load them all and try again. */
19271
19272 if (pd == NULL && per_cu->load_all_dies == 0)
19273 {
19274 per_cu->load_all_dies = 1;
19275
19276 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19277 THIS_CU->cu may already be in use. So we can't just free it and
19278 replace its DIEs with the ones we read in. Instead, we leave those
19279 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19280 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19281 set. */
19282 load_partial_comp_unit (per_cu);
19283
19284 pd = per_cu->cu->find_partial_die (sect_off);
19285 }
19286
19287 if (pd == NULL)
19288 internal_error (__FILE__, __LINE__,
19289 _("could not find partial DIE %s "
19290 "in cache [from module %s]\n"),
19291 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19292 return pd;
19293 }
19294
19295 /* See if we can figure out if the class lives in a namespace. We do
19296 this by looking for a member function; its demangled name will
19297 contain namespace info, if there is any. */
19298
19299 static void
19300 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19301 struct dwarf2_cu *cu)
19302 {
19303 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19304 what template types look like, because the demangler
19305 frequently doesn't give the same name as the debug info. We
19306 could fix this by only using the demangled name to get the
19307 prefix (but see comment in read_structure_type). */
19308
19309 struct partial_die_info *real_pdi;
19310 struct partial_die_info *child_pdi;
19311
19312 /* If this DIE (this DIE's specification, if any) has a parent, then
19313 we should not do this. We'll prepend the parent's fully qualified
19314 name when we create the partial symbol. */
19315
19316 real_pdi = struct_pdi;
19317 while (real_pdi->has_specification)
19318 real_pdi = find_partial_die (real_pdi->spec_offset,
19319 real_pdi->spec_is_dwz, cu);
19320
19321 if (real_pdi->die_parent != NULL)
19322 return;
19323
19324 for (child_pdi = struct_pdi->die_child;
19325 child_pdi != NULL;
19326 child_pdi = child_pdi->die_sibling)
19327 {
19328 if (child_pdi->tag == DW_TAG_subprogram
19329 && child_pdi->linkage_name != NULL)
19330 {
19331 char *actual_class_name
19332 = language_class_name_from_physname (cu->language_defn,
19333 child_pdi->linkage_name);
19334 if (actual_class_name != NULL)
19335 {
19336 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19337 struct_pdi->name
19338 = ((const char *)
19339 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19340 actual_class_name,
19341 strlen (actual_class_name)));
19342 xfree (actual_class_name);
19343 }
19344 break;
19345 }
19346 }
19347 }
19348
19349 void
19350 partial_die_info::fixup (struct dwarf2_cu *cu)
19351 {
19352 /* Once we've fixed up a die, there's no point in doing so again.
19353 This also avoids a memory leak if we were to call
19354 guess_partial_die_structure_name multiple times. */
19355 if (fixup_called)
19356 return;
19357
19358 /* If we found a reference attribute and the DIE has no name, try
19359 to find a name in the referred to DIE. */
19360
19361 if (name == NULL && has_specification)
19362 {
19363 struct partial_die_info *spec_die;
19364
19365 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19366
19367 spec_die->fixup (cu);
19368
19369 if (spec_die->name)
19370 {
19371 name = spec_die->name;
19372
19373 /* Copy DW_AT_external attribute if it is set. */
19374 if (spec_die->is_external)
19375 is_external = spec_die->is_external;
19376 }
19377 }
19378
19379 /* Set default names for some unnamed DIEs. */
19380
19381 if (name == NULL && tag == DW_TAG_namespace)
19382 name = CP_ANONYMOUS_NAMESPACE_STR;
19383
19384 /* If there is no parent die to provide a namespace, and there are
19385 children, see if we can determine the namespace from their linkage
19386 name. */
19387 if (cu->language == language_cplus
19388 && !VEC_empty (dwarf2_section_info_def,
19389 cu->per_cu->dwarf2_per_objfile->types)
19390 && die_parent == NULL
19391 && has_children
19392 && (tag == DW_TAG_class_type
19393 || tag == DW_TAG_structure_type
19394 || tag == DW_TAG_union_type))
19395 guess_partial_die_structure_name (this, cu);
19396
19397 /* GCC might emit a nameless struct or union that has a linkage
19398 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19399 if (name == NULL
19400 && (tag == DW_TAG_class_type
19401 || tag == DW_TAG_interface_type
19402 || tag == DW_TAG_structure_type
19403 || tag == DW_TAG_union_type)
19404 && linkage_name != NULL)
19405 {
19406 char *demangled;
19407
19408 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19409 if (demangled)
19410 {
19411 const char *base;
19412
19413 /* Strip any leading namespaces/classes, keep only the base name.
19414 DW_AT_name for named DIEs does not contain the prefixes. */
19415 base = strrchr (demangled, ':');
19416 if (base && base > demangled && base[-1] == ':')
19417 base++;
19418 else
19419 base = demangled;
19420
19421 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19422 name
19423 = ((const char *)
19424 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19425 base, strlen (base)));
19426 xfree (demangled);
19427 }
19428 }
19429
19430 fixup_called = 1;
19431 }
19432
19433 /* Read an attribute value described by an attribute form. */
19434
19435 static const gdb_byte *
19436 read_attribute_value (const struct die_reader_specs *reader,
19437 struct attribute *attr, unsigned form,
19438 LONGEST implicit_const, const gdb_byte *info_ptr)
19439 {
19440 struct dwarf2_cu *cu = reader->cu;
19441 struct dwarf2_per_objfile *dwarf2_per_objfile
19442 = cu->per_cu->dwarf2_per_objfile;
19443 struct objfile *objfile = dwarf2_per_objfile->objfile;
19444 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19445 bfd *abfd = reader->abfd;
19446 struct comp_unit_head *cu_header = &cu->header;
19447 unsigned int bytes_read;
19448 struct dwarf_block *blk;
19449
19450 attr->form = (enum dwarf_form) form;
19451 switch (form)
19452 {
19453 case DW_FORM_ref_addr:
19454 if (cu->header.version == 2)
19455 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19456 else
19457 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19458 &cu->header, &bytes_read);
19459 info_ptr += bytes_read;
19460 break;
19461 case DW_FORM_GNU_ref_alt:
19462 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19463 info_ptr += bytes_read;
19464 break;
19465 case DW_FORM_addr:
19466 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19467 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19468 info_ptr += bytes_read;
19469 break;
19470 case DW_FORM_block2:
19471 blk = dwarf_alloc_block (cu);
19472 blk->size = read_2_bytes (abfd, info_ptr);
19473 info_ptr += 2;
19474 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19475 info_ptr += blk->size;
19476 DW_BLOCK (attr) = blk;
19477 break;
19478 case DW_FORM_block4:
19479 blk = dwarf_alloc_block (cu);
19480 blk->size = read_4_bytes (abfd, info_ptr);
19481 info_ptr += 4;
19482 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19483 info_ptr += blk->size;
19484 DW_BLOCK (attr) = blk;
19485 break;
19486 case DW_FORM_data2:
19487 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19488 info_ptr += 2;
19489 break;
19490 case DW_FORM_data4:
19491 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19492 info_ptr += 4;
19493 break;
19494 case DW_FORM_data8:
19495 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19496 info_ptr += 8;
19497 break;
19498 case DW_FORM_data16:
19499 blk = dwarf_alloc_block (cu);
19500 blk->size = 16;
19501 blk->data = read_n_bytes (abfd, info_ptr, 16);
19502 info_ptr += 16;
19503 DW_BLOCK (attr) = blk;
19504 break;
19505 case DW_FORM_sec_offset:
19506 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19507 info_ptr += bytes_read;
19508 break;
19509 case DW_FORM_string:
19510 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19511 DW_STRING_IS_CANONICAL (attr) = 0;
19512 info_ptr += bytes_read;
19513 break;
19514 case DW_FORM_strp:
19515 if (!cu->per_cu->is_dwz)
19516 {
19517 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19518 abfd, info_ptr, cu_header,
19519 &bytes_read);
19520 DW_STRING_IS_CANONICAL (attr) = 0;
19521 info_ptr += bytes_read;
19522 break;
19523 }
19524 /* FALLTHROUGH */
19525 case DW_FORM_line_strp:
19526 if (!cu->per_cu->is_dwz)
19527 {
19528 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19529 abfd, info_ptr,
19530 cu_header, &bytes_read);
19531 DW_STRING_IS_CANONICAL (attr) = 0;
19532 info_ptr += bytes_read;
19533 break;
19534 }
19535 /* FALLTHROUGH */
19536 case DW_FORM_GNU_strp_alt:
19537 {
19538 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19539 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19540 &bytes_read);
19541
19542 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19543 dwz, str_offset);
19544 DW_STRING_IS_CANONICAL (attr) = 0;
19545 info_ptr += bytes_read;
19546 }
19547 break;
19548 case DW_FORM_exprloc:
19549 case DW_FORM_block:
19550 blk = dwarf_alloc_block (cu);
19551 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19552 info_ptr += bytes_read;
19553 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19554 info_ptr += blk->size;
19555 DW_BLOCK (attr) = blk;
19556 break;
19557 case DW_FORM_block1:
19558 blk = dwarf_alloc_block (cu);
19559 blk->size = read_1_byte (abfd, info_ptr);
19560 info_ptr += 1;
19561 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19562 info_ptr += blk->size;
19563 DW_BLOCK (attr) = blk;
19564 break;
19565 case DW_FORM_data1:
19566 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19567 info_ptr += 1;
19568 break;
19569 case DW_FORM_flag:
19570 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19571 info_ptr += 1;
19572 break;
19573 case DW_FORM_flag_present:
19574 DW_UNSND (attr) = 1;
19575 break;
19576 case DW_FORM_sdata:
19577 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19578 info_ptr += bytes_read;
19579 break;
19580 case DW_FORM_udata:
19581 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19582 info_ptr += bytes_read;
19583 break;
19584 case DW_FORM_ref1:
19585 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19586 + read_1_byte (abfd, info_ptr));
19587 info_ptr += 1;
19588 break;
19589 case DW_FORM_ref2:
19590 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19591 + read_2_bytes (abfd, info_ptr));
19592 info_ptr += 2;
19593 break;
19594 case DW_FORM_ref4:
19595 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19596 + read_4_bytes (abfd, info_ptr));
19597 info_ptr += 4;
19598 break;
19599 case DW_FORM_ref8:
19600 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19601 + read_8_bytes (abfd, info_ptr));
19602 info_ptr += 8;
19603 break;
19604 case DW_FORM_ref_sig8:
19605 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19606 info_ptr += 8;
19607 break;
19608 case DW_FORM_ref_udata:
19609 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19610 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19611 info_ptr += bytes_read;
19612 break;
19613 case DW_FORM_indirect:
19614 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19615 info_ptr += bytes_read;
19616 if (form == DW_FORM_implicit_const)
19617 {
19618 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19619 info_ptr += bytes_read;
19620 }
19621 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19622 info_ptr);
19623 break;
19624 case DW_FORM_implicit_const:
19625 DW_SND (attr) = implicit_const;
19626 break;
19627 case DW_FORM_GNU_addr_index:
19628 if (reader->dwo_file == NULL)
19629 {
19630 /* For now flag a hard error.
19631 Later we can turn this into a complaint. */
19632 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19633 dwarf_form_name (form),
19634 bfd_get_filename (abfd));
19635 }
19636 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19637 info_ptr += bytes_read;
19638 break;
19639 case DW_FORM_GNU_str_index:
19640 if (reader->dwo_file == NULL)
19641 {
19642 /* For now flag a hard error.
19643 Later we can turn this into a complaint if warranted. */
19644 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19645 dwarf_form_name (form),
19646 bfd_get_filename (abfd));
19647 }
19648 {
19649 ULONGEST str_index =
19650 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19651
19652 DW_STRING (attr) = read_str_index (reader, str_index);
19653 DW_STRING_IS_CANONICAL (attr) = 0;
19654 info_ptr += bytes_read;
19655 }
19656 break;
19657 default:
19658 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19659 dwarf_form_name (form),
19660 bfd_get_filename (abfd));
19661 }
19662
19663 /* Super hack. */
19664 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19665 attr->form = DW_FORM_GNU_ref_alt;
19666
19667 /* We have seen instances where the compiler tried to emit a byte
19668 size attribute of -1 which ended up being encoded as an unsigned
19669 0xffffffff. Although 0xffffffff is technically a valid size value,
19670 an object of this size seems pretty unlikely so we can relatively
19671 safely treat these cases as if the size attribute was invalid and
19672 treat them as zero by default. */
19673 if (attr->name == DW_AT_byte_size
19674 && form == DW_FORM_data4
19675 && DW_UNSND (attr) >= 0xffffffff)
19676 {
19677 complaint
19678 (&symfile_complaints,
19679 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19680 hex_string (DW_UNSND (attr)));
19681 DW_UNSND (attr) = 0;
19682 }
19683
19684 return info_ptr;
19685 }
19686
19687 /* Read an attribute described by an abbreviated attribute. */
19688
19689 static const gdb_byte *
19690 read_attribute (const struct die_reader_specs *reader,
19691 struct attribute *attr, struct attr_abbrev *abbrev,
19692 const gdb_byte *info_ptr)
19693 {
19694 attr->name = abbrev->name;
19695 return read_attribute_value (reader, attr, abbrev->form,
19696 abbrev->implicit_const, info_ptr);
19697 }
19698
19699 /* Read dwarf information from a buffer. */
19700
19701 static unsigned int
19702 read_1_byte (bfd *abfd, const gdb_byte *buf)
19703 {
19704 return bfd_get_8 (abfd, buf);
19705 }
19706
19707 static int
19708 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19709 {
19710 return bfd_get_signed_8 (abfd, buf);
19711 }
19712
19713 static unsigned int
19714 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19715 {
19716 return bfd_get_16 (abfd, buf);
19717 }
19718
19719 static int
19720 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19721 {
19722 return bfd_get_signed_16 (abfd, buf);
19723 }
19724
19725 static unsigned int
19726 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19727 {
19728 return bfd_get_32 (abfd, buf);
19729 }
19730
19731 static int
19732 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19733 {
19734 return bfd_get_signed_32 (abfd, buf);
19735 }
19736
19737 static ULONGEST
19738 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19739 {
19740 return bfd_get_64 (abfd, buf);
19741 }
19742
19743 static CORE_ADDR
19744 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19745 unsigned int *bytes_read)
19746 {
19747 struct comp_unit_head *cu_header = &cu->header;
19748 CORE_ADDR retval = 0;
19749
19750 if (cu_header->signed_addr_p)
19751 {
19752 switch (cu_header->addr_size)
19753 {
19754 case 2:
19755 retval = bfd_get_signed_16 (abfd, buf);
19756 break;
19757 case 4:
19758 retval = bfd_get_signed_32 (abfd, buf);
19759 break;
19760 case 8:
19761 retval = bfd_get_signed_64 (abfd, buf);
19762 break;
19763 default:
19764 internal_error (__FILE__, __LINE__,
19765 _("read_address: bad switch, signed [in module %s]"),
19766 bfd_get_filename (abfd));
19767 }
19768 }
19769 else
19770 {
19771 switch (cu_header->addr_size)
19772 {
19773 case 2:
19774 retval = bfd_get_16 (abfd, buf);
19775 break;
19776 case 4:
19777 retval = bfd_get_32 (abfd, buf);
19778 break;
19779 case 8:
19780 retval = bfd_get_64 (abfd, buf);
19781 break;
19782 default:
19783 internal_error (__FILE__, __LINE__,
19784 _("read_address: bad switch, "
19785 "unsigned [in module %s]"),
19786 bfd_get_filename (abfd));
19787 }
19788 }
19789
19790 *bytes_read = cu_header->addr_size;
19791 return retval;
19792 }
19793
19794 /* Read the initial length from a section. The (draft) DWARF 3
19795 specification allows the initial length to take up either 4 bytes
19796 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19797 bytes describe the length and all offsets will be 8 bytes in length
19798 instead of 4.
19799
19800 An older, non-standard 64-bit format is also handled by this
19801 function. The older format in question stores the initial length
19802 as an 8-byte quantity without an escape value. Lengths greater
19803 than 2^32 aren't very common which means that the initial 4 bytes
19804 is almost always zero. Since a length value of zero doesn't make
19805 sense for the 32-bit format, this initial zero can be considered to
19806 be an escape value which indicates the presence of the older 64-bit
19807 format. As written, the code can't detect (old format) lengths
19808 greater than 4GB. If it becomes necessary to handle lengths
19809 somewhat larger than 4GB, we could allow other small values (such
19810 as the non-sensical values of 1, 2, and 3) to also be used as
19811 escape values indicating the presence of the old format.
19812
19813 The value returned via bytes_read should be used to increment the
19814 relevant pointer after calling read_initial_length().
19815
19816 [ Note: read_initial_length() and read_offset() are based on the
19817 document entitled "DWARF Debugging Information Format", revision
19818 3, draft 8, dated November 19, 2001. This document was obtained
19819 from:
19820
19821 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19822
19823 This document is only a draft and is subject to change. (So beware.)
19824
19825 Details regarding the older, non-standard 64-bit format were
19826 determined empirically by examining 64-bit ELF files produced by
19827 the SGI toolchain on an IRIX 6.5 machine.
19828
19829 - Kevin, July 16, 2002
19830 ] */
19831
19832 static LONGEST
19833 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19834 {
19835 LONGEST length = bfd_get_32 (abfd, buf);
19836
19837 if (length == 0xffffffff)
19838 {
19839 length = bfd_get_64 (abfd, buf + 4);
19840 *bytes_read = 12;
19841 }
19842 else if (length == 0)
19843 {
19844 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19845 length = bfd_get_64 (abfd, buf);
19846 *bytes_read = 8;
19847 }
19848 else
19849 {
19850 *bytes_read = 4;
19851 }
19852
19853 return length;
19854 }
19855
19856 /* Cover function for read_initial_length.
19857 Returns the length of the object at BUF, and stores the size of the
19858 initial length in *BYTES_READ and stores the size that offsets will be in
19859 *OFFSET_SIZE.
19860 If the initial length size is not equivalent to that specified in
19861 CU_HEADER then issue a complaint.
19862 This is useful when reading non-comp-unit headers. */
19863
19864 static LONGEST
19865 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19866 const struct comp_unit_head *cu_header,
19867 unsigned int *bytes_read,
19868 unsigned int *offset_size)
19869 {
19870 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19871
19872 gdb_assert (cu_header->initial_length_size == 4
19873 || cu_header->initial_length_size == 8
19874 || cu_header->initial_length_size == 12);
19875
19876 if (cu_header->initial_length_size != *bytes_read)
19877 complaint (&symfile_complaints,
19878 _("intermixed 32-bit and 64-bit DWARF sections"));
19879
19880 *offset_size = (*bytes_read == 4) ? 4 : 8;
19881 return length;
19882 }
19883
19884 /* Read an offset from the data stream. The size of the offset is
19885 given by cu_header->offset_size. */
19886
19887 static LONGEST
19888 read_offset (bfd *abfd, const gdb_byte *buf,
19889 const struct comp_unit_head *cu_header,
19890 unsigned int *bytes_read)
19891 {
19892 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19893
19894 *bytes_read = cu_header->offset_size;
19895 return offset;
19896 }
19897
19898 /* Read an offset from the data stream. */
19899
19900 static LONGEST
19901 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19902 {
19903 LONGEST retval = 0;
19904
19905 switch (offset_size)
19906 {
19907 case 4:
19908 retval = bfd_get_32 (abfd, buf);
19909 break;
19910 case 8:
19911 retval = bfd_get_64 (abfd, buf);
19912 break;
19913 default:
19914 internal_error (__FILE__, __LINE__,
19915 _("read_offset_1: bad switch [in module %s]"),
19916 bfd_get_filename (abfd));
19917 }
19918
19919 return retval;
19920 }
19921
19922 static const gdb_byte *
19923 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19924 {
19925 /* If the size of a host char is 8 bits, we can return a pointer
19926 to the buffer, otherwise we have to copy the data to a buffer
19927 allocated on the temporary obstack. */
19928 gdb_assert (HOST_CHAR_BIT == 8);
19929 return buf;
19930 }
19931
19932 static const char *
19933 read_direct_string (bfd *abfd, const gdb_byte *buf,
19934 unsigned int *bytes_read_ptr)
19935 {
19936 /* If the size of a host char is 8 bits, we can return a pointer
19937 to the string, otherwise we have to copy the string to a buffer
19938 allocated on the temporary obstack. */
19939 gdb_assert (HOST_CHAR_BIT == 8);
19940 if (*buf == '\0')
19941 {
19942 *bytes_read_ptr = 1;
19943 return NULL;
19944 }
19945 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19946 return (const char *) buf;
19947 }
19948
19949 /* Return pointer to string at section SECT offset STR_OFFSET with error
19950 reporting strings FORM_NAME and SECT_NAME. */
19951
19952 static const char *
19953 read_indirect_string_at_offset_from (struct objfile *objfile,
19954 bfd *abfd, LONGEST str_offset,
19955 struct dwarf2_section_info *sect,
19956 const char *form_name,
19957 const char *sect_name)
19958 {
19959 dwarf2_read_section (objfile, sect);
19960 if (sect->buffer == NULL)
19961 error (_("%s used without %s section [in module %s]"),
19962 form_name, sect_name, bfd_get_filename (abfd));
19963 if (str_offset >= sect->size)
19964 error (_("%s pointing outside of %s section [in module %s]"),
19965 form_name, sect_name, bfd_get_filename (abfd));
19966 gdb_assert (HOST_CHAR_BIT == 8);
19967 if (sect->buffer[str_offset] == '\0')
19968 return NULL;
19969 return (const char *) (sect->buffer + str_offset);
19970 }
19971
19972 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19973
19974 static const char *
19975 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19976 bfd *abfd, LONGEST str_offset)
19977 {
19978 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19979 abfd, str_offset,
19980 &dwarf2_per_objfile->str,
19981 "DW_FORM_strp", ".debug_str");
19982 }
19983
19984 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19985
19986 static const char *
19987 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19988 bfd *abfd, LONGEST str_offset)
19989 {
19990 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19991 abfd, str_offset,
19992 &dwarf2_per_objfile->line_str,
19993 "DW_FORM_line_strp",
19994 ".debug_line_str");
19995 }
19996
19997 /* Read a string at offset STR_OFFSET in the .debug_str section from
19998 the .dwz file DWZ. Throw an error if the offset is too large. If
19999 the string consists of a single NUL byte, return NULL; otherwise
20000 return a pointer to the string. */
20001
20002 static const char *
20003 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
20004 LONGEST str_offset)
20005 {
20006 dwarf2_read_section (objfile, &dwz->str);
20007
20008 if (dwz->str.buffer == NULL)
20009 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
20010 "section [in module %s]"),
20011 bfd_get_filename (dwz->dwz_bfd));
20012 if (str_offset >= dwz->str.size)
20013 error (_("DW_FORM_GNU_strp_alt pointing outside of "
20014 ".debug_str section [in module %s]"),
20015 bfd_get_filename (dwz->dwz_bfd));
20016 gdb_assert (HOST_CHAR_BIT == 8);
20017 if (dwz->str.buffer[str_offset] == '\0')
20018 return NULL;
20019 return (const char *) (dwz->str.buffer + str_offset);
20020 }
20021
20022 /* Return pointer to string at .debug_str offset as read from BUF.
20023 BUF is assumed to be in a compilation unit described by CU_HEADER.
20024 Return *BYTES_READ_PTR count of bytes read from BUF. */
20025
20026 static const char *
20027 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
20028 const gdb_byte *buf,
20029 const struct comp_unit_head *cu_header,
20030 unsigned int *bytes_read_ptr)
20031 {
20032 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20033
20034 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
20035 }
20036
20037 /* Return pointer to string at .debug_line_str offset as read from BUF.
20038 BUF is assumed to be in a compilation unit described by CU_HEADER.
20039 Return *BYTES_READ_PTR count of bytes read from BUF. */
20040
20041 static const char *
20042 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
20043 bfd *abfd, const gdb_byte *buf,
20044 const struct comp_unit_head *cu_header,
20045 unsigned int *bytes_read_ptr)
20046 {
20047 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20048
20049 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
20050 str_offset);
20051 }
20052
20053 ULONGEST
20054 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
20055 unsigned int *bytes_read_ptr)
20056 {
20057 ULONGEST result;
20058 unsigned int num_read;
20059 int shift;
20060 unsigned char byte;
20061
20062 result = 0;
20063 shift = 0;
20064 num_read = 0;
20065 while (1)
20066 {
20067 byte = bfd_get_8 (abfd, buf);
20068 buf++;
20069 num_read++;
20070 result |= ((ULONGEST) (byte & 127) << shift);
20071 if ((byte & 128) == 0)
20072 {
20073 break;
20074 }
20075 shift += 7;
20076 }
20077 *bytes_read_ptr = num_read;
20078 return result;
20079 }
20080
20081 static LONGEST
20082 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
20083 unsigned int *bytes_read_ptr)
20084 {
20085 LONGEST result;
20086 int shift, num_read;
20087 unsigned char byte;
20088
20089 result = 0;
20090 shift = 0;
20091 num_read = 0;
20092 while (1)
20093 {
20094 byte = bfd_get_8 (abfd, buf);
20095 buf++;
20096 num_read++;
20097 result |= ((LONGEST) (byte & 127) << shift);
20098 shift += 7;
20099 if ((byte & 128) == 0)
20100 {
20101 break;
20102 }
20103 }
20104 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
20105 result |= -(((LONGEST) 1) << shift);
20106 *bytes_read_ptr = num_read;
20107 return result;
20108 }
20109
20110 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20111 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
20112 ADDR_SIZE is the size of addresses from the CU header. */
20113
20114 static CORE_ADDR
20115 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
20116 unsigned int addr_index, ULONGEST addr_base, int addr_size)
20117 {
20118 struct objfile *objfile = dwarf2_per_objfile->objfile;
20119 bfd *abfd = objfile->obfd;
20120 const gdb_byte *info_ptr;
20121
20122 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
20123 if (dwarf2_per_objfile->addr.buffer == NULL)
20124 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20125 objfile_name (objfile));
20126 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
20127 error (_("DW_FORM_addr_index pointing outside of "
20128 ".debug_addr section [in module %s]"),
20129 objfile_name (objfile));
20130 info_ptr = (dwarf2_per_objfile->addr.buffer
20131 + addr_base + addr_index * addr_size);
20132 if (addr_size == 4)
20133 return bfd_get_32 (abfd, info_ptr);
20134 else
20135 return bfd_get_64 (abfd, info_ptr);
20136 }
20137
20138 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20139
20140 static CORE_ADDR
20141 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20142 {
20143 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
20144 cu->addr_base, cu->header.addr_size);
20145 }
20146
20147 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20148
20149 static CORE_ADDR
20150 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20151 unsigned int *bytes_read)
20152 {
20153 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
20154 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20155
20156 return read_addr_index (cu, addr_index);
20157 }
20158
20159 /* Data structure to pass results from dwarf2_read_addr_index_reader
20160 back to dwarf2_read_addr_index. */
20161
20162 struct dwarf2_read_addr_index_data
20163 {
20164 ULONGEST addr_base;
20165 int addr_size;
20166 };
20167
20168 /* die_reader_func for dwarf2_read_addr_index. */
20169
20170 static void
20171 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
20172 const gdb_byte *info_ptr,
20173 struct die_info *comp_unit_die,
20174 int has_children,
20175 void *data)
20176 {
20177 struct dwarf2_cu *cu = reader->cu;
20178 struct dwarf2_read_addr_index_data *aidata =
20179 (struct dwarf2_read_addr_index_data *) data;
20180
20181 aidata->addr_base = cu->addr_base;
20182 aidata->addr_size = cu->header.addr_size;
20183 }
20184
20185 /* Given an index in .debug_addr, fetch the value.
20186 NOTE: This can be called during dwarf expression evaluation,
20187 long after the debug information has been read, and thus per_cu->cu
20188 may no longer exist. */
20189
20190 CORE_ADDR
20191 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20192 unsigned int addr_index)
20193 {
20194 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
20195 struct objfile *objfile = dwarf2_per_objfile->objfile;
20196 struct dwarf2_cu *cu = per_cu->cu;
20197 ULONGEST addr_base;
20198 int addr_size;
20199
20200 /* We need addr_base and addr_size.
20201 If we don't have PER_CU->cu, we have to get it.
20202 Nasty, but the alternative is storing the needed info in PER_CU,
20203 which at this point doesn't seem justified: it's not clear how frequently
20204 it would get used and it would increase the size of every PER_CU.
20205 Entry points like dwarf2_per_cu_addr_size do a similar thing
20206 so we're not in uncharted territory here.
20207 Alas we need to be a bit more complicated as addr_base is contained
20208 in the DIE.
20209
20210 We don't need to read the entire CU(/TU).
20211 We just need the header and top level die.
20212
20213 IWBN to use the aging mechanism to let us lazily later discard the CU.
20214 For now we skip this optimization. */
20215
20216 if (cu != NULL)
20217 {
20218 addr_base = cu->addr_base;
20219 addr_size = cu->header.addr_size;
20220 }
20221 else
20222 {
20223 struct dwarf2_read_addr_index_data aidata;
20224
20225 /* Note: We can't use init_cutu_and_read_dies_simple here,
20226 we need addr_base. */
20227 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
20228 dwarf2_read_addr_index_reader, &aidata);
20229 addr_base = aidata.addr_base;
20230 addr_size = aidata.addr_size;
20231 }
20232
20233 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20234 addr_size);
20235 }
20236
20237 /* Given a DW_FORM_GNU_str_index, fetch the string.
20238 This is only used by the Fission support. */
20239
20240 static const char *
20241 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20242 {
20243 struct dwarf2_cu *cu = reader->cu;
20244 struct dwarf2_per_objfile *dwarf2_per_objfile
20245 = cu->per_cu->dwarf2_per_objfile;
20246 struct objfile *objfile = dwarf2_per_objfile->objfile;
20247 const char *objf_name = objfile_name (objfile);
20248 bfd *abfd = objfile->obfd;
20249 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20250 struct dwarf2_section_info *str_offsets_section =
20251 &reader->dwo_file->sections.str_offsets;
20252 const gdb_byte *info_ptr;
20253 ULONGEST str_offset;
20254 static const char form_name[] = "DW_FORM_GNU_str_index";
20255
20256 dwarf2_read_section (objfile, str_section);
20257 dwarf2_read_section (objfile, str_offsets_section);
20258 if (str_section->buffer == NULL)
20259 error (_("%s used without .debug_str.dwo section"
20260 " in CU at offset %s [in module %s]"),
20261 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20262 if (str_offsets_section->buffer == NULL)
20263 error (_("%s used without .debug_str_offsets.dwo section"
20264 " in CU at offset %s [in module %s]"),
20265 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20266 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20267 error (_("%s pointing outside of .debug_str_offsets.dwo"
20268 " section in CU at offset %s [in module %s]"),
20269 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20270 info_ptr = (str_offsets_section->buffer
20271 + str_index * cu->header.offset_size);
20272 if (cu->header.offset_size == 4)
20273 str_offset = bfd_get_32 (abfd, info_ptr);
20274 else
20275 str_offset = bfd_get_64 (abfd, info_ptr);
20276 if (str_offset >= str_section->size)
20277 error (_("Offset from %s pointing outside of"
20278 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20279 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20280 return (const char *) (str_section->buffer + str_offset);
20281 }
20282
20283 /* Return the length of an LEB128 number in BUF. */
20284
20285 static int
20286 leb128_size (const gdb_byte *buf)
20287 {
20288 const gdb_byte *begin = buf;
20289 gdb_byte byte;
20290
20291 while (1)
20292 {
20293 byte = *buf++;
20294 if ((byte & 128) == 0)
20295 return buf - begin;
20296 }
20297 }
20298
20299 static void
20300 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20301 {
20302 switch (lang)
20303 {
20304 case DW_LANG_C89:
20305 case DW_LANG_C99:
20306 case DW_LANG_C11:
20307 case DW_LANG_C:
20308 case DW_LANG_UPC:
20309 cu->language = language_c;
20310 break;
20311 case DW_LANG_Java:
20312 case DW_LANG_C_plus_plus:
20313 case DW_LANG_C_plus_plus_11:
20314 case DW_LANG_C_plus_plus_14:
20315 cu->language = language_cplus;
20316 break;
20317 case DW_LANG_D:
20318 cu->language = language_d;
20319 break;
20320 case DW_LANG_Fortran77:
20321 case DW_LANG_Fortran90:
20322 case DW_LANG_Fortran95:
20323 case DW_LANG_Fortran03:
20324 case DW_LANG_Fortran08:
20325 cu->language = language_fortran;
20326 break;
20327 case DW_LANG_Go:
20328 cu->language = language_go;
20329 break;
20330 case DW_LANG_Mips_Assembler:
20331 cu->language = language_asm;
20332 break;
20333 case DW_LANG_Ada83:
20334 case DW_LANG_Ada95:
20335 cu->language = language_ada;
20336 break;
20337 case DW_LANG_Modula2:
20338 cu->language = language_m2;
20339 break;
20340 case DW_LANG_Pascal83:
20341 cu->language = language_pascal;
20342 break;
20343 case DW_LANG_ObjC:
20344 cu->language = language_objc;
20345 break;
20346 case DW_LANG_Rust:
20347 case DW_LANG_Rust_old:
20348 cu->language = language_rust;
20349 break;
20350 case DW_LANG_Cobol74:
20351 case DW_LANG_Cobol85:
20352 default:
20353 cu->language = language_minimal;
20354 break;
20355 }
20356 cu->language_defn = language_def (cu->language);
20357 }
20358
20359 /* Return the named attribute or NULL if not there. */
20360
20361 static struct attribute *
20362 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20363 {
20364 for (;;)
20365 {
20366 unsigned int i;
20367 struct attribute *spec = NULL;
20368
20369 for (i = 0; i < die->num_attrs; ++i)
20370 {
20371 if (die->attrs[i].name == name)
20372 return &die->attrs[i];
20373 if (die->attrs[i].name == DW_AT_specification
20374 || die->attrs[i].name == DW_AT_abstract_origin)
20375 spec = &die->attrs[i];
20376 }
20377
20378 if (!spec)
20379 break;
20380
20381 die = follow_die_ref (die, spec, &cu);
20382 }
20383
20384 return NULL;
20385 }
20386
20387 /* Return the named attribute or NULL if not there,
20388 but do not follow DW_AT_specification, etc.
20389 This is for use in contexts where we're reading .debug_types dies.
20390 Following DW_AT_specification, DW_AT_abstract_origin will take us
20391 back up the chain, and we want to go down. */
20392
20393 static struct attribute *
20394 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20395 {
20396 unsigned int i;
20397
20398 for (i = 0; i < die->num_attrs; ++i)
20399 if (die->attrs[i].name == name)
20400 return &die->attrs[i];
20401
20402 return NULL;
20403 }
20404
20405 /* Return the string associated with a string-typed attribute, or NULL if it
20406 is either not found or is of an incorrect type. */
20407
20408 static const char *
20409 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20410 {
20411 struct attribute *attr;
20412 const char *str = NULL;
20413
20414 attr = dwarf2_attr (die, name, cu);
20415
20416 if (attr != NULL)
20417 {
20418 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20419 || attr->form == DW_FORM_string
20420 || attr->form == DW_FORM_GNU_str_index
20421 || attr->form == DW_FORM_GNU_strp_alt)
20422 str = DW_STRING (attr);
20423 else
20424 complaint (&symfile_complaints,
20425 _("string type expected for attribute %s for "
20426 "DIE at %s in module %s"),
20427 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20428 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20429 }
20430
20431 return str;
20432 }
20433
20434 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20435 and holds a non-zero value. This function should only be used for
20436 DW_FORM_flag or DW_FORM_flag_present attributes. */
20437
20438 static int
20439 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20440 {
20441 struct attribute *attr = dwarf2_attr (die, name, cu);
20442
20443 return (attr && DW_UNSND (attr));
20444 }
20445
20446 static int
20447 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20448 {
20449 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20450 which value is non-zero. However, we have to be careful with
20451 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20452 (via dwarf2_flag_true_p) follows this attribute. So we may
20453 end up accidently finding a declaration attribute that belongs
20454 to a different DIE referenced by the specification attribute,
20455 even though the given DIE does not have a declaration attribute. */
20456 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20457 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20458 }
20459
20460 /* Return the die giving the specification for DIE, if there is
20461 one. *SPEC_CU is the CU containing DIE on input, and the CU
20462 containing the return value on output. If there is no
20463 specification, but there is an abstract origin, that is
20464 returned. */
20465
20466 static struct die_info *
20467 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20468 {
20469 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20470 *spec_cu);
20471
20472 if (spec_attr == NULL)
20473 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20474
20475 if (spec_attr == NULL)
20476 return NULL;
20477 else
20478 return follow_die_ref (die, spec_attr, spec_cu);
20479 }
20480
20481 /* Stub for free_line_header to match void * callback types. */
20482
20483 static void
20484 free_line_header_voidp (void *arg)
20485 {
20486 struct line_header *lh = (struct line_header *) arg;
20487
20488 delete lh;
20489 }
20490
20491 void
20492 line_header::add_include_dir (const char *include_dir)
20493 {
20494 if (dwarf_line_debug >= 2)
20495 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20496 include_dirs.size () + 1, include_dir);
20497
20498 include_dirs.push_back (include_dir);
20499 }
20500
20501 void
20502 line_header::add_file_name (const char *name,
20503 dir_index d_index,
20504 unsigned int mod_time,
20505 unsigned int length)
20506 {
20507 if (dwarf_line_debug >= 2)
20508 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20509 (unsigned) file_names.size () + 1, name);
20510
20511 file_names.emplace_back (name, d_index, mod_time, length);
20512 }
20513
20514 /* A convenience function to find the proper .debug_line section for a CU. */
20515
20516 static struct dwarf2_section_info *
20517 get_debug_line_section (struct dwarf2_cu *cu)
20518 {
20519 struct dwarf2_section_info *section;
20520 struct dwarf2_per_objfile *dwarf2_per_objfile
20521 = cu->per_cu->dwarf2_per_objfile;
20522
20523 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20524 DWO file. */
20525 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20526 section = &cu->dwo_unit->dwo_file->sections.line;
20527 else if (cu->per_cu->is_dwz)
20528 {
20529 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20530
20531 section = &dwz->line;
20532 }
20533 else
20534 section = &dwarf2_per_objfile->line;
20535
20536 return section;
20537 }
20538
20539 /* Read directory or file name entry format, starting with byte of
20540 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20541 entries count and the entries themselves in the described entry
20542 format. */
20543
20544 static void
20545 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20546 bfd *abfd, const gdb_byte **bufp,
20547 struct line_header *lh,
20548 const struct comp_unit_head *cu_header,
20549 void (*callback) (struct line_header *lh,
20550 const char *name,
20551 dir_index d_index,
20552 unsigned int mod_time,
20553 unsigned int length))
20554 {
20555 gdb_byte format_count, formati;
20556 ULONGEST data_count, datai;
20557 const gdb_byte *buf = *bufp;
20558 const gdb_byte *format_header_data;
20559 unsigned int bytes_read;
20560
20561 format_count = read_1_byte (abfd, buf);
20562 buf += 1;
20563 format_header_data = buf;
20564 for (formati = 0; formati < format_count; formati++)
20565 {
20566 read_unsigned_leb128 (abfd, buf, &bytes_read);
20567 buf += bytes_read;
20568 read_unsigned_leb128 (abfd, buf, &bytes_read);
20569 buf += bytes_read;
20570 }
20571
20572 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20573 buf += bytes_read;
20574 for (datai = 0; datai < data_count; datai++)
20575 {
20576 const gdb_byte *format = format_header_data;
20577 struct file_entry fe;
20578
20579 for (formati = 0; formati < format_count; formati++)
20580 {
20581 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20582 format += bytes_read;
20583
20584 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20585 format += bytes_read;
20586
20587 gdb::optional<const char *> string;
20588 gdb::optional<unsigned int> uint;
20589
20590 switch (form)
20591 {
20592 case DW_FORM_string:
20593 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20594 buf += bytes_read;
20595 break;
20596
20597 case DW_FORM_line_strp:
20598 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20599 abfd, buf,
20600 cu_header,
20601 &bytes_read));
20602 buf += bytes_read;
20603 break;
20604
20605 case DW_FORM_data1:
20606 uint.emplace (read_1_byte (abfd, buf));
20607 buf += 1;
20608 break;
20609
20610 case DW_FORM_data2:
20611 uint.emplace (read_2_bytes (abfd, buf));
20612 buf += 2;
20613 break;
20614
20615 case DW_FORM_data4:
20616 uint.emplace (read_4_bytes (abfd, buf));
20617 buf += 4;
20618 break;
20619
20620 case DW_FORM_data8:
20621 uint.emplace (read_8_bytes (abfd, buf));
20622 buf += 8;
20623 break;
20624
20625 case DW_FORM_udata:
20626 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20627 buf += bytes_read;
20628 break;
20629
20630 case DW_FORM_block:
20631 /* It is valid only for DW_LNCT_timestamp which is ignored by
20632 current GDB. */
20633 break;
20634 }
20635
20636 switch (content_type)
20637 {
20638 case DW_LNCT_path:
20639 if (string.has_value ())
20640 fe.name = *string;
20641 break;
20642 case DW_LNCT_directory_index:
20643 if (uint.has_value ())
20644 fe.d_index = (dir_index) *uint;
20645 break;
20646 case DW_LNCT_timestamp:
20647 if (uint.has_value ())
20648 fe.mod_time = *uint;
20649 break;
20650 case DW_LNCT_size:
20651 if (uint.has_value ())
20652 fe.length = *uint;
20653 break;
20654 case DW_LNCT_MD5:
20655 break;
20656 default:
20657 complaint (&symfile_complaints,
20658 _("Unknown format content type %s"),
20659 pulongest (content_type));
20660 }
20661 }
20662
20663 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20664 }
20665
20666 *bufp = buf;
20667 }
20668
20669 /* Read the statement program header starting at OFFSET in
20670 .debug_line, or .debug_line.dwo. Return a pointer
20671 to a struct line_header, allocated using xmalloc.
20672 Returns NULL if there is a problem reading the header, e.g., if it
20673 has a version we don't understand.
20674
20675 NOTE: the strings in the include directory and file name tables of
20676 the returned object point into the dwarf line section buffer,
20677 and must not be freed. */
20678
20679 static line_header_up
20680 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20681 {
20682 const gdb_byte *line_ptr;
20683 unsigned int bytes_read, offset_size;
20684 int i;
20685 const char *cur_dir, *cur_file;
20686 struct dwarf2_section_info *section;
20687 bfd *abfd;
20688 struct dwarf2_per_objfile *dwarf2_per_objfile
20689 = cu->per_cu->dwarf2_per_objfile;
20690
20691 section = get_debug_line_section (cu);
20692 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20693 if (section->buffer == NULL)
20694 {
20695 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20696 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20697 else
20698 complaint (&symfile_complaints, _("missing .debug_line section"));
20699 return 0;
20700 }
20701
20702 /* We can't do this until we know the section is non-empty.
20703 Only then do we know we have such a section. */
20704 abfd = get_section_bfd_owner (section);
20705
20706 /* Make sure that at least there's room for the total_length field.
20707 That could be 12 bytes long, but we're just going to fudge that. */
20708 if (to_underlying (sect_off) + 4 >= section->size)
20709 {
20710 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20711 return 0;
20712 }
20713
20714 line_header_up lh (new line_header ());
20715
20716 lh->sect_off = sect_off;
20717 lh->offset_in_dwz = cu->per_cu->is_dwz;
20718
20719 line_ptr = section->buffer + to_underlying (sect_off);
20720
20721 /* Read in the header. */
20722 lh->total_length =
20723 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20724 &bytes_read, &offset_size);
20725 line_ptr += bytes_read;
20726 if (line_ptr + lh->total_length > (section->buffer + section->size))
20727 {
20728 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20729 return 0;
20730 }
20731 lh->statement_program_end = line_ptr + lh->total_length;
20732 lh->version = read_2_bytes (abfd, line_ptr);
20733 line_ptr += 2;
20734 if (lh->version > 5)
20735 {
20736 /* This is a version we don't understand. The format could have
20737 changed in ways we don't handle properly so just punt. */
20738 complaint (&symfile_complaints,
20739 _("unsupported version in .debug_line section"));
20740 return NULL;
20741 }
20742 if (lh->version >= 5)
20743 {
20744 gdb_byte segment_selector_size;
20745
20746 /* Skip address size. */
20747 read_1_byte (abfd, line_ptr);
20748 line_ptr += 1;
20749
20750 segment_selector_size = read_1_byte (abfd, line_ptr);
20751 line_ptr += 1;
20752 if (segment_selector_size != 0)
20753 {
20754 complaint (&symfile_complaints,
20755 _("unsupported segment selector size %u "
20756 "in .debug_line section"),
20757 segment_selector_size);
20758 return NULL;
20759 }
20760 }
20761 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20762 line_ptr += offset_size;
20763 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20764 line_ptr += 1;
20765 if (lh->version >= 4)
20766 {
20767 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20768 line_ptr += 1;
20769 }
20770 else
20771 lh->maximum_ops_per_instruction = 1;
20772
20773 if (lh->maximum_ops_per_instruction == 0)
20774 {
20775 lh->maximum_ops_per_instruction = 1;
20776 complaint (&symfile_complaints,
20777 _("invalid maximum_ops_per_instruction "
20778 "in `.debug_line' section"));
20779 }
20780
20781 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20782 line_ptr += 1;
20783 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20784 line_ptr += 1;
20785 lh->line_range = read_1_byte (abfd, line_ptr);
20786 line_ptr += 1;
20787 lh->opcode_base = read_1_byte (abfd, line_ptr);
20788 line_ptr += 1;
20789 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20790
20791 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20792 for (i = 1; i < lh->opcode_base; ++i)
20793 {
20794 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20795 line_ptr += 1;
20796 }
20797
20798 if (lh->version >= 5)
20799 {
20800 /* Read directory table. */
20801 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20802 &cu->header,
20803 [] (struct line_header *lh, const char *name,
20804 dir_index d_index, unsigned int mod_time,
20805 unsigned int length)
20806 {
20807 lh->add_include_dir (name);
20808 });
20809
20810 /* Read file name table. */
20811 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20812 &cu->header,
20813 [] (struct line_header *lh, const char *name,
20814 dir_index d_index, unsigned int mod_time,
20815 unsigned int length)
20816 {
20817 lh->add_file_name (name, d_index, mod_time, length);
20818 });
20819 }
20820 else
20821 {
20822 /* Read directory table. */
20823 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20824 {
20825 line_ptr += bytes_read;
20826 lh->add_include_dir (cur_dir);
20827 }
20828 line_ptr += bytes_read;
20829
20830 /* Read file name table. */
20831 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20832 {
20833 unsigned int mod_time, length;
20834 dir_index d_index;
20835
20836 line_ptr += bytes_read;
20837 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20838 line_ptr += bytes_read;
20839 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20840 line_ptr += bytes_read;
20841 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20842 line_ptr += bytes_read;
20843
20844 lh->add_file_name (cur_file, d_index, mod_time, length);
20845 }
20846 line_ptr += bytes_read;
20847 }
20848 lh->statement_program_start = line_ptr;
20849
20850 if (line_ptr > (section->buffer + section->size))
20851 complaint (&symfile_complaints,
20852 _("line number info header doesn't "
20853 "fit in `.debug_line' section"));
20854
20855 return lh;
20856 }
20857
20858 /* Subroutine of dwarf_decode_lines to simplify it.
20859 Return the file name of the psymtab for included file FILE_INDEX
20860 in line header LH of PST.
20861 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20862 If space for the result is malloc'd, *NAME_HOLDER will be set.
20863 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20864
20865 static const char *
20866 psymtab_include_file_name (const struct line_header *lh, int file_index,
20867 const struct partial_symtab *pst,
20868 const char *comp_dir,
20869 gdb::unique_xmalloc_ptr<char> *name_holder)
20870 {
20871 const file_entry &fe = lh->file_names[file_index];
20872 const char *include_name = fe.name;
20873 const char *include_name_to_compare = include_name;
20874 const char *pst_filename;
20875 int file_is_pst;
20876
20877 const char *dir_name = fe.include_dir (lh);
20878
20879 gdb::unique_xmalloc_ptr<char> hold_compare;
20880 if (!IS_ABSOLUTE_PATH (include_name)
20881 && (dir_name != NULL || comp_dir != NULL))
20882 {
20883 /* Avoid creating a duplicate psymtab for PST.
20884 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20885 Before we do the comparison, however, we need to account
20886 for DIR_NAME and COMP_DIR.
20887 First prepend dir_name (if non-NULL). If we still don't
20888 have an absolute path prepend comp_dir (if non-NULL).
20889 However, the directory we record in the include-file's
20890 psymtab does not contain COMP_DIR (to match the
20891 corresponding symtab(s)).
20892
20893 Example:
20894
20895 bash$ cd /tmp
20896 bash$ gcc -g ./hello.c
20897 include_name = "hello.c"
20898 dir_name = "."
20899 DW_AT_comp_dir = comp_dir = "/tmp"
20900 DW_AT_name = "./hello.c"
20901
20902 */
20903
20904 if (dir_name != NULL)
20905 {
20906 name_holder->reset (concat (dir_name, SLASH_STRING,
20907 include_name, (char *) NULL));
20908 include_name = name_holder->get ();
20909 include_name_to_compare = include_name;
20910 }
20911 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20912 {
20913 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20914 include_name, (char *) NULL));
20915 include_name_to_compare = hold_compare.get ();
20916 }
20917 }
20918
20919 pst_filename = pst->filename;
20920 gdb::unique_xmalloc_ptr<char> copied_name;
20921 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20922 {
20923 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20924 pst_filename, (char *) NULL));
20925 pst_filename = copied_name.get ();
20926 }
20927
20928 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20929
20930 if (file_is_pst)
20931 return NULL;
20932 return include_name;
20933 }
20934
20935 /* State machine to track the state of the line number program. */
20936
20937 class lnp_state_machine
20938 {
20939 public:
20940 /* Initialize a machine state for the start of a line number
20941 program. */
20942 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20943
20944 file_entry *current_file ()
20945 {
20946 /* lh->file_names is 0-based, but the file name numbers in the
20947 statement program are 1-based. */
20948 return m_line_header->file_name_at (m_file);
20949 }
20950
20951 /* Record the line in the state machine. END_SEQUENCE is true if
20952 we're processing the end of a sequence. */
20953 void record_line (bool end_sequence);
20954
20955 /* Check address and if invalid nop-out the rest of the lines in this
20956 sequence. */
20957 void check_line_address (struct dwarf2_cu *cu,
20958 const gdb_byte *line_ptr,
20959 CORE_ADDR lowpc, CORE_ADDR address);
20960
20961 void handle_set_discriminator (unsigned int discriminator)
20962 {
20963 m_discriminator = discriminator;
20964 m_line_has_non_zero_discriminator |= discriminator != 0;
20965 }
20966
20967 /* Handle DW_LNE_set_address. */
20968 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20969 {
20970 m_op_index = 0;
20971 address += baseaddr;
20972 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20973 }
20974
20975 /* Handle DW_LNS_advance_pc. */
20976 void handle_advance_pc (CORE_ADDR adjust);
20977
20978 /* Handle a special opcode. */
20979 void handle_special_opcode (unsigned char op_code);
20980
20981 /* Handle DW_LNS_advance_line. */
20982 void handle_advance_line (int line_delta)
20983 {
20984 advance_line (line_delta);
20985 }
20986
20987 /* Handle DW_LNS_set_file. */
20988 void handle_set_file (file_name_index file);
20989
20990 /* Handle DW_LNS_negate_stmt. */
20991 void handle_negate_stmt ()
20992 {
20993 m_is_stmt = !m_is_stmt;
20994 }
20995
20996 /* Handle DW_LNS_const_add_pc. */
20997 void handle_const_add_pc ();
20998
20999 /* Handle DW_LNS_fixed_advance_pc. */
21000 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
21001 {
21002 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21003 m_op_index = 0;
21004 }
21005
21006 /* Handle DW_LNS_copy. */
21007 void handle_copy ()
21008 {
21009 record_line (false);
21010 m_discriminator = 0;
21011 }
21012
21013 /* Handle DW_LNE_end_sequence. */
21014 void handle_end_sequence ()
21015 {
21016 m_record_line_callback = ::record_line;
21017 }
21018
21019 private:
21020 /* Advance the line by LINE_DELTA. */
21021 void advance_line (int line_delta)
21022 {
21023 m_line += line_delta;
21024
21025 if (line_delta != 0)
21026 m_line_has_non_zero_discriminator = m_discriminator != 0;
21027 }
21028
21029 gdbarch *m_gdbarch;
21030
21031 /* True if we're recording lines.
21032 Otherwise we're building partial symtabs and are just interested in
21033 finding include files mentioned by the line number program. */
21034 bool m_record_lines_p;
21035
21036 /* The line number header. */
21037 line_header *m_line_header;
21038
21039 /* These are part of the standard DWARF line number state machine,
21040 and initialized according to the DWARF spec. */
21041
21042 unsigned char m_op_index = 0;
21043 /* The line table index (1-based) of the current file. */
21044 file_name_index m_file = (file_name_index) 1;
21045 unsigned int m_line = 1;
21046
21047 /* These are initialized in the constructor. */
21048
21049 CORE_ADDR m_address;
21050 bool m_is_stmt;
21051 unsigned int m_discriminator;
21052
21053 /* Additional bits of state we need to track. */
21054
21055 /* The last file that we called dwarf2_start_subfile for.
21056 This is only used for TLLs. */
21057 unsigned int m_last_file = 0;
21058 /* The last file a line number was recorded for. */
21059 struct subfile *m_last_subfile = NULL;
21060
21061 /* The function to call to record a line. */
21062 record_line_ftype *m_record_line_callback = NULL;
21063
21064 /* The last line number that was recorded, used to coalesce
21065 consecutive entries for the same line. This can happen, for
21066 example, when discriminators are present. PR 17276. */
21067 unsigned int m_last_line = 0;
21068 bool m_line_has_non_zero_discriminator = false;
21069 };
21070
21071 void
21072 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
21073 {
21074 CORE_ADDR addr_adj = (((m_op_index + adjust)
21075 / m_line_header->maximum_ops_per_instruction)
21076 * m_line_header->minimum_instruction_length);
21077 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21078 m_op_index = ((m_op_index + adjust)
21079 % m_line_header->maximum_ops_per_instruction);
21080 }
21081
21082 void
21083 lnp_state_machine::handle_special_opcode (unsigned char op_code)
21084 {
21085 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
21086 CORE_ADDR addr_adj = (((m_op_index
21087 + (adj_opcode / m_line_header->line_range))
21088 / m_line_header->maximum_ops_per_instruction)
21089 * m_line_header->minimum_instruction_length);
21090 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21091 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
21092 % m_line_header->maximum_ops_per_instruction);
21093
21094 int line_delta = (m_line_header->line_base
21095 + (adj_opcode % m_line_header->line_range));
21096 advance_line (line_delta);
21097 record_line (false);
21098 m_discriminator = 0;
21099 }
21100
21101 void
21102 lnp_state_machine::handle_set_file (file_name_index file)
21103 {
21104 m_file = file;
21105
21106 const file_entry *fe = current_file ();
21107 if (fe == NULL)
21108 dwarf2_debug_line_missing_file_complaint ();
21109 else if (m_record_lines_p)
21110 {
21111 const char *dir = fe->include_dir (m_line_header);
21112
21113 m_last_subfile = current_subfile;
21114 m_line_has_non_zero_discriminator = m_discriminator != 0;
21115 dwarf2_start_subfile (fe->name, dir);
21116 }
21117 }
21118
21119 void
21120 lnp_state_machine::handle_const_add_pc ()
21121 {
21122 CORE_ADDR adjust
21123 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
21124
21125 CORE_ADDR addr_adj
21126 = (((m_op_index + adjust)
21127 / m_line_header->maximum_ops_per_instruction)
21128 * m_line_header->minimum_instruction_length);
21129
21130 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21131 m_op_index = ((m_op_index + adjust)
21132 % m_line_header->maximum_ops_per_instruction);
21133 }
21134
21135 /* Ignore this record_line request. */
21136
21137 static void
21138 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
21139 {
21140 return;
21141 }
21142
21143 /* Return non-zero if we should add LINE to the line number table.
21144 LINE is the line to add, LAST_LINE is the last line that was added,
21145 LAST_SUBFILE is the subfile for LAST_LINE.
21146 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
21147 had a non-zero discriminator.
21148
21149 We have to be careful in the presence of discriminators.
21150 E.g., for this line:
21151
21152 for (i = 0; i < 100000; i++);
21153
21154 clang can emit four line number entries for that one line,
21155 each with a different discriminator.
21156 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21157
21158 However, we want gdb to coalesce all four entries into one.
21159 Otherwise the user could stepi into the middle of the line and
21160 gdb would get confused about whether the pc really was in the
21161 middle of the line.
21162
21163 Things are further complicated by the fact that two consecutive
21164 line number entries for the same line is a heuristic used by gcc
21165 to denote the end of the prologue. So we can't just discard duplicate
21166 entries, we have to be selective about it. The heuristic we use is
21167 that we only collapse consecutive entries for the same line if at least
21168 one of those entries has a non-zero discriminator. PR 17276.
21169
21170 Note: Addresses in the line number state machine can never go backwards
21171 within one sequence, thus this coalescing is ok. */
21172
21173 static int
21174 dwarf_record_line_p (unsigned int line, unsigned int last_line,
21175 int line_has_non_zero_discriminator,
21176 struct subfile *last_subfile)
21177 {
21178 if (current_subfile != last_subfile)
21179 return 1;
21180 if (line != last_line)
21181 return 1;
21182 /* Same line for the same file that we've seen already.
21183 As a last check, for pr 17276, only record the line if the line
21184 has never had a non-zero discriminator. */
21185 if (!line_has_non_zero_discriminator)
21186 return 1;
21187 return 0;
21188 }
21189
21190 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
21191 in the line table of subfile SUBFILE. */
21192
21193 static void
21194 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21195 unsigned int line, CORE_ADDR address,
21196 record_line_ftype p_record_line)
21197 {
21198 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21199
21200 if (dwarf_line_debug)
21201 {
21202 fprintf_unfiltered (gdb_stdlog,
21203 "Recording line %u, file %s, address %s\n",
21204 line, lbasename (subfile->name),
21205 paddress (gdbarch, address));
21206 }
21207
21208 (*p_record_line) (subfile, line, addr);
21209 }
21210
21211 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21212 Mark the end of a set of line number records.
21213 The arguments are the same as for dwarf_record_line_1.
21214 If SUBFILE is NULL the request is ignored. */
21215
21216 static void
21217 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21218 CORE_ADDR address, record_line_ftype p_record_line)
21219 {
21220 if (subfile == NULL)
21221 return;
21222
21223 if (dwarf_line_debug)
21224 {
21225 fprintf_unfiltered (gdb_stdlog,
21226 "Finishing current line, file %s, address %s\n",
21227 lbasename (subfile->name),
21228 paddress (gdbarch, address));
21229 }
21230
21231 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
21232 }
21233
21234 void
21235 lnp_state_machine::record_line (bool end_sequence)
21236 {
21237 if (dwarf_line_debug)
21238 {
21239 fprintf_unfiltered (gdb_stdlog,
21240 "Processing actual line %u: file %u,"
21241 " address %s, is_stmt %u, discrim %u\n",
21242 m_line, to_underlying (m_file),
21243 paddress (m_gdbarch, m_address),
21244 m_is_stmt, m_discriminator);
21245 }
21246
21247 file_entry *fe = current_file ();
21248
21249 if (fe == NULL)
21250 dwarf2_debug_line_missing_file_complaint ();
21251 /* For now we ignore lines not starting on an instruction boundary.
21252 But not when processing end_sequence for compatibility with the
21253 previous version of the code. */
21254 else if (m_op_index == 0 || end_sequence)
21255 {
21256 fe->included_p = 1;
21257 if (m_record_lines_p && m_is_stmt)
21258 {
21259 if (m_last_subfile != current_subfile || end_sequence)
21260 {
21261 dwarf_finish_line (m_gdbarch, m_last_subfile,
21262 m_address, m_record_line_callback);
21263 }
21264
21265 if (!end_sequence)
21266 {
21267 if (dwarf_record_line_p (m_line, m_last_line,
21268 m_line_has_non_zero_discriminator,
21269 m_last_subfile))
21270 {
21271 dwarf_record_line_1 (m_gdbarch, current_subfile,
21272 m_line, m_address,
21273 m_record_line_callback);
21274 }
21275 m_last_subfile = current_subfile;
21276 m_last_line = m_line;
21277 }
21278 }
21279 }
21280 }
21281
21282 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
21283 bool record_lines_p)
21284 {
21285 m_gdbarch = arch;
21286 m_record_lines_p = record_lines_p;
21287 m_line_header = lh;
21288
21289 m_record_line_callback = ::record_line;
21290
21291 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21292 was a line entry for it so that the backend has a chance to adjust it
21293 and also record it in case it needs it. This is currently used by MIPS
21294 code, cf. `mips_adjust_dwarf2_line'. */
21295 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21296 m_is_stmt = lh->default_is_stmt;
21297 m_discriminator = 0;
21298 }
21299
21300 void
21301 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21302 const gdb_byte *line_ptr,
21303 CORE_ADDR lowpc, CORE_ADDR address)
21304 {
21305 /* If address < lowpc then it's not a usable value, it's outside the
21306 pc range of the CU. However, we restrict the test to only address
21307 values of zero to preserve GDB's previous behaviour which is to
21308 handle the specific case of a function being GC'd by the linker. */
21309
21310 if (address == 0 && address < lowpc)
21311 {
21312 /* This line table is for a function which has been
21313 GCd by the linker. Ignore it. PR gdb/12528 */
21314
21315 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21316 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21317
21318 complaint (&symfile_complaints,
21319 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21320 line_offset, objfile_name (objfile));
21321 m_record_line_callback = noop_record_line;
21322 /* Note: record_line_callback is left as noop_record_line until
21323 we see DW_LNE_end_sequence. */
21324 }
21325 }
21326
21327 /* Subroutine of dwarf_decode_lines to simplify it.
21328 Process the line number information in LH.
21329 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21330 program in order to set included_p for every referenced header. */
21331
21332 static void
21333 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21334 const int decode_for_pst_p, CORE_ADDR lowpc)
21335 {
21336 const gdb_byte *line_ptr, *extended_end;
21337 const gdb_byte *line_end;
21338 unsigned int bytes_read, extended_len;
21339 unsigned char op_code, extended_op;
21340 CORE_ADDR baseaddr;
21341 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21342 bfd *abfd = objfile->obfd;
21343 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21344 /* True if we're recording line info (as opposed to building partial
21345 symtabs and just interested in finding include files mentioned by
21346 the line number program). */
21347 bool record_lines_p = !decode_for_pst_p;
21348
21349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21350
21351 line_ptr = lh->statement_program_start;
21352 line_end = lh->statement_program_end;
21353
21354 /* Read the statement sequences until there's nothing left. */
21355 while (line_ptr < line_end)
21356 {
21357 /* The DWARF line number program state machine. Reset the state
21358 machine at the start of each sequence. */
21359 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
21360 bool end_sequence = false;
21361
21362 if (record_lines_p)
21363 {
21364 /* Start a subfile for the current file of the state
21365 machine. */
21366 const file_entry *fe = state_machine.current_file ();
21367
21368 if (fe != NULL)
21369 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
21370 }
21371
21372 /* Decode the table. */
21373 while (line_ptr < line_end && !end_sequence)
21374 {
21375 op_code = read_1_byte (abfd, line_ptr);
21376 line_ptr += 1;
21377
21378 if (op_code >= lh->opcode_base)
21379 {
21380 /* Special opcode. */
21381 state_machine.handle_special_opcode (op_code);
21382 }
21383 else switch (op_code)
21384 {
21385 case DW_LNS_extended_op:
21386 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21387 &bytes_read);
21388 line_ptr += bytes_read;
21389 extended_end = line_ptr + extended_len;
21390 extended_op = read_1_byte (abfd, line_ptr);
21391 line_ptr += 1;
21392 switch (extended_op)
21393 {
21394 case DW_LNE_end_sequence:
21395 state_machine.handle_end_sequence ();
21396 end_sequence = true;
21397 break;
21398 case DW_LNE_set_address:
21399 {
21400 CORE_ADDR address
21401 = read_address (abfd, line_ptr, cu, &bytes_read);
21402 line_ptr += bytes_read;
21403
21404 state_machine.check_line_address (cu, line_ptr,
21405 lowpc, address);
21406 state_machine.handle_set_address (baseaddr, address);
21407 }
21408 break;
21409 case DW_LNE_define_file:
21410 {
21411 const char *cur_file;
21412 unsigned int mod_time, length;
21413 dir_index dindex;
21414
21415 cur_file = read_direct_string (abfd, line_ptr,
21416 &bytes_read);
21417 line_ptr += bytes_read;
21418 dindex = (dir_index)
21419 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21420 line_ptr += bytes_read;
21421 mod_time =
21422 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21423 line_ptr += bytes_read;
21424 length =
21425 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21426 line_ptr += bytes_read;
21427 lh->add_file_name (cur_file, dindex, mod_time, length);
21428 }
21429 break;
21430 case DW_LNE_set_discriminator:
21431 {
21432 /* The discriminator is not interesting to the
21433 debugger; just ignore it. We still need to
21434 check its value though:
21435 if there are consecutive entries for the same
21436 (non-prologue) line we want to coalesce them.
21437 PR 17276. */
21438 unsigned int discr
21439 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21440 line_ptr += bytes_read;
21441
21442 state_machine.handle_set_discriminator (discr);
21443 }
21444 break;
21445 default:
21446 complaint (&symfile_complaints,
21447 _("mangled .debug_line section"));
21448 return;
21449 }
21450 /* Make sure that we parsed the extended op correctly. If e.g.
21451 we expected a different address size than the producer used,
21452 we may have read the wrong number of bytes. */
21453 if (line_ptr != extended_end)
21454 {
21455 complaint (&symfile_complaints,
21456 _("mangled .debug_line section"));
21457 return;
21458 }
21459 break;
21460 case DW_LNS_copy:
21461 state_machine.handle_copy ();
21462 break;
21463 case DW_LNS_advance_pc:
21464 {
21465 CORE_ADDR adjust
21466 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21467 line_ptr += bytes_read;
21468
21469 state_machine.handle_advance_pc (adjust);
21470 }
21471 break;
21472 case DW_LNS_advance_line:
21473 {
21474 int line_delta
21475 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21476 line_ptr += bytes_read;
21477
21478 state_machine.handle_advance_line (line_delta);
21479 }
21480 break;
21481 case DW_LNS_set_file:
21482 {
21483 file_name_index file
21484 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21485 &bytes_read);
21486 line_ptr += bytes_read;
21487
21488 state_machine.handle_set_file (file);
21489 }
21490 break;
21491 case DW_LNS_set_column:
21492 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21493 line_ptr += bytes_read;
21494 break;
21495 case DW_LNS_negate_stmt:
21496 state_machine.handle_negate_stmt ();
21497 break;
21498 case DW_LNS_set_basic_block:
21499 break;
21500 /* Add to the address register of the state machine the
21501 address increment value corresponding to special opcode
21502 255. I.e., this value is scaled by the minimum
21503 instruction length since special opcode 255 would have
21504 scaled the increment. */
21505 case DW_LNS_const_add_pc:
21506 state_machine.handle_const_add_pc ();
21507 break;
21508 case DW_LNS_fixed_advance_pc:
21509 {
21510 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21511 line_ptr += 2;
21512
21513 state_machine.handle_fixed_advance_pc (addr_adj);
21514 }
21515 break;
21516 default:
21517 {
21518 /* Unknown standard opcode, ignore it. */
21519 int i;
21520
21521 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21522 {
21523 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21524 line_ptr += bytes_read;
21525 }
21526 }
21527 }
21528 }
21529
21530 if (!end_sequence)
21531 dwarf2_debug_line_missing_end_sequence_complaint ();
21532
21533 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21534 in which case we still finish recording the last line). */
21535 state_machine.record_line (true);
21536 }
21537 }
21538
21539 /* Decode the Line Number Program (LNP) for the given line_header
21540 structure and CU. The actual information extracted and the type
21541 of structures created from the LNP depends on the value of PST.
21542
21543 1. If PST is NULL, then this procedure uses the data from the program
21544 to create all necessary symbol tables, and their linetables.
21545
21546 2. If PST is not NULL, this procedure reads the program to determine
21547 the list of files included by the unit represented by PST, and
21548 builds all the associated partial symbol tables.
21549
21550 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21551 It is used for relative paths in the line table.
21552 NOTE: When processing partial symtabs (pst != NULL),
21553 comp_dir == pst->dirname.
21554
21555 NOTE: It is important that psymtabs have the same file name (via strcmp)
21556 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21557 symtab we don't use it in the name of the psymtabs we create.
21558 E.g. expand_line_sal requires this when finding psymtabs to expand.
21559 A good testcase for this is mb-inline.exp.
21560
21561 LOWPC is the lowest address in CU (or 0 if not known).
21562
21563 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21564 for its PC<->lines mapping information. Otherwise only the filename
21565 table is read in. */
21566
21567 static void
21568 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21569 struct dwarf2_cu *cu, struct partial_symtab *pst,
21570 CORE_ADDR lowpc, int decode_mapping)
21571 {
21572 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21573 const int decode_for_pst_p = (pst != NULL);
21574
21575 if (decode_mapping)
21576 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21577
21578 if (decode_for_pst_p)
21579 {
21580 int file_index;
21581
21582 /* Now that we're done scanning the Line Header Program, we can
21583 create the psymtab of each included file. */
21584 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21585 if (lh->file_names[file_index].included_p == 1)
21586 {
21587 gdb::unique_xmalloc_ptr<char> name_holder;
21588 const char *include_name =
21589 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21590 &name_holder);
21591 if (include_name != NULL)
21592 dwarf2_create_include_psymtab (include_name, pst, objfile);
21593 }
21594 }
21595 else
21596 {
21597 /* Make sure a symtab is created for every file, even files
21598 which contain only variables (i.e. no code with associated
21599 line numbers). */
21600 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21601 int i;
21602
21603 for (i = 0; i < lh->file_names.size (); i++)
21604 {
21605 file_entry &fe = lh->file_names[i];
21606
21607 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21608
21609 if (current_subfile->symtab == NULL)
21610 {
21611 current_subfile->symtab
21612 = allocate_symtab (cust, current_subfile->name);
21613 }
21614 fe.symtab = current_subfile->symtab;
21615 }
21616 }
21617 }
21618
21619 /* Start a subfile for DWARF. FILENAME is the name of the file and
21620 DIRNAME the name of the source directory which contains FILENAME
21621 or NULL if not known.
21622 This routine tries to keep line numbers from identical absolute and
21623 relative file names in a common subfile.
21624
21625 Using the `list' example from the GDB testsuite, which resides in
21626 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21627 of /srcdir/list0.c yields the following debugging information for list0.c:
21628
21629 DW_AT_name: /srcdir/list0.c
21630 DW_AT_comp_dir: /compdir
21631 files.files[0].name: list0.h
21632 files.files[0].dir: /srcdir
21633 files.files[1].name: list0.c
21634 files.files[1].dir: /srcdir
21635
21636 The line number information for list0.c has to end up in a single
21637 subfile, so that `break /srcdir/list0.c:1' works as expected.
21638 start_subfile will ensure that this happens provided that we pass the
21639 concatenation of files.files[1].dir and files.files[1].name as the
21640 subfile's name. */
21641
21642 static void
21643 dwarf2_start_subfile (const char *filename, const char *dirname)
21644 {
21645 char *copy = NULL;
21646
21647 /* In order not to lose the line information directory,
21648 we concatenate it to the filename when it makes sense.
21649 Note that the Dwarf3 standard says (speaking of filenames in line
21650 information): ``The directory index is ignored for file names
21651 that represent full path names''. Thus ignoring dirname in the
21652 `else' branch below isn't an issue. */
21653
21654 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21655 {
21656 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21657 filename = copy;
21658 }
21659
21660 start_subfile (filename);
21661
21662 if (copy != NULL)
21663 xfree (copy);
21664 }
21665
21666 /* Start a symtab for DWARF.
21667 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21668
21669 static struct compunit_symtab *
21670 dwarf2_start_symtab (struct dwarf2_cu *cu,
21671 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21672 {
21673 struct compunit_symtab *cust
21674 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21675 low_pc, cu->language);
21676
21677 record_debugformat ("DWARF 2");
21678 record_producer (cu->producer);
21679
21680 /* We assume that we're processing GCC output. */
21681 processing_gcc_compilation = 2;
21682
21683 cu->processing_has_namespace_info = 0;
21684
21685 return cust;
21686 }
21687
21688 static void
21689 var_decode_location (struct attribute *attr, struct symbol *sym,
21690 struct dwarf2_cu *cu)
21691 {
21692 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21693 struct comp_unit_head *cu_header = &cu->header;
21694
21695 /* NOTE drow/2003-01-30: There used to be a comment and some special
21696 code here to turn a symbol with DW_AT_external and a
21697 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21698 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21699 with some versions of binutils) where shared libraries could have
21700 relocations against symbols in their debug information - the
21701 minimal symbol would have the right address, but the debug info
21702 would not. It's no longer necessary, because we will explicitly
21703 apply relocations when we read in the debug information now. */
21704
21705 /* A DW_AT_location attribute with no contents indicates that a
21706 variable has been optimized away. */
21707 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21708 {
21709 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21710 return;
21711 }
21712
21713 /* Handle one degenerate form of location expression specially, to
21714 preserve GDB's previous behavior when section offsets are
21715 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21716 then mark this symbol as LOC_STATIC. */
21717
21718 if (attr_form_is_block (attr)
21719 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21720 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21721 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21722 && (DW_BLOCK (attr)->size
21723 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21724 {
21725 unsigned int dummy;
21726
21727 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21728 SYMBOL_VALUE_ADDRESS (sym) =
21729 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21730 else
21731 SYMBOL_VALUE_ADDRESS (sym) =
21732 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21733 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21734 fixup_symbol_section (sym, objfile);
21735 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21736 SYMBOL_SECTION (sym));
21737 return;
21738 }
21739
21740 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21741 expression evaluator, and use LOC_COMPUTED only when necessary
21742 (i.e. when the value of a register or memory location is
21743 referenced, or a thread-local block, etc.). Then again, it might
21744 not be worthwhile. I'm assuming that it isn't unless performance
21745 or memory numbers show me otherwise. */
21746
21747 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21748
21749 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21750 cu->has_loclist = 1;
21751 }
21752
21753 /* Given a pointer to a DWARF information entry, figure out if we need
21754 to make a symbol table entry for it, and if so, create a new entry
21755 and return a pointer to it.
21756 If TYPE is NULL, determine symbol type from the die, otherwise
21757 used the passed type.
21758 If SPACE is not NULL, use it to hold the new symbol. If it is
21759 NULL, allocate a new symbol on the objfile's obstack. */
21760
21761 static struct symbol *
21762 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21763 struct symbol *space)
21764 {
21765 struct dwarf2_per_objfile *dwarf2_per_objfile
21766 = cu->per_cu->dwarf2_per_objfile;
21767 struct objfile *objfile = dwarf2_per_objfile->objfile;
21768 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21769 struct symbol *sym = NULL;
21770 const char *name;
21771 struct attribute *attr = NULL;
21772 struct attribute *attr2 = NULL;
21773 CORE_ADDR baseaddr;
21774 struct pending **list_to_add = NULL;
21775
21776 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21777
21778 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21779
21780 name = dwarf2_name (die, cu);
21781 if (name)
21782 {
21783 const char *linkagename;
21784 int suppress_add = 0;
21785
21786 if (space)
21787 sym = space;
21788 else
21789 sym = allocate_symbol (objfile);
21790 OBJSTAT (objfile, n_syms++);
21791
21792 /* Cache this symbol's name and the name's demangled form (if any). */
21793 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21794 linkagename = dwarf2_physname (name, die, cu);
21795 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21796
21797 /* Fortran does not have mangling standard and the mangling does differ
21798 between gfortran, iFort etc. */
21799 if (cu->language == language_fortran
21800 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21801 symbol_set_demangled_name (&(sym->ginfo),
21802 dwarf2_full_name (name, die, cu),
21803 NULL);
21804
21805 /* Default assumptions.
21806 Use the passed type or decode it from the die. */
21807 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21808 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21809 if (type != NULL)
21810 SYMBOL_TYPE (sym) = type;
21811 else
21812 SYMBOL_TYPE (sym) = die_type (die, cu);
21813 attr = dwarf2_attr (die,
21814 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21815 cu);
21816 if (attr)
21817 {
21818 SYMBOL_LINE (sym) = DW_UNSND (attr);
21819 }
21820
21821 attr = dwarf2_attr (die,
21822 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21823 cu);
21824 if (attr)
21825 {
21826 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21827 struct file_entry *fe;
21828
21829 if (cu->line_header != NULL)
21830 fe = cu->line_header->file_name_at (file_index);
21831 else
21832 fe = NULL;
21833
21834 if (fe == NULL)
21835 complaint (&symfile_complaints,
21836 _("file index out of range"));
21837 else
21838 symbol_set_symtab (sym, fe->symtab);
21839 }
21840
21841 switch (die->tag)
21842 {
21843 case DW_TAG_label:
21844 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21845 if (attr)
21846 {
21847 CORE_ADDR addr;
21848
21849 addr = attr_value_as_address (attr);
21850 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21851 SYMBOL_VALUE_ADDRESS (sym) = addr;
21852 }
21853 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21854 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21855 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21856 add_symbol_to_list (sym, cu->list_in_scope);
21857 break;
21858 case DW_TAG_subprogram:
21859 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21860 finish_block. */
21861 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21862 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21863 if ((attr2 && (DW_UNSND (attr2) != 0))
21864 || cu->language == language_ada)
21865 {
21866 /* Subprograms marked external are stored as a global symbol.
21867 Ada subprograms, whether marked external or not, are always
21868 stored as a global symbol, because we want to be able to
21869 access them globally. For instance, we want to be able
21870 to break on a nested subprogram without having to
21871 specify the context. */
21872 list_to_add = &global_symbols;
21873 }
21874 else
21875 {
21876 list_to_add = cu->list_in_scope;
21877 }
21878 break;
21879 case DW_TAG_inlined_subroutine:
21880 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21881 finish_block. */
21882 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21883 SYMBOL_INLINED (sym) = 1;
21884 list_to_add = cu->list_in_scope;
21885 break;
21886 case DW_TAG_template_value_param:
21887 suppress_add = 1;
21888 /* Fall through. */
21889 case DW_TAG_constant:
21890 case DW_TAG_variable:
21891 case DW_TAG_member:
21892 /* Compilation with minimal debug info may result in
21893 variables with missing type entries. Change the
21894 misleading `void' type to something sensible. */
21895 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21896 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21897
21898 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21899 /* In the case of DW_TAG_member, we should only be called for
21900 static const members. */
21901 if (die->tag == DW_TAG_member)
21902 {
21903 /* dwarf2_add_field uses die_is_declaration,
21904 so we do the same. */
21905 gdb_assert (die_is_declaration (die, cu));
21906 gdb_assert (attr);
21907 }
21908 if (attr)
21909 {
21910 dwarf2_const_value (attr, sym, cu);
21911 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21912 if (!suppress_add)
21913 {
21914 if (attr2 && (DW_UNSND (attr2) != 0))
21915 list_to_add = &global_symbols;
21916 else
21917 list_to_add = cu->list_in_scope;
21918 }
21919 break;
21920 }
21921 attr = dwarf2_attr (die, DW_AT_location, cu);
21922 if (attr)
21923 {
21924 var_decode_location (attr, sym, cu);
21925 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21926
21927 /* Fortran explicitly imports any global symbols to the local
21928 scope by DW_TAG_common_block. */
21929 if (cu->language == language_fortran && die->parent
21930 && die->parent->tag == DW_TAG_common_block)
21931 attr2 = NULL;
21932
21933 if (SYMBOL_CLASS (sym) == LOC_STATIC
21934 && SYMBOL_VALUE_ADDRESS (sym) == 0
21935 && !dwarf2_per_objfile->has_section_at_zero)
21936 {
21937 /* When a static variable is eliminated by the linker,
21938 the corresponding debug information is not stripped
21939 out, but the variable address is set to null;
21940 do not add such variables into symbol table. */
21941 }
21942 else if (attr2 && (DW_UNSND (attr2) != 0))
21943 {
21944 /* Workaround gfortran PR debug/40040 - it uses
21945 DW_AT_location for variables in -fPIC libraries which may
21946 get overriden by other libraries/executable and get
21947 a different address. Resolve it by the minimal symbol
21948 which may come from inferior's executable using copy
21949 relocation. Make this workaround only for gfortran as for
21950 other compilers GDB cannot guess the minimal symbol
21951 Fortran mangling kind. */
21952 if (cu->language == language_fortran && die->parent
21953 && die->parent->tag == DW_TAG_module
21954 && cu->producer
21955 && startswith (cu->producer, "GNU Fortran"))
21956 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21957
21958 /* A variable with DW_AT_external is never static,
21959 but it may be block-scoped. */
21960 list_to_add = (cu->list_in_scope == &file_symbols
21961 ? &global_symbols : cu->list_in_scope);
21962 }
21963 else
21964 list_to_add = cu->list_in_scope;
21965 }
21966 else
21967 {
21968 /* We do not know the address of this symbol.
21969 If it is an external symbol and we have type information
21970 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21971 The address of the variable will then be determined from
21972 the minimal symbol table whenever the variable is
21973 referenced. */
21974 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21975
21976 /* Fortran explicitly imports any global symbols to the local
21977 scope by DW_TAG_common_block. */
21978 if (cu->language == language_fortran && die->parent
21979 && die->parent->tag == DW_TAG_common_block)
21980 {
21981 /* SYMBOL_CLASS doesn't matter here because
21982 read_common_block is going to reset it. */
21983 if (!suppress_add)
21984 list_to_add = cu->list_in_scope;
21985 }
21986 else if (attr2 && (DW_UNSND (attr2) != 0)
21987 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21988 {
21989 /* A variable with DW_AT_external is never static, but it
21990 may be block-scoped. */
21991 list_to_add = (cu->list_in_scope == &file_symbols
21992 ? &global_symbols : cu->list_in_scope);
21993
21994 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21995 }
21996 else if (!die_is_declaration (die, cu))
21997 {
21998 /* Use the default LOC_OPTIMIZED_OUT class. */
21999 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
22000 if (!suppress_add)
22001 list_to_add = cu->list_in_scope;
22002 }
22003 }
22004 break;
22005 case DW_TAG_formal_parameter:
22006 /* If we are inside a function, mark this as an argument. If
22007 not, we might be looking at an argument to an inlined function
22008 when we do not have enough information to show inlined frames;
22009 pretend it's a local variable in that case so that the user can
22010 still see it. */
22011 if (context_stack_depth > 0
22012 && context_stack[context_stack_depth - 1].name != NULL)
22013 SYMBOL_IS_ARGUMENT (sym) = 1;
22014 attr = dwarf2_attr (die, DW_AT_location, cu);
22015 if (attr)
22016 {
22017 var_decode_location (attr, sym, cu);
22018 }
22019 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22020 if (attr)
22021 {
22022 dwarf2_const_value (attr, sym, cu);
22023 }
22024
22025 list_to_add = cu->list_in_scope;
22026 break;
22027 case DW_TAG_unspecified_parameters:
22028 /* From varargs functions; gdb doesn't seem to have any
22029 interest in this information, so just ignore it for now.
22030 (FIXME?) */
22031 break;
22032 case DW_TAG_template_type_param:
22033 suppress_add = 1;
22034 /* Fall through. */
22035 case DW_TAG_class_type:
22036 case DW_TAG_interface_type:
22037 case DW_TAG_structure_type:
22038 case DW_TAG_union_type:
22039 case DW_TAG_set_type:
22040 case DW_TAG_enumeration_type:
22041 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22042 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
22043
22044 {
22045 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
22046 really ever be static objects: otherwise, if you try
22047 to, say, break of a class's method and you're in a file
22048 which doesn't mention that class, it won't work unless
22049 the check for all static symbols in lookup_symbol_aux
22050 saves you. See the OtherFileClass tests in
22051 gdb.c++/namespace.exp. */
22052
22053 if (!suppress_add)
22054 {
22055 list_to_add = (cu->list_in_scope == &file_symbols
22056 && cu->language == language_cplus
22057 ? &global_symbols : cu->list_in_scope);
22058
22059 /* The semantics of C++ state that "struct foo {
22060 ... }" also defines a typedef for "foo". */
22061 if (cu->language == language_cplus
22062 || cu->language == language_ada
22063 || cu->language == language_d
22064 || cu->language == language_rust)
22065 {
22066 /* The symbol's name is already allocated along
22067 with this objfile, so we don't need to
22068 duplicate it for the type. */
22069 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
22070 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
22071 }
22072 }
22073 }
22074 break;
22075 case DW_TAG_typedef:
22076 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22078 list_to_add = cu->list_in_scope;
22079 break;
22080 case DW_TAG_base_type:
22081 case DW_TAG_subrange_type:
22082 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22083 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22084 list_to_add = cu->list_in_scope;
22085 break;
22086 case DW_TAG_enumerator:
22087 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22088 if (attr)
22089 {
22090 dwarf2_const_value (attr, sym, cu);
22091 }
22092 {
22093 /* NOTE: carlton/2003-11-10: See comment above in the
22094 DW_TAG_class_type, etc. block. */
22095
22096 list_to_add = (cu->list_in_scope == &file_symbols
22097 && cu->language == language_cplus
22098 ? &global_symbols : cu->list_in_scope);
22099 }
22100 break;
22101 case DW_TAG_imported_declaration:
22102 case DW_TAG_namespace:
22103 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22104 list_to_add = &global_symbols;
22105 break;
22106 case DW_TAG_module:
22107 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22108 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
22109 list_to_add = &global_symbols;
22110 break;
22111 case DW_TAG_common_block:
22112 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
22113 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
22114 add_symbol_to_list (sym, cu->list_in_scope);
22115 break;
22116 default:
22117 /* Not a tag we recognize. Hopefully we aren't processing
22118 trash data, but since we must specifically ignore things
22119 we don't recognize, there is nothing else we should do at
22120 this point. */
22121 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
22122 dwarf_tag_name (die->tag));
22123 break;
22124 }
22125
22126 if (suppress_add)
22127 {
22128 sym->hash_next = objfile->template_symbols;
22129 objfile->template_symbols = sym;
22130 list_to_add = NULL;
22131 }
22132
22133 if (list_to_add != NULL)
22134 add_symbol_to_list (sym, list_to_add);
22135
22136 /* For the benefit of old versions of GCC, check for anonymous
22137 namespaces based on the demangled name. */
22138 if (!cu->processing_has_namespace_info
22139 && cu->language == language_cplus)
22140 cp_scan_for_anonymous_namespaces (sym, objfile);
22141 }
22142 return (sym);
22143 }
22144
22145 /* Given an attr with a DW_FORM_dataN value in host byte order,
22146 zero-extend it as appropriate for the symbol's type. The DWARF
22147 standard (v4) is not entirely clear about the meaning of using
22148 DW_FORM_dataN for a constant with a signed type, where the type is
22149 wider than the data. The conclusion of a discussion on the DWARF
22150 list was that this is unspecified. We choose to always zero-extend
22151 because that is the interpretation long in use by GCC. */
22152
22153 static gdb_byte *
22154 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22155 struct dwarf2_cu *cu, LONGEST *value, int bits)
22156 {
22157 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22158 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22159 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22160 LONGEST l = DW_UNSND (attr);
22161
22162 if (bits < sizeof (*value) * 8)
22163 {
22164 l &= ((LONGEST) 1 << bits) - 1;
22165 *value = l;
22166 }
22167 else if (bits == sizeof (*value) * 8)
22168 *value = l;
22169 else
22170 {
22171 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22172 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22173 return bytes;
22174 }
22175
22176 return NULL;
22177 }
22178
22179 /* Read a constant value from an attribute. Either set *VALUE, or if
22180 the value does not fit in *VALUE, set *BYTES - either already
22181 allocated on the objfile obstack, or newly allocated on OBSTACK,
22182 or, set *BATON, if we translated the constant to a location
22183 expression. */
22184
22185 static void
22186 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22187 const char *name, struct obstack *obstack,
22188 struct dwarf2_cu *cu,
22189 LONGEST *value, const gdb_byte **bytes,
22190 struct dwarf2_locexpr_baton **baton)
22191 {
22192 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22193 struct comp_unit_head *cu_header = &cu->header;
22194 struct dwarf_block *blk;
22195 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22196 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22197
22198 *value = 0;
22199 *bytes = NULL;
22200 *baton = NULL;
22201
22202 switch (attr->form)
22203 {
22204 case DW_FORM_addr:
22205 case DW_FORM_GNU_addr_index:
22206 {
22207 gdb_byte *data;
22208
22209 if (TYPE_LENGTH (type) != cu_header->addr_size)
22210 dwarf2_const_value_length_mismatch_complaint (name,
22211 cu_header->addr_size,
22212 TYPE_LENGTH (type));
22213 /* Symbols of this form are reasonably rare, so we just
22214 piggyback on the existing location code rather than writing
22215 a new implementation of symbol_computed_ops. */
22216 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22217 (*baton)->per_cu = cu->per_cu;
22218 gdb_assert ((*baton)->per_cu);
22219
22220 (*baton)->size = 2 + cu_header->addr_size;
22221 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22222 (*baton)->data = data;
22223
22224 data[0] = DW_OP_addr;
22225 store_unsigned_integer (&data[1], cu_header->addr_size,
22226 byte_order, DW_ADDR (attr));
22227 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22228 }
22229 break;
22230 case DW_FORM_string:
22231 case DW_FORM_strp:
22232 case DW_FORM_GNU_str_index:
22233 case DW_FORM_GNU_strp_alt:
22234 /* DW_STRING is already allocated on the objfile obstack, point
22235 directly to it. */
22236 *bytes = (const gdb_byte *) DW_STRING (attr);
22237 break;
22238 case DW_FORM_block1:
22239 case DW_FORM_block2:
22240 case DW_FORM_block4:
22241 case DW_FORM_block:
22242 case DW_FORM_exprloc:
22243 case DW_FORM_data16:
22244 blk = DW_BLOCK (attr);
22245 if (TYPE_LENGTH (type) != blk->size)
22246 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22247 TYPE_LENGTH (type));
22248 *bytes = blk->data;
22249 break;
22250
22251 /* The DW_AT_const_value attributes are supposed to carry the
22252 symbol's value "represented as it would be on the target
22253 architecture." By the time we get here, it's already been
22254 converted to host endianness, so we just need to sign- or
22255 zero-extend it as appropriate. */
22256 case DW_FORM_data1:
22257 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22258 break;
22259 case DW_FORM_data2:
22260 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22261 break;
22262 case DW_FORM_data4:
22263 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22264 break;
22265 case DW_FORM_data8:
22266 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22267 break;
22268
22269 case DW_FORM_sdata:
22270 case DW_FORM_implicit_const:
22271 *value = DW_SND (attr);
22272 break;
22273
22274 case DW_FORM_udata:
22275 *value = DW_UNSND (attr);
22276 break;
22277
22278 default:
22279 complaint (&symfile_complaints,
22280 _("unsupported const value attribute form: '%s'"),
22281 dwarf_form_name (attr->form));
22282 *value = 0;
22283 break;
22284 }
22285 }
22286
22287
22288 /* Copy constant value from an attribute to a symbol. */
22289
22290 static void
22291 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22292 struct dwarf2_cu *cu)
22293 {
22294 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22295 LONGEST value;
22296 const gdb_byte *bytes;
22297 struct dwarf2_locexpr_baton *baton;
22298
22299 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22300 SYMBOL_PRINT_NAME (sym),
22301 &objfile->objfile_obstack, cu,
22302 &value, &bytes, &baton);
22303
22304 if (baton != NULL)
22305 {
22306 SYMBOL_LOCATION_BATON (sym) = baton;
22307 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22308 }
22309 else if (bytes != NULL)
22310 {
22311 SYMBOL_VALUE_BYTES (sym) = bytes;
22312 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22313 }
22314 else
22315 {
22316 SYMBOL_VALUE (sym) = value;
22317 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22318 }
22319 }
22320
22321 /* Return the type of the die in question using its DW_AT_type attribute. */
22322
22323 static struct type *
22324 die_type (struct die_info *die, struct dwarf2_cu *cu)
22325 {
22326 struct attribute *type_attr;
22327
22328 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22329 if (!type_attr)
22330 {
22331 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22332 /* A missing DW_AT_type represents a void type. */
22333 return objfile_type (objfile)->builtin_void;
22334 }
22335
22336 return lookup_die_type (die, type_attr, cu);
22337 }
22338
22339 /* True iff CU's producer generates GNAT Ada auxiliary information
22340 that allows to find parallel types through that information instead
22341 of having to do expensive parallel lookups by type name. */
22342
22343 static int
22344 need_gnat_info (struct dwarf2_cu *cu)
22345 {
22346 /* Assume that the Ada compiler was GNAT, which always produces
22347 the auxiliary information. */
22348 return (cu->language == language_ada);
22349 }
22350
22351 /* Return the auxiliary type of the die in question using its
22352 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22353 attribute is not present. */
22354
22355 static struct type *
22356 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22357 {
22358 struct attribute *type_attr;
22359
22360 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22361 if (!type_attr)
22362 return NULL;
22363
22364 return lookup_die_type (die, type_attr, cu);
22365 }
22366
22367 /* If DIE has a descriptive_type attribute, then set the TYPE's
22368 descriptive type accordingly. */
22369
22370 static void
22371 set_descriptive_type (struct type *type, struct die_info *die,
22372 struct dwarf2_cu *cu)
22373 {
22374 struct type *descriptive_type = die_descriptive_type (die, cu);
22375
22376 if (descriptive_type)
22377 {
22378 ALLOCATE_GNAT_AUX_TYPE (type);
22379 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22380 }
22381 }
22382
22383 /* Return the containing type of the die in question using its
22384 DW_AT_containing_type attribute. */
22385
22386 static struct type *
22387 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22388 {
22389 struct attribute *type_attr;
22390 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22391
22392 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22393 if (!type_attr)
22394 error (_("Dwarf Error: Problem turning containing type into gdb type "
22395 "[in module %s]"), objfile_name (objfile));
22396
22397 return lookup_die_type (die, type_attr, cu);
22398 }
22399
22400 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22401
22402 static struct type *
22403 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22404 {
22405 struct dwarf2_per_objfile *dwarf2_per_objfile
22406 = cu->per_cu->dwarf2_per_objfile;
22407 struct objfile *objfile = dwarf2_per_objfile->objfile;
22408 char *message, *saved;
22409
22410 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
22411 objfile_name (objfile),
22412 sect_offset_str (cu->header.sect_off),
22413 sect_offset_str (die->sect_off));
22414 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22415 message, strlen (message));
22416 xfree (message);
22417
22418 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22419 }
22420
22421 /* Look up the type of DIE in CU using its type attribute ATTR.
22422 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22423 DW_AT_containing_type.
22424 If there is no type substitute an error marker. */
22425
22426 static struct type *
22427 lookup_die_type (struct die_info *die, const struct attribute *attr,
22428 struct dwarf2_cu *cu)
22429 {
22430 struct dwarf2_per_objfile *dwarf2_per_objfile
22431 = cu->per_cu->dwarf2_per_objfile;
22432 struct objfile *objfile = dwarf2_per_objfile->objfile;
22433 struct type *this_type;
22434
22435 gdb_assert (attr->name == DW_AT_type
22436 || attr->name == DW_AT_GNAT_descriptive_type
22437 || attr->name == DW_AT_containing_type);
22438
22439 /* First see if we have it cached. */
22440
22441 if (attr->form == DW_FORM_GNU_ref_alt)
22442 {
22443 struct dwarf2_per_cu_data *per_cu;
22444 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22445
22446 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22447 dwarf2_per_objfile);
22448 this_type = get_die_type_at_offset (sect_off, per_cu);
22449 }
22450 else if (attr_form_is_ref (attr))
22451 {
22452 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22453
22454 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22455 }
22456 else if (attr->form == DW_FORM_ref_sig8)
22457 {
22458 ULONGEST signature = DW_SIGNATURE (attr);
22459
22460 return get_signatured_type (die, signature, cu);
22461 }
22462 else
22463 {
22464 complaint (&symfile_complaints,
22465 _("Dwarf Error: Bad type attribute %s in DIE"
22466 " at %s [in module %s]"),
22467 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22468 objfile_name (objfile));
22469 return build_error_marker_type (cu, die);
22470 }
22471
22472 /* If not cached we need to read it in. */
22473
22474 if (this_type == NULL)
22475 {
22476 struct die_info *type_die = NULL;
22477 struct dwarf2_cu *type_cu = cu;
22478
22479 if (attr_form_is_ref (attr))
22480 type_die = follow_die_ref (die, attr, &type_cu);
22481 if (type_die == NULL)
22482 return build_error_marker_type (cu, die);
22483 /* If we find the type now, it's probably because the type came
22484 from an inter-CU reference and the type's CU got expanded before
22485 ours. */
22486 this_type = read_type_die (type_die, type_cu);
22487 }
22488
22489 /* If we still don't have a type use an error marker. */
22490
22491 if (this_type == NULL)
22492 return build_error_marker_type (cu, die);
22493
22494 return this_type;
22495 }
22496
22497 /* Return the type in DIE, CU.
22498 Returns NULL for invalid types.
22499
22500 This first does a lookup in die_type_hash,
22501 and only reads the die in if necessary.
22502
22503 NOTE: This can be called when reading in partial or full symbols. */
22504
22505 static struct type *
22506 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22507 {
22508 struct type *this_type;
22509
22510 this_type = get_die_type (die, cu);
22511 if (this_type)
22512 return this_type;
22513
22514 return read_type_die_1 (die, cu);
22515 }
22516
22517 /* Read the type in DIE, CU.
22518 Returns NULL for invalid types. */
22519
22520 static struct type *
22521 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22522 {
22523 struct type *this_type = NULL;
22524
22525 switch (die->tag)
22526 {
22527 case DW_TAG_class_type:
22528 case DW_TAG_interface_type:
22529 case DW_TAG_structure_type:
22530 case DW_TAG_union_type:
22531 this_type = read_structure_type (die, cu);
22532 break;
22533 case DW_TAG_enumeration_type:
22534 this_type = read_enumeration_type (die, cu);
22535 break;
22536 case DW_TAG_subprogram:
22537 case DW_TAG_subroutine_type:
22538 case DW_TAG_inlined_subroutine:
22539 this_type = read_subroutine_type (die, cu);
22540 break;
22541 case DW_TAG_array_type:
22542 this_type = read_array_type (die, cu);
22543 break;
22544 case DW_TAG_set_type:
22545 this_type = read_set_type (die, cu);
22546 break;
22547 case DW_TAG_pointer_type:
22548 this_type = read_tag_pointer_type (die, cu);
22549 break;
22550 case DW_TAG_ptr_to_member_type:
22551 this_type = read_tag_ptr_to_member_type (die, cu);
22552 break;
22553 case DW_TAG_reference_type:
22554 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22555 break;
22556 case DW_TAG_rvalue_reference_type:
22557 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22558 break;
22559 case DW_TAG_const_type:
22560 this_type = read_tag_const_type (die, cu);
22561 break;
22562 case DW_TAG_volatile_type:
22563 this_type = read_tag_volatile_type (die, cu);
22564 break;
22565 case DW_TAG_restrict_type:
22566 this_type = read_tag_restrict_type (die, cu);
22567 break;
22568 case DW_TAG_string_type:
22569 this_type = read_tag_string_type (die, cu);
22570 break;
22571 case DW_TAG_typedef:
22572 this_type = read_typedef (die, cu);
22573 break;
22574 case DW_TAG_subrange_type:
22575 this_type = read_subrange_type (die, cu);
22576 break;
22577 case DW_TAG_base_type:
22578 this_type = read_base_type (die, cu);
22579 break;
22580 case DW_TAG_unspecified_type:
22581 this_type = read_unspecified_type (die, cu);
22582 break;
22583 case DW_TAG_namespace:
22584 this_type = read_namespace_type (die, cu);
22585 break;
22586 case DW_TAG_module:
22587 this_type = read_module_type (die, cu);
22588 break;
22589 case DW_TAG_atomic_type:
22590 this_type = read_tag_atomic_type (die, cu);
22591 break;
22592 default:
22593 complaint (&symfile_complaints,
22594 _("unexpected tag in read_type_die: '%s'"),
22595 dwarf_tag_name (die->tag));
22596 break;
22597 }
22598
22599 return this_type;
22600 }
22601
22602 /* See if we can figure out if the class lives in a namespace. We do
22603 this by looking for a member function; its demangled name will
22604 contain namespace info, if there is any.
22605 Return the computed name or NULL.
22606 Space for the result is allocated on the objfile's obstack.
22607 This is the full-die version of guess_partial_die_structure_name.
22608 In this case we know DIE has no useful parent. */
22609
22610 static char *
22611 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22612 {
22613 struct die_info *spec_die;
22614 struct dwarf2_cu *spec_cu;
22615 struct die_info *child;
22616 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22617
22618 spec_cu = cu;
22619 spec_die = die_specification (die, &spec_cu);
22620 if (spec_die != NULL)
22621 {
22622 die = spec_die;
22623 cu = spec_cu;
22624 }
22625
22626 for (child = die->child;
22627 child != NULL;
22628 child = child->sibling)
22629 {
22630 if (child->tag == DW_TAG_subprogram)
22631 {
22632 const char *linkage_name = dw2_linkage_name (child, cu);
22633
22634 if (linkage_name != NULL)
22635 {
22636 char *actual_name
22637 = language_class_name_from_physname (cu->language_defn,
22638 linkage_name);
22639 char *name = NULL;
22640
22641 if (actual_name != NULL)
22642 {
22643 const char *die_name = dwarf2_name (die, cu);
22644
22645 if (die_name != NULL
22646 && strcmp (die_name, actual_name) != 0)
22647 {
22648 /* Strip off the class name from the full name.
22649 We want the prefix. */
22650 int die_name_len = strlen (die_name);
22651 int actual_name_len = strlen (actual_name);
22652
22653 /* Test for '::' as a sanity check. */
22654 if (actual_name_len > die_name_len + 2
22655 && actual_name[actual_name_len
22656 - die_name_len - 1] == ':')
22657 name = (char *) obstack_copy0 (
22658 &objfile->per_bfd->storage_obstack,
22659 actual_name, actual_name_len - die_name_len - 2);
22660 }
22661 }
22662 xfree (actual_name);
22663 return name;
22664 }
22665 }
22666 }
22667
22668 return NULL;
22669 }
22670
22671 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22672 prefix part in such case. See
22673 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22674
22675 static const char *
22676 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22677 {
22678 struct attribute *attr;
22679 const char *base;
22680
22681 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22682 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22683 return NULL;
22684
22685 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22686 return NULL;
22687
22688 attr = dw2_linkage_name_attr (die, cu);
22689 if (attr == NULL || DW_STRING (attr) == NULL)
22690 return NULL;
22691
22692 /* dwarf2_name had to be already called. */
22693 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22694
22695 /* Strip the base name, keep any leading namespaces/classes. */
22696 base = strrchr (DW_STRING (attr), ':');
22697 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22698 return "";
22699
22700 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22701 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22702 DW_STRING (attr),
22703 &base[-1] - DW_STRING (attr));
22704 }
22705
22706 /* Return the name of the namespace/class that DIE is defined within,
22707 or "" if we can't tell. The caller should not xfree the result.
22708
22709 For example, if we're within the method foo() in the following
22710 code:
22711
22712 namespace N {
22713 class C {
22714 void foo () {
22715 }
22716 };
22717 }
22718
22719 then determine_prefix on foo's die will return "N::C". */
22720
22721 static const char *
22722 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22723 {
22724 struct dwarf2_per_objfile *dwarf2_per_objfile
22725 = cu->per_cu->dwarf2_per_objfile;
22726 struct die_info *parent, *spec_die;
22727 struct dwarf2_cu *spec_cu;
22728 struct type *parent_type;
22729 const char *retval;
22730
22731 if (cu->language != language_cplus
22732 && cu->language != language_fortran && cu->language != language_d
22733 && cu->language != language_rust)
22734 return "";
22735
22736 retval = anonymous_struct_prefix (die, cu);
22737 if (retval)
22738 return retval;
22739
22740 /* We have to be careful in the presence of DW_AT_specification.
22741 For example, with GCC 3.4, given the code
22742
22743 namespace N {
22744 void foo() {
22745 // Definition of N::foo.
22746 }
22747 }
22748
22749 then we'll have a tree of DIEs like this:
22750
22751 1: DW_TAG_compile_unit
22752 2: DW_TAG_namespace // N
22753 3: DW_TAG_subprogram // declaration of N::foo
22754 4: DW_TAG_subprogram // definition of N::foo
22755 DW_AT_specification // refers to die #3
22756
22757 Thus, when processing die #4, we have to pretend that we're in
22758 the context of its DW_AT_specification, namely the contex of die
22759 #3. */
22760 spec_cu = cu;
22761 spec_die = die_specification (die, &spec_cu);
22762 if (spec_die == NULL)
22763 parent = die->parent;
22764 else
22765 {
22766 parent = spec_die->parent;
22767 cu = spec_cu;
22768 }
22769
22770 if (parent == NULL)
22771 return "";
22772 else if (parent->building_fullname)
22773 {
22774 const char *name;
22775 const char *parent_name;
22776
22777 /* It has been seen on RealView 2.2 built binaries,
22778 DW_TAG_template_type_param types actually _defined_ as
22779 children of the parent class:
22780
22781 enum E {};
22782 template class <class Enum> Class{};
22783 Class<enum E> class_e;
22784
22785 1: DW_TAG_class_type (Class)
22786 2: DW_TAG_enumeration_type (E)
22787 3: DW_TAG_enumerator (enum1:0)
22788 3: DW_TAG_enumerator (enum2:1)
22789 ...
22790 2: DW_TAG_template_type_param
22791 DW_AT_type DW_FORM_ref_udata (E)
22792
22793 Besides being broken debug info, it can put GDB into an
22794 infinite loop. Consider:
22795
22796 When we're building the full name for Class<E>, we'll start
22797 at Class, and go look over its template type parameters,
22798 finding E. We'll then try to build the full name of E, and
22799 reach here. We're now trying to build the full name of E,
22800 and look over the parent DIE for containing scope. In the
22801 broken case, if we followed the parent DIE of E, we'd again
22802 find Class, and once again go look at its template type
22803 arguments, etc., etc. Simply don't consider such parent die
22804 as source-level parent of this die (it can't be, the language
22805 doesn't allow it), and break the loop here. */
22806 name = dwarf2_name (die, cu);
22807 parent_name = dwarf2_name (parent, cu);
22808 complaint (&symfile_complaints,
22809 _("template param type '%s' defined within parent '%s'"),
22810 name ? name : "<unknown>",
22811 parent_name ? parent_name : "<unknown>");
22812 return "";
22813 }
22814 else
22815 switch (parent->tag)
22816 {
22817 case DW_TAG_namespace:
22818 parent_type = read_type_die (parent, cu);
22819 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22820 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22821 Work around this problem here. */
22822 if (cu->language == language_cplus
22823 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22824 return "";
22825 /* We give a name to even anonymous namespaces. */
22826 return TYPE_TAG_NAME (parent_type);
22827 case DW_TAG_class_type:
22828 case DW_TAG_interface_type:
22829 case DW_TAG_structure_type:
22830 case DW_TAG_union_type:
22831 case DW_TAG_module:
22832 parent_type = read_type_die (parent, cu);
22833 if (TYPE_TAG_NAME (parent_type) != NULL)
22834 return TYPE_TAG_NAME (parent_type);
22835 else
22836 /* An anonymous structure is only allowed non-static data
22837 members; no typedefs, no member functions, et cetera.
22838 So it does not need a prefix. */
22839 return "";
22840 case DW_TAG_compile_unit:
22841 case DW_TAG_partial_unit:
22842 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22843 if (cu->language == language_cplus
22844 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22845 && die->child != NULL
22846 && (die->tag == DW_TAG_class_type
22847 || die->tag == DW_TAG_structure_type
22848 || die->tag == DW_TAG_union_type))
22849 {
22850 char *name = guess_full_die_structure_name (die, cu);
22851 if (name != NULL)
22852 return name;
22853 }
22854 return "";
22855 case DW_TAG_enumeration_type:
22856 parent_type = read_type_die (parent, cu);
22857 if (TYPE_DECLARED_CLASS (parent_type))
22858 {
22859 if (TYPE_TAG_NAME (parent_type) != NULL)
22860 return TYPE_TAG_NAME (parent_type);
22861 return "";
22862 }
22863 /* Fall through. */
22864 default:
22865 return determine_prefix (parent, cu);
22866 }
22867 }
22868
22869 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22870 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22871 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22872 an obconcat, otherwise allocate storage for the result. The CU argument is
22873 used to determine the language and hence, the appropriate separator. */
22874
22875 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22876
22877 static char *
22878 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22879 int physname, struct dwarf2_cu *cu)
22880 {
22881 const char *lead = "";
22882 const char *sep;
22883
22884 if (suffix == NULL || suffix[0] == '\0'
22885 || prefix == NULL || prefix[0] == '\0')
22886 sep = "";
22887 else if (cu->language == language_d)
22888 {
22889 /* For D, the 'main' function could be defined in any module, but it
22890 should never be prefixed. */
22891 if (strcmp (suffix, "D main") == 0)
22892 {
22893 prefix = "";
22894 sep = "";
22895 }
22896 else
22897 sep = ".";
22898 }
22899 else if (cu->language == language_fortran && physname)
22900 {
22901 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22902 DW_AT_MIPS_linkage_name is preferred and used instead. */
22903
22904 lead = "__";
22905 sep = "_MOD_";
22906 }
22907 else
22908 sep = "::";
22909
22910 if (prefix == NULL)
22911 prefix = "";
22912 if (suffix == NULL)
22913 suffix = "";
22914
22915 if (obs == NULL)
22916 {
22917 char *retval
22918 = ((char *)
22919 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22920
22921 strcpy (retval, lead);
22922 strcat (retval, prefix);
22923 strcat (retval, sep);
22924 strcat (retval, suffix);
22925 return retval;
22926 }
22927 else
22928 {
22929 /* We have an obstack. */
22930 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22931 }
22932 }
22933
22934 /* Return sibling of die, NULL if no sibling. */
22935
22936 static struct die_info *
22937 sibling_die (struct die_info *die)
22938 {
22939 return die->sibling;
22940 }
22941
22942 /* Get name of a die, return NULL if not found. */
22943
22944 static const char *
22945 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22946 struct obstack *obstack)
22947 {
22948 if (name && cu->language == language_cplus)
22949 {
22950 std::string canon_name = cp_canonicalize_string (name);
22951
22952 if (!canon_name.empty ())
22953 {
22954 if (canon_name != name)
22955 name = (const char *) obstack_copy0 (obstack,
22956 canon_name.c_str (),
22957 canon_name.length ());
22958 }
22959 }
22960
22961 return name;
22962 }
22963
22964 /* Get name of a die, return NULL if not found.
22965 Anonymous namespaces are converted to their magic string. */
22966
22967 static const char *
22968 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22969 {
22970 struct attribute *attr;
22971 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22972
22973 attr = dwarf2_attr (die, DW_AT_name, cu);
22974 if ((!attr || !DW_STRING (attr))
22975 && die->tag != DW_TAG_namespace
22976 && die->tag != DW_TAG_class_type
22977 && die->tag != DW_TAG_interface_type
22978 && die->tag != DW_TAG_structure_type
22979 && die->tag != DW_TAG_union_type)
22980 return NULL;
22981
22982 switch (die->tag)
22983 {
22984 case DW_TAG_compile_unit:
22985 case DW_TAG_partial_unit:
22986 /* Compilation units have a DW_AT_name that is a filename, not
22987 a source language identifier. */
22988 case DW_TAG_enumeration_type:
22989 case DW_TAG_enumerator:
22990 /* These tags always have simple identifiers already; no need
22991 to canonicalize them. */
22992 return DW_STRING (attr);
22993
22994 case DW_TAG_namespace:
22995 if (attr != NULL && DW_STRING (attr) != NULL)
22996 return DW_STRING (attr);
22997 return CP_ANONYMOUS_NAMESPACE_STR;
22998
22999 case DW_TAG_class_type:
23000 case DW_TAG_interface_type:
23001 case DW_TAG_structure_type:
23002 case DW_TAG_union_type:
23003 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
23004 structures or unions. These were of the form "._%d" in GCC 4.1,
23005 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
23006 and GCC 4.4. We work around this problem by ignoring these. */
23007 if (attr && DW_STRING (attr)
23008 && (startswith (DW_STRING (attr), "._")
23009 || startswith (DW_STRING (attr), "<anonymous")))
23010 return NULL;
23011
23012 /* GCC might emit a nameless typedef that has a linkage name. See
23013 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
23014 if (!attr || DW_STRING (attr) == NULL)
23015 {
23016 char *demangled = NULL;
23017
23018 attr = dw2_linkage_name_attr (die, cu);
23019 if (attr == NULL || DW_STRING (attr) == NULL)
23020 return NULL;
23021
23022 /* Avoid demangling DW_STRING (attr) the second time on a second
23023 call for the same DIE. */
23024 if (!DW_STRING_IS_CANONICAL (attr))
23025 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
23026
23027 if (demangled)
23028 {
23029 const char *base;
23030
23031 /* FIXME: we already did this for the partial symbol... */
23032 DW_STRING (attr)
23033 = ((const char *)
23034 obstack_copy0 (&objfile->per_bfd->storage_obstack,
23035 demangled, strlen (demangled)));
23036 DW_STRING_IS_CANONICAL (attr) = 1;
23037 xfree (demangled);
23038
23039 /* Strip any leading namespaces/classes, keep only the base name.
23040 DW_AT_name for named DIEs does not contain the prefixes. */
23041 base = strrchr (DW_STRING (attr), ':');
23042 if (base && base > DW_STRING (attr) && base[-1] == ':')
23043 return &base[1];
23044 else
23045 return DW_STRING (attr);
23046 }
23047 }
23048 break;
23049
23050 default:
23051 break;
23052 }
23053
23054 if (!DW_STRING_IS_CANONICAL (attr))
23055 {
23056 DW_STRING (attr)
23057 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
23058 &objfile->per_bfd->storage_obstack);
23059 DW_STRING_IS_CANONICAL (attr) = 1;
23060 }
23061 return DW_STRING (attr);
23062 }
23063
23064 /* Return the die that this die in an extension of, or NULL if there
23065 is none. *EXT_CU is the CU containing DIE on input, and the CU
23066 containing the return value on output. */
23067
23068 static struct die_info *
23069 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
23070 {
23071 struct attribute *attr;
23072
23073 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
23074 if (attr == NULL)
23075 return NULL;
23076
23077 return follow_die_ref (die, attr, ext_cu);
23078 }
23079
23080 /* Convert a DIE tag into its string name. */
23081
23082 static const char *
23083 dwarf_tag_name (unsigned tag)
23084 {
23085 const char *name = get_DW_TAG_name (tag);
23086
23087 if (name == NULL)
23088 return "DW_TAG_<unknown>";
23089
23090 return name;
23091 }
23092
23093 /* Convert a DWARF attribute code into its string name. */
23094
23095 static const char *
23096 dwarf_attr_name (unsigned attr)
23097 {
23098 const char *name;
23099
23100 #ifdef MIPS /* collides with DW_AT_HP_block_index */
23101 if (attr == DW_AT_MIPS_fde)
23102 return "DW_AT_MIPS_fde";
23103 #else
23104 if (attr == DW_AT_HP_block_index)
23105 return "DW_AT_HP_block_index";
23106 #endif
23107
23108 name = get_DW_AT_name (attr);
23109
23110 if (name == NULL)
23111 return "DW_AT_<unknown>";
23112
23113 return name;
23114 }
23115
23116 /* Convert a DWARF value form code into its string name. */
23117
23118 static const char *
23119 dwarf_form_name (unsigned form)
23120 {
23121 const char *name = get_DW_FORM_name (form);
23122
23123 if (name == NULL)
23124 return "DW_FORM_<unknown>";
23125
23126 return name;
23127 }
23128
23129 static const char *
23130 dwarf_bool_name (unsigned mybool)
23131 {
23132 if (mybool)
23133 return "TRUE";
23134 else
23135 return "FALSE";
23136 }
23137
23138 /* Convert a DWARF type code into its string name. */
23139
23140 static const char *
23141 dwarf_type_encoding_name (unsigned enc)
23142 {
23143 const char *name = get_DW_ATE_name (enc);
23144
23145 if (name == NULL)
23146 return "DW_ATE_<unknown>";
23147
23148 return name;
23149 }
23150
23151 static void
23152 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23153 {
23154 unsigned int i;
23155
23156 print_spaces (indent, f);
23157 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23158 dwarf_tag_name (die->tag), die->abbrev,
23159 sect_offset_str (die->sect_off));
23160
23161 if (die->parent != NULL)
23162 {
23163 print_spaces (indent, f);
23164 fprintf_unfiltered (f, " parent at offset: %s\n",
23165 sect_offset_str (die->parent->sect_off));
23166 }
23167
23168 print_spaces (indent, f);
23169 fprintf_unfiltered (f, " has children: %s\n",
23170 dwarf_bool_name (die->child != NULL));
23171
23172 print_spaces (indent, f);
23173 fprintf_unfiltered (f, " attributes:\n");
23174
23175 for (i = 0; i < die->num_attrs; ++i)
23176 {
23177 print_spaces (indent, f);
23178 fprintf_unfiltered (f, " %s (%s) ",
23179 dwarf_attr_name (die->attrs[i].name),
23180 dwarf_form_name (die->attrs[i].form));
23181
23182 switch (die->attrs[i].form)
23183 {
23184 case DW_FORM_addr:
23185 case DW_FORM_GNU_addr_index:
23186 fprintf_unfiltered (f, "address: ");
23187 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23188 break;
23189 case DW_FORM_block2:
23190 case DW_FORM_block4:
23191 case DW_FORM_block:
23192 case DW_FORM_block1:
23193 fprintf_unfiltered (f, "block: size %s",
23194 pulongest (DW_BLOCK (&die->attrs[i])->size));
23195 break;
23196 case DW_FORM_exprloc:
23197 fprintf_unfiltered (f, "expression: size %s",
23198 pulongest (DW_BLOCK (&die->attrs[i])->size));
23199 break;
23200 case DW_FORM_data16:
23201 fprintf_unfiltered (f, "constant of 16 bytes");
23202 break;
23203 case DW_FORM_ref_addr:
23204 fprintf_unfiltered (f, "ref address: ");
23205 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23206 break;
23207 case DW_FORM_GNU_ref_alt:
23208 fprintf_unfiltered (f, "alt ref address: ");
23209 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23210 break;
23211 case DW_FORM_ref1:
23212 case DW_FORM_ref2:
23213 case DW_FORM_ref4:
23214 case DW_FORM_ref8:
23215 case DW_FORM_ref_udata:
23216 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23217 (long) (DW_UNSND (&die->attrs[i])));
23218 break;
23219 case DW_FORM_data1:
23220 case DW_FORM_data2:
23221 case DW_FORM_data4:
23222 case DW_FORM_data8:
23223 case DW_FORM_udata:
23224 case DW_FORM_sdata:
23225 fprintf_unfiltered (f, "constant: %s",
23226 pulongest (DW_UNSND (&die->attrs[i])));
23227 break;
23228 case DW_FORM_sec_offset:
23229 fprintf_unfiltered (f, "section offset: %s",
23230 pulongest (DW_UNSND (&die->attrs[i])));
23231 break;
23232 case DW_FORM_ref_sig8:
23233 fprintf_unfiltered (f, "signature: %s",
23234 hex_string (DW_SIGNATURE (&die->attrs[i])));
23235 break;
23236 case DW_FORM_string:
23237 case DW_FORM_strp:
23238 case DW_FORM_line_strp:
23239 case DW_FORM_GNU_str_index:
23240 case DW_FORM_GNU_strp_alt:
23241 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23242 DW_STRING (&die->attrs[i])
23243 ? DW_STRING (&die->attrs[i]) : "",
23244 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23245 break;
23246 case DW_FORM_flag:
23247 if (DW_UNSND (&die->attrs[i]))
23248 fprintf_unfiltered (f, "flag: TRUE");
23249 else
23250 fprintf_unfiltered (f, "flag: FALSE");
23251 break;
23252 case DW_FORM_flag_present:
23253 fprintf_unfiltered (f, "flag: TRUE");
23254 break;
23255 case DW_FORM_indirect:
23256 /* The reader will have reduced the indirect form to
23257 the "base form" so this form should not occur. */
23258 fprintf_unfiltered (f,
23259 "unexpected attribute form: DW_FORM_indirect");
23260 break;
23261 case DW_FORM_implicit_const:
23262 fprintf_unfiltered (f, "constant: %s",
23263 plongest (DW_SND (&die->attrs[i])));
23264 break;
23265 default:
23266 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23267 die->attrs[i].form);
23268 break;
23269 }
23270 fprintf_unfiltered (f, "\n");
23271 }
23272 }
23273
23274 static void
23275 dump_die_for_error (struct die_info *die)
23276 {
23277 dump_die_shallow (gdb_stderr, 0, die);
23278 }
23279
23280 static void
23281 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23282 {
23283 int indent = level * 4;
23284
23285 gdb_assert (die != NULL);
23286
23287 if (level >= max_level)
23288 return;
23289
23290 dump_die_shallow (f, indent, die);
23291
23292 if (die->child != NULL)
23293 {
23294 print_spaces (indent, f);
23295 fprintf_unfiltered (f, " Children:");
23296 if (level + 1 < max_level)
23297 {
23298 fprintf_unfiltered (f, "\n");
23299 dump_die_1 (f, level + 1, max_level, die->child);
23300 }
23301 else
23302 {
23303 fprintf_unfiltered (f,
23304 " [not printed, max nesting level reached]\n");
23305 }
23306 }
23307
23308 if (die->sibling != NULL && level > 0)
23309 {
23310 dump_die_1 (f, level, max_level, die->sibling);
23311 }
23312 }
23313
23314 /* This is called from the pdie macro in gdbinit.in.
23315 It's not static so gcc will keep a copy callable from gdb. */
23316
23317 void
23318 dump_die (struct die_info *die, int max_level)
23319 {
23320 dump_die_1 (gdb_stdlog, 0, max_level, die);
23321 }
23322
23323 static void
23324 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23325 {
23326 void **slot;
23327
23328 slot = htab_find_slot_with_hash (cu->die_hash, die,
23329 to_underlying (die->sect_off),
23330 INSERT);
23331
23332 *slot = die;
23333 }
23334
23335 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23336 required kind. */
23337
23338 static sect_offset
23339 dwarf2_get_ref_die_offset (const struct attribute *attr)
23340 {
23341 if (attr_form_is_ref (attr))
23342 return (sect_offset) DW_UNSND (attr);
23343
23344 complaint (&symfile_complaints,
23345 _("unsupported die ref attribute form: '%s'"),
23346 dwarf_form_name (attr->form));
23347 return {};
23348 }
23349
23350 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23351 * the value held by the attribute is not constant. */
23352
23353 static LONGEST
23354 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23355 {
23356 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23357 return DW_SND (attr);
23358 else if (attr->form == DW_FORM_udata
23359 || attr->form == DW_FORM_data1
23360 || attr->form == DW_FORM_data2
23361 || attr->form == DW_FORM_data4
23362 || attr->form == DW_FORM_data8)
23363 return DW_UNSND (attr);
23364 else
23365 {
23366 /* For DW_FORM_data16 see attr_form_is_constant. */
23367 complaint (&symfile_complaints,
23368 _("Attribute value is not a constant (%s)"),
23369 dwarf_form_name (attr->form));
23370 return default_value;
23371 }
23372 }
23373
23374 /* Follow reference or signature attribute ATTR of SRC_DIE.
23375 On entry *REF_CU is the CU of SRC_DIE.
23376 On exit *REF_CU is the CU of the result. */
23377
23378 static struct die_info *
23379 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23380 struct dwarf2_cu **ref_cu)
23381 {
23382 struct die_info *die;
23383
23384 if (attr_form_is_ref (attr))
23385 die = follow_die_ref (src_die, attr, ref_cu);
23386 else if (attr->form == DW_FORM_ref_sig8)
23387 die = follow_die_sig (src_die, attr, ref_cu);
23388 else
23389 {
23390 dump_die_for_error (src_die);
23391 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23392 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23393 }
23394
23395 return die;
23396 }
23397
23398 /* Follow reference OFFSET.
23399 On entry *REF_CU is the CU of the source die referencing OFFSET.
23400 On exit *REF_CU is the CU of the result.
23401 Returns NULL if OFFSET is invalid. */
23402
23403 static struct die_info *
23404 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23405 struct dwarf2_cu **ref_cu)
23406 {
23407 struct die_info temp_die;
23408 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23409 struct dwarf2_per_objfile *dwarf2_per_objfile
23410 = cu->per_cu->dwarf2_per_objfile;
23411 struct objfile *objfile = dwarf2_per_objfile->objfile;
23412
23413 gdb_assert (cu->per_cu != NULL);
23414
23415 target_cu = cu;
23416
23417 if (cu->per_cu->is_debug_types)
23418 {
23419 /* .debug_types CUs cannot reference anything outside their CU.
23420 If they need to, they have to reference a signatured type via
23421 DW_FORM_ref_sig8. */
23422 if (!offset_in_cu_p (&cu->header, sect_off))
23423 return NULL;
23424 }
23425 else if (offset_in_dwz != cu->per_cu->is_dwz
23426 || !offset_in_cu_p (&cu->header, sect_off))
23427 {
23428 struct dwarf2_per_cu_data *per_cu;
23429
23430 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23431 dwarf2_per_objfile);
23432
23433 /* If necessary, add it to the queue and load its DIEs. */
23434 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23435 load_full_comp_unit (per_cu, cu->language);
23436
23437 target_cu = per_cu->cu;
23438 }
23439 else if (cu->dies == NULL)
23440 {
23441 /* We're loading full DIEs during partial symbol reading. */
23442 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23443 load_full_comp_unit (cu->per_cu, language_minimal);
23444 }
23445
23446 *ref_cu = target_cu;
23447 temp_die.sect_off = sect_off;
23448 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23449 &temp_die,
23450 to_underlying (sect_off));
23451 }
23452
23453 /* Follow reference attribute ATTR of SRC_DIE.
23454 On entry *REF_CU is the CU of SRC_DIE.
23455 On exit *REF_CU is the CU of the result. */
23456
23457 static struct die_info *
23458 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23459 struct dwarf2_cu **ref_cu)
23460 {
23461 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23462 struct dwarf2_cu *cu = *ref_cu;
23463 struct die_info *die;
23464
23465 die = follow_die_offset (sect_off,
23466 (attr->form == DW_FORM_GNU_ref_alt
23467 || cu->per_cu->is_dwz),
23468 ref_cu);
23469 if (!die)
23470 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23471 "at %s [in module %s]"),
23472 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23473 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23474
23475 return die;
23476 }
23477
23478 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23479 Returned value is intended for DW_OP_call*. Returned
23480 dwarf2_locexpr_baton->data has lifetime of
23481 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23482
23483 struct dwarf2_locexpr_baton
23484 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23485 struct dwarf2_per_cu_data *per_cu,
23486 CORE_ADDR (*get_frame_pc) (void *baton),
23487 void *baton)
23488 {
23489 struct dwarf2_cu *cu;
23490 struct die_info *die;
23491 struct attribute *attr;
23492 struct dwarf2_locexpr_baton retval;
23493 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23494 struct dwarf2_per_objfile *dwarf2_per_objfile
23495 = get_dwarf2_per_objfile (objfile);
23496
23497 if (per_cu->cu == NULL)
23498 load_cu (per_cu);
23499 cu = per_cu->cu;
23500 if (cu == NULL)
23501 {
23502 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23503 Instead just throw an error, not much else we can do. */
23504 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23505 sect_offset_str (sect_off), objfile_name (objfile));
23506 }
23507
23508 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23509 if (!die)
23510 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23511 sect_offset_str (sect_off), objfile_name (objfile));
23512
23513 attr = dwarf2_attr (die, DW_AT_location, cu);
23514 if (!attr)
23515 {
23516 /* DWARF: "If there is no such attribute, then there is no effect.".
23517 DATA is ignored if SIZE is 0. */
23518
23519 retval.data = NULL;
23520 retval.size = 0;
23521 }
23522 else if (attr_form_is_section_offset (attr))
23523 {
23524 struct dwarf2_loclist_baton loclist_baton;
23525 CORE_ADDR pc = (*get_frame_pc) (baton);
23526 size_t size;
23527
23528 fill_in_loclist_baton (cu, &loclist_baton, attr);
23529
23530 retval.data = dwarf2_find_location_expression (&loclist_baton,
23531 &size, pc);
23532 retval.size = size;
23533 }
23534 else
23535 {
23536 if (!attr_form_is_block (attr))
23537 error (_("Dwarf Error: DIE at %s referenced in module %s "
23538 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23539 sect_offset_str (sect_off), objfile_name (objfile));
23540
23541 retval.data = DW_BLOCK (attr)->data;
23542 retval.size = DW_BLOCK (attr)->size;
23543 }
23544 retval.per_cu = cu->per_cu;
23545
23546 age_cached_comp_units (dwarf2_per_objfile);
23547
23548 return retval;
23549 }
23550
23551 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23552 offset. */
23553
23554 struct dwarf2_locexpr_baton
23555 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23556 struct dwarf2_per_cu_data *per_cu,
23557 CORE_ADDR (*get_frame_pc) (void *baton),
23558 void *baton)
23559 {
23560 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23561
23562 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23563 }
23564
23565 /* Write a constant of a given type as target-ordered bytes into
23566 OBSTACK. */
23567
23568 static const gdb_byte *
23569 write_constant_as_bytes (struct obstack *obstack,
23570 enum bfd_endian byte_order,
23571 struct type *type,
23572 ULONGEST value,
23573 LONGEST *len)
23574 {
23575 gdb_byte *result;
23576
23577 *len = TYPE_LENGTH (type);
23578 result = (gdb_byte *) obstack_alloc (obstack, *len);
23579 store_unsigned_integer (result, *len, byte_order, value);
23580
23581 return result;
23582 }
23583
23584 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23585 pointer to the constant bytes and set LEN to the length of the
23586 data. If memory is needed, allocate it on OBSTACK. If the DIE
23587 does not have a DW_AT_const_value, return NULL. */
23588
23589 const gdb_byte *
23590 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23591 struct dwarf2_per_cu_data *per_cu,
23592 struct obstack *obstack,
23593 LONGEST *len)
23594 {
23595 struct dwarf2_cu *cu;
23596 struct die_info *die;
23597 struct attribute *attr;
23598 const gdb_byte *result = NULL;
23599 struct type *type;
23600 LONGEST value;
23601 enum bfd_endian byte_order;
23602 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23603
23604 if (per_cu->cu == NULL)
23605 load_cu (per_cu);
23606 cu = per_cu->cu;
23607 if (cu == NULL)
23608 {
23609 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23610 Instead just throw an error, not much else we can do. */
23611 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23612 sect_offset_str (sect_off), objfile_name (objfile));
23613 }
23614
23615 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23616 if (!die)
23617 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23618 sect_offset_str (sect_off), objfile_name (objfile));
23619
23620 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23621 if (attr == NULL)
23622 return NULL;
23623
23624 byte_order = (bfd_big_endian (objfile->obfd)
23625 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23626
23627 switch (attr->form)
23628 {
23629 case DW_FORM_addr:
23630 case DW_FORM_GNU_addr_index:
23631 {
23632 gdb_byte *tem;
23633
23634 *len = cu->header.addr_size;
23635 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23636 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23637 result = tem;
23638 }
23639 break;
23640 case DW_FORM_string:
23641 case DW_FORM_strp:
23642 case DW_FORM_GNU_str_index:
23643 case DW_FORM_GNU_strp_alt:
23644 /* DW_STRING is already allocated on the objfile obstack, point
23645 directly to it. */
23646 result = (const gdb_byte *) DW_STRING (attr);
23647 *len = strlen (DW_STRING (attr));
23648 break;
23649 case DW_FORM_block1:
23650 case DW_FORM_block2:
23651 case DW_FORM_block4:
23652 case DW_FORM_block:
23653 case DW_FORM_exprloc:
23654 case DW_FORM_data16:
23655 result = DW_BLOCK (attr)->data;
23656 *len = DW_BLOCK (attr)->size;
23657 break;
23658
23659 /* The DW_AT_const_value attributes are supposed to carry the
23660 symbol's value "represented as it would be on the target
23661 architecture." By the time we get here, it's already been
23662 converted to host endianness, so we just need to sign- or
23663 zero-extend it as appropriate. */
23664 case DW_FORM_data1:
23665 type = die_type (die, cu);
23666 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23667 if (result == NULL)
23668 result = write_constant_as_bytes (obstack, byte_order,
23669 type, value, len);
23670 break;
23671 case DW_FORM_data2:
23672 type = die_type (die, cu);
23673 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23674 if (result == NULL)
23675 result = write_constant_as_bytes (obstack, byte_order,
23676 type, value, len);
23677 break;
23678 case DW_FORM_data4:
23679 type = die_type (die, cu);
23680 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23681 if (result == NULL)
23682 result = write_constant_as_bytes (obstack, byte_order,
23683 type, value, len);
23684 break;
23685 case DW_FORM_data8:
23686 type = die_type (die, cu);
23687 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23688 if (result == NULL)
23689 result = write_constant_as_bytes (obstack, byte_order,
23690 type, value, len);
23691 break;
23692
23693 case DW_FORM_sdata:
23694 case DW_FORM_implicit_const:
23695 type = die_type (die, cu);
23696 result = write_constant_as_bytes (obstack, byte_order,
23697 type, DW_SND (attr), len);
23698 break;
23699
23700 case DW_FORM_udata:
23701 type = die_type (die, cu);
23702 result = write_constant_as_bytes (obstack, byte_order,
23703 type, DW_UNSND (attr), len);
23704 break;
23705
23706 default:
23707 complaint (&symfile_complaints,
23708 _("unsupported const value attribute form: '%s'"),
23709 dwarf_form_name (attr->form));
23710 break;
23711 }
23712
23713 return result;
23714 }
23715
23716 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23717 valid type for this die is found. */
23718
23719 struct type *
23720 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23721 struct dwarf2_per_cu_data *per_cu)
23722 {
23723 struct dwarf2_cu *cu;
23724 struct die_info *die;
23725
23726 if (per_cu->cu == NULL)
23727 load_cu (per_cu);
23728 cu = per_cu->cu;
23729 if (!cu)
23730 return NULL;
23731
23732 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23733 if (!die)
23734 return NULL;
23735
23736 return die_type (die, cu);
23737 }
23738
23739 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23740 PER_CU. */
23741
23742 struct type *
23743 dwarf2_get_die_type (cu_offset die_offset,
23744 struct dwarf2_per_cu_data *per_cu)
23745 {
23746 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23747 return get_die_type_at_offset (die_offset_sect, per_cu);
23748 }
23749
23750 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23751 On entry *REF_CU is the CU of SRC_DIE.
23752 On exit *REF_CU is the CU of the result.
23753 Returns NULL if the referenced DIE isn't found. */
23754
23755 static struct die_info *
23756 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23757 struct dwarf2_cu **ref_cu)
23758 {
23759 struct die_info temp_die;
23760 struct dwarf2_cu *sig_cu;
23761 struct die_info *die;
23762
23763 /* While it might be nice to assert sig_type->type == NULL here,
23764 we can get here for DW_AT_imported_declaration where we need
23765 the DIE not the type. */
23766
23767 /* If necessary, add it to the queue and load its DIEs. */
23768
23769 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23770 read_signatured_type (sig_type);
23771
23772 sig_cu = sig_type->per_cu.cu;
23773 gdb_assert (sig_cu != NULL);
23774 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23775 temp_die.sect_off = sig_type->type_offset_in_section;
23776 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23777 to_underlying (temp_die.sect_off));
23778 if (die)
23779 {
23780 struct dwarf2_per_objfile *dwarf2_per_objfile
23781 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23782
23783 /* For .gdb_index version 7 keep track of included TUs.
23784 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23785 if (dwarf2_per_objfile->index_table != NULL
23786 && dwarf2_per_objfile->index_table->version <= 7)
23787 {
23788 VEC_safe_push (dwarf2_per_cu_ptr,
23789 (*ref_cu)->per_cu->imported_symtabs,
23790 sig_cu->per_cu);
23791 }
23792
23793 *ref_cu = sig_cu;
23794 return die;
23795 }
23796
23797 return NULL;
23798 }
23799
23800 /* Follow signatured type referenced by ATTR in SRC_DIE.
23801 On entry *REF_CU is the CU of SRC_DIE.
23802 On exit *REF_CU is the CU of the result.
23803 The result is the DIE of the type.
23804 If the referenced type cannot be found an error is thrown. */
23805
23806 static struct die_info *
23807 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23808 struct dwarf2_cu **ref_cu)
23809 {
23810 ULONGEST signature = DW_SIGNATURE (attr);
23811 struct signatured_type *sig_type;
23812 struct die_info *die;
23813
23814 gdb_assert (attr->form == DW_FORM_ref_sig8);
23815
23816 sig_type = lookup_signatured_type (*ref_cu, signature);
23817 /* sig_type will be NULL if the signatured type is missing from
23818 the debug info. */
23819 if (sig_type == NULL)
23820 {
23821 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23822 " from DIE at %s [in module %s]"),
23823 hex_string (signature), sect_offset_str (src_die->sect_off),
23824 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23825 }
23826
23827 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23828 if (die == NULL)
23829 {
23830 dump_die_for_error (src_die);
23831 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23832 " from DIE at %s [in module %s]"),
23833 hex_string (signature), sect_offset_str (src_die->sect_off),
23834 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23835 }
23836
23837 return die;
23838 }
23839
23840 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23841 reading in and processing the type unit if necessary. */
23842
23843 static struct type *
23844 get_signatured_type (struct die_info *die, ULONGEST signature,
23845 struct dwarf2_cu *cu)
23846 {
23847 struct dwarf2_per_objfile *dwarf2_per_objfile
23848 = cu->per_cu->dwarf2_per_objfile;
23849 struct signatured_type *sig_type;
23850 struct dwarf2_cu *type_cu;
23851 struct die_info *type_die;
23852 struct type *type;
23853
23854 sig_type = lookup_signatured_type (cu, signature);
23855 /* sig_type will be NULL if the signatured type is missing from
23856 the debug info. */
23857 if (sig_type == NULL)
23858 {
23859 complaint (&symfile_complaints,
23860 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23861 " from DIE at %s [in module %s]"),
23862 hex_string (signature), sect_offset_str (die->sect_off),
23863 objfile_name (dwarf2_per_objfile->objfile));
23864 return build_error_marker_type (cu, die);
23865 }
23866
23867 /* If we already know the type we're done. */
23868 if (sig_type->type != NULL)
23869 return sig_type->type;
23870
23871 type_cu = cu;
23872 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23873 if (type_die != NULL)
23874 {
23875 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23876 is created. This is important, for example, because for c++ classes
23877 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23878 type = read_type_die (type_die, type_cu);
23879 if (type == NULL)
23880 {
23881 complaint (&symfile_complaints,
23882 _("Dwarf Error: Cannot build signatured type %s"
23883 " referenced from DIE at %s [in module %s]"),
23884 hex_string (signature), sect_offset_str (die->sect_off),
23885 objfile_name (dwarf2_per_objfile->objfile));
23886 type = build_error_marker_type (cu, die);
23887 }
23888 }
23889 else
23890 {
23891 complaint (&symfile_complaints,
23892 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23893 " from DIE at %s [in module %s]"),
23894 hex_string (signature), sect_offset_str (die->sect_off),
23895 objfile_name (dwarf2_per_objfile->objfile));
23896 type = build_error_marker_type (cu, die);
23897 }
23898 sig_type->type = type;
23899
23900 return type;
23901 }
23902
23903 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23904 reading in and processing the type unit if necessary. */
23905
23906 static struct type *
23907 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23908 struct dwarf2_cu *cu) /* ARI: editCase function */
23909 {
23910 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23911 if (attr_form_is_ref (attr))
23912 {
23913 struct dwarf2_cu *type_cu = cu;
23914 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23915
23916 return read_type_die (type_die, type_cu);
23917 }
23918 else if (attr->form == DW_FORM_ref_sig8)
23919 {
23920 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23921 }
23922 else
23923 {
23924 struct dwarf2_per_objfile *dwarf2_per_objfile
23925 = cu->per_cu->dwarf2_per_objfile;
23926
23927 complaint (&symfile_complaints,
23928 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23929 " at %s [in module %s]"),
23930 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23931 objfile_name (dwarf2_per_objfile->objfile));
23932 return build_error_marker_type (cu, die);
23933 }
23934 }
23935
23936 /* Load the DIEs associated with type unit PER_CU into memory. */
23937
23938 static void
23939 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23940 {
23941 struct signatured_type *sig_type;
23942
23943 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23944 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23945
23946 /* We have the per_cu, but we need the signatured_type.
23947 Fortunately this is an easy translation. */
23948 gdb_assert (per_cu->is_debug_types);
23949 sig_type = (struct signatured_type *) per_cu;
23950
23951 gdb_assert (per_cu->cu == NULL);
23952
23953 read_signatured_type (sig_type);
23954
23955 gdb_assert (per_cu->cu != NULL);
23956 }
23957
23958 /* die_reader_func for read_signatured_type.
23959 This is identical to load_full_comp_unit_reader,
23960 but is kept separate for now. */
23961
23962 static void
23963 read_signatured_type_reader (const struct die_reader_specs *reader,
23964 const gdb_byte *info_ptr,
23965 struct die_info *comp_unit_die,
23966 int has_children,
23967 void *data)
23968 {
23969 struct dwarf2_cu *cu = reader->cu;
23970
23971 gdb_assert (cu->die_hash == NULL);
23972 cu->die_hash =
23973 htab_create_alloc_ex (cu->header.length / 12,
23974 die_hash,
23975 die_eq,
23976 NULL,
23977 &cu->comp_unit_obstack,
23978 hashtab_obstack_allocate,
23979 dummy_obstack_deallocate);
23980
23981 if (has_children)
23982 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23983 &info_ptr, comp_unit_die);
23984 cu->dies = comp_unit_die;
23985 /* comp_unit_die is not stored in die_hash, no need. */
23986
23987 /* We try not to read any attributes in this function, because not
23988 all CUs needed for references have been loaded yet, and symbol
23989 table processing isn't initialized. But we have to set the CU language,
23990 or we won't be able to build types correctly.
23991 Similarly, if we do not read the producer, we can not apply
23992 producer-specific interpretation. */
23993 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23994 }
23995
23996 /* Read in a signatured type and build its CU and DIEs.
23997 If the type is a stub for the real type in a DWO file,
23998 read in the real type from the DWO file as well. */
23999
24000 static void
24001 read_signatured_type (struct signatured_type *sig_type)
24002 {
24003 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
24004
24005 gdb_assert (per_cu->is_debug_types);
24006 gdb_assert (per_cu->cu == NULL);
24007
24008 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
24009 read_signatured_type_reader, NULL);
24010 sig_type->per_cu.tu_read = 1;
24011 }
24012
24013 /* Decode simple location descriptions.
24014 Given a pointer to a dwarf block that defines a location, compute
24015 the location and return the value.
24016
24017 NOTE drow/2003-11-18: This function is called in two situations
24018 now: for the address of static or global variables (partial symbols
24019 only) and for offsets into structures which are expected to be
24020 (more or less) constant. The partial symbol case should go away,
24021 and only the constant case should remain. That will let this
24022 function complain more accurately. A few special modes are allowed
24023 without complaint for global variables (for instance, global
24024 register values and thread-local values).
24025
24026 A location description containing no operations indicates that the
24027 object is optimized out. The return value is 0 for that case.
24028 FIXME drow/2003-11-16: No callers check for this case any more; soon all
24029 callers will only want a very basic result and this can become a
24030 complaint.
24031
24032 Note that stack[0] is unused except as a default error return. */
24033
24034 static CORE_ADDR
24035 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
24036 {
24037 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
24038 size_t i;
24039 size_t size = blk->size;
24040 const gdb_byte *data = blk->data;
24041 CORE_ADDR stack[64];
24042 int stacki;
24043 unsigned int bytes_read, unsnd;
24044 gdb_byte op;
24045
24046 i = 0;
24047 stacki = 0;
24048 stack[stacki] = 0;
24049 stack[++stacki] = 0;
24050
24051 while (i < size)
24052 {
24053 op = data[i++];
24054 switch (op)
24055 {
24056 case DW_OP_lit0:
24057 case DW_OP_lit1:
24058 case DW_OP_lit2:
24059 case DW_OP_lit3:
24060 case DW_OP_lit4:
24061 case DW_OP_lit5:
24062 case DW_OP_lit6:
24063 case DW_OP_lit7:
24064 case DW_OP_lit8:
24065 case DW_OP_lit9:
24066 case DW_OP_lit10:
24067 case DW_OP_lit11:
24068 case DW_OP_lit12:
24069 case DW_OP_lit13:
24070 case DW_OP_lit14:
24071 case DW_OP_lit15:
24072 case DW_OP_lit16:
24073 case DW_OP_lit17:
24074 case DW_OP_lit18:
24075 case DW_OP_lit19:
24076 case DW_OP_lit20:
24077 case DW_OP_lit21:
24078 case DW_OP_lit22:
24079 case DW_OP_lit23:
24080 case DW_OP_lit24:
24081 case DW_OP_lit25:
24082 case DW_OP_lit26:
24083 case DW_OP_lit27:
24084 case DW_OP_lit28:
24085 case DW_OP_lit29:
24086 case DW_OP_lit30:
24087 case DW_OP_lit31:
24088 stack[++stacki] = op - DW_OP_lit0;
24089 break;
24090
24091 case DW_OP_reg0:
24092 case DW_OP_reg1:
24093 case DW_OP_reg2:
24094 case DW_OP_reg3:
24095 case DW_OP_reg4:
24096 case DW_OP_reg5:
24097 case DW_OP_reg6:
24098 case DW_OP_reg7:
24099 case DW_OP_reg8:
24100 case DW_OP_reg9:
24101 case DW_OP_reg10:
24102 case DW_OP_reg11:
24103 case DW_OP_reg12:
24104 case DW_OP_reg13:
24105 case DW_OP_reg14:
24106 case DW_OP_reg15:
24107 case DW_OP_reg16:
24108 case DW_OP_reg17:
24109 case DW_OP_reg18:
24110 case DW_OP_reg19:
24111 case DW_OP_reg20:
24112 case DW_OP_reg21:
24113 case DW_OP_reg22:
24114 case DW_OP_reg23:
24115 case DW_OP_reg24:
24116 case DW_OP_reg25:
24117 case DW_OP_reg26:
24118 case DW_OP_reg27:
24119 case DW_OP_reg28:
24120 case DW_OP_reg29:
24121 case DW_OP_reg30:
24122 case DW_OP_reg31:
24123 stack[++stacki] = op - DW_OP_reg0;
24124 if (i < size)
24125 dwarf2_complex_location_expr_complaint ();
24126 break;
24127
24128 case DW_OP_regx:
24129 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24130 i += bytes_read;
24131 stack[++stacki] = unsnd;
24132 if (i < size)
24133 dwarf2_complex_location_expr_complaint ();
24134 break;
24135
24136 case DW_OP_addr:
24137 stack[++stacki] = read_address (objfile->obfd, &data[i],
24138 cu, &bytes_read);
24139 i += bytes_read;
24140 break;
24141
24142 case DW_OP_const1u:
24143 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24144 i += 1;
24145 break;
24146
24147 case DW_OP_const1s:
24148 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24149 i += 1;
24150 break;
24151
24152 case DW_OP_const2u:
24153 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24154 i += 2;
24155 break;
24156
24157 case DW_OP_const2s:
24158 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24159 i += 2;
24160 break;
24161
24162 case DW_OP_const4u:
24163 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24164 i += 4;
24165 break;
24166
24167 case DW_OP_const4s:
24168 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24169 i += 4;
24170 break;
24171
24172 case DW_OP_const8u:
24173 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24174 i += 8;
24175 break;
24176
24177 case DW_OP_constu:
24178 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24179 &bytes_read);
24180 i += bytes_read;
24181 break;
24182
24183 case DW_OP_consts:
24184 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24185 i += bytes_read;
24186 break;
24187
24188 case DW_OP_dup:
24189 stack[stacki + 1] = stack[stacki];
24190 stacki++;
24191 break;
24192
24193 case DW_OP_plus:
24194 stack[stacki - 1] += stack[stacki];
24195 stacki--;
24196 break;
24197
24198 case DW_OP_plus_uconst:
24199 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24200 &bytes_read);
24201 i += bytes_read;
24202 break;
24203
24204 case DW_OP_minus:
24205 stack[stacki - 1] -= stack[stacki];
24206 stacki--;
24207 break;
24208
24209 case DW_OP_deref:
24210 /* If we're not the last op, then we definitely can't encode
24211 this using GDB's address_class enum. This is valid for partial
24212 global symbols, although the variable's address will be bogus
24213 in the psymtab. */
24214 if (i < size)
24215 dwarf2_complex_location_expr_complaint ();
24216 break;
24217
24218 case DW_OP_GNU_push_tls_address:
24219 case DW_OP_form_tls_address:
24220 /* The top of the stack has the offset from the beginning
24221 of the thread control block at which the variable is located. */
24222 /* Nothing should follow this operator, so the top of stack would
24223 be returned. */
24224 /* This is valid for partial global symbols, but the variable's
24225 address will be bogus in the psymtab. Make it always at least
24226 non-zero to not look as a variable garbage collected by linker
24227 which have DW_OP_addr 0. */
24228 if (i < size)
24229 dwarf2_complex_location_expr_complaint ();
24230 stack[stacki]++;
24231 break;
24232
24233 case DW_OP_GNU_uninit:
24234 break;
24235
24236 case DW_OP_GNU_addr_index:
24237 case DW_OP_GNU_const_index:
24238 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24239 &bytes_read);
24240 i += bytes_read;
24241 break;
24242
24243 default:
24244 {
24245 const char *name = get_DW_OP_name (op);
24246
24247 if (name)
24248 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
24249 name);
24250 else
24251 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
24252 op);
24253 }
24254
24255 return (stack[stacki]);
24256 }
24257
24258 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24259 outside of the allocated space. Also enforce minimum>0. */
24260 if (stacki >= ARRAY_SIZE (stack) - 1)
24261 {
24262 complaint (&symfile_complaints,
24263 _("location description stack overflow"));
24264 return 0;
24265 }
24266
24267 if (stacki <= 0)
24268 {
24269 complaint (&symfile_complaints,
24270 _("location description stack underflow"));
24271 return 0;
24272 }
24273 }
24274 return (stack[stacki]);
24275 }
24276
24277 /* memory allocation interface */
24278
24279 static struct dwarf_block *
24280 dwarf_alloc_block (struct dwarf2_cu *cu)
24281 {
24282 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24283 }
24284
24285 static struct die_info *
24286 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24287 {
24288 struct die_info *die;
24289 size_t size = sizeof (struct die_info);
24290
24291 if (num_attrs > 1)
24292 size += (num_attrs - 1) * sizeof (struct attribute);
24293
24294 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24295 memset (die, 0, sizeof (struct die_info));
24296 return (die);
24297 }
24298
24299 \f
24300 /* Macro support. */
24301
24302 /* Return file name relative to the compilation directory of file number I in
24303 *LH's file name table. The result is allocated using xmalloc; the caller is
24304 responsible for freeing it. */
24305
24306 static char *
24307 file_file_name (int file, struct line_header *lh)
24308 {
24309 /* Is the file number a valid index into the line header's file name
24310 table? Remember that file numbers start with one, not zero. */
24311 if (1 <= file && file <= lh->file_names.size ())
24312 {
24313 const file_entry &fe = lh->file_names[file - 1];
24314
24315 if (!IS_ABSOLUTE_PATH (fe.name))
24316 {
24317 const char *dir = fe.include_dir (lh);
24318 if (dir != NULL)
24319 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24320 }
24321 return xstrdup (fe.name);
24322 }
24323 else
24324 {
24325 /* The compiler produced a bogus file number. We can at least
24326 record the macro definitions made in the file, even if we
24327 won't be able to find the file by name. */
24328 char fake_name[80];
24329
24330 xsnprintf (fake_name, sizeof (fake_name),
24331 "<bad macro file number %d>", file);
24332
24333 complaint (&symfile_complaints,
24334 _("bad file number in macro information (%d)"),
24335 file);
24336
24337 return xstrdup (fake_name);
24338 }
24339 }
24340
24341 /* Return the full name of file number I in *LH's file name table.
24342 Use COMP_DIR as the name of the current directory of the
24343 compilation. The result is allocated using xmalloc; the caller is
24344 responsible for freeing it. */
24345 static char *
24346 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24347 {
24348 /* Is the file number a valid index into the line header's file name
24349 table? Remember that file numbers start with one, not zero. */
24350 if (1 <= file && file <= lh->file_names.size ())
24351 {
24352 char *relative = file_file_name (file, lh);
24353
24354 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24355 return relative;
24356 return reconcat (relative, comp_dir, SLASH_STRING,
24357 relative, (char *) NULL);
24358 }
24359 else
24360 return file_file_name (file, lh);
24361 }
24362
24363
24364 static struct macro_source_file *
24365 macro_start_file (int file, int line,
24366 struct macro_source_file *current_file,
24367 struct line_header *lh)
24368 {
24369 /* File name relative to the compilation directory of this source file. */
24370 char *file_name = file_file_name (file, lh);
24371
24372 if (! current_file)
24373 {
24374 /* Note: We don't create a macro table for this compilation unit
24375 at all until we actually get a filename. */
24376 struct macro_table *macro_table = get_macro_table ();
24377
24378 /* If we have no current file, then this must be the start_file
24379 directive for the compilation unit's main source file. */
24380 current_file = macro_set_main (macro_table, file_name);
24381 macro_define_special (macro_table);
24382 }
24383 else
24384 current_file = macro_include (current_file, line, file_name);
24385
24386 xfree (file_name);
24387
24388 return current_file;
24389 }
24390
24391 static const char *
24392 consume_improper_spaces (const char *p, const char *body)
24393 {
24394 if (*p == ' ')
24395 {
24396 complaint (&symfile_complaints,
24397 _("macro definition contains spaces "
24398 "in formal argument list:\n`%s'"),
24399 body);
24400
24401 while (*p == ' ')
24402 p++;
24403 }
24404
24405 return p;
24406 }
24407
24408
24409 static void
24410 parse_macro_definition (struct macro_source_file *file, int line,
24411 const char *body)
24412 {
24413 const char *p;
24414
24415 /* The body string takes one of two forms. For object-like macro
24416 definitions, it should be:
24417
24418 <macro name> " " <definition>
24419
24420 For function-like macro definitions, it should be:
24421
24422 <macro name> "() " <definition>
24423 or
24424 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24425
24426 Spaces may appear only where explicitly indicated, and in the
24427 <definition>.
24428
24429 The Dwarf 2 spec says that an object-like macro's name is always
24430 followed by a space, but versions of GCC around March 2002 omit
24431 the space when the macro's definition is the empty string.
24432
24433 The Dwarf 2 spec says that there should be no spaces between the
24434 formal arguments in a function-like macro's formal argument list,
24435 but versions of GCC around March 2002 include spaces after the
24436 commas. */
24437
24438
24439 /* Find the extent of the macro name. The macro name is terminated
24440 by either a space or null character (for an object-like macro) or
24441 an opening paren (for a function-like macro). */
24442 for (p = body; *p; p++)
24443 if (*p == ' ' || *p == '(')
24444 break;
24445
24446 if (*p == ' ' || *p == '\0')
24447 {
24448 /* It's an object-like macro. */
24449 int name_len = p - body;
24450 char *name = savestring (body, name_len);
24451 const char *replacement;
24452
24453 if (*p == ' ')
24454 replacement = body + name_len + 1;
24455 else
24456 {
24457 dwarf2_macro_malformed_definition_complaint (body);
24458 replacement = body + name_len;
24459 }
24460
24461 macro_define_object (file, line, name, replacement);
24462
24463 xfree (name);
24464 }
24465 else if (*p == '(')
24466 {
24467 /* It's a function-like macro. */
24468 char *name = savestring (body, p - body);
24469 int argc = 0;
24470 int argv_size = 1;
24471 char **argv = XNEWVEC (char *, argv_size);
24472
24473 p++;
24474
24475 p = consume_improper_spaces (p, body);
24476
24477 /* Parse the formal argument list. */
24478 while (*p && *p != ')')
24479 {
24480 /* Find the extent of the current argument name. */
24481 const char *arg_start = p;
24482
24483 while (*p && *p != ',' && *p != ')' && *p != ' ')
24484 p++;
24485
24486 if (! *p || p == arg_start)
24487 dwarf2_macro_malformed_definition_complaint (body);
24488 else
24489 {
24490 /* Make sure argv has room for the new argument. */
24491 if (argc >= argv_size)
24492 {
24493 argv_size *= 2;
24494 argv = XRESIZEVEC (char *, argv, argv_size);
24495 }
24496
24497 argv[argc++] = savestring (arg_start, p - arg_start);
24498 }
24499
24500 p = consume_improper_spaces (p, body);
24501
24502 /* Consume the comma, if present. */
24503 if (*p == ',')
24504 {
24505 p++;
24506
24507 p = consume_improper_spaces (p, body);
24508 }
24509 }
24510
24511 if (*p == ')')
24512 {
24513 p++;
24514
24515 if (*p == ' ')
24516 /* Perfectly formed definition, no complaints. */
24517 macro_define_function (file, line, name,
24518 argc, (const char **) argv,
24519 p + 1);
24520 else if (*p == '\0')
24521 {
24522 /* Complain, but do define it. */
24523 dwarf2_macro_malformed_definition_complaint (body);
24524 macro_define_function (file, line, name,
24525 argc, (const char **) argv,
24526 p);
24527 }
24528 else
24529 /* Just complain. */
24530 dwarf2_macro_malformed_definition_complaint (body);
24531 }
24532 else
24533 /* Just complain. */
24534 dwarf2_macro_malformed_definition_complaint (body);
24535
24536 xfree (name);
24537 {
24538 int i;
24539
24540 for (i = 0; i < argc; i++)
24541 xfree (argv[i]);
24542 }
24543 xfree (argv);
24544 }
24545 else
24546 dwarf2_macro_malformed_definition_complaint (body);
24547 }
24548
24549 /* Skip some bytes from BYTES according to the form given in FORM.
24550 Returns the new pointer. */
24551
24552 static const gdb_byte *
24553 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24554 enum dwarf_form form,
24555 unsigned int offset_size,
24556 struct dwarf2_section_info *section)
24557 {
24558 unsigned int bytes_read;
24559
24560 switch (form)
24561 {
24562 case DW_FORM_data1:
24563 case DW_FORM_flag:
24564 ++bytes;
24565 break;
24566
24567 case DW_FORM_data2:
24568 bytes += 2;
24569 break;
24570
24571 case DW_FORM_data4:
24572 bytes += 4;
24573 break;
24574
24575 case DW_FORM_data8:
24576 bytes += 8;
24577 break;
24578
24579 case DW_FORM_data16:
24580 bytes += 16;
24581 break;
24582
24583 case DW_FORM_string:
24584 read_direct_string (abfd, bytes, &bytes_read);
24585 bytes += bytes_read;
24586 break;
24587
24588 case DW_FORM_sec_offset:
24589 case DW_FORM_strp:
24590 case DW_FORM_GNU_strp_alt:
24591 bytes += offset_size;
24592 break;
24593
24594 case DW_FORM_block:
24595 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24596 bytes += bytes_read;
24597 break;
24598
24599 case DW_FORM_block1:
24600 bytes += 1 + read_1_byte (abfd, bytes);
24601 break;
24602 case DW_FORM_block2:
24603 bytes += 2 + read_2_bytes (abfd, bytes);
24604 break;
24605 case DW_FORM_block4:
24606 bytes += 4 + read_4_bytes (abfd, bytes);
24607 break;
24608
24609 case DW_FORM_sdata:
24610 case DW_FORM_udata:
24611 case DW_FORM_GNU_addr_index:
24612 case DW_FORM_GNU_str_index:
24613 bytes = gdb_skip_leb128 (bytes, buffer_end);
24614 if (bytes == NULL)
24615 {
24616 dwarf2_section_buffer_overflow_complaint (section);
24617 return NULL;
24618 }
24619 break;
24620
24621 case DW_FORM_implicit_const:
24622 break;
24623
24624 default:
24625 {
24626 complaint (&symfile_complaints,
24627 _("invalid form 0x%x in `%s'"),
24628 form, get_section_name (section));
24629 return NULL;
24630 }
24631 }
24632
24633 return bytes;
24634 }
24635
24636 /* A helper for dwarf_decode_macros that handles skipping an unknown
24637 opcode. Returns an updated pointer to the macro data buffer; or,
24638 on error, issues a complaint and returns NULL. */
24639
24640 static const gdb_byte *
24641 skip_unknown_opcode (unsigned int opcode,
24642 const gdb_byte **opcode_definitions,
24643 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24644 bfd *abfd,
24645 unsigned int offset_size,
24646 struct dwarf2_section_info *section)
24647 {
24648 unsigned int bytes_read, i;
24649 unsigned long arg;
24650 const gdb_byte *defn;
24651
24652 if (opcode_definitions[opcode] == NULL)
24653 {
24654 complaint (&symfile_complaints,
24655 _("unrecognized DW_MACFINO opcode 0x%x"),
24656 opcode);
24657 return NULL;
24658 }
24659
24660 defn = opcode_definitions[opcode];
24661 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24662 defn += bytes_read;
24663
24664 for (i = 0; i < arg; ++i)
24665 {
24666 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24667 (enum dwarf_form) defn[i], offset_size,
24668 section);
24669 if (mac_ptr == NULL)
24670 {
24671 /* skip_form_bytes already issued the complaint. */
24672 return NULL;
24673 }
24674 }
24675
24676 return mac_ptr;
24677 }
24678
24679 /* A helper function which parses the header of a macro section.
24680 If the macro section is the extended (for now called "GNU") type,
24681 then this updates *OFFSET_SIZE. Returns a pointer to just after
24682 the header, or issues a complaint and returns NULL on error. */
24683
24684 static const gdb_byte *
24685 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24686 bfd *abfd,
24687 const gdb_byte *mac_ptr,
24688 unsigned int *offset_size,
24689 int section_is_gnu)
24690 {
24691 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24692
24693 if (section_is_gnu)
24694 {
24695 unsigned int version, flags;
24696
24697 version = read_2_bytes (abfd, mac_ptr);
24698 if (version != 4 && version != 5)
24699 {
24700 complaint (&symfile_complaints,
24701 _("unrecognized version `%d' in .debug_macro section"),
24702 version);
24703 return NULL;
24704 }
24705 mac_ptr += 2;
24706
24707 flags = read_1_byte (abfd, mac_ptr);
24708 ++mac_ptr;
24709 *offset_size = (flags & 1) ? 8 : 4;
24710
24711 if ((flags & 2) != 0)
24712 /* We don't need the line table offset. */
24713 mac_ptr += *offset_size;
24714
24715 /* Vendor opcode descriptions. */
24716 if ((flags & 4) != 0)
24717 {
24718 unsigned int i, count;
24719
24720 count = read_1_byte (abfd, mac_ptr);
24721 ++mac_ptr;
24722 for (i = 0; i < count; ++i)
24723 {
24724 unsigned int opcode, bytes_read;
24725 unsigned long arg;
24726
24727 opcode = read_1_byte (abfd, mac_ptr);
24728 ++mac_ptr;
24729 opcode_definitions[opcode] = mac_ptr;
24730 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24731 mac_ptr += bytes_read;
24732 mac_ptr += arg;
24733 }
24734 }
24735 }
24736
24737 return mac_ptr;
24738 }
24739
24740 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24741 including DW_MACRO_import. */
24742
24743 static void
24744 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24745 bfd *abfd,
24746 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24747 struct macro_source_file *current_file,
24748 struct line_header *lh,
24749 struct dwarf2_section_info *section,
24750 int section_is_gnu, int section_is_dwz,
24751 unsigned int offset_size,
24752 htab_t include_hash)
24753 {
24754 struct objfile *objfile = dwarf2_per_objfile->objfile;
24755 enum dwarf_macro_record_type macinfo_type;
24756 int at_commandline;
24757 const gdb_byte *opcode_definitions[256];
24758
24759 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24760 &offset_size, section_is_gnu);
24761 if (mac_ptr == NULL)
24762 {
24763 /* We already issued a complaint. */
24764 return;
24765 }
24766
24767 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24768 GDB is still reading the definitions from command line. First
24769 DW_MACINFO_start_file will need to be ignored as it was already executed
24770 to create CURRENT_FILE for the main source holding also the command line
24771 definitions. On first met DW_MACINFO_start_file this flag is reset to
24772 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24773
24774 at_commandline = 1;
24775
24776 do
24777 {
24778 /* Do we at least have room for a macinfo type byte? */
24779 if (mac_ptr >= mac_end)
24780 {
24781 dwarf2_section_buffer_overflow_complaint (section);
24782 break;
24783 }
24784
24785 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24786 mac_ptr++;
24787
24788 /* Note that we rely on the fact that the corresponding GNU and
24789 DWARF constants are the same. */
24790 DIAGNOSTIC_PUSH
24791 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24792 switch (macinfo_type)
24793 {
24794 /* A zero macinfo type indicates the end of the macro
24795 information. */
24796 case 0:
24797 break;
24798
24799 case DW_MACRO_define:
24800 case DW_MACRO_undef:
24801 case DW_MACRO_define_strp:
24802 case DW_MACRO_undef_strp:
24803 case DW_MACRO_define_sup:
24804 case DW_MACRO_undef_sup:
24805 {
24806 unsigned int bytes_read;
24807 int line;
24808 const char *body;
24809 int is_define;
24810
24811 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24812 mac_ptr += bytes_read;
24813
24814 if (macinfo_type == DW_MACRO_define
24815 || macinfo_type == DW_MACRO_undef)
24816 {
24817 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24818 mac_ptr += bytes_read;
24819 }
24820 else
24821 {
24822 LONGEST str_offset;
24823
24824 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24825 mac_ptr += offset_size;
24826
24827 if (macinfo_type == DW_MACRO_define_sup
24828 || macinfo_type == DW_MACRO_undef_sup
24829 || section_is_dwz)
24830 {
24831 struct dwz_file *dwz
24832 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24833
24834 body = read_indirect_string_from_dwz (objfile,
24835 dwz, str_offset);
24836 }
24837 else
24838 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24839 abfd, str_offset);
24840 }
24841
24842 is_define = (macinfo_type == DW_MACRO_define
24843 || macinfo_type == DW_MACRO_define_strp
24844 || macinfo_type == DW_MACRO_define_sup);
24845 if (! current_file)
24846 {
24847 /* DWARF violation as no main source is present. */
24848 complaint (&symfile_complaints,
24849 _("debug info with no main source gives macro %s "
24850 "on line %d: %s"),
24851 is_define ? _("definition") : _("undefinition"),
24852 line, body);
24853 break;
24854 }
24855 if ((line == 0 && !at_commandline)
24856 || (line != 0 && at_commandline))
24857 complaint (&symfile_complaints,
24858 _("debug info gives %s macro %s with %s line %d: %s"),
24859 at_commandline ? _("command-line") : _("in-file"),
24860 is_define ? _("definition") : _("undefinition"),
24861 line == 0 ? _("zero") : _("non-zero"), line, body);
24862
24863 if (is_define)
24864 parse_macro_definition (current_file, line, body);
24865 else
24866 {
24867 gdb_assert (macinfo_type == DW_MACRO_undef
24868 || macinfo_type == DW_MACRO_undef_strp
24869 || macinfo_type == DW_MACRO_undef_sup);
24870 macro_undef (current_file, line, body);
24871 }
24872 }
24873 break;
24874
24875 case DW_MACRO_start_file:
24876 {
24877 unsigned int bytes_read;
24878 int line, file;
24879
24880 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24881 mac_ptr += bytes_read;
24882 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24883 mac_ptr += bytes_read;
24884
24885 if ((line == 0 && !at_commandline)
24886 || (line != 0 && at_commandline))
24887 complaint (&symfile_complaints,
24888 _("debug info gives source %d included "
24889 "from %s at %s line %d"),
24890 file, at_commandline ? _("command-line") : _("file"),
24891 line == 0 ? _("zero") : _("non-zero"), line);
24892
24893 if (at_commandline)
24894 {
24895 /* This DW_MACRO_start_file was executed in the
24896 pass one. */
24897 at_commandline = 0;
24898 }
24899 else
24900 current_file = macro_start_file (file, line, current_file, lh);
24901 }
24902 break;
24903
24904 case DW_MACRO_end_file:
24905 if (! current_file)
24906 complaint (&symfile_complaints,
24907 _("macro debug info has an unmatched "
24908 "`close_file' directive"));
24909 else
24910 {
24911 current_file = current_file->included_by;
24912 if (! current_file)
24913 {
24914 enum dwarf_macro_record_type next_type;
24915
24916 /* GCC circa March 2002 doesn't produce the zero
24917 type byte marking the end of the compilation
24918 unit. Complain if it's not there, but exit no
24919 matter what. */
24920
24921 /* Do we at least have room for a macinfo type byte? */
24922 if (mac_ptr >= mac_end)
24923 {
24924 dwarf2_section_buffer_overflow_complaint (section);
24925 return;
24926 }
24927
24928 /* We don't increment mac_ptr here, so this is just
24929 a look-ahead. */
24930 next_type
24931 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24932 mac_ptr);
24933 if (next_type != 0)
24934 complaint (&symfile_complaints,
24935 _("no terminating 0-type entry for "
24936 "macros in `.debug_macinfo' section"));
24937
24938 return;
24939 }
24940 }
24941 break;
24942
24943 case DW_MACRO_import:
24944 case DW_MACRO_import_sup:
24945 {
24946 LONGEST offset;
24947 void **slot;
24948 bfd *include_bfd = abfd;
24949 struct dwarf2_section_info *include_section = section;
24950 const gdb_byte *include_mac_end = mac_end;
24951 int is_dwz = section_is_dwz;
24952 const gdb_byte *new_mac_ptr;
24953
24954 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24955 mac_ptr += offset_size;
24956
24957 if (macinfo_type == DW_MACRO_import_sup)
24958 {
24959 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24960
24961 dwarf2_read_section (objfile, &dwz->macro);
24962
24963 include_section = &dwz->macro;
24964 include_bfd = get_section_bfd_owner (include_section);
24965 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24966 is_dwz = 1;
24967 }
24968
24969 new_mac_ptr = include_section->buffer + offset;
24970 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24971
24972 if (*slot != NULL)
24973 {
24974 /* This has actually happened; see
24975 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24976 complaint (&symfile_complaints,
24977 _("recursive DW_MACRO_import in "
24978 ".debug_macro section"));
24979 }
24980 else
24981 {
24982 *slot = (void *) new_mac_ptr;
24983
24984 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24985 include_bfd, new_mac_ptr,
24986 include_mac_end, current_file, lh,
24987 section, section_is_gnu, is_dwz,
24988 offset_size, include_hash);
24989
24990 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24991 }
24992 }
24993 break;
24994
24995 case DW_MACINFO_vendor_ext:
24996 if (!section_is_gnu)
24997 {
24998 unsigned int bytes_read;
24999
25000 /* This reads the constant, but since we don't recognize
25001 any vendor extensions, we ignore it. */
25002 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25003 mac_ptr += bytes_read;
25004 read_direct_string (abfd, mac_ptr, &bytes_read);
25005 mac_ptr += bytes_read;
25006
25007 /* We don't recognize any vendor extensions. */
25008 break;
25009 }
25010 /* FALLTHROUGH */
25011
25012 default:
25013 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25014 mac_ptr, mac_end, abfd, offset_size,
25015 section);
25016 if (mac_ptr == NULL)
25017 return;
25018 break;
25019 }
25020 DIAGNOSTIC_POP
25021 } while (macinfo_type != 0);
25022 }
25023
25024 static void
25025 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
25026 int section_is_gnu)
25027 {
25028 struct dwarf2_per_objfile *dwarf2_per_objfile
25029 = cu->per_cu->dwarf2_per_objfile;
25030 struct objfile *objfile = dwarf2_per_objfile->objfile;
25031 struct line_header *lh = cu->line_header;
25032 bfd *abfd;
25033 const gdb_byte *mac_ptr, *mac_end;
25034 struct macro_source_file *current_file = 0;
25035 enum dwarf_macro_record_type macinfo_type;
25036 unsigned int offset_size = cu->header.offset_size;
25037 const gdb_byte *opcode_definitions[256];
25038 void **slot;
25039 struct dwarf2_section_info *section;
25040 const char *section_name;
25041
25042 if (cu->dwo_unit != NULL)
25043 {
25044 if (section_is_gnu)
25045 {
25046 section = &cu->dwo_unit->dwo_file->sections.macro;
25047 section_name = ".debug_macro.dwo";
25048 }
25049 else
25050 {
25051 section = &cu->dwo_unit->dwo_file->sections.macinfo;
25052 section_name = ".debug_macinfo.dwo";
25053 }
25054 }
25055 else
25056 {
25057 if (section_is_gnu)
25058 {
25059 section = &dwarf2_per_objfile->macro;
25060 section_name = ".debug_macro";
25061 }
25062 else
25063 {
25064 section = &dwarf2_per_objfile->macinfo;
25065 section_name = ".debug_macinfo";
25066 }
25067 }
25068
25069 dwarf2_read_section (objfile, section);
25070 if (section->buffer == NULL)
25071 {
25072 complaint (&symfile_complaints, _("missing %s section"), section_name);
25073 return;
25074 }
25075 abfd = get_section_bfd_owner (section);
25076
25077 /* First pass: Find the name of the base filename.
25078 This filename is needed in order to process all macros whose definition
25079 (or undefinition) comes from the command line. These macros are defined
25080 before the first DW_MACINFO_start_file entry, and yet still need to be
25081 associated to the base file.
25082
25083 To determine the base file name, we scan the macro definitions until we
25084 reach the first DW_MACINFO_start_file entry. We then initialize
25085 CURRENT_FILE accordingly so that any macro definition found before the
25086 first DW_MACINFO_start_file can still be associated to the base file. */
25087
25088 mac_ptr = section->buffer + offset;
25089 mac_end = section->buffer + section->size;
25090
25091 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25092 &offset_size, section_is_gnu);
25093 if (mac_ptr == NULL)
25094 {
25095 /* We already issued a complaint. */
25096 return;
25097 }
25098
25099 do
25100 {
25101 /* Do we at least have room for a macinfo type byte? */
25102 if (mac_ptr >= mac_end)
25103 {
25104 /* Complaint is printed during the second pass as GDB will probably
25105 stop the first pass earlier upon finding
25106 DW_MACINFO_start_file. */
25107 break;
25108 }
25109
25110 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
25111 mac_ptr++;
25112
25113 /* Note that we rely on the fact that the corresponding GNU and
25114 DWARF constants are the same. */
25115 DIAGNOSTIC_PUSH
25116 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25117 switch (macinfo_type)
25118 {
25119 /* A zero macinfo type indicates the end of the macro
25120 information. */
25121 case 0:
25122 break;
25123
25124 case DW_MACRO_define:
25125 case DW_MACRO_undef:
25126 /* Only skip the data by MAC_PTR. */
25127 {
25128 unsigned int bytes_read;
25129
25130 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25131 mac_ptr += bytes_read;
25132 read_direct_string (abfd, mac_ptr, &bytes_read);
25133 mac_ptr += bytes_read;
25134 }
25135 break;
25136
25137 case DW_MACRO_start_file:
25138 {
25139 unsigned int bytes_read;
25140 int line, file;
25141
25142 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25143 mac_ptr += bytes_read;
25144 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25145 mac_ptr += bytes_read;
25146
25147 current_file = macro_start_file (file, line, current_file, lh);
25148 }
25149 break;
25150
25151 case DW_MACRO_end_file:
25152 /* No data to skip by MAC_PTR. */
25153 break;
25154
25155 case DW_MACRO_define_strp:
25156 case DW_MACRO_undef_strp:
25157 case DW_MACRO_define_sup:
25158 case DW_MACRO_undef_sup:
25159 {
25160 unsigned int bytes_read;
25161
25162 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25163 mac_ptr += bytes_read;
25164 mac_ptr += offset_size;
25165 }
25166 break;
25167
25168 case DW_MACRO_import:
25169 case DW_MACRO_import_sup:
25170 /* Note that, according to the spec, a transparent include
25171 chain cannot call DW_MACRO_start_file. So, we can just
25172 skip this opcode. */
25173 mac_ptr += offset_size;
25174 break;
25175
25176 case DW_MACINFO_vendor_ext:
25177 /* Only skip the data by MAC_PTR. */
25178 if (!section_is_gnu)
25179 {
25180 unsigned int bytes_read;
25181
25182 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25183 mac_ptr += bytes_read;
25184 read_direct_string (abfd, mac_ptr, &bytes_read);
25185 mac_ptr += bytes_read;
25186 }
25187 /* FALLTHROUGH */
25188
25189 default:
25190 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25191 mac_ptr, mac_end, abfd, offset_size,
25192 section);
25193 if (mac_ptr == NULL)
25194 return;
25195 break;
25196 }
25197 DIAGNOSTIC_POP
25198 } while (macinfo_type != 0 && current_file == NULL);
25199
25200 /* Second pass: Process all entries.
25201
25202 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25203 command-line macro definitions/undefinitions. This flag is unset when we
25204 reach the first DW_MACINFO_start_file entry. */
25205
25206 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25207 htab_eq_pointer,
25208 NULL, xcalloc, xfree));
25209 mac_ptr = section->buffer + offset;
25210 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25211 *slot = (void *) mac_ptr;
25212 dwarf_decode_macro_bytes (dwarf2_per_objfile,
25213 abfd, mac_ptr, mac_end,
25214 current_file, lh, section,
25215 section_is_gnu, 0, offset_size,
25216 include_hash.get ());
25217 }
25218
25219 /* Check if the attribute's form is a DW_FORM_block*
25220 if so return true else false. */
25221
25222 static int
25223 attr_form_is_block (const struct attribute *attr)
25224 {
25225 return (attr == NULL ? 0 :
25226 attr->form == DW_FORM_block1
25227 || attr->form == DW_FORM_block2
25228 || attr->form == DW_FORM_block4
25229 || attr->form == DW_FORM_block
25230 || attr->form == DW_FORM_exprloc);
25231 }
25232
25233 /* Return non-zero if ATTR's value is a section offset --- classes
25234 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25235 You may use DW_UNSND (attr) to retrieve such offsets.
25236
25237 Section 7.5.4, "Attribute Encodings", explains that no attribute
25238 may have a value that belongs to more than one of these classes; it
25239 would be ambiguous if we did, because we use the same forms for all
25240 of them. */
25241
25242 static int
25243 attr_form_is_section_offset (const struct attribute *attr)
25244 {
25245 return (attr->form == DW_FORM_data4
25246 || attr->form == DW_FORM_data8
25247 || attr->form == DW_FORM_sec_offset);
25248 }
25249
25250 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25251 zero otherwise. When this function returns true, you can apply
25252 dwarf2_get_attr_constant_value to it.
25253
25254 However, note that for some attributes you must check
25255 attr_form_is_section_offset before using this test. DW_FORM_data4
25256 and DW_FORM_data8 are members of both the constant class, and of
25257 the classes that contain offsets into other debug sections
25258 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25259 that, if an attribute's can be either a constant or one of the
25260 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25261 taken as section offsets, not constants.
25262
25263 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25264 cannot handle that. */
25265
25266 static int
25267 attr_form_is_constant (const struct attribute *attr)
25268 {
25269 switch (attr->form)
25270 {
25271 case DW_FORM_sdata:
25272 case DW_FORM_udata:
25273 case DW_FORM_data1:
25274 case DW_FORM_data2:
25275 case DW_FORM_data4:
25276 case DW_FORM_data8:
25277 case DW_FORM_implicit_const:
25278 return 1;
25279 default:
25280 return 0;
25281 }
25282 }
25283
25284
25285 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25286 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25287
25288 static int
25289 attr_form_is_ref (const struct attribute *attr)
25290 {
25291 switch (attr->form)
25292 {
25293 case DW_FORM_ref_addr:
25294 case DW_FORM_ref1:
25295 case DW_FORM_ref2:
25296 case DW_FORM_ref4:
25297 case DW_FORM_ref8:
25298 case DW_FORM_ref_udata:
25299 case DW_FORM_GNU_ref_alt:
25300 return 1;
25301 default:
25302 return 0;
25303 }
25304 }
25305
25306 /* Return the .debug_loc section to use for CU.
25307 For DWO files use .debug_loc.dwo. */
25308
25309 static struct dwarf2_section_info *
25310 cu_debug_loc_section (struct dwarf2_cu *cu)
25311 {
25312 struct dwarf2_per_objfile *dwarf2_per_objfile
25313 = cu->per_cu->dwarf2_per_objfile;
25314
25315 if (cu->dwo_unit)
25316 {
25317 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25318
25319 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25320 }
25321 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25322 : &dwarf2_per_objfile->loc);
25323 }
25324
25325 /* A helper function that fills in a dwarf2_loclist_baton. */
25326
25327 static void
25328 fill_in_loclist_baton (struct dwarf2_cu *cu,
25329 struct dwarf2_loclist_baton *baton,
25330 const struct attribute *attr)
25331 {
25332 struct dwarf2_per_objfile *dwarf2_per_objfile
25333 = cu->per_cu->dwarf2_per_objfile;
25334 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25335
25336 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25337
25338 baton->per_cu = cu->per_cu;
25339 gdb_assert (baton->per_cu);
25340 /* We don't know how long the location list is, but make sure we
25341 don't run off the edge of the section. */
25342 baton->size = section->size - DW_UNSND (attr);
25343 baton->data = section->buffer + DW_UNSND (attr);
25344 baton->base_address = cu->base_address;
25345 baton->from_dwo = cu->dwo_unit != NULL;
25346 }
25347
25348 static void
25349 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25350 struct dwarf2_cu *cu, int is_block)
25351 {
25352 struct dwarf2_per_objfile *dwarf2_per_objfile
25353 = cu->per_cu->dwarf2_per_objfile;
25354 struct objfile *objfile = dwarf2_per_objfile->objfile;
25355 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25356
25357 if (attr_form_is_section_offset (attr)
25358 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25359 the section. If so, fall through to the complaint in the
25360 other branch. */
25361 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25362 {
25363 struct dwarf2_loclist_baton *baton;
25364
25365 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25366
25367 fill_in_loclist_baton (cu, baton, attr);
25368
25369 if (cu->base_known == 0)
25370 complaint (&symfile_complaints,
25371 _("Location list used without "
25372 "specifying the CU base address."));
25373
25374 SYMBOL_ACLASS_INDEX (sym) = (is_block
25375 ? dwarf2_loclist_block_index
25376 : dwarf2_loclist_index);
25377 SYMBOL_LOCATION_BATON (sym) = baton;
25378 }
25379 else
25380 {
25381 struct dwarf2_locexpr_baton *baton;
25382
25383 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25384 baton->per_cu = cu->per_cu;
25385 gdb_assert (baton->per_cu);
25386
25387 if (attr_form_is_block (attr))
25388 {
25389 /* Note that we're just copying the block's data pointer
25390 here, not the actual data. We're still pointing into the
25391 info_buffer for SYM's objfile; right now we never release
25392 that buffer, but when we do clean up properly this may
25393 need to change. */
25394 baton->size = DW_BLOCK (attr)->size;
25395 baton->data = DW_BLOCK (attr)->data;
25396 }
25397 else
25398 {
25399 dwarf2_invalid_attrib_class_complaint ("location description",
25400 SYMBOL_NATURAL_NAME (sym));
25401 baton->size = 0;
25402 }
25403
25404 SYMBOL_ACLASS_INDEX (sym) = (is_block
25405 ? dwarf2_locexpr_block_index
25406 : dwarf2_locexpr_index);
25407 SYMBOL_LOCATION_BATON (sym) = baton;
25408 }
25409 }
25410
25411 /* Return the OBJFILE associated with the compilation unit CU. If CU
25412 came from a separate debuginfo file, then the master objfile is
25413 returned. */
25414
25415 struct objfile *
25416 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25417 {
25418 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25419
25420 /* Return the master objfile, so that we can report and look up the
25421 correct file containing this variable. */
25422 if (objfile->separate_debug_objfile_backlink)
25423 objfile = objfile->separate_debug_objfile_backlink;
25424
25425 return objfile;
25426 }
25427
25428 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25429 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25430 CU_HEADERP first. */
25431
25432 static const struct comp_unit_head *
25433 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25434 struct dwarf2_per_cu_data *per_cu)
25435 {
25436 const gdb_byte *info_ptr;
25437
25438 if (per_cu->cu)
25439 return &per_cu->cu->header;
25440
25441 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25442
25443 memset (cu_headerp, 0, sizeof (*cu_headerp));
25444 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25445 rcuh_kind::COMPILE);
25446
25447 return cu_headerp;
25448 }
25449
25450 /* Return the address size given in the compilation unit header for CU. */
25451
25452 int
25453 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25454 {
25455 struct comp_unit_head cu_header_local;
25456 const struct comp_unit_head *cu_headerp;
25457
25458 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25459
25460 return cu_headerp->addr_size;
25461 }
25462
25463 /* Return the offset size given in the compilation unit header for CU. */
25464
25465 int
25466 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25467 {
25468 struct comp_unit_head cu_header_local;
25469 const struct comp_unit_head *cu_headerp;
25470
25471 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25472
25473 return cu_headerp->offset_size;
25474 }
25475
25476 /* See its dwarf2loc.h declaration. */
25477
25478 int
25479 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25480 {
25481 struct comp_unit_head cu_header_local;
25482 const struct comp_unit_head *cu_headerp;
25483
25484 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25485
25486 if (cu_headerp->version == 2)
25487 return cu_headerp->addr_size;
25488 else
25489 return cu_headerp->offset_size;
25490 }
25491
25492 /* Return the text offset of the CU. The returned offset comes from
25493 this CU's objfile. If this objfile came from a separate debuginfo
25494 file, then the offset may be different from the corresponding
25495 offset in the parent objfile. */
25496
25497 CORE_ADDR
25498 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25499 {
25500 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25501
25502 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25503 }
25504
25505 /* Return DWARF version number of PER_CU. */
25506
25507 short
25508 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25509 {
25510 return per_cu->dwarf_version;
25511 }
25512
25513 /* Locate the .debug_info compilation unit from CU's objfile which contains
25514 the DIE at OFFSET. Raises an error on failure. */
25515
25516 static struct dwarf2_per_cu_data *
25517 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25518 unsigned int offset_in_dwz,
25519 struct dwarf2_per_objfile *dwarf2_per_objfile)
25520 {
25521 struct dwarf2_per_cu_data *this_cu;
25522 int low, high;
25523 const sect_offset *cu_off;
25524
25525 low = 0;
25526 high = dwarf2_per_objfile->n_comp_units - 1;
25527 while (high > low)
25528 {
25529 struct dwarf2_per_cu_data *mid_cu;
25530 int mid = low + (high - low) / 2;
25531
25532 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25533 cu_off = &mid_cu->sect_off;
25534 if (mid_cu->is_dwz > offset_in_dwz
25535 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25536 high = mid;
25537 else
25538 low = mid + 1;
25539 }
25540 gdb_assert (low == high);
25541 this_cu = dwarf2_per_objfile->all_comp_units[low];
25542 cu_off = &this_cu->sect_off;
25543 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25544 {
25545 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25546 error (_("Dwarf Error: could not find partial DIE containing "
25547 "offset %s [in module %s]"),
25548 sect_offset_str (sect_off),
25549 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25550
25551 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25552 <= sect_off);
25553 return dwarf2_per_objfile->all_comp_units[low-1];
25554 }
25555 else
25556 {
25557 this_cu = dwarf2_per_objfile->all_comp_units[low];
25558 if (low == dwarf2_per_objfile->n_comp_units - 1
25559 && sect_off >= this_cu->sect_off + this_cu->length)
25560 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25561 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25562 return this_cu;
25563 }
25564 }
25565
25566 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25567
25568 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25569 : per_cu (per_cu_),
25570 mark (0),
25571 has_loclist (0),
25572 checked_producer (0),
25573 producer_is_gxx_lt_4_6 (0),
25574 producer_is_gcc_lt_4_3 (0),
25575 producer_is_icc_lt_14 (0),
25576 processing_has_namespace_info (0)
25577 {
25578 per_cu->cu = this;
25579 }
25580
25581 /* Destroy a dwarf2_cu. */
25582
25583 dwarf2_cu::~dwarf2_cu ()
25584 {
25585 per_cu->cu = NULL;
25586 }
25587
25588 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25589
25590 static void
25591 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25592 enum language pretend_language)
25593 {
25594 struct attribute *attr;
25595
25596 /* Set the language we're debugging. */
25597 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25598 if (attr)
25599 set_cu_language (DW_UNSND (attr), cu);
25600 else
25601 {
25602 cu->language = pretend_language;
25603 cu->language_defn = language_def (cu->language);
25604 }
25605
25606 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25607 }
25608
25609 /* Free all cached compilation units. */
25610
25611 static void
25612 free_cached_comp_units (void *data)
25613 {
25614 struct dwarf2_per_objfile *dwarf2_per_objfile
25615 = (struct dwarf2_per_objfile *) data;
25616
25617 dwarf2_per_objfile->free_cached_comp_units ();
25618 }
25619
25620 /* Increase the age counter on each cached compilation unit, and free
25621 any that are too old. */
25622
25623 static void
25624 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25625 {
25626 struct dwarf2_per_cu_data *per_cu, **last_chain;
25627
25628 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25629 per_cu = dwarf2_per_objfile->read_in_chain;
25630 while (per_cu != NULL)
25631 {
25632 per_cu->cu->last_used ++;
25633 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25634 dwarf2_mark (per_cu->cu);
25635 per_cu = per_cu->cu->read_in_chain;
25636 }
25637
25638 per_cu = dwarf2_per_objfile->read_in_chain;
25639 last_chain = &dwarf2_per_objfile->read_in_chain;
25640 while (per_cu != NULL)
25641 {
25642 struct dwarf2_per_cu_data *next_cu;
25643
25644 next_cu = per_cu->cu->read_in_chain;
25645
25646 if (!per_cu->cu->mark)
25647 {
25648 delete per_cu->cu;
25649 *last_chain = next_cu;
25650 }
25651 else
25652 last_chain = &per_cu->cu->read_in_chain;
25653
25654 per_cu = next_cu;
25655 }
25656 }
25657
25658 /* Remove a single compilation unit from the cache. */
25659
25660 static void
25661 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25662 {
25663 struct dwarf2_per_cu_data *per_cu, **last_chain;
25664 struct dwarf2_per_objfile *dwarf2_per_objfile
25665 = target_per_cu->dwarf2_per_objfile;
25666
25667 per_cu = dwarf2_per_objfile->read_in_chain;
25668 last_chain = &dwarf2_per_objfile->read_in_chain;
25669 while (per_cu != NULL)
25670 {
25671 struct dwarf2_per_cu_data *next_cu;
25672
25673 next_cu = per_cu->cu->read_in_chain;
25674
25675 if (per_cu == target_per_cu)
25676 {
25677 delete per_cu->cu;
25678 per_cu->cu = NULL;
25679 *last_chain = next_cu;
25680 break;
25681 }
25682 else
25683 last_chain = &per_cu->cu->read_in_chain;
25684
25685 per_cu = next_cu;
25686 }
25687 }
25688
25689 /* Release all extra memory associated with OBJFILE. */
25690
25691 void
25692 dwarf2_free_objfile (struct objfile *objfile)
25693 {
25694 struct dwarf2_per_objfile *dwarf2_per_objfile
25695 = get_dwarf2_per_objfile (objfile);
25696
25697 delete dwarf2_per_objfile;
25698 }
25699
25700 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25701 We store these in a hash table separate from the DIEs, and preserve them
25702 when the DIEs are flushed out of cache.
25703
25704 The CU "per_cu" pointer is needed because offset alone is not enough to
25705 uniquely identify the type. A file may have multiple .debug_types sections,
25706 or the type may come from a DWO file. Furthermore, while it's more logical
25707 to use per_cu->section+offset, with Fission the section with the data is in
25708 the DWO file but we don't know that section at the point we need it.
25709 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25710 because we can enter the lookup routine, get_die_type_at_offset, from
25711 outside this file, and thus won't necessarily have PER_CU->cu.
25712 Fortunately, PER_CU is stable for the life of the objfile. */
25713
25714 struct dwarf2_per_cu_offset_and_type
25715 {
25716 const struct dwarf2_per_cu_data *per_cu;
25717 sect_offset sect_off;
25718 struct type *type;
25719 };
25720
25721 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25722
25723 static hashval_t
25724 per_cu_offset_and_type_hash (const void *item)
25725 {
25726 const struct dwarf2_per_cu_offset_and_type *ofs
25727 = (const struct dwarf2_per_cu_offset_and_type *) item;
25728
25729 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25730 }
25731
25732 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25733
25734 static int
25735 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25736 {
25737 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25738 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25739 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25740 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25741
25742 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25743 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25744 }
25745
25746 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25747 table if necessary. For convenience, return TYPE.
25748
25749 The DIEs reading must have careful ordering to:
25750 * Not cause infite loops trying to read in DIEs as a prerequisite for
25751 reading current DIE.
25752 * Not trying to dereference contents of still incompletely read in types
25753 while reading in other DIEs.
25754 * Enable referencing still incompletely read in types just by a pointer to
25755 the type without accessing its fields.
25756
25757 Therefore caller should follow these rules:
25758 * Try to fetch any prerequisite types we may need to build this DIE type
25759 before building the type and calling set_die_type.
25760 * After building type call set_die_type for current DIE as soon as
25761 possible before fetching more types to complete the current type.
25762 * Make the type as complete as possible before fetching more types. */
25763
25764 static struct type *
25765 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25766 {
25767 struct dwarf2_per_objfile *dwarf2_per_objfile
25768 = cu->per_cu->dwarf2_per_objfile;
25769 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25770 struct objfile *objfile = dwarf2_per_objfile->objfile;
25771 struct attribute *attr;
25772 struct dynamic_prop prop;
25773
25774 /* For Ada types, make sure that the gnat-specific data is always
25775 initialized (if not already set). There are a few types where
25776 we should not be doing so, because the type-specific area is
25777 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25778 where the type-specific area is used to store the floatformat).
25779 But this is not a problem, because the gnat-specific information
25780 is actually not needed for these types. */
25781 if (need_gnat_info (cu)
25782 && TYPE_CODE (type) != TYPE_CODE_FUNC
25783 && TYPE_CODE (type) != TYPE_CODE_FLT
25784 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25785 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25786 && TYPE_CODE (type) != TYPE_CODE_METHOD
25787 && !HAVE_GNAT_AUX_INFO (type))
25788 INIT_GNAT_SPECIFIC (type);
25789
25790 /* Read DW_AT_allocated and set in type. */
25791 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25792 if (attr_form_is_block (attr))
25793 {
25794 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25795 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25796 }
25797 else if (attr != NULL)
25798 {
25799 complaint (&symfile_complaints,
25800 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25801 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25802 sect_offset_str (die->sect_off));
25803 }
25804
25805 /* Read DW_AT_associated and set in type. */
25806 attr = dwarf2_attr (die, DW_AT_associated, cu);
25807 if (attr_form_is_block (attr))
25808 {
25809 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25810 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25811 }
25812 else if (attr != NULL)
25813 {
25814 complaint (&symfile_complaints,
25815 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25816 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25817 sect_offset_str (die->sect_off));
25818 }
25819
25820 /* Read DW_AT_data_location and set in type. */
25821 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25822 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25823 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25824
25825 if (dwarf2_per_objfile->die_type_hash == NULL)
25826 {
25827 dwarf2_per_objfile->die_type_hash =
25828 htab_create_alloc_ex (127,
25829 per_cu_offset_and_type_hash,
25830 per_cu_offset_and_type_eq,
25831 NULL,
25832 &objfile->objfile_obstack,
25833 hashtab_obstack_allocate,
25834 dummy_obstack_deallocate);
25835 }
25836
25837 ofs.per_cu = cu->per_cu;
25838 ofs.sect_off = die->sect_off;
25839 ofs.type = type;
25840 slot = (struct dwarf2_per_cu_offset_and_type **)
25841 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25842 if (*slot)
25843 complaint (&symfile_complaints,
25844 _("A problem internal to GDB: DIE %s has type already set"),
25845 sect_offset_str (die->sect_off));
25846 *slot = XOBNEW (&objfile->objfile_obstack,
25847 struct dwarf2_per_cu_offset_and_type);
25848 **slot = ofs;
25849 return type;
25850 }
25851
25852 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25853 or return NULL if the die does not have a saved type. */
25854
25855 static struct type *
25856 get_die_type_at_offset (sect_offset sect_off,
25857 struct dwarf2_per_cu_data *per_cu)
25858 {
25859 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25860 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25861
25862 if (dwarf2_per_objfile->die_type_hash == NULL)
25863 return NULL;
25864
25865 ofs.per_cu = per_cu;
25866 ofs.sect_off = sect_off;
25867 slot = ((struct dwarf2_per_cu_offset_and_type *)
25868 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25869 if (slot)
25870 return slot->type;
25871 else
25872 return NULL;
25873 }
25874
25875 /* Look up the type for DIE in CU in die_type_hash,
25876 or return NULL if DIE does not have a saved type. */
25877
25878 static struct type *
25879 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25880 {
25881 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25882 }
25883
25884 /* Add a dependence relationship from CU to REF_PER_CU. */
25885
25886 static void
25887 dwarf2_add_dependence (struct dwarf2_cu *cu,
25888 struct dwarf2_per_cu_data *ref_per_cu)
25889 {
25890 void **slot;
25891
25892 if (cu->dependencies == NULL)
25893 cu->dependencies
25894 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25895 NULL, &cu->comp_unit_obstack,
25896 hashtab_obstack_allocate,
25897 dummy_obstack_deallocate);
25898
25899 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25900 if (*slot == NULL)
25901 *slot = ref_per_cu;
25902 }
25903
25904 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25905 Set the mark field in every compilation unit in the
25906 cache that we must keep because we are keeping CU. */
25907
25908 static int
25909 dwarf2_mark_helper (void **slot, void *data)
25910 {
25911 struct dwarf2_per_cu_data *per_cu;
25912
25913 per_cu = (struct dwarf2_per_cu_data *) *slot;
25914
25915 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25916 reading of the chain. As such dependencies remain valid it is not much
25917 useful to track and undo them during QUIT cleanups. */
25918 if (per_cu->cu == NULL)
25919 return 1;
25920
25921 if (per_cu->cu->mark)
25922 return 1;
25923 per_cu->cu->mark = 1;
25924
25925 if (per_cu->cu->dependencies != NULL)
25926 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25927
25928 return 1;
25929 }
25930
25931 /* Set the mark field in CU and in every other compilation unit in the
25932 cache that we must keep because we are keeping CU. */
25933
25934 static void
25935 dwarf2_mark (struct dwarf2_cu *cu)
25936 {
25937 if (cu->mark)
25938 return;
25939 cu->mark = 1;
25940 if (cu->dependencies != NULL)
25941 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25942 }
25943
25944 static void
25945 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25946 {
25947 while (per_cu)
25948 {
25949 per_cu->cu->mark = 0;
25950 per_cu = per_cu->cu->read_in_chain;
25951 }
25952 }
25953
25954 /* Trivial hash function for partial_die_info: the hash value of a DIE
25955 is its offset in .debug_info for this objfile. */
25956
25957 static hashval_t
25958 partial_die_hash (const void *item)
25959 {
25960 const struct partial_die_info *part_die
25961 = (const struct partial_die_info *) item;
25962
25963 return to_underlying (part_die->sect_off);
25964 }
25965
25966 /* Trivial comparison function for partial_die_info structures: two DIEs
25967 are equal if they have the same offset. */
25968
25969 static int
25970 partial_die_eq (const void *item_lhs, const void *item_rhs)
25971 {
25972 const struct partial_die_info *part_die_lhs
25973 = (const struct partial_die_info *) item_lhs;
25974 const struct partial_die_info *part_die_rhs
25975 = (const struct partial_die_info *) item_rhs;
25976
25977 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25978 }
25979
25980 static struct cmd_list_element *set_dwarf_cmdlist;
25981 static struct cmd_list_element *show_dwarf_cmdlist;
25982
25983 static void
25984 set_dwarf_cmd (const char *args, int from_tty)
25985 {
25986 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25987 gdb_stdout);
25988 }
25989
25990 static void
25991 show_dwarf_cmd (const char *args, int from_tty)
25992 {
25993 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25994 }
25995
25996 /* The "save gdb-index" command. */
25997
25998 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25999 error checking. */
26000
26001 static void
26002 file_write (FILE *file, const void *data, size_t size)
26003 {
26004 if (fwrite (data, 1, size, file) != size)
26005 error (_("couldn't data write to file"));
26006 }
26007
26008 /* Write the contents of VEC to FILE, with error checking. */
26009
26010 template<typename Elem, typename Alloc>
26011 static void
26012 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
26013 {
26014 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
26015 }
26016
26017 /* In-memory buffer to prepare data to be written later to a file. */
26018 class data_buf
26019 {
26020 public:
26021 /* Copy DATA to the end of the buffer. */
26022 template<typename T>
26023 void append_data (const T &data)
26024 {
26025 std::copy (reinterpret_cast<const gdb_byte *> (&data),
26026 reinterpret_cast<const gdb_byte *> (&data + 1),
26027 grow (sizeof (data)));
26028 }
26029
26030 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
26031 terminating zero is appended too. */
26032 void append_cstr0 (const char *cstr)
26033 {
26034 const size_t size = strlen (cstr) + 1;
26035 std::copy (cstr, cstr + size, grow (size));
26036 }
26037
26038 /* Store INPUT as ULEB128 to the end of buffer. */
26039 void append_unsigned_leb128 (ULONGEST input)
26040 {
26041 for (;;)
26042 {
26043 gdb_byte output = input & 0x7f;
26044 input >>= 7;
26045 if (input)
26046 output |= 0x80;
26047 append_data (output);
26048 if (input == 0)
26049 break;
26050 }
26051 }
26052
26053 /* Accept a host-format integer in VAL and append it to the buffer
26054 as a target-format integer which is LEN bytes long. */
26055 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
26056 {
26057 ::store_unsigned_integer (grow (len), len, byte_order, val);
26058 }
26059
26060 /* Return the size of the buffer. */
26061 size_t size () const
26062 {
26063 return m_vec.size ();
26064 }
26065
26066 /* Return true iff the buffer is empty. */
26067 bool empty () const
26068 {
26069 return m_vec.empty ();
26070 }
26071
26072 /* Write the buffer to FILE. */
26073 void file_write (FILE *file) const
26074 {
26075 ::file_write (file, m_vec);
26076 }
26077
26078 private:
26079 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
26080 the start of the new block. */
26081 gdb_byte *grow (size_t size)
26082 {
26083 m_vec.resize (m_vec.size () + size);
26084 return &*m_vec.end () - size;
26085 }
26086
26087 gdb::byte_vector m_vec;
26088 };
26089
26090 /* An entry in the symbol table. */
26091 struct symtab_index_entry
26092 {
26093 /* The name of the symbol. */
26094 const char *name;
26095 /* The offset of the name in the constant pool. */
26096 offset_type index_offset;
26097 /* A sorted vector of the indices of all the CUs that hold an object
26098 of this name. */
26099 std::vector<offset_type> cu_indices;
26100 };
26101
26102 /* The symbol table. This is a power-of-2-sized hash table. */
26103 struct mapped_symtab
26104 {
26105 mapped_symtab ()
26106 {
26107 data.resize (1024);
26108 }
26109
26110 offset_type n_elements = 0;
26111 std::vector<symtab_index_entry> data;
26112 };
26113
26114 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
26115 the slot.
26116
26117 Function is used only during write_hash_table so no index format backward
26118 compatibility is needed. */
26119
26120 static symtab_index_entry &
26121 find_slot (struct mapped_symtab *symtab, const char *name)
26122 {
26123 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
26124
26125 index = hash & (symtab->data.size () - 1);
26126 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
26127
26128 for (;;)
26129 {
26130 if (symtab->data[index].name == NULL
26131 || strcmp (name, symtab->data[index].name) == 0)
26132 return symtab->data[index];
26133 index = (index + step) & (symtab->data.size () - 1);
26134 }
26135 }
26136
26137 /* Expand SYMTAB's hash table. */
26138
26139 static void
26140 hash_expand (struct mapped_symtab *symtab)
26141 {
26142 auto old_entries = std::move (symtab->data);
26143
26144 symtab->data.clear ();
26145 symtab->data.resize (old_entries.size () * 2);
26146
26147 for (auto &it : old_entries)
26148 if (it.name != NULL)
26149 {
26150 auto &ref = find_slot (symtab, it.name);
26151 ref = std::move (it);
26152 }
26153 }
26154
26155 /* Add an entry to SYMTAB. NAME is the name of the symbol.
26156 CU_INDEX is the index of the CU in which the symbol appears.
26157 IS_STATIC is one if the symbol is static, otherwise zero (global). */
26158
26159 static void
26160 add_index_entry (struct mapped_symtab *symtab, const char *name,
26161 int is_static, gdb_index_symbol_kind kind,
26162 offset_type cu_index)
26163 {
26164 offset_type cu_index_and_attrs;
26165
26166 ++symtab->n_elements;
26167 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
26168 hash_expand (symtab);
26169
26170 symtab_index_entry &slot = find_slot (symtab, name);
26171 if (slot.name == NULL)
26172 {
26173 slot.name = name;
26174 /* index_offset is set later. */
26175 }
26176
26177 cu_index_and_attrs = 0;
26178 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
26179 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
26180 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
26181
26182 /* We don't want to record an index value twice as we want to avoid the
26183 duplication.
26184 We process all global symbols and then all static symbols
26185 (which would allow us to avoid the duplication by only having to check
26186 the last entry pushed), but a symbol could have multiple kinds in one CU.
26187 To keep things simple we don't worry about the duplication here and
26188 sort and uniqufy the list after we've processed all symbols. */
26189 slot.cu_indices.push_back (cu_index_and_attrs);
26190 }
26191
26192 /* Sort and remove duplicates of all symbols' cu_indices lists. */
26193
26194 static void
26195 uniquify_cu_indices (struct mapped_symtab *symtab)
26196 {
26197 for (auto &entry : symtab->data)
26198 {
26199 if (entry.name != NULL && !entry.cu_indices.empty ())
26200 {
26201 auto &cu_indices = entry.cu_indices;
26202 std::sort (cu_indices.begin (), cu_indices.end ());
26203 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
26204 cu_indices.erase (from, cu_indices.end ());
26205 }
26206 }
26207 }
26208
26209 /* A form of 'const char *' suitable for container keys. Only the
26210 pointer is stored. The strings themselves are compared, not the
26211 pointers. */
26212 class c_str_view
26213 {
26214 public:
26215 c_str_view (const char *cstr)
26216 : m_cstr (cstr)
26217 {}
26218
26219 bool operator== (const c_str_view &other) const
26220 {
26221 return strcmp (m_cstr, other.m_cstr) == 0;
26222 }
26223
26224 /* Return the underlying C string. Note, the returned string is
26225 only a reference with lifetime of this object. */
26226 const char *c_str () const
26227 {
26228 return m_cstr;
26229 }
26230
26231 private:
26232 friend class c_str_view_hasher;
26233 const char *const m_cstr;
26234 };
26235
26236 /* A std::unordered_map::hasher for c_str_view that uses the right
26237 hash function for strings in a mapped index. */
26238 class c_str_view_hasher
26239 {
26240 public:
26241 size_t operator () (const c_str_view &x) const
26242 {
26243 return mapped_index_string_hash (INT_MAX, x.m_cstr);
26244 }
26245 };
26246
26247 /* A std::unordered_map::hasher for std::vector<>. */
26248 template<typename T>
26249 class vector_hasher
26250 {
26251 public:
26252 size_t operator () (const std::vector<T> &key) const
26253 {
26254 return iterative_hash (key.data (),
26255 sizeof (key.front ()) * key.size (), 0);
26256 }
26257 };
26258
26259 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
26260 constant pool entries going into the data buffer CPOOL. */
26261
26262 static void
26263 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
26264 {
26265 {
26266 /* Elements are sorted vectors of the indices of all the CUs that
26267 hold an object of this name. */
26268 std::unordered_map<std::vector<offset_type>, offset_type,
26269 vector_hasher<offset_type>>
26270 symbol_hash_table;
26271
26272 /* We add all the index vectors to the constant pool first, to
26273 ensure alignment is ok. */
26274 for (symtab_index_entry &entry : symtab->data)
26275 {
26276 if (entry.name == NULL)
26277 continue;
26278 gdb_assert (entry.index_offset == 0);
26279
26280 /* Finding before inserting is faster than always trying to
26281 insert, because inserting always allocates a node, does the
26282 lookup, and then destroys the new node if another node
26283 already had the same key. C++17 try_emplace will avoid
26284 this. */
26285 const auto found
26286 = symbol_hash_table.find (entry.cu_indices);
26287 if (found != symbol_hash_table.end ())
26288 {
26289 entry.index_offset = found->second;
26290 continue;
26291 }
26292
26293 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
26294 entry.index_offset = cpool.size ();
26295 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
26296 for (const auto index : entry.cu_indices)
26297 cpool.append_data (MAYBE_SWAP (index));
26298 }
26299 }
26300
26301 /* Now write out the hash table. */
26302 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
26303 for (const auto &entry : symtab->data)
26304 {
26305 offset_type str_off, vec_off;
26306
26307 if (entry.name != NULL)
26308 {
26309 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
26310 if (insertpair.second)
26311 cpool.append_cstr0 (entry.name);
26312 str_off = insertpair.first->second;
26313 vec_off = entry.index_offset;
26314 }
26315 else
26316 {
26317 /* While 0 is a valid constant pool index, it is not valid
26318 to have 0 for both offsets. */
26319 str_off = 0;
26320 vec_off = 0;
26321 }
26322
26323 output.append_data (MAYBE_SWAP (str_off));
26324 output.append_data (MAYBE_SWAP (vec_off));
26325 }
26326 }
26327
26328 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
26329
26330 /* Helper struct for building the address table. */
26331 struct addrmap_index_data
26332 {
26333 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
26334 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
26335 {}
26336
26337 struct objfile *objfile;
26338 data_buf &addr_vec;
26339 psym_index_map &cu_index_htab;
26340
26341 /* Non-zero if the previous_* fields are valid.
26342 We can't write an entry until we see the next entry (since it is only then
26343 that we know the end of the entry). */
26344 int previous_valid;
26345 /* Index of the CU in the table of all CUs in the index file. */
26346 unsigned int previous_cu_index;
26347 /* Start address of the CU. */
26348 CORE_ADDR previous_cu_start;
26349 };
26350
26351 /* Write an address entry to ADDR_VEC. */
26352
26353 static void
26354 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
26355 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
26356 {
26357 CORE_ADDR baseaddr;
26358
26359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
26360
26361 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
26362 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
26363 addr_vec.append_data (MAYBE_SWAP (cu_index));
26364 }
26365
26366 /* Worker function for traversing an addrmap to build the address table. */
26367
26368 static int
26369 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
26370 {
26371 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
26372 struct partial_symtab *pst = (struct partial_symtab *) obj;
26373
26374 if (data->previous_valid)
26375 add_address_entry (data->objfile, data->addr_vec,
26376 data->previous_cu_start, start_addr,
26377 data->previous_cu_index);
26378
26379 data->previous_cu_start = start_addr;
26380 if (pst != NULL)
26381 {
26382 const auto it = data->cu_index_htab.find (pst);
26383 gdb_assert (it != data->cu_index_htab.cend ());
26384 data->previous_cu_index = it->second;
26385 data->previous_valid = 1;
26386 }
26387 else
26388 data->previous_valid = 0;
26389
26390 return 0;
26391 }
26392
26393 /* Write OBJFILE's address map to ADDR_VEC.
26394 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
26395 in the index file. */
26396
26397 static void
26398 write_address_map (struct objfile *objfile, data_buf &addr_vec,
26399 psym_index_map &cu_index_htab)
26400 {
26401 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
26402
26403 /* When writing the address table, we have to cope with the fact that
26404 the addrmap iterator only provides the start of a region; we have to
26405 wait until the next invocation to get the start of the next region. */
26406
26407 addrmap_index_data.objfile = objfile;
26408 addrmap_index_data.previous_valid = 0;
26409
26410 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
26411 &addrmap_index_data);
26412
26413 /* It's highly unlikely the last entry (end address = 0xff...ff)
26414 is valid, but we should still handle it.
26415 The end address is recorded as the start of the next region, but that
26416 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
26417 anyway. */
26418 if (addrmap_index_data.previous_valid)
26419 add_address_entry (objfile, addr_vec,
26420 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
26421 addrmap_index_data.previous_cu_index);
26422 }
26423
26424 /* Return the symbol kind of PSYM. */
26425
26426 static gdb_index_symbol_kind
26427 symbol_kind (struct partial_symbol *psym)
26428 {
26429 domain_enum domain = PSYMBOL_DOMAIN (psym);
26430 enum address_class aclass = PSYMBOL_CLASS (psym);
26431
26432 switch (domain)
26433 {
26434 case VAR_DOMAIN:
26435 switch (aclass)
26436 {
26437 case LOC_BLOCK:
26438 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
26439 case LOC_TYPEDEF:
26440 return GDB_INDEX_SYMBOL_KIND_TYPE;
26441 case LOC_COMPUTED:
26442 case LOC_CONST_BYTES:
26443 case LOC_OPTIMIZED_OUT:
26444 case LOC_STATIC:
26445 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26446 case LOC_CONST:
26447 /* Note: It's currently impossible to recognize psyms as enum values
26448 short of reading the type info. For now punt. */
26449 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26450 default:
26451 /* There are other LOC_FOO values that one might want to classify
26452 as variables, but dwarf2read.c doesn't currently use them. */
26453 return GDB_INDEX_SYMBOL_KIND_OTHER;
26454 }
26455 case STRUCT_DOMAIN:
26456 return GDB_INDEX_SYMBOL_KIND_TYPE;
26457 default:
26458 return GDB_INDEX_SYMBOL_KIND_OTHER;
26459 }
26460 }
26461
26462 /* Add a list of partial symbols to SYMTAB. */
26463
26464 static void
26465 write_psymbols (struct mapped_symtab *symtab,
26466 std::unordered_set<partial_symbol *> &psyms_seen,
26467 struct partial_symbol **psymp,
26468 int count,
26469 offset_type cu_index,
26470 int is_static)
26471 {
26472 for (; count-- > 0; ++psymp)
26473 {
26474 struct partial_symbol *psym = *psymp;
26475
26476 if (SYMBOL_LANGUAGE (psym) == language_ada)
26477 error (_("Ada is not currently supported by the index"));
26478
26479 /* Only add a given psymbol once. */
26480 if (psyms_seen.insert (psym).second)
26481 {
26482 gdb_index_symbol_kind kind = symbol_kind (psym);
26483
26484 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
26485 is_static, kind, cu_index);
26486 }
26487 }
26488 }
26489
26490 /* A helper struct used when iterating over debug_types. */
26491 struct signatured_type_index_data
26492 {
26493 signatured_type_index_data (data_buf &types_list_,
26494 std::unordered_set<partial_symbol *> &psyms_seen_)
26495 : types_list (types_list_), psyms_seen (psyms_seen_)
26496 {}
26497
26498 struct objfile *objfile;
26499 struct mapped_symtab *symtab;
26500 data_buf &types_list;
26501 std::unordered_set<partial_symbol *> &psyms_seen;
26502 int cu_index;
26503 };
26504
26505 /* A helper function that writes a single signatured_type to an
26506 obstack. */
26507
26508 static int
26509 write_one_signatured_type (void **slot, void *d)
26510 {
26511 struct signatured_type_index_data *info
26512 = (struct signatured_type_index_data *) d;
26513 struct signatured_type *entry = (struct signatured_type *) *slot;
26514 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26515
26516 write_psymbols (info->symtab,
26517 info->psyms_seen,
26518 &info->objfile->global_psymbols[psymtab->globals_offset],
26519 psymtab->n_global_syms, info->cu_index,
26520 0);
26521 write_psymbols (info->symtab,
26522 info->psyms_seen,
26523 &info->objfile->static_psymbols[psymtab->statics_offset],
26524 psymtab->n_static_syms, info->cu_index,
26525 1);
26526
26527 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26528 to_underlying (entry->per_cu.sect_off));
26529 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26530 to_underlying (entry->type_offset_in_tu));
26531 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26532
26533 ++info->cu_index;
26534
26535 return 1;
26536 }
26537
26538 /* Recurse into all "included" dependencies and count their symbols as
26539 if they appeared in this psymtab. */
26540
26541 static void
26542 recursively_count_psymbols (struct partial_symtab *psymtab,
26543 size_t &psyms_seen)
26544 {
26545 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26546 if (psymtab->dependencies[i]->user != NULL)
26547 recursively_count_psymbols (psymtab->dependencies[i],
26548 psyms_seen);
26549
26550 psyms_seen += psymtab->n_global_syms;
26551 psyms_seen += psymtab->n_static_syms;
26552 }
26553
26554 /* Recurse into all "included" dependencies and write their symbols as
26555 if they appeared in this psymtab. */
26556
26557 static void
26558 recursively_write_psymbols (struct objfile *objfile,
26559 struct partial_symtab *psymtab,
26560 struct mapped_symtab *symtab,
26561 std::unordered_set<partial_symbol *> &psyms_seen,
26562 offset_type cu_index)
26563 {
26564 int i;
26565
26566 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26567 if (psymtab->dependencies[i]->user != NULL)
26568 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26569 symtab, psyms_seen, cu_index);
26570
26571 write_psymbols (symtab,
26572 psyms_seen,
26573 &objfile->global_psymbols[psymtab->globals_offset],
26574 psymtab->n_global_syms, cu_index,
26575 0);
26576 write_psymbols (symtab,
26577 psyms_seen,
26578 &objfile->static_psymbols[psymtab->statics_offset],
26579 psymtab->n_static_syms, cu_index,
26580 1);
26581 }
26582
26583 /* DWARF-5 .debug_names builder. */
26584 class debug_names
26585 {
26586 public:
26587 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26588 bfd_endian dwarf5_byte_order)
26589 : m_dwarf5_byte_order (dwarf5_byte_order),
26590 m_dwarf32 (dwarf5_byte_order),
26591 m_dwarf64 (dwarf5_byte_order),
26592 m_dwarf (is_dwarf64
26593 ? static_cast<dwarf &> (m_dwarf64)
26594 : static_cast<dwarf &> (m_dwarf32)),
26595 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26596 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26597 m_debugstrlookup (dwarf2_per_objfile)
26598 {}
26599
26600 int dwarf5_offset_size () const
26601 {
26602 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26603 return dwarf5_is_dwarf64 ? 8 : 4;
26604 }
26605
26606 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26607 enum class unit_kind { cu, tu };
26608
26609 /* Insert one symbol. */
26610 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26611 unit_kind kind)
26612 {
26613 const int dwarf_tag = psymbol_tag (psym);
26614 if (dwarf_tag == 0)
26615 return;
26616 const char *const name = SYMBOL_SEARCH_NAME (psym);
26617 const auto insertpair
26618 = m_name_to_value_set.emplace (c_str_view (name),
26619 std::set<symbol_value> ());
26620 std::set<symbol_value> &value_set = insertpair.first->second;
26621 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26622 }
26623
26624 /* Build all the tables. All symbols must be already inserted.
26625 This function does not call file_write, caller has to do it
26626 afterwards. */
26627 void build ()
26628 {
26629 /* Verify the build method has not be called twice. */
26630 gdb_assert (m_abbrev_table.empty ());
26631 const size_t name_count = m_name_to_value_set.size ();
26632 m_bucket_table.resize
26633 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26634 m_hash_table.reserve (name_count);
26635 m_name_table_string_offs.reserve (name_count);
26636 m_name_table_entry_offs.reserve (name_count);
26637
26638 /* Map each hash of symbol to its name and value. */
26639 struct hash_it_pair
26640 {
26641 uint32_t hash;
26642 decltype (m_name_to_value_set)::const_iterator it;
26643 };
26644 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26645 bucket_hash.resize (m_bucket_table.size ());
26646 for (decltype (m_name_to_value_set)::const_iterator it
26647 = m_name_to_value_set.cbegin ();
26648 it != m_name_to_value_set.cend ();
26649 ++it)
26650 {
26651 const char *const name = it->first.c_str ();
26652 const uint32_t hash = dwarf5_djb_hash (name);
26653 hash_it_pair hashitpair;
26654 hashitpair.hash = hash;
26655 hashitpair.it = it;
26656 auto &slot = bucket_hash[hash % bucket_hash.size()];
26657 slot.push_front (std::move (hashitpair));
26658 }
26659 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26660 {
26661 const std::forward_list<hash_it_pair> &hashitlist
26662 = bucket_hash[bucket_ix];
26663 if (hashitlist.empty ())
26664 continue;
26665 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26666 /* The hashes array is indexed starting at 1. */
26667 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26668 sizeof (bucket_slot), m_dwarf5_byte_order,
26669 m_hash_table.size () + 1);
26670 for (const hash_it_pair &hashitpair : hashitlist)
26671 {
26672 m_hash_table.push_back (0);
26673 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26674 (&m_hash_table.back ()),
26675 sizeof (m_hash_table.back ()),
26676 m_dwarf5_byte_order, hashitpair.hash);
26677 const c_str_view &name = hashitpair.it->first;
26678 const std::set<symbol_value> &value_set = hashitpair.it->second;
26679 m_name_table_string_offs.push_back_reorder
26680 (m_debugstrlookup.lookup (name.c_str ()));
26681 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26682 gdb_assert (!value_set.empty ());
26683 for (const symbol_value &value : value_set)
26684 {
26685 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26686 value.is_static,
26687 value.kind)];
26688 if (idx == 0)
26689 {
26690 idx = m_idx_next++;
26691 m_abbrev_table.append_unsigned_leb128 (idx);
26692 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26693 m_abbrev_table.append_unsigned_leb128
26694 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26695 : DW_IDX_type_unit);
26696 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26697 m_abbrev_table.append_unsigned_leb128 (value.is_static
26698 ? DW_IDX_GNU_internal
26699 : DW_IDX_GNU_external);
26700 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26701
26702 /* Terminate attributes list. */
26703 m_abbrev_table.append_unsigned_leb128 (0);
26704 m_abbrev_table.append_unsigned_leb128 (0);
26705 }
26706
26707 m_entry_pool.append_unsigned_leb128 (idx);
26708 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26709 }
26710
26711 /* Terminate the list of CUs. */
26712 m_entry_pool.append_unsigned_leb128 (0);
26713 }
26714 }
26715 gdb_assert (m_hash_table.size () == name_count);
26716
26717 /* Terminate tags list. */
26718 m_abbrev_table.append_unsigned_leb128 (0);
26719 }
26720
26721 /* Return .debug_names bucket count. This must be called only after
26722 calling the build method. */
26723 uint32_t bucket_count () const
26724 {
26725 /* Verify the build method has been already called. */
26726 gdb_assert (!m_abbrev_table.empty ());
26727 const uint32_t retval = m_bucket_table.size ();
26728
26729 /* Check for overflow. */
26730 gdb_assert (retval == m_bucket_table.size ());
26731 return retval;
26732 }
26733
26734 /* Return .debug_names names count. This must be called only after
26735 calling the build method. */
26736 uint32_t name_count () const
26737 {
26738 /* Verify the build method has been already called. */
26739 gdb_assert (!m_abbrev_table.empty ());
26740 const uint32_t retval = m_hash_table.size ();
26741
26742 /* Check for overflow. */
26743 gdb_assert (retval == m_hash_table.size ());
26744 return retval;
26745 }
26746
26747 /* Return number of bytes of .debug_names abbreviation table. This
26748 must be called only after calling the build method. */
26749 uint32_t abbrev_table_bytes () const
26750 {
26751 gdb_assert (!m_abbrev_table.empty ());
26752 return m_abbrev_table.size ();
26753 }
26754
26755 /* Recurse into all "included" dependencies and store their symbols
26756 as if they appeared in this psymtab. */
26757 void recursively_write_psymbols
26758 (struct objfile *objfile,
26759 struct partial_symtab *psymtab,
26760 std::unordered_set<partial_symbol *> &psyms_seen,
26761 int cu_index)
26762 {
26763 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26764 if (psymtab->dependencies[i]->user != NULL)
26765 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26766 psyms_seen, cu_index);
26767
26768 write_psymbols (psyms_seen,
26769 &objfile->global_psymbols[psymtab->globals_offset],
26770 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26771 write_psymbols (psyms_seen,
26772 &objfile->static_psymbols[psymtab->statics_offset],
26773 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26774 }
26775
26776 /* Return number of bytes the .debug_names section will have. This
26777 must be called only after calling the build method. */
26778 size_t bytes () const
26779 {
26780 /* Verify the build method has been already called. */
26781 gdb_assert (!m_abbrev_table.empty ());
26782 size_t expected_bytes = 0;
26783 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26784 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26785 expected_bytes += m_name_table_string_offs.bytes ();
26786 expected_bytes += m_name_table_entry_offs.bytes ();
26787 expected_bytes += m_abbrev_table.size ();
26788 expected_bytes += m_entry_pool.size ();
26789 return expected_bytes;
26790 }
26791
26792 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26793 FILE_STR. This must be called only after calling the build
26794 method. */
26795 void file_write (FILE *file_names, FILE *file_str) const
26796 {
26797 /* Verify the build method has been already called. */
26798 gdb_assert (!m_abbrev_table.empty ());
26799 ::file_write (file_names, m_bucket_table);
26800 ::file_write (file_names, m_hash_table);
26801 m_name_table_string_offs.file_write (file_names);
26802 m_name_table_entry_offs.file_write (file_names);
26803 m_abbrev_table.file_write (file_names);
26804 m_entry_pool.file_write (file_names);
26805 m_debugstrlookup.file_write (file_str);
26806 }
26807
26808 /* A helper user data for write_one_signatured_type. */
26809 class write_one_signatured_type_data
26810 {
26811 public:
26812 write_one_signatured_type_data (debug_names &nametable_,
26813 signatured_type_index_data &&info_)
26814 : nametable (nametable_), info (std::move (info_))
26815 {}
26816 debug_names &nametable;
26817 struct signatured_type_index_data info;
26818 };
26819
26820 /* A helper function to pass write_one_signatured_type to
26821 htab_traverse_noresize. */
26822 static int
26823 write_one_signatured_type (void **slot, void *d)
26824 {
26825 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26826 struct signatured_type_index_data *info = &data->info;
26827 struct signatured_type *entry = (struct signatured_type *) *slot;
26828
26829 data->nametable.write_one_signatured_type (entry, info);
26830
26831 return 1;
26832 }
26833
26834 private:
26835
26836 /* Storage for symbol names mapping them to their .debug_str section
26837 offsets. */
26838 class debug_str_lookup
26839 {
26840 public:
26841
26842 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26843 All .debug_str section strings are automatically stored. */
26844 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26845 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26846 m_dwarf2_per_objfile (dwarf2_per_objfile)
26847 {
26848 dwarf2_read_section (dwarf2_per_objfile->objfile,
26849 &dwarf2_per_objfile->str);
26850 if (dwarf2_per_objfile->str.buffer == NULL)
26851 return;
26852 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26853 data < (dwarf2_per_objfile->str.buffer
26854 + dwarf2_per_objfile->str.size);)
26855 {
26856 const char *const s = reinterpret_cast<const char *> (data);
26857 const auto insertpair
26858 = m_str_table.emplace (c_str_view (s),
26859 data - dwarf2_per_objfile->str.buffer);
26860 if (!insertpair.second)
26861 complaint (&symfile_complaints,
26862 _("Duplicate string \"%s\" in "
26863 ".debug_str section [in module %s]"),
26864 s, bfd_get_filename (m_abfd));
26865 data += strlen (s) + 1;
26866 }
26867 }
26868
26869 /* Return offset of symbol name S in the .debug_str section. Add
26870 such symbol to the section's end if it does not exist there
26871 yet. */
26872 size_t lookup (const char *s)
26873 {
26874 const auto it = m_str_table.find (c_str_view (s));
26875 if (it != m_str_table.end ())
26876 return it->second;
26877 const size_t offset = (m_dwarf2_per_objfile->str.size
26878 + m_str_add_buf.size ());
26879 m_str_table.emplace (c_str_view (s), offset);
26880 m_str_add_buf.append_cstr0 (s);
26881 return offset;
26882 }
26883
26884 /* Append the end of the .debug_str section to FILE. */
26885 void file_write (FILE *file) const
26886 {
26887 m_str_add_buf.file_write (file);
26888 }
26889
26890 private:
26891 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26892 bfd *const m_abfd;
26893 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26894
26895 /* Data to add at the end of .debug_str for new needed symbol names. */
26896 data_buf m_str_add_buf;
26897 };
26898
26899 /* Container to map used DWARF tags to their .debug_names abbreviation
26900 tags. */
26901 class index_key
26902 {
26903 public:
26904 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26905 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26906 {
26907 }
26908
26909 bool
26910 operator== (const index_key &other) const
26911 {
26912 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26913 && kind == other.kind);
26914 }
26915
26916 const int dwarf_tag;
26917 const bool is_static;
26918 const unit_kind kind;
26919 };
26920
26921 /* Provide std::unordered_map::hasher for index_key. */
26922 class index_key_hasher
26923 {
26924 public:
26925 size_t
26926 operator () (const index_key &key) const
26927 {
26928 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26929 }
26930 };
26931
26932 /* Parameters of one symbol entry. */
26933 class symbol_value
26934 {
26935 public:
26936 const int dwarf_tag, cu_index;
26937 const bool is_static;
26938 const unit_kind kind;
26939
26940 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26941 unit_kind kind_)
26942 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26943 kind (kind_)
26944 {}
26945
26946 bool
26947 operator< (const symbol_value &other) const
26948 {
26949 #define X(n) \
26950 do \
26951 { \
26952 if (n < other.n) \
26953 return true; \
26954 if (n > other.n) \
26955 return false; \
26956 } \
26957 while (0)
26958 X (dwarf_tag);
26959 X (is_static);
26960 X (kind);
26961 X (cu_index);
26962 #undef X
26963 return false;
26964 }
26965 };
26966
26967 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26968 output. */
26969 class offset_vec
26970 {
26971 protected:
26972 const bfd_endian dwarf5_byte_order;
26973 public:
26974 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26975 : dwarf5_byte_order (dwarf5_byte_order_)
26976 {}
26977
26978 /* Call std::vector::reserve for NELEM elements. */
26979 virtual void reserve (size_t nelem) = 0;
26980
26981 /* Call std::vector::push_back with store_unsigned_integer byte
26982 reordering for ELEM. */
26983 virtual void push_back_reorder (size_t elem) = 0;
26984
26985 /* Return expected output size in bytes. */
26986 virtual size_t bytes () const = 0;
26987
26988 /* Write name table to FILE. */
26989 virtual void file_write (FILE *file) const = 0;
26990 };
26991
26992 /* Template to unify DWARF-32 and DWARF-64 output. */
26993 template<typename OffsetSize>
26994 class offset_vec_tmpl : public offset_vec
26995 {
26996 public:
26997 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26998 : offset_vec (dwarf5_byte_order_)
26999 {}
27000
27001 /* Implement offset_vec::reserve. */
27002 void reserve (size_t nelem) override
27003 {
27004 m_vec.reserve (nelem);
27005 }
27006
27007 /* Implement offset_vec::push_back_reorder. */
27008 void push_back_reorder (size_t elem) override
27009 {
27010 m_vec.push_back (elem);
27011 /* Check for overflow. */
27012 gdb_assert (m_vec.back () == elem);
27013 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
27014 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
27015 }
27016
27017 /* Implement offset_vec::bytes. */
27018 size_t bytes () const override
27019 {
27020 return m_vec.size () * sizeof (m_vec[0]);
27021 }
27022
27023 /* Implement offset_vec::file_write. */
27024 void file_write (FILE *file) const override
27025 {
27026 ::file_write (file, m_vec);
27027 }
27028
27029 private:
27030 std::vector<OffsetSize> m_vec;
27031 };
27032
27033 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
27034 respecting name table width. */
27035 class dwarf
27036 {
27037 public:
27038 offset_vec &name_table_string_offs, &name_table_entry_offs;
27039
27040 dwarf (offset_vec &name_table_string_offs_,
27041 offset_vec &name_table_entry_offs_)
27042 : name_table_string_offs (name_table_string_offs_),
27043 name_table_entry_offs (name_table_entry_offs_)
27044 {
27045 }
27046 };
27047
27048 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
27049 respecting name table width. */
27050 template<typename OffsetSize>
27051 class dwarf_tmpl : public dwarf
27052 {
27053 public:
27054 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
27055 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
27056 m_name_table_string_offs (dwarf5_byte_order_),
27057 m_name_table_entry_offs (dwarf5_byte_order_)
27058 {}
27059
27060 private:
27061 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
27062 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
27063 };
27064
27065 /* Try to reconstruct original DWARF tag for given partial_symbol.
27066 This function is not DWARF-5 compliant but it is sufficient for
27067 GDB as a DWARF-5 index consumer. */
27068 static int psymbol_tag (const struct partial_symbol *psym)
27069 {
27070 domain_enum domain = PSYMBOL_DOMAIN (psym);
27071 enum address_class aclass = PSYMBOL_CLASS (psym);
27072
27073 switch (domain)
27074 {
27075 case VAR_DOMAIN:
27076 switch (aclass)
27077 {
27078 case LOC_BLOCK:
27079 return DW_TAG_subprogram;
27080 case LOC_TYPEDEF:
27081 return DW_TAG_typedef;
27082 case LOC_COMPUTED:
27083 case LOC_CONST_BYTES:
27084 case LOC_OPTIMIZED_OUT:
27085 case LOC_STATIC:
27086 return DW_TAG_variable;
27087 case LOC_CONST:
27088 /* Note: It's currently impossible to recognize psyms as enum values
27089 short of reading the type info. For now punt. */
27090 return DW_TAG_variable;
27091 default:
27092 /* There are other LOC_FOO values that one might want to classify
27093 as variables, but dwarf2read.c doesn't currently use them. */
27094 return DW_TAG_variable;
27095 }
27096 case STRUCT_DOMAIN:
27097 return DW_TAG_structure_type;
27098 default:
27099 return 0;
27100 }
27101 }
27102
27103 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
27104 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
27105 struct partial_symbol **psymp, int count, int cu_index,
27106 bool is_static, unit_kind kind)
27107 {
27108 for (; count-- > 0; ++psymp)
27109 {
27110 struct partial_symbol *psym = *psymp;
27111
27112 if (SYMBOL_LANGUAGE (psym) == language_ada)
27113 error (_("Ada is not currently supported by the index"));
27114
27115 /* Only add a given psymbol once. */
27116 if (psyms_seen.insert (psym).second)
27117 insert (psym, cu_index, is_static, kind);
27118 }
27119 }
27120
27121 /* A helper function that writes a single signatured_type
27122 to a debug_names. */
27123 void
27124 write_one_signatured_type (struct signatured_type *entry,
27125 struct signatured_type_index_data *info)
27126 {
27127 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
27128
27129 write_psymbols (info->psyms_seen,
27130 &info->objfile->global_psymbols[psymtab->globals_offset],
27131 psymtab->n_global_syms, info->cu_index, false,
27132 unit_kind::tu);
27133 write_psymbols (info->psyms_seen,
27134 &info->objfile->static_psymbols[psymtab->statics_offset],
27135 psymtab->n_static_syms, info->cu_index, true,
27136 unit_kind::tu);
27137
27138 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
27139 to_underlying (entry->per_cu.sect_off));
27140
27141 ++info->cu_index;
27142 }
27143
27144 /* Store value of each symbol. */
27145 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
27146 m_name_to_value_set;
27147
27148 /* Tables of DWARF-5 .debug_names. They are in object file byte
27149 order. */
27150 std::vector<uint32_t> m_bucket_table;
27151 std::vector<uint32_t> m_hash_table;
27152
27153 const bfd_endian m_dwarf5_byte_order;
27154 dwarf_tmpl<uint32_t> m_dwarf32;
27155 dwarf_tmpl<uint64_t> m_dwarf64;
27156 dwarf &m_dwarf;
27157 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
27158 debug_str_lookup m_debugstrlookup;
27159
27160 /* Map each used .debug_names abbreviation tag parameter to its
27161 index value. */
27162 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
27163
27164 /* Next unused .debug_names abbreviation tag for
27165 m_indexkey_to_idx. */
27166 int m_idx_next = 1;
27167
27168 /* .debug_names abbreviation table. */
27169 data_buf m_abbrev_table;
27170
27171 /* .debug_names entry pool. */
27172 data_buf m_entry_pool;
27173 };
27174
27175 /* Return iff any of the needed offsets does not fit into 32-bit
27176 .debug_names section. */
27177
27178 static bool
27179 check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
27180 {
27181 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27182 {
27183 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
27184
27185 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
27186 return true;
27187 }
27188 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
27189 {
27190 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
27191 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
27192
27193 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
27194 return true;
27195 }
27196 return false;
27197 }
27198
27199 /* The psyms_seen set is potentially going to be largish (~40k
27200 elements when indexing a -g3 build of GDB itself). Estimate the
27201 number of elements in order to avoid too many rehashes, which
27202 require rebuilding buckets and thus many trips to
27203 malloc/free. */
27204
27205 static size_t
27206 psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
27207 {
27208 size_t psyms_count = 0;
27209 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27210 {
27211 struct dwarf2_per_cu_data *per_cu
27212 = dwarf2_per_objfile->all_comp_units[i];
27213 struct partial_symtab *psymtab = per_cu->v.psymtab;
27214
27215 if (psymtab != NULL && psymtab->user == NULL)
27216 recursively_count_psymbols (psymtab, psyms_count);
27217 }
27218 /* Generating an index for gdb itself shows a ratio of
27219 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
27220 return psyms_count / 4;
27221 }
27222
27223 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
27224 Return how many bytes were expected to be written into OUT_FILE. */
27225
27226 static size_t
27227 write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
27228 {
27229 struct objfile *objfile = dwarf2_per_objfile->objfile;
27230 mapped_symtab symtab;
27231 data_buf cu_list;
27232
27233 /* While we're scanning CU's create a table that maps a psymtab pointer
27234 (which is what addrmap records) to its index (which is what is recorded
27235 in the index file). This will later be needed to write the address
27236 table. */
27237 psym_index_map cu_index_htab;
27238 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
27239
27240 /* The CU list is already sorted, so we don't need to do additional
27241 work here. Also, the debug_types entries do not appear in
27242 all_comp_units, but only in their own hash table. */
27243
27244 std::unordered_set<partial_symbol *> psyms_seen
27245 (psyms_seen_size (dwarf2_per_objfile));
27246 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27247 {
27248 struct dwarf2_per_cu_data *per_cu
27249 = dwarf2_per_objfile->all_comp_units[i];
27250 struct partial_symtab *psymtab = per_cu->v.psymtab;
27251
27252 /* CU of a shared file from 'dwz -m' may be unused by this main file.
27253 It may be referenced from a local scope but in such case it does not
27254 need to be present in .gdb_index. */
27255 if (psymtab == NULL)
27256 continue;
27257
27258 if (psymtab->user == NULL)
27259 recursively_write_psymbols (objfile, psymtab, &symtab,
27260 psyms_seen, i);
27261
27262 const auto insertpair = cu_index_htab.emplace (psymtab, i);
27263 gdb_assert (insertpair.second);
27264
27265 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
27266 to_underlying (per_cu->sect_off));
27267 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
27268 }
27269
27270 /* Dump the address map. */
27271 data_buf addr_vec;
27272 write_address_map (objfile, addr_vec, cu_index_htab);
27273
27274 /* Write out the .debug_type entries, if any. */
27275 data_buf types_cu_list;
27276 if (dwarf2_per_objfile->signatured_types)
27277 {
27278 signatured_type_index_data sig_data (types_cu_list,
27279 psyms_seen);
27280
27281 sig_data.objfile = objfile;
27282 sig_data.symtab = &symtab;
27283 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
27284 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27285 write_one_signatured_type, &sig_data);
27286 }
27287
27288 /* Now that we've processed all symbols we can shrink their cu_indices
27289 lists. */
27290 uniquify_cu_indices (&symtab);
27291
27292 data_buf symtab_vec, constant_pool;
27293 write_hash_table (&symtab, symtab_vec, constant_pool);
27294
27295 data_buf contents;
27296 const offset_type size_of_contents = 6 * sizeof (offset_type);
27297 offset_type total_len = size_of_contents;
27298
27299 /* The version number. */
27300 contents.append_data (MAYBE_SWAP (8));
27301
27302 /* The offset of the CU list from the start of the file. */
27303 contents.append_data (MAYBE_SWAP (total_len));
27304 total_len += cu_list.size ();
27305
27306 /* The offset of the types CU list from the start of the file. */
27307 contents.append_data (MAYBE_SWAP (total_len));
27308 total_len += types_cu_list.size ();
27309
27310 /* The offset of the address table from the start of the file. */
27311 contents.append_data (MAYBE_SWAP (total_len));
27312 total_len += addr_vec.size ();
27313
27314 /* The offset of the symbol table from the start of the file. */
27315 contents.append_data (MAYBE_SWAP (total_len));
27316 total_len += symtab_vec.size ();
27317
27318 /* The offset of the constant pool from the start of the file. */
27319 contents.append_data (MAYBE_SWAP (total_len));
27320 total_len += constant_pool.size ();
27321
27322 gdb_assert (contents.size () == size_of_contents);
27323
27324 contents.file_write (out_file);
27325 cu_list.file_write (out_file);
27326 types_cu_list.file_write (out_file);
27327 addr_vec.file_write (out_file);
27328 symtab_vec.file_write (out_file);
27329 constant_pool.file_write (out_file);
27330
27331 return total_len;
27332 }
27333
27334 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
27335 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
27336
27337 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
27338 needed addition to .debug_str section to OUT_FILE_STR. Return how
27339 many bytes were expected to be written into OUT_FILE. */
27340
27341 static size_t
27342 write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
27343 FILE *out_file, FILE *out_file_str)
27344 {
27345 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
27346 struct objfile *objfile = dwarf2_per_objfile->objfile;
27347 const enum bfd_endian dwarf5_byte_order
27348 = gdbarch_byte_order (get_objfile_arch (objfile));
27349
27350 /* The CU list is already sorted, so we don't need to do additional
27351 work here. Also, the debug_types entries do not appear in
27352 all_comp_units, but only in their own hash table. */
27353 data_buf cu_list;
27354 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
27355 dwarf5_byte_order);
27356 std::unordered_set<partial_symbol *>
27357 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
27358 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27359 {
27360 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
27361 partial_symtab *psymtab = per_cu->v.psymtab;
27362
27363 /* CU of a shared file from 'dwz -m' may be unused by this main
27364 file. It may be referenced from a local scope but in such
27365 case it does not need to be present in .debug_names. */
27366 if (psymtab == NULL)
27367 continue;
27368
27369 if (psymtab->user == NULL)
27370 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
27371
27372 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
27373 to_underlying (per_cu->sect_off));
27374 }
27375
27376 /* Write out the .debug_type entries, if any. */
27377 data_buf types_cu_list;
27378 if (dwarf2_per_objfile->signatured_types)
27379 {
27380 debug_names::write_one_signatured_type_data sig_data (nametable,
27381 signatured_type_index_data (types_cu_list, psyms_seen));
27382
27383 sig_data.info.objfile = objfile;
27384 /* It is used only for gdb_index. */
27385 sig_data.info.symtab = nullptr;
27386 sig_data.info.cu_index = 0;
27387 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27388 debug_names::write_one_signatured_type,
27389 &sig_data);
27390 }
27391
27392 nametable.build ();
27393
27394 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
27395
27396 const offset_type bytes_of_header
27397 = ((dwarf5_is_dwarf64 ? 12 : 4)
27398 + 2 + 2 + 7 * 4
27399 + sizeof (dwarf5_gdb_augmentation));
27400 size_t expected_bytes = 0;
27401 expected_bytes += bytes_of_header;
27402 expected_bytes += cu_list.size ();
27403 expected_bytes += types_cu_list.size ();
27404 expected_bytes += nametable.bytes ();
27405 data_buf header;
27406
27407 if (!dwarf5_is_dwarf64)
27408 {
27409 const uint64_t size64 = expected_bytes - 4;
27410 gdb_assert (size64 < 0xfffffff0);
27411 header.append_uint (4, dwarf5_byte_order, size64);
27412 }
27413 else
27414 {
27415 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
27416 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
27417 }
27418
27419 /* The version number. */
27420 header.append_uint (2, dwarf5_byte_order, 5);
27421
27422 /* Padding. */
27423 header.append_uint (2, dwarf5_byte_order, 0);
27424
27425 /* comp_unit_count - The number of CUs in the CU list. */
27426 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
27427
27428 /* local_type_unit_count - The number of TUs in the local TU
27429 list. */
27430 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
27431
27432 /* foreign_type_unit_count - The number of TUs in the foreign TU
27433 list. */
27434 header.append_uint (4, dwarf5_byte_order, 0);
27435
27436 /* bucket_count - The number of hash buckets in the hash lookup
27437 table. */
27438 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
27439
27440 /* name_count - The number of unique names in the index. */
27441 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
27442
27443 /* abbrev_table_size - The size in bytes of the abbreviations
27444 table. */
27445 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
27446
27447 /* augmentation_string_size - The size in bytes of the augmentation
27448 string. This value is rounded up to a multiple of 4. */
27449 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
27450 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
27451 header.append_data (dwarf5_gdb_augmentation);
27452
27453 gdb_assert (header.size () == bytes_of_header);
27454
27455 header.file_write (out_file);
27456 cu_list.file_write (out_file);
27457 types_cu_list.file_write (out_file);
27458 nametable.file_write (out_file, out_file_str);
27459
27460 return expected_bytes;
27461 }
27462
27463 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
27464 position is at the end of the file. */
27465
27466 static void
27467 assert_file_size (FILE *file, const char *filename, size_t expected_size)
27468 {
27469 const auto file_size = ftell (file);
27470 if (file_size == -1)
27471 error (_("Can't get `%s' size"), filename);
27472 gdb_assert (file_size == expected_size);
27473 }
27474
27475 /* Create an index file for OBJFILE in the directory DIR. */
27476
27477 static void
27478 write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
27479 const char *dir,
27480 dw_index_kind index_kind)
27481 {
27482 struct objfile *objfile = dwarf2_per_objfile->objfile;
27483
27484 if (dwarf2_per_objfile->using_index)
27485 error (_("Cannot use an index to create the index"));
27486
27487 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
27488 error (_("Cannot make an index when the file has multiple .debug_types sections"));
27489
27490 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
27491 return;
27492
27493 struct stat st;
27494 if (stat (objfile_name (objfile), &st) < 0)
27495 perror_with_name (objfile_name (objfile));
27496
27497 std::string filename (std::string (dir) + SLASH_STRING
27498 + lbasename (objfile_name (objfile))
27499 + (index_kind == dw_index_kind::DEBUG_NAMES
27500 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27501
27502 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27503 if (!out_file)
27504 error (_("Can't open `%s' for writing"), filename.c_str ());
27505
27506 /* Order matters here; we want FILE to be closed before FILENAME is
27507 unlinked, because on MS-Windows one cannot delete a file that is
27508 still open. (Don't call anything here that might throw until
27509 file_closer is created.) */
27510 gdb::unlinker unlink_file (filename.c_str ());
27511 gdb_file_up close_out_file (out_file);
27512
27513 if (index_kind == dw_index_kind::DEBUG_NAMES)
27514 {
27515 std::string filename_str (std::string (dir) + SLASH_STRING
27516 + lbasename (objfile_name (objfile))
27517 + DEBUG_STR_SUFFIX);
27518 FILE *out_file_str
27519 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27520 if (!out_file_str)
27521 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27522 gdb::unlinker unlink_file_str (filename_str.c_str ());
27523 gdb_file_up close_out_file_str (out_file_str);
27524
27525 const size_t total_len
27526 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27527 assert_file_size (out_file, filename.c_str (), total_len);
27528
27529 /* We want to keep the file .debug_str file too. */
27530 unlink_file_str.keep ();
27531 }
27532 else
27533 {
27534 const size_t total_len
27535 = write_gdbindex (dwarf2_per_objfile, out_file);
27536 assert_file_size (out_file, filename.c_str (), total_len);
27537 }
27538
27539 /* We want to keep the file. */
27540 unlink_file.keep ();
27541 }
27542
27543 /* Implementation of the `save gdb-index' command.
27544
27545 Note that the .gdb_index file format used by this command is
27546 documented in the GDB manual. Any changes here must be documented
27547 there. */
27548
27549 static void
27550 save_gdb_index_command (const char *arg, int from_tty)
27551 {
27552 struct objfile *objfile;
27553 const char dwarf5space[] = "-dwarf-5 ";
27554 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27555
27556 if (!arg)
27557 arg = "";
27558
27559 arg = skip_spaces (arg);
27560 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27561 {
27562 index_kind = dw_index_kind::DEBUG_NAMES;
27563 arg += strlen (dwarf5space);
27564 arg = skip_spaces (arg);
27565 }
27566
27567 if (!*arg)
27568 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27569
27570 ALL_OBJFILES (objfile)
27571 {
27572 struct stat st;
27573
27574 /* If the objfile does not correspond to an actual file, skip it. */
27575 if (stat (objfile_name (objfile), &st) < 0)
27576 continue;
27577
27578 struct dwarf2_per_objfile *dwarf2_per_objfile
27579 = get_dwarf2_per_objfile (objfile);
27580
27581 if (dwarf2_per_objfile != NULL)
27582 {
27583 TRY
27584 {
27585 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27586 }
27587 CATCH (except, RETURN_MASK_ERROR)
27588 {
27589 exception_fprintf (gdb_stderr, except,
27590 _("Error while writing index for `%s': "),
27591 objfile_name (objfile));
27592 }
27593 END_CATCH
27594 }
27595
27596 }
27597 }
27598
27599 \f
27600
27601 int dwarf_always_disassemble;
27602
27603 static void
27604 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27605 struct cmd_list_element *c, const char *value)
27606 {
27607 fprintf_filtered (file,
27608 _("Whether to always disassemble "
27609 "DWARF expressions is %s.\n"),
27610 value);
27611 }
27612
27613 static void
27614 show_check_physname (struct ui_file *file, int from_tty,
27615 struct cmd_list_element *c, const char *value)
27616 {
27617 fprintf_filtered (file,
27618 _("Whether to check \"physname\" is %s.\n"),
27619 value);
27620 }
27621
27622 void
27623 _initialize_dwarf2_read (void)
27624 {
27625 struct cmd_list_element *c;
27626
27627 dwarf2_objfile_data_key = register_objfile_data ();
27628
27629 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27630 Set DWARF specific variables.\n\
27631 Configure DWARF variables such as the cache size"),
27632 &set_dwarf_cmdlist, "maintenance set dwarf ",
27633 0/*allow-unknown*/, &maintenance_set_cmdlist);
27634
27635 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27636 Show DWARF specific variables\n\
27637 Show DWARF variables such as the cache size"),
27638 &show_dwarf_cmdlist, "maintenance show dwarf ",
27639 0/*allow-unknown*/, &maintenance_show_cmdlist);
27640
27641 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27642 &dwarf_max_cache_age, _("\
27643 Set the upper bound on the age of cached DWARF compilation units."), _("\
27644 Show the upper bound on the age of cached DWARF compilation units."), _("\
27645 A higher limit means that cached compilation units will be stored\n\
27646 in memory longer, and more total memory will be used. Zero disables\n\
27647 caching, which can slow down startup."),
27648 NULL,
27649 show_dwarf_max_cache_age,
27650 &set_dwarf_cmdlist,
27651 &show_dwarf_cmdlist);
27652
27653 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27654 &dwarf_always_disassemble, _("\
27655 Set whether `info address' always disassembles DWARF expressions."), _("\
27656 Show whether `info address' always disassembles DWARF expressions."), _("\
27657 When enabled, DWARF expressions are always printed in an assembly-like\n\
27658 syntax. When disabled, expressions will be printed in a more\n\
27659 conversational style, when possible."),
27660 NULL,
27661 show_dwarf_always_disassemble,
27662 &set_dwarf_cmdlist,
27663 &show_dwarf_cmdlist);
27664
27665 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27666 Set debugging of the DWARF reader."), _("\
27667 Show debugging of the DWARF reader."), _("\
27668 When enabled (non-zero), debugging messages are printed during DWARF\n\
27669 reading and symtab expansion. A value of 1 (one) provides basic\n\
27670 information. A value greater than 1 provides more verbose information."),
27671 NULL,
27672 NULL,
27673 &setdebuglist, &showdebuglist);
27674
27675 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27676 Set debugging of the DWARF DIE reader."), _("\
27677 Show debugging of the DWARF DIE reader."), _("\
27678 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27679 The value is the maximum depth to print."),
27680 NULL,
27681 NULL,
27682 &setdebuglist, &showdebuglist);
27683
27684 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27685 Set debugging of the dwarf line reader."), _("\
27686 Show debugging of the dwarf line reader."), _("\
27687 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27688 A value of 1 (one) provides basic information.\n\
27689 A value greater than 1 provides more verbose information."),
27690 NULL,
27691 NULL,
27692 &setdebuglist, &showdebuglist);
27693
27694 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27695 Set cross-checking of \"physname\" code against demangler."), _("\
27696 Show cross-checking of \"physname\" code against demangler."), _("\
27697 When enabled, GDB's internal \"physname\" code is checked against\n\
27698 the demangler."),
27699 NULL, show_check_physname,
27700 &setdebuglist, &showdebuglist);
27701
27702 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27703 no_class, &use_deprecated_index_sections, _("\
27704 Set whether to use deprecated gdb_index sections."), _("\
27705 Show whether to use deprecated gdb_index sections."), _("\
27706 When enabled, deprecated .gdb_index sections are used anyway.\n\
27707 Normally they are ignored either because of a missing feature or\n\
27708 performance issue.\n\
27709 Warning: This option must be enabled before gdb reads the file."),
27710 NULL,
27711 NULL,
27712 &setlist, &showlist);
27713
27714 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27715 _("\
27716 Save a gdb-index file.\n\
27717 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27718 \n\
27719 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27720 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27721 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27722 &save_cmdlist);
27723 set_cmd_completer (c, filename_completer);
27724
27725 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27726 &dwarf2_locexpr_funcs);
27727 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27728 &dwarf2_loclist_funcs);
27729
27730 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27731 &dwarf2_block_frame_base_locexpr_funcs);
27732 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27733 &dwarf2_block_frame_base_loclist_funcs);
27734
27735 #if GDB_SELF_TEST
27736 selftests::register_test ("dw2_expand_symtabs_matching",
27737 selftests::dw2_expand_symtabs_matching::run_test);
27738 #endif
27739 }
This page took 0.633818 seconds and 4 git commands to generate.