* defs.h (ldirname): New prototype.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street, Fifth Floor,
28 Boston, MA 02110-1301, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_assert.h"
54 #include <sys/types.h>
55
56 /* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
70 #ifndef DWARF2_REG_TO_REGNUM
71 #define DWARF2_REG_TO_REGNUM(REG) (REG)
72 #endif
73
74 #if 0
75 /* .debug_info header for a compilation unit
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78 typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87 _COMP_UNIT_HEADER;
88 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
89 #endif
90
91 /* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94 typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104 _PUBNAMES_HEADER;
105 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107 /* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110 typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120 _ARANGES_HEADER;
121 #define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123 /* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126 typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144 _STATEMENT_PROLOGUE;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_per_objfile
149 {
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
164 gdb_byte *info_buffer;
165 gdb_byte *abbrev_buffer;
166 gdb_byte *line_buffer;
167 gdb_byte *str_buffer;
168 gdb_byte *macinfo_buffer;
169 gdb_byte *ranges_buffer;
170 gdb_byte *loc_buffer;
171
172 /* A list of all the compilation units. This is used to locate
173 the target compilation unit of a particular reference. */
174 struct dwarf2_per_cu_data **all_comp_units;
175
176 /* The number of compilation units in ALL_COMP_UNITS. */
177 int n_comp_units;
178
179 /* A chain of compilation units that are currently read in, so that
180 they can be freed later. */
181 struct dwarf2_per_cu_data *read_in_chain;
182
183 /* A flag indicating wether this objfile has a section loaded at a
184 VMA of 0. */
185 int has_section_at_zero;
186 };
187
188 static struct dwarf2_per_objfile *dwarf2_per_objfile;
189
190 static asection *dwarf_info_section;
191 static asection *dwarf_abbrev_section;
192 static asection *dwarf_line_section;
193 static asection *dwarf_pubnames_section;
194 static asection *dwarf_aranges_section;
195 static asection *dwarf_loc_section;
196 static asection *dwarf_macinfo_section;
197 static asection *dwarf_str_section;
198 static asection *dwarf_ranges_section;
199 asection *dwarf_frame_section;
200 asection *dwarf_eh_frame_section;
201
202 /* names of the debugging sections */
203
204 #define INFO_SECTION ".debug_info"
205 #define ABBREV_SECTION ".debug_abbrev"
206 #define LINE_SECTION ".debug_line"
207 #define PUBNAMES_SECTION ".debug_pubnames"
208 #define ARANGES_SECTION ".debug_aranges"
209 #define LOC_SECTION ".debug_loc"
210 #define MACINFO_SECTION ".debug_macinfo"
211 #define STR_SECTION ".debug_str"
212 #define RANGES_SECTION ".debug_ranges"
213 #define FRAME_SECTION ".debug_frame"
214 #define EH_FRAME_SECTION ".eh_frame"
215
216 /* local data types */
217
218 /* We hold several abbreviation tables in memory at the same time. */
219 #ifndef ABBREV_HASH_SIZE
220 #define ABBREV_HASH_SIZE 121
221 #endif
222
223 /* The data in a compilation unit header, after target2host
224 translation, looks like this. */
225 struct comp_unit_head
226 {
227 unsigned long length;
228 short version;
229 unsigned int abbrev_offset;
230 unsigned char addr_size;
231 unsigned char signed_addr_p;
232
233 /* Size of file offsets; either 4 or 8. */
234 unsigned int offset_size;
235
236 /* Size of the length field; either 4 or 12. */
237 unsigned int initial_length_size;
238
239 /* Offset to the first byte of this compilation unit header in the
240 .debug_info section, for resolving relative reference dies. */
241 unsigned int offset;
242
243 /* Pointer to this compilation unit header in the .debug_info
244 section. */
245 gdb_byte *cu_head_ptr;
246
247 /* Pointer to the first die of this compilation unit. This will be
248 the first byte following the compilation unit header. */
249 gdb_byte *first_die_ptr;
250
251 /* Pointer to the next compilation unit header in the program. */
252 struct comp_unit_head *next;
253
254 /* Base address of this compilation unit. */
255 CORE_ADDR base_address;
256
257 /* Non-zero if base_address has been set. */
258 int base_known;
259 };
260
261 /* Fixed size for the DIE hash table. */
262 #ifndef REF_HASH_SIZE
263 #define REF_HASH_SIZE 1021
264 #endif
265
266 /* Internal state when decoding a particular compilation unit. */
267 struct dwarf2_cu
268 {
269 /* The objfile containing this compilation unit. */
270 struct objfile *objfile;
271
272 /* The header of the compilation unit.
273
274 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
275 should logically be moved to the dwarf2_cu structure. */
276 struct comp_unit_head header;
277
278 struct function_range *first_fn, *last_fn, *cached_fn;
279
280 /* The language we are debugging. */
281 enum language language;
282 const struct language_defn *language_defn;
283
284 const char *producer;
285
286 /* The generic symbol table building routines have separate lists for
287 file scope symbols and all all other scopes (local scopes). So
288 we need to select the right one to pass to add_symbol_to_list().
289 We do it by keeping a pointer to the correct list in list_in_scope.
290
291 FIXME: The original dwarf code just treated the file scope as the
292 first local scope, and all other local scopes as nested local
293 scopes, and worked fine. Check to see if we really need to
294 distinguish these in buildsym.c. */
295 struct pending **list_in_scope;
296
297 /* Maintain an array of referenced fundamental types for the current
298 compilation unit being read. For DWARF version 1, we have to construct
299 the fundamental types on the fly, since no information about the
300 fundamental types is supplied. Each such fundamental type is created by
301 calling a language dependent routine to create the type, and then a
302 pointer to that type is then placed in the array at the index specified
303 by it's FT_<TYPENAME> value. The array has a fixed size set by the
304 FT_NUM_MEMBERS compile time constant, which is the number of predefined
305 fundamental types gdb knows how to construct. */
306 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
307
308 /* DWARF abbreviation table associated with this compilation unit. */
309 struct abbrev_info **dwarf2_abbrevs;
310
311 /* Storage for the abbrev table. */
312 struct obstack abbrev_obstack;
313
314 /* Hash table holding all the loaded partial DIEs. */
315 htab_t partial_dies;
316
317 /* Storage for things with the same lifetime as this read-in compilation
318 unit, including partial DIEs. */
319 struct obstack comp_unit_obstack;
320
321 /* When multiple dwarf2_cu structures are living in memory, this field
322 chains them all together, so that they can be released efficiently.
323 We will probably also want a generation counter so that most-recently-used
324 compilation units are cached... */
325 struct dwarf2_per_cu_data *read_in_chain;
326
327 /* Backchain to our per_cu entry if the tree has been built. */
328 struct dwarf2_per_cu_data *per_cu;
329
330 /* How many compilation units ago was this CU last referenced? */
331 int last_used;
332
333 /* A hash table of die offsets for following references. */
334 struct die_info *die_ref_table[REF_HASH_SIZE];
335
336 /* Full DIEs if read in. */
337 struct die_info *dies;
338
339 /* A set of pointers to dwarf2_per_cu_data objects for compilation
340 units referenced by this one. Only set during full symbol processing;
341 partial symbol tables do not have dependencies. */
342 htab_t dependencies;
343
344 /* Header data from the line table, during full symbol processing. */
345 struct line_header *line_header;
346
347 /* Mark used when releasing cached dies. */
348 unsigned int mark : 1;
349
350 /* This flag will be set if this compilation unit might include
351 inter-compilation-unit references. */
352 unsigned int has_form_ref_addr : 1;
353
354 /* This flag will be set if this compilation unit includes any
355 DW_TAG_namespace DIEs. If we know that there are explicit
356 DIEs for namespaces, we don't need to try to infer them
357 from mangled names. */
358 unsigned int has_namespace_info : 1;
359 };
360
361 /* Persistent data held for a compilation unit, even when not
362 processing it. We put a pointer to this structure in the
363 read_symtab_private field of the psymtab. If we encounter
364 inter-compilation-unit references, we also maintain a sorted
365 list of all compilation units. */
366
367 struct dwarf2_per_cu_data
368 {
369 /* The start offset and length of this compilation unit. 2**30-1
370 bytes should suffice to store the length of any compilation unit
371 - if it doesn't, GDB will fall over anyway. */
372 unsigned long offset;
373 unsigned long length : 30;
374
375 /* Flag indicating this compilation unit will be read in before
376 any of the current compilation units are processed. */
377 unsigned long queued : 1;
378
379 /* This flag will be set if we need to load absolutely all DIEs
380 for this compilation unit, instead of just the ones we think
381 are interesting. It gets set if we look for a DIE in the
382 hash table and don't find it. */
383 unsigned int load_all_dies : 1;
384
385 /* Set iff currently read in. */
386 struct dwarf2_cu *cu;
387
388 /* If full symbols for this CU have been read in, then this field
389 holds a map of DIE offsets to types. It isn't always possible
390 to reconstruct this information later, so we have to preserve
391 it. */
392 htab_t type_hash;
393
394 /* The partial symbol table associated with this compilation unit,
395 or NULL for partial units (which do not have an associated
396 symtab). */
397 struct partial_symtab *psymtab;
398 };
399
400 /* The line number information for a compilation unit (found in the
401 .debug_line section) begins with a "statement program header",
402 which contains the following information. */
403 struct line_header
404 {
405 unsigned int total_length;
406 unsigned short version;
407 unsigned int header_length;
408 unsigned char minimum_instruction_length;
409 unsigned char default_is_stmt;
410 int line_base;
411 unsigned char line_range;
412 unsigned char opcode_base;
413
414 /* standard_opcode_lengths[i] is the number of operands for the
415 standard opcode whose value is i. This means that
416 standard_opcode_lengths[0] is unused, and the last meaningful
417 element is standard_opcode_lengths[opcode_base - 1]. */
418 unsigned char *standard_opcode_lengths;
419
420 /* The include_directories table. NOTE! These strings are not
421 allocated with xmalloc; instead, they are pointers into
422 debug_line_buffer. If you try to free them, `free' will get
423 indigestion. */
424 unsigned int num_include_dirs, include_dirs_size;
425 char **include_dirs;
426
427 /* The file_names table. NOTE! These strings are not allocated
428 with xmalloc; instead, they are pointers into debug_line_buffer.
429 Don't try to free them directly. */
430 unsigned int num_file_names, file_names_size;
431 struct file_entry
432 {
433 char *name;
434 unsigned int dir_index;
435 unsigned int mod_time;
436 unsigned int length;
437 int included_p; /* Non-zero if referenced by the Line Number Program. */
438 struct symtab *symtab; /* The associated symbol table, if any. */
439 } *file_names;
440
441 /* The start and end of the statement program following this
442 header. These point into dwarf2_per_objfile->line_buffer. */
443 gdb_byte *statement_program_start, *statement_program_end;
444 };
445
446 /* When we construct a partial symbol table entry we only
447 need this much information. */
448 struct partial_die_info
449 {
450 /* Offset of this DIE. */
451 unsigned int offset;
452
453 /* DWARF-2 tag for this DIE. */
454 ENUM_BITFIELD(dwarf_tag) tag : 16;
455
456 /* Language code associated with this DIE. This is only used
457 for the compilation unit DIE. */
458 unsigned int language : 8;
459
460 /* Assorted flags describing the data found in this DIE. */
461 unsigned int has_children : 1;
462 unsigned int is_external : 1;
463 unsigned int is_declaration : 1;
464 unsigned int has_type : 1;
465 unsigned int has_specification : 1;
466 unsigned int has_stmt_list : 1;
467 unsigned int has_pc_info : 1;
468
469 /* Flag set if the SCOPE field of this structure has been
470 computed. */
471 unsigned int scope_set : 1;
472
473 /* Flag set if the DIE has a byte_size attribute. */
474 unsigned int has_byte_size : 1;
475
476 /* The name of this DIE. Normally the value of DW_AT_name, but
477 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
478 other fashion. */
479 char *name;
480 char *dirname;
481
482 /* The scope to prepend to our children. This is generally
483 allocated on the comp_unit_obstack, so will disappear
484 when this compilation unit leaves the cache. */
485 char *scope;
486
487 /* The location description associated with this DIE, if any. */
488 struct dwarf_block *locdesc;
489
490 /* If HAS_PC_INFO, the PC range associated with this DIE. */
491 CORE_ADDR lowpc;
492 CORE_ADDR highpc;
493
494 /* Pointer into the info_buffer pointing at the target of
495 DW_AT_sibling, if any. */
496 gdb_byte *sibling;
497
498 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
499 DW_AT_specification (or DW_AT_abstract_origin or
500 DW_AT_extension). */
501 unsigned int spec_offset;
502
503 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
504 unsigned int line_offset;
505
506 /* Pointers to this DIE's parent, first child, and next sibling,
507 if any. */
508 struct partial_die_info *die_parent, *die_child, *die_sibling;
509 };
510
511 /* This data structure holds the information of an abbrev. */
512 struct abbrev_info
513 {
514 unsigned int number; /* number identifying abbrev */
515 enum dwarf_tag tag; /* dwarf tag */
516 unsigned short has_children; /* boolean */
517 unsigned short num_attrs; /* number of attributes */
518 struct attr_abbrev *attrs; /* an array of attribute descriptions */
519 struct abbrev_info *next; /* next in chain */
520 };
521
522 struct attr_abbrev
523 {
524 enum dwarf_attribute name;
525 enum dwarf_form form;
526 };
527
528 /* This data structure holds a complete die structure. */
529 struct die_info
530 {
531 enum dwarf_tag tag; /* Tag indicating type of die */
532 unsigned int abbrev; /* Abbrev number */
533 unsigned int offset; /* Offset in .debug_info section */
534 unsigned int num_attrs; /* Number of attributes */
535 struct attribute *attrs; /* An array of attributes */
536 struct die_info *next_ref; /* Next die in ref hash table */
537
538 /* The dies in a compilation unit form an n-ary tree. PARENT
539 points to this die's parent; CHILD points to the first child of
540 this node; and all the children of a given node are chained
541 together via their SIBLING fields, terminated by a die whose
542 tag is zero. */
543 struct die_info *child; /* Its first child, if any. */
544 struct die_info *sibling; /* Its next sibling, if any. */
545 struct die_info *parent; /* Its parent, if any. */
546
547 struct type *type; /* Cached type information */
548 };
549
550 /* Attributes have a name and a value */
551 struct attribute
552 {
553 enum dwarf_attribute name;
554 enum dwarf_form form;
555 union
556 {
557 char *str;
558 struct dwarf_block *blk;
559 unsigned long unsnd;
560 long int snd;
561 CORE_ADDR addr;
562 }
563 u;
564 };
565
566 struct function_range
567 {
568 const char *name;
569 CORE_ADDR lowpc, highpc;
570 int seen_line;
571 struct function_range *next;
572 };
573
574 /* Get at parts of an attribute structure */
575
576 #define DW_STRING(attr) ((attr)->u.str)
577 #define DW_UNSND(attr) ((attr)->u.unsnd)
578 #define DW_BLOCK(attr) ((attr)->u.blk)
579 #define DW_SND(attr) ((attr)->u.snd)
580 #define DW_ADDR(attr) ((attr)->u.addr)
581
582 /* Blocks are a bunch of untyped bytes. */
583 struct dwarf_block
584 {
585 unsigned int size;
586 gdb_byte *data;
587 };
588
589 #ifndef ATTR_ALLOC_CHUNK
590 #define ATTR_ALLOC_CHUNK 4
591 #endif
592
593 /* Allocate fields for structs, unions and enums in this size. */
594 #ifndef DW_FIELD_ALLOC_CHUNK
595 #define DW_FIELD_ALLOC_CHUNK 4
596 #endif
597
598 /* A zeroed version of a partial die for initialization purposes. */
599 static struct partial_die_info zeroed_partial_die;
600
601 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
602 but this would require a corresponding change in unpack_field_as_long
603 and friends. */
604 static int bits_per_byte = 8;
605
606 /* The routines that read and process dies for a C struct or C++ class
607 pass lists of data member fields and lists of member function fields
608 in an instance of a field_info structure, as defined below. */
609 struct field_info
610 {
611 /* List of data member and baseclasses fields. */
612 struct nextfield
613 {
614 struct nextfield *next;
615 int accessibility;
616 int virtuality;
617 struct field field;
618 }
619 *fields;
620
621 /* Number of fields. */
622 int nfields;
623
624 /* Number of baseclasses. */
625 int nbaseclasses;
626
627 /* Set if the accesibility of one of the fields is not public. */
628 int non_public_fields;
629
630 /* Member function fields array, entries are allocated in the order they
631 are encountered in the object file. */
632 struct nextfnfield
633 {
634 struct nextfnfield *next;
635 struct fn_field fnfield;
636 }
637 *fnfields;
638
639 /* Member function fieldlist array, contains name of possibly overloaded
640 member function, number of overloaded member functions and a pointer
641 to the head of the member function field chain. */
642 struct fnfieldlist
643 {
644 char *name;
645 int length;
646 struct nextfnfield *head;
647 }
648 *fnfieldlists;
649
650 /* Number of entries in the fnfieldlists array. */
651 int nfnfields;
652 };
653
654 /* One item on the queue of compilation units to read in full symbols
655 for. */
656 struct dwarf2_queue_item
657 {
658 struct dwarf2_per_cu_data *per_cu;
659 struct dwarf2_queue_item *next;
660 };
661
662 /* The current queue. */
663 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
664
665 /* Loaded secondary compilation units are kept in memory until they
666 have not been referenced for the processing of this many
667 compilation units. Set this to zero to disable caching. Cache
668 sizes of up to at least twenty will improve startup time for
669 typical inter-CU-reference binaries, at an obvious memory cost. */
670 static int dwarf2_max_cache_age = 5;
671 static void
672 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
673 struct cmd_list_element *c, const char *value)
674 {
675 fprintf_filtered (file, _("\
676 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
677 value);
678 }
679
680
681 /* Various complaints about symbol reading that don't abort the process */
682
683 static void
684 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
685 {
686 complaint (&symfile_complaints,
687 _("statement list doesn't fit in .debug_line section"));
688 }
689
690 static void
691 dwarf2_debug_line_missing_file_complaint (void)
692 {
693 complaint (&symfile_complaints,
694 _(".debug_line section has line data without a file"));
695 }
696
697 static void
698 dwarf2_complex_location_expr_complaint (void)
699 {
700 complaint (&symfile_complaints, _("location expression too complex"));
701 }
702
703 static void
704 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
705 int arg3)
706 {
707 complaint (&symfile_complaints,
708 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
709 arg2, arg3);
710 }
711
712 static void
713 dwarf2_macros_too_long_complaint (void)
714 {
715 complaint (&symfile_complaints,
716 _("macro info runs off end of `.debug_macinfo' section"));
717 }
718
719 static void
720 dwarf2_macro_malformed_definition_complaint (const char *arg1)
721 {
722 complaint (&symfile_complaints,
723 _("macro debug info contains a malformed macro definition:\n`%s'"),
724 arg1);
725 }
726
727 static void
728 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
729 {
730 complaint (&symfile_complaints,
731 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
732 }
733
734 /* local function prototypes */
735
736 static void dwarf2_locate_sections (bfd *, asection *, void *);
737
738 #if 0
739 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
740 #endif
741
742 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
743 struct objfile *);
744
745 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
746 struct partial_die_info *,
747 struct partial_symtab *);
748
749 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
750
751 static void scan_partial_symbols (struct partial_die_info *,
752 CORE_ADDR *, CORE_ADDR *,
753 struct dwarf2_cu *);
754
755 static void add_partial_symbol (struct partial_die_info *,
756 struct dwarf2_cu *);
757
758 static int pdi_needs_namespace (enum dwarf_tag tag);
759
760 static void add_partial_namespace (struct partial_die_info *pdi,
761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
762 struct dwarf2_cu *cu);
763
764 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
765 struct dwarf2_cu *cu);
766
767 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
768 gdb_byte *info_ptr,
769 bfd *abfd,
770 struct dwarf2_cu *cu);
771
772 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
773
774 static void psymtab_to_symtab_1 (struct partial_symtab *);
775
776 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
777
778 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
779
780 static void dwarf2_free_abbrev_table (void *);
781
782 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
783 struct dwarf2_cu *);
784
785 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
786 struct dwarf2_cu *);
787
788 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
789 struct dwarf2_cu *);
790
791 static gdb_byte *read_partial_die (struct partial_die_info *,
792 struct abbrev_info *abbrev, unsigned int,
793 bfd *, gdb_byte *, struct dwarf2_cu *);
794
795 static struct partial_die_info *find_partial_die (unsigned long,
796 struct dwarf2_cu *);
797
798 static void fixup_partial_die (struct partial_die_info *,
799 struct dwarf2_cu *);
800
801 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
802 struct dwarf2_cu *, int *);
803
804 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
805 bfd *, gdb_byte *, struct dwarf2_cu *);
806
807 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
808 bfd *, gdb_byte *, struct dwarf2_cu *);
809
810 static unsigned int read_1_byte (bfd *, gdb_byte *);
811
812 static int read_1_signed_byte (bfd *, gdb_byte *);
813
814 static unsigned int read_2_bytes (bfd *, gdb_byte *);
815
816 static unsigned int read_4_bytes (bfd *, gdb_byte *);
817
818 static unsigned long read_8_bytes (bfd *, gdb_byte *);
819
820 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
821 unsigned int *);
822
823 static LONGEST read_initial_length (bfd *, gdb_byte *,
824 struct comp_unit_head *, unsigned int *);
825
826 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
827 unsigned int *);
828
829 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
830
831 static char *read_string (bfd *, gdb_byte *, unsigned int *);
832
833 static char *read_indirect_string (bfd *, gdb_byte *,
834 const struct comp_unit_head *,
835 unsigned int *);
836
837 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
838
839 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
840
841 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
842
843 static void set_cu_language (unsigned int, struct dwarf2_cu *);
844
845 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
846 struct dwarf2_cu *);
847
848 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
849 struct dwarf2_cu *cu);
850
851 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
852
853 static struct die_info *die_specification (struct die_info *die,
854 struct dwarf2_cu *);
855
856 static void free_line_header (struct line_header *lh);
857
858 static void add_file_name (struct line_header *, char *, unsigned int,
859 unsigned int, unsigned int);
860
861 static struct line_header *(dwarf_decode_line_header
862 (unsigned int offset,
863 bfd *abfd, struct dwarf2_cu *cu));
864
865 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
866 struct dwarf2_cu *, struct partial_symtab *);
867
868 static void dwarf2_start_subfile (char *, char *, char *);
869
870 static struct symbol *new_symbol (struct die_info *, struct type *,
871 struct dwarf2_cu *);
872
873 static void dwarf2_const_value (struct attribute *, struct symbol *,
874 struct dwarf2_cu *);
875
876 static void dwarf2_const_value_data (struct attribute *attr,
877 struct symbol *sym,
878 int bits);
879
880 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
881
882 static struct type *die_containing_type (struct die_info *,
883 struct dwarf2_cu *);
884
885 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
886
887 static void read_type_die (struct die_info *, struct dwarf2_cu *);
888
889 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
890
891 static char *typename_concat (struct obstack *,
892 const char *prefix,
893 const char *suffix,
894 struct dwarf2_cu *);
895
896 static void read_typedef (struct die_info *, struct dwarf2_cu *);
897
898 static void read_base_type (struct die_info *, struct dwarf2_cu *);
899
900 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
901
902 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
903
904 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
905
906 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
907
908 static int dwarf2_get_pc_bounds (struct die_info *,
909 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
910
911 static void get_scope_pc_bounds (struct die_info *,
912 CORE_ADDR *, CORE_ADDR *,
913 struct dwarf2_cu *);
914
915 static void dwarf2_add_field (struct field_info *, struct die_info *,
916 struct dwarf2_cu *);
917
918 static void dwarf2_attach_fields_to_type (struct field_info *,
919 struct type *, struct dwarf2_cu *);
920
921 static void dwarf2_add_member_fn (struct field_info *,
922 struct die_info *, struct type *,
923 struct dwarf2_cu *);
924
925 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
926 struct type *, struct dwarf2_cu *);
927
928 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
929
930 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
931
932 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
933
934 static void read_common_block (struct die_info *, struct dwarf2_cu *);
935
936 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
937
938 static const char *namespace_name (struct die_info *die,
939 int *is_anonymous, struct dwarf2_cu *);
940
941 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
942
943 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
944
945 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
946
947 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
948
949 static void read_array_type (struct die_info *, struct dwarf2_cu *);
950
951 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
952 struct dwarf2_cu *);
953
954 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
955
956 static void read_tag_ptr_to_member_type (struct die_info *,
957 struct dwarf2_cu *);
958
959 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
960
961 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
962
963 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
964
965 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
966
967 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
968
969 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
970
971 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
972 struct dwarf2_cu *,
973 gdb_byte **new_info_ptr,
974 struct die_info *parent);
975
976 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
977 struct dwarf2_cu *,
978 gdb_byte **new_info_ptr,
979 struct die_info *parent);
980
981 static void free_die_list (struct die_info *);
982
983 static void process_die (struct die_info *, struct dwarf2_cu *);
984
985 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
986
987 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
988
989 static struct die_info *dwarf2_extension (struct die_info *die,
990 struct dwarf2_cu *);
991
992 static char *dwarf_tag_name (unsigned int);
993
994 static char *dwarf_attr_name (unsigned int);
995
996 static char *dwarf_form_name (unsigned int);
997
998 static char *dwarf_stack_op_name (unsigned int);
999
1000 static char *dwarf_bool_name (unsigned int);
1001
1002 static char *dwarf_type_encoding_name (unsigned int);
1003
1004 #if 0
1005 static char *dwarf_cfi_name (unsigned int);
1006
1007 struct die_info *copy_die (struct die_info *);
1008 #endif
1009
1010 static struct die_info *sibling_die (struct die_info *);
1011
1012 static void dump_die (struct die_info *);
1013
1014 static void dump_die_list (struct die_info *);
1015
1016 static void store_in_ref_table (unsigned int, struct die_info *,
1017 struct dwarf2_cu *);
1018
1019 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1020 struct dwarf2_cu *);
1021
1022 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1023
1024 static struct die_info *follow_die_ref (struct die_info *,
1025 struct attribute *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1029 struct dwarf2_cu *);
1030
1031 /* memory allocation interface */
1032
1033 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1034
1035 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1036
1037 static struct die_info *dwarf_alloc_die (void);
1038
1039 static void initialize_cu_func_list (struct dwarf2_cu *);
1040
1041 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1042 struct dwarf2_cu *);
1043
1044 static void dwarf_decode_macros (struct line_header *, unsigned int,
1045 char *, bfd *, struct dwarf2_cu *);
1046
1047 static int attr_form_is_block (struct attribute *);
1048
1049 static void
1050 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1051 struct dwarf2_cu *cu);
1052
1053 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1054 struct dwarf2_cu *cu);
1055
1056 static void free_stack_comp_unit (void *);
1057
1058 static hashval_t partial_die_hash (const void *item);
1059
1060 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1061
1062 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1063 (unsigned long offset, struct objfile *objfile);
1064
1065 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1066 (unsigned long offset, struct objfile *objfile);
1067
1068 static void free_one_comp_unit (void *);
1069
1070 static void free_cached_comp_units (void *);
1071
1072 static void age_cached_comp_units (void);
1073
1074 static void free_one_cached_comp_unit (void *);
1075
1076 static void set_die_type (struct die_info *, struct type *,
1077 struct dwarf2_cu *);
1078
1079 static void reset_die_and_siblings_types (struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void create_all_comp_units (struct objfile *);
1083
1084 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1085 struct objfile *);
1086
1087 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1088
1089 static void dwarf2_add_dependence (struct dwarf2_cu *,
1090 struct dwarf2_per_cu_data *);
1091
1092 static void dwarf2_mark (struct dwarf2_cu *);
1093
1094 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1095
1096 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1097
1098
1099 /* Try to locate the sections we need for DWARF 2 debugging
1100 information and return true if we have enough to do something. */
1101
1102 int
1103 dwarf2_has_info (struct objfile *objfile)
1104 {
1105 struct dwarf2_per_objfile *data;
1106
1107 /* Initialize per-objfile state. */
1108 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1109 memset (data, 0, sizeof (*data));
1110 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1111 dwarf2_per_objfile = data;
1112
1113 dwarf_info_section = 0;
1114 dwarf_abbrev_section = 0;
1115 dwarf_line_section = 0;
1116 dwarf_str_section = 0;
1117 dwarf_macinfo_section = 0;
1118 dwarf_frame_section = 0;
1119 dwarf_eh_frame_section = 0;
1120 dwarf_ranges_section = 0;
1121 dwarf_loc_section = 0;
1122
1123 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1124 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1125 }
1126
1127 /* This function is mapped across the sections and remembers the
1128 offset and size of each of the debugging sections we are interested
1129 in. */
1130
1131 static void
1132 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1133 {
1134 if (strcmp (sectp->name, INFO_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1137 dwarf_info_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1142 dwarf_abbrev_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1147 dwarf_line_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1152 dwarf_pubnames_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1157 dwarf_aranges_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1162 dwarf_loc_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1165 {
1166 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1167 dwarf_macinfo_section = sectp;
1168 }
1169 else if (strcmp (sectp->name, STR_SECTION) == 0)
1170 {
1171 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1172 dwarf_str_section = sectp;
1173 }
1174 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1175 {
1176 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1177 dwarf_frame_section = sectp;
1178 }
1179 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1180 {
1181 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1182 if (aflag & SEC_HAS_CONTENTS)
1183 {
1184 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1185 dwarf_eh_frame_section = sectp;
1186 }
1187 }
1188 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1189 {
1190 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1191 dwarf_ranges_section = sectp;
1192 }
1193
1194 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1195 && bfd_section_vma (abfd, sectp) == 0)
1196 dwarf2_per_objfile->has_section_at_zero = 1;
1197 }
1198
1199 /* Build a partial symbol table. */
1200
1201 void
1202 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1203 {
1204 /* We definitely need the .debug_info and .debug_abbrev sections */
1205
1206 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1207 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1208
1209 if (dwarf_line_section)
1210 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1211 else
1212 dwarf2_per_objfile->line_buffer = NULL;
1213
1214 if (dwarf_str_section)
1215 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1216 else
1217 dwarf2_per_objfile->str_buffer = NULL;
1218
1219 if (dwarf_macinfo_section)
1220 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1221 dwarf_macinfo_section);
1222 else
1223 dwarf2_per_objfile->macinfo_buffer = NULL;
1224
1225 if (dwarf_ranges_section)
1226 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1227 else
1228 dwarf2_per_objfile->ranges_buffer = NULL;
1229
1230 if (dwarf_loc_section)
1231 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1232 else
1233 dwarf2_per_objfile->loc_buffer = NULL;
1234
1235 if (mainline
1236 || (objfile->global_psymbols.size == 0
1237 && objfile->static_psymbols.size == 0))
1238 {
1239 init_psymbol_list (objfile, 1024);
1240 }
1241
1242 #if 0
1243 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1244 {
1245 /* Things are significantly easier if we have .debug_aranges and
1246 .debug_pubnames sections */
1247
1248 dwarf2_build_psymtabs_easy (objfile, mainline);
1249 }
1250 else
1251 #endif
1252 /* only test this case for now */
1253 {
1254 /* In this case we have to work a bit harder */
1255 dwarf2_build_psymtabs_hard (objfile, mainline);
1256 }
1257 }
1258
1259 #if 0
1260 /* Build the partial symbol table from the information in the
1261 .debug_pubnames and .debug_aranges sections. */
1262
1263 static void
1264 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1265 {
1266 bfd *abfd = objfile->obfd;
1267 char *aranges_buffer, *pubnames_buffer;
1268 char *aranges_ptr, *pubnames_ptr;
1269 unsigned int entry_length, version, info_offset, info_size;
1270
1271 pubnames_buffer = dwarf2_read_section (objfile,
1272 dwarf_pubnames_section);
1273 pubnames_ptr = pubnames_buffer;
1274 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1275 {
1276 struct comp_unit_head cu_header;
1277 unsigned int bytes_read;
1278
1279 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1280 &bytes_read);
1281 pubnames_ptr += bytes_read;
1282 version = read_1_byte (abfd, pubnames_ptr);
1283 pubnames_ptr += 1;
1284 info_offset = read_4_bytes (abfd, pubnames_ptr);
1285 pubnames_ptr += 4;
1286 info_size = read_4_bytes (abfd, pubnames_ptr);
1287 pubnames_ptr += 4;
1288 }
1289
1290 aranges_buffer = dwarf2_read_section (objfile,
1291 dwarf_aranges_section);
1292
1293 }
1294 #endif
1295
1296 /* Read in the comp unit header information from the debug_info at
1297 info_ptr. */
1298
1299 static gdb_byte *
1300 read_comp_unit_head (struct comp_unit_head *cu_header,
1301 gdb_byte *info_ptr, bfd *abfd)
1302 {
1303 int signed_addr;
1304 unsigned int bytes_read;
1305 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1306 &bytes_read);
1307 info_ptr += bytes_read;
1308 cu_header->version = read_2_bytes (abfd, info_ptr);
1309 info_ptr += 2;
1310 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1311 &bytes_read);
1312 info_ptr += bytes_read;
1313 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1314 info_ptr += 1;
1315 signed_addr = bfd_get_sign_extend_vma (abfd);
1316 if (signed_addr < 0)
1317 internal_error (__FILE__, __LINE__,
1318 _("read_comp_unit_head: dwarf from non elf file"));
1319 cu_header->signed_addr_p = signed_addr;
1320 return info_ptr;
1321 }
1322
1323 static gdb_byte *
1324 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1325 bfd *abfd)
1326 {
1327 gdb_byte *beg_of_comp_unit = info_ptr;
1328
1329 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1330
1331 if (header->version != 2 && header->version != 3)
1332 error (_("Dwarf Error: wrong version in compilation unit header "
1333 "(is %d, should be %d) [in module %s]"), header->version,
1334 2, bfd_get_filename (abfd));
1335
1336 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1337 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1338 "(offset 0x%lx + 6) [in module %s]"),
1339 (long) header->abbrev_offset,
1340 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1341 bfd_get_filename (abfd));
1342
1343 if (beg_of_comp_unit + header->length + header->initial_length_size
1344 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1345 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1346 "(offset 0x%lx + 0) [in module %s]"),
1347 (long) header->length,
1348 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1349 bfd_get_filename (abfd));
1350
1351 return info_ptr;
1352 }
1353
1354 /* Allocate a new partial symtab for file named NAME and mark this new
1355 partial symtab as being an include of PST. */
1356
1357 static void
1358 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1359 struct objfile *objfile)
1360 {
1361 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1362
1363 subpst->section_offsets = pst->section_offsets;
1364 subpst->textlow = 0;
1365 subpst->texthigh = 0;
1366
1367 subpst->dependencies = (struct partial_symtab **)
1368 obstack_alloc (&objfile->objfile_obstack,
1369 sizeof (struct partial_symtab *));
1370 subpst->dependencies[0] = pst;
1371 subpst->number_of_dependencies = 1;
1372
1373 subpst->globals_offset = 0;
1374 subpst->n_global_syms = 0;
1375 subpst->statics_offset = 0;
1376 subpst->n_static_syms = 0;
1377 subpst->symtab = NULL;
1378 subpst->read_symtab = pst->read_symtab;
1379 subpst->readin = 0;
1380
1381 /* No private part is necessary for include psymtabs. This property
1382 can be used to differentiate between such include psymtabs and
1383 the regular ones. */
1384 subpst->read_symtab_private = NULL;
1385 }
1386
1387 /* Read the Line Number Program data and extract the list of files
1388 included by the source file represented by PST. Build an include
1389 partial symtab for each of these included files.
1390
1391 This procedure assumes that there *is* a Line Number Program in
1392 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1393 before calling this procedure. */
1394
1395 static void
1396 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1397 struct partial_die_info *pdi,
1398 struct partial_symtab *pst)
1399 {
1400 struct objfile *objfile = cu->objfile;
1401 bfd *abfd = objfile->obfd;
1402 struct line_header *lh;
1403
1404 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1405 if (lh == NULL)
1406 return; /* No linetable, so no includes. */
1407
1408 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1409
1410 free_line_header (lh);
1411 }
1412
1413
1414 /* Build the partial symbol table by doing a quick pass through the
1415 .debug_info and .debug_abbrev sections. */
1416
1417 static void
1418 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1419 {
1420 /* Instead of reading this into a big buffer, we should probably use
1421 mmap() on architectures that support it. (FIXME) */
1422 bfd *abfd = objfile->obfd;
1423 gdb_byte *info_ptr;
1424 gdb_byte *beg_of_comp_unit;
1425 struct partial_die_info comp_unit_die;
1426 struct partial_symtab *pst;
1427 struct cleanup *back_to;
1428 CORE_ADDR lowpc, highpc, baseaddr;
1429
1430 info_ptr = dwarf2_per_objfile->info_buffer;
1431
1432 /* Any cached compilation units will be linked by the per-objfile
1433 read_in_chain. Make sure to free them when we're done. */
1434 back_to = make_cleanup (free_cached_comp_units, NULL);
1435
1436 create_all_comp_units (objfile);
1437
1438 /* Since the objects we're extracting from .debug_info vary in
1439 length, only the individual functions to extract them (like
1440 read_comp_unit_head and load_partial_die) can really know whether
1441 the buffer is large enough to hold another complete object.
1442
1443 At the moment, they don't actually check that. If .debug_info
1444 holds just one extra byte after the last compilation unit's dies,
1445 then read_comp_unit_head will happily read off the end of the
1446 buffer. read_partial_die is similarly casual. Those functions
1447 should be fixed.
1448
1449 For this loop condition, simply checking whether there's any data
1450 left at all should be sufficient. */
1451 while (info_ptr < (dwarf2_per_objfile->info_buffer
1452 + dwarf2_per_objfile->info_size))
1453 {
1454 struct cleanup *back_to_inner;
1455 struct dwarf2_cu cu;
1456 struct abbrev_info *abbrev;
1457 unsigned int bytes_read;
1458 struct dwarf2_per_cu_data *this_cu;
1459
1460 beg_of_comp_unit = info_ptr;
1461
1462 memset (&cu, 0, sizeof (cu));
1463
1464 obstack_init (&cu.comp_unit_obstack);
1465
1466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1467
1468 cu.objfile = objfile;
1469 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1470
1471 /* Complete the cu_header */
1472 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1473 cu.header.first_die_ptr = info_ptr;
1474 cu.header.cu_head_ptr = beg_of_comp_unit;
1475
1476 cu.list_in_scope = &file_symbols;
1477
1478 /* Read the abbrevs for this compilation unit into a table */
1479 dwarf2_read_abbrevs (abfd, &cu);
1480 make_cleanup (dwarf2_free_abbrev_table, &cu);
1481
1482 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1483
1484 /* Read the compilation unit die */
1485 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1486 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1487 abfd, info_ptr, &cu);
1488
1489 if (comp_unit_die.tag == DW_TAG_partial_unit)
1490 {
1491 info_ptr = (beg_of_comp_unit + cu.header.length
1492 + cu.header.initial_length_size);
1493 do_cleanups (back_to_inner);
1494 continue;
1495 }
1496
1497 /* Set the language we're debugging */
1498 set_cu_language (comp_unit_die.language, &cu);
1499
1500 /* Allocate a new partial symbol table structure */
1501 pst = start_psymtab_common (objfile, objfile->section_offsets,
1502 comp_unit_die.name ? comp_unit_die.name : "",
1503 comp_unit_die.lowpc,
1504 objfile->global_psymbols.next,
1505 objfile->static_psymbols.next);
1506
1507 if (comp_unit_die.dirname)
1508 pst->dirname = xstrdup (comp_unit_die.dirname);
1509
1510 pst->read_symtab_private = (char *) this_cu;
1511
1512 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1513
1514 /* Store the function that reads in the rest of the symbol table */
1515 pst->read_symtab = dwarf2_psymtab_to_symtab;
1516
1517 /* If this compilation unit was already read in, free the
1518 cached copy in order to read it in again. This is
1519 necessary because we skipped some symbols when we first
1520 read in the compilation unit (see load_partial_dies).
1521 This problem could be avoided, but the benefit is
1522 unclear. */
1523 if (this_cu->cu != NULL)
1524 free_one_cached_comp_unit (this_cu->cu);
1525
1526 cu.per_cu = this_cu;
1527
1528 /* Note that this is a pointer to our stack frame, being
1529 added to a global data structure. It will be cleaned up
1530 in free_stack_comp_unit when we finish with this
1531 compilation unit. */
1532 this_cu->cu = &cu;
1533
1534 this_cu->psymtab = pst;
1535
1536 /* Check if comp unit has_children.
1537 If so, read the rest of the partial symbols from this comp unit.
1538 If not, there's no more debug_info for this comp unit. */
1539 if (comp_unit_die.has_children)
1540 {
1541 struct partial_die_info *first_die;
1542
1543 lowpc = ((CORE_ADDR) -1);
1544 highpc = ((CORE_ADDR) 0);
1545
1546 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1547
1548 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1549
1550 /* If we didn't find a lowpc, set it to highpc to avoid
1551 complaints from `maint check'. */
1552 if (lowpc == ((CORE_ADDR) -1))
1553 lowpc = highpc;
1554
1555 /* If the compilation unit didn't have an explicit address range,
1556 then use the information extracted from its child dies. */
1557 if (! comp_unit_die.has_pc_info)
1558 {
1559 comp_unit_die.lowpc = lowpc;
1560 comp_unit_die.highpc = highpc;
1561 }
1562 }
1563 pst->textlow = comp_unit_die.lowpc + baseaddr;
1564 pst->texthigh = comp_unit_die.highpc + baseaddr;
1565
1566 pst->n_global_syms = objfile->global_psymbols.next -
1567 (objfile->global_psymbols.list + pst->globals_offset);
1568 pst->n_static_syms = objfile->static_psymbols.next -
1569 (objfile->static_psymbols.list + pst->statics_offset);
1570 sort_pst_symbols (pst);
1571
1572 /* If there is already a psymtab or symtab for a file of this
1573 name, remove it. (If there is a symtab, more drastic things
1574 also happen.) This happens in VxWorks. */
1575 free_named_symtabs (pst->filename);
1576
1577 info_ptr = beg_of_comp_unit + cu.header.length
1578 + cu.header.initial_length_size;
1579
1580 if (comp_unit_die.has_stmt_list)
1581 {
1582 /* Get the list of files included in the current compilation unit,
1583 and build a psymtab for each of them. */
1584 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1585 }
1586
1587 do_cleanups (back_to_inner);
1588 }
1589 do_cleanups (back_to);
1590 }
1591
1592 /* Load the DIEs for a secondary CU into memory. */
1593
1594 static void
1595 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1596 {
1597 bfd *abfd = objfile->obfd;
1598 gdb_byte *info_ptr, *beg_of_comp_unit;
1599 struct partial_die_info comp_unit_die;
1600 struct dwarf2_cu *cu;
1601 struct abbrev_info *abbrev;
1602 unsigned int bytes_read;
1603 struct cleanup *back_to;
1604
1605 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1606 beg_of_comp_unit = info_ptr;
1607
1608 cu = xmalloc (sizeof (struct dwarf2_cu));
1609 memset (cu, 0, sizeof (struct dwarf2_cu));
1610
1611 obstack_init (&cu->comp_unit_obstack);
1612
1613 cu->objfile = objfile;
1614 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1615
1616 /* Complete the cu_header. */
1617 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1618 cu->header.first_die_ptr = info_ptr;
1619 cu->header.cu_head_ptr = beg_of_comp_unit;
1620
1621 /* Read the abbrevs for this compilation unit into a table. */
1622 dwarf2_read_abbrevs (abfd, cu);
1623 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1624
1625 /* Read the compilation unit die. */
1626 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1627 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1628 abfd, info_ptr, cu);
1629
1630 /* Set the language we're debugging. */
1631 set_cu_language (comp_unit_die.language, cu);
1632
1633 /* Link this compilation unit into the compilation unit tree. */
1634 this_cu->cu = cu;
1635 cu->per_cu = this_cu;
1636
1637 /* Check if comp unit has_children.
1638 If so, read the rest of the partial symbols from this comp unit.
1639 If not, there's no more debug_info for this comp unit. */
1640 if (comp_unit_die.has_children)
1641 load_partial_dies (abfd, info_ptr, 0, cu);
1642
1643 do_cleanups (back_to);
1644 }
1645
1646 /* Create a list of all compilation units in OBJFILE. We do this only
1647 if an inter-comp-unit reference is found; presumably if there is one,
1648 there will be many, and one will occur early in the .debug_info section.
1649 So there's no point in building this list incrementally. */
1650
1651 static void
1652 create_all_comp_units (struct objfile *objfile)
1653 {
1654 int n_allocated;
1655 int n_comp_units;
1656 struct dwarf2_per_cu_data **all_comp_units;
1657 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1658
1659 n_comp_units = 0;
1660 n_allocated = 10;
1661 all_comp_units = xmalloc (n_allocated
1662 * sizeof (struct dwarf2_per_cu_data *));
1663
1664 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1665 {
1666 struct comp_unit_head cu_header;
1667 gdb_byte *beg_of_comp_unit;
1668 struct dwarf2_per_cu_data *this_cu;
1669 unsigned long offset;
1670 unsigned int bytes_read;
1671
1672 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1673
1674 /* Read just enough information to find out where the next
1675 compilation unit is. */
1676 cu_header.initial_length_size = 0;
1677 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1678 &cu_header, &bytes_read);
1679
1680 /* Save the compilation unit for later lookup. */
1681 this_cu = obstack_alloc (&objfile->objfile_obstack,
1682 sizeof (struct dwarf2_per_cu_data));
1683 memset (this_cu, 0, sizeof (*this_cu));
1684 this_cu->offset = offset;
1685 this_cu->length = cu_header.length + cu_header.initial_length_size;
1686
1687 if (n_comp_units == n_allocated)
1688 {
1689 n_allocated *= 2;
1690 all_comp_units = xrealloc (all_comp_units,
1691 n_allocated
1692 * sizeof (struct dwarf2_per_cu_data *));
1693 }
1694 all_comp_units[n_comp_units++] = this_cu;
1695
1696 info_ptr = info_ptr + this_cu->length;
1697 }
1698
1699 dwarf2_per_objfile->all_comp_units
1700 = obstack_alloc (&objfile->objfile_obstack,
1701 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1702 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1703 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1704 xfree (all_comp_units);
1705 dwarf2_per_objfile->n_comp_units = n_comp_units;
1706 }
1707
1708 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1709 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1710 in CU. */
1711
1712 static void
1713 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1714 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1715 {
1716 struct objfile *objfile = cu->objfile;
1717 bfd *abfd = objfile->obfd;
1718 struct partial_die_info *pdi;
1719
1720 /* Now, march along the PDI's, descending into ones which have
1721 interesting children but skipping the children of the other ones,
1722 until we reach the end of the compilation unit. */
1723
1724 pdi = first_die;
1725
1726 while (pdi != NULL)
1727 {
1728 fixup_partial_die (pdi, cu);
1729
1730 /* Anonymous namespaces have no name but have interesting
1731 children, so we need to look at them. Ditto for anonymous
1732 enums. */
1733
1734 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1735 || pdi->tag == DW_TAG_enumeration_type)
1736 {
1737 switch (pdi->tag)
1738 {
1739 case DW_TAG_subprogram:
1740 if (pdi->has_pc_info)
1741 {
1742 if (pdi->lowpc < *lowpc)
1743 {
1744 *lowpc = pdi->lowpc;
1745 }
1746 if (pdi->highpc > *highpc)
1747 {
1748 *highpc = pdi->highpc;
1749 }
1750 if (!pdi->is_declaration)
1751 {
1752 add_partial_symbol (pdi, cu);
1753 }
1754 }
1755 break;
1756 case DW_TAG_variable:
1757 case DW_TAG_typedef:
1758 case DW_TAG_union_type:
1759 if (!pdi->is_declaration)
1760 {
1761 add_partial_symbol (pdi, cu);
1762 }
1763 break;
1764 case DW_TAG_class_type:
1765 case DW_TAG_structure_type:
1766 if (!pdi->is_declaration)
1767 {
1768 add_partial_symbol (pdi, cu);
1769 }
1770 break;
1771 case DW_TAG_enumeration_type:
1772 if (!pdi->is_declaration)
1773 add_partial_enumeration (pdi, cu);
1774 break;
1775 case DW_TAG_base_type:
1776 case DW_TAG_subrange_type:
1777 /* File scope base type definitions are added to the partial
1778 symbol table. */
1779 add_partial_symbol (pdi, cu);
1780 break;
1781 case DW_TAG_namespace:
1782 add_partial_namespace (pdi, lowpc, highpc, cu);
1783 break;
1784 default:
1785 break;
1786 }
1787 }
1788
1789 /* If the die has a sibling, skip to the sibling. */
1790
1791 pdi = pdi->die_sibling;
1792 }
1793 }
1794
1795 /* Functions used to compute the fully scoped name of a partial DIE.
1796
1797 Normally, this is simple. For C++, the parent DIE's fully scoped
1798 name is concatenated with "::" and the partial DIE's name. For
1799 Java, the same thing occurs except that "." is used instead of "::".
1800 Enumerators are an exception; they use the scope of their parent
1801 enumeration type, i.e. the name of the enumeration type is not
1802 prepended to the enumerator.
1803
1804 There are two complexities. One is DW_AT_specification; in this
1805 case "parent" means the parent of the target of the specification,
1806 instead of the direct parent of the DIE. The other is compilers
1807 which do not emit DW_TAG_namespace; in this case we try to guess
1808 the fully qualified name of structure types from their members'
1809 linkage names. This must be done using the DIE's children rather
1810 than the children of any DW_AT_specification target. We only need
1811 to do this for structures at the top level, i.e. if the target of
1812 any DW_AT_specification (if any; otherwise the DIE itself) does not
1813 have a parent. */
1814
1815 /* Compute the scope prefix associated with PDI's parent, in
1816 compilation unit CU. The result will be allocated on CU's
1817 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1818 field. NULL is returned if no prefix is necessary. */
1819 static char *
1820 partial_die_parent_scope (struct partial_die_info *pdi,
1821 struct dwarf2_cu *cu)
1822 {
1823 char *grandparent_scope;
1824 struct partial_die_info *parent, *real_pdi;
1825
1826 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1827 then this means the parent of the specification DIE. */
1828
1829 real_pdi = pdi;
1830 while (real_pdi->has_specification)
1831 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1832
1833 parent = real_pdi->die_parent;
1834 if (parent == NULL)
1835 return NULL;
1836
1837 if (parent->scope_set)
1838 return parent->scope;
1839
1840 fixup_partial_die (parent, cu);
1841
1842 grandparent_scope = partial_die_parent_scope (parent, cu);
1843
1844 if (parent->tag == DW_TAG_namespace
1845 || parent->tag == DW_TAG_structure_type
1846 || parent->tag == DW_TAG_class_type
1847 || parent->tag == DW_TAG_union_type)
1848 {
1849 if (grandparent_scope == NULL)
1850 parent->scope = parent->name;
1851 else
1852 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1853 parent->name, cu);
1854 }
1855 else if (parent->tag == DW_TAG_enumeration_type)
1856 /* Enumerators should not get the name of the enumeration as a prefix. */
1857 parent->scope = grandparent_scope;
1858 else
1859 {
1860 /* FIXME drow/2004-04-01: What should we be doing with
1861 function-local names? For partial symbols, we should probably be
1862 ignoring them. */
1863 complaint (&symfile_complaints,
1864 _("unhandled containing DIE tag %d for DIE at %d"),
1865 parent->tag, pdi->offset);
1866 parent->scope = grandparent_scope;
1867 }
1868
1869 parent->scope_set = 1;
1870 return parent->scope;
1871 }
1872
1873 /* Return the fully scoped name associated with PDI, from compilation unit
1874 CU. The result will be allocated with malloc. */
1875 static char *
1876 partial_die_full_name (struct partial_die_info *pdi,
1877 struct dwarf2_cu *cu)
1878 {
1879 char *parent_scope;
1880
1881 parent_scope = partial_die_parent_scope (pdi, cu);
1882 if (parent_scope == NULL)
1883 return NULL;
1884 else
1885 return typename_concat (NULL, parent_scope, pdi->name, cu);
1886 }
1887
1888 static void
1889 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1890 {
1891 struct objfile *objfile = cu->objfile;
1892 CORE_ADDR addr = 0;
1893 char *actual_name;
1894 const char *my_prefix;
1895 const struct partial_symbol *psym = NULL;
1896 CORE_ADDR baseaddr;
1897 int built_actual_name = 0;
1898
1899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1900
1901 actual_name = NULL;
1902
1903 if (pdi_needs_namespace (pdi->tag))
1904 {
1905 actual_name = partial_die_full_name (pdi, cu);
1906 if (actual_name)
1907 built_actual_name = 1;
1908 }
1909
1910 if (actual_name == NULL)
1911 actual_name = pdi->name;
1912
1913 switch (pdi->tag)
1914 {
1915 case DW_TAG_subprogram:
1916 if (pdi->is_external)
1917 {
1918 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1919 mst_text, objfile); */
1920 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1921 VAR_DOMAIN, LOC_BLOCK,
1922 &objfile->global_psymbols,
1923 0, pdi->lowpc + baseaddr,
1924 cu->language, objfile);
1925 }
1926 else
1927 {
1928 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1929 mst_file_text, objfile); */
1930 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1931 VAR_DOMAIN, LOC_BLOCK,
1932 &objfile->static_psymbols,
1933 0, pdi->lowpc + baseaddr,
1934 cu->language, objfile);
1935 }
1936 break;
1937 case DW_TAG_variable:
1938 if (pdi->is_external)
1939 {
1940 /* Global Variable.
1941 Don't enter into the minimal symbol tables as there is
1942 a minimal symbol table entry from the ELF symbols already.
1943 Enter into partial symbol table if it has a location
1944 descriptor or a type.
1945 If the location descriptor is missing, new_symbol will create
1946 a LOC_UNRESOLVED symbol, the address of the variable will then
1947 be determined from the minimal symbol table whenever the variable
1948 is referenced.
1949 The address for the partial symbol table entry is not
1950 used by GDB, but it comes in handy for debugging partial symbol
1951 table building. */
1952
1953 if (pdi->locdesc)
1954 addr = decode_locdesc (pdi->locdesc, cu);
1955 if (pdi->locdesc || pdi->has_type)
1956 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1957 VAR_DOMAIN, LOC_STATIC,
1958 &objfile->global_psymbols,
1959 0, addr + baseaddr,
1960 cu->language, objfile);
1961 }
1962 else
1963 {
1964 /* Static Variable. Skip symbols without location descriptors. */
1965 if (pdi->locdesc == NULL)
1966 return;
1967 addr = decode_locdesc (pdi->locdesc, cu);
1968 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1969 mst_file_data, objfile); */
1970 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1971 VAR_DOMAIN, LOC_STATIC,
1972 &objfile->static_psymbols,
1973 0, addr + baseaddr,
1974 cu->language, objfile);
1975 }
1976 break;
1977 case DW_TAG_typedef:
1978 case DW_TAG_base_type:
1979 case DW_TAG_subrange_type:
1980 add_psymbol_to_list (actual_name, strlen (actual_name),
1981 VAR_DOMAIN, LOC_TYPEDEF,
1982 &objfile->static_psymbols,
1983 0, (CORE_ADDR) 0, cu->language, objfile);
1984 break;
1985 case DW_TAG_namespace:
1986 add_psymbol_to_list (actual_name, strlen (actual_name),
1987 VAR_DOMAIN, LOC_TYPEDEF,
1988 &objfile->global_psymbols,
1989 0, (CORE_ADDR) 0, cu->language, objfile);
1990 break;
1991 case DW_TAG_class_type:
1992 case DW_TAG_structure_type:
1993 case DW_TAG_union_type:
1994 case DW_TAG_enumeration_type:
1995 /* Skip external references. The DWARF standard says in the section
1996 about "Structure, Union, and Class Type Entries": "An incomplete
1997 structure, union or class type is represented by a structure,
1998 union or class entry that does not have a byte size attribute
1999 and that has a DW_AT_declaration attribute." */
2000 if (!pdi->has_byte_size && pdi->is_declaration)
2001 return;
2002
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
2005 add_psymbol_to_list (actual_name, strlen (actual_name),
2006 STRUCT_DOMAIN, LOC_TYPEDEF,
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
2011 0, (CORE_ADDR) 0, cu->language, objfile);
2012
2013 if (cu->language == language_cplus
2014 || cu->language == language_java
2015 || cu->language == language_ada)
2016 {
2017 /* For C++ and Java, these implicitly act as typedefs as well. */
2018 add_psymbol_to_list (actual_name, strlen (actual_name),
2019 VAR_DOMAIN, LOC_TYPEDEF,
2020 &objfile->global_psymbols,
2021 0, (CORE_ADDR) 0, cu->language, objfile);
2022 }
2023 break;
2024 case DW_TAG_enumerator:
2025 add_psymbol_to_list (actual_name, strlen (actual_name),
2026 VAR_DOMAIN, LOC_CONST,
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
2031 0, (CORE_ADDR) 0, cu->language, objfile);
2032 break;
2033 default:
2034 break;
2035 }
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
2046 if (cu->language == language_cplus
2047 && cu->has_namespace_info == 0
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
2055 }
2056
2057 /* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
2059 name listed in the die. */
2060
2061 static int
2062 pdi_needs_namespace (enum dwarf_tag tag)
2063 {
2064 switch (tag)
2065 {
2066 case DW_TAG_namespace:
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077 }
2078
2079 /* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
2082
2083 static void
2084 add_partial_namespace (struct partial_die_info *pdi,
2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2086 struct dwarf2_cu *cu)
2087 {
2088 struct objfile *objfile = cu->objfile;
2089
2090 /* Add a symbol for the namespace. */
2091
2092 add_partial_symbol (pdi, cu);
2093
2094 /* Now scan partial symbols in that namespace. */
2095
2096 if (pdi->has_children)
2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2098 }
2099
2100 /* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
2103
2104 static void
2105 guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
2107 {
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
2110 && cu->has_namespace_info == 0
2111 && struct_pdi->has_children)
2112 {
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
2117 prefix (but see comment in read_structure_type). */
2118
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
2121
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
2125
2126 real_pdi = struct_pdi;
2127 while (real_pdi->has_specification)
2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2129
2130 if (real_pdi->die_parent != NULL)
2131 return;
2132
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
2136 {
2137 char *actual_class_name
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
2140 if (actual_class_name != NULL)
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
2148 break;
2149 }
2150
2151 child_pdi = child_pdi->die_sibling;
2152 }
2153 }
2154 }
2155
2156 /* Read a partial die corresponding to an enumeration type. */
2157
2158 static void
2159 add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
2161 {
2162 struct objfile *objfile = cu->objfile;
2163 bfd *abfd = objfile->obfd;
2164 struct partial_die_info *pdi;
2165
2166 if (enum_pdi->name != NULL)
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
2171 {
2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2174 else
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
2177 }
2178 }
2179
2180 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185 static struct abbrev_info *
2186 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2187 struct dwarf2_cu *cu)
2188 {
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206 }
2207
2208 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
2212 static gdb_byte *
2213 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2214 {
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226 }
2227
2228 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
2234 static gdb_byte *
2235 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2236 struct dwarf2_cu *cu)
2237 {
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2252 else
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326 }
2327
2328 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
2330
2331 static gdb_byte *
2332 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2333 bfd *abfd, struct dwarf2_cu *cu)
2334 {
2335 /* Do we know the sibling already? */
2336
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
2345 /* Skip the children the long way. */
2346
2347 return skip_children (info_ptr, cu);
2348 }
2349
2350 /* Expand this partial symbol table into a full symbol table. */
2351
2352 static void
2353 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2354 {
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2367 gdb_flush (gdb_stdout);
2368 }
2369
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
2378 printf_filtered (_("done.\n"));
2379 }
2380 }
2381 }
2382
2383 /* Add PER_CU to the queue. */
2384
2385 static void
2386 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387 {
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401 }
2402
2403 /* Process the queue. */
2404
2405 static void
2406 process_queue (struct objfile *objfile)
2407 {
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
2418 load_full_comp_unit (item->per_cu, objfile);
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
2425 if (item->per_cu->type_hash)
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443 }
2444
2445 /* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449 static void
2450 dwarf2_release_queue (void *dummy)
2451 {
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472 }
2473
2474 /* Read in full symbols for PST, and anything it depends on. */
2475
2476 static void
2477 psymtab_to_symtab_1 (struct partial_symtab *pst)
2478 {
2479 struct dwarf2_per_cu_data *per_cu;
2480 struct cleanup *back_to;
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
2489 /* FIXME: i18n: Need to make this a single string. */
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
2510
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522 }
2523
2524 /* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526 static struct dwarf2_cu *
2527 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2528 {
2529 bfd *abfd = objfile->obfd;
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
2532 gdb_byte *info_ptr;
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
2536
2537 /* Set local variables from the partial symbol table info. */
2538 offset = per_cu->offset;
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2541
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
2544
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2547
2548 cu->objfile = objfile;
2549
2550 /* read in the comp_unit header */
2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2552
2553 /* Read the abbrevs for this compilation unit */
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
2558
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
2561
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
2578
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
2582
2583 return cu;
2584 }
2585
2586 /* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589 static void
2590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591 {
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
2611
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
2620
2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2622 if (attr)
2623 {
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
2626 }
2627 else
2628 {
2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2630 if (attr)
2631 {
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
2634 }
2635 }
2636
2637 /* Do line number decoding in read_file_scope () */
2638 process_die (cu->dies, cu);
2639
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2644
2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
2651 && !(cu->language == language_c && symtab->language != language_c))
2652 {
2653 symtab->language = cu->language;
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
2657
2658 do_cleanups (back_to);
2659 }
2660
2661 /* Process a die and its children. */
2662
2663 static void
2664 process_die (struct die_info *die, struct dwarf2_cu *cu)
2665 {
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
2671 read_file_scope (die, cu);
2672 break;
2673 case DW_TAG_subprogram:
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
2681 break;
2682 case DW_TAG_lexical_block:
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
2685 read_lexical_block_scope (die, cu);
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 attr = dwarf2_attr (die, DW_AT_name, cu);
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
2809
2810 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2811 if (attr)
2812 comp_dir = DW_STRING (attr);
2813 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2814 {
2815 comp_dir = ldirname (name);
2816 if (comp_dir != NULL)
2817 make_cleanup (xfree, comp_dir);
2818 }
2819 if (comp_dir != NULL)
2820 {
2821 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2822 directory, get rid of it. */
2823 char *cp = strchr (comp_dir, ':');
2824
2825 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2826 comp_dir = cp + 1;
2827 }
2828
2829 if (name == NULL)
2830 name = "<unknown>";
2831
2832 attr = dwarf2_attr (die, DW_AT_language, cu);
2833 if (attr)
2834 {
2835 set_cu_language (DW_UNSND (attr), cu);
2836 }
2837
2838 attr = dwarf2_attr (die, DW_AT_producer, cu);
2839 if (attr)
2840 cu->producer = DW_STRING (attr);
2841
2842 /* We assume that we're processing GCC output. */
2843 processing_gcc_compilation = 2;
2844
2845 /* The compilation unit may be in a different language or objfile,
2846 zero out all remembered fundamental types. */
2847 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2848
2849 start_symtab (name, comp_dir, lowpc);
2850 record_debugformat ("DWARF 2");
2851 record_producer (cu->producer);
2852
2853 initialize_cu_func_list (cu);
2854
2855 /* Decode line number information if present. We do this before
2856 processing child DIEs, so that the line header table is available
2857 for DW_AT_decl_file. */
2858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2859 if (attr)
2860 {
2861 unsigned int line_offset = DW_UNSND (attr);
2862 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2863 if (line_header)
2864 {
2865 cu->line_header = line_header;
2866 make_cleanup (free_cu_line_header, cu);
2867 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2868 }
2869 }
2870
2871 /* Process all dies in compilation unit. */
2872 if (die->child != NULL)
2873 {
2874 child_die = die->child;
2875 while (child_die && child_die->tag)
2876 {
2877 process_die (child_die, cu);
2878 child_die = sibling_die (child_die);
2879 }
2880 }
2881
2882 /* Decode macro information, if present. Dwarf 2 macro information
2883 refers to information in the line number info statement program
2884 header, so we can only read it if we've read the header
2885 successfully. */
2886 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2887 if (attr && line_header)
2888 {
2889 unsigned int macro_offset = DW_UNSND (attr);
2890 dwarf_decode_macros (line_header, macro_offset,
2891 comp_dir, abfd, cu);
2892 }
2893 do_cleanups (back_to);
2894 }
2895
2896 static void
2897 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2898 struct dwarf2_cu *cu)
2899 {
2900 struct function_range *thisfn;
2901
2902 thisfn = (struct function_range *)
2903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2904 thisfn->name = name;
2905 thisfn->lowpc = lowpc;
2906 thisfn->highpc = highpc;
2907 thisfn->seen_line = 0;
2908 thisfn->next = NULL;
2909
2910 if (cu->last_fn == NULL)
2911 cu->first_fn = thisfn;
2912 else
2913 cu->last_fn->next = thisfn;
2914
2915 cu->last_fn = thisfn;
2916 }
2917
2918 static void
2919 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2920 {
2921 struct objfile *objfile = cu->objfile;
2922 struct context_stack *new;
2923 CORE_ADDR lowpc;
2924 CORE_ADDR highpc;
2925 struct die_info *child_die;
2926 struct attribute *attr;
2927 char *name;
2928 const char *previous_prefix = processing_current_prefix;
2929 struct cleanup *back_to = NULL;
2930 CORE_ADDR baseaddr;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 name = dwarf2_linkage_name (die, cu);
2935
2936 /* Ignore functions with missing or empty names and functions with
2937 missing or invalid low and high pc attributes. */
2938 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2939 return;
2940
2941 if (cu->language == language_cplus
2942 || cu->language == language_java)
2943 {
2944 struct die_info *spec_die = die_specification (die, cu);
2945
2946 /* NOTE: carlton/2004-01-23: We have to be careful in the
2947 presence of DW_AT_specification. For example, with GCC 3.4,
2948 given the code
2949
2950 namespace N {
2951 void foo() {
2952 // Definition of N::foo.
2953 }
2954 }
2955
2956 then we'll have a tree of DIEs like this:
2957
2958 1: DW_TAG_compile_unit
2959 2: DW_TAG_namespace // N
2960 3: DW_TAG_subprogram // declaration of N::foo
2961 4: DW_TAG_subprogram // definition of N::foo
2962 DW_AT_specification // refers to die #3
2963
2964 Thus, when processing die #4, we have to pretend that we're
2965 in the context of its DW_AT_specification, namely the contex
2966 of die #3. */
2967
2968 if (spec_die != NULL)
2969 {
2970 char *specification_prefix = determine_prefix (spec_die, cu);
2971 processing_current_prefix = specification_prefix;
2972 back_to = make_cleanup (xfree, specification_prefix);
2973 }
2974 }
2975
2976 lowpc += baseaddr;
2977 highpc += baseaddr;
2978
2979 /* Record the function range for dwarf_decode_lines. */
2980 add_to_cu_func_list (name, lowpc, highpc, cu);
2981
2982 new = push_context (0, lowpc);
2983 new->name = new_symbol (die, die->type, cu);
2984
2985 /* If there is a location expression for DW_AT_frame_base, record
2986 it. */
2987 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2988 if (attr)
2989 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2990 expression is being recorded directly in the function's symbol
2991 and not in a separate frame-base object. I guess this hack is
2992 to avoid adding some sort of frame-base adjunct/annex to the
2993 function's symbol :-(. The problem with doing this is that it
2994 results in a function symbol with a location expression that
2995 has nothing to do with the location of the function, ouch! The
2996 relationship should be: a function's symbol has-a frame base; a
2997 frame-base has-a location expression. */
2998 dwarf2_symbol_mark_computed (attr, new->name, cu);
2999
3000 cu->list_in_scope = &local_symbols;
3001
3002 if (die->child != NULL)
3003 {
3004 child_die = die->child;
3005 while (child_die && child_die->tag)
3006 {
3007 process_die (child_die, cu);
3008 child_die = sibling_die (child_die);
3009 }
3010 }
3011
3012 new = pop_context ();
3013 /* Make a block for the local symbols within. */
3014 finish_block (new->name, &local_symbols, new->old_blocks,
3015 lowpc, highpc, objfile);
3016
3017 /* In C++, we can have functions nested inside functions (e.g., when
3018 a function declares a class that has methods). This means that
3019 when we finish processing a function scope, we may need to go
3020 back to building a containing block's symbol lists. */
3021 local_symbols = new->locals;
3022 param_symbols = new->params;
3023
3024 /* If we've finished processing a top-level function, subsequent
3025 symbols go in the file symbol list. */
3026 if (outermost_context_p ())
3027 cu->list_in_scope = &file_symbols;
3028
3029 processing_current_prefix = previous_prefix;
3030 if (back_to != NULL)
3031 do_cleanups (back_to);
3032 }
3033
3034 /* Process all the DIES contained within a lexical block scope. Start
3035 a new scope, process the dies, and then close the scope. */
3036
3037 static void
3038 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3039 {
3040 struct objfile *objfile = cu->objfile;
3041 struct context_stack *new;
3042 CORE_ADDR lowpc, highpc;
3043 struct die_info *child_die;
3044 CORE_ADDR baseaddr;
3045
3046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3047
3048 /* Ignore blocks with missing or invalid low and high pc attributes. */
3049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3050 as multiple lexical blocks? Handling children in a sane way would
3051 be nasty. Might be easier to properly extend generic blocks to
3052 describe ranges. */
3053 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3054 return;
3055 lowpc += baseaddr;
3056 highpc += baseaddr;
3057
3058 push_context (0, lowpc);
3059 if (die->child != NULL)
3060 {
3061 child_die = die->child;
3062 while (child_die && child_die->tag)
3063 {
3064 process_die (child_die, cu);
3065 child_die = sibling_die (child_die);
3066 }
3067 }
3068 new = pop_context ();
3069
3070 if (local_symbols != NULL)
3071 {
3072 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3073 highpc, objfile);
3074 }
3075 local_symbols = new->locals;
3076 }
3077
3078 /* Get low and high pc attributes from a die. Return 1 if the attributes
3079 are present and valid, otherwise, return 0. Return -1 if the range is
3080 discontinuous, i.e. derived from DW_AT_ranges information. */
3081 static int
3082 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3083 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3084 {
3085 struct objfile *objfile = cu->objfile;
3086 struct comp_unit_head *cu_header = &cu->header;
3087 struct attribute *attr;
3088 bfd *obfd = objfile->obfd;
3089 CORE_ADDR low = 0;
3090 CORE_ADDR high = 0;
3091 int ret = 0;
3092
3093 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3094 if (attr)
3095 {
3096 high = DW_ADDR (attr);
3097 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3098 if (attr)
3099 low = DW_ADDR (attr);
3100 else
3101 /* Found high w/o low attribute. */
3102 return 0;
3103
3104 /* Found consecutive range of addresses. */
3105 ret = 1;
3106 }
3107 else
3108 {
3109 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3110 if (attr != NULL)
3111 {
3112 unsigned int addr_size = cu_header->addr_size;
3113 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3114 /* Value of the DW_AT_ranges attribute is the offset in the
3115 .debug_ranges section. */
3116 unsigned int offset = DW_UNSND (attr);
3117 /* Base address selection entry. */
3118 CORE_ADDR base;
3119 int found_base;
3120 unsigned int dummy;
3121 gdb_byte *buffer;
3122 CORE_ADDR marker;
3123 int low_set;
3124
3125 found_base = cu_header->base_known;
3126 base = cu_header->base_address;
3127
3128 if (offset >= dwarf2_per_objfile->ranges_size)
3129 {
3130 complaint (&symfile_complaints,
3131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3132 offset);
3133 return 0;
3134 }
3135 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3136
3137 /* Read in the largest possible address. */
3138 marker = read_address (obfd, buffer, cu, &dummy);
3139 if ((marker & mask) == mask)
3140 {
3141 /* If we found the largest possible address, then
3142 read the base address. */
3143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3144 buffer += 2 * addr_size;
3145 offset += 2 * addr_size;
3146 found_base = 1;
3147 }
3148
3149 low_set = 0;
3150
3151 while (1)
3152 {
3153 CORE_ADDR range_beginning, range_end;
3154
3155 range_beginning = read_address (obfd, buffer, cu, &dummy);
3156 buffer += addr_size;
3157 range_end = read_address (obfd, buffer, cu, &dummy);
3158 buffer += addr_size;
3159 offset += 2 * addr_size;
3160
3161 /* An end of list marker is a pair of zero addresses. */
3162 if (range_beginning == 0 && range_end == 0)
3163 /* Found the end of list entry. */
3164 break;
3165
3166 /* Each base address selection entry is a pair of 2 values.
3167 The first is the largest possible address, the second is
3168 the base address. Check for a base address here. */
3169 if ((range_beginning & mask) == mask)
3170 {
3171 /* If we found the largest possible address, then
3172 read the base address. */
3173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3174 found_base = 1;
3175 continue;
3176 }
3177
3178 if (!found_base)
3179 {
3180 /* We have no valid base address for the ranges
3181 data. */
3182 complaint (&symfile_complaints,
3183 _("Invalid .debug_ranges data (no base address)"));
3184 return 0;
3185 }
3186
3187 range_beginning += base;
3188 range_end += base;
3189
3190 /* FIXME: This is recording everything as a low-high
3191 segment of consecutive addresses. We should have a
3192 data structure for discontiguous block ranges
3193 instead. */
3194 if (! low_set)
3195 {
3196 low = range_beginning;
3197 high = range_end;
3198 low_set = 1;
3199 }
3200 else
3201 {
3202 if (range_beginning < low)
3203 low = range_beginning;
3204 if (range_end > high)
3205 high = range_end;
3206 }
3207 }
3208
3209 if (! low_set)
3210 /* If the first entry is an end-of-list marker, the range
3211 describes an empty scope, i.e. no instructions. */
3212 return 0;
3213
3214 ret = -1;
3215 }
3216 }
3217
3218 if (high < low)
3219 return 0;
3220
3221 /* When using the GNU linker, .gnu.linkonce. sections are used to
3222 eliminate duplicate copies of functions and vtables and such.
3223 The linker will arbitrarily choose one and discard the others.
3224 The AT_*_pc values for such functions refer to local labels in
3225 these sections. If the section from that file was discarded, the
3226 labels are not in the output, so the relocs get a value of 0.
3227 If this is a discarded function, mark the pc bounds as invalid,
3228 so that GDB will ignore it. */
3229 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3230 return 0;
3231
3232 *lowpc = low;
3233 *highpc = high;
3234 return ret;
3235 }
3236
3237 /* Get the low and high pc's represented by the scope DIE, and store
3238 them in *LOWPC and *HIGHPC. If the correct values can't be
3239 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3240
3241 static void
3242 get_scope_pc_bounds (struct die_info *die,
3243 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3244 struct dwarf2_cu *cu)
3245 {
3246 CORE_ADDR best_low = (CORE_ADDR) -1;
3247 CORE_ADDR best_high = (CORE_ADDR) 0;
3248 CORE_ADDR current_low, current_high;
3249
3250 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3251 {
3252 best_low = current_low;
3253 best_high = current_high;
3254 }
3255 else
3256 {
3257 struct die_info *child = die->child;
3258
3259 while (child && child->tag)
3260 {
3261 switch (child->tag) {
3262 case DW_TAG_subprogram:
3263 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3264 {
3265 best_low = min (best_low, current_low);
3266 best_high = max (best_high, current_high);
3267 }
3268 break;
3269 case DW_TAG_namespace:
3270 /* FIXME: carlton/2004-01-16: Should we do this for
3271 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3272 that current GCC's always emit the DIEs corresponding
3273 to definitions of methods of classes as children of a
3274 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3275 the DIEs giving the declarations, which could be
3276 anywhere). But I don't see any reason why the
3277 standards says that they have to be there. */
3278 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3279
3280 if (current_low != ((CORE_ADDR) -1))
3281 {
3282 best_low = min (best_low, current_low);
3283 best_high = max (best_high, current_high);
3284 }
3285 break;
3286 default:
3287 /* Ignore. */
3288 break;
3289 }
3290
3291 child = sibling_die (child);
3292 }
3293 }
3294
3295 *lowpc = best_low;
3296 *highpc = best_high;
3297 }
3298
3299 /* Add an aggregate field to the field list. */
3300
3301 static void
3302 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3303 struct dwarf2_cu *cu)
3304 {
3305 struct objfile *objfile = cu->objfile;
3306 struct nextfield *new_field;
3307 struct attribute *attr;
3308 struct field *fp;
3309 char *fieldname = "";
3310
3311 /* Allocate a new field list entry and link it in. */
3312 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3313 make_cleanup (xfree, new_field);
3314 memset (new_field, 0, sizeof (struct nextfield));
3315 new_field->next = fip->fields;
3316 fip->fields = new_field;
3317 fip->nfields++;
3318
3319 /* Handle accessibility and virtuality of field.
3320 The default accessibility for members is public, the default
3321 accessibility for inheritance is private. */
3322 if (die->tag != DW_TAG_inheritance)
3323 new_field->accessibility = DW_ACCESS_public;
3324 else
3325 new_field->accessibility = DW_ACCESS_private;
3326 new_field->virtuality = DW_VIRTUALITY_none;
3327
3328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3329 if (attr)
3330 new_field->accessibility = DW_UNSND (attr);
3331 if (new_field->accessibility != DW_ACCESS_public)
3332 fip->non_public_fields = 1;
3333 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3334 if (attr)
3335 new_field->virtuality = DW_UNSND (attr);
3336
3337 fp = &new_field->field;
3338
3339 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3340 {
3341 /* Data member other than a C++ static data member. */
3342
3343 /* Get type of field. */
3344 fp->type = die_type (die, cu);
3345
3346 FIELD_STATIC_KIND (*fp) = 0;
3347
3348 /* Get bit size of field (zero if none). */
3349 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3350 if (attr)
3351 {
3352 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3353 }
3354 else
3355 {
3356 FIELD_BITSIZE (*fp) = 0;
3357 }
3358
3359 /* Get bit offset of field. */
3360 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3361 if (attr)
3362 {
3363 FIELD_BITPOS (*fp) =
3364 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3365 }
3366 else
3367 FIELD_BITPOS (*fp) = 0;
3368 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3369 if (attr)
3370 {
3371 if (BITS_BIG_ENDIAN)
3372 {
3373 /* For big endian bits, the DW_AT_bit_offset gives the
3374 additional bit offset from the MSB of the containing
3375 anonymous object to the MSB of the field. We don't
3376 have to do anything special since we don't need to
3377 know the size of the anonymous object. */
3378 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3379 }
3380 else
3381 {
3382 /* For little endian bits, compute the bit offset to the
3383 MSB of the anonymous object, subtract off the number of
3384 bits from the MSB of the field to the MSB of the
3385 object, and then subtract off the number of bits of
3386 the field itself. The result is the bit offset of
3387 the LSB of the field. */
3388 int anonymous_size;
3389 int bit_offset = DW_UNSND (attr);
3390
3391 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3392 if (attr)
3393 {
3394 /* The size of the anonymous object containing
3395 the bit field is explicit, so use the
3396 indicated size (in bytes). */
3397 anonymous_size = DW_UNSND (attr);
3398 }
3399 else
3400 {
3401 /* The size of the anonymous object containing
3402 the bit field must be inferred from the type
3403 attribute of the data member containing the
3404 bit field. */
3405 anonymous_size = TYPE_LENGTH (fp->type);
3406 }
3407 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3408 - bit_offset - FIELD_BITSIZE (*fp);
3409 }
3410 }
3411
3412 /* Get name of field. */
3413 attr = dwarf2_attr (die, DW_AT_name, cu);
3414 if (attr && DW_STRING (attr))
3415 fieldname = DW_STRING (attr);
3416
3417 /* The name is already allocated along with this objfile, so we don't
3418 need to duplicate it for the type. */
3419 fp->name = fieldname;
3420
3421 /* Change accessibility for artificial fields (e.g. virtual table
3422 pointer or virtual base class pointer) to private. */
3423 if (dwarf2_attr (die, DW_AT_artificial, cu))
3424 {
3425 new_field->accessibility = DW_ACCESS_private;
3426 fip->non_public_fields = 1;
3427 }
3428 }
3429 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3430 {
3431 /* C++ static member. */
3432
3433 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3434 is a declaration, but all versions of G++ as of this writing
3435 (so through at least 3.2.1) incorrectly generate
3436 DW_TAG_variable tags. */
3437
3438 char *physname;
3439
3440 /* Get name of field. */
3441 attr = dwarf2_attr (die, DW_AT_name, cu);
3442 if (attr && DW_STRING (attr))
3443 fieldname = DW_STRING (attr);
3444 else
3445 return;
3446
3447 /* Get physical name. */
3448 physname = dwarf2_linkage_name (die, cu);
3449
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3453 FIELD_TYPE (*fp) = die_type (die, cu);
3454 FIELD_NAME (*fp) = fieldname;
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3460 if (attr)
3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3462 * bits_per_byte);
3463 FIELD_BITSIZE (*fp) = 0;
3464 FIELD_STATIC_KIND (*fp) = 0;
3465 FIELD_TYPE (*fp) = die_type (die, cu);
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469 }
3470
3471 /* Create the vector of fields, and attach it to the type. */
3472
3473 static void
3474 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3475 struct dwarf2_cu *cu)
3476 {
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
3508 unsigned char *pointer;
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
3528
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
3532
3533 case DW_ACCESS_public:
3534 break;
3535
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3540 fip->fields->accessibility);
3541 }
3542 break;
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556 }
3557
3558 /* Add a member function to the proper fieldlist. */
3559
3560 static void
3561 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3562 struct type *type, struct dwarf2_cu *cu)
3563 {
3564 struct objfile *objfile = cu->objfile;
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
3573 /* Get name of member function. */
3574 attr = dwarf2_attr (die, DW_AT_name, cu);
3575 if (attr && DW_STRING (attr))
3576 fieldname = DW_STRING (attr);
3577 else
3578 return;
3579
3580 /* Get the mangled name. */
3581 physname = dwarf2_linkage_name (die, cu);
3582
3583 /* Look up member function name in fieldlist. */
3584 for (i = 0; i < fip->nfnfields; i++)
3585 {
3586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3587 break;
3588 }
3589
3590 /* Create new list element if necessary. */
3591 if (i < fip->nfnfields)
3592 flp = &fip->fnfieldlists[i];
3593 else
3594 {
3595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3596 {
3597 fip->fnfieldlists = (struct fnfieldlist *)
3598 xrealloc (fip->fnfieldlists,
3599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3600 * sizeof (struct fnfieldlist));
3601 if (fip->nfnfields == 0)
3602 make_cleanup (free_current_contents, &fip->fnfieldlists);
3603 }
3604 flp = &fip->fnfieldlists[fip->nfnfields];
3605 flp->name = fieldname;
3606 flp->length = 0;
3607 flp->head = NULL;
3608 fip->nfnfields++;
3609 }
3610
3611 /* Create a new member function field and chain it to the field list
3612 entry. */
3613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3614 make_cleanup (xfree, new_fnfield);
3615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3616 new_fnfield->next = flp->head;
3617 flp->head = new_fnfield;
3618 flp->length++;
3619
3620 /* Fill in the member function field info. */
3621 fnp = &new_fnfield->fnfield;
3622 /* The name is already allocated along with this objfile, so we don't
3623 need to duplicate it for the type. */
3624 fnp->physname = physname ? physname : "";
3625 fnp->type = alloc_type (objfile);
3626 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3627 {
3628 int nparams = TYPE_NFIELDS (die->type);
3629
3630 /* TYPE is the domain of this method, and DIE->TYPE is the type
3631 of the method itself (TYPE_CODE_METHOD). */
3632 smash_to_method_type (fnp->type, type,
3633 TYPE_TARGET_TYPE (die->type),
3634 TYPE_FIELDS (die->type),
3635 TYPE_NFIELDS (die->type),
3636 TYPE_VARARGS (die->type));
3637
3638 /* Handle static member functions.
3639 Dwarf2 has no clean way to discern C++ static and non-static
3640 member functions. G++ helps GDB by marking the first
3641 parameter for non-static member functions (which is the
3642 this pointer) as artificial. We obtain this information
3643 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3644 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3645 fnp->voffset = VOFFSET_STATIC;
3646 }
3647 else
3648 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3649 physname);
3650
3651 /* Get fcontext from DW_AT_containing_type if present. */
3652 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3653 fnp->fcontext = die_containing_type (die, cu);
3654
3655 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3656 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3657
3658 /* Get accessibility. */
3659 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3660 if (attr)
3661 {
3662 switch (DW_UNSND (attr))
3663 {
3664 case DW_ACCESS_private:
3665 fnp->is_private = 1;
3666 break;
3667 case DW_ACCESS_protected:
3668 fnp->is_protected = 1;
3669 break;
3670 }
3671 }
3672
3673 /* Check for artificial methods. */
3674 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3675 if (attr && DW_UNSND (attr) != 0)
3676 fnp->is_artificial = 1;
3677
3678 /* Get index in virtual function table if it is a virtual member function. */
3679 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3680 if (attr)
3681 {
3682 /* Support the .debug_loc offsets */
3683 if (attr_form_is_block (attr))
3684 {
3685 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3686 }
3687 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3688 {
3689 dwarf2_complex_location_expr_complaint ();
3690 }
3691 else
3692 {
3693 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3694 fieldname);
3695 }
3696 }
3697 }
3698
3699 /* Create the vector of member function fields, and attach it to the type. */
3700
3701 static void
3702 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3703 struct dwarf2_cu *cu)
3704 {
3705 struct fnfieldlist *flp;
3706 int total_length = 0;
3707 int i;
3708
3709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3710 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3711 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3712
3713 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3714 {
3715 struct nextfnfield *nfp = flp->head;
3716 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3717 int k;
3718
3719 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3720 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3721 fn_flp->fn_fields = (struct fn_field *)
3722 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3723 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3724 fn_flp->fn_fields[k] = nfp->fnfield;
3725
3726 total_length += flp->length;
3727 }
3728
3729 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3730 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3731 }
3732
3733 /* Returns non-zero if NAME is the name of a vtable member in CU's
3734 language, zero otherwise. */
3735 static int
3736 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3737 {
3738 static const char vptr[] = "_vptr";
3739 static const char vtable[] = "vtable";
3740
3741 /* Look for the C++ and Java forms of the vtable. */
3742 if ((cu->language == language_java
3743 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3744 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3745 && is_cplus_marker (name[sizeof (vptr) - 1])))
3746 return 1;
3747
3748 return 0;
3749 }
3750
3751 /* GCC outputs unnamed structures that are really pointers to member
3752 functions, with the ABI-specified layout. If DIE (from CU) describes
3753 such a structure, set its type, and return nonzero. Otherwise return
3754 zero.
3755
3756 GCC shouldn't do this; it should just output pointer to member DIEs.
3757 This is GCC PR debug/28767. */
3758
3759 static int
3760 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3761 {
3762 struct objfile *objfile = cu->objfile;
3763 struct type *type;
3764 struct die_info *pfn_die, *delta_die;
3765 struct attribute *pfn_name, *delta_name;
3766 struct type *pfn_type, *domain_type;
3767
3768 /* Check for a structure with no name and two children. */
3769 if (die->tag != DW_TAG_structure_type
3770 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3771 || die->child == NULL
3772 || die->child->sibling == NULL
3773 || (die->child->sibling->sibling != NULL
3774 && die->child->sibling->sibling->tag != DW_TAG_padding))
3775 return 0;
3776
3777 /* Check for __pfn and __delta members. */
3778 pfn_die = die->child;
3779 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3780 if (pfn_die->tag != DW_TAG_member
3781 || pfn_name == NULL
3782 || DW_STRING (pfn_name) == NULL
3783 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3784 return 0;
3785
3786 delta_die = pfn_die->sibling;
3787 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3788 if (delta_die->tag != DW_TAG_member
3789 || delta_name == NULL
3790 || DW_STRING (delta_name) == NULL
3791 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3792 return 0;
3793
3794 /* Find the type of the method. */
3795 pfn_type = die_type (pfn_die, cu);
3796 if (pfn_type == NULL
3797 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3798 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3799 return 0;
3800
3801 /* Look for the "this" argument. */
3802 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3803 if (TYPE_NFIELDS (pfn_type) == 0
3804 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3805 return 0;
3806
3807 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3808 type = alloc_type (objfile);
3809 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3810 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3811 TYPE_VARARGS (pfn_type));
3812 type = lookup_methodptr_type (type);
3813 set_die_type (die, type, cu);
3814
3815 return 1;
3816 }
3817
3818 /* Called when we find the DIE that starts a structure or union scope
3819 (definition) to process all dies that define the members of the
3820 structure or union.
3821
3822 NOTE: we need to call struct_type regardless of whether or not the
3823 DIE has an at_name attribute, since it might be an anonymous
3824 structure or union. This gets the type entered into our set of
3825 user defined types.
3826
3827 However, if the structure is incomplete (an opaque struct/union)
3828 then suppress creating a symbol table entry for it since gdb only
3829 wants to find the one with the complete definition. Note that if
3830 it is complete, we just call new_symbol, which does it's own
3831 checking about whether the struct/union is anonymous or not (and
3832 suppresses creating a symbol table entry itself). */
3833
3834 static void
3835 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3836 {
3837 struct objfile *objfile = cu->objfile;
3838 struct type *type;
3839 struct attribute *attr;
3840 const char *previous_prefix = processing_current_prefix;
3841 struct cleanup *back_to = NULL;
3842
3843 if (die->type)
3844 return;
3845
3846 if (quirk_gcc_member_function_pointer (die, cu))
3847 return;
3848
3849 type = alloc_type (objfile);
3850 INIT_CPLUS_SPECIFIC (type);
3851 attr = dwarf2_attr (die, DW_AT_name, cu);
3852 if (attr && DW_STRING (attr))
3853 {
3854 if (cu->language == language_cplus
3855 || cu->language == language_java)
3856 {
3857 char *new_prefix = determine_class_name (die, cu);
3858 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3859 strlen (new_prefix),
3860 &objfile->objfile_obstack);
3861 back_to = make_cleanup (xfree, new_prefix);
3862 processing_current_prefix = new_prefix;
3863 }
3864 else
3865 {
3866 /* The name is already allocated along with this objfile, so
3867 we don't need to duplicate it for the type. */
3868 TYPE_TAG_NAME (type) = DW_STRING (attr);
3869 }
3870 }
3871
3872 if (die->tag == DW_TAG_structure_type)
3873 {
3874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3875 }
3876 else if (die->tag == DW_TAG_union_type)
3877 {
3878 TYPE_CODE (type) = TYPE_CODE_UNION;
3879 }
3880 else
3881 {
3882 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3883 in gdbtypes.h. */
3884 TYPE_CODE (type) = TYPE_CODE_CLASS;
3885 }
3886
3887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3888 if (attr)
3889 {
3890 TYPE_LENGTH (type) = DW_UNSND (attr);
3891 }
3892 else
3893 {
3894 TYPE_LENGTH (type) = 0;
3895 }
3896
3897 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
3898 if (die_is_declaration (die, cu))
3899 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3900
3901 /* We need to add the type field to the die immediately so we don't
3902 infinitely recurse when dealing with pointers to the structure
3903 type within the structure itself. */
3904 set_die_type (die, type, cu);
3905
3906 if (die->child != NULL && ! die_is_declaration (die, cu))
3907 {
3908 struct field_info fi;
3909 struct die_info *child_die;
3910 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3911
3912 memset (&fi, 0, sizeof (struct field_info));
3913
3914 child_die = die->child;
3915
3916 while (child_die && child_die->tag)
3917 {
3918 if (child_die->tag == DW_TAG_member
3919 || child_die->tag == DW_TAG_variable)
3920 {
3921 /* NOTE: carlton/2002-11-05: A C++ static data member
3922 should be a DW_TAG_member that is a declaration, but
3923 all versions of G++ as of this writing (so through at
3924 least 3.2.1) incorrectly generate DW_TAG_variable
3925 tags for them instead. */
3926 dwarf2_add_field (&fi, child_die, cu);
3927 }
3928 else if (child_die->tag == DW_TAG_subprogram)
3929 {
3930 /* C++ member function. */
3931 read_type_die (child_die, cu);
3932 dwarf2_add_member_fn (&fi, child_die, type, cu);
3933 }
3934 else if (child_die->tag == DW_TAG_inheritance)
3935 {
3936 /* C++ base class field. */
3937 dwarf2_add_field (&fi, child_die, cu);
3938 }
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 /* Attach fields and member functions to the type. */
3943 if (fi.nfields)
3944 dwarf2_attach_fields_to_type (&fi, type, cu);
3945 if (fi.nfnfields)
3946 {
3947 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3948
3949 /* Get the type which refers to the base class (possibly this
3950 class itself) which contains the vtable pointer for the current
3951 class from the DW_AT_containing_type attribute. */
3952
3953 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3954 {
3955 struct type *t = die_containing_type (die, cu);
3956
3957 TYPE_VPTR_BASETYPE (type) = t;
3958 if (type == t)
3959 {
3960 int i;
3961
3962 /* Our own class provides vtbl ptr. */
3963 for (i = TYPE_NFIELDS (t) - 1;
3964 i >= TYPE_N_BASECLASSES (t);
3965 --i)
3966 {
3967 char *fieldname = TYPE_FIELD_NAME (t, i);
3968
3969 if (is_vtable_name (fieldname, cu))
3970 {
3971 TYPE_VPTR_FIELDNO (type) = i;
3972 break;
3973 }
3974 }
3975
3976 /* Complain if virtual function table field not found. */
3977 if (i < TYPE_N_BASECLASSES (t))
3978 complaint (&symfile_complaints,
3979 _("virtual function table pointer not found when defining class '%s'"),
3980 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3981 "");
3982 }
3983 else
3984 {
3985 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3986 }
3987 }
3988 else if (cu->producer
3989 && strncmp (cu->producer,
3990 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3991 {
3992 /* The IBM XLC compiler does not provide direct indication
3993 of the containing type, but the vtable pointer is
3994 always named __vfp. */
3995
3996 int i;
3997
3998 for (i = TYPE_NFIELDS (type) - 1;
3999 i >= TYPE_N_BASECLASSES (type);
4000 --i)
4001 {
4002 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4003 {
4004 TYPE_VPTR_FIELDNO (type) = i;
4005 TYPE_VPTR_BASETYPE (type) = type;
4006 break;
4007 }
4008 }
4009 }
4010 }
4011
4012 do_cleanups (back_to);
4013 }
4014
4015 processing_current_prefix = previous_prefix;
4016 if (back_to != NULL)
4017 do_cleanups (back_to);
4018 }
4019
4020 static void
4021 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4022 {
4023 struct objfile *objfile = cu->objfile;
4024 const char *previous_prefix = processing_current_prefix;
4025 struct die_info *child_die = die->child;
4026
4027 if (TYPE_TAG_NAME (die->type) != NULL)
4028 processing_current_prefix = TYPE_TAG_NAME (die->type);
4029
4030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4031 snapshots) has been known to create a die giving a declaration
4032 for a class that has, as a child, a die giving a definition for a
4033 nested class. So we have to process our children even if the
4034 current die is a declaration. Normally, of course, a declaration
4035 won't have any children at all. */
4036
4037 while (child_die != NULL && child_die->tag)
4038 {
4039 if (child_die->tag == DW_TAG_member
4040 || child_die->tag == DW_TAG_variable
4041 || child_die->tag == DW_TAG_inheritance)
4042 {
4043 /* Do nothing. */
4044 }
4045 else
4046 process_die (child_die, cu);
4047
4048 child_die = sibling_die (child_die);
4049 }
4050
4051 /* Do not consider external references. According to the DWARF standard,
4052 these DIEs are identified by the fact that they have no byte_size
4053 attribute, and a declaration attribute. */
4054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4055 || !die_is_declaration (die, cu))
4056 new_symbol (die, die->type, cu);
4057
4058 processing_current_prefix = previous_prefix;
4059 }
4060
4061 /* Given a DW_AT_enumeration_type die, set its type. We do not
4062 complete the type's fields yet, or create any symbols. */
4063
4064 static void
4065 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4066 {
4067 struct objfile *objfile = cu->objfile;
4068 struct type *type;
4069 struct attribute *attr;
4070
4071 if (die->type)
4072 return;
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
4077 attr = dwarf2_attr (die, DW_AT_name, cu);
4078 if (attr && DW_STRING (attr))
4079 {
4080 char *name = DW_STRING (attr);
4081
4082 if (processing_has_namespace_info)
4083 {
4084 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4085 processing_current_prefix,
4086 name, cu);
4087 }
4088 else
4089 {
4090 /* The name is already allocated along with this objfile, so
4091 we don't need to duplicate it for the type. */
4092 TYPE_TAG_NAME (type) = name;
4093 }
4094 }
4095
4096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4097 if (attr)
4098 {
4099 TYPE_LENGTH (type) = DW_UNSND (attr);
4100 }
4101 else
4102 {
4103 TYPE_LENGTH (type) = 0;
4104 }
4105
4106 set_die_type (die, type, cu);
4107 }
4108
4109 /* Determine the name of the type represented by DIE, which should be
4110 a named C++ or Java compound type. Return the name in question; the caller
4111 is responsible for xfree()'ing it. */
4112
4113 static char *
4114 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4115 {
4116 struct cleanup *back_to = NULL;
4117 struct die_info *spec_die = die_specification (die, cu);
4118 char *new_prefix = NULL;
4119
4120 /* If this is the definition of a class that is declared by another
4121 die, then processing_current_prefix may not be accurate; see
4122 read_func_scope for a similar example. */
4123 if (spec_die != NULL)
4124 {
4125 char *specification_prefix = determine_prefix (spec_die, cu);
4126 processing_current_prefix = specification_prefix;
4127 back_to = make_cleanup (xfree, specification_prefix);
4128 }
4129
4130 /* If we don't have namespace debug info, guess the name by trying
4131 to demangle the names of members, just like we did in
4132 guess_structure_name. */
4133 if (!processing_has_namespace_info)
4134 {
4135 struct die_info *child;
4136
4137 for (child = die->child;
4138 child != NULL && child->tag != 0;
4139 child = sibling_die (child))
4140 {
4141 if (child->tag == DW_TAG_subprogram)
4142 {
4143 new_prefix
4144 = language_class_name_from_physname (cu->language_defn,
4145 dwarf2_linkage_name
4146 (child, cu));
4147
4148 if (new_prefix != NULL)
4149 break;
4150 }
4151 }
4152 }
4153
4154 if (new_prefix == NULL)
4155 {
4156 const char *name = dwarf2_name (die, cu);
4157 new_prefix = typename_concat (NULL, processing_current_prefix,
4158 name ? name : "<<anonymous>>",
4159 cu);
4160 }
4161
4162 if (back_to != NULL)
4163 do_cleanups (back_to);
4164
4165 return new_prefix;
4166 }
4167
4168 /* Given a pointer to a die which begins an enumeration, process all
4169 the dies that define the members of the enumeration, and create the
4170 symbol for the enumeration type.
4171
4172 NOTE: We reverse the order of the element list. */
4173
4174 static void
4175 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4176 {
4177 struct objfile *objfile = cu->objfile;
4178 struct die_info *child_die;
4179 struct field *fields;
4180 struct attribute *attr;
4181 struct symbol *sym;
4182 int num_fields;
4183 int unsigned_enum = 1;
4184
4185 num_fields = 0;
4186 fields = NULL;
4187 if (die->child != NULL)
4188 {
4189 child_die = die->child;
4190 while (child_die && child_die->tag)
4191 {
4192 if (child_die->tag != DW_TAG_enumerator)
4193 {
4194 process_die (child_die, cu);
4195 }
4196 else
4197 {
4198 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4199 if (attr)
4200 {
4201 sym = new_symbol (child_die, die->type, cu);
4202 if (SYMBOL_VALUE (sym) < 0)
4203 unsigned_enum = 0;
4204
4205 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4206 {
4207 fields = (struct field *)
4208 xrealloc (fields,
4209 (num_fields + DW_FIELD_ALLOC_CHUNK)
4210 * sizeof (struct field));
4211 }
4212
4213 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4214 FIELD_TYPE (fields[num_fields]) = NULL;
4215 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4216 FIELD_BITSIZE (fields[num_fields]) = 0;
4217 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4218
4219 num_fields++;
4220 }
4221 }
4222
4223 child_die = sibling_die (child_die);
4224 }
4225
4226 if (num_fields)
4227 {
4228 TYPE_NFIELDS (die->type) = num_fields;
4229 TYPE_FIELDS (die->type) = (struct field *)
4230 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4231 memcpy (TYPE_FIELDS (die->type), fields,
4232 sizeof (struct field) * num_fields);
4233 xfree (fields);
4234 }
4235 if (unsigned_enum)
4236 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4237 }
4238
4239 new_symbol (die, die->type, cu);
4240 }
4241
4242 /* Extract all information from a DW_TAG_array_type DIE and put it in
4243 the DIE's type field. For now, this only handles one dimensional
4244 arrays. */
4245
4246 static void
4247 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4248 {
4249 struct objfile *objfile = cu->objfile;
4250 struct die_info *child_die;
4251 struct type *type = NULL;
4252 struct type *element_type, *range_type, *index_type;
4253 struct type **range_types = NULL;
4254 struct attribute *attr;
4255 int ndim = 0;
4256 struct cleanup *back_to;
4257
4258 /* Return if we've already decoded this type. */
4259 if (die->type)
4260 {
4261 return;
4262 }
4263
4264 element_type = die_type (die, cu);
4265
4266 /* Irix 6.2 native cc creates array types without children for
4267 arrays with unspecified length. */
4268 if (die->child == NULL)
4269 {
4270 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4271 range_type = create_range_type (NULL, index_type, 0, -1);
4272 set_die_type (die, create_array_type (NULL, element_type, range_type),
4273 cu);
4274 return;
4275 }
4276
4277 back_to = make_cleanup (null_cleanup, NULL);
4278 child_die = die->child;
4279 while (child_die && child_die->tag)
4280 {
4281 if (child_die->tag == DW_TAG_subrange_type)
4282 {
4283 read_subrange_type (child_die, cu);
4284
4285 if (child_die->type != NULL)
4286 {
4287 /* The range type was succesfully read. Save it for
4288 the array type creation. */
4289 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4290 {
4291 range_types = (struct type **)
4292 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4293 * sizeof (struct type *));
4294 if (ndim == 0)
4295 make_cleanup (free_current_contents, &range_types);
4296 }
4297 range_types[ndim++] = child_die->type;
4298 }
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302
4303 /* Dwarf2 dimensions are output from left to right, create the
4304 necessary array types in backwards order. */
4305
4306 type = element_type;
4307
4308 if (read_array_order (die, cu) == DW_ORD_col_major)
4309 {
4310 int i = 0;
4311 while (i < ndim)
4312 type = create_array_type (NULL, type, range_types[i++]);
4313 }
4314 else
4315 {
4316 while (ndim-- > 0)
4317 type = create_array_type (NULL, type, range_types[ndim]);
4318 }
4319
4320 /* Understand Dwarf2 support for vector types (like they occur on
4321 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4322 array type. This is not part of the Dwarf2/3 standard yet, but a
4323 custom vendor extension. The main difference between a regular
4324 array and the vector variant is that vectors are passed by value
4325 to functions. */
4326 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4327 if (attr)
4328 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4329
4330 attr = dwarf2_attr (die, DW_AT_name, cu);
4331 if (attr && DW_STRING (attr))
4332 TYPE_NAME (type) = DW_STRING (attr);
4333
4334 do_cleanups (back_to);
4335
4336 /* Install the type in the die. */
4337 set_die_type (die, type, cu);
4338 }
4339
4340 static enum dwarf_array_dim_ordering
4341 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4342 {
4343 struct attribute *attr;
4344
4345 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4346
4347 if (attr) return DW_SND (attr);
4348
4349 /*
4350 GNU F77 is a special case, as at 08/2004 array type info is the
4351 opposite order to the dwarf2 specification, but data is still
4352 laid out as per normal fortran.
4353
4354 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4355 version checking.
4356 */
4357
4358 if (cu->language == language_fortran &&
4359 cu->producer && strstr (cu->producer, "GNU F77"))
4360 {
4361 return DW_ORD_row_major;
4362 }
4363
4364 switch (cu->language_defn->la_array_ordering)
4365 {
4366 case array_column_major:
4367 return DW_ORD_col_major;
4368 case array_row_major:
4369 default:
4370 return DW_ORD_row_major;
4371 };
4372 }
4373
4374 /* Extract all information from a DW_TAG_set_type DIE and put it in
4375 the DIE's type field. */
4376
4377 static void
4378 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4379 {
4380 if (die->type == NULL)
4381 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4382 }
4383
4384 /* First cut: install each common block member as a global variable. */
4385
4386 static void
4387 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4388 {
4389 struct die_info *child_die;
4390 struct attribute *attr;
4391 struct symbol *sym;
4392 CORE_ADDR base = (CORE_ADDR) 0;
4393
4394 attr = dwarf2_attr (die, DW_AT_location, cu);
4395 if (attr)
4396 {
4397 /* Support the .debug_loc offsets */
4398 if (attr_form_is_block (attr))
4399 {
4400 base = decode_locdesc (DW_BLOCK (attr), cu);
4401 }
4402 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4403 {
4404 dwarf2_complex_location_expr_complaint ();
4405 }
4406 else
4407 {
4408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4409 "common block member");
4410 }
4411 }
4412 if (die->child != NULL)
4413 {
4414 child_die = die->child;
4415 while (child_die && child_die->tag)
4416 {
4417 sym = new_symbol (child_die, NULL, cu);
4418 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4419 if (attr)
4420 {
4421 SYMBOL_VALUE_ADDRESS (sym) =
4422 base + decode_locdesc (DW_BLOCK (attr), cu);
4423 add_symbol_to_list (sym, &global_symbols);
4424 }
4425 child_die = sibling_die (child_die);
4426 }
4427 }
4428 }
4429
4430 /* Read a C++ namespace. */
4431
4432 static void
4433 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4434 {
4435 struct objfile *objfile = cu->objfile;
4436 const char *previous_prefix = processing_current_prefix;
4437 const char *name;
4438 int is_anonymous;
4439 struct die_info *current_die;
4440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4441
4442 name = namespace_name (die, &is_anonymous, cu);
4443
4444 /* Now build the name of the current namespace. */
4445
4446 if (previous_prefix[0] == '\0')
4447 {
4448 processing_current_prefix = name;
4449 }
4450 else
4451 {
4452 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4453 make_cleanup (xfree, temp_name);
4454 processing_current_prefix = temp_name;
4455 }
4456
4457 /* Add a symbol associated to this if we haven't seen the namespace
4458 before. Also, add a using directive if it's an anonymous
4459 namespace. */
4460
4461 if (dwarf2_extension (die, cu) == NULL)
4462 {
4463 struct type *type;
4464
4465 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4466 this cast will hopefully become unnecessary. */
4467 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4468 (char *) processing_current_prefix,
4469 objfile);
4470 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4471
4472 new_symbol (die, type, cu);
4473 set_die_type (die, type, cu);
4474
4475 if (is_anonymous)
4476 cp_add_using_directive (processing_current_prefix,
4477 strlen (previous_prefix),
4478 strlen (processing_current_prefix));
4479 }
4480
4481 if (die->child != NULL)
4482 {
4483 struct die_info *child_die = die->child;
4484
4485 while (child_die && child_die->tag)
4486 {
4487 process_die (child_die, cu);
4488 child_die = sibling_die (child_die);
4489 }
4490 }
4491
4492 processing_current_prefix = previous_prefix;
4493 do_cleanups (back_to);
4494 }
4495
4496 /* Return the name of the namespace represented by DIE. Set
4497 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4498 namespace. */
4499
4500 static const char *
4501 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4502 {
4503 struct die_info *current_die;
4504 const char *name = NULL;
4505
4506 /* Loop through the extensions until we find a name. */
4507
4508 for (current_die = die;
4509 current_die != NULL;
4510 current_die = dwarf2_extension (die, cu))
4511 {
4512 name = dwarf2_name (current_die, cu);
4513 if (name != NULL)
4514 break;
4515 }
4516
4517 /* Is it an anonymous namespace? */
4518
4519 *is_anonymous = (name == NULL);
4520 if (*is_anonymous)
4521 name = "(anonymous namespace)";
4522
4523 return name;
4524 }
4525
4526 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4527 the user defined type vector. */
4528
4529 static void
4530 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4531 {
4532 struct comp_unit_head *cu_header = &cu->header;
4533 struct type *type;
4534 struct attribute *attr_byte_size;
4535 struct attribute *attr_address_class;
4536 int byte_size, addr_class;
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
4543 type = lookup_pointer_type (die_type (die, cu));
4544
4545 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4546 if (attr_byte_size)
4547 byte_size = DW_UNSND (attr_byte_size);
4548 else
4549 byte_size = cu_header->addr_size;
4550
4551 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4552 if (attr_address_class)
4553 addr_class = DW_UNSND (attr_address_class);
4554 else
4555 addr_class = DW_ADDR_none;
4556
4557 /* If the pointer size or address class is different than the
4558 default, create a type variant marked as such and set the
4559 length accordingly. */
4560 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4561 {
4562 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4563 {
4564 int type_flags;
4565
4566 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4567 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4568 type = make_type_with_address_space (type, type_flags);
4569 }
4570 else if (TYPE_LENGTH (type) != byte_size)
4571 {
4572 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4573 }
4574 else {
4575 /* Should we also complain about unhandled address classes? */
4576 }
4577 }
4578
4579 TYPE_LENGTH (type) = byte_size;
4580 set_die_type (die, type, cu);
4581 }
4582
4583 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4584 the user defined type vector. */
4585
4586 static void
4587 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4588 {
4589 struct objfile *objfile = cu->objfile;
4590 struct type *type;
4591 struct type *to_type;
4592 struct type *domain;
4593
4594 if (die->type)
4595 {
4596 return;
4597 }
4598
4599 to_type = die_type (die, cu);
4600 domain = die_containing_type (die, cu);
4601
4602 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4603 type = lookup_methodptr_type (to_type);
4604 else
4605 type = lookup_memberptr_type (to_type, domain);
4606
4607 set_die_type (die, type, cu);
4608 }
4609
4610 /* Extract all information from a DW_TAG_reference_type DIE and add to
4611 the user defined type vector. */
4612
4613 static void
4614 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4615 {
4616 struct comp_unit_head *cu_header = &cu->header;
4617 struct type *type;
4618 struct attribute *attr;
4619
4620 if (die->type)
4621 {
4622 return;
4623 }
4624
4625 type = lookup_reference_type (die_type (die, cu));
4626 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4627 if (attr)
4628 {
4629 TYPE_LENGTH (type) = DW_UNSND (attr);
4630 }
4631 else
4632 {
4633 TYPE_LENGTH (type) = cu_header->addr_size;
4634 }
4635 set_die_type (die, type, cu);
4636 }
4637
4638 static void
4639 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4640 {
4641 struct type *base_type;
4642
4643 if (die->type)
4644 {
4645 return;
4646 }
4647
4648 base_type = die_type (die, cu);
4649 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4650 cu);
4651 }
4652
4653 static void
4654 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4655 {
4656 struct type *base_type;
4657
4658 if (die->type)
4659 {
4660 return;
4661 }
4662
4663 base_type = die_type (die, cu);
4664 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4665 cu);
4666 }
4667
4668 /* Extract all information from a DW_TAG_string_type DIE and add to
4669 the user defined type vector. It isn't really a user defined type,
4670 but it behaves like one, with other DIE's using an AT_user_def_type
4671 attribute to reference it. */
4672
4673 static void
4674 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4675 {
4676 struct objfile *objfile = cu->objfile;
4677 struct type *type, *range_type, *index_type, *char_type;
4678 struct attribute *attr;
4679 unsigned int length;
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
4686 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4687 if (attr)
4688 {
4689 length = DW_UNSND (attr);
4690 }
4691 else
4692 {
4693 /* check for the DW_AT_byte_size attribute */
4694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4695 if (attr)
4696 {
4697 length = DW_UNSND (attr);
4698 }
4699 else
4700 {
4701 length = 1;
4702 }
4703 }
4704 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4705 range_type = create_range_type (NULL, index_type, 1, length);
4706 if (cu->language == language_fortran)
4707 {
4708 /* Need to create a unique string type for bounds
4709 information */
4710 type = create_string_type (0, range_type);
4711 }
4712 else
4713 {
4714 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4715 type = create_string_type (char_type, range_type);
4716 }
4717 set_die_type (die, type, cu);
4718 }
4719
4720 /* Handle DIES due to C code like:
4721
4722 struct foo
4723 {
4724 int (*funcp)(int a, long l);
4725 int b;
4726 };
4727
4728 ('funcp' generates a DW_TAG_subroutine_type DIE)
4729 */
4730
4731 static void
4732 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4733 {
4734 struct type *type; /* Type that this function returns */
4735 struct type *ftype; /* Function that returns above type */
4736 struct attribute *attr;
4737
4738 /* Decode the type that this subroutine returns */
4739 if (die->type)
4740 {
4741 return;
4742 }
4743 type = die_type (die, cu);
4744 ftype = make_function_type (type, (struct type **) 0);
4745
4746 /* All functions in C++ and Java have prototypes. */
4747 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4748 if ((attr && (DW_UNSND (attr) != 0))
4749 || cu->language == language_cplus
4750 || cu->language == language_java)
4751 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4752
4753 if (die->child != NULL)
4754 {
4755 struct die_info *child_die;
4756 int nparams = 0;
4757 int iparams = 0;
4758
4759 /* Count the number of parameters.
4760 FIXME: GDB currently ignores vararg functions, but knows about
4761 vararg member functions. */
4762 child_die = die->child;
4763 while (child_die && child_die->tag)
4764 {
4765 if (child_die->tag == DW_TAG_formal_parameter)
4766 nparams++;
4767 else if (child_die->tag == DW_TAG_unspecified_parameters)
4768 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4769 child_die = sibling_die (child_die);
4770 }
4771
4772 /* Allocate storage for parameters and fill them in. */
4773 TYPE_NFIELDS (ftype) = nparams;
4774 TYPE_FIELDS (ftype) = (struct field *)
4775 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4776
4777 child_die = die->child;
4778 while (child_die && child_die->tag)
4779 {
4780 if (child_die->tag == DW_TAG_formal_parameter)
4781 {
4782 /* Dwarf2 has no clean way to discern C++ static and non-static
4783 member functions. G++ helps GDB by marking the first
4784 parameter for non-static member functions (which is the
4785 this pointer) as artificial. We pass this information
4786 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4787 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4788 if (attr)
4789 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4790 else
4791 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4792 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4793 iparams++;
4794 }
4795 child_die = sibling_die (child_die);
4796 }
4797 }
4798
4799 set_die_type (die, ftype, cu);
4800 }
4801
4802 static void
4803 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4804 {
4805 struct objfile *objfile = cu->objfile;
4806 struct attribute *attr;
4807 char *name = NULL;
4808
4809 if (!die->type)
4810 {
4811 attr = dwarf2_attr (die, DW_AT_name, cu);
4812 if (attr && DW_STRING (attr))
4813 {
4814 name = DW_STRING (attr);
4815 }
4816 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4817 TYPE_FLAG_TARGET_STUB, name, objfile),
4818 cu);
4819 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4820 }
4821 }
4822
4823 /* Find a representation of a given base type and install
4824 it in the TYPE field of the die. */
4825
4826 static void
4827 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4828 {
4829 struct objfile *objfile = cu->objfile;
4830 struct type *type;
4831 struct attribute *attr;
4832 int encoding = 0, size = 0;
4833
4834 /* If we've already decoded this die, this is a no-op. */
4835 if (die->type)
4836 {
4837 return;
4838 }
4839
4840 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4841 if (attr)
4842 {
4843 encoding = DW_UNSND (attr);
4844 }
4845 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4846 if (attr)
4847 {
4848 size = DW_UNSND (attr);
4849 }
4850 attr = dwarf2_attr (die, DW_AT_name, cu);
4851 if (attr && DW_STRING (attr))
4852 {
4853 enum type_code code = TYPE_CODE_INT;
4854 int type_flags = 0;
4855
4856 switch (encoding)
4857 {
4858 case DW_ATE_address:
4859 /* Turn DW_ATE_address into a void * pointer. */
4860 code = TYPE_CODE_PTR;
4861 type_flags |= TYPE_FLAG_UNSIGNED;
4862 break;
4863 case DW_ATE_boolean:
4864 code = TYPE_CODE_BOOL;
4865 type_flags |= TYPE_FLAG_UNSIGNED;
4866 break;
4867 case DW_ATE_complex_float:
4868 code = TYPE_CODE_COMPLEX;
4869 break;
4870 case DW_ATE_float:
4871 code = TYPE_CODE_FLT;
4872 break;
4873 case DW_ATE_signed:
4874 break;
4875 case DW_ATE_unsigned:
4876 type_flags |= TYPE_FLAG_UNSIGNED;
4877 break;
4878 case DW_ATE_signed_char:
4879 if (cu->language == language_m2)
4880 code = TYPE_CODE_CHAR;
4881 break;
4882 case DW_ATE_unsigned_char:
4883 if (cu->language == language_m2)
4884 code = TYPE_CODE_CHAR;
4885 type_flags |= TYPE_FLAG_UNSIGNED;
4886 break;
4887 default:
4888 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4889 dwarf_type_encoding_name (encoding));
4890 break;
4891 }
4892 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4893 if (encoding == DW_ATE_address)
4894 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4895 cu);
4896 else if (encoding == DW_ATE_complex_float)
4897 {
4898 if (size == 32)
4899 TYPE_TARGET_TYPE (type)
4900 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4901 else if (size == 16)
4902 TYPE_TARGET_TYPE (type)
4903 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4904 else if (size == 8)
4905 TYPE_TARGET_TYPE (type)
4906 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4907 }
4908 }
4909 else
4910 {
4911 type = dwarf_base_type (encoding, size, cu);
4912 }
4913 set_die_type (die, type, cu);
4914 }
4915
4916 /* Read the given DW_AT_subrange DIE. */
4917
4918 static void
4919 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4920 {
4921 struct type *base_type;
4922 struct type *range_type;
4923 struct attribute *attr;
4924 int low = 0;
4925 int high = -1;
4926
4927 /* If we have already decoded this die, then nothing more to do. */
4928 if (die->type)
4929 return;
4930
4931 base_type = die_type (die, cu);
4932 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4933 {
4934 complaint (&symfile_complaints,
4935 _("DW_AT_type missing from DW_TAG_subrange_type"));
4936 base_type = dwarf_base_type (DW_ATE_signed, TARGET_ADDR_BIT / 8, cu);
4937 }
4938
4939 if (cu->language == language_fortran)
4940 {
4941 /* FORTRAN implies a lower bound of 1, if not given. */
4942 low = 1;
4943 }
4944
4945 /* FIXME: For variable sized arrays either of these could be
4946 a variable rather than a constant value. We'll allow it,
4947 but we don't know how to handle it. */
4948 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4949 if (attr)
4950 low = dwarf2_get_attr_constant_value (attr, 0);
4951
4952 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4953 if (attr)
4954 {
4955 if (attr->form == DW_FORM_block1)
4956 {
4957 /* GCC encodes arrays with unspecified or dynamic length
4958 with a DW_FORM_block1 attribute.
4959 FIXME: GDB does not yet know how to handle dynamic
4960 arrays properly, treat them as arrays with unspecified
4961 length for now.
4962
4963 FIXME: jimb/2003-09-22: GDB does not really know
4964 how to handle arrays of unspecified length
4965 either; we just represent them as zero-length
4966 arrays. Choose an appropriate upper bound given
4967 the lower bound we've computed above. */
4968 high = low - 1;
4969 }
4970 else
4971 high = dwarf2_get_attr_constant_value (attr, 1);
4972 }
4973
4974 range_type = create_range_type (NULL, base_type, low, high);
4975
4976 attr = dwarf2_attr (die, DW_AT_name, cu);
4977 if (attr && DW_STRING (attr))
4978 TYPE_NAME (range_type) = DW_STRING (attr);
4979
4980 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4981 if (attr)
4982 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4983
4984 set_die_type (die, range_type, cu);
4985 }
4986
4987 static void
4988 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4989 {
4990 struct type *type;
4991 struct attribute *attr;
4992
4993 if (die->type)
4994 return;
4995
4996 /* For now, we only support the C meaning of an unspecified type: void. */
4997
4998 attr = dwarf2_attr (die, DW_AT_name, cu);
4999 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
5000 cu->objfile);
5001
5002 set_die_type (die, type, cu);
5003 }
5004
5005 /* Read a whole compilation unit into a linked list of dies. */
5006
5007 static struct die_info *
5008 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5009 {
5010 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5011 }
5012
5013 /* Read a single die and all its descendents. Set the die's sibling
5014 field to NULL; set other fields in the die correctly, and set all
5015 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5016 location of the info_ptr after reading all of those dies. PARENT
5017 is the parent of the die in question. */
5018
5019 static struct die_info *
5020 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5021 struct dwarf2_cu *cu,
5022 gdb_byte **new_info_ptr,
5023 struct die_info *parent)
5024 {
5025 struct die_info *die;
5026 gdb_byte *cur_ptr;
5027 int has_children;
5028
5029 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5030 store_in_ref_table (die->offset, die, cu);
5031
5032 if (has_children)
5033 {
5034 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5035 new_info_ptr, die);
5036 }
5037 else
5038 {
5039 die->child = NULL;
5040 *new_info_ptr = cur_ptr;
5041 }
5042
5043 die->sibling = NULL;
5044 die->parent = parent;
5045 return die;
5046 }
5047
5048 /* Read a die, all of its descendents, and all of its siblings; set
5049 all of the fields of all of the dies correctly. Arguments are as
5050 in read_die_and_children. */
5051
5052 static struct die_info *
5053 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5054 struct dwarf2_cu *cu,
5055 gdb_byte **new_info_ptr,
5056 struct die_info *parent)
5057 {
5058 struct die_info *first_die, *last_sibling;
5059 gdb_byte *cur_ptr;
5060
5061 cur_ptr = info_ptr;
5062 first_die = last_sibling = NULL;
5063
5064 while (1)
5065 {
5066 struct die_info *die
5067 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5068
5069 if (!first_die)
5070 {
5071 first_die = die;
5072 }
5073 else
5074 {
5075 last_sibling->sibling = die;
5076 }
5077
5078 if (die->tag == 0)
5079 {
5080 *new_info_ptr = cur_ptr;
5081 return first_die;
5082 }
5083 else
5084 {
5085 last_sibling = die;
5086 }
5087 }
5088 }
5089
5090 /* Free a linked list of dies. */
5091
5092 static void
5093 free_die_list (struct die_info *dies)
5094 {
5095 struct die_info *die, *next;
5096
5097 die = dies;
5098 while (die)
5099 {
5100 if (die->child != NULL)
5101 free_die_list (die->child);
5102 next = die->sibling;
5103 xfree (die->attrs);
5104 xfree (die);
5105 die = next;
5106 }
5107 }
5108
5109 /* Read the contents of the section at OFFSET and of size SIZE from the
5110 object file specified by OBJFILE into the objfile_obstack and return it. */
5111
5112 gdb_byte *
5113 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5114 {
5115 bfd *abfd = objfile->obfd;
5116 gdb_byte *buf, *retbuf;
5117 bfd_size_type size = bfd_get_section_size (sectp);
5118
5119 if (size == 0)
5120 return NULL;
5121
5122 buf = obstack_alloc (&objfile->objfile_obstack, size);
5123 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5124 if (retbuf != NULL)
5125 return retbuf;
5126
5127 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5128 || bfd_bread (buf, size, abfd) != size)
5129 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5130 bfd_get_filename (abfd));
5131
5132 return buf;
5133 }
5134
5135 /* In DWARF version 2, the description of the debugging information is
5136 stored in a separate .debug_abbrev section. Before we read any
5137 dies from a section we read in all abbreviations and install them
5138 in a hash table. This function also sets flags in CU describing
5139 the data found in the abbrev table. */
5140
5141 static void
5142 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5143 {
5144 struct comp_unit_head *cu_header = &cu->header;
5145 gdb_byte *abbrev_ptr;
5146 struct abbrev_info *cur_abbrev;
5147 unsigned int abbrev_number, bytes_read, abbrev_name;
5148 unsigned int abbrev_form, hash_number;
5149 struct attr_abbrev *cur_attrs;
5150 unsigned int allocated_attrs;
5151
5152 /* Initialize dwarf2 abbrevs */
5153 obstack_init (&cu->abbrev_obstack);
5154 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5155 (ABBREV_HASH_SIZE
5156 * sizeof (struct abbrev_info *)));
5157 memset (cu->dwarf2_abbrevs, 0,
5158 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5159
5160 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5161 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5162 abbrev_ptr += bytes_read;
5163
5164 allocated_attrs = ATTR_ALLOC_CHUNK;
5165 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5166
5167 /* loop until we reach an abbrev number of 0 */
5168 while (abbrev_number)
5169 {
5170 cur_abbrev = dwarf_alloc_abbrev (cu);
5171
5172 /* read in abbrev header */
5173 cur_abbrev->number = abbrev_number;
5174 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5175 abbrev_ptr += bytes_read;
5176 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5177 abbrev_ptr += 1;
5178
5179 if (cur_abbrev->tag == DW_TAG_namespace)
5180 cu->has_namespace_info = 1;
5181
5182 /* now read in declarations */
5183 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5184 abbrev_ptr += bytes_read;
5185 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5186 abbrev_ptr += bytes_read;
5187 while (abbrev_name)
5188 {
5189 if (cur_abbrev->num_attrs == allocated_attrs)
5190 {
5191 allocated_attrs += ATTR_ALLOC_CHUNK;
5192 cur_attrs
5193 = xrealloc (cur_attrs, (allocated_attrs
5194 * sizeof (struct attr_abbrev)));
5195 }
5196
5197 /* Record whether this compilation unit might have
5198 inter-compilation-unit references. If we don't know what form
5199 this attribute will have, then it might potentially be a
5200 DW_FORM_ref_addr, so we conservatively expect inter-CU
5201 references. */
5202
5203 if (abbrev_form == DW_FORM_ref_addr
5204 || abbrev_form == DW_FORM_indirect)
5205 cu->has_form_ref_addr = 1;
5206
5207 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5208 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5209 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5210 abbrev_ptr += bytes_read;
5211 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5212 abbrev_ptr += bytes_read;
5213 }
5214
5215 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5216 (cur_abbrev->num_attrs
5217 * sizeof (struct attr_abbrev)));
5218 memcpy (cur_abbrev->attrs, cur_attrs,
5219 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5220
5221 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5222 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5223 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5224
5225 /* Get next abbreviation.
5226 Under Irix6 the abbreviations for a compilation unit are not
5227 always properly terminated with an abbrev number of 0.
5228 Exit loop if we encounter an abbreviation which we have
5229 already read (which means we are about to read the abbreviations
5230 for the next compile unit) or if the end of the abbreviation
5231 table is reached. */
5232 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5233 >= dwarf2_per_objfile->abbrev_size)
5234 break;
5235 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5236 abbrev_ptr += bytes_read;
5237 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5238 break;
5239 }
5240
5241 xfree (cur_attrs);
5242 }
5243
5244 /* Release the memory used by the abbrev table for a compilation unit. */
5245
5246 static void
5247 dwarf2_free_abbrev_table (void *ptr_to_cu)
5248 {
5249 struct dwarf2_cu *cu = ptr_to_cu;
5250
5251 obstack_free (&cu->abbrev_obstack, NULL);
5252 cu->dwarf2_abbrevs = NULL;
5253 }
5254
5255 /* Lookup an abbrev_info structure in the abbrev hash table. */
5256
5257 static struct abbrev_info *
5258 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5259 {
5260 unsigned int hash_number;
5261 struct abbrev_info *abbrev;
5262
5263 hash_number = number % ABBREV_HASH_SIZE;
5264 abbrev = cu->dwarf2_abbrevs[hash_number];
5265
5266 while (abbrev)
5267 {
5268 if (abbrev->number == number)
5269 return abbrev;
5270 else
5271 abbrev = abbrev->next;
5272 }
5273 return NULL;
5274 }
5275
5276 /* Returns nonzero if TAG represents a type that we might generate a partial
5277 symbol for. */
5278
5279 static int
5280 is_type_tag_for_partial (int tag)
5281 {
5282 switch (tag)
5283 {
5284 #if 0
5285 /* Some types that would be reasonable to generate partial symbols for,
5286 that we don't at present. */
5287 case DW_TAG_array_type:
5288 case DW_TAG_file_type:
5289 case DW_TAG_ptr_to_member_type:
5290 case DW_TAG_set_type:
5291 case DW_TAG_string_type:
5292 case DW_TAG_subroutine_type:
5293 #endif
5294 case DW_TAG_base_type:
5295 case DW_TAG_class_type:
5296 case DW_TAG_enumeration_type:
5297 case DW_TAG_structure_type:
5298 case DW_TAG_subrange_type:
5299 case DW_TAG_typedef:
5300 case DW_TAG_union_type:
5301 return 1;
5302 default:
5303 return 0;
5304 }
5305 }
5306
5307 /* Load all DIEs that are interesting for partial symbols into memory. */
5308
5309 static struct partial_die_info *
5310 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5311 struct dwarf2_cu *cu)
5312 {
5313 struct partial_die_info *part_die;
5314 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5315 struct abbrev_info *abbrev;
5316 unsigned int bytes_read;
5317 unsigned int load_all = 0;
5318
5319 int nesting_level = 1;
5320
5321 parent_die = NULL;
5322 last_die = NULL;
5323
5324 if (cu->per_cu && cu->per_cu->load_all_dies)
5325 load_all = 1;
5326
5327 cu->partial_dies
5328 = htab_create_alloc_ex (cu->header.length / 12,
5329 partial_die_hash,
5330 partial_die_eq,
5331 NULL,
5332 &cu->comp_unit_obstack,
5333 hashtab_obstack_allocate,
5334 dummy_obstack_deallocate);
5335
5336 part_die = obstack_alloc (&cu->comp_unit_obstack,
5337 sizeof (struct partial_die_info));
5338
5339 while (1)
5340 {
5341 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5342
5343 /* A NULL abbrev means the end of a series of children. */
5344 if (abbrev == NULL)
5345 {
5346 if (--nesting_level == 0)
5347 {
5348 /* PART_DIE was probably the last thing allocated on the
5349 comp_unit_obstack, so we could call obstack_free
5350 here. We don't do that because the waste is small,
5351 and will be cleaned up when we're done with this
5352 compilation unit. This way, we're also more robust
5353 against other users of the comp_unit_obstack. */
5354 return first_die;
5355 }
5356 info_ptr += bytes_read;
5357 last_die = parent_die;
5358 parent_die = parent_die->die_parent;
5359 continue;
5360 }
5361
5362 /* Check whether this DIE is interesting enough to save. Normally
5363 we would not be interested in members here, but there may be
5364 later variables referencing them via DW_AT_specification (for
5365 static members). */
5366 if (!load_all
5367 && !is_type_tag_for_partial (abbrev->tag)
5368 && abbrev->tag != DW_TAG_enumerator
5369 && abbrev->tag != DW_TAG_subprogram
5370 && abbrev->tag != DW_TAG_variable
5371 && abbrev->tag != DW_TAG_namespace
5372 && abbrev->tag != DW_TAG_member)
5373 {
5374 /* Otherwise we skip to the next sibling, if any. */
5375 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5376 continue;
5377 }
5378
5379 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5380 abfd, info_ptr, cu);
5381
5382 /* This two-pass algorithm for processing partial symbols has a
5383 high cost in cache pressure. Thus, handle some simple cases
5384 here which cover the majority of C partial symbols. DIEs
5385 which neither have specification tags in them, nor could have
5386 specification tags elsewhere pointing at them, can simply be
5387 processed and discarded.
5388
5389 This segment is also optional; scan_partial_symbols and
5390 add_partial_symbol will handle these DIEs if we chain
5391 them in normally. When compilers which do not emit large
5392 quantities of duplicate debug information are more common,
5393 this code can probably be removed. */
5394
5395 /* Any complete simple types at the top level (pretty much all
5396 of them, for a language without namespaces), can be processed
5397 directly. */
5398 if (parent_die == NULL
5399 && part_die->has_specification == 0
5400 && part_die->is_declaration == 0
5401 && (part_die->tag == DW_TAG_typedef
5402 || part_die->tag == DW_TAG_base_type
5403 || part_die->tag == DW_TAG_subrange_type))
5404 {
5405 if (building_psymtab && part_die->name != NULL)
5406 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5407 VAR_DOMAIN, LOC_TYPEDEF,
5408 &cu->objfile->static_psymbols,
5409 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5410 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5411 continue;
5412 }
5413
5414 /* If we're at the second level, and we're an enumerator, and
5415 our parent has no specification (meaning possibly lives in a
5416 namespace elsewhere), then we can add the partial symbol now
5417 instead of queueing it. */
5418 if (part_die->tag == DW_TAG_enumerator
5419 && parent_die != NULL
5420 && parent_die->die_parent == NULL
5421 && parent_die->tag == DW_TAG_enumeration_type
5422 && parent_die->has_specification == 0)
5423 {
5424 if (part_die->name == NULL)
5425 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5426 else if (building_psymtab)
5427 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5428 VAR_DOMAIN, LOC_CONST,
5429 (cu->language == language_cplus
5430 || cu->language == language_java)
5431 ? &cu->objfile->global_psymbols
5432 : &cu->objfile->static_psymbols,
5433 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5434
5435 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5436 continue;
5437 }
5438
5439 /* We'll save this DIE so link it in. */
5440 part_die->die_parent = parent_die;
5441 part_die->die_sibling = NULL;
5442 part_die->die_child = NULL;
5443
5444 if (last_die && last_die == parent_die)
5445 last_die->die_child = part_die;
5446 else if (last_die)
5447 last_die->die_sibling = part_die;
5448
5449 last_die = part_die;
5450
5451 if (first_die == NULL)
5452 first_die = part_die;
5453
5454 /* Maybe add the DIE to the hash table. Not all DIEs that we
5455 find interesting need to be in the hash table, because we
5456 also have the parent/sibling/child chains; only those that we
5457 might refer to by offset later during partial symbol reading.
5458
5459 For now this means things that might have be the target of a
5460 DW_AT_specification, DW_AT_abstract_origin, or
5461 DW_AT_extension. DW_AT_extension will refer only to
5462 namespaces; DW_AT_abstract_origin refers to functions (and
5463 many things under the function DIE, but we do not recurse
5464 into function DIEs during partial symbol reading) and
5465 possibly variables as well; DW_AT_specification refers to
5466 declarations. Declarations ought to have the DW_AT_declaration
5467 flag. It happens that GCC forgets to put it in sometimes, but
5468 only for functions, not for types.
5469
5470 Adding more things than necessary to the hash table is harmless
5471 except for the performance cost. Adding too few will result in
5472 wasted time in find_partial_die, when we reread the compilation
5473 unit with load_all_dies set. */
5474
5475 if (load_all
5476 || abbrev->tag == DW_TAG_subprogram
5477 || abbrev->tag == DW_TAG_variable
5478 || abbrev->tag == DW_TAG_namespace
5479 || part_die->is_declaration)
5480 {
5481 void **slot;
5482
5483 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5484 part_die->offset, INSERT);
5485 *slot = part_die;
5486 }
5487
5488 part_die = obstack_alloc (&cu->comp_unit_obstack,
5489 sizeof (struct partial_die_info));
5490
5491 /* For some DIEs we want to follow their children (if any). For C
5492 we have no reason to follow the children of structures; for other
5493 languages we have to, both so that we can get at method physnames
5494 to infer fully qualified class names, and for DW_AT_specification. */
5495 if (last_die->has_children
5496 && (load_all
5497 || last_die->tag == DW_TAG_namespace
5498 || last_die->tag == DW_TAG_enumeration_type
5499 || (cu->language != language_c
5500 && (last_die->tag == DW_TAG_class_type
5501 || last_die->tag == DW_TAG_structure_type
5502 || last_die->tag == DW_TAG_union_type))))
5503 {
5504 nesting_level++;
5505 parent_die = last_die;
5506 continue;
5507 }
5508
5509 /* Otherwise we skip to the next sibling, if any. */
5510 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5511
5512 /* Back to the top, do it again. */
5513 }
5514 }
5515
5516 /* Read a minimal amount of information into the minimal die structure. */
5517
5518 static gdb_byte *
5519 read_partial_die (struct partial_die_info *part_die,
5520 struct abbrev_info *abbrev,
5521 unsigned int abbrev_len, bfd *abfd,
5522 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5523 {
5524 unsigned int bytes_read, i;
5525 struct attribute attr;
5526 int has_low_pc_attr = 0;
5527 int has_high_pc_attr = 0;
5528
5529 memset (part_die, 0, sizeof (struct partial_die_info));
5530
5531 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5532
5533 info_ptr += abbrev_len;
5534
5535 if (abbrev == NULL)
5536 return info_ptr;
5537
5538 part_die->tag = abbrev->tag;
5539 part_die->has_children = abbrev->has_children;
5540
5541 for (i = 0; i < abbrev->num_attrs; ++i)
5542 {
5543 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5544
5545 /* Store the data if it is of an attribute we want to keep in a
5546 partial symbol table. */
5547 switch (attr.name)
5548 {
5549 case DW_AT_name:
5550
5551 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5552 if (part_die->name == NULL)
5553 part_die->name = DW_STRING (&attr);
5554 break;
5555 case DW_AT_comp_dir:
5556 if (part_die->dirname == NULL)
5557 part_die->dirname = DW_STRING (&attr);
5558 break;
5559 case DW_AT_MIPS_linkage_name:
5560 part_die->name = DW_STRING (&attr);
5561 break;
5562 case DW_AT_low_pc:
5563 has_low_pc_attr = 1;
5564 part_die->lowpc = DW_ADDR (&attr);
5565 break;
5566 case DW_AT_high_pc:
5567 has_high_pc_attr = 1;
5568 part_die->highpc = DW_ADDR (&attr);
5569 break;
5570 case DW_AT_location:
5571 /* Support the .debug_loc offsets */
5572 if (attr_form_is_block (&attr))
5573 {
5574 part_die->locdesc = DW_BLOCK (&attr);
5575 }
5576 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5577 {
5578 dwarf2_complex_location_expr_complaint ();
5579 }
5580 else
5581 {
5582 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5583 "partial symbol information");
5584 }
5585 break;
5586 case DW_AT_language:
5587 part_die->language = DW_UNSND (&attr);
5588 break;
5589 case DW_AT_external:
5590 part_die->is_external = DW_UNSND (&attr);
5591 break;
5592 case DW_AT_declaration:
5593 part_die->is_declaration = DW_UNSND (&attr);
5594 break;
5595 case DW_AT_type:
5596 part_die->has_type = 1;
5597 break;
5598 case DW_AT_abstract_origin:
5599 case DW_AT_specification:
5600 case DW_AT_extension:
5601 part_die->has_specification = 1;
5602 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5603 break;
5604 case DW_AT_sibling:
5605 /* Ignore absolute siblings, they might point outside of
5606 the current compile unit. */
5607 if (attr.form == DW_FORM_ref_addr)
5608 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5609 else
5610 part_die->sibling = dwarf2_per_objfile->info_buffer
5611 + dwarf2_get_ref_die_offset (&attr, cu);
5612 break;
5613 case DW_AT_stmt_list:
5614 part_die->has_stmt_list = 1;
5615 part_die->line_offset = DW_UNSND (&attr);
5616 break;
5617 case DW_AT_byte_size:
5618 part_die->has_byte_size = 1;
5619 break;
5620 default:
5621 break;
5622 }
5623 }
5624
5625 /* When using the GNU linker, .gnu.linkonce. sections are used to
5626 eliminate duplicate copies of functions and vtables and such.
5627 The linker will arbitrarily choose one and discard the others.
5628 The AT_*_pc values for such functions refer to local labels in
5629 these sections. If the section from that file was discarded, the
5630 labels are not in the output, so the relocs get a value of 0.
5631 If this is a discarded function, mark the pc bounds as invalid,
5632 so that GDB will ignore it. */
5633 if (has_low_pc_attr && has_high_pc_attr
5634 && part_die->lowpc < part_die->highpc
5635 && (part_die->lowpc != 0
5636 || dwarf2_per_objfile->has_section_at_zero))
5637 part_die->has_pc_info = 1;
5638 return info_ptr;
5639 }
5640
5641 /* Find a cached partial DIE at OFFSET in CU. */
5642
5643 static struct partial_die_info *
5644 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5645 {
5646 struct partial_die_info *lookup_die = NULL;
5647 struct partial_die_info part_die;
5648
5649 part_die.offset = offset;
5650 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5651
5652 return lookup_die;
5653 }
5654
5655 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5656
5657 static struct partial_die_info *
5658 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5659 {
5660 struct dwarf2_per_cu_data *per_cu = NULL;
5661 struct partial_die_info *pd = NULL;
5662
5663 if (offset >= cu->header.offset
5664 && offset < cu->header.offset + cu->header.length)
5665 {
5666 pd = find_partial_die_in_comp_unit (offset, cu);
5667 if (pd != NULL)
5668 return pd;
5669 }
5670
5671 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5672
5673 if (per_cu->cu == NULL)
5674 {
5675 load_comp_unit (per_cu, cu->objfile);
5676 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5677 dwarf2_per_objfile->read_in_chain = per_cu;
5678 }
5679
5680 per_cu->cu->last_used = 0;
5681 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5682
5683 if (pd == NULL && per_cu->load_all_dies == 0)
5684 {
5685 struct cleanup *back_to;
5686 struct partial_die_info comp_unit_die;
5687 struct abbrev_info *abbrev;
5688 unsigned int bytes_read;
5689 char *info_ptr;
5690
5691 per_cu->load_all_dies = 1;
5692
5693 /* Re-read the DIEs. */
5694 back_to = make_cleanup (null_cleanup, 0);
5695 if (per_cu->cu->dwarf2_abbrevs == NULL)
5696 {
5697 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5698 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5699 }
5700 info_ptr = per_cu->cu->header.first_die_ptr;
5701 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5702 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5703 per_cu->cu->objfile->obfd, info_ptr,
5704 per_cu->cu);
5705 if (comp_unit_die.has_children)
5706 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5707 do_cleanups (back_to);
5708
5709 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5710 }
5711
5712 if (pd == NULL)
5713 internal_error (__FILE__, __LINE__,
5714 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5715 offset, bfd_get_filename (cu->objfile->obfd));
5716 return pd;
5717 }
5718
5719 /* Adjust PART_DIE before generating a symbol for it. This function
5720 may set the is_external flag or change the DIE's name. */
5721
5722 static void
5723 fixup_partial_die (struct partial_die_info *part_die,
5724 struct dwarf2_cu *cu)
5725 {
5726 /* If we found a reference attribute and the DIE has no name, try
5727 to find a name in the referred to DIE. */
5728
5729 if (part_die->name == NULL && part_die->has_specification)
5730 {
5731 struct partial_die_info *spec_die;
5732
5733 spec_die = find_partial_die (part_die->spec_offset, cu);
5734
5735 fixup_partial_die (spec_die, cu);
5736
5737 if (spec_die->name)
5738 {
5739 part_die->name = spec_die->name;
5740
5741 /* Copy DW_AT_external attribute if it is set. */
5742 if (spec_die->is_external)
5743 part_die->is_external = spec_die->is_external;
5744 }
5745 }
5746
5747 /* Set default names for some unnamed DIEs. */
5748 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5749 || part_die->tag == DW_TAG_class_type))
5750 part_die->name = "(anonymous class)";
5751
5752 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5753 part_die->name = "(anonymous namespace)";
5754
5755 if (part_die->tag == DW_TAG_structure_type
5756 || part_die->tag == DW_TAG_class_type
5757 || part_die->tag == DW_TAG_union_type)
5758 guess_structure_name (part_die, cu);
5759 }
5760
5761 /* Read the die from the .debug_info section buffer. Set DIEP to
5762 point to a newly allocated die with its information, except for its
5763 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5764 whether the die has children or not. */
5765
5766 static gdb_byte *
5767 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5768 struct dwarf2_cu *cu, int *has_children)
5769 {
5770 unsigned int abbrev_number, bytes_read, i, offset;
5771 struct abbrev_info *abbrev;
5772 struct die_info *die;
5773
5774 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5775 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5776 info_ptr += bytes_read;
5777 if (!abbrev_number)
5778 {
5779 die = dwarf_alloc_die ();
5780 die->tag = 0;
5781 die->abbrev = abbrev_number;
5782 die->type = NULL;
5783 *diep = die;
5784 *has_children = 0;
5785 return info_ptr;
5786 }
5787
5788 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5789 if (!abbrev)
5790 {
5791 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5792 abbrev_number,
5793 bfd_get_filename (abfd));
5794 }
5795 die = dwarf_alloc_die ();
5796 die->offset = offset;
5797 die->tag = abbrev->tag;
5798 die->abbrev = abbrev_number;
5799 die->type = NULL;
5800
5801 die->num_attrs = abbrev->num_attrs;
5802 die->attrs = (struct attribute *)
5803 xmalloc (die->num_attrs * sizeof (struct attribute));
5804
5805 for (i = 0; i < abbrev->num_attrs; ++i)
5806 {
5807 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5808 abfd, info_ptr, cu);
5809
5810 /* If this attribute is an absolute reference to a different
5811 compilation unit, make sure that compilation unit is loaded
5812 also. */
5813 if (die->attrs[i].form == DW_FORM_ref_addr
5814 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5815 || (DW_ADDR (&die->attrs[i])
5816 >= cu->header.offset + cu->header.length)))
5817 {
5818 struct dwarf2_per_cu_data *per_cu;
5819 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5820 cu->objfile);
5821
5822 /* Mark the dependence relation so that we don't flush PER_CU
5823 too early. */
5824 dwarf2_add_dependence (cu, per_cu);
5825
5826 /* If it's already on the queue, we have nothing to do. */
5827 if (per_cu->queued)
5828 continue;
5829
5830 /* If the compilation unit is already loaded, just mark it as
5831 used. */
5832 if (per_cu->cu != NULL)
5833 {
5834 per_cu->cu->last_used = 0;
5835 continue;
5836 }
5837
5838 /* Add it to the queue. */
5839 queue_comp_unit (per_cu);
5840 }
5841 }
5842
5843 *diep = die;
5844 *has_children = abbrev->has_children;
5845 return info_ptr;
5846 }
5847
5848 /* Read an attribute value described by an attribute form. */
5849
5850 static gdb_byte *
5851 read_attribute_value (struct attribute *attr, unsigned form,
5852 bfd *abfd, gdb_byte *info_ptr,
5853 struct dwarf2_cu *cu)
5854 {
5855 struct comp_unit_head *cu_header = &cu->header;
5856 unsigned int bytes_read;
5857 struct dwarf_block *blk;
5858
5859 attr->form = form;
5860 switch (form)
5861 {
5862 case DW_FORM_addr:
5863 case DW_FORM_ref_addr:
5864 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5865 info_ptr += bytes_read;
5866 break;
5867 case DW_FORM_block2:
5868 blk = dwarf_alloc_block (cu);
5869 blk->size = read_2_bytes (abfd, info_ptr);
5870 info_ptr += 2;
5871 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5872 info_ptr += blk->size;
5873 DW_BLOCK (attr) = blk;
5874 break;
5875 case DW_FORM_block4:
5876 blk = dwarf_alloc_block (cu);
5877 blk->size = read_4_bytes (abfd, info_ptr);
5878 info_ptr += 4;
5879 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5880 info_ptr += blk->size;
5881 DW_BLOCK (attr) = blk;
5882 break;
5883 case DW_FORM_data2:
5884 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5885 info_ptr += 2;
5886 break;
5887 case DW_FORM_data4:
5888 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5889 info_ptr += 4;
5890 break;
5891 case DW_FORM_data8:
5892 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5893 info_ptr += 8;
5894 break;
5895 case DW_FORM_string:
5896 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5897 info_ptr += bytes_read;
5898 break;
5899 case DW_FORM_strp:
5900 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5901 &bytes_read);
5902 info_ptr += bytes_read;
5903 break;
5904 case DW_FORM_block:
5905 blk = dwarf_alloc_block (cu);
5906 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5907 info_ptr += bytes_read;
5908 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5909 info_ptr += blk->size;
5910 DW_BLOCK (attr) = blk;
5911 break;
5912 case DW_FORM_block1:
5913 blk = dwarf_alloc_block (cu);
5914 blk->size = read_1_byte (abfd, info_ptr);
5915 info_ptr += 1;
5916 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5917 info_ptr += blk->size;
5918 DW_BLOCK (attr) = blk;
5919 break;
5920 case DW_FORM_data1:
5921 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5922 info_ptr += 1;
5923 break;
5924 case DW_FORM_flag:
5925 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5926 info_ptr += 1;
5927 break;
5928 case DW_FORM_sdata:
5929 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5930 info_ptr += bytes_read;
5931 break;
5932 case DW_FORM_udata:
5933 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5934 info_ptr += bytes_read;
5935 break;
5936 case DW_FORM_ref1:
5937 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5938 info_ptr += 1;
5939 break;
5940 case DW_FORM_ref2:
5941 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5942 info_ptr += 2;
5943 break;
5944 case DW_FORM_ref4:
5945 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5946 info_ptr += 4;
5947 break;
5948 case DW_FORM_ref8:
5949 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5950 info_ptr += 8;
5951 break;
5952 case DW_FORM_ref_udata:
5953 DW_ADDR (attr) = (cu->header.offset
5954 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5955 info_ptr += bytes_read;
5956 break;
5957 case DW_FORM_indirect:
5958 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5959 info_ptr += bytes_read;
5960 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5961 break;
5962 default:
5963 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5964 dwarf_form_name (form),
5965 bfd_get_filename (abfd));
5966 }
5967 return info_ptr;
5968 }
5969
5970 /* Read an attribute described by an abbreviated attribute. */
5971
5972 static gdb_byte *
5973 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5974 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5975 {
5976 attr->name = abbrev->name;
5977 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5978 }
5979
5980 /* read dwarf information from a buffer */
5981
5982 static unsigned int
5983 read_1_byte (bfd *abfd, gdb_byte *buf)
5984 {
5985 return bfd_get_8 (abfd, buf);
5986 }
5987
5988 static int
5989 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5990 {
5991 return bfd_get_signed_8 (abfd, buf);
5992 }
5993
5994 static unsigned int
5995 read_2_bytes (bfd *abfd, gdb_byte *buf)
5996 {
5997 return bfd_get_16 (abfd, buf);
5998 }
5999
6000 static int
6001 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6002 {
6003 return bfd_get_signed_16 (abfd, buf);
6004 }
6005
6006 static unsigned int
6007 read_4_bytes (bfd *abfd, gdb_byte *buf)
6008 {
6009 return bfd_get_32 (abfd, buf);
6010 }
6011
6012 static int
6013 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6014 {
6015 return bfd_get_signed_32 (abfd, buf);
6016 }
6017
6018 static unsigned long
6019 read_8_bytes (bfd *abfd, gdb_byte *buf)
6020 {
6021 return bfd_get_64 (abfd, buf);
6022 }
6023
6024 static CORE_ADDR
6025 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6026 unsigned int *bytes_read)
6027 {
6028 struct comp_unit_head *cu_header = &cu->header;
6029 CORE_ADDR retval = 0;
6030
6031 if (cu_header->signed_addr_p)
6032 {
6033 switch (cu_header->addr_size)
6034 {
6035 case 2:
6036 retval = bfd_get_signed_16 (abfd, buf);
6037 break;
6038 case 4:
6039 retval = bfd_get_signed_32 (abfd, buf);
6040 break;
6041 case 8:
6042 retval = bfd_get_signed_64 (abfd, buf);
6043 break;
6044 default:
6045 internal_error (__FILE__, __LINE__,
6046 _("read_address: bad switch, signed [in module %s]"),
6047 bfd_get_filename (abfd));
6048 }
6049 }
6050 else
6051 {
6052 switch (cu_header->addr_size)
6053 {
6054 case 2:
6055 retval = bfd_get_16 (abfd, buf);
6056 break;
6057 case 4:
6058 retval = bfd_get_32 (abfd, buf);
6059 break;
6060 case 8:
6061 retval = bfd_get_64 (abfd, buf);
6062 break;
6063 default:
6064 internal_error (__FILE__, __LINE__,
6065 _("read_address: bad switch, unsigned [in module %s]"),
6066 bfd_get_filename (abfd));
6067 }
6068 }
6069
6070 *bytes_read = cu_header->addr_size;
6071 return retval;
6072 }
6073
6074 /* Read the initial length from a section. The (draft) DWARF 3
6075 specification allows the initial length to take up either 4 bytes
6076 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6077 bytes describe the length and all offsets will be 8 bytes in length
6078 instead of 4.
6079
6080 An older, non-standard 64-bit format is also handled by this
6081 function. The older format in question stores the initial length
6082 as an 8-byte quantity without an escape value. Lengths greater
6083 than 2^32 aren't very common which means that the initial 4 bytes
6084 is almost always zero. Since a length value of zero doesn't make
6085 sense for the 32-bit format, this initial zero can be considered to
6086 be an escape value which indicates the presence of the older 64-bit
6087 format. As written, the code can't detect (old format) lengths
6088 greater than 4GB. If it becomes necessary to handle lengths
6089 somewhat larger than 4GB, we could allow other small values (such
6090 as the non-sensical values of 1, 2, and 3) to also be used as
6091 escape values indicating the presence of the old format.
6092
6093 The value returned via bytes_read should be used to increment the
6094 relevant pointer after calling read_initial_length().
6095
6096 As a side effect, this function sets the fields initial_length_size
6097 and offset_size in cu_header to the values appropriate for the
6098 length field. (The format of the initial length field determines
6099 the width of file offsets to be fetched later with read_offset().)
6100
6101 [ Note: read_initial_length() and read_offset() are based on the
6102 document entitled "DWARF Debugging Information Format", revision
6103 3, draft 8, dated November 19, 2001. This document was obtained
6104 from:
6105
6106 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6107
6108 This document is only a draft and is subject to change. (So beware.)
6109
6110 Details regarding the older, non-standard 64-bit format were
6111 determined empirically by examining 64-bit ELF files produced by
6112 the SGI toolchain on an IRIX 6.5 machine.
6113
6114 - Kevin, July 16, 2002
6115 ] */
6116
6117 static LONGEST
6118 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6119 unsigned int *bytes_read)
6120 {
6121 LONGEST length = bfd_get_32 (abfd, buf);
6122
6123 if (length == 0xffffffff)
6124 {
6125 length = bfd_get_64 (abfd, buf + 4);
6126 *bytes_read = 12;
6127 }
6128 else if (length == 0)
6129 {
6130 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6131 length = bfd_get_64 (abfd, buf);
6132 *bytes_read = 8;
6133 }
6134 else
6135 {
6136 *bytes_read = 4;
6137 }
6138
6139 if (cu_header)
6140 {
6141 gdb_assert (cu_header->initial_length_size == 0
6142 || cu_header->initial_length_size == 4
6143 || cu_header->initial_length_size == 8
6144 || cu_header->initial_length_size == 12);
6145
6146 if (cu_header->initial_length_size != 0
6147 && cu_header->initial_length_size != *bytes_read)
6148 complaint (&symfile_complaints,
6149 _("intermixed 32-bit and 64-bit DWARF sections"));
6150
6151 cu_header->initial_length_size = *bytes_read;
6152 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6153 }
6154
6155 return length;
6156 }
6157
6158 /* Read an offset from the data stream. The size of the offset is
6159 given by cu_header->offset_size. */
6160
6161 static LONGEST
6162 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6163 unsigned int *bytes_read)
6164 {
6165 LONGEST retval = 0;
6166
6167 switch (cu_header->offset_size)
6168 {
6169 case 4:
6170 retval = bfd_get_32 (abfd, buf);
6171 *bytes_read = 4;
6172 break;
6173 case 8:
6174 retval = bfd_get_64 (abfd, buf);
6175 *bytes_read = 8;
6176 break;
6177 default:
6178 internal_error (__FILE__, __LINE__,
6179 _("read_offset: bad switch [in module %s]"),
6180 bfd_get_filename (abfd));
6181 }
6182
6183 return retval;
6184 }
6185
6186 static gdb_byte *
6187 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6188 {
6189 /* If the size of a host char is 8 bits, we can return a pointer
6190 to the buffer, otherwise we have to copy the data to a buffer
6191 allocated on the temporary obstack. */
6192 gdb_assert (HOST_CHAR_BIT == 8);
6193 return buf;
6194 }
6195
6196 static char *
6197 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6198 {
6199 /* If the size of a host char is 8 bits, we can return a pointer
6200 to the string, otherwise we have to copy the string to a buffer
6201 allocated on the temporary obstack. */
6202 gdb_assert (HOST_CHAR_BIT == 8);
6203 if (*buf == '\0')
6204 {
6205 *bytes_read_ptr = 1;
6206 return NULL;
6207 }
6208 *bytes_read_ptr = strlen ((char *) buf) + 1;
6209 return (char *) buf;
6210 }
6211
6212 static char *
6213 read_indirect_string (bfd *abfd, gdb_byte *buf,
6214 const struct comp_unit_head *cu_header,
6215 unsigned int *bytes_read_ptr)
6216 {
6217 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6218 bytes_read_ptr);
6219
6220 if (dwarf2_per_objfile->str_buffer == NULL)
6221 {
6222 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6223 bfd_get_filename (abfd));
6224 return NULL;
6225 }
6226 if (str_offset >= dwarf2_per_objfile->str_size)
6227 {
6228 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6229 bfd_get_filename (abfd));
6230 return NULL;
6231 }
6232 gdb_assert (HOST_CHAR_BIT == 8);
6233 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6234 return NULL;
6235 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6236 }
6237
6238 static unsigned long
6239 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6240 {
6241 unsigned long result;
6242 unsigned int num_read;
6243 int i, shift;
6244 unsigned char byte;
6245
6246 result = 0;
6247 shift = 0;
6248 num_read = 0;
6249 i = 0;
6250 while (1)
6251 {
6252 byte = bfd_get_8 (abfd, buf);
6253 buf++;
6254 num_read++;
6255 result |= ((unsigned long)(byte & 127) << shift);
6256 if ((byte & 128) == 0)
6257 {
6258 break;
6259 }
6260 shift += 7;
6261 }
6262 *bytes_read_ptr = num_read;
6263 return result;
6264 }
6265
6266 static long
6267 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6268 {
6269 long result;
6270 int i, shift, num_read;
6271 unsigned char byte;
6272
6273 result = 0;
6274 shift = 0;
6275 num_read = 0;
6276 i = 0;
6277 while (1)
6278 {
6279 byte = bfd_get_8 (abfd, buf);
6280 buf++;
6281 num_read++;
6282 result |= ((long)(byte & 127) << shift);
6283 shift += 7;
6284 if ((byte & 128) == 0)
6285 {
6286 break;
6287 }
6288 }
6289 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6290 result |= -(((long)1) << shift);
6291 *bytes_read_ptr = num_read;
6292 return result;
6293 }
6294
6295 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6296
6297 static gdb_byte *
6298 skip_leb128 (bfd *abfd, gdb_byte *buf)
6299 {
6300 int byte;
6301
6302 while (1)
6303 {
6304 byte = bfd_get_8 (abfd, buf);
6305 buf++;
6306 if ((byte & 128) == 0)
6307 return buf;
6308 }
6309 }
6310
6311 static void
6312 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6313 {
6314 switch (lang)
6315 {
6316 case DW_LANG_C89:
6317 case DW_LANG_C:
6318 cu->language = language_c;
6319 break;
6320 case DW_LANG_C_plus_plus:
6321 cu->language = language_cplus;
6322 break;
6323 case DW_LANG_Fortran77:
6324 case DW_LANG_Fortran90:
6325 case DW_LANG_Fortran95:
6326 cu->language = language_fortran;
6327 break;
6328 case DW_LANG_Mips_Assembler:
6329 cu->language = language_asm;
6330 break;
6331 case DW_LANG_Java:
6332 cu->language = language_java;
6333 break;
6334 case DW_LANG_Ada83:
6335 case DW_LANG_Ada95:
6336 cu->language = language_ada;
6337 break;
6338 case DW_LANG_Modula2:
6339 cu->language = language_m2;
6340 break;
6341 case DW_LANG_Pascal83:
6342 cu->language = language_pascal;
6343 break;
6344 case DW_LANG_Cobol74:
6345 case DW_LANG_Cobol85:
6346 default:
6347 cu->language = language_minimal;
6348 break;
6349 }
6350 cu->language_defn = language_def (cu->language);
6351 }
6352
6353 /* Return the named attribute or NULL if not there. */
6354
6355 static struct attribute *
6356 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6357 {
6358 unsigned int i;
6359 struct attribute *spec = NULL;
6360
6361 for (i = 0; i < die->num_attrs; ++i)
6362 {
6363 if (die->attrs[i].name == name)
6364 return &die->attrs[i];
6365 if (die->attrs[i].name == DW_AT_specification
6366 || die->attrs[i].name == DW_AT_abstract_origin)
6367 spec = &die->attrs[i];
6368 }
6369
6370 if (spec)
6371 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6372
6373 return NULL;
6374 }
6375
6376 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6377 and holds a non-zero value. This function should only be used for
6378 DW_FORM_flag attributes. */
6379
6380 static int
6381 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6382 {
6383 struct attribute *attr = dwarf2_attr (die, name, cu);
6384
6385 return (attr && DW_UNSND (attr));
6386 }
6387
6388 static int
6389 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6390 {
6391 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6392 which value is non-zero. However, we have to be careful with
6393 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6394 (via dwarf2_flag_true_p) follows this attribute. So we may
6395 end up accidently finding a declaration attribute that belongs
6396 to a different DIE referenced by the specification attribute,
6397 even though the given DIE does not have a declaration attribute. */
6398 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6399 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6400 }
6401
6402 /* Return the die giving the specification for DIE, if there is
6403 one. */
6404
6405 static struct die_info *
6406 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6407 {
6408 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6409
6410 if (spec_attr == NULL)
6411 return NULL;
6412 else
6413 return follow_die_ref (die, spec_attr, cu);
6414 }
6415
6416 /* Free the line_header structure *LH, and any arrays and strings it
6417 refers to. */
6418 static void
6419 free_line_header (struct line_header *lh)
6420 {
6421 if (lh->standard_opcode_lengths)
6422 xfree (lh->standard_opcode_lengths);
6423
6424 /* Remember that all the lh->file_names[i].name pointers are
6425 pointers into debug_line_buffer, and don't need to be freed. */
6426 if (lh->file_names)
6427 xfree (lh->file_names);
6428
6429 /* Similarly for the include directory names. */
6430 if (lh->include_dirs)
6431 xfree (lh->include_dirs);
6432
6433 xfree (lh);
6434 }
6435
6436
6437 /* Add an entry to LH's include directory table. */
6438 static void
6439 add_include_dir (struct line_header *lh, char *include_dir)
6440 {
6441 /* Grow the array if necessary. */
6442 if (lh->include_dirs_size == 0)
6443 {
6444 lh->include_dirs_size = 1; /* for testing */
6445 lh->include_dirs = xmalloc (lh->include_dirs_size
6446 * sizeof (*lh->include_dirs));
6447 }
6448 else if (lh->num_include_dirs >= lh->include_dirs_size)
6449 {
6450 lh->include_dirs_size *= 2;
6451 lh->include_dirs = xrealloc (lh->include_dirs,
6452 (lh->include_dirs_size
6453 * sizeof (*lh->include_dirs)));
6454 }
6455
6456 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6457 }
6458
6459
6460 /* Add an entry to LH's file name table. */
6461 static void
6462 add_file_name (struct line_header *lh,
6463 char *name,
6464 unsigned int dir_index,
6465 unsigned int mod_time,
6466 unsigned int length)
6467 {
6468 struct file_entry *fe;
6469
6470 /* Grow the array if necessary. */
6471 if (lh->file_names_size == 0)
6472 {
6473 lh->file_names_size = 1; /* for testing */
6474 lh->file_names = xmalloc (lh->file_names_size
6475 * sizeof (*lh->file_names));
6476 }
6477 else if (lh->num_file_names >= lh->file_names_size)
6478 {
6479 lh->file_names_size *= 2;
6480 lh->file_names = xrealloc (lh->file_names,
6481 (lh->file_names_size
6482 * sizeof (*lh->file_names)));
6483 }
6484
6485 fe = &lh->file_names[lh->num_file_names++];
6486 fe->name = name;
6487 fe->dir_index = dir_index;
6488 fe->mod_time = mod_time;
6489 fe->length = length;
6490 fe->included_p = 0;
6491 fe->symtab = NULL;
6492 }
6493
6494
6495 /* Read the statement program header starting at OFFSET in
6496 .debug_line, according to the endianness of ABFD. Return a pointer
6497 to a struct line_header, allocated using xmalloc.
6498
6499 NOTE: the strings in the include directory and file name tables of
6500 the returned object point into debug_line_buffer, and must not be
6501 freed. */
6502 static struct line_header *
6503 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6504 struct dwarf2_cu *cu)
6505 {
6506 struct cleanup *back_to;
6507 struct line_header *lh;
6508 gdb_byte *line_ptr;
6509 unsigned int bytes_read;
6510 int i;
6511 char *cur_dir, *cur_file;
6512
6513 if (dwarf2_per_objfile->line_buffer == NULL)
6514 {
6515 complaint (&symfile_complaints, _("missing .debug_line section"));
6516 return 0;
6517 }
6518
6519 /* Make sure that at least there's room for the total_length field.
6520 That could be 12 bytes long, but we're just going to fudge that. */
6521 if (offset + 4 >= dwarf2_per_objfile->line_size)
6522 {
6523 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6524 return 0;
6525 }
6526
6527 lh = xmalloc (sizeof (*lh));
6528 memset (lh, 0, sizeof (*lh));
6529 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6530 (void *) lh);
6531
6532 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6533
6534 /* Read in the header. */
6535 lh->total_length =
6536 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6537 line_ptr += bytes_read;
6538 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6539 + dwarf2_per_objfile->line_size))
6540 {
6541 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6542 return 0;
6543 }
6544 lh->statement_program_end = line_ptr + lh->total_length;
6545 lh->version = read_2_bytes (abfd, line_ptr);
6546 line_ptr += 2;
6547 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6548 line_ptr += bytes_read;
6549 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6550 line_ptr += 1;
6551 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6552 line_ptr += 1;
6553 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6554 line_ptr += 1;
6555 lh->line_range = read_1_byte (abfd, line_ptr);
6556 line_ptr += 1;
6557 lh->opcode_base = read_1_byte (abfd, line_ptr);
6558 line_ptr += 1;
6559 lh->standard_opcode_lengths
6560 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6561
6562 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6563 for (i = 1; i < lh->opcode_base; ++i)
6564 {
6565 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6566 line_ptr += 1;
6567 }
6568
6569 /* Read directory table. */
6570 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6571 {
6572 line_ptr += bytes_read;
6573 add_include_dir (lh, cur_dir);
6574 }
6575 line_ptr += bytes_read;
6576
6577 /* Read file name table. */
6578 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6579 {
6580 unsigned int dir_index, mod_time, length;
6581
6582 line_ptr += bytes_read;
6583 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6584 line_ptr += bytes_read;
6585 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6586 line_ptr += bytes_read;
6587 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6588 line_ptr += bytes_read;
6589
6590 add_file_name (lh, cur_file, dir_index, mod_time, length);
6591 }
6592 line_ptr += bytes_read;
6593 lh->statement_program_start = line_ptr;
6594
6595 if (line_ptr > (dwarf2_per_objfile->line_buffer
6596 + dwarf2_per_objfile->line_size))
6597 complaint (&symfile_complaints,
6598 _("line number info header doesn't fit in `.debug_line' section"));
6599
6600 discard_cleanups (back_to);
6601 return lh;
6602 }
6603
6604 /* This function exists to work around a bug in certain compilers
6605 (particularly GCC 2.95), in which the first line number marker of a
6606 function does not show up until after the prologue, right before
6607 the second line number marker. This function shifts ADDRESS down
6608 to the beginning of the function if necessary, and is called on
6609 addresses passed to record_line. */
6610
6611 static CORE_ADDR
6612 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6613 {
6614 struct function_range *fn;
6615
6616 /* Find the function_range containing address. */
6617 if (!cu->first_fn)
6618 return address;
6619
6620 if (!cu->cached_fn)
6621 cu->cached_fn = cu->first_fn;
6622
6623 fn = cu->cached_fn;
6624 while (fn)
6625 if (fn->lowpc <= address && fn->highpc > address)
6626 goto found;
6627 else
6628 fn = fn->next;
6629
6630 fn = cu->first_fn;
6631 while (fn && fn != cu->cached_fn)
6632 if (fn->lowpc <= address && fn->highpc > address)
6633 goto found;
6634 else
6635 fn = fn->next;
6636
6637 return address;
6638
6639 found:
6640 if (fn->seen_line)
6641 return address;
6642 if (address != fn->lowpc)
6643 complaint (&symfile_complaints,
6644 _("misplaced first line number at 0x%lx for '%s'"),
6645 (unsigned long) address, fn->name);
6646 fn->seen_line = 1;
6647 return fn->lowpc;
6648 }
6649
6650 /* Decode the Line Number Program (LNP) for the given line_header
6651 structure and CU. The actual information extracted and the type
6652 of structures created from the LNP depends on the value of PST.
6653
6654 1. If PST is NULL, then this procedure uses the data from the program
6655 to create all necessary symbol tables, and their linetables.
6656 The compilation directory of the file is passed in COMP_DIR,
6657 and must not be NULL.
6658
6659 2. If PST is not NULL, this procedure reads the program to determine
6660 the list of files included by the unit represented by PST, and
6661 builds all the associated partial symbol tables. In this case,
6662 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6663 is not used to compute the full name of the symtab, and therefore
6664 omitting it when building the partial symtab does not introduce
6665 the potential for inconsistency - a partial symtab and its associated
6666 symbtab having a different fullname -). */
6667
6668 static void
6669 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6670 struct dwarf2_cu *cu, struct partial_symtab *pst)
6671 {
6672 gdb_byte *line_ptr;
6673 gdb_byte *line_end;
6674 unsigned int bytes_read;
6675 unsigned char op_code, extended_op, adj_opcode;
6676 CORE_ADDR baseaddr;
6677 struct objfile *objfile = cu->objfile;
6678 const int decode_for_pst_p = (pst != NULL);
6679 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6680
6681 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6682
6683 line_ptr = lh->statement_program_start;
6684 line_end = lh->statement_program_end;
6685
6686 /* Read the statement sequences until there's nothing left. */
6687 while (line_ptr < line_end)
6688 {
6689 /* state machine registers */
6690 CORE_ADDR address = 0;
6691 unsigned int file = 1;
6692 unsigned int line = 1;
6693 unsigned int column = 0;
6694 int is_stmt = lh->default_is_stmt;
6695 int basic_block = 0;
6696 int end_sequence = 0;
6697
6698 if (!decode_for_pst_p && lh->num_file_names >= file)
6699 {
6700 /* Start a subfile for the current file of the state machine. */
6701 /* lh->include_dirs and lh->file_names are 0-based, but the
6702 directory and file name numbers in the statement program
6703 are 1-based. */
6704 struct file_entry *fe = &lh->file_names[file - 1];
6705 char *dir = NULL;
6706
6707 if (fe->dir_index)
6708 dir = lh->include_dirs[fe->dir_index - 1];
6709
6710 dwarf2_start_subfile (fe->name, dir, comp_dir);
6711 }
6712
6713 /* Decode the table. */
6714 while (!end_sequence)
6715 {
6716 op_code = read_1_byte (abfd, line_ptr);
6717 line_ptr += 1;
6718
6719 if (op_code >= lh->opcode_base)
6720 {
6721 /* Special operand. */
6722 adj_opcode = op_code - lh->opcode_base;
6723 address += (adj_opcode / lh->line_range)
6724 * lh->minimum_instruction_length;
6725 line += lh->line_base + (adj_opcode % lh->line_range);
6726 if (lh->num_file_names < file)
6727 dwarf2_debug_line_missing_file_complaint ();
6728 else
6729 {
6730 lh->file_names[file - 1].included_p = 1;
6731 if (!decode_for_pst_p)
6732 {
6733 if (last_subfile != current_subfile)
6734 {
6735 if (last_subfile)
6736 record_line (last_subfile, 0, address);
6737 last_subfile = current_subfile;
6738 }
6739 /* Append row to matrix using current values. */
6740 record_line (current_subfile, line,
6741 check_cu_functions (address, cu));
6742 }
6743 }
6744 basic_block = 1;
6745 }
6746 else switch (op_code)
6747 {
6748 case DW_LNS_extended_op:
6749 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6750 line_ptr += bytes_read;
6751 extended_op = read_1_byte (abfd, line_ptr);
6752 line_ptr += 1;
6753 switch (extended_op)
6754 {
6755 case DW_LNE_end_sequence:
6756 end_sequence = 1;
6757
6758 if (lh->num_file_names < file)
6759 dwarf2_debug_line_missing_file_complaint ();
6760 else
6761 {
6762 lh->file_names[file - 1].included_p = 1;
6763 if (!decode_for_pst_p)
6764 record_line (current_subfile, 0, address);
6765 }
6766 break;
6767 case DW_LNE_set_address:
6768 address = read_address (abfd, line_ptr, cu, &bytes_read);
6769 line_ptr += bytes_read;
6770 address += baseaddr;
6771 break;
6772 case DW_LNE_define_file:
6773 {
6774 char *cur_file;
6775 unsigned int dir_index, mod_time, length;
6776
6777 cur_file = read_string (abfd, line_ptr, &bytes_read);
6778 line_ptr += bytes_read;
6779 dir_index =
6780 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6781 line_ptr += bytes_read;
6782 mod_time =
6783 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6784 line_ptr += bytes_read;
6785 length =
6786 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6787 line_ptr += bytes_read;
6788 add_file_name (lh, cur_file, dir_index, mod_time, length);
6789 }
6790 break;
6791 default:
6792 complaint (&symfile_complaints,
6793 _("mangled .debug_line section"));
6794 return;
6795 }
6796 break;
6797 case DW_LNS_copy:
6798 if (lh->num_file_names < file)
6799 dwarf2_debug_line_missing_file_complaint ();
6800 else
6801 {
6802 lh->file_names[file - 1].included_p = 1;
6803 if (!decode_for_pst_p)
6804 {
6805 if (last_subfile != current_subfile)
6806 {
6807 if (last_subfile)
6808 record_line (last_subfile, 0, address);
6809 last_subfile = current_subfile;
6810 }
6811 record_line (current_subfile, line,
6812 check_cu_functions (address, cu));
6813 }
6814 }
6815 basic_block = 0;
6816 break;
6817 case DW_LNS_advance_pc:
6818 address += lh->minimum_instruction_length
6819 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6820 line_ptr += bytes_read;
6821 break;
6822 case DW_LNS_advance_line:
6823 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6824 line_ptr += bytes_read;
6825 break;
6826 case DW_LNS_set_file:
6827 {
6828 /* The arrays lh->include_dirs and lh->file_names are
6829 0-based, but the directory and file name numbers in
6830 the statement program are 1-based. */
6831 struct file_entry *fe;
6832 char *dir = NULL;
6833
6834 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6835 line_ptr += bytes_read;
6836 if (lh->num_file_names < file)
6837 dwarf2_debug_line_missing_file_complaint ();
6838 else
6839 {
6840 fe = &lh->file_names[file - 1];
6841 if (fe->dir_index)
6842 dir = lh->include_dirs[fe->dir_index - 1];
6843 if (!decode_for_pst_p)
6844 {
6845 last_subfile = current_subfile;
6846 dwarf2_start_subfile (fe->name, dir, comp_dir);
6847 }
6848 }
6849 }
6850 break;
6851 case DW_LNS_set_column:
6852 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6853 line_ptr += bytes_read;
6854 break;
6855 case DW_LNS_negate_stmt:
6856 is_stmt = (!is_stmt);
6857 break;
6858 case DW_LNS_set_basic_block:
6859 basic_block = 1;
6860 break;
6861 /* Add to the address register of the state machine the
6862 address increment value corresponding to special opcode
6863 255. I.e., this value is scaled by the minimum
6864 instruction length since special opcode 255 would have
6865 scaled the the increment. */
6866 case DW_LNS_const_add_pc:
6867 address += (lh->minimum_instruction_length
6868 * ((255 - lh->opcode_base) / lh->line_range));
6869 break;
6870 case DW_LNS_fixed_advance_pc:
6871 address += read_2_bytes (abfd, line_ptr);
6872 line_ptr += 2;
6873 break;
6874 default:
6875 {
6876 /* Unknown standard opcode, ignore it. */
6877 int i;
6878
6879 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6880 {
6881 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6882 line_ptr += bytes_read;
6883 }
6884 }
6885 }
6886 }
6887 }
6888
6889 if (decode_for_pst_p)
6890 {
6891 int file_index;
6892
6893 /* Now that we're done scanning the Line Header Program, we can
6894 create the psymtab of each included file. */
6895 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6896 if (lh->file_names[file_index].included_p == 1)
6897 {
6898 const struct file_entry fe = lh->file_names [file_index];
6899 char *include_name = fe.name;
6900 char *dir_name = NULL;
6901 char *pst_filename = pst->filename;
6902
6903 if (fe.dir_index)
6904 dir_name = lh->include_dirs[fe.dir_index - 1];
6905
6906 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6907 {
6908 include_name = concat (dir_name, SLASH_STRING,
6909 include_name, (char *)NULL);
6910 make_cleanup (xfree, include_name);
6911 }
6912
6913 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6914 {
6915 pst_filename = concat (pst->dirname, SLASH_STRING,
6916 pst_filename, (char *)NULL);
6917 make_cleanup (xfree, pst_filename);
6918 }
6919
6920 if (strcmp (include_name, pst_filename) != 0)
6921 dwarf2_create_include_psymtab (include_name, pst, objfile);
6922 }
6923 }
6924 else
6925 {
6926 /* Make sure a symtab is created for every file, even files
6927 which contain only variables (i.e. no code with associated
6928 line numbers). */
6929
6930 int i;
6931 struct file_entry *fe;
6932
6933 for (i = 0; i < lh->num_file_names; i++)
6934 {
6935 char *dir = NULL;
6936 fe = &lh->file_names[i];
6937 if (fe->dir_index)
6938 dir = lh->include_dirs[fe->dir_index - 1];
6939 dwarf2_start_subfile (fe->name, dir, comp_dir);
6940
6941 /* Skip the main file; we don't need it, and it must be
6942 allocated last, so that it will show up before the
6943 non-primary symtabs in the objfile's symtab list. */
6944 if (current_subfile == first_subfile)
6945 continue;
6946
6947 if (current_subfile->symtab == NULL)
6948 current_subfile->symtab = allocate_symtab (current_subfile->name,
6949 cu->objfile);
6950 fe->symtab = current_subfile->symtab;
6951 }
6952 }
6953 }
6954
6955 /* Start a subfile for DWARF. FILENAME is the name of the file and
6956 DIRNAME the name of the source directory which contains FILENAME
6957 or NULL if not known. COMP_DIR is the compilation directory for the
6958 linetable's compilation unit or NULL if not known.
6959 This routine tries to keep line numbers from identical absolute and
6960 relative file names in a common subfile.
6961
6962 Using the `list' example from the GDB testsuite, which resides in
6963 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6964 of /srcdir/list0.c yields the following debugging information for list0.c:
6965
6966 DW_AT_name: /srcdir/list0.c
6967 DW_AT_comp_dir: /compdir
6968 files.files[0].name: list0.h
6969 files.files[0].dir: /srcdir
6970 files.files[1].name: list0.c
6971 files.files[1].dir: /srcdir
6972
6973 The line number information for list0.c has to end up in a single
6974 subfile, so that `break /srcdir/list0.c:1' works as expected.
6975 start_subfile will ensure that this happens provided that we pass the
6976 concatenation of files.files[1].dir and files.files[1].name as the
6977 subfile's name. */
6978
6979 static void
6980 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6981 {
6982 char *fullname;
6983
6984 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6985 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6986 second argument to start_subfile. To be consistent, we do the
6987 same here. In order not to lose the line information directory,
6988 we concatenate it to the filename when it makes sense.
6989 Note that the Dwarf3 standard says (speaking of filenames in line
6990 information): ``The directory index is ignored for file names
6991 that represent full path names''. Thus ignoring dirname in the
6992 `else' branch below isn't an issue. */
6993
6994 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6995 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6996 else
6997 fullname = filename;
6998
6999 start_subfile (fullname, comp_dir);
7000
7001 if (fullname != filename)
7002 xfree (fullname);
7003 }
7004
7005 static void
7006 var_decode_location (struct attribute *attr, struct symbol *sym,
7007 struct dwarf2_cu *cu)
7008 {
7009 struct objfile *objfile = cu->objfile;
7010 struct comp_unit_head *cu_header = &cu->header;
7011
7012 /* NOTE drow/2003-01-30: There used to be a comment and some special
7013 code here to turn a symbol with DW_AT_external and a
7014 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7015 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7016 with some versions of binutils) where shared libraries could have
7017 relocations against symbols in their debug information - the
7018 minimal symbol would have the right address, but the debug info
7019 would not. It's no longer necessary, because we will explicitly
7020 apply relocations when we read in the debug information now. */
7021
7022 /* A DW_AT_location attribute with no contents indicates that a
7023 variable has been optimized away. */
7024 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7025 {
7026 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7027 return;
7028 }
7029
7030 /* Handle one degenerate form of location expression specially, to
7031 preserve GDB's previous behavior when section offsets are
7032 specified. If this is just a DW_OP_addr then mark this symbol
7033 as LOC_STATIC. */
7034
7035 if (attr_form_is_block (attr)
7036 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7037 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7038 {
7039 unsigned int dummy;
7040
7041 SYMBOL_VALUE_ADDRESS (sym) =
7042 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7043 fixup_symbol_section (sym, objfile);
7044 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7045 SYMBOL_SECTION (sym));
7046 SYMBOL_CLASS (sym) = LOC_STATIC;
7047 return;
7048 }
7049
7050 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7051 expression evaluator, and use LOC_COMPUTED only when necessary
7052 (i.e. when the value of a register or memory location is
7053 referenced, or a thread-local block, etc.). Then again, it might
7054 not be worthwhile. I'm assuming that it isn't unless performance
7055 or memory numbers show me otherwise. */
7056
7057 dwarf2_symbol_mark_computed (attr, sym, cu);
7058 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7059 }
7060
7061 /* Given a pointer to a DWARF information entry, figure out if we need
7062 to make a symbol table entry for it, and if so, create a new entry
7063 and return a pointer to it.
7064 If TYPE is NULL, determine symbol type from the die, otherwise
7065 used the passed type. */
7066
7067 static struct symbol *
7068 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7069 {
7070 struct objfile *objfile = cu->objfile;
7071 struct symbol *sym = NULL;
7072 char *name;
7073 struct attribute *attr = NULL;
7074 struct attribute *attr2 = NULL;
7075 CORE_ADDR baseaddr;
7076
7077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7078
7079 if (die->tag != DW_TAG_namespace)
7080 name = dwarf2_linkage_name (die, cu);
7081 else
7082 name = TYPE_NAME (type);
7083
7084 if (name)
7085 {
7086 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7087 sizeof (struct symbol));
7088 OBJSTAT (objfile, n_syms++);
7089 memset (sym, 0, sizeof (struct symbol));
7090
7091 /* Cache this symbol's name and the name's demangled form (if any). */
7092 SYMBOL_LANGUAGE (sym) = cu->language;
7093 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7094
7095 /* Default assumptions.
7096 Use the passed type or decode it from the die. */
7097 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7098 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7099 if (type != NULL)
7100 SYMBOL_TYPE (sym) = type;
7101 else
7102 SYMBOL_TYPE (sym) = die_type (die, cu);
7103 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7104 if (attr)
7105 {
7106 SYMBOL_LINE (sym) = DW_UNSND (attr);
7107 }
7108
7109 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7110 if (attr)
7111 {
7112 int file_index = DW_UNSND (attr);
7113 if (cu->line_header == NULL
7114 || file_index > cu->line_header->num_file_names)
7115 complaint (&symfile_complaints,
7116 _("file index out of range"));
7117 else if (file_index > 0)
7118 {
7119 struct file_entry *fe;
7120 fe = &cu->line_header->file_names[file_index - 1];
7121 SYMBOL_SYMTAB (sym) = fe->symtab;
7122 }
7123 }
7124
7125 switch (die->tag)
7126 {
7127 case DW_TAG_label:
7128 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7129 if (attr)
7130 {
7131 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7132 }
7133 SYMBOL_CLASS (sym) = LOC_LABEL;
7134 break;
7135 case DW_TAG_subprogram:
7136 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7137 finish_block. */
7138 SYMBOL_CLASS (sym) = LOC_BLOCK;
7139 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7140 if (attr2 && (DW_UNSND (attr2) != 0))
7141 {
7142 add_symbol_to_list (sym, &global_symbols);
7143 }
7144 else
7145 {
7146 add_symbol_to_list (sym, cu->list_in_scope);
7147 }
7148 break;
7149 case DW_TAG_variable:
7150 /* Compilation with minimal debug info may result in variables
7151 with missing type entries. Change the misleading `void' type
7152 to something sensible. */
7153 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7154 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7155 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7156 "<variable, no debug info>",
7157 objfile);
7158 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7159 if (attr)
7160 {
7161 dwarf2_const_value (attr, sym, cu);
7162 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7163 if (attr2 && (DW_UNSND (attr2) != 0))
7164 add_symbol_to_list (sym, &global_symbols);
7165 else
7166 add_symbol_to_list (sym, cu->list_in_scope);
7167 break;
7168 }
7169 attr = dwarf2_attr (die, DW_AT_location, cu);
7170 if (attr)
7171 {
7172 var_decode_location (attr, sym, cu);
7173 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7174 if (attr2 && (DW_UNSND (attr2) != 0))
7175 add_symbol_to_list (sym, &global_symbols);
7176 else
7177 add_symbol_to_list (sym, cu->list_in_scope);
7178 }
7179 else
7180 {
7181 /* We do not know the address of this symbol.
7182 If it is an external symbol and we have type information
7183 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7184 The address of the variable will then be determined from
7185 the minimal symbol table whenever the variable is
7186 referenced. */
7187 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7188 if (attr2 && (DW_UNSND (attr2) != 0)
7189 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7190 {
7191 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7192 add_symbol_to_list (sym, &global_symbols);
7193 }
7194 }
7195 break;
7196 case DW_TAG_formal_parameter:
7197 attr = dwarf2_attr (die, DW_AT_location, cu);
7198 if (attr)
7199 {
7200 var_decode_location (attr, sym, cu);
7201 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7202 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7203 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7204 }
7205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7206 if (attr)
7207 {
7208 dwarf2_const_value (attr, sym, cu);
7209 }
7210 add_symbol_to_list (sym, cu->list_in_scope);
7211 break;
7212 case DW_TAG_unspecified_parameters:
7213 /* From varargs functions; gdb doesn't seem to have any
7214 interest in this information, so just ignore it for now.
7215 (FIXME?) */
7216 break;
7217 case DW_TAG_class_type:
7218 case DW_TAG_structure_type:
7219 case DW_TAG_union_type:
7220 case DW_TAG_set_type:
7221 case DW_TAG_enumeration_type:
7222 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7223 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7224
7225 /* Make sure that the symbol includes appropriate enclosing
7226 classes/namespaces in its name. These are calculated in
7227 read_structure_type, and the correct name is saved in
7228 the type. */
7229
7230 if (cu->language == language_cplus
7231 || cu->language == language_java)
7232 {
7233 struct type *type = SYMBOL_TYPE (sym);
7234
7235 if (TYPE_TAG_NAME (type) != NULL)
7236 {
7237 /* FIXME: carlton/2003-11-10: Should this use
7238 SYMBOL_SET_NAMES instead? (The same problem also
7239 arises further down in this function.) */
7240 /* The type's name is already allocated along with
7241 this objfile, so we don't need to duplicate it
7242 for the symbol. */
7243 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7244 }
7245 }
7246
7247 {
7248 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7249 really ever be static objects: otherwise, if you try
7250 to, say, break of a class's method and you're in a file
7251 which doesn't mention that class, it won't work unless
7252 the check for all static symbols in lookup_symbol_aux
7253 saves you. See the OtherFileClass tests in
7254 gdb.c++/namespace.exp. */
7255
7256 struct pending **list_to_add;
7257
7258 list_to_add = (cu->list_in_scope == &file_symbols
7259 && (cu->language == language_cplus
7260 || cu->language == language_java)
7261 ? &global_symbols : cu->list_in_scope);
7262
7263 add_symbol_to_list (sym, list_to_add);
7264
7265 /* The semantics of C++ state that "struct foo { ... }" also
7266 defines a typedef for "foo". A Java class declaration also
7267 defines a typedef for the class. Synthesize a typedef symbol
7268 so that "ptype foo" works as expected. */
7269 if (cu->language == language_cplus
7270 || cu->language == language_java
7271 || cu->language == language_ada)
7272 {
7273 struct symbol *typedef_sym = (struct symbol *)
7274 obstack_alloc (&objfile->objfile_obstack,
7275 sizeof (struct symbol));
7276 *typedef_sym = *sym;
7277 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7278 /* The symbol's name is already allocated along with
7279 this objfile, so we don't need to duplicate it for
7280 the type. */
7281 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7283 add_symbol_to_list (typedef_sym, list_to_add);
7284 }
7285 }
7286 break;
7287 case DW_TAG_typedef:
7288 if (processing_has_namespace_info
7289 && processing_current_prefix[0] != '\0')
7290 {
7291 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7292 processing_current_prefix,
7293 name, cu);
7294 }
7295 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7296 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7297 add_symbol_to_list (sym, cu->list_in_scope);
7298 break;
7299 case DW_TAG_base_type:
7300 case DW_TAG_subrange_type:
7301 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7302 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7303 add_symbol_to_list (sym, cu->list_in_scope);
7304 break;
7305 case DW_TAG_enumerator:
7306 if (processing_has_namespace_info
7307 && processing_current_prefix[0] != '\0')
7308 {
7309 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7310 processing_current_prefix,
7311 name, cu);
7312 }
7313 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7314 if (attr)
7315 {
7316 dwarf2_const_value (attr, sym, cu);
7317 }
7318 {
7319 /* NOTE: carlton/2003-11-10: See comment above in the
7320 DW_TAG_class_type, etc. block. */
7321
7322 struct pending **list_to_add;
7323
7324 list_to_add = (cu->list_in_scope == &file_symbols
7325 && (cu->language == language_cplus
7326 || cu->language == language_java)
7327 ? &global_symbols : cu->list_in_scope);
7328
7329 add_symbol_to_list (sym, list_to_add);
7330 }
7331 break;
7332 case DW_TAG_namespace:
7333 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7334 add_symbol_to_list (sym, &global_symbols);
7335 break;
7336 default:
7337 /* Not a tag we recognize. Hopefully we aren't processing
7338 trash data, but since we must specifically ignore things
7339 we don't recognize, there is nothing else we should do at
7340 this point. */
7341 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7342 dwarf_tag_name (die->tag));
7343 break;
7344 }
7345 }
7346 return (sym);
7347 }
7348
7349 /* Copy constant value from an attribute to a symbol. */
7350
7351 static void
7352 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7353 struct dwarf2_cu *cu)
7354 {
7355 struct objfile *objfile = cu->objfile;
7356 struct comp_unit_head *cu_header = &cu->header;
7357 struct dwarf_block *blk;
7358
7359 switch (attr->form)
7360 {
7361 case DW_FORM_addr:
7362 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7363 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7364 cu_header->addr_size,
7365 TYPE_LENGTH (SYMBOL_TYPE
7366 (sym)));
7367 SYMBOL_VALUE_BYTES (sym) =
7368 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7369 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7370 it's body - store_unsigned_integer. */
7371 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7372 DW_ADDR (attr));
7373 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7374 break;
7375 case DW_FORM_block1:
7376 case DW_FORM_block2:
7377 case DW_FORM_block4:
7378 case DW_FORM_block:
7379 blk = DW_BLOCK (attr);
7380 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7381 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7382 blk->size,
7383 TYPE_LENGTH (SYMBOL_TYPE
7384 (sym)));
7385 SYMBOL_VALUE_BYTES (sym) =
7386 obstack_alloc (&objfile->objfile_obstack, blk->size);
7387 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7388 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7389 break;
7390
7391 /* The DW_AT_const_value attributes are supposed to carry the
7392 symbol's value "represented as it would be on the target
7393 architecture." By the time we get here, it's already been
7394 converted to host endianness, so we just need to sign- or
7395 zero-extend it as appropriate. */
7396 case DW_FORM_data1:
7397 dwarf2_const_value_data (attr, sym, 8);
7398 break;
7399 case DW_FORM_data2:
7400 dwarf2_const_value_data (attr, sym, 16);
7401 break;
7402 case DW_FORM_data4:
7403 dwarf2_const_value_data (attr, sym, 32);
7404 break;
7405 case DW_FORM_data8:
7406 dwarf2_const_value_data (attr, sym, 64);
7407 break;
7408
7409 case DW_FORM_sdata:
7410 SYMBOL_VALUE (sym) = DW_SND (attr);
7411 SYMBOL_CLASS (sym) = LOC_CONST;
7412 break;
7413
7414 case DW_FORM_udata:
7415 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7416 SYMBOL_CLASS (sym) = LOC_CONST;
7417 break;
7418
7419 default:
7420 complaint (&symfile_complaints,
7421 _("unsupported const value attribute form: '%s'"),
7422 dwarf_form_name (attr->form));
7423 SYMBOL_VALUE (sym) = 0;
7424 SYMBOL_CLASS (sym) = LOC_CONST;
7425 break;
7426 }
7427 }
7428
7429
7430 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7431 or zero-extend it as appropriate for the symbol's type. */
7432 static void
7433 dwarf2_const_value_data (struct attribute *attr,
7434 struct symbol *sym,
7435 int bits)
7436 {
7437 LONGEST l = DW_UNSND (attr);
7438
7439 if (bits < sizeof (l) * 8)
7440 {
7441 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7442 l &= ((LONGEST) 1 << bits) - 1;
7443 else
7444 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7445 }
7446
7447 SYMBOL_VALUE (sym) = l;
7448 SYMBOL_CLASS (sym) = LOC_CONST;
7449 }
7450
7451
7452 /* Return the type of the die in question using its DW_AT_type attribute. */
7453
7454 static struct type *
7455 die_type (struct die_info *die, struct dwarf2_cu *cu)
7456 {
7457 struct type *type;
7458 struct attribute *type_attr;
7459 struct die_info *type_die;
7460
7461 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7462 if (!type_attr)
7463 {
7464 /* A missing DW_AT_type represents a void type. */
7465 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7466 }
7467 else
7468 type_die = follow_die_ref (die, type_attr, cu);
7469
7470 type = tag_type_to_type (type_die, cu);
7471 if (!type)
7472 {
7473 dump_die (type_die);
7474 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7475 cu->objfile->name);
7476 }
7477 return type;
7478 }
7479
7480 /* Return the containing type of the die in question using its
7481 DW_AT_containing_type attribute. */
7482
7483 static struct type *
7484 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7485 {
7486 struct type *type = NULL;
7487 struct attribute *type_attr;
7488 struct die_info *type_die = NULL;
7489
7490 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7491 if (type_attr)
7492 {
7493 type_die = follow_die_ref (die, type_attr, cu);
7494 type = tag_type_to_type (type_die, cu);
7495 }
7496 if (!type)
7497 {
7498 if (type_die)
7499 dump_die (type_die);
7500 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7501 cu->objfile->name);
7502 }
7503 return type;
7504 }
7505
7506 static struct type *
7507 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7508 {
7509 if (die->type)
7510 {
7511 return die->type;
7512 }
7513 else
7514 {
7515 read_type_die (die, cu);
7516 if (!die->type)
7517 {
7518 dump_die (die);
7519 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7520 cu->objfile->name);
7521 }
7522 return die->type;
7523 }
7524 }
7525
7526 static void
7527 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7528 {
7529 char *prefix = determine_prefix (die, cu);
7530 const char *old_prefix = processing_current_prefix;
7531 struct cleanup *back_to = make_cleanup (xfree, prefix);
7532 processing_current_prefix = prefix;
7533
7534 switch (die->tag)
7535 {
7536 case DW_TAG_class_type:
7537 case DW_TAG_structure_type:
7538 case DW_TAG_union_type:
7539 read_structure_type (die, cu);
7540 break;
7541 case DW_TAG_enumeration_type:
7542 read_enumeration_type (die, cu);
7543 break;
7544 case DW_TAG_subprogram:
7545 case DW_TAG_subroutine_type:
7546 read_subroutine_type (die, cu);
7547 break;
7548 case DW_TAG_array_type:
7549 read_array_type (die, cu);
7550 break;
7551 case DW_TAG_set_type:
7552 read_set_type (die, cu);
7553 break;
7554 case DW_TAG_pointer_type:
7555 read_tag_pointer_type (die, cu);
7556 break;
7557 case DW_TAG_ptr_to_member_type:
7558 read_tag_ptr_to_member_type (die, cu);
7559 break;
7560 case DW_TAG_reference_type:
7561 read_tag_reference_type (die, cu);
7562 break;
7563 case DW_TAG_const_type:
7564 read_tag_const_type (die, cu);
7565 break;
7566 case DW_TAG_volatile_type:
7567 read_tag_volatile_type (die, cu);
7568 break;
7569 case DW_TAG_string_type:
7570 read_tag_string_type (die, cu);
7571 break;
7572 case DW_TAG_typedef:
7573 read_typedef (die, cu);
7574 break;
7575 case DW_TAG_subrange_type:
7576 read_subrange_type (die, cu);
7577 break;
7578 case DW_TAG_base_type:
7579 read_base_type (die, cu);
7580 break;
7581 case DW_TAG_unspecified_type:
7582 read_unspecified_type (die, cu);
7583 break;
7584 default:
7585 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7586 dwarf_tag_name (die->tag));
7587 break;
7588 }
7589
7590 processing_current_prefix = old_prefix;
7591 do_cleanups (back_to);
7592 }
7593
7594 /* Return the name of the namespace/class that DIE is defined within,
7595 or "" if we can't tell. The caller should xfree the result. */
7596
7597 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7598 therein) for an example of how to use this function to deal with
7599 DW_AT_specification. */
7600
7601 static char *
7602 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7603 {
7604 struct die_info *parent;
7605
7606 if (cu->language != language_cplus
7607 && cu->language != language_java)
7608 return NULL;
7609
7610 parent = die->parent;
7611
7612 if (parent == NULL)
7613 {
7614 return xstrdup ("");
7615 }
7616 else
7617 {
7618 switch (parent->tag) {
7619 case DW_TAG_namespace:
7620 {
7621 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7622 before doing this check? */
7623 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7624 {
7625 return xstrdup (TYPE_TAG_NAME (parent->type));
7626 }
7627 else
7628 {
7629 int dummy;
7630 char *parent_prefix = determine_prefix (parent, cu);
7631 char *retval = typename_concat (NULL, parent_prefix,
7632 namespace_name (parent, &dummy,
7633 cu),
7634 cu);
7635 xfree (parent_prefix);
7636 return retval;
7637 }
7638 }
7639 break;
7640 case DW_TAG_class_type:
7641 case DW_TAG_structure_type:
7642 {
7643 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7644 {
7645 return xstrdup (TYPE_TAG_NAME (parent->type));
7646 }
7647 else
7648 {
7649 const char *old_prefix = processing_current_prefix;
7650 char *new_prefix = determine_prefix (parent, cu);
7651 char *retval;
7652
7653 processing_current_prefix = new_prefix;
7654 retval = determine_class_name (parent, cu);
7655 processing_current_prefix = old_prefix;
7656
7657 xfree (new_prefix);
7658 return retval;
7659 }
7660 }
7661 default:
7662 return determine_prefix (parent, cu);
7663 }
7664 }
7665 }
7666
7667 /* Return a newly-allocated string formed by concatenating PREFIX and
7668 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7669 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7670 perform an obconcat, otherwise allocate storage for the result. The CU argument
7671 is used to determine the language and hence, the appropriate separator. */
7672
7673 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7674
7675 static char *
7676 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7677 struct dwarf2_cu *cu)
7678 {
7679 char *sep;
7680
7681 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7682 sep = "";
7683 else if (cu->language == language_java)
7684 sep = ".";
7685 else
7686 sep = "::";
7687
7688 if (obs == NULL)
7689 {
7690 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7691 retval[0] = '\0';
7692
7693 if (prefix)
7694 {
7695 strcpy (retval, prefix);
7696 strcat (retval, sep);
7697 }
7698 if (suffix)
7699 strcat (retval, suffix);
7700
7701 return retval;
7702 }
7703 else
7704 {
7705 /* We have an obstack. */
7706 return obconcat (obs, prefix, sep, suffix);
7707 }
7708 }
7709
7710 static struct type *
7711 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7712 {
7713 struct objfile *objfile = cu->objfile;
7714
7715 /* FIXME - this should not produce a new (struct type *)
7716 every time. It should cache base types. */
7717 struct type *type;
7718 switch (encoding)
7719 {
7720 case DW_ATE_address:
7721 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7722 return type;
7723 case DW_ATE_boolean:
7724 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7725 return type;
7726 case DW_ATE_complex_float:
7727 if (size == 16)
7728 {
7729 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7730 }
7731 else
7732 {
7733 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7734 }
7735 return type;
7736 case DW_ATE_float:
7737 if (size == 8)
7738 {
7739 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7740 }
7741 else
7742 {
7743 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7744 }
7745 return type;
7746 case DW_ATE_signed:
7747 switch (size)
7748 {
7749 case 1:
7750 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7751 break;
7752 case 2:
7753 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7754 break;
7755 default:
7756 case 4:
7757 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7758 break;
7759 }
7760 return type;
7761 case DW_ATE_signed_char:
7762 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7763 return type;
7764 case DW_ATE_unsigned:
7765 switch (size)
7766 {
7767 case 1:
7768 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7769 break;
7770 case 2:
7771 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7772 break;
7773 default:
7774 case 4:
7775 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7776 break;
7777 }
7778 return type;
7779 case DW_ATE_unsigned_char:
7780 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7781 return type;
7782 default:
7783 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7784 return type;
7785 }
7786 }
7787
7788 #if 0
7789 struct die_info *
7790 copy_die (struct die_info *old_die)
7791 {
7792 struct die_info *new_die;
7793 int i, num_attrs;
7794
7795 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7796 memset (new_die, 0, sizeof (struct die_info));
7797
7798 new_die->tag = old_die->tag;
7799 new_die->has_children = old_die->has_children;
7800 new_die->abbrev = old_die->abbrev;
7801 new_die->offset = old_die->offset;
7802 new_die->type = NULL;
7803
7804 num_attrs = old_die->num_attrs;
7805 new_die->num_attrs = num_attrs;
7806 new_die->attrs = (struct attribute *)
7807 xmalloc (num_attrs * sizeof (struct attribute));
7808
7809 for (i = 0; i < old_die->num_attrs; ++i)
7810 {
7811 new_die->attrs[i].name = old_die->attrs[i].name;
7812 new_die->attrs[i].form = old_die->attrs[i].form;
7813 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7814 }
7815
7816 new_die->next = NULL;
7817 return new_die;
7818 }
7819 #endif
7820
7821 /* Return sibling of die, NULL if no sibling. */
7822
7823 static struct die_info *
7824 sibling_die (struct die_info *die)
7825 {
7826 return die->sibling;
7827 }
7828
7829 /* Get linkage name of a die, return NULL if not found. */
7830
7831 static char *
7832 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7833 {
7834 struct attribute *attr;
7835
7836 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7837 if (attr && DW_STRING (attr))
7838 return DW_STRING (attr);
7839 attr = dwarf2_attr (die, DW_AT_name, cu);
7840 if (attr && DW_STRING (attr))
7841 return DW_STRING (attr);
7842 return NULL;
7843 }
7844
7845 /* Get name of a die, return NULL if not found. */
7846
7847 static char *
7848 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7849 {
7850 struct attribute *attr;
7851
7852 attr = dwarf2_attr (die, DW_AT_name, cu);
7853 if (attr && DW_STRING (attr))
7854 return DW_STRING (attr);
7855 return NULL;
7856 }
7857
7858 /* Return the die that this die in an extension of, or NULL if there
7859 is none. */
7860
7861 static struct die_info *
7862 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7863 {
7864 struct attribute *attr;
7865
7866 attr = dwarf2_attr (die, DW_AT_extension, cu);
7867 if (attr == NULL)
7868 return NULL;
7869
7870 return follow_die_ref (die, attr, cu);
7871 }
7872
7873 /* Convert a DIE tag into its string name. */
7874
7875 static char *
7876 dwarf_tag_name (unsigned tag)
7877 {
7878 switch (tag)
7879 {
7880 case DW_TAG_padding:
7881 return "DW_TAG_padding";
7882 case DW_TAG_array_type:
7883 return "DW_TAG_array_type";
7884 case DW_TAG_class_type:
7885 return "DW_TAG_class_type";
7886 case DW_TAG_entry_point:
7887 return "DW_TAG_entry_point";
7888 case DW_TAG_enumeration_type:
7889 return "DW_TAG_enumeration_type";
7890 case DW_TAG_formal_parameter:
7891 return "DW_TAG_formal_parameter";
7892 case DW_TAG_imported_declaration:
7893 return "DW_TAG_imported_declaration";
7894 case DW_TAG_label:
7895 return "DW_TAG_label";
7896 case DW_TAG_lexical_block:
7897 return "DW_TAG_lexical_block";
7898 case DW_TAG_member:
7899 return "DW_TAG_member";
7900 case DW_TAG_pointer_type:
7901 return "DW_TAG_pointer_type";
7902 case DW_TAG_reference_type:
7903 return "DW_TAG_reference_type";
7904 case DW_TAG_compile_unit:
7905 return "DW_TAG_compile_unit";
7906 case DW_TAG_string_type:
7907 return "DW_TAG_string_type";
7908 case DW_TAG_structure_type:
7909 return "DW_TAG_structure_type";
7910 case DW_TAG_subroutine_type:
7911 return "DW_TAG_subroutine_type";
7912 case DW_TAG_typedef:
7913 return "DW_TAG_typedef";
7914 case DW_TAG_union_type:
7915 return "DW_TAG_union_type";
7916 case DW_TAG_unspecified_parameters:
7917 return "DW_TAG_unspecified_parameters";
7918 case DW_TAG_variant:
7919 return "DW_TAG_variant";
7920 case DW_TAG_common_block:
7921 return "DW_TAG_common_block";
7922 case DW_TAG_common_inclusion:
7923 return "DW_TAG_common_inclusion";
7924 case DW_TAG_inheritance:
7925 return "DW_TAG_inheritance";
7926 case DW_TAG_inlined_subroutine:
7927 return "DW_TAG_inlined_subroutine";
7928 case DW_TAG_module:
7929 return "DW_TAG_module";
7930 case DW_TAG_ptr_to_member_type:
7931 return "DW_TAG_ptr_to_member_type";
7932 case DW_TAG_set_type:
7933 return "DW_TAG_set_type";
7934 case DW_TAG_subrange_type:
7935 return "DW_TAG_subrange_type";
7936 case DW_TAG_with_stmt:
7937 return "DW_TAG_with_stmt";
7938 case DW_TAG_access_declaration:
7939 return "DW_TAG_access_declaration";
7940 case DW_TAG_base_type:
7941 return "DW_TAG_base_type";
7942 case DW_TAG_catch_block:
7943 return "DW_TAG_catch_block";
7944 case DW_TAG_const_type:
7945 return "DW_TAG_const_type";
7946 case DW_TAG_constant:
7947 return "DW_TAG_constant";
7948 case DW_TAG_enumerator:
7949 return "DW_TAG_enumerator";
7950 case DW_TAG_file_type:
7951 return "DW_TAG_file_type";
7952 case DW_TAG_friend:
7953 return "DW_TAG_friend";
7954 case DW_TAG_namelist:
7955 return "DW_TAG_namelist";
7956 case DW_TAG_namelist_item:
7957 return "DW_TAG_namelist_item";
7958 case DW_TAG_packed_type:
7959 return "DW_TAG_packed_type";
7960 case DW_TAG_subprogram:
7961 return "DW_TAG_subprogram";
7962 case DW_TAG_template_type_param:
7963 return "DW_TAG_template_type_param";
7964 case DW_TAG_template_value_param:
7965 return "DW_TAG_template_value_param";
7966 case DW_TAG_thrown_type:
7967 return "DW_TAG_thrown_type";
7968 case DW_TAG_try_block:
7969 return "DW_TAG_try_block";
7970 case DW_TAG_variant_part:
7971 return "DW_TAG_variant_part";
7972 case DW_TAG_variable:
7973 return "DW_TAG_variable";
7974 case DW_TAG_volatile_type:
7975 return "DW_TAG_volatile_type";
7976 case DW_TAG_dwarf_procedure:
7977 return "DW_TAG_dwarf_procedure";
7978 case DW_TAG_restrict_type:
7979 return "DW_TAG_restrict_type";
7980 case DW_TAG_interface_type:
7981 return "DW_TAG_interface_type";
7982 case DW_TAG_namespace:
7983 return "DW_TAG_namespace";
7984 case DW_TAG_imported_module:
7985 return "DW_TAG_imported_module";
7986 case DW_TAG_unspecified_type:
7987 return "DW_TAG_unspecified_type";
7988 case DW_TAG_partial_unit:
7989 return "DW_TAG_partial_unit";
7990 case DW_TAG_imported_unit:
7991 return "DW_TAG_imported_unit";
7992 case DW_TAG_condition:
7993 return "DW_TAG_condition";
7994 case DW_TAG_shared_type:
7995 return "DW_TAG_shared_type";
7996 case DW_TAG_MIPS_loop:
7997 return "DW_TAG_MIPS_loop";
7998 case DW_TAG_HP_array_descriptor:
7999 return "DW_TAG_HP_array_descriptor";
8000 case DW_TAG_format_label:
8001 return "DW_TAG_format_label";
8002 case DW_TAG_function_template:
8003 return "DW_TAG_function_template";
8004 case DW_TAG_class_template:
8005 return "DW_TAG_class_template";
8006 case DW_TAG_GNU_BINCL:
8007 return "DW_TAG_GNU_BINCL";
8008 case DW_TAG_GNU_EINCL:
8009 return "DW_TAG_GNU_EINCL";
8010 case DW_TAG_upc_shared_type:
8011 return "DW_TAG_upc_shared_type";
8012 case DW_TAG_upc_strict_type:
8013 return "DW_TAG_upc_strict_type";
8014 case DW_TAG_upc_relaxed_type:
8015 return "DW_TAG_upc_relaxed_type";
8016 case DW_TAG_PGI_kanji_type:
8017 return "DW_TAG_PGI_kanji_type";
8018 case DW_TAG_PGI_interface_block:
8019 return "DW_TAG_PGI_interface_block";
8020 default:
8021 return "DW_TAG_<unknown>";
8022 }
8023 }
8024
8025 /* Convert a DWARF attribute code into its string name. */
8026
8027 static char *
8028 dwarf_attr_name (unsigned attr)
8029 {
8030 switch (attr)
8031 {
8032 case DW_AT_sibling:
8033 return "DW_AT_sibling";
8034 case DW_AT_location:
8035 return "DW_AT_location";
8036 case DW_AT_name:
8037 return "DW_AT_name";
8038 case DW_AT_ordering:
8039 return "DW_AT_ordering";
8040 case DW_AT_subscr_data:
8041 return "DW_AT_subscr_data";
8042 case DW_AT_byte_size:
8043 return "DW_AT_byte_size";
8044 case DW_AT_bit_offset:
8045 return "DW_AT_bit_offset";
8046 case DW_AT_bit_size:
8047 return "DW_AT_bit_size";
8048 case DW_AT_element_list:
8049 return "DW_AT_element_list";
8050 case DW_AT_stmt_list:
8051 return "DW_AT_stmt_list";
8052 case DW_AT_low_pc:
8053 return "DW_AT_low_pc";
8054 case DW_AT_high_pc:
8055 return "DW_AT_high_pc";
8056 case DW_AT_language:
8057 return "DW_AT_language";
8058 case DW_AT_member:
8059 return "DW_AT_member";
8060 case DW_AT_discr:
8061 return "DW_AT_discr";
8062 case DW_AT_discr_value:
8063 return "DW_AT_discr_value";
8064 case DW_AT_visibility:
8065 return "DW_AT_visibility";
8066 case DW_AT_import:
8067 return "DW_AT_import";
8068 case DW_AT_string_length:
8069 return "DW_AT_string_length";
8070 case DW_AT_common_reference:
8071 return "DW_AT_common_reference";
8072 case DW_AT_comp_dir:
8073 return "DW_AT_comp_dir";
8074 case DW_AT_const_value:
8075 return "DW_AT_const_value";
8076 case DW_AT_containing_type:
8077 return "DW_AT_containing_type";
8078 case DW_AT_default_value:
8079 return "DW_AT_default_value";
8080 case DW_AT_inline:
8081 return "DW_AT_inline";
8082 case DW_AT_is_optional:
8083 return "DW_AT_is_optional";
8084 case DW_AT_lower_bound:
8085 return "DW_AT_lower_bound";
8086 case DW_AT_producer:
8087 return "DW_AT_producer";
8088 case DW_AT_prototyped:
8089 return "DW_AT_prototyped";
8090 case DW_AT_return_addr:
8091 return "DW_AT_return_addr";
8092 case DW_AT_start_scope:
8093 return "DW_AT_start_scope";
8094 case DW_AT_stride_size:
8095 return "DW_AT_stride_size";
8096 case DW_AT_upper_bound:
8097 return "DW_AT_upper_bound";
8098 case DW_AT_abstract_origin:
8099 return "DW_AT_abstract_origin";
8100 case DW_AT_accessibility:
8101 return "DW_AT_accessibility";
8102 case DW_AT_address_class:
8103 return "DW_AT_address_class";
8104 case DW_AT_artificial:
8105 return "DW_AT_artificial";
8106 case DW_AT_base_types:
8107 return "DW_AT_base_types";
8108 case DW_AT_calling_convention:
8109 return "DW_AT_calling_convention";
8110 case DW_AT_count:
8111 return "DW_AT_count";
8112 case DW_AT_data_member_location:
8113 return "DW_AT_data_member_location";
8114 case DW_AT_decl_column:
8115 return "DW_AT_decl_column";
8116 case DW_AT_decl_file:
8117 return "DW_AT_decl_file";
8118 case DW_AT_decl_line:
8119 return "DW_AT_decl_line";
8120 case DW_AT_declaration:
8121 return "DW_AT_declaration";
8122 case DW_AT_discr_list:
8123 return "DW_AT_discr_list";
8124 case DW_AT_encoding:
8125 return "DW_AT_encoding";
8126 case DW_AT_external:
8127 return "DW_AT_external";
8128 case DW_AT_frame_base:
8129 return "DW_AT_frame_base";
8130 case DW_AT_friend:
8131 return "DW_AT_friend";
8132 case DW_AT_identifier_case:
8133 return "DW_AT_identifier_case";
8134 case DW_AT_macro_info:
8135 return "DW_AT_macro_info";
8136 case DW_AT_namelist_items:
8137 return "DW_AT_namelist_items";
8138 case DW_AT_priority:
8139 return "DW_AT_priority";
8140 case DW_AT_segment:
8141 return "DW_AT_segment";
8142 case DW_AT_specification:
8143 return "DW_AT_specification";
8144 case DW_AT_static_link:
8145 return "DW_AT_static_link";
8146 case DW_AT_type:
8147 return "DW_AT_type";
8148 case DW_AT_use_location:
8149 return "DW_AT_use_location";
8150 case DW_AT_variable_parameter:
8151 return "DW_AT_variable_parameter";
8152 case DW_AT_virtuality:
8153 return "DW_AT_virtuality";
8154 case DW_AT_vtable_elem_location:
8155 return "DW_AT_vtable_elem_location";
8156 /* DWARF 3 values. */
8157 case DW_AT_allocated:
8158 return "DW_AT_allocated";
8159 case DW_AT_associated:
8160 return "DW_AT_associated";
8161 case DW_AT_data_location:
8162 return "DW_AT_data_location";
8163 case DW_AT_stride:
8164 return "DW_AT_stride";
8165 case DW_AT_entry_pc:
8166 return "DW_AT_entry_pc";
8167 case DW_AT_use_UTF8:
8168 return "DW_AT_use_UTF8";
8169 case DW_AT_extension:
8170 return "DW_AT_extension";
8171 case DW_AT_ranges:
8172 return "DW_AT_ranges";
8173 case DW_AT_trampoline:
8174 return "DW_AT_trampoline";
8175 case DW_AT_call_column:
8176 return "DW_AT_call_column";
8177 case DW_AT_call_file:
8178 return "DW_AT_call_file";
8179 case DW_AT_call_line:
8180 return "DW_AT_call_line";
8181 case DW_AT_description:
8182 return "DW_AT_description";
8183 case DW_AT_binary_scale:
8184 return "DW_AT_binary_scale";
8185 case DW_AT_decimal_scale:
8186 return "DW_AT_decimal_scale";
8187 case DW_AT_small:
8188 return "DW_AT_small";
8189 case DW_AT_decimal_sign:
8190 return "DW_AT_decimal_sign";
8191 case DW_AT_digit_count:
8192 return "DW_AT_digit_count";
8193 case DW_AT_picture_string:
8194 return "DW_AT_picture_string";
8195 case DW_AT_mutable:
8196 return "DW_AT_mutable";
8197 case DW_AT_threads_scaled:
8198 return "DW_AT_threads_scaled";
8199 case DW_AT_explicit:
8200 return "DW_AT_explicit";
8201 case DW_AT_object_pointer:
8202 return "DW_AT_object_pointer";
8203 case DW_AT_endianity:
8204 return "DW_AT_endianity";
8205 case DW_AT_elemental:
8206 return "DW_AT_elemental";
8207 case DW_AT_pure:
8208 return "DW_AT_pure";
8209 case DW_AT_recursive:
8210 return "DW_AT_recursive";
8211 #ifdef MIPS
8212 /* SGI/MIPS extensions. */
8213 case DW_AT_MIPS_fde:
8214 return "DW_AT_MIPS_fde";
8215 case DW_AT_MIPS_loop_begin:
8216 return "DW_AT_MIPS_loop_begin";
8217 case DW_AT_MIPS_tail_loop_begin:
8218 return "DW_AT_MIPS_tail_loop_begin";
8219 case DW_AT_MIPS_epilog_begin:
8220 return "DW_AT_MIPS_epilog_begin";
8221 case DW_AT_MIPS_loop_unroll_factor:
8222 return "DW_AT_MIPS_loop_unroll_factor";
8223 case DW_AT_MIPS_software_pipeline_depth:
8224 return "DW_AT_MIPS_software_pipeline_depth";
8225 case DW_AT_MIPS_linkage_name:
8226 return "DW_AT_MIPS_linkage_name";
8227 case DW_AT_MIPS_stride:
8228 return "DW_AT_MIPS_stride";
8229 case DW_AT_MIPS_abstract_name:
8230 return "DW_AT_MIPS_abstract_name";
8231 case DW_AT_MIPS_clone_origin:
8232 return "DW_AT_MIPS_clone_origin";
8233 case DW_AT_MIPS_has_inlines:
8234 return "DW_AT_MIPS_has_inlines";
8235 #endif
8236 /* HP extensions. */
8237 case DW_AT_HP_block_index:
8238 return "DW_AT_HP_block_index";
8239 case DW_AT_HP_unmodifiable:
8240 return "DW_AT_HP_unmodifiable";
8241 case DW_AT_HP_actuals_stmt_list:
8242 return "DW_AT_HP_actuals_stmt_list";
8243 case DW_AT_HP_proc_per_section:
8244 return "DW_AT_HP_proc_per_section";
8245 case DW_AT_HP_raw_data_ptr:
8246 return "DW_AT_HP_raw_data_ptr";
8247 case DW_AT_HP_pass_by_reference:
8248 return "DW_AT_HP_pass_by_reference";
8249 case DW_AT_HP_opt_level:
8250 return "DW_AT_HP_opt_level";
8251 case DW_AT_HP_prof_version_id:
8252 return "DW_AT_HP_prof_version_id";
8253 case DW_AT_HP_opt_flags:
8254 return "DW_AT_HP_opt_flags";
8255 case DW_AT_HP_cold_region_low_pc:
8256 return "DW_AT_HP_cold_region_low_pc";
8257 case DW_AT_HP_cold_region_high_pc:
8258 return "DW_AT_HP_cold_region_high_pc";
8259 case DW_AT_HP_all_variables_modifiable:
8260 return "DW_AT_HP_all_variables_modifiable";
8261 case DW_AT_HP_linkage_name:
8262 return "DW_AT_HP_linkage_name";
8263 case DW_AT_HP_prof_flags:
8264 return "DW_AT_HP_prof_flags";
8265 /* GNU extensions. */
8266 case DW_AT_sf_names:
8267 return "DW_AT_sf_names";
8268 case DW_AT_src_info:
8269 return "DW_AT_src_info";
8270 case DW_AT_mac_info:
8271 return "DW_AT_mac_info";
8272 case DW_AT_src_coords:
8273 return "DW_AT_src_coords";
8274 case DW_AT_body_begin:
8275 return "DW_AT_body_begin";
8276 case DW_AT_body_end:
8277 return "DW_AT_body_end";
8278 case DW_AT_GNU_vector:
8279 return "DW_AT_GNU_vector";
8280 /* VMS extensions. */
8281 case DW_AT_VMS_rtnbeg_pd_address:
8282 return "DW_AT_VMS_rtnbeg_pd_address";
8283 /* UPC extension. */
8284 case DW_AT_upc_threads_scaled:
8285 return "DW_AT_upc_threads_scaled";
8286 /* PGI (STMicroelectronics) extensions. */
8287 case DW_AT_PGI_lbase:
8288 return "DW_AT_PGI_lbase";
8289 case DW_AT_PGI_soffset:
8290 return "DW_AT_PGI_soffset";
8291 case DW_AT_PGI_lstride:
8292 return "DW_AT_PGI_lstride";
8293 default:
8294 return "DW_AT_<unknown>";
8295 }
8296 }
8297
8298 /* Convert a DWARF value form code into its string name. */
8299
8300 static char *
8301 dwarf_form_name (unsigned form)
8302 {
8303 switch (form)
8304 {
8305 case DW_FORM_addr:
8306 return "DW_FORM_addr";
8307 case DW_FORM_block2:
8308 return "DW_FORM_block2";
8309 case DW_FORM_block4:
8310 return "DW_FORM_block4";
8311 case DW_FORM_data2:
8312 return "DW_FORM_data2";
8313 case DW_FORM_data4:
8314 return "DW_FORM_data4";
8315 case DW_FORM_data8:
8316 return "DW_FORM_data8";
8317 case DW_FORM_string:
8318 return "DW_FORM_string";
8319 case DW_FORM_block:
8320 return "DW_FORM_block";
8321 case DW_FORM_block1:
8322 return "DW_FORM_block1";
8323 case DW_FORM_data1:
8324 return "DW_FORM_data1";
8325 case DW_FORM_flag:
8326 return "DW_FORM_flag";
8327 case DW_FORM_sdata:
8328 return "DW_FORM_sdata";
8329 case DW_FORM_strp:
8330 return "DW_FORM_strp";
8331 case DW_FORM_udata:
8332 return "DW_FORM_udata";
8333 case DW_FORM_ref_addr:
8334 return "DW_FORM_ref_addr";
8335 case DW_FORM_ref1:
8336 return "DW_FORM_ref1";
8337 case DW_FORM_ref2:
8338 return "DW_FORM_ref2";
8339 case DW_FORM_ref4:
8340 return "DW_FORM_ref4";
8341 case DW_FORM_ref8:
8342 return "DW_FORM_ref8";
8343 case DW_FORM_ref_udata:
8344 return "DW_FORM_ref_udata";
8345 case DW_FORM_indirect:
8346 return "DW_FORM_indirect";
8347 default:
8348 return "DW_FORM_<unknown>";
8349 }
8350 }
8351
8352 /* Convert a DWARF stack opcode into its string name. */
8353
8354 static char *
8355 dwarf_stack_op_name (unsigned op)
8356 {
8357 switch (op)
8358 {
8359 case DW_OP_addr:
8360 return "DW_OP_addr";
8361 case DW_OP_deref:
8362 return "DW_OP_deref";
8363 case DW_OP_const1u:
8364 return "DW_OP_const1u";
8365 case DW_OP_const1s:
8366 return "DW_OP_const1s";
8367 case DW_OP_const2u:
8368 return "DW_OP_const2u";
8369 case DW_OP_const2s:
8370 return "DW_OP_const2s";
8371 case DW_OP_const4u:
8372 return "DW_OP_const4u";
8373 case DW_OP_const4s:
8374 return "DW_OP_const4s";
8375 case DW_OP_const8u:
8376 return "DW_OP_const8u";
8377 case DW_OP_const8s:
8378 return "DW_OP_const8s";
8379 case DW_OP_constu:
8380 return "DW_OP_constu";
8381 case DW_OP_consts:
8382 return "DW_OP_consts";
8383 case DW_OP_dup:
8384 return "DW_OP_dup";
8385 case DW_OP_drop:
8386 return "DW_OP_drop";
8387 case DW_OP_over:
8388 return "DW_OP_over";
8389 case DW_OP_pick:
8390 return "DW_OP_pick";
8391 case DW_OP_swap:
8392 return "DW_OP_swap";
8393 case DW_OP_rot:
8394 return "DW_OP_rot";
8395 case DW_OP_xderef:
8396 return "DW_OP_xderef";
8397 case DW_OP_abs:
8398 return "DW_OP_abs";
8399 case DW_OP_and:
8400 return "DW_OP_and";
8401 case DW_OP_div:
8402 return "DW_OP_div";
8403 case DW_OP_minus:
8404 return "DW_OP_minus";
8405 case DW_OP_mod:
8406 return "DW_OP_mod";
8407 case DW_OP_mul:
8408 return "DW_OP_mul";
8409 case DW_OP_neg:
8410 return "DW_OP_neg";
8411 case DW_OP_not:
8412 return "DW_OP_not";
8413 case DW_OP_or:
8414 return "DW_OP_or";
8415 case DW_OP_plus:
8416 return "DW_OP_plus";
8417 case DW_OP_plus_uconst:
8418 return "DW_OP_plus_uconst";
8419 case DW_OP_shl:
8420 return "DW_OP_shl";
8421 case DW_OP_shr:
8422 return "DW_OP_shr";
8423 case DW_OP_shra:
8424 return "DW_OP_shra";
8425 case DW_OP_xor:
8426 return "DW_OP_xor";
8427 case DW_OP_bra:
8428 return "DW_OP_bra";
8429 case DW_OP_eq:
8430 return "DW_OP_eq";
8431 case DW_OP_ge:
8432 return "DW_OP_ge";
8433 case DW_OP_gt:
8434 return "DW_OP_gt";
8435 case DW_OP_le:
8436 return "DW_OP_le";
8437 case DW_OP_lt:
8438 return "DW_OP_lt";
8439 case DW_OP_ne:
8440 return "DW_OP_ne";
8441 case DW_OP_skip:
8442 return "DW_OP_skip";
8443 case DW_OP_lit0:
8444 return "DW_OP_lit0";
8445 case DW_OP_lit1:
8446 return "DW_OP_lit1";
8447 case DW_OP_lit2:
8448 return "DW_OP_lit2";
8449 case DW_OP_lit3:
8450 return "DW_OP_lit3";
8451 case DW_OP_lit4:
8452 return "DW_OP_lit4";
8453 case DW_OP_lit5:
8454 return "DW_OP_lit5";
8455 case DW_OP_lit6:
8456 return "DW_OP_lit6";
8457 case DW_OP_lit7:
8458 return "DW_OP_lit7";
8459 case DW_OP_lit8:
8460 return "DW_OP_lit8";
8461 case DW_OP_lit9:
8462 return "DW_OP_lit9";
8463 case DW_OP_lit10:
8464 return "DW_OP_lit10";
8465 case DW_OP_lit11:
8466 return "DW_OP_lit11";
8467 case DW_OP_lit12:
8468 return "DW_OP_lit12";
8469 case DW_OP_lit13:
8470 return "DW_OP_lit13";
8471 case DW_OP_lit14:
8472 return "DW_OP_lit14";
8473 case DW_OP_lit15:
8474 return "DW_OP_lit15";
8475 case DW_OP_lit16:
8476 return "DW_OP_lit16";
8477 case DW_OP_lit17:
8478 return "DW_OP_lit17";
8479 case DW_OP_lit18:
8480 return "DW_OP_lit18";
8481 case DW_OP_lit19:
8482 return "DW_OP_lit19";
8483 case DW_OP_lit20:
8484 return "DW_OP_lit20";
8485 case DW_OP_lit21:
8486 return "DW_OP_lit21";
8487 case DW_OP_lit22:
8488 return "DW_OP_lit22";
8489 case DW_OP_lit23:
8490 return "DW_OP_lit23";
8491 case DW_OP_lit24:
8492 return "DW_OP_lit24";
8493 case DW_OP_lit25:
8494 return "DW_OP_lit25";
8495 case DW_OP_lit26:
8496 return "DW_OP_lit26";
8497 case DW_OP_lit27:
8498 return "DW_OP_lit27";
8499 case DW_OP_lit28:
8500 return "DW_OP_lit28";
8501 case DW_OP_lit29:
8502 return "DW_OP_lit29";
8503 case DW_OP_lit30:
8504 return "DW_OP_lit30";
8505 case DW_OP_lit31:
8506 return "DW_OP_lit31";
8507 case DW_OP_reg0:
8508 return "DW_OP_reg0";
8509 case DW_OP_reg1:
8510 return "DW_OP_reg1";
8511 case DW_OP_reg2:
8512 return "DW_OP_reg2";
8513 case DW_OP_reg3:
8514 return "DW_OP_reg3";
8515 case DW_OP_reg4:
8516 return "DW_OP_reg4";
8517 case DW_OP_reg5:
8518 return "DW_OP_reg5";
8519 case DW_OP_reg6:
8520 return "DW_OP_reg6";
8521 case DW_OP_reg7:
8522 return "DW_OP_reg7";
8523 case DW_OP_reg8:
8524 return "DW_OP_reg8";
8525 case DW_OP_reg9:
8526 return "DW_OP_reg9";
8527 case DW_OP_reg10:
8528 return "DW_OP_reg10";
8529 case DW_OP_reg11:
8530 return "DW_OP_reg11";
8531 case DW_OP_reg12:
8532 return "DW_OP_reg12";
8533 case DW_OP_reg13:
8534 return "DW_OP_reg13";
8535 case DW_OP_reg14:
8536 return "DW_OP_reg14";
8537 case DW_OP_reg15:
8538 return "DW_OP_reg15";
8539 case DW_OP_reg16:
8540 return "DW_OP_reg16";
8541 case DW_OP_reg17:
8542 return "DW_OP_reg17";
8543 case DW_OP_reg18:
8544 return "DW_OP_reg18";
8545 case DW_OP_reg19:
8546 return "DW_OP_reg19";
8547 case DW_OP_reg20:
8548 return "DW_OP_reg20";
8549 case DW_OP_reg21:
8550 return "DW_OP_reg21";
8551 case DW_OP_reg22:
8552 return "DW_OP_reg22";
8553 case DW_OP_reg23:
8554 return "DW_OP_reg23";
8555 case DW_OP_reg24:
8556 return "DW_OP_reg24";
8557 case DW_OP_reg25:
8558 return "DW_OP_reg25";
8559 case DW_OP_reg26:
8560 return "DW_OP_reg26";
8561 case DW_OP_reg27:
8562 return "DW_OP_reg27";
8563 case DW_OP_reg28:
8564 return "DW_OP_reg28";
8565 case DW_OP_reg29:
8566 return "DW_OP_reg29";
8567 case DW_OP_reg30:
8568 return "DW_OP_reg30";
8569 case DW_OP_reg31:
8570 return "DW_OP_reg31";
8571 case DW_OP_breg0:
8572 return "DW_OP_breg0";
8573 case DW_OP_breg1:
8574 return "DW_OP_breg1";
8575 case DW_OP_breg2:
8576 return "DW_OP_breg2";
8577 case DW_OP_breg3:
8578 return "DW_OP_breg3";
8579 case DW_OP_breg4:
8580 return "DW_OP_breg4";
8581 case DW_OP_breg5:
8582 return "DW_OP_breg5";
8583 case DW_OP_breg6:
8584 return "DW_OP_breg6";
8585 case DW_OP_breg7:
8586 return "DW_OP_breg7";
8587 case DW_OP_breg8:
8588 return "DW_OP_breg8";
8589 case DW_OP_breg9:
8590 return "DW_OP_breg9";
8591 case DW_OP_breg10:
8592 return "DW_OP_breg10";
8593 case DW_OP_breg11:
8594 return "DW_OP_breg11";
8595 case DW_OP_breg12:
8596 return "DW_OP_breg12";
8597 case DW_OP_breg13:
8598 return "DW_OP_breg13";
8599 case DW_OP_breg14:
8600 return "DW_OP_breg14";
8601 case DW_OP_breg15:
8602 return "DW_OP_breg15";
8603 case DW_OP_breg16:
8604 return "DW_OP_breg16";
8605 case DW_OP_breg17:
8606 return "DW_OP_breg17";
8607 case DW_OP_breg18:
8608 return "DW_OP_breg18";
8609 case DW_OP_breg19:
8610 return "DW_OP_breg19";
8611 case DW_OP_breg20:
8612 return "DW_OP_breg20";
8613 case DW_OP_breg21:
8614 return "DW_OP_breg21";
8615 case DW_OP_breg22:
8616 return "DW_OP_breg22";
8617 case DW_OP_breg23:
8618 return "DW_OP_breg23";
8619 case DW_OP_breg24:
8620 return "DW_OP_breg24";
8621 case DW_OP_breg25:
8622 return "DW_OP_breg25";
8623 case DW_OP_breg26:
8624 return "DW_OP_breg26";
8625 case DW_OP_breg27:
8626 return "DW_OP_breg27";
8627 case DW_OP_breg28:
8628 return "DW_OP_breg28";
8629 case DW_OP_breg29:
8630 return "DW_OP_breg29";
8631 case DW_OP_breg30:
8632 return "DW_OP_breg30";
8633 case DW_OP_breg31:
8634 return "DW_OP_breg31";
8635 case DW_OP_regx:
8636 return "DW_OP_regx";
8637 case DW_OP_fbreg:
8638 return "DW_OP_fbreg";
8639 case DW_OP_bregx:
8640 return "DW_OP_bregx";
8641 case DW_OP_piece:
8642 return "DW_OP_piece";
8643 case DW_OP_deref_size:
8644 return "DW_OP_deref_size";
8645 case DW_OP_xderef_size:
8646 return "DW_OP_xderef_size";
8647 case DW_OP_nop:
8648 return "DW_OP_nop";
8649 /* DWARF 3 extensions. */
8650 case DW_OP_push_object_address:
8651 return "DW_OP_push_object_address";
8652 case DW_OP_call2:
8653 return "DW_OP_call2";
8654 case DW_OP_call4:
8655 return "DW_OP_call4";
8656 case DW_OP_call_ref:
8657 return "DW_OP_call_ref";
8658 /* GNU extensions. */
8659 case DW_OP_form_tls_address:
8660 return "DW_OP_form_tls_address";
8661 case DW_OP_call_frame_cfa:
8662 return "DW_OP_call_frame_cfa";
8663 case DW_OP_bit_piece:
8664 return "DW_OP_bit_piece";
8665 case DW_OP_GNU_push_tls_address:
8666 return "DW_OP_GNU_push_tls_address";
8667 case DW_OP_GNU_uninit:
8668 return "DW_OP_GNU_uninit";
8669 /* HP extensions. */
8670 case DW_OP_HP_is_value:
8671 return "DW_OP_HP_is_value";
8672 case DW_OP_HP_fltconst4:
8673 return "DW_OP_HP_fltconst4";
8674 case DW_OP_HP_fltconst8:
8675 return "DW_OP_HP_fltconst8";
8676 case DW_OP_HP_mod_range:
8677 return "DW_OP_HP_mod_range";
8678 case DW_OP_HP_unmod_range:
8679 return "DW_OP_HP_unmod_range";
8680 case DW_OP_HP_tls:
8681 return "DW_OP_HP_tls";
8682 default:
8683 return "OP_<unknown>";
8684 }
8685 }
8686
8687 static char *
8688 dwarf_bool_name (unsigned mybool)
8689 {
8690 if (mybool)
8691 return "TRUE";
8692 else
8693 return "FALSE";
8694 }
8695
8696 /* Convert a DWARF type code into its string name. */
8697
8698 static char *
8699 dwarf_type_encoding_name (unsigned enc)
8700 {
8701 switch (enc)
8702 {
8703 case DW_ATE_void:
8704 return "DW_ATE_void";
8705 case DW_ATE_address:
8706 return "DW_ATE_address";
8707 case DW_ATE_boolean:
8708 return "DW_ATE_boolean";
8709 case DW_ATE_complex_float:
8710 return "DW_ATE_complex_float";
8711 case DW_ATE_float:
8712 return "DW_ATE_float";
8713 case DW_ATE_signed:
8714 return "DW_ATE_signed";
8715 case DW_ATE_signed_char:
8716 return "DW_ATE_signed_char";
8717 case DW_ATE_unsigned:
8718 return "DW_ATE_unsigned";
8719 case DW_ATE_unsigned_char:
8720 return "DW_ATE_unsigned_char";
8721 /* DWARF 3. */
8722 case DW_ATE_imaginary_float:
8723 return "DW_ATE_imaginary_float";
8724 case DW_ATE_packed_decimal:
8725 return "DW_ATE_packed_decimal";
8726 case DW_ATE_numeric_string:
8727 return "DW_ATE_numeric_string";
8728 case DW_ATE_edited:
8729 return "DW_ATE_edited";
8730 case DW_ATE_signed_fixed:
8731 return "DW_ATE_signed_fixed";
8732 case DW_ATE_unsigned_fixed:
8733 return "DW_ATE_unsigned_fixed";
8734 case DW_ATE_decimal_float:
8735 return "DW_ATE_decimal_float";
8736 /* HP extensions. */
8737 case DW_ATE_HP_float80:
8738 return "DW_ATE_HP_float80";
8739 case DW_ATE_HP_complex_float80:
8740 return "DW_ATE_HP_complex_float80";
8741 case DW_ATE_HP_float128:
8742 return "DW_ATE_HP_float128";
8743 case DW_ATE_HP_complex_float128:
8744 return "DW_ATE_HP_complex_float128";
8745 case DW_ATE_HP_floathpintel:
8746 return "DW_ATE_HP_floathpintel";
8747 case DW_ATE_HP_imaginary_float80:
8748 return "DW_ATE_HP_imaginary_float80";
8749 case DW_ATE_HP_imaginary_float128:
8750 return "DW_ATE_HP_imaginary_float128";
8751 default:
8752 return "DW_ATE_<unknown>";
8753 }
8754 }
8755
8756 /* Convert a DWARF call frame info operation to its string name. */
8757
8758 #if 0
8759 static char *
8760 dwarf_cfi_name (unsigned cfi_opc)
8761 {
8762 switch (cfi_opc)
8763 {
8764 case DW_CFA_advance_loc:
8765 return "DW_CFA_advance_loc";
8766 case DW_CFA_offset:
8767 return "DW_CFA_offset";
8768 case DW_CFA_restore:
8769 return "DW_CFA_restore";
8770 case DW_CFA_nop:
8771 return "DW_CFA_nop";
8772 case DW_CFA_set_loc:
8773 return "DW_CFA_set_loc";
8774 case DW_CFA_advance_loc1:
8775 return "DW_CFA_advance_loc1";
8776 case DW_CFA_advance_loc2:
8777 return "DW_CFA_advance_loc2";
8778 case DW_CFA_advance_loc4:
8779 return "DW_CFA_advance_loc4";
8780 case DW_CFA_offset_extended:
8781 return "DW_CFA_offset_extended";
8782 case DW_CFA_restore_extended:
8783 return "DW_CFA_restore_extended";
8784 case DW_CFA_undefined:
8785 return "DW_CFA_undefined";
8786 case DW_CFA_same_value:
8787 return "DW_CFA_same_value";
8788 case DW_CFA_register:
8789 return "DW_CFA_register";
8790 case DW_CFA_remember_state:
8791 return "DW_CFA_remember_state";
8792 case DW_CFA_restore_state:
8793 return "DW_CFA_restore_state";
8794 case DW_CFA_def_cfa:
8795 return "DW_CFA_def_cfa";
8796 case DW_CFA_def_cfa_register:
8797 return "DW_CFA_def_cfa_register";
8798 case DW_CFA_def_cfa_offset:
8799 return "DW_CFA_def_cfa_offset";
8800 /* DWARF 3. */
8801 case DW_CFA_def_cfa_expression:
8802 return "DW_CFA_def_cfa_expression";
8803 case DW_CFA_expression:
8804 return "DW_CFA_expression";
8805 case DW_CFA_offset_extended_sf:
8806 return "DW_CFA_offset_extended_sf";
8807 case DW_CFA_def_cfa_sf:
8808 return "DW_CFA_def_cfa_sf";
8809 case DW_CFA_def_cfa_offset_sf:
8810 return "DW_CFA_def_cfa_offset_sf";
8811 case DW_CFA_val_offset:
8812 return "DW_CFA_val_offset";
8813 case DW_CFA_val_offset_sf:
8814 return "DW_CFA_val_offset_sf";
8815 case DW_CFA_val_expression:
8816 return "DW_CFA_val_expression";
8817 /* SGI/MIPS specific. */
8818 case DW_CFA_MIPS_advance_loc8:
8819 return "DW_CFA_MIPS_advance_loc8";
8820 /* GNU extensions. */
8821 case DW_CFA_GNU_window_save:
8822 return "DW_CFA_GNU_window_save";
8823 case DW_CFA_GNU_args_size:
8824 return "DW_CFA_GNU_args_size";
8825 case DW_CFA_GNU_negative_offset_extended:
8826 return "DW_CFA_GNU_negative_offset_extended";
8827 default:
8828 return "DW_CFA_<unknown>";
8829 }
8830 }
8831 #endif
8832
8833 static void
8834 dump_die (struct die_info *die)
8835 {
8836 unsigned int i;
8837
8838 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8839 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8840 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8841 dwarf_bool_name (die->child != NULL));
8842
8843 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8844 for (i = 0; i < die->num_attrs; ++i)
8845 {
8846 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8847 dwarf_attr_name (die->attrs[i].name),
8848 dwarf_form_name (die->attrs[i].form));
8849 switch (die->attrs[i].form)
8850 {
8851 case DW_FORM_ref_addr:
8852 case DW_FORM_addr:
8853 fprintf_unfiltered (gdb_stderr, "address: ");
8854 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8855 break;
8856 case DW_FORM_block2:
8857 case DW_FORM_block4:
8858 case DW_FORM_block:
8859 case DW_FORM_block1:
8860 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8861 break;
8862 case DW_FORM_ref1:
8863 case DW_FORM_ref2:
8864 case DW_FORM_ref4:
8865 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8866 (long) (DW_ADDR (&die->attrs[i])));
8867 break;
8868 case DW_FORM_data1:
8869 case DW_FORM_data2:
8870 case DW_FORM_data4:
8871 case DW_FORM_data8:
8872 case DW_FORM_udata:
8873 case DW_FORM_sdata:
8874 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8875 break;
8876 case DW_FORM_string:
8877 case DW_FORM_strp:
8878 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8879 DW_STRING (&die->attrs[i])
8880 ? DW_STRING (&die->attrs[i]) : "");
8881 break;
8882 case DW_FORM_flag:
8883 if (DW_UNSND (&die->attrs[i]))
8884 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8885 else
8886 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8887 break;
8888 case DW_FORM_indirect:
8889 /* the reader will have reduced the indirect form to
8890 the "base form" so this form should not occur */
8891 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8892 break;
8893 default:
8894 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8895 die->attrs[i].form);
8896 }
8897 fprintf_unfiltered (gdb_stderr, "\n");
8898 }
8899 }
8900
8901 static void
8902 dump_die_list (struct die_info *die)
8903 {
8904 while (die)
8905 {
8906 dump_die (die);
8907 if (die->child != NULL)
8908 dump_die_list (die->child);
8909 if (die->sibling != NULL)
8910 dump_die_list (die->sibling);
8911 }
8912 }
8913
8914 static void
8915 store_in_ref_table (unsigned int offset, struct die_info *die,
8916 struct dwarf2_cu *cu)
8917 {
8918 int h;
8919 struct die_info *old;
8920
8921 h = (offset % REF_HASH_SIZE);
8922 old = cu->die_ref_table[h];
8923 die->next_ref = old;
8924 cu->die_ref_table[h] = die;
8925 }
8926
8927 static unsigned int
8928 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8929 {
8930 unsigned int result = 0;
8931
8932 switch (attr->form)
8933 {
8934 case DW_FORM_ref_addr:
8935 case DW_FORM_ref1:
8936 case DW_FORM_ref2:
8937 case DW_FORM_ref4:
8938 case DW_FORM_ref8:
8939 case DW_FORM_ref_udata:
8940 result = DW_ADDR (attr);
8941 break;
8942 default:
8943 complaint (&symfile_complaints,
8944 _("unsupported die ref attribute form: '%s'"),
8945 dwarf_form_name (attr->form));
8946 }
8947 return result;
8948 }
8949
8950 /* Return the constant value held by the given attribute. Return -1
8951 if the value held by the attribute is not constant. */
8952
8953 static int
8954 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8955 {
8956 if (attr->form == DW_FORM_sdata)
8957 return DW_SND (attr);
8958 else if (attr->form == DW_FORM_udata
8959 || attr->form == DW_FORM_data1
8960 || attr->form == DW_FORM_data2
8961 || attr->form == DW_FORM_data4
8962 || attr->form == DW_FORM_data8)
8963 return DW_UNSND (attr);
8964 else
8965 {
8966 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8967 dwarf_form_name (attr->form));
8968 return default_value;
8969 }
8970 }
8971
8972 static struct die_info *
8973 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8974 struct dwarf2_cu *cu)
8975 {
8976 struct die_info *die;
8977 unsigned int offset;
8978 int h;
8979 struct die_info temp_die;
8980 struct dwarf2_cu *target_cu;
8981
8982 offset = dwarf2_get_ref_die_offset (attr, cu);
8983
8984 if (DW_ADDR (attr) < cu->header.offset
8985 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8986 {
8987 struct dwarf2_per_cu_data *per_cu;
8988 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8989 cu->objfile);
8990 target_cu = per_cu->cu;
8991 }
8992 else
8993 target_cu = cu;
8994
8995 h = (offset % REF_HASH_SIZE);
8996 die = target_cu->die_ref_table[h];
8997 while (die)
8998 {
8999 if (die->offset == offset)
9000 return die;
9001 die = die->next_ref;
9002 }
9003
9004 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9005 "at 0x%lx [in module %s]"),
9006 (long) src_die->offset, (long) offset, cu->objfile->name);
9007
9008 return NULL;
9009 }
9010
9011 static struct type *
9012 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9013 struct dwarf2_cu *cu)
9014 {
9015 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9016 {
9017 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
9018 typeid, objfile->name);
9019 }
9020
9021 /* Look for this particular type in the fundamental type vector. If
9022 one is not found, create and install one appropriate for the
9023 current language and the current target machine. */
9024
9025 if (cu->ftypes[typeid] == NULL)
9026 {
9027 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
9028 }
9029
9030 return (cu->ftypes[typeid]);
9031 }
9032
9033 /* Decode simple location descriptions.
9034 Given a pointer to a dwarf block that defines a location, compute
9035 the location and return the value.
9036
9037 NOTE drow/2003-11-18: This function is called in two situations
9038 now: for the address of static or global variables (partial symbols
9039 only) and for offsets into structures which are expected to be
9040 (more or less) constant. The partial symbol case should go away,
9041 and only the constant case should remain. That will let this
9042 function complain more accurately. A few special modes are allowed
9043 without complaint for global variables (for instance, global
9044 register values and thread-local values).
9045
9046 A location description containing no operations indicates that the
9047 object is optimized out. The return value is 0 for that case.
9048 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9049 callers will only want a very basic result and this can become a
9050 complaint.
9051
9052 Note that stack[0] is unused except as a default error return.
9053 Note that stack overflow is not yet handled. */
9054
9055 static CORE_ADDR
9056 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9057 {
9058 struct objfile *objfile = cu->objfile;
9059 struct comp_unit_head *cu_header = &cu->header;
9060 int i;
9061 int size = blk->size;
9062 gdb_byte *data = blk->data;
9063 CORE_ADDR stack[64];
9064 int stacki;
9065 unsigned int bytes_read, unsnd;
9066 gdb_byte op;
9067
9068 i = 0;
9069 stacki = 0;
9070 stack[stacki] = 0;
9071
9072 while (i < size)
9073 {
9074 op = data[i++];
9075 switch (op)
9076 {
9077 case DW_OP_lit0:
9078 case DW_OP_lit1:
9079 case DW_OP_lit2:
9080 case DW_OP_lit3:
9081 case DW_OP_lit4:
9082 case DW_OP_lit5:
9083 case DW_OP_lit6:
9084 case DW_OP_lit7:
9085 case DW_OP_lit8:
9086 case DW_OP_lit9:
9087 case DW_OP_lit10:
9088 case DW_OP_lit11:
9089 case DW_OP_lit12:
9090 case DW_OP_lit13:
9091 case DW_OP_lit14:
9092 case DW_OP_lit15:
9093 case DW_OP_lit16:
9094 case DW_OP_lit17:
9095 case DW_OP_lit18:
9096 case DW_OP_lit19:
9097 case DW_OP_lit20:
9098 case DW_OP_lit21:
9099 case DW_OP_lit22:
9100 case DW_OP_lit23:
9101 case DW_OP_lit24:
9102 case DW_OP_lit25:
9103 case DW_OP_lit26:
9104 case DW_OP_lit27:
9105 case DW_OP_lit28:
9106 case DW_OP_lit29:
9107 case DW_OP_lit30:
9108 case DW_OP_lit31:
9109 stack[++stacki] = op - DW_OP_lit0;
9110 break;
9111
9112 case DW_OP_reg0:
9113 case DW_OP_reg1:
9114 case DW_OP_reg2:
9115 case DW_OP_reg3:
9116 case DW_OP_reg4:
9117 case DW_OP_reg5:
9118 case DW_OP_reg6:
9119 case DW_OP_reg7:
9120 case DW_OP_reg8:
9121 case DW_OP_reg9:
9122 case DW_OP_reg10:
9123 case DW_OP_reg11:
9124 case DW_OP_reg12:
9125 case DW_OP_reg13:
9126 case DW_OP_reg14:
9127 case DW_OP_reg15:
9128 case DW_OP_reg16:
9129 case DW_OP_reg17:
9130 case DW_OP_reg18:
9131 case DW_OP_reg19:
9132 case DW_OP_reg20:
9133 case DW_OP_reg21:
9134 case DW_OP_reg22:
9135 case DW_OP_reg23:
9136 case DW_OP_reg24:
9137 case DW_OP_reg25:
9138 case DW_OP_reg26:
9139 case DW_OP_reg27:
9140 case DW_OP_reg28:
9141 case DW_OP_reg29:
9142 case DW_OP_reg30:
9143 case DW_OP_reg31:
9144 stack[++stacki] = op - DW_OP_reg0;
9145 if (i < size)
9146 dwarf2_complex_location_expr_complaint ();
9147 break;
9148
9149 case DW_OP_regx:
9150 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9151 i += bytes_read;
9152 stack[++stacki] = unsnd;
9153 if (i < size)
9154 dwarf2_complex_location_expr_complaint ();
9155 break;
9156
9157 case DW_OP_addr:
9158 stack[++stacki] = read_address (objfile->obfd, &data[i],
9159 cu, &bytes_read);
9160 i += bytes_read;
9161 break;
9162
9163 case DW_OP_const1u:
9164 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9165 i += 1;
9166 break;
9167
9168 case DW_OP_const1s:
9169 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9170 i += 1;
9171 break;
9172
9173 case DW_OP_const2u:
9174 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9175 i += 2;
9176 break;
9177
9178 case DW_OP_const2s:
9179 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9180 i += 2;
9181 break;
9182
9183 case DW_OP_const4u:
9184 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9185 i += 4;
9186 break;
9187
9188 case DW_OP_const4s:
9189 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9190 i += 4;
9191 break;
9192
9193 case DW_OP_constu:
9194 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9195 &bytes_read);
9196 i += bytes_read;
9197 break;
9198
9199 case DW_OP_consts:
9200 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9201 i += bytes_read;
9202 break;
9203
9204 case DW_OP_dup:
9205 stack[stacki + 1] = stack[stacki];
9206 stacki++;
9207 break;
9208
9209 case DW_OP_plus:
9210 stack[stacki - 1] += stack[stacki];
9211 stacki--;
9212 break;
9213
9214 case DW_OP_plus_uconst:
9215 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9216 i += bytes_read;
9217 break;
9218
9219 case DW_OP_minus:
9220 stack[stacki - 1] -= stack[stacki];
9221 stacki--;
9222 break;
9223
9224 case DW_OP_deref:
9225 /* If we're not the last op, then we definitely can't encode
9226 this using GDB's address_class enum. This is valid for partial
9227 global symbols, although the variable's address will be bogus
9228 in the psymtab. */
9229 if (i < size)
9230 dwarf2_complex_location_expr_complaint ();
9231 break;
9232
9233 case DW_OP_GNU_push_tls_address:
9234 /* The top of the stack has the offset from the beginning
9235 of the thread control block at which the variable is located. */
9236 /* Nothing should follow this operator, so the top of stack would
9237 be returned. */
9238 /* This is valid for partial global symbols, but the variable's
9239 address will be bogus in the psymtab. */
9240 if (i < size)
9241 dwarf2_complex_location_expr_complaint ();
9242 break;
9243
9244 case DW_OP_GNU_uninit:
9245 break;
9246
9247 default:
9248 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9249 dwarf_stack_op_name (op));
9250 return (stack[stacki]);
9251 }
9252 }
9253 return (stack[stacki]);
9254 }
9255
9256 /* memory allocation interface */
9257
9258 static struct dwarf_block *
9259 dwarf_alloc_block (struct dwarf2_cu *cu)
9260 {
9261 struct dwarf_block *blk;
9262
9263 blk = (struct dwarf_block *)
9264 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9265 return (blk);
9266 }
9267
9268 static struct abbrev_info *
9269 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9270 {
9271 struct abbrev_info *abbrev;
9272
9273 abbrev = (struct abbrev_info *)
9274 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9275 memset (abbrev, 0, sizeof (struct abbrev_info));
9276 return (abbrev);
9277 }
9278
9279 static struct die_info *
9280 dwarf_alloc_die (void)
9281 {
9282 struct die_info *die;
9283
9284 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9285 memset (die, 0, sizeof (struct die_info));
9286 return (die);
9287 }
9288
9289 \f
9290 /* Macro support. */
9291
9292
9293 /* Return the full name of file number I in *LH's file name table.
9294 Use COMP_DIR as the name of the current directory of the
9295 compilation. The result is allocated using xmalloc; the caller is
9296 responsible for freeing it. */
9297 static char *
9298 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9299 {
9300 /* Is the file number a valid index into the line header's file name
9301 table? Remember that file numbers start with one, not zero. */
9302 if (1 <= file && file <= lh->num_file_names)
9303 {
9304 struct file_entry *fe = &lh->file_names[file - 1];
9305
9306 if (IS_ABSOLUTE_PATH (fe->name))
9307 return xstrdup (fe->name);
9308 else
9309 {
9310 const char *dir;
9311 int dir_len;
9312 char *full_name;
9313
9314 if (fe->dir_index)
9315 dir = lh->include_dirs[fe->dir_index - 1];
9316 else
9317 dir = comp_dir;
9318
9319 if (dir)
9320 {
9321 dir_len = strlen (dir);
9322 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9323 strcpy (full_name, dir);
9324 full_name[dir_len] = '/';
9325 strcpy (full_name + dir_len + 1, fe->name);
9326 return full_name;
9327 }
9328 else
9329 return xstrdup (fe->name);
9330 }
9331 }
9332 else
9333 {
9334 /* The compiler produced a bogus file number. We can at least
9335 record the macro definitions made in the file, even if we
9336 won't be able to find the file by name. */
9337 char fake_name[80];
9338 sprintf (fake_name, "<bad macro file number %d>", file);
9339
9340 complaint (&symfile_complaints,
9341 _("bad file number in macro information (%d)"),
9342 file);
9343
9344 return xstrdup (fake_name);
9345 }
9346 }
9347
9348
9349 static struct macro_source_file *
9350 macro_start_file (int file, int line,
9351 struct macro_source_file *current_file,
9352 const char *comp_dir,
9353 struct line_header *lh, struct objfile *objfile)
9354 {
9355 /* The full name of this source file. */
9356 char *full_name = file_full_name (file, lh, comp_dir);
9357
9358 /* We don't create a macro table for this compilation unit
9359 at all until we actually get a filename. */
9360 if (! pending_macros)
9361 pending_macros = new_macro_table (&objfile->objfile_obstack,
9362 objfile->macro_cache);
9363
9364 if (! current_file)
9365 /* If we have no current file, then this must be the start_file
9366 directive for the compilation unit's main source file. */
9367 current_file = macro_set_main (pending_macros, full_name);
9368 else
9369 current_file = macro_include (current_file, line, full_name);
9370
9371 xfree (full_name);
9372
9373 return current_file;
9374 }
9375
9376
9377 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9378 followed by a null byte. */
9379 static char *
9380 copy_string (const char *buf, int len)
9381 {
9382 char *s = xmalloc (len + 1);
9383 memcpy (s, buf, len);
9384 s[len] = '\0';
9385
9386 return s;
9387 }
9388
9389
9390 static const char *
9391 consume_improper_spaces (const char *p, const char *body)
9392 {
9393 if (*p == ' ')
9394 {
9395 complaint (&symfile_complaints,
9396 _("macro definition contains spaces in formal argument list:\n`%s'"),
9397 body);
9398
9399 while (*p == ' ')
9400 p++;
9401 }
9402
9403 return p;
9404 }
9405
9406
9407 static void
9408 parse_macro_definition (struct macro_source_file *file, int line,
9409 const char *body)
9410 {
9411 const char *p;
9412
9413 /* The body string takes one of two forms. For object-like macro
9414 definitions, it should be:
9415
9416 <macro name> " " <definition>
9417
9418 For function-like macro definitions, it should be:
9419
9420 <macro name> "() " <definition>
9421 or
9422 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9423
9424 Spaces may appear only where explicitly indicated, and in the
9425 <definition>.
9426
9427 The Dwarf 2 spec says that an object-like macro's name is always
9428 followed by a space, but versions of GCC around March 2002 omit
9429 the space when the macro's definition is the empty string.
9430
9431 The Dwarf 2 spec says that there should be no spaces between the
9432 formal arguments in a function-like macro's formal argument list,
9433 but versions of GCC around March 2002 include spaces after the
9434 commas. */
9435
9436
9437 /* Find the extent of the macro name. The macro name is terminated
9438 by either a space or null character (for an object-like macro) or
9439 an opening paren (for a function-like macro). */
9440 for (p = body; *p; p++)
9441 if (*p == ' ' || *p == '(')
9442 break;
9443
9444 if (*p == ' ' || *p == '\0')
9445 {
9446 /* It's an object-like macro. */
9447 int name_len = p - body;
9448 char *name = copy_string (body, name_len);
9449 const char *replacement;
9450
9451 if (*p == ' ')
9452 replacement = body + name_len + 1;
9453 else
9454 {
9455 dwarf2_macro_malformed_definition_complaint (body);
9456 replacement = body + name_len;
9457 }
9458
9459 macro_define_object (file, line, name, replacement);
9460
9461 xfree (name);
9462 }
9463 else if (*p == '(')
9464 {
9465 /* It's a function-like macro. */
9466 char *name = copy_string (body, p - body);
9467 int argc = 0;
9468 int argv_size = 1;
9469 char **argv = xmalloc (argv_size * sizeof (*argv));
9470
9471 p++;
9472
9473 p = consume_improper_spaces (p, body);
9474
9475 /* Parse the formal argument list. */
9476 while (*p && *p != ')')
9477 {
9478 /* Find the extent of the current argument name. */
9479 const char *arg_start = p;
9480
9481 while (*p && *p != ',' && *p != ')' && *p != ' ')
9482 p++;
9483
9484 if (! *p || p == arg_start)
9485 dwarf2_macro_malformed_definition_complaint (body);
9486 else
9487 {
9488 /* Make sure argv has room for the new argument. */
9489 if (argc >= argv_size)
9490 {
9491 argv_size *= 2;
9492 argv = xrealloc (argv, argv_size * sizeof (*argv));
9493 }
9494
9495 argv[argc++] = copy_string (arg_start, p - arg_start);
9496 }
9497
9498 p = consume_improper_spaces (p, body);
9499
9500 /* Consume the comma, if present. */
9501 if (*p == ',')
9502 {
9503 p++;
9504
9505 p = consume_improper_spaces (p, body);
9506 }
9507 }
9508
9509 if (*p == ')')
9510 {
9511 p++;
9512
9513 if (*p == ' ')
9514 /* Perfectly formed definition, no complaints. */
9515 macro_define_function (file, line, name,
9516 argc, (const char **) argv,
9517 p + 1);
9518 else if (*p == '\0')
9519 {
9520 /* Complain, but do define it. */
9521 dwarf2_macro_malformed_definition_complaint (body);
9522 macro_define_function (file, line, name,
9523 argc, (const char **) argv,
9524 p);
9525 }
9526 else
9527 /* Just complain. */
9528 dwarf2_macro_malformed_definition_complaint (body);
9529 }
9530 else
9531 /* Just complain. */
9532 dwarf2_macro_malformed_definition_complaint (body);
9533
9534 xfree (name);
9535 {
9536 int i;
9537
9538 for (i = 0; i < argc; i++)
9539 xfree (argv[i]);
9540 }
9541 xfree (argv);
9542 }
9543 else
9544 dwarf2_macro_malformed_definition_complaint (body);
9545 }
9546
9547
9548 static void
9549 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9550 char *comp_dir, bfd *abfd,
9551 struct dwarf2_cu *cu)
9552 {
9553 gdb_byte *mac_ptr, *mac_end;
9554 struct macro_source_file *current_file = 0;
9555
9556 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9557 {
9558 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9559 return;
9560 }
9561
9562 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9563 mac_end = dwarf2_per_objfile->macinfo_buffer
9564 + dwarf2_per_objfile->macinfo_size;
9565
9566 for (;;)
9567 {
9568 enum dwarf_macinfo_record_type macinfo_type;
9569
9570 /* Do we at least have room for a macinfo type byte? */
9571 if (mac_ptr >= mac_end)
9572 {
9573 dwarf2_macros_too_long_complaint ();
9574 return;
9575 }
9576
9577 macinfo_type = read_1_byte (abfd, mac_ptr);
9578 mac_ptr++;
9579
9580 switch (macinfo_type)
9581 {
9582 /* A zero macinfo type indicates the end of the macro
9583 information. */
9584 case 0:
9585 return;
9586
9587 case DW_MACINFO_define:
9588 case DW_MACINFO_undef:
9589 {
9590 unsigned int bytes_read;
9591 int line;
9592 char *body;
9593
9594 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9595 mac_ptr += bytes_read;
9596 body = read_string (abfd, mac_ptr, &bytes_read);
9597 mac_ptr += bytes_read;
9598
9599 if (! current_file)
9600 complaint (&symfile_complaints,
9601 _("debug info gives macro %s outside of any file: %s"),
9602 macinfo_type ==
9603 DW_MACINFO_define ? "definition" : macinfo_type ==
9604 DW_MACINFO_undef ? "undefinition" :
9605 "something-or-other", body);
9606 else
9607 {
9608 if (macinfo_type == DW_MACINFO_define)
9609 parse_macro_definition (current_file, line, body);
9610 else if (macinfo_type == DW_MACINFO_undef)
9611 macro_undef (current_file, line, body);
9612 }
9613 }
9614 break;
9615
9616 case DW_MACINFO_start_file:
9617 {
9618 unsigned int bytes_read;
9619 int line, file;
9620
9621 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9622 mac_ptr += bytes_read;
9623 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9624 mac_ptr += bytes_read;
9625
9626 current_file = macro_start_file (file, line,
9627 current_file, comp_dir,
9628 lh, cu->objfile);
9629 }
9630 break;
9631
9632 case DW_MACINFO_end_file:
9633 if (! current_file)
9634 complaint (&symfile_complaints,
9635 _("macro debug info has an unmatched `close_file' directive"));
9636 else
9637 {
9638 current_file = current_file->included_by;
9639 if (! current_file)
9640 {
9641 enum dwarf_macinfo_record_type next_type;
9642
9643 /* GCC circa March 2002 doesn't produce the zero
9644 type byte marking the end of the compilation
9645 unit. Complain if it's not there, but exit no
9646 matter what. */
9647
9648 /* Do we at least have room for a macinfo type byte? */
9649 if (mac_ptr >= mac_end)
9650 {
9651 dwarf2_macros_too_long_complaint ();
9652 return;
9653 }
9654
9655 /* We don't increment mac_ptr here, so this is just
9656 a look-ahead. */
9657 next_type = read_1_byte (abfd, mac_ptr);
9658 if (next_type != 0)
9659 complaint (&symfile_complaints,
9660 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9661
9662 return;
9663 }
9664 }
9665 break;
9666
9667 case DW_MACINFO_vendor_ext:
9668 {
9669 unsigned int bytes_read;
9670 int constant;
9671 char *string;
9672
9673 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9674 mac_ptr += bytes_read;
9675 string = read_string (abfd, mac_ptr, &bytes_read);
9676 mac_ptr += bytes_read;
9677
9678 /* We don't recognize any vendor extensions. */
9679 }
9680 break;
9681 }
9682 }
9683 }
9684
9685 /* Check if the attribute's form is a DW_FORM_block*
9686 if so return true else false. */
9687 static int
9688 attr_form_is_block (struct attribute *attr)
9689 {
9690 return (attr == NULL ? 0 :
9691 attr->form == DW_FORM_block1
9692 || attr->form == DW_FORM_block2
9693 || attr->form == DW_FORM_block4
9694 || attr->form == DW_FORM_block);
9695 }
9696
9697 static void
9698 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9699 struct dwarf2_cu *cu)
9700 {
9701 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9702 /* ".debug_loc" may not exist at all, or the offset may be outside
9703 the section. If so, fall through to the complaint in the
9704 other branch. */
9705 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9706 {
9707 struct dwarf2_loclist_baton *baton;
9708
9709 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9710 sizeof (struct dwarf2_loclist_baton));
9711 baton->objfile = cu->objfile;
9712
9713 /* We don't know how long the location list is, but make sure we
9714 don't run off the edge of the section. */
9715 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9716 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9717 baton->base_address = cu->header.base_address;
9718 if (cu->header.base_known == 0)
9719 complaint (&symfile_complaints,
9720 _("Location list used without specifying the CU base address."));
9721
9722 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9723 SYMBOL_LOCATION_BATON (sym) = baton;
9724 }
9725 else
9726 {
9727 struct dwarf2_locexpr_baton *baton;
9728
9729 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9730 sizeof (struct dwarf2_locexpr_baton));
9731 baton->objfile = cu->objfile;
9732
9733 if (attr_form_is_block (attr))
9734 {
9735 /* Note that we're just copying the block's data pointer
9736 here, not the actual data. We're still pointing into the
9737 info_buffer for SYM's objfile; right now we never release
9738 that buffer, but when we do clean up properly this may
9739 need to change. */
9740 baton->size = DW_BLOCK (attr)->size;
9741 baton->data = DW_BLOCK (attr)->data;
9742 }
9743 else
9744 {
9745 dwarf2_invalid_attrib_class_complaint ("location description",
9746 SYMBOL_NATURAL_NAME (sym));
9747 baton->size = 0;
9748 baton->data = NULL;
9749 }
9750
9751 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9752 SYMBOL_LOCATION_BATON (sym) = baton;
9753 }
9754 }
9755
9756 /* Locate the compilation unit from CU's objfile which contains the
9757 DIE at OFFSET. Raises an error on failure. */
9758
9759 static struct dwarf2_per_cu_data *
9760 dwarf2_find_containing_comp_unit (unsigned long offset,
9761 struct objfile *objfile)
9762 {
9763 struct dwarf2_per_cu_data *this_cu;
9764 int low, high;
9765
9766 low = 0;
9767 high = dwarf2_per_objfile->n_comp_units - 1;
9768 while (high > low)
9769 {
9770 int mid = low + (high - low) / 2;
9771 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9772 high = mid;
9773 else
9774 low = mid + 1;
9775 }
9776 gdb_assert (low == high);
9777 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9778 {
9779 if (low == 0)
9780 error (_("Dwarf Error: could not find partial DIE containing "
9781 "offset 0x%lx [in module %s]"),
9782 (long) offset, bfd_get_filename (objfile->obfd));
9783
9784 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9785 return dwarf2_per_objfile->all_comp_units[low-1];
9786 }
9787 else
9788 {
9789 this_cu = dwarf2_per_objfile->all_comp_units[low];
9790 if (low == dwarf2_per_objfile->n_comp_units - 1
9791 && offset >= this_cu->offset + this_cu->length)
9792 error (_("invalid dwarf2 offset %ld"), offset);
9793 gdb_assert (offset < this_cu->offset + this_cu->length);
9794 return this_cu;
9795 }
9796 }
9797
9798 /* Locate the compilation unit from OBJFILE which is located at exactly
9799 OFFSET. Raises an error on failure. */
9800
9801 static struct dwarf2_per_cu_data *
9802 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9803 {
9804 struct dwarf2_per_cu_data *this_cu;
9805 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9806 if (this_cu->offset != offset)
9807 error (_("no compilation unit with offset %ld."), offset);
9808 return this_cu;
9809 }
9810
9811 /* Release one cached compilation unit, CU. We unlink it from the tree
9812 of compilation units, but we don't remove it from the read_in_chain;
9813 the caller is responsible for that. */
9814
9815 static void
9816 free_one_comp_unit (void *data)
9817 {
9818 struct dwarf2_cu *cu = data;
9819
9820 if (cu->per_cu != NULL)
9821 cu->per_cu->cu = NULL;
9822 cu->per_cu = NULL;
9823
9824 obstack_free (&cu->comp_unit_obstack, NULL);
9825 if (cu->dies)
9826 free_die_list (cu->dies);
9827
9828 xfree (cu);
9829 }
9830
9831 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9832 when we're finished with it. We can't free the pointer itself, but be
9833 sure to unlink it from the cache. Also release any associated storage
9834 and perform cache maintenance.
9835
9836 Only used during partial symbol parsing. */
9837
9838 static void
9839 free_stack_comp_unit (void *data)
9840 {
9841 struct dwarf2_cu *cu = data;
9842
9843 obstack_free (&cu->comp_unit_obstack, NULL);
9844 cu->partial_dies = NULL;
9845
9846 if (cu->per_cu != NULL)
9847 {
9848 /* This compilation unit is on the stack in our caller, so we
9849 should not xfree it. Just unlink it. */
9850 cu->per_cu->cu = NULL;
9851 cu->per_cu = NULL;
9852
9853 /* If we had a per-cu pointer, then we may have other compilation
9854 units loaded, so age them now. */
9855 age_cached_comp_units ();
9856 }
9857 }
9858
9859 /* Free all cached compilation units. */
9860
9861 static void
9862 free_cached_comp_units (void *data)
9863 {
9864 struct dwarf2_per_cu_data *per_cu, **last_chain;
9865
9866 per_cu = dwarf2_per_objfile->read_in_chain;
9867 last_chain = &dwarf2_per_objfile->read_in_chain;
9868 while (per_cu != NULL)
9869 {
9870 struct dwarf2_per_cu_data *next_cu;
9871
9872 next_cu = per_cu->cu->read_in_chain;
9873
9874 free_one_comp_unit (per_cu->cu);
9875 *last_chain = next_cu;
9876
9877 per_cu = next_cu;
9878 }
9879 }
9880
9881 /* Increase the age counter on each cached compilation unit, and free
9882 any that are too old. */
9883
9884 static void
9885 age_cached_comp_units (void)
9886 {
9887 struct dwarf2_per_cu_data *per_cu, **last_chain;
9888
9889 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9890 per_cu = dwarf2_per_objfile->read_in_chain;
9891 while (per_cu != NULL)
9892 {
9893 per_cu->cu->last_used ++;
9894 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9895 dwarf2_mark (per_cu->cu);
9896 per_cu = per_cu->cu->read_in_chain;
9897 }
9898
9899 per_cu = dwarf2_per_objfile->read_in_chain;
9900 last_chain = &dwarf2_per_objfile->read_in_chain;
9901 while (per_cu != NULL)
9902 {
9903 struct dwarf2_per_cu_data *next_cu;
9904
9905 next_cu = per_cu->cu->read_in_chain;
9906
9907 if (!per_cu->cu->mark)
9908 {
9909 free_one_comp_unit (per_cu->cu);
9910 *last_chain = next_cu;
9911 }
9912 else
9913 last_chain = &per_cu->cu->read_in_chain;
9914
9915 per_cu = next_cu;
9916 }
9917 }
9918
9919 /* Remove a single compilation unit from the cache. */
9920
9921 static void
9922 free_one_cached_comp_unit (void *target_cu)
9923 {
9924 struct dwarf2_per_cu_data *per_cu, **last_chain;
9925
9926 per_cu = dwarf2_per_objfile->read_in_chain;
9927 last_chain = &dwarf2_per_objfile->read_in_chain;
9928 while (per_cu != NULL)
9929 {
9930 struct dwarf2_per_cu_data *next_cu;
9931
9932 next_cu = per_cu->cu->read_in_chain;
9933
9934 if (per_cu->cu == target_cu)
9935 {
9936 free_one_comp_unit (per_cu->cu);
9937 *last_chain = next_cu;
9938 break;
9939 }
9940 else
9941 last_chain = &per_cu->cu->read_in_chain;
9942
9943 per_cu = next_cu;
9944 }
9945 }
9946
9947 /* A pair of DIE offset and GDB type pointer. We store these
9948 in a hash table separate from the DIEs, and preserve them
9949 when the DIEs are flushed out of cache. */
9950
9951 struct dwarf2_offset_and_type
9952 {
9953 unsigned int offset;
9954 struct type *type;
9955 };
9956
9957 /* Hash function for a dwarf2_offset_and_type. */
9958
9959 static hashval_t
9960 offset_and_type_hash (const void *item)
9961 {
9962 const struct dwarf2_offset_and_type *ofs = item;
9963 return ofs->offset;
9964 }
9965
9966 /* Equality function for a dwarf2_offset_and_type. */
9967
9968 static int
9969 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9970 {
9971 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9972 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9973 return ofs_lhs->offset == ofs_rhs->offset;
9974 }
9975
9976 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9977 table if necessary. */
9978
9979 static void
9980 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9981 {
9982 struct dwarf2_offset_and_type **slot, ofs;
9983
9984 die->type = type;
9985
9986 if (cu->per_cu == NULL)
9987 return;
9988
9989 if (cu->per_cu->type_hash == NULL)
9990 cu->per_cu->type_hash
9991 = htab_create_alloc_ex (cu->header.length / 24,
9992 offset_and_type_hash,
9993 offset_and_type_eq,
9994 NULL,
9995 &cu->objfile->objfile_obstack,
9996 hashtab_obstack_allocate,
9997 dummy_obstack_deallocate);
9998
9999 ofs.offset = die->offset;
10000 ofs.type = type;
10001 slot = (struct dwarf2_offset_and_type **)
10002 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10003 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10004 **slot = ofs;
10005 }
10006
10007 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10008 have a saved type. */
10009
10010 static struct type *
10011 get_die_type (struct die_info *die, htab_t type_hash)
10012 {
10013 struct dwarf2_offset_and_type *slot, ofs;
10014
10015 ofs.offset = die->offset;
10016 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10017 if (slot)
10018 return slot->type;
10019 else
10020 return NULL;
10021 }
10022
10023 /* Restore the types of the DIE tree starting at START_DIE from the hash
10024 table saved in CU. */
10025
10026 static void
10027 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10028 {
10029 struct die_info *die;
10030
10031 if (cu->per_cu->type_hash == NULL)
10032 return;
10033
10034 for (die = start_die; die != NULL; die = die->sibling)
10035 {
10036 die->type = get_die_type (die, cu->per_cu->type_hash);
10037 if (die->child != NULL)
10038 reset_die_and_siblings_types (die->child, cu);
10039 }
10040 }
10041
10042 /* Set the mark field in CU and in every other compilation unit in the
10043 cache that we must keep because we are keeping CU. */
10044
10045 /* Add a dependence relationship from CU to REF_PER_CU. */
10046
10047 static void
10048 dwarf2_add_dependence (struct dwarf2_cu *cu,
10049 struct dwarf2_per_cu_data *ref_per_cu)
10050 {
10051 void **slot;
10052
10053 if (cu->dependencies == NULL)
10054 cu->dependencies
10055 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10056 NULL, &cu->comp_unit_obstack,
10057 hashtab_obstack_allocate,
10058 dummy_obstack_deallocate);
10059
10060 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10061 if (*slot == NULL)
10062 *slot = ref_per_cu;
10063 }
10064
10065 /* Set the mark field in CU and in every other compilation unit in the
10066 cache that we must keep because we are keeping CU. */
10067
10068 static int
10069 dwarf2_mark_helper (void **slot, void *data)
10070 {
10071 struct dwarf2_per_cu_data *per_cu;
10072
10073 per_cu = (struct dwarf2_per_cu_data *) *slot;
10074 if (per_cu->cu->mark)
10075 return 1;
10076 per_cu->cu->mark = 1;
10077
10078 if (per_cu->cu->dependencies != NULL)
10079 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10080
10081 return 1;
10082 }
10083
10084 static void
10085 dwarf2_mark (struct dwarf2_cu *cu)
10086 {
10087 if (cu->mark)
10088 return;
10089 cu->mark = 1;
10090 if (cu->dependencies != NULL)
10091 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10092 }
10093
10094 static void
10095 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10096 {
10097 while (per_cu)
10098 {
10099 per_cu->cu->mark = 0;
10100 per_cu = per_cu->cu->read_in_chain;
10101 }
10102 }
10103
10104 /* Trivial hash function for partial_die_info: the hash value of a DIE
10105 is its offset in .debug_info for this objfile. */
10106
10107 static hashval_t
10108 partial_die_hash (const void *item)
10109 {
10110 const struct partial_die_info *part_die = item;
10111 return part_die->offset;
10112 }
10113
10114 /* Trivial comparison function for partial_die_info structures: two DIEs
10115 are equal if they have the same offset. */
10116
10117 static int
10118 partial_die_eq (const void *item_lhs, const void *item_rhs)
10119 {
10120 const struct partial_die_info *part_die_lhs = item_lhs;
10121 const struct partial_die_info *part_die_rhs = item_rhs;
10122 return part_die_lhs->offset == part_die_rhs->offset;
10123 }
10124
10125 static struct cmd_list_element *set_dwarf2_cmdlist;
10126 static struct cmd_list_element *show_dwarf2_cmdlist;
10127
10128 static void
10129 set_dwarf2_cmd (char *args, int from_tty)
10130 {
10131 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10132 }
10133
10134 static void
10135 show_dwarf2_cmd (char *args, int from_tty)
10136 {
10137 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10138 }
10139
10140 void _initialize_dwarf2_read (void);
10141
10142 void
10143 _initialize_dwarf2_read (void)
10144 {
10145 dwarf2_objfile_data_key = register_objfile_data ();
10146
10147 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10148 Set DWARF 2 specific variables.\n\
10149 Configure DWARF 2 variables such as the cache size"),
10150 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10151 0/*allow-unknown*/, &maintenance_set_cmdlist);
10152
10153 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10154 Show DWARF 2 specific variables\n\
10155 Show DWARF 2 variables such as the cache size"),
10156 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10157 0/*allow-unknown*/, &maintenance_show_cmdlist);
10158
10159 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10160 &dwarf2_max_cache_age, _("\
10161 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10162 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10163 A higher limit means that cached compilation units will be stored\n\
10164 in memory longer, and more total memory will be used. Zero disables\n\
10165 caching, which can slow down startup."),
10166 NULL,
10167 show_dwarf2_max_cache_age,
10168 &set_dwarf2_cmdlist,
10169 &show_dwarf2_cmdlist);
10170 }
This page took 0.401285 seconds and 4 git commands to generate.