* dwarf2read.c (read_str_index): Delete arg cu. All callers updated.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
1234 /* Offset in .debug_info or .debug_types section. */
1235 sect_offset offset;
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
1240 together via their SIBLING fields. */
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
1244
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
1249 };
1250
1251 /* Get at parts of an attribute structure. */
1252
1253 #define DW_STRING(attr) ((attr)->u.str)
1254 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1255 #define DW_UNSND(attr) ((attr)->u.unsnd)
1256 #define DW_BLOCK(attr) ((attr)->u.blk)
1257 #define DW_SND(attr) ((attr)->u.snd)
1258 #define DW_ADDR(attr) ((attr)->u.addr)
1259 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1260
1261 /* Blocks are a bunch of untyped bytes. */
1262 struct dwarf_block
1263 {
1264 size_t size;
1265
1266 /* Valid only if SIZE is not zero. */
1267 const gdb_byte *data;
1268 };
1269
1270 #ifndef ATTR_ALLOC_CHUNK
1271 #define ATTR_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* Allocate fields for structs, unions and enums in this size. */
1275 #ifndef DW_FIELD_ALLOC_CHUNK
1276 #define DW_FIELD_ALLOC_CHUNK 4
1277 #endif
1278
1279 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282 static int bits_per_byte = 8;
1283
1284 /* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287 struct field_info
1288 {
1289 /* List of data member and baseclasses fields. */
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
1297 *fields, *baseclasses;
1298
1299 /* Number of fields (including baseclasses). */
1300 int nfields;
1301
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
1304
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
1307
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
1316
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
1327
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
1340 };
1341
1342 /* One item on the queue of compilation units to read in full symbols
1343 for. */
1344 struct dwarf2_queue_item
1345 {
1346 struct dwarf2_per_cu_data *per_cu;
1347 enum language pretend_language;
1348 struct dwarf2_queue_item *next;
1349 };
1350
1351 /* The current queue. */
1352 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
1354 /* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359 static int dwarf2_max_cache_age = 5;
1360 static void
1361 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363 {
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
1366 value);
1367 }
1368 \f
1369 /* local function prototypes */
1370
1371 static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373 static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
1375 static void dwarf2_locate_sections (bfd *, asection *, void *);
1376
1377 static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
1380 static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
1383 static void dwarf2_build_psymtabs_hard (struct objfile *);
1384
1385 static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 int, struct dwarf2_cu *);
1388
1389 static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
1391
1392 static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1394 int need_pc, struct dwarf2_cu *cu);
1395
1396 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
1402
1403 static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1405 int need_pc, struct dwarf2_cu *cu);
1406
1407 static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
1409
1410 static void psymtab_to_symtab_1 (struct partial_symtab *);
1411
1412 static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415 static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418 static void abbrev_table_free (struct abbrev_table *);
1419
1420 static void abbrev_table_free_cleanup (void *);
1421
1422 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
1424
1425 static void dwarf2_free_abbrev_table (void *);
1426
1427 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1428
1429 static struct partial_die_info *load_partial_dies
1430 (const struct die_reader_specs *, const gdb_byte *, int);
1431
1432 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
1437
1438 static struct partial_die_info *find_partial_die (sect_offset, int,
1439 struct dwarf2_cu *);
1440
1441 static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
1444 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
1447
1448 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1449
1450 static int read_1_signed_byte (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1453
1454 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1455
1456 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1457
1458 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 unsigned int *);
1460
1461 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1462
1463 static LONGEST read_checked_initial_length_and_offset
1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1465 unsigned int *, unsigned int *);
1466
1467 static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
1469 unsigned int *);
1470
1471 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1472
1473 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
1476 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1477
1478 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
1483
1484 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1485
1486 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1489
1490 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
1492 unsigned int *);
1493
1494 static const char *read_str_index (const struct die_reader_specs *reader,
1495 ULONGEST str_index);
1496
1497 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
1501
1502 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 unsigned int);
1504
1505 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
1508 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1509
1510 static struct die_info *die_specification (struct die_info *die,
1511 struct dwarf2_cu **);
1512
1513 static void free_line_header (struct line_header *lh);
1514
1515 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
1517
1518 static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
1521
1522 static void dwarf2_start_subfile (const char *, const char *, const char *);
1523
1524 static void dwarf2_start_symtab (struct dwarf2_cu *,
1525 const char *, const char *, CORE_ADDR);
1526
1527 static struct symbol *new_symbol (struct die_info *, struct type *,
1528 struct dwarf2_cu *);
1529
1530 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
1533 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
1540 struct dwarf2_cu *cu, LONGEST *value,
1541 const gdb_byte **bytes,
1542 struct dwarf2_locexpr_baton **baton);
1543
1544 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1545
1546 static int need_gnat_info (struct dwarf2_cu *);
1547
1548 static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1558 struct dwarf2_cu *);
1559
1560 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1561
1562 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
1564 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1565
1566 static char *typename_concat (struct obstack *obs, const char *prefix,
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
1569
1570 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1577
1578 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
1580 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
1583 static int dwarf2_get_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
1586
1587 static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_field (struct field_info *, struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_attach_fields_to_type (struct field_info *,
1598 struct type *, struct dwarf2_cu *);
1599
1600 static void dwarf2_add_member_fn (struct field_info *,
1601 struct die_info *, struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1605 struct type *,
1606 struct dwarf2_cu *);
1607
1608 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1613
1614 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
1618 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
1623 static const char *namespace_name (struct die_info *die,
1624 int *is_anonymous, struct dwarf2_cu *);
1625
1626 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1629
1630 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633 static struct die_info *read_die_and_siblings_1
1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 struct die_info *);
1636
1637 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
1640 struct die_info *parent);
1641
1642 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
1645
1646 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
1649
1650 static void process_die (struct die_info *, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
1654
1655 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_full_name (const char *name,
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
1664 static struct die_info *dwarf2_extension (struct die_info *die,
1665 struct dwarf2_cu **);
1666
1667 static const char *dwarf_tag_name (unsigned int);
1668
1669 static const char *dwarf_attr_name (unsigned int);
1670
1671 static const char *dwarf_form_name (unsigned int);
1672
1673 static char *dwarf_bool_name (unsigned int);
1674
1675 static const char *dwarf_type_encoding_name (unsigned int);
1676
1677 static struct die_info *sibling_die (struct die_info *);
1678
1679 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681 static void dump_die_for_error (struct die_info *);
1682
1683 static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
1685
1686 /*static*/ void dump_die (struct die_info *, int max_level);
1687
1688 static void store_in_ref_table (struct die_info *,
1689 struct dwarf2_cu *);
1690
1691 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1692
1693 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1694
1695 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_ref (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct die_info *follow_die_sig (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu **);
1706
1707 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710 static struct type *get_DW_AT_signature_type (struct die_info *,
1711 const struct attribute *,
1712 struct dwarf2_cu *);
1713
1714 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1715
1716 static void read_signatured_type (struct signatured_type *);
1717
1718 static struct type_unit_group *get_type_unit_group
1719 (struct dwarf2_cu *, const struct attribute *);
1720
1721 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1730 const char *, int);
1731
1732 static int attr_form_is_block (const struct attribute *);
1733
1734 static int attr_form_is_section_offset (const struct attribute *);
1735
1736 static int attr_form_is_constant (const struct attribute *);
1737
1738 static int attr_form_is_ref (const struct attribute *);
1739
1740 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
1742 const struct attribute *attr);
1743
1744 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct symbol *sym,
1746 struct dwarf2_cu *cu,
1747 int is_block);
1748
1749 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
1752
1753 static void free_stack_comp_unit (void *);
1754
1755 static hashval_t partial_die_hash (const void *item);
1756
1757 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
1759 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1761
1762 static void init_one_comp_unit (struct dwarf2_cu *cu,
1763 struct dwarf2_per_cu_data *per_cu);
1764
1765 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
1768
1769 static void free_heap_comp_unit (void *);
1770
1771 static void free_cached_comp_units (void *);
1772
1773 static void age_cached_comp_units (void);
1774
1775 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1776
1777 static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1779
1780 static void create_all_comp_units (struct objfile *);
1781
1782 static int create_all_type_units (struct objfile *);
1783
1784 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
1793 static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
1796 static void dwarf2_mark (struct dwarf2_cu *);
1797
1798 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type_at_offset (sect_offset,
1801 struct dwarf2_per_cu_data *);
1802
1803 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1804
1805 static void dwarf2_release_queue (void *dummy);
1806
1807 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
1810 static void process_queue (void);
1811
1812 static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
1814 const char **name, const char **comp_dir);
1815
1816 static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
1819 static const gdb_byte *read_and_check_comp_unit_head
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1823 int is_debug_types_section);
1824
1825 static void init_cutu_and_read_dies
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
1830 static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
1833
1834 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1835
1836 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
1838 static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
1841
1842 static struct dwp_file *get_dwp_file (void);
1843
1844 static struct dwo_unit *lookup_dwo_comp_unit
1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1846
1847 static struct dwo_unit *lookup_dwo_type_unit
1848 (struct signatured_type *, const char *, const char *);
1849
1850 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
1852 static void free_dwo_file_cleanup (void *);
1853
1854 static void process_cu_includes (void);
1855
1856 static void check_producer (struct dwarf2_cu *cu);
1857 \f
1858 /* Various complaints about symbol reading that don't abort the process. */
1859
1860 static void
1861 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_file_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872 }
1873
1874 static void
1875 dwarf2_debug_line_missing_end_sequence_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880 }
1881
1882 static void
1883 dwarf2_complex_location_expr_complaint (void)
1884 {
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886 }
1887
1888 static void
1889 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891 {
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895 }
1896
1897 static void
1898 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899 {
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
1903 get_section_name (section),
1904 get_section_file_name (section));
1905 }
1906
1907 static void
1908 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909 {
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914 }
1915
1916 static void
1917 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918 {
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922 }
1923 \f
1924 #if WORDS_BIGENDIAN
1925
1926 /* Convert VALUE between big- and little-endian. */
1927 static offset_type
1928 byte_swap (offset_type value)
1929 {
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937 }
1938
1939 #define MAYBE_SWAP(V) byte_swap (V)
1940
1941 #else
1942 #define MAYBE_SWAP(V) (V)
1943 #endif /* WORDS_BIGENDIAN */
1944
1945 /* Read the given attribute value as an address, taking the attribute's
1946 form into account. */
1947
1948 static CORE_ADDR
1949 attr_value_as_address (struct attribute *attr)
1950 {
1951 CORE_ADDR addr;
1952
1953 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1954 {
1955 /* Aside from a few clearly defined exceptions, attributes that
1956 contain an address must always be in DW_FORM_addr form.
1957 Unfortunately, some compilers happen to be violating this
1958 requirement by encoding addresses using other forms, such
1959 as DW_FORM_data4 for example. For those broken compilers,
1960 we try to do our best, without any guarantee of success,
1961 to interpret the address correctly. It would also be nice
1962 to generate a complaint, but that would require us to maintain
1963 a list of legitimate cases where a non-address form is allowed,
1964 as well as update callers to pass in at least the CU's DWARF
1965 version. This is more overhead than what we're willing to
1966 expand for a pretty rare case. */
1967 addr = DW_UNSND (attr);
1968 }
1969 else
1970 addr = DW_ADDR (attr);
1971
1972 return addr;
1973 }
1974
1975 /* The suffix for an index file. */
1976 #define INDEX_SUFFIX ".gdb-index"
1977
1978 /* Try to locate the sections we need for DWARF 2 debugging
1979 information and return true if we have enough to do something.
1980 NAMES points to the dwarf2 section names, or is NULL if the standard
1981 ELF names are used. */
1982
1983 int
1984 dwarf2_has_info (struct objfile *objfile,
1985 const struct dwarf2_debug_sections *names)
1986 {
1987 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1988 if (!dwarf2_per_objfile)
1989 {
1990 /* Initialize per-objfile state. */
1991 struct dwarf2_per_objfile *data
1992 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1993
1994 memset (data, 0, sizeof (*data));
1995 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1996 dwarf2_per_objfile = data;
1997
1998 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1999 (void *) names);
2000 dwarf2_per_objfile->objfile = objfile;
2001 }
2002 return (!dwarf2_per_objfile->info.is_virtual
2003 && dwarf2_per_objfile->info.s.asection != NULL
2004 && !dwarf2_per_objfile->abbrev.is_virtual
2005 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2006 }
2007
2008 /* Return the containing section of virtual section SECTION. */
2009
2010 static struct dwarf2_section_info *
2011 get_containing_section (const struct dwarf2_section_info *section)
2012 {
2013 gdb_assert (section->is_virtual);
2014 return section->s.containing_section;
2015 }
2016
2017 /* Return the bfd owner of SECTION. */
2018
2019 static struct bfd *
2020 get_section_bfd_owner (const struct dwarf2_section_info *section)
2021 {
2022 if (section->is_virtual)
2023 {
2024 section = get_containing_section (section);
2025 gdb_assert (!section->is_virtual);
2026 }
2027 return section->s.asection->owner;
2028 }
2029
2030 /* Return the bfd section of SECTION.
2031 Returns NULL if the section is not present. */
2032
2033 static asection *
2034 get_section_bfd_section (const struct dwarf2_section_info *section)
2035 {
2036 if (section->is_virtual)
2037 {
2038 section = get_containing_section (section);
2039 gdb_assert (!section->is_virtual);
2040 }
2041 return section->s.asection;
2042 }
2043
2044 /* Return the name of SECTION. */
2045
2046 static const char *
2047 get_section_name (const struct dwarf2_section_info *section)
2048 {
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_section_name (get_section_bfd_owner (section), sectp);
2053 }
2054
2055 /* Return the name of the file SECTION is in. */
2056
2057 static const char *
2058 get_section_file_name (const struct dwarf2_section_info *section)
2059 {
2060 bfd *abfd = get_section_bfd_owner (section);
2061
2062 return bfd_get_filename (abfd);
2063 }
2064
2065 /* Return the id of SECTION.
2066 Returns 0 if SECTION doesn't exist. */
2067
2068 static int
2069 get_section_id (const struct dwarf2_section_info *section)
2070 {
2071 asection *sectp = get_section_bfd_section (section);
2072
2073 if (sectp == NULL)
2074 return 0;
2075 return sectp->id;
2076 }
2077
2078 /* Return the flags of SECTION.
2079 SECTION (or containing section if this is a virtual section) must exist. */
2080
2081 static int
2082 get_section_flags (const struct dwarf2_section_info *section)
2083 {
2084 asection *sectp = get_section_bfd_section (section);
2085
2086 gdb_assert (sectp != NULL);
2087 return bfd_get_section_flags (sectp->owner, sectp);
2088 }
2089
2090 /* When loading sections, we look either for uncompressed section or for
2091 compressed section names. */
2092
2093 static int
2094 section_is_p (const char *section_name,
2095 const struct dwarf2_section_names *names)
2096 {
2097 if (names->normal != NULL
2098 && strcmp (section_name, names->normal) == 0)
2099 return 1;
2100 if (names->compressed != NULL
2101 && strcmp (section_name, names->compressed) == 0)
2102 return 1;
2103 return 0;
2104 }
2105
2106 /* This function is mapped across the sections and remembers the
2107 offset and size of each of the debugging sections we are interested
2108 in. */
2109
2110 static void
2111 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2112 {
2113 const struct dwarf2_debug_sections *names;
2114 flagword aflag = bfd_get_section_flags (abfd, sectp);
2115
2116 if (vnames == NULL)
2117 names = &dwarf2_elf_names;
2118 else
2119 names = (const struct dwarf2_debug_sections *) vnames;
2120
2121 if ((aflag & SEC_HAS_CONTENTS) == 0)
2122 {
2123 }
2124 else if (section_is_p (sectp->name, &names->info))
2125 {
2126 dwarf2_per_objfile->info.s.asection = sectp;
2127 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->abbrev))
2130 {
2131 dwarf2_per_objfile->abbrev.s.asection = sectp;
2132 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->line))
2135 {
2136 dwarf2_per_objfile->line.s.asection = sectp;
2137 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->loc))
2140 {
2141 dwarf2_per_objfile->loc.s.asection = sectp;
2142 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->macinfo))
2145 {
2146 dwarf2_per_objfile->macinfo.s.asection = sectp;
2147 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->macro))
2150 {
2151 dwarf2_per_objfile->macro.s.asection = sectp;
2152 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->str))
2155 {
2156 dwarf2_per_objfile->str.s.asection = sectp;
2157 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->addr))
2160 {
2161 dwarf2_per_objfile->addr.s.asection = sectp;
2162 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->frame))
2165 {
2166 dwarf2_per_objfile->frame.s.asection = sectp;
2167 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->eh_frame))
2170 {
2171 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2172 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->ranges))
2175 {
2176 dwarf2_per_objfile->ranges.s.asection = sectp;
2177 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->types))
2180 {
2181 struct dwarf2_section_info type_section;
2182
2183 memset (&type_section, 0, sizeof (type_section));
2184 type_section.s.asection = sectp;
2185 type_section.size = bfd_get_section_size (sectp);
2186
2187 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2188 &type_section);
2189 }
2190 else if (section_is_p (sectp->name, &names->gdb_index))
2191 {
2192 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2193 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2194 }
2195
2196 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2197 && bfd_section_vma (abfd, sectp) == 0)
2198 dwarf2_per_objfile->has_section_at_zero = 1;
2199 }
2200
2201 /* A helper function that decides whether a section is empty,
2202 or not present. */
2203
2204 static int
2205 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2206 {
2207 if (section->is_virtual)
2208 return section->size == 0;
2209 return section->s.asection == NULL || section->size == 0;
2210 }
2211
2212 /* Read the contents of the section INFO.
2213 OBJFILE is the main object file, but not necessarily the file where
2214 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2215 of the DWO file.
2216 If the section is compressed, uncompress it before returning. */
2217
2218 static void
2219 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2220 {
2221 asection *sectp;
2222 bfd *abfd;
2223 gdb_byte *buf, *retbuf;
2224
2225 if (info->readin)
2226 return;
2227 info->buffer = NULL;
2228 info->readin = 1;
2229
2230 if (dwarf2_section_empty_p (info))
2231 return;
2232
2233 sectp = get_section_bfd_section (info);
2234
2235 /* If this is a virtual section we need to read in the real one first. */
2236 if (info->is_virtual)
2237 {
2238 struct dwarf2_section_info *containing_section =
2239 get_containing_section (info);
2240
2241 gdb_assert (sectp != NULL);
2242 if ((sectp->flags & SEC_RELOC) != 0)
2243 {
2244 error (_("Dwarf Error: DWP format V2 with relocations is not"
2245 " supported in section %s [in module %s]"),
2246 get_section_name (info), get_section_file_name (info));
2247 }
2248 dwarf2_read_section (objfile, containing_section);
2249 /* Other code should have already caught virtual sections that don't
2250 fit. */
2251 gdb_assert (info->virtual_offset + info->size
2252 <= containing_section->size);
2253 /* If the real section is empty or there was a problem reading the
2254 section we shouldn't get here. */
2255 gdb_assert (containing_section->buffer != NULL);
2256 info->buffer = containing_section->buffer + info->virtual_offset;
2257 return;
2258 }
2259
2260 /* If the section has relocations, we must read it ourselves.
2261 Otherwise we attach it to the BFD. */
2262 if ((sectp->flags & SEC_RELOC) == 0)
2263 {
2264 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2265 return;
2266 }
2267
2268 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2269 info->buffer = buf;
2270
2271 /* When debugging .o files, we may need to apply relocations; see
2272 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2273 We never compress sections in .o files, so we only need to
2274 try this when the section is not compressed. */
2275 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2276 if (retbuf != NULL)
2277 {
2278 info->buffer = retbuf;
2279 return;
2280 }
2281
2282 abfd = get_section_bfd_owner (info);
2283 gdb_assert (abfd != NULL);
2284
2285 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2286 || bfd_bread (buf, info->size, abfd) != info->size)
2287 {
2288 error (_("Dwarf Error: Can't read DWARF data"
2289 " in section %s [in module %s]"),
2290 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2291 }
2292 }
2293
2294 /* A helper function that returns the size of a section in a safe way.
2295 If you are positive that the section has been read before using the
2296 size, then it is safe to refer to the dwarf2_section_info object's
2297 "size" field directly. In other cases, you must call this
2298 function, because for compressed sections the size field is not set
2299 correctly until the section has been read. */
2300
2301 static bfd_size_type
2302 dwarf2_section_size (struct objfile *objfile,
2303 struct dwarf2_section_info *info)
2304 {
2305 if (!info->readin)
2306 dwarf2_read_section (objfile, info);
2307 return info->size;
2308 }
2309
2310 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2311 SECTION_NAME. */
2312
2313 void
2314 dwarf2_get_section_info (struct objfile *objfile,
2315 enum dwarf2_section_enum sect,
2316 asection **sectp, const gdb_byte **bufp,
2317 bfd_size_type *sizep)
2318 {
2319 struct dwarf2_per_objfile *data
2320 = objfile_data (objfile, dwarf2_objfile_data_key);
2321 struct dwarf2_section_info *info;
2322
2323 /* We may see an objfile without any DWARF, in which case we just
2324 return nothing. */
2325 if (data == NULL)
2326 {
2327 *sectp = NULL;
2328 *bufp = NULL;
2329 *sizep = 0;
2330 return;
2331 }
2332 switch (sect)
2333 {
2334 case DWARF2_DEBUG_FRAME:
2335 info = &data->frame;
2336 break;
2337 case DWARF2_EH_FRAME:
2338 info = &data->eh_frame;
2339 break;
2340 default:
2341 gdb_assert_not_reached ("unexpected section");
2342 }
2343
2344 dwarf2_read_section (objfile, info);
2345
2346 *sectp = get_section_bfd_section (info);
2347 *bufp = info->buffer;
2348 *sizep = info->size;
2349 }
2350
2351 /* A helper function to find the sections for a .dwz file. */
2352
2353 static void
2354 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2355 {
2356 struct dwz_file *dwz_file = arg;
2357
2358 /* Note that we only support the standard ELF names, because .dwz
2359 is ELF-only (at the time of writing). */
2360 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2361 {
2362 dwz_file->abbrev.s.asection = sectp;
2363 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2366 {
2367 dwz_file->info.s.asection = sectp;
2368 dwz_file->info.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2371 {
2372 dwz_file->str.s.asection = sectp;
2373 dwz_file->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2376 {
2377 dwz_file->line.s.asection = sectp;
2378 dwz_file->line.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2381 {
2382 dwz_file->macro.s.asection = sectp;
2383 dwz_file->macro.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2386 {
2387 dwz_file->gdb_index.s.asection = sectp;
2388 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2389 }
2390 }
2391
2392 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2393 there is no .gnu_debugaltlink section in the file. Error if there
2394 is such a section but the file cannot be found. */
2395
2396 static struct dwz_file *
2397 dwarf2_get_dwz_file (void)
2398 {
2399 bfd *dwz_bfd;
2400 char *data;
2401 struct cleanup *cleanup;
2402 const char *filename;
2403 struct dwz_file *result;
2404 bfd_size_type buildid_len_arg;
2405 size_t buildid_len;
2406 bfd_byte *buildid;
2407
2408 if (dwarf2_per_objfile->dwz_file != NULL)
2409 return dwarf2_per_objfile->dwz_file;
2410
2411 bfd_set_error (bfd_error_no_error);
2412 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2413 &buildid_len_arg, &buildid);
2414 if (data == NULL)
2415 {
2416 if (bfd_get_error () == bfd_error_no_error)
2417 return NULL;
2418 error (_("could not read '.gnu_debugaltlink' section: %s"),
2419 bfd_errmsg (bfd_get_error ()));
2420 }
2421 cleanup = make_cleanup (xfree, data);
2422 make_cleanup (xfree, buildid);
2423
2424 buildid_len = (size_t) buildid_len_arg;
2425
2426 filename = (const char *) data;
2427 if (!IS_ABSOLUTE_PATH (filename))
2428 {
2429 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2430 char *rel;
2431
2432 make_cleanup (xfree, abs);
2433 abs = ldirname (abs);
2434 make_cleanup (xfree, abs);
2435
2436 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2437 make_cleanup (xfree, rel);
2438 filename = rel;
2439 }
2440
2441 /* First try the file name given in the section. If that doesn't
2442 work, try to use the build-id instead. */
2443 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2444 if (dwz_bfd != NULL)
2445 {
2446 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2447 {
2448 gdb_bfd_unref (dwz_bfd);
2449 dwz_bfd = NULL;
2450 }
2451 }
2452
2453 if (dwz_bfd == NULL)
2454 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2455
2456 if (dwz_bfd == NULL)
2457 error (_("could not find '.gnu_debugaltlink' file for %s"),
2458 objfile_name (dwarf2_per_objfile->objfile));
2459
2460 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2461 struct dwz_file);
2462 result->dwz_bfd = dwz_bfd;
2463
2464 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2465
2466 do_cleanups (cleanup);
2467
2468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2469 dwarf2_per_objfile->dwz_file = result;
2470 return result;
2471 }
2472 \f
2473 /* DWARF quick_symbols_functions support. */
2474
2475 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2476 unique line tables, so we maintain a separate table of all .debug_line
2477 derived entries to support the sharing.
2478 All the quick functions need is the list of file names. We discard the
2479 line_header when we're done and don't need to record it here. */
2480 struct quick_file_names
2481 {
2482 /* The data used to construct the hash key. */
2483 struct stmt_list_hash hash;
2484
2485 /* The number of entries in file_names, real_names. */
2486 unsigned int num_file_names;
2487
2488 /* The file names from the line table, after being run through
2489 file_full_name. */
2490 const char **file_names;
2491
2492 /* The file names from the line table after being run through
2493 gdb_realpath. These are computed lazily. */
2494 const char **real_names;
2495 };
2496
2497 /* When using the index (and thus not using psymtabs), each CU has an
2498 object of this type. This is used to hold information needed by
2499 the various "quick" methods. */
2500 struct dwarf2_per_cu_quick_data
2501 {
2502 /* The file table. This can be NULL if there was no file table
2503 or it's currently not read in.
2504 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2505 struct quick_file_names *file_names;
2506
2507 /* The corresponding symbol table. This is NULL if symbols for this
2508 CU have not yet been read. */
2509 struct symtab *symtab;
2510
2511 /* A temporary mark bit used when iterating over all CUs in
2512 expand_symtabs_matching. */
2513 unsigned int mark : 1;
2514
2515 /* True if we've tried to read the file table and found there isn't one.
2516 There will be no point in trying to read it again next time. */
2517 unsigned int no_file_data : 1;
2518 };
2519
2520 /* Utility hash function for a stmt_list_hash. */
2521
2522 static hashval_t
2523 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2524 {
2525 hashval_t v = 0;
2526
2527 if (stmt_list_hash->dwo_unit != NULL)
2528 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2529 v += stmt_list_hash->line_offset.sect_off;
2530 return v;
2531 }
2532
2533 /* Utility equality function for a stmt_list_hash. */
2534
2535 static int
2536 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2537 const struct stmt_list_hash *rhs)
2538 {
2539 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2540 return 0;
2541 if (lhs->dwo_unit != NULL
2542 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2543 return 0;
2544
2545 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2546 }
2547
2548 /* Hash function for a quick_file_names. */
2549
2550 static hashval_t
2551 hash_file_name_entry (const void *e)
2552 {
2553 const struct quick_file_names *file_data = e;
2554
2555 return hash_stmt_list_entry (&file_data->hash);
2556 }
2557
2558 /* Equality function for a quick_file_names. */
2559
2560 static int
2561 eq_file_name_entry (const void *a, const void *b)
2562 {
2563 const struct quick_file_names *ea = a;
2564 const struct quick_file_names *eb = b;
2565
2566 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2567 }
2568
2569 /* Delete function for a quick_file_names. */
2570
2571 static void
2572 delete_file_name_entry (void *e)
2573 {
2574 struct quick_file_names *file_data = e;
2575 int i;
2576
2577 for (i = 0; i < file_data->num_file_names; ++i)
2578 {
2579 xfree ((void*) file_data->file_names[i]);
2580 if (file_data->real_names)
2581 xfree ((void*) file_data->real_names[i]);
2582 }
2583
2584 /* The space for the struct itself lives on objfile_obstack,
2585 so we don't free it here. */
2586 }
2587
2588 /* Create a quick_file_names hash table. */
2589
2590 static htab_t
2591 create_quick_file_names_table (unsigned int nr_initial_entries)
2592 {
2593 return htab_create_alloc (nr_initial_entries,
2594 hash_file_name_entry, eq_file_name_entry,
2595 delete_file_name_entry, xcalloc, xfree);
2596 }
2597
2598 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2599 have to be created afterwards. You should call age_cached_comp_units after
2600 processing PER_CU->CU. dw2_setup must have been already called. */
2601
2602 static void
2603 load_cu (struct dwarf2_per_cu_data *per_cu)
2604 {
2605 if (per_cu->is_debug_types)
2606 load_full_type_unit (per_cu);
2607 else
2608 load_full_comp_unit (per_cu, language_minimal);
2609
2610 gdb_assert (per_cu->cu != NULL);
2611
2612 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2613 }
2614
2615 /* Read in the symbols for PER_CU. */
2616
2617 static void
2618 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2619 {
2620 struct cleanup *back_to;
2621
2622 /* Skip type_unit_groups, reading the type units they contain
2623 is handled elsewhere. */
2624 if (IS_TYPE_UNIT_GROUP (per_cu))
2625 return;
2626
2627 back_to = make_cleanup (dwarf2_release_queue, NULL);
2628
2629 if (dwarf2_per_objfile->using_index
2630 ? per_cu->v.quick->symtab == NULL
2631 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2632 {
2633 queue_comp_unit (per_cu, language_minimal);
2634 load_cu (per_cu);
2635
2636 /* If we just loaded a CU from a DWO, and we're working with an index
2637 that may badly handle TUs, load all the TUs in that DWO as well.
2638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2639 if (!per_cu->is_debug_types
2640 && per_cu->cu->dwo_unit != NULL
2641 && dwarf2_per_objfile->index_table != NULL
2642 && dwarf2_per_objfile->index_table->version <= 7
2643 /* DWP files aren't supported yet. */
2644 && get_dwp_file () == NULL)
2645 queue_and_load_all_dwo_tus (per_cu);
2646 }
2647
2648 process_queue ();
2649
2650 /* Age the cache, releasing compilation units that have not
2651 been used recently. */
2652 age_cached_comp_units ();
2653
2654 do_cleanups (back_to);
2655 }
2656
2657 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2658 the objfile from which this CU came. Returns the resulting symbol
2659 table. */
2660
2661 static struct symtab *
2662 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 gdb_assert (dwarf2_per_objfile->using_index);
2665 if (!per_cu->v.quick->symtab)
2666 {
2667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2668 increment_reading_symtab ();
2669 dw2_do_instantiate_symtab (per_cu);
2670 process_cu_includes ();
2671 do_cleanups (back_to);
2672 }
2673 return per_cu->v.quick->symtab;
2674 }
2675
2676 /* Return the CU given its index.
2677
2678 This is intended for loops like:
2679
2680 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2681 + dwarf2_per_objfile->n_type_units); ++i)
2682 {
2683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2684
2685 ...;
2686 }
2687 */
2688
2689 static struct dwarf2_per_cu_data *
2690 dw2_get_cu (int index)
2691 {
2692 if (index >= dwarf2_per_objfile->n_comp_units)
2693 {
2694 index -= dwarf2_per_objfile->n_comp_units;
2695 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2696 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2697 }
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700 }
2701
2702 /* Return the primary CU given its index.
2703 The difference between this function and dw2_get_cu is in the handling
2704 of type units (TUs). Here we return the type_unit_group object.
2705
2706 This is intended for loops like:
2707
2708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2709 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2710 {
2711 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2712
2713 ...;
2714 }
2715 */
2716
2717 static struct dwarf2_per_cu_data *
2718 dw2_get_primary_cu (int index)
2719 {
2720 if (index >= dwarf2_per_objfile->n_comp_units)
2721 {
2722 index -= dwarf2_per_objfile->n_comp_units;
2723 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2724 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2725 }
2726
2727 return dwarf2_per_objfile->all_comp_units[index];
2728 }
2729
2730 /* A helper for create_cus_from_index that handles a given list of
2731 CUs. */
2732
2733 static void
2734 create_cus_from_index_list (struct objfile *objfile,
2735 const gdb_byte *cu_list, offset_type n_elements,
2736 struct dwarf2_section_info *section,
2737 int is_dwz,
2738 int base_offset)
2739 {
2740 offset_type i;
2741
2742 for (i = 0; i < n_elements; i += 2)
2743 {
2744 struct dwarf2_per_cu_data *the_cu;
2745 ULONGEST offset, length;
2746
2747 gdb_static_assert (sizeof (ULONGEST) >= 8);
2748 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2749 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2750 cu_list += 2 * 8;
2751
2752 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2753 struct dwarf2_per_cu_data);
2754 the_cu->offset.sect_off = offset;
2755 the_cu->length = length;
2756 the_cu->objfile = objfile;
2757 the_cu->section = section;
2758 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2759 struct dwarf2_per_cu_quick_data);
2760 the_cu->is_dwz = is_dwz;
2761 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2762 }
2763 }
2764
2765 /* Read the CU list from the mapped index, and use it to create all
2766 the CU objects for this objfile. */
2767
2768 static void
2769 create_cus_from_index (struct objfile *objfile,
2770 const gdb_byte *cu_list, offset_type cu_list_elements,
2771 const gdb_byte *dwz_list, offset_type dwz_elements)
2772 {
2773 struct dwz_file *dwz;
2774
2775 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2776 dwarf2_per_objfile->all_comp_units
2777 = obstack_alloc (&objfile->objfile_obstack,
2778 dwarf2_per_objfile->n_comp_units
2779 * sizeof (struct dwarf2_per_cu_data *));
2780
2781 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2782 &dwarf2_per_objfile->info, 0, 0);
2783
2784 if (dwz_elements == 0)
2785 return;
2786
2787 dwz = dwarf2_get_dwz_file ();
2788 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2789 cu_list_elements / 2);
2790 }
2791
2792 /* Create the signatured type hash table from the index. */
2793
2794 static void
2795 create_signatured_type_table_from_index (struct objfile *objfile,
2796 struct dwarf2_section_info *section,
2797 const gdb_byte *bytes,
2798 offset_type elements)
2799 {
2800 offset_type i;
2801 htab_t sig_types_hash;
2802
2803 dwarf2_per_objfile->n_type_units = elements / 3;
2804 dwarf2_per_objfile->all_type_units
2805 = xmalloc (dwarf2_per_objfile->n_type_units
2806 * sizeof (struct signatured_type *));
2807
2808 sig_types_hash = allocate_signatured_type_table (objfile);
2809
2810 for (i = 0; i < elements; i += 3)
2811 {
2812 struct signatured_type *sig_type;
2813 ULONGEST offset, type_offset_in_tu, signature;
2814 void **slot;
2815
2816 gdb_static_assert (sizeof (ULONGEST) >= 8);
2817 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2818 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2819 BFD_ENDIAN_LITTLE);
2820 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2821 bytes += 3 * 8;
2822
2823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2824 struct signatured_type);
2825 sig_type->signature = signature;
2826 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2827 sig_type->per_cu.is_debug_types = 1;
2828 sig_type->per_cu.section = section;
2829 sig_type->per_cu.offset.sect_off = offset;
2830 sig_type->per_cu.objfile = objfile;
2831 sig_type->per_cu.v.quick
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct dwarf2_per_cu_quick_data);
2834
2835 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2836 *slot = sig_type;
2837
2838 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2839 }
2840
2841 dwarf2_per_objfile->signatured_types = sig_types_hash;
2842 }
2843
2844 /* Read the address map data from the mapped index, and use it to
2845 populate the objfile's psymtabs_addrmap. */
2846
2847 static void
2848 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2849 {
2850 const gdb_byte *iter, *end;
2851 struct obstack temp_obstack;
2852 struct addrmap *mutable_map;
2853 struct cleanup *cleanup;
2854 CORE_ADDR baseaddr;
2855
2856 obstack_init (&temp_obstack);
2857 cleanup = make_cleanup_obstack_free (&temp_obstack);
2858 mutable_map = addrmap_create_mutable (&temp_obstack);
2859
2860 iter = index->address_table;
2861 end = iter + index->address_table_size;
2862
2863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2864
2865 while (iter < end)
2866 {
2867 ULONGEST hi, lo, cu_index;
2868 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2869 iter += 8;
2870 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2871 iter += 8;
2872 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2873 iter += 4;
2874
2875 if (lo > hi)
2876 {
2877 complaint (&symfile_complaints,
2878 _(".gdb_index address table has invalid range (%s - %s)"),
2879 hex_string (lo), hex_string (hi));
2880 continue;
2881 }
2882
2883 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2884 {
2885 complaint (&symfile_complaints,
2886 _(".gdb_index address table has invalid CU number %u"),
2887 (unsigned) cu_index);
2888 continue;
2889 }
2890
2891 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2892 dw2_get_cu (cu_index));
2893 }
2894
2895 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2896 &objfile->objfile_obstack);
2897 do_cleanups (cleanup);
2898 }
2899
2900 /* The hash function for strings in the mapped index. This is the same as
2901 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2902 implementation. This is necessary because the hash function is tied to the
2903 format of the mapped index file. The hash values do not have to match with
2904 SYMBOL_HASH_NEXT.
2905
2906 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2907
2908 static hashval_t
2909 mapped_index_string_hash (int index_version, const void *p)
2910 {
2911 const unsigned char *str = (const unsigned char *) p;
2912 hashval_t r = 0;
2913 unsigned char c;
2914
2915 while ((c = *str++) != 0)
2916 {
2917 if (index_version >= 5)
2918 c = tolower (c);
2919 r = r * 67 + c - 113;
2920 }
2921
2922 return r;
2923 }
2924
2925 /* Find a slot in the mapped index INDEX for the object named NAME.
2926 If NAME is found, set *VEC_OUT to point to the CU vector in the
2927 constant pool and return 1. If NAME cannot be found, return 0. */
2928
2929 static int
2930 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2931 offset_type **vec_out)
2932 {
2933 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2934 offset_type hash;
2935 offset_type slot, step;
2936 int (*cmp) (const char *, const char *);
2937
2938 if (current_language->la_language == language_cplus
2939 || current_language->la_language == language_java
2940 || current_language->la_language == language_fortran)
2941 {
2942 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2943 not contain any. */
2944 const char *paren = strchr (name, '(');
2945
2946 if (paren)
2947 {
2948 char *dup;
2949
2950 dup = xmalloc (paren - name + 1);
2951 memcpy (dup, name, paren - name);
2952 dup[paren - name] = 0;
2953
2954 make_cleanup (xfree, dup);
2955 name = dup;
2956 }
2957 }
2958
2959 /* Index version 4 did not support case insensitive searches. But the
2960 indices for case insensitive languages are built in lowercase, therefore
2961 simulate our NAME being searched is also lowercased. */
2962 hash = mapped_index_string_hash ((index->version == 4
2963 && case_sensitivity == case_sensitive_off
2964 ? 5 : index->version),
2965 name);
2966
2967 slot = hash & (index->symbol_table_slots - 1);
2968 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2969 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2970
2971 for (;;)
2972 {
2973 /* Convert a slot number to an offset into the table. */
2974 offset_type i = 2 * slot;
2975 const char *str;
2976 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2977 {
2978 do_cleanups (back_to);
2979 return 0;
2980 }
2981
2982 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2983 if (!cmp (name, str))
2984 {
2985 *vec_out = (offset_type *) (index->constant_pool
2986 + MAYBE_SWAP (index->symbol_table[i + 1]));
2987 do_cleanups (back_to);
2988 return 1;
2989 }
2990
2991 slot = (slot + step) & (index->symbol_table_slots - 1);
2992 }
2993 }
2994
2995 /* A helper function that reads the .gdb_index from SECTION and fills
2996 in MAP. FILENAME is the name of the file containing the section;
2997 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2998 ok to use deprecated sections.
2999
3000 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3001 out parameters that are filled in with information about the CU and
3002 TU lists in the section.
3003
3004 Returns 1 if all went well, 0 otherwise. */
3005
3006 static int
3007 read_index_from_section (struct objfile *objfile,
3008 const char *filename,
3009 int deprecated_ok,
3010 struct dwarf2_section_info *section,
3011 struct mapped_index *map,
3012 const gdb_byte **cu_list,
3013 offset_type *cu_list_elements,
3014 const gdb_byte **types_list,
3015 offset_type *types_list_elements)
3016 {
3017 const gdb_byte *addr;
3018 offset_type version;
3019 offset_type *metadata;
3020 int i;
3021
3022 if (dwarf2_section_empty_p (section))
3023 return 0;
3024
3025 /* Older elfutils strip versions could keep the section in the main
3026 executable while splitting it for the separate debug info file. */
3027 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3028 return 0;
3029
3030 dwarf2_read_section (objfile, section);
3031
3032 addr = section->buffer;
3033 /* Version check. */
3034 version = MAYBE_SWAP (*(offset_type *) addr);
3035 /* Versions earlier than 3 emitted every copy of a psymbol. This
3036 causes the index to behave very poorly for certain requests. Version 3
3037 contained incomplete addrmap. So, it seems better to just ignore such
3038 indices. */
3039 if (version < 4)
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("Skipping obsolete .gdb_index section in %s."),
3045 filename);
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Index version 4 uses a different hash function than index version
3051 5 and later.
3052
3053 Versions earlier than 6 did not emit psymbols for inlined
3054 functions. Using these files will cause GDB not to be able to
3055 set breakpoints on inlined functions by name, so we ignore these
3056 indices unless the user has done
3057 "set use-deprecated-index-sections on". */
3058 if (version < 6 && !deprecated_ok)
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("\
3064 Skipping deprecated .gdb_index section in %s.\n\
3065 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3066 to use the section anyway."),
3067 filename);
3068 warning_printed = 1;
3069 }
3070 return 0;
3071 }
3072 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3073 of the TU (for symbols coming from TUs),
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3075 Plus gold-generated indices can have duplicate entries for global symbols,
3076 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3077 These are just performance bugs, and we can't distinguish gdb-generated
3078 indices from gold-generated ones, so issue no warning here. */
3079
3080 /* Indexes with higher version than the one supported by GDB may be no
3081 longer backward compatible. */
3082 if (version > 8)
3083 return 0;
3084
3085 map->version = version;
3086 map->total_size = section->size;
3087
3088 metadata = (offset_type *) (addr + sizeof (offset_type));
3089
3090 i = 0;
3091 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3092 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3093 / 8);
3094 ++i;
3095
3096 *types_list = addr + MAYBE_SWAP (metadata[i]);
3097 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3098 - MAYBE_SWAP (metadata[i]))
3099 / 8);
3100 ++i;
3101
3102 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3103 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3104 - MAYBE_SWAP (metadata[i]));
3105 ++i;
3106
3107 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3108 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3109 - MAYBE_SWAP (metadata[i]))
3110 / (2 * sizeof (offset_type)));
3111 ++i;
3112
3113 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3114
3115 return 1;
3116 }
3117
3118
3119 /* Read the index file. If everything went ok, initialize the "quick"
3120 elements of all the CUs and return 1. Otherwise, return 0. */
3121
3122 static int
3123 dwarf2_read_index (struct objfile *objfile)
3124 {
3125 struct mapped_index local_map, *map;
3126 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3127 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3128 struct dwz_file *dwz;
3129
3130 if (!read_index_from_section (objfile, objfile_name (objfile),
3131 use_deprecated_index_sections,
3132 &dwarf2_per_objfile->gdb_index, &local_map,
3133 &cu_list, &cu_list_elements,
3134 &types_list, &types_list_elements))
3135 return 0;
3136
3137 /* Don't use the index if it's empty. */
3138 if (local_map.symbol_table_slots == 0)
3139 return 0;
3140
3141 /* If there is a .dwz file, read it so we can get its CU list as
3142 well. */
3143 dwz = dwarf2_get_dwz_file ();
3144 if (dwz != NULL)
3145 {
3146 struct mapped_index dwz_map;
3147 const gdb_byte *dwz_types_ignore;
3148 offset_type dwz_types_elements_ignore;
3149
3150 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3151 1,
3152 &dwz->gdb_index, &dwz_map,
3153 &dwz_list, &dwz_list_elements,
3154 &dwz_types_ignore,
3155 &dwz_types_elements_ignore))
3156 {
3157 warning (_("could not read '.gdb_index' section from %s; skipping"),
3158 bfd_get_filename (dwz->dwz_bfd));
3159 return 0;
3160 }
3161 }
3162
3163 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3164 dwz_list_elements);
3165
3166 if (types_list_elements)
3167 {
3168 struct dwarf2_section_info *section;
3169
3170 /* We can only handle a single .debug_types when we have an
3171 index. */
3172 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3173 return 0;
3174
3175 section = VEC_index (dwarf2_section_info_def,
3176 dwarf2_per_objfile->types, 0);
3177
3178 create_signatured_type_table_from_index (objfile, section, types_list,
3179 types_list_elements);
3180 }
3181
3182 create_addrmap_from_index (objfile, &local_map);
3183
3184 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3185 *map = local_map;
3186
3187 dwarf2_per_objfile->index_table = map;
3188 dwarf2_per_objfile->using_index = 1;
3189 dwarf2_per_objfile->quick_file_names_table =
3190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3191
3192 return 1;
3193 }
3194
3195 /* A helper for the "quick" functions which sets the global
3196 dwarf2_per_objfile according to OBJFILE. */
3197
3198 static void
3199 dw2_setup (struct objfile *objfile)
3200 {
3201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3202 gdb_assert (dwarf2_per_objfile);
3203 }
3204
3205 /* die_reader_func for dw2_get_file_names. */
3206
3207 static void
3208 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3209 const gdb_byte *info_ptr,
3210 struct die_info *comp_unit_die,
3211 int has_children,
3212 void *data)
3213 {
3214 struct dwarf2_cu *cu = reader->cu;
3215 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3216 struct objfile *objfile = dwarf2_per_objfile->objfile;
3217 struct dwarf2_per_cu_data *lh_cu;
3218 struct line_header *lh;
3219 struct attribute *attr;
3220 int i;
3221 const char *name, *comp_dir;
3222 void **slot;
3223 struct quick_file_names *qfn;
3224 unsigned int line_offset;
3225
3226 gdb_assert (! this_cu->is_debug_types);
3227
3228 /* Our callers never want to match partial units -- instead they
3229 will match the enclosing full CU. */
3230 if (comp_unit_die->tag == DW_TAG_partial_unit)
3231 {
3232 this_cu->v.quick->no_file_data = 1;
3233 return;
3234 }
3235
3236 lh_cu = this_cu;
3237 lh = NULL;
3238 slot = NULL;
3239 line_offset = 0;
3240
3241 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3242 if (attr)
3243 {
3244 struct quick_file_names find_entry;
3245
3246 line_offset = DW_UNSND (attr);
3247
3248 /* We may have already read in this line header (TU line header sharing).
3249 If we have we're done. */
3250 find_entry.hash.dwo_unit = cu->dwo_unit;
3251 find_entry.hash.line_offset.sect_off = line_offset;
3252 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3253 &find_entry, INSERT);
3254 if (*slot != NULL)
3255 {
3256 lh_cu->v.quick->file_names = *slot;
3257 return;
3258 }
3259
3260 lh = dwarf_decode_line_header (line_offset, cu);
3261 }
3262 if (lh == NULL)
3263 {
3264 lh_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
3268 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3269 qfn->hash.dwo_unit = cu->dwo_unit;
3270 qfn->hash.line_offset.sect_off = line_offset;
3271 gdb_assert (slot != NULL);
3272 *slot = qfn;
3273
3274 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3275
3276 qfn->num_file_names = lh->num_file_names;
3277 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3278 lh->num_file_names * sizeof (char *));
3279 for (i = 0; i < lh->num_file_names; ++i)
3280 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3281 qfn->real_names = NULL;
3282
3283 free_line_header (lh);
3284
3285 lh_cu->v.quick->file_names = qfn;
3286 }
3287
3288 /* A helper for the "quick" functions which attempts to read the line
3289 table for THIS_CU. */
3290
3291 static struct quick_file_names *
3292 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3293 {
3294 /* This should never be called for TUs. */
3295 gdb_assert (! this_cu->is_debug_types);
3296 /* Nor type unit groups. */
3297 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3298
3299 if (this_cu->v.quick->file_names != NULL)
3300 return this_cu->v.quick->file_names;
3301 /* If we know there is no line data, no point in looking again. */
3302 if (this_cu->v.quick->no_file_data)
3303 return NULL;
3304
3305 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3306
3307 if (this_cu->v.quick->no_file_data)
3308 return NULL;
3309 return this_cu->v.quick->file_names;
3310 }
3311
3312 /* A helper for the "quick" functions which computes and caches the
3313 real path for a given file name from the line table. */
3314
3315 static const char *
3316 dw2_get_real_path (struct objfile *objfile,
3317 struct quick_file_names *qfn, int index)
3318 {
3319 if (qfn->real_names == NULL)
3320 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3321 qfn->num_file_names, char *);
3322
3323 if (qfn->real_names[index] == NULL)
3324 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3325
3326 return qfn->real_names[index];
3327 }
3328
3329 static struct symtab *
3330 dw2_find_last_source_symtab (struct objfile *objfile)
3331 {
3332 int index;
3333
3334 dw2_setup (objfile);
3335 index = dwarf2_per_objfile->n_comp_units - 1;
3336 return dw2_instantiate_symtab (dw2_get_cu (index));
3337 }
3338
3339 /* Traversal function for dw2_forget_cached_source_info. */
3340
3341 static int
3342 dw2_free_cached_file_names (void **slot, void *info)
3343 {
3344 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3345
3346 if (file_data->real_names)
3347 {
3348 int i;
3349
3350 for (i = 0; i < file_data->num_file_names; ++i)
3351 {
3352 xfree ((void*) file_data->real_names[i]);
3353 file_data->real_names[i] = NULL;
3354 }
3355 }
3356
3357 return 1;
3358 }
3359
3360 static void
3361 dw2_forget_cached_source_info (struct objfile *objfile)
3362 {
3363 dw2_setup (objfile);
3364
3365 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3366 dw2_free_cached_file_names, NULL);
3367 }
3368
3369 /* Helper function for dw2_map_symtabs_matching_filename that expands
3370 the symtabs and calls the iterator. */
3371
3372 static int
3373 dw2_map_expand_apply (struct objfile *objfile,
3374 struct dwarf2_per_cu_data *per_cu,
3375 const char *name, const char *real_path,
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378 {
3379 struct symtab *last_made = objfile->symtabs;
3380
3381 /* Don't visit already-expanded CUs. */
3382 if (per_cu->v.quick->symtab)
3383 return 0;
3384
3385 /* This may expand more than one symtab, and we want to iterate over
3386 all of them. */
3387 dw2_instantiate_symtab (per_cu);
3388
3389 return iterate_over_some_symtabs (name, real_path, callback, data,
3390 objfile->symtabs, last_made);
3391 }
3392
3393 /* Implementation of the map_symtabs_matching_filename method. */
3394
3395 static int
3396 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3397 const char *real_path,
3398 int (*callback) (struct symtab *, void *),
3399 void *data)
3400 {
3401 int i;
3402 const char *name_basename = lbasename (name);
3403
3404 dw2_setup (objfile);
3405
3406 /* The rule is CUs specify all the files, including those used by
3407 any TU, so there's no need to scan TUs here. */
3408
3409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3410 {
3411 int j;
3412 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3413 struct quick_file_names *file_data;
3414
3415 /* We only need to look at symtabs not already expanded. */
3416 if (per_cu->v.quick->symtab)
3417 continue;
3418
3419 file_data = dw2_get_file_names (per_cu);
3420 if (file_data == NULL)
3421 continue;
3422
3423 for (j = 0; j < file_data->num_file_names; ++j)
3424 {
3425 const char *this_name = file_data->file_names[j];
3426 const char *this_real_name;
3427
3428 if (compare_filenames_for_search (this_name, name))
3429 {
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
3433 continue;
3434 }
3435
3436 /* Before we invoke realpath, which can get expensive when many
3437 files are involved, do a quick comparison of the basenames. */
3438 if (! basenames_may_differ
3439 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3440 continue;
3441
3442 this_real_name = dw2_get_real_path (objfile, file_data, j);
3443 if (compare_filenames_for_search (this_real_name, name))
3444 {
3445 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 callback, data))
3447 return 1;
3448 continue;
3449 }
3450
3451 if (real_path != NULL)
3452 {
3453 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3454 gdb_assert (IS_ABSOLUTE_PATH (name));
3455 if (this_real_name != NULL
3456 && FILENAME_CMP (real_path, this_real_name) == 0)
3457 {
3458 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3459 callback, data))
3460 return 1;
3461 continue;
3462 }
3463 }
3464 }
3465 }
3466
3467 return 0;
3468 }
3469
3470 /* Struct used to manage iterating over all CUs looking for a symbol. */
3471
3472 struct dw2_symtab_iterator
3473 {
3474 /* The internalized form of .gdb_index. */
3475 struct mapped_index *index;
3476 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3477 int want_specific_block;
3478 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3479 Unused if !WANT_SPECIFIC_BLOCK. */
3480 int block_index;
3481 /* The kind of symbol we're looking for. */
3482 domain_enum domain;
3483 /* The list of CUs from the index entry of the symbol,
3484 or NULL if not found. */
3485 offset_type *vec;
3486 /* The next element in VEC to look at. */
3487 int next;
3488 /* The number of elements in VEC, or zero if there is no match. */
3489 int length;
3490 /* Have we seen a global version of the symbol?
3491 If so we can ignore all further global instances.
3492 This is to work around gold/15646, inefficient gold-generated
3493 indices. */
3494 int global_seen;
3495 };
3496
3497 /* Initialize the index symtab iterator ITER.
3498 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3499 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3500
3501 static void
3502 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3503 struct mapped_index *index,
3504 int want_specific_block,
3505 int block_index,
3506 domain_enum domain,
3507 const char *name)
3508 {
3509 iter->index = index;
3510 iter->want_specific_block = want_specific_block;
3511 iter->block_index = block_index;
3512 iter->domain = domain;
3513 iter->next = 0;
3514 iter->global_seen = 0;
3515
3516 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3517 iter->length = MAYBE_SWAP (*iter->vec);
3518 else
3519 {
3520 iter->vec = NULL;
3521 iter->length = 0;
3522 }
3523 }
3524
3525 /* Return the next matching CU or NULL if there are no more. */
3526
3527 static struct dwarf2_per_cu_data *
3528 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3529 {
3530 for ( ; iter->next < iter->length; ++iter->next)
3531 {
3532 offset_type cu_index_and_attrs =
3533 MAYBE_SWAP (iter->vec[iter->next + 1]);
3534 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3535 struct dwarf2_per_cu_data *per_cu;
3536 int want_static = iter->block_index != GLOBAL_BLOCK;
3537 /* This value is only valid for index versions >= 7. */
3538 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3539 gdb_index_symbol_kind symbol_kind =
3540 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3541 /* Only check the symbol attributes if they're present.
3542 Indices prior to version 7 don't record them,
3543 and indices >= 7 may elide them for certain symbols
3544 (gold does this). */
3545 int attrs_valid =
3546 (iter->index->version >= 7
3547 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3548
3549 /* Don't crash on bad data. */
3550 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3551 + dwarf2_per_objfile->n_type_units))
3552 {
3553 complaint (&symfile_complaints,
3554 _(".gdb_index entry has bad CU index"
3555 " [in module %s]"),
3556 objfile_name (dwarf2_per_objfile->objfile));
3557 continue;
3558 }
3559
3560 per_cu = dw2_get_cu (cu_index);
3561
3562 /* Skip if already read in. */
3563 if (per_cu->v.quick->symtab)
3564 continue;
3565
3566 /* Check static vs global. */
3567 if (attrs_valid)
3568 {
3569 if (iter->want_specific_block
3570 && want_static != is_static)
3571 continue;
3572 /* Work around gold/15646. */
3573 if (!is_static && iter->global_seen)
3574 continue;
3575 if (!is_static)
3576 iter->global_seen = 1;
3577 }
3578
3579 /* Only check the symbol's kind if it has one. */
3580 if (attrs_valid)
3581 {
3582 switch (iter->domain)
3583 {
3584 case VAR_DOMAIN:
3585 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3587 /* Some types are also in VAR_DOMAIN. */
3588 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3589 continue;
3590 break;
3591 case STRUCT_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3593 continue;
3594 break;
3595 case LABEL_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3597 continue;
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 ++iter->next;
3605 return per_cu;
3606 }
3607
3608 return NULL;
3609 }
3610
3611 static struct symtab *
3612 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3613 const char *name, domain_enum domain)
3614 {
3615 struct symtab *stab_best = NULL;
3616 struct mapped_index *index;
3617
3618 dw2_setup (objfile);
3619
3620 index = dwarf2_per_objfile->index_table;
3621
3622 /* index is NULL if OBJF_READNOW. */
3623 if (index)
3624 {
3625 struct dw2_symtab_iterator iter;
3626 struct dwarf2_per_cu_data *per_cu;
3627
3628 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3629
3630 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3631 {
3632 struct symbol *sym = NULL;
3633 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3634
3635 /* Some caution must be observed with overloaded functions
3636 and methods, since the index will not contain any overload
3637 information (but NAME might contain it). */
3638 if (stab->primary)
3639 {
3640 struct blockvector *bv = BLOCKVECTOR (stab);
3641 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3642
3643 sym = lookup_block_symbol (block, name, domain);
3644 }
3645
3646 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3647 {
3648 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3649 return stab;
3650
3651 stab_best = stab;
3652 }
3653
3654 /* Keep looking through other CUs. */
3655 }
3656 }
3657
3658 return stab_best;
3659 }
3660
3661 static void
3662 dw2_print_stats (struct objfile *objfile)
3663 {
3664 int i, total, count;
3665
3666 dw2_setup (objfile);
3667 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3668 count = 0;
3669 for (i = 0; i < total; ++i)
3670 {
3671 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3672
3673 if (!per_cu->v.quick->symtab)
3674 ++count;
3675 }
3676 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3677 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3678 }
3679
3680 /* This dumps minimal information about the index.
3681 It is called via "mt print objfiles".
3682 One use is to verify .gdb_index has been loaded by the
3683 gdb.dwarf2/gdb-index.exp testcase. */
3684
3685 static void
3686 dw2_dump (struct objfile *objfile)
3687 {
3688 dw2_setup (objfile);
3689 gdb_assert (dwarf2_per_objfile->using_index);
3690 printf_filtered (".gdb_index:");
3691 if (dwarf2_per_objfile->index_table != NULL)
3692 {
3693 printf_filtered (" version %d\n",
3694 dwarf2_per_objfile->index_table->version);
3695 }
3696 else
3697 printf_filtered (" faked for \"readnow\"\n");
3698 printf_filtered ("\n");
3699 }
3700
3701 static void
3702 dw2_relocate (struct objfile *objfile,
3703 const struct section_offsets *new_offsets,
3704 const struct section_offsets *delta)
3705 {
3706 /* There's nothing to relocate here. */
3707 }
3708
3709 static void
3710 dw2_expand_symtabs_for_function (struct objfile *objfile,
3711 const char *func_name)
3712 {
3713 struct mapped_index *index;
3714
3715 dw2_setup (objfile);
3716
3717 index = dwarf2_per_objfile->index_table;
3718
3719 /* index is NULL if OBJF_READNOW. */
3720 if (index)
3721 {
3722 struct dw2_symtab_iterator iter;
3723 struct dwarf2_per_cu_data *per_cu;
3724
3725 /* Note: It doesn't matter what we pass for block_index here. */
3726 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3727 func_name);
3728
3729 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3730 dw2_instantiate_symtab (per_cu);
3731 }
3732 }
3733
3734 static void
3735 dw2_expand_all_symtabs (struct objfile *objfile)
3736 {
3737 int i;
3738
3739 dw2_setup (objfile);
3740
3741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3742 + dwarf2_per_objfile->n_type_units); ++i)
3743 {
3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3745
3746 dw2_instantiate_symtab (per_cu);
3747 }
3748 }
3749
3750 static void
3751 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
3753 {
3754 int i;
3755
3756 dw2_setup (objfile);
3757
3758 /* We don't need to consider type units here.
3759 This is only called for examining code, e.g. expand_line_sal.
3760 There can be an order of magnitude (or more) more type units
3761 than comp units, and we avoid them if we can. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3764 {
3765 int j;
3766 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3767 struct quick_file_names *file_data;
3768
3769 /* We only need to look at symtabs not already expanded. */
3770 if (per_cu->v.quick->symtab)
3771 continue;
3772
3773 file_data = dw2_get_file_names (per_cu);
3774 if (file_data == NULL)
3775 continue;
3776
3777 for (j = 0; j < file_data->num_file_names; ++j)
3778 {
3779 const char *this_fullname = file_data->file_names[j];
3780
3781 if (filename_cmp (this_fullname, fullname) == 0)
3782 {
3783 dw2_instantiate_symtab (per_cu);
3784 break;
3785 }
3786 }
3787 }
3788 }
3789
3790 static void
3791 dw2_map_matching_symbols (struct objfile *objfile,
3792 const char * name, domain_enum namespace,
3793 int global,
3794 int (*callback) (struct block *,
3795 struct symbol *, void *),
3796 void *data, symbol_compare_ftype *match,
3797 symbol_compare_ftype *ordered_compare)
3798 {
3799 /* Currently unimplemented; used for Ada. The function can be called if the
3800 current language is Ada for a non-Ada objfile using GNU index. As Ada
3801 does not look for non-Ada symbols this function should just return. */
3802 }
3803
3804 static void
3805 dw2_expand_symtabs_matching
3806 (struct objfile *objfile,
3807 expand_symtabs_file_matcher_ftype *file_matcher,
3808 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3809 enum search_domain kind,
3810 void *data)
3811 {
3812 int i;
3813 offset_type iter;
3814 struct mapped_index *index;
3815
3816 dw2_setup (objfile);
3817
3818 /* index_table is NULL if OBJF_READNOW. */
3819 if (!dwarf2_per_objfile->index_table)
3820 return;
3821 index = dwarf2_per_objfile->index_table;
3822
3823 if (file_matcher != NULL)
3824 {
3825 struct cleanup *cleanup;
3826 htab_t visited_found, visited_not_found;
3827
3828 visited_found = htab_create_alloc (10,
3829 htab_hash_pointer, htab_eq_pointer,
3830 NULL, xcalloc, xfree);
3831 cleanup = make_cleanup_htab_delete (visited_found);
3832 visited_not_found = htab_create_alloc (10,
3833 htab_hash_pointer, htab_eq_pointer,
3834 NULL, xcalloc, xfree);
3835 make_cleanup_htab_delete (visited_not_found);
3836
3837 /* The rule is CUs specify all the files, including those used by
3838 any TU, so there's no need to scan TUs here. */
3839
3840 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3841 {
3842 int j;
3843 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3844 struct quick_file_names *file_data;
3845 void **slot;
3846
3847 per_cu->v.quick->mark = 0;
3848
3849 /* We only need to look at symtabs not already expanded. */
3850 if (per_cu->v.quick->symtab)
3851 continue;
3852
3853 file_data = dw2_get_file_names (per_cu);
3854 if (file_data == NULL)
3855 continue;
3856
3857 if (htab_find (visited_not_found, file_data) != NULL)
3858 continue;
3859 else if (htab_find (visited_found, file_data) != NULL)
3860 {
3861 per_cu->v.quick->mark = 1;
3862 continue;
3863 }
3864
3865 for (j = 0; j < file_data->num_file_names; ++j)
3866 {
3867 const char *this_real_name;
3868
3869 if (file_matcher (file_data->file_names[j], data, 0))
3870 {
3871 per_cu->v.quick->mark = 1;
3872 break;
3873 }
3874
3875 /* Before we invoke realpath, which can get expensive when many
3876 files are involved, do a quick comparison of the basenames. */
3877 if (!basenames_may_differ
3878 && !file_matcher (lbasename (file_data->file_names[j]),
3879 data, 1))
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (file_matcher (this_real_name, data, 0))
3884 {
3885 per_cu->v.quick->mark = 1;
3886 break;
3887 }
3888 }
3889
3890 slot = htab_find_slot (per_cu->v.quick->mark
3891 ? visited_found
3892 : visited_not_found,
3893 file_data, INSERT);
3894 *slot = file_data;
3895 }
3896
3897 do_cleanups (cleanup);
3898 }
3899
3900 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3901 {
3902 offset_type idx = 2 * iter;
3903 const char *name;
3904 offset_type *vec, vec_len, vec_idx;
3905 int global_seen = 0;
3906
3907 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3908 continue;
3909
3910 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3911
3912 if (! (*symbol_matcher) (name, data))
3913 continue;
3914
3915 /* The name was matched, now expand corresponding CUs that were
3916 marked. */
3917 vec = (offset_type *) (index->constant_pool
3918 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3919 vec_len = MAYBE_SWAP (vec[0]);
3920 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3921 {
3922 struct dwarf2_per_cu_data *per_cu;
3923 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3924 /* This value is only valid for index versions >= 7. */
3925 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3926 gdb_index_symbol_kind symbol_kind =
3927 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3928 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3929 /* Only check the symbol attributes if they're present.
3930 Indices prior to version 7 don't record them,
3931 and indices >= 7 may elide them for certain symbols
3932 (gold does this). */
3933 int attrs_valid =
3934 (index->version >= 7
3935 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3936
3937 /* Work around gold/15646. */
3938 if (attrs_valid)
3939 {
3940 if (!is_static && global_seen)
3941 continue;
3942 if (!is_static)
3943 global_seen = 1;
3944 }
3945
3946 /* Only check the symbol's kind if it has one. */
3947 if (attrs_valid)
3948 {
3949 switch (kind)
3950 {
3951 case VARIABLES_DOMAIN:
3952 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3953 continue;
3954 break;
3955 case FUNCTIONS_DOMAIN:
3956 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3957 continue;
3958 break;
3959 case TYPES_DOMAIN:
3960 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3961 continue;
3962 break;
3963 default:
3964 break;
3965 }
3966 }
3967
3968 /* Don't crash on bad data. */
3969 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3970 + dwarf2_per_objfile->n_type_units))
3971 {
3972 complaint (&symfile_complaints,
3973 _(".gdb_index entry has bad CU index"
3974 " [in module %s]"), objfile_name (objfile));
3975 continue;
3976 }
3977
3978 per_cu = dw2_get_cu (cu_index);
3979 if (file_matcher == NULL || per_cu->v.quick->mark)
3980 dw2_instantiate_symtab (per_cu);
3981 }
3982 }
3983 }
3984
3985 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3986 symtab. */
3987
3988 static struct symtab *
3989 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3990 {
3991 int i;
3992
3993 if (BLOCKVECTOR (symtab) != NULL
3994 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3995 return symtab;
3996
3997 if (symtab->includes == NULL)
3998 return NULL;
3999
4000 for (i = 0; symtab->includes[i]; ++i)
4001 {
4002 struct symtab *s = symtab->includes[i];
4003
4004 s = recursively_find_pc_sect_symtab (s, pc);
4005 if (s != NULL)
4006 return s;
4007 }
4008
4009 return NULL;
4010 }
4011
4012 static struct symtab *
4013 dw2_find_pc_sect_symtab (struct objfile *objfile,
4014 struct bound_minimal_symbol msymbol,
4015 CORE_ADDR pc,
4016 struct obj_section *section,
4017 int warn_if_readin)
4018 {
4019 struct dwarf2_per_cu_data *data;
4020 struct symtab *result;
4021
4022 dw2_setup (objfile);
4023
4024 if (!objfile->psymtabs_addrmap)
4025 return NULL;
4026
4027 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4028 if (!data)
4029 return NULL;
4030
4031 if (warn_if_readin && data->v.quick->symtab)
4032 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4033 paddress (get_objfile_arch (objfile), pc));
4034
4035 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4036 gdb_assert (result != NULL);
4037 return result;
4038 }
4039
4040 static void
4041 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4042 void *data, int need_fullname)
4043 {
4044 int i;
4045 struct cleanup *cleanup;
4046 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4047 NULL, xcalloc, xfree);
4048
4049 cleanup = make_cleanup_htab_delete (visited);
4050 dw2_setup (objfile);
4051
4052 /* The rule is CUs specify all the files, including those used by
4053 any TU, so there's no need to scan TUs here.
4054 We can ignore file names coming from already-expanded CUs. */
4055
4056 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4057 {
4058 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4059
4060 if (per_cu->v.quick->symtab)
4061 {
4062 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4063 INSERT);
4064
4065 *slot = per_cu->v.quick->file_names;
4066 }
4067 }
4068
4069 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4070 {
4071 int j;
4072 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4073 struct quick_file_names *file_data;
4074 void **slot;
4075
4076 /* We only need to look at symtabs not already expanded. */
4077 if (per_cu->v.quick->symtab)
4078 continue;
4079
4080 file_data = dw2_get_file_names (per_cu);
4081 if (file_data == NULL)
4082 continue;
4083
4084 slot = htab_find_slot (visited, file_data, INSERT);
4085 if (*slot)
4086 {
4087 /* Already visited. */
4088 continue;
4089 }
4090 *slot = file_data;
4091
4092 for (j = 0; j < file_data->num_file_names; ++j)
4093 {
4094 const char *this_real_name;
4095
4096 if (need_fullname)
4097 this_real_name = dw2_get_real_path (objfile, file_data, j);
4098 else
4099 this_real_name = NULL;
4100 (*fun) (file_data->file_names[j], this_real_name, data);
4101 }
4102 }
4103
4104 do_cleanups (cleanup);
4105 }
4106
4107 static int
4108 dw2_has_symbols (struct objfile *objfile)
4109 {
4110 return 1;
4111 }
4112
4113 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4114 {
4115 dw2_has_symbols,
4116 dw2_find_last_source_symtab,
4117 dw2_forget_cached_source_info,
4118 dw2_map_symtabs_matching_filename,
4119 dw2_lookup_symbol,
4120 dw2_print_stats,
4121 dw2_dump,
4122 dw2_relocate,
4123 dw2_expand_symtabs_for_function,
4124 dw2_expand_all_symtabs,
4125 dw2_expand_symtabs_with_fullname,
4126 dw2_map_matching_symbols,
4127 dw2_expand_symtabs_matching,
4128 dw2_find_pc_sect_symtab,
4129 dw2_map_symbol_filenames
4130 };
4131
4132 /* Initialize for reading DWARF for this objfile. Return 0 if this
4133 file will use psymtabs, or 1 if using the GNU index. */
4134
4135 int
4136 dwarf2_initialize_objfile (struct objfile *objfile)
4137 {
4138 /* If we're about to read full symbols, don't bother with the
4139 indices. In this case we also don't care if some other debug
4140 format is making psymtabs, because they are all about to be
4141 expanded anyway. */
4142 if ((objfile->flags & OBJF_READNOW))
4143 {
4144 int i;
4145
4146 dwarf2_per_objfile->using_index = 1;
4147 create_all_comp_units (objfile);
4148 create_all_type_units (objfile);
4149 dwarf2_per_objfile->quick_file_names_table =
4150 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4151
4152 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4153 + dwarf2_per_objfile->n_type_units); ++i)
4154 {
4155 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4156
4157 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4158 struct dwarf2_per_cu_quick_data);
4159 }
4160
4161 /* Return 1 so that gdb sees the "quick" functions. However,
4162 these functions will be no-ops because we will have expanded
4163 all symtabs. */
4164 return 1;
4165 }
4166
4167 if (dwarf2_read_index (objfile))
4168 return 1;
4169
4170 return 0;
4171 }
4172
4173 \f
4174
4175 /* Build a partial symbol table. */
4176
4177 void
4178 dwarf2_build_psymtabs (struct objfile *objfile)
4179 {
4180 volatile struct gdb_exception except;
4181
4182 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4183 {
4184 init_psymbol_list (objfile, 1024);
4185 }
4186
4187 TRY_CATCH (except, RETURN_MASK_ERROR)
4188 {
4189 /* This isn't really ideal: all the data we allocate on the
4190 objfile's obstack is still uselessly kept around. However,
4191 freeing it seems unsafe. */
4192 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4193
4194 dwarf2_build_psymtabs_hard (objfile);
4195 discard_cleanups (cleanups);
4196 }
4197 if (except.reason < 0)
4198 exception_print (gdb_stderr, except);
4199 }
4200
4201 /* Return the total length of the CU described by HEADER. */
4202
4203 static unsigned int
4204 get_cu_length (const struct comp_unit_head *header)
4205 {
4206 return header->initial_length_size + header->length;
4207 }
4208
4209 /* Return TRUE if OFFSET is within CU_HEADER. */
4210
4211 static inline int
4212 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4213 {
4214 sect_offset bottom = { cu_header->offset.sect_off };
4215 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4216
4217 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4218 }
4219
4220 /* Find the base address of the compilation unit for range lists and
4221 location lists. It will normally be specified by DW_AT_low_pc.
4222 In DWARF-3 draft 4, the base address could be overridden by
4223 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4224 compilation units with discontinuous ranges. */
4225
4226 static void
4227 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4228 {
4229 struct attribute *attr;
4230
4231 cu->base_known = 0;
4232 cu->base_address = 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4235 if (attr)
4236 {
4237 cu->base_address = attr_value_as_address (attr);
4238 cu->base_known = 1;
4239 }
4240 else
4241 {
4242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4243 if (attr)
4244 {
4245 cu->base_address = attr_value_as_address (attr);
4246 cu->base_known = 1;
4247 }
4248 }
4249 }
4250
4251 /* Read in the comp unit header information from the debug_info at info_ptr.
4252 NOTE: This leaves members offset, first_die_offset to be filled in
4253 by the caller. */
4254
4255 static const gdb_byte *
4256 read_comp_unit_head (struct comp_unit_head *cu_header,
4257 const gdb_byte *info_ptr, bfd *abfd)
4258 {
4259 int signed_addr;
4260 unsigned int bytes_read;
4261
4262 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4263 cu_header->initial_length_size = bytes_read;
4264 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4265 info_ptr += bytes_read;
4266 cu_header->version = read_2_bytes (abfd, info_ptr);
4267 info_ptr += 2;
4268 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4269 &bytes_read);
4270 info_ptr += bytes_read;
4271 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4272 info_ptr += 1;
4273 signed_addr = bfd_get_sign_extend_vma (abfd);
4274 if (signed_addr < 0)
4275 internal_error (__FILE__, __LINE__,
4276 _("read_comp_unit_head: dwarf from non elf file"));
4277 cu_header->signed_addr_p = signed_addr;
4278
4279 return info_ptr;
4280 }
4281
4282 /* Helper function that returns the proper abbrev section for
4283 THIS_CU. */
4284
4285 static struct dwarf2_section_info *
4286 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4287 {
4288 struct dwarf2_section_info *abbrev;
4289
4290 if (this_cu->is_dwz)
4291 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4292 else
4293 abbrev = &dwarf2_per_objfile->abbrev;
4294
4295 return abbrev;
4296 }
4297
4298 /* Subroutine of read_and_check_comp_unit_head and
4299 read_and_check_type_unit_head to simplify them.
4300 Perform various error checking on the header. */
4301
4302 static void
4303 error_check_comp_unit_head (struct comp_unit_head *header,
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section)
4306 {
4307 bfd *abfd = get_section_bfd_owner (section);
4308 const char *filename = get_section_file_name (section);
4309
4310 if (header->version != 2 && header->version != 3 && header->version != 4)
4311 error (_("Dwarf Error: wrong version in compilation unit header "
4312 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4313 filename);
4314
4315 if (header->abbrev_offset.sect_off
4316 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4317 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4318 "(offset 0x%lx + 6) [in module %s]"),
4319 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4320 filename);
4321
4322 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4323 avoid potential 32-bit overflow. */
4324 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4325 > section->size)
4326 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4327 "(offset 0x%lx + 0) [in module %s]"),
4328 (long) header->length, (long) header->offset.sect_off,
4329 filename);
4330 }
4331
4332 /* Read in a CU/TU header and perform some basic error checking.
4333 The contents of the header are stored in HEADER.
4334 The result is a pointer to the start of the first DIE. */
4335
4336 static const gdb_byte *
4337 read_and_check_comp_unit_head (struct comp_unit_head *header,
4338 struct dwarf2_section_info *section,
4339 struct dwarf2_section_info *abbrev_section,
4340 const gdb_byte *info_ptr,
4341 int is_debug_types_section)
4342 {
4343 const gdb_byte *beg_of_comp_unit = info_ptr;
4344 bfd *abfd = get_section_bfd_owner (section);
4345
4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4347
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
4352 if (is_debug_types_section)
4353 info_ptr += 8 /*signature*/ + header->offset_size;
4354
4355 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4356
4357 error_check_comp_unit_head (header, section, abbrev_section);
4358
4359 return info_ptr;
4360 }
4361
4362 /* Read in the types comp unit header information from .debug_types entry at
4363 types_ptr. The result is a pointer to one past the end of the header. */
4364
4365 static const gdb_byte *
4366 read_and_check_type_unit_head (struct comp_unit_head *header,
4367 struct dwarf2_section_info *section,
4368 struct dwarf2_section_info *abbrev_section,
4369 const gdb_byte *info_ptr,
4370 ULONGEST *signature,
4371 cu_offset *type_offset_in_tu)
4372 {
4373 const gdb_byte *beg_of_comp_unit = info_ptr;
4374 bfd *abfd = get_section_bfd_owner (section);
4375
4376 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4377
4378 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4379
4380 /* If we're reading a type unit, skip over the signature and
4381 type_offset fields. */
4382 if (signature != NULL)
4383 *signature = read_8_bytes (abfd, info_ptr);
4384 info_ptr += 8;
4385 if (type_offset_in_tu != NULL)
4386 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4387 header->offset_size);
4388 info_ptr += header->offset_size;
4389
4390 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4391
4392 error_check_comp_unit_head (header, section, abbrev_section);
4393
4394 return info_ptr;
4395 }
4396
4397 /* Fetch the abbreviation table offset from a comp or type unit header. */
4398
4399 static sect_offset
4400 read_abbrev_offset (struct dwarf2_section_info *section,
4401 sect_offset offset)
4402 {
4403 bfd *abfd = get_section_bfd_owner (section);
4404 const gdb_byte *info_ptr;
4405 unsigned int length, initial_length_size, offset_size;
4406 sect_offset abbrev_offset;
4407
4408 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4409 info_ptr = section->buffer + offset.sect_off;
4410 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4411 offset_size = initial_length_size == 4 ? 4 : 8;
4412 info_ptr += initial_length_size + 2 /*version*/;
4413 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4414 return abbrev_offset;
4415 }
4416
4417 /* Allocate a new partial symtab for file named NAME and mark this new
4418 partial symtab as being an include of PST. */
4419
4420 static void
4421 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4422 struct objfile *objfile)
4423 {
4424 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4425
4426 if (!IS_ABSOLUTE_PATH (subpst->filename))
4427 {
4428 /* It shares objfile->objfile_obstack. */
4429 subpst->dirname = pst->dirname;
4430 }
4431
4432 subpst->section_offsets = pst->section_offsets;
4433 subpst->textlow = 0;
4434 subpst->texthigh = 0;
4435
4436 subpst->dependencies = (struct partial_symtab **)
4437 obstack_alloc (&objfile->objfile_obstack,
4438 sizeof (struct partial_symtab *));
4439 subpst->dependencies[0] = pst;
4440 subpst->number_of_dependencies = 1;
4441
4442 subpst->globals_offset = 0;
4443 subpst->n_global_syms = 0;
4444 subpst->statics_offset = 0;
4445 subpst->n_static_syms = 0;
4446 subpst->symtab = NULL;
4447 subpst->read_symtab = pst->read_symtab;
4448 subpst->readin = 0;
4449
4450 /* No private part is necessary for include psymtabs. This property
4451 can be used to differentiate between such include psymtabs and
4452 the regular ones. */
4453 subpst->read_symtab_private = NULL;
4454 }
4455
4456 /* Read the Line Number Program data and extract the list of files
4457 included by the source file represented by PST. Build an include
4458 partial symtab for each of these included files. */
4459
4460 static void
4461 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4462 struct die_info *die,
4463 struct partial_symtab *pst)
4464 {
4465 struct line_header *lh = NULL;
4466 struct attribute *attr;
4467
4468 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4469 if (attr)
4470 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4471 if (lh == NULL)
4472 return; /* No linetable, so no includes. */
4473
4474 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4475 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4476
4477 free_line_header (lh);
4478 }
4479
4480 static hashval_t
4481 hash_signatured_type (const void *item)
4482 {
4483 const struct signatured_type *sig_type = item;
4484
4485 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4486 return sig_type->signature;
4487 }
4488
4489 static int
4490 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4491 {
4492 const struct signatured_type *lhs = item_lhs;
4493 const struct signatured_type *rhs = item_rhs;
4494
4495 return lhs->signature == rhs->signature;
4496 }
4497
4498 /* Allocate a hash table for signatured types. */
4499
4500 static htab_t
4501 allocate_signatured_type_table (struct objfile *objfile)
4502 {
4503 return htab_create_alloc_ex (41,
4504 hash_signatured_type,
4505 eq_signatured_type,
4506 NULL,
4507 &objfile->objfile_obstack,
4508 hashtab_obstack_allocate,
4509 dummy_obstack_deallocate);
4510 }
4511
4512 /* A helper function to add a signatured type CU to a table. */
4513
4514 static int
4515 add_signatured_type_cu_to_table (void **slot, void *datum)
4516 {
4517 struct signatured_type *sigt = *slot;
4518 struct signatured_type ***datap = datum;
4519
4520 **datap = sigt;
4521 ++*datap;
4522
4523 return 1;
4524 }
4525
4526 /* Create the hash table of all entries in the .debug_types
4527 (or .debug_types.dwo) section(s).
4528 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4529 otherwise it is NULL.
4530
4531 The result is a pointer to the hash table or NULL if there are no types.
4532
4533 Note: This function processes DWO files only, not DWP files. */
4534
4535 static htab_t
4536 create_debug_types_hash_table (struct dwo_file *dwo_file,
4537 VEC (dwarf2_section_info_def) *types)
4538 {
4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
4540 htab_t types_htab = NULL;
4541 int ix;
4542 struct dwarf2_section_info *section;
4543 struct dwarf2_section_info *abbrev_section;
4544
4545 if (VEC_empty (dwarf2_section_info_def, types))
4546 return NULL;
4547
4548 abbrev_section = (dwo_file != NULL
4549 ? &dwo_file->sections.abbrev
4550 : &dwarf2_per_objfile->abbrev);
4551
4552 if (dwarf2_read_debug)
4553 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4554 dwo_file ? ".dwo" : "",
4555 get_section_file_name (abbrev_section));
4556
4557 for (ix = 0;
4558 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4559 ++ix)
4560 {
4561 bfd *abfd;
4562 const gdb_byte *info_ptr, *end_ptr;
4563
4564 dwarf2_read_section (objfile, section);
4565 info_ptr = section->buffer;
4566
4567 if (info_ptr == NULL)
4568 continue;
4569
4570 /* We can't set abfd until now because the section may be empty or
4571 not present, in which case the bfd is unknown. */
4572 abfd = get_section_bfd_owner (section);
4573
4574 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4575 because we don't need to read any dies: the signature is in the
4576 header. */
4577
4578 end_ptr = info_ptr + section->size;
4579 while (info_ptr < end_ptr)
4580 {
4581 sect_offset offset;
4582 cu_offset type_offset_in_tu;
4583 ULONGEST signature;
4584 struct signatured_type *sig_type;
4585 struct dwo_unit *dwo_tu;
4586 void **slot;
4587 const gdb_byte *ptr = info_ptr;
4588 struct comp_unit_head header;
4589 unsigned int length;
4590
4591 offset.sect_off = ptr - section->buffer;
4592
4593 /* We need to read the type's signature in order to build the hash
4594 table, but we don't need anything else just yet. */
4595
4596 ptr = read_and_check_type_unit_head (&header, section,
4597 abbrev_section, ptr,
4598 &signature, &type_offset_in_tu);
4599
4600 length = get_cu_length (&header);
4601
4602 /* Skip dummy type units. */
4603 if (ptr >= info_ptr + length
4604 || peek_abbrev_code (abfd, ptr) == 0)
4605 {
4606 info_ptr += length;
4607 continue;
4608 }
4609
4610 if (types_htab == NULL)
4611 {
4612 if (dwo_file)
4613 types_htab = allocate_dwo_unit_table (objfile);
4614 else
4615 types_htab = allocate_signatured_type_table (objfile);
4616 }
4617
4618 if (dwo_file)
4619 {
4620 sig_type = NULL;
4621 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4622 struct dwo_unit);
4623 dwo_tu->dwo_file = dwo_file;
4624 dwo_tu->signature = signature;
4625 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4626 dwo_tu->section = section;
4627 dwo_tu->offset = offset;
4628 dwo_tu->length = length;
4629 }
4630 else
4631 {
4632 /* N.B.: type_offset is not usable if this type uses a DWO file.
4633 The real type_offset is in the DWO file. */
4634 dwo_tu = NULL;
4635 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4636 struct signatured_type);
4637 sig_type->signature = signature;
4638 sig_type->type_offset_in_tu = type_offset_in_tu;
4639 sig_type->per_cu.objfile = objfile;
4640 sig_type->per_cu.is_debug_types = 1;
4641 sig_type->per_cu.section = section;
4642 sig_type->per_cu.offset = offset;
4643 sig_type->per_cu.length = length;
4644 }
4645
4646 slot = htab_find_slot (types_htab,
4647 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4648 INSERT);
4649 gdb_assert (slot != NULL);
4650 if (*slot != NULL)
4651 {
4652 sect_offset dup_offset;
4653
4654 if (dwo_file)
4655 {
4656 const struct dwo_unit *dup_tu = *slot;
4657
4658 dup_offset = dup_tu->offset;
4659 }
4660 else
4661 {
4662 const struct signatured_type *dup_tu = *slot;
4663
4664 dup_offset = dup_tu->per_cu.offset;
4665 }
4666
4667 complaint (&symfile_complaints,
4668 _("debug type entry at offset 0x%x is duplicate to"
4669 " the entry at offset 0x%x, signature %s"),
4670 offset.sect_off, dup_offset.sect_off,
4671 hex_string (signature));
4672 }
4673 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4674
4675 if (dwarf2_read_debug > 1)
4676 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4677 offset.sect_off,
4678 hex_string (signature));
4679
4680 info_ptr += length;
4681 }
4682 }
4683
4684 return types_htab;
4685 }
4686
4687 /* Create the hash table of all entries in the .debug_types section,
4688 and initialize all_type_units.
4689 The result is zero if there is an error (e.g. missing .debug_types section),
4690 otherwise non-zero. */
4691
4692 static int
4693 create_all_type_units (struct objfile *objfile)
4694 {
4695 htab_t types_htab;
4696 struct signatured_type **iter;
4697
4698 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4699 if (types_htab == NULL)
4700 {
4701 dwarf2_per_objfile->signatured_types = NULL;
4702 return 0;
4703 }
4704
4705 dwarf2_per_objfile->signatured_types = types_htab;
4706
4707 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4708 dwarf2_per_objfile->all_type_units
4709 = xmalloc (dwarf2_per_objfile->n_type_units
4710 * sizeof (struct signatured_type *));
4711 iter = &dwarf2_per_objfile->all_type_units[0];
4712 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4713 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4714 == dwarf2_per_objfile->n_type_units);
4715
4716 return 1;
4717 }
4718
4719 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4720 Fill in SIG_ENTRY with DWO_ENTRY. */
4721
4722 static void
4723 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4724 struct signatured_type *sig_entry,
4725 struct dwo_unit *dwo_entry)
4726 {
4727 /* Make sure we're not clobbering something we don't expect to. */
4728 gdb_assert (! sig_entry->per_cu.queued);
4729 gdb_assert (sig_entry->per_cu.cu == NULL);
4730 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4731 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4732 gdb_assert (sig_entry->signature == dwo_entry->signature);
4733 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4734 gdb_assert (sig_entry->type_unit_group == NULL);
4735 gdb_assert (sig_entry->dwo_unit == NULL);
4736
4737 sig_entry->per_cu.section = dwo_entry->section;
4738 sig_entry->per_cu.offset = dwo_entry->offset;
4739 sig_entry->per_cu.length = dwo_entry->length;
4740 sig_entry->per_cu.reading_dwo_directly = 1;
4741 sig_entry->per_cu.objfile = objfile;
4742 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4743 sig_entry->dwo_unit = dwo_entry;
4744 }
4745
4746 /* Subroutine of lookup_signatured_type.
4747 If we haven't read the TU yet, create the signatured_type data structure
4748 for a TU to be read in directly from a DWO file, bypassing the stub.
4749 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4750 using .gdb_index, then when reading a CU we want to stay in the DWO file
4751 containing that CU. Otherwise we could end up reading several other DWO
4752 files (due to comdat folding) to process the transitive closure of all the
4753 mentioned TUs, and that can be slow. The current DWO file will have every
4754 type signature that it needs.
4755 We only do this for .gdb_index because in the psymtab case we already have
4756 to read all the DWOs to build the type unit groups. */
4757
4758 static struct signatured_type *
4759 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4760 {
4761 struct objfile *objfile = dwarf2_per_objfile->objfile;
4762 struct dwo_file *dwo_file;
4763 struct dwo_unit find_dwo_entry, *dwo_entry;
4764 struct signatured_type find_sig_entry, *sig_entry;
4765
4766 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4767
4768 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4769 dwo_unit of the TU itself. */
4770 dwo_file = cu->dwo_unit->dwo_file;
4771
4772 /* We only ever need to read in one copy of a signatured type.
4773 Just use the global signatured_types array. If this is the first time
4774 we're reading this type, replace the recorded data from .gdb_index with
4775 this TU. */
4776
4777 if (dwarf2_per_objfile->signatured_types == NULL)
4778 return NULL;
4779 find_sig_entry.signature = sig;
4780 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4781 if (sig_entry == NULL)
4782 return NULL;
4783
4784 /* We can get here with the TU already read, *or* in the process of being
4785 read. Don't reassign it if that's the case. Also note that if the TU is
4786 already being read, it may not have come from a DWO, the program may be
4787 a mix of Fission-compiled code and non-Fission-compiled code. */
4788 /* Have we already tried to read this TU? */
4789 if (sig_entry->per_cu.tu_read)
4790 return sig_entry;
4791
4792 /* Ok, this is the first time we're reading this TU. */
4793 if (dwo_file->tus == NULL)
4794 return NULL;
4795 find_dwo_entry.signature = sig;
4796 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4797 if (dwo_entry == NULL)
4798 return NULL;
4799
4800 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4801 sig_entry->per_cu.tu_read = 1;
4802 return sig_entry;
4803 }
4804
4805 /* Subroutine of lookup_dwp_signatured_type.
4806 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4807
4808 static struct signatured_type *
4809 add_type_unit (ULONGEST sig)
4810 {
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814 void **slot;
4815
4816 ++n_type_units;
4817 dwarf2_per_objfile->all_type_units =
4818 xrealloc (dwarf2_per_objfile->all_type_units,
4819 n_type_units * sizeof (struct signatured_type *));
4820 dwarf2_per_objfile->n_type_units = n_type_units;
4821 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct signatured_type);
4823 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4824 sig_type->signature = sig;
4825 sig_type->per_cu.is_debug_types = 1;
4826 sig_type->per_cu.v.quick =
4827 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4828 struct dwarf2_per_cu_quick_data);
4829 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4830 sig_type, INSERT);
4831 gdb_assert (*slot == NULL);
4832 *slot = sig_type;
4833 /* The rest of sig_type must be filled in by the caller. */
4834 return sig_type;
4835 }
4836
4837 /* Subroutine of lookup_signatured_type.
4838 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4839 then try the DWP file.
4840 Normally this "can't happen", but if there's a bug in signature
4841 generation and/or the DWP file is built incorrectly, it can happen.
4842 Using the type directly from the DWP file means we don't have the stub
4843 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4844 not critical. [Eventually the stub may go away for type units anyway.] */
4845
4846 static struct signatured_type *
4847 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4848 {
4849 struct objfile *objfile = dwarf2_per_objfile->objfile;
4850 struct dwp_file *dwp_file = get_dwp_file ();
4851 struct dwo_unit *dwo_entry;
4852 struct signatured_type find_sig_entry, *sig_entry;
4853
4854 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4855 gdb_assert (dwp_file != NULL);
4856
4857 if (dwarf2_per_objfile->signatured_types != NULL)
4858 {
4859 find_sig_entry.signature = sig;
4860 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4861 &find_sig_entry);
4862 if (sig_entry != NULL)
4863 return sig_entry;
4864 }
4865
4866 /* This is the "shouldn't happen" case.
4867 Try the DWP file and hope for the best. */
4868 if (dwp_file->tus == NULL)
4869 return NULL;
4870 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4871 sig, 1 /* is_debug_types */);
4872 if (dwo_entry == NULL)
4873 return NULL;
4874
4875 sig_entry = add_type_unit (sig);
4876 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4877
4878 /* The caller will signal a complaint if we return NULL.
4879 Here we don't return NULL but we still want to complain. */
4880 complaint (&symfile_complaints,
4881 _("Bad type signature %s referenced by %s at 0x%x,"
4882 " coping by using copy in DWP [in module %s]"),
4883 hex_string (sig),
4884 cu->per_cu->is_debug_types ? "TU" : "CU",
4885 cu->per_cu->offset.sect_off,
4886 objfile_name (objfile));
4887
4888 return sig_entry;
4889 }
4890
4891 /* Lookup a signature based type for DW_FORM_ref_sig8.
4892 Returns NULL if signature SIG is not present in the table.
4893 It is up to the caller to complain about this. */
4894
4895 static struct signatured_type *
4896 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4897 {
4898 if (cu->dwo_unit
4899 && dwarf2_per_objfile->using_index)
4900 {
4901 /* We're in a DWO/DWP file, and we're using .gdb_index.
4902 These cases require special processing. */
4903 if (get_dwp_file () == NULL)
4904 return lookup_dwo_signatured_type (cu, sig);
4905 else
4906 return lookup_dwp_signatured_type (cu, sig);
4907 }
4908 else
4909 {
4910 struct signatured_type find_entry, *entry;
4911
4912 if (dwarf2_per_objfile->signatured_types == NULL)
4913 return NULL;
4914 find_entry.signature = sig;
4915 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4916 return entry;
4917 }
4918 }
4919 \f
4920 /* Low level DIE reading support. */
4921
4922 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4923
4924 static void
4925 init_cu_die_reader (struct die_reader_specs *reader,
4926 struct dwarf2_cu *cu,
4927 struct dwarf2_section_info *section,
4928 struct dwo_file *dwo_file)
4929 {
4930 gdb_assert (section->readin && section->buffer != NULL);
4931 reader->abfd = get_section_bfd_owner (section);
4932 reader->cu = cu;
4933 reader->dwo_file = dwo_file;
4934 reader->die_section = section;
4935 reader->buffer = section->buffer;
4936 reader->buffer_end = section->buffer + section->size;
4937 reader->comp_dir = NULL;
4938 }
4939
4940 /* Subroutine of init_cutu_and_read_dies to simplify it.
4941 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4942 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4943 already.
4944
4945 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4946 from it to the DIE in the DWO. If NULL we are skipping the stub.
4947 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4948 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4949 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4950 STUB_COMP_DIR must be non-NULL.
4951 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4952 are filled in with the info of the DIE from the DWO file.
4953 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4954 provided an abbrev table to use.
4955 The result is non-zero if a valid (non-dummy) DIE was found. */
4956
4957 static int
4958 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4959 struct dwo_unit *dwo_unit,
4960 int abbrev_table_provided,
4961 struct die_info *stub_comp_unit_die,
4962 const char *stub_comp_dir,
4963 struct die_reader_specs *result_reader,
4964 const gdb_byte **result_info_ptr,
4965 struct die_info **result_comp_unit_die,
4966 int *result_has_children)
4967 {
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwarf2_cu *cu = this_cu->cu;
4970 struct dwarf2_section_info *section;
4971 bfd *abfd;
4972 const gdb_byte *begin_info_ptr, *info_ptr;
4973 const char *comp_dir_string;
4974 ULONGEST signature; /* Or dwo_id. */
4975 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4976 int i,num_extra_attrs;
4977 struct dwarf2_section_info *dwo_abbrev_section;
4978 struct attribute *attr;
4979 struct die_info *comp_unit_die;
4980
4981 /* Exactly one of these must be provided. */
4982 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) == 1);
4983
4984 /* These attributes aren't processed until later:
4985 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4986 However, the attribute is found in the stub which we won't have later.
4987 In order to not impose this complication on the rest of the code,
4988 we read them here and copy them to the DWO CU/TU die. */
4989
4990 stmt_list = NULL;
4991 low_pc = NULL;
4992 high_pc = NULL;
4993 ranges = NULL;
4994 comp_dir = NULL;
4995
4996 if (stub_comp_unit_die != NULL)
4997 {
4998 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4999 DWO file. */
5000 if (! this_cu->is_debug_types)
5001 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5002 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5003 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5004 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5005 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5006
5007 /* There should be a DW_AT_addr_base attribute here (if needed).
5008 We need the value before we can process DW_FORM_GNU_addr_index. */
5009 cu->addr_base = 0;
5010 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5011 if (attr)
5012 cu->addr_base = DW_UNSND (attr);
5013
5014 /* There should be a DW_AT_ranges_base attribute here (if needed).
5015 We need the value before we can process DW_AT_ranges. */
5016 cu->ranges_base = 0;
5017 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5018 if (attr)
5019 cu->ranges_base = DW_UNSND (attr);
5020 }
5021 else if (stub_comp_dir != NULL)
5022 {
5023 /* Reconstruct the comp_dir attribute to simplify the code below. */
5024 comp_dir = (struct attribute *)
5025 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5026 comp_dir->name = DW_AT_comp_dir;
5027 comp_dir->form = DW_FORM_string;
5028 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5029 DW_STRING (comp_dir) = stub_comp_dir;
5030 }
5031
5032 /* Set up for reading the DWO CU/TU. */
5033 cu->dwo_unit = dwo_unit;
5034 section = dwo_unit->section;
5035 dwarf2_read_section (objfile, section);
5036 abfd = get_section_bfd_owner (section);
5037 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5038 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5039 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5040
5041 if (this_cu->is_debug_types)
5042 {
5043 ULONGEST header_signature;
5044 cu_offset type_offset_in_tu;
5045 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5046
5047 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5048 dwo_abbrev_section,
5049 info_ptr,
5050 &header_signature,
5051 &type_offset_in_tu);
5052 /* This is not an assert because it can be caused by bad debug info. */
5053 if (sig_type->signature != header_signature)
5054 {
5055 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5056 " TU at offset 0x%x [in module %s]"),
5057 hex_string (sig_type->signature),
5058 hex_string (header_signature),
5059 dwo_unit->offset.sect_off,
5060 bfd_get_filename (abfd));
5061 }
5062 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5063 /* For DWOs coming from DWP files, we don't know the CU length
5064 nor the type's offset in the TU until now. */
5065 dwo_unit->length = get_cu_length (&cu->header);
5066 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5067
5068 /* Establish the type offset that can be used to lookup the type.
5069 For DWO files, we don't know it until now. */
5070 sig_type->type_offset_in_section.sect_off =
5071 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5072 }
5073 else
5074 {
5075 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5076 dwo_abbrev_section,
5077 info_ptr, 0);
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 }
5083
5084 /* Replace the CU's original abbrev table with the DWO's.
5085 Reminder: We can't read the abbrev table until we've read the header. */
5086 if (abbrev_table_provided)
5087 {
5088 /* Don't free the provided abbrev table, the caller of
5089 init_cutu_and_read_dies owns it. */
5090 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5091 /* Ensure the DWO abbrev table gets freed. */
5092 make_cleanup (dwarf2_free_abbrev_table, cu);
5093 }
5094 else
5095 {
5096 dwarf2_free_abbrev_table (cu);
5097 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5098 /* Leave any existing abbrev table cleanup as is. */
5099 }
5100
5101 /* Read in the die, but leave space to copy over the attributes
5102 from the stub. This has the benefit of simplifying the rest of
5103 the code - all the work to maintain the illusion of a single
5104 DW_TAG_{compile,type}_unit DIE is done here. */
5105 num_extra_attrs = ((stmt_list != NULL)
5106 + (low_pc != NULL)
5107 + (high_pc != NULL)
5108 + (ranges != NULL)
5109 + (comp_dir != NULL));
5110 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5111 result_has_children, num_extra_attrs);
5112
5113 /* Copy over the attributes from the stub to the DIE we just read in. */
5114 comp_unit_die = *result_comp_unit_die;
5115 i = comp_unit_die->num_attrs;
5116 if (stmt_list != NULL)
5117 comp_unit_die->attrs[i++] = *stmt_list;
5118 if (low_pc != NULL)
5119 comp_unit_die->attrs[i++] = *low_pc;
5120 if (high_pc != NULL)
5121 comp_unit_die->attrs[i++] = *high_pc;
5122 if (ranges != NULL)
5123 comp_unit_die->attrs[i++] = *ranges;
5124 if (comp_dir != NULL)
5125 comp_unit_die->attrs[i++] = *comp_dir;
5126 comp_unit_die->num_attrs += num_extra_attrs;
5127
5128 if (dwarf2_die_debug)
5129 {
5130 fprintf_unfiltered (gdb_stdlog,
5131 "Read die from %s@0x%x of %s:\n",
5132 get_section_name (section),
5133 (unsigned) (begin_info_ptr - section->buffer),
5134 bfd_get_filename (abfd));
5135 dump_die (comp_unit_die, dwarf2_die_debug);
5136 }
5137
5138 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5139 TUs by skipping the stub and going directly to the entry in the DWO file.
5140 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5141 to get it via circuitous means. Blech. */
5142 if (comp_dir != NULL)
5143 result_reader->comp_dir = DW_STRING (comp_dir);
5144
5145 /* Skip dummy compilation units. */
5146 if (info_ptr >= begin_info_ptr + dwo_unit->length
5147 || peek_abbrev_code (abfd, info_ptr) == 0)
5148 return 0;
5149
5150 *result_info_ptr = info_ptr;
5151 return 1;
5152 }
5153
5154 /* Subroutine of init_cutu_and_read_dies to simplify it.
5155 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5156 Returns NULL if the specified DWO unit cannot be found. */
5157
5158 static struct dwo_unit *
5159 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5160 struct die_info *comp_unit_die)
5161 {
5162 struct dwarf2_cu *cu = this_cu->cu;
5163 struct attribute *attr;
5164 ULONGEST signature;
5165 struct dwo_unit *dwo_unit;
5166 const char *comp_dir, *dwo_name;
5167
5168 gdb_assert (cu != NULL);
5169
5170 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5171 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5172 gdb_assert (attr != NULL);
5173 dwo_name = DW_STRING (attr);
5174 comp_dir = NULL;
5175 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5176 if (attr)
5177 comp_dir = DW_STRING (attr);
5178
5179 if (this_cu->is_debug_types)
5180 {
5181 struct signatured_type *sig_type;
5182
5183 /* Since this_cu is the first member of struct signatured_type,
5184 we can go from a pointer to one to a pointer to the other. */
5185 sig_type = (struct signatured_type *) this_cu;
5186 signature = sig_type->signature;
5187 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5188 }
5189 else
5190 {
5191 struct attribute *attr;
5192
5193 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5194 if (! attr)
5195 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5196 " [in module %s]"),
5197 dwo_name, objfile_name (this_cu->objfile));
5198 signature = DW_UNSND (attr);
5199 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5200 signature);
5201 }
5202
5203 return dwo_unit;
5204 }
5205
5206 /* Subroutine of init_cutu_and_read_dies to simplify it.
5207 Read a TU directly from a DWO file, bypassing the stub. */
5208
5209 static void
5210 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5211 die_reader_func_ftype *die_reader_func,
5212 void *data)
5213 {
5214 struct dwarf2_cu *cu;
5215 struct signatured_type *sig_type;
5216 struct cleanup *cleanups, *free_cu_cleanup;
5217 struct die_reader_specs reader;
5218 const gdb_byte *info_ptr;
5219 struct die_info *comp_unit_die;
5220 int has_children;
5221
5222 /* Verify we can do the following downcast, and that we have the
5223 data we need. */
5224 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5225 sig_type = (struct signatured_type *) this_cu;
5226 gdb_assert (sig_type->dwo_unit != NULL);
5227
5228 cleanups = make_cleanup (null_cleanup, NULL);
5229
5230 gdb_assert (this_cu->cu == NULL);
5231 cu = xmalloc (sizeof (*cu));
5232 init_one_comp_unit (cu, this_cu);
5233 /* If an error occurs while loading, release our storage. */
5234 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5235
5236 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5237 0 /* abbrev_table_provided */,
5238 NULL /* stub_comp_unit_die */,
5239 sig_type->dwo_unit->dwo_file->comp_dir,
5240 &reader, &info_ptr,
5241 &comp_unit_die, &has_children) == 0)
5242 {
5243 /* Dummy die. */
5244 do_cleanups (cleanups);
5245 return;
5246 }
5247
5248 /* All the "real" work is done here. */
5249 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5250
5251 /* This duplicates some code in init_cutu_and_read_dies,
5252 but the alternative is making the latter more complex.
5253 This function is only for the special case of using DWO files directly:
5254 no point in overly complicating the general case just to handle this. */
5255 if (keep)
5256 {
5257 /* We've successfully allocated this compilation unit. Let our
5258 caller clean it up when finished with it. */
5259 discard_cleanups (free_cu_cleanup);
5260
5261 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5262 So we have to manually free the abbrev table. */
5263 dwarf2_free_abbrev_table (cu);
5264
5265 /* Link this CU into read_in_chain. */
5266 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5267 dwarf2_per_objfile->read_in_chain = this_cu;
5268 }
5269 else
5270 do_cleanups (free_cu_cleanup);
5271
5272 do_cleanups (cleanups);
5273 }
5274
5275 /* Initialize a CU (or TU) and read its DIEs.
5276 If the CU defers to a DWO file, read the DWO file as well.
5277
5278 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5279 Otherwise the table specified in the comp unit header is read in and used.
5280 This is an optimization for when we already have the abbrev table.
5281
5282 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5283 Otherwise, a new CU is allocated with xmalloc.
5284
5285 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5286 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5287
5288 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5289 linker) then DIE_READER_FUNC will not get called. */
5290
5291 static void
5292 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5293 struct abbrev_table *abbrev_table,
5294 int use_existing_cu, int keep,
5295 die_reader_func_ftype *die_reader_func,
5296 void *data)
5297 {
5298 struct objfile *objfile = dwarf2_per_objfile->objfile;
5299 struct dwarf2_section_info *section = this_cu->section;
5300 bfd *abfd = get_section_bfd_owner (section);
5301 struct dwarf2_cu *cu;
5302 const gdb_byte *begin_info_ptr, *info_ptr;
5303 struct die_reader_specs reader;
5304 struct die_info *comp_unit_die;
5305 int has_children;
5306 struct attribute *attr;
5307 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5308 struct signatured_type *sig_type = NULL;
5309 struct dwarf2_section_info *abbrev_section;
5310 /* Non-zero if CU currently points to a DWO file and we need to
5311 reread it. When this happens we need to reread the skeleton die
5312 before we can reread the DWO file (this only applies to CUs, not TUs). */
5313 int rereading_dwo_cu = 0;
5314
5315 if (dwarf2_die_debug)
5316 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5317 this_cu->is_debug_types ? "type" : "comp",
5318 this_cu->offset.sect_off);
5319
5320 if (use_existing_cu)
5321 gdb_assert (keep);
5322
5323 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5324 file (instead of going through the stub), short-circuit all of this. */
5325 if (this_cu->reading_dwo_directly)
5326 {
5327 /* Narrow down the scope of possibilities to have to understand. */
5328 gdb_assert (this_cu->is_debug_types);
5329 gdb_assert (abbrev_table == NULL);
5330 gdb_assert (!use_existing_cu);
5331 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5332 return;
5333 }
5334
5335 cleanups = make_cleanup (null_cleanup, NULL);
5336
5337 /* This is cheap if the section is already read in. */
5338 dwarf2_read_section (objfile, section);
5339
5340 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5341
5342 abbrev_section = get_abbrev_section_for_cu (this_cu);
5343
5344 if (use_existing_cu && this_cu->cu != NULL)
5345 {
5346 cu = this_cu->cu;
5347
5348 /* If this CU is from a DWO file we need to start over, we need to
5349 refetch the attributes from the skeleton CU.
5350 This could be optimized by retrieving those attributes from when we
5351 were here the first time: the previous comp_unit_die was stored in
5352 comp_unit_obstack. But there's no data yet that we need this
5353 optimization. */
5354 if (cu->dwo_unit != NULL)
5355 rereading_dwo_cu = 1;
5356 }
5357 else
5358 {
5359 /* If !use_existing_cu, this_cu->cu must be NULL. */
5360 gdb_assert (this_cu->cu == NULL);
5361
5362 cu = xmalloc (sizeof (*cu));
5363 init_one_comp_unit (cu, this_cu);
5364
5365 /* If an error occurs while loading, release our storage. */
5366 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5367 }
5368
5369 /* Get the header. */
5370 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5371 {
5372 /* We already have the header, there's no need to read it in again. */
5373 info_ptr += cu->header.first_die_offset.cu_off;
5374 }
5375 else
5376 {
5377 if (this_cu->is_debug_types)
5378 {
5379 ULONGEST signature;
5380 cu_offset type_offset_in_tu;
5381
5382 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5383 abbrev_section, info_ptr,
5384 &signature,
5385 &type_offset_in_tu);
5386
5387 /* Since per_cu is the first member of struct signatured_type,
5388 we can go from a pointer to one to a pointer to the other. */
5389 sig_type = (struct signatured_type *) this_cu;
5390 gdb_assert (sig_type->signature == signature);
5391 gdb_assert (sig_type->type_offset_in_tu.cu_off
5392 == type_offset_in_tu.cu_off);
5393 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5394
5395 /* LENGTH has not been set yet for type units if we're
5396 using .gdb_index. */
5397 this_cu->length = get_cu_length (&cu->header);
5398
5399 /* Establish the type offset that can be used to lookup the type. */
5400 sig_type->type_offset_in_section.sect_off =
5401 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5402 }
5403 else
5404 {
5405 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5406 abbrev_section,
5407 info_ptr, 0);
5408
5409 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5410 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5411 }
5412 }
5413
5414 /* Skip dummy compilation units. */
5415 if (info_ptr >= begin_info_ptr + this_cu->length
5416 || peek_abbrev_code (abfd, info_ptr) == 0)
5417 {
5418 do_cleanups (cleanups);
5419 return;
5420 }
5421
5422 /* If we don't have them yet, read the abbrevs for this compilation unit.
5423 And if we need to read them now, make sure they're freed when we're
5424 done. Note that it's important that if the CU had an abbrev table
5425 on entry we don't free it when we're done: Somewhere up the call stack
5426 it may be in use. */
5427 if (abbrev_table != NULL)
5428 {
5429 gdb_assert (cu->abbrev_table == NULL);
5430 gdb_assert (cu->header.abbrev_offset.sect_off
5431 == abbrev_table->offset.sect_off);
5432 cu->abbrev_table = abbrev_table;
5433 }
5434 else if (cu->abbrev_table == NULL)
5435 {
5436 dwarf2_read_abbrevs (cu, abbrev_section);
5437 make_cleanup (dwarf2_free_abbrev_table, cu);
5438 }
5439 else if (rereading_dwo_cu)
5440 {
5441 dwarf2_free_abbrev_table (cu);
5442 dwarf2_read_abbrevs (cu, abbrev_section);
5443 }
5444
5445 /* Read the top level CU/TU die. */
5446 init_cu_die_reader (&reader, cu, section, NULL);
5447 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5448
5449 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5450 from the DWO file.
5451 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5452 DWO CU, that this test will fail (the attribute will not be present). */
5453 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5454 if (attr)
5455 {
5456 struct dwo_unit *dwo_unit;
5457 struct die_info *dwo_comp_unit_die;
5458
5459 if (has_children)
5460 {
5461 complaint (&symfile_complaints,
5462 _("compilation unit with DW_AT_GNU_dwo_name"
5463 " has children (offset 0x%x) [in module %s]"),
5464 this_cu->offset.sect_off, bfd_get_filename (abfd));
5465 }
5466 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5467 if (dwo_unit != NULL)
5468 {
5469 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5470 abbrev_table != NULL,
5471 comp_unit_die, NULL,
5472 &reader, &info_ptr,
5473 &dwo_comp_unit_die, &has_children) == 0)
5474 {
5475 /* Dummy die. */
5476 do_cleanups (cleanups);
5477 return;
5478 }
5479 comp_unit_die = dwo_comp_unit_die;
5480 }
5481 else
5482 {
5483 /* Yikes, we couldn't find the rest of the DIE, we only have
5484 the stub. A complaint has already been logged. There's
5485 not much more we can do except pass on the stub DIE to
5486 die_reader_func. We don't want to throw an error on bad
5487 debug info. */
5488 }
5489 }
5490
5491 /* All of the above is setup for this call. Yikes. */
5492 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5493
5494 /* Done, clean up. */
5495 if (free_cu_cleanup != NULL)
5496 {
5497 if (keep)
5498 {
5499 /* We've successfully allocated this compilation unit. Let our
5500 caller clean it up when finished with it. */
5501 discard_cleanups (free_cu_cleanup);
5502
5503 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5504 So we have to manually free the abbrev table. */
5505 dwarf2_free_abbrev_table (cu);
5506
5507 /* Link this CU into read_in_chain. */
5508 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5509 dwarf2_per_objfile->read_in_chain = this_cu;
5510 }
5511 else
5512 do_cleanups (free_cu_cleanup);
5513 }
5514
5515 do_cleanups (cleanups);
5516 }
5517
5518 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5519 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5520 to have already done the lookup to find the DWO file).
5521
5522 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5523 THIS_CU->is_debug_types, but nothing else.
5524
5525 We fill in THIS_CU->length.
5526
5527 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5528 linker) then DIE_READER_FUNC will not get called.
5529
5530 THIS_CU->cu is always freed when done.
5531 This is done in order to not leave THIS_CU->cu in a state where we have
5532 to care whether it refers to the "main" CU or the DWO CU. */
5533
5534 static void
5535 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5536 struct dwo_file *dwo_file,
5537 die_reader_func_ftype *die_reader_func,
5538 void *data)
5539 {
5540 struct objfile *objfile = dwarf2_per_objfile->objfile;
5541 struct dwarf2_section_info *section = this_cu->section;
5542 bfd *abfd = get_section_bfd_owner (section);
5543 struct dwarf2_section_info *abbrev_section;
5544 struct dwarf2_cu cu;
5545 const gdb_byte *begin_info_ptr, *info_ptr;
5546 struct die_reader_specs reader;
5547 struct cleanup *cleanups;
5548 struct die_info *comp_unit_die;
5549 int has_children;
5550
5551 if (dwarf2_die_debug)
5552 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5553 this_cu->is_debug_types ? "type" : "comp",
5554 this_cu->offset.sect_off);
5555
5556 gdb_assert (this_cu->cu == NULL);
5557
5558 abbrev_section = (dwo_file != NULL
5559 ? &dwo_file->sections.abbrev
5560 : get_abbrev_section_for_cu (this_cu));
5561
5562 /* This is cheap if the section is already read in. */
5563 dwarf2_read_section (objfile, section);
5564
5565 init_one_comp_unit (&cu, this_cu);
5566
5567 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5568
5569 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5570 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5571 abbrev_section, info_ptr,
5572 this_cu->is_debug_types);
5573
5574 this_cu->length = get_cu_length (&cu.header);
5575
5576 /* Skip dummy compilation units. */
5577 if (info_ptr >= begin_info_ptr + this_cu->length
5578 || peek_abbrev_code (abfd, info_ptr) == 0)
5579 {
5580 do_cleanups (cleanups);
5581 return;
5582 }
5583
5584 dwarf2_read_abbrevs (&cu, abbrev_section);
5585 make_cleanup (dwarf2_free_abbrev_table, &cu);
5586
5587 init_cu_die_reader (&reader, &cu, section, dwo_file);
5588 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5589
5590 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5591
5592 do_cleanups (cleanups);
5593 }
5594
5595 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5596 does not lookup the specified DWO file.
5597 This cannot be used to read DWO files.
5598
5599 THIS_CU->cu is always freed when done.
5600 This is done in order to not leave THIS_CU->cu in a state where we have
5601 to care whether it refers to the "main" CU or the DWO CU.
5602 We can revisit this if the data shows there's a performance issue. */
5603
5604 static void
5605 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5606 die_reader_func_ftype *die_reader_func,
5607 void *data)
5608 {
5609 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5610 }
5611 \f
5612 /* Type Unit Groups.
5613
5614 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5615 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5616 so that all types coming from the same compilation (.o file) are grouped
5617 together. A future step could be to put the types in the same symtab as
5618 the CU the types ultimately came from. */
5619
5620 static hashval_t
5621 hash_type_unit_group (const void *item)
5622 {
5623 const struct type_unit_group *tu_group = item;
5624
5625 return hash_stmt_list_entry (&tu_group->hash);
5626 }
5627
5628 static int
5629 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5630 {
5631 const struct type_unit_group *lhs = item_lhs;
5632 const struct type_unit_group *rhs = item_rhs;
5633
5634 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5635 }
5636
5637 /* Allocate a hash table for type unit groups. */
5638
5639 static htab_t
5640 allocate_type_unit_groups_table (void)
5641 {
5642 return htab_create_alloc_ex (3,
5643 hash_type_unit_group,
5644 eq_type_unit_group,
5645 NULL,
5646 &dwarf2_per_objfile->objfile->objfile_obstack,
5647 hashtab_obstack_allocate,
5648 dummy_obstack_deallocate);
5649 }
5650
5651 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5652 partial symtabs. We combine several TUs per psymtab to not let the size
5653 of any one psymtab grow too big. */
5654 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5655 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5656
5657 /* Helper routine for get_type_unit_group.
5658 Create the type_unit_group object used to hold one or more TUs. */
5659
5660 static struct type_unit_group *
5661 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5662 {
5663 struct objfile *objfile = dwarf2_per_objfile->objfile;
5664 struct dwarf2_per_cu_data *per_cu;
5665 struct type_unit_group *tu_group;
5666
5667 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5668 struct type_unit_group);
5669 per_cu = &tu_group->per_cu;
5670 per_cu->objfile = objfile;
5671
5672 if (dwarf2_per_objfile->using_index)
5673 {
5674 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5675 struct dwarf2_per_cu_quick_data);
5676 }
5677 else
5678 {
5679 unsigned int line_offset = line_offset_struct.sect_off;
5680 struct partial_symtab *pst;
5681 char *name;
5682
5683 /* Give the symtab a useful name for debug purposes. */
5684 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5685 name = xstrprintf ("<type_units_%d>",
5686 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5687 else
5688 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5689
5690 pst = create_partial_symtab (per_cu, name);
5691 pst->anonymous = 1;
5692
5693 xfree (name);
5694 }
5695
5696 tu_group->hash.dwo_unit = cu->dwo_unit;
5697 tu_group->hash.line_offset = line_offset_struct;
5698
5699 return tu_group;
5700 }
5701
5702 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5703 STMT_LIST is a DW_AT_stmt_list attribute. */
5704
5705 static struct type_unit_group *
5706 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5707 {
5708 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5709 struct type_unit_group *tu_group;
5710 void **slot;
5711 unsigned int line_offset;
5712 struct type_unit_group type_unit_group_for_lookup;
5713
5714 if (dwarf2_per_objfile->type_unit_groups == NULL)
5715 {
5716 dwarf2_per_objfile->type_unit_groups =
5717 allocate_type_unit_groups_table ();
5718 }
5719
5720 /* Do we need to create a new group, or can we use an existing one? */
5721
5722 if (stmt_list)
5723 {
5724 line_offset = DW_UNSND (stmt_list);
5725 ++tu_stats->nr_symtab_sharers;
5726 }
5727 else
5728 {
5729 /* Ugh, no stmt_list. Rare, but we have to handle it.
5730 We can do various things here like create one group per TU or
5731 spread them over multiple groups to split up the expansion work.
5732 To avoid worst case scenarios (too many groups or too large groups)
5733 we, umm, group them in bunches. */
5734 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5735 | (tu_stats->nr_stmt_less_type_units
5736 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5737 ++tu_stats->nr_stmt_less_type_units;
5738 }
5739
5740 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5741 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5742 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5743 &type_unit_group_for_lookup, INSERT);
5744 if (*slot != NULL)
5745 {
5746 tu_group = *slot;
5747 gdb_assert (tu_group != NULL);
5748 }
5749 else
5750 {
5751 sect_offset line_offset_struct;
5752
5753 line_offset_struct.sect_off = line_offset;
5754 tu_group = create_type_unit_group (cu, line_offset_struct);
5755 *slot = tu_group;
5756 ++tu_stats->nr_symtabs;
5757 }
5758
5759 return tu_group;
5760 }
5761
5762 /* Struct used to sort TUs by their abbreviation table offset. */
5763
5764 struct tu_abbrev_offset
5765 {
5766 struct signatured_type *sig_type;
5767 sect_offset abbrev_offset;
5768 };
5769
5770 /* Helper routine for build_type_unit_groups, passed to qsort. */
5771
5772 static int
5773 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5774 {
5775 const struct tu_abbrev_offset * const *a = ap;
5776 const struct tu_abbrev_offset * const *b = bp;
5777 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5778 unsigned int boff = (*b)->abbrev_offset.sect_off;
5779
5780 return (aoff > boff) - (aoff < boff);
5781 }
5782
5783 /* A helper function to add a type_unit_group to a table. */
5784
5785 static int
5786 add_type_unit_group_to_table (void **slot, void *datum)
5787 {
5788 struct type_unit_group *tu_group = *slot;
5789 struct type_unit_group ***datap = datum;
5790
5791 **datap = tu_group;
5792 ++*datap;
5793
5794 return 1;
5795 }
5796
5797 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5798 each one passing FUNC,DATA.
5799
5800 The efficiency is because we sort TUs by the abbrev table they use and
5801 only read each abbrev table once. In one program there are 200K TUs
5802 sharing 8K abbrev tables.
5803
5804 The main purpose of this function is to support building the
5805 dwarf2_per_objfile->type_unit_groups table.
5806 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5807 can collapse the search space by grouping them by stmt_list.
5808 The savings can be significant, in the same program from above the 200K TUs
5809 share 8K stmt_list tables.
5810
5811 FUNC is expected to call get_type_unit_group, which will create the
5812 struct type_unit_group if necessary and add it to
5813 dwarf2_per_objfile->type_unit_groups. */
5814
5815 static void
5816 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5817 {
5818 struct objfile *objfile = dwarf2_per_objfile->objfile;
5819 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5820 struct cleanup *cleanups;
5821 struct abbrev_table *abbrev_table;
5822 sect_offset abbrev_offset;
5823 struct tu_abbrev_offset *sorted_by_abbrev;
5824 struct type_unit_group **iter;
5825 int i;
5826
5827 /* It's up to the caller to not call us multiple times. */
5828 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5829
5830 if (dwarf2_per_objfile->n_type_units == 0)
5831 return;
5832
5833 /* TUs typically share abbrev tables, and there can be way more TUs than
5834 abbrev tables. Sort by abbrev table to reduce the number of times we
5835 read each abbrev table in.
5836 Alternatives are to punt or to maintain a cache of abbrev tables.
5837 This is simpler and efficient enough for now.
5838
5839 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5840 symtab to use). Typically TUs with the same abbrev offset have the same
5841 stmt_list value too so in practice this should work well.
5842
5843 The basic algorithm here is:
5844
5845 sort TUs by abbrev table
5846 for each TU with same abbrev table:
5847 read abbrev table if first user
5848 read TU top level DIE
5849 [IWBN if DWO skeletons had DW_AT_stmt_list]
5850 call FUNC */
5851
5852 if (dwarf2_read_debug)
5853 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5854
5855 /* Sort in a separate table to maintain the order of all_type_units
5856 for .gdb_index: TU indices directly index all_type_units. */
5857 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5858 dwarf2_per_objfile->n_type_units);
5859 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5860 {
5861 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5862
5863 sorted_by_abbrev[i].sig_type = sig_type;
5864 sorted_by_abbrev[i].abbrev_offset =
5865 read_abbrev_offset (sig_type->per_cu.section,
5866 sig_type->per_cu.offset);
5867 }
5868 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5869 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5870 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5871
5872 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5873 called any number of times, so we don't reset tu_stats here. */
5874
5875 abbrev_offset.sect_off = ~(unsigned) 0;
5876 abbrev_table = NULL;
5877 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5878
5879 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5880 {
5881 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5882
5883 /* Switch to the next abbrev table if necessary. */
5884 if (abbrev_table == NULL
5885 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5886 {
5887 if (abbrev_table != NULL)
5888 {
5889 abbrev_table_free (abbrev_table);
5890 /* Reset to NULL in case abbrev_table_read_table throws
5891 an error: abbrev_table_free_cleanup will get called. */
5892 abbrev_table = NULL;
5893 }
5894 abbrev_offset = tu->abbrev_offset;
5895 abbrev_table =
5896 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5897 abbrev_offset);
5898 ++tu_stats->nr_uniq_abbrev_tables;
5899 }
5900
5901 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5902 func, data);
5903 }
5904
5905 /* type_unit_groups can be NULL if there is an error in the debug info.
5906 Just create an empty table so the rest of gdb doesn't have to watch
5907 for this error case. */
5908 if (dwarf2_per_objfile->type_unit_groups == NULL)
5909 {
5910 dwarf2_per_objfile->type_unit_groups =
5911 allocate_type_unit_groups_table ();
5912 dwarf2_per_objfile->n_type_unit_groups = 0;
5913 }
5914
5915 /* Create a vector of pointers to primary type units to make it easy to
5916 iterate over them and CUs. See dw2_get_primary_cu. */
5917 dwarf2_per_objfile->n_type_unit_groups =
5918 htab_elements (dwarf2_per_objfile->type_unit_groups);
5919 dwarf2_per_objfile->all_type_unit_groups =
5920 obstack_alloc (&objfile->objfile_obstack,
5921 dwarf2_per_objfile->n_type_unit_groups
5922 * sizeof (struct type_unit_group *));
5923 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5924 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5925 add_type_unit_group_to_table, &iter);
5926 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5927 == dwarf2_per_objfile->n_type_unit_groups);
5928
5929 do_cleanups (cleanups);
5930
5931 if (dwarf2_read_debug)
5932 {
5933 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5934 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5935 dwarf2_per_objfile->n_type_units);
5936 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5937 tu_stats->nr_uniq_abbrev_tables);
5938 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5939 tu_stats->nr_symtabs);
5940 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5941 tu_stats->nr_symtab_sharers);
5942 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5943 tu_stats->nr_stmt_less_type_units);
5944 }
5945 }
5946 \f
5947 /* Partial symbol tables. */
5948
5949 /* Create a psymtab named NAME and assign it to PER_CU.
5950
5951 The caller must fill in the following details:
5952 dirname, textlow, texthigh. */
5953
5954 static struct partial_symtab *
5955 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5956 {
5957 struct objfile *objfile = per_cu->objfile;
5958 struct partial_symtab *pst;
5959
5960 pst = start_psymtab_common (objfile, objfile->section_offsets,
5961 name, 0,
5962 objfile->global_psymbols.next,
5963 objfile->static_psymbols.next);
5964
5965 pst->psymtabs_addrmap_supported = 1;
5966
5967 /* This is the glue that links PST into GDB's symbol API. */
5968 pst->read_symtab_private = per_cu;
5969 pst->read_symtab = dwarf2_read_symtab;
5970 per_cu->v.psymtab = pst;
5971
5972 return pst;
5973 }
5974
5975 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5976 type. */
5977
5978 struct process_psymtab_comp_unit_data
5979 {
5980 /* True if we are reading a DW_TAG_partial_unit. */
5981
5982 int want_partial_unit;
5983
5984 /* The "pretend" language that is used if the CU doesn't declare a
5985 language. */
5986
5987 enum language pretend_language;
5988 };
5989
5990 /* die_reader_func for process_psymtab_comp_unit. */
5991
5992 static void
5993 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5994 const gdb_byte *info_ptr,
5995 struct die_info *comp_unit_die,
5996 int has_children,
5997 void *data)
5998 {
5999 struct dwarf2_cu *cu = reader->cu;
6000 struct objfile *objfile = cu->objfile;
6001 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6002 struct attribute *attr;
6003 CORE_ADDR baseaddr;
6004 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6005 struct partial_symtab *pst;
6006 int has_pc_info;
6007 const char *filename;
6008 struct process_psymtab_comp_unit_data *info = data;
6009
6010 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6011 return;
6012
6013 gdb_assert (! per_cu->is_debug_types);
6014
6015 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6016
6017 cu->list_in_scope = &file_symbols;
6018
6019 /* Allocate a new partial symbol table structure. */
6020 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
6021 if (attr == NULL || !DW_STRING (attr))
6022 filename = "";
6023 else
6024 filename = DW_STRING (attr);
6025
6026 pst = create_partial_symtab (per_cu, filename);
6027
6028 /* This must be done before calling dwarf2_build_include_psymtabs. */
6029 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6030 if (attr != NULL)
6031 pst->dirname = DW_STRING (attr);
6032
6033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6034
6035 dwarf2_find_base_address (comp_unit_die, cu);
6036
6037 /* Possibly set the default values of LOWPC and HIGHPC from
6038 `DW_AT_ranges'. */
6039 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6040 &best_highpc, cu, pst);
6041 if (has_pc_info == 1 && best_lowpc < best_highpc)
6042 /* Store the contiguous range if it is not empty; it can be empty for
6043 CUs with no code. */
6044 addrmap_set_empty (objfile->psymtabs_addrmap,
6045 best_lowpc + baseaddr,
6046 best_highpc + baseaddr - 1, pst);
6047
6048 /* Check if comp unit has_children.
6049 If so, read the rest of the partial symbols from this comp unit.
6050 If not, there's no more debug_info for this comp unit. */
6051 if (has_children)
6052 {
6053 struct partial_die_info *first_die;
6054 CORE_ADDR lowpc, highpc;
6055
6056 lowpc = ((CORE_ADDR) -1);
6057 highpc = ((CORE_ADDR) 0);
6058
6059 first_die = load_partial_dies (reader, info_ptr, 1);
6060
6061 scan_partial_symbols (first_die, &lowpc, &highpc,
6062 ! has_pc_info, cu);
6063
6064 /* If we didn't find a lowpc, set it to highpc to avoid
6065 complaints from `maint check'. */
6066 if (lowpc == ((CORE_ADDR) -1))
6067 lowpc = highpc;
6068
6069 /* If the compilation unit didn't have an explicit address range,
6070 then use the information extracted from its child dies. */
6071 if (! has_pc_info)
6072 {
6073 best_lowpc = lowpc;
6074 best_highpc = highpc;
6075 }
6076 }
6077 pst->textlow = best_lowpc + baseaddr;
6078 pst->texthigh = best_highpc + baseaddr;
6079
6080 pst->n_global_syms = objfile->global_psymbols.next -
6081 (objfile->global_psymbols.list + pst->globals_offset);
6082 pst->n_static_syms = objfile->static_psymbols.next -
6083 (objfile->static_psymbols.list + pst->statics_offset);
6084 sort_pst_symbols (objfile, pst);
6085
6086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6087 {
6088 int i;
6089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6090 struct dwarf2_per_cu_data *iter;
6091
6092 /* Fill in 'dependencies' here; we fill in 'users' in a
6093 post-pass. */
6094 pst->number_of_dependencies = len;
6095 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6096 len * sizeof (struct symtab *));
6097 for (i = 0;
6098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6099 i, iter);
6100 ++i)
6101 pst->dependencies[i] = iter->v.psymtab;
6102
6103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6104 }
6105
6106 /* Get the list of files included in the current compilation unit,
6107 and build a psymtab for each of them. */
6108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6109
6110 if (dwarf2_read_debug)
6111 {
6112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6113
6114 fprintf_unfiltered (gdb_stdlog,
6115 "Psymtab for %s unit @0x%x: %s - %s"
6116 ", %d global, %d static syms\n",
6117 per_cu->is_debug_types ? "type" : "comp",
6118 per_cu->offset.sect_off,
6119 paddress (gdbarch, pst->textlow),
6120 paddress (gdbarch, pst->texthigh),
6121 pst->n_global_syms, pst->n_static_syms);
6122 }
6123 }
6124
6125 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6126 Process compilation unit THIS_CU for a psymtab. */
6127
6128 static void
6129 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6130 int want_partial_unit,
6131 enum language pretend_language)
6132 {
6133 struct process_psymtab_comp_unit_data info;
6134
6135 /* If this compilation unit was already read in, free the
6136 cached copy in order to read it in again. This is
6137 necessary because we skipped some symbols when we first
6138 read in the compilation unit (see load_partial_dies).
6139 This problem could be avoided, but the benefit is unclear. */
6140 if (this_cu->cu != NULL)
6141 free_one_cached_comp_unit (this_cu);
6142
6143 gdb_assert (! this_cu->is_debug_types);
6144 info.want_partial_unit = want_partial_unit;
6145 info.pretend_language = pretend_language;
6146 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6147 process_psymtab_comp_unit_reader,
6148 &info);
6149
6150 /* Age out any secondary CUs. */
6151 age_cached_comp_units ();
6152 }
6153
6154 /* Reader function for build_type_psymtabs. */
6155
6156 static void
6157 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6158 const gdb_byte *info_ptr,
6159 struct die_info *type_unit_die,
6160 int has_children,
6161 void *data)
6162 {
6163 struct objfile *objfile = dwarf2_per_objfile->objfile;
6164 struct dwarf2_cu *cu = reader->cu;
6165 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6166 struct signatured_type *sig_type;
6167 struct type_unit_group *tu_group;
6168 struct attribute *attr;
6169 struct partial_die_info *first_die;
6170 CORE_ADDR lowpc, highpc;
6171 struct partial_symtab *pst;
6172
6173 gdb_assert (data == NULL);
6174 gdb_assert (per_cu->is_debug_types);
6175 sig_type = (struct signatured_type *) per_cu;
6176
6177 if (! has_children)
6178 return;
6179
6180 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6181 tu_group = get_type_unit_group (cu, attr);
6182
6183 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6184
6185 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6186 cu->list_in_scope = &file_symbols;
6187 pst = create_partial_symtab (per_cu, "");
6188 pst->anonymous = 1;
6189
6190 first_die = load_partial_dies (reader, info_ptr, 1);
6191
6192 lowpc = (CORE_ADDR) -1;
6193 highpc = (CORE_ADDR) 0;
6194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6195
6196 pst->n_global_syms = objfile->global_psymbols.next -
6197 (objfile->global_psymbols.list + pst->globals_offset);
6198 pst->n_static_syms = objfile->static_psymbols.next -
6199 (objfile->static_psymbols.list + pst->statics_offset);
6200 sort_pst_symbols (objfile, pst);
6201 }
6202
6203 /* Traversal function for build_type_psymtabs. */
6204
6205 static int
6206 build_type_psymtab_dependencies (void **slot, void *info)
6207 {
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6211 struct partial_symtab *pst = per_cu->v.psymtab;
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
6214 int i;
6215
6216 gdb_assert (len > 0);
6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6218
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6222 for (i = 0;
6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6224 ++i)
6225 {
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
6228 iter->type_unit_group = tu_group;
6229 }
6230
6231 VEC_free (sig_type_ptr, tu_group->tus);
6232
6233 return 1;
6234 }
6235
6236 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6238
6239 static void
6240 build_type_psymtabs (struct objfile *objfile)
6241 {
6242 if (! create_all_type_units (objfile))
6243 return;
6244
6245 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6246
6247 /* Now that all TUs have been processed we can fill in the dependencies. */
6248 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6249 build_type_psymtab_dependencies, NULL);
6250 }
6251
6252 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6253
6254 static void
6255 psymtabs_addrmap_cleanup (void *o)
6256 {
6257 struct objfile *objfile = o;
6258
6259 objfile->psymtabs_addrmap = NULL;
6260 }
6261
6262 /* Compute the 'user' field for each psymtab in OBJFILE. */
6263
6264 static void
6265 set_partial_user (struct objfile *objfile)
6266 {
6267 int i;
6268
6269 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6270 {
6271 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6272 struct partial_symtab *pst = per_cu->v.psymtab;
6273 int j;
6274
6275 if (pst == NULL)
6276 continue;
6277
6278 for (j = 0; j < pst->number_of_dependencies; ++j)
6279 {
6280 /* Set the 'user' field only if it is not already set. */
6281 if (pst->dependencies[j]->user == NULL)
6282 pst->dependencies[j]->user = pst;
6283 }
6284 }
6285 }
6286
6287 /* Build the partial symbol table by doing a quick pass through the
6288 .debug_info and .debug_abbrev sections. */
6289
6290 static void
6291 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6292 {
6293 struct cleanup *back_to, *addrmap_cleanup;
6294 struct obstack temp_obstack;
6295 int i;
6296
6297 if (dwarf2_read_debug)
6298 {
6299 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6300 objfile_name (objfile));
6301 }
6302
6303 dwarf2_per_objfile->reading_partial_symbols = 1;
6304
6305 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6306
6307 /* Any cached compilation units will be linked by the per-objfile
6308 read_in_chain. Make sure to free them when we're done. */
6309 back_to = make_cleanup (free_cached_comp_units, NULL);
6310
6311 build_type_psymtabs (objfile);
6312
6313 create_all_comp_units (objfile);
6314
6315 /* Create a temporary address map on a temporary obstack. We later
6316 copy this to the final obstack. */
6317 obstack_init (&temp_obstack);
6318 make_cleanup_obstack_free (&temp_obstack);
6319 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6320 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6321
6322 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6323 {
6324 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6325
6326 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6327 }
6328
6329 set_partial_user (objfile);
6330
6331 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6332 &objfile->objfile_obstack);
6333 discard_cleanups (addrmap_cleanup);
6334
6335 do_cleanups (back_to);
6336
6337 if (dwarf2_read_debug)
6338 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6339 objfile_name (objfile));
6340 }
6341
6342 /* die_reader_func for load_partial_comp_unit. */
6343
6344 static void
6345 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6346 const gdb_byte *info_ptr,
6347 struct die_info *comp_unit_die,
6348 int has_children,
6349 void *data)
6350 {
6351 struct dwarf2_cu *cu = reader->cu;
6352
6353 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6354
6355 /* Check if comp unit has_children.
6356 If so, read the rest of the partial symbols from this comp unit.
6357 If not, there's no more debug_info for this comp unit. */
6358 if (has_children)
6359 load_partial_dies (reader, info_ptr, 0);
6360 }
6361
6362 /* Load the partial DIEs for a secondary CU into memory.
6363 This is also used when rereading a primary CU with load_all_dies. */
6364
6365 static void
6366 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6367 {
6368 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6369 load_partial_comp_unit_reader, NULL);
6370 }
6371
6372 static void
6373 read_comp_units_from_section (struct objfile *objfile,
6374 struct dwarf2_section_info *section,
6375 unsigned int is_dwz,
6376 int *n_allocated,
6377 int *n_comp_units,
6378 struct dwarf2_per_cu_data ***all_comp_units)
6379 {
6380 const gdb_byte *info_ptr;
6381 bfd *abfd = get_section_bfd_owner (section);
6382
6383 if (dwarf2_read_debug)
6384 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6385 get_section_name (section),
6386 get_section_file_name (section));
6387
6388 dwarf2_read_section (objfile, section);
6389
6390 info_ptr = section->buffer;
6391
6392 while (info_ptr < section->buffer + section->size)
6393 {
6394 unsigned int length, initial_length_size;
6395 struct dwarf2_per_cu_data *this_cu;
6396 sect_offset offset;
6397
6398 offset.sect_off = info_ptr - section->buffer;
6399
6400 /* Read just enough information to find out where the next
6401 compilation unit is. */
6402 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6403
6404 /* Save the compilation unit for later lookup. */
6405 this_cu = obstack_alloc (&objfile->objfile_obstack,
6406 sizeof (struct dwarf2_per_cu_data));
6407 memset (this_cu, 0, sizeof (*this_cu));
6408 this_cu->offset = offset;
6409 this_cu->length = length + initial_length_size;
6410 this_cu->is_dwz = is_dwz;
6411 this_cu->objfile = objfile;
6412 this_cu->section = section;
6413
6414 if (*n_comp_units == *n_allocated)
6415 {
6416 *n_allocated *= 2;
6417 *all_comp_units = xrealloc (*all_comp_units,
6418 *n_allocated
6419 * sizeof (struct dwarf2_per_cu_data *));
6420 }
6421 (*all_comp_units)[*n_comp_units] = this_cu;
6422 ++*n_comp_units;
6423
6424 info_ptr = info_ptr + this_cu->length;
6425 }
6426 }
6427
6428 /* Create a list of all compilation units in OBJFILE.
6429 This is only done for -readnow and building partial symtabs. */
6430
6431 static void
6432 create_all_comp_units (struct objfile *objfile)
6433 {
6434 int n_allocated;
6435 int n_comp_units;
6436 struct dwarf2_per_cu_data **all_comp_units;
6437 struct dwz_file *dwz;
6438
6439 n_comp_units = 0;
6440 n_allocated = 10;
6441 all_comp_units = xmalloc (n_allocated
6442 * sizeof (struct dwarf2_per_cu_data *));
6443
6444 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6445 &n_allocated, &n_comp_units, &all_comp_units);
6446
6447 dwz = dwarf2_get_dwz_file ();
6448 if (dwz != NULL)
6449 read_comp_units_from_section (objfile, &dwz->info, 1,
6450 &n_allocated, &n_comp_units,
6451 &all_comp_units);
6452
6453 dwarf2_per_objfile->all_comp_units
6454 = obstack_alloc (&objfile->objfile_obstack,
6455 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6456 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6457 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6458 xfree (all_comp_units);
6459 dwarf2_per_objfile->n_comp_units = n_comp_units;
6460 }
6461
6462 /* Process all loaded DIEs for compilation unit CU, starting at
6463 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6464 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6465 DW_AT_ranges). If NEED_PC is set, then this function will set
6466 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6467 and record the covered ranges in the addrmap. */
6468
6469 static void
6470 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6471 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6472 {
6473 struct partial_die_info *pdi;
6474
6475 /* Now, march along the PDI's, descending into ones which have
6476 interesting children but skipping the children of the other ones,
6477 until we reach the end of the compilation unit. */
6478
6479 pdi = first_die;
6480
6481 while (pdi != NULL)
6482 {
6483 fixup_partial_die (pdi, cu);
6484
6485 /* Anonymous namespaces or modules have no name but have interesting
6486 children, so we need to look at them. Ditto for anonymous
6487 enums. */
6488
6489 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6490 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6491 || pdi->tag == DW_TAG_imported_unit)
6492 {
6493 switch (pdi->tag)
6494 {
6495 case DW_TAG_subprogram:
6496 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6497 break;
6498 case DW_TAG_constant:
6499 case DW_TAG_variable:
6500 case DW_TAG_typedef:
6501 case DW_TAG_union_type:
6502 if (!pdi->is_declaration)
6503 {
6504 add_partial_symbol (pdi, cu);
6505 }
6506 break;
6507 case DW_TAG_class_type:
6508 case DW_TAG_interface_type:
6509 case DW_TAG_structure_type:
6510 if (!pdi->is_declaration)
6511 {
6512 add_partial_symbol (pdi, cu);
6513 }
6514 break;
6515 case DW_TAG_enumeration_type:
6516 if (!pdi->is_declaration)
6517 add_partial_enumeration (pdi, cu);
6518 break;
6519 case DW_TAG_base_type:
6520 case DW_TAG_subrange_type:
6521 /* File scope base type definitions are added to the partial
6522 symbol table. */
6523 add_partial_symbol (pdi, cu);
6524 break;
6525 case DW_TAG_namespace:
6526 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6527 break;
6528 case DW_TAG_module:
6529 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6530 break;
6531 case DW_TAG_imported_unit:
6532 {
6533 struct dwarf2_per_cu_data *per_cu;
6534
6535 /* For now we don't handle imported units in type units. */
6536 if (cu->per_cu->is_debug_types)
6537 {
6538 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6539 " supported in type units [in module %s]"),
6540 objfile_name (cu->objfile));
6541 }
6542
6543 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6544 pdi->is_dwz,
6545 cu->objfile);
6546
6547 /* Go read the partial unit, if needed. */
6548 if (per_cu->v.psymtab == NULL)
6549 process_psymtab_comp_unit (per_cu, 1, cu->language);
6550
6551 VEC_safe_push (dwarf2_per_cu_ptr,
6552 cu->per_cu->imported_symtabs, per_cu);
6553 }
6554 break;
6555 case DW_TAG_imported_declaration:
6556 add_partial_symbol (pdi, cu);
6557 break;
6558 default:
6559 break;
6560 }
6561 }
6562
6563 /* If the die has a sibling, skip to the sibling. */
6564
6565 pdi = pdi->die_sibling;
6566 }
6567 }
6568
6569 /* Functions used to compute the fully scoped name of a partial DIE.
6570
6571 Normally, this is simple. For C++, the parent DIE's fully scoped
6572 name is concatenated with "::" and the partial DIE's name. For
6573 Java, the same thing occurs except that "." is used instead of "::".
6574 Enumerators are an exception; they use the scope of their parent
6575 enumeration type, i.e. the name of the enumeration type is not
6576 prepended to the enumerator.
6577
6578 There are two complexities. One is DW_AT_specification; in this
6579 case "parent" means the parent of the target of the specification,
6580 instead of the direct parent of the DIE. The other is compilers
6581 which do not emit DW_TAG_namespace; in this case we try to guess
6582 the fully qualified name of structure types from their members'
6583 linkage names. This must be done using the DIE's children rather
6584 than the children of any DW_AT_specification target. We only need
6585 to do this for structures at the top level, i.e. if the target of
6586 any DW_AT_specification (if any; otherwise the DIE itself) does not
6587 have a parent. */
6588
6589 /* Compute the scope prefix associated with PDI's parent, in
6590 compilation unit CU. The result will be allocated on CU's
6591 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6592 field. NULL is returned if no prefix is necessary. */
6593 static const char *
6594 partial_die_parent_scope (struct partial_die_info *pdi,
6595 struct dwarf2_cu *cu)
6596 {
6597 const char *grandparent_scope;
6598 struct partial_die_info *parent, *real_pdi;
6599
6600 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6601 then this means the parent of the specification DIE. */
6602
6603 real_pdi = pdi;
6604 while (real_pdi->has_specification)
6605 real_pdi = find_partial_die (real_pdi->spec_offset,
6606 real_pdi->spec_is_dwz, cu);
6607
6608 parent = real_pdi->die_parent;
6609 if (parent == NULL)
6610 return NULL;
6611
6612 if (parent->scope_set)
6613 return parent->scope;
6614
6615 fixup_partial_die (parent, cu);
6616
6617 grandparent_scope = partial_die_parent_scope (parent, cu);
6618
6619 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6620 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6621 Work around this problem here. */
6622 if (cu->language == language_cplus
6623 && parent->tag == DW_TAG_namespace
6624 && strcmp (parent->name, "::") == 0
6625 && grandparent_scope == NULL)
6626 {
6627 parent->scope = NULL;
6628 parent->scope_set = 1;
6629 return NULL;
6630 }
6631
6632 if (pdi->tag == DW_TAG_enumerator)
6633 /* Enumerators should not get the name of the enumeration as a prefix. */
6634 parent->scope = grandparent_scope;
6635 else if (parent->tag == DW_TAG_namespace
6636 || parent->tag == DW_TAG_module
6637 || parent->tag == DW_TAG_structure_type
6638 || parent->tag == DW_TAG_class_type
6639 || parent->tag == DW_TAG_interface_type
6640 || parent->tag == DW_TAG_union_type
6641 || parent->tag == DW_TAG_enumeration_type)
6642 {
6643 if (grandparent_scope == NULL)
6644 parent->scope = parent->name;
6645 else
6646 parent->scope = typename_concat (&cu->comp_unit_obstack,
6647 grandparent_scope,
6648 parent->name, 0, cu);
6649 }
6650 else
6651 {
6652 /* FIXME drow/2004-04-01: What should we be doing with
6653 function-local names? For partial symbols, we should probably be
6654 ignoring them. */
6655 complaint (&symfile_complaints,
6656 _("unhandled containing DIE tag %d for DIE at %d"),
6657 parent->tag, pdi->offset.sect_off);
6658 parent->scope = grandparent_scope;
6659 }
6660
6661 parent->scope_set = 1;
6662 return parent->scope;
6663 }
6664
6665 /* Return the fully scoped name associated with PDI, from compilation unit
6666 CU. The result will be allocated with malloc. */
6667
6668 static char *
6669 partial_die_full_name (struct partial_die_info *pdi,
6670 struct dwarf2_cu *cu)
6671 {
6672 const char *parent_scope;
6673
6674 /* If this is a template instantiation, we can not work out the
6675 template arguments from partial DIEs. So, unfortunately, we have
6676 to go through the full DIEs. At least any work we do building
6677 types here will be reused if full symbols are loaded later. */
6678 if (pdi->has_template_arguments)
6679 {
6680 fixup_partial_die (pdi, cu);
6681
6682 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6683 {
6684 struct die_info *die;
6685 struct attribute attr;
6686 struct dwarf2_cu *ref_cu = cu;
6687
6688 /* DW_FORM_ref_addr is using section offset. */
6689 attr.name = 0;
6690 attr.form = DW_FORM_ref_addr;
6691 attr.u.unsnd = pdi->offset.sect_off;
6692 die = follow_die_ref (NULL, &attr, &ref_cu);
6693
6694 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6695 }
6696 }
6697
6698 parent_scope = partial_die_parent_scope (pdi, cu);
6699 if (parent_scope == NULL)
6700 return NULL;
6701 else
6702 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6703 }
6704
6705 static void
6706 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6707 {
6708 struct objfile *objfile = cu->objfile;
6709 CORE_ADDR addr = 0;
6710 const char *actual_name = NULL;
6711 CORE_ADDR baseaddr;
6712 char *built_actual_name;
6713
6714 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6715
6716 built_actual_name = partial_die_full_name (pdi, cu);
6717 if (built_actual_name != NULL)
6718 actual_name = built_actual_name;
6719
6720 if (actual_name == NULL)
6721 actual_name = pdi->name;
6722
6723 switch (pdi->tag)
6724 {
6725 case DW_TAG_subprogram:
6726 if (pdi->is_external || cu->language == language_ada)
6727 {
6728 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6729 of the global scope. But in Ada, we want to be able to access
6730 nested procedures globally. So all Ada subprograms are stored
6731 in the global scope. */
6732 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6733 mst_text, objfile); */
6734 add_psymbol_to_list (actual_name, strlen (actual_name),
6735 built_actual_name != NULL,
6736 VAR_DOMAIN, LOC_BLOCK,
6737 &objfile->global_psymbols,
6738 0, pdi->lowpc + baseaddr,
6739 cu->language, objfile);
6740 }
6741 else
6742 {
6743 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6744 mst_file_text, objfile); */
6745 add_psymbol_to_list (actual_name, strlen (actual_name),
6746 built_actual_name != NULL,
6747 VAR_DOMAIN, LOC_BLOCK,
6748 &objfile->static_psymbols,
6749 0, pdi->lowpc + baseaddr,
6750 cu->language, objfile);
6751 }
6752 break;
6753 case DW_TAG_constant:
6754 {
6755 struct psymbol_allocation_list *list;
6756
6757 if (pdi->is_external)
6758 list = &objfile->global_psymbols;
6759 else
6760 list = &objfile->static_psymbols;
6761 add_psymbol_to_list (actual_name, strlen (actual_name),
6762 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6763 list, 0, 0, cu->language, objfile);
6764 }
6765 break;
6766 case DW_TAG_variable:
6767 if (pdi->d.locdesc)
6768 addr = decode_locdesc (pdi->d.locdesc, cu);
6769
6770 if (pdi->d.locdesc
6771 && addr == 0
6772 && !dwarf2_per_objfile->has_section_at_zero)
6773 {
6774 /* A global or static variable may also have been stripped
6775 out by the linker if unused, in which case its address
6776 will be nullified; do not add such variables into partial
6777 symbol table then. */
6778 }
6779 else if (pdi->is_external)
6780 {
6781 /* Global Variable.
6782 Don't enter into the minimal symbol tables as there is
6783 a minimal symbol table entry from the ELF symbols already.
6784 Enter into partial symbol table if it has a location
6785 descriptor or a type.
6786 If the location descriptor is missing, new_symbol will create
6787 a LOC_UNRESOLVED symbol, the address of the variable will then
6788 be determined from the minimal symbol table whenever the variable
6789 is referenced.
6790 The address for the partial symbol table entry is not
6791 used by GDB, but it comes in handy for debugging partial symbol
6792 table building. */
6793
6794 if (pdi->d.locdesc || pdi->has_type)
6795 add_psymbol_to_list (actual_name, strlen (actual_name),
6796 built_actual_name != NULL,
6797 VAR_DOMAIN, LOC_STATIC,
6798 &objfile->global_psymbols,
6799 0, addr + baseaddr,
6800 cu->language, objfile);
6801 }
6802 else
6803 {
6804 /* Static Variable. Skip symbols without location descriptors. */
6805 if (pdi->d.locdesc == NULL)
6806 {
6807 xfree (built_actual_name);
6808 return;
6809 }
6810 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6811 mst_file_data, objfile); */
6812 add_psymbol_to_list (actual_name, strlen (actual_name),
6813 built_actual_name != NULL,
6814 VAR_DOMAIN, LOC_STATIC,
6815 &objfile->static_psymbols,
6816 0, addr + baseaddr,
6817 cu->language, objfile);
6818 }
6819 break;
6820 case DW_TAG_typedef:
6821 case DW_TAG_base_type:
6822 case DW_TAG_subrange_type:
6823 add_psymbol_to_list (actual_name, strlen (actual_name),
6824 built_actual_name != NULL,
6825 VAR_DOMAIN, LOC_TYPEDEF,
6826 &objfile->static_psymbols,
6827 0, (CORE_ADDR) 0, cu->language, objfile);
6828 break;
6829 case DW_TAG_imported_declaration:
6830 case DW_TAG_namespace:
6831 add_psymbol_to_list (actual_name, strlen (actual_name),
6832 built_actual_name != NULL,
6833 VAR_DOMAIN, LOC_TYPEDEF,
6834 &objfile->global_psymbols,
6835 0, (CORE_ADDR) 0, cu->language, objfile);
6836 break;
6837 case DW_TAG_module:
6838 add_psymbol_to_list (actual_name, strlen (actual_name),
6839 built_actual_name != NULL,
6840 MODULE_DOMAIN, LOC_TYPEDEF,
6841 &objfile->global_psymbols,
6842 0, (CORE_ADDR) 0, cu->language, objfile);
6843 break;
6844 case DW_TAG_class_type:
6845 case DW_TAG_interface_type:
6846 case DW_TAG_structure_type:
6847 case DW_TAG_union_type:
6848 case DW_TAG_enumeration_type:
6849 /* Skip external references. The DWARF standard says in the section
6850 about "Structure, Union, and Class Type Entries": "An incomplete
6851 structure, union or class type is represented by a structure,
6852 union or class entry that does not have a byte size attribute
6853 and that has a DW_AT_declaration attribute." */
6854 if (!pdi->has_byte_size && pdi->is_declaration)
6855 {
6856 xfree (built_actual_name);
6857 return;
6858 }
6859
6860 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6861 static vs. global. */
6862 add_psymbol_to_list (actual_name, strlen (actual_name),
6863 built_actual_name != NULL,
6864 STRUCT_DOMAIN, LOC_TYPEDEF,
6865 (cu->language == language_cplus
6866 || cu->language == language_java)
6867 ? &objfile->global_psymbols
6868 : &objfile->static_psymbols,
6869 0, (CORE_ADDR) 0, cu->language, objfile);
6870
6871 break;
6872 case DW_TAG_enumerator:
6873 add_psymbol_to_list (actual_name, strlen (actual_name),
6874 built_actual_name != NULL,
6875 VAR_DOMAIN, LOC_CONST,
6876 (cu->language == language_cplus
6877 || cu->language == language_java)
6878 ? &objfile->global_psymbols
6879 : &objfile->static_psymbols,
6880 0, (CORE_ADDR) 0, cu->language, objfile);
6881 break;
6882 default:
6883 break;
6884 }
6885
6886 xfree (built_actual_name);
6887 }
6888
6889 /* Read a partial die corresponding to a namespace; also, add a symbol
6890 corresponding to that namespace to the symbol table. NAMESPACE is
6891 the name of the enclosing namespace. */
6892
6893 static void
6894 add_partial_namespace (struct partial_die_info *pdi,
6895 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6896 int need_pc, struct dwarf2_cu *cu)
6897 {
6898 /* Add a symbol for the namespace. */
6899
6900 add_partial_symbol (pdi, cu);
6901
6902 /* Now scan partial symbols in that namespace. */
6903
6904 if (pdi->has_children)
6905 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6906 }
6907
6908 /* Read a partial die corresponding to a Fortran module. */
6909
6910 static void
6911 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6912 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6913 {
6914 /* Add a symbol for the namespace. */
6915
6916 add_partial_symbol (pdi, cu);
6917
6918 /* Now scan partial symbols in that module. */
6919
6920 if (pdi->has_children)
6921 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6922 }
6923
6924 /* Read a partial die corresponding to a subprogram and create a partial
6925 symbol for that subprogram. When the CU language allows it, this
6926 routine also defines a partial symbol for each nested subprogram
6927 that this subprogram contains.
6928
6929 DIE my also be a lexical block, in which case we simply search
6930 recursively for suprograms defined inside that lexical block.
6931 Again, this is only performed when the CU language allows this
6932 type of definitions. */
6933
6934 static void
6935 add_partial_subprogram (struct partial_die_info *pdi,
6936 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6937 int need_pc, struct dwarf2_cu *cu)
6938 {
6939 if (pdi->tag == DW_TAG_subprogram)
6940 {
6941 if (pdi->has_pc_info)
6942 {
6943 if (pdi->lowpc < *lowpc)
6944 *lowpc = pdi->lowpc;
6945 if (pdi->highpc > *highpc)
6946 *highpc = pdi->highpc;
6947 if (need_pc)
6948 {
6949 CORE_ADDR baseaddr;
6950 struct objfile *objfile = cu->objfile;
6951
6952 baseaddr = ANOFFSET (objfile->section_offsets,
6953 SECT_OFF_TEXT (objfile));
6954 addrmap_set_empty (objfile->psymtabs_addrmap,
6955 pdi->lowpc + baseaddr,
6956 pdi->highpc - 1 + baseaddr,
6957 cu->per_cu->v.psymtab);
6958 }
6959 }
6960
6961 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6962 {
6963 if (!pdi->is_declaration)
6964 /* Ignore subprogram DIEs that do not have a name, they are
6965 illegal. Do not emit a complaint at this point, we will
6966 do so when we convert this psymtab into a symtab. */
6967 if (pdi->name)
6968 add_partial_symbol (pdi, cu);
6969 }
6970 }
6971
6972 if (! pdi->has_children)
6973 return;
6974
6975 if (cu->language == language_ada)
6976 {
6977 pdi = pdi->die_child;
6978 while (pdi != NULL)
6979 {
6980 fixup_partial_die (pdi, cu);
6981 if (pdi->tag == DW_TAG_subprogram
6982 || pdi->tag == DW_TAG_lexical_block)
6983 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6984 pdi = pdi->die_sibling;
6985 }
6986 }
6987 }
6988
6989 /* Read a partial die corresponding to an enumeration type. */
6990
6991 static void
6992 add_partial_enumeration (struct partial_die_info *enum_pdi,
6993 struct dwarf2_cu *cu)
6994 {
6995 struct partial_die_info *pdi;
6996
6997 if (enum_pdi->name != NULL)
6998 add_partial_symbol (enum_pdi, cu);
6999
7000 pdi = enum_pdi->die_child;
7001 while (pdi)
7002 {
7003 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7004 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7005 else
7006 add_partial_symbol (pdi, cu);
7007 pdi = pdi->die_sibling;
7008 }
7009 }
7010
7011 /* Return the initial uleb128 in the die at INFO_PTR. */
7012
7013 static unsigned int
7014 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7015 {
7016 unsigned int bytes_read;
7017
7018 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7019 }
7020
7021 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7022 Return the corresponding abbrev, or NULL if the number is zero (indicating
7023 an empty DIE). In either case *BYTES_READ will be set to the length of
7024 the initial number. */
7025
7026 static struct abbrev_info *
7027 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7028 struct dwarf2_cu *cu)
7029 {
7030 bfd *abfd = cu->objfile->obfd;
7031 unsigned int abbrev_number;
7032 struct abbrev_info *abbrev;
7033
7034 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7035
7036 if (abbrev_number == 0)
7037 return NULL;
7038
7039 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7040 if (!abbrev)
7041 {
7042 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7043 abbrev_number, bfd_get_filename (abfd));
7044 }
7045
7046 return abbrev;
7047 }
7048
7049 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7050 Returns a pointer to the end of a series of DIEs, terminated by an empty
7051 DIE. Any children of the skipped DIEs will also be skipped. */
7052
7053 static const gdb_byte *
7054 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7055 {
7056 struct dwarf2_cu *cu = reader->cu;
7057 struct abbrev_info *abbrev;
7058 unsigned int bytes_read;
7059
7060 while (1)
7061 {
7062 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7063 if (abbrev == NULL)
7064 return info_ptr + bytes_read;
7065 else
7066 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7067 }
7068 }
7069
7070 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7071 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7072 abbrev corresponding to that skipped uleb128 should be passed in
7073 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7074 children. */
7075
7076 static const gdb_byte *
7077 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7078 struct abbrev_info *abbrev)
7079 {
7080 unsigned int bytes_read;
7081 struct attribute attr;
7082 bfd *abfd = reader->abfd;
7083 struct dwarf2_cu *cu = reader->cu;
7084 const gdb_byte *buffer = reader->buffer;
7085 const gdb_byte *buffer_end = reader->buffer_end;
7086 const gdb_byte *start_info_ptr = info_ptr;
7087 unsigned int form, i;
7088
7089 for (i = 0; i < abbrev->num_attrs; i++)
7090 {
7091 /* The only abbrev we care about is DW_AT_sibling. */
7092 if (abbrev->attrs[i].name == DW_AT_sibling)
7093 {
7094 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7095 if (attr.form == DW_FORM_ref_addr)
7096 complaint (&symfile_complaints,
7097 _("ignoring absolute DW_AT_sibling"));
7098 else
7099 {
7100 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7101 const gdb_byte *sibling_ptr = buffer + off;
7102
7103 if (sibling_ptr < info_ptr)
7104 complaint (&symfile_complaints,
7105 _("DW_AT_sibling points backwards"));
7106 else
7107 return sibling_ptr;
7108 }
7109 }
7110
7111 /* If it isn't DW_AT_sibling, skip this attribute. */
7112 form = abbrev->attrs[i].form;
7113 skip_attribute:
7114 switch (form)
7115 {
7116 case DW_FORM_ref_addr:
7117 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7118 and later it is offset sized. */
7119 if (cu->header.version == 2)
7120 info_ptr += cu->header.addr_size;
7121 else
7122 info_ptr += cu->header.offset_size;
7123 break;
7124 case DW_FORM_GNU_ref_alt:
7125 info_ptr += cu->header.offset_size;
7126 break;
7127 case DW_FORM_addr:
7128 info_ptr += cu->header.addr_size;
7129 break;
7130 case DW_FORM_data1:
7131 case DW_FORM_ref1:
7132 case DW_FORM_flag:
7133 info_ptr += 1;
7134 break;
7135 case DW_FORM_flag_present:
7136 break;
7137 case DW_FORM_data2:
7138 case DW_FORM_ref2:
7139 info_ptr += 2;
7140 break;
7141 case DW_FORM_data4:
7142 case DW_FORM_ref4:
7143 info_ptr += 4;
7144 break;
7145 case DW_FORM_data8:
7146 case DW_FORM_ref8:
7147 case DW_FORM_ref_sig8:
7148 info_ptr += 8;
7149 break;
7150 case DW_FORM_string:
7151 read_direct_string (abfd, info_ptr, &bytes_read);
7152 info_ptr += bytes_read;
7153 break;
7154 case DW_FORM_sec_offset:
7155 case DW_FORM_strp:
7156 case DW_FORM_GNU_strp_alt:
7157 info_ptr += cu->header.offset_size;
7158 break;
7159 case DW_FORM_exprloc:
7160 case DW_FORM_block:
7161 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7162 info_ptr += bytes_read;
7163 break;
7164 case DW_FORM_block1:
7165 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7166 break;
7167 case DW_FORM_block2:
7168 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7169 break;
7170 case DW_FORM_block4:
7171 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7172 break;
7173 case DW_FORM_sdata:
7174 case DW_FORM_udata:
7175 case DW_FORM_ref_udata:
7176 case DW_FORM_GNU_addr_index:
7177 case DW_FORM_GNU_str_index:
7178 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7179 break;
7180 case DW_FORM_indirect:
7181 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7182 info_ptr += bytes_read;
7183 /* We need to continue parsing from here, so just go back to
7184 the top. */
7185 goto skip_attribute;
7186
7187 default:
7188 error (_("Dwarf Error: Cannot handle %s "
7189 "in DWARF reader [in module %s]"),
7190 dwarf_form_name (form),
7191 bfd_get_filename (abfd));
7192 }
7193 }
7194
7195 if (abbrev->has_children)
7196 return skip_children (reader, info_ptr);
7197 else
7198 return info_ptr;
7199 }
7200
7201 /* Locate ORIG_PDI's sibling.
7202 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7203
7204 static const gdb_byte *
7205 locate_pdi_sibling (const struct die_reader_specs *reader,
7206 struct partial_die_info *orig_pdi,
7207 const gdb_byte *info_ptr)
7208 {
7209 /* Do we know the sibling already? */
7210
7211 if (orig_pdi->sibling)
7212 return orig_pdi->sibling;
7213
7214 /* Are there any children to deal with? */
7215
7216 if (!orig_pdi->has_children)
7217 return info_ptr;
7218
7219 /* Skip the children the long way. */
7220
7221 return skip_children (reader, info_ptr);
7222 }
7223
7224 /* Expand this partial symbol table into a full symbol table. SELF is
7225 not NULL. */
7226
7227 static void
7228 dwarf2_read_symtab (struct partial_symtab *self,
7229 struct objfile *objfile)
7230 {
7231 if (self->readin)
7232 {
7233 warning (_("bug: psymtab for %s is already read in."),
7234 self->filename);
7235 }
7236 else
7237 {
7238 if (info_verbose)
7239 {
7240 printf_filtered (_("Reading in symbols for %s..."),
7241 self->filename);
7242 gdb_flush (gdb_stdout);
7243 }
7244
7245 /* Restore our global data. */
7246 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7247
7248 /* If this psymtab is constructed from a debug-only objfile, the
7249 has_section_at_zero flag will not necessarily be correct. We
7250 can get the correct value for this flag by looking at the data
7251 associated with the (presumably stripped) associated objfile. */
7252 if (objfile->separate_debug_objfile_backlink)
7253 {
7254 struct dwarf2_per_objfile *dpo_backlink
7255 = objfile_data (objfile->separate_debug_objfile_backlink,
7256 dwarf2_objfile_data_key);
7257
7258 dwarf2_per_objfile->has_section_at_zero
7259 = dpo_backlink->has_section_at_zero;
7260 }
7261
7262 dwarf2_per_objfile->reading_partial_symbols = 0;
7263
7264 psymtab_to_symtab_1 (self);
7265
7266 /* Finish up the debug error message. */
7267 if (info_verbose)
7268 printf_filtered (_("done.\n"));
7269 }
7270
7271 process_cu_includes ();
7272 }
7273 \f
7274 /* Reading in full CUs. */
7275
7276 /* Add PER_CU to the queue. */
7277
7278 static void
7279 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7280 enum language pretend_language)
7281 {
7282 struct dwarf2_queue_item *item;
7283
7284 per_cu->queued = 1;
7285 item = xmalloc (sizeof (*item));
7286 item->per_cu = per_cu;
7287 item->pretend_language = pretend_language;
7288 item->next = NULL;
7289
7290 if (dwarf2_queue == NULL)
7291 dwarf2_queue = item;
7292 else
7293 dwarf2_queue_tail->next = item;
7294
7295 dwarf2_queue_tail = item;
7296 }
7297
7298 /* If PER_CU is not yet queued, add it to the queue.
7299 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7300 dependency.
7301 The result is non-zero if PER_CU was queued, otherwise the result is zero
7302 meaning either PER_CU is already queued or it is already loaded.
7303
7304 N.B. There is an invariant here that if a CU is queued then it is loaded.
7305 The caller is required to load PER_CU if we return non-zero. */
7306
7307 static int
7308 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7309 struct dwarf2_per_cu_data *per_cu,
7310 enum language pretend_language)
7311 {
7312 /* We may arrive here during partial symbol reading, if we need full
7313 DIEs to process an unusual case (e.g. template arguments). Do
7314 not queue PER_CU, just tell our caller to load its DIEs. */
7315 if (dwarf2_per_objfile->reading_partial_symbols)
7316 {
7317 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7318 return 1;
7319 return 0;
7320 }
7321
7322 /* Mark the dependence relation so that we don't flush PER_CU
7323 too early. */
7324 if (dependent_cu != NULL)
7325 dwarf2_add_dependence (dependent_cu, per_cu);
7326
7327 /* If it's already on the queue, we have nothing to do. */
7328 if (per_cu->queued)
7329 return 0;
7330
7331 /* If the compilation unit is already loaded, just mark it as
7332 used. */
7333 if (per_cu->cu != NULL)
7334 {
7335 per_cu->cu->last_used = 0;
7336 return 0;
7337 }
7338
7339 /* Add it to the queue. */
7340 queue_comp_unit (per_cu, pretend_language);
7341
7342 return 1;
7343 }
7344
7345 /* Process the queue. */
7346
7347 static void
7348 process_queue (void)
7349 {
7350 struct dwarf2_queue_item *item, *next_item;
7351
7352 if (dwarf2_read_debug)
7353 {
7354 fprintf_unfiltered (gdb_stdlog,
7355 "Expanding one or more symtabs of objfile %s ...\n",
7356 objfile_name (dwarf2_per_objfile->objfile));
7357 }
7358
7359 /* The queue starts out with one item, but following a DIE reference
7360 may load a new CU, adding it to the end of the queue. */
7361 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7362 {
7363 if (dwarf2_per_objfile->using_index
7364 ? !item->per_cu->v.quick->symtab
7365 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7366 {
7367 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7368 unsigned int debug_print_threshold;
7369 char buf[100];
7370
7371 if (per_cu->is_debug_types)
7372 {
7373 struct signatured_type *sig_type =
7374 (struct signatured_type *) per_cu;
7375
7376 sprintf (buf, "TU %s at offset 0x%x",
7377 hex_string (sig_type->signature),
7378 per_cu->offset.sect_off);
7379 /* There can be 100s of TUs.
7380 Only print them in verbose mode. */
7381 debug_print_threshold = 2;
7382 }
7383 else
7384 {
7385 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7386 debug_print_threshold = 1;
7387 }
7388
7389 if (dwarf2_read_debug >= debug_print_threshold)
7390 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7391
7392 if (per_cu->is_debug_types)
7393 process_full_type_unit (per_cu, item->pretend_language);
7394 else
7395 process_full_comp_unit (per_cu, item->pretend_language);
7396
7397 if (dwarf2_read_debug >= debug_print_threshold)
7398 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7399 }
7400
7401 item->per_cu->queued = 0;
7402 next_item = item->next;
7403 xfree (item);
7404 }
7405
7406 dwarf2_queue_tail = NULL;
7407
7408 if (dwarf2_read_debug)
7409 {
7410 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7411 objfile_name (dwarf2_per_objfile->objfile));
7412 }
7413 }
7414
7415 /* Free all allocated queue entries. This function only releases anything if
7416 an error was thrown; if the queue was processed then it would have been
7417 freed as we went along. */
7418
7419 static void
7420 dwarf2_release_queue (void *dummy)
7421 {
7422 struct dwarf2_queue_item *item, *last;
7423
7424 item = dwarf2_queue;
7425 while (item)
7426 {
7427 /* Anything still marked queued is likely to be in an
7428 inconsistent state, so discard it. */
7429 if (item->per_cu->queued)
7430 {
7431 if (item->per_cu->cu != NULL)
7432 free_one_cached_comp_unit (item->per_cu);
7433 item->per_cu->queued = 0;
7434 }
7435
7436 last = item;
7437 item = item->next;
7438 xfree (last);
7439 }
7440
7441 dwarf2_queue = dwarf2_queue_tail = NULL;
7442 }
7443
7444 /* Read in full symbols for PST, and anything it depends on. */
7445
7446 static void
7447 psymtab_to_symtab_1 (struct partial_symtab *pst)
7448 {
7449 struct dwarf2_per_cu_data *per_cu;
7450 int i;
7451
7452 if (pst->readin)
7453 return;
7454
7455 for (i = 0; i < pst->number_of_dependencies; i++)
7456 if (!pst->dependencies[i]->readin
7457 && pst->dependencies[i]->user == NULL)
7458 {
7459 /* Inform about additional files that need to be read in. */
7460 if (info_verbose)
7461 {
7462 /* FIXME: i18n: Need to make this a single string. */
7463 fputs_filtered (" ", gdb_stdout);
7464 wrap_here ("");
7465 fputs_filtered ("and ", gdb_stdout);
7466 wrap_here ("");
7467 printf_filtered ("%s...", pst->dependencies[i]->filename);
7468 wrap_here (""); /* Flush output. */
7469 gdb_flush (gdb_stdout);
7470 }
7471 psymtab_to_symtab_1 (pst->dependencies[i]);
7472 }
7473
7474 per_cu = pst->read_symtab_private;
7475
7476 if (per_cu == NULL)
7477 {
7478 /* It's an include file, no symbols to read for it.
7479 Everything is in the parent symtab. */
7480 pst->readin = 1;
7481 return;
7482 }
7483
7484 dw2_do_instantiate_symtab (per_cu);
7485 }
7486
7487 /* Trivial hash function for die_info: the hash value of a DIE
7488 is its offset in .debug_info for this objfile. */
7489
7490 static hashval_t
7491 die_hash (const void *item)
7492 {
7493 const struct die_info *die = item;
7494
7495 return die->offset.sect_off;
7496 }
7497
7498 /* Trivial comparison function for die_info structures: two DIEs
7499 are equal if they have the same offset. */
7500
7501 static int
7502 die_eq (const void *item_lhs, const void *item_rhs)
7503 {
7504 const struct die_info *die_lhs = item_lhs;
7505 const struct die_info *die_rhs = item_rhs;
7506
7507 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7508 }
7509
7510 /* die_reader_func for load_full_comp_unit.
7511 This is identical to read_signatured_type_reader,
7512 but is kept separate for now. */
7513
7514 static void
7515 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7516 const gdb_byte *info_ptr,
7517 struct die_info *comp_unit_die,
7518 int has_children,
7519 void *data)
7520 {
7521 struct dwarf2_cu *cu = reader->cu;
7522 enum language *language_ptr = data;
7523
7524 gdb_assert (cu->die_hash == NULL);
7525 cu->die_hash =
7526 htab_create_alloc_ex (cu->header.length / 12,
7527 die_hash,
7528 die_eq,
7529 NULL,
7530 &cu->comp_unit_obstack,
7531 hashtab_obstack_allocate,
7532 dummy_obstack_deallocate);
7533
7534 if (has_children)
7535 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7536 &info_ptr, comp_unit_die);
7537 cu->dies = comp_unit_die;
7538 /* comp_unit_die is not stored in die_hash, no need. */
7539
7540 /* We try not to read any attributes in this function, because not
7541 all CUs needed for references have been loaded yet, and symbol
7542 table processing isn't initialized. But we have to set the CU language,
7543 or we won't be able to build types correctly.
7544 Similarly, if we do not read the producer, we can not apply
7545 producer-specific interpretation. */
7546 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7547 }
7548
7549 /* Load the DIEs associated with PER_CU into memory. */
7550
7551 static void
7552 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7553 enum language pretend_language)
7554 {
7555 gdb_assert (! this_cu->is_debug_types);
7556
7557 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7558 load_full_comp_unit_reader, &pretend_language);
7559 }
7560
7561 /* Add a DIE to the delayed physname list. */
7562
7563 static void
7564 add_to_method_list (struct type *type, int fnfield_index, int index,
7565 const char *name, struct die_info *die,
7566 struct dwarf2_cu *cu)
7567 {
7568 struct delayed_method_info mi;
7569 mi.type = type;
7570 mi.fnfield_index = fnfield_index;
7571 mi.index = index;
7572 mi.name = name;
7573 mi.die = die;
7574 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7575 }
7576
7577 /* A cleanup for freeing the delayed method list. */
7578
7579 static void
7580 free_delayed_list (void *ptr)
7581 {
7582 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7583 if (cu->method_list != NULL)
7584 {
7585 VEC_free (delayed_method_info, cu->method_list);
7586 cu->method_list = NULL;
7587 }
7588 }
7589
7590 /* Compute the physnames of any methods on the CU's method list.
7591
7592 The computation of method physnames is delayed in order to avoid the
7593 (bad) condition that one of the method's formal parameters is of an as yet
7594 incomplete type. */
7595
7596 static void
7597 compute_delayed_physnames (struct dwarf2_cu *cu)
7598 {
7599 int i;
7600 struct delayed_method_info *mi;
7601 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7602 {
7603 const char *physname;
7604 struct fn_fieldlist *fn_flp
7605 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7606 physname = dwarf2_physname (mi->name, mi->die, cu);
7607 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7608 }
7609 }
7610
7611 /* Go objects should be embedded in a DW_TAG_module DIE,
7612 and it's not clear if/how imported objects will appear.
7613 To keep Go support simple until that's worked out,
7614 go back through what we've read and create something usable.
7615 We could do this while processing each DIE, and feels kinda cleaner,
7616 but that way is more invasive.
7617 This is to, for example, allow the user to type "p var" or "b main"
7618 without having to specify the package name, and allow lookups
7619 of module.object to work in contexts that use the expression
7620 parser. */
7621
7622 static void
7623 fixup_go_packaging (struct dwarf2_cu *cu)
7624 {
7625 char *package_name = NULL;
7626 struct pending *list;
7627 int i;
7628
7629 for (list = global_symbols; list != NULL; list = list->next)
7630 {
7631 for (i = 0; i < list->nsyms; ++i)
7632 {
7633 struct symbol *sym = list->symbol[i];
7634
7635 if (SYMBOL_LANGUAGE (sym) == language_go
7636 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7637 {
7638 char *this_package_name = go_symbol_package_name (sym);
7639
7640 if (this_package_name == NULL)
7641 continue;
7642 if (package_name == NULL)
7643 package_name = this_package_name;
7644 else
7645 {
7646 if (strcmp (package_name, this_package_name) != 0)
7647 complaint (&symfile_complaints,
7648 _("Symtab %s has objects from two different Go packages: %s and %s"),
7649 (SYMBOL_SYMTAB (sym)
7650 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7651 : objfile_name (cu->objfile)),
7652 this_package_name, package_name);
7653 xfree (this_package_name);
7654 }
7655 }
7656 }
7657 }
7658
7659 if (package_name != NULL)
7660 {
7661 struct objfile *objfile = cu->objfile;
7662 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7663 package_name,
7664 strlen (package_name));
7665 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7666 saved_package_name, objfile);
7667 struct symbol *sym;
7668
7669 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7670
7671 sym = allocate_symbol (objfile);
7672 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7673 SYMBOL_SET_NAMES (sym, saved_package_name,
7674 strlen (saved_package_name), 0, objfile);
7675 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7676 e.g., "main" finds the "main" module and not C's main(). */
7677 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7678 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7679 SYMBOL_TYPE (sym) = type;
7680
7681 add_symbol_to_list (sym, &global_symbols);
7682
7683 xfree (package_name);
7684 }
7685 }
7686
7687 /* Return the symtab for PER_CU. This works properly regardless of
7688 whether we're using the index or psymtabs. */
7689
7690 static struct symtab *
7691 get_symtab (struct dwarf2_per_cu_data *per_cu)
7692 {
7693 return (dwarf2_per_objfile->using_index
7694 ? per_cu->v.quick->symtab
7695 : per_cu->v.psymtab->symtab);
7696 }
7697
7698 /* A helper function for computing the list of all symbol tables
7699 included by PER_CU. */
7700
7701 static void
7702 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7703 htab_t all_children, htab_t all_type_symtabs,
7704 struct dwarf2_per_cu_data *per_cu,
7705 struct symtab *immediate_parent)
7706 {
7707 void **slot;
7708 int ix;
7709 struct symtab *symtab;
7710 struct dwarf2_per_cu_data *iter;
7711
7712 slot = htab_find_slot (all_children, per_cu, INSERT);
7713 if (*slot != NULL)
7714 {
7715 /* This inclusion and its children have been processed. */
7716 return;
7717 }
7718
7719 *slot = per_cu;
7720 /* Only add a CU if it has a symbol table. */
7721 symtab = get_symtab (per_cu);
7722 if (symtab != NULL)
7723 {
7724 /* If this is a type unit only add its symbol table if we haven't
7725 seen it yet (type unit per_cu's can share symtabs). */
7726 if (per_cu->is_debug_types)
7727 {
7728 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7729 if (*slot == NULL)
7730 {
7731 *slot = symtab;
7732 VEC_safe_push (symtab_ptr, *result, symtab);
7733 if (symtab->user == NULL)
7734 symtab->user = immediate_parent;
7735 }
7736 }
7737 else
7738 {
7739 VEC_safe_push (symtab_ptr, *result, symtab);
7740 if (symtab->user == NULL)
7741 symtab->user = immediate_parent;
7742 }
7743 }
7744
7745 for (ix = 0;
7746 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7747 ++ix)
7748 {
7749 recursively_compute_inclusions (result, all_children,
7750 all_type_symtabs, iter, symtab);
7751 }
7752 }
7753
7754 /* Compute the symtab 'includes' fields for the symtab related to
7755 PER_CU. */
7756
7757 static void
7758 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7759 {
7760 gdb_assert (! per_cu->is_debug_types);
7761
7762 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7763 {
7764 int ix, len;
7765 struct dwarf2_per_cu_data *per_cu_iter;
7766 struct symtab *symtab_iter;
7767 VEC (symtab_ptr) *result_symtabs = NULL;
7768 htab_t all_children, all_type_symtabs;
7769 struct symtab *symtab = get_symtab (per_cu);
7770
7771 /* If we don't have a symtab, we can just skip this case. */
7772 if (symtab == NULL)
7773 return;
7774
7775 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7776 NULL, xcalloc, xfree);
7777 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7778 NULL, xcalloc, xfree);
7779
7780 for (ix = 0;
7781 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7782 ix, per_cu_iter);
7783 ++ix)
7784 {
7785 recursively_compute_inclusions (&result_symtabs, all_children,
7786 all_type_symtabs, per_cu_iter,
7787 symtab);
7788 }
7789
7790 /* Now we have a transitive closure of all the included symtabs. */
7791 len = VEC_length (symtab_ptr, result_symtabs);
7792 symtab->includes
7793 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7794 (len + 1) * sizeof (struct symtab *));
7795 for (ix = 0;
7796 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7797 ++ix)
7798 symtab->includes[ix] = symtab_iter;
7799 symtab->includes[len] = NULL;
7800
7801 VEC_free (symtab_ptr, result_symtabs);
7802 htab_delete (all_children);
7803 htab_delete (all_type_symtabs);
7804 }
7805 }
7806
7807 /* Compute the 'includes' field for the symtabs of all the CUs we just
7808 read. */
7809
7810 static void
7811 process_cu_includes (void)
7812 {
7813 int ix;
7814 struct dwarf2_per_cu_data *iter;
7815
7816 for (ix = 0;
7817 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7818 ix, iter);
7819 ++ix)
7820 {
7821 if (! iter->is_debug_types)
7822 compute_symtab_includes (iter);
7823 }
7824
7825 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7826 }
7827
7828 /* Generate full symbol information for PER_CU, whose DIEs have
7829 already been loaded into memory. */
7830
7831 static void
7832 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7833 enum language pretend_language)
7834 {
7835 struct dwarf2_cu *cu = per_cu->cu;
7836 struct objfile *objfile = per_cu->objfile;
7837 CORE_ADDR lowpc, highpc;
7838 struct symtab *symtab;
7839 struct cleanup *back_to, *delayed_list_cleanup;
7840 CORE_ADDR baseaddr;
7841 struct block *static_block;
7842
7843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7844
7845 buildsym_init ();
7846 back_to = make_cleanup (really_free_pendings, NULL);
7847 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7848
7849 cu->list_in_scope = &file_symbols;
7850
7851 cu->language = pretend_language;
7852 cu->language_defn = language_def (cu->language);
7853
7854 /* Do line number decoding in read_file_scope () */
7855 process_die (cu->dies, cu);
7856
7857 /* For now fudge the Go package. */
7858 if (cu->language == language_go)
7859 fixup_go_packaging (cu);
7860
7861 /* Now that we have processed all the DIEs in the CU, all the types
7862 should be complete, and it should now be safe to compute all of the
7863 physnames. */
7864 compute_delayed_physnames (cu);
7865 do_cleanups (delayed_list_cleanup);
7866
7867 /* Some compilers don't define a DW_AT_high_pc attribute for the
7868 compilation unit. If the DW_AT_high_pc is missing, synthesize
7869 it, by scanning the DIE's below the compilation unit. */
7870 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7871
7872 static_block
7873 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7874
7875 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7876 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7877 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7878 addrmap to help ensure it has an accurate map of pc values belonging to
7879 this comp unit. */
7880 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7881
7882 symtab = end_symtab_from_static_block (static_block, objfile,
7883 SECT_OFF_TEXT (objfile), 0);
7884
7885 if (symtab != NULL)
7886 {
7887 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7888
7889 /* Set symtab language to language from DW_AT_language. If the
7890 compilation is from a C file generated by language preprocessors, do
7891 not set the language if it was already deduced by start_subfile. */
7892 if (!(cu->language == language_c && symtab->language != language_c))
7893 symtab->language = cu->language;
7894
7895 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7896 produce DW_AT_location with location lists but it can be possibly
7897 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7898 there were bugs in prologue debug info, fixed later in GCC-4.5
7899 by "unwind info for epilogues" patch (which is not directly related).
7900
7901 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7902 needed, it would be wrong due to missing DW_AT_producer there.
7903
7904 Still one can confuse GDB by using non-standard GCC compilation
7905 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7906 */
7907 if (cu->has_loclist && gcc_4_minor >= 5)
7908 symtab->locations_valid = 1;
7909
7910 if (gcc_4_minor >= 5)
7911 symtab->epilogue_unwind_valid = 1;
7912
7913 symtab->call_site_htab = cu->call_site_htab;
7914 }
7915
7916 if (dwarf2_per_objfile->using_index)
7917 per_cu->v.quick->symtab = symtab;
7918 else
7919 {
7920 struct partial_symtab *pst = per_cu->v.psymtab;
7921 pst->symtab = symtab;
7922 pst->readin = 1;
7923 }
7924
7925 /* Push it for inclusion processing later. */
7926 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7927
7928 do_cleanups (back_to);
7929 }
7930
7931 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7932 already been loaded into memory. */
7933
7934 static void
7935 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7936 enum language pretend_language)
7937 {
7938 struct dwarf2_cu *cu = per_cu->cu;
7939 struct objfile *objfile = per_cu->objfile;
7940 struct symtab *symtab;
7941 struct cleanup *back_to, *delayed_list_cleanup;
7942 struct signatured_type *sig_type;
7943
7944 gdb_assert (per_cu->is_debug_types);
7945 sig_type = (struct signatured_type *) per_cu;
7946
7947 buildsym_init ();
7948 back_to = make_cleanup (really_free_pendings, NULL);
7949 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7950
7951 cu->list_in_scope = &file_symbols;
7952
7953 cu->language = pretend_language;
7954 cu->language_defn = language_def (cu->language);
7955
7956 /* The symbol tables are set up in read_type_unit_scope. */
7957 process_die (cu->dies, cu);
7958
7959 /* For now fudge the Go package. */
7960 if (cu->language == language_go)
7961 fixup_go_packaging (cu);
7962
7963 /* Now that we have processed all the DIEs in the CU, all the types
7964 should be complete, and it should now be safe to compute all of the
7965 physnames. */
7966 compute_delayed_physnames (cu);
7967 do_cleanups (delayed_list_cleanup);
7968
7969 /* TUs share symbol tables.
7970 If this is the first TU to use this symtab, complete the construction
7971 of it with end_expandable_symtab. Otherwise, complete the addition of
7972 this TU's symbols to the existing symtab. */
7973 if (sig_type->type_unit_group->primary_symtab == NULL)
7974 {
7975 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7976 sig_type->type_unit_group->primary_symtab = symtab;
7977
7978 if (symtab != NULL)
7979 {
7980 /* Set symtab language to language from DW_AT_language. If the
7981 compilation is from a C file generated by language preprocessors,
7982 do not set the language if it was already deduced by
7983 start_subfile. */
7984 if (!(cu->language == language_c && symtab->language != language_c))
7985 symtab->language = cu->language;
7986 }
7987 }
7988 else
7989 {
7990 augment_type_symtab (objfile,
7991 sig_type->type_unit_group->primary_symtab);
7992 symtab = sig_type->type_unit_group->primary_symtab;
7993 }
7994
7995 if (dwarf2_per_objfile->using_index)
7996 per_cu->v.quick->symtab = symtab;
7997 else
7998 {
7999 struct partial_symtab *pst = per_cu->v.psymtab;
8000 pst->symtab = symtab;
8001 pst->readin = 1;
8002 }
8003
8004 do_cleanups (back_to);
8005 }
8006
8007 /* Process an imported unit DIE. */
8008
8009 static void
8010 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8011 {
8012 struct attribute *attr;
8013
8014 /* For now we don't handle imported units in type units. */
8015 if (cu->per_cu->is_debug_types)
8016 {
8017 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8018 " supported in type units [in module %s]"),
8019 objfile_name (cu->objfile));
8020 }
8021
8022 attr = dwarf2_attr (die, DW_AT_import, cu);
8023 if (attr != NULL)
8024 {
8025 struct dwarf2_per_cu_data *per_cu;
8026 struct symtab *imported_symtab;
8027 sect_offset offset;
8028 int is_dwz;
8029
8030 offset = dwarf2_get_ref_die_offset (attr);
8031 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8032 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8033
8034 /* If necessary, add it to the queue and load its DIEs. */
8035 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8036 load_full_comp_unit (per_cu, cu->language);
8037
8038 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8039 per_cu);
8040 }
8041 }
8042
8043 /* Reset the in_process bit of a die. */
8044
8045 static void
8046 reset_die_in_process (void *arg)
8047 {
8048 struct die_info *die = arg;
8049
8050 die->in_process = 0;
8051 }
8052
8053 /* Process a die and its children. */
8054
8055 static void
8056 process_die (struct die_info *die, struct dwarf2_cu *cu)
8057 {
8058 struct cleanup *in_process;
8059
8060 /* We should only be processing those not already in process. */
8061 gdb_assert (!die->in_process);
8062
8063 die->in_process = 1;
8064 in_process = make_cleanup (reset_die_in_process,die);
8065
8066 switch (die->tag)
8067 {
8068 case DW_TAG_padding:
8069 break;
8070 case DW_TAG_compile_unit:
8071 case DW_TAG_partial_unit:
8072 read_file_scope (die, cu);
8073 break;
8074 case DW_TAG_type_unit:
8075 read_type_unit_scope (die, cu);
8076 break;
8077 case DW_TAG_subprogram:
8078 case DW_TAG_inlined_subroutine:
8079 read_func_scope (die, cu);
8080 break;
8081 case DW_TAG_lexical_block:
8082 case DW_TAG_try_block:
8083 case DW_TAG_catch_block:
8084 read_lexical_block_scope (die, cu);
8085 break;
8086 case DW_TAG_GNU_call_site:
8087 read_call_site_scope (die, cu);
8088 break;
8089 case DW_TAG_class_type:
8090 case DW_TAG_interface_type:
8091 case DW_TAG_structure_type:
8092 case DW_TAG_union_type:
8093 process_structure_scope (die, cu);
8094 break;
8095 case DW_TAG_enumeration_type:
8096 process_enumeration_scope (die, cu);
8097 break;
8098
8099 /* These dies have a type, but processing them does not create
8100 a symbol or recurse to process the children. Therefore we can
8101 read them on-demand through read_type_die. */
8102 case DW_TAG_subroutine_type:
8103 case DW_TAG_set_type:
8104 case DW_TAG_array_type:
8105 case DW_TAG_pointer_type:
8106 case DW_TAG_ptr_to_member_type:
8107 case DW_TAG_reference_type:
8108 case DW_TAG_string_type:
8109 break;
8110
8111 case DW_TAG_base_type:
8112 case DW_TAG_subrange_type:
8113 case DW_TAG_typedef:
8114 /* Add a typedef symbol for the type definition, if it has a
8115 DW_AT_name. */
8116 new_symbol (die, read_type_die (die, cu), cu);
8117 break;
8118 case DW_TAG_common_block:
8119 read_common_block (die, cu);
8120 break;
8121 case DW_TAG_common_inclusion:
8122 break;
8123 case DW_TAG_namespace:
8124 cu->processing_has_namespace_info = 1;
8125 read_namespace (die, cu);
8126 break;
8127 case DW_TAG_module:
8128 cu->processing_has_namespace_info = 1;
8129 read_module (die, cu);
8130 break;
8131 case DW_TAG_imported_declaration:
8132 cu->processing_has_namespace_info = 1;
8133 if (read_namespace_alias (die, cu))
8134 break;
8135 /* The declaration is not a global namespace alias: fall through. */
8136 case DW_TAG_imported_module:
8137 cu->processing_has_namespace_info = 1;
8138 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8139 || cu->language != language_fortran))
8140 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8141 dwarf_tag_name (die->tag));
8142 read_import_statement (die, cu);
8143 break;
8144
8145 case DW_TAG_imported_unit:
8146 process_imported_unit_die (die, cu);
8147 break;
8148
8149 default:
8150 new_symbol (die, NULL, cu);
8151 break;
8152 }
8153
8154 do_cleanups (in_process);
8155 }
8156 \f
8157 /* DWARF name computation. */
8158
8159 /* A helper function for dwarf2_compute_name which determines whether DIE
8160 needs to have the name of the scope prepended to the name listed in the
8161 die. */
8162
8163 static int
8164 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8165 {
8166 struct attribute *attr;
8167
8168 switch (die->tag)
8169 {
8170 case DW_TAG_namespace:
8171 case DW_TAG_typedef:
8172 case DW_TAG_class_type:
8173 case DW_TAG_interface_type:
8174 case DW_TAG_structure_type:
8175 case DW_TAG_union_type:
8176 case DW_TAG_enumeration_type:
8177 case DW_TAG_enumerator:
8178 case DW_TAG_subprogram:
8179 case DW_TAG_member:
8180 case DW_TAG_imported_declaration:
8181 return 1;
8182
8183 case DW_TAG_variable:
8184 case DW_TAG_constant:
8185 /* We only need to prefix "globally" visible variables. These include
8186 any variable marked with DW_AT_external or any variable that
8187 lives in a namespace. [Variables in anonymous namespaces
8188 require prefixing, but they are not DW_AT_external.] */
8189
8190 if (dwarf2_attr (die, DW_AT_specification, cu))
8191 {
8192 struct dwarf2_cu *spec_cu = cu;
8193
8194 return die_needs_namespace (die_specification (die, &spec_cu),
8195 spec_cu);
8196 }
8197
8198 attr = dwarf2_attr (die, DW_AT_external, cu);
8199 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8200 && die->parent->tag != DW_TAG_module)
8201 return 0;
8202 /* A variable in a lexical block of some kind does not need a
8203 namespace, even though in C++ such variables may be external
8204 and have a mangled name. */
8205 if (die->parent->tag == DW_TAG_lexical_block
8206 || die->parent->tag == DW_TAG_try_block
8207 || die->parent->tag == DW_TAG_catch_block
8208 || die->parent->tag == DW_TAG_subprogram)
8209 return 0;
8210 return 1;
8211
8212 default:
8213 return 0;
8214 }
8215 }
8216
8217 /* Retrieve the last character from a mem_file. */
8218
8219 static void
8220 do_ui_file_peek_last (void *object, const char *buffer, long length)
8221 {
8222 char *last_char_p = (char *) object;
8223
8224 if (length > 0)
8225 *last_char_p = buffer[length - 1];
8226 }
8227
8228 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8229 compute the physname for the object, which include a method's:
8230 - formal parameters (C++/Java),
8231 - receiver type (Go),
8232 - return type (Java).
8233
8234 The term "physname" is a bit confusing.
8235 For C++, for example, it is the demangled name.
8236 For Go, for example, it's the mangled name.
8237
8238 For Ada, return the DIE's linkage name rather than the fully qualified
8239 name. PHYSNAME is ignored..
8240
8241 The result is allocated on the objfile_obstack and canonicalized. */
8242
8243 static const char *
8244 dwarf2_compute_name (const char *name,
8245 struct die_info *die, struct dwarf2_cu *cu,
8246 int physname)
8247 {
8248 struct objfile *objfile = cu->objfile;
8249
8250 if (name == NULL)
8251 name = dwarf2_name (die, cu);
8252
8253 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8254 compute it by typename_concat inside GDB. */
8255 if (cu->language == language_ada
8256 || (cu->language == language_fortran && physname))
8257 {
8258 /* For Ada unit, we prefer the linkage name over the name, as
8259 the former contains the exported name, which the user expects
8260 to be able to reference. Ideally, we want the user to be able
8261 to reference this entity using either natural or linkage name,
8262 but we haven't started looking at this enhancement yet. */
8263 struct attribute *attr;
8264
8265 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8266 if (attr == NULL)
8267 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8268 if (attr && DW_STRING (attr))
8269 return DW_STRING (attr);
8270 }
8271
8272 /* These are the only languages we know how to qualify names in. */
8273 if (name != NULL
8274 && (cu->language == language_cplus || cu->language == language_java
8275 || cu->language == language_fortran))
8276 {
8277 if (die_needs_namespace (die, cu))
8278 {
8279 long length;
8280 const char *prefix;
8281 struct ui_file *buf;
8282
8283 prefix = determine_prefix (die, cu);
8284 buf = mem_fileopen ();
8285 if (*prefix != '\0')
8286 {
8287 char *prefixed_name = typename_concat (NULL, prefix, name,
8288 physname, cu);
8289
8290 fputs_unfiltered (prefixed_name, buf);
8291 xfree (prefixed_name);
8292 }
8293 else
8294 fputs_unfiltered (name, buf);
8295
8296 /* Template parameters may be specified in the DIE's DW_AT_name, or
8297 as children with DW_TAG_template_type_param or
8298 DW_TAG_value_type_param. If the latter, add them to the name
8299 here. If the name already has template parameters, then
8300 skip this step; some versions of GCC emit both, and
8301 it is more efficient to use the pre-computed name.
8302
8303 Something to keep in mind about this process: it is very
8304 unlikely, or in some cases downright impossible, to produce
8305 something that will match the mangled name of a function.
8306 If the definition of the function has the same debug info,
8307 we should be able to match up with it anyway. But fallbacks
8308 using the minimal symbol, for instance to find a method
8309 implemented in a stripped copy of libstdc++, will not work.
8310 If we do not have debug info for the definition, we will have to
8311 match them up some other way.
8312
8313 When we do name matching there is a related problem with function
8314 templates; two instantiated function templates are allowed to
8315 differ only by their return types, which we do not add here. */
8316
8317 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8318 {
8319 struct attribute *attr;
8320 struct die_info *child;
8321 int first = 1;
8322
8323 die->building_fullname = 1;
8324
8325 for (child = die->child; child != NULL; child = child->sibling)
8326 {
8327 struct type *type;
8328 LONGEST value;
8329 const gdb_byte *bytes;
8330 struct dwarf2_locexpr_baton *baton;
8331 struct value *v;
8332
8333 if (child->tag != DW_TAG_template_type_param
8334 && child->tag != DW_TAG_template_value_param)
8335 continue;
8336
8337 if (first)
8338 {
8339 fputs_unfiltered ("<", buf);
8340 first = 0;
8341 }
8342 else
8343 fputs_unfiltered (", ", buf);
8344
8345 attr = dwarf2_attr (child, DW_AT_type, cu);
8346 if (attr == NULL)
8347 {
8348 complaint (&symfile_complaints,
8349 _("template parameter missing DW_AT_type"));
8350 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8351 continue;
8352 }
8353 type = die_type (child, cu);
8354
8355 if (child->tag == DW_TAG_template_type_param)
8356 {
8357 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8358 continue;
8359 }
8360
8361 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8362 if (attr == NULL)
8363 {
8364 complaint (&symfile_complaints,
8365 _("template parameter missing "
8366 "DW_AT_const_value"));
8367 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8368 continue;
8369 }
8370
8371 dwarf2_const_value_attr (attr, type, name,
8372 &cu->comp_unit_obstack, cu,
8373 &value, &bytes, &baton);
8374
8375 if (TYPE_NOSIGN (type))
8376 /* GDB prints characters as NUMBER 'CHAR'. If that's
8377 changed, this can use value_print instead. */
8378 c_printchar (value, type, buf);
8379 else
8380 {
8381 struct value_print_options opts;
8382
8383 if (baton != NULL)
8384 v = dwarf2_evaluate_loc_desc (type, NULL,
8385 baton->data,
8386 baton->size,
8387 baton->per_cu);
8388 else if (bytes != NULL)
8389 {
8390 v = allocate_value (type);
8391 memcpy (value_contents_writeable (v), bytes,
8392 TYPE_LENGTH (type));
8393 }
8394 else
8395 v = value_from_longest (type, value);
8396
8397 /* Specify decimal so that we do not depend on
8398 the radix. */
8399 get_formatted_print_options (&opts, 'd');
8400 opts.raw = 1;
8401 value_print (v, buf, &opts);
8402 release_value (v);
8403 value_free (v);
8404 }
8405 }
8406
8407 die->building_fullname = 0;
8408
8409 if (!first)
8410 {
8411 /* Close the argument list, with a space if necessary
8412 (nested templates). */
8413 char last_char = '\0';
8414 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8415 if (last_char == '>')
8416 fputs_unfiltered (" >", buf);
8417 else
8418 fputs_unfiltered (">", buf);
8419 }
8420 }
8421
8422 /* For Java and C++ methods, append formal parameter type
8423 information, if PHYSNAME. */
8424
8425 if (physname && die->tag == DW_TAG_subprogram
8426 && (cu->language == language_cplus
8427 || cu->language == language_java))
8428 {
8429 struct type *type = read_type_die (die, cu);
8430
8431 c_type_print_args (type, buf, 1, cu->language,
8432 &type_print_raw_options);
8433
8434 if (cu->language == language_java)
8435 {
8436 /* For java, we must append the return type to method
8437 names. */
8438 if (die->tag == DW_TAG_subprogram)
8439 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8440 0, 0, &type_print_raw_options);
8441 }
8442 else if (cu->language == language_cplus)
8443 {
8444 /* Assume that an artificial first parameter is
8445 "this", but do not crash if it is not. RealView
8446 marks unnamed (and thus unused) parameters as
8447 artificial; there is no way to differentiate
8448 the two cases. */
8449 if (TYPE_NFIELDS (type) > 0
8450 && TYPE_FIELD_ARTIFICIAL (type, 0)
8451 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8452 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8453 0))))
8454 fputs_unfiltered (" const", buf);
8455 }
8456 }
8457
8458 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8459 &length);
8460 ui_file_delete (buf);
8461
8462 if (cu->language == language_cplus)
8463 {
8464 const char *cname
8465 = dwarf2_canonicalize_name (name, cu,
8466 &objfile->objfile_obstack);
8467
8468 if (cname != NULL)
8469 name = cname;
8470 }
8471 }
8472 }
8473
8474 return name;
8475 }
8476
8477 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8478 If scope qualifiers are appropriate they will be added. The result
8479 will be allocated on the objfile_obstack, or NULL if the DIE does
8480 not have a name. NAME may either be from a previous call to
8481 dwarf2_name or NULL.
8482
8483 The output string will be canonicalized (if C++/Java). */
8484
8485 static const char *
8486 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8487 {
8488 return dwarf2_compute_name (name, die, cu, 0);
8489 }
8490
8491 /* Construct a physname for the given DIE in CU. NAME may either be
8492 from a previous call to dwarf2_name or NULL. The result will be
8493 allocated on the objfile_objstack or NULL if the DIE does not have a
8494 name.
8495
8496 The output string will be canonicalized (if C++/Java). */
8497
8498 static const char *
8499 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8500 {
8501 struct objfile *objfile = cu->objfile;
8502 struct attribute *attr;
8503 const char *retval, *mangled = NULL, *canon = NULL;
8504 struct cleanup *back_to;
8505 int need_copy = 1;
8506
8507 /* In this case dwarf2_compute_name is just a shortcut not building anything
8508 on its own. */
8509 if (!die_needs_namespace (die, cu))
8510 return dwarf2_compute_name (name, die, cu, 1);
8511
8512 back_to = make_cleanup (null_cleanup, NULL);
8513
8514 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8515 if (!attr)
8516 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8517
8518 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8519 has computed. */
8520 if (attr && DW_STRING (attr))
8521 {
8522 char *demangled;
8523
8524 mangled = DW_STRING (attr);
8525
8526 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8527 type. It is easier for GDB users to search for such functions as
8528 `name(params)' than `long name(params)'. In such case the minimal
8529 symbol names do not match the full symbol names but for template
8530 functions there is never a need to look up their definition from their
8531 declaration so the only disadvantage remains the minimal symbol
8532 variant `long name(params)' does not have the proper inferior type.
8533 */
8534
8535 if (cu->language == language_go)
8536 {
8537 /* This is a lie, but we already lie to the caller new_symbol_full.
8538 new_symbol_full assumes we return the mangled name.
8539 This just undoes that lie until things are cleaned up. */
8540 demangled = NULL;
8541 }
8542 else
8543 {
8544 demangled = gdb_demangle (mangled,
8545 (DMGL_PARAMS | DMGL_ANSI
8546 | (cu->language == language_java
8547 ? DMGL_JAVA | DMGL_RET_POSTFIX
8548 : DMGL_RET_DROP)));
8549 }
8550 if (demangled)
8551 {
8552 make_cleanup (xfree, demangled);
8553 canon = demangled;
8554 }
8555 else
8556 {
8557 canon = mangled;
8558 need_copy = 0;
8559 }
8560 }
8561
8562 if (canon == NULL || check_physname)
8563 {
8564 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8565
8566 if (canon != NULL && strcmp (physname, canon) != 0)
8567 {
8568 /* It may not mean a bug in GDB. The compiler could also
8569 compute DW_AT_linkage_name incorrectly. But in such case
8570 GDB would need to be bug-to-bug compatible. */
8571
8572 complaint (&symfile_complaints,
8573 _("Computed physname <%s> does not match demangled <%s> "
8574 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8575 physname, canon, mangled, die->offset.sect_off,
8576 objfile_name (objfile));
8577
8578 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8579 is available here - over computed PHYSNAME. It is safer
8580 against both buggy GDB and buggy compilers. */
8581
8582 retval = canon;
8583 }
8584 else
8585 {
8586 retval = physname;
8587 need_copy = 0;
8588 }
8589 }
8590 else
8591 retval = canon;
8592
8593 if (need_copy)
8594 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8595
8596 do_cleanups (back_to);
8597 return retval;
8598 }
8599
8600 /* Inspect DIE in CU for a namespace alias. If one exists, record
8601 a new symbol for it.
8602
8603 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8604
8605 static int
8606 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8607 {
8608 struct attribute *attr;
8609
8610 /* If the die does not have a name, this is not a namespace
8611 alias. */
8612 attr = dwarf2_attr (die, DW_AT_name, cu);
8613 if (attr != NULL)
8614 {
8615 int num;
8616 struct die_info *d = die;
8617 struct dwarf2_cu *imported_cu = cu;
8618
8619 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8620 keep inspecting DIEs until we hit the underlying import. */
8621 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8622 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8623 {
8624 attr = dwarf2_attr (d, DW_AT_import, cu);
8625 if (attr == NULL)
8626 break;
8627
8628 d = follow_die_ref (d, attr, &imported_cu);
8629 if (d->tag != DW_TAG_imported_declaration)
8630 break;
8631 }
8632
8633 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8634 {
8635 complaint (&symfile_complaints,
8636 _("DIE at 0x%x has too many recursively imported "
8637 "declarations"), d->offset.sect_off);
8638 return 0;
8639 }
8640
8641 if (attr != NULL)
8642 {
8643 struct type *type;
8644 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8645
8646 type = get_die_type_at_offset (offset, cu->per_cu);
8647 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8648 {
8649 /* This declaration is a global namespace alias. Add
8650 a symbol for it whose type is the aliased namespace. */
8651 new_symbol (die, type, cu);
8652 return 1;
8653 }
8654 }
8655 }
8656
8657 return 0;
8658 }
8659
8660 /* Read the import statement specified by the given die and record it. */
8661
8662 static void
8663 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8664 {
8665 struct objfile *objfile = cu->objfile;
8666 struct attribute *import_attr;
8667 struct die_info *imported_die, *child_die;
8668 struct dwarf2_cu *imported_cu;
8669 const char *imported_name;
8670 const char *imported_name_prefix;
8671 const char *canonical_name;
8672 const char *import_alias;
8673 const char *imported_declaration = NULL;
8674 const char *import_prefix;
8675 VEC (const_char_ptr) *excludes = NULL;
8676 struct cleanup *cleanups;
8677
8678 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8679 if (import_attr == NULL)
8680 {
8681 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8682 dwarf_tag_name (die->tag));
8683 return;
8684 }
8685
8686 imported_cu = cu;
8687 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8688 imported_name = dwarf2_name (imported_die, imported_cu);
8689 if (imported_name == NULL)
8690 {
8691 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8692
8693 The import in the following code:
8694 namespace A
8695 {
8696 typedef int B;
8697 }
8698
8699 int main ()
8700 {
8701 using A::B;
8702 B b;
8703 return b;
8704 }
8705
8706 ...
8707 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8708 <52> DW_AT_decl_file : 1
8709 <53> DW_AT_decl_line : 6
8710 <54> DW_AT_import : <0x75>
8711 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8712 <59> DW_AT_name : B
8713 <5b> DW_AT_decl_file : 1
8714 <5c> DW_AT_decl_line : 2
8715 <5d> DW_AT_type : <0x6e>
8716 ...
8717 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8718 <76> DW_AT_byte_size : 4
8719 <77> DW_AT_encoding : 5 (signed)
8720
8721 imports the wrong die ( 0x75 instead of 0x58 ).
8722 This case will be ignored until the gcc bug is fixed. */
8723 return;
8724 }
8725
8726 /* Figure out the local name after import. */
8727 import_alias = dwarf2_name (die, cu);
8728
8729 /* Figure out where the statement is being imported to. */
8730 import_prefix = determine_prefix (die, cu);
8731
8732 /* Figure out what the scope of the imported die is and prepend it
8733 to the name of the imported die. */
8734 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8735
8736 if (imported_die->tag != DW_TAG_namespace
8737 && imported_die->tag != DW_TAG_module)
8738 {
8739 imported_declaration = imported_name;
8740 canonical_name = imported_name_prefix;
8741 }
8742 else if (strlen (imported_name_prefix) > 0)
8743 canonical_name = obconcat (&objfile->objfile_obstack,
8744 imported_name_prefix, "::", imported_name,
8745 (char *) NULL);
8746 else
8747 canonical_name = imported_name;
8748
8749 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8750
8751 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8752 for (child_die = die->child; child_die && child_die->tag;
8753 child_die = sibling_die (child_die))
8754 {
8755 /* DWARF-4: A Fortran use statement with a “rename list” may be
8756 represented by an imported module entry with an import attribute
8757 referring to the module and owned entries corresponding to those
8758 entities that are renamed as part of being imported. */
8759
8760 if (child_die->tag != DW_TAG_imported_declaration)
8761 {
8762 complaint (&symfile_complaints,
8763 _("child DW_TAG_imported_declaration expected "
8764 "- DIE at 0x%x [in module %s]"),
8765 child_die->offset.sect_off, objfile_name (objfile));
8766 continue;
8767 }
8768
8769 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8770 if (import_attr == NULL)
8771 {
8772 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8773 dwarf_tag_name (child_die->tag));
8774 continue;
8775 }
8776
8777 imported_cu = cu;
8778 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8779 &imported_cu);
8780 imported_name = dwarf2_name (imported_die, imported_cu);
8781 if (imported_name == NULL)
8782 {
8783 complaint (&symfile_complaints,
8784 _("child DW_TAG_imported_declaration has unknown "
8785 "imported name - DIE at 0x%x [in module %s]"),
8786 child_die->offset.sect_off, objfile_name (objfile));
8787 continue;
8788 }
8789
8790 VEC_safe_push (const_char_ptr, excludes, imported_name);
8791
8792 process_die (child_die, cu);
8793 }
8794
8795 cp_add_using_directive (import_prefix,
8796 canonical_name,
8797 import_alias,
8798 imported_declaration,
8799 excludes,
8800 0,
8801 &objfile->objfile_obstack);
8802
8803 do_cleanups (cleanups);
8804 }
8805
8806 /* Cleanup function for handle_DW_AT_stmt_list. */
8807
8808 static void
8809 free_cu_line_header (void *arg)
8810 {
8811 struct dwarf2_cu *cu = arg;
8812
8813 free_line_header (cu->line_header);
8814 cu->line_header = NULL;
8815 }
8816
8817 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8818 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8819 this, it was first present in GCC release 4.3.0. */
8820
8821 static int
8822 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8823 {
8824 if (!cu->checked_producer)
8825 check_producer (cu);
8826
8827 return cu->producer_is_gcc_lt_4_3;
8828 }
8829
8830 static void
8831 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8832 const char **name, const char **comp_dir)
8833 {
8834 struct attribute *attr;
8835
8836 *name = NULL;
8837 *comp_dir = NULL;
8838
8839 /* Find the filename. Do not use dwarf2_name here, since the filename
8840 is not a source language identifier. */
8841 attr = dwarf2_attr (die, DW_AT_name, cu);
8842 if (attr)
8843 {
8844 *name = DW_STRING (attr);
8845 }
8846
8847 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8848 if (attr)
8849 *comp_dir = DW_STRING (attr);
8850 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8851 && IS_ABSOLUTE_PATH (*name))
8852 {
8853 char *d = ldirname (*name);
8854
8855 *comp_dir = d;
8856 if (d != NULL)
8857 make_cleanup (xfree, d);
8858 }
8859 if (*comp_dir != NULL)
8860 {
8861 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8862 directory, get rid of it. */
8863 char *cp = strchr (*comp_dir, ':');
8864
8865 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8866 *comp_dir = cp + 1;
8867 }
8868
8869 if (*name == NULL)
8870 *name = "<unknown>";
8871 }
8872
8873 /* Handle DW_AT_stmt_list for a compilation unit.
8874 DIE is the DW_TAG_compile_unit die for CU.
8875 COMP_DIR is the compilation directory.
8876 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8877
8878 static void
8879 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8880 const char *comp_dir) /* ARI: editCase function */
8881 {
8882 struct attribute *attr;
8883
8884 gdb_assert (! cu->per_cu->is_debug_types);
8885
8886 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8887 if (attr)
8888 {
8889 unsigned int line_offset = DW_UNSND (attr);
8890 struct line_header *line_header
8891 = dwarf_decode_line_header (line_offset, cu);
8892
8893 if (line_header)
8894 {
8895 cu->line_header = line_header;
8896 make_cleanup (free_cu_line_header, cu);
8897 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8898 }
8899 }
8900 }
8901
8902 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8903
8904 static void
8905 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8906 {
8907 struct objfile *objfile = dwarf2_per_objfile->objfile;
8908 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8909 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8910 CORE_ADDR highpc = ((CORE_ADDR) 0);
8911 struct attribute *attr;
8912 const char *name = NULL;
8913 const char *comp_dir = NULL;
8914 struct die_info *child_die;
8915 bfd *abfd = objfile->obfd;
8916 CORE_ADDR baseaddr;
8917
8918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8919
8920 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8921
8922 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8923 from finish_block. */
8924 if (lowpc == ((CORE_ADDR) -1))
8925 lowpc = highpc;
8926 lowpc += baseaddr;
8927 highpc += baseaddr;
8928
8929 find_file_and_directory (die, cu, &name, &comp_dir);
8930
8931 prepare_one_comp_unit (cu, die, cu->language);
8932
8933 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8934 standardised yet. As a workaround for the language detection we fall
8935 back to the DW_AT_producer string. */
8936 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8937 cu->language = language_opencl;
8938
8939 /* Similar hack for Go. */
8940 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8941 set_cu_language (DW_LANG_Go, cu);
8942
8943 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8944
8945 /* Decode line number information if present. We do this before
8946 processing child DIEs, so that the line header table is available
8947 for DW_AT_decl_file. */
8948 handle_DW_AT_stmt_list (die, cu, comp_dir);
8949
8950 /* Process all dies in compilation unit. */
8951 if (die->child != NULL)
8952 {
8953 child_die = die->child;
8954 while (child_die && child_die->tag)
8955 {
8956 process_die (child_die, cu);
8957 child_die = sibling_die (child_die);
8958 }
8959 }
8960
8961 /* Decode macro information, if present. Dwarf 2 macro information
8962 refers to information in the line number info statement program
8963 header, so we can only read it if we've read the header
8964 successfully. */
8965 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8966 if (attr && cu->line_header)
8967 {
8968 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8969 complaint (&symfile_complaints,
8970 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8971
8972 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8973 }
8974 else
8975 {
8976 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8977 if (attr && cu->line_header)
8978 {
8979 unsigned int macro_offset = DW_UNSND (attr);
8980
8981 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8982 }
8983 }
8984
8985 do_cleanups (back_to);
8986 }
8987
8988 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8989 Create the set of symtabs used by this TU, or if this TU is sharing
8990 symtabs with another TU and the symtabs have already been created
8991 then restore those symtabs in the line header.
8992 We don't need the pc/line-number mapping for type units. */
8993
8994 static void
8995 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8996 {
8997 struct objfile *objfile = dwarf2_per_objfile->objfile;
8998 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8999 struct type_unit_group *tu_group;
9000 int first_time;
9001 struct line_header *lh;
9002 struct attribute *attr;
9003 unsigned int i, line_offset;
9004 struct signatured_type *sig_type;
9005
9006 gdb_assert (per_cu->is_debug_types);
9007 sig_type = (struct signatured_type *) per_cu;
9008
9009 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9010
9011 /* If we're using .gdb_index (includes -readnow) then
9012 per_cu->type_unit_group may not have been set up yet. */
9013 if (sig_type->type_unit_group == NULL)
9014 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9015 tu_group = sig_type->type_unit_group;
9016
9017 /* If we've already processed this stmt_list there's no real need to
9018 do it again, we could fake it and just recreate the part we need
9019 (file name,index -> symtab mapping). If data shows this optimization
9020 is useful we can do it then. */
9021 first_time = tu_group->primary_symtab == NULL;
9022
9023 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9024 debug info. */
9025 lh = NULL;
9026 if (attr != NULL)
9027 {
9028 line_offset = DW_UNSND (attr);
9029 lh = dwarf_decode_line_header (line_offset, cu);
9030 }
9031 if (lh == NULL)
9032 {
9033 if (first_time)
9034 dwarf2_start_symtab (cu, "", NULL, 0);
9035 else
9036 {
9037 gdb_assert (tu_group->symtabs == NULL);
9038 restart_symtab (0);
9039 }
9040 /* Note: The primary symtab will get allocated at the end. */
9041 return;
9042 }
9043
9044 cu->line_header = lh;
9045 make_cleanup (free_cu_line_header, cu);
9046
9047 if (first_time)
9048 {
9049 dwarf2_start_symtab (cu, "", NULL, 0);
9050
9051 tu_group->num_symtabs = lh->num_file_names;
9052 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9053
9054 for (i = 0; i < lh->num_file_names; ++i)
9055 {
9056 const char *dir = NULL;
9057 struct file_entry *fe = &lh->file_names[i];
9058
9059 if (fe->dir_index)
9060 dir = lh->include_dirs[fe->dir_index - 1];
9061 dwarf2_start_subfile (fe->name, dir, NULL);
9062
9063 /* Note: We don't have to watch for the main subfile here, type units
9064 don't have DW_AT_name. */
9065
9066 if (current_subfile->symtab == NULL)
9067 {
9068 /* NOTE: start_subfile will recognize when it's been passed
9069 a file it has already seen. So we can't assume there's a
9070 simple mapping from lh->file_names to subfiles,
9071 lh->file_names may contain dups. */
9072 current_subfile->symtab = allocate_symtab (current_subfile->name,
9073 objfile);
9074 }
9075
9076 fe->symtab = current_subfile->symtab;
9077 tu_group->symtabs[i] = fe->symtab;
9078 }
9079 }
9080 else
9081 {
9082 restart_symtab (0);
9083
9084 for (i = 0; i < lh->num_file_names; ++i)
9085 {
9086 struct file_entry *fe = &lh->file_names[i];
9087
9088 fe->symtab = tu_group->symtabs[i];
9089 }
9090 }
9091
9092 /* The main symtab is allocated last. Type units don't have DW_AT_name
9093 so they don't have a "real" (so to speak) symtab anyway.
9094 There is later code that will assign the main symtab to all symbols
9095 that don't have one. We need to handle the case of a symbol with a
9096 missing symtab (DW_AT_decl_file) anyway. */
9097 }
9098
9099 /* Process DW_TAG_type_unit.
9100 For TUs we want to skip the first top level sibling if it's not the
9101 actual type being defined by this TU. In this case the first top
9102 level sibling is there to provide context only. */
9103
9104 static void
9105 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9106 {
9107 struct die_info *child_die;
9108
9109 prepare_one_comp_unit (cu, die, language_minimal);
9110
9111 /* Initialize (or reinitialize) the machinery for building symtabs.
9112 We do this before processing child DIEs, so that the line header table
9113 is available for DW_AT_decl_file. */
9114 setup_type_unit_groups (die, cu);
9115
9116 if (die->child != NULL)
9117 {
9118 child_die = die->child;
9119 while (child_die && child_die->tag)
9120 {
9121 process_die (child_die, cu);
9122 child_die = sibling_die (child_die);
9123 }
9124 }
9125 }
9126 \f
9127 /* DWO/DWP files.
9128
9129 http://gcc.gnu.org/wiki/DebugFission
9130 http://gcc.gnu.org/wiki/DebugFissionDWP
9131
9132 To simplify handling of both DWO files ("object" files with the DWARF info)
9133 and DWP files (a file with the DWOs packaged up into one file), we treat
9134 DWP files as having a collection of virtual DWO files. */
9135
9136 static hashval_t
9137 hash_dwo_file (const void *item)
9138 {
9139 const struct dwo_file *dwo_file = item;
9140 hashval_t hash;
9141
9142 hash = htab_hash_string (dwo_file->dwo_name);
9143 if (dwo_file->comp_dir != NULL)
9144 hash += htab_hash_string (dwo_file->comp_dir);
9145 return hash;
9146 }
9147
9148 static int
9149 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9150 {
9151 const struct dwo_file *lhs = item_lhs;
9152 const struct dwo_file *rhs = item_rhs;
9153
9154 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9155 return 0;
9156 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9157 return lhs->comp_dir == rhs->comp_dir;
9158 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9159 }
9160
9161 /* Allocate a hash table for DWO files. */
9162
9163 static htab_t
9164 allocate_dwo_file_hash_table (void)
9165 {
9166 struct objfile *objfile = dwarf2_per_objfile->objfile;
9167
9168 return htab_create_alloc_ex (41,
9169 hash_dwo_file,
9170 eq_dwo_file,
9171 NULL,
9172 &objfile->objfile_obstack,
9173 hashtab_obstack_allocate,
9174 dummy_obstack_deallocate);
9175 }
9176
9177 /* Lookup DWO file DWO_NAME. */
9178
9179 static void **
9180 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9181 {
9182 struct dwo_file find_entry;
9183 void **slot;
9184
9185 if (dwarf2_per_objfile->dwo_files == NULL)
9186 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9187
9188 memset (&find_entry, 0, sizeof (find_entry));
9189 find_entry.dwo_name = dwo_name;
9190 find_entry.comp_dir = comp_dir;
9191 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9192
9193 return slot;
9194 }
9195
9196 static hashval_t
9197 hash_dwo_unit (const void *item)
9198 {
9199 const struct dwo_unit *dwo_unit = item;
9200
9201 /* This drops the top 32 bits of the id, but is ok for a hash. */
9202 return dwo_unit->signature;
9203 }
9204
9205 static int
9206 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9207 {
9208 const struct dwo_unit *lhs = item_lhs;
9209 const struct dwo_unit *rhs = item_rhs;
9210
9211 /* The signature is assumed to be unique within the DWO file.
9212 So while object file CU dwo_id's always have the value zero,
9213 that's OK, assuming each object file DWO file has only one CU,
9214 and that's the rule for now. */
9215 return lhs->signature == rhs->signature;
9216 }
9217
9218 /* Allocate a hash table for DWO CUs,TUs.
9219 There is one of these tables for each of CUs,TUs for each DWO file. */
9220
9221 static htab_t
9222 allocate_dwo_unit_table (struct objfile *objfile)
9223 {
9224 /* Start out with a pretty small number.
9225 Generally DWO files contain only one CU and maybe some TUs. */
9226 return htab_create_alloc_ex (3,
9227 hash_dwo_unit,
9228 eq_dwo_unit,
9229 NULL,
9230 &objfile->objfile_obstack,
9231 hashtab_obstack_allocate,
9232 dummy_obstack_deallocate);
9233 }
9234
9235 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9236
9237 struct create_dwo_cu_data
9238 {
9239 struct dwo_file *dwo_file;
9240 struct dwo_unit dwo_unit;
9241 };
9242
9243 /* die_reader_func for create_dwo_cu. */
9244
9245 static void
9246 create_dwo_cu_reader (const struct die_reader_specs *reader,
9247 const gdb_byte *info_ptr,
9248 struct die_info *comp_unit_die,
9249 int has_children,
9250 void *datap)
9251 {
9252 struct dwarf2_cu *cu = reader->cu;
9253 struct objfile *objfile = dwarf2_per_objfile->objfile;
9254 sect_offset offset = cu->per_cu->offset;
9255 struct dwarf2_section_info *section = cu->per_cu->section;
9256 struct create_dwo_cu_data *data = datap;
9257 struct dwo_file *dwo_file = data->dwo_file;
9258 struct dwo_unit *dwo_unit = &data->dwo_unit;
9259 struct attribute *attr;
9260
9261 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9262 if (attr == NULL)
9263 {
9264 complaint (&symfile_complaints,
9265 _("Dwarf Error: debug entry at offset 0x%x is missing"
9266 " its dwo_id [in module %s]"),
9267 offset.sect_off, dwo_file->dwo_name);
9268 return;
9269 }
9270
9271 dwo_unit->dwo_file = dwo_file;
9272 dwo_unit->signature = DW_UNSND (attr);
9273 dwo_unit->section = section;
9274 dwo_unit->offset = offset;
9275 dwo_unit->length = cu->per_cu->length;
9276
9277 if (dwarf2_read_debug)
9278 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9279 offset.sect_off, hex_string (dwo_unit->signature));
9280 }
9281
9282 /* Create the dwo_unit for the lone CU in DWO_FILE.
9283 Note: This function processes DWO files only, not DWP files. */
9284
9285 static struct dwo_unit *
9286 create_dwo_cu (struct dwo_file *dwo_file)
9287 {
9288 struct objfile *objfile = dwarf2_per_objfile->objfile;
9289 struct dwarf2_section_info *section = &dwo_file->sections.info;
9290 bfd *abfd;
9291 htab_t cu_htab;
9292 const gdb_byte *info_ptr, *end_ptr;
9293 struct create_dwo_cu_data create_dwo_cu_data;
9294 struct dwo_unit *dwo_unit;
9295
9296 dwarf2_read_section (objfile, section);
9297 info_ptr = section->buffer;
9298
9299 if (info_ptr == NULL)
9300 return NULL;
9301
9302 /* We can't set abfd until now because the section may be empty or
9303 not present, in which case section->asection will be NULL. */
9304 abfd = get_section_bfd_owner (section);
9305
9306 if (dwarf2_read_debug)
9307 {
9308 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9309 get_section_name (section),
9310 get_section_file_name (section));
9311 }
9312
9313 create_dwo_cu_data.dwo_file = dwo_file;
9314 dwo_unit = NULL;
9315
9316 end_ptr = info_ptr + section->size;
9317 while (info_ptr < end_ptr)
9318 {
9319 struct dwarf2_per_cu_data per_cu;
9320
9321 memset (&create_dwo_cu_data.dwo_unit, 0,
9322 sizeof (create_dwo_cu_data.dwo_unit));
9323 memset (&per_cu, 0, sizeof (per_cu));
9324 per_cu.objfile = objfile;
9325 per_cu.is_debug_types = 0;
9326 per_cu.offset.sect_off = info_ptr - section->buffer;
9327 per_cu.section = section;
9328
9329 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9330 create_dwo_cu_reader,
9331 &create_dwo_cu_data);
9332
9333 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9334 {
9335 /* If we've already found one, complain. We only support one
9336 because having more than one requires hacking the dwo_name of
9337 each to match, which is highly unlikely to happen. */
9338 if (dwo_unit != NULL)
9339 {
9340 complaint (&symfile_complaints,
9341 _("Multiple CUs in DWO file %s [in module %s]"),
9342 dwo_file->dwo_name, objfile_name (objfile));
9343 break;
9344 }
9345
9346 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9347 *dwo_unit = create_dwo_cu_data.dwo_unit;
9348 }
9349
9350 info_ptr += per_cu.length;
9351 }
9352
9353 return dwo_unit;
9354 }
9355
9356 /* DWP file .debug_{cu,tu}_index section format:
9357 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9358
9359 DWP Version 1:
9360
9361 Both index sections have the same format, and serve to map a 64-bit
9362 signature to a set of section numbers. Each section begins with a header,
9363 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9364 indexes, and a pool of 32-bit section numbers. The index sections will be
9365 aligned at 8-byte boundaries in the file.
9366
9367 The index section header consists of:
9368
9369 V, 32 bit version number
9370 -, 32 bits unused
9371 N, 32 bit number of compilation units or type units in the index
9372 M, 32 bit number of slots in the hash table
9373
9374 Numbers are recorded using the byte order of the application binary.
9375
9376 The hash table begins at offset 16 in the section, and consists of an array
9377 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9378 order of the application binary). Unused slots in the hash table are 0.
9379 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9380
9381 The parallel table begins immediately after the hash table
9382 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9383 array of 32-bit indexes (using the byte order of the application binary),
9384 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9385 table contains a 32-bit index into the pool of section numbers. For unused
9386 hash table slots, the corresponding entry in the parallel table will be 0.
9387
9388 The pool of section numbers begins immediately following the hash table
9389 (at offset 16 + 12 * M from the beginning of the section). The pool of
9390 section numbers consists of an array of 32-bit words (using the byte order
9391 of the application binary). Each item in the array is indexed starting
9392 from 0. The hash table entry provides the index of the first section
9393 number in the set. Additional section numbers in the set follow, and the
9394 set is terminated by a 0 entry (section number 0 is not used in ELF).
9395
9396 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9397 section must be the first entry in the set, and the .debug_abbrev.dwo must
9398 be the second entry. Other members of the set may follow in any order.
9399
9400 ---
9401
9402 DWP Version 2:
9403
9404 DWP Version 2 combines all the .debug_info, etc. sections into one,
9405 and the entries in the index tables are now offsets into these sections.
9406 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9407 section.
9408
9409 Index Section Contents:
9410 Header
9411 Hash Table of Signatures dwp_hash_table.hash_table
9412 Parallel Table of Indices dwp_hash_table.unit_table
9413 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9414 Table of Section Sizes dwp_hash_table.v2.sizes
9415
9416 The index section header consists of:
9417
9418 V, 32 bit version number
9419 L, 32 bit number of columns in the table of section offsets
9420 N, 32 bit number of compilation units or type units in the index
9421 M, 32 bit number of slots in the hash table
9422
9423 Numbers are recorded using the byte order of the application binary.
9424
9425 The hash table has the same format as version 1.
9426 The parallel table of indices has the same format as version 1,
9427 except that the entries are origin-1 indices into the table of sections
9428 offsets and the table of section sizes.
9429
9430 The table of offsets begins immediately following the parallel table
9431 (at offset 16 + 12 * M from the beginning of the section). The table is
9432 a two-dimensional array of 32-bit words (using the byte order of the
9433 application binary), with L columns and N+1 rows, in row-major order.
9434 Each row in the array is indexed starting from 0. The first row provides
9435 a key to the remaining rows: each column in this row provides an identifier
9436 for a debug section, and the offsets in the same column of subsequent rows
9437 refer to that section. The section identifiers are:
9438
9439 DW_SECT_INFO 1 .debug_info.dwo
9440 DW_SECT_TYPES 2 .debug_types.dwo
9441 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9442 DW_SECT_LINE 4 .debug_line.dwo
9443 DW_SECT_LOC 5 .debug_loc.dwo
9444 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9445 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9446 DW_SECT_MACRO 8 .debug_macro.dwo
9447
9448 The offsets provided by the CU and TU index sections are the base offsets
9449 for the contributions made by each CU or TU to the corresponding section
9450 in the package file. Each CU and TU header contains an abbrev_offset
9451 field, used to find the abbreviations table for that CU or TU within the
9452 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9453 be interpreted as relative to the base offset given in the index section.
9454 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9455 should be interpreted as relative to the base offset for .debug_line.dwo,
9456 and offsets into other debug sections obtained from DWARF attributes should
9457 also be interpreted as relative to the corresponding base offset.
9458
9459 The table of sizes begins immediately following the table of offsets.
9460 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9461 with L columns and N rows, in row-major order. Each row in the array is
9462 indexed starting from 1 (row 0 is shared by the two tables).
9463
9464 ---
9465
9466 Hash table lookup is handled the same in version 1 and 2:
9467
9468 We assume that N and M will not exceed 2^32 - 1.
9469 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9470
9471 Given a 64-bit compilation unit signature or a type signature S, an entry
9472 in the hash table is located as follows:
9473
9474 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9475 the low-order k bits all set to 1.
9476
9477 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9478
9479 3) If the hash table entry at index H matches the signature, use that
9480 entry. If the hash table entry at index H is unused (all zeroes),
9481 terminate the search: the signature is not present in the table.
9482
9483 4) Let H = (H + H') modulo M. Repeat at Step 3.
9484
9485 Because M > N and H' and M are relatively prime, the search is guaranteed
9486 to stop at an unused slot or find the match. */
9487
9488 /* Create a hash table to map DWO IDs to their CU/TU entry in
9489 .debug_{info,types}.dwo in DWP_FILE.
9490 Returns NULL if there isn't one.
9491 Note: This function processes DWP files only, not DWO files. */
9492
9493 static struct dwp_hash_table *
9494 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9495 {
9496 struct objfile *objfile = dwarf2_per_objfile->objfile;
9497 bfd *dbfd = dwp_file->dbfd;
9498 const gdb_byte *index_ptr, *index_end;
9499 struct dwarf2_section_info *index;
9500 uint32_t version, nr_columns, nr_units, nr_slots;
9501 struct dwp_hash_table *htab;
9502
9503 if (is_debug_types)
9504 index = &dwp_file->sections.tu_index;
9505 else
9506 index = &dwp_file->sections.cu_index;
9507
9508 if (dwarf2_section_empty_p (index))
9509 return NULL;
9510 dwarf2_read_section (objfile, index);
9511
9512 index_ptr = index->buffer;
9513 index_end = index_ptr + index->size;
9514
9515 version = read_4_bytes (dbfd, index_ptr);
9516 index_ptr += 4;
9517 if (version == 2)
9518 nr_columns = read_4_bytes (dbfd, index_ptr);
9519 else
9520 nr_columns = 0;
9521 index_ptr += 4;
9522 nr_units = read_4_bytes (dbfd, index_ptr);
9523 index_ptr += 4;
9524 nr_slots = read_4_bytes (dbfd, index_ptr);
9525 index_ptr += 4;
9526
9527 if (version != 1 && version != 2)
9528 {
9529 error (_("Dwarf Error: unsupported DWP file version (%s)"
9530 " [in module %s]"),
9531 pulongest (version), dwp_file->name);
9532 }
9533 if (nr_slots != (nr_slots & -nr_slots))
9534 {
9535 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9536 " is not power of 2 [in module %s]"),
9537 pulongest (nr_slots), dwp_file->name);
9538 }
9539
9540 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9541 htab->version = version;
9542 htab->nr_columns = nr_columns;
9543 htab->nr_units = nr_units;
9544 htab->nr_slots = nr_slots;
9545 htab->hash_table = index_ptr;
9546 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9547
9548 /* Exit early if the table is empty. */
9549 if (nr_slots == 0 || nr_units == 0
9550 || (version == 2 && nr_columns == 0))
9551 {
9552 /* All must be zero. */
9553 if (nr_slots != 0 || nr_units != 0
9554 || (version == 2 && nr_columns != 0))
9555 {
9556 complaint (&symfile_complaints,
9557 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9558 " all zero [in modules %s]"),
9559 dwp_file->name);
9560 }
9561 return htab;
9562 }
9563
9564 if (version == 1)
9565 {
9566 htab->section_pool.v1.indices =
9567 htab->unit_table + sizeof (uint32_t) * nr_slots;
9568 /* It's harder to decide whether the section is too small in v1.
9569 V1 is deprecated anyway so we punt. */
9570 }
9571 else
9572 {
9573 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9574 int *ids = htab->section_pool.v2.section_ids;
9575 /* Reverse map for error checking. */
9576 int ids_seen[DW_SECT_MAX + 1];
9577 int i;
9578
9579 if (nr_columns < 2)
9580 {
9581 error (_("Dwarf Error: bad DWP hash table, too few columns"
9582 " in section table [in module %s]"),
9583 dwp_file->name);
9584 }
9585 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9586 {
9587 error (_("Dwarf Error: bad DWP hash table, too many columns"
9588 " in section table [in module %s]"),
9589 dwp_file->name);
9590 }
9591 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9592 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9593 for (i = 0; i < nr_columns; ++i)
9594 {
9595 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9596
9597 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9598 {
9599 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9600 " in section table [in module %s]"),
9601 id, dwp_file->name);
9602 }
9603 if (ids_seen[id] != -1)
9604 {
9605 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9606 " id %d in section table [in module %s]"),
9607 id, dwp_file->name);
9608 }
9609 ids_seen[id] = i;
9610 ids[i] = id;
9611 }
9612 /* Must have exactly one info or types section. */
9613 if (((ids_seen[DW_SECT_INFO] != -1)
9614 + (ids_seen[DW_SECT_TYPES] != -1))
9615 != 1)
9616 {
9617 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9618 " DWO info/types section [in module %s]"),
9619 dwp_file->name);
9620 }
9621 /* Must have an abbrev section. */
9622 if (ids_seen[DW_SECT_ABBREV] == -1)
9623 {
9624 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9625 " section [in module %s]"),
9626 dwp_file->name);
9627 }
9628 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9629 htab->section_pool.v2.sizes =
9630 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9631 * nr_units * nr_columns);
9632 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9633 * nr_units * nr_columns))
9634 > index_end)
9635 {
9636 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9637 " [in module %s]"),
9638 dwp_file->name);
9639 }
9640 }
9641
9642 return htab;
9643 }
9644
9645 /* Update SECTIONS with the data from SECTP.
9646
9647 This function is like the other "locate" section routines that are
9648 passed to bfd_map_over_sections, but in this context the sections to
9649 read comes from the DWP V1 hash table, not the full ELF section table.
9650
9651 The result is non-zero for success, or zero if an error was found. */
9652
9653 static int
9654 locate_v1_virtual_dwo_sections (asection *sectp,
9655 struct virtual_v1_dwo_sections *sections)
9656 {
9657 const struct dwop_section_names *names = &dwop_section_names;
9658
9659 if (section_is_p (sectp->name, &names->abbrev_dwo))
9660 {
9661 /* There can be only one. */
9662 if (sections->abbrev.s.asection != NULL)
9663 return 0;
9664 sections->abbrev.s.asection = sectp;
9665 sections->abbrev.size = bfd_get_section_size (sectp);
9666 }
9667 else if (section_is_p (sectp->name, &names->info_dwo)
9668 || section_is_p (sectp->name, &names->types_dwo))
9669 {
9670 /* There can be only one. */
9671 if (sections->info_or_types.s.asection != NULL)
9672 return 0;
9673 sections->info_or_types.s.asection = sectp;
9674 sections->info_or_types.size = bfd_get_section_size (sectp);
9675 }
9676 else if (section_is_p (sectp->name, &names->line_dwo))
9677 {
9678 /* There can be only one. */
9679 if (sections->line.s.asection != NULL)
9680 return 0;
9681 sections->line.s.asection = sectp;
9682 sections->line.size = bfd_get_section_size (sectp);
9683 }
9684 else if (section_is_p (sectp->name, &names->loc_dwo))
9685 {
9686 /* There can be only one. */
9687 if (sections->loc.s.asection != NULL)
9688 return 0;
9689 sections->loc.s.asection = sectp;
9690 sections->loc.size = bfd_get_section_size (sectp);
9691 }
9692 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9693 {
9694 /* There can be only one. */
9695 if (sections->macinfo.s.asection != NULL)
9696 return 0;
9697 sections->macinfo.s.asection = sectp;
9698 sections->macinfo.size = bfd_get_section_size (sectp);
9699 }
9700 else if (section_is_p (sectp->name, &names->macro_dwo))
9701 {
9702 /* There can be only one. */
9703 if (sections->macro.s.asection != NULL)
9704 return 0;
9705 sections->macro.s.asection = sectp;
9706 sections->macro.size = bfd_get_section_size (sectp);
9707 }
9708 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9709 {
9710 /* There can be only one. */
9711 if (sections->str_offsets.s.asection != NULL)
9712 return 0;
9713 sections->str_offsets.s.asection = sectp;
9714 sections->str_offsets.size = bfd_get_section_size (sectp);
9715 }
9716 else
9717 {
9718 /* No other kind of section is valid. */
9719 return 0;
9720 }
9721
9722 return 1;
9723 }
9724
9725 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9726 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9727 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9728 This is for DWP version 1 files. */
9729
9730 static struct dwo_unit *
9731 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9732 uint32_t unit_index,
9733 const char *comp_dir,
9734 ULONGEST signature, int is_debug_types)
9735 {
9736 struct objfile *objfile = dwarf2_per_objfile->objfile;
9737 const struct dwp_hash_table *dwp_htab =
9738 is_debug_types ? dwp_file->tus : dwp_file->cus;
9739 bfd *dbfd = dwp_file->dbfd;
9740 const char *kind = is_debug_types ? "TU" : "CU";
9741 struct dwo_file *dwo_file;
9742 struct dwo_unit *dwo_unit;
9743 struct virtual_v1_dwo_sections sections;
9744 void **dwo_file_slot;
9745 char *virtual_dwo_name;
9746 struct dwarf2_section_info *cutu;
9747 struct cleanup *cleanups;
9748 int i;
9749
9750 gdb_assert (dwp_file->version == 1);
9751
9752 if (dwarf2_read_debug)
9753 {
9754 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9755 kind,
9756 pulongest (unit_index), hex_string (signature),
9757 dwp_file->name);
9758 }
9759
9760 /* Fetch the sections of this DWO unit.
9761 Put a limit on the number of sections we look for so that bad data
9762 doesn't cause us to loop forever. */
9763
9764 #define MAX_NR_V1_DWO_SECTIONS \
9765 (1 /* .debug_info or .debug_types */ \
9766 + 1 /* .debug_abbrev */ \
9767 + 1 /* .debug_line */ \
9768 + 1 /* .debug_loc */ \
9769 + 1 /* .debug_str_offsets */ \
9770 + 1 /* .debug_macro or .debug_macinfo */ \
9771 + 1 /* trailing zero */)
9772
9773 memset (&sections, 0, sizeof (sections));
9774 cleanups = make_cleanup (null_cleanup, 0);
9775
9776 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9777 {
9778 asection *sectp;
9779 uint32_t section_nr =
9780 read_4_bytes (dbfd,
9781 dwp_htab->section_pool.v1.indices
9782 + (unit_index + i) * sizeof (uint32_t));
9783
9784 if (section_nr == 0)
9785 break;
9786 if (section_nr >= dwp_file->num_sections)
9787 {
9788 error (_("Dwarf Error: bad DWP hash table, section number too large"
9789 " [in module %s]"),
9790 dwp_file->name);
9791 }
9792
9793 sectp = dwp_file->elf_sections[section_nr];
9794 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9795 {
9796 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9797 " [in module %s]"),
9798 dwp_file->name);
9799 }
9800 }
9801
9802 if (i < 2
9803 || dwarf2_section_empty_p (&sections.info_or_types)
9804 || dwarf2_section_empty_p (&sections.abbrev))
9805 {
9806 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9807 " [in module %s]"),
9808 dwp_file->name);
9809 }
9810 if (i == MAX_NR_V1_DWO_SECTIONS)
9811 {
9812 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9813 " [in module %s]"),
9814 dwp_file->name);
9815 }
9816
9817 /* It's easier for the rest of the code if we fake a struct dwo_file and
9818 have dwo_unit "live" in that. At least for now.
9819
9820 The DWP file can be made up of a random collection of CUs and TUs.
9821 However, for each CU + set of TUs that came from the same original DWO
9822 file, we can combine them back into a virtual DWO file to save space
9823 (fewer struct dwo_file objects to allocate). Remember that for really
9824 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9825
9826 virtual_dwo_name =
9827 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9828 get_section_id (&sections.abbrev),
9829 get_section_id (&sections.line),
9830 get_section_id (&sections.loc),
9831 get_section_id (&sections.str_offsets));
9832 make_cleanup (xfree, virtual_dwo_name);
9833 /* Can we use an existing virtual DWO file? */
9834 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9835 /* Create one if necessary. */
9836 if (*dwo_file_slot == NULL)
9837 {
9838 if (dwarf2_read_debug)
9839 {
9840 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9841 virtual_dwo_name);
9842 }
9843 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9844 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9845 virtual_dwo_name,
9846 strlen (virtual_dwo_name));
9847 dwo_file->comp_dir = comp_dir;
9848 dwo_file->sections.abbrev = sections.abbrev;
9849 dwo_file->sections.line = sections.line;
9850 dwo_file->sections.loc = sections.loc;
9851 dwo_file->sections.macinfo = sections.macinfo;
9852 dwo_file->sections.macro = sections.macro;
9853 dwo_file->sections.str_offsets = sections.str_offsets;
9854 /* The "str" section is global to the entire DWP file. */
9855 dwo_file->sections.str = dwp_file->sections.str;
9856 /* The info or types section is assigned below to dwo_unit,
9857 there's no need to record it in dwo_file.
9858 Also, we can't simply record type sections in dwo_file because
9859 we record a pointer into the vector in dwo_unit. As we collect more
9860 types we'll grow the vector and eventually have to reallocate space
9861 for it, invalidating all copies of pointers into the previous
9862 contents. */
9863 *dwo_file_slot = dwo_file;
9864 }
9865 else
9866 {
9867 if (dwarf2_read_debug)
9868 {
9869 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9870 virtual_dwo_name);
9871 }
9872 dwo_file = *dwo_file_slot;
9873 }
9874 do_cleanups (cleanups);
9875
9876 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9877 dwo_unit->dwo_file = dwo_file;
9878 dwo_unit->signature = signature;
9879 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9880 sizeof (struct dwarf2_section_info));
9881 *dwo_unit->section = sections.info_or_types;
9882 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9883
9884 return dwo_unit;
9885 }
9886
9887 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9888 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9889 piece within that section used by a TU/CU, return a virtual section
9890 of just that piece. */
9891
9892 static struct dwarf2_section_info
9893 create_dwp_v2_section (struct dwarf2_section_info *section,
9894 bfd_size_type offset, bfd_size_type size)
9895 {
9896 struct dwarf2_section_info result;
9897 asection *sectp;
9898
9899 gdb_assert (section != NULL);
9900 gdb_assert (!section->is_virtual);
9901
9902 memset (&result, 0, sizeof (result));
9903 result.s.containing_section = section;
9904 result.is_virtual = 1;
9905
9906 if (size == 0)
9907 return result;
9908
9909 sectp = get_section_bfd_section (section);
9910
9911 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9912 bounds of the real section. This is a pretty-rare event, so just
9913 flag an error (easier) instead of a warning and trying to cope. */
9914 if (sectp == NULL
9915 || offset + size > bfd_get_section_size (sectp))
9916 {
9917 bfd *abfd = sectp->owner;
9918
9919 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9920 " in section %s [in module %s]"),
9921 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9922 objfile_name (dwarf2_per_objfile->objfile));
9923 }
9924
9925 result.virtual_offset = offset;
9926 result.size = size;
9927 return result;
9928 }
9929
9930 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9931 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9932 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9933 This is for DWP version 2 files. */
9934
9935 static struct dwo_unit *
9936 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9937 uint32_t unit_index,
9938 const char *comp_dir,
9939 ULONGEST signature, int is_debug_types)
9940 {
9941 struct objfile *objfile = dwarf2_per_objfile->objfile;
9942 const struct dwp_hash_table *dwp_htab =
9943 is_debug_types ? dwp_file->tus : dwp_file->cus;
9944 bfd *dbfd = dwp_file->dbfd;
9945 const char *kind = is_debug_types ? "TU" : "CU";
9946 struct dwo_file *dwo_file;
9947 struct dwo_unit *dwo_unit;
9948 struct virtual_v2_dwo_sections sections;
9949 void **dwo_file_slot;
9950 char *virtual_dwo_name;
9951 struct dwarf2_section_info *cutu;
9952 struct cleanup *cleanups;
9953 int i;
9954
9955 gdb_assert (dwp_file->version == 2);
9956
9957 if (dwarf2_read_debug)
9958 {
9959 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9960 kind,
9961 pulongest (unit_index), hex_string (signature),
9962 dwp_file->name);
9963 }
9964
9965 /* Fetch the section offsets of this DWO unit. */
9966
9967 memset (&sections, 0, sizeof (sections));
9968 cleanups = make_cleanup (null_cleanup, 0);
9969
9970 for (i = 0; i < dwp_htab->nr_columns; ++i)
9971 {
9972 uint32_t offset = read_4_bytes (dbfd,
9973 dwp_htab->section_pool.v2.offsets
9974 + (((unit_index - 1) * dwp_htab->nr_columns
9975 + i)
9976 * sizeof (uint32_t)));
9977 uint32_t size = read_4_bytes (dbfd,
9978 dwp_htab->section_pool.v2.sizes
9979 + (((unit_index - 1) * dwp_htab->nr_columns
9980 + i)
9981 * sizeof (uint32_t)));
9982
9983 switch (dwp_htab->section_pool.v2.section_ids[i])
9984 {
9985 case DW_SECT_INFO:
9986 case DW_SECT_TYPES:
9987 sections.info_or_types_offset = offset;
9988 sections.info_or_types_size = size;
9989 break;
9990 case DW_SECT_ABBREV:
9991 sections.abbrev_offset = offset;
9992 sections.abbrev_size = size;
9993 break;
9994 case DW_SECT_LINE:
9995 sections.line_offset = offset;
9996 sections.line_size = size;
9997 break;
9998 case DW_SECT_LOC:
9999 sections.loc_offset = offset;
10000 sections.loc_size = size;
10001 break;
10002 case DW_SECT_STR_OFFSETS:
10003 sections.str_offsets_offset = offset;
10004 sections.str_offsets_size = size;
10005 break;
10006 case DW_SECT_MACINFO:
10007 sections.macinfo_offset = offset;
10008 sections.macinfo_size = size;
10009 break;
10010 case DW_SECT_MACRO:
10011 sections.macro_offset = offset;
10012 sections.macro_size = size;
10013 break;
10014 }
10015 }
10016
10017 /* It's easier for the rest of the code if we fake a struct dwo_file and
10018 have dwo_unit "live" in that. At least for now.
10019
10020 The DWP file can be made up of a random collection of CUs and TUs.
10021 However, for each CU + set of TUs that came from the same original DWO
10022 file, we can combine them back into a virtual DWO file to save space
10023 (fewer struct dwo_file objects to allocate). Remember that for really
10024 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10025
10026 virtual_dwo_name =
10027 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10028 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10029 (long) (sections.line_size ? sections.line_offset : 0),
10030 (long) (sections.loc_size ? sections.loc_offset : 0),
10031 (long) (sections.str_offsets_size
10032 ? sections.str_offsets_offset : 0));
10033 make_cleanup (xfree, virtual_dwo_name);
10034 /* Can we use an existing virtual DWO file? */
10035 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10036 /* Create one if necessary. */
10037 if (*dwo_file_slot == NULL)
10038 {
10039 if (dwarf2_read_debug)
10040 {
10041 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10042 virtual_dwo_name);
10043 }
10044 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10045 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10046 virtual_dwo_name,
10047 strlen (virtual_dwo_name));
10048 dwo_file->comp_dir = comp_dir;
10049 dwo_file->sections.abbrev =
10050 create_dwp_v2_section (&dwp_file->sections.abbrev,
10051 sections.abbrev_offset, sections.abbrev_size);
10052 dwo_file->sections.line =
10053 create_dwp_v2_section (&dwp_file->sections.line,
10054 sections.line_offset, sections.line_size);
10055 dwo_file->sections.loc =
10056 create_dwp_v2_section (&dwp_file->sections.loc,
10057 sections.loc_offset, sections.loc_size);
10058 dwo_file->sections.macinfo =
10059 create_dwp_v2_section (&dwp_file->sections.macinfo,
10060 sections.macinfo_offset, sections.macinfo_size);
10061 dwo_file->sections.macro =
10062 create_dwp_v2_section (&dwp_file->sections.macro,
10063 sections.macro_offset, sections.macro_size);
10064 dwo_file->sections.str_offsets =
10065 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10066 sections.str_offsets_offset,
10067 sections.str_offsets_size);
10068 /* The "str" section is global to the entire DWP file. */
10069 dwo_file->sections.str = dwp_file->sections.str;
10070 /* The info or types section is assigned below to dwo_unit,
10071 there's no need to record it in dwo_file.
10072 Also, we can't simply record type sections in dwo_file because
10073 we record a pointer into the vector in dwo_unit. As we collect more
10074 types we'll grow the vector and eventually have to reallocate space
10075 for it, invalidating all copies of pointers into the previous
10076 contents. */
10077 *dwo_file_slot = dwo_file;
10078 }
10079 else
10080 {
10081 if (dwarf2_read_debug)
10082 {
10083 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10084 virtual_dwo_name);
10085 }
10086 dwo_file = *dwo_file_slot;
10087 }
10088 do_cleanups (cleanups);
10089
10090 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10091 dwo_unit->dwo_file = dwo_file;
10092 dwo_unit->signature = signature;
10093 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10094 sizeof (struct dwarf2_section_info));
10095 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10096 ? &dwp_file->sections.types
10097 : &dwp_file->sections.info,
10098 sections.info_or_types_offset,
10099 sections.info_or_types_size);
10100 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10101
10102 return dwo_unit;
10103 }
10104
10105 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10106 Returns NULL if the signature isn't found. */
10107
10108 static struct dwo_unit *
10109 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10110 ULONGEST signature, int is_debug_types)
10111 {
10112 const struct dwp_hash_table *dwp_htab =
10113 is_debug_types ? dwp_file->tus : dwp_file->cus;
10114 bfd *dbfd = dwp_file->dbfd;
10115 uint32_t mask = dwp_htab->nr_slots - 1;
10116 uint32_t hash = signature & mask;
10117 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10118 unsigned int i;
10119 void **slot;
10120 struct dwo_unit find_dwo_cu, *dwo_cu;
10121
10122 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10123 find_dwo_cu.signature = signature;
10124 slot = htab_find_slot (is_debug_types
10125 ? dwp_file->loaded_tus
10126 : dwp_file->loaded_cus,
10127 &find_dwo_cu, INSERT);
10128
10129 if (*slot != NULL)
10130 return *slot;
10131
10132 /* Use a for loop so that we don't loop forever on bad debug info. */
10133 for (i = 0; i < dwp_htab->nr_slots; ++i)
10134 {
10135 ULONGEST signature_in_table;
10136
10137 signature_in_table =
10138 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10139 if (signature_in_table == signature)
10140 {
10141 uint32_t unit_index =
10142 read_4_bytes (dbfd,
10143 dwp_htab->unit_table + hash * sizeof (uint32_t));
10144
10145 if (dwp_file->version == 1)
10146 {
10147 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10148 comp_dir, signature,
10149 is_debug_types);
10150 }
10151 else
10152 {
10153 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10154 comp_dir, signature,
10155 is_debug_types);
10156 }
10157 return *slot;
10158 }
10159 if (signature_in_table == 0)
10160 return NULL;
10161 hash = (hash + hash2) & mask;
10162 }
10163
10164 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10165 " [in module %s]"),
10166 dwp_file->name);
10167 }
10168
10169 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10170 Open the file specified by FILE_NAME and hand it off to BFD for
10171 preliminary analysis. Return a newly initialized bfd *, which
10172 includes a canonicalized copy of FILE_NAME.
10173 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10174 SEARCH_CWD is true if the current directory is to be searched.
10175 It will be searched before debug-file-directory.
10176 If successful, the file is added to the bfd include table of the
10177 objfile's bfd (see gdb_bfd_record_inclusion).
10178 If unable to find/open the file, return NULL.
10179 NOTE: This function is derived from symfile_bfd_open. */
10180
10181 static bfd *
10182 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10183 {
10184 bfd *sym_bfd;
10185 int desc, flags;
10186 char *absolute_name;
10187 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10188 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10189 to debug_file_directory. */
10190 char *search_path;
10191 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10192
10193 if (search_cwd)
10194 {
10195 if (*debug_file_directory != '\0')
10196 search_path = concat (".", dirname_separator_string,
10197 debug_file_directory, NULL);
10198 else
10199 search_path = xstrdup (".");
10200 }
10201 else
10202 search_path = xstrdup (debug_file_directory);
10203
10204 flags = OPF_RETURN_REALPATH;
10205 if (is_dwp)
10206 flags |= OPF_SEARCH_IN_PATH;
10207 desc = openp (search_path, flags, file_name,
10208 O_RDONLY | O_BINARY, &absolute_name);
10209 xfree (search_path);
10210 if (desc < 0)
10211 return NULL;
10212
10213 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10214 xfree (absolute_name);
10215 if (sym_bfd == NULL)
10216 return NULL;
10217 bfd_set_cacheable (sym_bfd, 1);
10218
10219 if (!bfd_check_format (sym_bfd, bfd_object))
10220 {
10221 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10222 return NULL;
10223 }
10224
10225 /* Success. Record the bfd as having been included by the objfile's bfd.
10226 This is important because things like demangled_names_hash lives in the
10227 objfile's per_bfd space and may have references to things like symbol
10228 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10229 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10230
10231 return sym_bfd;
10232 }
10233
10234 /* Try to open DWO file FILE_NAME.
10235 COMP_DIR is the DW_AT_comp_dir attribute.
10236 The result is the bfd handle of the file.
10237 If there is a problem finding or opening the file, return NULL.
10238 Upon success, the canonicalized path of the file is stored in the bfd,
10239 same as symfile_bfd_open. */
10240
10241 static bfd *
10242 open_dwo_file (const char *file_name, const char *comp_dir)
10243 {
10244 bfd *abfd;
10245
10246 if (IS_ABSOLUTE_PATH (file_name))
10247 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10248
10249 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10250
10251 if (comp_dir != NULL)
10252 {
10253 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10254
10255 /* NOTE: If comp_dir is a relative path, this will also try the
10256 search path, which seems useful. */
10257 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10258 xfree (path_to_try);
10259 if (abfd != NULL)
10260 return abfd;
10261 }
10262
10263 /* That didn't work, try debug-file-directory, which, despite its name,
10264 is a list of paths. */
10265
10266 if (*debug_file_directory == '\0')
10267 return NULL;
10268
10269 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10270 }
10271
10272 /* This function is mapped across the sections and remembers the offset and
10273 size of each of the DWO debugging sections we are interested in. */
10274
10275 static void
10276 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10277 {
10278 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10279 const struct dwop_section_names *names = &dwop_section_names;
10280
10281 if (section_is_p (sectp->name, &names->abbrev_dwo))
10282 {
10283 dwo_sections->abbrev.s.asection = sectp;
10284 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10285 }
10286 else if (section_is_p (sectp->name, &names->info_dwo))
10287 {
10288 dwo_sections->info.s.asection = sectp;
10289 dwo_sections->info.size = bfd_get_section_size (sectp);
10290 }
10291 else if (section_is_p (sectp->name, &names->line_dwo))
10292 {
10293 dwo_sections->line.s.asection = sectp;
10294 dwo_sections->line.size = bfd_get_section_size (sectp);
10295 }
10296 else if (section_is_p (sectp->name, &names->loc_dwo))
10297 {
10298 dwo_sections->loc.s.asection = sectp;
10299 dwo_sections->loc.size = bfd_get_section_size (sectp);
10300 }
10301 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10302 {
10303 dwo_sections->macinfo.s.asection = sectp;
10304 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10305 }
10306 else if (section_is_p (sectp->name, &names->macro_dwo))
10307 {
10308 dwo_sections->macro.s.asection = sectp;
10309 dwo_sections->macro.size = bfd_get_section_size (sectp);
10310 }
10311 else if (section_is_p (sectp->name, &names->str_dwo))
10312 {
10313 dwo_sections->str.s.asection = sectp;
10314 dwo_sections->str.size = bfd_get_section_size (sectp);
10315 }
10316 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10317 {
10318 dwo_sections->str_offsets.s.asection = sectp;
10319 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10320 }
10321 else if (section_is_p (sectp->name, &names->types_dwo))
10322 {
10323 struct dwarf2_section_info type_section;
10324
10325 memset (&type_section, 0, sizeof (type_section));
10326 type_section.s.asection = sectp;
10327 type_section.size = bfd_get_section_size (sectp);
10328 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10329 &type_section);
10330 }
10331 }
10332
10333 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10334 by PER_CU. This is for the non-DWP case.
10335 The result is NULL if DWO_NAME can't be found. */
10336
10337 static struct dwo_file *
10338 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10339 const char *dwo_name, const char *comp_dir)
10340 {
10341 struct objfile *objfile = dwarf2_per_objfile->objfile;
10342 struct dwo_file *dwo_file;
10343 bfd *dbfd;
10344 struct cleanup *cleanups;
10345
10346 dbfd = open_dwo_file (dwo_name, comp_dir);
10347 if (dbfd == NULL)
10348 {
10349 if (dwarf2_read_debug)
10350 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10351 return NULL;
10352 }
10353 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10354 dwo_file->dwo_name = dwo_name;
10355 dwo_file->comp_dir = comp_dir;
10356 dwo_file->dbfd = dbfd;
10357
10358 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10359
10360 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10361
10362 dwo_file->cu = create_dwo_cu (dwo_file);
10363
10364 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10365 dwo_file->sections.types);
10366
10367 discard_cleanups (cleanups);
10368
10369 if (dwarf2_read_debug)
10370 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10371
10372 return dwo_file;
10373 }
10374
10375 /* This function is mapped across the sections and remembers the offset and
10376 size of each of the DWP debugging sections common to version 1 and 2 that
10377 we are interested in. */
10378
10379 static void
10380 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10381 void *dwp_file_ptr)
10382 {
10383 struct dwp_file *dwp_file = dwp_file_ptr;
10384 const struct dwop_section_names *names = &dwop_section_names;
10385 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10386
10387 /* Record the ELF section number for later lookup: this is what the
10388 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10389 gdb_assert (elf_section_nr < dwp_file->num_sections);
10390 dwp_file->elf_sections[elf_section_nr] = sectp;
10391
10392 /* Look for specific sections that we need. */
10393 if (section_is_p (sectp->name, &names->str_dwo))
10394 {
10395 dwp_file->sections.str.s.asection = sectp;
10396 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->cu_index))
10399 {
10400 dwp_file->sections.cu_index.s.asection = sectp;
10401 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->tu_index))
10404 {
10405 dwp_file->sections.tu_index.s.asection = sectp;
10406 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10407 }
10408 }
10409
10410 /* This function is mapped across the sections and remembers the offset and
10411 size of each of the DWP version 2 debugging sections that we are interested
10412 in. This is split into a separate function because we don't know if we
10413 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10414
10415 static void
10416 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10417 {
10418 struct dwp_file *dwp_file = dwp_file_ptr;
10419 const struct dwop_section_names *names = &dwop_section_names;
10420 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10421
10422 /* Record the ELF section number for later lookup: this is what the
10423 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10424 gdb_assert (elf_section_nr < dwp_file->num_sections);
10425 dwp_file->elf_sections[elf_section_nr] = sectp;
10426
10427 /* Look for specific sections that we need. */
10428 if (section_is_p (sectp->name, &names->abbrev_dwo))
10429 {
10430 dwp_file->sections.abbrev.s.asection = sectp;
10431 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10432 }
10433 else if (section_is_p (sectp->name, &names->info_dwo))
10434 {
10435 dwp_file->sections.info.s.asection = sectp;
10436 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10437 }
10438 else if (section_is_p (sectp->name, &names->line_dwo))
10439 {
10440 dwp_file->sections.line.s.asection = sectp;
10441 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10442 }
10443 else if (section_is_p (sectp->name, &names->loc_dwo))
10444 {
10445 dwp_file->sections.loc.s.asection = sectp;
10446 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10447 }
10448 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10449 {
10450 dwp_file->sections.macinfo.s.asection = sectp;
10451 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10452 }
10453 else if (section_is_p (sectp->name, &names->macro_dwo))
10454 {
10455 dwp_file->sections.macro.s.asection = sectp;
10456 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10457 }
10458 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10459 {
10460 dwp_file->sections.str_offsets.s.asection = sectp;
10461 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10462 }
10463 else if (section_is_p (sectp->name, &names->types_dwo))
10464 {
10465 dwp_file->sections.types.s.asection = sectp;
10466 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10467 }
10468 }
10469
10470 /* Hash function for dwp_file loaded CUs/TUs. */
10471
10472 static hashval_t
10473 hash_dwp_loaded_cutus (const void *item)
10474 {
10475 const struct dwo_unit *dwo_unit = item;
10476
10477 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10478 return dwo_unit->signature;
10479 }
10480
10481 /* Equality function for dwp_file loaded CUs/TUs. */
10482
10483 static int
10484 eq_dwp_loaded_cutus (const void *a, const void *b)
10485 {
10486 const struct dwo_unit *dua = a;
10487 const struct dwo_unit *dub = b;
10488
10489 return dua->signature == dub->signature;
10490 }
10491
10492 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10493
10494 static htab_t
10495 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10496 {
10497 return htab_create_alloc_ex (3,
10498 hash_dwp_loaded_cutus,
10499 eq_dwp_loaded_cutus,
10500 NULL,
10501 &objfile->objfile_obstack,
10502 hashtab_obstack_allocate,
10503 dummy_obstack_deallocate);
10504 }
10505
10506 /* Try to open DWP file FILE_NAME.
10507 The result is the bfd handle of the file.
10508 If there is a problem finding or opening the file, return NULL.
10509 Upon success, the canonicalized path of the file is stored in the bfd,
10510 same as symfile_bfd_open. */
10511
10512 static bfd *
10513 open_dwp_file (const char *file_name)
10514 {
10515 bfd *abfd;
10516
10517 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10518 if (abfd != NULL)
10519 return abfd;
10520
10521 /* Work around upstream bug 15652.
10522 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10523 [Whether that's a "bug" is debatable, but it is getting in our way.]
10524 We have no real idea where the dwp file is, because gdb's realpath-ing
10525 of the executable's path may have discarded the needed info.
10526 [IWBN if the dwp file name was recorded in the executable, akin to
10527 .gnu_debuglink, but that doesn't exist yet.]
10528 Strip the directory from FILE_NAME and search again. */
10529 if (*debug_file_directory != '\0')
10530 {
10531 /* Don't implicitly search the current directory here.
10532 If the user wants to search "." to handle this case,
10533 it must be added to debug-file-directory. */
10534 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10535 0 /*search_cwd*/);
10536 }
10537
10538 return NULL;
10539 }
10540
10541 /* Initialize the use of the DWP file for the current objfile.
10542 By convention the name of the DWP file is ${objfile}.dwp.
10543 The result is NULL if it can't be found. */
10544
10545 static struct dwp_file *
10546 open_and_init_dwp_file (void)
10547 {
10548 struct objfile *objfile = dwarf2_per_objfile->objfile;
10549 struct dwp_file *dwp_file;
10550 char *dwp_name;
10551 bfd *dbfd;
10552 struct cleanup *cleanups;
10553
10554 /* Try to find first .dwp for the binary file before any symbolic links
10555 resolving. */
10556 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10557 cleanups = make_cleanup (xfree, dwp_name);
10558
10559 dbfd = open_dwp_file (dwp_name);
10560 if (dbfd == NULL
10561 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10562 {
10563 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10564 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10565 make_cleanup (xfree, dwp_name);
10566 dbfd = open_dwp_file (dwp_name);
10567 }
10568
10569 if (dbfd == NULL)
10570 {
10571 if (dwarf2_read_debug)
10572 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10573 do_cleanups (cleanups);
10574 return NULL;
10575 }
10576 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10577 dwp_file->name = bfd_get_filename (dbfd);
10578 dwp_file->dbfd = dbfd;
10579 do_cleanups (cleanups);
10580
10581 /* +1: section 0 is unused */
10582 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10583 dwp_file->elf_sections =
10584 OBSTACK_CALLOC (&objfile->objfile_obstack,
10585 dwp_file->num_sections, asection *);
10586
10587 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10588
10589 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10590
10591 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10592
10593 /* The DWP file version is stored in the hash table. Oh well. */
10594 if (dwp_file->cus->version != dwp_file->tus->version)
10595 {
10596 /* Technically speaking, we should try to limp along, but this is
10597 pretty bizarre. We use pulongest here because that's the established
10598 portability solution (e.g, we cannot use %u for uint32_t). */
10599 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10600 " TU version %s [in DWP file %s]"),
10601 pulongest (dwp_file->cus->version),
10602 pulongest (dwp_file->tus->version), dwp_name);
10603 }
10604 dwp_file->version = dwp_file->cus->version;
10605
10606 if (dwp_file->version == 2)
10607 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10608
10609 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10610 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10611
10612 if (dwarf2_read_debug)
10613 {
10614 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10615 fprintf_unfiltered (gdb_stdlog,
10616 " %s CUs, %s TUs\n",
10617 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10618 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10619 }
10620
10621 return dwp_file;
10622 }
10623
10624 /* Wrapper around open_and_init_dwp_file, only open it once. */
10625
10626 static struct dwp_file *
10627 get_dwp_file (void)
10628 {
10629 if (! dwarf2_per_objfile->dwp_checked)
10630 {
10631 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10632 dwarf2_per_objfile->dwp_checked = 1;
10633 }
10634 return dwarf2_per_objfile->dwp_file;
10635 }
10636
10637 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10638 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10639 or in the DWP file for the objfile, referenced by THIS_UNIT.
10640 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10641 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10642
10643 This is called, for example, when wanting to read a variable with a
10644 complex location. Therefore we don't want to do file i/o for every call.
10645 Therefore we don't want to look for a DWO file on every call.
10646 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10647 then we check if we've already seen DWO_NAME, and only THEN do we check
10648 for a DWO file.
10649
10650 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10651 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10652
10653 static struct dwo_unit *
10654 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10655 const char *dwo_name, const char *comp_dir,
10656 ULONGEST signature, int is_debug_types)
10657 {
10658 struct objfile *objfile = dwarf2_per_objfile->objfile;
10659 const char *kind = is_debug_types ? "TU" : "CU";
10660 void **dwo_file_slot;
10661 struct dwo_file *dwo_file;
10662 struct dwp_file *dwp_file;
10663
10664 /* First see if there's a DWP file.
10665 If we have a DWP file but didn't find the DWO inside it, don't
10666 look for the original DWO file. It makes gdb behave differently
10667 depending on whether one is debugging in the build tree. */
10668
10669 dwp_file = get_dwp_file ();
10670 if (dwp_file != NULL)
10671 {
10672 const struct dwp_hash_table *dwp_htab =
10673 is_debug_types ? dwp_file->tus : dwp_file->cus;
10674
10675 if (dwp_htab != NULL)
10676 {
10677 struct dwo_unit *dwo_cutu =
10678 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10679 signature, is_debug_types);
10680
10681 if (dwo_cutu != NULL)
10682 {
10683 if (dwarf2_read_debug)
10684 {
10685 fprintf_unfiltered (gdb_stdlog,
10686 "Virtual DWO %s %s found: @%s\n",
10687 kind, hex_string (signature),
10688 host_address_to_string (dwo_cutu));
10689 }
10690 return dwo_cutu;
10691 }
10692 }
10693 }
10694 else
10695 {
10696 /* No DWP file, look for the DWO file. */
10697
10698 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10699 if (*dwo_file_slot == NULL)
10700 {
10701 /* Read in the file and build a table of the CUs/TUs it contains. */
10702 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10703 }
10704 /* NOTE: This will be NULL if unable to open the file. */
10705 dwo_file = *dwo_file_slot;
10706
10707 if (dwo_file != NULL)
10708 {
10709 struct dwo_unit *dwo_cutu = NULL;
10710
10711 if (is_debug_types && dwo_file->tus)
10712 {
10713 struct dwo_unit find_dwo_cutu;
10714
10715 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10716 find_dwo_cutu.signature = signature;
10717 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10718 }
10719 else if (!is_debug_types && dwo_file->cu)
10720 {
10721 if (signature == dwo_file->cu->signature)
10722 dwo_cutu = dwo_file->cu;
10723 }
10724
10725 if (dwo_cutu != NULL)
10726 {
10727 if (dwarf2_read_debug)
10728 {
10729 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10730 kind, dwo_name, hex_string (signature),
10731 host_address_to_string (dwo_cutu));
10732 }
10733 return dwo_cutu;
10734 }
10735 }
10736 }
10737
10738 /* We didn't find it. This could mean a dwo_id mismatch, or
10739 someone deleted the DWO/DWP file, or the search path isn't set up
10740 correctly to find the file. */
10741
10742 if (dwarf2_read_debug)
10743 {
10744 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10745 kind, dwo_name, hex_string (signature));
10746 }
10747
10748 /* This is a warning and not a complaint because it can be caused by
10749 pilot error (e.g., user accidentally deleting the DWO). */
10750 {
10751 /* Print the name of the DWP file if we looked there, helps the user
10752 better diagnose the problem. */
10753 char *dwp_text = NULL;
10754 struct cleanup *cleanups;
10755
10756 if (dwp_file != NULL)
10757 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10758 cleanups = make_cleanup (xfree, dwp_text);
10759
10760 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10761 " [in module %s]"),
10762 kind, dwo_name, hex_string (signature),
10763 dwp_text != NULL ? dwp_text : "",
10764 this_unit->is_debug_types ? "TU" : "CU",
10765 this_unit->offset.sect_off, objfile_name (objfile));
10766
10767 do_cleanups (cleanups);
10768 }
10769 return NULL;
10770 }
10771
10772 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10773 See lookup_dwo_cutu_unit for details. */
10774
10775 static struct dwo_unit *
10776 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10777 const char *dwo_name, const char *comp_dir,
10778 ULONGEST signature)
10779 {
10780 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10781 }
10782
10783 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10784 See lookup_dwo_cutu_unit for details. */
10785
10786 static struct dwo_unit *
10787 lookup_dwo_type_unit (struct signatured_type *this_tu,
10788 const char *dwo_name, const char *comp_dir)
10789 {
10790 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10791 }
10792
10793 /* Traversal function for queue_and_load_all_dwo_tus. */
10794
10795 static int
10796 queue_and_load_dwo_tu (void **slot, void *info)
10797 {
10798 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10799 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10800 ULONGEST signature = dwo_unit->signature;
10801 struct signatured_type *sig_type =
10802 lookup_dwo_signatured_type (per_cu->cu, signature);
10803
10804 if (sig_type != NULL)
10805 {
10806 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10807
10808 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10809 a real dependency of PER_CU on SIG_TYPE. That is detected later
10810 while processing PER_CU. */
10811 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10812 load_full_type_unit (sig_cu);
10813 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10814 }
10815
10816 return 1;
10817 }
10818
10819 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10820 The DWO may have the only definition of the type, though it may not be
10821 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10822 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10823
10824 static void
10825 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10826 {
10827 struct dwo_unit *dwo_unit;
10828 struct dwo_file *dwo_file;
10829
10830 gdb_assert (!per_cu->is_debug_types);
10831 gdb_assert (get_dwp_file () == NULL);
10832 gdb_assert (per_cu->cu != NULL);
10833
10834 dwo_unit = per_cu->cu->dwo_unit;
10835 gdb_assert (dwo_unit != NULL);
10836
10837 dwo_file = dwo_unit->dwo_file;
10838 if (dwo_file->tus != NULL)
10839 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10840 }
10841
10842 /* Free all resources associated with DWO_FILE.
10843 Close the DWO file and munmap the sections.
10844 All memory should be on the objfile obstack. */
10845
10846 static void
10847 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10848 {
10849 int ix;
10850 struct dwarf2_section_info *section;
10851
10852 /* Note: dbfd is NULL for virtual DWO files. */
10853 gdb_bfd_unref (dwo_file->dbfd);
10854
10855 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10856 }
10857
10858 /* Wrapper for free_dwo_file for use in cleanups. */
10859
10860 static void
10861 free_dwo_file_cleanup (void *arg)
10862 {
10863 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10864 struct objfile *objfile = dwarf2_per_objfile->objfile;
10865
10866 free_dwo_file (dwo_file, objfile);
10867 }
10868
10869 /* Traversal function for free_dwo_files. */
10870
10871 static int
10872 free_dwo_file_from_slot (void **slot, void *info)
10873 {
10874 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10875 struct objfile *objfile = (struct objfile *) info;
10876
10877 free_dwo_file (dwo_file, objfile);
10878
10879 return 1;
10880 }
10881
10882 /* Free all resources associated with DWO_FILES. */
10883
10884 static void
10885 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10886 {
10887 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10888 }
10889 \f
10890 /* Read in various DIEs. */
10891
10892 /* qsort helper for inherit_abstract_dies. */
10893
10894 static int
10895 unsigned_int_compar (const void *ap, const void *bp)
10896 {
10897 unsigned int a = *(unsigned int *) ap;
10898 unsigned int b = *(unsigned int *) bp;
10899
10900 return (a > b) - (b > a);
10901 }
10902
10903 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10904 Inherit only the children of the DW_AT_abstract_origin DIE not being
10905 already referenced by DW_AT_abstract_origin from the children of the
10906 current DIE. */
10907
10908 static void
10909 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10910 {
10911 struct die_info *child_die;
10912 unsigned die_children_count;
10913 /* CU offsets which were referenced by children of the current DIE. */
10914 sect_offset *offsets;
10915 sect_offset *offsets_end, *offsetp;
10916 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10917 struct die_info *origin_die;
10918 /* Iterator of the ORIGIN_DIE children. */
10919 struct die_info *origin_child_die;
10920 struct cleanup *cleanups;
10921 struct attribute *attr;
10922 struct dwarf2_cu *origin_cu;
10923 struct pending **origin_previous_list_in_scope;
10924
10925 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10926 if (!attr)
10927 return;
10928
10929 /* Note that following die references may follow to a die in a
10930 different cu. */
10931
10932 origin_cu = cu;
10933 origin_die = follow_die_ref (die, attr, &origin_cu);
10934
10935 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10936 symbols in. */
10937 origin_previous_list_in_scope = origin_cu->list_in_scope;
10938 origin_cu->list_in_scope = cu->list_in_scope;
10939
10940 if (die->tag != origin_die->tag
10941 && !(die->tag == DW_TAG_inlined_subroutine
10942 && origin_die->tag == DW_TAG_subprogram))
10943 complaint (&symfile_complaints,
10944 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10945 die->offset.sect_off, origin_die->offset.sect_off);
10946
10947 child_die = die->child;
10948 die_children_count = 0;
10949 while (child_die && child_die->tag)
10950 {
10951 child_die = sibling_die (child_die);
10952 die_children_count++;
10953 }
10954 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10955 cleanups = make_cleanup (xfree, offsets);
10956
10957 offsets_end = offsets;
10958 child_die = die->child;
10959 while (child_die && child_die->tag)
10960 {
10961 /* For each CHILD_DIE, find the corresponding child of
10962 ORIGIN_DIE. If there is more than one layer of
10963 DW_AT_abstract_origin, follow them all; there shouldn't be,
10964 but GCC versions at least through 4.4 generate this (GCC PR
10965 40573). */
10966 struct die_info *child_origin_die = child_die;
10967 struct dwarf2_cu *child_origin_cu = cu;
10968
10969 while (1)
10970 {
10971 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10972 child_origin_cu);
10973 if (attr == NULL)
10974 break;
10975 child_origin_die = follow_die_ref (child_origin_die, attr,
10976 &child_origin_cu);
10977 }
10978
10979 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10980 counterpart may exist. */
10981 if (child_origin_die != child_die)
10982 {
10983 if (child_die->tag != child_origin_die->tag
10984 && !(child_die->tag == DW_TAG_inlined_subroutine
10985 && child_origin_die->tag == DW_TAG_subprogram))
10986 complaint (&symfile_complaints,
10987 _("Child DIE 0x%x and its abstract origin 0x%x have "
10988 "different tags"), child_die->offset.sect_off,
10989 child_origin_die->offset.sect_off);
10990 if (child_origin_die->parent != origin_die)
10991 complaint (&symfile_complaints,
10992 _("Child DIE 0x%x and its abstract origin 0x%x have "
10993 "different parents"), child_die->offset.sect_off,
10994 child_origin_die->offset.sect_off);
10995 else
10996 *offsets_end++ = child_origin_die->offset;
10997 }
10998 child_die = sibling_die (child_die);
10999 }
11000 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11001 unsigned_int_compar);
11002 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11003 if (offsetp[-1].sect_off == offsetp->sect_off)
11004 complaint (&symfile_complaints,
11005 _("Multiple children of DIE 0x%x refer "
11006 "to DIE 0x%x as their abstract origin"),
11007 die->offset.sect_off, offsetp->sect_off);
11008
11009 offsetp = offsets;
11010 origin_child_die = origin_die->child;
11011 while (origin_child_die && origin_child_die->tag)
11012 {
11013 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11014 while (offsetp < offsets_end
11015 && offsetp->sect_off < origin_child_die->offset.sect_off)
11016 offsetp++;
11017 if (offsetp >= offsets_end
11018 || offsetp->sect_off > origin_child_die->offset.sect_off)
11019 {
11020 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11021 Check whether we're already processing ORIGIN_CHILD_DIE.
11022 This can happen with mutually referenced abstract_origins.
11023 PR 16581. */
11024 if (!origin_child_die->in_process)
11025 process_die (origin_child_die, origin_cu);
11026 }
11027 origin_child_die = sibling_die (origin_child_die);
11028 }
11029 origin_cu->list_in_scope = origin_previous_list_in_scope;
11030
11031 do_cleanups (cleanups);
11032 }
11033
11034 static void
11035 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11036 {
11037 struct objfile *objfile = cu->objfile;
11038 struct context_stack *new;
11039 CORE_ADDR lowpc;
11040 CORE_ADDR highpc;
11041 struct die_info *child_die;
11042 struct attribute *attr, *call_line, *call_file;
11043 const char *name;
11044 CORE_ADDR baseaddr;
11045 struct block *block;
11046 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11047 VEC (symbolp) *template_args = NULL;
11048 struct template_symbol *templ_func = NULL;
11049
11050 if (inlined_func)
11051 {
11052 /* If we do not have call site information, we can't show the
11053 caller of this inlined function. That's too confusing, so
11054 only use the scope for local variables. */
11055 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11056 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11057 if (call_line == NULL || call_file == NULL)
11058 {
11059 read_lexical_block_scope (die, cu);
11060 return;
11061 }
11062 }
11063
11064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11065
11066 name = dwarf2_name (die, cu);
11067
11068 /* Ignore functions with missing or empty names. These are actually
11069 illegal according to the DWARF standard. */
11070 if (name == NULL)
11071 {
11072 complaint (&symfile_complaints,
11073 _("missing name for subprogram DIE at %d"),
11074 die->offset.sect_off);
11075 return;
11076 }
11077
11078 /* Ignore functions with missing or invalid low and high pc attributes. */
11079 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11080 {
11081 attr = dwarf2_attr (die, DW_AT_external, cu);
11082 if (!attr || !DW_UNSND (attr))
11083 complaint (&symfile_complaints,
11084 _("cannot get low and high bounds "
11085 "for subprogram DIE at %d"),
11086 die->offset.sect_off);
11087 return;
11088 }
11089
11090 lowpc += baseaddr;
11091 highpc += baseaddr;
11092
11093 /* If we have any template arguments, then we must allocate a
11094 different sort of symbol. */
11095 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11096 {
11097 if (child_die->tag == DW_TAG_template_type_param
11098 || child_die->tag == DW_TAG_template_value_param)
11099 {
11100 templ_func = allocate_template_symbol (objfile);
11101 templ_func->base.is_cplus_template_function = 1;
11102 break;
11103 }
11104 }
11105
11106 new = push_context (0, lowpc);
11107 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11108 (struct symbol *) templ_func);
11109
11110 /* If there is a location expression for DW_AT_frame_base, record
11111 it. */
11112 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11113 if (attr)
11114 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11115
11116 cu->list_in_scope = &local_symbols;
11117
11118 if (die->child != NULL)
11119 {
11120 child_die = die->child;
11121 while (child_die && child_die->tag)
11122 {
11123 if (child_die->tag == DW_TAG_template_type_param
11124 || child_die->tag == DW_TAG_template_value_param)
11125 {
11126 struct symbol *arg = new_symbol (child_die, NULL, cu);
11127
11128 if (arg != NULL)
11129 VEC_safe_push (symbolp, template_args, arg);
11130 }
11131 else
11132 process_die (child_die, cu);
11133 child_die = sibling_die (child_die);
11134 }
11135 }
11136
11137 inherit_abstract_dies (die, cu);
11138
11139 /* If we have a DW_AT_specification, we might need to import using
11140 directives from the context of the specification DIE. See the
11141 comment in determine_prefix. */
11142 if (cu->language == language_cplus
11143 && dwarf2_attr (die, DW_AT_specification, cu))
11144 {
11145 struct dwarf2_cu *spec_cu = cu;
11146 struct die_info *spec_die = die_specification (die, &spec_cu);
11147
11148 while (spec_die)
11149 {
11150 child_die = spec_die->child;
11151 while (child_die && child_die->tag)
11152 {
11153 if (child_die->tag == DW_TAG_imported_module)
11154 process_die (child_die, spec_cu);
11155 child_die = sibling_die (child_die);
11156 }
11157
11158 /* In some cases, GCC generates specification DIEs that
11159 themselves contain DW_AT_specification attributes. */
11160 spec_die = die_specification (spec_die, &spec_cu);
11161 }
11162 }
11163
11164 new = pop_context ();
11165 /* Make a block for the local symbols within. */
11166 block = finish_block (new->name, &local_symbols, new->old_blocks,
11167 lowpc, highpc, objfile);
11168
11169 /* For C++, set the block's scope. */
11170 if ((cu->language == language_cplus || cu->language == language_fortran)
11171 && cu->processing_has_namespace_info)
11172 block_set_scope (block, determine_prefix (die, cu),
11173 &objfile->objfile_obstack);
11174
11175 /* If we have address ranges, record them. */
11176 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11177
11178 /* Attach template arguments to function. */
11179 if (! VEC_empty (symbolp, template_args))
11180 {
11181 gdb_assert (templ_func != NULL);
11182
11183 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11184 templ_func->template_arguments
11185 = obstack_alloc (&objfile->objfile_obstack,
11186 (templ_func->n_template_arguments
11187 * sizeof (struct symbol *)));
11188 memcpy (templ_func->template_arguments,
11189 VEC_address (symbolp, template_args),
11190 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11191 VEC_free (symbolp, template_args);
11192 }
11193
11194 /* In C++, we can have functions nested inside functions (e.g., when
11195 a function declares a class that has methods). This means that
11196 when we finish processing a function scope, we may need to go
11197 back to building a containing block's symbol lists. */
11198 local_symbols = new->locals;
11199 using_directives = new->using_directives;
11200
11201 /* If we've finished processing a top-level function, subsequent
11202 symbols go in the file symbol list. */
11203 if (outermost_context_p ())
11204 cu->list_in_scope = &file_symbols;
11205 }
11206
11207 /* Process all the DIES contained within a lexical block scope. Start
11208 a new scope, process the dies, and then close the scope. */
11209
11210 static void
11211 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11212 {
11213 struct objfile *objfile = cu->objfile;
11214 struct context_stack *new;
11215 CORE_ADDR lowpc, highpc;
11216 struct die_info *child_die;
11217 CORE_ADDR baseaddr;
11218
11219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11220
11221 /* Ignore blocks with missing or invalid low and high pc attributes. */
11222 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11223 as multiple lexical blocks? Handling children in a sane way would
11224 be nasty. Might be easier to properly extend generic blocks to
11225 describe ranges. */
11226 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11227 return;
11228 lowpc += baseaddr;
11229 highpc += baseaddr;
11230
11231 push_context (0, lowpc);
11232 if (die->child != NULL)
11233 {
11234 child_die = die->child;
11235 while (child_die && child_die->tag)
11236 {
11237 process_die (child_die, cu);
11238 child_die = sibling_die (child_die);
11239 }
11240 }
11241 new = pop_context ();
11242
11243 if (local_symbols != NULL || using_directives != NULL)
11244 {
11245 struct block *block
11246 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11247 highpc, objfile);
11248
11249 /* Note that recording ranges after traversing children, as we
11250 do here, means that recording a parent's ranges entails
11251 walking across all its children's ranges as they appear in
11252 the address map, which is quadratic behavior.
11253
11254 It would be nicer to record the parent's ranges before
11255 traversing its children, simply overriding whatever you find
11256 there. But since we don't even decide whether to create a
11257 block until after we've traversed its children, that's hard
11258 to do. */
11259 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11260 }
11261 local_symbols = new->locals;
11262 using_directives = new->using_directives;
11263 }
11264
11265 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11266
11267 static void
11268 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11269 {
11270 struct objfile *objfile = cu->objfile;
11271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11272 CORE_ADDR pc, baseaddr;
11273 struct attribute *attr;
11274 struct call_site *call_site, call_site_local;
11275 void **slot;
11276 int nparams;
11277 struct die_info *child_die;
11278
11279 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11280
11281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11282 if (!attr)
11283 {
11284 complaint (&symfile_complaints,
11285 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11286 "DIE 0x%x [in module %s]"),
11287 die->offset.sect_off, objfile_name (objfile));
11288 return;
11289 }
11290 pc = attr_value_as_address (attr) + baseaddr;
11291
11292 if (cu->call_site_htab == NULL)
11293 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11294 NULL, &objfile->objfile_obstack,
11295 hashtab_obstack_allocate, NULL);
11296 call_site_local.pc = pc;
11297 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11298 if (*slot != NULL)
11299 {
11300 complaint (&symfile_complaints,
11301 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11302 "DIE 0x%x [in module %s]"),
11303 paddress (gdbarch, pc), die->offset.sect_off,
11304 objfile_name (objfile));
11305 return;
11306 }
11307
11308 /* Count parameters at the caller. */
11309
11310 nparams = 0;
11311 for (child_die = die->child; child_die && child_die->tag;
11312 child_die = sibling_die (child_die))
11313 {
11314 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11315 {
11316 complaint (&symfile_complaints,
11317 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11318 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11319 child_die->tag, child_die->offset.sect_off,
11320 objfile_name (objfile));
11321 continue;
11322 }
11323
11324 nparams++;
11325 }
11326
11327 call_site = obstack_alloc (&objfile->objfile_obstack,
11328 (sizeof (*call_site)
11329 + (sizeof (*call_site->parameter)
11330 * (nparams - 1))));
11331 *slot = call_site;
11332 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11333 call_site->pc = pc;
11334
11335 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11336 {
11337 struct die_info *func_die;
11338
11339 /* Skip also over DW_TAG_inlined_subroutine. */
11340 for (func_die = die->parent;
11341 func_die && func_die->tag != DW_TAG_subprogram
11342 && func_die->tag != DW_TAG_subroutine_type;
11343 func_die = func_die->parent);
11344
11345 /* DW_AT_GNU_all_call_sites is a superset
11346 of DW_AT_GNU_all_tail_call_sites. */
11347 if (func_die
11348 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11349 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11350 {
11351 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11352 not complete. But keep CALL_SITE for look ups via call_site_htab,
11353 both the initial caller containing the real return address PC and
11354 the final callee containing the current PC of a chain of tail
11355 calls do not need to have the tail call list complete. But any
11356 function candidate for a virtual tail call frame searched via
11357 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11358 determined unambiguously. */
11359 }
11360 else
11361 {
11362 struct type *func_type = NULL;
11363
11364 if (func_die)
11365 func_type = get_die_type (func_die, cu);
11366 if (func_type != NULL)
11367 {
11368 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11369
11370 /* Enlist this call site to the function. */
11371 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11372 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11373 }
11374 else
11375 complaint (&symfile_complaints,
11376 _("Cannot find function owning DW_TAG_GNU_call_site "
11377 "DIE 0x%x [in module %s]"),
11378 die->offset.sect_off, objfile_name (objfile));
11379 }
11380 }
11381
11382 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11383 if (attr == NULL)
11384 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11385 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11386 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11387 /* Keep NULL DWARF_BLOCK. */;
11388 else if (attr_form_is_block (attr))
11389 {
11390 struct dwarf2_locexpr_baton *dlbaton;
11391
11392 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11393 dlbaton->data = DW_BLOCK (attr)->data;
11394 dlbaton->size = DW_BLOCK (attr)->size;
11395 dlbaton->per_cu = cu->per_cu;
11396
11397 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11398 }
11399 else if (attr_form_is_ref (attr))
11400 {
11401 struct dwarf2_cu *target_cu = cu;
11402 struct die_info *target_die;
11403
11404 target_die = follow_die_ref (die, attr, &target_cu);
11405 gdb_assert (target_cu->objfile == objfile);
11406 if (die_is_declaration (target_die, target_cu))
11407 {
11408 const char *target_physname = NULL;
11409 struct attribute *target_attr;
11410
11411 /* Prefer the mangled name; otherwise compute the demangled one. */
11412 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11413 if (target_attr == NULL)
11414 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11415 target_cu);
11416 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11417 target_physname = DW_STRING (target_attr);
11418 else
11419 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11420 if (target_physname == NULL)
11421 complaint (&symfile_complaints,
11422 _("DW_AT_GNU_call_site_target target DIE has invalid "
11423 "physname, for referencing DIE 0x%x [in module %s]"),
11424 die->offset.sect_off, objfile_name (objfile));
11425 else
11426 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11427 }
11428 else
11429 {
11430 CORE_ADDR lowpc;
11431
11432 /* DW_AT_entry_pc should be preferred. */
11433 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11434 complaint (&symfile_complaints,
11435 _("DW_AT_GNU_call_site_target target DIE has invalid "
11436 "low pc, for referencing DIE 0x%x [in module %s]"),
11437 die->offset.sect_off, objfile_name (objfile));
11438 else
11439 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11440 }
11441 }
11442 else
11443 complaint (&symfile_complaints,
11444 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11445 "block nor reference, for DIE 0x%x [in module %s]"),
11446 die->offset.sect_off, objfile_name (objfile));
11447
11448 call_site->per_cu = cu->per_cu;
11449
11450 for (child_die = die->child;
11451 child_die && child_die->tag;
11452 child_die = sibling_die (child_die))
11453 {
11454 struct call_site_parameter *parameter;
11455 struct attribute *loc, *origin;
11456
11457 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11458 {
11459 /* Already printed the complaint above. */
11460 continue;
11461 }
11462
11463 gdb_assert (call_site->parameter_count < nparams);
11464 parameter = &call_site->parameter[call_site->parameter_count];
11465
11466 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11467 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11468 register is contained in DW_AT_GNU_call_site_value. */
11469
11470 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11471 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11472 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11473 {
11474 sect_offset offset;
11475
11476 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11477 offset = dwarf2_get_ref_die_offset (origin);
11478 if (!offset_in_cu_p (&cu->header, offset))
11479 {
11480 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11481 binding can be done only inside one CU. Such referenced DIE
11482 therefore cannot be even moved to DW_TAG_partial_unit. */
11483 complaint (&symfile_complaints,
11484 _("DW_AT_abstract_origin offset is not in CU for "
11485 "DW_TAG_GNU_call_site child DIE 0x%x "
11486 "[in module %s]"),
11487 child_die->offset.sect_off, objfile_name (objfile));
11488 continue;
11489 }
11490 parameter->u.param_offset.cu_off = (offset.sect_off
11491 - cu->header.offset.sect_off);
11492 }
11493 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11494 {
11495 complaint (&symfile_complaints,
11496 _("No DW_FORM_block* DW_AT_location for "
11497 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11498 child_die->offset.sect_off, objfile_name (objfile));
11499 continue;
11500 }
11501 else
11502 {
11503 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11504 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11505 if (parameter->u.dwarf_reg != -1)
11506 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11507 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11508 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11509 &parameter->u.fb_offset))
11510 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11511 else
11512 {
11513 complaint (&symfile_complaints,
11514 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11515 "for DW_FORM_block* DW_AT_location is supported for "
11516 "DW_TAG_GNU_call_site child DIE 0x%x "
11517 "[in module %s]"),
11518 child_die->offset.sect_off, objfile_name (objfile));
11519 continue;
11520 }
11521 }
11522
11523 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11524 if (!attr_form_is_block (attr))
11525 {
11526 complaint (&symfile_complaints,
11527 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11528 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11529 child_die->offset.sect_off, objfile_name (objfile));
11530 continue;
11531 }
11532 parameter->value = DW_BLOCK (attr)->data;
11533 parameter->value_size = DW_BLOCK (attr)->size;
11534
11535 /* Parameters are not pre-cleared by memset above. */
11536 parameter->data_value = NULL;
11537 parameter->data_value_size = 0;
11538 call_site->parameter_count++;
11539
11540 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11541 if (attr)
11542 {
11543 if (!attr_form_is_block (attr))
11544 complaint (&symfile_complaints,
11545 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11546 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11547 child_die->offset.sect_off, objfile_name (objfile));
11548 else
11549 {
11550 parameter->data_value = DW_BLOCK (attr)->data;
11551 parameter->data_value_size = DW_BLOCK (attr)->size;
11552 }
11553 }
11554 }
11555 }
11556
11557 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11558 Return 1 if the attributes are present and valid, otherwise, return 0.
11559 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11560
11561 static int
11562 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11563 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11564 struct partial_symtab *ranges_pst)
11565 {
11566 struct objfile *objfile = cu->objfile;
11567 struct comp_unit_head *cu_header = &cu->header;
11568 bfd *obfd = objfile->obfd;
11569 unsigned int addr_size = cu_header->addr_size;
11570 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11571 /* Base address selection entry. */
11572 CORE_ADDR base;
11573 int found_base;
11574 unsigned int dummy;
11575 const gdb_byte *buffer;
11576 CORE_ADDR marker;
11577 int low_set;
11578 CORE_ADDR low = 0;
11579 CORE_ADDR high = 0;
11580 CORE_ADDR baseaddr;
11581
11582 found_base = cu->base_known;
11583 base = cu->base_address;
11584
11585 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11586 if (offset >= dwarf2_per_objfile->ranges.size)
11587 {
11588 complaint (&symfile_complaints,
11589 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11590 offset);
11591 return 0;
11592 }
11593 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11594
11595 /* Read in the largest possible address. */
11596 marker = read_address (obfd, buffer, cu, &dummy);
11597 if ((marker & mask) == mask)
11598 {
11599 /* If we found the largest possible address, then
11600 read the base address. */
11601 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11602 buffer += 2 * addr_size;
11603 offset += 2 * addr_size;
11604 found_base = 1;
11605 }
11606
11607 low_set = 0;
11608
11609 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11610
11611 while (1)
11612 {
11613 CORE_ADDR range_beginning, range_end;
11614
11615 range_beginning = read_address (obfd, buffer, cu, &dummy);
11616 buffer += addr_size;
11617 range_end = read_address (obfd, buffer, cu, &dummy);
11618 buffer += addr_size;
11619 offset += 2 * addr_size;
11620
11621 /* An end of list marker is a pair of zero addresses. */
11622 if (range_beginning == 0 && range_end == 0)
11623 /* Found the end of list entry. */
11624 break;
11625
11626 /* Each base address selection entry is a pair of 2 values.
11627 The first is the largest possible address, the second is
11628 the base address. Check for a base address here. */
11629 if ((range_beginning & mask) == mask)
11630 {
11631 /* If we found the largest possible address, then
11632 read the base address. */
11633 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11634 found_base = 1;
11635 continue;
11636 }
11637
11638 if (!found_base)
11639 {
11640 /* We have no valid base address for the ranges
11641 data. */
11642 complaint (&symfile_complaints,
11643 _("Invalid .debug_ranges data (no base address)"));
11644 return 0;
11645 }
11646
11647 if (range_beginning > range_end)
11648 {
11649 /* Inverted range entries are invalid. */
11650 complaint (&symfile_complaints,
11651 _("Invalid .debug_ranges data (inverted range)"));
11652 return 0;
11653 }
11654
11655 /* Empty range entries have no effect. */
11656 if (range_beginning == range_end)
11657 continue;
11658
11659 range_beginning += base;
11660 range_end += base;
11661
11662 /* A not-uncommon case of bad debug info.
11663 Don't pollute the addrmap with bad data. */
11664 if (range_beginning + baseaddr == 0
11665 && !dwarf2_per_objfile->has_section_at_zero)
11666 {
11667 complaint (&symfile_complaints,
11668 _(".debug_ranges entry has start address of zero"
11669 " [in module %s]"), objfile_name (objfile));
11670 continue;
11671 }
11672
11673 if (ranges_pst != NULL)
11674 addrmap_set_empty (objfile->psymtabs_addrmap,
11675 range_beginning + baseaddr,
11676 range_end - 1 + baseaddr,
11677 ranges_pst);
11678
11679 /* FIXME: This is recording everything as a low-high
11680 segment of consecutive addresses. We should have a
11681 data structure for discontiguous block ranges
11682 instead. */
11683 if (! low_set)
11684 {
11685 low = range_beginning;
11686 high = range_end;
11687 low_set = 1;
11688 }
11689 else
11690 {
11691 if (range_beginning < low)
11692 low = range_beginning;
11693 if (range_end > high)
11694 high = range_end;
11695 }
11696 }
11697
11698 if (! low_set)
11699 /* If the first entry is an end-of-list marker, the range
11700 describes an empty scope, i.e. no instructions. */
11701 return 0;
11702
11703 if (low_return)
11704 *low_return = low;
11705 if (high_return)
11706 *high_return = high;
11707 return 1;
11708 }
11709
11710 /* Get low and high pc attributes from a die. Return 1 if the attributes
11711 are present and valid, otherwise, return 0. Return -1 if the range is
11712 discontinuous, i.e. derived from DW_AT_ranges information. */
11713
11714 static int
11715 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11716 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11717 struct partial_symtab *pst)
11718 {
11719 struct attribute *attr;
11720 struct attribute *attr_high;
11721 CORE_ADDR low = 0;
11722 CORE_ADDR high = 0;
11723 int ret = 0;
11724
11725 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11726 if (attr_high)
11727 {
11728 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11729 if (attr)
11730 {
11731 low = attr_value_as_address (attr);
11732 high = attr_value_as_address (attr_high);
11733 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11734 high += low;
11735 }
11736 else
11737 /* Found high w/o low attribute. */
11738 return 0;
11739
11740 /* Found consecutive range of addresses. */
11741 ret = 1;
11742 }
11743 else
11744 {
11745 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11746 if (attr != NULL)
11747 {
11748 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11749 We take advantage of the fact that DW_AT_ranges does not appear
11750 in DW_TAG_compile_unit of DWO files. */
11751 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11752 unsigned int ranges_offset = (DW_UNSND (attr)
11753 + (need_ranges_base
11754 ? cu->ranges_base
11755 : 0));
11756
11757 /* Value of the DW_AT_ranges attribute is the offset in the
11758 .debug_ranges section. */
11759 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11760 return 0;
11761 /* Found discontinuous range of addresses. */
11762 ret = -1;
11763 }
11764 }
11765
11766 /* read_partial_die has also the strict LOW < HIGH requirement. */
11767 if (high <= low)
11768 return 0;
11769
11770 /* When using the GNU linker, .gnu.linkonce. sections are used to
11771 eliminate duplicate copies of functions and vtables and such.
11772 The linker will arbitrarily choose one and discard the others.
11773 The AT_*_pc values for such functions refer to local labels in
11774 these sections. If the section from that file was discarded, the
11775 labels are not in the output, so the relocs get a value of 0.
11776 If this is a discarded function, mark the pc bounds as invalid,
11777 so that GDB will ignore it. */
11778 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11779 return 0;
11780
11781 *lowpc = low;
11782 if (highpc)
11783 *highpc = high;
11784 return ret;
11785 }
11786
11787 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11788 its low and high PC addresses. Do nothing if these addresses could not
11789 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11790 and HIGHPC to the high address if greater than HIGHPC. */
11791
11792 static void
11793 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11795 struct dwarf2_cu *cu)
11796 {
11797 CORE_ADDR low, high;
11798 struct die_info *child = die->child;
11799
11800 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11801 {
11802 *lowpc = min (*lowpc, low);
11803 *highpc = max (*highpc, high);
11804 }
11805
11806 /* If the language does not allow nested subprograms (either inside
11807 subprograms or lexical blocks), we're done. */
11808 if (cu->language != language_ada)
11809 return;
11810
11811 /* Check all the children of the given DIE. If it contains nested
11812 subprograms, then check their pc bounds. Likewise, we need to
11813 check lexical blocks as well, as they may also contain subprogram
11814 definitions. */
11815 while (child && child->tag)
11816 {
11817 if (child->tag == DW_TAG_subprogram
11818 || child->tag == DW_TAG_lexical_block)
11819 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11820 child = sibling_die (child);
11821 }
11822 }
11823
11824 /* Get the low and high pc's represented by the scope DIE, and store
11825 them in *LOWPC and *HIGHPC. If the correct values can't be
11826 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11827
11828 static void
11829 get_scope_pc_bounds (struct die_info *die,
11830 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11831 struct dwarf2_cu *cu)
11832 {
11833 CORE_ADDR best_low = (CORE_ADDR) -1;
11834 CORE_ADDR best_high = (CORE_ADDR) 0;
11835 CORE_ADDR current_low, current_high;
11836
11837 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11838 {
11839 best_low = current_low;
11840 best_high = current_high;
11841 }
11842 else
11843 {
11844 struct die_info *child = die->child;
11845
11846 while (child && child->tag)
11847 {
11848 switch (child->tag) {
11849 case DW_TAG_subprogram:
11850 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11851 break;
11852 case DW_TAG_namespace:
11853 case DW_TAG_module:
11854 /* FIXME: carlton/2004-01-16: Should we do this for
11855 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11856 that current GCC's always emit the DIEs corresponding
11857 to definitions of methods of classes as children of a
11858 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11859 the DIEs giving the declarations, which could be
11860 anywhere). But I don't see any reason why the
11861 standards says that they have to be there. */
11862 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11863
11864 if (current_low != ((CORE_ADDR) -1))
11865 {
11866 best_low = min (best_low, current_low);
11867 best_high = max (best_high, current_high);
11868 }
11869 break;
11870 default:
11871 /* Ignore. */
11872 break;
11873 }
11874
11875 child = sibling_die (child);
11876 }
11877 }
11878
11879 *lowpc = best_low;
11880 *highpc = best_high;
11881 }
11882
11883 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11884 in DIE. */
11885
11886 static void
11887 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11888 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11889 {
11890 struct objfile *objfile = cu->objfile;
11891 struct attribute *attr;
11892 struct attribute *attr_high;
11893
11894 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11895 if (attr_high)
11896 {
11897 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11898 if (attr)
11899 {
11900 CORE_ADDR low = attr_value_as_address (attr);
11901 CORE_ADDR high = attr_value_as_address (attr_high);
11902
11903 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11904 high += low;
11905
11906 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11907 }
11908 }
11909
11910 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11911 if (attr)
11912 {
11913 bfd *obfd = objfile->obfd;
11914 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11915 We take advantage of the fact that DW_AT_ranges does not appear
11916 in DW_TAG_compile_unit of DWO files. */
11917 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11918
11919 /* The value of the DW_AT_ranges attribute is the offset of the
11920 address range list in the .debug_ranges section. */
11921 unsigned long offset = (DW_UNSND (attr)
11922 + (need_ranges_base ? cu->ranges_base : 0));
11923 const gdb_byte *buffer;
11924
11925 /* For some target architectures, but not others, the
11926 read_address function sign-extends the addresses it returns.
11927 To recognize base address selection entries, we need a
11928 mask. */
11929 unsigned int addr_size = cu->header.addr_size;
11930 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11931
11932 /* The base address, to which the next pair is relative. Note
11933 that this 'base' is a DWARF concept: most entries in a range
11934 list are relative, to reduce the number of relocs against the
11935 debugging information. This is separate from this function's
11936 'baseaddr' argument, which GDB uses to relocate debugging
11937 information from a shared library based on the address at
11938 which the library was loaded. */
11939 CORE_ADDR base = cu->base_address;
11940 int base_known = cu->base_known;
11941
11942 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11943 if (offset >= dwarf2_per_objfile->ranges.size)
11944 {
11945 complaint (&symfile_complaints,
11946 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11947 offset);
11948 return;
11949 }
11950 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11951
11952 for (;;)
11953 {
11954 unsigned int bytes_read;
11955 CORE_ADDR start, end;
11956
11957 start = read_address (obfd, buffer, cu, &bytes_read);
11958 buffer += bytes_read;
11959 end = read_address (obfd, buffer, cu, &bytes_read);
11960 buffer += bytes_read;
11961
11962 /* Did we find the end of the range list? */
11963 if (start == 0 && end == 0)
11964 break;
11965
11966 /* Did we find a base address selection entry? */
11967 else if ((start & base_select_mask) == base_select_mask)
11968 {
11969 base = end;
11970 base_known = 1;
11971 }
11972
11973 /* We found an ordinary address range. */
11974 else
11975 {
11976 if (!base_known)
11977 {
11978 complaint (&symfile_complaints,
11979 _("Invalid .debug_ranges data "
11980 "(no base address)"));
11981 return;
11982 }
11983
11984 if (start > end)
11985 {
11986 /* Inverted range entries are invalid. */
11987 complaint (&symfile_complaints,
11988 _("Invalid .debug_ranges data "
11989 "(inverted range)"));
11990 return;
11991 }
11992
11993 /* Empty range entries have no effect. */
11994 if (start == end)
11995 continue;
11996
11997 start += base + baseaddr;
11998 end += base + baseaddr;
11999
12000 /* A not-uncommon case of bad debug info.
12001 Don't pollute the addrmap with bad data. */
12002 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12003 {
12004 complaint (&symfile_complaints,
12005 _(".debug_ranges entry has start address of zero"
12006 " [in module %s]"), objfile_name (objfile));
12007 continue;
12008 }
12009
12010 record_block_range (block, start, end - 1);
12011 }
12012 }
12013 }
12014 }
12015
12016 /* Check whether the producer field indicates either of GCC < 4.6, or the
12017 Intel C/C++ compiler, and cache the result in CU. */
12018
12019 static void
12020 check_producer (struct dwarf2_cu *cu)
12021 {
12022 const char *cs;
12023 int major, minor, release;
12024
12025 if (cu->producer == NULL)
12026 {
12027 /* For unknown compilers expect their behavior is DWARF version
12028 compliant.
12029
12030 GCC started to support .debug_types sections by -gdwarf-4 since
12031 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12032 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12033 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12034 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12035 }
12036 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12037 {
12038 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12039
12040 cs = &cu->producer[strlen ("GNU ")];
12041 while (*cs && !isdigit (*cs))
12042 cs++;
12043 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12044 {
12045 /* Not recognized as GCC. */
12046 }
12047 else
12048 {
12049 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12050 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12051 }
12052 }
12053 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12054 cu->producer_is_icc = 1;
12055 else
12056 {
12057 /* For other non-GCC compilers, expect their behavior is DWARF version
12058 compliant. */
12059 }
12060
12061 cu->checked_producer = 1;
12062 }
12063
12064 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12065 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12066 during 4.6.0 experimental. */
12067
12068 static int
12069 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12070 {
12071 if (!cu->checked_producer)
12072 check_producer (cu);
12073
12074 return cu->producer_is_gxx_lt_4_6;
12075 }
12076
12077 /* Return the default accessibility type if it is not overriden by
12078 DW_AT_accessibility. */
12079
12080 static enum dwarf_access_attribute
12081 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12082 {
12083 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12084 {
12085 /* The default DWARF 2 accessibility for members is public, the default
12086 accessibility for inheritance is private. */
12087
12088 if (die->tag != DW_TAG_inheritance)
12089 return DW_ACCESS_public;
12090 else
12091 return DW_ACCESS_private;
12092 }
12093 else
12094 {
12095 /* DWARF 3+ defines the default accessibility a different way. The same
12096 rules apply now for DW_TAG_inheritance as for the members and it only
12097 depends on the container kind. */
12098
12099 if (die->parent->tag == DW_TAG_class_type)
12100 return DW_ACCESS_private;
12101 else
12102 return DW_ACCESS_public;
12103 }
12104 }
12105
12106 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12107 offset. If the attribute was not found return 0, otherwise return
12108 1. If it was found but could not properly be handled, set *OFFSET
12109 to 0. */
12110
12111 static int
12112 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12113 LONGEST *offset)
12114 {
12115 struct attribute *attr;
12116
12117 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12118 if (attr != NULL)
12119 {
12120 *offset = 0;
12121
12122 /* Note that we do not check for a section offset first here.
12123 This is because DW_AT_data_member_location is new in DWARF 4,
12124 so if we see it, we can assume that a constant form is really
12125 a constant and not a section offset. */
12126 if (attr_form_is_constant (attr))
12127 *offset = dwarf2_get_attr_constant_value (attr, 0);
12128 else if (attr_form_is_section_offset (attr))
12129 dwarf2_complex_location_expr_complaint ();
12130 else if (attr_form_is_block (attr))
12131 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12132 else
12133 dwarf2_complex_location_expr_complaint ();
12134
12135 return 1;
12136 }
12137
12138 return 0;
12139 }
12140
12141 /* Add an aggregate field to the field list. */
12142
12143 static void
12144 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12145 struct dwarf2_cu *cu)
12146 {
12147 struct objfile *objfile = cu->objfile;
12148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12149 struct nextfield *new_field;
12150 struct attribute *attr;
12151 struct field *fp;
12152 const char *fieldname = "";
12153
12154 /* Allocate a new field list entry and link it in. */
12155 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12156 make_cleanup (xfree, new_field);
12157 memset (new_field, 0, sizeof (struct nextfield));
12158
12159 if (die->tag == DW_TAG_inheritance)
12160 {
12161 new_field->next = fip->baseclasses;
12162 fip->baseclasses = new_field;
12163 }
12164 else
12165 {
12166 new_field->next = fip->fields;
12167 fip->fields = new_field;
12168 }
12169 fip->nfields++;
12170
12171 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12172 if (attr)
12173 new_field->accessibility = DW_UNSND (attr);
12174 else
12175 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12176 if (new_field->accessibility != DW_ACCESS_public)
12177 fip->non_public_fields = 1;
12178
12179 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12180 if (attr)
12181 new_field->virtuality = DW_UNSND (attr);
12182 else
12183 new_field->virtuality = DW_VIRTUALITY_none;
12184
12185 fp = &new_field->field;
12186
12187 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12188 {
12189 LONGEST offset;
12190
12191 /* Data member other than a C++ static data member. */
12192
12193 /* Get type of field. */
12194 fp->type = die_type (die, cu);
12195
12196 SET_FIELD_BITPOS (*fp, 0);
12197
12198 /* Get bit size of field (zero if none). */
12199 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12200 if (attr)
12201 {
12202 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12203 }
12204 else
12205 {
12206 FIELD_BITSIZE (*fp) = 0;
12207 }
12208
12209 /* Get bit offset of field. */
12210 if (handle_data_member_location (die, cu, &offset))
12211 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12212 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12213 if (attr)
12214 {
12215 if (gdbarch_bits_big_endian (gdbarch))
12216 {
12217 /* For big endian bits, the DW_AT_bit_offset gives the
12218 additional bit offset from the MSB of the containing
12219 anonymous object to the MSB of the field. We don't
12220 have to do anything special since we don't need to
12221 know the size of the anonymous object. */
12222 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12223 }
12224 else
12225 {
12226 /* For little endian bits, compute the bit offset to the
12227 MSB of the anonymous object, subtract off the number of
12228 bits from the MSB of the field to the MSB of the
12229 object, and then subtract off the number of bits of
12230 the field itself. The result is the bit offset of
12231 the LSB of the field. */
12232 int anonymous_size;
12233 int bit_offset = DW_UNSND (attr);
12234
12235 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12236 if (attr)
12237 {
12238 /* The size of the anonymous object containing
12239 the bit field is explicit, so use the
12240 indicated size (in bytes). */
12241 anonymous_size = DW_UNSND (attr);
12242 }
12243 else
12244 {
12245 /* The size of the anonymous object containing
12246 the bit field must be inferred from the type
12247 attribute of the data member containing the
12248 bit field. */
12249 anonymous_size = TYPE_LENGTH (fp->type);
12250 }
12251 SET_FIELD_BITPOS (*fp,
12252 (FIELD_BITPOS (*fp)
12253 + anonymous_size * bits_per_byte
12254 - bit_offset - FIELD_BITSIZE (*fp)));
12255 }
12256 }
12257
12258 /* Get name of field. */
12259 fieldname = dwarf2_name (die, cu);
12260 if (fieldname == NULL)
12261 fieldname = "";
12262
12263 /* The name is already allocated along with this objfile, so we don't
12264 need to duplicate it for the type. */
12265 fp->name = fieldname;
12266
12267 /* Change accessibility for artificial fields (e.g. virtual table
12268 pointer or virtual base class pointer) to private. */
12269 if (dwarf2_attr (die, DW_AT_artificial, cu))
12270 {
12271 FIELD_ARTIFICIAL (*fp) = 1;
12272 new_field->accessibility = DW_ACCESS_private;
12273 fip->non_public_fields = 1;
12274 }
12275 }
12276 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12277 {
12278 /* C++ static member. */
12279
12280 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12281 is a declaration, but all versions of G++ as of this writing
12282 (so through at least 3.2.1) incorrectly generate
12283 DW_TAG_variable tags. */
12284
12285 const char *physname;
12286
12287 /* Get name of field. */
12288 fieldname = dwarf2_name (die, cu);
12289 if (fieldname == NULL)
12290 return;
12291
12292 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12293 if (attr
12294 /* Only create a symbol if this is an external value.
12295 new_symbol checks this and puts the value in the global symbol
12296 table, which we want. If it is not external, new_symbol
12297 will try to put the value in cu->list_in_scope which is wrong. */
12298 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12299 {
12300 /* A static const member, not much different than an enum as far as
12301 we're concerned, except that we can support more types. */
12302 new_symbol (die, NULL, cu);
12303 }
12304
12305 /* Get physical name. */
12306 physname = dwarf2_physname (fieldname, die, cu);
12307
12308 /* The name is already allocated along with this objfile, so we don't
12309 need to duplicate it for the type. */
12310 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12311 FIELD_TYPE (*fp) = die_type (die, cu);
12312 FIELD_NAME (*fp) = fieldname;
12313 }
12314 else if (die->tag == DW_TAG_inheritance)
12315 {
12316 LONGEST offset;
12317
12318 /* C++ base class field. */
12319 if (handle_data_member_location (die, cu, &offset))
12320 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12321 FIELD_BITSIZE (*fp) = 0;
12322 FIELD_TYPE (*fp) = die_type (die, cu);
12323 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12324 fip->nbaseclasses++;
12325 }
12326 }
12327
12328 /* Add a typedef defined in the scope of the FIP's class. */
12329
12330 static void
12331 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12332 struct dwarf2_cu *cu)
12333 {
12334 struct objfile *objfile = cu->objfile;
12335 struct typedef_field_list *new_field;
12336 struct attribute *attr;
12337 struct typedef_field *fp;
12338 char *fieldname = "";
12339
12340 /* Allocate a new field list entry and link it in. */
12341 new_field = xzalloc (sizeof (*new_field));
12342 make_cleanup (xfree, new_field);
12343
12344 gdb_assert (die->tag == DW_TAG_typedef);
12345
12346 fp = &new_field->field;
12347
12348 /* Get name of field. */
12349 fp->name = dwarf2_name (die, cu);
12350 if (fp->name == NULL)
12351 return;
12352
12353 fp->type = read_type_die (die, cu);
12354
12355 new_field->next = fip->typedef_field_list;
12356 fip->typedef_field_list = new_field;
12357 fip->typedef_field_list_count++;
12358 }
12359
12360 /* Create the vector of fields, and attach it to the type. */
12361
12362 static void
12363 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12364 struct dwarf2_cu *cu)
12365 {
12366 int nfields = fip->nfields;
12367
12368 /* Record the field count, allocate space for the array of fields,
12369 and create blank accessibility bitfields if necessary. */
12370 TYPE_NFIELDS (type) = nfields;
12371 TYPE_FIELDS (type) = (struct field *)
12372 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12373 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12374
12375 if (fip->non_public_fields && cu->language != language_ada)
12376 {
12377 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12378
12379 TYPE_FIELD_PRIVATE_BITS (type) =
12380 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12381 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12382
12383 TYPE_FIELD_PROTECTED_BITS (type) =
12384 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12385 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12386
12387 TYPE_FIELD_IGNORE_BITS (type) =
12388 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12389 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12390 }
12391
12392 /* If the type has baseclasses, allocate and clear a bit vector for
12393 TYPE_FIELD_VIRTUAL_BITS. */
12394 if (fip->nbaseclasses && cu->language != language_ada)
12395 {
12396 int num_bytes = B_BYTES (fip->nbaseclasses);
12397 unsigned char *pointer;
12398
12399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12400 pointer = TYPE_ALLOC (type, num_bytes);
12401 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12402 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12403 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12404 }
12405
12406 /* Copy the saved-up fields into the field vector. Start from the head of
12407 the list, adding to the tail of the field array, so that they end up in
12408 the same order in the array in which they were added to the list. */
12409 while (nfields-- > 0)
12410 {
12411 struct nextfield *fieldp;
12412
12413 if (fip->fields)
12414 {
12415 fieldp = fip->fields;
12416 fip->fields = fieldp->next;
12417 }
12418 else
12419 {
12420 fieldp = fip->baseclasses;
12421 fip->baseclasses = fieldp->next;
12422 }
12423
12424 TYPE_FIELD (type, nfields) = fieldp->field;
12425 switch (fieldp->accessibility)
12426 {
12427 case DW_ACCESS_private:
12428 if (cu->language != language_ada)
12429 SET_TYPE_FIELD_PRIVATE (type, nfields);
12430 break;
12431
12432 case DW_ACCESS_protected:
12433 if (cu->language != language_ada)
12434 SET_TYPE_FIELD_PROTECTED (type, nfields);
12435 break;
12436
12437 case DW_ACCESS_public:
12438 break;
12439
12440 default:
12441 /* Unknown accessibility. Complain and treat it as public. */
12442 {
12443 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12444 fieldp->accessibility);
12445 }
12446 break;
12447 }
12448 if (nfields < fip->nbaseclasses)
12449 {
12450 switch (fieldp->virtuality)
12451 {
12452 case DW_VIRTUALITY_virtual:
12453 case DW_VIRTUALITY_pure_virtual:
12454 if (cu->language == language_ada)
12455 error (_("unexpected virtuality in component of Ada type"));
12456 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12457 break;
12458 }
12459 }
12460 }
12461 }
12462
12463 /* Return true if this member function is a constructor, false
12464 otherwise. */
12465
12466 static int
12467 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12468 {
12469 const char *fieldname;
12470 const char *typename;
12471 int len;
12472
12473 if (die->parent == NULL)
12474 return 0;
12475
12476 if (die->parent->tag != DW_TAG_structure_type
12477 && die->parent->tag != DW_TAG_union_type
12478 && die->parent->tag != DW_TAG_class_type)
12479 return 0;
12480
12481 fieldname = dwarf2_name (die, cu);
12482 typename = dwarf2_name (die->parent, cu);
12483 if (fieldname == NULL || typename == NULL)
12484 return 0;
12485
12486 len = strlen (fieldname);
12487 return (strncmp (fieldname, typename, len) == 0
12488 && (typename[len] == '\0' || typename[len] == '<'));
12489 }
12490
12491 /* Add a member function to the proper fieldlist. */
12492
12493 static void
12494 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12495 struct type *type, struct dwarf2_cu *cu)
12496 {
12497 struct objfile *objfile = cu->objfile;
12498 struct attribute *attr;
12499 struct fnfieldlist *flp;
12500 int i;
12501 struct fn_field *fnp;
12502 const char *fieldname;
12503 struct nextfnfield *new_fnfield;
12504 struct type *this_type;
12505 enum dwarf_access_attribute accessibility;
12506
12507 if (cu->language == language_ada)
12508 error (_("unexpected member function in Ada type"));
12509
12510 /* Get name of member function. */
12511 fieldname = dwarf2_name (die, cu);
12512 if (fieldname == NULL)
12513 return;
12514
12515 /* Look up member function name in fieldlist. */
12516 for (i = 0; i < fip->nfnfields; i++)
12517 {
12518 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12519 break;
12520 }
12521
12522 /* Create new list element if necessary. */
12523 if (i < fip->nfnfields)
12524 flp = &fip->fnfieldlists[i];
12525 else
12526 {
12527 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12528 {
12529 fip->fnfieldlists = (struct fnfieldlist *)
12530 xrealloc (fip->fnfieldlists,
12531 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12532 * sizeof (struct fnfieldlist));
12533 if (fip->nfnfields == 0)
12534 make_cleanup (free_current_contents, &fip->fnfieldlists);
12535 }
12536 flp = &fip->fnfieldlists[fip->nfnfields];
12537 flp->name = fieldname;
12538 flp->length = 0;
12539 flp->head = NULL;
12540 i = fip->nfnfields++;
12541 }
12542
12543 /* Create a new member function field and chain it to the field list
12544 entry. */
12545 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12546 make_cleanup (xfree, new_fnfield);
12547 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12548 new_fnfield->next = flp->head;
12549 flp->head = new_fnfield;
12550 flp->length++;
12551
12552 /* Fill in the member function field info. */
12553 fnp = &new_fnfield->fnfield;
12554
12555 /* Delay processing of the physname until later. */
12556 if (cu->language == language_cplus || cu->language == language_java)
12557 {
12558 add_to_method_list (type, i, flp->length - 1, fieldname,
12559 die, cu);
12560 }
12561 else
12562 {
12563 const char *physname = dwarf2_physname (fieldname, die, cu);
12564 fnp->physname = physname ? physname : "";
12565 }
12566
12567 fnp->type = alloc_type (objfile);
12568 this_type = read_type_die (die, cu);
12569 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12570 {
12571 int nparams = TYPE_NFIELDS (this_type);
12572
12573 /* TYPE is the domain of this method, and THIS_TYPE is the type
12574 of the method itself (TYPE_CODE_METHOD). */
12575 smash_to_method_type (fnp->type, type,
12576 TYPE_TARGET_TYPE (this_type),
12577 TYPE_FIELDS (this_type),
12578 TYPE_NFIELDS (this_type),
12579 TYPE_VARARGS (this_type));
12580
12581 /* Handle static member functions.
12582 Dwarf2 has no clean way to discern C++ static and non-static
12583 member functions. G++ helps GDB by marking the first
12584 parameter for non-static member functions (which is the this
12585 pointer) as artificial. We obtain this information from
12586 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12587 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12588 fnp->voffset = VOFFSET_STATIC;
12589 }
12590 else
12591 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12592 dwarf2_full_name (fieldname, die, cu));
12593
12594 /* Get fcontext from DW_AT_containing_type if present. */
12595 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12596 fnp->fcontext = die_containing_type (die, cu);
12597
12598 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12599 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12600
12601 /* Get accessibility. */
12602 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12603 if (attr)
12604 accessibility = DW_UNSND (attr);
12605 else
12606 accessibility = dwarf2_default_access_attribute (die, cu);
12607 switch (accessibility)
12608 {
12609 case DW_ACCESS_private:
12610 fnp->is_private = 1;
12611 break;
12612 case DW_ACCESS_protected:
12613 fnp->is_protected = 1;
12614 break;
12615 }
12616
12617 /* Check for artificial methods. */
12618 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12619 if (attr && DW_UNSND (attr) != 0)
12620 fnp->is_artificial = 1;
12621
12622 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12623
12624 /* Get index in virtual function table if it is a virtual member
12625 function. For older versions of GCC, this is an offset in the
12626 appropriate virtual table, as specified by DW_AT_containing_type.
12627 For everyone else, it is an expression to be evaluated relative
12628 to the object address. */
12629
12630 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12631 if (attr)
12632 {
12633 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12634 {
12635 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12636 {
12637 /* Old-style GCC. */
12638 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12639 }
12640 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12641 || (DW_BLOCK (attr)->size > 1
12642 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12643 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12644 {
12645 struct dwarf_block blk;
12646 int offset;
12647
12648 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12649 ? 1 : 2);
12650 blk.size = DW_BLOCK (attr)->size - offset;
12651 blk.data = DW_BLOCK (attr)->data + offset;
12652 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12653 if ((fnp->voffset % cu->header.addr_size) != 0)
12654 dwarf2_complex_location_expr_complaint ();
12655 else
12656 fnp->voffset /= cu->header.addr_size;
12657 fnp->voffset += 2;
12658 }
12659 else
12660 dwarf2_complex_location_expr_complaint ();
12661
12662 if (!fnp->fcontext)
12663 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12664 }
12665 else if (attr_form_is_section_offset (attr))
12666 {
12667 dwarf2_complex_location_expr_complaint ();
12668 }
12669 else
12670 {
12671 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12672 fieldname);
12673 }
12674 }
12675 else
12676 {
12677 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12678 if (attr && DW_UNSND (attr))
12679 {
12680 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12681 complaint (&symfile_complaints,
12682 _("Member function \"%s\" (offset %d) is virtual "
12683 "but the vtable offset is not specified"),
12684 fieldname, die->offset.sect_off);
12685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12686 TYPE_CPLUS_DYNAMIC (type) = 1;
12687 }
12688 }
12689 }
12690
12691 /* Create the vector of member function fields, and attach it to the type. */
12692
12693 static void
12694 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12695 struct dwarf2_cu *cu)
12696 {
12697 struct fnfieldlist *flp;
12698 int i;
12699
12700 if (cu->language == language_ada)
12701 error (_("unexpected member functions in Ada type"));
12702
12703 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12704 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12705 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12706
12707 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12708 {
12709 struct nextfnfield *nfp = flp->head;
12710 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12711 int k;
12712
12713 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12714 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12715 fn_flp->fn_fields = (struct fn_field *)
12716 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12717 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12718 fn_flp->fn_fields[k] = nfp->fnfield;
12719 }
12720
12721 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12722 }
12723
12724 /* Returns non-zero if NAME is the name of a vtable member in CU's
12725 language, zero otherwise. */
12726 static int
12727 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12728 {
12729 static const char vptr[] = "_vptr";
12730 static const char vtable[] = "vtable";
12731
12732 /* Look for the C++ and Java forms of the vtable. */
12733 if ((cu->language == language_java
12734 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12735 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12736 && is_cplus_marker (name[sizeof (vptr) - 1])))
12737 return 1;
12738
12739 return 0;
12740 }
12741
12742 /* GCC outputs unnamed structures that are really pointers to member
12743 functions, with the ABI-specified layout. If TYPE describes
12744 such a structure, smash it into a member function type.
12745
12746 GCC shouldn't do this; it should just output pointer to member DIEs.
12747 This is GCC PR debug/28767. */
12748
12749 static void
12750 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12751 {
12752 struct type *pfn_type, *domain_type, *new_type;
12753
12754 /* Check for a structure with no name and two children. */
12755 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12756 return;
12757
12758 /* Check for __pfn and __delta members. */
12759 if (TYPE_FIELD_NAME (type, 0) == NULL
12760 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12761 || TYPE_FIELD_NAME (type, 1) == NULL
12762 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12763 return;
12764
12765 /* Find the type of the method. */
12766 pfn_type = TYPE_FIELD_TYPE (type, 0);
12767 if (pfn_type == NULL
12768 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12769 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12770 return;
12771
12772 /* Look for the "this" argument. */
12773 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12774 if (TYPE_NFIELDS (pfn_type) == 0
12775 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12776 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12777 return;
12778
12779 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12780 new_type = alloc_type (objfile);
12781 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12782 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12783 TYPE_VARARGS (pfn_type));
12784 smash_to_methodptr_type (type, new_type);
12785 }
12786
12787 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12788 (icc). */
12789
12790 static int
12791 producer_is_icc (struct dwarf2_cu *cu)
12792 {
12793 if (!cu->checked_producer)
12794 check_producer (cu);
12795
12796 return cu->producer_is_icc;
12797 }
12798
12799 /* Called when we find the DIE that starts a structure or union scope
12800 (definition) to create a type for the structure or union. Fill in
12801 the type's name and general properties; the members will not be
12802 processed until process_structure_scope.
12803
12804 NOTE: we need to call these functions regardless of whether or not the
12805 DIE has a DW_AT_name attribute, since it might be an anonymous
12806 structure or union. This gets the type entered into our set of
12807 user defined types.
12808
12809 However, if the structure is incomplete (an opaque struct/union)
12810 then suppress creating a symbol table entry for it since gdb only
12811 wants to find the one with the complete definition. Note that if
12812 it is complete, we just call new_symbol, which does it's own
12813 checking about whether the struct/union is anonymous or not (and
12814 suppresses creating a symbol table entry itself). */
12815
12816 static struct type *
12817 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12818 {
12819 struct objfile *objfile = cu->objfile;
12820 struct type *type;
12821 struct attribute *attr;
12822 const char *name;
12823
12824 /* If the definition of this type lives in .debug_types, read that type.
12825 Don't follow DW_AT_specification though, that will take us back up
12826 the chain and we want to go down. */
12827 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12828 if (attr)
12829 {
12830 type = get_DW_AT_signature_type (die, attr, cu);
12831
12832 /* The type's CU may not be the same as CU.
12833 Ensure TYPE is recorded with CU in die_type_hash. */
12834 return set_die_type (die, type, cu);
12835 }
12836
12837 type = alloc_type (objfile);
12838 INIT_CPLUS_SPECIFIC (type);
12839
12840 name = dwarf2_name (die, cu);
12841 if (name != NULL)
12842 {
12843 if (cu->language == language_cplus
12844 || cu->language == language_java)
12845 {
12846 const char *full_name = dwarf2_full_name (name, die, cu);
12847
12848 /* dwarf2_full_name might have already finished building the DIE's
12849 type. If so, there is no need to continue. */
12850 if (get_die_type (die, cu) != NULL)
12851 return get_die_type (die, cu);
12852
12853 TYPE_TAG_NAME (type) = full_name;
12854 if (die->tag == DW_TAG_structure_type
12855 || die->tag == DW_TAG_class_type)
12856 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12857 }
12858 else
12859 {
12860 /* The name is already allocated along with this objfile, so
12861 we don't need to duplicate it for the type. */
12862 TYPE_TAG_NAME (type) = name;
12863 if (die->tag == DW_TAG_class_type)
12864 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12865 }
12866 }
12867
12868 if (die->tag == DW_TAG_structure_type)
12869 {
12870 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12871 }
12872 else if (die->tag == DW_TAG_union_type)
12873 {
12874 TYPE_CODE (type) = TYPE_CODE_UNION;
12875 }
12876 else
12877 {
12878 TYPE_CODE (type) = TYPE_CODE_CLASS;
12879 }
12880
12881 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12882 TYPE_DECLARED_CLASS (type) = 1;
12883
12884 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12885 if (attr)
12886 {
12887 TYPE_LENGTH (type) = DW_UNSND (attr);
12888 }
12889 else
12890 {
12891 TYPE_LENGTH (type) = 0;
12892 }
12893
12894 if (producer_is_icc (cu))
12895 {
12896 /* ICC does not output the required DW_AT_declaration
12897 on incomplete types, but gives them a size of zero. */
12898 }
12899 else
12900 TYPE_STUB_SUPPORTED (type) = 1;
12901
12902 if (die_is_declaration (die, cu))
12903 TYPE_STUB (type) = 1;
12904 else if (attr == NULL && die->child == NULL
12905 && producer_is_realview (cu->producer))
12906 /* RealView does not output the required DW_AT_declaration
12907 on incomplete types. */
12908 TYPE_STUB (type) = 1;
12909
12910 /* We need to add the type field to the die immediately so we don't
12911 infinitely recurse when dealing with pointers to the structure
12912 type within the structure itself. */
12913 set_die_type (die, type, cu);
12914
12915 /* set_die_type should be already done. */
12916 set_descriptive_type (type, die, cu);
12917
12918 return type;
12919 }
12920
12921 /* Finish creating a structure or union type, including filling in
12922 its members and creating a symbol for it. */
12923
12924 static void
12925 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12926 {
12927 struct objfile *objfile = cu->objfile;
12928 struct die_info *child_die = die->child;
12929 struct type *type;
12930
12931 type = get_die_type (die, cu);
12932 if (type == NULL)
12933 type = read_structure_type (die, cu);
12934
12935 if (die->child != NULL && ! die_is_declaration (die, cu))
12936 {
12937 struct field_info fi;
12938 struct die_info *child_die;
12939 VEC (symbolp) *template_args = NULL;
12940 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12941
12942 memset (&fi, 0, sizeof (struct field_info));
12943
12944 child_die = die->child;
12945
12946 while (child_die && child_die->tag)
12947 {
12948 if (child_die->tag == DW_TAG_member
12949 || child_die->tag == DW_TAG_variable)
12950 {
12951 /* NOTE: carlton/2002-11-05: A C++ static data member
12952 should be a DW_TAG_member that is a declaration, but
12953 all versions of G++ as of this writing (so through at
12954 least 3.2.1) incorrectly generate DW_TAG_variable
12955 tags for them instead. */
12956 dwarf2_add_field (&fi, child_die, cu);
12957 }
12958 else if (child_die->tag == DW_TAG_subprogram)
12959 {
12960 /* C++ member function. */
12961 dwarf2_add_member_fn (&fi, child_die, type, cu);
12962 }
12963 else if (child_die->tag == DW_TAG_inheritance)
12964 {
12965 /* C++ base class field. */
12966 dwarf2_add_field (&fi, child_die, cu);
12967 }
12968 else if (child_die->tag == DW_TAG_typedef)
12969 dwarf2_add_typedef (&fi, child_die, cu);
12970 else if (child_die->tag == DW_TAG_template_type_param
12971 || child_die->tag == DW_TAG_template_value_param)
12972 {
12973 struct symbol *arg = new_symbol (child_die, NULL, cu);
12974
12975 if (arg != NULL)
12976 VEC_safe_push (symbolp, template_args, arg);
12977 }
12978
12979 child_die = sibling_die (child_die);
12980 }
12981
12982 /* Attach template arguments to type. */
12983 if (! VEC_empty (symbolp, template_args))
12984 {
12985 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12986 TYPE_N_TEMPLATE_ARGUMENTS (type)
12987 = VEC_length (symbolp, template_args);
12988 TYPE_TEMPLATE_ARGUMENTS (type)
12989 = obstack_alloc (&objfile->objfile_obstack,
12990 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12991 * sizeof (struct symbol *)));
12992 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12993 VEC_address (symbolp, template_args),
12994 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12995 * sizeof (struct symbol *)));
12996 VEC_free (symbolp, template_args);
12997 }
12998
12999 /* Attach fields and member functions to the type. */
13000 if (fi.nfields)
13001 dwarf2_attach_fields_to_type (&fi, type, cu);
13002 if (fi.nfnfields)
13003 {
13004 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13005
13006 /* Get the type which refers to the base class (possibly this
13007 class itself) which contains the vtable pointer for the current
13008 class from the DW_AT_containing_type attribute. This use of
13009 DW_AT_containing_type is a GNU extension. */
13010
13011 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13012 {
13013 struct type *t = die_containing_type (die, cu);
13014
13015 TYPE_VPTR_BASETYPE (type) = t;
13016 if (type == t)
13017 {
13018 int i;
13019
13020 /* Our own class provides vtbl ptr. */
13021 for (i = TYPE_NFIELDS (t) - 1;
13022 i >= TYPE_N_BASECLASSES (t);
13023 --i)
13024 {
13025 const char *fieldname = TYPE_FIELD_NAME (t, i);
13026
13027 if (is_vtable_name (fieldname, cu))
13028 {
13029 TYPE_VPTR_FIELDNO (type) = i;
13030 break;
13031 }
13032 }
13033
13034 /* Complain if virtual function table field not found. */
13035 if (i < TYPE_N_BASECLASSES (t))
13036 complaint (&symfile_complaints,
13037 _("virtual function table pointer "
13038 "not found when defining class '%s'"),
13039 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13040 "");
13041 }
13042 else
13043 {
13044 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13045 }
13046 }
13047 else if (cu->producer
13048 && strncmp (cu->producer,
13049 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13050 {
13051 /* The IBM XLC compiler does not provide direct indication
13052 of the containing type, but the vtable pointer is
13053 always named __vfp. */
13054
13055 int i;
13056
13057 for (i = TYPE_NFIELDS (type) - 1;
13058 i >= TYPE_N_BASECLASSES (type);
13059 --i)
13060 {
13061 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13062 {
13063 TYPE_VPTR_FIELDNO (type) = i;
13064 TYPE_VPTR_BASETYPE (type) = type;
13065 break;
13066 }
13067 }
13068 }
13069 }
13070
13071 /* Copy fi.typedef_field_list linked list elements content into the
13072 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13073 if (fi.typedef_field_list)
13074 {
13075 int i = fi.typedef_field_list_count;
13076
13077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13078 TYPE_TYPEDEF_FIELD_ARRAY (type)
13079 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13080 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13081
13082 /* Reverse the list order to keep the debug info elements order. */
13083 while (--i >= 0)
13084 {
13085 struct typedef_field *dest, *src;
13086
13087 dest = &TYPE_TYPEDEF_FIELD (type, i);
13088 src = &fi.typedef_field_list->field;
13089 fi.typedef_field_list = fi.typedef_field_list->next;
13090 *dest = *src;
13091 }
13092 }
13093
13094 do_cleanups (back_to);
13095
13096 if (HAVE_CPLUS_STRUCT (type))
13097 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13098 }
13099
13100 quirk_gcc_member_function_pointer (type, objfile);
13101
13102 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13103 snapshots) has been known to create a die giving a declaration
13104 for a class that has, as a child, a die giving a definition for a
13105 nested class. So we have to process our children even if the
13106 current die is a declaration. Normally, of course, a declaration
13107 won't have any children at all. */
13108
13109 while (child_die != NULL && child_die->tag)
13110 {
13111 if (child_die->tag == DW_TAG_member
13112 || child_die->tag == DW_TAG_variable
13113 || child_die->tag == DW_TAG_inheritance
13114 || child_die->tag == DW_TAG_template_value_param
13115 || child_die->tag == DW_TAG_template_type_param)
13116 {
13117 /* Do nothing. */
13118 }
13119 else
13120 process_die (child_die, cu);
13121
13122 child_die = sibling_die (child_die);
13123 }
13124
13125 /* Do not consider external references. According to the DWARF standard,
13126 these DIEs are identified by the fact that they have no byte_size
13127 attribute, and a declaration attribute. */
13128 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13129 || !die_is_declaration (die, cu))
13130 new_symbol (die, type, cu);
13131 }
13132
13133 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13134 update TYPE using some information only available in DIE's children. */
13135
13136 static void
13137 update_enumeration_type_from_children (struct die_info *die,
13138 struct type *type,
13139 struct dwarf2_cu *cu)
13140 {
13141 struct obstack obstack;
13142 struct die_info *child_die = die->child;
13143 int unsigned_enum = 1;
13144 int flag_enum = 1;
13145 ULONGEST mask = 0;
13146 struct cleanup *old_chain;
13147
13148 obstack_init (&obstack);
13149 old_chain = make_cleanup_obstack_free (&obstack);
13150
13151 while (child_die != NULL && child_die->tag)
13152 {
13153 struct attribute *attr;
13154 LONGEST value;
13155 const gdb_byte *bytes;
13156 struct dwarf2_locexpr_baton *baton;
13157 const char *name;
13158 if (child_die->tag != DW_TAG_enumerator)
13159 continue;
13160
13161 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13162 if (attr == NULL)
13163 continue;
13164
13165 name = dwarf2_name (child_die, cu);
13166 if (name == NULL)
13167 name = "<anonymous enumerator>";
13168
13169 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13170 &value, &bytes, &baton);
13171 if (value < 0)
13172 {
13173 unsigned_enum = 0;
13174 flag_enum = 0;
13175 }
13176 else if ((mask & value) != 0)
13177 flag_enum = 0;
13178 else
13179 mask |= value;
13180
13181 /* If we already know that the enum type is neither unsigned, nor
13182 a flag type, no need to look at the rest of the enumerates. */
13183 if (!unsigned_enum && !flag_enum)
13184 break;
13185 child_die = sibling_die (child_die);
13186 }
13187
13188 if (unsigned_enum)
13189 TYPE_UNSIGNED (type) = 1;
13190 if (flag_enum)
13191 TYPE_FLAG_ENUM (type) = 1;
13192
13193 do_cleanups (old_chain);
13194 }
13195
13196 /* Given a DW_AT_enumeration_type die, set its type. We do not
13197 complete the type's fields yet, or create any symbols. */
13198
13199 static struct type *
13200 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13201 {
13202 struct objfile *objfile = cu->objfile;
13203 struct type *type;
13204 struct attribute *attr;
13205 const char *name;
13206
13207 /* If the definition of this type lives in .debug_types, read that type.
13208 Don't follow DW_AT_specification though, that will take us back up
13209 the chain and we want to go down. */
13210 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13211 if (attr)
13212 {
13213 type = get_DW_AT_signature_type (die, attr, cu);
13214
13215 /* The type's CU may not be the same as CU.
13216 Ensure TYPE is recorded with CU in die_type_hash. */
13217 return set_die_type (die, type, cu);
13218 }
13219
13220 type = alloc_type (objfile);
13221
13222 TYPE_CODE (type) = TYPE_CODE_ENUM;
13223 name = dwarf2_full_name (NULL, die, cu);
13224 if (name != NULL)
13225 TYPE_TAG_NAME (type) = name;
13226
13227 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13228 if (attr)
13229 {
13230 TYPE_LENGTH (type) = DW_UNSND (attr);
13231 }
13232 else
13233 {
13234 TYPE_LENGTH (type) = 0;
13235 }
13236
13237 /* The enumeration DIE can be incomplete. In Ada, any type can be
13238 declared as private in the package spec, and then defined only
13239 inside the package body. Such types are known as Taft Amendment
13240 Types. When another package uses such a type, an incomplete DIE
13241 may be generated by the compiler. */
13242 if (die_is_declaration (die, cu))
13243 TYPE_STUB (type) = 1;
13244
13245 /* Finish the creation of this type by using the enum's children. */
13246 update_enumeration_type_from_children (die, type, cu);
13247
13248 return set_die_type (die, type, cu);
13249 }
13250
13251 /* Given a pointer to a die which begins an enumeration, process all
13252 the dies that define the members of the enumeration, and create the
13253 symbol for the enumeration type.
13254
13255 NOTE: We reverse the order of the element list. */
13256
13257 static void
13258 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13259 {
13260 struct type *this_type;
13261
13262 this_type = get_die_type (die, cu);
13263 if (this_type == NULL)
13264 this_type = read_enumeration_type (die, cu);
13265
13266 if (die->child != NULL)
13267 {
13268 struct die_info *child_die;
13269 struct symbol *sym;
13270 struct field *fields = NULL;
13271 int num_fields = 0;
13272 const char *name;
13273
13274 child_die = die->child;
13275 while (child_die && child_die->tag)
13276 {
13277 if (child_die->tag != DW_TAG_enumerator)
13278 {
13279 process_die (child_die, cu);
13280 }
13281 else
13282 {
13283 name = dwarf2_name (child_die, cu);
13284 if (name)
13285 {
13286 sym = new_symbol (child_die, this_type, cu);
13287
13288 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13289 {
13290 fields = (struct field *)
13291 xrealloc (fields,
13292 (num_fields + DW_FIELD_ALLOC_CHUNK)
13293 * sizeof (struct field));
13294 }
13295
13296 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13297 FIELD_TYPE (fields[num_fields]) = NULL;
13298 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13299 FIELD_BITSIZE (fields[num_fields]) = 0;
13300
13301 num_fields++;
13302 }
13303 }
13304
13305 child_die = sibling_die (child_die);
13306 }
13307
13308 if (num_fields)
13309 {
13310 TYPE_NFIELDS (this_type) = num_fields;
13311 TYPE_FIELDS (this_type) = (struct field *)
13312 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13313 memcpy (TYPE_FIELDS (this_type), fields,
13314 sizeof (struct field) * num_fields);
13315 xfree (fields);
13316 }
13317 }
13318
13319 /* If we are reading an enum from a .debug_types unit, and the enum
13320 is a declaration, and the enum is not the signatured type in the
13321 unit, then we do not want to add a symbol for it. Adding a
13322 symbol would in some cases obscure the true definition of the
13323 enum, giving users an incomplete type when the definition is
13324 actually available. Note that we do not want to do this for all
13325 enums which are just declarations, because C++0x allows forward
13326 enum declarations. */
13327 if (cu->per_cu->is_debug_types
13328 && die_is_declaration (die, cu))
13329 {
13330 struct signatured_type *sig_type;
13331
13332 sig_type = (struct signatured_type *) cu->per_cu;
13333 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13334 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13335 return;
13336 }
13337
13338 new_symbol (die, this_type, cu);
13339 }
13340
13341 /* Extract all information from a DW_TAG_array_type DIE and put it in
13342 the DIE's type field. For now, this only handles one dimensional
13343 arrays. */
13344
13345 static struct type *
13346 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13347 {
13348 struct objfile *objfile = cu->objfile;
13349 struct die_info *child_die;
13350 struct type *type;
13351 struct type *element_type, *range_type, *index_type;
13352 struct type **range_types = NULL;
13353 struct attribute *attr;
13354 int ndim = 0;
13355 struct cleanup *back_to;
13356 const char *name;
13357 unsigned int bit_stride = 0;
13358
13359 element_type = die_type (die, cu);
13360
13361 /* The die_type call above may have already set the type for this DIE. */
13362 type = get_die_type (die, cu);
13363 if (type)
13364 return type;
13365
13366 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13367 if (attr != NULL)
13368 bit_stride = DW_UNSND (attr) * 8;
13369
13370 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13371 if (attr != NULL)
13372 bit_stride = DW_UNSND (attr);
13373
13374 /* Irix 6.2 native cc creates array types without children for
13375 arrays with unspecified length. */
13376 if (die->child == NULL)
13377 {
13378 index_type = objfile_type (objfile)->builtin_int;
13379 range_type = create_range_type (NULL, index_type, 0, -1);
13380 type = create_array_type_with_stride (NULL, element_type, range_type,
13381 bit_stride);
13382 return set_die_type (die, type, cu);
13383 }
13384
13385 back_to = make_cleanup (null_cleanup, NULL);
13386 child_die = die->child;
13387 while (child_die && child_die->tag)
13388 {
13389 if (child_die->tag == DW_TAG_subrange_type)
13390 {
13391 struct type *child_type = read_type_die (child_die, cu);
13392
13393 if (child_type != NULL)
13394 {
13395 /* The range type was succesfully read. Save it for the
13396 array type creation. */
13397 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13398 {
13399 range_types = (struct type **)
13400 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13401 * sizeof (struct type *));
13402 if (ndim == 0)
13403 make_cleanup (free_current_contents, &range_types);
13404 }
13405 range_types[ndim++] = child_type;
13406 }
13407 }
13408 child_die = sibling_die (child_die);
13409 }
13410
13411 /* Dwarf2 dimensions are output from left to right, create the
13412 necessary array types in backwards order. */
13413
13414 type = element_type;
13415
13416 if (read_array_order (die, cu) == DW_ORD_col_major)
13417 {
13418 int i = 0;
13419
13420 while (i < ndim)
13421 type = create_array_type_with_stride (NULL, type, range_types[i++],
13422 bit_stride);
13423 }
13424 else
13425 {
13426 while (ndim-- > 0)
13427 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13428 bit_stride);
13429 }
13430
13431 /* Understand Dwarf2 support for vector types (like they occur on
13432 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13433 array type. This is not part of the Dwarf2/3 standard yet, but a
13434 custom vendor extension. The main difference between a regular
13435 array and the vector variant is that vectors are passed by value
13436 to functions. */
13437 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13438 if (attr)
13439 make_vector_type (type);
13440
13441 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13442 implementation may choose to implement triple vectors using this
13443 attribute. */
13444 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13445 if (attr)
13446 {
13447 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13448 TYPE_LENGTH (type) = DW_UNSND (attr);
13449 else
13450 complaint (&symfile_complaints,
13451 _("DW_AT_byte_size for array type smaller "
13452 "than the total size of elements"));
13453 }
13454
13455 name = dwarf2_name (die, cu);
13456 if (name)
13457 TYPE_NAME (type) = name;
13458
13459 /* Install the type in the die. */
13460 set_die_type (die, type, cu);
13461
13462 /* set_die_type should be already done. */
13463 set_descriptive_type (type, die, cu);
13464
13465 do_cleanups (back_to);
13466
13467 return type;
13468 }
13469
13470 static enum dwarf_array_dim_ordering
13471 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13472 {
13473 struct attribute *attr;
13474
13475 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13476
13477 if (attr) return DW_SND (attr);
13478
13479 /* GNU F77 is a special case, as at 08/2004 array type info is the
13480 opposite order to the dwarf2 specification, but data is still
13481 laid out as per normal fortran.
13482
13483 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13484 version checking. */
13485
13486 if (cu->language == language_fortran
13487 && cu->producer && strstr (cu->producer, "GNU F77"))
13488 {
13489 return DW_ORD_row_major;
13490 }
13491
13492 switch (cu->language_defn->la_array_ordering)
13493 {
13494 case array_column_major:
13495 return DW_ORD_col_major;
13496 case array_row_major:
13497 default:
13498 return DW_ORD_row_major;
13499 };
13500 }
13501
13502 /* Extract all information from a DW_TAG_set_type DIE and put it in
13503 the DIE's type field. */
13504
13505 static struct type *
13506 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13507 {
13508 struct type *domain_type, *set_type;
13509 struct attribute *attr;
13510
13511 domain_type = die_type (die, cu);
13512
13513 /* The die_type call above may have already set the type for this DIE. */
13514 set_type = get_die_type (die, cu);
13515 if (set_type)
13516 return set_type;
13517
13518 set_type = create_set_type (NULL, domain_type);
13519
13520 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13521 if (attr)
13522 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13523
13524 return set_die_type (die, set_type, cu);
13525 }
13526
13527 /* A helper for read_common_block that creates a locexpr baton.
13528 SYM is the symbol which we are marking as computed.
13529 COMMON_DIE is the DIE for the common block.
13530 COMMON_LOC is the location expression attribute for the common
13531 block itself.
13532 MEMBER_LOC is the location expression attribute for the particular
13533 member of the common block that we are processing.
13534 CU is the CU from which the above come. */
13535
13536 static void
13537 mark_common_block_symbol_computed (struct symbol *sym,
13538 struct die_info *common_die,
13539 struct attribute *common_loc,
13540 struct attribute *member_loc,
13541 struct dwarf2_cu *cu)
13542 {
13543 struct objfile *objfile = dwarf2_per_objfile->objfile;
13544 struct dwarf2_locexpr_baton *baton;
13545 gdb_byte *ptr;
13546 unsigned int cu_off;
13547 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13548 LONGEST offset = 0;
13549
13550 gdb_assert (common_loc && member_loc);
13551 gdb_assert (attr_form_is_block (common_loc));
13552 gdb_assert (attr_form_is_block (member_loc)
13553 || attr_form_is_constant (member_loc));
13554
13555 baton = obstack_alloc (&objfile->objfile_obstack,
13556 sizeof (struct dwarf2_locexpr_baton));
13557 baton->per_cu = cu->per_cu;
13558 gdb_assert (baton->per_cu);
13559
13560 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13561
13562 if (attr_form_is_constant (member_loc))
13563 {
13564 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13565 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13566 }
13567 else
13568 baton->size += DW_BLOCK (member_loc)->size;
13569
13570 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13571 baton->data = ptr;
13572
13573 *ptr++ = DW_OP_call4;
13574 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13575 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13576 ptr += 4;
13577
13578 if (attr_form_is_constant (member_loc))
13579 {
13580 *ptr++ = DW_OP_addr;
13581 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13582 ptr += cu->header.addr_size;
13583 }
13584 else
13585 {
13586 /* We have to copy the data here, because DW_OP_call4 will only
13587 use a DW_AT_location attribute. */
13588 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13589 ptr += DW_BLOCK (member_loc)->size;
13590 }
13591
13592 *ptr++ = DW_OP_plus;
13593 gdb_assert (ptr - baton->data == baton->size);
13594
13595 SYMBOL_LOCATION_BATON (sym) = baton;
13596 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13597 }
13598
13599 /* Create appropriate locally-scoped variables for all the
13600 DW_TAG_common_block entries. Also create a struct common_block
13601 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13602 is used to sepate the common blocks name namespace from regular
13603 variable names. */
13604
13605 static void
13606 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13607 {
13608 struct attribute *attr;
13609
13610 attr = dwarf2_attr (die, DW_AT_location, cu);
13611 if (attr)
13612 {
13613 /* Support the .debug_loc offsets. */
13614 if (attr_form_is_block (attr))
13615 {
13616 /* Ok. */
13617 }
13618 else if (attr_form_is_section_offset (attr))
13619 {
13620 dwarf2_complex_location_expr_complaint ();
13621 attr = NULL;
13622 }
13623 else
13624 {
13625 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13626 "common block member");
13627 attr = NULL;
13628 }
13629 }
13630
13631 if (die->child != NULL)
13632 {
13633 struct objfile *objfile = cu->objfile;
13634 struct die_info *child_die;
13635 size_t n_entries = 0, size;
13636 struct common_block *common_block;
13637 struct symbol *sym;
13638
13639 for (child_die = die->child;
13640 child_die && child_die->tag;
13641 child_die = sibling_die (child_die))
13642 ++n_entries;
13643
13644 size = (sizeof (struct common_block)
13645 + (n_entries - 1) * sizeof (struct symbol *));
13646 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13647 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13648 common_block->n_entries = 0;
13649
13650 for (child_die = die->child;
13651 child_die && child_die->tag;
13652 child_die = sibling_die (child_die))
13653 {
13654 /* Create the symbol in the DW_TAG_common_block block in the current
13655 symbol scope. */
13656 sym = new_symbol (child_die, NULL, cu);
13657 if (sym != NULL)
13658 {
13659 struct attribute *member_loc;
13660
13661 common_block->contents[common_block->n_entries++] = sym;
13662
13663 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13664 cu);
13665 if (member_loc)
13666 {
13667 /* GDB has handled this for a long time, but it is
13668 not specified by DWARF. It seems to have been
13669 emitted by gfortran at least as recently as:
13670 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13671 complaint (&symfile_complaints,
13672 _("Variable in common block has "
13673 "DW_AT_data_member_location "
13674 "- DIE at 0x%x [in module %s]"),
13675 child_die->offset.sect_off,
13676 objfile_name (cu->objfile));
13677
13678 if (attr_form_is_section_offset (member_loc))
13679 dwarf2_complex_location_expr_complaint ();
13680 else if (attr_form_is_constant (member_loc)
13681 || attr_form_is_block (member_loc))
13682 {
13683 if (attr)
13684 mark_common_block_symbol_computed (sym, die, attr,
13685 member_loc, cu);
13686 }
13687 else
13688 dwarf2_complex_location_expr_complaint ();
13689 }
13690 }
13691 }
13692
13693 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13694 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13695 }
13696 }
13697
13698 /* Create a type for a C++ namespace. */
13699
13700 static struct type *
13701 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13702 {
13703 struct objfile *objfile = cu->objfile;
13704 const char *previous_prefix, *name;
13705 int is_anonymous;
13706 struct type *type;
13707
13708 /* For extensions, reuse the type of the original namespace. */
13709 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13710 {
13711 struct die_info *ext_die;
13712 struct dwarf2_cu *ext_cu = cu;
13713
13714 ext_die = dwarf2_extension (die, &ext_cu);
13715 type = read_type_die (ext_die, ext_cu);
13716
13717 /* EXT_CU may not be the same as CU.
13718 Ensure TYPE is recorded with CU in die_type_hash. */
13719 return set_die_type (die, type, cu);
13720 }
13721
13722 name = namespace_name (die, &is_anonymous, cu);
13723
13724 /* Now build the name of the current namespace. */
13725
13726 previous_prefix = determine_prefix (die, cu);
13727 if (previous_prefix[0] != '\0')
13728 name = typename_concat (&objfile->objfile_obstack,
13729 previous_prefix, name, 0, cu);
13730
13731 /* Create the type. */
13732 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13733 objfile);
13734 TYPE_NAME (type) = name;
13735 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13736
13737 return set_die_type (die, type, cu);
13738 }
13739
13740 /* Read a C++ namespace. */
13741
13742 static void
13743 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13744 {
13745 struct objfile *objfile = cu->objfile;
13746 int is_anonymous;
13747
13748 /* Add a symbol associated to this if we haven't seen the namespace
13749 before. Also, add a using directive if it's an anonymous
13750 namespace. */
13751
13752 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13753 {
13754 struct type *type;
13755
13756 type = read_type_die (die, cu);
13757 new_symbol (die, type, cu);
13758
13759 namespace_name (die, &is_anonymous, cu);
13760 if (is_anonymous)
13761 {
13762 const char *previous_prefix = determine_prefix (die, cu);
13763
13764 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13765 NULL, NULL, 0, &objfile->objfile_obstack);
13766 }
13767 }
13768
13769 if (die->child != NULL)
13770 {
13771 struct die_info *child_die = die->child;
13772
13773 while (child_die && child_die->tag)
13774 {
13775 process_die (child_die, cu);
13776 child_die = sibling_die (child_die);
13777 }
13778 }
13779 }
13780
13781 /* Read a Fortran module as type. This DIE can be only a declaration used for
13782 imported module. Still we need that type as local Fortran "use ... only"
13783 declaration imports depend on the created type in determine_prefix. */
13784
13785 static struct type *
13786 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13787 {
13788 struct objfile *objfile = cu->objfile;
13789 const char *module_name;
13790 struct type *type;
13791
13792 module_name = dwarf2_name (die, cu);
13793 if (!module_name)
13794 complaint (&symfile_complaints,
13795 _("DW_TAG_module has no name, offset 0x%x"),
13796 die->offset.sect_off);
13797 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13798
13799 /* determine_prefix uses TYPE_TAG_NAME. */
13800 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13801
13802 return set_die_type (die, type, cu);
13803 }
13804
13805 /* Read a Fortran module. */
13806
13807 static void
13808 read_module (struct die_info *die, struct dwarf2_cu *cu)
13809 {
13810 struct die_info *child_die = die->child;
13811 struct type *type;
13812
13813 type = read_type_die (die, cu);
13814 new_symbol (die, type, cu);
13815
13816 while (child_die && child_die->tag)
13817 {
13818 process_die (child_die, cu);
13819 child_die = sibling_die (child_die);
13820 }
13821 }
13822
13823 /* Return the name of the namespace represented by DIE. Set
13824 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13825 namespace. */
13826
13827 static const char *
13828 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13829 {
13830 struct die_info *current_die;
13831 const char *name = NULL;
13832
13833 /* Loop through the extensions until we find a name. */
13834
13835 for (current_die = die;
13836 current_die != NULL;
13837 current_die = dwarf2_extension (die, &cu))
13838 {
13839 name = dwarf2_name (current_die, cu);
13840 if (name != NULL)
13841 break;
13842 }
13843
13844 /* Is it an anonymous namespace? */
13845
13846 *is_anonymous = (name == NULL);
13847 if (*is_anonymous)
13848 name = CP_ANONYMOUS_NAMESPACE_STR;
13849
13850 return name;
13851 }
13852
13853 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13854 the user defined type vector. */
13855
13856 static struct type *
13857 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13858 {
13859 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13860 struct comp_unit_head *cu_header = &cu->header;
13861 struct type *type;
13862 struct attribute *attr_byte_size;
13863 struct attribute *attr_address_class;
13864 int byte_size, addr_class;
13865 struct type *target_type;
13866
13867 target_type = die_type (die, cu);
13868
13869 /* The die_type call above may have already set the type for this DIE. */
13870 type = get_die_type (die, cu);
13871 if (type)
13872 return type;
13873
13874 type = lookup_pointer_type (target_type);
13875
13876 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13877 if (attr_byte_size)
13878 byte_size = DW_UNSND (attr_byte_size);
13879 else
13880 byte_size = cu_header->addr_size;
13881
13882 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13883 if (attr_address_class)
13884 addr_class = DW_UNSND (attr_address_class);
13885 else
13886 addr_class = DW_ADDR_none;
13887
13888 /* If the pointer size or address class is different than the
13889 default, create a type variant marked as such and set the
13890 length accordingly. */
13891 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13892 {
13893 if (gdbarch_address_class_type_flags_p (gdbarch))
13894 {
13895 int type_flags;
13896
13897 type_flags = gdbarch_address_class_type_flags
13898 (gdbarch, byte_size, addr_class);
13899 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13900 == 0);
13901 type = make_type_with_address_space (type, type_flags);
13902 }
13903 else if (TYPE_LENGTH (type) != byte_size)
13904 {
13905 complaint (&symfile_complaints,
13906 _("invalid pointer size %d"), byte_size);
13907 }
13908 else
13909 {
13910 /* Should we also complain about unhandled address classes? */
13911 }
13912 }
13913
13914 TYPE_LENGTH (type) = byte_size;
13915 return set_die_type (die, type, cu);
13916 }
13917
13918 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13919 the user defined type vector. */
13920
13921 static struct type *
13922 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13923 {
13924 struct type *type;
13925 struct type *to_type;
13926 struct type *domain;
13927
13928 to_type = die_type (die, cu);
13929 domain = die_containing_type (die, cu);
13930
13931 /* The calls above may have already set the type for this DIE. */
13932 type = get_die_type (die, cu);
13933 if (type)
13934 return type;
13935
13936 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13937 type = lookup_methodptr_type (to_type);
13938 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13939 {
13940 struct type *new_type = alloc_type (cu->objfile);
13941
13942 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13943 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13944 TYPE_VARARGS (to_type));
13945 type = lookup_methodptr_type (new_type);
13946 }
13947 else
13948 type = lookup_memberptr_type (to_type, domain);
13949
13950 return set_die_type (die, type, cu);
13951 }
13952
13953 /* Extract all information from a DW_TAG_reference_type DIE and add to
13954 the user defined type vector. */
13955
13956 static struct type *
13957 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13958 {
13959 struct comp_unit_head *cu_header = &cu->header;
13960 struct type *type, *target_type;
13961 struct attribute *attr;
13962
13963 target_type = die_type (die, cu);
13964
13965 /* The die_type call above may have already set the type for this DIE. */
13966 type = get_die_type (die, cu);
13967 if (type)
13968 return type;
13969
13970 type = lookup_reference_type (target_type);
13971 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13972 if (attr)
13973 {
13974 TYPE_LENGTH (type) = DW_UNSND (attr);
13975 }
13976 else
13977 {
13978 TYPE_LENGTH (type) = cu_header->addr_size;
13979 }
13980 return set_die_type (die, type, cu);
13981 }
13982
13983 static struct type *
13984 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13985 {
13986 struct type *base_type, *cv_type;
13987
13988 base_type = die_type (die, cu);
13989
13990 /* The die_type call above may have already set the type for this DIE. */
13991 cv_type = get_die_type (die, cu);
13992 if (cv_type)
13993 return cv_type;
13994
13995 /* In case the const qualifier is applied to an array type, the element type
13996 is so qualified, not the array type (section 6.7.3 of C99). */
13997 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13998 {
13999 struct type *el_type, *inner_array;
14000
14001 base_type = copy_type (base_type);
14002 inner_array = base_type;
14003
14004 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14005 {
14006 TYPE_TARGET_TYPE (inner_array) =
14007 copy_type (TYPE_TARGET_TYPE (inner_array));
14008 inner_array = TYPE_TARGET_TYPE (inner_array);
14009 }
14010
14011 el_type = TYPE_TARGET_TYPE (inner_array);
14012 TYPE_TARGET_TYPE (inner_array) =
14013 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14014
14015 return set_die_type (die, base_type, cu);
14016 }
14017
14018 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14019 return set_die_type (die, cv_type, cu);
14020 }
14021
14022 static struct type *
14023 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14024 {
14025 struct type *base_type, *cv_type;
14026
14027 base_type = die_type (die, cu);
14028
14029 /* The die_type call above may have already set the type for this DIE. */
14030 cv_type = get_die_type (die, cu);
14031 if (cv_type)
14032 return cv_type;
14033
14034 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14035 return set_die_type (die, cv_type, cu);
14036 }
14037
14038 /* Handle DW_TAG_restrict_type. */
14039
14040 static struct type *
14041 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14042 {
14043 struct type *base_type, *cv_type;
14044
14045 base_type = die_type (die, cu);
14046
14047 /* The die_type call above may have already set the type for this DIE. */
14048 cv_type = get_die_type (die, cu);
14049 if (cv_type)
14050 return cv_type;
14051
14052 cv_type = make_restrict_type (base_type);
14053 return set_die_type (die, cv_type, cu);
14054 }
14055
14056 /* Extract all information from a DW_TAG_string_type DIE and add to
14057 the user defined type vector. It isn't really a user defined type,
14058 but it behaves like one, with other DIE's using an AT_user_def_type
14059 attribute to reference it. */
14060
14061 static struct type *
14062 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14063 {
14064 struct objfile *objfile = cu->objfile;
14065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14066 struct type *type, *range_type, *index_type, *char_type;
14067 struct attribute *attr;
14068 unsigned int length;
14069
14070 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14071 if (attr)
14072 {
14073 length = DW_UNSND (attr);
14074 }
14075 else
14076 {
14077 /* Check for the DW_AT_byte_size attribute. */
14078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14079 if (attr)
14080 {
14081 length = DW_UNSND (attr);
14082 }
14083 else
14084 {
14085 length = 1;
14086 }
14087 }
14088
14089 index_type = objfile_type (objfile)->builtin_int;
14090 range_type = create_range_type (NULL, index_type, 1, length);
14091 char_type = language_string_char_type (cu->language_defn, gdbarch);
14092 type = create_string_type (NULL, char_type, range_type);
14093
14094 return set_die_type (die, type, cu);
14095 }
14096
14097 /* Assuming that DIE corresponds to a function, returns nonzero
14098 if the function is prototyped. */
14099
14100 static int
14101 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14102 {
14103 struct attribute *attr;
14104
14105 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14106 if (attr && (DW_UNSND (attr) != 0))
14107 return 1;
14108
14109 /* The DWARF standard implies that the DW_AT_prototyped attribute
14110 is only meaninful for C, but the concept also extends to other
14111 languages that allow unprototyped functions (Eg: Objective C).
14112 For all other languages, assume that functions are always
14113 prototyped. */
14114 if (cu->language != language_c
14115 && cu->language != language_objc
14116 && cu->language != language_opencl)
14117 return 1;
14118
14119 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14120 prototyped and unprototyped functions; default to prototyped,
14121 since that is more common in modern code (and RealView warns
14122 about unprototyped functions). */
14123 if (producer_is_realview (cu->producer))
14124 return 1;
14125
14126 return 0;
14127 }
14128
14129 /* Handle DIES due to C code like:
14130
14131 struct foo
14132 {
14133 int (*funcp)(int a, long l);
14134 int b;
14135 };
14136
14137 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14138
14139 static struct type *
14140 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14141 {
14142 struct objfile *objfile = cu->objfile;
14143 struct type *type; /* Type that this function returns. */
14144 struct type *ftype; /* Function that returns above type. */
14145 struct attribute *attr;
14146
14147 type = die_type (die, cu);
14148
14149 /* The die_type call above may have already set the type for this DIE. */
14150 ftype = get_die_type (die, cu);
14151 if (ftype)
14152 return ftype;
14153
14154 ftype = lookup_function_type (type);
14155
14156 if (prototyped_function_p (die, cu))
14157 TYPE_PROTOTYPED (ftype) = 1;
14158
14159 /* Store the calling convention in the type if it's available in
14160 the subroutine die. Otherwise set the calling convention to
14161 the default value DW_CC_normal. */
14162 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14163 if (attr)
14164 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14165 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14166 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14167 else
14168 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14169
14170 /* We need to add the subroutine type to the die immediately so
14171 we don't infinitely recurse when dealing with parameters
14172 declared as the same subroutine type. */
14173 set_die_type (die, ftype, cu);
14174
14175 if (die->child != NULL)
14176 {
14177 struct type *void_type = objfile_type (objfile)->builtin_void;
14178 struct die_info *child_die;
14179 int nparams, iparams;
14180
14181 /* Count the number of parameters.
14182 FIXME: GDB currently ignores vararg functions, but knows about
14183 vararg member functions. */
14184 nparams = 0;
14185 child_die = die->child;
14186 while (child_die && child_die->tag)
14187 {
14188 if (child_die->tag == DW_TAG_formal_parameter)
14189 nparams++;
14190 else if (child_die->tag == DW_TAG_unspecified_parameters)
14191 TYPE_VARARGS (ftype) = 1;
14192 child_die = sibling_die (child_die);
14193 }
14194
14195 /* Allocate storage for parameters and fill them in. */
14196 TYPE_NFIELDS (ftype) = nparams;
14197 TYPE_FIELDS (ftype) = (struct field *)
14198 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14199
14200 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14201 even if we error out during the parameters reading below. */
14202 for (iparams = 0; iparams < nparams; iparams++)
14203 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14204
14205 iparams = 0;
14206 child_die = die->child;
14207 while (child_die && child_die->tag)
14208 {
14209 if (child_die->tag == DW_TAG_formal_parameter)
14210 {
14211 struct type *arg_type;
14212
14213 /* DWARF version 2 has no clean way to discern C++
14214 static and non-static member functions. G++ helps
14215 GDB by marking the first parameter for non-static
14216 member functions (which is the this pointer) as
14217 artificial. We pass this information to
14218 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14219
14220 DWARF version 3 added DW_AT_object_pointer, which GCC
14221 4.5 does not yet generate. */
14222 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14223 if (attr)
14224 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14225 else
14226 {
14227 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14228
14229 /* GCC/43521: In java, the formal parameter
14230 "this" is sometimes not marked with DW_AT_artificial. */
14231 if (cu->language == language_java)
14232 {
14233 const char *name = dwarf2_name (child_die, cu);
14234
14235 if (name && !strcmp (name, "this"))
14236 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14237 }
14238 }
14239 arg_type = die_type (child_die, cu);
14240
14241 /* RealView does not mark THIS as const, which the testsuite
14242 expects. GCC marks THIS as const in method definitions,
14243 but not in the class specifications (GCC PR 43053). */
14244 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14245 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14246 {
14247 int is_this = 0;
14248 struct dwarf2_cu *arg_cu = cu;
14249 const char *name = dwarf2_name (child_die, cu);
14250
14251 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14252 if (attr)
14253 {
14254 /* If the compiler emits this, use it. */
14255 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14256 is_this = 1;
14257 }
14258 else if (name && strcmp (name, "this") == 0)
14259 /* Function definitions will have the argument names. */
14260 is_this = 1;
14261 else if (name == NULL && iparams == 0)
14262 /* Declarations may not have the names, so like
14263 elsewhere in GDB, assume an artificial first
14264 argument is "this". */
14265 is_this = 1;
14266
14267 if (is_this)
14268 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14269 arg_type, 0);
14270 }
14271
14272 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14273 iparams++;
14274 }
14275 child_die = sibling_die (child_die);
14276 }
14277 }
14278
14279 return ftype;
14280 }
14281
14282 static struct type *
14283 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14284 {
14285 struct objfile *objfile = cu->objfile;
14286 const char *name = NULL;
14287 struct type *this_type, *target_type;
14288
14289 name = dwarf2_full_name (NULL, die, cu);
14290 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14291 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14292 TYPE_NAME (this_type) = name;
14293 set_die_type (die, this_type, cu);
14294 target_type = die_type (die, cu);
14295 if (target_type != this_type)
14296 TYPE_TARGET_TYPE (this_type) = target_type;
14297 else
14298 {
14299 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14300 spec and cause infinite loops in GDB. */
14301 complaint (&symfile_complaints,
14302 _("Self-referential DW_TAG_typedef "
14303 "- DIE at 0x%x [in module %s]"),
14304 die->offset.sect_off, objfile_name (objfile));
14305 TYPE_TARGET_TYPE (this_type) = NULL;
14306 }
14307 return this_type;
14308 }
14309
14310 /* Find a representation of a given base type and install
14311 it in the TYPE field of the die. */
14312
14313 static struct type *
14314 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14315 {
14316 struct objfile *objfile = cu->objfile;
14317 struct type *type;
14318 struct attribute *attr;
14319 int encoding = 0, size = 0;
14320 const char *name;
14321 enum type_code code = TYPE_CODE_INT;
14322 int type_flags = 0;
14323 struct type *target_type = NULL;
14324
14325 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14326 if (attr)
14327 {
14328 encoding = DW_UNSND (attr);
14329 }
14330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14331 if (attr)
14332 {
14333 size = DW_UNSND (attr);
14334 }
14335 name = dwarf2_name (die, cu);
14336 if (!name)
14337 {
14338 complaint (&symfile_complaints,
14339 _("DW_AT_name missing from DW_TAG_base_type"));
14340 }
14341
14342 switch (encoding)
14343 {
14344 case DW_ATE_address:
14345 /* Turn DW_ATE_address into a void * pointer. */
14346 code = TYPE_CODE_PTR;
14347 type_flags |= TYPE_FLAG_UNSIGNED;
14348 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14349 break;
14350 case DW_ATE_boolean:
14351 code = TYPE_CODE_BOOL;
14352 type_flags |= TYPE_FLAG_UNSIGNED;
14353 break;
14354 case DW_ATE_complex_float:
14355 code = TYPE_CODE_COMPLEX;
14356 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14357 break;
14358 case DW_ATE_decimal_float:
14359 code = TYPE_CODE_DECFLOAT;
14360 break;
14361 case DW_ATE_float:
14362 code = TYPE_CODE_FLT;
14363 break;
14364 case DW_ATE_signed:
14365 break;
14366 case DW_ATE_unsigned:
14367 type_flags |= TYPE_FLAG_UNSIGNED;
14368 if (cu->language == language_fortran
14369 && name
14370 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14371 code = TYPE_CODE_CHAR;
14372 break;
14373 case DW_ATE_signed_char:
14374 if (cu->language == language_ada || cu->language == language_m2
14375 || cu->language == language_pascal
14376 || cu->language == language_fortran)
14377 code = TYPE_CODE_CHAR;
14378 break;
14379 case DW_ATE_unsigned_char:
14380 if (cu->language == language_ada || cu->language == language_m2
14381 || cu->language == language_pascal
14382 || cu->language == language_fortran)
14383 code = TYPE_CODE_CHAR;
14384 type_flags |= TYPE_FLAG_UNSIGNED;
14385 break;
14386 case DW_ATE_UTF:
14387 /* We just treat this as an integer and then recognize the
14388 type by name elsewhere. */
14389 break;
14390
14391 default:
14392 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14393 dwarf_type_encoding_name (encoding));
14394 break;
14395 }
14396
14397 type = init_type (code, size, type_flags, NULL, objfile);
14398 TYPE_NAME (type) = name;
14399 TYPE_TARGET_TYPE (type) = target_type;
14400
14401 if (name && strcmp (name, "char") == 0)
14402 TYPE_NOSIGN (type) = 1;
14403
14404 return set_die_type (die, type, cu);
14405 }
14406
14407 /* Read the given DW_AT_subrange DIE. */
14408
14409 static struct type *
14410 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14411 {
14412 struct type *base_type, *orig_base_type;
14413 struct type *range_type;
14414 struct attribute *attr;
14415 LONGEST low, high;
14416 int low_default_is_valid;
14417 const char *name;
14418 LONGEST negative_mask;
14419
14420 orig_base_type = die_type (die, cu);
14421 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14422 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14423 creating the range type, but we use the result of check_typedef
14424 when examining properties of the type. */
14425 base_type = check_typedef (orig_base_type);
14426
14427 /* The die_type call above may have already set the type for this DIE. */
14428 range_type = get_die_type (die, cu);
14429 if (range_type)
14430 return range_type;
14431
14432 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14433 omitting DW_AT_lower_bound. */
14434 switch (cu->language)
14435 {
14436 case language_c:
14437 case language_cplus:
14438 low = 0;
14439 low_default_is_valid = 1;
14440 break;
14441 case language_fortran:
14442 low = 1;
14443 low_default_is_valid = 1;
14444 break;
14445 case language_d:
14446 case language_java:
14447 case language_objc:
14448 low = 0;
14449 low_default_is_valid = (cu->header.version >= 4);
14450 break;
14451 case language_ada:
14452 case language_m2:
14453 case language_pascal:
14454 low = 1;
14455 low_default_is_valid = (cu->header.version >= 4);
14456 break;
14457 default:
14458 low = 0;
14459 low_default_is_valid = 0;
14460 break;
14461 }
14462
14463 /* FIXME: For variable sized arrays either of these could be
14464 a variable rather than a constant value. We'll allow it,
14465 but we don't know how to handle it. */
14466 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14467 if (attr)
14468 low = dwarf2_get_attr_constant_value (attr, low);
14469 else if (!low_default_is_valid)
14470 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14471 "- DIE at 0x%x [in module %s]"),
14472 die->offset.sect_off, objfile_name (cu->objfile));
14473
14474 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14475 if (attr)
14476 {
14477 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14478 {
14479 /* GCC encodes arrays with unspecified or dynamic length
14480 with a DW_FORM_block1 attribute or a reference attribute.
14481 FIXME: GDB does not yet know how to handle dynamic
14482 arrays properly, treat them as arrays with unspecified
14483 length for now.
14484
14485 FIXME: jimb/2003-09-22: GDB does not really know
14486 how to handle arrays of unspecified length
14487 either; we just represent them as zero-length
14488 arrays. Choose an appropriate upper bound given
14489 the lower bound we've computed above. */
14490 high = low - 1;
14491 }
14492 else
14493 high = dwarf2_get_attr_constant_value (attr, 1);
14494 }
14495 else
14496 {
14497 attr = dwarf2_attr (die, DW_AT_count, cu);
14498 if (attr)
14499 {
14500 int count = dwarf2_get_attr_constant_value (attr, 1);
14501 high = low + count - 1;
14502 }
14503 else
14504 {
14505 /* Unspecified array length. */
14506 high = low - 1;
14507 }
14508 }
14509
14510 /* Dwarf-2 specifications explicitly allows to create subrange types
14511 without specifying a base type.
14512 In that case, the base type must be set to the type of
14513 the lower bound, upper bound or count, in that order, if any of these
14514 three attributes references an object that has a type.
14515 If no base type is found, the Dwarf-2 specifications say that
14516 a signed integer type of size equal to the size of an address should
14517 be used.
14518 For the following C code: `extern char gdb_int [];'
14519 GCC produces an empty range DIE.
14520 FIXME: muller/2010-05-28: Possible references to object for low bound,
14521 high bound or count are not yet handled by this code. */
14522 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14523 {
14524 struct objfile *objfile = cu->objfile;
14525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14526 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14527 struct type *int_type = objfile_type (objfile)->builtin_int;
14528
14529 /* Test "int", "long int", and "long long int" objfile types,
14530 and select the first one having a size above or equal to the
14531 architecture address size. */
14532 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14533 base_type = int_type;
14534 else
14535 {
14536 int_type = objfile_type (objfile)->builtin_long;
14537 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14538 base_type = int_type;
14539 else
14540 {
14541 int_type = objfile_type (objfile)->builtin_long_long;
14542 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14543 base_type = int_type;
14544 }
14545 }
14546 }
14547
14548 /* Normally, the DWARF producers are expected to use a signed
14549 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14550 But this is unfortunately not always the case, as witnessed
14551 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14552 is used instead. To work around that ambiguity, we treat
14553 the bounds as signed, and thus sign-extend their values, when
14554 the base type is signed. */
14555 negative_mask =
14556 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14557 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14558 low |= negative_mask;
14559 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14560 high |= negative_mask;
14561
14562 range_type = create_range_type (NULL, orig_base_type, low, high);
14563
14564 /* Mark arrays with dynamic length at least as an array of unspecified
14565 length. GDB could check the boundary but before it gets implemented at
14566 least allow accessing the array elements. */
14567 if (attr && attr_form_is_block (attr))
14568 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14569
14570 /* Ada expects an empty array on no boundary attributes. */
14571 if (attr == NULL && cu->language != language_ada)
14572 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14573
14574 name = dwarf2_name (die, cu);
14575 if (name)
14576 TYPE_NAME (range_type) = name;
14577
14578 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14579 if (attr)
14580 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14581
14582 set_die_type (die, range_type, cu);
14583
14584 /* set_die_type should be already done. */
14585 set_descriptive_type (range_type, die, cu);
14586
14587 return range_type;
14588 }
14589
14590 static struct type *
14591 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14592 {
14593 struct type *type;
14594
14595 /* For now, we only support the C meaning of an unspecified type: void. */
14596
14597 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14598 TYPE_NAME (type) = dwarf2_name (die, cu);
14599
14600 return set_die_type (die, type, cu);
14601 }
14602
14603 /* Read a single die and all its descendents. Set the die's sibling
14604 field to NULL; set other fields in the die correctly, and set all
14605 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14606 location of the info_ptr after reading all of those dies. PARENT
14607 is the parent of the die in question. */
14608
14609 static struct die_info *
14610 read_die_and_children (const struct die_reader_specs *reader,
14611 const gdb_byte *info_ptr,
14612 const gdb_byte **new_info_ptr,
14613 struct die_info *parent)
14614 {
14615 struct die_info *die;
14616 const gdb_byte *cur_ptr;
14617 int has_children;
14618
14619 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14620 if (die == NULL)
14621 {
14622 *new_info_ptr = cur_ptr;
14623 return NULL;
14624 }
14625 store_in_ref_table (die, reader->cu);
14626
14627 if (has_children)
14628 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14629 else
14630 {
14631 die->child = NULL;
14632 *new_info_ptr = cur_ptr;
14633 }
14634
14635 die->sibling = NULL;
14636 die->parent = parent;
14637 return die;
14638 }
14639
14640 /* Read a die, all of its descendents, and all of its siblings; set
14641 all of the fields of all of the dies correctly. Arguments are as
14642 in read_die_and_children. */
14643
14644 static struct die_info *
14645 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14646 const gdb_byte *info_ptr,
14647 const gdb_byte **new_info_ptr,
14648 struct die_info *parent)
14649 {
14650 struct die_info *first_die, *last_sibling;
14651 const gdb_byte *cur_ptr;
14652
14653 cur_ptr = info_ptr;
14654 first_die = last_sibling = NULL;
14655
14656 while (1)
14657 {
14658 struct die_info *die
14659 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14660
14661 if (die == NULL)
14662 {
14663 *new_info_ptr = cur_ptr;
14664 return first_die;
14665 }
14666
14667 if (!first_die)
14668 first_die = die;
14669 else
14670 last_sibling->sibling = die;
14671
14672 last_sibling = die;
14673 }
14674 }
14675
14676 /* Read a die, all of its descendents, and all of its siblings; set
14677 all of the fields of all of the dies correctly. Arguments are as
14678 in read_die_and_children.
14679 This the main entry point for reading a DIE and all its children. */
14680
14681 static struct die_info *
14682 read_die_and_siblings (const struct die_reader_specs *reader,
14683 const gdb_byte *info_ptr,
14684 const gdb_byte **new_info_ptr,
14685 struct die_info *parent)
14686 {
14687 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14688 new_info_ptr, parent);
14689
14690 if (dwarf2_die_debug)
14691 {
14692 fprintf_unfiltered (gdb_stdlog,
14693 "Read die from %s@0x%x of %s:\n",
14694 get_section_name (reader->die_section),
14695 (unsigned) (info_ptr - reader->die_section->buffer),
14696 bfd_get_filename (reader->abfd));
14697 dump_die (die, dwarf2_die_debug);
14698 }
14699
14700 return die;
14701 }
14702
14703 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14704 attributes.
14705 The caller is responsible for filling in the extra attributes
14706 and updating (*DIEP)->num_attrs.
14707 Set DIEP to point to a newly allocated die with its information,
14708 except for its child, sibling, and parent fields.
14709 Set HAS_CHILDREN to tell whether the die has children or not. */
14710
14711 static const gdb_byte *
14712 read_full_die_1 (const struct die_reader_specs *reader,
14713 struct die_info **diep, const gdb_byte *info_ptr,
14714 int *has_children, int num_extra_attrs)
14715 {
14716 unsigned int abbrev_number, bytes_read, i;
14717 sect_offset offset;
14718 struct abbrev_info *abbrev;
14719 struct die_info *die;
14720 struct dwarf2_cu *cu = reader->cu;
14721 bfd *abfd = reader->abfd;
14722
14723 offset.sect_off = info_ptr - reader->buffer;
14724 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14725 info_ptr += bytes_read;
14726 if (!abbrev_number)
14727 {
14728 *diep = NULL;
14729 *has_children = 0;
14730 return info_ptr;
14731 }
14732
14733 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14734 if (!abbrev)
14735 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14736 abbrev_number,
14737 bfd_get_filename (abfd));
14738
14739 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14740 die->offset = offset;
14741 die->tag = abbrev->tag;
14742 die->abbrev = abbrev_number;
14743
14744 /* Make the result usable.
14745 The caller needs to update num_attrs after adding the extra
14746 attributes. */
14747 die->num_attrs = abbrev->num_attrs;
14748
14749 for (i = 0; i < abbrev->num_attrs; ++i)
14750 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14751 info_ptr);
14752
14753 *diep = die;
14754 *has_children = abbrev->has_children;
14755 return info_ptr;
14756 }
14757
14758 /* Read a die and all its attributes.
14759 Set DIEP to point to a newly allocated die with its information,
14760 except for its child, sibling, and parent fields.
14761 Set HAS_CHILDREN to tell whether the die has children or not. */
14762
14763 static const gdb_byte *
14764 read_full_die (const struct die_reader_specs *reader,
14765 struct die_info **diep, const gdb_byte *info_ptr,
14766 int *has_children)
14767 {
14768 const gdb_byte *result;
14769
14770 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14771
14772 if (dwarf2_die_debug)
14773 {
14774 fprintf_unfiltered (gdb_stdlog,
14775 "Read die from %s@0x%x of %s:\n",
14776 get_section_name (reader->die_section),
14777 (unsigned) (info_ptr - reader->die_section->buffer),
14778 bfd_get_filename (reader->abfd));
14779 dump_die (*diep, dwarf2_die_debug);
14780 }
14781
14782 return result;
14783 }
14784 \f
14785 /* Abbreviation tables.
14786
14787 In DWARF version 2, the description of the debugging information is
14788 stored in a separate .debug_abbrev section. Before we read any
14789 dies from a section we read in all abbreviations and install them
14790 in a hash table. */
14791
14792 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14793
14794 static struct abbrev_info *
14795 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14796 {
14797 struct abbrev_info *abbrev;
14798
14799 abbrev = (struct abbrev_info *)
14800 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14801 memset (abbrev, 0, sizeof (struct abbrev_info));
14802 return abbrev;
14803 }
14804
14805 /* Add an abbreviation to the table. */
14806
14807 static void
14808 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14809 unsigned int abbrev_number,
14810 struct abbrev_info *abbrev)
14811 {
14812 unsigned int hash_number;
14813
14814 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14815 abbrev->next = abbrev_table->abbrevs[hash_number];
14816 abbrev_table->abbrevs[hash_number] = abbrev;
14817 }
14818
14819 /* Look up an abbrev in the table.
14820 Returns NULL if the abbrev is not found. */
14821
14822 static struct abbrev_info *
14823 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14824 unsigned int abbrev_number)
14825 {
14826 unsigned int hash_number;
14827 struct abbrev_info *abbrev;
14828
14829 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14830 abbrev = abbrev_table->abbrevs[hash_number];
14831
14832 while (abbrev)
14833 {
14834 if (abbrev->number == abbrev_number)
14835 return abbrev;
14836 abbrev = abbrev->next;
14837 }
14838 return NULL;
14839 }
14840
14841 /* Read in an abbrev table. */
14842
14843 static struct abbrev_table *
14844 abbrev_table_read_table (struct dwarf2_section_info *section,
14845 sect_offset offset)
14846 {
14847 struct objfile *objfile = dwarf2_per_objfile->objfile;
14848 bfd *abfd = get_section_bfd_owner (section);
14849 struct abbrev_table *abbrev_table;
14850 const gdb_byte *abbrev_ptr;
14851 struct abbrev_info *cur_abbrev;
14852 unsigned int abbrev_number, bytes_read, abbrev_name;
14853 unsigned int abbrev_form;
14854 struct attr_abbrev *cur_attrs;
14855 unsigned int allocated_attrs;
14856
14857 abbrev_table = XNEW (struct abbrev_table);
14858 abbrev_table->offset = offset;
14859 obstack_init (&abbrev_table->abbrev_obstack);
14860 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14861 (ABBREV_HASH_SIZE
14862 * sizeof (struct abbrev_info *)));
14863 memset (abbrev_table->abbrevs, 0,
14864 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14865
14866 dwarf2_read_section (objfile, section);
14867 abbrev_ptr = section->buffer + offset.sect_off;
14868 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14869 abbrev_ptr += bytes_read;
14870
14871 allocated_attrs = ATTR_ALLOC_CHUNK;
14872 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14873
14874 /* Loop until we reach an abbrev number of 0. */
14875 while (abbrev_number)
14876 {
14877 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14878
14879 /* read in abbrev header */
14880 cur_abbrev->number = abbrev_number;
14881 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14882 abbrev_ptr += bytes_read;
14883 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14884 abbrev_ptr += 1;
14885
14886 /* now read in declarations */
14887 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14888 abbrev_ptr += bytes_read;
14889 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14890 abbrev_ptr += bytes_read;
14891 while (abbrev_name)
14892 {
14893 if (cur_abbrev->num_attrs == allocated_attrs)
14894 {
14895 allocated_attrs += ATTR_ALLOC_CHUNK;
14896 cur_attrs
14897 = xrealloc (cur_attrs, (allocated_attrs
14898 * sizeof (struct attr_abbrev)));
14899 }
14900
14901 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14902 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14903 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14904 abbrev_ptr += bytes_read;
14905 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14906 abbrev_ptr += bytes_read;
14907 }
14908
14909 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14910 (cur_abbrev->num_attrs
14911 * sizeof (struct attr_abbrev)));
14912 memcpy (cur_abbrev->attrs, cur_attrs,
14913 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14914
14915 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14916
14917 /* Get next abbreviation.
14918 Under Irix6 the abbreviations for a compilation unit are not
14919 always properly terminated with an abbrev number of 0.
14920 Exit loop if we encounter an abbreviation which we have
14921 already read (which means we are about to read the abbreviations
14922 for the next compile unit) or if the end of the abbreviation
14923 table is reached. */
14924 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14925 break;
14926 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14927 abbrev_ptr += bytes_read;
14928 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14929 break;
14930 }
14931
14932 xfree (cur_attrs);
14933 return abbrev_table;
14934 }
14935
14936 /* Free the resources held by ABBREV_TABLE. */
14937
14938 static void
14939 abbrev_table_free (struct abbrev_table *abbrev_table)
14940 {
14941 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14942 xfree (abbrev_table);
14943 }
14944
14945 /* Same as abbrev_table_free but as a cleanup.
14946 We pass in a pointer to the pointer to the table so that we can
14947 set the pointer to NULL when we're done. It also simplifies
14948 build_type_unit_groups. */
14949
14950 static void
14951 abbrev_table_free_cleanup (void *table_ptr)
14952 {
14953 struct abbrev_table **abbrev_table_ptr = table_ptr;
14954
14955 if (*abbrev_table_ptr != NULL)
14956 abbrev_table_free (*abbrev_table_ptr);
14957 *abbrev_table_ptr = NULL;
14958 }
14959
14960 /* Read the abbrev table for CU from ABBREV_SECTION. */
14961
14962 static void
14963 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14964 struct dwarf2_section_info *abbrev_section)
14965 {
14966 cu->abbrev_table =
14967 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14968 }
14969
14970 /* Release the memory used by the abbrev table for a compilation unit. */
14971
14972 static void
14973 dwarf2_free_abbrev_table (void *ptr_to_cu)
14974 {
14975 struct dwarf2_cu *cu = ptr_to_cu;
14976
14977 if (cu->abbrev_table != NULL)
14978 abbrev_table_free (cu->abbrev_table);
14979 /* Set this to NULL so that we SEGV if we try to read it later,
14980 and also because free_comp_unit verifies this is NULL. */
14981 cu->abbrev_table = NULL;
14982 }
14983 \f
14984 /* Returns nonzero if TAG represents a type that we might generate a partial
14985 symbol for. */
14986
14987 static int
14988 is_type_tag_for_partial (int tag)
14989 {
14990 switch (tag)
14991 {
14992 #if 0
14993 /* Some types that would be reasonable to generate partial symbols for,
14994 that we don't at present. */
14995 case DW_TAG_array_type:
14996 case DW_TAG_file_type:
14997 case DW_TAG_ptr_to_member_type:
14998 case DW_TAG_set_type:
14999 case DW_TAG_string_type:
15000 case DW_TAG_subroutine_type:
15001 #endif
15002 case DW_TAG_base_type:
15003 case DW_TAG_class_type:
15004 case DW_TAG_interface_type:
15005 case DW_TAG_enumeration_type:
15006 case DW_TAG_structure_type:
15007 case DW_TAG_subrange_type:
15008 case DW_TAG_typedef:
15009 case DW_TAG_union_type:
15010 return 1;
15011 default:
15012 return 0;
15013 }
15014 }
15015
15016 /* Load all DIEs that are interesting for partial symbols into memory. */
15017
15018 static struct partial_die_info *
15019 load_partial_dies (const struct die_reader_specs *reader,
15020 const gdb_byte *info_ptr, int building_psymtab)
15021 {
15022 struct dwarf2_cu *cu = reader->cu;
15023 struct objfile *objfile = cu->objfile;
15024 struct partial_die_info *part_die;
15025 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15026 struct abbrev_info *abbrev;
15027 unsigned int bytes_read;
15028 unsigned int load_all = 0;
15029 int nesting_level = 1;
15030
15031 parent_die = NULL;
15032 last_die = NULL;
15033
15034 gdb_assert (cu->per_cu != NULL);
15035 if (cu->per_cu->load_all_dies)
15036 load_all = 1;
15037
15038 cu->partial_dies
15039 = htab_create_alloc_ex (cu->header.length / 12,
15040 partial_die_hash,
15041 partial_die_eq,
15042 NULL,
15043 &cu->comp_unit_obstack,
15044 hashtab_obstack_allocate,
15045 dummy_obstack_deallocate);
15046
15047 part_die = obstack_alloc (&cu->comp_unit_obstack,
15048 sizeof (struct partial_die_info));
15049
15050 while (1)
15051 {
15052 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15053
15054 /* A NULL abbrev means the end of a series of children. */
15055 if (abbrev == NULL)
15056 {
15057 if (--nesting_level == 0)
15058 {
15059 /* PART_DIE was probably the last thing allocated on the
15060 comp_unit_obstack, so we could call obstack_free
15061 here. We don't do that because the waste is small,
15062 and will be cleaned up when we're done with this
15063 compilation unit. This way, we're also more robust
15064 against other users of the comp_unit_obstack. */
15065 return first_die;
15066 }
15067 info_ptr += bytes_read;
15068 last_die = parent_die;
15069 parent_die = parent_die->die_parent;
15070 continue;
15071 }
15072
15073 /* Check for template arguments. We never save these; if
15074 they're seen, we just mark the parent, and go on our way. */
15075 if (parent_die != NULL
15076 && cu->language == language_cplus
15077 && (abbrev->tag == DW_TAG_template_type_param
15078 || abbrev->tag == DW_TAG_template_value_param))
15079 {
15080 parent_die->has_template_arguments = 1;
15081
15082 if (!load_all)
15083 {
15084 /* We don't need a partial DIE for the template argument. */
15085 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15086 continue;
15087 }
15088 }
15089
15090 /* We only recurse into c++ subprograms looking for template arguments.
15091 Skip their other children. */
15092 if (!load_all
15093 && cu->language == language_cplus
15094 && parent_die != NULL
15095 && parent_die->tag == DW_TAG_subprogram)
15096 {
15097 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15098 continue;
15099 }
15100
15101 /* Check whether this DIE is interesting enough to save. Normally
15102 we would not be interested in members here, but there may be
15103 later variables referencing them via DW_AT_specification (for
15104 static members). */
15105 if (!load_all
15106 && !is_type_tag_for_partial (abbrev->tag)
15107 && abbrev->tag != DW_TAG_constant
15108 && abbrev->tag != DW_TAG_enumerator
15109 && abbrev->tag != DW_TAG_subprogram
15110 && abbrev->tag != DW_TAG_lexical_block
15111 && abbrev->tag != DW_TAG_variable
15112 && abbrev->tag != DW_TAG_namespace
15113 && abbrev->tag != DW_TAG_module
15114 && abbrev->tag != DW_TAG_member
15115 && abbrev->tag != DW_TAG_imported_unit
15116 && abbrev->tag != DW_TAG_imported_declaration)
15117 {
15118 /* Otherwise we skip to the next sibling, if any. */
15119 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15120 continue;
15121 }
15122
15123 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15124 info_ptr);
15125
15126 /* This two-pass algorithm for processing partial symbols has a
15127 high cost in cache pressure. Thus, handle some simple cases
15128 here which cover the majority of C partial symbols. DIEs
15129 which neither have specification tags in them, nor could have
15130 specification tags elsewhere pointing at them, can simply be
15131 processed and discarded.
15132
15133 This segment is also optional; scan_partial_symbols and
15134 add_partial_symbol will handle these DIEs if we chain
15135 them in normally. When compilers which do not emit large
15136 quantities of duplicate debug information are more common,
15137 this code can probably be removed. */
15138
15139 /* Any complete simple types at the top level (pretty much all
15140 of them, for a language without namespaces), can be processed
15141 directly. */
15142 if (parent_die == NULL
15143 && part_die->has_specification == 0
15144 && part_die->is_declaration == 0
15145 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15146 || part_die->tag == DW_TAG_base_type
15147 || part_die->tag == DW_TAG_subrange_type))
15148 {
15149 if (building_psymtab && part_die->name != NULL)
15150 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15151 VAR_DOMAIN, LOC_TYPEDEF,
15152 &objfile->static_psymbols,
15153 0, (CORE_ADDR) 0, cu->language, objfile);
15154 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15155 continue;
15156 }
15157
15158 /* The exception for DW_TAG_typedef with has_children above is
15159 a workaround of GCC PR debug/47510. In the case of this complaint
15160 type_name_no_tag_or_error will error on such types later.
15161
15162 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15163 it could not find the child DIEs referenced later, this is checked
15164 above. In correct DWARF DW_TAG_typedef should have no children. */
15165
15166 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15167 complaint (&symfile_complaints,
15168 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15169 "- DIE at 0x%x [in module %s]"),
15170 part_die->offset.sect_off, objfile_name (objfile));
15171
15172 /* If we're at the second level, and we're an enumerator, and
15173 our parent has no specification (meaning possibly lives in a
15174 namespace elsewhere), then we can add the partial symbol now
15175 instead of queueing it. */
15176 if (part_die->tag == DW_TAG_enumerator
15177 && parent_die != NULL
15178 && parent_die->die_parent == NULL
15179 && parent_die->tag == DW_TAG_enumeration_type
15180 && parent_die->has_specification == 0)
15181 {
15182 if (part_die->name == NULL)
15183 complaint (&symfile_complaints,
15184 _("malformed enumerator DIE ignored"));
15185 else if (building_psymtab)
15186 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15187 VAR_DOMAIN, LOC_CONST,
15188 (cu->language == language_cplus
15189 || cu->language == language_java)
15190 ? &objfile->global_psymbols
15191 : &objfile->static_psymbols,
15192 0, (CORE_ADDR) 0, cu->language, objfile);
15193
15194 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15195 continue;
15196 }
15197
15198 /* We'll save this DIE so link it in. */
15199 part_die->die_parent = parent_die;
15200 part_die->die_sibling = NULL;
15201 part_die->die_child = NULL;
15202
15203 if (last_die && last_die == parent_die)
15204 last_die->die_child = part_die;
15205 else if (last_die)
15206 last_die->die_sibling = part_die;
15207
15208 last_die = part_die;
15209
15210 if (first_die == NULL)
15211 first_die = part_die;
15212
15213 /* Maybe add the DIE to the hash table. Not all DIEs that we
15214 find interesting need to be in the hash table, because we
15215 also have the parent/sibling/child chains; only those that we
15216 might refer to by offset later during partial symbol reading.
15217
15218 For now this means things that might have be the target of a
15219 DW_AT_specification, DW_AT_abstract_origin, or
15220 DW_AT_extension. DW_AT_extension will refer only to
15221 namespaces; DW_AT_abstract_origin refers to functions (and
15222 many things under the function DIE, but we do not recurse
15223 into function DIEs during partial symbol reading) and
15224 possibly variables as well; DW_AT_specification refers to
15225 declarations. Declarations ought to have the DW_AT_declaration
15226 flag. It happens that GCC forgets to put it in sometimes, but
15227 only for functions, not for types.
15228
15229 Adding more things than necessary to the hash table is harmless
15230 except for the performance cost. Adding too few will result in
15231 wasted time in find_partial_die, when we reread the compilation
15232 unit with load_all_dies set. */
15233
15234 if (load_all
15235 || abbrev->tag == DW_TAG_constant
15236 || abbrev->tag == DW_TAG_subprogram
15237 || abbrev->tag == DW_TAG_variable
15238 || abbrev->tag == DW_TAG_namespace
15239 || part_die->is_declaration)
15240 {
15241 void **slot;
15242
15243 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15244 part_die->offset.sect_off, INSERT);
15245 *slot = part_die;
15246 }
15247
15248 part_die = obstack_alloc (&cu->comp_unit_obstack,
15249 sizeof (struct partial_die_info));
15250
15251 /* For some DIEs we want to follow their children (if any). For C
15252 we have no reason to follow the children of structures; for other
15253 languages we have to, so that we can get at method physnames
15254 to infer fully qualified class names, for DW_AT_specification,
15255 and for C++ template arguments. For C++, we also look one level
15256 inside functions to find template arguments (if the name of the
15257 function does not already contain the template arguments).
15258
15259 For Ada, we need to scan the children of subprograms and lexical
15260 blocks as well because Ada allows the definition of nested
15261 entities that could be interesting for the debugger, such as
15262 nested subprograms for instance. */
15263 if (last_die->has_children
15264 && (load_all
15265 || last_die->tag == DW_TAG_namespace
15266 || last_die->tag == DW_TAG_module
15267 || last_die->tag == DW_TAG_enumeration_type
15268 || (cu->language == language_cplus
15269 && last_die->tag == DW_TAG_subprogram
15270 && (last_die->name == NULL
15271 || strchr (last_die->name, '<') == NULL))
15272 || (cu->language != language_c
15273 && (last_die->tag == DW_TAG_class_type
15274 || last_die->tag == DW_TAG_interface_type
15275 || last_die->tag == DW_TAG_structure_type
15276 || last_die->tag == DW_TAG_union_type))
15277 || (cu->language == language_ada
15278 && (last_die->tag == DW_TAG_subprogram
15279 || last_die->tag == DW_TAG_lexical_block))))
15280 {
15281 nesting_level++;
15282 parent_die = last_die;
15283 continue;
15284 }
15285
15286 /* Otherwise we skip to the next sibling, if any. */
15287 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15288
15289 /* Back to the top, do it again. */
15290 }
15291 }
15292
15293 /* Read a minimal amount of information into the minimal die structure. */
15294
15295 static const gdb_byte *
15296 read_partial_die (const struct die_reader_specs *reader,
15297 struct partial_die_info *part_die,
15298 struct abbrev_info *abbrev, unsigned int abbrev_len,
15299 const gdb_byte *info_ptr)
15300 {
15301 struct dwarf2_cu *cu = reader->cu;
15302 struct objfile *objfile = cu->objfile;
15303 const gdb_byte *buffer = reader->buffer;
15304 unsigned int i;
15305 struct attribute attr;
15306 int has_low_pc_attr = 0;
15307 int has_high_pc_attr = 0;
15308 int high_pc_relative = 0;
15309
15310 memset (part_die, 0, sizeof (struct partial_die_info));
15311
15312 part_die->offset.sect_off = info_ptr - buffer;
15313
15314 info_ptr += abbrev_len;
15315
15316 if (abbrev == NULL)
15317 return info_ptr;
15318
15319 part_die->tag = abbrev->tag;
15320 part_die->has_children = abbrev->has_children;
15321
15322 for (i = 0; i < abbrev->num_attrs; ++i)
15323 {
15324 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15325
15326 /* Store the data if it is of an attribute we want to keep in a
15327 partial symbol table. */
15328 switch (attr.name)
15329 {
15330 case DW_AT_name:
15331 switch (part_die->tag)
15332 {
15333 case DW_TAG_compile_unit:
15334 case DW_TAG_partial_unit:
15335 case DW_TAG_type_unit:
15336 /* Compilation units have a DW_AT_name that is a filename, not
15337 a source language identifier. */
15338 case DW_TAG_enumeration_type:
15339 case DW_TAG_enumerator:
15340 /* These tags always have simple identifiers already; no need
15341 to canonicalize them. */
15342 part_die->name = DW_STRING (&attr);
15343 break;
15344 default:
15345 part_die->name
15346 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15347 &objfile->objfile_obstack);
15348 break;
15349 }
15350 break;
15351 case DW_AT_linkage_name:
15352 case DW_AT_MIPS_linkage_name:
15353 /* Note that both forms of linkage name might appear. We
15354 assume they will be the same, and we only store the last
15355 one we see. */
15356 if (cu->language == language_ada)
15357 part_die->name = DW_STRING (&attr);
15358 part_die->linkage_name = DW_STRING (&attr);
15359 break;
15360 case DW_AT_low_pc:
15361 has_low_pc_attr = 1;
15362 part_die->lowpc = attr_value_as_address (&attr);
15363 break;
15364 case DW_AT_high_pc:
15365 has_high_pc_attr = 1;
15366 part_die->highpc = attr_value_as_address (&attr);
15367 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15368 high_pc_relative = 1;
15369 break;
15370 case DW_AT_location:
15371 /* Support the .debug_loc offsets. */
15372 if (attr_form_is_block (&attr))
15373 {
15374 part_die->d.locdesc = DW_BLOCK (&attr);
15375 }
15376 else if (attr_form_is_section_offset (&attr))
15377 {
15378 dwarf2_complex_location_expr_complaint ();
15379 }
15380 else
15381 {
15382 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15383 "partial symbol information");
15384 }
15385 break;
15386 case DW_AT_external:
15387 part_die->is_external = DW_UNSND (&attr);
15388 break;
15389 case DW_AT_declaration:
15390 part_die->is_declaration = DW_UNSND (&attr);
15391 break;
15392 case DW_AT_type:
15393 part_die->has_type = 1;
15394 break;
15395 case DW_AT_abstract_origin:
15396 case DW_AT_specification:
15397 case DW_AT_extension:
15398 part_die->has_specification = 1;
15399 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15400 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15401 || cu->per_cu->is_dwz);
15402 break;
15403 case DW_AT_sibling:
15404 /* Ignore absolute siblings, they might point outside of
15405 the current compile unit. */
15406 if (attr.form == DW_FORM_ref_addr)
15407 complaint (&symfile_complaints,
15408 _("ignoring absolute DW_AT_sibling"));
15409 else
15410 {
15411 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15412 const gdb_byte *sibling_ptr = buffer + off;
15413
15414 if (sibling_ptr < info_ptr)
15415 complaint (&symfile_complaints,
15416 _("DW_AT_sibling points backwards"));
15417 else
15418 part_die->sibling = sibling_ptr;
15419 }
15420 break;
15421 case DW_AT_byte_size:
15422 part_die->has_byte_size = 1;
15423 break;
15424 case DW_AT_calling_convention:
15425 /* DWARF doesn't provide a way to identify a program's source-level
15426 entry point. DW_AT_calling_convention attributes are only meant
15427 to describe functions' calling conventions.
15428
15429 However, because it's a necessary piece of information in
15430 Fortran, and because DW_CC_program is the only piece of debugging
15431 information whose definition refers to a 'main program' at all,
15432 several compilers have begun marking Fortran main programs with
15433 DW_CC_program --- even when those functions use the standard
15434 calling conventions.
15435
15436 So until DWARF specifies a way to provide this information and
15437 compilers pick up the new representation, we'll support this
15438 practice. */
15439 if (DW_UNSND (&attr) == DW_CC_program
15440 && cu->language == language_fortran)
15441 set_objfile_main_name (objfile, part_die->name, language_fortran);
15442 break;
15443 case DW_AT_inline:
15444 if (DW_UNSND (&attr) == DW_INL_inlined
15445 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15446 part_die->may_be_inlined = 1;
15447 break;
15448
15449 case DW_AT_import:
15450 if (part_die->tag == DW_TAG_imported_unit)
15451 {
15452 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15453 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15454 || cu->per_cu->is_dwz);
15455 }
15456 break;
15457
15458 default:
15459 break;
15460 }
15461 }
15462
15463 if (high_pc_relative)
15464 part_die->highpc += part_die->lowpc;
15465
15466 if (has_low_pc_attr && has_high_pc_attr)
15467 {
15468 /* When using the GNU linker, .gnu.linkonce. sections are used to
15469 eliminate duplicate copies of functions and vtables and such.
15470 The linker will arbitrarily choose one and discard the others.
15471 The AT_*_pc values for such functions refer to local labels in
15472 these sections. If the section from that file was discarded, the
15473 labels are not in the output, so the relocs get a value of 0.
15474 If this is a discarded function, mark the pc bounds as invalid,
15475 so that GDB will ignore it. */
15476 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15477 {
15478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15479
15480 complaint (&symfile_complaints,
15481 _("DW_AT_low_pc %s is zero "
15482 "for DIE at 0x%x [in module %s]"),
15483 paddress (gdbarch, part_die->lowpc),
15484 part_die->offset.sect_off, objfile_name (objfile));
15485 }
15486 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15487 else if (part_die->lowpc >= part_die->highpc)
15488 {
15489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15490
15491 complaint (&symfile_complaints,
15492 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15493 "for DIE at 0x%x [in module %s]"),
15494 paddress (gdbarch, part_die->lowpc),
15495 paddress (gdbarch, part_die->highpc),
15496 part_die->offset.sect_off, objfile_name (objfile));
15497 }
15498 else
15499 part_die->has_pc_info = 1;
15500 }
15501
15502 return info_ptr;
15503 }
15504
15505 /* Find a cached partial DIE at OFFSET in CU. */
15506
15507 static struct partial_die_info *
15508 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15509 {
15510 struct partial_die_info *lookup_die = NULL;
15511 struct partial_die_info part_die;
15512
15513 part_die.offset = offset;
15514 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15515 offset.sect_off);
15516
15517 return lookup_die;
15518 }
15519
15520 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15521 except in the case of .debug_types DIEs which do not reference
15522 outside their CU (they do however referencing other types via
15523 DW_FORM_ref_sig8). */
15524
15525 static struct partial_die_info *
15526 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15527 {
15528 struct objfile *objfile = cu->objfile;
15529 struct dwarf2_per_cu_data *per_cu = NULL;
15530 struct partial_die_info *pd = NULL;
15531
15532 if (offset_in_dwz == cu->per_cu->is_dwz
15533 && offset_in_cu_p (&cu->header, offset))
15534 {
15535 pd = find_partial_die_in_comp_unit (offset, cu);
15536 if (pd != NULL)
15537 return pd;
15538 /* We missed recording what we needed.
15539 Load all dies and try again. */
15540 per_cu = cu->per_cu;
15541 }
15542 else
15543 {
15544 /* TUs don't reference other CUs/TUs (except via type signatures). */
15545 if (cu->per_cu->is_debug_types)
15546 {
15547 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15548 " external reference to offset 0x%lx [in module %s].\n"),
15549 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15550 bfd_get_filename (objfile->obfd));
15551 }
15552 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15553 objfile);
15554
15555 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15556 load_partial_comp_unit (per_cu);
15557
15558 per_cu->cu->last_used = 0;
15559 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15560 }
15561
15562 /* If we didn't find it, and not all dies have been loaded,
15563 load them all and try again. */
15564
15565 if (pd == NULL && per_cu->load_all_dies == 0)
15566 {
15567 per_cu->load_all_dies = 1;
15568
15569 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15570 THIS_CU->cu may already be in use. So we can't just free it and
15571 replace its DIEs with the ones we read in. Instead, we leave those
15572 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15573 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15574 set. */
15575 load_partial_comp_unit (per_cu);
15576
15577 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15578 }
15579
15580 if (pd == NULL)
15581 internal_error (__FILE__, __LINE__,
15582 _("could not find partial DIE 0x%x "
15583 "in cache [from module %s]\n"),
15584 offset.sect_off, bfd_get_filename (objfile->obfd));
15585 return pd;
15586 }
15587
15588 /* See if we can figure out if the class lives in a namespace. We do
15589 this by looking for a member function; its demangled name will
15590 contain namespace info, if there is any. */
15591
15592 static void
15593 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15594 struct dwarf2_cu *cu)
15595 {
15596 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15597 what template types look like, because the demangler
15598 frequently doesn't give the same name as the debug info. We
15599 could fix this by only using the demangled name to get the
15600 prefix (but see comment in read_structure_type). */
15601
15602 struct partial_die_info *real_pdi;
15603 struct partial_die_info *child_pdi;
15604
15605 /* If this DIE (this DIE's specification, if any) has a parent, then
15606 we should not do this. We'll prepend the parent's fully qualified
15607 name when we create the partial symbol. */
15608
15609 real_pdi = struct_pdi;
15610 while (real_pdi->has_specification)
15611 real_pdi = find_partial_die (real_pdi->spec_offset,
15612 real_pdi->spec_is_dwz, cu);
15613
15614 if (real_pdi->die_parent != NULL)
15615 return;
15616
15617 for (child_pdi = struct_pdi->die_child;
15618 child_pdi != NULL;
15619 child_pdi = child_pdi->die_sibling)
15620 {
15621 if (child_pdi->tag == DW_TAG_subprogram
15622 && child_pdi->linkage_name != NULL)
15623 {
15624 char *actual_class_name
15625 = language_class_name_from_physname (cu->language_defn,
15626 child_pdi->linkage_name);
15627 if (actual_class_name != NULL)
15628 {
15629 struct_pdi->name
15630 = obstack_copy0 (&cu->objfile->objfile_obstack,
15631 actual_class_name,
15632 strlen (actual_class_name));
15633 xfree (actual_class_name);
15634 }
15635 break;
15636 }
15637 }
15638 }
15639
15640 /* Adjust PART_DIE before generating a symbol for it. This function
15641 may set the is_external flag or change the DIE's name. */
15642
15643 static void
15644 fixup_partial_die (struct partial_die_info *part_die,
15645 struct dwarf2_cu *cu)
15646 {
15647 /* Once we've fixed up a die, there's no point in doing so again.
15648 This also avoids a memory leak if we were to call
15649 guess_partial_die_structure_name multiple times. */
15650 if (part_die->fixup_called)
15651 return;
15652
15653 /* If we found a reference attribute and the DIE has no name, try
15654 to find a name in the referred to DIE. */
15655
15656 if (part_die->name == NULL && part_die->has_specification)
15657 {
15658 struct partial_die_info *spec_die;
15659
15660 spec_die = find_partial_die (part_die->spec_offset,
15661 part_die->spec_is_dwz, cu);
15662
15663 fixup_partial_die (spec_die, cu);
15664
15665 if (spec_die->name)
15666 {
15667 part_die->name = spec_die->name;
15668
15669 /* Copy DW_AT_external attribute if it is set. */
15670 if (spec_die->is_external)
15671 part_die->is_external = spec_die->is_external;
15672 }
15673 }
15674
15675 /* Set default names for some unnamed DIEs. */
15676
15677 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15678 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15679
15680 /* If there is no parent die to provide a namespace, and there are
15681 children, see if we can determine the namespace from their linkage
15682 name. */
15683 if (cu->language == language_cplus
15684 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15685 && part_die->die_parent == NULL
15686 && part_die->has_children
15687 && (part_die->tag == DW_TAG_class_type
15688 || part_die->tag == DW_TAG_structure_type
15689 || part_die->tag == DW_TAG_union_type))
15690 guess_partial_die_structure_name (part_die, cu);
15691
15692 /* GCC might emit a nameless struct or union that has a linkage
15693 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15694 if (part_die->name == NULL
15695 && (part_die->tag == DW_TAG_class_type
15696 || part_die->tag == DW_TAG_interface_type
15697 || part_die->tag == DW_TAG_structure_type
15698 || part_die->tag == DW_TAG_union_type)
15699 && part_die->linkage_name != NULL)
15700 {
15701 char *demangled;
15702
15703 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15704 if (demangled)
15705 {
15706 const char *base;
15707
15708 /* Strip any leading namespaces/classes, keep only the base name.
15709 DW_AT_name for named DIEs does not contain the prefixes. */
15710 base = strrchr (demangled, ':');
15711 if (base && base > demangled && base[-1] == ':')
15712 base++;
15713 else
15714 base = demangled;
15715
15716 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15717 base, strlen (base));
15718 xfree (demangled);
15719 }
15720 }
15721
15722 part_die->fixup_called = 1;
15723 }
15724
15725 /* Read an attribute value described by an attribute form. */
15726
15727 static const gdb_byte *
15728 read_attribute_value (const struct die_reader_specs *reader,
15729 struct attribute *attr, unsigned form,
15730 const gdb_byte *info_ptr)
15731 {
15732 struct dwarf2_cu *cu = reader->cu;
15733 bfd *abfd = reader->abfd;
15734 struct comp_unit_head *cu_header = &cu->header;
15735 unsigned int bytes_read;
15736 struct dwarf_block *blk;
15737
15738 attr->form = form;
15739 switch (form)
15740 {
15741 case DW_FORM_ref_addr:
15742 if (cu->header.version == 2)
15743 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15744 else
15745 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15746 &cu->header, &bytes_read);
15747 info_ptr += bytes_read;
15748 break;
15749 case DW_FORM_GNU_ref_alt:
15750 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15751 info_ptr += bytes_read;
15752 break;
15753 case DW_FORM_addr:
15754 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15755 info_ptr += bytes_read;
15756 break;
15757 case DW_FORM_block2:
15758 blk = dwarf_alloc_block (cu);
15759 blk->size = read_2_bytes (abfd, info_ptr);
15760 info_ptr += 2;
15761 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15762 info_ptr += blk->size;
15763 DW_BLOCK (attr) = blk;
15764 break;
15765 case DW_FORM_block4:
15766 blk = dwarf_alloc_block (cu);
15767 blk->size = read_4_bytes (abfd, info_ptr);
15768 info_ptr += 4;
15769 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15770 info_ptr += blk->size;
15771 DW_BLOCK (attr) = blk;
15772 break;
15773 case DW_FORM_data2:
15774 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15775 info_ptr += 2;
15776 break;
15777 case DW_FORM_data4:
15778 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15779 info_ptr += 4;
15780 break;
15781 case DW_FORM_data8:
15782 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15783 info_ptr += 8;
15784 break;
15785 case DW_FORM_sec_offset:
15786 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15787 info_ptr += bytes_read;
15788 break;
15789 case DW_FORM_string:
15790 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15791 DW_STRING_IS_CANONICAL (attr) = 0;
15792 info_ptr += bytes_read;
15793 break;
15794 case DW_FORM_strp:
15795 if (!cu->per_cu->is_dwz)
15796 {
15797 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15798 &bytes_read);
15799 DW_STRING_IS_CANONICAL (attr) = 0;
15800 info_ptr += bytes_read;
15801 break;
15802 }
15803 /* FALLTHROUGH */
15804 case DW_FORM_GNU_strp_alt:
15805 {
15806 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15807 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15808 &bytes_read);
15809
15810 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15811 DW_STRING_IS_CANONICAL (attr) = 0;
15812 info_ptr += bytes_read;
15813 }
15814 break;
15815 case DW_FORM_exprloc:
15816 case DW_FORM_block:
15817 blk = dwarf_alloc_block (cu);
15818 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15819 info_ptr += bytes_read;
15820 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15821 info_ptr += blk->size;
15822 DW_BLOCK (attr) = blk;
15823 break;
15824 case DW_FORM_block1:
15825 blk = dwarf_alloc_block (cu);
15826 blk->size = read_1_byte (abfd, info_ptr);
15827 info_ptr += 1;
15828 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15829 info_ptr += blk->size;
15830 DW_BLOCK (attr) = blk;
15831 break;
15832 case DW_FORM_data1:
15833 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15834 info_ptr += 1;
15835 break;
15836 case DW_FORM_flag:
15837 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15838 info_ptr += 1;
15839 break;
15840 case DW_FORM_flag_present:
15841 DW_UNSND (attr) = 1;
15842 break;
15843 case DW_FORM_sdata:
15844 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15845 info_ptr += bytes_read;
15846 break;
15847 case DW_FORM_udata:
15848 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15849 info_ptr += bytes_read;
15850 break;
15851 case DW_FORM_ref1:
15852 DW_UNSND (attr) = (cu->header.offset.sect_off
15853 + read_1_byte (abfd, info_ptr));
15854 info_ptr += 1;
15855 break;
15856 case DW_FORM_ref2:
15857 DW_UNSND (attr) = (cu->header.offset.sect_off
15858 + read_2_bytes (abfd, info_ptr));
15859 info_ptr += 2;
15860 break;
15861 case DW_FORM_ref4:
15862 DW_UNSND (attr) = (cu->header.offset.sect_off
15863 + read_4_bytes (abfd, info_ptr));
15864 info_ptr += 4;
15865 break;
15866 case DW_FORM_ref8:
15867 DW_UNSND (attr) = (cu->header.offset.sect_off
15868 + read_8_bytes (abfd, info_ptr));
15869 info_ptr += 8;
15870 break;
15871 case DW_FORM_ref_sig8:
15872 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15873 info_ptr += 8;
15874 break;
15875 case DW_FORM_ref_udata:
15876 DW_UNSND (attr) = (cu->header.offset.sect_off
15877 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15878 info_ptr += bytes_read;
15879 break;
15880 case DW_FORM_indirect:
15881 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15882 info_ptr += bytes_read;
15883 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15884 break;
15885 case DW_FORM_GNU_addr_index:
15886 if (reader->dwo_file == NULL)
15887 {
15888 /* For now flag a hard error.
15889 Later we can turn this into a complaint. */
15890 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15891 dwarf_form_name (form),
15892 bfd_get_filename (abfd));
15893 }
15894 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15895 info_ptr += bytes_read;
15896 break;
15897 case DW_FORM_GNU_str_index:
15898 if (reader->dwo_file == NULL)
15899 {
15900 /* For now flag a hard error.
15901 Later we can turn this into a complaint if warranted. */
15902 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15903 dwarf_form_name (form),
15904 bfd_get_filename (abfd));
15905 }
15906 {
15907 ULONGEST str_index =
15908 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15909
15910 DW_STRING (attr) = read_str_index (reader, str_index);
15911 DW_STRING_IS_CANONICAL (attr) = 0;
15912 info_ptr += bytes_read;
15913 }
15914 break;
15915 default:
15916 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15917 dwarf_form_name (form),
15918 bfd_get_filename (abfd));
15919 }
15920
15921 /* Super hack. */
15922 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15923 attr->form = DW_FORM_GNU_ref_alt;
15924
15925 /* We have seen instances where the compiler tried to emit a byte
15926 size attribute of -1 which ended up being encoded as an unsigned
15927 0xffffffff. Although 0xffffffff is technically a valid size value,
15928 an object of this size seems pretty unlikely so we can relatively
15929 safely treat these cases as if the size attribute was invalid and
15930 treat them as zero by default. */
15931 if (attr->name == DW_AT_byte_size
15932 && form == DW_FORM_data4
15933 && DW_UNSND (attr) >= 0xffffffff)
15934 {
15935 complaint
15936 (&symfile_complaints,
15937 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15938 hex_string (DW_UNSND (attr)));
15939 DW_UNSND (attr) = 0;
15940 }
15941
15942 return info_ptr;
15943 }
15944
15945 /* Read an attribute described by an abbreviated attribute. */
15946
15947 static const gdb_byte *
15948 read_attribute (const struct die_reader_specs *reader,
15949 struct attribute *attr, struct attr_abbrev *abbrev,
15950 const gdb_byte *info_ptr)
15951 {
15952 attr->name = abbrev->name;
15953 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15954 }
15955
15956 /* Read dwarf information from a buffer. */
15957
15958 static unsigned int
15959 read_1_byte (bfd *abfd, const gdb_byte *buf)
15960 {
15961 return bfd_get_8 (abfd, buf);
15962 }
15963
15964 static int
15965 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15966 {
15967 return bfd_get_signed_8 (abfd, buf);
15968 }
15969
15970 static unsigned int
15971 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15972 {
15973 return bfd_get_16 (abfd, buf);
15974 }
15975
15976 static int
15977 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15978 {
15979 return bfd_get_signed_16 (abfd, buf);
15980 }
15981
15982 static unsigned int
15983 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15984 {
15985 return bfd_get_32 (abfd, buf);
15986 }
15987
15988 static int
15989 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15990 {
15991 return bfd_get_signed_32 (abfd, buf);
15992 }
15993
15994 static ULONGEST
15995 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15996 {
15997 return bfd_get_64 (abfd, buf);
15998 }
15999
16000 static CORE_ADDR
16001 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16002 unsigned int *bytes_read)
16003 {
16004 struct comp_unit_head *cu_header = &cu->header;
16005 CORE_ADDR retval = 0;
16006
16007 if (cu_header->signed_addr_p)
16008 {
16009 switch (cu_header->addr_size)
16010 {
16011 case 2:
16012 retval = bfd_get_signed_16 (abfd, buf);
16013 break;
16014 case 4:
16015 retval = bfd_get_signed_32 (abfd, buf);
16016 break;
16017 case 8:
16018 retval = bfd_get_signed_64 (abfd, buf);
16019 break;
16020 default:
16021 internal_error (__FILE__, __LINE__,
16022 _("read_address: bad switch, signed [in module %s]"),
16023 bfd_get_filename (abfd));
16024 }
16025 }
16026 else
16027 {
16028 switch (cu_header->addr_size)
16029 {
16030 case 2:
16031 retval = bfd_get_16 (abfd, buf);
16032 break;
16033 case 4:
16034 retval = bfd_get_32 (abfd, buf);
16035 break;
16036 case 8:
16037 retval = bfd_get_64 (abfd, buf);
16038 break;
16039 default:
16040 internal_error (__FILE__, __LINE__,
16041 _("read_address: bad switch, "
16042 "unsigned [in module %s]"),
16043 bfd_get_filename (abfd));
16044 }
16045 }
16046
16047 *bytes_read = cu_header->addr_size;
16048 return retval;
16049 }
16050
16051 /* Read the initial length from a section. The (draft) DWARF 3
16052 specification allows the initial length to take up either 4 bytes
16053 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16054 bytes describe the length and all offsets will be 8 bytes in length
16055 instead of 4.
16056
16057 An older, non-standard 64-bit format is also handled by this
16058 function. The older format in question stores the initial length
16059 as an 8-byte quantity without an escape value. Lengths greater
16060 than 2^32 aren't very common which means that the initial 4 bytes
16061 is almost always zero. Since a length value of zero doesn't make
16062 sense for the 32-bit format, this initial zero can be considered to
16063 be an escape value which indicates the presence of the older 64-bit
16064 format. As written, the code can't detect (old format) lengths
16065 greater than 4GB. If it becomes necessary to handle lengths
16066 somewhat larger than 4GB, we could allow other small values (such
16067 as the non-sensical values of 1, 2, and 3) to also be used as
16068 escape values indicating the presence of the old format.
16069
16070 The value returned via bytes_read should be used to increment the
16071 relevant pointer after calling read_initial_length().
16072
16073 [ Note: read_initial_length() and read_offset() are based on the
16074 document entitled "DWARF Debugging Information Format", revision
16075 3, draft 8, dated November 19, 2001. This document was obtained
16076 from:
16077
16078 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16079
16080 This document is only a draft and is subject to change. (So beware.)
16081
16082 Details regarding the older, non-standard 64-bit format were
16083 determined empirically by examining 64-bit ELF files produced by
16084 the SGI toolchain on an IRIX 6.5 machine.
16085
16086 - Kevin, July 16, 2002
16087 ] */
16088
16089 static LONGEST
16090 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16091 {
16092 LONGEST length = bfd_get_32 (abfd, buf);
16093
16094 if (length == 0xffffffff)
16095 {
16096 length = bfd_get_64 (abfd, buf + 4);
16097 *bytes_read = 12;
16098 }
16099 else if (length == 0)
16100 {
16101 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16102 length = bfd_get_64 (abfd, buf);
16103 *bytes_read = 8;
16104 }
16105 else
16106 {
16107 *bytes_read = 4;
16108 }
16109
16110 return length;
16111 }
16112
16113 /* Cover function for read_initial_length.
16114 Returns the length of the object at BUF, and stores the size of the
16115 initial length in *BYTES_READ and stores the size that offsets will be in
16116 *OFFSET_SIZE.
16117 If the initial length size is not equivalent to that specified in
16118 CU_HEADER then issue a complaint.
16119 This is useful when reading non-comp-unit headers. */
16120
16121 static LONGEST
16122 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16123 const struct comp_unit_head *cu_header,
16124 unsigned int *bytes_read,
16125 unsigned int *offset_size)
16126 {
16127 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16128
16129 gdb_assert (cu_header->initial_length_size == 4
16130 || cu_header->initial_length_size == 8
16131 || cu_header->initial_length_size == 12);
16132
16133 if (cu_header->initial_length_size != *bytes_read)
16134 complaint (&symfile_complaints,
16135 _("intermixed 32-bit and 64-bit DWARF sections"));
16136
16137 *offset_size = (*bytes_read == 4) ? 4 : 8;
16138 return length;
16139 }
16140
16141 /* Read an offset from the data stream. The size of the offset is
16142 given by cu_header->offset_size. */
16143
16144 static LONGEST
16145 read_offset (bfd *abfd, const gdb_byte *buf,
16146 const struct comp_unit_head *cu_header,
16147 unsigned int *bytes_read)
16148 {
16149 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16150
16151 *bytes_read = cu_header->offset_size;
16152 return offset;
16153 }
16154
16155 /* Read an offset from the data stream. */
16156
16157 static LONGEST
16158 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16159 {
16160 LONGEST retval = 0;
16161
16162 switch (offset_size)
16163 {
16164 case 4:
16165 retval = bfd_get_32 (abfd, buf);
16166 break;
16167 case 8:
16168 retval = bfd_get_64 (abfd, buf);
16169 break;
16170 default:
16171 internal_error (__FILE__, __LINE__,
16172 _("read_offset_1: bad switch [in module %s]"),
16173 bfd_get_filename (abfd));
16174 }
16175
16176 return retval;
16177 }
16178
16179 static const gdb_byte *
16180 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16181 {
16182 /* If the size of a host char is 8 bits, we can return a pointer
16183 to the buffer, otherwise we have to copy the data to a buffer
16184 allocated on the temporary obstack. */
16185 gdb_assert (HOST_CHAR_BIT == 8);
16186 return buf;
16187 }
16188
16189 static const char *
16190 read_direct_string (bfd *abfd, const gdb_byte *buf,
16191 unsigned int *bytes_read_ptr)
16192 {
16193 /* If the size of a host char is 8 bits, we can return a pointer
16194 to the string, otherwise we have to copy the string to a buffer
16195 allocated on the temporary obstack. */
16196 gdb_assert (HOST_CHAR_BIT == 8);
16197 if (*buf == '\0')
16198 {
16199 *bytes_read_ptr = 1;
16200 return NULL;
16201 }
16202 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16203 return (const char *) buf;
16204 }
16205
16206 static const char *
16207 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16208 {
16209 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16210 if (dwarf2_per_objfile->str.buffer == NULL)
16211 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16212 bfd_get_filename (abfd));
16213 if (str_offset >= dwarf2_per_objfile->str.size)
16214 error (_("DW_FORM_strp pointing outside of "
16215 ".debug_str section [in module %s]"),
16216 bfd_get_filename (abfd));
16217 gdb_assert (HOST_CHAR_BIT == 8);
16218 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16219 return NULL;
16220 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16221 }
16222
16223 /* Read a string at offset STR_OFFSET in the .debug_str section from
16224 the .dwz file DWZ. Throw an error if the offset is too large. If
16225 the string consists of a single NUL byte, return NULL; otherwise
16226 return a pointer to the string. */
16227
16228 static const char *
16229 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16230 {
16231 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16232
16233 if (dwz->str.buffer == NULL)
16234 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16235 "section [in module %s]"),
16236 bfd_get_filename (dwz->dwz_bfd));
16237 if (str_offset >= dwz->str.size)
16238 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16239 ".debug_str section [in module %s]"),
16240 bfd_get_filename (dwz->dwz_bfd));
16241 gdb_assert (HOST_CHAR_BIT == 8);
16242 if (dwz->str.buffer[str_offset] == '\0')
16243 return NULL;
16244 return (const char *) (dwz->str.buffer + str_offset);
16245 }
16246
16247 static const char *
16248 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16249 const struct comp_unit_head *cu_header,
16250 unsigned int *bytes_read_ptr)
16251 {
16252 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16253
16254 return read_indirect_string_at_offset (abfd, str_offset);
16255 }
16256
16257 static ULONGEST
16258 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16259 unsigned int *bytes_read_ptr)
16260 {
16261 ULONGEST result;
16262 unsigned int num_read;
16263 int i, shift;
16264 unsigned char byte;
16265
16266 result = 0;
16267 shift = 0;
16268 num_read = 0;
16269 i = 0;
16270 while (1)
16271 {
16272 byte = bfd_get_8 (abfd, buf);
16273 buf++;
16274 num_read++;
16275 result |= ((ULONGEST) (byte & 127) << shift);
16276 if ((byte & 128) == 0)
16277 {
16278 break;
16279 }
16280 shift += 7;
16281 }
16282 *bytes_read_ptr = num_read;
16283 return result;
16284 }
16285
16286 static LONGEST
16287 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16288 unsigned int *bytes_read_ptr)
16289 {
16290 LONGEST result;
16291 int i, shift, num_read;
16292 unsigned char byte;
16293
16294 result = 0;
16295 shift = 0;
16296 num_read = 0;
16297 i = 0;
16298 while (1)
16299 {
16300 byte = bfd_get_8 (abfd, buf);
16301 buf++;
16302 num_read++;
16303 result |= ((LONGEST) (byte & 127) << shift);
16304 shift += 7;
16305 if ((byte & 128) == 0)
16306 {
16307 break;
16308 }
16309 }
16310 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16311 result |= -(((LONGEST) 1) << shift);
16312 *bytes_read_ptr = num_read;
16313 return result;
16314 }
16315
16316 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16317 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16318 ADDR_SIZE is the size of addresses from the CU header. */
16319
16320 static CORE_ADDR
16321 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16322 {
16323 struct objfile *objfile = dwarf2_per_objfile->objfile;
16324 bfd *abfd = objfile->obfd;
16325 const gdb_byte *info_ptr;
16326
16327 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16328 if (dwarf2_per_objfile->addr.buffer == NULL)
16329 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16330 objfile_name (objfile));
16331 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16332 error (_("DW_FORM_addr_index pointing outside of "
16333 ".debug_addr section [in module %s]"),
16334 objfile_name (objfile));
16335 info_ptr = (dwarf2_per_objfile->addr.buffer
16336 + addr_base + addr_index * addr_size);
16337 if (addr_size == 4)
16338 return bfd_get_32 (abfd, info_ptr);
16339 else
16340 return bfd_get_64 (abfd, info_ptr);
16341 }
16342
16343 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16344
16345 static CORE_ADDR
16346 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16347 {
16348 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16349 }
16350
16351 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16352
16353 static CORE_ADDR
16354 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16355 unsigned int *bytes_read)
16356 {
16357 bfd *abfd = cu->objfile->obfd;
16358 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16359
16360 return read_addr_index (cu, addr_index);
16361 }
16362
16363 /* Data structure to pass results from dwarf2_read_addr_index_reader
16364 back to dwarf2_read_addr_index. */
16365
16366 struct dwarf2_read_addr_index_data
16367 {
16368 ULONGEST addr_base;
16369 int addr_size;
16370 };
16371
16372 /* die_reader_func for dwarf2_read_addr_index. */
16373
16374 static void
16375 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16376 const gdb_byte *info_ptr,
16377 struct die_info *comp_unit_die,
16378 int has_children,
16379 void *data)
16380 {
16381 struct dwarf2_cu *cu = reader->cu;
16382 struct dwarf2_read_addr_index_data *aidata =
16383 (struct dwarf2_read_addr_index_data *) data;
16384
16385 aidata->addr_base = cu->addr_base;
16386 aidata->addr_size = cu->header.addr_size;
16387 }
16388
16389 /* Given an index in .debug_addr, fetch the value.
16390 NOTE: This can be called during dwarf expression evaluation,
16391 long after the debug information has been read, and thus per_cu->cu
16392 may no longer exist. */
16393
16394 CORE_ADDR
16395 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16396 unsigned int addr_index)
16397 {
16398 struct objfile *objfile = per_cu->objfile;
16399 struct dwarf2_cu *cu = per_cu->cu;
16400 ULONGEST addr_base;
16401 int addr_size;
16402
16403 /* This is intended to be called from outside this file. */
16404 dw2_setup (objfile);
16405
16406 /* We need addr_base and addr_size.
16407 If we don't have PER_CU->cu, we have to get it.
16408 Nasty, but the alternative is storing the needed info in PER_CU,
16409 which at this point doesn't seem justified: it's not clear how frequently
16410 it would get used and it would increase the size of every PER_CU.
16411 Entry points like dwarf2_per_cu_addr_size do a similar thing
16412 so we're not in uncharted territory here.
16413 Alas we need to be a bit more complicated as addr_base is contained
16414 in the DIE.
16415
16416 We don't need to read the entire CU(/TU).
16417 We just need the header and top level die.
16418
16419 IWBN to use the aging mechanism to let us lazily later discard the CU.
16420 For now we skip this optimization. */
16421
16422 if (cu != NULL)
16423 {
16424 addr_base = cu->addr_base;
16425 addr_size = cu->header.addr_size;
16426 }
16427 else
16428 {
16429 struct dwarf2_read_addr_index_data aidata;
16430
16431 /* Note: We can't use init_cutu_and_read_dies_simple here,
16432 we need addr_base. */
16433 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16434 dwarf2_read_addr_index_reader, &aidata);
16435 addr_base = aidata.addr_base;
16436 addr_size = aidata.addr_size;
16437 }
16438
16439 return read_addr_index_1 (addr_index, addr_base, addr_size);
16440 }
16441
16442 /* Given a DW_FORM_GNU_str_index, fetch the string.
16443 This is only used by the Fission support. */
16444
16445 static const char *
16446 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16447 {
16448 struct objfile *objfile = dwarf2_per_objfile->objfile;
16449 const char *objf_name = objfile_name (objfile);
16450 bfd *abfd = objfile->obfd;
16451 struct dwarf2_cu *cu = reader->cu;
16452 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16453 struct dwarf2_section_info *str_offsets_section =
16454 &reader->dwo_file->sections.str_offsets;
16455 const gdb_byte *info_ptr;
16456 ULONGEST str_offset;
16457 static const char form_name[] = "DW_FORM_GNU_str_index";
16458
16459 dwarf2_read_section (objfile, str_section);
16460 dwarf2_read_section (objfile, str_offsets_section);
16461 if (str_section->buffer == NULL)
16462 error (_("%s used without .debug_str.dwo section"
16463 " in CU at offset 0x%lx [in module %s]"),
16464 form_name, (long) cu->header.offset.sect_off, objf_name);
16465 if (str_offsets_section->buffer == NULL)
16466 error (_("%s used without .debug_str_offsets.dwo section"
16467 " in CU at offset 0x%lx [in module %s]"),
16468 form_name, (long) cu->header.offset.sect_off, objf_name);
16469 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16470 error (_("%s pointing outside of .debug_str_offsets.dwo"
16471 " section in CU at offset 0x%lx [in module %s]"),
16472 form_name, (long) cu->header.offset.sect_off, objf_name);
16473 info_ptr = (str_offsets_section->buffer
16474 + str_index * cu->header.offset_size);
16475 if (cu->header.offset_size == 4)
16476 str_offset = bfd_get_32 (abfd, info_ptr);
16477 else
16478 str_offset = bfd_get_64 (abfd, info_ptr);
16479 if (str_offset >= str_section->size)
16480 error (_("Offset from %s pointing outside of"
16481 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16482 form_name, (long) cu->header.offset.sect_off, objf_name);
16483 return (const char *) (str_section->buffer + str_offset);
16484 }
16485
16486 /* Return the length of an LEB128 number in BUF. */
16487
16488 static int
16489 leb128_size (const gdb_byte *buf)
16490 {
16491 const gdb_byte *begin = buf;
16492 gdb_byte byte;
16493
16494 while (1)
16495 {
16496 byte = *buf++;
16497 if ((byte & 128) == 0)
16498 return buf - begin;
16499 }
16500 }
16501
16502 static void
16503 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16504 {
16505 switch (lang)
16506 {
16507 case DW_LANG_C89:
16508 case DW_LANG_C99:
16509 case DW_LANG_C:
16510 case DW_LANG_UPC:
16511 cu->language = language_c;
16512 break;
16513 case DW_LANG_C_plus_plus:
16514 cu->language = language_cplus;
16515 break;
16516 case DW_LANG_D:
16517 cu->language = language_d;
16518 break;
16519 case DW_LANG_Fortran77:
16520 case DW_LANG_Fortran90:
16521 case DW_LANG_Fortran95:
16522 cu->language = language_fortran;
16523 break;
16524 case DW_LANG_Go:
16525 cu->language = language_go;
16526 break;
16527 case DW_LANG_Mips_Assembler:
16528 cu->language = language_asm;
16529 break;
16530 case DW_LANG_Java:
16531 cu->language = language_java;
16532 break;
16533 case DW_LANG_Ada83:
16534 case DW_LANG_Ada95:
16535 cu->language = language_ada;
16536 break;
16537 case DW_LANG_Modula2:
16538 cu->language = language_m2;
16539 break;
16540 case DW_LANG_Pascal83:
16541 cu->language = language_pascal;
16542 break;
16543 case DW_LANG_ObjC:
16544 cu->language = language_objc;
16545 break;
16546 case DW_LANG_Cobol74:
16547 case DW_LANG_Cobol85:
16548 default:
16549 cu->language = language_minimal;
16550 break;
16551 }
16552 cu->language_defn = language_def (cu->language);
16553 }
16554
16555 /* Return the named attribute or NULL if not there. */
16556
16557 static struct attribute *
16558 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16559 {
16560 for (;;)
16561 {
16562 unsigned int i;
16563 struct attribute *spec = NULL;
16564
16565 for (i = 0; i < die->num_attrs; ++i)
16566 {
16567 if (die->attrs[i].name == name)
16568 return &die->attrs[i];
16569 if (die->attrs[i].name == DW_AT_specification
16570 || die->attrs[i].name == DW_AT_abstract_origin)
16571 spec = &die->attrs[i];
16572 }
16573
16574 if (!spec)
16575 break;
16576
16577 die = follow_die_ref (die, spec, &cu);
16578 }
16579
16580 return NULL;
16581 }
16582
16583 /* Return the named attribute or NULL if not there,
16584 but do not follow DW_AT_specification, etc.
16585 This is for use in contexts where we're reading .debug_types dies.
16586 Following DW_AT_specification, DW_AT_abstract_origin will take us
16587 back up the chain, and we want to go down. */
16588
16589 static struct attribute *
16590 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16591 {
16592 unsigned int i;
16593
16594 for (i = 0; i < die->num_attrs; ++i)
16595 if (die->attrs[i].name == name)
16596 return &die->attrs[i];
16597
16598 return NULL;
16599 }
16600
16601 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16602 and holds a non-zero value. This function should only be used for
16603 DW_FORM_flag or DW_FORM_flag_present attributes. */
16604
16605 static int
16606 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16607 {
16608 struct attribute *attr = dwarf2_attr (die, name, cu);
16609
16610 return (attr && DW_UNSND (attr));
16611 }
16612
16613 static int
16614 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16615 {
16616 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16617 which value is non-zero. However, we have to be careful with
16618 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16619 (via dwarf2_flag_true_p) follows this attribute. So we may
16620 end up accidently finding a declaration attribute that belongs
16621 to a different DIE referenced by the specification attribute,
16622 even though the given DIE does not have a declaration attribute. */
16623 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16624 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16625 }
16626
16627 /* Return the die giving the specification for DIE, if there is
16628 one. *SPEC_CU is the CU containing DIE on input, and the CU
16629 containing the return value on output. If there is no
16630 specification, but there is an abstract origin, that is
16631 returned. */
16632
16633 static struct die_info *
16634 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16635 {
16636 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16637 *spec_cu);
16638
16639 if (spec_attr == NULL)
16640 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16641
16642 if (spec_attr == NULL)
16643 return NULL;
16644 else
16645 return follow_die_ref (die, spec_attr, spec_cu);
16646 }
16647
16648 /* Free the line_header structure *LH, and any arrays and strings it
16649 refers to.
16650 NOTE: This is also used as a "cleanup" function. */
16651
16652 static void
16653 free_line_header (struct line_header *lh)
16654 {
16655 if (lh->standard_opcode_lengths)
16656 xfree (lh->standard_opcode_lengths);
16657
16658 /* Remember that all the lh->file_names[i].name pointers are
16659 pointers into debug_line_buffer, and don't need to be freed. */
16660 if (lh->file_names)
16661 xfree (lh->file_names);
16662
16663 /* Similarly for the include directory names. */
16664 if (lh->include_dirs)
16665 xfree (lh->include_dirs);
16666
16667 xfree (lh);
16668 }
16669
16670 /* Add an entry to LH's include directory table. */
16671
16672 static void
16673 add_include_dir (struct line_header *lh, const char *include_dir)
16674 {
16675 /* Grow the array if necessary. */
16676 if (lh->include_dirs_size == 0)
16677 {
16678 lh->include_dirs_size = 1; /* for testing */
16679 lh->include_dirs = xmalloc (lh->include_dirs_size
16680 * sizeof (*lh->include_dirs));
16681 }
16682 else if (lh->num_include_dirs >= lh->include_dirs_size)
16683 {
16684 lh->include_dirs_size *= 2;
16685 lh->include_dirs = xrealloc (lh->include_dirs,
16686 (lh->include_dirs_size
16687 * sizeof (*lh->include_dirs)));
16688 }
16689
16690 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16691 }
16692
16693 /* Add an entry to LH's file name table. */
16694
16695 static void
16696 add_file_name (struct line_header *lh,
16697 const char *name,
16698 unsigned int dir_index,
16699 unsigned int mod_time,
16700 unsigned int length)
16701 {
16702 struct file_entry *fe;
16703
16704 /* Grow the array if necessary. */
16705 if (lh->file_names_size == 0)
16706 {
16707 lh->file_names_size = 1; /* for testing */
16708 lh->file_names = xmalloc (lh->file_names_size
16709 * sizeof (*lh->file_names));
16710 }
16711 else if (lh->num_file_names >= lh->file_names_size)
16712 {
16713 lh->file_names_size *= 2;
16714 lh->file_names = xrealloc (lh->file_names,
16715 (lh->file_names_size
16716 * sizeof (*lh->file_names)));
16717 }
16718
16719 fe = &lh->file_names[lh->num_file_names++];
16720 fe->name = name;
16721 fe->dir_index = dir_index;
16722 fe->mod_time = mod_time;
16723 fe->length = length;
16724 fe->included_p = 0;
16725 fe->symtab = NULL;
16726 }
16727
16728 /* A convenience function to find the proper .debug_line section for a
16729 CU. */
16730
16731 static struct dwarf2_section_info *
16732 get_debug_line_section (struct dwarf2_cu *cu)
16733 {
16734 struct dwarf2_section_info *section;
16735
16736 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16737 DWO file. */
16738 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16739 section = &cu->dwo_unit->dwo_file->sections.line;
16740 else if (cu->per_cu->is_dwz)
16741 {
16742 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16743
16744 section = &dwz->line;
16745 }
16746 else
16747 section = &dwarf2_per_objfile->line;
16748
16749 return section;
16750 }
16751
16752 /* Read the statement program header starting at OFFSET in
16753 .debug_line, or .debug_line.dwo. Return a pointer
16754 to a struct line_header, allocated using xmalloc.
16755
16756 NOTE: the strings in the include directory and file name tables of
16757 the returned object point into the dwarf line section buffer,
16758 and must not be freed. */
16759
16760 static struct line_header *
16761 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16762 {
16763 struct cleanup *back_to;
16764 struct line_header *lh;
16765 const gdb_byte *line_ptr;
16766 unsigned int bytes_read, offset_size;
16767 int i;
16768 const char *cur_dir, *cur_file;
16769 struct dwarf2_section_info *section;
16770 bfd *abfd;
16771
16772 section = get_debug_line_section (cu);
16773 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16774 if (section->buffer == NULL)
16775 {
16776 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16777 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16778 else
16779 complaint (&symfile_complaints, _("missing .debug_line section"));
16780 return 0;
16781 }
16782
16783 /* We can't do this until we know the section is non-empty.
16784 Only then do we know we have such a section. */
16785 abfd = get_section_bfd_owner (section);
16786
16787 /* Make sure that at least there's room for the total_length field.
16788 That could be 12 bytes long, but we're just going to fudge that. */
16789 if (offset + 4 >= section->size)
16790 {
16791 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16792 return 0;
16793 }
16794
16795 lh = xmalloc (sizeof (*lh));
16796 memset (lh, 0, sizeof (*lh));
16797 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16798 (void *) lh);
16799
16800 line_ptr = section->buffer + offset;
16801
16802 /* Read in the header. */
16803 lh->total_length =
16804 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16805 &bytes_read, &offset_size);
16806 line_ptr += bytes_read;
16807 if (line_ptr + lh->total_length > (section->buffer + section->size))
16808 {
16809 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16810 do_cleanups (back_to);
16811 return 0;
16812 }
16813 lh->statement_program_end = line_ptr + lh->total_length;
16814 lh->version = read_2_bytes (abfd, line_ptr);
16815 line_ptr += 2;
16816 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16817 line_ptr += offset_size;
16818 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16819 line_ptr += 1;
16820 if (lh->version >= 4)
16821 {
16822 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16823 line_ptr += 1;
16824 }
16825 else
16826 lh->maximum_ops_per_instruction = 1;
16827
16828 if (lh->maximum_ops_per_instruction == 0)
16829 {
16830 lh->maximum_ops_per_instruction = 1;
16831 complaint (&symfile_complaints,
16832 _("invalid maximum_ops_per_instruction "
16833 "in `.debug_line' section"));
16834 }
16835
16836 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16837 line_ptr += 1;
16838 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16839 line_ptr += 1;
16840 lh->line_range = read_1_byte (abfd, line_ptr);
16841 line_ptr += 1;
16842 lh->opcode_base = read_1_byte (abfd, line_ptr);
16843 line_ptr += 1;
16844 lh->standard_opcode_lengths
16845 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16846
16847 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16848 for (i = 1; i < lh->opcode_base; ++i)
16849 {
16850 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16851 line_ptr += 1;
16852 }
16853
16854 /* Read directory table. */
16855 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16856 {
16857 line_ptr += bytes_read;
16858 add_include_dir (lh, cur_dir);
16859 }
16860 line_ptr += bytes_read;
16861
16862 /* Read file name table. */
16863 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16864 {
16865 unsigned int dir_index, mod_time, length;
16866
16867 line_ptr += bytes_read;
16868 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16869 line_ptr += bytes_read;
16870 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16871 line_ptr += bytes_read;
16872 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16873 line_ptr += bytes_read;
16874
16875 add_file_name (lh, cur_file, dir_index, mod_time, length);
16876 }
16877 line_ptr += bytes_read;
16878 lh->statement_program_start = line_ptr;
16879
16880 if (line_ptr > (section->buffer + section->size))
16881 complaint (&symfile_complaints,
16882 _("line number info header doesn't "
16883 "fit in `.debug_line' section"));
16884
16885 discard_cleanups (back_to);
16886 return lh;
16887 }
16888
16889 /* Subroutine of dwarf_decode_lines to simplify it.
16890 Return the file name of the psymtab for included file FILE_INDEX
16891 in line header LH of PST.
16892 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16893 If space for the result is malloc'd, it will be freed by a cleanup.
16894 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16895
16896 The function creates dangling cleanup registration. */
16897
16898 static const char *
16899 psymtab_include_file_name (const struct line_header *lh, int file_index,
16900 const struct partial_symtab *pst,
16901 const char *comp_dir)
16902 {
16903 const struct file_entry fe = lh->file_names [file_index];
16904 const char *include_name = fe.name;
16905 const char *include_name_to_compare = include_name;
16906 const char *dir_name = NULL;
16907 const char *pst_filename;
16908 char *copied_name = NULL;
16909 int file_is_pst;
16910
16911 if (fe.dir_index)
16912 dir_name = lh->include_dirs[fe.dir_index - 1];
16913
16914 if (!IS_ABSOLUTE_PATH (include_name)
16915 && (dir_name != NULL || comp_dir != NULL))
16916 {
16917 /* Avoid creating a duplicate psymtab for PST.
16918 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16919 Before we do the comparison, however, we need to account
16920 for DIR_NAME and COMP_DIR.
16921 First prepend dir_name (if non-NULL). If we still don't
16922 have an absolute path prepend comp_dir (if non-NULL).
16923 However, the directory we record in the include-file's
16924 psymtab does not contain COMP_DIR (to match the
16925 corresponding symtab(s)).
16926
16927 Example:
16928
16929 bash$ cd /tmp
16930 bash$ gcc -g ./hello.c
16931 include_name = "hello.c"
16932 dir_name = "."
16933 DW_AT_comp_dir = comp_dir = "/tmp"
16934 DW_AT_name = "./hello.c" */
16935
16936 if (dir_name != NULL)
16937 {
16938 char *tem = concat (dir_name, SLASH_STRING,
16939 include_name, (char *)NULL);
16940
16941 make_cleanup (xfree, tem);
16942 include_name = tem;
16943 include_name_to_compare = include_name;
16944 }
16945 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16946 {
16947 char *tem = concat (comp_dir, SLASH_STRING,
16948 include_name, (char *)NULL);
16949
16950 make_cleanup (xfree, tem);
16951 include_name_to_compare = tem;
16952 }
16953 }
16954
16955 pst_filename = pst->filename;
16956 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16957 {
16958 copied_name = concat (pst->dirname, SLASH_STRING,
16959 pst_filename, (char *)NULL);
16960 pst_filename = copied_name;
16961 }
16962
16963 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16964
16965 if (copied_name != NULL)
16966 xfree (copied_name);
16967
16968 if (file_is_pst)
16969 return NULL;
16970 return include_name;
16971 }
16972
16973 /* Ignore this record_line request. */
16974
16975 static void
16976 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16977 {
16978 return;
16979 }
16980
16981 /* Subroutine of dwarf_decode_lines to simplify it.
16982 Process the line number information in LH. */
16983
16984 static void
16985 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16986 struct dwarf2_cu *cu, struct partial_symtab *pst)
16987 {
16988 const gdb_byte *line_ptr, *extended_end;
16989 const gdb_byte *line_end;
16990 unsigned int bytes_read, extended_len;
16991 unsigned char op_code, extended_op, adj_opcode;
16992 CORE_ADDR baseaddr;
16993 struct objfile *objfile = cu->objfile;
16994 bfd *abfd = objfile->obfd;
16995 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16996 const int decode_for_pst_p = (pst != NULL);
16997 struct subfile *last_subfile = NULL;
16998 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16999 = record_line;
17000
17001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17002
17003 line_ptr = lh->statement_program_start;
17004 line_end = lh->statement_program_end;
17005
17006 /* Read the statement sequences until there's nothing left. */
17007 while (line_ptr < line_end)
17008 {
17009 /* state machine registers */
17010 CORE_ADDR address = 0;
17011 unsigned int file = 1;
17012 unsigned int line = 1;
17013 unsigned int column = 0;
17014 int is_stmt = lh->default_is_stmt;
17015 int basic_block = 0;
17016 int end_sequence = 0;
17017 CORE_ADDR addr;
17018 unsigned char op_index = 0;
17019
17020 if (!decode_for_pst_p && lh->num_file_names >= file)
17021 {
17022 /* Start a subfile for the current file of the state machine. */
17023 /* lh->include_dirs and lh->file_names are 0-based, but the
17024 directory and file name numbers in the statement program
17025 are 1-based. */
17026 struct file_entry *fe = &lh->file_names[file - 1];
17027 const char *dir = NULL;
17028
17029 if (fe->dir_index)
17030 dir = lh->include_dirs[fe->dir_index - 1];
17031
17032 dwarf2_start_subfile (fe->name, dir, comp_dir);
17033 }
17034
17035 /* Decode the table. */
17036 while (!end_sequence)
17037 {
17038 op_code = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
17040 if (line_ptr > line_end)
17041 {
17042 dwarf2_debug_line_missing_end_sequence_complaint ();
17043 break;
17044 }
17045
17046 if (op_code >= lh->opcode_base)
17047 {
17048 /* Special operand. */
17049 adj_opcode = op_code - lh->opcode_base;
17050 address += (((op_index + (adj_opcode / lh->line_range))
17051 / lh->maximum_ops_per_instruction)
17052 * lh->minimum_instruction_length);
17053 op_index = ((op_index + (adj_opcode / lh->line_range))
17054 % lh->maximum_ops_per_instruction);
17055 line += lh->line_base + (adj_opcode % lh->line_range);
17056 if (lh->num_file_names < file || file == 0)
17057 dwarf2_debug_line_missing_file_complaint ();
17058 /* For now we ignore lines not starting on an
17059 instruction boundary. */
17060 else if (op_index == 0)
17061 {
17062 lh->file_names[file - 1].included_p = 1;
17063 if (!decode_for_pst_p && is_stmt)
17064 {
17065 if (last_subfile != current_subfile)
17066 {
17067 addr = gdbarch_addr_bits_remove (gdbarch, address);
17068 if (last_subfile)
17069 (*p_record_line) (last_subfile, 0, addr);
17070 last_subfile = current_subfile;
17071 }
17072 /* Append row to matrix using current values. */
17073 addr = gdbarch_addr_bits_remove (gdbarch, address);
17074 (*p_record_line) (current_subfile, line, addr);
17075 }
17076 }
17077 basic_block = 0;
17078 }
17079 else switch (op_code)
17080 {
17081 case DW_LNS_extended_op:
17082 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17083 &bytes_read);
17084 line_ptr += bytes_read;
17085 extended_end = line_ptr + extended_len;
17086 extended_op = read_1_byte (abfd, line_ptr);
17087 line_ptr += 1;
17088 switch (extended_op)
17089 {
17090 case DW_LNE_end_sequence:
17091 p_record_line = record_line;
17092 end_sequence = 1;
17093 break;
17094 case DW_LNE_set_address:
17095 address = read_address (abfd, line_ptr, cu, &bytes_read);
17096
17097 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17098 {
17099 /* This line table is for a function which has been
17100 GCd by the linker. Ignore it. PR gdb/12528 */
17101
17102 long line_offset
17103 = line_ptr - get_debug_line_section (cu)->buffer;
17104
17105 complaint (&symfile_complaints,
17106 _(".debug_line address at offset 0x%lx is 0 "
17107 "[in module %s]"),
17108 line_offset, objfile_name (objfile));
17109 p_record_line = noop_record_line;
17110 }
17111
17112 op_index = 0;
17113 line_ptr += bytes_read;
17114 address += baseaddr;
17115 break;
17116 case DW_LNE_define_file:
17117 {
17118 const char *cur_file;
17119 unsigned int dir_index, mod_time, length;
17120
17121 cur_file = read_direct_string (abfd, line_ptr,
17122 &bytes_read);
17123 line_ptr += bytes_read;
17124 dir_index =
17125 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17126 line_ptr += bytes_read;
17127 mod_time =
17128 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17129 line_ptr += bytes_read;
17130 length =
17131 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17132 line_ptr += bytes_read;
17133 add_file_name (lh, cur_file, dir_index, mod_time, length);
17134 }
17135 break;
17136 case DW_LNE_set_discriminator:
17137 /* The discriminator is not interesting to the debugger;
17138 just ignore it. */
17139 line_ptr = extended_end;
17140 break;
17141 default:
17142 complaint (&symfile_complaints,
17143 _("mangled .debug_line section"));
17144 return;
17145 }
17146 /* Make sure that we parsed the extended op correctly. If e.g.
17147 we expected a different address size than the producer used,
17148 we may have read the wrong number of bytes. */
17149 if (line_ptr != extended_end)
17150 {
17151 complaint (&symfile_complaints,
17152 _("mangled .debug_line section"));
17153 return;
17154 }
17155 break;
17156 case DW_LNS_copy:
17157 if (lh->num_file_names < file || file == 0)
17158 dwarf2_debug_line_missing_file_complaint ();
17159 else
17160 {
17161 lh->file_names[file - 1].included_p = 1;
17162 if (!decode_for_pst_p && is_stmt)
17163 {
17164 if (last_subfile != current_subfile)
17165 {
17166 addr = gdbarch_addr_bits_remove (gdbarch, address);
17167 if (last_subfile)
17168 (*p_record_line) (last_subfile, 0, addr);
17169 last_subfile = current_subfile;
17170 }
17171 addr = gdbarch_addr_bits_remove (gdbarch, address);
17172 (*p_record_line) (current_subfile, line, addr);
17173 }
17174 }
17175 basic_block = 0;
17176 break;
17177 case DW_LNS_advance_pc:
17178 {
17179 CORE_ADDR adjust
17180 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17181
17182 address += (((op_index + adjust)
17183 / lh->maximum_ops_per_instruction)
17184 * lh->minimum_instruction_length);
17185 op_index = ((op_index + adjust)
17186 % lh->maximum_ops_per_instruction);
17187 line_ptr += bytes_read;
17188 }
17189 break;
17190 case DW_LNS_advance_line:
17191 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17192 line_ptr += bytes_read;
17193 break;
17194 case DW_LNS_set_file:
17195 {
17196 /* The arrays lh->include_dirs and lh->file_names are
17197 0-based, but the directory and file name numbers in
17198 the statement program are 1-based. */
17199 struct file_entry *fe;
17200 const char *dir = NULL;
17201
17202 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17203 line_ptr += bytes_read;
17204 if (lh->num_file_names < file || file == 0)
17205 dwarf2_debug_line_missing_file_complaint ();
17206 else
17207 {
17208 fe = &lh->file_names[file - 1];
17209 if (fe->dir_index)
17210 dir = lh->include_dirs[fe->dir_index - 1];
17211 if (!decode_for_pst_p)
17212 {
17213 last_subfile = current_subfile;
17214 dwarf2_start_subfile (fe->name, dir, comp_dir);
17215 }
17216 }
17217 }
17218 break;
17219 case DW_LNS_set_column:
17220 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17221 line_ptr += bytes_read;
17222 break;
17223 case DW_LNS_negate_stmt:
17224 is_stmt = (!is_stmt);
17225 break;
17226 case DW_LNS_set_basic_block:
17227 basic_block = 1;
17228 break;
17229 /* Add to the address register of the state machine the
17230 address increment value corresponding to special opcode
17231 255. I.e., this value is scaled by the minimum
17232 instruction length since special opcode 255 would have
17233 scaled the increment. */
17234 case DW_LNS_const_add_pc:
17235 {
17236 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17237
17238 address += (((op_index + adjust)
17239 / lh->maximum_ops_per_instruction)
17240 * lh->minimum_instruction_length);
17241 op_index = ((op_index + adjust)
17242 % lh->maximum_ops_per_instruction);
17243 }
17244 break;
17245 case DW_LNS_fixed_advance_pc:
17246 address += read_2_bytes (abfd, line_ptr);
17247 op_index = 0;
17248 line_ptr += 2;
17249 break;
17250 default:
17251 {
17252 /* Unknown standard opcode, ignore it. */
17253 int i;
17254
17255 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17256 {
17257 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17258 line_ptr += bytes_read;
17259 }
17260 }
17261 }
17262 }
17263 if (lh->num_file_names < file || file == 0)
17264 dwarf2_debug_line_missing_file_complaint ();
17265 else
17266 {
17267 lh->file_names[file - 1].included_p = 1;
17268 if (!decode_for_pst_p)
17269 {
17270 addr = gdbarch_addr_bits_remove (gdbarch, address);
17271 (*p_record_line) (current_subfile, 0, addr);
17272 }
17273 }
17274 }
17275 }
17276
17277 /* Decode the Line Number Program (LNP) for the given line_header
17278 structure and CU. The actual information extracted and the type
17279 of structures created from the LNP depends on the value of PST.
17280
17281 1. If PST is NULL, then this procedure uses the data from the program
17282 to create all necessary symbol tables, and their linetables.
17283
17284 2. If PST is not NULL, this procedure reads the program to determine
17285 the list of files included by the unit represented by PST, and
17286 builds all the associated partial symbol tables.
17287
17288 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17289 It is used for relative paths in the line table.
17290 NOTE: When processing partial symtabs (pst != NULL),
17291 comp_dir == pst->dirname.
17292
17293 NOTE: It is important that psymtabs have the same file name (via strcmp)
17294 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17295 symtab we don't use it in the name of the psymtabs we create.
17296 E.g. expand_line_sal requires this when finding psymtabs to expand.
17297 A good testcase for this is mb-inline.exp. */
17298
17299 static void
17300 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17301 struct dwarf2_cu *cu, struct partial_symtab *pst,
17302 int want_line_info)
17303 {
17304 struct objfile *objfile = cu->objfile;
17305 const int decode_for_pst_p = (pst != NULL);
17306 struct subfile *first_subfile = current_subfile;
17307
17308 if (want_line_info)
17309 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17310
17311 if (decode_for_pst_p)
17312 {
17313 int file_index;
17314
17315 /* Now that we're done scanning the Line Header Program, we can
17316 create the psymtab of each included file. */
17317 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17318 if (lh->file_names[file_index].included_p == 1)
17319 {
17320 const char *include_name =
17321 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17322 if (include_name != NULL)
17323 dwarf2_create_include_psymtab (include_name, pst, objfile);
17324 }
17325 }
17326 else
17327 {
17328 /* Make sure a symtab is created for every file, even files
17329 which contain only variables (i.e. no code with associated
17330 line numbers). */
17331 int i;
17332
17333 for (i = 0; i < lh->num_file_names; i++)
17334 {
17335 const char *dir = NULL;
17336 struct file_entry *fe;
17337
17338 fe = &lh->file_names[i];
17339 if (fe->dir_index)
17340 dir = lh->include_dirs[fe->dir_index - 1];
17341 dwarf2_start_subfile (fe->name, dir, comp_dir);
17342
17343 /* Skip the main file; we don't need it, and it must be
17344 allocated last, so that it will show up before the
17345 non-primary symtabs in the objfile's symtab list. */
17346 if (current_subfile == first_subfile)
17347 continue;
17348
17349 if (current_subfile->symtab == NULL)
17350 current_subfile->symtab = allocate_symtab (current_subfile->name,
17351 objfile);
17352 fe->symtab = current_subfile->symtab;
17353 }
17354 }
17355 }
17356
17357 /* Start a subfile for DWARF. FILENAME is the name of the file and
17358 DIRNAME the name of the source directory which contains FILENAME
17359 or NULL if not known. COMP_DIR is the compilation directory for the
17360 linetable's compilation unit or NULL if not known.
17361 This routine tries to keep line numbers from identical absolute and
17362 relative file names in a common subfile.
17363
17364 Using the `list' example from the GDB testsuite, which resides in
17365 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17366 of /srcdir/list0.c yields the following debugging information for list0.c:
17367
17368 DW_AT_name: /srcdir/list0.c
17369 DW_AT_comp_dir: /compdir
17370 files.files[0].name: list0.h
17371 files.files[0].dir: /srcdir
17372 files.files[1].name: list0.c
17373 files.files[1].dir: /srcdir
17374
17375 The line number information for list0.c has to end up in a single
17376 subfile, so that `break /srcdir/list0.c:1' works as expected.
17377 start_subfile will ensure that this happens provided that we pass the
17378 concatenation of files.files[1].dir and files.files[1].name as the
17379 subfile's name. */
17380
17381 static void
17382 dwarf2_start_subfile (const char *filename, const char *dirname,
17383 const char *comp_dir)
17384 {
17385 char *copy = NULL;
17386
17387 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17388 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17389 second argument to start_subfile. To be consistent, we do the
17390 same here. In order not to lose the line information directory,
17391 we concatenate it to the filename when it makes sense.
17392 Note that the Dwarf3 standard says (speaking of filenames in line
17393 information): ``The directory index is ignored for file names
17394 that represent full path names''. Thus ignoring dirname in the
17395 `else' branch below isn't an issue. */
17396
17397 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17398 {
17399 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17400 filename = copy;
17401 }
17402
17403 start_subfile (filename, comp_dir);
17404
17405 if (copy != NULL)
17406 xfree (copy);
17407 }
17408
17409 /* Start a symtab for DWARF.
17410 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17411
17412 static void
17413 dwarf2_start_symtab (struct dwarf2_cu *cu,
17414 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17415 {
17416 start_symtab (name, comp_dir, low_pc);
17417 record_debugformat ("DWARF 2");
17418 record_producer (cu->producer);
17419
17420 /* We assume that we're processing GCC output. */
17421 processing_gcc_compilation = 2;
17422
17423 cu->processing_has_namespace_info = 0;
17424 }
17425
17426 static void
17427 var_decode_location (struct attribute *attr, struct symbol *sym,
17428 struct dwarf2_cu *cu)
17429 {
17430 struct objfile *objfile = cu->objfile;
17431 struct comp_unit_head *cu_header = &cu->header;
17432
17433 /* NOTE drow/2003-01-30: There used to be a comment and some special
17434 code here to turn a symbol with DW_AT_external and a
17435 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17436 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17437 with some versions of binutils) where shared libraries could have
17438 relocations against symbols in their debug information - the
17439 minimal symbol would have the right address, but the debug info
17440 would not. It's no longer necessary, because we will explicitly
17441 apply relocations when we read in the debug information now. */
17442
17443 /* A DW_AT_location attribute with no contents indicates that a
17444 variable has been optimized away. */
17445 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17446 {
17447 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17448 return;
17449 }
17450
17451 /* Handle one degenerate form of location expression specially, to
17452 preserve GDB's previous behavior when section offsets are
17453 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17454 then mark this symbol as LOC_STATIC. */
17455
17456 if (attr_form_is_block (attr)
17457 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17458 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17459 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17460 && (DW_BLOCK (attr)->size
17461 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17462 {
17463 unsigned int dummy;
17464
17465 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17466 SYMBOL_VALUE_ADDRESS (sym) =
17467 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17468 else
17469 SYMBOL_VALUE_ADDRESS (sym) =
17470 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17471 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17472 fixup_symbol_section (sym, objfile);
17473 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17474 SYMBOL_SECTION (sym));
17475 return;
17476 }
17477
17478 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17479 expression evaluator, and use LOC_COMPUTED only when necessary
17480 (i.e. when the value of a register or memory location is
17481 referenced, or a thread-local block, etc.). Then again, it might
17482 not be worthwhile. I'm assuming that it isn't unless performance
17483 or memory numbers show me otherwise. */
17484
17485 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17486
17487 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17488 cu->has_loclist = 1;
17489 }
17490
17491 /* Given a pointer to a DWARF information entry, figure out if we need
17492 to make a symbol table entry for it, and if so, create a new entry
17493 and return a pointer to it.
17494 If TYPE is NULL, determine symbol type from the die, otherwise
17495 used the passed type.
17496 If SPACE is not NULL, use it to hold the new symbol. If it is
17497 NULL, allocate a new symbol on the objfile's obstack. */
17498
17499 static struct symbol *
17500 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17501 struct symbol *space)
17502 {
17503 struct objfile *objfile = cu->objfile;
17504 struct symbol *sym = NULL;
17505 const char *name;
17506 struct attribute *attr = NULL;
17507 struct attribute *attr2 = NULL;
17508 CORE_ADDR baseaddr;
17509 struct pending **list_to_add = NULL;
17510
17511 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17512
17513 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17514
17515 name = dwarf2_name (die, cu);
17516 if (name)
17517 {
17518 const char *linkagename;
17519 int suppress_add = 0;
17520
17521 if (space)
17522 sym = space;
17523 else
17524 sym = allocate_symbol (objfile);
17525 OBJSTAT (objfile, n_syms++);
17526
17527 /* Cache this symbol's name and the name's demangled form (if any). */
17528 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17529 linkagename = dwarf2_physname (name, die, cu);
17530 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17531
17532 /* Fortran does not have mangling standard and the mangling does differ
17533 between gfortran, iFort etc. */
17534 if (cu->language == language_fortran
17535 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17536 symbol_set_demangled_name (&(sym->ginfo),
17537 dwarf2_full_name (name, die, cu),
17538 NULL);
17539
17540 /* Default assumptions.
17541 Use the passed type or decode it from the die. */
17542 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17543 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17544 if (type != NULL)
17545 SYMBOL_TYPE (sym) = type;
17546 else
17547 SYMBOL_TYPE (sym) = die_type (die, cu);
17548 attr = dwarf2_attr (die,
17549 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17550 cu);
17551 if (attr)
17552 {
17553 SYMBOL_LINE (sym) = DW_UNSND (attr);
17554 }
17555
17556 attr = dwarf2_attr (die,
17557 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17558 cu);
17559 if (attr)
17560 {
17561 int file_index = DW_UNSND (attr);
17562
17563 if (cu->line_header == NULL
17564 || file_index > cu->line_header->num_file_names)
17565 complaint (&symfile_complaints,
17566 _("file index out of range"));
17567 else if (file_index > 0)
17568 {
17569 struct file_entry *fe;
17570
17571 fe = &cu->line_header->file_names[file_index - 1];
17572 SYMBOL_SYMTAB (sym) = fe->symtab;
17573 }
17574 }
17575
17576 switch (die->tag)
17577 {
17578 case DW_TAG_label:
17579 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17580 if (attr)
17581 SYMBOL_VALUE_ADDRESS (sym)
17582 = attr_value_as_address (attr) + baseaddr;
17583 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17584 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17585 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17586 add_symbol_to_list (sym, cu->list_in_scope);
17587 break;
17588 case DW_TAG_subprogram:
17589 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17590 finish_block. */
17591 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17592 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17593 if ((attr2 && (DW_UNSND (attr2) != 0))
17594 || cu->language == language_ada)
17595 {
17596 /* Subprograms marked external are stored as a global symbol.
17597 Ada subprograms, whether marked external or not, are always
17598 stored as a global symbol, because we want to be able to
17599 access them globally. For instance, we want to be able
17600 to break on a nested subprogram without having to
17601 specify the context. */
17602 list_to_add = &global_symbols;
17603 }
17604 else
17605 {
17606 list_to_add = cu->list_in_scope;
17607 }
17608 break;
17609 case DW_TAG_inlined_subroutine:
17610 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17611 finish_block. */
17612 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17613 SYMBOL_INLINED (sym) = 1;
17614 list_to_add = cu->list_in_scope;
17615 break;
17616 case DW_TAG_template_value_param:
17617 suppress_add = 1;
17618 /* Fall through. */
17619 case DW_TAG_constant:
17620 case DW_TAG_variable:
17621 case DW_TAG_member:
17622 /* Compilation with minimal debug info may result in
17623 variables with missing type entries. Change the
17624 misleading `void' type to something sensible. */
17625 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17626 SYMBOL_TYPE (sym)
17627 = objfile_type (objfile)->nodebug_data_symbol;
17628
17629 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17630 /* In the case of DW_TAG_member, we should only be called for
17631 static const members. */
17632 if (die->tag == DW_TAG_member)
17633 {
17634 /* dwarf2_add_field uses die_is_declaration,
17635 so we do the same. */
17636 gdb_assert (die_is_declaration (die, cu));
17637 gdb_assert (attr);
17638 }
17639 if (attr)
17640 {
17641 dwarf2_const_value (attr, sym, cu);
17642 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17643 if (!suppress_add)
17644 {
17645 if (attr2 && (DW_UNSND (attr2) != 0))
17646 list_to_add = &global_symbols;
17647 else
17648 list_to_add = cu->list_in_scope;
17649 }
17650 break;
17651 }
17652 attr = dwarf2_attr (die, DW_AT_location, cu);
17653 if (attr)
17654 {
17655 var_decode_location (attr, sym, cu);
17656 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17657
17658 /* Fortran explicitly imports any global symbols to the local
17659 scope by DW_TAG_common_block. */
17660 if (cu->language == language_fortran && die->parent
17661 && die->parent->tag == DW_TAG_common_block)
17662 attr2 = NULL;
17663
17664 if (SYMBOL_CLASS (sym) == LOC_STATIC
17665 && SYMBOL_VALUE_ADDRESS (sym) == 0
17666 && !dwarf2_per_objfile->has_section_at_zero)
17667 {
17668 /* When a static variable is eliminated by the linker,
17669 the corresponding debug information is not stripped
17670 out, but the variable address is set to null;
17671 do not add such variables into symbol table. */
17672 }
17673 else if (attr2 && (DW_UNSND (attr2) != 0))
17674 {
17675 /* Workaround gfortran PR debug/40040 - it uses
17676 DW_AT_location for variables in -fPIC libraries which may
17677 get overriden by other libraries/executable and get
17678 a different address. Resolve it by the minimal symbol
17679 which may come from inferior's executable using copy
17680 relocation. Make this workaround only for gfortran as for
17681 other compilers GDB cannot guess the minimal symbol
17682 Fortran mangling kind. */
17683 if (cu->language == language_fortran && die->parent
17684 && die->parent->tag == DW_TAG_module
17685 && cu->producer
17686 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17687 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17688
17689 /* A variable with DW_AT_external is never static,
17690 but it may be block-scoped. */
17691 list_to_add = (cu->list_in_scope == &file_symbols
17692 ? &global_symbols : cu->list_in_scope);
17693 }
17694 else
17695 list_to_add = cu->list_in_scope;
17696 }
17697 else
17698 {
17699 /* We do not know the address of this symbol.
17700 If it is an external symbol and we have type information
17701 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17702 The address of the variable will then be determined from
17703 the minimal symbol table whenever the variable is
17704 referenced. */
17705 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17706
17707 /* Fortran explicitly imports any global symbols to the local
17708 scope by DW_TAG_common_block. */
17709 if (cu->language == language_fortran && die->parent
17710 && die->parent->tag == DW_TAG_common_block)
17711 {
17712 /* SYMBOL_CLASS doesn't matter here because
17713 read_common_block is going to reset it. */
17714 if (!suppress_add)
17715 list_to_add = cu->list_in_scope;
17716 }
17717 else if (attr2 && (DW_UNSND (attr2) != 0)
17718 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17719 {
17720 /* A variable with DW_AT_external is never static, but it
17721 may be block-scoped. */
17722 list_to_add = (cu->list_in_scope == &file_symbols
17723 ? &global_symbols : cu->list_in_scope);
17724
17725 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17726 }
17727 else if (!die_is_declaration (die, cu))
17728 {
17729 /* Use the default LOC_OPTIMIZED_OUT class. */
17730 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17731 if (!suppress_add)
17732 list_to_add = cu->list_in_scope;
17733 }
17734 }
17735 break;
17736 case DW_TAG_formal_parameter:
17737 /* If we are inside a function, mark this as an argument. If
17738 not, we might be looking at an argument to an inlined function
17739 when we do not have enough information to show inlined frames;
17740 pretend it's a local variable in that case so that the user can
17741 still see it. */
17742 if (context_stack_depth > 0
17743 && context_stack[context_stack_depth - 1].name != NULL)
17744 SYMBOL_IS_ARGUMENT (sym) = 1;
17745 attr = dwarf2_attr (die, DW_AT_location, cu);
17746 if (attr)
17747 {
17748 var_decode_location (attr, sym, cu);
17749 }
17750 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17751 if (attr)
17752 {
17753 dwarf2_const_value (attr, sym, cu);
17754 }
17755
17756 list_to_add = cu->list_in_scope;
17757 break;
17758 case DW_TAG_unspecified_parameters:
17759 /* From varargs functions; gdb doesn't seem to have any
17760 interest in this information, so just ignore it for now.
17761 (FIXME?) */
17762 break;
17763 case DW_TAG_template_type_param:
17764 suppress_add = 1;
17765 /* Fall through. */
17766 case DW_TAG_class_type:
17767 case DW_TAG_interface_type:
17768 case DW_TAG_structure_type:
17769 case DW_TAG_union_type:
17770 case DW_TAG_set_type:
17771 case DW_TAG_enumeration_type:
17772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17773 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17774
17775 {
17776 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17777 really ever be static objects: otherwise, if you try
17778 to, say, break of a class's method and you're in a file
17779 which doesn't mention that class, it won't work unless
17780 the check for all static symbols in lookup_symbol_aux
17781 saves you. See the OtherFileClass tests in
17782 gdb.c++/namespace.exp. */
17783
17784 if (!suppress_add)
17785 {
17786 list_to_add = (cu->list_in_scope == &file_symbols
17787 && (cu->language == language_cplus
17788 || cu->language == language_java)
17789 ? &global_symbols : cu->list_in_scope);
17790
17791 /* The semantics of C++ state that "struct foo {
17792 ... }" also defines a typedef for "foo". A Java
17793 class declaration also defines a typedef for the
17794 class. */
17795 if (cu->language == language_cplus
17796 || cu->language == language_java
17797 || cu->language == language_ada)
17798 {
17799 /* The symbol's name is already allocated along
17800 with this objfile, so we don't need to
17801 duplicate it for the type. */
17802 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17803 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17804 }
17805 }
17806 }
17807 break;
17808 case DW_TAG_typedef:
17809 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17810 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17811 list_to_add = cu->list_in_scope;
17812 break;
17813 case DW_TAG_base_type:
17814 case DW_TAG_subrange_type:
17815 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17817 list_to_add = cu->list_in_scope;
17818 break;
17819 case DW_TAG_enumerator:
17820 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17821 if (attr)
17822 {
17823 dwarf2_const_value (attr, sym, cu);
17824 }
17825 {
17826 /* NOTE: carlton/2003-11-10: See comment above in the
17827 DW_TAG_class_type, etc. block. */
17828
17829 list_to_add = (cu->list_in_scope == &file_symbols
17830 && (cu->language == language_cplus
17831 || cu->language == language_java)
17832 ? &global_symbols : cu->list_in_scope);
17833 }
17834 break;
17835 case DW_TAG_imported_declaration:
17836 case DW_TAG_namespace:
17837 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17838 list_to_add = &global_symbols;
17839 break;
17840 case DW_TAG_module:
17841 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17842 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17843 list_to_add = &global_symbols;
17844 break;
17845 case DW_TAG_common_block:
17846 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17847 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17848 add_symbol_to_list (sym, cu->list_in_scope);
17849 break;
17850 default:
17851 /* Not a tag we recognize. Hopefully we aren't processing
17852 trash data, but since we must specifically ignore things
17853 we don't recognize, there is nothing else we should do at
17854 this point. */
17855 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17856 dwarf_tag_name (die->tag));
17857 break;
17858 }
17859
17860 if (suppress_add)
17861 {
17862 sym->hash_next = objfile->template_symbols;
17863 objfile->template_symbols = sym;
17864 list_to_add = NULL;
17865 }
17866
17867 if (list_to_add != NULL)
17868 add_symbol_to_list (sym, list_to_add);
17869
17870 /* For the benefit of old versions of GCC, check for anonymous
17871 namespaces based on the demangled name. */
17872 if (!cu->processing_has_namespace_info
17873 && cu->language == language_cplus)
17874 cp_scan_for_anonymous_namespaces (sym, objfile);
17875 }
17876 return (sym);
17877 }
17878
17879 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17880
17881 static struct symbol *
17882 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17883 {
17884 return new_symbol_full (die, type, cu, NULL);
17885 }
17886
17887 /* Given an attr with a DW_FORM_dataN value in host byte order,
17888 zero-extend it as appropriate for the symbol's type. The DWARF
17889 standard (v4) is not entirely clear about the meaning of using
17890 DW_FORM_dataN for a constant with a signed type, where the type is
17891 wider than the data. The conclusion of a discussion on the DWARF
17892 list was that this is unspecified. We choose to always zero-extend
17893 because that is the interpretation long in use by GCC. */
17894
17895 static gdb_byte *
17896 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17897 struct dwarf2_cu *cu, LONGEST *value, int bits)
17898 {
17899 struct objfile *objfile = cu->objfile;
17900 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17901 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17902 LONGEST l = DW_UNSND (attr);
17903
17904 if (bits < sizeof (*value) * 8)
17905 {
17906 l &= ((LONGEST) 1 << bits) - 1;
17907 *value = l;
17908 }
17909 else if (bits == sizeof (*value) * 8)
17910 *value = l;
17911 else
17912 {
17913 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17914 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17915 return bytes;
17916 }
17917
17918 return NULL;
17919 }
17920
17921 /* Read a constant value from an attribute. Either set *VALUE, or if
17922 the value does not fit in *VALUE, set *BYTES - either already
17923 allocated on the objfile obstack, or newly allocated on OBSTACK,
17924 or, set *BATON, if we translated the constant to a location
17925 expression. */
17926
17927 static void
17928 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17929 const char *name, struct obstack *obstack,
17930 struct dwarf2_cu *cu,
17931 LONGEST *value, const gdb_byte **bytes,
17932 struct dwarf2_locexpr_baton **baton)
17933 {
17934 struct objfile *objfile = cu->objfile;
17935 struct comp_unit_head *cu_header = &cu->header;
17936 struct dwarf_block *blk;
17937 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17938 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17939
17940 *value = 0;
17941 *bytes = NULL;
17942 *baton = NULL;
17943
17944 switch (attr->form)
17945 {
17946 case DW_FORM_addr:
17947 case DW_FORM_GNU_addr_index:
17948 {
17949 gdb_byte *data;
17950
17951 if (TYPE_LENGTH (type) != cu_header->addr_size)
17952 dwarf2_const_value_length_mismatch_complaint (name,
17953 cu_header->addr_size,
17954 TYPE_LENGTH (type));
17955 /* Symbols of this form are reasonably rare, so we just
17956 piggyback on the existing location code rather than writing
17957 a new implementation of symbol_computed_ops. */
17958 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17959 (*baton)->per_cu = cu->per_cu;
17960 gdb_assert ((*baton)->per_cu);
17961
17962 (*baton)->size = 2 + cu_header->addr_size;
17963 data = obstack_alloc (obstack, (*baton)->size);
17964 (*baton)->data = data;
17965
17966 data[0] = DW_OP_addr;
17967 store_unsigned_integer (&data[1], cu_header->addr_size,
17968 byte_order, DW_ADDR (attr));
17969 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17970 }
17971 break;
17972 case DW_FORM_string:
17973 case DW_FORM_strp:
17974 case DW_FORM_GNU_str_index:
17975 case DW_FORM_GNU_strp_alt:
17976 /* DW_STRING is already allocated on the objfile obstack, point
17977 directly to it. */
17978 *bytes = (const gdb_byte *) DW_STRING (attr);
17979 break;
17980 case DW_FORM_block1:
17981 case DW_FORM_block2:
17982 case DW_FORM_block4:
17983 case DW_FORM_block:
17984 case DW_FORM_exprloc:
17985 blk = DW_BLOCK (attr);
17986 if (TYPE_LENGTH (type) != blk->size)
17987 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17988 TYPE_LENGTH (type));
17989 *bytes = blk->data;
17990 break;
17991
17992 /* The DW_AT_const_value attributes are supposed to carry the
17993 symbol's value "represented as it would be on the target
17994 architecture." By the time we get here, it's already been
17995 converted to host endianness, so we just need to sign- or
17996 zero-extend it as appropriate. */
17997 case DW_FORM_data1:
17998 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17999 break;
18000 case DW_FORM_data2:
18001 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18002 break;
18003 case DW_FORM_data4:
18004 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18005 break;
18006 case DW_FORM_data8:
18007 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18008 break;
18009
18010 case DW_FORM_sdata:
18011 *value = DW_SND (attr);
18012 break;
18013
18014 case DW_FORM_udata:
18015 *value = DW_UNSND (attr);
18016 break;
18017
18018 default:
18019 complaint (&symfile_complaints,
18020 _("unsupported const value attribute form: '%s'"),
18021 dwarf_form_name (attr->form));
18022 *value = 0;
18023 break;
18024 }
18025 }
18026
18027
18028 /* Copy constant value from an attribute to a symbol. */
18029
18030 static void
18031 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18032 struct dwarf2_cu *cu)
18033 {
18034 struct objfile *objfile = cu->objfile;
18035 struct comp_unit_head *cu_header = &cu->header;
18036 LONGEST value;
18037 const gdb_byte *bytes;
18038 struct dwarf2_locexpr_baton *baton;
18039
18040 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18041 SYMBOL_PRINT_NAME (sym),
18042 &objfile->objfile_obstack, cu,
18043 &value, &bytes, &baton);
18044
18045 if (baton != NULL)
18046 {
18047 SYMBOL_LOCATION_BATON (sym) = baton;
18048 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18049 }
18050 else if (bytes != NULL)
18051 {
18052 SYMBOL_VALUE_BYTES (sym) = bytes;
18053 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18054 }
18055 else
18056 {
18057 SYMBOL_VALUE (sym) = value;
18058 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18059 }
18060 }
18061
18062 /* Return the type of the die in question using its DW_AT_type attribute. */
18063
18064 static struct type *
18065 die_type (struct die_info *die, struct dwarf2_cu *cu)
18066 {
18067 struct attribute *type_attr;
18068
18069 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18070 if (!type_attr)
18071 {
18072 /* A missing DW_AT_type represents a void type. */
18073 return objfile_type (cu->objfile)->builtin_void;
18074 }
18075
18076 return lookup_die_type (die, type_attr, cu);
18077 }
18078
18079 /* True iff CU's producer generates GNAT Ada auxiliary information
18080 that allows to find parallel types through that information instead
18081 of having to do expensive parallel lookups by type name. */
18082
18083 static int
18084 need_gnat_info (struct dwarf2_cu *cu)
18085 {
18086 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18087 of GNAT produces this auxiliary information, without any indication
18088 that it is produced. Part of enhancing the FSF version of GNAT
18089 to produce that information will be to put in place an indicator
18090 that we can use in order to determine whether the descriptive type
18091 info is available or not. One suggestion that has been made is
18092 to use a new attribute, attached to the CU die. For now, assume
18093 that the descriptive type info is not available. */
18094 return 0;
18095 }
18096
18097 /* Return the auxiliary type of the die in question using its
18098 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18099 attribute is not present. */
18100
18101 static struct type *
18102 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18103 {
18104 struct attribute *type_attr;
18105
18106 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18107 if (!type_attr)
18108 return NULL;
18109
18110 return lookup_die_type (die, type_attr, cu);
18111 }
18112
18113 /* If DIE has a descriptive_type attribute, then set the TYPE's
18114 descriptive type accordingly. */
18115
18116 static void
18117 set_descriptive_type (struct type *type, struct die_info *die,
18118 struct dwarf2_cu *cu)
18119 {
18120 struct type *descriptive_type = die_descriptive_type (die, cu);
18121
18122 if (descriptive_type)
18123 {
18124 ALLOCATE_GNAT_AUX_TYPE (type);
18125 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18126 }
18127 }
18128
18129 /* Return the containing type of the die in question using its
18130 DW_AT_containing_type attribute. */
18131
18132 static struct type *
18133 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18134 {
18135 struct attribute *type_attr;
18136
18137 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18138 if (!type_attr)
18139 error (_("Dwarf Error: Problem turning containing type into gdb type "
18140 "[in module %s]"), objfile_name (cu->objfile));
18141
18142 return lookup_die_type (die, type_attr, cu);
18143 }
18144
18145 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18146
18147 static struct type *
18148 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18149 {
18150 struct objfile *objfile = dwarf2_per_objfile->objfile;
18151 char *message, *saved;
18152
18153 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18154 objfile_name (objfile),
18155 cu->header.offset.sect_off,
18156 die->offset.sect_off);
18157 saved = obstack_copy0 (&objfile->objfile_obstack,
18158 message, strlen (message));
18159 xfree (message);
18160
18161 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18162 }
18163
18164 /* Look up the type of DIE in CU using its type attribute ATTR.
18165 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18166 DW_AT_containing_type.
18167 If there is no type substitute an error marker. */
18168
18169 static struct type *
18170 lookup_die_type (struct die_info *die, const struct attribute *attr,
18171 struct dwarf2_cu *cu)
18172 {
18173 struct objfile *objfile = cu->objfile;
18174 struct type *this_type;
18175
18176 gdb_assert (attr->name == DW_AT_type
18177 || attr->name == DW_AT_GNAT_descriptive_type
18178 || attr->name == DW_AT_containing_type);
18179
18180 /* First see if we have it cached. */
18181
18182 if (attr->form == DW_FORM_GNU_ref_alt)
18183 {
18184 struct dwarf2_per_cu_data *per_cu;
18185 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18186
18187 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18188 this_type = get_die_type_at_offset (offset, per_cu);
18189 }
18190 else if (attr_form_is_ref (attr))
18191 {
18192 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18193
18194 this_type = get_die_type_at_offset (offset, cu->per_cu);
18195 }
18196 else if (attr->form == DW_FORM_ref_sig8)
18197 {
18198 ULONGEST signature = DW_SIGNATURE (attr);
18199
18200 return get_signatured_type (die, signature, cu);
18201 }
18202 else
18203 {
18204 complaint (&symfile_complaints,
18205 _("Dwarf Error: Bad type attribute %s in DIE"
18206 " at 0x%x [in module %s]"),
18207 dwarf_attr_name (attr->name), die->offset.sect_off,
18208 objfile_name (objfile));
18209 return build_error_marker_type (cu, die);
18210 }
18211
18212 /* If not cached we need to read it in. */
18213
18214 if (this_type == NULL)
18215 {
18216 struct die_info *type_die = NULL;
18217 struct dwarf2_cu *type_cu = cu;
18218
18219 if (attr_form_is_ref (attr))
18220 type_die = follow_die_ref (die, attr, &type_cu);
18221 if (type_die == NULL)
18222 return build_error_marker_type (cu, die);
18223 /* If we find the type now, it's probably because the type came
18224 from an inter-CU reference and the type's CU got expanded before
18225 ours. */
18226 this_type = read_type_die (type_die, type_cu);
18227 }
18228
18229 /* If we still don't have a type use an error marker. */
18230
18231 if (this_type == NULL)
18232 return build_error_marker_type (cu, die);
18233
18234 return this_type;
18235 }
18236
18237 /* Return the type in DIE, CU.
18238 Returns NULL for invalid types.
18239
18240 This first does a lookup in die_type_hash,
18241 and only reads the die in if necessary.
18242
18243 NOTE: This can be called when reading in partial or full symbols. */
18244
18245 static struct type *
18246 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18247 {
18248 struct type *this_type;
18249
18250 this_type = get_die_type (die, cu);
18251 if (this_type)
18252 return this_type;
18253
18254 return read_type_die_1 (die, cu);
18255 }
18256
18257 /* Read the type in DIE, CU.
18258 Returns NULL for invalid types. */
18259
18260 static struct type *
18261 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18262 {
18263 struct type *this_type = NULL;
18264
18265 switch (die->tag)
18266 {
18267 case DW_TAG_class_type:
18268 case DW_TAG_interface_type:
18269 case DW_TAG_structure_type:
18270 case DW_TAG_union_type:
18271 this_type = read_structure_type (die, cu);
18272 break;
18273 case DW_TAG_enumeration_type:
18274 this_type = read_enumeration_type (die, cu);
18275 break;
18276 case DW_TAG_subprogram:
18277 case DW_TAG_subroutine_type:
18278 case DW_TAG_inlined_subroutine:
18279 this_type = read_subroutine_type (die, cu);
18280 break;
18281 case DW_TAG_array_type:
18282 this_type = read_array_type (die, cu);
18283 break;
18284 case DW_TAG_set_type:
18285 this_type = read_set_type (die, cu);
18286 break;
18287 case DW_TAG_pointer_type:
18288 this_type = read_tag_pointer_type (die, cu);
18289 break;
18290 case DW_TAG_ptr_to_member_type:
18291 this_type = read_tag_ptr_to_member_type (die, cu);
18292 break;
18293 case DW_TAG_reference_type:
18294 this_type = read_tag_reference_type (die, cu);
18295 break;
18296 case DW_TAG_const_type:
18297 this_type = read_tag_const_type (die, cu);
18298 break;
18299 case DW_TAG_volatile_type:
18300 this_type = read_tag_volatile_type (die, cu);
18301 break;
18302 case DW_TAG_restrict_type:
18303 this_type = read_tag_restrict_type (die, cu);
18304 break;
18305 case DW_TAG_string_type:
18306 this_type = read_tag_string_type (die, cu);
18307 break;
18308 case DW_TAG_typedef:
18309 this_type = read_typedef (die, cu);
18310 break;
18311 case DW_TAG_subrange_type:
18312 this_type = read_subrange_type (die, cu);
18313 break;
18314 case DW_TAG_base_type:
18315 this_type = read_base_type (die, cu);
18316 break;
18317 case DW_TAG_unspecified_type:
18318 this_type = read_unspecified_type (die, cu);
18319 break;
18320 case DW_TAG_namespace:
18321 this_type = read_namespace_type (die, cu);
18322 break;
18323 case DW_TAG_module:
18324 this_type = read_module_type (die, cu);
18325 break;
18326 default:
18327 complaint (&symfile_complaints,
18328 _("unexpected tag in read_type_die: '%s'"),
18329 dwarf_tag_name (die->tag));
18330 break;
18331 }
18332
18333 return this_type;
18334 }
18335
18336 /* See if we can figure out if the class lives in a namespace. We do
18337 this by looking for a member function; its demangled name will
18338 contain namespace info, if there is any.
18339 Return the computed name or NULL.
18340 Space for the result is allocated on the objfile's obstack.
18341 This is the full-die version of guess_partial_die_structure_name.
18342 In this case we know DIE has no useful parent. */
18343
18344 static char *
18345 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18346 {
18347 struct die_info *spec_die;
18348 struct dwarf2_cu *spec_cu;
18349 struct die_info *child;
18350
18351 spec_cu = cu;
18352 spec_die = die_specification (die, &spec_cu);
18353 if (spec_die != NULL)
18354 {
18355 die = spec_die;
18356 cu = spec_cu;
18357 }
18358
18359 for (child = die->child;
18360 child != NULL;
18361 child = child->sibling)
18362 {
18363 if (child->tag == DW_TAG_subprogram)
18364 {
18365 struct attribute *attr;
18366
18367 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18368 if (attr == NULL)
18369 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18370 if (attr != NULL)
18371 {
18372 char *actual_name
18373 = language_class_name_from_physname (cu->language_defn,
18374 DW_STRING (attr));
18375 char *name = NULL;
18376
18377 if (actual_name != NULL)
18378 {
18379 const char *die_name = dwarf2_name (die, cu);
18380
18381 if (die_name != NULL
18382 && strcmp (die_name, actual_name) != 0)
18383 {
18384 /* Strip off the class name from the full name.
18385 We want the prefix. */
18386 int die_name_len = strlen (die_name);
18387 int actual_name_len = strlen (actual_name);
18388
18389 /* Test for '::' as a sanity check. */
18390 if (actual_name_len > die_name_len + 2
18391 && actual_name[actual_name_len
18392 - die_name_len - 1] == ':')
18393 name =
18394 obstack_copy0 (&cu->objfile->objfile_obstack,
18395 actual_name,
18396 actual_name_len - die_name_len - 2);
18397 }
18398 }
18399 xfree (actual_name);
18400 return name;
18401 }
18402 }
18403 }
18404
18405 return NULL;
18406 }
18407
18408 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18409 prefix part in such case. See
18410 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18411
18412 static char *
18413 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18414 {
18415 struct attribute *attr;
18416 char *base;
18417
18418 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18419 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18420 return NULL;
18421
18422 attr = dwarf2_attr (die, DW_AT_name, cu);
18423 if (attr != NULL && DW_STRING (attr) != NULL)
18424 return NULL;
18425
18426 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18427 if (attr == NULL)
18428 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18429 if (attr == NULL || DW_STRING (attr) == NULL)
18430 return NULL;
18431
18432 /* dwarf2_name had to be already called. */
18433 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18434
18435 /* Strip the base name, keep any leading namespaces/classes. */
18436 base = strrchr (DW_STRING (attr), ':');
18437 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18438 return "";
18439
18440 return obstack_copy0 (&cu->objfile->objfile_obstack,
18441 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18442 }
18443
18444 /* Return the name of the namespace/class that DIE is defined within,
18445 or "" if we can't tell. The caller should not xfree the result.
18446
18447 For example, if we're within the method foo() in the following
18448 code:
18449
18450 namespace N {
18451 class C {
18452 void foo () {
18453 }
18454 };
18455 }
18456
18457 then determine_prefix on foo's die will return "N::C". */
18458
18459 static const char *
18460 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18461 {
18462 struct die_info *parent, *spec_die;
18463 struct dwarf2_cu *spec_cu;
18464 struct type *parent_type;
18465 char *retval;
18466
18467 if (cu->language != language_cplus && cu->language != language_java
18468 && cu->language != language_fortran)
18469 return "";
18470
18471 retval = anonymous_struct_prefix (die, cu);
18472 if (retval)
18473 return retval;
18474
18475 /* We have to be careful in the presence of DW_AT_specification.
18476 For example, with GCC 3.4, given the code
18477
18478 namespace N {
18479 void foo() {
18480 // Definition of N::foo.
18481 }
18482 }
18483
18484 then we'll have a tree of DIEs like this:
18485
18486 1: DW_TAG_compile_unit
18487 2: DW_TAG_namespace // N
18488 3: DW_TAG_subprogram // declaration of N::foo
18489 4: DW_TAG_subprogram // definition of N::foo
18490 DW_AT_specification // refers to die #3
18491
18492 Thus, when processing die #4, we have to pretend that we're in
18493 the context of its DW_AT_specification, namely the contex of die
18494 #3. */
18495 spec_cu = cu;
18496 spec_die = die_specification (die, &spec_cu);
18497 if (spec_die == NULL)
18498 parent = die->parent;
18499 else
18500 {
18501 parent = spec_die->parent;
18502 cu = spec_cu;
18503 }
18504
18505 if (parent == NULL)
18506 return "";
18507 else if (parent->building_fullname)
18508 {
18509 const char *name;
18510 const char *parent_name;
18511
18512 /* It has been seen on RealView 2.2 built binaries,
18513 DW_TAG_template_type_param types actually _defined_ as
18514 children of the parent class:
18515
18516 enum E {};
18517 template class <class Enum> Class{};
18518 Class<enum E> class_e;
18519
18520 1: DW_TAG_class_type (Class)
18521 2: DW_TAG_enumeration_type (E)
18522 3: DW_TAG_enumerator (enum1:0)
18523 3: DW_TAG_enumerator (enum2:1)
18524 ...
18525 2: DW_TAG_template_type_param
18526 DW_AT_type DW_FORM_ref_udata (E)
18527
18528 Besides being broken debug info, it can put GDB into an
18529 infinite loop. Consider:
18530
18531 When we're building the full name for Class<E>, we'll start
18532 at Class, and go look over its template type parameters,
18533 finding E. We'll then try to build the full name of E, and
18534 reach here. We're now trying to build the full name of E,
18535 and look over the parent DIE for containing scope. In the
18536 broken case, if we followed the parent DIE of E, we'd again
18537 find Class, and once again go look at its template type
18538 arguments, etc., etc. Simply don't consider such parent die
18539 as source-level parent of this die (it can't be, the language
18540 doesn't allow it), and break the loop here. */
18541 name = dwarf2_name (die, cu);
18542 parent_name = dwarf2_name (parent, cu);
18543 complaint (&symfile_complaints,
18544 _("template param type '%s' defined within parent '%s'"),
18545 name ? name : "<unknown>",
18546 parent_name ? parent_name : "<unknown>");
18547 return "";
18548 }
18549 else
18550 switch (parent->tag)
18551 {
18552 case DW_TAG_namespace:
18553 parent_type = read_type_die (parent, cu);
18554 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18555 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18556 Work around this problem here. */
18557 if (cu->language == language_cplus
18558 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18559 return "";
18560 /* We give a name to even anonymous namespaces. */
18561 return TYPE_TAG_NAME (parent_type);
18562 case DW_TAG_class_type:
18563 case DW_TAG_interface_type:
18564 case DW_TAG_structure_type:
18565 case DW_TAG_union_type:
18566 case DW_TAG_module:
18567 parent_type = read_type_die (parent, cu);
18568 if (TYPE_TAG_NAME (parent_type) != NULL)
18569 return TYPE_TAG_NAME (parent_type);
18570 else
18571 /* An anonymous structure is only allowed non-static data
18572 members; no typedefs, no member functions, et cetera.
18573 So it does not need a prefix. */
18574 return "";
18575 case DW_TAG_compile_unit:
18576 case DW_TAG_partial_unit:
18577 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18578 if (cu->language == language_cplus
18579 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18580 && die->child != NULL
18581 && (die->tag == DW_TAG_class_type
18582 || die->tag == DW_TAG_structure_type
18583 || die->tag == DW_TAG_union_type))
18584 {
18585 char *name = guess_full_die_structure_name (die, cu);
18586 if (name != NULL)
18587 return name;
18588 }
18589 return "";
18590 default:
18591 return determine_prefix (parent, cu);
18592 }
18593 }
18594
18595 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18596 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18597 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18598 an obconcat, otherwise allocate storage for the result. The CU argument is
18599 used to determine the language and hence, the appropriate separator. */
18600
18601 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18602
18603 static char *
18604 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18605 int physname, struct dwarf2_cu *cu)
18606 {
18607 const char *lead = "";
18608 const char *sep;
18609
18610 if (suffix == NULL || suffix[0] == '\0'
18611 || prefix == NULL || prefix[0] == '\0')
18612 sep = "";
18613 else if (cu->language == language_java)
18614 sep = ".";
18615 else if (cu->language == language_fortran && physname)
18616 {
18617 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18618 DW_AT_MIPS_linkage_name is preferred and used instead. */
18619
18620 lead = "__";
18621 sep = "_MOD_";
18622 }
18623 else
18624 sep = "::";
18625
18626 if (prefix == NULL)
18627 prefix = "";
18628 if (suffix == NULL)
18629 suffix = "";
18630
18631 if (obs == NULL)
18632 {
18633 char *retval
18634 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18635
18636 strcpy (retval, lead);
18637 strcat (retval, prefix);
18638 strcat (retval, sep);
18639 strcat (retval, suffix);
18640 return retval;
18641 }
18642 else
18643 {
18644 /* We have an obstack. */
18645 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18646 }
18647 }
18648
18649 /* Return sibling of die, NULL if no sibling. */
18650
18651 static struct die_info *
18652 sibling_die (struct die_info *die)
18653 {
18654 return die->sibling;
18655 }
18656
18657 /* Get name of a die, return NULL if not found. */
18658
18659 static const char *
18660 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18661 struct obstack *obstack)
18662 {
18663 if (name && cu->language == language_cplus)
18664 {
18665 char *canon_name = cp_canonicalize_string (name);
18666
18667 if (canon_name != NULL)
18668 {
18669 if (strcmp (canon_name, name) != 0)
18670 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18671 xfree (canon_name);
18672 }
18673 }
18674
18675 return name;
18676 }
18677
18678 /* Get name of a die, return NULL if not found. */
18679
18680 static const char *
18681 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18682 {
18683 struct attribute *attr;
18684
18685 attr = dwarf2_attr (die, DW_AT_name, cu);
18686 if ((!attr || !DW_STRING (attr))
18687 && die->tag != DW_TAG_class_type
18688 && die->tag != DW_TAG_interface_type
18689 && die->tag != DW_TAG_structure_type
18690 && die->tag != DW_TAG_union_type)
18691 return NULL;
18692
18693 switch (die->tag)
18694 {
18695 case DW_TAG_compile_unit:
18696 case DW_TAG_partial_unit:
18697 /* Compilation units have a DW_AT_name that is a filename, not
18698 a source language identifier. */
18699 case DW_TAG_enumeration_type:
18700 case DW_TAG_enumerator:
18701 /* These tags always have simple identifiers already; no need
18702 to canonicalize them. */
18703 return DW_STRING (attr);
18704
18705 case DW_TAG_subprogram:
18706 /* Java constructors will all be named "<init>", so return
18707 the class name when we see this special case. */
18708 if (cu->language == language_java
18709 && DW_STRING (attr) != NULL
18710 && strcmp (DW_STRING (attr), "<init>") == 0)
18711 {
18712 struct dwarf2_cu *spec_cu = cu;
18713 struct die_info *spec_die;
18714
18715 /* GCJ will output '<init>' for Java constructor names.
18716 For this special case, return the name of the parent class. */
18717
18718 /* GCJ may output suprogram DIEs with AT_specification set.
18719 If so, use the name of the specified DIE. */
18720 spec_die = die_specification (die, &spec_cu);
18721 if (spec_die != NULL)
18722 return dwarf2_name (spec_die, spec_cu);
18723
18724 do
18725 {
18726 die = die->parent;
18727 if (die->tag == DW_TAG_class_type)
18728 return dwarf2_name (die, cu);
18729 }
18730 while (die->tag != DW_TAG_compile_unit
18731 && die->tag != DW_TAG_partial_unit);
18732 }
18733 break;
18734
18735 case DW_TAG_class_type:
18736 case DW_TAG_interface_type:
18737 case DW_TAG_structure_type:
18738 case DW_TAG_union_type:
18739 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18740 structures or unions. These were of the form "._%d" in GCC 4.1,
18741 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18742 and GCC 4.4. We work around this problem by ignoring these. */
18743 if (attr && DW_STRING (attr)
18744 && (strncmp (DW_STRING (attr), "._", 2) == 0
18745 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18746 return NULL;
18747
18748 /* GCC might emit a nameless typedef that has a linkage name. See
18749 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18750 if (!attr || DW_STRING (attr) == NULL)
18751 {
18752 char *demangled = NULL;
18753
18754 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18755 if (attr == NULL)
18756 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18757
18758 if (attr == NULL || DW_STRING (attr) == NULL)
18759 return NULL;
18760
18761 /* Avoid demangling DW_STRING (attr) the second time on a second
18762 call for the same DIE. */
18763 if (!DW_STRING_IS_CANONICAL (attr))
18764 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18765
18766 if (demangled)
18767 {
18768 char *base;
18769
18770 /* FIXME: we already did this for the partial symbol... */
18771 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18772 demangled, strlen (demangled));
18773 DW_STRING_IS_CANONICAL (attr) = 1;
18774 xfree (demangled);
18775
18776 /* Strip any leading namespaces/classes, keep only the base name.
18777 DW_AT_name for named DIEs does not contain the prefixes. */
18778 base = strrchr (DW_STRING (attr), ':');
18779 if (base && base > DW_STRING (attr) && base[-1] == ':')
18780 return &base[1];
18781 else
18782 return DW_STRING (attr);
18783 }
18784 }
18785 break;
18786
18787 default:
18788 break;
18789 }
18790
18791 if (!DW_STRING_IS_CANONICAL (attr))
18792 {
18793 DW_STRING (attr)
18794 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18795 &cu->objfile->objfile_obstack);
18796 DW_STRING_IS_CANONICAL (attr) = 1;
18797 }
18798 return DW_STRING (attr);
18799 }
18800
18801 /* Return the die that this die in an extension of, or NULL if there
18802 is none. *EXT_CU is the CU containing DIE on input, and the CU
18803 containing the return value on output. */
18804
18805 static struct die_info *
18806 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18807 {
18808 struct attribute *attr;
18809
18810 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18811 if (attr == NULL)
18812 return NULL;
18813
18814 return follow_die_ref (die, attr, ext_cu);
18815 }
18816
18817 /* Convert a DIE tag into its string name. */
18818
18819 static const char *
18820 dwarf_tag_name (unsigned tag)
18821 {
18822 const char *name = get_DW_TAG_name (tag);
18823
18824 if (name == NULL)
18825 return "DW_TAG_<unknown>";
18826
18827 return name;
18828 }
18829
18830 /* Convert a DWARF attribute code into its string name. */
18831
18832 static const char *
18833 dwarf_attr_name (unsigned attr)
18834 {
18835 const char *name;
18836
18837 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18838 if (attr == DW_AT_MIPS_fde)
18839 return "DW_AT_MIPS_fde";
18840 #else
18841 if (attr == DW_AT_HP_block_index)
18842 return "DW_AT_HP_block_index";
18843 #endif
18844
18845 name = get_DW_AT_name (attr);
18846
18847 if (name == NULL)
18848 return "DW_AT_<unknown>";
18849
18850 return name;
18851 }
18852
18853 /* Convert a DWARF value form code into its string name. */
18854
18855 static const char *
18856 dwarf_form_name (unsigned form)
18857 {
18858 const char *name = get_DW_FORM_name (form);
18859
18860 if (name == NULL)
18861 return "DW_FORM_<unknown>";
18862
18863 return name;
18864 }
18865
18866 static char *
18867 dwarf_bool_name (unsigned mybool)
18868 {
18869 if (mybool)
18870 return "TRUE";
18871 else
18872 return "FALSE";
18873 }
18874
18875 /* Convert a DWARF type code into its string name. */
18876
18877 static const char *
18878 dwarf_type_encoding_name (unsigned enc)
18879 {
18880 const char *name = get_DW_ATE_name (enc);
18881
18882 if (name == NULL)
18883 return "DW_ATE_<unknown>";
18884
18885 return name;
18886 }
18887
18888 static void
18889 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18890 {
18891 unsigned int i;
18892
18893 print_spaces (indent, f);
18894 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18895 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18896
18897 if (die->parent != NULL)
18898 {
18899 print_spaces (indent, f);
18900 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18901 die->parent->offset.sect_off);
18902 }
18903
18904 print_spaces (indent, f);
18905 fprintf_unfiltered (f, " has children: %s\n",
18906 dwarf_bool_name (die->child != NULL));
18907
18908 print_spaces (indent, f);
18909 fprintf_unfiltered (f, " attributes:\n");
18910
18911 for (i = 0; i < die->num_attrs; ++i)
18912 {
18913 print_spaces (indent, f);
18914 fprintf_unfiltered (f, " %s (%s) ",
18915 dwarf_attr_name (die->attrs[i].name),
18916 dwarf_form_name (die->attrs[i].form));
18917
18918 switch (die->attrs[i].form)
18919 {
18920 case DW_FORM_addr:
18921 case DW_FORM_GNU_addr_index:
18922 fprintf_unfiltered (f, "address: ");
18923 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18924 break;
18925 case DW_FORM_block2:
18926 case DW_FORM_block4:
18927 case DW_FORM_block:
18928 case DW_FORM_block1:
18929 fprintf_unfiltered (f, "block: size %s",
18930 pulongest (DW_BLOCK (&die->attrs[i])->size));
18931 break;
18932 case DW_FORM_exprloc:
18933 fprintf_unfiltered (f, "expression: size %s",
18934 pulongest (DW_BLOCK (&die->attrs[i])->size));
18935 break;
18936 case DW_FORM_ref_addr:
18937 fprintf_unfiltered (f, "ref address: ");
18938 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18939 break;
18940 case DW_FORM_GNU_ref_alt:
18941 fprintf_unfiltered (f, "alt ref address: ");
18942 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18943 break;
18944 case DW_FORM_ref1:
18945 case DW_FORM_ref2:
18946 case DW_FORM_ref4:
18947 case DW_FORM_ref8:
18948 case DW_FORM_ref_udata:
18949 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18950 (long) (DW_UNSND (&die->attrs[i])));
18951 break;
18952 case DW_FORM_data1:
18953 case DW_FORM_data2:
18954 case DW_FORM_data4:
18955 case DW_FORM_data8:
18956 case DW_FORM_udata:
18957 case DW_FORM_sdata:
18958 fprintf_unfiltered (f, "constant: %s",
18959 pulongest (DW_UNSND (&die->attrs[i])));
18960 break;
18961 case DW_FORM_sec_offset:
18962 fprintf_unfiltered (f, "section offset: %s",
18963 pulongest (DW_UNSND (&die->attrs[i])));
18964 break;
18965 case DW_FORM_ref_sig8:
18966 fprintf_unfiltered (f, "signature: %s",
18967 hex_string (DW_SIGNATURE (&die->attrs[i])));
18968 break;
18969 case DW_FORM_string:
18970 case DW_FORM_strp:
18971 case DW_FORM_GNU_str_index:
18972 case DW_FORM_GNU_strp_alt:
18973 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18974 DW_STRING (&die->attrs[i])
18975 ? DW_STRING (&die->attrs[i]) : "",
18976 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18977 break;
18978 case DW_FORM_flag:
18979 if (DW_UNSND (&die->attrs[i]))
18980 fprintf_unfiltered (f, "flag: TRUE");
18981 else
18982 fprintf_unfiltered (f, "flag: FALSE");
18983 break;
18984 case DW_FORM_flag_present:
18985 fprintf_unfiltered (f, "flag: TRUE");
18986 break;
18987 case DW_FORM_indirect:
18988 /* The reader will have reduced the indirect form to
18989 the "base form" so this form should not occur. */
18990 fprintf_unfiltered (f,
18991 "unexpected attribute form: DW_FORM_indirect");
18992 break;
18993 default:
18994 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18995 die->attrs[i].form);
18996 break;
18997 }
18998 fprintf_unfiltered (f, "\n");
18999 }
19000 }
19001
19002 static void
19003 dump_die_for_error (struct die_info *die)
19004 {
19005 dump_die_shallow (gdb_stderr, 0, die);
19006 }
19007
19008 static void
19009 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19010 {
19011 int indent = level * 4;
19012
19013 gdb_assert (die != NULL);
19014
19015 if (level >= max_level)
19016 return;
19017
19018 dump_die_shallow (f, indent, die);
19019
19020 if (die->child != NULL)
19021 {
19022 print_spaces (indent, f);
19023 fprintf_unfiltered (f, " Children:");
19024 if (level + 1 < max_level)
19025 {
19026 fprintf_unfiltered (f, "\n");
19027 dump_die_1 (f, level + 1, max_level, die->child);
19028 }
19029 else
19030 {
19031 fprintf_unfiltered (f,
19032 " [not printed, max nesting level reached]\n");
19033 }
19034 }
19035
19036 if (die->sibling != NULL && level > 0)
19037 {
19038 dump_die_1 (f, level, max_level, die->sibling);
19039 }
19040 }
19041
19042 /* This is called from the pdie macro in gdbinit.in.
19043 It's not static so gcc will keep a copy callable from gdb. */
19044
19045 void
19046 dump_die (struct die_info *die, int max_level)
19047 {
19048 dump_die_1 (gdb_stdlog, 0, max_level, die);
19049 }
19050
19051 static void
19052 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19053 {
19054 void **slot;
19055
19056 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19057 INSERT);
19058
19059 *slot = die;
19060 }
19061
19062 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19063 required kind. */
19064
19065 static sect_offset
19066 dwarf2_get_ref_die_offset (const struct attribute *attr)
19067 {
19068 sect_offset retval = { DW_UNSND (attr) };
19069
19070 if (attr_form_is_ref (attr))
19071 return retval;
19072
19073 retval.sect_off = 0;
19074 complaint (&symfile_complaints,
19075 _("unsupported die ref attribute form: '%s'"),
19076 dwarf_form_name (attr->form));
19077 return retval;
19078 }
19079
19080 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19081 * the value held by the attribute is not constant. */
19082
19083 static LONGEST
19084 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19085 {
19086 if (attr->form == DW_FORM_sdata)
19087 return DW_SND (attr);
19088 else if (attr->form == DW_FORM_udata
19089 || attr->form == DW_FORM_data1
19090 || attr->form == DW_FORM_data2
19091 || attr->form == DW_FORM_data4
19092 || attr->form == DW_FORM_data8)
19093 return DW_UNSND (attr);
19094 else
19095 {
19096 complaint (&symfile_complaints,
19097 _("Attribute value is not a constant (%s)"),
19098 dwarf_form_name (attr->form));
19099 return default_value;
19100 }
19101 }
19102
19103 /* Follow reference or signature attribute ATTR of SRC_DIE.
19104 On entry *REF_CU is the CU of SRC_DIE.
19105 On exit *REF_CU is the CU of the result. */
19106
19107 static struct die_info *
19108 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19109 struct dwarf2_cu **ref_cu)
19110 {
19111 struct die_info *die;
19112
19113 if (attr_form_is_ref (attr))
19114 die = follow_die_ref (src_die, attr, ref_cu);
19115 else if (attr->form == DW_FORM_ref_sig8)
19116 die = follow_die_sig (src_die, attr, ref_cu);
19117 else
19118 {
19119 dump_die_for_error (src_die);
19120 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19121 objfile_name ((*ref_cu)->objfile));
19122 }
19123
19124 return die;
19125 }
19126
19127 /* Follow reference OFFSET.
19128 On entry *REF_CU is the CU of the source die referencing OFFSET.
19129 On exit *REF_CU is the CU of the result.
19130 Returns NULL if OFFSET is invalid. */
19131
19132 static struct die_info *
19133 follow_die_offset (sect_offset offset, int offset_in_dwz,
19134 struct dwarf2_cu **ref_cu)
19135 {
19136 struct die_info temp_die;
19137 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19138
19139 gdb_assert (cu->per_cu != NULL);
19140
19141 target_cu = cu;
19142
19143 if (cu->per_cu->is_debug_types)
19144 {
19145 /* .debug_types CUs cannot reference anything outside their CU.
19146 If they need to, they have to reference a signatured type via
19147 DW_FORM_ref_sig8. */
19148 if (! offset_in_cu_p (&cu->header, offset))
19149 return NULL;
19150 }
19151 else if (offset_in_dwz != cu->per_cu->is_dwz
19152 || ! offset_in_cu_p (&cu->header, offset))
19153 {
19154 struct dwarf2_per_cu_data *per_cu;
19155
19156 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19157 cu->objfile);
19158
19159 /* If necessary, add it to the queue and load its DIEs. */
19160 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19161 load_full_comp_unit (per_cu, cu->language);
19162
19163 target_cu = per_cu->cu;
19164 }
19165 else if (cu->dies == NULL)
19166 {
19167 /* We're loading full DIEs during partial symbol reading. */
19168 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19169 load_full_comp_unit (cu->per_cu, language_minimal);
19170 }
19171
19172 *ref_cu = target_cu;
19173 temp_die.offset = offset;
19174 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19175 }
19176
19177 /* Follow reference attribute ATTR of SRC_DIE.
19178 On entry *REF_CU is the CU of SRC_DIE.
19179 On exit *REF_CU is the CU of the result. */
19180
19181 static struct die_info *
19182 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19183 struct dwarf2_cu **ref_cu)
19184 {
19185 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19186 struct dwarf2_cu *cu = *ref_cu;
19187 struct die_info *die;
19188
19189 die = follow_die_offset (offset,
19190 (attr->form == DW_FORM_GNU_ref_alt
19191 || cu->per_cu->is_dwz),
19192 ref_cu);
19193 if (!die)
19194 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19195 "at 0x%x [in module %s]"),
19196 offset.sect_off, src_die->offset.sect_off,
19197 objfile_name (cu->objfile));
19198
19199 return die;
19200 }
19201
19202 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19203 Returned value is intended for DW_OP_call*. Returned
19204 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19205
19206 struct dwarf2_locexpr_baton
19207 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19208 struct dwarf2_per_cu_data *per_cu,
19209 CORE_ADDR (*get_frame_pc) (void *baton),
19210 void *baton)
19211 {
19212 struct dwarf2_cu *cu;
19213 struct die_info *die;
19214 struct attribute *attr;
19215 struct dwarf2_locexpr_baton retval;
19216
19217 dw2_setup (per_cu->objfile);
19218
19219 if (per_cu->cu == NULL)
19220 load_cu (per_cu);
19221 cu = per_cu->cu;
19222
19223 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19224 if (!die)
19225 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19226 offset.sect_off, objfile_name (per_cu->objfile));
19227
19228 attr = dwarf2_attr (die, DW_AT_location, cu);
19229 if (!attr)
19230 {
19231 /* DWARF: "If there is no such attribute, then there is no effect.".
19232 DATA is ignored if SIZE is 0. */
19233
19234 retval.data = NULL;
19235 retval.size = 0;
19236 }
19237 else if (attr_form_is_section_offset (attr))
19238 {
19239 struct dwarf2_loclist_baton loclist_baton;
19240 CORE_ADDR pc = (*get_frame_pc) (baton);
19241 size_t size;
19242
19243 fill_in_loclist_baton (cu, &loclist_baton, attr);
19244
19245 retval.data = dwarf2_find_location_expression (&loclist_baton,
19246 &size, pc);
19247 retval.size = size;
19248 }
19249 else
19250 {
19251 if (!attr_form_is_block (attr))
19252 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19253 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19254 offset.sect_off, objfile_name (per_cu->objfile));
19255
19256 retval.data = DW_BLOCK (attr)->data;
19257 retval.size = DW_BLOCK (attr)->size;
19258 }
19259 retval.per_cu = cu->per_cu;
19260
19261 age_cached_comp_units ();
19262
19263 return retval;
19264 }
19265
19266 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19267 offset. */
19268
19269 struct dwarf2_locexpr_baton
19270 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19271 struct dwarf2_per_cu_data *per_cu,
19272 CORE_ADDR (*get_frame_pc) (void *baton),
19273 void *baton)
19274 {
19275 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19276
19277 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19278 }
19279
19280 /* Write a constant of a given type as target-ordered bytes into
19281 OBSTACK. */
19282
19283 static const gdb_byte *
19284 write_constant_as_bytes (struct obstack *obstack,
19285 enum bfd_endian byte_order,
19286 struct type *type,
19287 ULONGEST value,
19288 LONGEST *len)
19289 {
19290 gdb_byte *result;
19291
19292 *len = TYPE_LENGTH (type);
19293 result = obstack_alloc (obstack, *len);
19294 store_unsigned_integer (result, *len, byte_order, value);
19295
19296 return result;
19297 }
19298
19299 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19300 pointer to the constant bytes and set LEN to the length of the
19301 data. If memory is needed, allocate it on OBSTACK. If the DIE
19302 does not have a DW_AT_const_value, return NULL. */
19303
19304 const gdb_byte *
19305 dwarf2_fetch_constant_bytes (sect_offset offset,
19306 struct dwarf2_per_cu_data *per_cu,
19307 struct obstack *obstack,
19308 LONGEST *len)
19309 {
19310 struct dwarf2_cu *cu;
19311 struct die_info *die;
19312 struct attribute *attr;
19313 const gdb_byte *result = NULL;
19314 struct type *type;
19315 LONGEST value;
19316 enum bfd_endian byte_order;
19317
19318 dw2_setup (per_cu->objfile);
19319
19320 if (per_cu->cu == NULL)
19321 load_cu (per_cu);
19322 cu = per_cu->cu;
19323
19324 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19325 if (!die)
19326 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19327 offset.sect_off, objfile_name (per_cu->objfile));
19328
19329
19330 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19331 if (attr == NULL)
19332 return NULL;
19333
19334 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19335 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19336
19337 switch (attr->form)
19338 {
19339 case DW_FORM_addr:
19340 case DW_FORM_GNU_addr_index:
19341 {
19342 gdb_byte *tem;
19343
19344 *len = cu->header.addr_size;
19345 tem = obstack_alloc (obstack, *len);
19346 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19347 result = tem;
19348 }
19349 break;
19350 case DW_FORM_string:
19351 case DW_FORM_strp:
19352 case DW_FORM_GNU_str_index:
19353 case DW_FORM_GNU_strp_alt:
19354 /* DW_STRING is already allocated on the objfile obstack, point
19355 directly to it. */
19356 result = (const gdb_byte *) DW_STRING (attr);
19357 *len = strlen (DW_STRING (attr));
19358 break;
19359 case DW_FORM_block1:
19360 case DW_FORM_block2:
19361 case DW_FORM_block4:
19362 case DW_FORM_block:
19363 case DW_FORM_exprloc:
19364 result = DW_BLOCK (attr)->data;
19365 *len = DW_BLOCK (attr)->size;
19366 break;
19367
19368 /* The DW_AT_const_value attributes are supposed to carry the
19369 symbol's value "represented as it would be on the target
19370 architecture." By the time we get here, it's already been
19371 converted to host endianness, so we just need to sign- or
19372 zero-extend it as appropriate. */
19373 case DW_FORM_data1:
19374 type = die_type (die, cu);
19375 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19376 if (result == NULL)
19377 result = write_constant_as_bytes (obstack, byte_order,
19378 type, value, len);
19379 break;
19380 case DW_FORM_data2:
19381 type = die_type (die, cu);
19382 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19383 if (result == NULL)
19384 result = write_constant_as_bytes (obstack, byte_order,
19385 type, value, len);
19386 break;
19387 case DW_FORM_data4:
19388 type = die_type (die, cu);
19389 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19390 if (result == NULL)
19391 result = write_constant_as_bytes (obstack, byte_order,
19392 type, value, len);
19393 break;
19394 case DW_FORM_data8:
19395 type = die_type (die, cu);
19396 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19397 if (result == NULL)
19398 result = write_constant_as_bytes (obstack, byte_order,
19399 type, value, len);
19400 break;
19401
19402 case DW_FORM_sdata:
19403 type = die_type (die, cu);
19404 result = write_constant_as_bytes (obstack, byte_order,
19405 type, DW_SND (attr), len);
19406 break;
19407
19408 case DW_FORM_udata:
19409 type = die_type (die, cu);
19410 result = write_constant_as_bytes (obstack, byte_order,
19411 type, DW_UNSND (attr), len);
19412 break;
19413
19414 default:
19415 complaint (&symfile_complaints,
19416 _("unsupported const value attribute form: '%s'"),
19417 dwarf_form_name (attr->form));
19418 break;
19419 }
19420
19421 return result;
19422 }
19423
19424 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19425 PER_CU. */
19426
19427 struct type *
19428 dwarf2_get_die_type (cu_offset die_offset,
19429 struct dwarf2_per_cu_data *per_cu)
19430 {
19431 sect_offset die_offset_sect;
19432
19433 dw2_setup (per_cu->objfile);
19434
19435 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19436 return get_die_type_at_offset (die_offset_sect, per_cu);
19437 }
19438
19439 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19440 On entry *REF_CU is the CU of SRC_DIE.
19441 On exit *REF_CU is the CU of the result.
19442 Returns NULL if the referenced DIE isn't found. */
19443
19444 static struct die_info *
19445 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19446 struct dwarf2_cu **ref_cu)
19447 {
19448 struct objfile *objfile = (*ref_cu)->objfile;
19449 struct die_info temp_die;
19450 struct dwarf2_cu *sig_cu;
19451 struct die_info *die;
19452
19453 /* While it might be nice to assert sig_type->type == NULL here,
19454 we can get here for DW_AT_imported_declaration where we need
19455 the DIE not the type. */
19456
19457 /* If necessary, add it to the queue and load its DIEs. */
19458
19459 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19460 read_signatured_type (sig_type);
19461
19462 sig_cu = sig_type->per_cu.cu;
19463 gdb_assert (sig_cu != NULL);
19464 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19465 temp_die.offset = sig_type->type_offset_in_section;
19466 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19467 temp_die.offset.sect_off);
19468 if (die)
19469 {
19470 /* For .gdb_index version 7 keep track of included TUs.
19471 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19472 if (dwarf2_per_objfile->index_table != NULL
19473 && dwarf2_per_objfile->index_table->version <= 7)
19474 {
19475 VEC_safe_push (dwarf2_per_cu_ptr,
19476 (*ref_cu)->per_cu->imported_symtabs,
19477 sig_cu->per_cu);
19478 }
19479
19480 *ref_cu = sig_cu;
19481 return die;
19482 }
19483
19484 return NULL;
19485 }
19486
19487 /* Follow signatured type referenced by ATTR in SRC_DIE.
19488 On entry *REF_CU is the CU of SRC_DIE.
19489 On exit *REF_CU is the CU of the result.
19490 The result is the DIE of the type.
19491 If the referenced type cannot be found an error is thrown. */
19492
19493 static struct die_info *
19494 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19495 struct dwarf2_cu **ref_cu)
19496 {
19497 ULONGEST signature = DW_SIGNATURE (attr);
19498 struct signatured_type *sig_type;
19499 struct die_info *die;
19500
19501 gdb_assert (attr->form == DW_FORM_ref_sig8);
19502
19503 sig_type = lookup_signatured_type (*ref_cu, signature);
19504 /* sig_type will be NULL if the signatured type is missing from
19505 the debug info. */
19506 if (sig_type == NULL)
19507 {
19508 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19509 " from DIE at 0x%x [in module %s]"),
19510 hex_string (signature), src_die->offset.sect_off,
19511 objfile_name ((*ref_cu)->objfile));
19512 }
19513
19514 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19515 if (die == NULL)
19516 {
19517 dump_die_for_error (src_die);
19518 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19519 " from DIE at 0x%x [in module %s]"),
19520 hex_string (signature), src_die->offset.sect_off,
19521 objfile_name ((*ref_cu)->objfile));
19522 }
19523
19524 return die;
19525 }
19526
19527 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19528 reading in and processing the type unit if necessary. */
19529
19530 static struct type *
19531 get_signatured_type (struct die_info *die, ULONGEST signature,
19532 struct dwarf2_cu *cu)
19533 {
19534 struct signatured_type *sig_type;
19535 struct dwarf2_cu *type_cu;
19536 struct die_info *type_die;
19537 struct type *type;
19538
19539 sig_type = lookup_signatured_type (cu, signature);
19540 /* sig_type will be NULL if the signatured type is missing from
19541 the debug info. */
19542 if (sig_type == NULL)
19543 {
19544 complaint (&symfile_complaints,
19545 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19546 " from DIE at 0x%x [in module %s]"),
19547 hex_string (signature), die->offset.sect_off,
19548 objfile_name (dwarf2_per_objfile->objfile));
19549 return build_error_marker_type (cu, die);
19550 }
19551
19552 /* If we already know the type we're done. */
19553 if (sig_type->type != NULL)
19554 return sig_type->type;
19555
19556 type_cu = cu;
19557 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19558 if (type_die != NULL)
19559 {
19560 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19561 is created. This is important, for example, because for c++ classes
19562 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19563 type = read_type_die (type_die, type_cu);
19564 if (type == NULL)
19565 {
19566 complaint (&symfile_complaints,
19567 _("Dwarf Error: Cannot build signatured type %s"
19568 " referenced from DIE at 0x%x [in module %s]"),
19569 hex_string (signature), die->offset.sect_off,
19570 objfile_name (dwarf2_per_objfile->objfile));
19571 type = build_error_marker_type (cu, die);
19572 }
19573 }
19574 else
19575 {
19576 complaint (&symfile_complaints,
19577 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19578 " from DIE at 0x%x [in module %s]"),
19579 hex_string (signature), die->offset.sect_off,
19580 objfile_name (dwarf2_per_objfile->objfile));
19581 type = build_error_marker_type (cu, die);
19582 }
19583 sig_type->type = type;
19584
19585 return type;
19586 }
19587
19588 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19589 reading in and processing the type unit if necessary. */
19590
19591 static struct type *
19592 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19593 struct dwarf2_cu *cu) /* ARI: editCase function */
19594 {
19595 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19596 if (attr_form_is_ref (attr))
19597 {
19598 struct dwarf2_cu *type_cu = cu;
19599 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19600
19601 return read_type_die (type_die, type_cu);
19602 }
19603 else if (attr->form == DW_FORM_ref_sig8)
19604 {
19605 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19606 }
19607 else
19608 {
19609 complaint (&symfile_complaints,
19610 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19611 " at 0x%x [in module %s]"),
19612 dwarf_form_name (attr->form), die->offset.sect_off,
19613 objfile_name (dwarf2_per_objfile->objfile));
19614 return build_error_marker_type (cu, die);
19615 }
19616 }
19617
19618 /* Load the DIEs associated with type unit PER_CU into memory. */
19619
19620 static void
19621 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19622 {
19623 struct signatured_type *sig_type;
19624
19625 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19626 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19627
19628 /* We have the per_cu, but we need the signatured_type.
19629 Fortunately this is an easy translation. */
19630 gdb_assert (per_cu->is_debug_types);
19631 sig_type = (struct signatured_type *) per_cu;
19632
19633 gdb_assert (per_cu->cu == NULL);
19634
19635 read_signatured_type (sig_type);
19636
19637 gdb_assert (per_cu->cu != NULL);
19638 }
19639
19640 /* die_reader_func for read_signatured_type.
19641 This is identical to load_full_comp_unit_reader,
19642 but is kept separate for now. */
19643
19644 static void
19645 read_signatured_type_reader (const struct die_reader_specs *reader,
19646 const gdb_byte *info_ptr,
19647 struct die_info *comp_unit_die,
19648 int has_children,
19649 void *data)
19650 {
19651 struct dwarf2_cu *cu = reader->cu;
19652
19653 gdb_assert (cu->die_hash == NULL);
19654 cu->die_hash =
19655 htab_create_alloc_ex (cu->header.length / 12,
19656 die_hash,
19657 die_eq,
19658 NULL,
19659 &cu->comp_unit_obstack,
19660 hashtab_obstack_allocate,
19661 dummy_obstack_deallocate);
19662
19663 if (has_children)
19664 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19665 &info_ptr, comp_unit_die);
19666 cu->dies = comp_unit_die;
19667 /* comp_unit_die is not stored in die_hash, no need. */
19668
19669 /* We try not to read any attributes in this function, because not
19670 all CUs needed for references have been loaded yet, and symbol
19671 table processing isn't initialized. But we have to set the CU language,
19672 or we won't be able to build types correctly.
19673 Similarly, if we do not read the producer, we can not apply
19674 producer-specific interpretation. */
19675 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19676 }
19677
19678 /* Read in a signatured type and build its CU and DIEs.
19679 If the type is a stub for the real type in a DWO file,
19680 read in the real type from the DWO file as well. */
19681
19682 static void
19683 read_signatured_type (struct signatured_type *sig_type)
19684 {
19685 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19686
19687 gdb_assert (per_cu->is_debug_types);
19688 gdb_assert (per_cu->cu == NULL);
19689
19690 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19691 read_signatured_type_reader, NULL);
19692 sig_type->per_cu.tu_read = 1;
19693 }
19694
19695 /* Decode simple location descriptions.
19696 Given a pointer to a dwarf block that defines a location, compute
19697 the location and return the value.
19698
19699 NOTE drow/2003-11-18: This function is called in two situations
19700 now: for the address of static or global variables (partial symbols
19701 only) and for offsets into structures which are expected to be
19702 (more or less) constant. The partial symbol case should go away,
19703 and only the constant case should remain. That will let this
19704 function complain more accurately. A few special modes are allowed
19705 without complaint for global variables (for instance, global
19706 register values and thread-local values).
19707
19708 A location description containing no operations indicates that the
19709 object is optimized out. The return value is 0 for that case.
19710 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19711 callers will only want a very basic result and this can become a
19712 complaint.
19713
19714 Note that stack[0] is unused except as a default error return. */
19715
19716 static CORE_ADDR
19717 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19718 {
19719 struct objfile *objfile = cu->objfile;
19720 size_t i;
19721 size_t size = blk->size;
19722 const gdb_byte *data = blk->data;
19723 CORE_ADDR stack[64];
19724 int stacki;
19725 unsigned int bytes_read, unsnd;
19726 gdb_byte op;
19727
19728 i = 0;
19729 stacki = 0;
19730 stack[stacki] = 0;
19731 stack[++stacki] = 0;
19732
19733 while (i < size)
19734 {
19735 op = data[i++];
19736 switch (op)
19737 {
19738 case DW_OP_lit0:
19739 case DW_OP_lit1:
19740 case DW_OP_lit2:
19741 case DW_OP_lit3:
19742 case DW_OP_lit4:
19743 case DW_OP_lit5:
19744 case DW_OP_lit6:
19745 case DW_OP_lit7:
19746 case DW_OP_lit8:
19747 case DW_OP_lit9:
19748 case DW_OP_lit10:
19749 case DW_OP_lit11:
19750 case DW_OP_lit12:
19751 case DW_OP_lit13:
19752 case DW_OP_lit14:
19753 case DW_OP_lit15:
19754 case DW_OP_lit16:
19755 case DW_OP_lit17:
19756 case DW_OP_lit18:
19757 case DW_OP_lit19:
19758 case DW_OP_lit20:
19759 case DW_OP_lit21:
19760 case DW_OP_lit22:
19761 case DW_OP_lit23:
19762 case DW_OP_lit24:
19763 case DW_OP_lit25:
19764 case DW_OP_lit26:
19765 case DW_OP_lit27:
19766 case DW_OP_lit28:
19767 case DW_OP_lit29:
19768 case DW_OP_lit30:
19769 case DW_OP_lit31:
19770 stack[++stacki] = op - DW_OP_lit0;
19771 break;
19772
19773 case DW_OP_reg0:
19774 case DW_OP_reg1:
19775 case DW_OP_reg2:
19776 case DW_OP_reg3:
19777 case DW_OP_reg4:
19778 case DW_OP_reg5:
19779 case DW_OP_reg6:
19780 case DW_OP_reg7:
19781 case DW_OP_reg8:
19782 case DW_OP_reg9:
19783 case DW_OP_reg10:
19784 case DW_OP_reg11:
19785 case DW_OP_reg12:
19786 case DW_OP_reg13:
19787 case DW_OP_reg14:
19788 case DW_OP_reg15:
19789 case DW_OP_reg16:
19790 case DW_OP_reg17:
19791 case DW_OP_reg18:
19792 case DW_OP_reg19:
19793 case DW_OP_reg20:
19794 case DW_OP_reg21:
19795 case DW_OP_reg22:
19796 case DW_OP_reg23:
19797 case DW_OP_reg24:
19798 case DW_OP_reg25:
19799 case DW_OP_reg26:
19800 case DW_OP_reg27:
19801 case DW_OP_reg28:
19802 case DW_OP_reg29:
19803 case DW_OP_reg30:
19804 case DW_OP_reg31:
19805 stack[++stacki] = op - DW_OP_reg0;
19806 if (i < size)
19807 dwarf2_complex_location_expr_complaint ();
19808 break;
19809
19810 case DW_OP_regx:
19811 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19812 i += bytes_read;
19813 stack[++stacki] = unsnd;
19814 if (i < size)
19815 dwarf2_complex_location_expr_complaint ();
19816 break;
19817
19818 case DW_OP_addr:
19819 stack[++stacki] = read_address (objfile->obfd, &data[i],
19820 cu, &bytes_read);
19821 i += bytes_read;
19822 break;
19823
19824 case DW_OP_const1u:
19825 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19826 i += 1;
19827 break;
19828
19829 case DW_OP_const1s:
19830 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19831 i += 1;
19832 break;
19833
19834 case DW_OP_const2u:
19835 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19836 i += 2;
19837 break;
19838
19839 case DW_OP_const2s:
19840 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19841 i += 2;
19842 break;
19843
19844 case DW_OP_const4u:
19845 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19846 i += 4;
19847 break;
19848
19849 case DW_OP_const4s:
19850 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19851 i += 4;
19852 break;
19853
19854 case DW_OP_const8u:
19855 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19856 i += 8;
19857 break;
19858
19859 case DW_OP_constu:
19860 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19861 &bytes_read);
19862 i += bytes_read;
19863 break;
19864
19865 case DW_OP_consts:
19866 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19867 i += bytes_read;
19868 break;
19869
19870 case DW_OP_dup:
19871 stack[stacki + 1] = stack[stacki];
19872 stacki++;
19873 break;
19874
19875 case DW_OP_plus:
19876 stack[stacki - 1] += stack[stacki];
19877 stacki--;
19878 break;
19879
19880 case DW_OP_plus_uconst:
19881 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19882 &bytes_read);
19883 i += bytes_read;
19884 break;
19885
19886 case DW_OP_minus:
19887 stack[stacki - 1] -= stack[stacki];
19888 stacki--;
19889 break;
19890
19891 case DW_OP_deref:
19892 /* If we're not the last op, then we definitely can't encode
19893 this using GDB's address_class enum. This is valid for partial
19894 global symbols, although the variable's address will be bogus
19895 in the psymtab. */
19896 if (i < size)
19897 dwarf2_complex_location_expr_complaint ();
19898 break;
19899
19900 case DW_OP_GNU_push_tls_address:
19901 /* The top of the stack has the offset from the beginning
19902 of the thread control block at which the variable is located. */
19903 /* Nothing should follow this operator, so the top of stack would
19904 be returned. */
19905 /* This is valid for partial global symbols, but the variable's
19906 address will be bogus in the psymtab. Make it always at least
19907 non-zero to not look as a variable garbage collected by linker
19908 which have DW_OP_addr 0. */
19909 if (i < size)
19910 dwarf2_complex_location_expr_complaint ();
19911 stack[stacki]++;
19912 break;
19913
19914 case DW_OP_GNU_uninit:
19915 break;
19916
19917 case DW_OP_GNU_addr_index:
19918 case DW_OP_GNU_const_index:
19919 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19920 &bytes_read);
19921 i += bytes_read;
19922 break;
19923
19924 default:
19925 {
19926 const char *name = get_DW_OP_name (op);
19927
19928 if (name)
19929 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19930 name);
19931 else
19932 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19933 op);
19934 }
19935
19936 return (stack[stacki]);
19937 }
19938
19939 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19940 outside of the allocated space. Also enforce minimum>0. */
19941 if (stacki >= ARRAY_SIZE (stack) - 1)
19942 {
19943 complaint (&symfile_complaints,
19944 _("location description stack overflow"));
19945 return 0;
19946 }
19947
19948 if (stacki <= 0)
19949 {
19950 complaint (&symfile_complaints,
19951 _("location description stack underflow"));
19952 return 0;
19953 }
19954 }
19955 return (stack[stacki]);
19956 }
19957
19958 /* memory allocation interface */
19959
19960 static struct dwarf_block *
19961 dwarf_alloc_block (struct dwarf2_cu *cu)
19962 {
19963 struct dwarf_block *blk;
19964
19965 blk = (struct dwarf_block *)
19966 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19967 return (blk);
19968 }
19969
19970 static struct die_info *
19971 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19972 {
19973 struct die_info *die;
19974 size_t size = sizeof (struct die_info);
19975
19976 if (num_attrs > 1)
19977 size += (num_attrs - 1) * sizeof (struct attribute);
19978
19979 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19980 memset (die, 0, sizeof (struct die_info));
19981 return (die);
19982 }
19983
19984 \f
19985 /* Macro support. */
19986
19987 /* Return file name relative to the compilation directory of file number I in
19988 *LH's file name table. The result is allocated using xmalloc; the caller is
19989 responsible for freeing it. */
19990
19991 static char *
19992 file_file_name (int file, struct line_header *lh)
19993 {
19994 /* Is the file number a valid index into the line header's file name
19995 table? Remember that file numbers start with one, not zero. */
19996 if (1 <= file && file <= lh->num_file_names)
19997 {
19998 struct file_entry *fe = &lh->file_names[file - 1];
19999
20000 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20001 return xstrdup (fe->name);
20002 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20003 fe->name, NULL);
20004 }
20005 else
20006 {
20007 /* The compiler produced a bogus file number. We can at least
20008 record the macro definitions made in the file, even if we
20009 won't be able to find the file by name. */
20010 char fake_name[80];
20011
20012 xsnprintf (fake_name, sizeof (fake_name),
20013 "<bad macro file number %d>", file);
20014
20015 complaint (&symfile_complaints,
20016 _("bad file number in macro information (%d)"),
20017 file);
20018
20019 return xstrdup (fake_name);
20020 }
20021 }
20022
20023 /* Return the full name of file number I in *LH's file name table.
20024 Use COMP_DIR as the name of the current directory of the
20025 compilation. The result is allocated using xmalloc; the caller is
20026 responsible for freeing it. */
20027 static char *
20028 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20029 {
20030 /* Is the file number a valid index into the line header's file name
20031 table? Remember that file numbers start with one, not zero. */
20032 if (1 <= file && file <= lh->num_file_names)
20033 {
20034 char *relative = file_file_name (file, lh);
20035
20036 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20037 return relative;
20038 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20039 }
20040 else
20041 return file_file_name (file, lh);
20042 }
20043
20044
20045 static struct macro_source_file *
20046 macro_start_file (int file, int line,
20047 struct macro_source_file *current_file,
20048 const char *comp_dir,
20049 struct line_header *lh, struct objfile *objfile)
20050 {
20051 /* File name relative to the compilation directory of this source file. */
20052 char *file_name = file_file_name (file, lh);
20053
20054 if (! current_file)
20055 {
20056 /* Note: We don't create a macro table for this compilation unit
20057 at all until we actually get a filename. */
20058 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20059
20060 /* If we have no current file, then this must be the start_file
20061 directive for the compilation unit's main source file. */
20062 current_file = macro_set_main (macro_table, file_name);
20063 macro_define_special (macro_table);
20064 }
20065 else
20066 current_file = macro_include (current_file, line, file_name);
20067
20068 xfree (file_name);
20069
20070 return current_file;
20071 }
20072
20073
20074 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20075 followed by a null byte. */
20076 static char *
20077 copy_string (const char *buf, int len)
20078 {
20079 char *s = xmalloc (len + 1);
20080
20081 memcpy (s, buf, len);
20082 s[len] = '\0';
20083 return s;
20084 }
20085
20086
20087 static const char *
20088 consume_improper_spaces (const char *p, const char *body)
20089 {
20090 if (*p == ' ')
20091 {
20092 complaint (&symfile_complaints,
20093 _("macro definition contains spaces "
20094 "in formal argument list:\n`%s'"),
20095 body);
20096
20097 while (*p == ' ')
20098 p++;
20099 }
20100
20101 return p;
20102 }
20103
20104
20105 static void
20106 parse_macro_definition (struct macro_source_file *file, int line,
20107 const char *body)
20108 {
20109 const char *p;
20110
20111 /* The body string takes one of two forms. For object-like macro
20112 definitions, it should be:
20113
20114 <macro name> " " <definition>
20115
20116 For function-like macro definitions, it should be:
20117
20118 <macro name> "() " <definition>
20119 or
20120 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20121
20122 Spaces may appear only where explicitly indicated, and in the
20123 <definition>.
20124
20125 The Dwarf 2 spec says that an object-like macro's name is always
20126 followed by a space, but versions of GCC around March 2002 omit
20127 the space when the macro's definition is the empty string.
20128
20129 The Dwarf 2 spec says that there should be no spaces between the
20130 formal arguments in a function-like macro's formal argument list,
20131 but versions of GCC around March 2002 include spaces after the
20132 commas. */
20133
20134
20135 /* Find the extent of the macro name. The macro name is terminated
20136 by either a space or null character (for an object-like macro) or
20137 an opening paren (for a function-like macro). */
20138 for (p = body; *p; p++)
20139 if (*p == ' ' || *p == '(')
20140 break;
20141
20142 if (*p == ' ' || *p == '\0')
20143 {
20144 /* It's an object-like macro. */
20145 int name_len = p - body;
20146 char *name = copy_string (body, name_len);
20147 const char *replacement;
20148
20149 if (*p == ' ')
20150 replacement = body + name_len + 1;
20151 else
20152 {
20153 dwarf2_macro_malformed_definition_complaint (body);
20154 replacement = body + name_len;
20155 }
20156
20157 macro_define_object (file, line, name, replacement);
20158
20159 xfree (name);
20160 }
20161 else if (*p == '(')
20162 {
20163 /* It's a function-like macro. */
20164 char *name = copy_string (body, p - body);
20165 int argc = 0;
20166 int argv_size = 1;
20167 char **argv = xmalloc (argv_size * sizeof (*argv));
20168
20169 p++;
20170
20171 p = consume_improper_spaces (p, body);
20172
20173 /* Parse the formal argument list. */
20174 while (*p && *p != ')')
20175 {
20176 /* Find the extent of the current argument name. */
20177 const char *arg_start = p;
20178
20179 while (*p && *p != ',' && *p != ')' && *p != ' ')
20180 p++;
20181
20182 if (! *p || p == arg_start)
20183 dwarf2_macro_malformed_definition_complaint (body);
20184 else
20185 {
20186 /* Make sure argv has room for the new argument. */
20187 if (argc >= argv_size)
20188 {
20189 argv_size *= 2;
20190 argv = xrealloc (argv, argv_size * sizeof (*argv));
20191 }
20192
20193 argv[argc++] = copy_string (arg_start, p - arg_start);
20194 }
20195
20196 p = consume_improper_spaces (p, body);
20197
20198 /* Consume the comma, if present. */
20199 if (*p == ',')
20200 {
20201 p++;
20202
20203 p = consume_improper_spaces (p, body);
20204 }
20205 }
20206
20207 if (*p == ')')
20208 {
20209 p++;
20210
20211 if (*p == ' ')
20212 /* Perfectly formed definition, no complaints. */
20213 macro_define_function (file, line, name,
20214 argc, (const char **) argv,
20215 p + 1);
20216 else if (*p == '\0')
20217 {
20218 /* Complain, but do define it. */
20219 dwarf2_macro_malformed_definition_complaint (body);
20220 macro_define_function (file, line, name,
20221 argc, (const char **) argv,
20222 p);
20223 }
20224 else
20225 /* Just complain. */
20226 dwarf2_macro_malformed_definition_complaint (body);
20227 }
20228 else
20229 /* Just complain. */
20230 dwarf2_macro_malformed_definition_complaint (body);
20231
20232 xfree (name);
20233 {
20234 int i;
20235
20236 for (i = 0; i < argc; i++)
20237 xfree (argv[i]);
20238 }
20239 xfree (argv);
20240 }
20241 else
20242 dwarf2_macro_malformed_definition_complaint (body);
20243 }
20244
20245 /* Skip some bytes from BYTES according to the form given in FORM.
20246 Returns the new pointer. */
20247
20248 static const gdb_byte *
20249 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20250 enum dwarf_form form,
20251 unsigned int offset_size,
20252 struct dwarf2_section_info *section)
20253 {
20254 unsigned int bytes_read;
20255
20256 switch (form)
20257 {
20258 case DW_FORM_data1:
20259 case DW_FORM_flag:
20260 ++bytes;
20261 break;
20262
20263 case DW_FORM_data2:
20264 bytes += 2;
20265 break;
20266
20267 case DW_FORM_data4:
20268 bytes += 4;
20269 break;
20270
20271 case DW_FORM_data8:
20272 bytes += 8;
20273 break;
20274
20275 case DW_FORM_string:
20276 read_direct_string (abfd, bytes, &bytes_read);
20277 bytes += bytes_read;
20278 break;
20279
20280 case DW_FORM_sec_offset:
20281 case DW_FORM_strp:
20282 case DW_FORM_GNU_strp_alt:
20283 bytes += offset_size;
20284 break;
20285
20286 case DW_FORM_block:
20287 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20288 bytes += bytes_read;
20289 break;
20290
20291 case DW_FORM_block1:
20292 bytes += 1 + read_1_byte (abfd, bytes);
20293 break;
20294 case DW_FORM_block2:
20295 bytes += 2 + read_2_bytes (abfd, bytes);
20296 break;
20297 case DW_FORM_block4:
20298 bytes += 4 + read_4_bytes (abfd, bytes);
20299 break;
20300
20301 case DW_FORM_sdata:
20302 case DW_FORM_udata:
20303 case DW_FORM_GNU_addr_index:
20304 case DW_FORM_GNU_str_index:
20305 bytes = gdb_skip_leb128 (bytes, buffer_end);
20306 if (bytes == NULL)
20307 {
20308 dwarf2_section_buffer_overflow_complaint (section);
20309 return NULL;
20310 }
20311 break;
20312
20313 default:
20314 {
20315 complain:
20316 complaint (&symfile_complaints,
20317 _("invalid form 0x%x in `%s'"),
20318 form, get_section_name (section));
20319 return NULL;
20320 }
20321 }
20322
20323 return bytes;
20324 }
20325
20326 /* A helper for dwarf_decode_macros that handles skipping an unknown
20327 opcode. Returns an updated pointer to the macro data buffer; or,
20328 on error, issues a complaint and returns NULL. */
20329
20330 static const gdb_byte *
20331 skip_unknown_opcode (unsigned int opcode,
20332 const gdb_byte **opcode_definitions,
20333 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20334 bfd *abfd,
20335 unsigned int offset_size,
20336 struct dwarf2_section_info *section)
20337 {
20338 unsigned int bytes_read, i;
20339 unsigned long arg;
20340 const gdb_byte *defn;
20341
20342 if (opcode_definitions[opcode] == NULL)
20343 {
20344 complaint (&symfile_complaints,
20345 _("unrecognized DW_MACFINO opcode 0x%x"),
20346 opcode);
20347 return NULL;
20348 }
20349
20350 defn = opcode_definitions[opcode];
20351 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20352 defn += bytes_read;
20353
20354 for (i = 0; i < arg; ++i)
20355 {
20356 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20357 section);
20358 if (mac_ptr == NULL)
20359 {
20360 /* skip_form_bytes already issued the complaint. */
20361 return NULL;
20362 }
20363 }
20364
20365 return mac_ptr;
20366 }
20367
20368 /* A helper function which parses the header of a macro section.
20369 If the macro section is the extended (for now called "GNU") type,
20370 then this updates *OFFSET_SIZE. Returns a pointer to just after
20371 the header, or issues a complaint and returns NULL on error. */
20372
20373 static const gdb_byte *
20374 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20375 bfd *abfd,
20376 const gdb_byte *mac_ptr,
20377 unsigned int *offset_size,
20378 int section_is_gnu)
20379 {
20380 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20381
20382 if (section_is_gnu)
20383 {
20384 unsigned int version, flags;
20385
20386 version = read_2_bytes (abfd, mac_ptr);
20387 if (version != 4)
20388 {
20389 complaint (&symfile_complaints,
20390 _("unrecognized version `%d' in .debug_macro section"),
20391 version);
20392 return NULL;
20393 }
20394 mac_ptr += 2;
20395
20396 flags = read_1_byte (abfd, mac_ptr);
20397 ++mac_ptr;
20398 *offset_size = (flags & 1) ? 8 : 4;
20399
20400 if ((flags & 2) != 0)
20401 /* We don't need the line table offset. */
20402 mac_ptr += *offset_size;
20403
20404 /* Vendor opcode descriptions. */
20405 if ((flags & 4) != 0)
20406 {
20407 unsigned int i, count;
20408
20409 count = read_1_byte (abfd, mac_ptr);
20410 ++mac_ptr;
20411 for (i = 0; i < count; ++i)
20412 {
20413 unsigned int opcode, bytes_read;
20414 unsigned long arg;
20415
20416 opcode = read_1_byte (abfd, mac_ptr);
20417 ++mac_ptr;
20418 opcode_definitions[opcode] = mac_ptr;
20419 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20420 mac_ptr += bytes_read;
20421 mac_ptr += arg;
20422 }
20423 }
20424 }
20425
20426 return mac_ptr;
20427 }
20428
20429 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20430 including DW_MACRO_GNU_transparent_include. */
20431
20432 static void
20433 dwarf_decode_macro_bytes (bfd *abfd,
20434 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20435 struct macro_source_file *current_file,
20436 struct line_header *lh, const char *comp_dir,
20437 struct dwarf2_section_info *section,
20438 int section_is_gnu, int section_is_dwz,
20439 unsigned int offset_size,
20440 struct objfile *objfile,
20441 htab_t include_hash)
20442 {
20443 enum dwarf_macro_record_type macinfo_type;
20444 int at_commandline;
20445 const gdb_byte *opcode_definitions[256];
20446
20447 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20448 &offset_size, section_is_gnu);
20449 if (mac_ptr == NULL)
20450 {
20451 /* We already issued a complaint. */
20452 return;
20453 }
20454
20455 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20456 GDB is still reading the definitions from command line. First
20457 DW_MACINFO_start_file will need to be ignored as it was already executed
20458 to create CURRENT_FILE for the main source holding also the command line
20459 definitions. On first met DW_MACINFO_start_file this flag is reset to
20460 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20461
20462 at_commandline = 1;
20463
20464 do
20465 {
20466 /* Do we at least have room for a macinfo type byte? */
20467 if (mac_ptr >= mac_end)
20468 {
20469 dwarf2_section_buffer_overflow_complaint (section);
20470 break;
20471 }
20472
20473 macinfo_type = read_1_byte (abfd, mac_ptr);
20474 mac_ptr++;
20475
20476 /* Note that we rely on the fact that the corresponding GNU and
20477 DWARF constants are the same. */
20478 switch (macinfo_type)
20479 {
20480 /* A zero macinfo type indicates the end of the macro
20481 information. */
20482 case 0:
20483 break;
20484
20485 case DW_MACRO_GNU_define:
20486 case DW_MACRO_GNU_undef:
20487 case DW_MACRO_GNU_define_indirect:
20488 case DW_MACRO_GNU_undef_indirect:
20489 case DW_MACRO_GNU_define_indirect_alt:
20490 case DW_MACRO_GNU_undef_indirect_alt:
20491 {
20492 unsigned int bytes_read;
20493 int line;
20494 const char *body;
20495 int is_define;
20496
20497 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20498 mac_ptr += bytes_read;
20499
20500 if (macinfo_type == DW_MACRO_GNU_define
20501 || macinfo_type == DW_MACRO_GNU_undef)
20502 {
20503 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20504 mac_ptr += bytes_read;
20505 }
20506 else
20507 {
20508 LONGEST str_offset;
20509
20510 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20511 mac_ptr += offset_size;
20512
20513 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20514 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20515 || section_is_dwz)
20516 {
20517 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20518
20519 body = read_indirect_string_from_dwz (dwz, str_offset);
20520 }
20521 else
20522 body = read_indirect_string_at_offset (abfd, str_offset);
20523 }
20524
20525 is_define = (macinfo_type == DW_MACRO_GNU_define
20526 || macinfo_type == DW_MACRO_GNU_define_indirect
20527 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20528 if (! current_file)
20529 {
20530 /* DWARF violation as no main source is present. */
20531 complaint (&symfile_complaints,
20532 _("debug info with no main source gives macro %s "
20533 "on line %d: %s"),
20534 is_define ? _("definition") : _("undefinition"),
20535 line, body);
20536 break;
20537 }
20538 if ((line == 0 && !at_commandline)
20539 || (line != 0 && at_commandline))
20540 complaint (&symfile_complaints,
20541 _("debug info gives %s macro %s with %s line %d: %s"),
20542 at_commandline ? _("command-line") : _("in-file"),
20543 is_define ? _("definition") : _("undefinition"),
20544 line == 0 ? _("zero") : _("non-zero"), line, body);
20545
20546 if (is_define)
20547 parse_macro_definition (current_file, line, body);
20548 else
20549 {
20550 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20551 || macinfo_type == DW_MACRO_GNU_undef_indirect
20552 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20553 macro_undef (current_file, line, body);
20554 }
20555 }
20556 break;
20557
20558 case DW_MACRO_GNU_start_file:
20559 {
20560 unsigned int bytes_read;
20561 int line, file;
20562
20563 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20564 mac_ptr += bytes_read;
20565 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20566 mac_ptr += bytes_read;
20567
20568 if ((line == 0 && !at_commandline)
20569 || (line != 0 && at_commandline))
20570 complaint (&symfile_complaints,
20571 _("debug info gives source %d included "
20572 "from %s at %s line %d"),
20573 file, at_commandline ? _("command-line") : _("file"),
20574 line == 0 ? _("zero") : _("non-zero"), line);
20575
20576 if (at_commandline)
20577 {
20578 /* This DW_MACRO_GNU_start_file was executed in the
20579 pass one. */
20580 at_commandline = 0;
20581 }
20582 else
20583 current_file = macro_start_file (file, line,
20584 current_file, comp_dir,
20585 lh, objfile);
20586 }
20587 break;
20588
20589 case DW_MACRO_GNU_end_file:
20590 if (! current_file)
20591 complaint (&symfile_complaints,
20592 _("macro debug info has an unmatched "
20593 "`close_file' directive"));
20594 else
20595 {
20596 current_file = current_file->included_by;
20597 if (! current_file)
20598 {
20599 enum dwarf_macro_record_type next_type;
20600
20601 /* GCC circa March 2002 doesn't produce the zero
20602 type byte marking the end of the compilation
20603 unit. Complain if it's not there, but exit no
20604 matter what. */
20605
20606 /* Do we at least have room for a macinfo type byte? */
20607 if (mac_ptr >= mac_end)
20608 {
20609 dwarf2_section_buffer_overflow_complaint (section);
20610 return;
20611 }
20612
20613 /* We don't increment mac_ptr here, so this is just
20614 a look-ahead. */
20615 next_type = read_1_byte (abfd, mac_ptr);
20616 if (next_type != 0)
20617 complaint (&symfile_complaints,
20618 _("no terminating 0-type entry for "
20619 "macros in `.debug_macinfo' section"));
20620
20621 return;
20622 }
20623 }
20624 break;
20625
20626 case DW_MACRO_GNU_transparent_include:
20627 case DW_MACRO_GNU_transparent_include_alt:
20628 {
20629 LONGEST offset;
20630 void **slot;
20631 bfd *include_bfd = abfd;
20632 struct dwarf2_section_info *include_section = section;
20633 struct dwarf2_section_info alt_section;
20634 const gdb_byte *include_mac_end = mac_end;
20635 int is_dwz = section_is_dwz;
20636 const gdb_byte *new_mac_ptr;
20637
20638 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20639 mac_ptr += offset_size;
20640
20641 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20642 {
20643 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20644
20645 dwarf2_read_section (dwarf2_per_objfile->objfile,
20646 &dwz->macro);
20647
20648 include_section = &dwz->macro;
20649 include_bfd = get_section_bfd_owner (include_section);
20650 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20651 is_dwz = 1;
20652 }
20653
20654 new_mac_ptr = include_section->buffer + offset;
20655 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20656
20657 if (*slot != NULL)
20658 {
20659 /* This has actually happened; see
20660 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20661 complaint (&symfile_complaints,
20662 _("recursive DW_MACRO_GNU_transparent_include in "
20663 ".debug_macro section"));
20664 }
20665 else
20666 {
20667 *slot = (void *) new_mac_ptr;
20668
20669 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20670 include_mac_end, current_file,
20671 lh, comp_dir,
20672 section, section_is_gnu, is_dwz,
20673 offset_size, objfile, include_hash);
20674
20675 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20676 }
20677 }
20678 break;
20679
20680 case DW_MACINFO_vendor_ext:
20681 if (!section_is_gnu)
20682 {
20683 unsigned int bytes_read;
20684 int constant;
20685
20686 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20687 mac_ptr += bytes_read;
20688 read_direct_string (abfd, mac_ptr, &bytes_read);
20689 mac_ptr += bytes_read;
20690
20691 /* We don't recognize any vendor extensions. */
20692 break;
20693 }
20694 /* FALLTHROUGH */
20695
20696 default:
20697 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20698 mac_ptr, mac_end, abfd, offset_size,
20699 section);
20700 if (mac_ptr == NULL)
20701 return;
20702 break;
20703 }
20704 } while (macinfo_type != 0);
20705 }
20706
20707 static void
20708 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20709 const char *comp_dir, int section_is_gnu)
20710 {
20711 struct objfile *objfile = dwarf2_per_objfile->objfile;
20712 struct line_header *lh = cu->line_header;
20713 bfd *abfd;
20714 const gdb_byte *mac_ptr, *mac_end;
20715 struct macro_source_file *current_file = 0;
20716 enum dwarf_macro_record_type macinfo_type;
20717 unsigned int offset_size = cu->header.offset_size;
20718 const gdb_byte *opcode_definitions[256];
20719 struct cleanup *cleanup;
20720 htab_t include_hash;
20721 void **slot;
20722 struct dwarf2_section_info *section;
20723 const char *section_name;
20724
20725 if (cu->dwo_unit != NULL)
20726 {
20727 if (section_is_gnu)
20728 {
20729 section = &cu->dwo_unit->dwo_file->sections.macro;
20730 section_name = ".debug_macro.dwo";
20731 }
20732 else
20733 {
20734 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20735 section_name = ".debug_macinfo.dwo";
20736 }
20737 }
20738 else
20739 {
20740 if (section_is_gnu)
20741 {
20742 section = &dwarf2_per_objfile->macro;
20743 section_name = ".debug_macro";
20744 }
20745 else
20746 {
20747 section = &dwarf2_per_objfile->macinfo;
20748 section_name = ".debug_macinfo";
20749 }
20750 }
20751
20752 dwarf2_read_section (objfile, section);
20753 if (section->buffer == NULL)
20754 {
20755 complaint (&symfile_complaints, _("missing %s section"), section_name);
20756 return;
20757 }
20758 abfd = get_section_bfd_owner (section);
20759
20760 /* First pass: Find the name of the base filename.
20761 This filename is needed in order to process all macros whose definition
20762 (or undefinition) comes from the command line. These macros are defined
20763 before the first DW_MACINFO_start_file entry, and yet still need to be
20764 associated to the base file.
20765
20766 To determine the base file name, we scan the macro definitions until we
20767 reach the first DW_MACINFO_start_file entry. We then initialize
20768 CURRENT_FILE accordingly so that any macro definition found before the
20769 first DW_MACINFO_start_file can still be associated to the base file. */
20770
20771 mac_ptr = section->buffer + offset;
20772 mac_end = section->buffer + section->size;
20773
20774 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20775 &offset_size, section_is_gnu);
20776 if (mac_ptr == NULL)
20777 {
20778 /* We already issued a complaint. */
20779 return;
20780 }
20781
20782 do
20783 {
20784 /* Do we at least have room for a macinfo type byte? */
20785 if (mac_ptr >= mac_end)
20786 {
20787 /* Complaint is printed during the second pass as GDB will probably
20788 stop the first pass earlier upon finding
20789 DW_MACINFO_start_file. */
20790 break;
20791 }
20792
20793 macinfo_type = read_1_byte (abfd, mac_ptr);
20794 mac_ptr++;
20795
20796 /* Note that we rely on the fact that the corresponding GNU and
20797 DWARF constants are the same. */
20798 switch (macinfo_type)
20799 {
20800 /* A zero macinfo type indicates the end of the macro
20801 information. */
20802 case 0:
20803 break;
20804
20805 case DW_MACRO_GNU_define:
20806 case DW_MACRO_GNU_undef:
20807 /* Only skip the data by MAC_PTR. */
20808 {
20809 unsigned int bytes_read;
20810
20811 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20812 mac_ptr += bytes_read;
20813 read_direct_string (abfd, mac_ptr, &bytes_read);
20814 mac_ptr += bytes_read;
20815 }
20816 break;
20817
20818 case DW_MACRO_GNU_start_file:
20819 {
20820 unsigned int bytes_read;
20821 int line, file;
20822
20823 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20824 mac_ptr += bytes_read;
20825 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20826 mac_ptr += bytes_read;
20827
20828 current_file = macro_start_file (file, line, current_file,
20829 comp_dir, lh, objfile);
20830 }
20831 break;
20832
20833 case DW_MACRO_GNU_end_file:
20834 /* No data to skip by MAC_PTR. */
20835 break;
20836
20837 case DW_MACRO_GNU_define_indirect:
20838 case DW_MACRO_GNU_undef_indirect:
20839 case DW_MACRO_GNU_define_indirect_alt:
20840 case DW_MACRO_GNU_undef_indirect_alt:
20841 {
20842 unsigned int bytes_read;
20843
20844 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20845 mac_ptr += bytes_read;
20846 mac_ptr += offset_size;
20847 }
20848 break;
20849
20850 case DW_MACRO_GNU_transparent_include:
20851 case DW_MACRO_GNU_transparent_include_alt:
20852 /* Note that, according to the spec, a transparent include
20853 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20854 skip this opcode. */
20855 mac_ptr += offset_size;
20856 break;
20857
20858 case DW_MACINFO_vendor_ext:
20859 /* Only skip the data by MAC_PTR. */
20860 if (!section_is_gnu)
20861 {
20862 unsigned int bytes_read;
20863
20864 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20865 mac_ptr += bytes_read;
20866 read_direct_string (abfd, mac_ptr, &bytes_read);
20867 mac_ptr += bytes_read;
20868 }
20869 /* FALLTHROUGH */
20870
20871 default:
20872 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20873 mac_ptr, mac_end, abfd, offset_size,
20874 section);
20875 if (mac_ptr == NULL)
20876 return;
20877 break;
20878 }
20879 } while (macinfo_type != 0 && current_file == NULL);
20880
20881 /* Second pass: Process all entries.
20882
20883 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20884 command-line macro definitions/undefinitions. This flag is unset when we
20885 reach the first DW_MACINFO_start_file entry. */
20886
20887 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20888 NULL, xcalloc, xfree);
20889 cleanup = make_cleanup_htab_delete (include_hash);
20890 mac_ptr = section->buffer + offset;
20891 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20892 *slot = (void *) mac_ptr;
20893 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20894 current_file, lh, comp_dir, section,
20895 section_is_gnu, 0,
20896 offset_size, objfile, include_hash);
20897 do_cleanups (cleanup);
20898 }
20899
20900 /* Check if the attribute's form is a DW_FORM_block*
20901 if so return true else false. */
20902
20903 static int
20904 attr_form_is_block (const struct attribute *attr)
20905 {
20906 return (attr == NULL ? 0 :
20907 attr->form == DW_FORM_block1
20908 || attr->form == DW_FORM_block2
20909 || attr->form == DW_FORM_block4
20910 || attr->form == DW_FORM_block
20911 || attr->form == DW_FORM_exprloc);
20912 }
20913
20914 /* Return non-zero if ATTR's value is a section offset --- classes
20915 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20916 You may use DW_UNSND (attr) to retrieve such offsets.
20917
20918 Section 7.5.4, "Attribute Encodings", explains that no attribute
20919 may have a value that belongs to more than one of these classes; it
20920 would be ambiguous if we did, because we use the same forms for all
20921 of them. */
20922
20923 static int
20924 attr_form_is_section_offset (const struct attribute *attr)
20925 {
20926 return (attr->form == DW_FORM_data4
20927 || attr->form == DW_FORM_data8
20928 || attr->form == DW_FORM_sec_offset);
20929 }
20930
20931 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20932 zero otherwise. When this function returns true, you can apply
20933 dwarf2_get_attr_constant_value to it.
20934
20935 However, note that for some attributes you must check
20936 attr_form_is_section_offset before using this test. DW_FORM_data4
20937 and DW_FORM_data8 are members of both the constant class, and of
20938 the classes that contain offsets into other debug sections
20939 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20940 that, if an attribute's can be either a constant or one of the
20941 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20942 taken as section offsets, not constants. */
20943
20944 static int
20945 attr_form_is_constant (const struct attribute *attr)
20946 {
20947 switch (attr->form)
20948 {
20949 case DW_FORM_sdata:
20950 case DW_FORM_udata:
20951 case DW_FORM_data1:
20952 case DW_FORM_data2:
20953 case DW_FORM_data4:
20954 case DW_FORM_data8:
20955 return 1;
20956 default:
20957 return 0;
20958 }
20959 }
20960
20961
20962 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20963 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20964
20965 static int
20966 attr_form_is_ref (const struct attribute *attr)
20967 {
20968 switch (attr->form)
20969 {
20970 case DW_FORM_ref_addr:
20971 case DW_FORM_ref1:
20972 case DW_FORM_ref2:
20973 case DW_FORM_ref4:
20974 case DW_FORM_ref8:
20975 case DW_FORM_ref_udata:
20976 case DW_FORM_GNU_ref_alt:
20977 return 1;
20978 default:
20979 return 0;
20980 }
20981 }
20982
20983 /* Return the .debug_loc section to use for CU.
20984 For DWO files use .debug_loc.dwo. */
20985
20986 static struct dwarf2_section_info *
20987 cu_debug_loc_section (struct dwarf2_cu *cu)
20988 {
20989 if (cu->dwo_unit)
20990 return &cu->dwo_unit->dwo_file->sections.loc;
20991 return &dwarf2_per_objfile->loc;
20992 }
20993
20994 /* A helper function that fills in a dwarf2_loclist_baton. */
20995
20996 static void
20997 fill_in_loclist_baton (struct dwarf2_cu *cu,
20998 struct dwarf2_loclist_baton *baton,
20999 const struct attribute *attr)
21000 {
21001 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21002
21003 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21004
21005 baton->per_cu = cu->per_cu;
21006 gdb_assert (baton->per_cu);
21007 /* We don't know how long the location list is, but make sure we
21008 don't run off the edge of the section. */
21009 baton->size = section->size - DW_UNSND (attr);
21010 baton->data = section->buffer + DW_UNSND (attr);
21011 baton->base_address = cu->base_address;
21012 baton->from_dwo = cu->dwo_unit != NULL;
21013 }
21014
21015 static void
21016 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21017 struct dwarf2_cu *cu, int is_block)
21018 {
21019 struct objfile *objfile = dwarf2_per_objfile->objfile;
21020 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21021
21022 if (attr_form_is_section_offset (attr)
21023 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21024 the section. If so, fall through to the complaint in the
21025 other branch. */
21026 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21027 {
21028 struct dwarf2_loclist_baton *baton;
21029
21030 baton = obstack_alloc (&objfile->objfile_obstack,
21031 sizeof (struct dwarf2_loclist_baton));
21032
21033 fill_in_loclist_baton (cu, baton, attr);
21034
21035 if (cu->base_known == 0)
21036 complaint (&symfile_complaints,
21037 _("Location list used without "
21038 "specifying the CU base address."));
21039
21040 SYMBOL_ACLASS_INDEX (sym) = (is_block
21041 ? dwarf2_loclist_block_index
21042 : dwarf2_loclist_index);
21043 SYMBOL_LOCATION_BATON (sym) = baton;
21044 }
21045 else
21046 {
21047 struct dwarf2_locexpr_baton *baton;
21048
21049 baton = obstack_alloc (&objfile->objfile_obstack,
21050 sizeof (struct dwarf2_locexpr_baton));
21051 baton->per_cu = cu->per_cu;
21052 gdb_assert (baton->per_cu);
21053
21054 if (attr_form_is_block (attr))
21055 {
21056 /* Note that we're just copying the block's data pointer
21057 here, not the actual data. We're still pointing into the
21058 info_buffer for SYM's objfile; right now we never release
21059 that buffer, but when we do clean up properly this may
21060 need to change. */
21061 baton->size = DW_BLOCK (attr)->size;
21062 baton->data = DW_BLOCK (attr)->data;
21063 }
21064 else
21065 {
21066 dwarf2_invalid_attrib_class_complaint ("location description",
21067 SYMBOL_NATURAL_NAME (sym));
21068 baton->size = 0;
21069 }
21070
21071 SYMBOL_ACLASS_INDEX (sym) = (is_block
21072 ? dwarf2_locexpr_block_index
21073 : dwarf2_locexpr_index);
21074 SYMBOL_LOCATION_BATON (sym) = baton;
21075 }
21076 }
21077
21078 /* Return the OBJFILE associated with the compilation unit CU. If CU
21079 came from a separate debuginfo file, then the master objfile is
21080 returned. */
21081
21082 struct objfile *
21083 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21084 {
21085 struct objfile *objfile = per_cu->objfile;
21086
21087 /* Return the master objfile, so that we can report and look up the
21088 correct file containing this variable. */
21089 if (objfile->separate_debug_objfile_backlink)
21090 objfile = objfile->separate_debug_objfile_backlink;
21091
21092 return objfile;
21093 }
21094
21095 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21096 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21097 CU_HEADERP first. */
21098
21099 static const struct comp_unit_head *
21100 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21101 struct dwarf2_per_cu_data *per_cu)
21102 {
21103 const gdb_byte *info_ptr;
21104
21105 if (per_cu->cu)
21106 return &per_cu->cu->header;
21107
21108 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21109
21110 memset (cu_headerp, 0, sizeof (*cu_headerp));
21111 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21112
21113 return cu_headerp;
21114 }
21115
21116 /* Return the address size given in the compilation unit header for CU. */
21117
21118 int
21119 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21120 {
21121 struct comp_unit_head cu_header_local;
21122 const struct comp_unit_head *cu_headerp;
21123
21124 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21125
21126 return cu_headerp->addr_size;
21127 }
21128
21129 /* Return the offset size given in the compilation unit header for CU. */
21130
21131 int
21132 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21133 {
21134 struct comp_unit_head cu_header_local;
21135 const struct comp_unit_head *cu_headerp;
21136
21137 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21138
21139 return cu_headerp->offset_size;
21140 }
21141
21142 /* See its dwarf2loc.h declaration. */
21143
21144 int
21145 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21146 {
21147 struct comp_unit_head cu_header_local;
21148 const struct comp_unit_head *cu_headerp;
21149
21150 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21151
21152 if (cu_headerp->version == 2)
21153 return cu_headerp->addr_size;
21154 else
21155 return cu_headerp->offset_size;
21156 }
21157
21158 /* Return the text offset of the CU. The returned offset comes from
21159 this CU's objfile. If this objfile came from a separate debuginfo
21160 file, then the offset may be different from the corresponding
21161 offset in the parent objfile. */
21162
21163 CORE_ADDR
21164 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21165 {
21166 struct objfile *objfile = per_cu->objfile;
21167
21168 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21169 }
21170
21171 /* Locate the .debug_info compilation unit from CU's objfile which contains
21172 the DIE at OFFSET. Raises an error on failure. */
21173
21174 static struct dwarf2_per_cu_data *
21175 dwarf2_find_containing_comp_unit (sect_offset offset,
21176 unsigned int offset_in_dwz,
21177 struct objfile *objfile)
21178 {
21179 struct dwarf2_per_cu_data *this_cu;
21180 int low, high;
21181 const sect_offset *cu_off;
21182
21183 low = 0;
21184 high = dwarf2_per_objfile->n_comp_units - 1;
21185 while (high > low)
21186 {
21187 struct dwarf2_per_cu_data *mid_cu;
21188 int mid = low + (high - low) / 2;
21189
21190 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21191 cu_off = &mid_cu->offset;
21192 if (mid_cu->is_dwz > offset_in_dwz
21193 || (mid_cu->is_dwz == offset_in_dwz
21194 && cu_off->sect_off >= offset.sect_off))
21195 high = mid;
21196 else
21197 low = mid + 1;
21198 }
21199 gdb_assert (low == high);
21200 this_cu = dwarf2_per_objfile->all_comp_units[low];
21201 cu_off = &this_cu->offset;
21202 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21203 {
21204 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21205 error (_("Dwarf Error: could not find partial DIE containing "
21206 "offset 0x%lx [in module %s]"),
21207 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21208
21209 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21210 <= offset.sect_off);
21211 return dwarf2_per_objfile->all_comp_units[low-1];
21212 }
21213 else
21214 {
21215 this_cu = dwarf2_per_objfile->all_comp_units[low];
21216 if (low == dwarf2_per_objfile->n_comp_units - 1
21217 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21218 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21219 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21220 return this_cu;
21221 }
21222 }
21223
21224 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21225
21226 static void
21227 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21228 {
21229 memset (cu, 0, sizeof (*cu));
21230 per_cu->cu = cu;
21231 cu->per_cu = per_cu;
21232 cu->objfile = per_cu->objfile;
21233 obstack_init (&cu->comp_unit_obstack);
21234 }
21235
21236 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21237
21238 static void
21239 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21240 enum language pretend_language)
21241 {
21242 struct attribute *attr;
21243
21244 /* Set the language we're debugging. */
21245 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21246 if (attr)
21247 set_cu_language (DW_UNSND (attr), cu);
21248 else
21249 {
21250 cu->language = pretend_language;
21251 cu->language_defn = language_def (cu->language);
21252 }
21253
21254 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21255 if (attr)
21256 cu->producer = DW_STRING (attr);
21257 }
21258
21259 /* Release one cached compilation unit, CU. We unlink it from the tree
21260 of compilation units, but we don't remove it from the read_in_chain;
21261 the caller is responsible for that.
21262 NOTE: DATA is a void * because this function is also used as a
21263 cleanup routine. */
21264
21265 static void
21266 free_heap_comp_unit (void *data)
21267 {
21268 struct dwarf2_cu *cu = data;
21269
21270 gdb_assert (cu->per_cu != NULL);
21271 cu->per_cu->cu = NULL;
21272 cu->per_cu = NULL;
21273
21274 obstack_free (&cu->comp_unit_obstack, NULL);
21275
21276 xfree (cu);
21277 }
21278
21279 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21280 when we're finished with it. We can't free the pointer itself, but be
21281 sure to unlink it from the cache. Also release any associated storage. */
21282
21283 static void
21284 free_stack_comp_unit (void *data)
21285 {
21286 struct dwarf2_cu *cu = data;
21287
21288 gdb_assert (cu->per_cu != NULL);
21289 cu->per_cu->cu = NULL;
21290 cu->per_cu = NULL;
21291
21292 obstack_free (&cu->comp_unit_obstack, NULL);
21293 cu->partial_dies = NULL;
21294 }
21295
21296 /* Free all cached compilation units. */
21297
21298 static void
21299 free_cached_comp_units (void *data)
21300 {
21301 struct dwarf2_per_cu_data *per_cu, **last_chain;
21302
21303 per_cu = dwarf2_per_objfile->read_in_chain;
21304 last_chain = &dwarf2_per_objfile->read_in_chain;
21305 while (per_cu != NULL)
21306 {
21307 struct dwarf2_per_cu_data *next_cu;
21308
21309 next_cu = per_cu->cu->read_in_chain;
21310
21311 free_heap_comp_unit (per_cu->cu);
21312 *last_chain = next_cu;
21313
21314 per_cu = next_cu;
21315 }
21316 }
21317
21318 /* Increase the age counter on each cached compilation unit, and free
21319 any that are too old. */
21320
21321 static void
21322 age_cached_comp_units (void)
21323 {
21324 struct dwarf2_per_cu_data *per_cu, **last_chain;
21325
21326 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21327 per_cu = dwarf2_per_objfile->read_in_chain;
21328 while (per_cu != NULL)
21329 {
21330 per_cu->cu->last_used ++;
21331 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21332 dwarf2_mark (per_cu->cu);
21333 per_cu = per_cu->cu->read_in_chain;
21334 }
21335
21336 per_cu = dwarf2_per_objfile->read_in_chain;
21337 last_chain = &dwarf2_per_objfile->read_in_chain;
21338 while (per_cu != NULL)
21339 {
21340 struct dwarf2_per_cu_data *next_cu;
21341
21342 next_cu = per_cu->cu->read_in_chain;
21343
21344 if (!per_cu->cu->mark)
21345 {
21346 free_heap_comp_unit (per_cu->cu);
21347 *last_chain = next_cu;
21348 }
21349 else
21350 last_chain = &per_cu->cu->read_in_chain;
21351
21352 per_cu = next_cu;
21353 }
21354 }
21355
21356 /* Remove a single compilation unit from the cache. */
21357
21358 static void
21359 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21360 {
21361 struct dwarf2_per_cu_data *per_cu, **last_chain;
21362
21363 per_cu = dwarf2_per_objfile->read_in_chain;
21364 last_chain = &dwarf2_per_objfile->read_in_chain;
21365 while (per_cu != NULL)
21366 {
21367 struct dwarf2_per_cu_data *next_cu;
21368
21369 next_cu = per_cu->cu->read_in_chain;
21370
21371 if (per_cu == target_per_cu)
21372 {
21373 free_heap_comp_unit (per_cu->cu);
21374 per_cu->cu = NULL;
21375 *last_chain = next_cu;
21376 break;
21377 }
21378 else
21379 last_chain = &per_cu->cu->read_in_chain;
21380
21381 per_cu = next_cu;
21382 }
21383 }
21384
21385 /* Release all extra memory associated with OBJFILE. */
21386
21387 void
21388 dwarf2_free_objfile (struct objfile *objfile)
21389 {
21390 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21391
21392 if (dwarf2_per_objfile == NULL)
21393 return;
21394
21395 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21396 free_cached_comp_units (NULL);
21397
21398 if (dwarf2_per_objfile->quick_file_names_table)
21399 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21400
21401 /* Everything else should be on the objfile obstack. */
21402 }
21403
21404 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21405 We store these in a hash table separate from the DIEs, and preserve them
21406 when the DIEs are flushed out of cache.
21407
21408 The CU "per_cu" pointer is needed because offset alone is not enough to
21409 uniquely identify the type. A file may have multiple .debug_types sections,
21410 or the type may come from a DWO file. Furthermore, while it's more logical
21411 to use per_cu->section+offset, with Fission the section with the data is in
21412 the DWO file but we don't know that section at the point we need it.
21413 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21414 because we can enter the lookup routine, get_die_type_at_offset, from
21415 outside this file, and thus won't necessarily have PER_CU->cu.
21416 Fortunately, PER_CU is stable for the life of the objfile. */
21417
21418 struct dwarf2_per_cu_offset_and_type
21419 {
21420 const struct dwarf2_per_cu_data *per_cu;
21421 sect_offset offset;
21422 struct type *type;
21423 };
21424
21425 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21426
21427 static hashval_t
21428 per_cu_offset_and_type_hash (const void *item)
21429 {
21430 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21431
21432 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21433 }
21434
21435 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21436
21437 static int
21438 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21439 {
21440 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21441 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21442
21443 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21444 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21445 }
21446
21447 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21448 table if necessary. For convenience, return TYPE.
21449
21450 The DIEs reading must have careful ordering to:
21451 * Not cause infite loops trying to read in DIEs as a prerequisite for
21452 reading current DIE.
21453 * Not trying to dereference contents of still incompletely read in types
21454 while reading in other DIEs.
21455 * Enable referencing still incompletely read in types just by a pointer to
21456 the type without accessing its fields.
21457
21458 Therefore caller should follow these rules:
21459 * Try to fetch any prerequisite types we may need to build this DIE type
21460 before building the type and calling set_die_type.
21461 * After building type call set_die_type for current DIE as soon as
21462 possible before fetching more types to complete the current type.
21463 * Make the type as complete as possible before fetching more types. */
21464
21465 static struct type *
21466 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21467 {
21468 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21469 struct objfile *objfile = cu->objfile;
21470
21471 /* For Ada types, make sure that the gnat-specific data is always
21472 initialized (if not already set). There are a few types where
21473 we should not be doing so, because the type-specific area is
21474 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21475 where the type-specific area is used to store the floatformat).
21476 But this is not a problem, because the gnat-specific information
21477 is actually not needed for these types. */
21478 if (need_gnat_info (cu)
21479 && TYPE_CODE (type) != TYPE_CODE_FUNC
21480 && TYPE_CODE (type) != TYPE_CODE_FLT
21481 && !HAVE_GNAT_AUX_INFO (type))
21482 INIT_GNAT_SPECIFIC (type);
21483
21484 if (dwarf2_per_objfile->die_type_hash == NULL)
21485 {
21486 dwarf2_per_objfile->die_type_hash =
21487 htab_create_alloc_ex (127,
21488 per_cu_offset_and_type_hash,
21489 per_cu_offset_and_type_eq,
21490 NULL,
21491 &objfile->objfile_obstack,
21492 hashtab_obstack_allocate,
21493 dummy_obstack_deallocate);
21494 }
21495
21496 ofs.per_cu = cu->per_cu;
21497 ofs.offset = die->offset;
21498 ofs.type = type;
21499 slot = (struct dwarf2_per_cu_offset_and_type **)
21500 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21501 if (*slot)
21502 complaint (&symfile_complaints,
21503 _("A problem internal to GDB: DIE 0x%x has type already set"),
21504 die->offset.sect_off);
21505 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21506 **slot = ofs;
21507 return type;
21508 }
21509
21510 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21511 or return NULL if the die does not have a saved type. */
21512
21513 static struct type *
21514 get_die_type_at_offset (sect_offset offset,
21515 struct dwarf2_per_cu_data *per_cu)
21516 {
21517 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21518
21519 if (dwarf2_per_objfile->die_type_hash == NULL)
21520 return NULL;
21521
21522 ofs.per_cu = per_cu;
21523 ofs.offset = offset;
21524 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21525 if (slot)
21526 return slot->type;
21527 else
21528 return NULL;
21529 }
21530
21531 /* Look up the type for DIE in CU in die_type_hash,
21532 or return NULL if DIE does not have a saved type. */
21533
21534 static struct type *
21535 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21536 {
21537 return get_die_type_at_offset (die->offset, cu->per_cu);
21538 }
21539
21540 /* Add a dependence relationship from CU to REF_PER_CU. */
21541
21542 static void
21543 dwarf2_add_dependence (struct dwarf2_cu *cu,
21544 struct dwarf2_per_cu_data *ref_per_cu)
21545 {
21546 void **slot;
21547
21548 if (cu->dependencies == NULL)
21549 cu->dependencies
21550 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21551 NULL, &cu->comp_unit_obstack,
21552 hashtab_obstack_allocate,
21553 dummy_obstack_deallocate);
21554
21555 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21556 if (*slot == NULL)
21557 *slot = ref_per_cu;
21558 }
21559
21560 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21561 Set the mark field in every compilation unit in the
21562 cache that we must keep because we are keeping CU. */
21563
21564 static int
21565 dwarf2_mark_helper (void **slot, void *data)
21566 {
21567 struct dwarf2_per_cu_data *per_cu;
21568
21569 per_cu = (struct dwarf2_per_cu_data *) *slot;
21570
21571 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21572 reading of the chain. As such dependencies remain valid it is not much
21573 useful to track and undo them during QUIT cleanups. */
21574 if (per_cu->cu == NULL)
21575 return 1;
21576
21577 if (per_cu->cu->mark)
21578 return 1;
21579 per_cu->cu->mark = 1;
21580
21581 if (per_cu->cu->dependencies != NULL)
21582 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21583
21584 return 1;
21585 }
21586
21587 /* Set the mark field in CU and in every other compilation unit in the
21588 cache that we must keep because we are keeping CU. */
21589
21590 static void
21591 dwarf2_mark (struct dwarf2_cu *cu)
21592 {
21593 if (cu->mark)
21594 return;
21595 cu->mark = 1;
21596 if (cu->dependencies != NULL)
21597 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21598 }
21599
21600 static void
21601 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21602 {
21603 while (per_cu)
21604 {
21605 per_cu->cu->mark = 0;
21606 per_cu = per_cu->cu->read_in_chain;
21607 }
21608 }
21609
21610 /* Trivial hash function for partial_die_info: the hash value of a DIE
21611 is its offset in .debug_info for this objfile. */
21612
21613 static hashval_t
21614 partial_die_hash (const void *item)
21615 {
21616 const struct partial_die_info *part_die = item;
21617
21618 return part_die->offset.sect_off;
21619 }
21620
21621 /* Trivial comparison function for partial_die_info structures: two DIEs
21622 are equal if they have the same offset. */
21623
21624 static int
21625 partial_die_eq (const void *item_lhs, const void *item_rhs)
21626 {
21627 const struct partial_die_info *part_die_lhs = item_lhs;
21628 const struct partial_die_info *part_die_rhs = item_rhs;
21629
21630 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21631 }
21632
21633 static struct cmd_list_element *set_dwarf2_cmdlist;
21634 static struct cmd_list_element *show_dwarf2_cmdlist;
21635
21636 static void
21637 set_dwarf2_cmd (char *args, int from_tty)
21638 {
21639 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21640 }
21641
21642 static void
21643 show_dwarf2_cmd (char *args, int from_tty)
21644 {
21645 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21646 }
21647
21648 /* Free data associated with OBJFILE, if necessary. */
21649
21650 static void
21651 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21652 {
21653 struct dwarf2_per_objfile *data = d;
21654 int ix;
21655
21656 /* Make sure we don't accidentally use dwarf2_per_objfile while
21657 cleaning up. */
21658 dwarf2_per_objfile = NULL;
21659
21660 for (ix = 0; ix < data->n_comp_units; ++ix)
21661 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21662
21663 for (ix = 0; ix < data->n_type_units; ++ix)
21664 VEC_free (dwarf2_per_cu_ptr,
21665 data->all_type_units[ix]->per_cu.imported_symtabs);
21666 xfree (data->all_type_units);
21667
21668 VEC_free (dwarf2_section_info_def, data->types);
21669
21670 if (data->dwo_files)
21671 free_dwo_files (data->dwo_files, objfile);
21672 if (data->dwp_file)
21673 gdb_bfd_unref (data->dwp_file->dbfd);
21674
21675 if (data->dwz_file && data->dwz_file->dwz_bfd)
21676 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21677 }
21678
21679 \f
21680 /* The "save gdb-index" command. */
21681
21682 /* The contents of the hash table we create when building the string
21683 table. */
21684 struct strtab_entry
21685 {
21686 offset_type offset;
21687 const char *str;
21688 };
21689
21690 /* Hash function for a strtab_entry.
21691
21692 Function is used only during write_hash_table so no index format backward
21693 compatibility is needed. */
21694
21695 static hashval_t
21696 hash_strtab_entry (const void *e)
21697 {
21698 const struct strtab_entry *entry = e;
21699 return mapped_index_string_hash (INT_MAX, entry->str);
21700 }
21701
21702 /* Equality function for a strtab_entry. */
21703
21704 static int
21705 eq_strtab_entry (const void *a, const void *b)
21706 {
21707 const struct strtab_entry *ea = a;
21708 const struct strtab_entry *eb = b;
21709 return !strcmp (ea->str, eb->str);
21710 }
21711
21712 /* Create a strtab_entry hash table. */
21713
21714 static htab_t
21715 create_strtab (void)
21716 {
21717 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21718 xfree, xcalloc, xfree);
21719 }
21720
21721 /* Add a string to the constant pool. Return the string's offset in
21722 host order. */
21723
21724 static offset_type
21725 add_string (htab_t table, struct obstack *cpool, const char *str)
21726 {
21727 void **slot;
21728 struct strtab_entry entry;
21729 struct strtab_entry *result;
21730
21731 entry.str = str;
21732 slot = htab_find_slot (table, &entry, INSERT);
21733 if (*slot)
21734 result = *slot;
21735 else
21736 {
21737 result = XNEW (struct strtab_entry);
21738 result->offset = obstack_object_size (cpool);
21739 result->str = str;
21740 obstack_grow_str0 (cpool, str);
21741 *slot = result;
21742 }
21743 return result->offset;
21744 }
21745
21746 /* An entry in the symbol table. */
21747 struct symtab_index_entry
21748 {
21749 /* The name of the symbol. */
21750 const char *name;
21751 /* The offset of the name in the constant pool. */
21752 offset_type index_offset;
21753 /* A sorted vector of the indices of all the CUs that hold an object
21754 of this name. */
21755 VEC (offset_type) *cu_indices;
21756 };
21757
21758 /* The symbol table. This is a power-of-2-sized hash table. */
21759 struct mapped_symtab
21760 {
21761 offset_type n_elements;
21762 offset_type size;
21763 struct symtab_index_entry **data;
21764 };
21765
21766 /* Hash function for a symtab_index_entry. */
21767
21768 static hashval_t
21769 hash_symtab_entry (const void *e)
21770 {
21771 const struct symtab_index_entry *entry = e;
21772 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21773 sizeof (offset_type) * VEC_length (offset_type,
21774 entry->cu_indices),
21775 0);
21776 }
21777
21778 /* Equality function for a symtab_index_entry. */
21779
21780 static int
21781 eq_symtab_entry (const void *a, const void *b)
21782 {
21783 const struct symtab_index_entry *ea = a;
21784 const struct symtab_index_entry *eb = b;
21785 int len = VEC_length (offset_type, ea->cu_indices);
21786 if (len != VEC_length (offset_type, eb->cu_indices))
21787 return 0;
21788 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21789 VEC_address (offset_type, eb->cu_indices),
21790 sizeof (offset_type) * len);
21791 }
21792
21793 /* Destroy a symtab_index_entry. */
21794
21795 static void
21796 delete_symtab_entry (void *p)
21797 {
21798 struct symtab_index_entry *entry = p;
21799 VEC_free (offset_type, entry->cu_indices);
21800 xfree (entry);
21801 }
21802
21803 /* Create a hash table holding symtab_index_entry objects. */
21804
21805 static htab_t
21806 create_symbol_hash_table (void)
21807 {
21808 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21809 delete_symtab_entry, xcalloc, xfree);
21810 }
21811
21812 /* Create a new mapped symtab object. */
21813
21814 static struct mapped_symtab *
21815 create_mapped_symtab (void)
21816 {
21817 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21818 symtab->n_elements = 0;
21819 symtab->size = 1024;
21820 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21821 return symtab;
21822 }
21823
21824 /* Destroy a mapped_symtab. */
21825
21826 static void
21827 cleanup_mapped_symtab (void *p)
21828 {
21829 struct mapped_symtab *symtab = p;
21830 /* The contents of the array are freed when the other hash table is
21831 destroyed. */
21832 xfree (symtab->data);
21833 xfree (symtab);
21834 }
21835
21836 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21837 the slot.
21838
21839 Function is used only during write_hash_table so no index format backward
21840 compatibility is needed. */
21841
21842 static struct symtab_index_entry **
21843 find_slot (struct mapped_symtab *symtab, const char *name)
21844 {
21845 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21846
21847 index = hash & (symtab->size - 1);
21848 step = ((hash * 17) & (symtab->size - 1)) | 1;
21849
21850 for (;;)
21851 {
21852 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21853 return &symtab->data[index];
21854 index = (index + step) & (symtab->size - 1);
21855 }
21856 }
21857
21858 /* Expand SYMTAB's hash table. */
21859
21860 static void
21861 hash_expand (struct mapped_symtab *symtab)
21862 {
21863 offset_type old_size = symtab->size;
21864 offset_type i;
21865 struct symtab_index_entry **old_entries = symtab->data;
21866
21867 symtab->size *= 2;
21868 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21869
21870 for (i = 0; i < old_size; ++i)
21871 {
21872 if (old_entries[i])
21873 {
21874 struct symtab_index_entry **slot = find_slot (symtab,
21875 old_entries[i]->name);
21876 *slot = old_entries[i];
21877 }
21878 }
21879
21880 xfree (old_entries);
21881 }
21882
21883 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21884 CU_INDEX is the index of the CU in which the symbol appears.
21885 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21886
21887 static void
21888 add_index_entry (struct mapped_symtab *symtab, const char *name,
21889 int is_static, gdb_index_symbol_kind kind,
21890 offset_type cu_index)
21891 {
21892 struct symtab_index_entry **slot;
21893 offset_type cu_index_and_attrs;
21894
21895 ++symtab->n_elements;
21896 if (4 * symtab->n_elements / 3 >= symtab->size)
21897 hash_expand (symtab);
21898
21899 slot = find_slot (symtab, name);
21900 if (!*slot)
21901 {
21902 *slot = XNEW (struct symtab_index_entry);
21903 (*slot)->name = name;
21904 /* index_offset is set later. */
21905 (*slot)->cu_indices = NULL;
21906 }
21907
21908 cu_index_and_attrs = 0;
21909 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21910 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21911 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21912
21913 /* We don't want to record an index value twice as we want to avoid the
21914 duplication.
21915 We process all global symbols and then all static symbols
21916 (which would allow us to avoid the duplication by only having to check
21917 the last entry pushed), but a symbol could have multiple kinds in one CU.
21918 To keep things simple we don't worry about the duplication here and
21919 sort and uniqufy the list after we've processed all symbols. */
21920 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21921 }
21922
21923 /* qsort helper routine for uniquify_cu_indices. */
21924
21925 static int
21926 offset_type_compare (const void *ap, const void *bp)
21927 {
21928 offset_type a = *(offset_type *) ap;
21929 offset_type b = *(offset_type *) bp;
21930
21931 return (a > b) - (b > a);
21932 }
21933
21934 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21935
21936 static void
21937 uniquify_cu_indices (struct mapped_symtab *symtab)
21938 {
21939 int i;
21940
21941 for (i = 0; i < symtab->size; ++i)
21942 {
21943 struct symtab_index_entry *entry = symtab->data[i];
21944
21945 if (entry
21946 && entry->cu_indices != NULL)
21947 {
21948 unsigned int next_to_insert, next_to_check;
21949 offset_type last_value;
21950
21951 qsort (VEC_address (offset_type, entry->cu_indices),
21952 VEC_length (offset_type, entry->cu_indices),
21953 sizeof (offset_type), offset_type_compare);
21954
21955 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21956 next_to_insert = 1;
21957 for (next_to_check = 1;
21958 next_to_check < VEC_length (offset_type, entry->cu_indices);
21959 ++next_to_check)
21960 {
21961 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21962 != last_value)
21963 {
21964 last_value = VEC_index (offset_type, entry->cu_indices,
21965 next_to_check);
21966 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21967 last_value);
21968 ++next_to_insert;
21969 }
21970 }
21971 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21972 }
21973 }
21974 }
21975
21976 /* Add a vector of indices to the constant pool. */
21977
21978 static offset_type
21979 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21980 struct symtab_index_entry *entry)
21981 {
21982 void **slot;
21983
21984 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21985 if (!*slot)
21986 {
21987 offset_type len = VEC_length (offset_type, entry->cu_indices);
21988 offset_type val = MAYBE_SWAP (len);
21989 offset_type iter;
21990 int i;
21991
21992 *slot = entry;
21993 entry->index_offset = obstack_object_size (cpool);
21994
21995 obstack_grow (cpool, &val, sizeof (val));
21996 for (i = 0;
21997 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21998 ++i)
21999 {
22000 val = MAYBE_SWAP (iter);
22001 obstack_grow (cpool, &val, sizeof (val));
22002 }
22003 }
22004 else
22005 {
22006 struct symtab_index_entry *old_entry = *slot;
22007 entry->index_offset = old_entry->index_offset;
22008 entry = old_entry;
22009 }
22010 return entry->index_offset;
22011 }
22012
22013 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22014 constant pool entries going into the obstack CPOOL. */
22015
22016 static void
22017 write_hash_table (struct mapped_symtab *symtab,
22018 struct obstack *output, struct obstack *cpool)
22019 {
22020 offset_type i;
22021 htab_t symbol_hash_table;
22022 htab_t str_table;
22023
22024 symbol_hash_table = create_symbol_hash_table ();
22025 str_table = create_strtab ();
22026
22027 /* We add all the index vectors to the constant pool first, to
22028 ensure alignment is ok. */
22029 for (i = 0; i < symtab->size; ++i)
22030 {
22031 if (symtab->data[i])
22032 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22033 }
22034
22035 /* Now write out the hash table. */
22036 for (i = 0; i < symtab->size; ++i)
22037 {
22038 offset_type str_off, vec_off;
22039
22040 if (symtab->data[i])
22041 {
22042 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22043 vec_off = symtab->data[i]->index_offset;
22044 }
22045 else
22046 {
22047 /* While 0 is a valid constant pool index, it is not valid
22048 to have 0 for both offsets. */
22049 str_off = 0;
22050 vec_off = 0;
22051 }
22052
22053 str_off = MAYBE_SWAP (str_off);
22054 vec_off = MAYBE_SWAP (vec_off);
22055
22056 obstack_grow (output, &str_off, sizeof (str_off));
22057 obstack_grow (output, &vec_off, sizeof (vec_off));
22058 }
22059
22060 htab_delete (str_table);
22061 htab_delete (symbol_hash_table);
22062 }
22063
22064 /* Struct to map psymtab to CU index in the index file. */
22065 struct psymtab_cu_index_map
22066 {
22067 struct partial_symtab *psymtab;
22068 unsigned int cu_index;
22069 };
22070
22071 static hashval_t
22072 hash_psymtab_cu_index (const void *item)
22073 {
22074 const struct psymtab_cu_index_map *map = item;
22075
22076 return htab_hash_pointer (map->psymtab);
22077 }
22078
22079 static int
22080 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22081 {
22082 const struct psymtab_cu_index_map *lhs = item_lhs;
22083 const struct psymtab_cu_index_map *rhs = item_rhs;
22084
22085 return lhs->psymtab == rhs->psymtab;
22086 }
22087
22088 /* Helper struct for building the address table. */
22089 struct addrmap_index_data
22090 {
22091 struct objfile *objfile;
22092 struct obstack *addr_obstack;
22093 htab_t cu_index_htab;
22094
22095 /* Non-zero if the previous_* fields are valid.
22096 We can't write an entry until we see the next entry (since it is only then
22097 that we know the end of the entry). */
22098 int previous_valid;
22099 /* Index of the CU in the table of all CUs in the index file. */
22100 unsigned int previous_cu_index;
22101 /* Start address of the CU. */
22102 CORE_ADDR previous_cu_start;
22103 };
22104
22105 /* Write an address entry to OBSTACK. */
22106
22107 static void
22108 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22109 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22110 {
22111 offset_type cu_index_to_write;
22112 gdb_byte addr[8];
22113 CORE_ADDR baseaddr;
22114
22115 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22116
22117 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22118 obstack_grow (obstack, addr, 8);
22119 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22120 obstack_grow (obstack, addr, 8);
22121 cu_index_to_write = MAYBE_SWAP (cu_index);
22122 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22123 }
22124
22125 /* Worker function for traversing an addrmap to build the address table. */
22126
22127 static int
22128 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22129 {
22130 struct addrmap_index_data *data = datap;
22131 struct partial_symtab *pst = obj;
22132
22133 if (data->previous_valid)
22134 add_address_entry (data->objfile, data->addr_obstack,
22135 data->previous_cu_start, start_addr,
22136 data->previous_cu_index);
22137
22138 data->previous_cu_start = start_addr;
22139 if (pst != NULL)
22140 {
22141 struct psymtab_cu_index_map find_map, *map;
22142 find_map.psymtab = pst;
22143 map = htab_find (data->cu_index_htab, &find_map);
22144 gdb_assert (map != NULL);
22145 data->previous_cu_index = map->cu_index;
22146 data->previous_valid = 1;
22147 }
22148 else
22149 data->previous_valid = 0;
22150
22151 return 0;
22152 }
22153
22154 /* Write OBJFILE's address map to OBSTACK.
22155 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22156 in the index file. */
22157
22158 static void
22159 write_address_map (struct objfile *objfile, struct obstack *obstack,
22160 htab_t cu_index_htab)
22161 {
22162 struct addrmap_index_data addrmap_index_data;
22163
22164 /* When writing the address table, we have to cope with the fact that
22165 the addrmap iterator only provides the start of a region; we have to
22166 wait until the next invocation to get the start of the next region. */
22167
22168 addrmap_index_data.objfile = objfile;
22169 addrmap_index_data.addr_obstack = obstack;
22170 addrmap_index_data.cu_index_htab = cu_index_htab;
22171 addrmap_index_data.previous_valid = 0;
22172
22173 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22174 &addrmap_index_data);
22175
22176 /* It's highly unlikely the last entry (end address = 0xff...ff)
22177 is valid, but we should still handle it.
22178 The end address is recorded as the start of the next region, but that
22179 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22180 anyway. */
22181 if (addrmap_index_data.previous_valid)
22182 add_address_entry (objfile, obstack,
22183 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22184 addrmap_index_data.previous_cu_index);
22185 }
22186
22187 /* Return the symbol kind of PSYM. */
22188
22189 static gdb_index_symbol_kind
22190 symbol_kind (struct partial_symbol *psym)
22191 {
22192 domain_enum domain = PSYMBOL_DOMAIN (psym);
22193 enum address_class aclass = PSYMBOL_CLASS (psym);
22194
22195 switch (domain)
22196 {
22197 case VAR_DOMAIN:
22198 switch (aclass)
22199 {
22200 case LOC_BLOCK:
22201 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22202 case LOC_TYPEDEF:
22203 return GDB_INDEX_SYMBOL_KIND_TYPE;
22204 case LOC_COMPUTED:
22205 case LOC_CONST_BYTES:
22206 case LOC_OPTIMIZED_OUT:
22207 case LOC_STATIC:
22208 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22209 case LOC_CONST:
22210 /* Note: It's currently impossible to recognize psyms as enum values
22211 short of reading the type info. For now punt. */
22212 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22213 default:
22214 /* There are other LOC_FOO values that one might want to classify
22215 as variables, but dwarf2read.c doesn't currently use them. */
22216 return GDB_INDEX_SYMBOL_KIND_OTHER;
22217 }
22218 case STRUCT_DOMAIN:
22219 return GDB_INDEX_SYMBOL_KIND_TYPE;
22220 default:
22221 return GDB_INDEX_SYMBOL_KIND_OTHER;
22222 }
22223 }
22224
22225 /* Add a list of partial symbols to SYMTAB. */
22226
22227 static void
22228 write_psymbols (struct mapped_symtab *symtab,
22229 htab_t psyms_seen,
22230 struct partial_symbol **psymp,
22231 int count,
22232 offset_type cu_index,
22233 int is_static)
22234 {
22235 for (; count-- > 0; ++psymp)
22236 {
22237 struct partial_symbol *psym = *psymp;
22238 void **slot;
22239
22240 if (SYMBOL_LANGUAGE (psym) == language_ada)
22241 error (_("Ada is not currently supported by the index"));
22242
22243 /* Only add a given psymbol once. */
22244 slot = htab_find_slot (psyms_seen, psym, INSERT);
22245 if (!*slot)
22246 {
22247 gdb_index_symbol_kind kind = symbol_kind (psym);
22248
22249 *slot = psym;
22250 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22251 is_static, kind, cu_index);
22252 }
22253 }
22254 }
22255
22256 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22257 exception if there is an error. */
22258
22259 static void
22260 write_obstack (FILE *file, struct obstack *obstack)
22261 {
22262 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22263 file)
22264 != obstack_object_size (obstack))
22265 error (_("couldn't data write to file"));
22266 }
22267
22268 /* Unlink a file if the argument is not NULL. */
22269
22270 static void
22271 unlink_if_set (void *p)
22272 {
22273 char **filename = p;
22274 if (*filename)
22275 unlink (*filename);
22276 }
22277
22278 /* A helper struct used when iterating over debug_types. */
22279 struct signatured_type_index_data
22280 {
22281 struct objfile *objfile;
22282 struct mapped_symtab *symtab;
22283 struct obstack *types_list;
22284 htab_t psyms_seen;
22285 int cu_index;
22286 };
22287
22288 /* A helper function that writes a single signatured_type to an
22289 obstack. */
22290
22291 static int
22292 write_one_signatured_type (void **slot, void *d)
22293 {
22294 struct signatured_type_index_data *info = d;
22295 struct signatured_type *entry = (struct signatured_type *) *slot;
22296 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22297 gdb_byte val[8];
22298
22299 write_psymbols (info->symtab,
22300 info->psyms_seen,
22301 info->objfile->global_psymbols.list
22302 + psymtab->globals_offset,
22303 psymtab->n_global_syms, info->cu_index,
22304 0);
22305 write_psymbols (info->symtab,
22306 info->psyms_seen,
22307 info->objfile->static_psymbols.list
22308 + psymtab->statics_offset,
22309 psymtab->n_static_syms, info->cu_index,
22310 1);
22311
22312 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22313 entry->per_cu.offset.sect_off);
22314 obstack_grow (info->types_list, val, 8);
22315 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22316 entry->type_offset_in_tu.cu_off);
22317 obstack_grow (info->types_list, val, 8);
22318 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22319 obstack_grow (info->types_list, val, 8);
22320
22321 ++info->cu_index;
22322
22323 return 1;
22324 }
22325
22326 /* Recurse into all "included" dependencies and write their symbols as
22327 if they appeared in this psymtab. */
22328
22329 static void
22330 recursively_write_psymbols (struct objfile *objfile,
22331 struct partial_symtab *psymtab,
22332 struct mapped_symtab *symtab,
22333 htab_t psyms_seen,
22334 offset_type cu_index)
22335 {
22336 int i;
22337
22338 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22339 if (psymtab->dependencies[i]->user != NULL)
22340 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22341 symtab, psyms_seen, cu_index);
22342
22343 write_psymbols (symtab,
22344 psyms_seen,
22345 objfile->global_psymbols.list + psymtab->globals_offset,
22346 psymtab->n_global_syms, cu_index,
22347 0);
22348 write_psymbols (symtab,
22349 psyms_seen,
22350 objfile->static_psymbols.list + psymtab->statics_offset,
22351 psymtab->n_static_syms, cu_index,
22352 1);
22353 }
22354
22355 /* Create an index file for OBJFILE in the directory DIR. */
22356
22357 static void
22358 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22359 {
22360 struct cleanup *cleanup;
22361 char *filename, *cleanup_filename;
22362 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22363 struct obstack cu_list, types_cu_list;
22364 int i;
22365 FILE *out_file;
22366 struct mapped_symtab *symtab;
22367 offset_type val, size_of_contents, total_len;
22368 struct stat st;
22369 htab_t psyms_seen;
22370 htab_t cu_index_htab;
22371 struct psymtab_cu_index_map *psymtab_cu_index_map;
22372
22373 if (dwarf2_per_objfile->using_index)
22374 error (_("Cannot use an index to create the index"));
22375
22376 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22377 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22378
22379 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22380 return;
22381
22382 if (stat (objfile_name (objfile), &st) < 0)
22383 perror_with_name (objfile_name (objfile));
22384
22385 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22386 INDEX_SUFFIX, (char *) NULL);
22387 cleanup = make_cleanup (xfree, filename);
22388
22389 out_file = gdb_fopen_cloexec (filename, "wb");
22390 if (!out_file)
22391 error (_("Can't open `%s' for writing"), filename);
22392
22393 cleanup_filename = filename;
22394 make_cleanup (unlink_if_set, &cleanup_filename);
22395
22396 symtab = create_mapped_symtab ();
22397 make_cleanup (cleanup_mapped_symtab, symtab);
22398
22399 obstack_init (&addr_obstack);
22400 make_cleanup_obstack_free (&addr_obstack);
22401
22402 obstack_init (&cu_list);
22403 make_cleanup_obstack_free (&cu_list);
22404
22405 obstack_init (&types_cu_list);
22406 make_cleanup_obstack_free (&types_cu_list);
22407
22408 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22409 NULL, xcalloc, xfree);
22410 make_cleanup_htab_delete (psyms_seen);
22411
22412 /* While we're scanning CU's create a table that maps a psymtab pointer
22413 (which is what addrmap records) to its index (which is what is recorded
22414 in the index file). This will later be needed to write the address
22415 table. */
22416 cu_index_htab = htab_create_alloc (100,
22417 hash_psymtab_cu_index,
22418 eq_psymtab_cu_index,
22419 NULL, xcalloc, xfree);
22420 make_cleanup_htab_delete (cu_index_htab);
22421 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22422 xmalloc (sizeof (struct psymtab_cu_index_map)
22423 * dwarf2_per_objfile->n_comp_units);
22424 make_cleanup (xfree, psymtab_cu_index_map);
22425
22426 /* The CU list is already sorted, so we don't need to do additional
22427 work here. Also, the debug_types entries do not appear in
22428 all_comp_units, but only in their own hash table. */
22429 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22430 {
22431 struct dwarf2_per_cu_data *per_cu
22432 = dwarf2_per_objfile->all_comp_units[i];
22433 struct partial_symtab *psymtab = per_cu->v.psymtab;
22434 gdb_byte val[8];
22435 struct psymtab_cu_index_map *map;
22436 void **slot;
22437
22438 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22439 It may be referenced from a local scope but in such case it does not
22440 need to be present in .gdb_index. */
22441 if (psymtab == NULL)
22442 continue;
22443
22444 if (psymtab->user == NULL)
22445 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22446
22447 map = &psymtab_cu_index_map[i];
22448 map->psymtab = psymtab;
22449 map->cu_index = i;
22450 slot = htab_find_slot (cu_index_htab, map, INSERT);
22451 gdb_assert (slot != NULL);
22452 gdb_assert (*slot == NULL);
22453 *slot = map;
22454
22455 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22456 per_cu->offset.sect_off);
22457 obstack_grow (&cu_list, val, 8);
22458 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22459 obstack_grow (&cu_list, val, 8);
22460 }
22461
22462 /* Dump the address map. */
22463 write_address_map (objfile, &addr_obstack, cu_index_htab);
22464
22465 /* Write out the .debug_type entries, if any. */
22466 if (dwarf2_per_objfile->signatured_types)
22467 {
22468 struct signatured_type_index_data sig_data;
22469
22470 sig_data.objfile = objfile;
22471 sig_data.symtab = symtab;
22472 sig_data.types_list = &types_cu_list;
22473 sig_data.psyms_seen = psyms_seen;
22474 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22475 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22476 write_one_signatured_type, &sig_data);
22477 }
22478
22479 /* Now that we've processed all symbols we can shrink their cu_indices
22480 lists. */
22481 uniquify_cu_indices (symtab);
22482
22483 obstack_init (&constant_pool);
22484 make_cleanup_obstack_free (&constant_pool);
22485 obstack_init (&symtab_obstack);
22486 make_cleanup_obstack_free (&symtab_obstack);
22487 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22488
22489 obstack_init (&contents);
22490 make_cleanup_obstack_free (&contents);
22491 size_of_contents = 6 * sizeof (offset_type);
22492 total_len = size_of_contents;
22493
22494 /* The version number. */
22495 val = MAYBE_SWAP (8);
22496 obstack_grow (&contents, &val, sizeof (val));
22497
22498 /* The offset of the CU list from the start of the file. */
22499 val = MAYBE_SWAP (total_len);
22500 obstack_grow (&contents, &val, sizeof (val));
22501 total_len += obstack_object_size (&cu_list);
22502
22503 /* The offset of the types CU list from the start of the file. */
22504 val = MAYBE_SWAP (total_len);
22505 obstack_grow (&contents, &val, sizeof (val));
22506 total_len += obstack_object_size (&types_cu_list);
22507
22508 /* The offset of the address table from the start of the file. */
22509 val = MAYBE_SWAP (total_len);
22510 obstack_grow (&contents, &val, sizeof (val));
22511 total_len += obstack_object_size (&addr_obstack);
22512
22513 /* The offset of the symbol table from the start of the file. */
22514 val = MAYBE_SWAP (total_len);
22515 obstack_grow (&contents, &val, sizeof (val));
22516 total_len += obstack_object_size (&symtab_obstack);
22517
22518 /* The offset of the constant pool from the start of the file. */
22519 val = MAYBE_SWAP (total_len);
22520 obstack_grow (&contents, &val, sizeof (val));
22521 total_len += obstack_object_size (&constant_pool);
22522
22523 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22524
22525 write_obstack (out_file, &contents);
22526 write_obstack (out_file, &cu_list);
22527 write_obstack (out_file, &types_cu_list);
22528 write_obstack (out_file, &addr_obstack);
22529 write_obstack (out_file, &symtab_obstack);
22530 write_obstack (out_file, &constant_pool);
22531
22532 fclose (out_file);
22533
22534 /* We want to keep the file, so we set cleanup_filename to NULL
22535 here. See unlink_if_set. */
22536 cleanup_filename = NULL;
22537
22538 do_cleanups (cleanup);
22539 }
22540
22541 /* Implementation of the `save gdb-index' command.
22542
22543 Note that the file format used by this command is documented in the
22544 GDB manual. Any changes here must be documented there. */
22545
22546 static void
22547 save_gdb_index_command (char *arg, int from_tty)
22548 {
22549 struct objfile *objfile;
22550
22551 if (!arg || !*arg)
22552 error (_("usage: save gdb-index DIRECTORY"));
22553
22554 ALL_OBJFILES (objfile)
22555 {
22556 struct stat st;
22557
22558 /* If the objfile does not correspond to an actual file, skip it. */
22559 if (stat (objfile_name (objfile), &st) < 0)
22560 continue;
22561
22562 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22563 if (dwarf2_per_objfile)
22564 {
22565 volatile struct gdb_exception except;
22566
22567 TRY_CATCH (except, RETURN_MASK_ERROR)
22568 {
22569 write_psymtabs_to_index (objfile, arg);
22570 }
22571 if (except.reason < 0)
22572 exception_fprintf (gdb_stderr, except,
22573 _("Error while writing index for `%s': "),
22574 objfile_name (objfile));
22575 }
22576 }
22577 }
22578
22579 \f
22580
22581 int dwarf2_always_disassemble;
22582
22583 static void
22584 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22585 struct cmd_list_element *c, const char *value)
22586 {
22587 fprintf_filtered (file,
22588 _("Whether to always disassemble "
22589 "DWARF expressions is %s.\n"),
22590 value);
22591 }
22592
22593 static void
22594 show_check_physname (struct ui_file *file, int from_tty,
22595 struct cmd_list_element *c, const char *value)
22596 {
22597 fprintf_filtered (file,
22598 _("Whether to check \"physname\" is %s.\n"),
22599 value);
22600 }
22601
22602 void _initialize_dwarf2_read (void);
22603
22604 void
22605 _initialize_dwarf2_read (void)
22606 {
22607 struct cmd_list_element *c;
22608
22609 dwarf2_objfile_data_key
22610 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22611
22612 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22613 Set DWARF 2 specific variables.\n\
22614 Configure DWARF 2 variables such as the cache size"),
22615 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22616 0/*allow-unknown*/, &maintenance_set_cmdlist);
22617
22618 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22619 Show DWARF 2 specific variables\n\
22620 Show DWARF 2 variables such as the cache size"),
22621 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22622 0/*allow-unknown*/, &maintenance_show_cmdlist);
22623
22624 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22625 &dwarf2_max_cache_age, _("\
22626 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22627 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22628 A higher limit means that cached compilation units will be stored\n\
22629 in memory longer, and more total memory will be used. Zero disables\n\
22630 caching, which can slow down startup."),
22631 NULL,
22632 show_dwarf2_max_cache_age,
22633 &set_dwarf2_cmdlist,
22634 &show_dwarf2_cmdlist);
22635
22636 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22637 &dwarf2_always_disassemble, _("\
22638 Set whether `info address' always disassembles DWARF expressions."), _("\
22639 Show whether `info address' always disassembles DWARF expressions."), _("\
22640 When enabled, DWARF expressions are always printed in an assembly-like\n\
22641 syntax. When disabled, expressions will be printed in a more\n\
22642 conversational style, when possible."),
22643 NULL,
22644 show_dwarf2_always_disassemble,
22645 &set_dwarf2_cmdlist,
22646 &show_dwarf2_cmdlist);
22647
22648 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22649 Set debugging of the dwarf2 reader."), _("\
22650 Show debugging of the dwarf2 reader."), _("\
22651 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22652 reading and symtab expansion. A value of 1 (one) provides basic\n\
22653 information. A value greater than 1 provides more verbose information."),
22654 NULL,
22655 NULL,
22656 &setdebuglist, &showdebuglist);
22657
22658 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22659 Set debugging of the dwarf2 DIE reader."), _("\
22660 Show debugging of the dwarf2 DIE reader."), _("\
22661 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22662 The value is the maximum depth to print."),
22663 NULL,
22664 NULL,
22665 &setdebuglist, &showdebuglist);
22666
22667 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22668 Set cross-checking of \"physname\" code against demangler."), _("\
22669 Show cross-checking of \"physname\" code against demangler."), _("\
22670 When enabled, GDB's internal \"physname\" code is checked against\n\
22671 the demangler."),
22672 NULL, show_check_physname,
22673 &setdebuglist, &showdebuglist);
22674
22675 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22676 no_class, &use_deprecated_index_sections, _("\
22677 Set whether to use deprecated gdb_index sections."), _("\
22678 Show whether to use deprecated gdb_index sections."), _("\
22679 When enabled, deprecated .gdb_index sections are used anyway.\n\
22680 Normally they are ignored either because of a missing feature or\n\
22681 performance issue.\n\
22682 Warning: This option must be enabled before gdb reads the file."),
22683 NULL,
22684 NULL,
22685 &setlist, &showlist);
22686
22687 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22688 _("\
22689 Save a gdb-index file.\n\
22690 Usage: save gdb-index DIRECTORY"),
22691 &save_cmdlist);
22692 set_cmd_completer (c, filename_completer);
22693
22694 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22695 &dwarf2_locexpr_funcs);
22696 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22697 &dwarf2_loclist_funcs);
22698
22699 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22700 &dwarf2_block_frame_base_locexpr_funcs);
22701 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22702 &dwarf2_block_frame_base_loclist_funcs);
22703 }
This page took 0.528238 seconds and 4 git commands to generate.