AArch64: View the pseudo V registers as vectors
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
424 Create the set of symtabs used by this TU, or if this TU is sharing
425 symtabs with another TU and the symtabs have already been created
426 then restore those symtabs in the line header.
427 We don't need the pc/line-number mapping for type units. */
428 void setup_type_unit_groups (struct die_info *die);
429
430 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
431 buildsym_compunit constructor. */
432 struct compunit_symtab *start_symtab (const char *name,
433 const char *comp_dir,
434 CORE_ADDR low_pc);
435
436 /* Reset the builder. */
437 void reset_builder () { m_builder.reset (); }
438
439 /* The header of the compilation unit. */
440 struct comp_unit_head header {};
441
442 /* Base address of this compilation unit. */
443 CORE_ADDR base_address = 0;
444
445 /* Non-zero if base_address has been set. */
446 int base_known = 0;
447
448 /* The language we are debugging. */
449 enum language language = language_unknown;
450 const struct language_defn *language_defn = nullptr;
451
452 const char *producer = nullptr;
453
454 private:
455 /* The symtab builder for this CU. This is only non-NULL when full
456 symbols are being read. */
457 std::unique_ptr<buildsym_compunit> m_builder;
458
459 public:
460 /* The generic symbol table building routines have separate lists for
461 file scope symbols and all all other scopes (local scopes). So
462 we need to select the right one to pass to add_symbol_to_list().
463 We do it by keeping a pointer to the correct list in list_in_scope.
464
465 FIXME: The original dwarf code just treated the file scope as the
466 first local scope, and all other local scopes as nested local
467 scopes, and worked fine. Check to see if we really need to
468 distinguish these in buildsym.c. */
469 struct pending **list_in_scope = nullptr;
470
471 /* Hash table holding all the loaded partial DIEs
472 with partial_die->offset.SECT_OFF as hash. */
473 htab_t partial_dies = nullptr;
474
475 /* Storage for things with the same lifetime as this read-in compilation
476 unit, including partial DIEs. */
477 auto_obstack comp_unit_obstack;
478
479 /* When multiple dwarf2_cu structures are living in memory, this field
480 chains them all together, so that they can be released efficiently.
481 We will probably also want a generation counter so that most-recently-used
482 compilation units are cached... */
483 struct dwarf2_per_cu_data *read_in_chain = nullptr;
484
485 /* Backlink to our per_cu entry. */
486 struct dwarf2_per_cu_data *per_cu;
487
488 /* How many compilation units ago was this CU last referenced? */
489 int last_used = 0;
490
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
494
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
497
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
502
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
511
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
515
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
518
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
527 is non-NULL). */
528 struct dwo_unit *dwo_unit = nullptr;
529
530 /* The DW_AT_addr_base attribute if present, zero otherwise
531 (zero is a valid value though).
532 Note this value comes from the Fission stub CU/TU's DIE. */
533 ULONGEST addr_base = 0;
534
535 /* The DW_AT_ranges_base attribute if present, zero otherwise
536 (zero is a valid value though).
537 Note this value comes from the Fission stub CU/TU's DIE.
538 Also note that the value is zero in the non-DWO case so this value can
539 be used without needing to know whether DWO files are in use or not.
540 N.B. This does not apply to DW_AT_ranges appearing in
541 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
542 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
543 DW_AT_ranges_base *would* have to be applied, and we'd have to care
544 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
545 ULONGEST ranges_base = 0;
546
547 /* When reading debug info generated by older versions of rustc, we
548 have to rewrite some union types to be struct types with a
549 variant part. This rewriting must be done after the CU is fully
550 read in, because otherwise at the point of rewriting some struct
551 type might not have been fully processed. So, we keep a list of
552 all such types here and process them after expansion. */
553 std::vector<struct type *> rust_unions;
554
555 /* Mark used when releasing cached dies. */
556 bool mark : 1;
557
558 /* This CU references .debug_loc. See the symtab->locations_valid field.
559 This test is imperfect as there may exist optimized debug code not using
560 any location list and still facing inlining issues if handled as
561 unoptimized code. For a future better test see GCC PR other/32998. */
562 bool has_loclist : 1;
563
564 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
565 if all the producer_is_* fields are valid. This information is cached
566 because profiling CU expansion showed excessive time spent in
567 producer_is_gxx_lt_4_6. */
568 bool checked_producer : 1;
569 bool producer_is_gxx_lt_4_6 : 1;
570 bool producer_is_gcc_lt_4_3 : 1;
571 bool producer_is_icc : 1;
572 bool producer_is_icc_lt_14 : 1;
573 bool producer_is_codewarrior : 1;
574
575 /* When true, the file that we're processing is known to have
576 debugging info for C++ namespaces. GCC 3.3.x did not produce
577 this information, but later versions do. */
578
579 bool processing_has_namespace_info : 1;
580
581 struct partial_die_info *find_partial_die (sect_offset sect_off);
582
583 /* If this CU was inherited by another CU (via specification,
584 abstract_origin, etc), this is the ancestor CU. */
585 dwarf2_cu *ancestor;
586
587 /* Get the buildsym_compunit for this CU. */
588 buildsym_compunit *get_builder ()
589 {
590 /* If this CU has a builder associated with it, use that. */
591 if (m_builder != nullptr)
592 return m_builder.get ();
593
594 /* Otherwise, search ancestors for a valid builder. */
595 if (ancestor != nullptr)
596 return ancestor->get_builder ();
597
598 return nullptr;
599 }
600 };
601
602 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
603 This includes type_unit_group and quick_file_names. */
604
605 struct stmt_list_hash
606 {
607 /* The DWO unit this table is from or NULL if there is none. */
608 struct dwo_unit *dwo_unit;
609
610 /* Offset in .debug_line or .debug_line.dwo. */
611 sect_offset line_sect_off;
612 };
613
614 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
615 an object of this type. */
616
617 struct type_unit_group
618 {
619 /* dwarf2read.c's main "handle" on a TU symtab.
620 To simplify things we create an artificial CU that "includes" all the
621 type units using this stmt_list so that the rest of the code still has
622 a "per_cu" handle on the symtab.
623 This PER_CU is recognized by having no section. */
624 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 VEC (sig_type_ptr) *tus;
631
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
636
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
639
640 /* The number of symtabs from the line header.
641 The value here must match line_header.num_file_names. */
642 unsigned int num_symtabs;
643
644 /* The symbol tables for this TU (obtained from the files listed in
645 DW_AT_stmt_list).
646 WARNING: The order of entries here must match the order of entries
647 in the line header. After the first TU using this type_unit_group, the
648 line header for the subsequent TUs is recreated from this. This is done
649 because we need to use the same symtabs for each TU using the same
650 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
651 there's no guarantee the line header doesn't have duplicate entries. */
652 struct symtab **symtabs;
653 };
654
655 /* These sections are what may appear in a (real or virtual) DWO file. */
656
657 struct dwo_sections
658 {
659 struct dwarf2_section_info abbrev;
660 struct dwarf2_section_info line;
661 struct dwarf2_section_info loc;
662 struct dwarf2_section_info loclists;
663 struct dwarf2_section_info macinfo;
664 struct dwarf2_section_info macro;
665 struct dwarf2_section_info str;
666 struct dwarf2_section_info str_offsets;
667 /* In the case of a virtual DWO file, these two are unused. */
668 struct dwarf2_section_info info;
669 VEC (dwarf2_section_info_def) *types;
670 };
671
672 /* CUs/TUs in DWP/DWO files. */
673
674 struct dwo_unit
675 {
676 /* Backlink to the containing struct dwo_file. */
677 struct dwo_file *dwo_file;
678
679 /* The "id" that distinguishes this CU/TU.
680 .debug_info calls this "dwo_id", .debug_types calls this "signature".
681 Since signatures came first, we stick with it for consistency. */
682 ULONGEST signature;
683
684 /* The section this CU/TU lives in, in the DWO file. */
685 struct dwarf2_section_info *section;
686
687 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
688 sect_offset sect_off;
689 unsigned int length;
690
691 /* For types, offset in the type's DIE of the type defined by this TU. */
692 cu_offset type_offset_in_tu;
693 };
694
695 /* include/dwarf2.h defines the DWP section codes.
696 It defines a max value but it doesn't define a min value, which we
697 use for error checking, so provide one. */
698
699 enum dwp_v2_section_ids
700 {
701 DW_SECT_MIN = 1
702 };
703
704 /* Data for one DWO file.
705
706 This includes virtual DWO files (a virtual DWO file is a DWO file as it
707 appears in a DWP file). DWP files don't really have DWO files per se -
708 comdat folding of types "loses" the DWO file they came from, and from
709 a high level view DWP files appear to contain a mass of random types.
710 However, to maintain consistency with the non-DWP case we pretend DWP
711 files contain virtual DWO files, and we assign each TU with one virtual
712 DWO file (generally based on the line and abbrev section offsets -
713 a heuristic that seems to work in practice). */
714
715 struct dwo_file
716 {
717 /* The DW_AT_GNU_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 bfd *dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections;
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_t cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_t tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by both DWP version 1 and 2. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 there is at most one copy of all these sections, each
759 section being (effectively) comprised of the concatenation of all of the
760 individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info macinfo;
768 struct dwarf2_section_info macro;
769 struct dwarf2_section_info str_offsets;
770 struct dwarf2_section_info types;
771 };
772
773 /* These sections are what may appear in a virtual DWO file in DWP version 1.
774 A virtual DWO file is a DWO file as it appears in a DWP file. */
775
776 struct virtual_v1_dwo_sections
777 {
778 struct dwarf2_section_info abbrev;
779 struct dwarf2_section_info line;
780 struct dwarf2_section_info loc;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str_offsets;
784 /* Each DWP hash table entry records one CU or one TU.
785 That is recorded here, and copied to dwo_unit.section. */
786 struct dwarf2_section_info info_or_types;
787 };
788
789 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
790 In version 2, the sections of the DWO files are concatenated together
791 and stored in one section of that name. Thus each ELF section contains
792 several "virtual" sections. */
793
794 struct virtual_v2_dwo_sections
795 {
796 bfd_size_type abbrev_offset;
797 bfd_size_type abbrev_size;
798
799 bfd_size_type line_offset;
800 bfd_size_type line_size;
801
802 bfd_size_type loc_offset;
803 bfd_size_type loc_size;
804
805 bfd_size_type macinfo_offset;
806 bfd_size_type macinfo_size;
807
808 bfd_size_type macro_offset;
809 bfd_size_type macro_size;
810
811 bfd_size_type str_offsets_offset;
812 bfd_size_type str_offsets_size;
813
814 /* Each DWP hash table entry records one CU or one TU.
815 That is recorded here, and copied to dwo_unit.section. */
816 bfd_size_type info_or_types_offset;
817 bfd_size_type info_or_types_size;
818 };
819
820 /* Contents of DWP hash tables. */
821
822 struct dwp_hash_table
823 {
824 uint32_t version, nr_columns;
825 uint32_t nr_units, nr_slots;
826 const gdb_byte *hash_table, *unit_table;
827 union
828 {
829 struct
830 {
831 const gdb_byte *indices;
832 } v1;
833 struct
834 {
835 /* This is indexed by column number and gives the id of the section
836 in that column. */
837 #define MAX_NR_V2_DWO_SECTIONS \
838 (1 /* .debug_info or .debug_types */ \
839 + 1 /* .debug_abbrev */ \
840 + 1 /* .debug_line */ \
841 + 1 /* .debug_loc */ \
842 + 1 /* .debug_str_offsets */ \
843 + 1 /* .debug_macro or .debug_macinfo */)
844 int section_ids[MAX_NR_V2_DWO_SECTIONS];
845 const gdb_byte *offsets;
846 const gdb_byte *sizes;
847 } v2;
848 } section_pool;
849 };
850
851 /* Data for one DWP file. */
852
853 struct dwp_file
854 {
855 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
856 : name (name_),
857 dbfd (std::move (abfd))
858 {
859 }
860
861 /* Name of the file. */
862 const char *name;
863
864 /* File format version. */
865 int version = 0;
866
867 /* The bfd. */
868 gdb_bfd_ref_ptr dbfd;
869
870 /* Section info for this file. */
871 struct dwp_sections sections {};
872
873 /* Table of CUs in the file. */
874 const struct dwp_hash_table *cus = nullptr;
875
876 /* Table of TUs in the file. */
877 const struct dwp_hash_table *tus = nullptr;
878
879 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
880 htab_t loaded_cus {};
881 htab_t loaded_tus {};
882
883 /* Table to map ELF section numbers to their sections.
884 This is only needed for the DWP V1 file format. */
885 unsigned int num_sections = 0;
886 asection **elf_sections = nullptr;
887 };
888
889 /* This represents a '.dwz' file. */
890
891 struct dwz_file
892 {
893 dwz_file (gdb_bfd_ref_ptr &&bfd)
894 : dwz_bfd (std::move (bfd))
895 {
896 }
897
898 /* A dwz file can only contain a few sections. */
899 struct dwarf2_section_info abbrev {};
900 struct dwarf2_section_info info {};
901 struct dwarf2_section_info str {};
902 struct dwarf2_section_info line {};
903 struct dwarf2_section_info macro {};
904 struct dwarf2_section_info gdb_index {};
905 struct dwarf2_section_info debug_names {};
906
907 /* The dwz's BFD. */
908 gdb_bfd_ref_ptr dwz_bfd;
909
910 /* If we loaded the index from an external file, this contains the
911 resources associated to the open file, memory mapping, etc. */
912 std::unique_ptr<index_cache_resource> index_cache_res;
913 };
914
915 /* Struct used to pass misc. parameters to read_die_and_children, et
916 al. which are used for both .debug_info and .debug_types dies.
917 All parameters here are unchanging for the life of the call. This
918 struct exists to abstract away the constant parameters of die reading. */
919
920 struct die_reader_specs
921 {
922 /* The bfd of die_section. */
923 bfd* abfd;
924
925 /* The CU of the DIE we are parsing. */
926 struct dwarf2_cu *cu;
927
928 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
929 struct dwo_file *dwo_file;
930
931 /* The section the die comes from.
932 This is either .debug_info or .debug_types, or the .dwo variants. */
933 struct dwarf2_section_info *die_section;
934
935 /* die_section->buffer. */
936 const gdb_byte *buffer;
937
938 /* The end of the buffer. */
939 const gdb_byte *buffer_end;
940
941 /* The value of the DW_AT_comp_dir attribute. */
942 const char *comp_dir;
943
944 /* The abbreviation table to use when reading the DIEs. */
945 struct abbrev_table *abbrev_table;
946 };
947
948 /* Type of function passed to init_cutu_and_read_dies, et.al. */
949 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
950 const gdb_byte *info_ptr,
951 struct die_info *comp_unit_die,
952 int has_children,
953 void *data);
954
955 /* A 1-based directory index. This is a strong typedef to prevent
956 accidentally using a directory index as a 0-based index into an
957 array/vector. */
958 enum class dir_index : unsigned int {};
959
960 /* Likewise, a 1-based file name index. */
961 enum class file_name_index : unsigned int {};
962
963 struct file_entry
964 {
965 file_entry () = default;
966
967 file_entry (const char *name_, dir_index d_index_,
968 unsigned int mod_time_, unsigned int length_)
969 : name (name_),
970 d_index (d_index_),
971 mod_time (mod_time_),
972 length (length_)
973 {}
974
975 /* Return the include directory at D_INDEX stored in LH. Returns
976 NULL if D_INDEX is out of bounds. */
977 const char *include_dir (const line_header *lh) const;
978
979 /* The file name. Note this is an observing pointer. The memory is
980 owned by debug_line_buffer. */
981 const char *name {};
982
983 /* The directory index (1-based). */
984 dir_index d_index {};
985
986 unsigned int mod_time {};
987
988 unsigned int length {};
989
990 /* True if referenced by the Line Number Program. */
991 bool included_p {};
992
993 /* The associated symbol table, if any. */
994 struct symtab *symtab {};
995 };
996
997 /* The line number information for a compilation unit (found in the
998 .debug_line section) begins with a "statement program header",
999 which contains the following information. */
1000 struct line_header
1001 {
1002 line_header ()
1003 : offset_in_dwz {}
1004 {}
1005
1006 /* Add an entry to the include directory table. */
1007 void add_include_dir (const char *include_dir);
1008
1009 /* Add an entry to the file name table. */
1010 void add_file_name (const char *name, dir_index d_index,
1011 unsigned int mod_time, unsigned int length);
1012
1013 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1014 is out of bounds. */
1015 const char *include_dir_at (dir_index index) const
1016 {
1017 /* Convert directory index number (1-based) to vector index
1018 (0-based). */
1019 size_t vec_index = to_underlying (index) - 1;
1020
1021 if (vec_index >= include_dirs.size ())
1022 return NULL;
1023 return include_dirs[vec_index];
1024 }
1025
1026 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1027 is out of bounds. */
1028 file_entry *file_name_at (file_name_index index)
1029 {
1030 /* Convert file name index number (1-based) to vector index
1031 (0-based). */
1032 size_t vec_index = to_underlying (index) - 1;
1033
1034 if (vec_index >= file_names.size ())
1035 return NULL;
1036 return &file_names[vec_index];
1037 }
1038
1039 /* Const version of the above. */
1040 const file_entry *file_name_at (unsigned int index) const
1041 {
1042 if (index >= file_names.size ())
1043 return NULL;
1044 return &file_names[index];
1045 }
1046
1047 /* Offset of line number information in .debug_line section. */
1048 sect_offset sect_off {};
1049
1050 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1051 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1052
1053 unsigned int total_length {};
1054 unsigned short version {};
1055 unsigned int header_length {};
1056 unsigned char minimum_instruction_length {};
1057 unsigned char maximum_ops_per_instruction {};
1058 unsigned char default_is_stmt {};
1059 int line_base {};
1060 unsigned char line_range {};
1061 unsigned char opcode_base {};
1062
1063 /* standard_opcode_lengths[i] is the number of operands for the
1064 standard opcode whose value is i. This means that
1065 standard_opcode_lengths[0] is unused, and the last meaningful
1066 element is standard_opcode_lengths[opcode_base - 1]. */
1067 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1068
1069 /* The include_directories table. Note these are observing
1070 pointers. The memory is owned by debug_line_buffer. */
1071 std::vector<const char *> include_dirs;
1072
1073 /* The file_names table. */
1074 std::vector<file_entry> file_names;
1075
1076 /* The start and end of the statement program following this
1077 header. These point into dwarf2_per_objfile->line_buffer. */
1078 const gdb_byte *statement_program_start {}, *statement_program_end {};
1079 };
1080
1081 typedef std::unique_ptr<line_header> line_header_up;
1082
1083 const char *
1084 file_entry::include_dir (const line_header *lh) const
1085 {
1086 return lh->include_dir_at (d_index);
1087 }
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info : public allocate_on_obstack
1092 {
1093 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1094
1095 /* Disable assign but still keep copy ctor, which is needed
1096 load_partial_dies. */
1097 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1098
1099 /* Adjust the partial die before generating a symbol for it. This
1100 function may set the is_external flag or change the DIE's
1101 name. */
1102 void fixup (struct dwarf2_cu *cu);
1103
1104 /* Read a minimal amount of information into the minimal die
1105 structure. */
1106 const gdb_byte *read (const struct die_reader_specs *reader,
1107 const struct abbrev_info &abbrev,
1108 const gdb_byte *info_ptr);
1109
1110 /* Offset of this DIE. */
1111 const sect_offset sect_off;
1112
1113 /* DWARF-2 tag for this DIE. */
1114 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1115
1116 /* Assorted flags describing the data found in this DIE. */
1117 const unsigned int has_children : 1;
1118
1119 unsigned int is_external : 1;
1120 unsigned int is_declaration : 1;
1121 unsigned int has_type : 1;
1122 unsigned int has_specification : 1;
1123 unsigned int has_pc_info : 1;
1124 unsigned int may_be_inlined : 1;
1125
1126 /* This DIE has been marked DW_AT_main_subprogram. */
1127 unsigned int main_subprogram : 1;
1128
1129 /* Flag set if the SCOPE field of this structure has been
1130 computed. */
1131 unsigned int scope_set : 1;
1132
1133 /* Flag set if the DIE has a byte_size attribute. */
1134 unsigned int has_byte_size : 1;
1135
1136 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1137 unsigned int has_const_value : 1;
1138
1139 /* Flag set if any of the DIE's children are template arguments. */
1140 unsigned int has_template_arguments : 1;
1141
1142 /* Flag set if fixup has been called on this die. */
1143 unsigned int fixup_called : 1;
1144
1145 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1146 unsigned int is_dwz : 1;
1147
1148 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1149 unsigned int spec_is_dwz : 1;
1150
1151 /* The name of this DIE. Normally the value of DW_AT_name, but
1152 sometimes a default name for unnamed DIEs. */
1153 const char *name = nullptr;
1154
1155 /* The linkage name, if present. */
1156 const char *linkage_name = nullptr;
1157
1158 /* The scope to prepend to our children. This is generally
1159 allocated on the comp_unit_obstack, so will disappear
1160 when this compilation unit leaves the cache. */
1161 const char *scope = nullptr;
1162
1163 /* Some data associated with the partial DIE. The tag determines
1164 which field is live. */
1165 union
1166 {
1167 /* The location description associated with this DIE, if any. */
1168 struct dwarf_block *locdesc;
1169 /* The offset of an import, for DW_TAG_imported_unit. */
1170 sect_offset sect_off;
1171 } d {};
1172
1173 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1174 CORE_ADDR lowpc = 0;
1175 CORE_ADDR highpc = 0;
1176
1177 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1178 DW_AT_sibling, if any. */
1179 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1180 could return DW_AT_sibling values to its caller load_partial_dies. */
1181 const gdb_byte *sibling = nullptr;
1182
1183 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1184 DW_AT_specification (or DW_AT_abstract_origin or
1185 DW_AT_extension). */
1186 sect_offset spec_offset {};
1187
1188 /* Pointers to this DIE's parent, first child, and next sibling,
1189 if any. */
1190 struct partial_die_info *die_parent = nullptr;
1191 struct partial_die_info *die_child = nullptr;
1192 struct partial_die_info *die_sibling = nullptr;
1193
1194 friend struct partial_die_info *
1195 dwarf2_cu::find_partial_die (sect_offset sect_off);
1196
1197 private:
1198 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1199 partial_die_info (sect_offset sect_off)
1200 : partial_die_info (sect_off, DW_TAG_padding, 0)
1201 {
1202 }
1203
1204 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1205 int has_children_)
1206 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1207 {
1208 is_external = 0;
1209 is_declaration = 0;
1210 has_type = 0;
1211 has_specification = 0;
1212 has_pc_info = 0;
1213 may_be_inlined = 0;
1214 main_subprogram = 0;
1215 scope_set = 0;
1216 has_byte_size = 0;
1217 has_const_value = 0;
1218 has_template_arguments = 0;
1219 fixup_called = 0;
1220 is_dwz = 0;
1221 spec_is_dwz = 0;
1222 }
1223 };
1224
1225 /* This data structure holds the information of an abbrev. */
1226 struct abbrev_info
1227 {
1228 unsigned int number; /* number identifying abbrev */
1229 enum dwarf_tag tag; /* dwarf tag */
1230 unsigned short has_children; /* boolean */
1231 unsigned short num_attrs; /* number of attributes */
1232 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1233 struct abbrev_info *next; /* next in chain */
1234 };
1235
1236 struct attr_abbrev
1237 {
1238 ENUM_BITFIELD(dwarf_attribute) name : 16;
1239 ENUM_BITFIELD(dwarf_form) form : 16;
1240
1241 /* It is valid only if FORM is DW_FORM_implicit_const. */
1242 LONGEST implicit_const;
1243 };
1244
1245 /* Size of abbrev_table.abbrev_hash_table. */
1246 #define ABBREV_HASH_SIZE 121
1247
1248 /* Top level data structure to contain an abbreviation table. */
1249
1250 struct abbrev_table
1251 {
1252 explicit abbrev_table (sect_offset off)
1253 : sect_off (off)
1254 {
1255 m_abbrevs =
1256 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1257 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1258 }
1259
1260 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1261
1262 /* Allocate space for a struct abbrev_info object in
1263 ABBREV_TABLE. */
1264 struct abbrev_info *alloc_abbrev ();
1265
1266 /* Add an abbreviation to the table. */
1267 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1268
1269 /* Look up an abbrev in the table.
1270 Returns NULL if the abbrev is not found. */
1271
1272 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1273
1274
1275 /* Where the abbrev table came from.
1276 This is used as a sanity check when the table is used. */
1277 const sect_offset sect_off;
1278
1279 /* Storage for the abbrev table. */
1280 auto_obstack abbrev_obstack;
1281
1282 private:
1283
1284 /* Hash table of abbrevs.
1285 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1286 It could be statically allocated, but the previous code didn't so we
1287 don't either. */
1288 struct abbrev_info **m_abbrevs;
1289 };
1290
1291 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1292
1293 /* Attributes have a name and a value. */
1294 struct attribute
1295 {
1296 ENUM_BITFIELD(dwarf_attribute) name : 16;
1297 ENUM_BITFIELD(dwarf_form) form : 15;
1298
1299 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1300 field should be in u.str (existing only for DW_STRING) but it is kept
1301 here for better struct attribute alignment. */
1302 unsigned int string_is_canonical : 1;
1303
1304 union
1305 {
1306 const char *str;
1307 struct dwarf_block *blk;
1308 ULONGEST unsnd;
1309 LONGEST snd;
1310 CORE_ADDR addr;
1311 ULONGEST signature;
1312 }
1313 u;
1314 };
1315
1316 /* This data structure holds a complete die structure. */
1317 struct die_info
1318 {
1319 /* DWARF-2 tag for this DIE. */
1320 ENUM_BITFIELD(dwarf_tag) tag : 16;
1321
1322 /* Number of attributes */
1323 unsigned char num_attrs;
1324
1325 /* True if we're presently building the full type name for the
1326 type derived from this DIE. */
1327 unsigned char building_fullname : 1;
1328
1329 /* True if this die is in process. PR 16581. */
1330 unsigned char in_process : 1;
1331
1332 /* Abbrev number */
1333 unsigned int abbrev;
1334
1335 /* Offset in .debug_info or .debug_types section. */
1336 sect_offset sect_off;
1337
1338 /* The dies in a compilation unit form an n-ary tree. PARENT
1339 points to this die's parent; CHILD points to the first child of
1340 this node; and all the children of a given node are chained
1341 together via their SIBLING fields. */
1342 struct die_info *child; /* Its first child, if any. */
1343 struct die_info *sibling; /* Its next sibling, if any. */
1344 struct die_info *parent; /* Its parent, if any. */
1345
1346 /* An array of attributes, with NUM_ATTRS elements. There may be
1347 zero, but it's not common and zero-sized arrays are not
1348 sufficiently portable C. */
1349 struct attribute attrs[1];
1350 };
1351
1352 /* Get at parts of an attribute structure. */
1353
1354 #define DW_STRING(attr) ((attr)->u.str)
1355 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1356 #define DW_UNSND(attr) ((attr)->u.unsnd)
1357 #define DW_BLOCK(attr) ((attr)->u.blk)
1358 #define DW_SND(attr) ((attr)->u.snd)
1359 #define DW_ADDR(attr) ((attr)->u.addr)
1360 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1361
1362 /* Blocks are a bunch of untyped bytes. */
1363 struct dwarf_block
1364 {
1365 size_t size;
1366
1367 /* Valid only if SIZE is not zero. */
1368 const gdb_byte *data;
1369 };
1370
1371 #ifndef ATTR_ALLOC_CHUNK
1372 #define ATTR_ALLOC_CHUNK 4
1373 #endif
1374
1375 /* Allocate fields for structs, unions and enums in this size. */
1376 #ifndef DW_FIELD_ALLOC_CHUNK
1377 #define DW_FIELD_ALLOC_CHUNK 4
1378 #endif
1379
1380 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1381 but this would require a corresponding change in unpack_field_as_long
1382 and friends. */
1383 static int bits_per_byte = 8;
1384
1385 /* When reading a variant or variant part, we track a bit more
1386 information about the field, and store it in an object of this
1387 type. */
1388
1389 struct variant_field
1390 {
1391 /* If we see a DW_TAG_variant, then this will be the discriminant
1392 value. */
1393 ULONGEST discriminant_value;
1394 /* If we see a DW_TAG_variant, then this will be set if this is the
1395 default branch. */
1396 bool default_branch;
1397 /* While reading a DW_TAG_variant_part, this will be set if this
1398 field is the discriminant. */
1399 bool is_discriminant;
1400 };
1401
1402 struct nextfield
1403 {
1404 int accessibility = 0;
1405 int virtuality = 0;
1406 /* Extra information to describe a variant or variant part. */
1407 struct variant_field variant {};
1408 struct field field {};
1409 };
1410
1411 struct fnfieldlist
1412 {
1413 const char *name = nullptr;
1414 std::vector<struct fn_field> fnfields;
1415 };
1416
1417 /* The routines that read and process dies for a C struct or C++ class
1418 pass lists of data member fields and lists of member function fields
1419 in an instance of a field_info structure, as defined below. */
1420 struct field_info
1421 {
1422 /* List of data member and baseclasses fields. */
1423 std::vector<struct nextfield> fields;
1424 std::vector<struct nextfield> baseclasses;
1425
1426 /* Number of fields (including baseclasses). */
1427 int nfields = 0;
1428
1429 /* Set if the accesibility of one of the fields is not public. */
1430 int non_public_fields = 0;
1431
1432 /* Member function fieldlist array, contains name of possibly overloaded
1433 member function, number of overloaded member functions and a pointer
1434 to the head of the member function field chain. */
1435 std::vector<struct fnfieldlist> fnfieldlists;
1436
1437 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1438 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1439 std::vector<struct decl_field> typedef_field_list;
1440
1441 /* Nested types defined by this class and the number of elements in this
1442 list. */
1443 std::vector<struct decl_field> nested_types_list;
1444 };
1445
1446 /* One item on the queue of compilation units to read in full symbols
1447 for. */
1448 struct dwarf2_queue_item
1449 {
1450 struct dwarf2_per_cu_data *per_cu;
1451 enum language pretend_language;
1452 struct dwarf2_queue_item *next;
1453 };
1454
1455 /* The current queue. */
1456 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1457
1458 /* Loaded secondary compilation units are kept in memory until they
1459 have not been referenced for the processing of this many
1460 compilation units. Set this to zero to disable caching. Cache
1461 sizes of up to at least twenty will improve startup time for
1462 typical inter-CU-reference binaries, at an obvious memory cost. */
1463 static int dwarf_max_cache_age = 5;
1464 static void
1465 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1466 struct cmd_list_element *c, const char *value)
1467 {
1468 fprintf_filtered (file, _("The upper bound on the age of cached "
1469 "DWARF compilation units is %s.\n"),
1470 value);
1471 }
1472 \f
1473 /* local function prototypes */
1474
1475 static const char *get_section_name (const struct dwarf2_section_info *);
1476
1477 static const char *get_section_file_name (const struct dwarf2_section_info *);
1478
1479 static void dwarf2_find_base_address (struct die_info *die,
1480 struct dwarf2_cu *cu);
1481
1482 static struct partial_symtab *create_partial_symtab
1483 (struct dwarf2_per_cu_data *per_cu, const char *name);
1484
1485 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1486 const gdb_byte *info_ptr,
1487 struct die_info *type_unit_die,
1488 int has_children, void *data);
1489
1490 static void dwarf2_build_psymtabs_hard
1491 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1492
1493 static void scan_partial_symbols (struct partial_die_info *,
1494 CORE_ADDR *, CORE_ADDR *,
1495 int, struct dwarf2_cu *);
1496
1497 static void add_partial_symbol (struct partial_die_info *,
1498 struct dwarf2_cu *);
1499
1500 static void add_partial_namespace (struct partial_die_info *pdi,
1501 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1502 int set_addrmap, struct dwarf2_cu *cu);
1503
1504 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1505 CORE_ADDR *highpc, int set_addrmap,
1506 struct dwarf2_cu *cu);
1507
1508 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1509 struct dwarf2_cu *cu);
1510
1511 static void add_partial_subprogram (struct partial_die_info *pdi,
1512 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1513 int need_pc, struct dwarf2_cu *cu);
1514
1515 static void dwarf2_read_symtab (struct partial_symtab *,
1516 struct objfile *);
1517
1518 static void psymtab_to_symtab_1 (struct partial_symtab *);
1519
1520 static abbrev_table_up abbrev_table_read_table
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1522 sect_offset);
1523
1524 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1525
1526 static struct partial_die_info *load_partial_dies
1527 (const struct die_reader_specs *, const gdb_byte *, int);
1528
1529 static struct partial_die_info *find_partial_die (sect_offset, int,
1530 struct dwarf2_cu *);
1531
1532 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1533 struct attribute *, struct attr_abbrev *,
1534 const gdb_byte *);
1535
1536 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1537
1538 static int read_1_signed_byte (bfd *, const gdb_byte *);
1539
1540 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1541
1542 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1543
1544 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1545
1546 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1547 unsigned int *);
1548
1549 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static LONGEST read_checked_initial_length_and_offset
1552 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1553 unsigned int *, unsigned int *);
1554
1555 static LONGEST read_offset (bfd *, const gdb_byte *,
1556 const struct comp_unit_head *,
1557 unsigned int *);
1558
1559 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1560
1561 static sect_offset read_abbrev_offset
1562 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1563 struct dwarf2_section_info *, sect_offset);
1564
1565 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1566
1567 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1568
1569 static const char *read_indirect_string
1570 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1571 const struct comp_unit_head *, unsigned int *);
1572
1573 static const char *read_indirect_line_string
1574 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1575 const struct comp_unit_head *, unsigned int *);
1576
1577 static const char *read_indirect_string_at_offset
1578 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1579 LONGEST str_offset);
1580
1581 static const char *read_indirect_string_from_dwz
1582 (struct objfile *objfile, struct dwz_file *, LONGEST);
1583
1584 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1585
1586 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1587 const gdb_byte *,
1588 unsigned int *);
1589
1590 static const char *read_str_index (const struct die_reader_specs *reader,
1591 ULONGEST str_index);
1592
1593 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1594
1595 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1596 struct dwarf2_cu *);
1597
1598 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1599 unsigned int);
1600
1601 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1602 struct dwarf2_cu *cu);
1603
1604 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1605 struct dwarf2_cu *cu);
1606
1607 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1608
1609 static struct die_info *die_specification (struct die_info *die,
1610 struct dwarf2_cu **);
1611
1612 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1613 struct dwarf2_cu *cu);
1614
1615 static void dwarf_decode_lines (struct line_header *, const char *,
1616 struct dwarf2_cu *, struct partial_symtab *,
1617 CORE_ADDR, int decode_mapping);
1618
1619 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1620 const char *);
1621
1622 static struct symbol *new_symbol (struct die_info *, struct type *,
1623 struct dwarf2_cu *, struct symbol * = NULL);
1624
1625 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1626 struct dwarf2_cu *);
1627
1628 static void dwarf2_const_value_attr (const struct attribute *attr,
1629 struct type *type,
1630 const char *name,
1631 struct obstack *obstack,
1632 struct dwarf2_cu *cu, LONGEST *value,
1633 const gdb_byte **bytes,
1634 struct dwarf2_locexpr_baton **baton);
1635
1636 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1637
1638 static int need_gnat_info (struct dwarf2_cu *);
1639
1640 static struct type *die_descriptive_type (struct die_info *,
1641 struct dwarf2_cu *);
1642
1643 static void set_descriptive_type (struct type *, struct die_info *,
1644 struct dwarf2_cu *);
1645
1646 static struct type *die_containing_type (struct die_info *,
1647 struct dwarf2_cu *);
1648
1649 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1650 struct dwarf2_cu *);
1651
1652 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1653
1654 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1655
1656 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1657
1658 static char *typename_concat (struct obstack *obs, const char *prefix,
1659 const char *suffix, int physname,
1660 struct dwarf2_cu *cu);
1661
1662 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1663
1664 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1665
1666 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1667
1668 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1669
1670 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1671
1672 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1673
1674 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *, struct partial_symtab *);
1676
1677 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1678 values. Keep the items ordered with increasing constraints compliance. */
1679 enum pc_bounds_kind
1680 {
1681 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1682 PC_BOUNDS_NOT_PRESENT,
1683
1684 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1685 were present but they do not form a valid range of PC addresses. */
1686 PC_BOUNDS_INVALID,
1687
1688 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1689 PC_BOUNDS_RANGES,
1690
1691 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1692 PC_BOUNDS_HIGH_LOW,
1693 };
1694
1695 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1696 CORE_ADDR *, CORE_ADDR *,
1697 struct dwarf2_cu *,
1698 struct partial_symtab *);
1699
1700 static void get_scope_pc_bounds (struct die_info *,
1701 CORE_ADDR *, CORE_ADDR *,
1702 struct dwarf2_cu *);
1703
1704 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1705 CORE_ADDR, struct dwarf2_cu *);
1706
1707 static void dwarf2_add_field (struct field_info *, struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static void dwarf2_attach_fields_to_type (struct field_info *,
1711 struct type *, struct dwarf2_cu *);
1712
1713 static void dwarf2_add_member_fn (struct field_info *,
1714 struct die_info *, struct type *,
1715 struct dwarf2_cu *);
1716
1717 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1718 struct type *,
1719 struct dwarf2_cu *);
1720
1721 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1722
1723 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1724
1725 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1726
1727 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1728
1729 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1730
1731 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1732
1733 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1734
1735 static struct type *read_module_type (struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *namespace_name (struct die_info *die,
1739 int *is_anonymous, struct dwarf2_cu *);
1740
1741 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1742
1743 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1744
1745 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1746 struct dwarf2_cu *);
1747
1748 static struct die_info *read_die_and_siblings_1
1749 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1750 struct die_info *);
1751
1752 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1753 const gdb_byte *info_ptr,
1754 const gdb_byte **new_info_ptr,
1755 struct die_info *parent);
1756
1757 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1758 struct die_info **, const gdb_byte *,
1759 int *, int);
1760
1761 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1762 struct die_info **, const gdb_byte *,
1763 int *);
1764
1765 static void process_die (struct die_info *, struct dwarf2_cu *);
1766
1767 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1768 struct obstack *);
1769
1770 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1771
1772 static const char *dwarf2_full_name (const char *name,
1773 struct die_info *die,
1774 struct dwarf2_cu *cu);
1775
1776 static const char *dwarf2_physname (const char *name, struct die_info *die,
1777 struct dwarf2_cu *cu);
1778
1779 static struct die_info *dwarf2_extension (struct die_info *die,
1780 struct dwarf2_cu **);
1781
1782 static const char *dwarf_tag_name (unsigned int);
1783
1784 static const char *dwarf_attr_name (unsigned int);
1785
1786 static const char *dwarf_form_name (unsigned int);
1787
1788 static const char *dwarf_bool_name (unsigned int);
1789
1790 static const char *dwarf_type_encoding_name (unsigned int);
1791
1792 static struct die_info *sibling_die (struct die_info *);
1793
1794 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1795
1796 static void dump_die_for_error (struct die_info *);
1797
1798 static void dump_die_1 (struct ui_file *, int level, int max_level,
1799 struct die_info *);
1800
1801 /*static*/ void dump_die (struct die_info *, int max_level);
1802
1803 static void store_in_ref_table (struct die_info *,
1804 struct dwarf2_cu *);
1805
1806 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1807
1808 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1809
1810 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1811 const struct attribute *,
1812 struct dwarf2_cu **);
1813
1814 static struct die_info *follow_die_ref (struct die_info *,
1815 const struct attribute *,
1816 struct dwarf2_cu **);
1817
1818 static struct die_info *follow_die_sig (struct die_info *,
1819 const struct attribute *,
1820 struct dwarf2_cu **);
1821
1822 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1823 struct dwarf2_cu *);
1824
1825 static struct type *get_DW_AT_signature_type (struct die_info *,
1826 const struct attribute *,
1827 struct dwarf2_cu *);
1828
1829 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1830
1831 static void read_signatured_type (struct signatured_type *);
1832
1833 static int attr_to_dynamic_prop (const struct attribute *attr,
1834 struct die_info *die, struct dwarf2_cu *cu,
1835 struct dynamic_prop *prop);
1836
1837 /* memory allocation interface */
1838
1839 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1840
1841 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1842
1843 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1844
1845 static int attr_form_is_block (const struct attribute *);
1846
1847 static int attr_form_is_section_offset (const struct attribute *);
1848
1849 static int attr_form_is_constant (const struct attribute *);
1850
1851 static int attr_form_is_ref (const struct attribute *);
1852
1853 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1854 struct dwarf2_loclist_baton *baton,
1855 const struct attribute *attr);
1856
1857 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1858 struct symbol *sym,
1859 struct dwarf2_cu *cu,
1860 int is_block);
1861
1862 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1863 const gdb_byte *info_ptr,
1864 struct abbrev_info *abbrev);
1865
1866 static hashval_t partial_die_hash (const void *item);
1867
1868 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1869
1870 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1871 (sect_offset sect_off, unsigned int offset_in_dwz,
1872 struct dwarf2_per_objfile *dwarf2_per_objfile);
1873
1874 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1875 struct die_info *comp_unit_die,
1876 enum language pretend_language);
1877
1878 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1879
1880 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1881
1882 static struct type *set_die_type (struct die_info *, struct type *,
1883 struct dwarf2_cu *);
1884
1885 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1886
1887 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1888
1889 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1890 enum language);
1891
1892 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1893 enum language);
1894
1895 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1896 enum language);
1897
1898 static void dwarf2_add_dependence (struct dwarf2_cu *,
1899 struct dwarf2_per_cu_data *);
1900
1901 static void dwarf2_mark (struct dwarf2_cu *);
1902
1903 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1904
1905 static struct type *get_die_type_at_offset (sect_offset,
1906 struct dwarf2_per_cu_data *);
1907
1908 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1909
1910 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1911 enum language pretend_language);
1912
1913 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1914
1915 /* Class, the destructor of which frees all allocated queue entries. This
1916 will only have work to do if an error was thrown while processing the
1917 dwarf. If no error was thrown then the queue entries should have all
1918 been processed, and freed, as we went along. */
1919
1920 class dwarf2_queue_guard
1921 {
1922 public:
1923 dwarf2_queue_guard () = default;
1924
1925 /* Free any entries remaining on the queue. There should only be
1926 entries left if we hit an error while processing the dwarf. */
1927 ~dwarf2_queue_guard ()
1928 {
1929 struct dwarf2_queue_item *item, *last;
1930
1931 item = dwarf2_queue;
1932 while (item)
1933 {
1934 /* Anything still marked queued is likely to be in an
1935 inconsistent state, so discard it. */
1936 if (item->per_cu->queued)
1937 {
1938 if (item->per_cu->cu != NULL)
1939 free_one_cached_comp_unit (item->per_cu);
1940 item->per_cu->queued = 0;
1941 }
1942
1943 last = item;
1944 item = item->next;
1945 xfree (last);
1946 }
1947
1948 dwarf2_queue = dwarf2_queue_tail = NULL;
1949 }
1950 };
1951
1952 /* The return type of find_file_and_directory. Note, the enclosed
1953 string pointers are only valid while this object is valid. */
1954
1955 struct file_and_directory
1956 {
1957 /* The filename. This is never NULL. */
1958 const char *name;
1959
1960 /* The compilation directory. NULL if not known. If we needed to
1961 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1962 points directly to the DW_AT_comp_dir string attribute owned by
1963 the obstack that owns the DIE. */
1964 const char *comp_dir;
1965
1966 /* If we needed to build a new string for comp_dir, this is what
1967 owns the storage. */
1968 std::string comp_dir_storage;
1969 };
1970
1971 static file_and_directory find_file_and_directory (struct die_info *die,
1972 struct dwarf2_cu *cu);
1973
1974 static char *file_full_name (int file, struct line_header *lh,
1975 const char *comp_dir);
1976
1977 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1978 enum class rcuh_kind { COMPILE, TYPE };
1979
1980 static const gdb_byte *read_and_check_comp_unit_head
1981 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1982 struct comp_unit_head *header,
1983 struct dwarf2_section_info *section,
1984 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1985 rcuh_kind section_kind);
1986
1987 static void init_cutu_and_read_dies
1988 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1989 int use_existing_cu, int keep, bool skip_partial,
1990 die_reader_func_ftype *die_reader_func, void *data);
1991
1992 static void init_cutu_and_read_dies_simple
1993 (struct dwarf2_per_cu_data *this_cu,
1994 die_reader_func_ftype *die_reader_func, void *data);
1995
1996 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1997
1998 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1999
2000 static struct dwo_unit *lookup_dwo_unit_in_dwp
2001 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2002 struct dwp_file *dwp_file, const char *comp_dir,
2003 ULONGEST signature, int is_debug_types);
2004
2005 static struct dwp_file *get_dwp_file
2006 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2007
2008 static struct dwo_unit *lookup_dwo_comp_unit
2009 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2010
2011 static struct dwo_unit *lookup_dwo_type_unit
2012 (struct signatured_type *, const char *, const char *);
2013
2014 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2015
2016 static void free_dwo_file (struct dwo_file *);
2017
2018 /* A unique_ptr helper to free a dwo_file. */
2019
2020 struct dwo_file_deleter
2021 {
2022 void operator() (struct dwo_file *df) const
2023 {
2024 free_dwo_file (df);
2025 }
2026 };
2027
2028 /* A unique pointer to a dwo_file. */
2029
2030 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2031
2032 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2033
2034 static void check_producer (struct dwarf2_cu *cu);
2035
2036 static void free_line_header_voidp (void *arg);
2037 \f
2038 /* Various complaints about symbol reading that don't abort the process. */
2039
2040 static void
2041 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2042 {
2043 complaint (_("statement list doesn't fit in .debug_line section"));
2044 }
2045
2046 static void
2047 dwarf2_debug_line_missing_file_complaint (void)
2048 {
2049 complaint (_(".debug_line section has line data without a file"));
2050 }
2051
2052 static void
2053 dwarf2_debug_line_missing_end_sequence_complaint (void)
2054 {
2055 complaint (_(".debug_line section has line "
2056 "program sequence without an end"));
2057 }
2058
2059 static void
2060 dwarf2_complex_location_expr_complaint (void)
2061 {
2062 complaint (_("location expression too complex"));
2063 }
2064
2065 static void
2066 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2067 int arg3)
2068 {
2069 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2070 arg1, arg2, arg3);
2071 }
2072
2073 static void
2074 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2075 {
2076 complaint (_("debug info runs off end of %s section"
2077 " [in module %s]"),
2078 get_section_name (section),
2079 get_section_file_name (section));
2080 }
2081
2082 static void
2083 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2084 {
2085 complaint (_("macro debug info contains a "
2086 "malformed macro definition:\n`%s'"),
2087 arg1);
2088 }
2089
2090 static void
2091 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2092 {
2093 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2094 arg1, arg2);
2095 }
2096
2097 /* Hash function for line_header_hash. */
2098
2099 static hashval_t
2100 line_header_hash (const struct line_header *ofs)
2101 {
2102 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2103 }
2104
2105 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2106
2107 static hashval_t
2108 line_header_hash_voidp (const void *item)
2109 {
2110 const struct line_header *ofs = (const struct line_header *) item;
2111
2112 return line_header_hash (ofs);
2113 }
2114
2115 /* Equality function for line_header_hash. */
2116
2117 static int
2118 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2119 {
2120 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2121 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2122
2123 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2124 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2125 }
2126
2127 \f
2128
2129 /* Read the given attribute value as an address, taking the attribute's
2130 form into account. */
2131
2132 static CORE_ADDR
2133 attr_value_as_address (struct attribute *attr)
2134 {
2135 CORE_ADDR addr;
2136
2137 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2138 {
2139 /* Aside from a few clearly defined exceptions, attributes that
2140 contain an address must always be in DW_FORM_addr form.
2141 Unfortunately, some compilers happen to be violating this
2142 requirement by encoding addresses using other forms, such
2143 as DW_FORM_data4 for example. For those broken compilers,
2144 we try to do our best, without any guarantee of success,
2145 to interpret the address correctly. It would also be nice
2146 to generate a complaint, but that would require us to maintain
2147 a list of legitimate cases where a non-address form is allowed,
2148 as well as update callers to pass in at least the CU's DWARF
2149 version. This is more overhead than what we're willing to
2150 expand for a pretty rare case. */
2151 addr = DW_UNSND (attr);
2152 }
2153 else
2154 addr = DW_ADDR (attr);
2155
2156 return addr;
2157 }
2158
2159 /* See declaration. */
2160
2161 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2162 const dwarf2_debug_sections *names)
2163 : objfile (objfile_)
2164 {
2165 if (names == NULL)
2166 names = &dwarf2_elf_names;
2167
2168 bfd *obfd = objfile->obfd;
2169
2170 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2171 locate_sections (obfd, sec, *names);
2172 }
2173
2174 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2175
2176 dwarf2_per_objfile::~dwarf2_per_objfile ()
2177 {
2178 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2179 free_cached_comp_units ();
2180
2181 if (quick_file_names_table)
2182 htab_delete (quick_file_names_table);
2183
2184 if (line_header_hash)
2185 htab_delete (line_header_hash);
2186
2187 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2188 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2189
2190 for (signatured_type *sig_type : all_type_units)
2191 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2192
2193 VEC_free (dwarf2_section_info_def, types);
2194
2195 if (dwo_files != NULL)
2196 free_dwo_files (dwo_files, objfile);
2197
2198 /* Everything else should be on the objfile obstack. */
2199 }
2200
2201 /* See declaration. */
2202
2203 void
2204 dwarf2_per_objfile::free_cached_comp_units ()
2205 {
2206 dwarf2_per_cu_data *per_cu = read_in_chain;
2207 dwarf2_per_cu_data **last_chain = &read_in_chain;
2208 while (per_cu != NULL)
2209 {
2210 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2211
2212 delete per_cu->cu;
2213 *last_chain = next_cu;
2214 per_cu = next_cu;
2215 }
2216 }
2217
2218 /* A helper class that calls free_cached_comp_units on
2219 destruction. */
2220
2221 class free_cached_comp_units
2222 {
2223 public:
2224
2225 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2226 : m_per_objfile (per_objfile)
2227 {
2228 }
2229
2230 ~free_cached_comp_units ()
2231 {
2232 m_per_objfile->free_cached_comp_units ();
2233 }
2234
2235 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2236
2237 private:
2238
2239 dwarf2_per_objfile *m_per_objfile;
2240 };
2241
2242 /* Try to locate the sections we need for DWARF 2 debugging
2243 information and return true if we have enough to do something.
2244 NAMES points to the dwarf2 section names, or is NULL if the standard
2245 ELF names are used. */
2246
2247 int
2248 dwarf2_has_info (struct objfile *objfile,
2249 const struct dwarf2_debug_sections *names)
2250 {
2251 if (objfile->flags & OBJF_READNEVER)
2252 return 0;
2253
2254 struct dwarf2_per_objfile *dwarf2_per_objfile
2255 = get_dwarf2_per_objfile (objfile);
2256
2257 if (dwarf2_per_objfile == NULL)
2258 {
2259 /* Initialize per-objfile state. */
2260 dwarf2_per_objfile
2261 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2262 names);
2263 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2264 }
2265 return (!dwarf2_per_objfile->info.is_virtual
2266 && dwarf2_per_objfile->info.s.section != NULL
2267 && !dwarf2_per_objfile->abbrev.is_virtual
2268 && dwarf2_per_objfile->abbrev.s.section != NULL);
2269 }
2270
2271 /* Return the containing section of virtual section SECTION. */
2272
2273 static struct dwarf2_section_info *
2274 get_containing_section (const struct dwarf2_section_info *section)
2275 {
2276 gdb_assert (section->is_virtual);
2277 return section->s.containing_section;
2278 }
2279
2280 /* Return the bfd owner of SECTION. */
2281
2282 static struct bfd *
2283 get_section_bfd_owner (const struct dwarf2_section_info *section)
2284 {
2285 if (section->is_virtual)
2286 {
2287 section = get_containing_section (section);
2288 gdb_assert (!section->is_virtual);
2289 }
2290 return section->s.section->owner;
2291 }
2292
2293 /* Return the bfd section of SECTION.
2294 Returns NULL if the section is not present. */
2295
2296 static asection *
2297 get_section_bfd_section (const struct dwarf2_section_info *section)
2298 {
2299 if (section->is_virtual)
2300 {
2301 section = get_containing_section (section);
2302 gdb_assert (!section->is_virtual);
2303 }
2304 return section->s.section;
2305 }
2306
2307 /* Return the name of SECTION. */
2308
2309 static const char *
2310 get_section_name (const struct dwarf2_section_info *section)
2311 {
2312 asection *sectp = get_section_bfd_section (section);
2313
2314 gdb_assert (sectp != NULL);
2315 return bfd_section_name (get_section_bfd_owner (section), sectp);
2316 }
2317
2318 /* Return the name of the file SECTION is in. */
2319
2320 static const char *
2321 get_section_file_name (const struct dwarf2_section_info *section)
2322 {
2323 bfd *abfd = get_section_bfd_owner (section);
2324
2325 return bfd_get_filename (abfd);
2326 }
2327
2328 /* Return the id of SECTION.
2329 Returns 0 if SECTION doesn't exist. */
2330
2331 static int
2332 get_section_id (const struct dwarf2_section_info *section)
2333 {
2334 asection *sectp = get_section_bfd_section (section);
2335
2336 if (sectp == NULL)
2337 return 0;
2338 return sectp->id;
2339 }
2340
2341 /* Return the flags of SECTION.
2342 SECTION (or containing section if this is a virtual section) must exist. */
2343
2344 static int
2345 get_section_flags (const struct dwarf2_section_info *section)
2346 {
2347 asection *sectp = get_section_bfd_section (section);
2348
2349 gdb_assert (sectp != NULL);
2350 return bfd_get_section_flags (sectp->owner, sectp);
2351 }
2352
2353 /* When loading sections, we look either for uncompressed section or for
2354 compressed section names. */
2355
2356 static int
2357 section_is_p (const char *section_name,
2358 const struct dwarf2_section_names *names)
2359 {
2360 if (names->normal != NULL
2361 && strcmp (section_name, names->normal) == 0)
2362 return 1;
2363 if (names->compressed != NULL
2364 && strcmp (section_name, names->compressed) == 0)
2365 return 1;
2366 return 0;
2367 }
2368
2369 /* See declaration. */
2370
2371 void
2372 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2373 const dwarf2_debug_sections &names)
2374 {
2375 flagword aflag = bfd_get_section_flags (abfd, sectp);
2376
2377 if ((aflag & SEC_HAS_CONTENTS) == 0)
2378 {
2379 }
2380 else if (section_is_p (sectp->name, &names.info))
2381 {
2382 this->info.s.section = sectp;
2383 this->info.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.abbrev))
2386 {
2387 this->abbrev.s.section = sectp;
2388 this->abbrev.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.line))
2391 {
2392 this->line.s.section = sectp;
2393 this->line.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.loc))
2396 {
2397 this->loc.s.section = sectp;
2398 this->loc.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.loclists))
2401 {
2402 this->loclists.s.section = sectp;
2403 this->loclists.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.macinfo))
2406 {
2407 this->macinfo.s.section = sectp;
2408 this->macinfo.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.macro))
2411 {
2412 this->macro.s.section = sectp;
2413 this->macro.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &names.str))
2416 {
2417 this->str.s.section = sectp;
2418 this->str.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &names.line_str))
2421 {
2422 this->line_str.s.section = sectp;
2423 this->line_str.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.addr))
2426 {
2427 this->addr.s.section = sectp;
2428 this->addr.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.frame))
2431 {
2432 this->frame.s.section = sectp;
2433 this->frame.size = bfd_get_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.eh_frame))
2436 {
2437 this->eh_frame.s.section = sectp;
2438 this->eh_frame.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.ranges))
2441 {
2442 this->ranges.s.section = sectp;
2443 this->ranges.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &names.rnglists))
2446 {
2447 this->rnglists.s.section = sectp;
2448 this->rnglists.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &names.types))
2451 {
2452 struct dwarf2_section_info type_section;
2453
2454 memset (&type_section, 0, sizeof (type_section));
2455 type_section.s.section = sectp;
2456 type_section.size = bfd_get_section_size (sectp);
2457
2458 VEC_safe_push (dwarf2_section_info_def, this->types,
2459 &type_section);
2460 }
2461 else if (section_is_p (sectp->name, &names.gdb_index))
2462 {
2463 this->gdb_index.s.section = sectp;
2464 this->gdb_index.size = bfd_get_section_size (sectp);
2465 }
2466 else if (section_is_p (sectp->name, &names.debug_names))
2467 {
2468 this->debug_names.s.section = sectp;
2469 this->debug_names.size = bfd_get_section_size (sectp);
2470 }
2471 else if (section_is_p (sectp->name, &names.debug_aranges))
2472 {
2473 this->debug_aranges.s.section = sectp;
2474 this->debug_aranges.size = bfd_get_section_size (sectp);
2475 }
2476
2477 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2478 && bfd_section_vma (abfd, sectp) == 0)
2479 this->has_section_at_zero = true;
2480 }
2481
2482 /* A helper function that decides whether a section is empty,
2483 or not present. */
2484
2485 static int
2486 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2487 {
2488 if (section->is_virtual)
2489 return section->size == 0;
2490 return section->s.section == NULL || section->size == 0;
2491 }
2492
2493 /* See dwarf2read.h. */
2494
2495 void
2496 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2497 {
2498 asection *sectp;
2499 bfd *abfd;
2500 gdb_byte *buf, *retbuf;
2501
2502 if (info->readin)
2503 return;
2504 info->buffer = NULL;
2505 info->readin = 1;
2506
2507 if (dwarf2_section_empty_p (info))
2508 return;
2509
2510 sectp = get_section_bfd_section (info);
2511
2512 /* If this is a virtual section we need to read in the real one first. */
2513 if (info->is_virtual)
2514 {
2515 struct dwarf2_section_info *containing_section =
2516 get_containing_section (info);
2517
2518 gdb_assert (sectp != NULL);
2519 if ((sectp->flags & SEC_RELOC) != 0)
2520 {
2521 error (_("Dwarf Error: DWP format V2 with relocations is not"
2522 " supported in section %s [in module %s]"),
2523 get_section_name (info), get_section_file_name (info));
2524 }
2525 dwarf2_read_section (objfile, containing_section);
2526 /* Other code should have already caught virtual sections that don't
2527 fit. */
2528 gdb_assert (info->virtual_offset + info->size
2529 <= containing_section->size);
2530 /* If the real section is empty or there was a problem reading the
2531 section we shouldn't get here. */
2532 gdb_assert (containing_section->buffer != NULL);
2533 info->buffer = containing_section->buffer + info->virtual_offset;
2534 return;
2535 }
2536
2537 /* If the section has relocations, we must read it ourselves.
2538 Otherwise we attach it to the BFD. */
2539 if ((sectp->flags & SEC_RELOC) == 0)
2540 {
2541 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2542 return;
2543 }
2544
2545 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2546 info->buffer = buf;
2547
2548 /* When debugging .o files, we may need to apply relocations; see
2549 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2550 We never compress sections in .o files, so we only need to
2551 try this when the section is not compressed. */
2552 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2553 if (retbuf != NULL)
2554 {
2555 info->buffer = retbuf;
2556 return;
2557 }
2558
2559 abfd = get_section_bfd_owner (info);
2560 gdb_assert (abfd != NULL);
2561
2562 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2563 || bfd_bread (buf, info->size, abfd) != info->size)
2564 {
2565 error (_("Dwarf Error: Can't read DWARF data"
2566 " in section %s [in module %s]"),
2567 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2568 }
2569 }
2570
2571 /* A helper function that returns the size of a section in a safe way.
2572 If you are positive that the section has been read before using the
2573 size, then it is safe to refer to the dwarf2_section_info object's
2574 "size" field directly. In other cases, you must call this
2575 function, because for compressed sections the size field is not set
2576 correctly until the section has been read. */
2577
2578 static bfd_size_type
2579 dwarf2_section_size (struct objfile *objfile,
2580 struct dwarf2_section_info *info)
2581 {
2582 if (!info->readin)
2583 dwarf2_read_section (objfile, info);
2584 return info->size;
2585 }
2586
2587 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2588 SECTION_NAME. */
2589
2590 void
2591 dwarf2_get_section_info (struct objfile *objfile,
2592 enum dwarf2_section_enum sect,
2593 asection **sectp, const gdb_byte **bufp,
2594 bfd_size_type *sizep)
2595 {
2596 struct dwarf2_per_objfile *data
2597 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2598 dwarf2_objfile_data_key);
2599 struct dwarf2_section_info *info;
2600
2601 /* We may see an objfile without any DWARF, in which case we just
2602 return nothing. */
2603 if (data == NULL)
2604 {
2605 *sectp = NULL;
2606 *bufp = NULL;
2607 *sizep = 0;
2608 return;
2609 }
2610 switch (sect)
2611 {
2612 case DWARF2_DEBUG_FRAME:
2613 info = &data->frame;
2614 break;
2615 case DWARF2_EH_FRAME:
2616 info = &data->eh_frame;
2617 break;
2618 default:
2619 gdb_assert_not_reached ("unexpected section");
2620 }
2621
2622 dwarf2_read_section (objfile, info);
2623
2624 *sectp = get_section_bfd_section (info);
2625 *bufp = info->buffer;
2626 *sizep = info->size;
2627 }
2628
2629 /* A helper function to find the sections for a .dwz file. */
2630
2631 static void
2632 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2633 {
2634 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2635
2636 /* Note that we only support the standard ELF names, because .dwz
2637 is ELF-only (at the time of writing). */
2638 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2639 {
2640 dwz_file->abbrev.s.section = sectp;
2641 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2642 }
2643 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2644 {
2645 dwz_file->info.s.section = sectp;
2646 dwz_file->info.size = bfd_get_section_size (sectp);
2647 }
2648 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2649 {
2650 dwz_file->str.s.section = sectp;
2651 dwz_file->str.size = bfd_get_section_size (sectp);
2652 }
2653 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2654 {
2655 dwz_file->line.s.section = sectp;
2656 dwz_file->line.size = bfd_get_section_size (sectp);
2657 }
2658 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2659 {
2660 dwz_file->macro.s.section = sectp;
2661 dwz_file->macro.size = bfd_get_section_size (sectp);
2662 }
2663 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2664 {
2665 dwz_file->gdb_index.s.section = sectp;
2666 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2667 }
2668 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2669 {
2670 dwz_file->debug_names.s.section = sectp;
2671 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2672 }
2673 }
2674
2675 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2676 there is no .gnu_debugaltlink section in the file. Error if there
2677 is such a section but the file cannot be found. */
2678
2679 static struct dwz_file *
2680 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2681 {
2682 const char *filename;
2683 bfd_size_type buildid_len_arg;
2684 size_t buildid_len;
2685 bfd_byte *buildid;
2686
2687 if (dwarf2_per_objfile->dwz_file != NULL)
2688 return dwarf2_per_objfile->dwz_file.get ();
2689
2690 bfd_set_error (bfd_error_no_error);
2691 gdb::unique_xmalloc_ptr<char> data
2692 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2693 &buildid_len_arg, &buildid));
2694 if (data == NULL)
2695 {
2696 if (bfd_get_error () == bfd_error_no_error)
2697 return NULL;
2698 error (_("could not read '.gnu_debugaltlink' section: %s"),
2699 bfd_errmsg (bfd_get_error ()));
2700 }
2701
2702 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2703
2704 buildid_len = (size_t) buildid_len_arg;
2705
2706 filename = data.get ();
2707
2708 std::string abs_storage;
2709 if (!IS_ABSOLUTE_PATH (filename))
2710 {
2711 gdb::unique_xmalloc_ptr<char> abs
2712 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2713
2714 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2715 filename = abs_storage.c_str ();
2716 }
2717
2718 /* First try the file name given in the section. If that doesn't
2719 work, try to use the build-id instead. */
2720 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2721 if (dwz_bfd != NULL)
2722 {
2723 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2724 dwz_bfd.reset (nullptr);
2725 }
2726
2727 if (dwz_bfd == NULL)
2728 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2729
2730 if (dwz_bfd == NULL)
2731 error (_("could not find '.gnu_debugaltlink' file for %s"),
2732 objfile_name (dwarf2_per_objfile->objfile));
2733
2734 std::unique_ptr<struct dwz_file> result
2735 (new struct dwz_file (std::move (dwz_bfd)));
2736
2737 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2738 result.get ());
2739
2740 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2741 result->dwz_bfd.get ());
2742 dwarf2_per_objfile->dwz_file = std::move (result);
2743 return dwarf2_per_objfile->dwz_file.get ();
2744 }
2745 \f
2746 /* DWARF quick_symbols_functions support. */
2747
2748 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2749 unique line tables, so we maintain a separate table of all .debug_line
2750 derived entries to support the sharing.
2751 All the quick functions need is the list of file names. We discard the
2752 line_header when we're done and don't need to record it here. */
2753 struct quick_file_names
2754 {
2755 /* The data used to construct the hash key. */
2756 struct stmt_list_hash hash;
2757
2758 /* The number of entries in file_names, real_names. */
2759 unsigned int num_file_names;
2760
2761 /* The file names from the line table, after being run through
2762 file_full_name. */
2763 const char **file_names;
2764
2765 /* The file names from the line table after being run through
2766 gdb_realpath. These are computed lazily. */
2767 const char **real_names;
2768 };
2769
2770 /* When using the index (and thus not using psymtabs), each CU has an
2771 object of this type. This is used to hold information needed by
2772 the various "quick" methods. */
2773 struct dwarf2_per_cu_quick_data
2774 {
2775 /* The file table. This can be NULL if there was no file table
2776 or it's currently not read in.
2777 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2778 struct quick_file_names *file_names;
2779
2780 /* The corresponding symbol table. This is NULL if symbols for this
2781 CU have not yet been read. */
2782 struct compunit_symtab *compunit_symtab;
2783
2784 /* A temporary mark bit used when iterating over all CUs in
2785 expand_symtabs_matching. */
2786 unsigned int mark : 1;
2787
2788 /* True if we've tried to read the file table and found there isn't one.
2789 There will be no point in trying to read it again next time. */
2790 unsigned int no_file_data : 1;
2791 };
2792
2793 /* Utility hash function for a stmt_list_hash. */
2794
2795 static hashval_t
2796 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2797 {
2798 hashval_t v = 0;
2799
2800 if (stmt_list_hash->dwo_unit != NULL)
2801 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2802 v += to_underlying (stmt_list_hash->line_sect_off);
2803 return v;
2804 }
2805
2806 /* Utility equality function for a stmt_list_hash. */
2807
2808 static int
2809 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2810 const struct stmt_list_hash *rhs)
2811 {
2812 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2813 return 0;
2814 if (lhs->dwo_unit != NULL
2815 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2816 return 0;
2817
2818 return lhs->line_sect_off == rhs->line_sect_off;
2819 }
2820
2821 /* Hash function for a quick_file_names. */
2822
2823 static hashval_t
2824 hash_file_name_entry (const void *e)
2825 {
2826 const struct quick_file_names *file_data
2827 = (const struct quick_file_names *) e;
2828
2829 return hash_stmt_list_entry (&file_data->hash);
2830 }
2831
2832 /* Equality function for a quick_file_names. */
2833
2834 static int
2835 eq_file_name_entry (const void *a, const void *b)
2836 {
2837 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2838 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2839
2840 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2841 }
2842
2843 /* Delete function for a quick_file_names. */
2844
2845 static void
2846 delete_file_name_entry (void *e)
2847 {
2848 struct quick_file_names *file_data = (struct quick_file_names *) e;
2849 int i;
2850
2851 for (i = 0; i < file_data->num_file_names; ++i)
2852 {
2853 xfree ((void*) file_data->file_names[i]);
2854 if (file_data->real_names)
2855 xfree ((void*) file_data->real_names[i]);
2856 }
2857
2858 /* The space for the struct itself lives on objfile_obstack,
2859 so we don't free it here. */
2860 }
2861
2862 /* Create a quick_file_names hash table. */
2863
2864 static htab_t
2865 create_quick_file_names_table (unsigned int nr_initial_entries)
2866 {
2867 return htab_create_alloc (nr_initial_entries,
2868 hash_file_name_entry, eq_file_name_entry,
2869 delete_file_name_entry, xcalloc, xfree);
2870 }
2871
2872 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2873 have to be created afterwards. You should call age_cached_comp_units after
2874 processing PER_CU->CU. dw2_setup must have been already called. */
2875
2876 static void
2877 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2878 {
2879 if (per_cu->is_debug_types)
2880 load_full_type_unit (per_cu);
2881 else
2882 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2883
2884 if (per_cu->cu == NULL)
2885 return; /* Dummy CU. */
2886
2887 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2888 }
2889
2890 /* Read in the symbols for PER_CU. */
2891
2892 static void
2893 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2894 {
2895 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2896
2897 /* Skip type_unit_groups, reading the type units they contain
2898 is handled elsewhere. */
2899 if (IS_TYPE_UNIT_GROUP (per_cu))
2900 return;
2901
2902 /* The destructor of dwarf2_queue_guard frees any entries left on
2903 the queue. After this point we're guaranteed to leave this function
2904 with the dwarf queue empty. */
2905 dwarf2_queue_guard q_guard;
2906
2907 if (dwarf2_per_objfile->using_index
2908 ? per_cu->v.quick->compunit_symtab == NULL
2909 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2910 {
2911 queue_comp_unit (per_cu, language_minimal);
2912 load_cu (per_cu, skip_partial);
2913
2914 /* If we just loaded a CU from a DWO, and we're working with an index
2915 that may badly handle TUs, load all the TUs in that DWO as well.
2916 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2917 if (!per_cu->is_debug_types
2918 && per_cu->cu != NULL
2919 && per_cu->cu->dwo_unit != NULL
2920 && dwarf2_per_objfile->index_table != NULL
2921 && dwarf2_per_objfile->index_table->version <= 7
2922 /* DWP files aren't supported yet. */
2923 && get_dwp_file (dwarf2_per_objfile) == NULL)
2924 queue_and_load_all_dwo_tus (per_cu);
2925 }
2926
2927 process_queue (dwarf2_per_objfile);
2928
2929 /* Age the cache, releasing compilation units that have not
2930 been used recently. */
2931 age_cached_comp_units (dwarf2_per_objfile);
2932 }
2933
2934 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2935 the objfile from which this CU came. Returns the resulting symbol
2936 table. */
2937
2938 static struct compunit_symtab *
2939 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2940 {
2941 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2942
2943 gdb_assert (dwarf2_per_objfile->using_index);
2944 if (!per_cu->v.quick->compunit_symtab)
2945 {
2946 free_cached_comp_units freer (dwarf2_per_objfile);
2947 scoped_restore decrementer = increment_reading_symtab ();
2948 dw2_do_instantiate_symtab (per_cu, skip_partial);
2949 process_cu_includes (dwarf2_per_objfile);
2950 }
2951
2952 return per_cu->v.quick->compunit_symtab;
2953 }
2954
2955 /* See declaration. */
2956
2957 dwarf2_per_cu_data *
2958 dwarf2_per_objfile::get_cutu (int index)
2959 {
2960 if (index >= this->all_comp_units.size ())
2961 {
2962 index -= this->all_comp_units.size ();
2963 gdb_assert (index < this->all_type_units.size ());
2964 return &this->all_type_units[index]->per_cu;
2965 }
2966
2967 return this->all_comp_units[index];
2968 }
2969
2970 /* See declaration. */
2971
2972 dwarf2_per_cu_data *
2973 dwarf2_per_objfile::get_cu (int index)
2974 {
2975 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2976
2977 return this->all_comp_units[index];
2978 }
2979
2980 /* See declaration. */
2981
2982 signatured_type *
2983 dwarf2_per_objfile::get_tu (int index)
2984 {
2985 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2986
2987 return this->all_type_units[index];
2988 }
2989
2990 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2991 objfile_obstack, and constructed with the specified field
2992 values. */
2993
2994 static dwarf2_per_cu_data *
2995 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2996 struct dwarf2_section_info *section,
2997 int is_dwz,
2998 sect_offset sect_off, ULONGEST length)
2999 {
3000 struct objfile *objfile = dwarf2_per_objfile->objfile;
3001 dwarf2_per_cu_data *the_cu
3002 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3003 struct dwarf2_per_cu_data);
3004 the_cu->sect_off = sect_off;
3005 the_cu->length = length;
3006 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3007 the_cu->section = section;
3008 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3009 struct dwarf2_per_cu_quick_data);
3010 the_cu->is_dwz = is_dwz;
3011 return the_cu;
3012 }
3013
3014 /* A helper for create_cus_from_index that handles a given list of
3015 CUs. */
3016
3017 static void
3018 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3019 const gdb_byte *cu_list, offset_type n_elements,
3020 struct dwarf2_section_info *section,
3021 int is_dwz)
3022 {
3023 for (offset_type i = 0; i < n_elements; i += 2)
3024 {
3025 gdb_static_assert (sizeof (ULONGEST) >= 8);
3026
3027 sect_offset sect_off
3028 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3029 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3030 cu_list += 2 * 8;
3031
3032 dwarf2_per_cu_data *per_cu
3033 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3034 sect_off, length);
3035 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3036 }
3037 }
3038
3039 /* Read the CU list from the mapped index, and use it to create all
3040 the CU objects for this objfile. */
3041
3042 static void
3043 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3044 const gdb_byte *cu_list, offset_type cu_list_elements,
3045 const gdb_byte *dwz_list, offset_type dwz_elements)
3046 {
3047 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3048 dwarf2_per_objfile->all_comp_units.reserve
3049 ((cu_list_elements + dwz_elements) / 2);
3050
3051 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3052 &dwarf2_per_objfile->info, 0);
3053
3054 if (dwz_elements == 0)
3055 return;
3056
3057 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3058 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3059 &dwz->info, 1);
3060 }
3061
3062 /* Create the signatured type hash table from the index. */
3063
3064 static void
3065 create_signatured_type_table_from_index
3066 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3067 struct dwarf2_section_info *section,
3068 const gdb_byte *bytes,
3069 offset_type elements)
3070 {
3071 struct objfile *objfile = dwarf2_per_objfile->objfile;
3072
3073 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3074 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3075
3076 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3077
3078 for (offset_type i = 0; i < elements; i += 3)
3079 {
3080 struct signatured_type *sig_type;
3081 ULONGEST signature;
3082 void **slot;
3083 cu_offset type_offset_in_tu;
3084
3085 gdb_static_assert (sizeof (ULONGEST) >= 8);
3086 sect_offset sect_off
3087 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3088 type_offset_in_tu
3089 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3090 BFD_ENDIAN_LITTLE);
3091 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3092 bytes += 3 * 8;
3093
3094 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3095 struct signatured_type);
3096 sig_type->signature = signature;
3097 sig_type->type_offset_in_tu = type_offset_in_tu;
3098 sig_type->per_cu.is_debug_types = 1;
3099 sig_type->per_cu.section = section;
3100 sig_type->per_cu.sect_off = sect_off;
3101 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3102 sig_type->per_cu.v.quick
3103 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3104 struct dwarf2_per_cu_quick_data);
3105
3106 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3107 *slot = sig_type;
3108
3109 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3110 }
3111
3112 dwarf2_per_objfile->signatured_types = sig_types_hash;
3113 }
3114
3115 /* Create the signatured type hash table from .debug_names. */
3116
3117 static void
3118 create_signatured_type_table_from_debug_names
3119 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3120 const mapped_debug_names &map,
3121 struct dwarf2_section_info *section,
3122 struct dwarf2_section_info *abbrev_section)
3123 {
3124 struct objfile *objfile = dwarf2_per_objfile->objfile;
3125
3126 dwarf2_read_section (objfile, section);
3127 dwarf2_read_section (objfile, abbrev_section);
3128
3129 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3130 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3131
3132 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3133
3134 for (uint32_t i = 0; i < map.tu_count; ++i)
3135 {
3136 struct signatured_type *sig_type;
3137 void **slot;
3138
3139 sect_offset sect_off
3140 = (sect_offset) (extract_unsigned_integer
3141 (map.tu_table_reordered + i * map.offset_size,
3142 map.offset_size,
3143 map.dwarf5_byte_order));
3144
3145 comp_unit_head cu_header;
3146 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3147 abbrev_section,
3148 section->buffer + to_underlying (sect_off),
3149 rcuh_kind::TYPE);
3150
3151 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3152 struct signatured_type);
3153 sig_type->signature = cu_header.signature;
3154 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3155 sig_type->per_cu.is_debug_types = 1;
3156 sig_type->per_cu.section = section;
3157 sig_type->per_cu.sect_off = sect_off;
3158 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3159 sig_type->per_cu.v.quick
3160 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3161 struct dwarf2_per_cu_quick_data);
3162
3163 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3164 *slot = sig_type;
3165
3166 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3167 }
3168
3169 dwarf2_per_objfile->signatured_types = sig_types_hash;
3170 }
3171
3172 /* Read the address map data from the mapped index, and use it to
3173 populate the objfile's psymtabs_addrmap. */
3174
3175 static void
3176 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3177 struct mapped_index *index)
3178 {
3179 struct objfile *objfile = dwarf2_per_objfile->objfile;
3180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3181 const gdb_byte *iter, *end;
3182 struct addrmap *mutable_map;
3183 CORE_ADDR baseaddr;
3184
3185 auto_obstack temp_obstack;
3186
3187 mutable_map = addrmap_create_mutable (&temp_obstack);
3188
3189 iter = index->address_table.data ();
3190 end = iter + index->address_table.size ();
3191
3192 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3193
3194 while (iter < end)
3195 {
3196 ULONGEST hi, lo, cu_index;
3197 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3198 iter += 8;
3199 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3200 iter += 8;
3201 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3202 iter += 4;
3203
3204 if (lo > hi)
3205 {
3206 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3207 hex_string (lo), hex_string (hi));
3208 continue;
3209 }
3210
3211 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3212 {
3213 complaint (_(".gdb_index address table has invalid CU number %u"),
3214 (unsigned) cu_index);
3215 continue;
3216 }
3217
3218 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3219 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3220 addrmap_set_empty (mutable_map, lo, hi - 1,
3221 dwarf2_per_objfile->get_cu (cu_index));
3222 }
3223
3224 objfile->partial_symtabs->psymtabs_addrmap
3225 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3226 }
3227
3228 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3229 populate the objfile's psymtabs_addrmap. */
3230
3231 static void
3232 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3233 struct dwarf2_section_info *section)
3234 {
3235 struct objfile *objfile = dwarf2_per_objfile->objfile;
3236 bfd *abfd = objfile->obfd;
3237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3238 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3239 SECT_OFF_TEXT (objfile));
3240
3241 auto_obstack temp_obstack;
3242 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3243
3244 std::unordered_map<sect_offset,
3245 dwarf2_per_cu_data *,
3246 gdb::hash_enum<sect_offset>>
3247 debug_info_offset_to_per_cu;
3248 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3249 {
3250 const auto insertpair
3251 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3252 if (!insertpair.second)
3253 {
3254 warning (_("Section .debug_aranges in %s has duplicate "
3255 "debug_info_offset %s, ignoring .debug_aranges."),
3256 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3257 return;
3258 }
3259 }
3260
3261 dwarf2_read_section (objfile, section);
3262
3263 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3264
3265 const gdb_byte *addr = section->buffer;
3266
3267 while (addr < section->buffer + section->size)
3268 {
3269 const gdb_byte *const entry_addr = addr;
3270 unsigned int bytes_read;
3271
3272 const LONGEST entry_length = read_initial_length (abfd, addr,
3273 &bytes_read);
3274 addr += bytes_read;
3275
3276 const gdb_byte *const entry_end = addr + entry_length;
3277 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3278 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3279 if (addr + entry_length > section->buffer + section->size)
3280 {
3281 warning (_("Section .debug_aranges in %s entry at offset %zu "
3282 "length %s exceeds section length %s, "
3283 "ignoring .debug_aranges."),
3284 objfile_name (objfile), entry_addr - section->buffer,
3285 plongest (bytes_read + entry_length),
3286 pulongest (section->size));
3287 return;
3288 }
3289
3290 /* The version number. */
3291 const uint16_t version = read_2_bytes (abfd, addr);
3292 addr += 2;
3293 if (version != 2)
3294 {
3295 warning (_("Section .debug_aranges in %s entry at offset %zu "
3296 "has unsupported version %d, ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 version);
3299 return;
3300 }
3301
3302 const uint64_t debug_info_offset
3303 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3304 addr += offset_size;
3305 const auto per_cu_it
3306 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3307 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3308 {
3309 warning (_("Section .debug_aranges in %s entry at offset %zu "
3310 "debug_info_offset %s does not exists, "
3311 "ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer,
3313 pulongest (debug_info_offset));
3314 return;
3315 }
3316 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3317
3318 const uint8_t address_size = *addr++;
3319 if (address_size < 1 || address_size > 8)
3320 {
3321 warning (_("Section .debug_aranges in %s entry at offset %zu "
3322 "address_size %u is invalid, ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer,
3324 address_size);
3325 return;
3326 }
3327
3328 const uint8_t segment_selector_size = *addr++;
3329 if (segment_selector_size != 0)
3330 {
3331 warning (_("Section .debug_aranges in %s entry at offset %zu "
3332 "segment_selector_size %u is not supported, "
3333 "ignoring .debug_aranges."),
3334 objfile_name (objfile), entry_addr - section->buffer,
3335 segment_selector_size);
3336 return;
3337 }
3338
3339 /* Must pad to an alignment boundary that is twice the address
3340 size. It is undocumented by the DWARF standard but GCC does
3341 use it. */
3342 for (size_t padding = ((-(addr - section->buffer))
3343 & (2 * address_size - 1));
3344 padding > 0; padding--)
3345 if (*addr++ != 0)
3346 {
3347 warning (_("Section .debug_aranges in %s entry at offset %zu "
3348 "padding is not zero, ignoring .debug_aranges."),
3349 objfile_name (objfile), entry_addr - section->buffer);
3350 return;
3351 }
3352
3353 for (;;)
3354 {
3355 if (addr + 2 * address_size > entry_end)
3356 {
3357 warning (_("Section .debug_aranges in %s entry at offset %zu "
3358 "address list is not properly terminated, "
3359 "ignoring .debug_aranges."),
3360 objfile_name (objfile), entry_addr - section->buffer);
3361 return;
3362 }
3363 ULONGEST start = extract_unsigned_integer (addr, address_size,
3364 dwarf5_byte_order);
3365 addr += address_size;
3366 ULONGEST length = extract_unsigned_integer (addr, address_size,
3367 dwarf5_byte_order);
3368 addr += address_size;
3369 if (start == 0 && length == 0)
3370 break;
3371 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3372 {
3373 /* Symbol was eliminated due to a COMDAT group. */
3374 continue;
3375 }
3376 ULONGEST end = start + length;
3377 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3378 - baseaddr);
3379 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3380 - baseaddr);
3381 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3382 }
3383 }
3384
3385 objfile->partial_symtabs->psymtabs_addrmap
3386 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3387 }
3388
3389 /* Find a slot in the mapped index INDEX for the object named NAME.
3390 If NAME is found, set *VEC_OUT to point to the CU vector in the
3391 constant pool and return true. If NAME cannot be found, return
3392 false. */
3393
3394 static bool
3395 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3396 offset_type **vec_out)
3397 {
3398 offset_type hash;
3399 offset_type slot, step;
3400 int (*cmp) (const char *, const char *);
3401
3402 gdb::unique_xmalloc_ptr<char> without_params;
3403 if (current_language->la_language == language_cplus
3404 || current_language->la_language == language_fortran
3405 || current_language->la_language == language_d)
3406 {
3407 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3408 not contain any. */
3409
3410 if (strchr (name, '(') != NULL)
3411 {
3412 without_params = cp_remove_params (name);
3413
3414 if (without_params != NULL)
3415 name = without_params.get ();
3416 }
3417 }
3418
3419 /* Index version 4 did not support case insensitive searches. But the
3420 indices for case insensitive languages are built in lowercase, therefore
3421 simulate our NAME being searched is also lowercased. */
3422 hash = mapped_index_string_hash ((index->version == 4
3423 && case_sensitivity == case_sensitive_off
3424 ? 5 : index->version),
3425 name);
3426
3427 slot = hash & (index->symbol_table.size () - 1);
3428 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3429 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3430
3431 for (;;)
3432 {
3433 const char *str;
3434
3435 const auto &bucket = index->symbol_table[slot];
3436 if (bucket.name == 0 && bucket.vec == 0)
3437 return false;
3438
3439 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3440 if (!cmp (name, str))
3441 {
3442 *vec_out = (offset_type *) (index->constant_pool
3443 + MAYBE_SWAP (bucket.vec));
3444 return true;
3445 }
3446
3447 slot = (slot + step) & (index->symbol_table.size () - 1);
3448 }
3449 }
3450
3451 /* A helper function that reads the .gdb_index from BUFFER and fills
3452 in MAP. FILENAME is the name of the file containing the data;
3453 it is used for error reporting. DEPRECATED_OK is true if it is
3454 ok to use deprecated sections.
3455
3456 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3457 out parameters that are filled in with information about the CU and
3458 TU lists in the section.
3459
3460 Returns true if all went well, false otherwise. */
3461
3462 static bool
3463 read_gdb_index_from_buffer (struct objfile *objfile,
3464 const char *filename,
3465 bool deprecated_ok,
3466 gdb::array_view<const gdb_byte> buffer,
3467 struct mapped_index *map,
3468 const gdb_byte **cu_list,
3469 offset_type *cu_list_elements,
3470 const gdb_byte **types_list,
3471 offset_type *types_list_elements)
3472 {
3473 const gdb_byte *addr = &buffer[0];
3474
3475 /* Version check. */
3476 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3477 /* Versions earlier than 3 emitted every copy of a psymbol. This
3478 causes the index to behave very poorly for certain requests. Version 3
3479 contained incomplete addrmap. So, it seems better to just ignore such
3480 indices. */
3481 if (version < 4)
3482 {
3483 static int warning_printed = 0;
3484 if (!warning_printed)
3485 {
3486 warning (_("Skipping obsolete .gdb_index section in %s."),
3487 filename);
3488 warning_printed = 1;
3489 }
3490 return 0;
3491 }
3492 /* Index version 4 uses a different hash function than index version
3493 5 and later.
3494
3495 Versions earlier than 6 did not emit psymbols for inlined
3496 functions. Using these files will cause GDB not to be able to
3497 set breakpoints on inlined functions by name, so we ignore these
3498 indices unless the user has done
3499 "set use-deprecated-index-sections on". */
3500 if (version < 6 && !deprecated_ok)
3501 {
3502 static int warning_printed = 0;
3503 if (!warning_printed)
3504 {
3505 warning (_("\
3506 Skipping deprecated .gdb_index section in %s.\n\
3507 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3508 to use the section anyway."),
3509 filename);
3510 warning_printed = 1;
3511 }
3512 return 0;
3513 }
3514 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3515 of the TU (for symbols coming from TUs),
3516 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3517 Plus gold-generated indices can have duplicate entries for global symbols,
3518 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3519 These are just performance bugs, and we can't distinguish gdb-generated
3520 indices from gold-generated ones, so issue no warning here. */
3521
3522 /* Indexes with higher version than the one supported by GDB may be no
3523 longer backward compatible. */
3524 if (version > 8)
3525 return 0;
3526
3527 map->version = version;
3528
3529 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3530
3531 int i = 0;
3532 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3533 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3534 / 8);
3535 ++i;
3536
3537 *types_list = addr + MAYBE_SWAP (metadata[i]);
3538 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3539 - MAYBE_SWAP (metadata[i]))
3540 / 8);
3541 ++i;
3542
3543 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3544 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3545 map->address_table
3546 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3547 ++i;
3548
3549 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3550 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3551 map->symbol_table
3552 = gdb::array_view<mapped_index::symbol_table_slot>
3553 ((mapped_index::symbol_table_slot *) symbol_table,
3554 (mapped_index::symbol_table_slot *) symbol_table_end);
3555
3556 ++i;
3557 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3558
3559 return 1;
3560 }
3561
3562 /* Callback types for dwarf2_read_gdb_index. */
3563
3564 typedef gdb::function_view
3565 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3566 get_gdb_index_contents_ftype;
3567 typedef gdb::function_view
3568 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3569 get_gdb_index_contents_dwz_ftype;
3570
3571 /* Read .gdb_index. If everything went ok, initialize the "quick"
3572 elements of all the CUs and return 1. Otherwise, return 0. */
3573
3574 static int
3575 dwarf2_read_gdb_index
3576 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3577 get_gdb_index_contents_ftype get_gdb_index_contents,
3578 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3579 {
3580 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3581 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3582 struct dwz_file *dwz;
3583 struct objfile *objfile = dwarf2_per_objfile->objfile;
3584
3585 gdb::array_view<const gdb_byte> main_index_contents
3586 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3587
3588 if (main_index_contents.empty ())
3589 return 0;
3590
3591 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3592 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3593 use_deprecated_index_sections,
3594 main_index_contents, map.get (), &cu_list,
3595 &cu_list_elements, &types_list,
3596 &types_list_elements))
3597 return 0;
3598
3599 /* Don't use the index if it's empty. */
3600 if (map->symbol_table.empty ())
3601 return 0;
3602
3603 /* If there is a .dwz file, read it so we can get its CU list as
3604 well. */
3605 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3606 if (dwz != NULL)
3607 {
3608 struct mapped_index dwz_map;
3609 const gdb_byte *dwz_types_ignore;
3610 offset_type dwz_types_elements_ignore;
3611
3612 gdb::array_view<const gdb_byte> dwz_index_content
3613 = get_gdb_index_contents_dwz (objfile, dwz);
3614
3615 if (dwz_index_content.empty ())
3616 return 0;
3617
3618 if (!read_gdb_index_from_buffer (objfile,
3619 bfd_get_filename (dwz->dwz_bfd), 1,
3620 dwz_index_content, &dwz_map,
3621 &dwz_list, &dwz_list_elements,
3622 &dwz_types_ignore,
3623 &dwz_types_elements_ignore))
3624 {
3625 warning (_("could not read '.gdb_index' section from %s; skipping"),
3626 bfd_get_filename (dwz->dwz_bfd));
3627 return 0;
3628 }
3629 }
3630
3631 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3632 dwz_list, dwz_list_elements);
3633
3634 if (types_list_elements)
3635 {
3636 struct dwarf2_section_info *section;
3637
3638 /* We can only handle a single .debug_types when we have an
3639 index. */
3640 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3641 return 0;
3642
3643 section = VEC_index (dwarf2_section_info_def,
3644 dwarf2_per_objfile->types, 0);
3645
3646 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3647 types_list, types_list_elements);
3648 }
3649
3650 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3651
3652 dwarf2_per_objfile->index_table = std::move (map);
3653 dwarf2_per_objfile->using_index = 1;
3654 dwarf2_per_objfile->quick_file_names_table =
3655 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3656
3657 return 1;
3658 }
3659
3660 /* die_reader_func for dw2_get_file_names. */
3661
3662 static void
3663 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3664 const gdb_byte *info_ptr,
3665 struct die_info *comp_unit_die,
3666 int has_children,
3667 void *data)
3668 {
3669 struct dwarf2_cu *cu = reader->cu;
3670 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3671 struct dwarf2_per_objfile *dwarf2_per_objfile
3672 = cu->per_cu->dwarf2_per_objfile;
3673 struct objfile *objfile = dwarf2_per_objfile->objfile;
3674 struct dwarf2_per_cu_data *lh_cu;
3675 struct attribute *attr;
3676 int i;
3677 void **slot;
3678 struct quick_file_names *qfn;
3679
3680 gdb_assert (! this_cu->is_debug_types);
3681
3682 /* Our callers never want to match partial units -- instead they
3683 will match the enclosing full CU. */
3684 if (comp_unit_die->tag == DW_TAG_partial_unit)
3685 {
3686 this_cu->v.quick->no_file_data = 1;
3687 return;
3688 }
3689
3690 lh_cu = this_cu;
3691 slot = NULL;
3692
3693 line_header_up lh;
3694 sect_offset line_offset {};
3695
3696 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3697 if (attr)
3698 {
3699 struct quick_file_names find_entry;
3700
3701 line_offset = (sect_offset) DW_UNSND (attr);
3702
3703 /* We may have already read in this line header (TU line header sharing).
3704 If we have we're done. */
3705 find_entry.hash.dwo_unit = cu->dwo_unit;
3706 find_entry.hash.line_sect_off = line_offset;
3707 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3708 &find_entry, INSERT);
3709 if (*slot != NULL)
3710 {
3711 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3712 return;
3713 }
3714
3715 lh = dwarf_decode_line_header (line_offset, cu);
3716 }
3717 if (lh == NULL)
3718 {
3719 lh_cu->v.quick->no_file_data = 1;
3720 return;
3721 }
3722
3723 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3724 qfn->hash.dwo_unit = cu->dwo_unit;
3725 qfn->hash.line_sect_off = line_offset;
3726 gdb_assert (slot != NULL);
3727 *slot = qfn;
3728
3729 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3730
3731 qfn->num_file_names = lh->file_names.size ();
3732 qfn->file_names =
3733 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3734 for (i = 0; i < lh->file_names.size (); ++i)
3735 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3736 qfn->real_names = NULL;
3737
3738 lh_cu->v.quick->file_names = qfn;
3739 }
3740
3741 /* A helper for the "quick" functions which attempts to read the line
3742 table for THIS_CU. */
3743
3744 static struct quick_file_names *
3745 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3746 {
3747 /* This should never be called for TUs. */
3748 gdb_assert (! this_cu->is_debug_types);
3749 /* Nor type unit groups. */
3750 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3751
3752 if (this_cu->v.quick->file_names != NULL)
3753 return this_cu->v.quick->file_names;
3754 /* If we know there is no line data, no point in looking again. */
3755 if (this_cu->v.quick->no_file_data)
3756 return NULL;
3757
3758 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3759
3760 if (this_cu->v.quick->no_file_data)
3761 return NULL;
3762 return this_cu->v.quick->file_names;
3763 }
3764
3765 /* A helper for the "quick" functions which computes and caches the
3766 real path for a given file name from the line table. */
3767
3768 static const char *
3769 dw2_get_real_path (struct objfile *objfile,
3770 struct quick_file_names *qfn, int index)
3771 {
3772 if (qfn->real_names == NULL)
3773 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3774 qfn->num_file_names, const char *);
3775
3776 if (qfn->real_names[index] == NULL)
3777 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3778
3779 return qfn->real_names[index];
3780 }
3781
3782 static struct symtab *
3783 dw2_find_last_source_symtab (struct objfile *objfile)
3784 {
3785 struct dwarf2_per_objfile *dwarf2_per_objfile
3786 = get_dwarf2_per_objfile (objfile);
3787 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3788 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3789
3790 if (cust == NULL)
3791 return NULL;
3792
3793 return compunit_primary_filetab (cust);
3794 }
3795
3796 /* Traversal function for dw2_forget_cached_source_info. */
3797
3798 static int
3799 dw2_free_cached_file_names (void **slot, void *info)
3800 {
3801 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3802
3803 if (file_data->real_names)
3804 {
3805 int i;
3806
3807 for (i = 0; i < file_data->num_file_names; ++i)
3808 {
3809 xfree ((void*) file_data->real_names[i]);
3810 file_data->real_names[i] = NULL;
3811 }
3812 }
3813
3814 return 1;
3815 }
3816
3817 static void
3818 dw2_forget_cached_source_info (struct objfile *objfile)
3819 {
3820 struct dwarf2_per_objfile *dwarf2_per_objfile
3821 = get_dwarf2_per_objfile (objfile);
3822
3823 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3824 dw2_free_cached_file_names, NULL);
3825 }
3826
3827 /* Helper function for dw2_map_symtabs_matching_filename that expands
3828 the symtabs and calls the iterator. */
3829
3830 static int
3831 dw2_map_expand_apply (struct objfile *objfile,
3832 struct dwarf2_per_cu_data *per_cu,
3833 const char *name, const char *real_path,
3834 gdb::function_view<bool (symtab *)> callback)
3835 {
3836 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3837
3838 /* Don't visit already-expanded CUs. */
3839 if (per_cu->v.quick->compunit_symtab)
3840 return 0;
3841
3842 /* This may expand more than one symtab, and we want to iterate over
3843 all of them. */
3844 dw2_instantiate_symtab (per_cu, false);
3845
3846 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3847 last_made, callback);
3848 }
3849
3850 /* Implementation of the map_symtabs_matching_filename method. */
3851
3852 static bool
3853 dw2_map_symtabs_matching_filename
3854 (struct objfile *objfile, const char *name, const char *real_path,
3855 gdb::function_view<bool (symtab *)> callback)
3856 {
3857 const char *name_basename = lbasename (name);
3858 struct dwarf2_per_objfile *dwarf2_per_objfile
3859 = get_dwarf2_per_objfile (objfile);
3860
3861 /* The rule is CUs specify all the files, including those used by
3862 any TU, so there's no need to scan TUs here. */
3863
3864 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3865 {
3866 /* We only need to look at symtabs not already expanded. */
3867 if (per_cu->v.quick->compunit_symtab)
3868 continue;
3869
3870 quick_file_names *file_data = dw2_get_file_names (per_cu);
3871 if (file_data == NULL)
3872 continue;
3873
3874 for (int j = 0; j < file_data->num_file_names; ++j)
3875 {
3876 const char *this_name = file_data->file_names[j];
3877 const char *this_real_name;
3878
3879 if (compare_filenames_for_search (this_name, name))
3880 {
3881 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3882 callback))
3883 return true;
3884 continue;
3885 }
3886
3887 /* Before we invoke realpath, which can get expensive when many
3888 files are involved, do a quick comparison of the basenames. */
3889 if (! basenames_may_differ
3890 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3891 continue;
3892
3893 this_real_name = dw2_get_real_path (objfile, file_data, j);
3894 if (compare_filenames_for_search (this_real_name, name))
3895 {
3896 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3897 callback))
3898 return true;
3899 continue;
3900 }
3901
3902 if (real_path != NULL)
3903 {
3904 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3905 gdb_assert (IS_ABSOLUTE_PATH (name));
3906 if (this_real_name != NULL
3907 && FILENAME_CMP (real_path, this_real_name) == 0)
3908 {
3909 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3910 callback))
3911 return true;
3912 continue;
3913 }
3914 }
3915 }
3916 }
3917
3918 return false;
3919 }
3920
3921 /* Struct used to manage iterating over all CUs looking for a symbol. */
3922
3923 struct dw2_symtab_iterator
3924 {
3925 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3926 struct dwarf2_per_objfile *dwarf2_per_objfile;
3927 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3928 int want_specific_block;
3929 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3930 Unused if !WANT_SPECIFIC_BLOCK. */
3931 int block_index;
3932 /* The kind of symbol we're looking for. */
3933 domain_enum domain;
3934 /* The list of CUs from the index entry of the symbol,
3935 or NULL if not found. */
3936 offset_type *vec;
3937 /* The next element in VEC to look at. */
3938 int next;
3939 /* The number of elements in VEC, or zero if there is no match. */
3940 int length;
3941 /* Have we seen a global version of the symbol?
3942 If so we can ignore all further global instances.
3943 This is to work around gold/15646, inefficient gold-generated
3944 indices. */
3945 int global_seen;
3946 };
3947
3948 /* Initialize the index symtab iterator ITER.
3949 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3950 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3951
3952 static void
3953 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3954 struct dwarf2_per_objfile *dwarf2_per_objfile,
3955 int want_specific_block,
3956 int block_index,
3957 domain_enum domain,
3958 const char *name)
3959 {
3960 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3961 iter->want_specific_block = want_specific_block;
3962 iter->block_index = block_index;
3963 iter->domain = domain;
3964 iter->next = 0;
3965 iter->global_seen = 0;
3966
3967 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3968
3969 /* index is NULL if OBJF_READNOW. */
3970 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3971 iter->length = MAYBE_SWAP (*iter->vec);
3972 else
3973 {
3974 iter->vec = NULL;
3975 iter->length = 0;
3976 }
3977 }
3978
3979 /* Return the next matching CU or NULL if there are no more. */
3980
3981 static struct dwarf2_per_cu_data *
3982 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3983 {
3984 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3985
3986 for ( ; iter->next < iter->length; ++iter->next)
3987 {
3988 offset_type cu_index_and_attrs =
3989 MAYBE_SWAP (iter->vec[iter->next + 1]);
3990 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3991 int want_static = iter->block_index != GLOBAL_BLOCK;
3992 /* This value is only valid for index versions >= 7. */
3993 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3994 gdb_index_symbol_kind symbol_kind =
3995 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3996 /* Only check the symbol attributes if they're present.
3997 Indices prior to version 7 don't record them,
3998 and indices >= 7 may elide them for certain symbols
3999 (gold does this). */
4000 int attrs_valid =
4001 (dwarf2_per_objfile->index_table->version >= 7
4002 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4003
4004 /* Don't crash on bad data. */
4005 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4006 + dwarf2_per_objfile->all_type_units.size ()))
4007 {
4008 complaint (_(".gdb_index entry has bad CU index"
4009 " [in module %s]"),
4010 objfile_name (dwarf2_per_objfile->objfile));
4011 continue;
4012 }
4013
4014 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4015
4016 /* Skip if already read in. */
4017 if (per_cu->v.quick->compunit_symtab)
4018 continue;
4019
4020 /* Check static vs global. */
4021 if (attrs_valid)
4022 {
4023 if (iter->want_specific_block
4024 && want_static != is_static)
4025 continue;
4026 /* Work around gold/15646. */
4027 if (!is_static && iter->global_seen)
4028 continue;
4029 if (!is_static)
4030 iter->global_seen = 1;
4031 }
4032
4033 /* Only check the symbol's kind if it has one. */
4034 if (attrs_valid)
4035 {
4036 switch (iter->domain)
4037 {
4038 case VAR_DOMAIN:
4039 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4040 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4041 /* Some types are also in VAR_DOMAIN. */
4042 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4043 continue;
4044 break;
4045 case STRUCT_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4047 continue;
4048 break;
4049 case LABEL_DOMAIN:
4050 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4051 continue;
4052 break;
4053 default:
4054 break;
4055 }
4056 }
4057
4058 ++iter->next;
4059 return per_cu;
4060 }
4061
4062 return NULL;
4063 }
4064
4065 static struct compunit_symtab *
4066 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4067 const char *name, domain_enum domain)
4068 {
4069 struct compunit_symtab *stab_best = NULL;
4070 struct dwarf2_per_objfile *dwarf2_per_objfile
4071 = get_dwarf2_per_objfile (objfile);
4072
4073 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4074
4075 struct dw2_symtab_iterator iter;
4076 struct dwarf2_per_cu_data *per_cu;
4077
4078 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4079
4080 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4081 {
4082 struct symbol *sym, *with_opaque = NULL;
4083 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4084 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4085 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4086
4087 sym = block_find_symbol (block, name, domain,
4088 block_find_non_opaque_type_preferred,
4089 &with_opaque);
4090
4091 /* Some caution must be observed with overloaded functions
4092 and methods, since the index will not contain any overload
4093 information (but NAME might contain it). */
4094
4095 if (sym != NULL
4096 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4097 return stab;
4098 if (with_opaque != NULL
4099 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4100 stab_best = stab;
4101
4102 /* Keep looking through other CUs. */
4103 }
4104
4105 return stab_best;
4106 }
4107
4108 static void
4109 dw2_print_stats (struct objfile *objfile)
4110 {
4111 struct dwarf2_per_objfile *dwarf2_per_objfile
4112 = get_dwarf2_per_objfile (objfile);
4113 int total = (dwarf2_per_objfile->all_comp_units.size ()
4114 + dwarf2_per_objfile->all_type_units.size ());
4115 int count = 0;
4116
4117 for (int i = 0; i < total; ++i)
4118 {
4119 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4120
4121 if (!per_cu->v.quick->compunit_symtab)
4122 ++count;
4123 }
4124 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4125 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4126 }
4127
4128 /* This dumps minimal information about the index.
4129 It is called via "mt print objfiles".
4130 One use is to verify .gdb_index has been loaded by the
4131 gdb.dwarf2/gdb-index.exp testcase. */
4132
4133 static void
4134 dw2_dump (struct objfile *objfile)
4135 {
4136 struct dwarf2_per_objfile *dwarf2_per_objfile
4137 = get_dwarf2_per_objfile (objfile);
4138
4139 gdb_assert (dwarf2_per_objfile->using_index);
4140 printf_filtered (".gdb_index:");
4141 if (dwarf2_per_objfile->index_table != NULL)
4142 {
4143 printf_filtered (" version %d\n",
4144 dwarf2_per_objfile->index_table->version);
4145 }
4146 else
4147 printf_filtered (" faked for \"readnow\"\n");
4148 printf_filtered ("\n");
4149 }
4150
4151 static void
4152 dw2_expand_symtabs_for_function (struct objfile *objfile,
4153 const char *func_name)
4154 {
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 struct dw2_symtab_iterator iter;
4159 struct dwarf2_per_cu_data *per_cu;
4160
4161 /* Note: It doesn't matter what we pass for block_index here. */
4162 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4163 func_name);
4164
4165 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4166 dw2_instantiate_symtab (per_cu, false);
4167
4168 }
4169
4170 static void
4171 dw2_expand_all_symtabs (struct objfile *objfile)
4172 {
4173 struct dwarf2_per_objfile *dwarf2_per_objfile
4174 = get_dwarf2_per_objfile (objfile);
4175 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4176 + dwarf2_per_objfile->all_type_units.size ());
4177
4178 for (int i = 0; i < total_units; ++i)
4179 {
4180 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4181
4182 /* We don't want to directly expand a partial CU, because if we
4183 read it with the wrong language, then assertion failures can
4184 be triggered later on. See PR symtab/23010. So, tell
4185 dw2_instantiate_symtab to skip partial CUs -- any important
4186 partial CU will be read via DW_TAG_imported_unit anyway. */
4187 dw2_instantiate_symtab (per_cu, true);
4188 }
4189 }
4190
4191 static void
4192 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4193 const char *fullname)
4194 {
4195 struct dwarf2_per_objfile *dwarf2_per_objfile
4196 = get_dwarf2_per_objfile (objfile);
4197
4198 /* We don't need to consider type units here.
4199 This is only called for examining code, e.g. expand_line_sal.
4200 There can be an order of magnitude (or more) more type units
4201 than comp units, and we avoid them if we can. */
4202
4203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4204 {
4205 /* We only need to look at symtabs not already expanded. */
4206 if (per_cu->v.quick->compunit_symtab)
4207 continue;
4208
4209 quick_file_names *file_data = dw2_get_file_names (per_cu);
4210 if (file_data == NULL)
4211 continue;
4212
4213 for (int j = 0; j < file_data->num_file_names; ++j)
4214 {
4215 const char *this_fullname = file_data->file_names[j];
4216
4217 if (filename_cmp (this_fullname, fullname) == 0)
4218 {
4219 dw2_instantiate_symtab (per_cu, false);
4220 break;
4221 }
4222 }
4223 }
4224 }
4225
4226 static void
4227 dw2_map_matching_symbols (struct objfile *objfile,
4228 const char * name, domain_enum domain,
4229 int global,
4230 int (*callback) (const struct block *,
4231 struct symbol *, void *),
4232 void *data, symbol_name_match_type match,
4233 symbol_compare_ftype *ordered_compare)
4234 {
4235 /* Currently unimplemented; used for Ada. The function can be called if the
4236 current language is Ada for a non-Ada objfile using GNU index. As Ada
4237 does not look for non-Ada symbols this function should just return. */
4238 }
4239
4240 /* Symbol name matcher for .gdb_index names.
4241
4242 Symbol names in .gdb_index have a few particularities:
4243
4244 - There's no indication of which is the language of each symbol.
4245
4246 Since each language has its own symbol name matching algorithm,
4247 and we don't know which language is the right one, we must match
4248 each symbol against all languages. This would be a potential
4249 performance problem if it were not mitigated by the
4250 mapped_index::name_components lookup table, which significantly
4251 reduces the number of times we need to call into this matcher,
4252 making it a non-issue.
4253
4254 - Symbol names in the index have no overload (parameter)
4255 information. I.e., in C++, "foo(int)" and "foo(long)" both
4256 appear as "foo" in the index, for example.
4257
4258 This means that the lookup names passed to the symbol name
4259 matcher functions must have no parameter information either
4260 because (e.g.) symbol search name "foo" does not match
4261 lookup-name "foo(int)" [while swapping search name for lookup
4262 name would match].
4263 */
4264 class gdb_index_symbol_name_matcher
4265 {
4266 public:
4267 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4268 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4269
4270 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4271 Returns true if any matcher matches. */
4272 bool matches (const char *symbol_name);
4273
4274 private:
4275 /* A reference to the lookup name we're matching against. */
4276 const lookup_name_info &m_lookup_name;
4277
4278 /* A vector holding all the different symbol name matchers, for all
4279 languages. */
4280 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4281 };
4282
4283 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4284 (const lookup_name_info &lookup_name)
4285 : m_lookup_name (lookup_name)
4286 {
4287 /* Prepare the vector of comparison functions upfront, to avoid
4288 doing the same work for each symbol. Care is taken to avoid
4289 matching with the same matcher more than once if/when multiple
4290 languages use the same matcher function. */
4291 auto &matchers = m_symbol_name_matcher_funcs;
4292 matchers.reserve (nr_languages);
4293
4294 matchers.push_back (default_symbol_name_matcher);
4295
4296 for (int i = 0; i < nr_languages; i++)
4297 {
4298 const language_defn *lang = language_def ((enum language) i);
4299 symbol_name_matcher_ftype *name_matcher
4300 = get_symbol_name_matcher (lang, m_lookup_name);
4301
4302 /* Don't insert the same comparison routine more than once.
4303 Note that we do this linear walk instead of a seemingly
4304 cheaper sorted insert, or use a std::set or something like
4305 that, because relative order of function addresses is not
4306 stable. This is not a problem in practice because the number
4307 of supported languages is low, and the cost here is tiny
4308 compared to the number of searches we'll do afterwards using
4309 this object. */
4310 if (name_matcher != default_symbol_name_matcher
4311 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4312 == matchers.end ()))
4313 matchers.push_back (name_matcher);
4314 }
4315 }
4316
4317 bool
4318 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4319 {
4320 for (auto matches_name : m_symbol_name_matcher_funcs)
4321 if (matches_name (symbol_name, m_lookup_name, NULL))
4322 return true;
4323
4324 return false;
4325 }
4326
4327 /* Starting from a search name, return the string that finds the upper
4328 bound of all strings that start with SEARCH_NAME in a sorted name
4329 list. Returns the empty string to indicate that the upper bound is
4330 the end of the list. */
4331
4332 static std::string
4333 make_sort_after_prefix_name (const char *search_name)
4334 {
4335 /* When looking to complete "func", we find the upper bound of all
4336 symbols that start with "func" by looking for where we'd insert
4337 the closest string that would follow "func" in lexicographical
4338 order. Usually, that's "func"-with-last-character-incremented,
4339 i.e. "fund". Mind non-ASCII characters, though. Usually those
4340 will be UTF-8 multi-byte sequences, but we can't be certain.
4341 Especially mind the 0xff character, which is a valid character in
4342 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4343 rule out compilers allowing it in identifiers. Note that
4344 conveniently, strcmp/strcasecmp are specified to compare
4345 characters interpreted as unsigned char. So what we do is treat
4346 the whole string as a base 256 number composed of a sequence of
4347 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4348 to 0, and carries 1 to the following more-significant position.
4349 If the very first character in SEARCH_NAME ends up incremented
4350 and carries/overflows, then the upper bound is the end of the
4351 list. The string after the empty string is also the empty
4352 string.
4353
4354 Some examples of this operation:
4355
4356 SEARCH_NAME => "+1" RESULT
4357
4358 "abc" => "abd"
4359 "ab\xff" => "ac"
4360 "\xff" "a" "\xff" => "\xff" "b"
4361 "\xff" => ""
4362 "\xff\xff" => ""
4363 "" => ""
4364
4365 Then, with these symbols for example:
4366
4367 func
4368 func1
4369 fund
4370
4371 completing "func" looks for symbols between "func" and
4372 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4373 which finds "func" and "func1", but not "fund".
4374
4375 And with:
4376
4377 funcÿ (Latin1 'ÿ' [0xff])
4378 funcÿ1
4379 fund
4380
4381 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4382 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4383
4384 And with:
4385
4386 ÿÿ (Latin1 'ÿ' [0xff])
4387 ÿÿ1
4388
4389 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4390 the end of the list.
4391 */
4392 std::string after = search_name;
4393 while (!after.empty () && (unsigned char) after.back () == 0xff)
4394 after.pop_back ();
4395 if (!after.empty ())
4396 after.back () = (unsigned char) after.back () + 1;
4397 return after;
4398 }
4399
4400 /* See declaration. */
4401
4402 std::pair<std::vector<name_component>::const_iterator,
4403 std::vector<name_component>::const_iterator>
4404 mapped_index_base::find_name_components_bounds
4405 (const lookup_name_info &lookup_name_without_params) const
4406 {
4407 auto *name_cmp
4408 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4409
4410 const char *cplus
4411 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4412
4413 /* Comparison function object for lower_bound that matches against a
4414 given symbol name. */
4415 auto lookup_compare_lower = [&] (const name_component &elem,
4416 const char *name)
4417 {
4418 const char *elem_qualified = this->symbol_name_at (elem.idx);
4419 const char *elem_name = elem_qualified + elem.name_offset;
4420 return name_cmp (elem_name, name) < 0;
4421 };
4422
4423 /* Comparison function object for upper_bound that matches against a
4424 given symbol name. */
4425 auto lookup_compare_upper = [&] (const char *name,
4426 const name_component &elem)
4427 {
4428 const char *elem_qualified = this->symbol_name_at (elem.idx);
4429 const char *elem_name = elem_qualified + elem.name_offset;
4430 return name_cmp (name, elem_name) < 0;
4431 };
4432
4433 auto begin = this->name_components.begin ();
4434 auto end = this->name_components.end ();
4435
4436 /* Find the lower bound. */
4437 auto lower = [&] ()
4438 {
4439 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4440 return begin;
4441 else
4442 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4443 } ();
4444
4445 /* Find the upper bound. */
4446 auto upper = [&] ()
4447 {
4448 if (lookup_name_without_params.completion_mode ())
4449 {
4450 /* In completion mode, we want UPPER to point past all
4451 symbols names that have the same prefix. I.e., with
4452 these symbols, and completing "func":
4453
4454 function << lower bound
4455 function1
4456 other_function << upper bound
4457
4458 We find the upper bound by looking for the insertion
4459 point of "func"-with-last-character-incremented,
4460 i.e. "fund". */
4461 std::string after = make_sort_after_prefix_name (cplus);
4462 if (after.empty ())
4463 return end;
4464 return std::lower_bound (lower, end, after.c_str (),
4465 lookup_compare_lower);
4466 }
4467 else
4468 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4469 } ();
4470
4471 return {lower, upper};
4472 }
4473
4474 /* See declaration. */
4475
4476 void
4477 mapped_index_base::build_name_components ()
4478 {
4479 if (!this->name_components.empty ())
4480 return;
4481
4482 this->name_components_casing = case_sensitivity;
4483 auto *name_cmp
4484 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4485
4486 /* The code below only knows how to break apart components of C++
4487 symbol names (and other languages that use '::' as
4488 namespace/module separator). If we add support for wild matching
4489 to some language that uses some other operator (E.g., Ada, Go and
4490 D use '.'), then we'll need to try splitting the symbol name
4491 according to that language too. Note that Ada does support wild
4492 matching, but doesn't currently support .gdb_index. */
4493 auto count = this->symbol_name_count ();
4494 for (offset_type idx = 0; idx < count; idx++)
4495 {
4496 if (this->symbol_name_slot_invalid (idx))
4497 continue;
4498
4499 const char *name = this->symbol_name_at (idx);
4500
4501 /* Add each name component to the name component table. */
4502 unsigned int previous_len = 0;
4503 for (unsigned int current_len = cp_find_first_component (name);
4504 name[current_len] != '\0';
4505 current_len += cp_find_first_component (name + current_len))
4506 {
4507 gdb_assert (name[current_len] == ':');
4508 this->name_components.push_back ({previous_len, idx});
4509 /* Skip the '::'. */
4510 current_len += 2;
4511 previous_len = current_len;
4512 }
4513 this->name_components.push_back ({previous_len, idx});
4514 }
4515
4516 /* Sort name_components elements by name. */
4517 auto name_comp_compare = [&] (const name_component &left,
4518 const name_component &right)
4519 {
4520 const char *left_qualified = this->symbol_name_at (left.idx);
4521 const char *right_qualified = this->symbol_name_at (right.idx);
4522
4523 const char *left_name = left_qualified + left.name_offset;
4524 const char *right_name = right_qualified + right.name_offset;
4525
4526 return name_cmp (left_name, right_name) < 0;
4527 };
4528
4529 std::sort (this->name_components.begin (),
4530 this->name_components.end (),
4531 name_comp_compare);
4532 }
4533
4534 /* Helper for dw2_expand_symtabs_matching that works with a
4535 mapped_index_base instead of the containing objfile. This is split
4536 to a separate function in order to be able to unit test the
4537 name_components matching using a mock mapped_index_base. For each
4538 symbol name that matches, calls MATCH_CALLBACK, passing it the
4539 symbol's index in the mapped_index_base symbol table. */
4540
4541 static void
4542 dw2_expand_symtabs_matching_symbol
4543 (mapped_index_base &index,
4544 const lookup_name_info &lookup_name_in,
4545 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4546 enum search_domain kind,
4547 gdb::function_view<void (offset_type)> match_callback)
4548 {
4549 lookup_name_info lookup_name_without_params
4550 = lookup_name_in.make_ignore_params ();
4551 gdb_index_symbol_name_matcher lookup_name_matcher
4552 (lookup_name_without_params);
4553
4554 /* Build the symbol name component sorted vector, if we haven't
4555 yet. */
4556 index.build_name_components ();
4557
4558 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4559
4560 /* Now for each symbol name in range, check to see if we have a name
4561 match, and if so, call the MATCH_CALLBACK callback. */
4562
4563 /* The same symbol may appear more than once in the range though.
4564 E.g., if we're looking for symbols that complete "w", and we have
4565 a symbol named "w1::w2", we'll find the two name components for
4566 that same symbol in the range. To be sure we only call the
4567 callback once per symbol, we first collect the symbol name
4568 indexes that matched in a temporary vector and ignore
4569 duplicates. */
4570 std::vector<offset_type> matches;
4571 matches.reserve (std::distance (bounds.first, bounds.second));
4572
4573 for (; bounds.first != bounds.second; ++bounds.first)
4574 {
4575 const char *qualified = index.symbol_name_at (bounds.first->idx);
4576
4577 if (!lookup_name_matcher.matches (qualified)
4578 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4579 continue;
4580
4581 matches.push_back (bounds.first->idx);
4582 }
4583
4584 std::sort (matches.begin (), matches.end ());
4585
4586 /* Finally call the callback, once per match. */
4587 ULONGEST prev = -1;
4588 for (offset_type idx : matches)
4589 {
4590 if (prev != idx)
4591 {
4592 match_callback (idx);
4593 prev = idx;
4594 }
4595 }
4596
4597 /* Above we use a type wider than idx's for 'prev', since 0 and
4598 (offset_type)-1 are both possible values. */
4599 static_assert (sizeof (prev) > sizeof (offset_type), "");
4600 }
4601
4602 #if GDB_SELF_TEST
4603
4604 namespace selftests { namespace dw2_expand_symtabs_matching {
4605
4606 /* A mock .gdb_index/.debug_names-like name index table, enough to
4607 exercise dw2_expand_symtabs_matching_symbol, which works with the
4608 mapped_index_base interface. Builds an index from the symbol list
4609 passed as parameter to the constructor. */
4610 class mock_mapped_index : public mapped_index_base
4611 {
4612 public:
4613 mock_mapped_index (gdb::array_view<const char *> symbols)
4614 : m_symbol_table (symbols)
4615 {}
4616
4617 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4618
4619 /* Return the number of names in the symbol table. */
4620 size_t symbol_name_count () const override
4621 {
4622 return m_symbol_table.size ();
4623 }
4624
4625 /* Get the name of the symbol at IDX in the symbol table. */
4626 const char *symbol_name_at (offset_type idx) const override
4627 {
4628 return m_symbol_table[idx];
4629 }
4630
4631 private:
4632 gdb::array_view<const char *> m_symbol_table;
4633 };
4634
4635 /* Convenience function that converts a NULL pointer to a "<null>"
4636 string, to pass to print routines. */
4637
4638 static const char *
4639 string_or_null (const char *str)
4640 {
4641 return str != NULL ? str : "<null>";
4642 }
4643
4644 /* Check if a lookup_name_info built from
4645 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4646 index. EXPECTED_LIST is the list of expected matches, in expected
4647 matching order. If no match expected, then an empty list is
4648 specified. Returns true on success. On failure prints a warning
4649 indicating the file:line that failed, and returns false. */
4650
4651 static bool
4652 check_match (const char *file, int line,
4653 mock_mapped_index &mock_index,
4654 const char *name, symbol_name_match_type match_type,
4655 bool completion_mode,
4656 std::initializer_list<const char *> expected_list)
4657 {
4658 lookup_name_info lookup_name (name, match_type, completion_mode);
4659
4660 bool matched = true;
4661
4662 auto mismatch = [&] (const char *expected_str,
4663 const char *got)
4664 {
4665 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4666 "expected=\"%s\", got=\"%s\"\n"),
4667 file, line,
4668 (match_type == symbol_name_match_type::FULL
4669 ? "FULL" : "WILD"),
4670 name, string_or_null (expected_str), string_or_null (got));
4671 matched = false;
4672 };
4673
4674 auto expected_it = expected_list.begin ();
4675 auto expected_end = expected_list.end ();
4676
4677 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4678 NULL, ALL_DOMAIN,
4679 [&] (offset_type idx)
4680 {
4681 const char *matched_name = mock_index.symbol_name_at (idx);
4682 const char *expected_str
4683 = expected_it == expected_end ? NULL : *expected_it++;
4684
4685 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4686 mismatch (expected_str, matched_name);
4687 });
4688
4689 const char *expected_str
4690 = expected_it == expected_end ? NULL : *expected_it++;
4691 if (expected_str != NULL)
4692 mismatch (expected_str, NULL);
4693
4694 return matched;
4695 }
4696
4697 /* The symbols added to the mock mapped_index for testing (in
4698 canonical form). */
4699 static const char *test_symbols[] = {
4700 "function",
4701 "std::bar",
4702 "std::zfunction",
4703 "std::zfunction2",
4704 "w1::w2",
4705 "ns::foo<char*>",
4706 "ns::foo<int>",
4707 "ns::foo<long>",
4708 "ns2::tmpl<int>::foo2",
4709 "(anonymous namespace)::A::B::C",
4710
4711 /* These are used to check that the increment-last-char in the
4712 matching algorithm for completion doesn't match "t1_fund" when
4713 completing "t1_func". */
4714 "t1_func",
4715 "t1_func1",
4716 "t1_fund",
4717 "t1_fund1",
4718
4719 /* A UTF-8 name with multi-byte sequences to make sure that
4720 cp-name-parser understands this as a single identifier ("função"
4721 is "function" in PT). */
4722 u8"u8função",
4723
4724 /* \377 (0xff) is Latin1 'ÿ'. */
4725 "yfunc\377",
4726
4727 /* \377 (0xff) is Latin1 'ÿ'. */
4728 "\377",
4729 "\377\377123",
4730
4731 /* A name with all sorts of complications. Starts with "z" to make
4732 it easier for the completion tests below. */
4733 #define Z_SYM_NAME \
4734 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4735 "::tuple<(anonymous namespace)::ui*, " \
4736 "std::default_delete<(anonymous namespace)::ui>, void>"
4737
4738 Z_SYM_NAME
4739 };
4740
4741 /* Returns true if the mapped_index_base::find_name_component_bounds
4742 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4743 in completion mode. */
4744
4745 static bool
4746 check_find_bounds_finds (mapped_index_base &index,
4747 const char *search_name,
4748 gdb::array_view<const char *> expected_syms)
4749 {
4750 lookup_name_info lookup_name (search_name,
4751 symbol_name_match_type::FULL, true);
4752
4753 auto bounds = index.find_name_components_bounds (lookup_name);
4754
4755 size_t distance = std::distance (bounds.first, bounds.second);
4756 if (distance != expected_syms.size ())
4757 return false;
4758
4759 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4760 {
4761 auto nc_elem = bounds.first + exp_elem;
4762 const char *qualified = index.symbol_name_at (nc_elem->idx);
4763 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4764 return false;
4765 }
4766
4767 return true;
4768 }
4769
4770 /* Test the lower-level mapped_index::find_name_component_bounds
4771 method. */
4772
4773 static void
4774 test_mapped_index_find_name_component_bounds ()
4775 {
4776 mock_mapped_index mock_index (test_symbols);
4777
4778 mock_index.build_name_components ();
4779
4780 /* Test the lower-level mapped_index::find_name_component_bounds
4781 method in completion mode. */
4782 {
4783 static const char *expected_syms[] = {
4784 "t1_func",
4785 "t1_func1",
4786 };
4787
4788 SELF_CHECK (check_find_bounds_finds (mock_index,
4789 "t1_func", expected_syms));
4790 }
4791
4792 /* Check that the increment-last-char in the name matching algorithm
4793 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4794 {
4795 static const char *expected_syms1[] = {
4796 "\377",
4797 "\377\377123",
4798 };
4799 SELF_CHECK (check_find_bounds_finds (mock_index,
4800 "\377", expected_syms1));
4801
4802 static const char *expected_syms2[] = {
4803 "\377\377123",
4804 };
4805 SELF_CHECK (check_find_bounds_finds (mock_index,
4806 "\377\377", expected_syms2));
4807 }
4808 }
4809
4810 /* Test dw2_expand_symtabs_matching_symbol. */
4811
4812 static void
4813 test_dw2_expand_symtabs_matching_symbol ()
4814 {
4815 mock_mapped_index mock_index (test_symbols);
4816
4817 /* We let all tests run until the end even if some fails, for debug
4818 convenience. */
4819 bool any_mismatch = false;
4820
4821 /* Create the expected symbols list (an initializer_list). Needed
4822 because lists have commas, and we need to pass them to CHECK,
4823 which is a macro. */
4824 #define EXPECT(...) { __VA_ARGS__ }
4825
4826 /* Wrapper for check_match that passes down the current
4827 __FILE__/__LINE__. */
4828 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4829 any_mismatch |= !check_match (__FILE__, __LINE__, \
4830 mock_index, \
4831 NAME, MATCH_TYPE, COMPLETION_MODE, \
4832 EXPECTED_LIST)
4833
4834 /* Identity checks. */
4835 for (const char *sym : test_symbols)
4836 {
4837 /* Should be able to match all existing symbols. */
4838 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4839 EXPECT (sym));
4840
4841 /* Should be able to match all existing symbols with
4842 parameters. */
4843 std::string with_params = std::string (sym) + "(int)";
4844 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4845 EXPECT (sym));
4846
4847 /* Should be able to match all existing symbols with
4848 parameters and qualifiers. */
4849 with_params = std::string (sym) + " ( int ) const";
4850 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4851 EXPECT (sym));
4852
4853 /* This should really find sym, but cp-name-parser.y doesn't
4854 know about lvalue/rvalue qualifiers yet. */
4855 with_params = std::string (sym) + " ( int ) &&";
4856 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4857 {});
4858 }
4859
4860 /* Check that the name matching algorithm for completion doesn't get
4861 confused with Latin1 'ÿ' / 0xff. */
4862 {
4863 static const char str[] = "\377";
4864 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4865 EXPECT ("\377", "\377\377123"));
4866 }
4867
4868 /* Check that the increment-last-char in the matching algorithm for
4869 completion doesn't match "t1_fund" when completing "t1_func". */
4870 {
4871 static const char str[] = "t1_func";
4872 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4873 EXPECT ("t1_func", "t1_func1"));
4874 }
4875
4876 /* Check that completion mode works at each prefix of the expected
4877 symbol name. */
4878 {
4879 static const char str[] = "function(int)";
4880 size_t len = strlen (str);
4881 std::string lookup;
4882
4883 for (size_t i = 1; i < len; i++)
4884 {
4885 lookup.assign (str, i);
4886 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4887 EXPECT ("function"));
4888 }
4889 }
4890
4891 /* While "w" is a prefix of both components, the match function
4892 should still only be called once. */
4893 {
4894 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4895 EXPECT ("w1::w2"));
4896 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4897 EXPECT ("w1::w2"));
4898 }
4899
4900 /* Same, with a "complicated" symbol. */
4901 {
4902 static const char str[] = Z_SYM_NAME;
4903 size_t len = strlen (str);
4904 std::string lookup;
4905
4906 for (size_t i = 1; i < len; i++)
4907 {
4908 lookup.assign (str, i);
4909 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4910 EXPECT (Z_SYM_NAME));
4911 }
4912 }
4913
4914 /* In FULL mode, an incomplete symbol doesn't match. */
4915 {
4916 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4917 {});
4918 }
4919
4920 /* A complete symbol with parameters matches any overload, since the
4921 index has no overload info. */
4922 {
4923 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4926 EXPECT ("std::zfunction", "std::zfunction2"));
4927 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4928 EXPECT ("std::zfunction", "std::zfunction2"));
4929 }
4930
4931 /* Check that whitespace is ignored appropriately. A symbol with a
4932 template argument list. */
4933 {
4934 static const char expected[] = "ns::foo<int>";
4935 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4936 EXPECT (expected));
4937 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4938 EXPECT (expected));
4939 }
4940
4941 /* Check that whitespace is ignored appropriately. A symbol with a
4942 template argument list that includes a pointer. */
4943 {
4944 static const char expected[] = "ns::foo<char*>";
4945 /* Try both completion and non-completion modes. */
4946 static const bool completion_mode[2] = {false, true};
4947 for (size_t i = 0; i < 2; i++)
4948 {
4949 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4950 completion_mode[i], EXPECT (expected));
4951 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4952 completion_mode[i], EXPECT (expected));
4953
4954 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4955 completion_mode[i], EXPECT (expected));
4956 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4957 completion_mode[i], EXPECT (expected));
4958 }
4959 }
4960
4961 {
4962 /* Check method qualifiers are ignored. */
4963 static const char expected[] = "ns::foo<char*>";
4964 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4965 symbol_name_match_type::FULL, true, EXPECT (expected));
4966 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4967 symbol_name_match_type::FULL, true, EXPECT (expected));
4968 CHECK_MATCH ("foo < char * > ( int ) const",
4969 symbol_name_match_type::WILD, true, EXPECT (expected));
4970 CHECK_MATCH ("foo < char * > ( int ) &&",
4971 symbol_name_match_type::WILD, true, EXPECT (expected));
4972 }
4973
4974 /* Test lookup names that don't match anything. */
4975 {
4976 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4977 {});
4978
4979 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4980 {});
4981 }
4982
4983 /* Some wild matching tests, exercising "(anonymous namespace)",
4984 which should not be confused with a parameter list. */
4985 {
4986 static const char *syms[] = {
4987 "A::B::C",
4988 "B::C",
4989 "C",
4990 "A :: B :: C ( int )",
4991 "B :: C ( int )",
4992 "C ( int )",
4993 };
4994
4995 for (const char *s : syms)
4996 {
4997 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4998 EXPECT ("(anonymous namespace)::A::B::C"));
4999 }
5000 }
5001
5002 {
5003 static const char expected[] = "ns2::tmpl<int>::foo2";
5004 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5005 EXPECT (expected));
5006 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5007 EXPECT (expected));
5008 }
5009
5010 SELF_CHECK (!any_mismatch);
5011
5012 #undef EXPECT
5013 #undef CHECK_MATCH
5014 }
5015
5016 static void
5017 run_test ()
5018 {
5019 test_mapped_index_find_name_component_bounds ();
5020 test_dw2_expand_symtabs_matching_symbol ();
5021 }
5022
5023 }} // namespace selftests::dw2_expand_symtabs_matching
5024
5025 #endif /* GDB_SELF_TEST */
5026
5027 /* If FILE_MATCHER is NULL or if PER_CU has
5028 dwarf2_per_cu_quick_data::MARK set (see
5029 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5030 EXPANSION_NOTIFY on it. */
5031
5032 static void
5033 dw2_expand_symtabs_matching_one
5034 (struct dwarf2_per_cu_data *per_cu,
5035 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5036 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5037 {
5038 if (file_matcher == NULL || per_cu->v.quick->mark)
5039 {
5040 bool symtab_was_null
5041 = (per_cu->v.quick->compunit_symtab == NULL);
5042
5043 dw2_instantiate_symtab (per_cu, false);
5044
5045 if (expansion_notify != NULL
5046 && symtab_was_null
5047 && per_cu->v.quick->compunit_symtab != NULL)
5048 expansion_notify (per_cu->v.quick->compunit_symtab);
5049 }
5050 }
5051
5052 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5053 matched, to expand corresponding CUs that were marked. IDX is the
5054 index of the symbol name that matched. */
5055
5056 static void
5057 dw2_expand_marked_cus
5058 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5059 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5060 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5061 search_domain kind)
5062 {
5063 offset_type *vec, vec_len, vec_idx;
5064 bool global_seen = false;
5065 mapped_index &index = *dwarf2_per_objfile->index_table;
5066
5067 vec = (offset_type *) (index.constant_pool
5068 + MAYBE_SWAP (index.symbol_table[idx].vec));
5069 vec_len = MAYBE_SWAP (vec[0]);
5070 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5071 {
5072 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5073 /* This value is only valid for index versions >= 7. */
5074 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5075 gdb_index_symbol_kind symbol_kind =
5076 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5077 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5078 /* Only check the symbol attributes if they're present.
5079 Indices prior to version 7 don't record them,
5080 and indices >= 7 may elide them for certain symbols
5081 (gold does this). */
5082 int attrs_valid =
5083 (index.version >= 7
5084 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5085
5086 /* Work around gold/15646. */
5087 if (attrs_valid)
5088 {
5089 if (!is_static && global_seen)
5090 continue;
5091 if (!is_static)
5092 global_seen = true;
5093 }
5094
5095 /* Only check the symbol's kind if it has one. */
5096 if (attrs_valid)
5097 {
5098 switch (kind)
5099 {
5100 case VARIABLES_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5102 continue;
5103 break;
5104 case FUNCTIONS_DOMAIN:
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5106 continue;
5107 break;
5108 case TYPES_DOMAIN:
5109 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5110 continue;
5111 break;
5112 default:
5113 break;
5114 }
5115 }
5116
5117 /* Don't crash on bad data. */
5118 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5119 + dwarf2_per_objfile->all_type_units.size ()))
5120 {
5121 complaint (_(".gdb_index entry has bad CU index"
5122 " [in module %s]"),
5123 objfile_name (dwarf2_per_objfile->objfile));
5124 continue;
5125 }
5126
5127 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5128 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5129 expansion_notify);
5130 }
5131 }
5132
5133 /* If FILE_MATCHER is non-NULL, set all the
5134 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5135 that match FILE_MATCHER. */
5136
5137 static void
5138 dw_expand_symtabs_matching_file_matcher
5139 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5140 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5141 {
5142 if (file_matcher == NULL)
5143 return;
5144
5145 objfile *const objfile = dwarf2_per_objfile->objfile;
5146
5147 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5148 htab_eq_pointer,
5149 NULL, xcalloc, xfree));
5150 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5151 htab_eq_pointer,
5152 NULL, xcalloc, xfree));
5153
5154 /* The rule is CUs specify all the files, including those used by
5155 any TU, so there's no need to scan TUs here. */
5156
5157 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5158 {
5159 QUIT;
5160
5161 per_cu->v.quick->mark = 0;
5162
5163 /* We only need to look at symtabs not already expanded. */
5164 if (per_cu->v.quick->compunit_symtab)
5165 continue;
5166
5167 quick_file_names *file_data = dw2_get_file_names (per_cu);
5168 if (file_data == NULL)
5169 continue;
5170
5171 if (htab_find (visited_not_found.get (), file_data) != NULL)
5172 continue;
5173 else if (htab_find (visited_found.get (), file_data) != NULL)
5174 {
5175 per_cu->v.quick->mark = 1;
5176 continue;
5177 }
5178
5179 for (int j = 0; j < file_data->num_file_names; ++j)
5180 {
5181 const char *this_real_name;
5182
5183 if (file_matcher (file_data->file_names[j], false))
5184 {
5185 per_cu->v.quick->mark = 1;
5186 break;
5187 }
5188
5189 /* Before we invoke realpath, which can get expensive when many
5190 files are involved, do a quick comparison of the basenames. */
5191 if (!basenames_may_differ
5192 && !file_matcher (lbasename (file_data->file_names[j]),
5193 true))
5194 continue;
5195
5196 this_real_name = dw2_get_real_path (objfile, file_data, j);
5197 if (file_matcher (this_real_name, false))
5198 {
5199 per_cu->v.quick->mark = 1;
5200 break;
5201 }
5202 }
5203
5204 void **slot = htab_find_slot (per_cu->v.quick->mark
5205 ? visited_found.get ()
5206 : visited_not_found.get (),
5207 file_data, INSERT);
5208 *slot = file_data;
5209 }
5210 }
5211
5212 static void
5213 dw2_expand_symtabs_matching
5214 (struct objfile *objfile,
5215 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5216 const lookup_name_info &lookup_name,
5217 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5218 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5219 enum search_domain kind)
5220 {
5221 struct dwarf2_per_objfile *dwarf2_per_objfile
5222 = get_dwarf2_per_objfile (objfile);
5223
5224 /* index_table is NULL if OBJF_READNOW. */
5225 if (!dwarf2_per_objfile->index_table)
5226 return;
5227
5228 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5229
5230 mapped_index &index = *dwarf2_per_objfile->index_table;
5231
5232 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5233 symbol_matcher,
5234 kind, [&] (offset_type idx)
5235 {
5236 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5237 expansion_notify, kind);
5238 });
5239 }
5240
5241 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5242 symtab. */
5243
5244 static struct compunit_symtab *
5245 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5246 CORE_ADDR pc)
5247 {
5248 int i;
5249
5250 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5251 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5252 return cust;
5253
5254 if (cust->includes == NULL)
5255 return NULL;
5256
5257 for (i = 0; cust->includes[i]; ++i)
5258 {
5259 struct compunit_symtab *s = cust->includes[i];
5260
5261 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5262 if (s != NULL)
5263 return s;
5264 }
5265
5266 return NULL;
5267 }
5268
5269 static struct compunit_symtab *
5270 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5271 struct bound_minimal_symbol msymbol,
5272 CORE_ADDR pc,
5273 struct obj_section *section,
5274 int warn_if_readin)
5275 {
5276 struct dwarf2_per_cu_data *data;
5277 struct compunit_symtab *result;
5278
5279 if (!objfile->partial_symtabs->psymtabs_addrmap)
5280 return NULL;
5281
5282 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5283 SECT_OFF_TEXT (objfile));
5284 data = (struct dwarf2_per_cu_data *) addrmap_find
5285 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5286 if (!data)
5287 return NULL;
5288
5289 if (warn_if_readin && data->v.quick->compunit_symtab)
5290 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5291 paddress (get_objfile_arch (objfile), pc));
5292
5293 result
5294 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5295 false),
5296 pc);
5297 gdb_assert (result != NULL);
5298 return result;
5299 }
5300
5301 static void
5302 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5303 void *data, int need_fullname)
5304 {
5305 struct dwarf2_per_objfile *dwarf2_per_objfile
5306 = get_dwarf2_per_objfile (objfile);
5307
5308 if (!dwarf2_per_objfile->filenames_cache)
5309 {
5310 dwarf2_per_objfile->filenames_cache.emplace ();
5311
5312 htab_up visited (htab_create_alloc (10,
5313 htab_hash_pointer, htab_eq_pointer,
5314 NULL, xcalloc, xfree));
5315
5316 /* The rule is CUs specify all the files, including those used
5317 by any TU, so there's no need to scan TUs here. We can
5318 ignore file names coming from already-expanded CUs. */
5319
5320 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5321 {
5322 if (per_cu->v.quick->compunit_symtab)
5323 {
5324 void **slot = htab_find_slot (visited.get (),
5325 per_cu->v.quick->file_names,
5326 INSERT);
5327
5328 *slot = per_cu->v.quick->file_names;
5329 }
5330 }
5331
5332 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5333 {
5334 /* We only need to look at symtabs not already expanded. */
5335 if (per_cu->v.quick->compunit_symtab)
5336 continue;
5337
5338 quick_file_names *file_data = dw2_get_file_names (per_cu);
5339 if (file_data == NULL)
5340 continue;
5341
5342 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5343 if (*slot)
5344 {
5345 /* Already visited. */
5346 continue;
5347 }
5348 *slot = file_data;
5349
5350 for (int j = 0; j < file_data->num_file_names; ++j)
5351 {
5352 const char *filename = file_data->file_names[j];
5353 dwarf2_per_objfile->filenames_cache->seen (filename);
5354 }
5355 }
5356 }
5357
5358 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5359 {
5360 gdb::unique_xmalloc_ptr<char> this_real_name;
5361
5362 if (need_fullname)
5363 this_real_name = gdb_realpath (filename);
5364 (*fun) (filename, this_real_name.get (), data);
5365 });
5366 }
5367
5368 static int
5369 dw2_has_symbols (struct objfile *objfile)
5370 {
5371 return 1;
5372 }
5373
5374 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5375 {
5376 dw2_has_symbols,
5377 dw2_find_last_source_symtab,
5378 dw2_forget_cached_source_info,
5379 dw2_map_symtabs_matching_filename,
5380 dw2_lookup_symbol,
5381 dw2_print_stats,
5382 dw2_dump,
5383 dw2_expand_symtabs_for_function,
5384 dw2_expand_all_symtabs,
5385 dw2_expand_symtabs_with_fullname,
5386 dw2_map_matching_symbols,
5387 dw2_expand_symtabs_matching,
5388 dw2_find_pc_sect_compunit_symtab,
5389 NULL,
5390 dw2_map_symbol_filenames
5391 };
5392
5393 /* DWARF-5 debug_names reader. */
5394
5395 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5396 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5397
5398 /* A helper function that reads the .debug_names section in SECTION
5399 and fills in MAP. FILENAME is the name of the file containing the
5400 section; it is used for error reporting.
5401
5402 Returns true if all went well, false otherwise. */
5403
5404 static bool
5405 read_debug_names_from_section (struct objfile *objfile,
5406 const char *filename,
5407 struct dwarf2_section_info *section,
5408 mapped_debug_names &map)
5409 {
5410 if (dwarf2_section_empty_p (section))
5411 return false;
5412
5413 /* Older elfutils strip versions could keep the section in the main
5414 executable while splitting it for the separate debug info file. */
5415 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5416 return false;
5417
5418 dwarf2_read_section (objfile, section);
5419
5420 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5421
5422 const gdb_byte *addr = section->buffer;
5423
5424 bfd *const abfd = get_section_bfd_owner (section);
5425
5426 unsigned int bytes_read;
5427 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5428 addr += bytes_read;
5429
5430 map.dwarf5_is_dwarf64 = bytes_read != 4;
5431 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5432 if (bytes_read + length != section->size)
5433 {
5434 /* There may be multiple per-CU indices. */
5435 warning (_("Section .debug_names in %s length %s does not match "
5436 "section length %s, ignoring .debug_names."),
5437 filename, plongest (bytes_read + length),
5438 pulongest (section->size));
5439 return false;
5440 }
5441
5442 /* The version number. */
5443 uint16_t version = read_2_bytes (abfd, addr);
5444 addr += 2;
5445 if (version != 5)
5446 {
5447 warning (_("Section .debug_names in %s has unsupported version %d, "
5448 "ignoring .debug_names."),
5449 filename, version);
5450 return false;
5451 }
5452
5453 /* Padding. */
5454 uint16_t padding = read_2_bytes (abfd, addr);
5455 addr += 2;
5456 if (padding != 0)
5457 {
5458 warning (_("Section .debug_names in %s has unsupported padding %d, "
5459 "ignoring .debug_names."),
5460 filename, padding);
5461 return false;
5462 }
5463
5464 /* comp_unit_count - The number of CUs in the CU list. */
5465 map.cu_count = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* local_type_unit_count - The number of TUs in the local TU
5469 list. */
5470 map.tu_count = read_4_bytes (abfd, addr);
5471 addr += 4;
5472
5473 /* foreign_type_unit_count - The number of TUs in the foreign TU
5474 list. */
5475 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5476 addr += 4;
5477 if (foreign_tu_count != 0)
5478 {
5479 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5480 "ignoring .debug_names."),
5481 filename, static_cast<unsigned long> (foreign_tu_count));
5482 return false;
5483 }
5484
5485 /* bucket_count - The number of hash buckets in the hash lookup
5486 table. */
5487 map.bucket_count = read_4_bytes (abfd, addr);
5488 addr += 4;
5489
5490 /* name_count - The number of unique names in the index. */
5491 map.name_count = read_4_bytes (abfd, addr);
5492 addr += 4;
5493
5494 /* abbrev_table_size - The size in bytes of the abbreviations
5495 table. */
5496 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5497 addr += 4;
5498
5499 /* augmentation_string_size - The size in bytes of the augmentation
5500 string. This value is rounded up to a multiple of 4. */
5501 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5502 addr += 4;
5503 map.augmentation_is_gdb = ((augmentation_string_size
5504 == sizeof (dwarf5_augmentation))
5505 && memcmp (addr, dwarf5_augmentation,
5506 sizeof (dwarf5_augmentation)) == 0);
5507 augmentation_string_size += (-augmentation_string_size) & 3;
5508 addr += augmentation_string_size;
5509
5510 /* List of CUs */
5511 map.cu_table_reordered = addr;
5512 addr += map.cu_count * map.offset_size;
5513
5514 /* List of Local TUs */
5515 map.tu_table_reordered = addr;
5516 addr += map.tu_count * map.offset_size;
5517
5518 /* Hash Lookup Table */
5519 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5520 addr += map.bucket_count * 4;
5521 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5522 addr += map.name_count * 4;
5523
5524 /* Name Table */
5525 map.name_table_string_offs_reordered = addr;
5526 addr += map.name_count * map.offset_size;
5527 map.name_table_entry_offs_reordered = addr;
5528 addr += map.name_count * map.offset_size;
5529
5530 const gdb_byte *abbrev_table_start = addr;
5531 for (;;)
5532 {
5533 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5534 addr += bytes_read;
5535 if (index_num == 0)
5536 break;
5537
5538 const auto insertpair
5539 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5540 if (!insertpair.second)
5541 {
5542 warning (_("Section .debug_names in %s has duplicate index %s, "
5543 "ignoring .debug_names."),
5544 filename, pulongest (index_num));
5545 return false;
5546 }
5547 mapped_debug_names::index_val &indexval = insertpair.first->second;
5548 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5549 addr += bytes_read;
5550
5551 for (;;)
5552 {
5553 mapped_debug_names::index_val::attr attr;
5554 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5555 addr += bytes_read;
5556 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5557 addr += bytes_read;
5558 if (attr.form == DW_FORM_implicit_const)
5559 {
5560 attr.implicit_const = read_signed_leb128 (abfd, addr,
5561 &bytes_read);
5562 addr += bytes_read;
5563 }
5564 if (attr.dw_idx == 0 && attr.form == 0)
5565 break;
5566 indexval.attr_vec.push_back (std::move (attr));
5567 }
5568 }
5569 if (addr != abbrev_table_start + abbrev_table_size)
5570 {
5571 warning (_("Section .debug_names in %s has abbreviation_table "
5572 "of size %zu vs. written as %u, ignoring .debug_names."),
5573 filename, addr - abbrev_table_start, abbrev_table_size);
5574 return false;
5575 }
5576 map.entry_pool = addr;
5577
5578 return true;
5579 }
5580
5581 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5582 list. */
5583
5584 static void
5585 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5586 const mapped_debug_names &map,
5587 dwarf2_section_info &section,
5588 bool is_dwz)
5589 {
5590 sect_offset sect_off_prev;
5591 for (uint32_t i = 0; i <= map.cu_count; ++i)
5592 {
5593 sect_offset sect_off_next;
5594 if (i < map.cu_count)
5595 {
5596 sect_off_next
5597 = (sect_offset) (extract_unsigned_integer
5598 (map.cu_table_reordered + i * map.offset_size,
5599 map.offset_size,
5600 map.dwarf5_byte_order));
5601 }
5602 else
5603 sect_off_next = (sect_offset) section.size;
5604 if (i >= 1)
5605 {
5606 const ULONGEST length = sect_off_next - sect_off_prev;
5607 dwarf2_per_cu_data *per_cu
5608 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5609 sect_off_prev, length);
5610 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5611 }
5612 sect_off_prev = sect_off_next;
5613 }
5614 }
5615
5616 /* Read the CU list from the mapped index, and use it to create all
5617 the CU objects for this dwarf2_per_objfile. */
5618
5619 static void
5620 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5621 const mapped_debug_names &map,
5622 const mapped_debug_names &dwz_map)
5623 {
5624 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5625 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5626
5627 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5628 dwarf2_per_objfile->info,
5629 false /* is_dwz */);
5630
5631 if (dwz_map.cu_count == 0)
5632 return;
5633
5634 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5635 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5636 true /* is_dwz */);
5637 }
5638
5639 /* Read .debug_names. If everything went ok, initialize the "quick"
5640 elements of all the CUs and return true. Otherwise, return false. */
5641
5642 static bool
5643 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5644 {
5645 std::unique_ptr<mapped_debug_names> map
5646 (new mapped_debug_names (dwarf2_per_objfile));
5647 mapped_debug_names dwz_map (dwarf2_per_objfile);
5648 struct objfile *objfile = dwarf2_per_objfile->objfile;
5649
5650 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5651 &dwarf2_per_objfile->debug_names,
5652 *map))
5653 return false;
5654
5655 /* Don't use the index if it's empty. */
5656 if (map->name_count == 0)
5657 return false;
5658
5659 /* If there is a .dwz file, read it so we can get its CU list as
5660 well. */
5661 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5662 if (dwz != NULL)
5663 {
5664 if (!read_debug_names_from_section (objfile,
5665 bfd_get_filename (dwz->dwz_bfd),
5666 &dwz->debug_names, dwz_map))
5667 {
5668 warning (_("could not read '.debug_names' section from %s; skipping"),
5669 bfd_get_filename (dwz->dwz_bfd));
5670 return false;
5671 }
5672 }
5673
5674 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5675
5676 if (map->tu_count != 0)
5677 {
5678 /* We can only handle a single .debug_types when we have an
5679 index. */
5680 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5681 return false;
5682
5683 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5684 dwarf2_per_objfile->types, 0);
5685
5686 create_signatured_type_table_from_debug_names
5687 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5688 }
5689
5690 create_addrmap_from_aranges (dwarf2_per_objfile,
5691 &dwarf2_per_objfile->debug_aranges);
5692
5693 dwarf2_per_objfile->debug_names_table = std::move (map);
5694 dwarf2_per_objfile->using_index = 1;
5695 dwarf2_per_objfile->quick_file_names_table =
5696 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5697
5698 return true;
5699 }
5700
5701 /* Type used to manage iterating over all CUs looking for a symbol for
5702 .debug_names. */
5703
5704 class dw2_debug_names_iterator
5705 {
5706 public:
5707 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5708 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5709 dw2_debug_names_iterator (const mapped_debug_names &map,
5710 bool want_specific_block,
5711 block_enum block_index, domain_enum domain,
5712 const char *name)
5713 : m_map (map), m_want_specific_block (want_specific_block),
5714 m_block_index (block_index), m_domain (domain),
5715 m_addr (find_vec_in_debug_names (map, name))
5716 {}
5717
5718 dw2_debug_names_iterator (const mapped_debug_names &map,
5719 search_domain search, uint32_t namei)
5720 : m_map (map),
5721 m_search (search),
5722 m_addr (find_vec_in_debug_names (map, namei))
5723 {}
5724
5725 /* Return the next matching CU or NULL if there are no more. */
5726 dwarf2_per_cu_data *next ();
5727
5728 private:
5729 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5730 const char *name);
5731 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5732 uint32_t namei);
5733
5734 /* The internalized form of .debug_names. */
5735 const mapped_debug_names &m_map;
5736
5737 /* If true, only look for symbols that match BLOCK_INDEX. */
5738 const bool m_want_specific_block = false;
5739
5740 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5741 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5742 value. */
5743 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5744
5745 /* The kind of symbol we're looking for. */
5746 const domain_enum m_domain = UNDEF_DOMAIN;
5747 const search_domain m_search = ALL_DOMAIN;
5748
5749 /* The list of CUs from the index entry of the symbol, or NULL if
5750 not found. */
5751 const gdb_byte *m_addr;
5752 };
5753
5754 const char *
5755 mapped_debug_names::namei_to_name (uint32_t namei) const
5756 {
5757 const ULONGEST namei_string_offs
5758 = extract_unsigned_integer ((name_table_string_offs_reordered
5759 + namei * offset_size),
5760 offset_size,
5761 dwarf5_byte_order);
5762 return read_indirect_string_at_offset
5763 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5764 }
5765
5766 /* Find a slot in .debug_names for the object named NAME. If NAME is
5767 found, return pointer to its pool data. If NAME cannot be found,
5768 return NULL. */
5769
5770 const gdb_byte *
5771 dw2_debug_names_iterator::find_vec_in_debug_names
5772 (const mapped_debug_names &map, const char *name)
5773 {
5774 int (*cmp) (const char *, const char *);
5775
5776 if (current_language->la_language == language_cplus
5777 || current_language->la_language == language_fortran
5778 || current_language->la_language == language_d)
5779 {
5780 /* NAME is already canonical. Drop any qualifiers as
5781 .debug_names does not contain any. */
5782
5783 if (strchr (name, '(') != NULL)
5784 {
5785 gdb::unique_xmalloc_ptr<char> without_params
5786 = cp_remove_params (name);
5787
5788 if (without_params != NULL)
5789 {
5790 name = without_params.get();
5791 }
5792 }
5793 }
5794
5795 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5796
5797 const uint32_t full_hash = dwarf5_djb_hash (name);
5798 uint32_t namei
5799 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5800 (map.bucket_table_reordered
5801 + (full_hash % map.bucket_count)), 4,
5802 map.dwarf5_byte_order);
5803 if (namei == 0)
5804 return NULL;
5805 --namei;
5806 if (namei >= map.name_count)
5807 {
5808 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5809 "[in module %s]"),
5810 namei, map.name_count,
5811 objfile_name (map.dwarf2_per_objfile->objfile));
5812 return NULL;
5813 }
5814
5815 for (;;)
5816 {
5817 const uint32_t namei_full_hash
5818 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5819 (map.hash_table_reordered + namei), 4,
5820 map.dwarf5_byte_order);
5821 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5822 return NULL;
5823
5824 if (full_hash == namei_full_hash)
5825 {
5826 const char *const namei_string = map.namei_to_name (namei);
5827
5828 #if 0 /* An expensive sanity check. */
5829 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5830 {
5831 complaint (_("Wrong .debug_names hash for string at index %u "
5832 "[in module %s]"),
5833 namei, objfile_name (dwarf2_per_objfile->objfile));
5834 return NULL;
5835 }
5836 #endif
5837
5838 if (cmp (namei_string, name) == 0)
5839 {
5840 const ULONGEST namei_entry_offs
5841 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5842 + namei * map.offset_size),
5843 map.offset_size, map.dwarf5_byte_order);
5844 return map.entry_pool + namei_entry_offs;
5845 }
5846 }
5847
5848 ++namei;
5849 if (namei >= map.name_count)
5850 return NULL;
5851 }
5852 }
5853
5854 const gdb_byte *
5855 dw2_debug_names_iterator::find_vec_in_debug_names
5856 (const mapped_debug_names &map, uint32_t namei)
5857 {
5858 if (namei >= map.name_count)
5859 {
5860 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5861 "[in module %s]"),
5862 namei, map.name_count,
5863 objfile_name (map.dwarf2_per_objfile->objfile));
5864 return NULL;
5865 }
5866
5867 const ULONGEST namei_entry_offs
5868 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5869 + namei * map.offset_size),
5870 map.offset_size, map.dwarf5_byte_order);
5871 return map.entry_pool + namei_entry_offs;
5872 }
5873
5874 /* See dw2_debug_names_iterator. */
5875
5876 dwarf2_per_cu_data *
5877 dw2_debug_names_iterator::next ()
5878 {
5879 if (m_addr == NULL)
5880 return NULL;
5881
5882 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5883 struct objfile *objfile = dwarf2_per_objfile->objfile;
5884 bfd *const abfd = objfile->obfd;
5885
5886 again:
5887
5888 unsigned int bytes_read;
5889 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5890 m_addr += bytes_read;
5891 if (abbrev == 0)
5892 return NULL;
5893
5894 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5895 if (indexval_it == m_map.abbrev_map.cend ())
5896 {
5897 complaint (_("Wrong .debug_names undefined abbrev code %s "
5898 "[in module %s]"),
5899 pulongest (abbrev), objfile_name (objfile));
5900 return NULL;
5901 }
5902 const mapped_debug_names::index_val &indexval = indexval_it->second;
5903 bool have_is_static = false;
5904 bool is_static;
5905 dwarf2_per_cu_data *per_cu = NULL;
5906 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5907 {
5908 ULONGEST ull;
5909 switch (attr.form)
5910 {
5911 case DW_FORM_implicit_const:
5912 ull = attr.implicit_const;
5913 break;
5914 case DW_FORM_flag_present:
5915 ull = 1;
5916 break;
5917 case DW_FORM_udata:
5918 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5919 m_addr += bytes_read;
5920 break;
5921 default:
5922 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5923 dwarf_form_name (attr.form),
5924 objfile_name (objfile));
5925 return NULL;
5926 }
5927 switch (attr.dw_idx)
5928 {
5929 case DW_IDX_compile_unit:
5930 /* Don't crash on bad data. */
5931 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5932 {
5933 complaint (_(".debug_names entry has bad CU index %s"
5934 " [in module %s]"),
5935 pulongest (ull),
5936 objfile_name (dwarf2_per_objfile->objfile));
5937 continue;
5938 }
5939 per_cu = dwarf2_per_objfile->get_cutu (ull);
5940 break;
5941 case DW_IDX_type_unit:
5942 /* Don't crash on bad data. */
5943 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5944 {
5945 complaint (_(".debug_names entry has bad TU index %s"
5946 " [in module %s]"),
5947 pulongest (ull),
5948 objfile_name (dwarf2_per_objfile->objfile));
5949 continue;
5950 }
5951 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5952 break;
5953 case DW_IDX_GNU_internal:
5954 if (!m_map.augmentation_is_gdb)
5955 break;
5956 have_is_static = true;
5957 is_static = true;
5958 break;
5959 case DW_IDX_GNU_external:
5960 if (!m_map.augmentation_is_gdb)
5961 break;
5962 have_is_static = true;
5963 is_static = false;
5964 break;
5965 }
5966 }
5967
5968 /* Skip if already read in. */
5969 if (per_cu->v.quick->compunit_symtab)
5970 goto again;
5971
5972 /* Check static vs global. */
5973 if (have_is_static)
5974 {
5975 const bool want_static = m_block_index != GLOBAL_BLOCK;
5976 if (m_want_specific_block && want_static != is_static)
5977 goto again;
5978 }
5979
5980 /* Match dw2_symtab_iter_next, symbol_kind
5981 and debug_names::psymbol_tag. */
5982 switch (m_domain)
5983 {
5984 case VAR_DOMAIN:
5985 switch (indexval.dwarf_tag)
5986 {
5987 case DW_TAG_variable:
5988 case DW_TAG_subprogram:
5989 /* Some types are also in VAR_DOMAIN. */
5990 case DW_TAG_typedef:
5991 case DW_TAG_structure_type:
5992 break;
5993 default:
5994 goto again;
5995 }
5996 break;
5997 case STRUCT_DOMAIN:
5998 switch (indexval.dwarf_tag)
5999 {
6000 case DW_TAG_typedef:
6001 case DW_TAG_structure_type:
6002 break;
6003 default:
6004 goto again;
6005 }
6006 break;
6007 case LABEL_DOMAIN:
6008 switch (indexval.dwarf_tag)
6009 {
6010 case 0:
6011 case DW_TAG_variable:
6012 break;
6013 default:
6014 goto again;
6015 }
6016 break;
6017 default:
6018 break;
6019 }
6020
6021 /* Match dw2_expand_symtabs_matching, symbol_kind and
6022 debug_names::psymbol_tag. */
6023 switch (m_search)
6024 {
6025 case VARIABLES_DOMAIN:
6026 switch (indexval.dwarf_tag)
6027 {
6028 case DW_TAG_variable:
6029 break;
6030 default:
6031 goto again;
6032 }
6033 break;
6034 case FUNCTIONS_DOMAIN:
6035 switch (indexval.dwarf_tag)
6036 {
6037 case DW_TAG_subprogram:
6038 break;
6039 default:
6040 goto again;
6041 }
6042 break;
6043 case TYPES_DOMAIN:
6044 switch (indexval.dwarf_tag)
6045 {
6046 case DW_TAG_typedef:
6047 case DW_TAG_structure_type:
6048 break;
6049 default:
6050 goto again;
6051 }
6052 break;
6053 default:
6054 break;
6055 }
6056
6057 return per_cu;
6058 }
6059
6060 static struct compunit_symtab *
6061 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6062 const char *name, domain_enum domain)
6063 {
6064 const block_enum block_index = static_cast<block_enum> (block_index_int);
6065 struct dwarf2_per_objfile *dwarf2_per_objfile
6066 = get_dwarf2_per_objfile (objfile);
6067
6068 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6069 if (!mapp)
6070 {
6071 /* index is NULL if OBJF_READNOW. */
6072 return NULL;
6073 }
6074 const auto &map = *mapp;
6075
6076 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6077 block_index, domain, name);
6078
6079 struct compunit_symtab *stab_best = NULL;
6080 struct dwarf2_per_cu_data *per_cu;
6081 while ((per_cu = iter.next ()) != NULL)
6082 {
6083 struct symbol *sym, *with_opaque = NULL;
6084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6086 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6087
6088 sym = block_find_symbol (block, name, domain,
6089 block_find_non_opaque_type_preferred,
6090 &with_opaque);
6091
6092 /* Some caution must be observed with overloaded functions and
6093 methods, since the index will not contain any overload
6094 information (but NAME might contain it). */
6095
6096 if (sym != NULL
6097 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6098 return stab;
6099 if (with_opaque != NULL
6100 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6101 stab_best = stab;
6102
6103 /* Keep looking through other CUs. */
6104 }
6105
6106 return stab_best;
6107 }
6108
6109 /* This dumps minimal information about .debug_names. It is called
6110 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6111 uses this to verify that .debug_names has been loaded. */
6112
6113 static void
6114 dw2_debug_names_dump (struct objfile *objfile)
6115 {
6116 struct dwarf2_per_objfile *dwarf2_per_objfile
6117 = get_dwarf2_per_objfile (objfile);
6118
6119 gdb_assert (dwarf2_per_objfile->using_index);
6120 printf_filtered (".debug_names:");
6121 if (dwarf2_per_objfile->debug_names_table)
6122 printf_filtered (" exists\n");
6123 else
6124 printf_filtered (" faked for \"readnow\"\n");
6125 printf_filtered ("\n");
6126 }
6127
6128 static void
6129 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6130 const char *func_name)
6131 {
6132 struct dwarf2_per_objfile *dwarf2_per_objfile
6133 = get_dwarf2_per_objfile (objfile);
6134
6135 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6136 if (dwarf2_per_objfile->debug_names_table)
6137 {
6138 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6139
6140 /* Note: It doesn't matter what we pass for block_index here. */
6141 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6142 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6143
6144 struct dwarf2_per_cu_data *per_cu;
6145 while ((per_cu = iter.next ()) != NULL)
6146 dw2_instantiate_symtab (per_cu, false);
6147 }
6148 }
6149
6150 static void
6151 dw2_debug_names_expand_symtabs_matching
6152 (struct objfile *objfile,
6153 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6154 const lookup_name_info &lookup_name,
6155 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6156 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6157 enum search_domain kind)
6158 {
6159 struct dwarf2_per_objfile *dwarf2_per_objfile
6160 = get_dwarf2_per_objfile (objfile);
6161
6162 /* debug_names_table is NULL if OBJF_READNOW. */
6163 if (!dwarf2_per_objfile->debug_names_table)
6164 return;
6165
6166 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6167
6168 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6169
6170 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6171 symbol_matcher,
6172 kind, [&] (offset_type namei)
6173 {
6174 /* The name was matched, now expand corresponding CUs that were
6175 marked. */
6176 dw2_debug_names_iterator iter (map, kind, namei);
6177
6178 struct dwarf2_per_cu_data *per_cu;
6179 while ((per_cu = iter.next ()) != NULL)
6180 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6181 expansion_notify);
6182 });
6183 }
6184
6185 const struct quick_symbol_functions dwarf2_debug_names_functions =
6186 {
6187 dw2_has_symbols,
6188 dw2_find_last_source_symtab,
6189 dw2_forget_cached_source_info,
6190 dw2_map_symtabs_matching_filename,
6191 dw2_debug_names_lookup_symbol,
6192 dw2_print_stats,
6193 dw2_debug_names_dump,
6194 dw2_debug_names_expand_symtabs_for_function,
6195 dw2_expand_all_symtabs,
6196 dw2_expand_symtabs_with_fullname,
6197 dw2_map_matching_symbols,
6198 dw2_debug_names_expand_symtabs_matching,
6199 dw2_find_pc_sect_compunit_symtab,
6200 NULL,
6201 dw2_map_symbol_filenames
6202 };
6203
6204 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6205 to either a dwarf2_per_objfile or dwz_file object. */
6206
6207 template <typename T>
6208 static gdb::array_view<const gdb_byte>
6209 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6210 {
6211 dwarf2_section_info *section = &section_owner->gdb_index;
6212
6213 if (dwarf2_section_empty_p (section))
6214 return {};
6215
6216 /* Older elfutils strip versions could keep the section in the main
6217 executable while splitting it for the separate debug info file. */
6218 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6219 return {};
6220
6221 dwarf2_read_section (obj, section);
6222
6223 /* dwarf2_section_info::size is a bfd_size_type, while
6224 gdb::array_view works with size_t. On 32-bit hosts, with
6225 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6226 is 32-bit. So we need an explicit narrowing conversion here.
6227 This is fine, because it's impossible to allocate or mmap an
6228 array/buffer larger than what size_t can represent. */
6229 return gdb::make_array_view (section->buffer, section->size);
6230 }
6231
6232 /* Lookup the index cache for the contents of the index associated to
6233 DWARF2_OBJ. */
6234
6235 static gdb::array_view<const gdb_byte>
6236 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6237 {
6238 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6239 if (build_id == nullptr)
6240 return {};
6241
6242 return global_index_cache.lookup_gdb_index (build_id,
6243 &dwarf2_obj->index_cache_res);
6244 }
6245
6246 /* Same as the above, but for DWZ. */
6247
6248 static gdb::array_view<const gdb_byte>
6249 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6250 {
6251 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6252 if (build_id == nullptr)
6253 return {};
6254
6255 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6256 }
6257
6258 /* See symfile.h. */
6259
6260 bool
6261 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6262 {
6263 struct dwarf2_per_objfile *dwarf2_per_objfile
6264 = get_dwarf2_per_objfile (objfile);
6265
6266 /* If we're about to read full symbols, don't bother with the
6267 indices. In this case we also don't care if some other debug
6268 format is making psymtabs, because they are all about to be
6269 expanded anyway. */
6270 if ((objfile->flags & OBJF_READNOW))
6271 {
6272 dwarf2_per_objfile->using_index = 1;
6273 create_all_comp_units (dwarf2_per_objfile);
6274 create_all_type_units (dwarf2_per_objfile);
6275 dwarf2_per_objfile->quick_file_names_table
6276 = create_quick_file_names_table
6277 (dwarf2_per_objfile->all_comp_units.size ());
6278
6279 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6280 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6281 {
6282 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6283
6284 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6285 struct dwarf2_per_cu_quick_data);
6286 }
6287
6288 /* Return 1 so that gdb sees the "quick" functions. However,
6289 these functions will be no-ops because we will have expanded
6290 all symtabs. */
6291 *index_kind = dw_index_kind::GDB_INDEX;
6292 return true;
6293 }
6294
6295 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6296 {
6297 *index_kind = dw_index_kind::DEBUG_NAMES;
6298 return true;
6299 }
6300
6301 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6302 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6303 get_gdb_index_contents_from_section<dwz_file>))
6304 {
6305 *index_kind = dw_index_kind::GDB_INDEX;
6306 return true;
6307 }
6308
6309 /* ... otherwise, try to find the index in the index cache. */
6310 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6311 get_gdb_index_contents_from_cache,
6312 get_gdb_index_contents_from_cache_dwz))
6313 {
6314 global_index_cache.hit ();
6315 *index_kind = dw_index_kind::GDB_INDEX;
6316 return true;
6317 }
6318
6319 global_index_cache.miss ();
6320 return false;
6321 }
6322
6323 \f
6324
6325 /* Build a partial symbol table. */
6326
6327 void
6328 dwarf2_build_psymtabs (struct objfile *objfile)
6329 {
6330 struct dwarf2_per_objfile *dwarf2_per_objfile
6331 = get_dwarf2_per_objfile (objfile);
6332
6333 init_psymbol_list (objfile, 1024);
6334
6335 TRY
6336 {
6337 /* This isn't really ideal: all the data we allocate on the
6338 objfile's obstack is still uselessly kept around. However,
6339 freeing it seems unsafe. */
6340 psymtab_discarder psymtabs (objfile);
6341 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6342 psymtabs.keep ();
6343
6344 /* (maybe) store an index in the cache. */
6345 global_index_cache.store (dwarf2_per_objfile);
6346 }
6347 CATCH (except, RETURN_MASK_ERROR)
6348 {
6349 exception_print (gdb_stderr, except);
6350 }
6351 END_CATCH
6352 }
6353
6354 /* Return the total length of the CU described by HEADER. */
6355
6356 static unsigned int
6357 get_cu_length (const struct comp_unit_head *header)
6358 {
6359 return header->initial_length_size + header->length;
6360 }
6361
6362 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6363
6364 static inline bool
6365 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6366 {
6367 sect_offset bottom = cu_header->sect_off;
6368 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6369
6370 return sect_off >= bottom && sect_off < top;
6371 }
6372
6373 /* Find the base address of the compilation unit for range lists and
6374 location lists. It will normally be specified by DW_AT_low_pc.
6375 In DWARF-3 draft 4, the base address could be overridden by
6376 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6377 compilation units with discontinuous ranges. */
6378
6379 static void
6380 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6381 {
6382 struct attribute *attr;
6383
6384 cu->base_known = 0;
6385 cu->base_address = 0;
6386
6387 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6388 if (attr)
6389 {
6390 cu->base_address = attr_value_as_address (attr);
6391 cu->base_known = 1;
6392 }
6393 else
6394 {
6395 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6396 if (attr)
6397 {
6398 cu->base_address = attr_value_as_address (attr);
6399 cu->base_known = 1;
6400 }
6401 }
6402 }
6403
6404 /* Read in the comp unit header information from the debug_info at info_ptr.
6405 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6406 NOTE: This leaves members offset, first_die_offset to be filled in
6407 by the caller. */
6408
6409 static const gdb_byte *
6410 read_comp_unit_head (struct comp_unit_head *cu_header,
6411 const gdb_byte *info_ptr,
6412 struct dwarf2_section_info *section,
6413 rcuh_kind section_kind)
6414 {
6415 int signed_addr;
6416 unsigned int bytes_read;
6417 const char *filename = get_section_file_name (section);
6418 bfd *abfd = get_section_bfd_owner (section);
6419
6420 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6421 cu_header->initial_length_size = bytes_read;
6422 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6423 info_ptr += bytes_read;
6424 cu_header->version = read_2_bytes (abfd, info_ptr);
6425 if (cu_header->version < 2 || cu_header->version > 5)
6426 error (_("Dwarf Error: wrong version in compilation unit header "
6427 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6428 cu_header->version, filename);
6429 info_ptr += 2;
6430 if (cu_header->version < 5)
6431 switch (section_kind)
6432 {
6433 case rcuh_kind::COMPILE:
6434 cu_header->unit_type = DW_UT_compile;
6435 break;
6436 case rcuh_kind::TYPE:
6437 cu_header->unit_type = DW_UT_type;
6438 break;
6439 default:
6440 internal_error (__FILE__, __LINE__,
6441 _("read_comp_unit_head: invalid section_kind"));
6442 }
6443 else
6444 {
6445 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6446 (read_1_byte (abfd, info_ptr));
6447 info_ptr += 1;
6448 switch (cu_header->unit_type)
6449 {
6450 case DW_UT_compile:
6451 if (section_kind != rcuh_kind::COMPILE)
6452 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6453 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6454 filename);
6455 break;
6456 case DW_UT_type:
6457 section_kind = rcuh_kind::TYPE;
6458 break;
6459 default:
6460 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6461 "(is %d, should be %d or %d) [in module %s]"),
6462 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6463 }
6464
6465 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6466 info_ptr += 1;
6467 }
6468 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6469 cu_header,
6470 &bytes_read);
6471 info_ptr += bytes_read;
6472 if (cu_header->version < 5)
6473 {
6474 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6475 info_ptr += 1;
6476 }
6477 signed_addr = bfd_get_sign_extend_vma (abfd);
6478 if (signed_addr < 0)
6479 internal_error (__FILE__, __LINE__,
6480 _("read_comp_unit_head: dwarf from non elf file"));
6481 cu_header->signed_addr_p = signed_addr;
6482
6483 if (section_kind == rcuh_kind::TYPE)
6484 {
6485 LONGEST type_offset;
6486
6487 cu_header->signature = read_8_bytes (abfd, info_ptr);
6488 info_ptr += 8;
6489
6490 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6491 info_ptr += bytes_read;
6492 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6493 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6494 error (_("Dwarf Error: Too big type_offset in compilation unit "
6495 "header (is %s) [in module %s]"), plongest (type_offset),
6496 filename);
6497 }
6498
6499 return info_ptr;
6500 }
6501
6502 /* Helper function that returns the proper abbrev section for
6503 THIS_CU. */
6504
6505 static struct dwarf2_section_info *
6506 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6507 {
6508 struct dwarf2_section_info *abbrev;
6509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6510
6511 if (this_cu->is_dwz)
6512 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6513 else
6514 abbrev = &dwarf2_per_objfile->abbrev;
6515
6516 return abbrev;
6517 }
6518
6519 /* Subroutine of read_and_check_comp_unit_head and
6520 read_and_check_type_unit_head to simplify them.
6521 Perform various error checking on the header. */
6522
6523 static void
6524 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6525 struct comp_unit_head *header,
6526 struct dwarf2_section_info *section,
6527 struct dwarf2_section_info *abbrev_section)
6528 {
6529 const char *filename = get_section_file_name (section);
6530
6531 if (to_underlying (header->abbrev_sect_off)
6532 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6533 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6534 "(offset %s + 6) [in module %s]"),
6535 sect_offset_str (header->abbrev_sect_off),
6536 sect_offset_str (header->sect_off),
6537 filename);
6538
6539 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6540 avoid potential 32-bit overflow. */
6541 if (((ULONGEST) header->sect_off + get_cu_length (header))
6542 > section->size)
6543 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6544 "(offset %s + 0) [in module %s]"),
6545 header->length, sect_offset_str (header->sect_off),
6546 filename);
6547 }
6548
6549 /* Read in a CU/TU header and perform some basic error checking.
6550 The contents of the header are stored in HEADER.
6551 The result is a pointer to the start of the first DIE. */
6552
6553 static const gdb_byte *
6554 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6555 struct comp_unit_head *header,
6556 struct dwarf2_section_info *section,
6557 struct dwarf2_section_info *abbrev_section,
6558 const gdb_byte *info_ptr,
6559 rcuh_kind section_kind)
6560 {
6561 const gdb_byte *beg_of_comp_unit = info_ptr;
6562
6563 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6564
6565 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6566
6567 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6568
6569 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6570 abbrev_section);
6571
6572 return info_ptr;
6573 }
6574
6575 /* Fetch the abbreviation table offset from a comp or type unit header. */
6576
6577 static sect_offset
6578 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6579 struct dwarf2_section_info *section,
6580 sect_offset sect_off)
6581 {
6582 bfd *abfd = get_section_bfd_owner (section);
6583 const gdb_byte *info_ptr;
6584 unsigned int initial_length_size, offset_size;
6585 uint16_t version;
6586
6587 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6588 info_ptr = section->buffer + to_underlying (sect_off);
6589 read_initial_length (abfd, info_ptr, &initial_length_size);
6590 offset_size = initial_length_size == 4 ? 4 : 8;
6591 info_ptr += initial_length_size;
6592
6593 version = read_2_bytes (abfd, info_ptr);
6594 info_ptr += 2;
6595 if (version >= 5)
6596 {
6597 /* Skip unit type and address size. */
6598 info_ptr += 2;
6599 }
6600
6601 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6602 }
6603
6604 /* Allocate a new partial symtab for file named NAME and mark this new
6605 partial symtab as being an include of PST. */
6606
6607 static void
6608 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6609 struct objfile *objfile)
6610 {
6611 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6612
6613 if (!IS_ABSOLUTE_PATH (subpst->filename))
6614 {
6615 /* It shares objfile->objfile_obstack. */
6616 subpst->dirname = pst->dirname;
6617 }
6618
6619 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6620 subpst->dependencies[0] = pst;
6621 subpst->number_of_dependencies = 1;
6622
6623 subpst->read_symtab = pst->read_symtab;
6624
6625 /* No private part is necessary for include psymtabs. This property
6626 can be used to differentiate between such include psymtabs and
6627 the regular ones. */
6628 subpst->read_symtab_private = NULL;
6629 }
6630
6631 /* Read the Line Number Program data and extract the list of files
6632 included by the source file represented by PST. Build an include
6633 partial symtab for each of these included files. */
6634
6635 static void
6636 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6637 struct die_info *die,
6638 struct partial_symtab *pst)
6639 {
6640 line_header_up lh;
6641 struct attribute *attr;
6642
6643 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6644 if (attr)
6645 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6646 if (lh == NULL)
6647 return; /* No linetable, so no includes. */
6648
6649 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6650 that we pass in the raw text_low here; that is ok because we're
6651 only decoding the line table to make include partial symtabs, and
6652 so the addresses aren't really used. */
6653 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6654 pst->raw_text_low (), 1);
6655 }
6656
6657 static hashval_t
6658 hash_signatured_type (const void *item)
6659 {
6660 const struct signatured_type *sig_type
6661 = (const struct signatured_type *) item;
6662
6663 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6664 return sig_type->signature;
6665 }
6666
6667 static int
6668 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6669 {
6670 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6671 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6672
6673 return lhs->signature == rhs->signature;
6674 }
6675
6676 /* Allocate a hash table for signatured types. */
6677
6678 static htab_t
6679 allocate_signatured_type_table (struct objfile *objfile)
6680 {
6681 return htab_create_alloc_ex (41,
6682 hash_signatured_type,
6683 eq_signatured_type,
6684 NULL,
6685 &objfile->objfile_obstack,
6686 hashtab_obstack_allocate,
6687 dummy_obstack_deallocate);
6688 }
6689
6690 /* A helper function to add a signatured type CU to a table. */
6691
6692 static int
6693 add_signatured_type_cu_to_table (void **slot, void *datum)
6694 {
6695 struct signatured_type *sigt = (struct signatured_type *) *slot;
6696 std::vector<signatured_type *> *all_type_units
6697 = (std::vector<signatured_type *> *) datum;
6698
6699 all_type_units->push_back (sigt);
6700
6701 return 1;
6702 }
6703
6704 /* A helper for create_debug_types_hash_table. Read types from SECTION
6705 and fill them into TYPES_HTAB. It will process only type units,
6706 therefore DW_UT_type. */
6707
6708 static void
6709 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6710 struct dwo_file *dwo_file,
6711 dwarf2_section_info *section, htab_t &types_htab,
6712 rcuh_kind section_kind)
6713 {
6714 struct objfile *objfile = dwarf2_per_objfile->objfile;
6715 struct dwarf2_section_info *abbrev_section;
6716 bfd *abfd;
6717 const gdb_byte *info_ptr, *end_ptr;
6718
6719 abbrev_section = (dwo_file != NULL
6720 ? &dwo_file->sections.abbrev
6721 : &dwarf2_per_objfile->abbrev);
6722
6723 if (dwarf_read_debug)
6724 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6725 get_section_name (section),
6726 get_section_file_name (abbrev_section));
6727
6728 dwarf2_read_section (objfile, section);
6729 info_ptr = section->buffer;
6730
6731 if (info_ptr == NULL)
6732 return;
6733
6734 /* We can't set abfd until now because the section may be empty or
6735 not present, in which case the bfd is unknown. */
6736 abfd = get_section_bfd_owner (section);
6737
6738 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6739 because we don't need to read any dies: the signature is in the
6740 header. */
6741
6742 end_ptr = info_ptr + section->size;
6743 while (info_ptr < end_ptr)
6744 {
6745 struct signatured_type *sig_type;
6746 struct dwo_unit *dwo_tu;
6747 void **slot;
6748 const gdb_byte *ptr = info_ptr;
6749 struct comp_unit_head header;
6750 unsigned int length;
6751
6752 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6753
6754 /* Initialize it due to a false compiler warning. */
6755 header.signature = -1;
6756 header.type_cu_offset_in_tu = (cu_offset) -1;
6757
6758 /* We need to read the type's signature in order to build the hash
6759 table, but we don't need anything else just yet. */
6760
6761 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6762 abbrev_section, ptr, section_kind);
6763
6764 length = get_cu_length (&header);
6765
6766 /* Skip dummy type units. */
6767 if (ptr >= info_ptr + length
6768 || peek_abbrev_code (abfd, ptr) == 0
6769 || header.unit_type != DW_UT_type)
6770 {
6771 info_ptr += length;
6772 continue;
6773 }
6774
6775 if (types_htab == NULL)
6776 {
6777 if (dwo_file)
6778 types_htab = allocate_dwo_unit_table (objfile);
6779 else
6780 types_htab = allocate_signatured_type_table (objfile);
6781 }
6782
6783 if (dwo_file)
6784 {
6785 sig_type = NULL;
6786 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6787 struct dwo_unit);
6788 dwo_tu->dwo_file = dwo_file;
6789 dwo_tu->signature = header.signature;
6790 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6791 dwo_tu->section = section;
6792 dwo_tu->sect_off = sect_off;
6793 dwo_tu->length = length;
6794 }
6795 else
6796 {
6797 /* N.B.: type_offset is not usable if this type uses a DWO file.
6798 The real type_offset is in the DWO file. */
6799 dwo_tu = NULL;
6800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6801 struct signatured_type);
6802 sig_type->signature = header.signature;
6803 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6804 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6805 sig_type->per_cu.is_debug_types = 1;
6806 sig_type->per_cu.section = section;
6807 sig_type->per_cu.sect_off = sect_off;
6808 sig_type->per_cu.length = length;
6809 }
6810
6811 slot = htab_find_slot (types_htab,
6812 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6813 INSERT);
6814 gdb_assert (slot != NULL);
6815 if (*slot != NULL)
6816 {
6817 sect_offset dup_sect_off;
6818
6819 if (dwo_file)
6820 {
6821 const struct dwo_unit *dup_tu
6822 = (const struct dwo_unit *) *slot;
6823
6824 dup_sect_off = dup_tu->sect_off;
6825 }
6826 else
6827 {
6828 const struct signatured_type *dup_tu
6829 = (const struct signatured_type *) *slot;
6830
6831 dup_sect_off = dup_tu->per_cu.sect_off;
6832 }
6833
6834 complaint (_("debug type entry at offset %s is duplicate to"
6835 " the entry at offset %s, signature %s"),
6836 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6837 hex_string (header.signature));
6838 }
6839 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6840
6841 if (dwarf_read_debug > 1)
6842 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6843 sect_offset_str (sect_off),
6844 hex_string (header.signature));
6845
6846 info_ptr += length;
6847 }
6848 }
6849
6850 /* Create the hash table of all entries in the .debug_types
6851 (or .debug_types.dwo) section(s).
6852 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6853 otherwise it is NULL.
6854
6855 The result is a pointer to the hash table or NULL if there are no types.
6856
6857 Note: This function processes DWO files only, not DWP files. */
6858
6859 static void
6860 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6861 struct dwo_file *dwo_file,
6862 VEC (dwarf2_section_info_def) *types,
6863 htab_t &types_htab)
6864 {
6865 int ix;
6866 struct dwarf2_section_info *section;
6867
6868 if (VEC_empty (dwarf2_section_info_def, types))
6869 return;
6870
6871 for (ix = 0;
6872 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6873 ++ix)
6874 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6875 types_htab, rcuh_kind::TYPE);
6876 }
6877
6878 /* Create the hash table of all entries in the .debug_types section,
6879 and initialize all_type_units.
6880 The result is zero if there is an error (e.g. missing .debug_types section),
6881 otherwise non-zero. */
6882
6883 static int
6884 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6885 {
6886 htab_t types_htab = NULL;
6887
6888 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6889 &dwarf2_per_objfile->info, types_htab,
6890 rcuh_kind::COMPILE);
6891 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6892 dwarf2_per_objfile->types, types_htab);
6893 if (types_htab == NULL)
6894 {
6895 dwarf2_per_objfile->signatured_types = NULL;
6896 return 0;
6897 }
6898
6899 dwarf2_per_objfile->signatured_types = types_htab;
6900
6901 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6902 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6903
6904 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6905 &dwarf2_per_objfile->all_type_units);
6906
6907 return 1;
6908 }
6909
6910 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6911 If SLOT is non-NULL, it is the entry to use in the hash table.
6912 Otherwise we find one. */
6913
6914 static struct signatured_type *
6915 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6916 void **slot)
6917 {
6918 struct objfile *objfile = dwarf2_per_objfile->objfile;
6919
6920 if (dwarf2_per_objfile->all_type_units.size ()
6921 == dwarf2_per_objfile->all_type_units.capacity ())
6922 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6923
6924 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6925 struct signatured_type);
6926
6927 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6928 sig_type->signature = sig;
6929 sig_type->per_cu.is_debug_types = 1;
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 sig_type->per_cu.v.quick =
6933 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6934 struct dwarf2_per_cu_quick_data);
6935 }
6936
6937 if (slot == NULL)
6938 {
6939 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6940 sig_type, INSERT);
6941 }
6942 gdb_assert (*slot == NULL);
6943 *slot = sig_type;
6944 /* The rest of sig_type must be filled in by the caller. */
6945 return sig_type;
6946 }
6947
6948 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6949 Fill in SIG_ENTRY with DWO_ENTRY. */
6950
6951 static void
6952 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6953 struct signatured_type *sig_entry,
6954 struct dwo_unit *dwo_entry)
6955 {
6956 /* Make sure we're not clobbering something we don't expect to. */
6957 gdb_assert (! sig_entry->per_cu.queued);
6958 gdb_assert (sig_entry->per_cu.cu == NULL);
6959 if (dwarf2_per_objfile->using_index)
6960 {
6961 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6962 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6963 }
6964 else
6965 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6966 gdb_assert (sig_entry->signature == dwo_entry->signature);
6967 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6968 gdb_assert (sig_entry->type_unit_group == NULL);
6969 gdb_assert (sig_entry->dwo_unit == NULL);
6970
6971 sig_entry->per_cu.section = dwo_entry->section;
6972 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6973 sig_entry->per_cu.length = dwo_entry->length;
6974 sig_entry->per_cu.reading_dwo_directly = 1;
6975 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6976 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6977 sig_entry->dwo_unit = dwo_entry;
6978 }
6979
6980 /* Subroutine of lookup_signatured_type.
6981 If we haven't read the TU yet, create the signatured_type data structure
6982 for a TU to be read in directly from a DWO file, bypassing the stub.
6983 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6984 using .gdb_index, then when reading a CU we want to stay in the DWO file
6985 containing that CU. Otherwise we could end up reading several other DWO
6986 files (due to comdat folding) to process the transitive closure of all the
6987 mentioned TUs, and that can be slow. The current DWO file will have every
6988 type signature that it needs.
6989 We only do this for .gdb_index because in the psymtab case we already have
6990 to read all the DWOs to build the type unit groups. */
6991
6992 static struct signatured_type *
6993 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6994 {
6995 struct dwarf2_per_objfile *dwarf2_per_objfile
6996 = cu->per_cu->dwarf2_per_objfile;
6997 struct objfile *objfile = dwarf2_per_objfile->objfile;
6998 struct dwo_file *dwo_file;
6999 struct dwo_unit find_dwo_entry, *dwo_entry;
7000 struct signatured_type find_sig_entry, *sig_entry;
7001 void **slot;
7002
7003 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7004
7005 /* If TU skeletons have been removed then we may not have read in any
7006 TUs yet. */
7007 if (dwarf2_per_objfile->signatured_types == NULL)
7008 {
7009 dwarf2_per_objfile->signatured_types
7010 = allocate_signatured_type_table (objfile);
7011 }
7012
7013 /* We only ever need to read in one copy of a signatured type.
7014 Use the global signatured_types array to do our own comdat-folding
7015 of types. If this is the first time we're reading this TU, and
7016 the TU has an entry in .gdb_index, replace the recorded data from
7017 .gdb_index with this TU. */
7018
7019 find_sig_entry.signature = sig;
7020 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7021 &find_sig_entry, INSERT);
7022 sig_entry = (struct signatured_type *) *slot;
7023
7024 /* We can get here with the TU already read, *or* in the process of being
7025 read. Don't reassign the global entry to point to this DWO if that's
7026 the case. Also note that if the TU is already being read, it may not
7027 have come from a DWO, the program may be a mix of Fission-compiled
7028 code and non-Fission-compiled code. */
7029
7030 /* Have we already tried to read this TU?
7031 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7032 needn't exist in the global table yet). */
7033 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7034 return sig_entry;
7035
7036 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7037 dwo_unit of the TU itself. */
7038 dwo_file = cu->dwo_unit->dwo_file;
7039
7040 /* Ok, this is the first time we're reading this TU. */
7041 if (dwo_file->tus == NULL)
7042 return NULL;
7043 find_dwo_entry.signature = sig;
7044 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7045 if (dwo_entry == NULL)
7046 return NULL;
7047
7048 /* If the global table doesn't have an entry for this TU, add one. */
7049 if (sig_entry == NULL)
7050 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7051
7052 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7053 sig_entry->per_cu.tu_read = 1;
7054 return sig_entry;
7055 }
7056
7057 /* Subroutine of lookup_signatured_type.
7058 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7059 then try the DWP file. If the TU stub (skeleton) has been removed then
7060 it won't be in .gdb_index. */
7061
7062 static struct signatured_type *
7063 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7064 {
7065 struct dwarf2_per_objfile *dwarf2_per_objfile
7066 = cu->per_cu->dwarf2_per_objfile;
7067 struct objfile *objfile = dwarf2_per_objfile->objfile;
7068 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7069 struct dwo_unit *dwo_entry;
7070 struct signatured_type find_sig_entry, *sig_entry;
7071 void **slot;
7072
7073 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7074 gdb_assert (dwp_file != NULL);
7075
7076 /* If TU skeletons have been removed then we may not have read in any
7077 TUs yet. */
7078 if (dwarf2_per_objfile->signatured_types == NULL)
7079 {
7080 dwarf2_per_objfile->signatured_types
7081 = allocate_signatured_type_table (objfile);
7082 }
7083
7084 find_sig_entry.signature = sig;
7085 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7086 &find_sig_entry, INSERT);
7087 sig_entry = (struct signatured_type *) *slot;
7088
7089 /* Have we already tried to read this TU?
7090 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7091 needn't exist in the global table yet). */
7092 if (sig_entry != NULL)
7093 return sig_entry;
7094
7095 if (dwp_file->tus == NULL)
7096 return NULL;
7097 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7098 sig, 1 /* is_debug_types */);
7099 if (dwo_entry == NULL)
7100 return NULL;
7101
7102 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7103 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7104
7105 return sig_entry;
7106 }
7107
7108 /* Lookup a signature based type for DW_FORM_ref_sig8.
7109 Returns NULL if signature SIG is not present in the table.
7110 It is up to the caller to complain about this. */
7111
7112 static struct signatured_type *
7113 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7114 {
7115 struct dwarf2_per_objfile *dwarf2_per_objfile
7116 = cu->per_cu->dwarf2_per_objfile;
7117
7118 if (cu->dwo_unit
7119 && dwarf2_per_objfile->using_index)
7120 {
7121 /* We're in a DWO/DWP file, and we're using .gdb_index.
7122 These cases require special processing. */
7123 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7124 return lookup_dwo_signatured_type (cu, sig);
7125 else
7126 return lookup_dwp_signatured_type (cu, sig);
7127 }
7128 else
7129 {
7130 struct signatured_type find_entry, *entry;
7131
7132 if (dwarf2_per_objfile->signatured_types == NULL)
7133 return NULL;
7134 find_entry.signature = sig;
7135 entry = ((struct signatured_type *)
7136 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7137 return entry;
7138 }
7139 }
7140 \f
7141 /* Low level DIE reading support. */
7142
7143 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7144
7145 static void
7146 init_cu_die_reader (struct die_reader_specs *reader,
7147 struct dwarf2_cu *cu,
7148 struct dwarf2_section_info *section,
7149 struct dwo_file *dwo_file,
7150 struct abbrev_table *abbrev_table)
7151 {
7152 gdb_assert (section->readin && section->buffer != NULL);
7153 reader->abfd = get_section_bfd_owner (section);
7154 reader->cu = cu;
7155 reader->dwo_file = dwo_file;
7156 reader->die_section = section;
7157 reader->buffer = section->buffer;
7158 reader->buffer_end = section->buffer + section->size;
7159 reader->comp_dir = NULL;
7160 reader->abbrev_table = abbrev_table;
7161 }
7162
7163 /* Subroutine of init_cutu_and_read_dies to simplify it.
7164 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7165 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7166 already.
7167
7168 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7169 from it to the DIE in the DWO. If NULL we are skipping the stub.
7170 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7171 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7172 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7173 STUB_COMP_DIR may be non-NULL.
7174 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7175 are filled in with the info of the DIE from the DWO file.
7176 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7177 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7178 kept around for at least as long as *RESULT_READER.
7179
7180 The result is non-zero if a valid (non-dummy) DIE was found. */
7181
7182 static int
7183 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7184 struct dwo_unit *dwo_unit,
7185 struct die_info *stub_comp_unit_die,
7186 const char *stub_comp_dir,
7187 struct die_reader_specs *result_reader,
7188 const gdb_byte **result_info_ptr,
7189 struct die_info **result_comp_unit_die,
7190 int *result_has_children,
7191 abbrev_table_up *result_dwo_abbrev_table)
7192 {
7193 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7194 struct objfile *objfile = dwarf2_per_objfile->objfile;
7195 struct dwarf2_cu *cu = this_cu->cu;
7196 bfd *abfd;
7197 const gdb_byte *begin_info_ptr, *info_ptr;
7198 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7199 int i,num_extra_attrs;
7200 struct dwarf2_section_info *dwo_abbrev_section;
7201 struct attribute *attr;
7202 struct die_info *comp_unit_die;
7203
7204 /* At most one of these may be provided. */
7205 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7206
7207 /* These attributes aren't processed until later:
7208 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7209 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7210 referenced later. However, these attributes are found in the stub
7211 which we won't have later. In order to not impose this complication
7212 on the rest of the code, we read them here and copy them to the
7213 DWO CU/TU die. */
7214
7215 stmt_list = NULL;
7216 low_pc = NULL;
7217 high_pc = NULL;
7218 ranges = NULL;
7219 comp_dir = NULL;
7220
7221 if (stub_comp_unit_die != NULL)
7222 {
7223 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7224 DWO file. */
7225 if (! this_cu->is_debug_types)
7226 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7227 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7228 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7229 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7230 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7231
7232 /* There should be a DW_AT_addr_base attribute here (if needed).
7233 We need the value before we can process DW_FORM_GNU_addr_index. */
7234 cu->addr_base = 0;
7235 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7236 if (attr)
7237 cu->addr_base = DW_UNSND (attr);
7238
7239 /* There should be a DW_AT_ranges_base attribute here (if needed).
7240 We need the value before we can process DW_AT_ranges. */
7241 cu->ranges_base = 0;
7242 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7243 if (attr)
7244 cu->ranges_base = DW_UNSND (attr);
7245 }
7246 else if (stub_comp_dir != NULL)
7247 {
7248 /* Reconstruct the comp_dir attribute to simplify the code below. */
7249 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7250 comp_dir->name = DW_AT_comp_dir;
7251 comp_dir->form = DW_FORM_string;
7252 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7253 DW_STRING (comp_dir) = stub_comp_dir;
7254 }
7255
7256 /* Set up for reading the DWO CU/TU. */
7257 cu->dwo_unit = dwo_unit;
7258 dwarf2_section_info *section = dwo_unit->section;
7259 dwarf2_read_section (objfile, section);
7260 abfd = get_section_bfd_owner (section);
7261 begin_info_ptr = info_ptr = (section->buffer
7262 + to_underlying (dwo_unit->sect_off));
7263 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7264
7265 if (this_cu->is_debug_types)
7266 {
7267 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7268
7269 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7270 &cu->header, section,
7271 dwo_abbrev_section,
7272 info_ptr, rcuh_kind::TYPE);
7273 /* This is not an assert because it can be caused by bad debug info. */
7274 if (sig_type->signature != cu->header.signature)
7275 {
7276 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7277 " TU at offset %s [in module %s]"),
7278 hex_string (sig_type->signature),
7279 hex_string (cu->header.signature),
7280 sect_offset_str (dwo_unit->sect_off),
7281 bfd_get_filename (abfd));
7282 }
7283 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7284 /* For DWOs coming from DWP files, we don't know the CU length
7285 nor the type's offset in the TU until now. */
7286 dwo_unit->length = get_cu_length (&cu->header);
7287 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7288
7289 /* Establish the type offset that can be used to lookup the type.
7290 For DWO files, we don't know it until now. */
7291 sig_type->type_offset_in_section
7292 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7293 }
7294 else
7295 {
7296 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7297 &cu->header, section,
7298 dwo_abbrev_section,
7299 info_ptr, rcuh_kind::COMPILE);
7300 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7301 /* For DWOs coming from DWP files, we don't know the CU length
7302 until now. */
7303 dwo_unit->length = get_cu_length (&cu->header);
7304 }
7305
7306 *result_dwo_abbrev_table
7307 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7308 cu->header.abbrev_sect_off);
7309 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7310 result_dwo_abbrev_table->get ());
7311
7312 /* Read in the die, but leave space to copy over the attributes
7313 from the stub. This has the benefit of simplifying the rest of
7314 the code - all the work to maintain the illusion of a single
7315 DW_TAG_{compile,type}_unit DIE is done here. */
7316 num_extra_attrs = ((stmt_list != NULL)
7317 + (low_pc != NULL)
7318 + (high_pc != NULL)
7319 + (ranges != NULL)
7320 + (comp_dir != NULL));
7321 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7322 result_has_children, num_extra_attrs);
7323
7324 /* Copy over the attributes from the stub to the DIE we just read in. */
7325 comp_unit_die = *result_comp_unit_die;
7326 i = comp_unit_die->num_attrs;
7327 if (stmt_list != NULL)
7328 comp_unit_die->attrs[i++] = *stmt_list;
7329 if (low_pc != NULL)
7330 comp_unit_die->attrs[i++] = *low_pc;
7331 if (high_pc != NULL)
7332 comp_unit_die->attrs[i++] = *high_pc;
7333 if (ranges != NULL)
7334 comp_unit_die->attrs[i++] = *ranges;
7335 if (comp_dir != NULL)
7336 comp_unit_die->attrs[i++] = *comp_dir;
7337 comp_unit_die->num_attrs += num_extra_attrs;
7338
7339 if (dwarf_die_debug)
7340 {
7341 fprintf_unfiltered (gdb_stdlog,
7342 "Read die from %s@0x%x of %s:\n",
7343 get_section_name (section),
7344 (unsigned) (begin_info_ptr - section->buffer),
7345 bfd_get_filename (abfd));
7346 dump_die (comp_unit_die, dwarf_die_debug);
7347 }
7348
7349 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7350 TUs by skipping the stub and going directly to the entry in the DWO file.
7351 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7352 to get it via circuitous means. Blech. */
7353 if (comp_dir != NULL)
7354 result_reader->comp_dir = DW_STRING (comp_dir);
7355
7356 /* Skip dummy compilation units. */
7357 if (info_ptr >= begin_info_ptr + dwo_unit->length
7358 || peek_abbrev_code (abfd, info_ptr) == 0)
7359 return 0;
7360
7361 *result_info_ptr = info_ptr;
7362 return 1;
7363 }
7364
7365 /* Subroutine of init_cutu_and_read_dies to simplify it.
7366 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7367 Returns NULL if the specified DWO unit cannot be found. */
7368
7369 static struct dwo_unit *
7370 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7371 struct die_info *comp_unit_die)
7372 {
7373 struct dwarf2_cu *cu = this_cu->cu;
7374 ULONGEST signature;
7375 struct dwo_unit *dwo_unit;
7376 const char *comp_dir, *dwo_name;
7377
7378 gdb_assert (cu != NULL);
7379
7380 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7381 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7382 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7383
7384 if (this_cu->is_debug_types)
7385 {
7386 struct signatured_type *sig_type;
7387
7388 /* Since this_cu is the first member of struct signatured_type,
7389 we can go from a pointer to one to a pointer to the other. */
7390 sig_type = (struct signatured_type *) this_cu;
7391 signature = sig_type->signature;
7392 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7393 }
7394 else
7395 {
7396 struct attribute *attr;
7397
7398 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7399 if (! attr)
7400 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7401 " [in module %s]"),
7402 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7403 signature = DW_UNSND (attr);
7404 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7405 signature);
7406 }
7407
7408 return dwo_unit;
7409 }
7410
7411 /* Subroutine of init_cutu_and_read_dies to simplify it.
7412 See it for a description of the parameters.
7413 Read a TU directly from a DWO file, bypassing the stub. */
7414
7415 static void
7416 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7417 int use_existing_cu, int keep,
7418 die_reader_func_ftype *die_reader_func,
7419 void *data)
7420 {
7421 std::unique_ptr<dwarf2_cu> new_cu;
7422 struct signatured_type *sig_type;
7423 struct die_reader_specs reader;
7424 const gdb_byte *info_ptr;
7425 struct die_info *comp_unit_die;
7426 int has_children;
7427 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7428
7429 /* Verify we can do the following downcast, and that we have the
7430 data we need. */
7431 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7432 sig_type = (struct signatured_type *) this_cu;
7433 gdb_assert (sig_type->dwo_unit != NULL);
7434
7435 if (use_existing_cu && this_cu->cu != NULL)
7436 {
7437 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7438 /* There's no need to do the rereading_dwo_cu handling that
7439 init_cutu_and_read_dies does since we don't read the stub. */
7440 }
7441 else
7442 {
7443 /* If !use_existing_cu, this_cu->cu must be NULL. */
7444 gdb_assert (this_cu->cu == NULL);
7445 new_cu.reset (new dwarf2_cu (this_cu));
7446 }
7447
7448 /* A future optimization, if needed, would be to use an existing
7449 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7450 could share abbrev tables. */
7451
7452 /* The abbreviation table used by READER, this must live at least as long as
7453 READER. */
7454 abbrev_table_up dwo_abbrev_table;
7455
7456 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7457 NULL /* stub_comp_unit_die */,
7458 sig_type->dwo_unit->dwo_file->comp_dir,
7459 &reader, &info_ptr,
7460 &comp_unit_die, &has_children,
7461 &dwo_abbrev_table) == 0)
7462 {
7463 /* Dummy die. */
7464 return;
7465 }
7466
7467 /* All the "real" work is done here. */
7468 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7469
7470 /* This duplicates the code in init_cutu_and_read_dies,
7471 but the alternative is making the latter more complex.
7472 This function is only for the special case of using DWO files directly:
7473 no point in overly complicating the general case just to handle this. */
7474 if (new_cu != NULL && keep)
7475 {
7476 /* Link this CU into read_in_chain. */
7477 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7478 dwarf2_per_objfile->read_in_chain = this_cu;
7479 /* The chain owns it now. */
7480 new_cu.release ();
7481 }
7482 }
7483
7484 /* Initialize a CU (or TU) and read its DIEs.
7485 If the CU defers to a DWO file, read the DWO file as well.
7486
7487 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7488 Otherwise the table specified in the comp unit header is read in and used.
7489 This is an optimization for when we already have the abbrev table.
7490
7491 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7492 Otherwise, a new CU is allocated with xmalloc.
7493
7494 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7495 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7496
7497 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7498 linker) then DIE_READER_FUNC will not get called. */
7499
7500 static void
7501 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7502 struct abbrev_table *abbrev_table,
7503 int use_existing_cu, int keep,
7504 bool skip_partial,
7505 die_reader_func_ftype *die_reader_func,
7506 void *data)
7507 {
7508 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7509 struct objfile *objfile = dwarf2_per_objfile->objfile;
7510 struct dwarf2_section_info *section = this_cu->section;
7511 bfd *abfd = get_section_bfd_owner (section);
7512 struct dwarf2_cu *cu;
7513 const gdb_byte *begin_info_ptr, *info_ptr;
7514 struct die_reader_specs reader;
7515 struct die_info *comp_unit_die;
7516 int has_children;
7517 struct attribute *attr;
7518 struct signatured_type *sig_type = NULL;
7519 struct dwarf2_section_info *abbrev_section;
7520 /* Non-zero if CU currently points to a DWO file and we need to
7521 reread it. When this happens we need to reread the skeleton die
7522 before we can reread the DWO file (this only applies to CUs, not TUs). */
7523 int rereading_dwo_cu = 0;
7524
7525 if (dwarf_die_debug)
7526 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7527 this_cu->is_debug_types ? "type" : "comp",
7528 sect_offset_str (this_cu->sect_off));
7529
7530 if (use_existing_cu)
7531 gdb_assert (keep);
7532
7533 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7534 file (instead of going through the stub), short-circuit all of this. */
7535 if (this_cu->reading_dwo_directly)
7536 {
7537 /* Narrow down the scope of possibilities to have to understand. */
7538 gdb_assert (this_cu->is_debug_types);
7539 gdb_assert (abbrev_table == NULL);
7540 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7541 die_reader_func, data);
7542 return;
7543 }
7544
7545 /* This is cheap if the section is already read in. */
7546 dwarf2_read_section (objfile, section);
7547
7548 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7549
7550 abbrev_section = get_abbrev_section_for_cu (this_cu);
7551
7552 std::unique_ptr<dwarf2_cu> new_cu;
7553 if (use_existing_cu && this_cu->cu != NULL)
7554 {
7555 cu = this_cu->cu;
7556 /* If this CU is from a DWO file we need to start over, we need to
7557 refetch the attributes from the skeleton CU.
7558 This could be optimized by retrieving those attributes from when we
7559 were here the first time: the previous comp_unit_die was stored in
7560 comp_unit_obstack. But there's no data yet that we need this
7561 optimization. */
7562 if (cu->dwo_unit != NULL)
7563 rereading_dwo_cu = 1;
7564 }
7565 else
7566 {
7567 /* If !use_existing_cu, this_cu->cu must be NULL. */
7568 gdb_assert (this_cu->cu == NULL);
7569 new_cu.reset (new dwarf2_cu (this_cu));
7570 cu = new_cu.get ();
7571 }
7572
7573 /* Get the header. */
7574 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7575 {
7576 /* We already have the header, there's no need to read it in again. */
7577 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7578 }
7579 else
7580 {
7581 if (this_cu->is_debug_types)
7582 {
7583 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7584 &cu->header, section,
7585 abbrev_section, info_ptr,
7586 rcuh_kind::TYPE);
7587
7588 /* Since per_cu is the first member of struct signatured_type,
7589 we can go from a pointer to one to a pointer to the other. */
7590 sig_type = (struct signatured_type *) this_cu;
7591 gdb_assert (sig_type->signature == cu->header.signature);
7592 gdb_assert (sig_type->type_offset_in_tu
7593 == cu->header.type_cu_offset_in_tu);
7594 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7595
7596 /* LENGTH has not been set yet for type units if we're
7597 using .gdb_index. */
7598 this_cu->length = get_cu_length (&cu->header);
7599
7600 /* Establish the type offset that can be used to lookup the type. */
7601 sig_type->type_offset_in_section =
7602 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7603
7604 this_cu->dwarf_version = cu->header.version;
7605 }
7606 else
7607 {
7608 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7609 &cu->header, section,
7610 abbrev_section,
7611 info_ptr,
7612 rcuh_kind::COMPILE);
7613
7614 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7615 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7616 this_cu->dwarf_version = cu->header.version;
7617 }
7618 }
7619
7620 /* Skip dummy compilation units. */
7621 if (info_ptr >= begin_info_ptr + this_cu->length
7622 || peek_abbrev_code (abfd, info_ptr) == 0)
7623 return;
7624
7625 /* If we don't have them yet, read the abbrevs for this compilation unit.
7626 And if we need to read them now, make sure they're freed when we're
7627 done (own the table through ABBREV_TABLE_HOLDER). */
7628 abbrev_table_up abbrev_table_holder;
7629 if (abbrev_table != NULL)
7630 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7631 else
7632 {
7633 abbrev_table_holder
7634 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7635 cu->header.abbrev_sect_off);
7636 abbrev_table = abbrev_table_holder.get ();
7637 }
7638
7639 /* Read the top level CU/TU die. */
7640 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7641 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7642
7643 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7644 return;
7645
7646 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7647 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7648 table from the DWO file and pass the ownership over to us. It will be
7649 referenced from READER, so we must make sure to free it after we're done
7650 with READER.
7651
7652 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7653 DWO CU, that this test will fail (the attribute will not be present). */
7654 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7655 abbrev_table_up dwo_abbrev_table;
7656 if (attr)
7657 {
7658 struct dwo_unit *dwo_unit;
7659 struct die_info *dwo_comp_unit_die;
7660
7661 if (has_children)
7662 {
7663 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7664 " has children (offset %s) [in module %s]"),
7665 sect_offset_str (this_cu->sect_off),
7666 bfd_get_filename (abfd));
7667 }
7668 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7669 if (dwo_unit != NULL)
7670 {
7671 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7672 comp_unit_die, NULL,
7673 &reader, &info_ptr,
7674 &dwo_comp_unit_die, &has_children,
7675 &dwo_abbrev_table) == 0)
7676 {
7677 /* Dummy die. */
7678 return;
7679 }
7680 comp_unit_die = dwo_comp_unit_die;
7681 }
7682 else
7683 {
7684 /* Yikes, we couldn't find the rest of the DIE, we only have
7685 the stub. A complaint has already been logged. There's
7686 not much more we can do except pass on the stub DIE to
7687 die_reader_func. We don't want to throw an error on bad
7688 debug info. */
7689 }
7690 }
7691
7692 /* All of the above is setup for this call. Yikes. */
7693 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7694
7695 /* Done, clean up. */
7696 if (new_cu != NULL && keep)
7697 {
7698 /* Link this CU into read_in_chain. */
7699 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7700 dwarf2_per_objfile->read_in_chain = this_cu;
7701 /* The chain owns it now. */
7702 new_cu.release ();
7703 }
7704 }
7705
7706 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7707 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7708 to have already done the lookup to find the DWO file).
7709
7710 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7711 THIS_CU->is_debug_types, but nothing else.
7712
7713 We fill in THIS_CU->length.
7714
7715 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7716 linker) then DIE_READER_FUNC will not get called.
7717
7718 THIS_CU->cu is always freed when done.
7719 This is done in order to not leave THIS_CU->cu in a state where we have
7720 to care whether it refers to the "main" CU or the DWO CU. */
7721
7722 static void
7723 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7724 struct dwo_file *dwo_file,
7725 die_reader_func_ftype *die_reader_func,
7726 void *data)
7727 {
7728 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7729 struct objfile *objfile = dwarf2_per_objfile->objfile;
7730 struct dwarf2_section_info *section = this_cu->section;
7731 bfd *abfd = get_section_bfd_owner (section);
7732 struct dwarf2_section_info *abbrev_section;
7733 const gdb_byte *begin_info_ptr, *info_ptr;
7734 struct die_reader_specs reader;
7735 struct die_info *comp_unit_die;
7736 int has_children;
7737
7738 if (dwarf_die_debug)
7739 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7740 this_cu->is_debug_types ? "type" : "comp",
7741 sect_offset_str (this_cu->sect_off));
7742
7743 gdb_assert (this_cu->cu == NULL);
7744
7745 abbrev_section = (dwo_file != NULL
7746 ? &dwo_file->sections.abbrev
7747 : get_abbrev_section_for_cu (this_cu));
7748
7749 /* This is cheap if the section is already read in. */
7750 dwarf2_read_section (objfile, section);
7751
7752 struct dwarf2_cu cu (this_cu);
7753
7754 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7755 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7756 &cu.header, section,
7757 abbrev_section, info_ptr,
7758 (this_cu->is_debug_types
7759 ? rcuh_kind::TYPE
7760 : rcuh_kind::COMPILE));
7761
7762 this_cu->length = get_cu_length (&cu.header);
7763
7764 /* Skip dummy compilation units. */
7765 if (info_ptr >= begin_info_ptr + this_cu->length
7766 || peek_abbrev_code (abfd, info_ptr) == 0)
7767 return;
7768
7769 abbrev_table_up abbrev_table
7770 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7771 cu.header.abbrev_sect_off);
7772
7773 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7774 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7775
7776 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7777 }
7778
7779 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7780 does not lookup the specified DWO file.
7781 This cannot be used to read DWO files.
7782
7783 THIS_CU->cu is always freed when done.
7784 This is done in order to not leave THIS_CU->cu in a state where we have
7785 to care whether it refers to the "main" CU or the DWO CU.
7786 We can revisit this if the data shows there's a performance issue. */
7787
7788 static void
7789 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7790 die_reader_func_ftype *die_reader_func,
7791 void *data)
7792 {
7793 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7794 }
7795 \f
7796 /* Type Unit Groups.
7797
7798 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7799 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7800 so that all types coming from the same compilation (.o file) are grouped
7801 together. A future step could be to put the types in the same symtab as
7802 the CU the types ultimately came from. */
7803
7804 static hashval_t
7805 hash_type_unit_group (const void *item)
7806 {
7807 const struct type_unit_group *tu_group
7808 = (const struct type_unit_group *) item;
7809
7810 return hash_stmt_list_entry (&tu_group->hash);
7811 }
7812
7813 static int
7814 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7815 {
7816 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7817 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7818
7819 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7820 }
7821
7822 /* Allocate a hash table for type unit groups. */
7823
7824 static htab_t
7825 allocate_type_unit_groups_table (struct objfile *objfile)
7826 {
7827 return htab_create_alloc_ex (3,
7828 hash_type_unit_group,
7829 eq_type_unit_group,
7830 NULL,
7831 &objfile->objfile_obstack,
7832 hashtab_obstack_allocate,
7833 dummy_obstack_deallocate);
7834 }
7835
7836 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7837 partial symtabs. We combine several TUs per psymtab to not let the size
7838 of any one psymtab grow too big. */
7839 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7841
7842 /* Helper routine for get_type_unit_group.
7843 Create the type_unit_group object used to hold one or more TUs. */
7844
7845 static struct type_unit_group *
7846 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7847 {
7848 struct dwarf2_per_objfile *dwarf2_per_objfile
7849 = cu->per_cu->dwarf2_per_objfile;
7850 struct objfile *objfile = dwarf2_per_objfile->objfile;
7851 struct dwarf2_per_cu_data *per_cu;
7852 struct type_unit_group *tu_group;
7853
7854 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7855 struct type_unit_group);
7856 per_cu = &tu_group->per_cu;
7857 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7858
7859 if (dwarf2_per_objfile->using_index)
7860 {
7861 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7862 struct dwarf2_per_cu_quick_data);
7863 }
7864 else
7865 {
7866 unsigned int line_offset = to_underlying (line_offset_struct);
7867 struct partial_symtab *pst;
7868 std::string name;
7869
7870 /* Give the symtab a useful name for debug purposes. */
7871 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7872 name = string_printf ("<type_units_%d>",
7873 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7874 else
7875 name = string_printf ("<type_units_at_0x%x>", line_offset);
7876
7877 pst = create_partial_symtab (per_cu, name.c_str ());
7878 pst->anonymous = 1;
7879 }
7880
7881 tu_group->hash.dwo_unit = cu->dwo_unit;
7882 tu_group->hash.line_sect_off = line_offset_struct;
7883
7884 return tu_group;
7885 }
7886
7887 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7888 STMT_LIST is a DW_AT_stmt_list attribute. */
7889
7890 static struct type_unit_group *
7891 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7892 {
7893 struct dwarf2_per_objfile *dwarf2_per_objfile
7894 = cu->per_cu->dwarf2_per_objfile;
7895 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7896 struct type_unit_group *tu_group;
7897 void **slot;
7898 unsigned int line_offset;
7899 struct type_unit_group type_unit_group_for_lookup;
7900
7901 if (dwarf2_per_objfile->type_unit_groups == NULL)
7902 {
7903 dwarf2_per_objfile->type_unit_groups =
7904 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7905 }
7906
7907 /* Do we need to create a new group, or can we use an existing one? */
7908
7909 if (stmt_list)
7910 {
7911 line_offset = DW_UNSND (stmt_list);
7912 ++tu_stats->nr_symtab_sharers;
7913 }
7914 else
7915 {
7916 /* Ugh, no stmt_list. Rare, but we have to handle it.
7917 We can do various things here like create one group per TU or
7918 spread them over multiple groups to split up the expansion work.
7919 To avoid worst case scenarios (too many groups or too large groups)
7920 we, umm, group them in bunches. */
7921 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7922 | (tu_stats->nr_stmt_less_type_units
7923 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7924 ++tu_stats->nr_stmt_less_type_units;
7925 }
7926
7927 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7928 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7929 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7930 &type_unit_group_for_lookup, INSERT);
7931 if (*slot != NULL)
7932 {
7933 tu_group = (struct type_unit_group *) *slot;
7934 gdb_assert (tu_group != NULL);
7935 }
7936 else
7937 {
7938 sect_offset line_offset_struct = (sect_offset) line_offset;
7939 tu_group = create_type_unit_group (cu, line_offset_struct);
7940 *slot = tu_group;
7941 ++tu_stats->nr_symtabs;
7942 }
7943
7944 return tu_group;
7945 }
7946 \f
7947 /* Partial symbol tables. */
7948
7949 /* Create a psymtab named NAME and assign it to PER_CU.
7950
7951 The caller must fill in the following details:
7952 dirname, textlow, texthigh. */
7953
7954 static struct partial_symtab *
7955 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7956 {
7957 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7958 struct partial_symtab *pst;
7959
7960 pst = start_psymtab_common (objfile, name, 0);
7961
7962 pst->psymtabs_addrmap_supported = 1;
7963
7964 /* This is the glue that links PST into GDB's symbol API. */
7965 pst->read_symtab_private = per_cu;
7966 pst->read_symtab = dwarf2_read_symtab;
7967 per_cu->v.psymtab = pst;
7968
7969 return pst;
7970 }
7971
7972 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7973 type. */
7974
7975 struct process_psymtab_comp_unit_data
7976 {
7977 /* True if we are reading a DW_TAG_partial_unit. */
7978
7979 int want_partial_unit;
7980
7981 /* The "pretend" language that is used if the CU doesn't declare a
7982 language. */
7983
7984 enum language pretend_language;
7985 };
7986
7987 /* die_reader_func for process_psymtab_comp_unit. */
7988
7989 static void
7990 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7991 const gdb_byte *info_ptr,
7992 struct die_info *comp_unit_die,
7993 int has_children,
7994 void *data)
7995 {
7996 struct dwarf2_cu *cu = reader->cu;
7997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7998 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7999 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8000 CORE_ADDR baseaddr;
8001 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8002 struct partial_symtab *pst;
8003 enum pc_bounds_kind cu_bounds_kind;
8004 const char *filename;
8005 struct process_psymtab_comp_unit_data *info
8006 = (struct process_psymtab_comp_unit_data *) data;
8007
8008 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8009 return;
8010
8011 gdb_assert (! per_cu->is_debug_types);
8012
8013 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8014
8015 /* Allocate a new partial symbol table structure. */
8016 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8017 if (filename == NULL)
8018 filename = "";
8019
8020 pst = create_partial_symtab (per_cu, filename);
8021
8022 /* This must be done before calling dwarf2_build_include_psymtabs. */
8023 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8024
8025 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8026
8027 dwarf2_find_base_address (comp_unit_die, cu);
8028
8029 /* Possibly set the default values of LOWPC and HIGHPC from
8030 `DW_AT_ranges'. */
8031 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8032 &best_highpc, cu, pst);
8033 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8034 {
8035 CORE_ADDR low
8036 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8037 - baseaddr);
8038 CORE_ADDR high
8039 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8040 - baseaddr - 1);
8041 /* Store the contiguous range if it is not empty; it can be
8042 empty for CUs with no code. */
8043 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8044 low, high, pst);
8045 }
8046
8047 /* Check if comp unit has_children.
8048 If so, read the rest of the partial symbols from this comp unit.
8049 If not, there's no more debug_info for this comp unit. */
8050 if (has_children)
8051 {
8052 struct partial_die_info *first_die;
8053 CORE_ADDR lowpc, highpc;
8054
8055 lowpc = ((CORE_ADDR) -1);
8056 highpc = ((CORE_ADDR) 0);
8057
8058 first_die = load_partial_dies (reader, info_ptr, 1);
8059
8060 scan_partial_symbols (first_die, &lowpc, &highpc,
8061 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8062
8063 /* If we didn't find a lowpc, set it to highpc to avoid
8064 complaints from `maint check'. */
8065 if (lowpc == ((CORE_ADDR) -1))
8066 lowpc = highpc;
8067
8068 /* If the compilation unit didn't have an explicit address range,
8069 then use the information extracted from its child dies. */
8070 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8071 {
8072 best_lowpc = lowpc;
8073 best_highpc = highpc;
8074 }
8075 }
8076 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8077 best_lowpc + baseaddr)
8078 - baseaddr);
8079 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8080 best_highpc + baseaddr)
8081 - baseaddr);
8082
8083 end_psymtab_common (objfile, pst);
8084
8085 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8086 {
8087 int i;
8088 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8089 struct dwarf2_per_cu_data *iter;
8090
8091 /* Fill in 'dependencies' here; we fill in 'users' in a
8092 post-pass. */
8093 pst->number_of_dependencies = len;
8094 pst->dependencies
8095 = objfile->partial_symtabs->allocate_dependencies (len);
8096 for (i = 0;
8097 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8098 i, iter);
8099 ++i)
8100 pst->dependencies[i] = iter->v.psymtab;
8101
8102 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8103 }
8104
8105 /* Get the list of files included in the current compilation unit,
8106 and build a psymtab for each of them. */
8107 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8108
8109 if (dwarf_read_debug)
8110 fprintf_unfiltered (gdb_stdlog,
8111 "Psymtab for %s unit @%s: %s - %s"
8112 ", %d global, %d static syms\n",
8113 per_cu->is_debug_types ? "type" : "comp",
8114 sect_offset_str (per_cu->sect_off),
8115 paddress (gdbarch, pst->text_low (objfile)),
8116 paddress (gdbarch, pst->text_high (objfile)),
8117 pst->n_global_syms, pst->n_static_syms);
8118 }
8119
8120 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8121 Process compilation unit THIS_CU for a psymtab. */
8122
8123 static void
8124 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8125 int want_partial_unit,
8126 enum language pretend_language)
8127 {
8128 /* If this compilation unit was already read in, free the
8129 cached copy in order to read it in again. This is
8130 necessary because we skipped some symbols when we first
8131 read in the compilation unit (see load_partial_dies).
8132 This problem could be avoided, but the benefit is unclear. */
8133 if (this_cu->cu != NULL)
8134 free_one_cached_comp_unit (this_cu);
8135
8136 if (this_cu->is_debug_types)
8137 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8138 build_type_psymtabs_reader, NULL);
8139 else
8140 {
8141 process_psymtab_comp_unit_data info;
8142 info.want_partial_unit = want_partial_unit;
8143 info.pretend_language = pretend_language;
8144 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8145 process_psymtab_comp_unit_reader, &info);
8146 }
8147
8148 /* Age out any secondary CUs. */
8149 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8150 }
8151
8152 /* Reader function for build_type_psymtabs. */
8153
8154 static void
8155 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8156 const gdb_byte *info_ptr,
8157 struct die_info *type_unit_die,
8158 int has_children,
8159 void *data)
8160 {
8161 struct dwarf2_per_objfile *dwarf2_per_objfile
8162 = reader->cu->per_cu->dwarf2_per_objfile;
8163 struct objfile *objfile = dwarf2_per_objfile->objfile;
8164 struct dwarf2_cu *cu = reader->cu;
8165 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8166 struct signatured_type *sig_type;
8167 struct type_unit_group *tu_group;
8168 struct attribute *attr;
8169 struct partial_die_info *first_die;
8170 CORE_ADDR lowpc, highpc;
8171 struct partial_symtab *pst;
8172
8173 gdb_assert (data == NULL);
8174 gdb_assert (per_cu->is_debug_types);
8175 sig_type = (struct signatured_type *) per_cu;
8176
8177 if (! has_children)
8178 return;
8179
8180 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8181 tu_group = get_type_unit_group (cu, attr);
8182
8183 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8184
8185 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8186 pst = create_partial_symtab (per_cu, "");
8187 pst->anonymous = 1;
8188
8189 first_die = load_partial_dies (reader, info_ptr, 1);
8190
8191 lowpc = (CORE_ADDR) -1;
8192 highpc = (CORE_ADDR) 0;
8193 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8194
8195 end_psymtab_common (objfile, pst);
8196 }
8197
8198 /* Struct used to sort TUs by their abbreviation table offset. */
8199
8200 struct tu_abbrev_offset
8201 {
8202 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8203 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8204 {}
8205
8206 signatured_type *sig_type;
8207 sect_offset abbrev_offset;
8208 };
8209
8210 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8211
8212 static bool
8213 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8214 const struct tu_abbrev_offset &b)
8215 {
8216 return a.abbrev_offset < b.abbrev_offset;
8217 }
8218
8219 /* Efficiently read all the type units.
8220 This does the bulk of the work for build_type_psymtabs.
8221
8222 The efficiency is because we sort TUs by the abbrev table they use and
8223 only read each abbrev table once. In one program there are 200K TUs
8224 sharing 8K abbrev tables.
8225
8226 The main purpose of this function is to support building the
8227 dwarf2_per_objfile->type_unit_groups table.
8228 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8229 can collapse the search space by grouping them by stmt_list.
8230 The savings can be significant, in the same program from above the 200K TUs
8231 share 8K stmt_list tables.
8232
8233 FUNC is expected to call get_type_unit_group, which will create the
8234 struct type_unit_group if necessary and add it to
8235 dwarf2_per_objfile->type_unit_groups. */
8236
8237 static void
8238 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8239 {
8240 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8241 abbrev_table_up abbrev_table;
8242 sect_offset abbrev_offset;
8243
8244 /* It's up to the caller to not call us multiple times. */
8245 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8246
8247 if (dwarf2_per_objfile->all_type_units.empty ())
8248 return;
8249
8250 /* TUs typically share abbrev tables, and there can be way more TUs than
8251 abbrev tables. Sort by abbrev table to reduce the number of times we
8252 read each abbrev table in.
8253 Alternatives are to punt or to maintain a cache of abbrev tables.
8254 This is simpler and efficient enough for now.
8255
8256 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8257 symtab to use). Typically TUs with the same abbrev offset have the same
8258 stmt_list value too so in practice this should work well.
8259
8260 The basic algorithm here is:
8261
8262 sort TUs by abbrev table
8263 for each TU with same abbrev table:
8264 read abbrev table if first user
8265 read TU top level DIE
8266 [IWBN if DWO skeletons had DW_AT_stmt_list]
8267 call FUNC */
8268
8269 if (dwarf_read_debug)
8270 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8271
8272 /* Sort in a separate table to maintain the order of all_type_units
8273 for .gdb_index: TU indices directly index all_type_units. */
8274 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8275 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8276
8277 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8278 sorted_by_abbrev.emplace_back
8279 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8280 sig_type->per_cu.section,
8281 sig_type->per_cu.sect_off));
8282
8283 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8284 sort_tu_by_abbrev_offset);
8285
8286 abbrev_offset = (sect_offset) ~(unsigned) 0;
8287
8288 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8289 {
8290 /* Switch to the next abbrev table if necessary. */
8291 if (abbrev_table == NULL
8292 || tu.abbrev_offset != abbrev_offset)
8293 {
8294 abbrev_offset = tu.abbrev_offset;
8295 abbrev_table =
8296 abbrev_table_read_table (dwarf2_per_objfile,
8297 &dwarf2_per_objfile->abbrev,
8298 abbrev_offset);
8299 ++tu_stats->nr_uniq_abbrev_tables;
8300 }
8301
8302 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8303 0, 0, false, build_type_psymtabs_reader, NULL);
8304 }
8305 }
8306
8307 /* Print collected type unit statistics. */
8308
8309 static void
8310 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8311 {
8312 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8313
8314 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8315 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8316 dwarf2_per_objfile->all_type_units.size ());
8317 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8318 tu_stats->nr_uniq_abbrev_tables);
8319 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8320 tu_stats->nr_symtabs);
8321 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8322 tu_stats->nr_symtab_sharers);
8323 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8324 tu_stats->nr_stmt_less_type_units);
8325 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8326 tu_stats->nr_all_type_units_reallocs);
8327 }
8328
8329 /* Traversal function for build_type_psymtabs. */
8330
8331 static int
8332 build_type_psymtab_dependencies (void **slot, void *info)
8333 {
8334 struct dwarf2_per_objfile *dwarf2_per_objfile
8335 = (struct dwarf2_per_objfile *) info;
8336 struct objfile *objfile = dwarf2_per_objfile->objfile;
8337 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8338 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8339 struct partial_symtab *pst = per_cu->v.psymtab;
8340 int len = VEC_length (sig_type_ptr, tu_group->tus);
8341 struct signatured_type *iter;
8342 int i;
8343
8344 gdb_assert (len > 0);
8345 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8346
8347 pst->number_of_dependencies = len;
8348 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8349 for (i = 0;
8350 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8351 ++i)
8352 {
8353 gdb_assert (iter->per_cu.is_debug_types);
8354 pst->dependencies[i] = iter->per_cu.v.psymtab;
8355 iter->type_unit_group = tu_group;
8356 }
8357
8358 VEC_free (sig_type_ptr, tu_group->tus);
8359
8360 return 1;
8361 }
8362
8363 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8364 Build partial symbol tables for the .debug_types comp-units. */
8365
8366 static void
8367 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8368 {
8369 if (! create_all_type_units (dwarf2_per_objfile))
8370 return;
8371
8372 build_type_psymtabs_1 (dwarf2_per_objfile);
8373 }
8374
8375 /* Traversal function for process_skeletonless_type_unit.
8376 Read a TU in a DWO file and build partial symbols for it. */
8377
8378 static int
8379 process_skeletonless_type_unit (void **slot, void *info)
8380 {
8381 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8382 struct dwarf2_per_objfile *dwarf2_per_objfile
8383 = (struct dwarf2_per_objfile *) info;
8384 struct signatured_type find_entry, *entry;
8385
8386 /* If this TU doesn't exist in the global table, add it and read it in. */
8387
8388 if (dwarf2_per_objfile->signatured_types == NULL)
8389 {
8390 dwarf2_per_objfile->signatured_types
8391 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8392 }
8393
8394 find_entry.signature = dwo_unit->signature;
8395 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8396 INSERT);
8397 /* If we've already seen this type there's nothing to do. What's happening
8398 is we're doing our own version of comdat-folding here. */
8399 if (*slot != NULL)
8400 return 1;
8401
8402 /* This does the job that create_all_type_units would have done for
8403 this TU. */
8404 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8405 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8406 *slot = entry;
8407
8408 /* This does the job that build_type_psymtabs_1 would have done. */
8409 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8410 build_type_psymtabs_reader, NULL);
8411
8412 return 1;
8413 }
8414
8415 /* Traversal function for process_skeletonless_type_units. */
8416
8417 static int
8418 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8419 {
8420 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8421
8422 if (dwo_file->tus != NULL)
8423 {
8424 htab_traverse_noresize (dwo_file->tus,
8425 process_skeletonless_type_unit, info);
8426 }
8427
8428 return 1;
8429 }
8430
8431 /* Scan all TUs of DWO files, verifying we've processed them.
8432 This is needed in case a TU was emitted without its skeleton.
8433 Note: This can't be done until we know what all the DWO files are. */
8434
8435 static void
8436 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8437 {
8438 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8439 if (get_dwp_file (dwarf2_per_objfile) == NULL
8440 && dwarf2_per_objfile->dwo_files != NULL)
8441 {
8442 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8443 process_dwo_file_for_skeletonless_type_units,
8444 dwarf2_per_objfile);
8445 }
8446 }
8447
8448 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8449
8450 static void
8451 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8452 {
8453 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8454 {
8455 struct partial_symtab *pst = per_cu->v.psymtab;
8456
8457 if (pst == NULL)
8458 continue;
8459
8460 for (int j = 0; j < pst->number_of_dependencies; ++j)
8461 {
8462 /* Set the 'user' field only if it is not already set. */
8463 if (pst->dependencies[j]->user == NULL)
8464 pst->dependencies[j]->user = pst;
8465 }
8466 }
8467 }
8468
8469 /* Build the partial symbol table by doing a quick pass through the
8470 .debug_info and .debug_abbrev sections. */
8471
8472 static void
8473 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8474 {
8475 struct objfile *objfile = dwarf2_per_objfile->objfile;
8476
8477 if (dwarf_read_debug)
8478 {
8479 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8480 objfile_name (objfile));
8481 }
8482
8483 dwarf2_per_objfile->reading_partial_symbols = 1;
8484
8485 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8486
8487 /* Any cached compilation units will be linked by the per-objfile
8488 read_in_chain. Make sure to free them when we're done. */
8489 free_cached_comp_units freer (dwarf2_per_objfile);
8490
8491 build_type_psymtabs (dwarf2_per_objfile);
8492
8493 create_all_comp_units (dwarf2_per_objfile);
8494
8495 /* Create a temporary address map on a temporary obstack. We later
8496 copy this to the final obstack. */
8497 auto_obstack temp_obstack;
8498
8499 scoped_restore save_psymtabs_addrmap
8500 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8501 addrmap_create_mutable (&temp_obstack));
8502
8503 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8504 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8505
8506 /* This has to wait until we read the CUs, we need the list of DWOs. */
8507 process_skeletonless_type_units (dwarf2_per_objfile);
8508
8509 /* Now that all TUs have been processed we can fill in the dependencies. */
8510 if (dwarf2_per_objfile->type_unit_groups != NULL)
8511 {
8512 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8513 build_type_psymtab_dependencies, dwarf2_per_objfile);
8514 }
8515
8516 if (dwarf_read_debug)
8517 print_tu_stats (dwarf2_per_objfile);
8518
8519 set_partial_user (dwarf2_per_objfile);
8520
8521 objfile->partial_symtabs->psymtabs_addrmap
8522 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8523 objfile->partial_symtabs->obstack ());
8524 /* At this point we want to keep the address map. */
8525 save_psymtabs_addrmap.release ();
8526
8527 if (dwarf_read_debug)
8528 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8529 objfile_name (objfile));
8530 }
8531
8532 /* die_reader_func for load_partial_comp_unit. */
8533
8534 static void
8535 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8536 const gdb_byte *info_ptr,
8537 struct die_info *comp_unit_die,
8538 int has_children,
8539 void *data)
8540 {
8541 struct dwarf2_cu *cu = reader->cu;
8542
8543 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8544
8545 /* Check if comp unit has_children.
8546 If so, read the rest of the partial symbols from this comp unit.
8547 If not, there's no more debug_info for this comp unit. */
8548 if (has_children)
8549 load_partial_dies (reader, info_ptr, 0);
8550 }
8551
8552 /* Load the partial DIEs for a secondary CU into memory.
8553 This is also used when rereading a primary CU with load_all_dies. */
8554
8555 static void
8556 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8557 {
8558 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8559 load_partial_comp_unit_reader, NULL);
8560 }
8561
8562 static void
8563 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8564 struct dwarf2_section_info *section,
8565 struct dwarf2_section_info *abbrev_section,
8566 unsigned int is_dwz)
8567 {
8568 const gdb_byte *info_ptr;
8569 struct objfile *objfile = dwarf2_per_objfile->objfile;
8570
8571 if (dwarf_read_debug)
8572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8573 get_section_name (section),
8574 get_section_file_name (section));
8575
8576 dwarf2_read_section (objfile, section);
8577
8578 info_ptr = section->buffer;
8579
8580 while (info_ptr < section->buffer + section->size)
8581 {
8582 struct dwarf2_per_cu_data *this_cu;
8583
8584 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8585
8586 comp_unit_head cu_header;
8587 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8588 abbrev_section, info_ptr,
8589 rcuh_kind::COMPILE);
8590
8591 /* Save the compilation unit for later lookup. */
8592 if (cu_header.unit_type != DW_UT_type)
8593 {
8594 this_cu = XOBNEW (&objfile->objfile_obstack,
8595 struct dwarf2_per_cu_data);
8596 memset (this_cu, 0, sizeof (*this_cu));
8597 }
8598 else
8599 {
8600 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8601 struct signatured_type);
8602 memset (sig_type, 0, sizeof (*sig_type));
8603 sig_type->signature = cu_header.signature;
8604 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8605 this_cu = &sig_type->per_cu;
8606 }
8607 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8608 this_cu->sect_off = sect_off;
8609 this_cu->length = cu_header.length + cu_header.initial_length_size;
8610 this_cu->is_dwz = is_dwz;
8611 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8612 this_cu->section = section;
8613
8614 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8615
8616 info_ptr = info_ptr + this_cu->length;
8617 }
8618 }
8619
8620 /* Create a list of all compilation units in OBJFILE.
8621 This is only done for -readnow and building partial symtabs. */
8622
8623 static void
8624 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8625 {
8626 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8627 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8628 &dwarf2_per_objfile->abbrev, 0);
8629
8630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8631 if (dwz != NULL)
8632 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8633 1);
8634 }
8635
8636 /* Process all loaded DIEs for compilation unit CU, starting at
8637 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8638 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8639 DW_AT_ranges). See the comments of add_partial_subprogram on how
8640 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8641
8642 static void
8643 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8644 CORE_ADDR *highpc, int set_addrmap,
8645 struct dwarf2_cu *cu)
8646 {
8647 struct partial_die_info *pdi;
8648
8649 /* Now, march along the PDI's, descending into ones which have
8650 interesting children but skipping the children of the other ones,
8651 until we reach the end of the compilation unit. */
8652
8653 pdi = first_die;
8654
8655 while (pdi != NULL)
8656 {
8657 pdi->fixup (cu);
8658
8659 /* Anonymous namespaces or modules have no name but have interesting
8660 children, so we need to look at them. Ditto for anonymous
8661 enums. */
8662
8663 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8664 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8665 || pdi->tag == DW_TAG_imported_unit
8666 || pdi->tag == DW_TAG_inlined_subroutine)
8667 {
8668 switch (pdi->tag)
8669 {
8670 case DW_TAG_subprogram:
8671 case DW_TAG_inlined_subroutine:
8672 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8673 break;
8674 case DW_TAG_constant:
8675 case DW_TAG_variable:
8676 case DW_TAG_typedef:
8677 case DW_TAG_union_type:
8678 if (!pdi->is_declaration)
8679 {
8680 add_partial_symbol (pdi, cu);
8681 }
8682 break;
8683 case DW_TAG_class_type:
8684 case DW_TAG_interface_type:
8685 case DW_TAG_structure_type:
8686 if (!pdi->is_declaration)
8687 {
8688 add_partial_symbol (pdi, cu);
8689 }
8690 if ((cu->language == language_rust
8691 || cu->language == language_cplus) && pdi->has_children)
8692 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8693 set_addrmap, cu);
8694 break;
8695 case DW_TAG_enumeration_type:
8696 if (!pdi->is_declaration)
8697 add_partial_enumeration (pdi, cu);
8698 break;
8699 case DW_TAG_base_type:
8700 case DW_TAG_subrange_type:
8701 /* File scope base type definitions are added to the partial
8702 symbol table. */
8703 add_partial_symbol (pdi, cu);
8704 break;
8705 case DW_TAG_namespace:
8706 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8707 break;
8708 case DW_TAG_module:
8709 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8710 break;
8711 case DW_TAG_imported_unit:
8712 {
8713 struct dwarf2_per_cu_data *per_cu;
8714
8715 /* For now we don't handle imported units in type units. */
8716 if (cu->per_cu->is_debug_types)
8717 {
8718 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8719 " supported in type units [in module %s]"),
8720 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8721 }
8722
8723 per_cu = dwarf2_find_containing_comp_unit
8724 (pdi->d.sect_off, pdi->is_dwz,
8725 cu->per_cu->dwarf2_per_objfile);
8726
8727 /* Go read the partial unit, if needed. */
8728 if (per_cu->v.psymtab == NULL)
8729 process_psymtab_comp_unit (per_cu, 1, cu->language);
8730
8731 VEC_safe_push (dwarf2_per_cu_ptr,
8732 cu->per_cu->imported_symtabs, per_cu);
8733 }
8734 break;
8735 case DW_TAG_imported_declaration:
8736 add_partial_symbol (pdi, cu);
8737 break;
8738 default:
8739 break;
8740 }
8741 }
8742
8743 /* If the die has a sibling, skip to the sibling. */
8744
8745 pdi = pdi->die_sibling;
8746 }
8747 }
8748
8749 /* Functions used to compute the fully scoped name of a partial DIE.
8750
8751 Normally, this is simple. For C++, the parent DIE's fully scoped
8752 name is concatenated with "::" and the partial DIE's name.
8753 Enumerators are an exception; they use the scope of their parent
8754 enumeration type, i.e. the name of the enumeration type is not
8755 prepended to the enumerator.
8756
8757 There are two complexities. One is DW_AT_specification; in this
8758 case "parent" means the parent of the target of the specification,
8759 instead of the direct parent of the DIE. The other is compilers
8760 which do not emit DW_TAG_namespace; in this case we try to guess
8761 the fully qualified name of structure types from their members'
8762 linkage names. This must be done using the DIE's children rather
8763 than the children of any DW_AT_specification target. We only need
8764 to do this for structures at the top level, i.e. if the target of
8765 any DW_AT_specification (if any; otherwise the DIE itself) does not
8766 have a parent. */
8767
8768 /* Compute the scope prefix associated with PDI's parent, in
8769 compilation unit CU. The result will be allocated on CU's
8770 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8771 field. NULL is returned if no prefix is necessary. */
8772 static const char *
8773 partial_die_parent_scope (struct partial_die_info *pdi,
8774 struct dwarf2_cu *cu)
8775 {
8776 const char *grandparent_scope;
8777 struct partial_die_info *parent, *real_pdi;
8778
8779 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8780 then this means the parent of the specification DIE. */
8781
8782 real_pdi = pdi;
8783 while (real_pdi->has_specification)
8784 real_pdi = find_partial_die (real_pdi->spec_offset,
8785 real_pdi->spec_is_dwz, cu);
8786
8787 parent = real_pdi->die_parent;
8788 if (parent == NULL)
8789 return NULL;
8790
8791 if (parent->scope_set)
8792 return parent->scope;
8793
8794 parent->fixup (cu);
8795
8796 grandparent_scope = partial_die_parent_scope (parent, cu);
8797
8798 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8799 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8800 Work around this problem here. */
8801 if (cu->language == language_cplus
8802 && parent->tag == DW_TAG_namespace
8803 && strcmp (parent->name, "::") == 0
8804 && grandparent_scope == NULL)
8805 {
8806 parent->scope = NULL;
8807 parent->scope_set = 1;
8808 return NULL;
8809 }
8810
8811 if (pdi->tag == DW_TAG_enumerator)
8812 /* Enumerators should not get the name of the enumeration as a prefix. */
8813 parent->scope = grandparent_scope;
8814 else if (parent->tag == DW_TAG_namespace
8815 || parent->tag == DW_TAG_module
8816 || parent->tag == DW_TAG_structure_type
8817 || parent->tag == DW_TAG_class_type
8818 || parent->tag == DW_TAG_interface_type
8819 || parent->tag == DW_TAG_union_type
8820 || parent->tag == DW_TAG_enumeration_type)
8821 {
8822 if (grandparent_scope == NULL)
8823 parent->scope = parent->name;
8824 else
8825 parent->scope = typename_concat (&cu->comp_unit_obstack,
8826 grandparent_scope,
8827 parent->name, 0, cu);
8828 }
8829 else
8830 {
8831 /* FIXME drow/2004-04-01: What should we be doing with
8832 function-local names? For partial symbols, we should probably be
8833 ignoring them. */
8834 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8835 parent->tag, sect_offset_str (pdi->sect_off));
8836 parent->scope = grandparent_scope;
8837 }
8838
8839 parent->scope_set = 1;
8840 return parent->scope;
8841 }
8842
8843 /* Return the fully scoped name associated with PDI, from compilation unit
8844 CU. The result will be allocated with malloc. */
8845
8846 static char *
8847 partial_die_full_name (struct partial_die_info *pdi,
8848 struct dwarf2_cu *cu)
8849 {
8850 const char *parent_scope;
8851
8852 /* If this is a template instantiation, we can not work out the
8853 template arguments from partial DIEs. So, unfortunately, we have
8854 to go through the full DIEs. At least any work we do building
8855 types here will be reused if full symbols are loaded later. */
8856 if (pdi->has_template_arguments)
8857 {
8858 pdi->fixup (cu);
8859
8860 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8861 {
8862 struct die_info *die;
8863 struct attribute attr;
8864 struct dwarf2_cu *ref_cu = cu;
8865
8866 /* DW_FORM_ref_addr is using section offset. */
8867 attr.name = (enum dwarf_attribute) 0;
8868 attr.form = DW_FORM_ref_addr;
8869 attr.u.unsnd = to_underlying (pdi->sect_off);
8870 die = follow_die_ref (NULL, &attr, &ref_cu);
8871
8872 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8873 }
8874 }
8875
8876 parent_scope = partial_die_parent_scope (pdi, cu);
8877 if (parent_scope == NULL)
8878 return NULL;
8879 else
8880 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8881 }
8882
8883 static void
8884 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8885 {
8886 struct dwarf2_per_objfile *dwarf2_per_objfile
8887 = cu->per_cu->dwarf2_per_objfile;
8888 struct objfile *objfile = dwarf2_per_objfile->objfile;
8889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8890 CORE_ADDR addr = 0;
8891 const char *actual_name = NULL;
8892 CORE_ADDR baseaddr;
8893 char *built_actual_name;
8894
8895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8896
8897 built_actual_name = partial_die_full_name (pdi, cu);
8898 if (built_actual_name != NULL)
8899 actual_name = built_actual_name;
8900
8901 if (actual_name == NULL)
8902 actual_name = pdi->name;
8903
8904 switch (pdi->tag)
8905 {
8906 case DW_TAG_inlined_subroutine:
8907 case DW_TAG_subprogram:
8908 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8909 - baseaddr);
8910 if (pdi->is_external || cu->language == language_ada)
8911 {
8912 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8913 of the global scope. But in Ada, we want to be able to access
8914 nested procedures globally. So all Ada subprograms are stored
8915 in the global scope. */
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 VAR_DOMAIN, LOC_BLOCK,
8919 SECT_OFF_TEXT (objfile),
8920 psymbol_placement::GLOBAL,
8921 addr,
8922 cu->language, objfile);
8923 }
8924 else
8925 {
8926 add_psymbol_to_list (actual_name, strlen (actual_name),
8927 built_actual_name != NULL,
8928 VAR_DOMAIN, LOC_BLOCK,
8929 SECT_OFF_TEXT (objfile),
8930 psymbol_placement::STATIC,
8931 addr, cu->language, objfile);
8932 }
8933
8934 if (pdi->main_subprogram && actual_name != NULL)
8935 set_objfile_main_name (objfile, actual_name, cu->language);
8936 break;
8937 case DW_TAG_constant:
8938 add_psymbol_to_list (actual_name, strlen (actual_name),
8939 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8940 -1, (pdi->is_external
8941 ? psymbol_placement::GLOBAL
8942 : psymbol_placement::STATIC),
8943 0, cu->language, objfile);
8944 break;
8945 case DW_TAG_variable:
8946 if (pdi->d.locdesc)
8947 addr = decode_locdesc (pdi->d.locdesc, cu);
8948
8949 if (pdi->d.locdesc
8950 && addr == 0
8951 && !dwarf2_per_objfile->has_section_at_zero)
8952 {
8953 /* A global or static variable may also have been stripped
8954 out by the linker if unused, in which case its address
8955 will be nullified; do not add such variables into partial
8956 symbol table then. */
8957 }
8958 else if (pdi->is_external)
8959 {
8960 /* Global Variable.
8961 Don't enter into the minimal symbol tables as there is
8962 a minimal symbol table entry from the ELF symbols already.
8963 Enter into partial symbol table if it has a location
8964 descriptor or a type.
8965 If the location descriptor is missing, new_symbol will create
8966 a LOC_UNRESOLVED symbol, the address of the variable will then
8967 be determined from the minimal symbol table whenever the variable
8968 is referenced.
8969 The address for the partial symbol table entry is not
8970 used by GDB, but it comes in handy for debugging partial symbol
8971 table building. */
8972
8973 if (pdi->d.locdesc || pdi->has_type)
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_STATIC,
8977 SECT_OFF_TEXT (objfile),
8978 psymbol_placement::GLOBAL,
8979 addr, cu->language, objfile);
8980 }
8981 else
8982 {
8983 int has_loc = pdi->d.locdesc != NULL;
8984
8985 /* Static Variable. Skip symbols whose value we cannot know (those
8986 without location descriptors or constant values). */
8987 if (!has_loc && !pdi->has_const_value)
8988 {
8989 xfree (built_actual_name);
8990 return;
8991 }
8992
8993 add_psymbol_to_list (actual_name, strlen (actual_name),
8994 built_actual_name != NULL,
8995 VAR_DOMAIN, LOC_STATIC,
8996 SECT_OFF_TEXT (objfile),
8997 psymbol_placement::STATIC,
8998 has_loc ? addr : 0,
8999 cu->language, objfile);
9000 }
9001 break;
9002 case DW_TAG_typedef:
9003 case DW_TAG_base_type:
9004 case DW_TAG_subrange_type:
9005 add_psymbol_to_list (actual_name, strlen (actual_name),
9006 built_actual_name != NULL,
9007 VAR_DOMAIN, LOC_TYPEDEF, -1,
9008 psymbol_placement::STATIC,
9009 0, cu->language, objfile);
9010 break;
9011 case DW_TAG_imported_declaration:
9012 case DW_TAG_namespace:
9013 add_psymbol_to_list (actual_name, strlen (actual_name),
9014 built_actual_name != NULL,
9015 VAR_DOMAIN, LOC_TYPEDEF, -1,
9016 psymbol_placement::GLOBAL,
9017 0, cu->language, objfile);
9018 break;
9019 case DW_TAG_module:
9020 add_psymbol_to_list (actual_name, strlen (actual_name),
9021 built_actual_name != NULL,
9022 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9023 psymbol_placement::GLOBAL,
9024 0, cu->language, objfile);
9025 break;
9026 case DW_TAG_class_type:
9027 case DW_TAG_interface_type:
9028 case DW_TAG_structure_type:
9029 case DW_TAG_union_type:
9030 case DW_TAG_enumeration_type:
9031 /* Skip external references. The DWARF standard says in the section
9032 about "Structure, Union, and Class Type Entries": "An incomplete
9033 structure, union or class type is represented by a structure,
9034 union or class entry that does not have a byte size attribute
9035 and that has a DW_AT_declaration attribute." */
9036 if (!pdi->has_byte_size && pdi->is_declaration)
9037 {
9038 xfree (built_actual_name);
9039 return;
9040 }
9041
9042 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9043 static vs. global. */
9044 add_psymbol_to_list (actual_name, strlen (actual_name),
9045 built_actual_name != NULL,
9046 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9047 cu->language == language_cplus
9048 ? psymbol_placement::GLOBAL
9049 : psymbol_placement::STATIC,
9050 0, cu->language, objfile);
9051
9052 break;
9053 case DW_TAG_enumerator:
9054 add_psymbol_to_list (actual_name, strlen (actual_name),
9055 built_actual_name != NULL,
9056 VAR_DOMAIN, LOC_CONST, -1,
9057 cu->language == language_cplus
9058 ? psymbol_placement::GLOBAL
9059 : psymbol_placement::STATIC,
9060 0, cu->language, objfile);
9061 break;
9062 default:
9063 break;
9064 }
9065
9066 xfree (built_actual_name);
9067 }
9068
9069 /* Read a partial die corresponding to a namespace; also, add a symbol
9070 corresponding to that namespace to the symbol table. NAMESPACE is
9071 the name of the enclosing namespace. */
9072
9073 static void
9074 add_partial_namespace (struct partial_die_info *pdi,
9075 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9076 int set_addrmap, struct dwarf2_cu *cu)
9077 {
9078 /* Add a symbol for the namespace. */
9079
9080 add_partial_symbol (pdi, cu);
9081
9082 /* Now scan partial symbols in that namespace. */
9083
9084 if (pdi->has_children)
9085 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9086 }
9087
9088 /* Read a partial die corresponding to a Fortran module. */
9089
9090 static void
9091 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9092 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9093 {
9094 /* Add a symbol for the namespace. */
9095
9096 add_partial_symbol (pdi, cu);
9097
9098 /* Now scan partial symbols in that module. */
9099
9100 if (pdi->has_children)
9101 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9102 }
9103
9104 /* Read a partial die corresponding to a subprogram or an inlined
9105 subprogram and create a partial symbol for that subprogram.
9106 When the CU language allows it, this routine also defines a partial
9107 symbol for each nested subprogram that this subprogram contains.
9108 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9109 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9110
9111 PDI may also be a lexical block, in which case we simply search
9112 recursively for subprograms defined inside that lexical block.
9113 Again, this is only performed when the CU language allows this
9114 type of definitions. */
9115
9116 static void
9117 add_partial_subprogram (struct partial_die_info *pdi,
9118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9119 int set_addrmap, struct dwarf2_cu *cu)
9120 {
9121 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9122 {
9123 if (pdi->has_pc_info)
9124 {
9125 if (pdi->lowpc < *lowpc)
9126 *lowpc = pdi->lowpc;
9127 if (pdi->highpc > *highpc)
9128 *highpc = pdi->highpc;
9129 if (set_addrmap)
9130 {
9131 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9132 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9133 CORE_ADDR baseaddr;
9134 CORE_ADDR this_highpc;
9135 CORE_ADDR this_lowpc;
9136
9137 baseaddr = ANOFFSET (objfile->section_offsets,
9138 SECT_OFF_TEXT (objfile));
9139 this_lowpc
9140 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9141 pdi->lowpc + baseaddr)
9142 - baseaddr);
9143 this_highpc
9144 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9145 pdi->highpc + baseaddr)
9146 - baseaddr);
9147 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9148 this_lowpc, this_highpc - 1,
9149 cu->per_cu->v.psymtab);
9150 }
9151 }
9152
9153 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9154 {
9155 if (!pdi->is_declaration)
9156 /* Ignore subprogram DIEs that do not have a name, they are
9157 illegal. Do not emit a complaint at this point, we will
9158 do so when we convert this psymtab into a symtab. */
9159 if (pdi->name)
9160 add_partial_symbol (pdi, cu);
9161 }
9162 }
9163
9164 if (! pdi->has_children)
9165 return;
9166
9167 if (cu->language == language_ada)
9168 {
9169 pdi = pdi->die_child;
9170 while (pdi != NULL)
9171 {
9172 pdi->fixup (cu);
9173 if (pdi->tag == DW_TAG_subprogram
9174 || pdi->tag == DW_TAG_inlined_subroutine
9175 || pdi->tag == DW_TAG_lexical_block)
9176 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9177 pdi = pdi->die_sibling;
9178 }
9179 }
9180 }
9181
9182 /* Read a partial die corresponding to an enumeration type. */
9183
9184 static void
9185 add_partial_enumeration (struct partial_die_info *enum_pdi,
9186 struct dwarf2_cu *cu)
9187 {
9188 struct partial_die_info *pdi;
9189
9190 if (enum_pdi->name != NULL)
9191 add_partial_symbol (enum_pdi, cu);
9192
9193 pdi = enum_pdi->die_child;
9194 while (pdi)
9195 {
9196 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9197 complaint (_("malformed enumerator DIE ignored"));
9198 else
9199 add_partial_symbol (pdi, cu);
9200 pdi = pdi->die_sibling;
9201 }
9202 }
9203
9204 /* Return the initial uleb128 in the die at INFO_PTR. */
9205
9206 static unsigned int
9207 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9208 {
9209 unsigned int bytes_read;
9210
9211 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9212 }
9213
9214 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9215 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9216
9217 Return the corresponding abbrev, or NULL if the number is zero (indicating
9218 an empty DIE). In either case *BYTES_READ will be set to the length of
9219 the initial number. */
9220
9221 static struct abbrev_info *
9222 peek_die_abbrev (const die_reader_specs &reader,
9223 const gdb_byte *info_ptr, unsigned int *bytes_read)
9224 {
9225 dwarf2_cu *cu = reader.cu;
9226 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9227 unsigned int abbrev_number
9228 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9229
9230 if (abbrev_number == 0)
9231 return NULL;
9232
9233 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9234 if (!abbrev)
9235 {
9236 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9237 " at offset %s [in module %s]"),
9238 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9239 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9240 }
9241
9242 return abbrev;
9243 }
9244
9245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9246 Returns a pointer to the end of a series of DIEs, terminated by an empty
9247 DIE. Any children of the skipped DIEs will also be skipped. */
9248
9249 static const gdb_byte *
9250 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9251 {
9252 while (1)
9253 {
9254 unsigned int bytes_read;
9255 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9256
9257 if (abbrev == NULL)
9258 return info_ptr + bytes_read;
9259 else
9260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9261 }
9262 }
9263
9264 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9265 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9266 abbrev corresponding to that skipped uleb128 should be passed in
9267 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9268 children. */
9269
9270 static const gdb_byte *
9271 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9272 struct abbrev_info *abbrev)
9273 {
9274 unsigned int bytes_read;
9275 struct attribute attr;
9276 bfd *abfd = reader->abfd;
9277 struct dwarf2_cu *cu = reader->cu;
9278 const gdb_byte *buffer = reader->buffer;
9279 const gdb_byte *buffer_end = reader->buffer_end;
9280 unsigned int form, i;
9281
9282 for (i = 0; i < abbrev->num_attrs; i++)
9283 {
9284 /* The only abbrev we care about is DW_AT_sibling. */
9285 if (abbrev->attrs[i].name == DW_AT_sibling)
9286 {
9287 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9288 if (attr.form == DW_FORM_ref_addr)
9289 complaint (_("ignoring absolute DW_AT_sibling"));
9290 else
9291 {
9292 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9293 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9294
9295 if (sibling_ptr < info_ptr)
9296 complaint (_("DW_AT_sibling points backwards"));
9297 else if (sibling_ptr > reader->buffer_end)
9298 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9299 else
9300 return sibling_ptr;
9301 }
9302 }
9303
9304 /* If it isn't DW_AT_sibling, skip this attribute. */
9305 form = abbrev->attrs[i].form;
9306 skip_attribute:
9307 switch (form)
9308 {
9309 case DW_FORM_ref_addr:
9310 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9311 and later it is offset sized. */
9312 if (cu->header.version == 2)
9313 info_ptr += cu->header.addr_size;
9314 else
9315 info_ptr += cu->header.offset_size;
9316 break;
9317 case DW_FORM_GNU_ref_alt:
9318 info_ptr += cu->header.offset_size;
9319 break;
9320 case DW_FORM_addr:
9321 info_ptr += cu->header.addr_size;
9322 break;
9323 case DW_FORM_data1:
9324 case DW_FORM_ref1:
9325 case DW_FORM_flag:
9326 info_ptr += 1;
9327 break;
9328 case DW_FORM_flag_present:
9329 case DW_FORM_implicit_const:
9330 break;
9331 case DW_FORM_data2:
9332 case DW_FORM_ref2:
9333 info_ptr += 2;
9334 break;
9335 case DW_FORM_data4:
9336 case DW_FORM_ref4:
9337 info_ptr += 4;
9338 break;
9339 case DW_FORM_data8:
9340 case DW_FORM_ref8:
9341 case DW_FORM_ref_sig8:
9342 info_ptr += 8;
9343 break;
9344 case DW_FORM_data16:
9345 info_ptr += 16;
9346 break;
9347 case DW_FORM_string:
9348 read_direct_string (abfd, info_ptr, &bytes_read);
9349 info_ptr += bytes_read;
9350 break;
9351 case DW_FORM_sec_offset:
9352 case DW_FORM_strp:
9353 case DW_FORM_GNU_strp_alt:
9354 info_ptr += cu->header.offset_size;
9355 break;
9356 case DW_FORM_exprloc:
9357 case DW_FORM_block:
9358 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9359 info_ptr += bytes_read;
9360 break;
9361 case DW_FORM_block1:
9362 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9363 break;
9364 case DW_FORM_block2:
9365 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9366 break;
9367 case DW_FORM_block4:
9368 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9369 break;
9370 case DW_FORM_sdata:
9371 case DW_FORM_udata:
9372 case DW_FORM_ref_udata:
9373 case DW_FORM_GNU_addr_index:
9374 case DW_FORM_GNU_str_index:
9375 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9376 break;
9377 case DW_FORM_indirect:
9378 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9379 info_ptr += bytes_read;
9380 /* We need to continue parsing from here, so just go back to
9381 the top. */
9382 goto skip_attribute;
9383
9384 default:
9385 error (_("Dwarf Error: Cannot handle %s "
9386 "in DWARF reader [in module %s]"),
9387 dwarf_form_name (form),
9388 bfd_get_filename (abfd));
9389 }
9390 }
9391
9392 if (abbrev->has_children)
9393 return skip_children (reader, info_ptr);
9394 else
9395 return info_ptr;
9396 }
9397
9398 /* Locate ORIG_PDI's sibling.
9399 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9400
9401 static const gdb_byte *
9402 locate_pdi_sibling (const struct die_reader_specs *reader,
9403 struct partial_die_info *orig_pdi,
9404 const gdb_byte *info_ptr)
9405 {
9406 /* Do we know the sibling already? */
9407
9408 if (orig_pdi->sibling)
9409 return orig_pdi->sibling;
9410
9411 /* Are there any children to deal with? */
9412
9413 if (!orig_pdi->has_children)
9414 return info_ptr;
9415
9416 /* Skip the children the long way. */
9417
9418 return skip_children (reader, info_ptr);
9419 }
9420
9421 /* Expand this partial symbol table into a full symbol table. SELF is
9422 not NULL. */
9423
9424 static void
9425 dwarf2_read_symtab (struct partial_symtab *self,
9426 struct objfile *objfile)
9427 {
9428 struct dwarf2_per_objfile *dwarf2_per_objfile
9429 = get_dwarf2_per_objfile (objfile);
9430
9431 if (self->readin)
9432 {
9433 warning (_("bug: psymtab for %s is already read in."),
9434 self->filename);
9435 }
9436 else
9437 {
9438 if (info_verbose)
9439 {
9440 printf_filtered (_("Reading in symbols for %s..."),
9441 self->filename);
9442 gdb_flush (gdb_stdout);
9443 }
9444
9445 /* If this psymtab is constructed from a debug-only objfile, the
9446 has_section_at_zero flag will not necessarily be correct. We
9447 can get the correct value for this flag by looking at the data
9448 associated with the (presumably stripped) associated objfile. */
9449 if (objfile->separate_debug_objfile_backlink)
9450 {
9451 struct dwarf2_per_objfile *dpo_backlink
9452 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9453
9454 dwarf2_per_objfile->has_section_at_zero
9455 = dpo_backlink->has_section_at_zero;
9456 }
9457
9458 dwarf2_per_objfile->reading_partial_symbols = 0;
9459
9460 psymtab_to_symtab_1 (self);
9461
9462 /* Finish up the debug error message. */
9463 if (info_verbose)
9464 printf_filtered (_("done.\n"));
9465 }
9466
9467 process_cu_includes (dwarf2_per_objfile);
9468 }
9469 \f
9470 /* Reading in full CUs. */
9471
9472 /* Add PER_CU to the queue. */
9473
9474 static void
9475 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9476 enum language pretend_language)
9477 {
9478 struct dwarf2_queue_item *item;
9479
9480 per_cu->queued = 1;
9481 item = XNEW (struct dwarf2_queue_item);
9482 item->per_cu = per_cu;
9483 item->pretend_language = pretend_language;
9484 item->next = NULL;
9485
9486 if (dwarf2_queue == NULL)
9487 dwarf2_queue = item;
9488 else
9489 dwarf2_queue_tail->next = item;
9490
9491 dwarf2_queue_tail = item;
9492 }
9493
9494 /* If PER_CU is not yet queued, add it to the queue.
9495 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9496 dependency.
9497 The result is non-zero if PER_CU was queued, otherwise the result is zero
9498 meaning either PER_CU is already queued or it is already loaded.
9499
9500 N.B. There is an invariant here that if a CU is queued then it is loaded.
9501 The caller is required to load PER_CU if we return non-zero. */
9502
9503 static int
9504 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9505 struct dwarf2_per_cu_data *per_cu,
9506 enum language pretend_language)
9507 {
9508 /* We may arrive here during partial symbol reading, if we need full
9509 DIEs to process an unusual case (e.g. template arguments). Do
9510 not queue PER_CU, just tell our caller to load its DIEs. */
9511 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9512 {
9513 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9514 return 1;
9515 return 0;
9516 }
9517
9518 /* Mark the dependence relation so that we don't flush PER_CU
9519 too early. */
9520 if (dependent_cu != NULL)
9521 dwarf2_add_dependence (dependent_cu, per_cu);
9522
9523 /* If it's already on the queue, we have nothing to do. */
9524 if (per_cu->queued)
9525 return 0;
9526
9527 /* If the compilation unit is already loaded, just mark it as
9528 used. */
9529 if (per_cu->cu != NULL)
9530 {
9531 per_cu->cu->last_used = 0;
9532 return 0;
9533 }
9534
9535 /* Add it to the queue. */
9536 queue_comp_unit (per_cu, pretend_language);
9537
9538 return 1;
9539 }
9540
9541 /* Process the queue. */
9542
9543 static void
9544 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9545 {
9546 struct dwarf2_queue_item *item, *next_item;
9547
9548 if (dwarf_read_debug)
9549 {
9550 fprintf_unfiltered (gdb_stdlog,
9551 "Expanding one or more symtabs of objfile %s ...\n",
9552 objfile_name (dwarf2_per_objfile->objfile));
9553 }
9554
9555 /* The queue starts out with one item, but following a DIE reference
9556 may load a new CU, adding it to the end of the queue. */
9557 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9558 {
9559 if ((dwarf2_per_objfile->using_index
9560 ? !item->per_cu->v.quick->compunit_symtab
9561 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9562 /* Skip dummy CUs. */
9563 && item->per_cu->cu != NULL)
9564 {
9565 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9566 unsigned int debug_print_threshold;
9567 char buf[100];
9568
9569 if (per_cu->is_debug_types)
9570 {
9571 struct signatured_type *sig_type =
9572 (struct signatured_type *) per_cu;
9573
9574 sprintf (buf, "TU %s at offset %s",
9575 hex_string (sig_type->signature),
9576 sect_offset_str (per_cu->sect_off));
9577 /* There can be 100s of TUs.
9578 Only print them in verbose mode. */
9579 debug_print_threshold = 2;
9580 }
9581 else
9582 {
9583 sprintf (buf, "CU at offset %s",
9584 sect_offset_str (per_cu->sect_off));
9585 debug_print_threshold = 1;
9586 }
9587
9588 if (dwarf_read_debug >= debug_print_threshold)
9589 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9590
9591 if (per_cu->is_debug_types)
9592 process_full_type_unit (per_cu, item->pretend_language);
9593 else
9594 process_full_comp_unit (per_cu, item->pretend_language);
9595
9596 if (dwarf_read_debug >= debug_print_threshold)
9597 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9598 }
9599
9600 item->per_cu->queued = 0;
9601 next_item = item->next;
9602 xfree (item);
9603 }
9604
9605 dwarf2_queue_tail = NULL;
9606
9607 if (dwarf_read_debug)
9608 {
9609 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9610 objfile_name (dwarf2_per_objfile->objfile));
9611 }
9612 }
9613
9614 /* Read in full symbols for PST, and anything it depends on. */
9615
9616 static void
9617 psymtab_to_symtab_1 (struct partial_symtab *pst)
9618 {
9619 struct dwarf2_per_cu_data *per_cu;
9620 int i;
9621
9622 if (pst->readin)
9623 return;
9624
9625 for (i = 0; i < pst->number_of_dependencies; i++)
9626 if (!pst->dependencies[i]->readin
9627 && pst->dependencies[i]->user == NULL)
9628 {
9629 /* Inform about additional files that need to be read in. */
9630 if (info_verbose)
9631 {
9632 /* FIXME: i18n: Need to make this a single string. */
9633 fputs_filtered (" ", gdb_stdout);
9634 wrap_here ("");
9635 fputs_filtered ("and ", gdb_stdout);
9636 wrap_here ("");
9637 printf_filtered ("%s...", pst->dependencies[i]->filename);
9638 wrap_here (""); /* Flush output. */
9639 gdb_flush (gdb_stdout);
9640 }
9641 psymtab_to_symtab_1 (pst->dependencies[i]);
9642 }
9643
9644 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9645
9646 if (per_cu == NULL)
9647 {
9648 /* It's an include file, no symbols to read for it.
9649 Everything is in the parent symtab. */
9650 pst->readin = 1;
9651 return;
9652 }
9653
9654 dw2_do_instantiate_symtab (per_cu, false);
9655 }
9656
9657 /* Trivial hash function for die_info: the hash value of a DIE
9658 is its offset in .debug_info for this objfile. */
9659
9660 static hashval_t
9661 die_hash (const void *item)
9662 {
9663 const struct die_info *die = (const struct die_info *) item;
9664
9665 return to_underlying (die->sect_off);
9666 }
9667
9668 /* Trivial comparison function for die_info structures: two DIEs
9669 are equal if they have the same offset. */
9670
9671 static int
9672 die_eq (const void *item_lhs, const void *item_rhs)
9673 {
9674 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9675 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9676
9677 return die_lhs->sect_off == die_rhs->sect_off;
9678 }
9679
9680 /* die_reader_func for load_full_comp_unit.
9681 This is identical to read_signatured_type_reader,
9682 but is kept separate for now. */
9683
9684 static void
9685 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9686 const gdb_byte *info_ptr,
9687 struct die_info *comp_unit_die,
9688 int has_children,
9689 void *data)
9690 {
9691 struct dwarf2_cu *cu = reader->cu;
9692 enum language *language_ptr = (enum language *) data;
9693
9694 gdb_assert (cu->die_hash == NULL);
9695 cu->die_hash =
9696 htab_create_alloc_ex (cu->header.length / 12,
9697 die_hash,
9698 die_eq,
9699 NULL,
9700 &cu->comp_unit_obstack,
9701 hashtab_obstack_allocate,
9702 dummy_obstack_deallocate);
9703
9704 if (has_children)
9705 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9706 &info_ptr, comp_unit_die);
9707 cu->dies = comp_unit_die;
9708 /* comp_unit_die is not stored in die_hash, no need. */
9709
9710 /* We try not to read any attributes in this function, because not
9711 all CUs needed for references have been loaded yet, and symbol
9712 table processing isn't initialized. But we have to set the CU language,
9713 or we won't be able to build types correctly.
9714 Similarly, if we do not read the producer, we can not apply
9715 producer-specific interpretation. */
9716 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9717 }
9718
9719 /* Load the DIEs associated with PER_CU into memory. */
9720
9721 static void
9722 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9723 bool skip_partial,
9724 enum language pretend_language)
9725 {
9726 gdb_assert (! this_cu->is_debug_types);
9727
9728 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9729 load_full_comp_unit_reader, &pretend_language);
9730 }
9731
9732 /* Add a DIE to the delayed physname list. */
9733
9734 static void
9735 add_to_method_list (struct type *type, int fnfield_index, int index,
9736 const char *name, struct die_info *die,
9737 struct dwarf2_cu *cu)
9738 {
9739 struct delayed_method_info mi;
9740 mi.type = type;
9741 mi.fnfield_index = fnfield_index;
9742 mi.index = index;
9743 mi.name = name;
9744 mi.die = die;
9745 cu->method_list.push_back (mi);
9746 }
9747
9748 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9749 "const" / "volatile". If so, decrements LEN by the length of the
9750 modifier and return true. Otherwise return false. */
9751
9752 template<size_t N>
9753 static bool
9754 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9755 {
9756 size_t mod_len = sizeof (mod) - 1;
9757 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9758 {
9759 len -= mod_len;
9760 return true;
9761 }
9762 return false;
9763 }
9764
9765 /* Compute the physnames of any methods on the CU's method list.
9766
9767 The computation of method physnames is delayed in order to avoid the
9768 (bad) condition that one of the method's formal parameters is of an as yet
9769 incomplete type. */
9770
9771 static void
9772 compute_delayed_physnames (struct dwarf2_cu *cu)
9773 {
9774 /* Only C++ delays computing physnames. */
9775 if (cu->method_list.empty ())
9776 return;
9777 gdb_assert (cu->language == language_cplus);
9778
9779 for (const delayed_method_info &mi : cu->method_list)
9780 {
9781 const char *physname;
9782 struct fn_fieldlist *fn_flp
9783 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9784 physname = dwarf2_physname (mi.name, mi.die, cu);
9785 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9786 = physname ? physname : "";
9787
9788 /* Since there's no tag to indicate whether a method is a
9789 const/volatile overload, extract that information out of the
9790 demangled name. */
9791 if (physname != NULL)
9792 {
9793 size_t len = strlen (physname);
9794
9795 while (1)
9796 {
9797 if (physname[len] == ')') /* shortcut */
9798 break;
9799 else if (check_modifier (physname, len, " const"))
9800 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9801 else if (check_modifier (physname, len, " volatile"))
9802 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9803 else
9804 break;
9805 }
9806 }
9807 }
9808
9809 /* The list is no longer needed. */
9810 cu->method_list.clear ();
9811 }
9812
9813 /* Go objects should be embedded in a DW_TAG_module DIE,
9814 and it's not clear if/how imported objects will appear.
9815 To keep Go support simple until that's worked out,
9816 go back through what we've read and create something usable.
9817 We could do this while processing each DIE, and feels kinda cleaner,
9818 but that way is more invasive.
9819 This is to, for example, allow the user to type "p var" or "b main"
9820 without having to specify the package name, and allow lookups
9821 of module.object to work in contexts that use the expression
9822 parser. */
9823
9824 static void
9825 fixup_go_packaging (struct dwarf2_cu *cu)
9826 {
9827 char *package_name = NULL;
9828 struct pending *list;
9829 int i;
9830
9831 for (list = *cu->get_builder ()->get_global_symbols ();
9832 list != NULL;
9833 list = list->next)
9834 {
9835 for (i = 0; i < list->nsyms; ++i)
9836 {
9837 struct symbol *sym = list->symbol[i];
9838
9839 if (SYMBOL_LANGUAGE (sym) == language_go
9840 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9841 {
9842 char *this_package_name = go_symbol_package_name (sym);
9843
9844 if (this_package_name == NULL)
9845 continue;
9846 if (package_name == NULL)
9847 package_name = this_package_name;
9848 else
9849 {
9850 struct objfile *objfile
9851 = cu->per_cu->dwarf2_per_objfile->objfile;
9852 if (strcmp (package_name, this_package_name) != 0)
9853 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9854 (symbol_symtab (sym) != NULL
9855 ? symtab_to_filename_for_display
9856 (symbol_symtab (sym))
9857 : objfile_name (objfile)),
9858 this_package_name, package_name);
9859 xfree (this_package_name);
9860 }
9861 }
9862 }
9863 }
9864
9865 if (package_name != NULL)
9866 {
9867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9868 const char *saved_package_name
9869 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9870 package_name,
9871 strlen (package_name));
9872 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9873 saved_package_name);
9874 struct symbol *sym;
9875
9876 sym = allocate_symbol (objfile);
9877 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9878 SYMBOL_SET_NAMES (sym, saved_package_name,
9879 strlen (saved_package_name), 0, objfile);
9880 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9881 e.g., "main" finds the "main" module and not C's main(). */
9882 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9883 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9884 SYMBOL_TYPE (sym) = type;
9885
9886 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9887
9888 xfree (package_name);
9889 }
9890 }
9891
9892 /* Allocate a fully-qualified name consisting of the two parts on the
9893 obstack. */
9894
9895 static const char *
9896 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9897 {
9898 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9899 }
9900
9901 /* A helper that allocates a struct discriminant_info to attach to a
9902 union type. */
9903
9904 static struct discriminant_info *
9905 alloc_discriminant_info (struct type *type, int discriminant_index,
9906 int default_index)
9907 {
9908 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9909 gdb_assert (discriminant_index == -1
9910 || (discriminant_index >= 0
9911 && discriminant_index < TYPE_NFIELDS (type)));
9912 gdb_assert (default_index == -1
9913 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9914
9915 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9916
9917 struct discriminant_info *disc
9918 = ((struct discriminant_info *)
9919 TYPE_ZALLOC (type,
9920 offsetof (struct discriminant_info, discriminants)
9921 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9922 disc->default_index = default_index;
9923 disc->discriminant_index = discriminant_index;
9924
9925 struct dynamic_prop prop;
9926 prop.kind = PROP_UNDEFINED;
9927 prop.data.baton = disc;
9928
9929 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9930
9931 return disc;
9932 }
9933
9934 /* Some versions of rustc emitted enums in an unusual way.
9935
9936 Ordinary enums were emitted as unions. The first element of each
9937 structure in the union was named "RUST$ENUM$DISR". This element
9938 held the discriminant.
9939
9940 These versions of Rust also implemented the "non-zero"
9941 optimization. When the enum had two values, and one is empty and
9942 the other holds a pointer that cannot be zero, the pointer is used
9943 as the discriminant, with a zero value meaning the empty variant.
9944 Here, the union's first member is of the form
9945 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9946 where the fieldnos are the indices of the fields that should be
9947 traversed in order to find the field (which may be several fields deep)
9948 and the variantname is the name of the variant of the case when the
9949 field is zero.
9950
9951 This function recognizes whether TYPE is of one of these forms,
9952 and, if so, smashes it to be a variant type. */
9953
9954 static void
9955 quirk_rust_enum (struct type *type, struct objfile *objfile)
9956 {
9957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9958
9959 /* We don't need to deal with empty enums. */
9960 if (TYPE_NFIELDS (type) == 0)
9961 return;
9962
9963 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9964 if (TYPE_NFIELDS (type) == 1
9965 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9966 {
9967 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9968
9969 /* Decode the field name to find the offset of the
9970 discriminant. */
9971 ULONGEST bit_offset = 0;
9972 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9973 while (name[0] >= '0' && name[0] <= '9')
9974 {
9975 char *tail;
9976 unsigned long index = strtoul (name, &tail, 10);
9977 name = tail;
9978 if (*name != '$'
9979 || index >= TYPE_NFIELDS (field_type)
9980 || (TYPE_FIELD_LOC_KIND (field_type, index)
9981 != FIELD_LOC_KIND_BITPOS))
9982 {
9983 complaint (_("Could not parse Rust enum encoding string \"%s\""
9984 "[in module %s]"),
9985 TYPE_FIELD_NAME (type, 0),
9986 objfile_name (objfile));
9987 return;
9988 }
9989 ++name;
9990
9991 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9992 field_type = TYPE_FIELD_TYPE (field_type, index);
9993 }
9994
9995 /* Make a union to hold the variants. */
9996 struct type *union_type = alloc_type (objfile);
9997 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9998 TYPE_NFIELDS (union_type) = 3;
9999 TYPE_FIELDS (union_type)
10000 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10001 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10002 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10003
10004 /* Put the discriminant must at index 0. */
10005 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10006 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10007 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10008 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10009
10010 /* The order of fields doesn't really matter, so put the real
10011 field at index 1 and the data-less field at index 2. */
10012 struct discriminant_info *disc
10013 = alloc_discriminant_info (union_type, 0, 1);
10014 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10015 TYPE_FIELD_NAME (union_type, 1)
10016 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10017 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10018 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10019 TYPE_FIELD_NAME (union_type, 1));
10020
10021 const char *dataless_name
10022 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10023 name);
10024 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10025 dataless_name);
10026 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10027 /* NAME points into the original discriminant name, which
10028 already has the correct lifetime. */
10029 TYPE_FIELD_NAME (union_type, 2) = name;
10030 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10031 disc->discriminants[2] = 0;
10032
10033 /* Smash this type to be a structure type. We have to do this
10034 because the type has already been recorded. */
10035 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10036 TYPE_NFIELDS (type) = 1;
10037 TYPE_FIELDS (type)
10038 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10039
10040 /* Install the variant part. */
10041 TYPE_FIELD_TYPE (type, 0) = union_type;
10042 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10043 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10044 }
10045 else if (TYPE_NFIELDS (type) == 1)
10046 {
10047 /* We assume that a union with a single field is a univariant
10048 enum. */
10049 /* Smash this type to be a structure type. We have to do this
10050 because the type has already been recorded. */
10051 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10052
10053 /* Make a union to hold the variants. */
10054 struct type *union_type = alloc_type (objfile);
10055 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10056 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10057 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10058 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10059 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10060
10061 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10062 const char *variant_name
10063 = rust_last_path_segment (TYPE_NAME (field_type));
10064 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10065 TYPE_NAME (field_type)
10066 = rust_fully_qualify (&objfile->objfile_obstack,
10067 TYPE_NAME (type), variant_name);
10068
10069 /* Install the union in the outer struct type. */
10070 TYPE_NFIELDS (type) = 1;
10071 TYPE_FIELDS (type)
10072 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10073 TYPE_FIELD_TYPE (type, 0) = union_type;
10074 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10075 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10076
10077 alloc_discriminant_info (union_type, -1, 0);
10078 }
10079 else
10080 {
10081 struct type *disr_type = nullptr;
10082 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10083 {
10084 disr_type = TYPE_FIELD_TYPE (type, i);
10085
10086 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10087 {
10088 /* All fields of a true enum will be structs. */
10089 return;
10090 }
10091 else if (TYPE_NFIELDS (disr_type) == 0)
10092 {
10093 /* Could be data-less variant, so keep going. */
10094 disr_type = nullptr;
10095 }
10096 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10097 "RUST$ENUM$DISR") != 0)
10098 {
10099 /* Not a Rust enum. */
10100 return;
10101 }
10102 else
10103 {
10104 /* Found one. */
10105 break;
10106 }
10107 }
10108
10109 /* If we got here without a discriminant, then it's probably
10110 just a union. */
10111 if (disr_type == nullptr)
10112 return;
10113
10114 /* Smash this type to be a structure type. We have to do this
10115 because the type has already been recorded. */
10116 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10117
10118 /* Make a union to hold the variants. */
10119 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10120 struct type *union_type = alloc_type (objfile);
10121 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10122 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10123 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10124 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10125 TYPE_FIELDS (union_type)
10126 = (struct field *) TYPE_ZALLOC (union_type,
10127 (TYPE_NFIELDS (union_type)
10128 * sizeof (struct field)));
10129
10130 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10131 TYPE_NFIELDS (type) * sizeof (struct field));
10132
10133 /* Install the discriminant at index 0 in the union. */
10134 TYPE_FIELD (union_type, 0) = *disr_field;
10135 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10136 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10137
10138 /* Install the union in the outer struct type. */
10139 TYPE_FIELD_TYPE (type, 0) = union_type;
10140 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10141 TYPE_NFIELDS (type) = 1;
10142
10143 /* Set the size and offset of the union type. */
10144 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10145
10146 /* We need a way to find the correct discriminant given a
10147 variant name. For convenience we build a map here. */
10148 struct type *enum_type = FIELD_TYPE (*disr_field);
10149 std::unordered_map<std::string, ULONGEST> discriminant_map;
10150 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10151 {
10152 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10153 {
10154 const char *name
10155 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10156 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10157 }
10158 }
10159
10160 int n_fields = TYPE_NFIELDS (union_type);
10161 struct discriminant_info *disc
10162 = alloc_discriminant_info (union_type, 0, -1);
10163 /* Skip the discriminant here. */
10164 for (int i = 1; i < n_fields; ++i)
10165 {
10166 /* Find the final word in the name of this variant's type.
10167 That name can be used to look up the correct
10168 discriminant. */
10169 const char *variant_name
10170 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10171 i)));
10172
10173 auto iter = discriminant_map.find (variant_name);
10174 if (iter != discriminant_map.end ())
10175 disc->discriminants[i] = iter->second;
10176
10177 /* Remove the discriminant field, if it exists. */
10178 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10179 if (TYPE_NFIELDS (sub_type) > 0)
10180 {
10181 --TYPE_NFIELDS (sub_type);
10182 ++TYPE_FIELDS (sub_type);
10183 }
10184 TYPE_FIELD_NAME (union_type, i) = variant_name;
10185 TYPE_NAME (sub_type)
10186 = rust_fully_qualify (&objfile->objfile_obstack,
10187 TYPE_NAME (type), variant_name);
10188 }
10189 }
10190 }
10191
10192 /* Rewrite some Rust unions to be structures with variants parts. */
10193
10194 static void
10195 rust_union_quirks (struct dwarf2_cu *cu)
10196 {
10197 gdb_assert (cu->language == language_rust);
10198 for (type *type_ : cu->rust_unions)
10199 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10200 /* We don't need this any more. */
10201 cu->rust_unions.clear ();
10202 }
10203
10204 /* Return the symtab for PER_CU. This works properly regardless of
10205 whether we're using the index or psymtabs. */
10206
10207 static struct compunit_symtab *
10208 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10209 {
10210 return (per_cu->dwarf2_per_objfile->using_index
10211 ? per_cu->v.quick->compunit_symtab
10212 : per_cu->v.psymtab->compunit_symtab);
10213 }
10214
10215 /* A helper function for computing the list of all symbol tables
10216 included by PER_CU. */
10217
10218 static void
10219 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10220 htab_t all_children, htab_t all_type_symtabs,
10221 struct dwarf2_per_cu_data *per_cu,
10222 struct compunit_symtab *immediate_parent)
10223 {
10224 void **slot;
10225 int ix;
10226 struct compunit_symtab *cust;
10227 struct dwarf2_per_cu_data *iter;
10228
10229 slot = htab_find_slot (all_children, per_cu, INSERT);
10230 if (*slot != NULL)
10231 {
10232 /* This inclusion and its children have been processed. */
10233 return;
10234 }
10235
10236 *slot = per_cu;
10237 /* Only add a CU if it has a symbol table. */
10238 cust = get_compunit_symtab (per_cu);
10239 if (cust != NULL)
10240 {
10241 /* If this is a type unit only add its symbol table if we haven't
10242 seen it yet (type unit per_cu's can share symtabs). */
10243 if (per_cu->is_debug_types)
10244 {
10245 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10246 if (*slot == NULL)
10247 {
10248 *slot = cust;
10249 result->push_back (cust);
10250 if (cust->user == NULL)
10251 cust->user = immediate_parent;
10252 }
10253 }
10254 else
10255 {
10256 result->push_back (cust);
10257 if (cust->user == NULL)
10258 cust->user = immediate_parent;
10259 }
10260 }
10261
10262 for (ix = 0;
10263 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10264 ++ix)
10265 {
10266 recursively_compute_inclusions (result, all_children,
10267 all_type_symtabs, iter, cust);
10268 }
10269 }
10270
10271 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10272 PER_CU. */
10273
10274 static void
10275 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10276 {
10277 gdb_assert (! per_cu->is_debug_types);
10278
10279 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10280 {
10281 int ix, len;
10282 struct dwarf2_per_cu_data *per_cu_iter;
10283 std::vector<compunit_symtab *> result_symtabs;
10284 htab_t all_children, all_type_symtabs;
10285 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10286
10287 /* If we don't have a symtab, we can just skip this case. */
10288 if (cust == NULL)
10289 return;
10290
10291 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10292 NULL, xcalloc, xfree);
10293 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10294 NULL, xcalloc, xfree);
10295
10296 for (ix = 0;
10297 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10298 ix, per_cu_iter);
10299 ++ix)
10300 {
10301 recursively_compute_inclusions (&result_symtabs, all_children,
10302 all_type_symtabs, per_cu_iter,
10303 cust);
10304 }
10305
10306 /* Now we have a transitive closure of all the included symtabs. */
10307 len = result_symtabs.size ();
10308 cust->includes
10309 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10310 struct compunit_symtab *, len + 1);
10311 memcpy (cust->includes, result_symtabs.data (),
10312 len * sizeof (compunit_symtab *));
10313 cust->includes[len] = NULL;
10314
10315 htab_delete (all_children);
10316 htab_delete (all_type_symtabs);
10317 }
10318 }
10319
10320 /* Compute the 'includes' field for the symtabs of all the CUs we just
10321 read. */
10322
10323 static void
10324 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10325 {
10326 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10327 {
10328 if (! iter->is_debug_types)
10329 compute_compunit_symtab_includes (iter);
10330 }
10331
10332 dwarf2_per_objfile->just_read_cus.clear ();
10333 }
10334
10335 /* Generate full symbol information for PER_CU, whose DIEs have
10336 already been loaded into memory. */
10337
10338 static void
10339 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10340 enum language pretend_language)
10341 {
10342 struct dwarf2_cu *cu = per_cu->cu;
10343 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
10345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10346 CORE_ADDR lowpc, highpc;
10347 struct compunit_symtab *cust;
10348 CORE_ADDR baseaddr;
10349 struct block *static_block;
10350 CORE_ADDR addr;
10351
10352 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10353
10354 /* Clear the list here in case something was left over. */
10355 cu->method_list.clear ();
10356
10357 cu->language = pretend_language;
10358 cu->language_defn = language_def (cu->language);
10359
10360 /* Do line number decoding in read_file_scope () */
10361 process_die (cu->dies, cu);
10362
10363 /* For now fudge the Go package. */
10364 if (cu->language == language_go)
10365 fixup_go_packaging (cu);
10366
10367 /* Now that we have processed all the DIEs in the CU, all the types
10368 should be complete, and it should now be safe to compute all of the
10369 physnames. */
10370 compute_delayed_physnames (cu);
10371
10372 if (cu->language == language_rust)
10373 rust_union_quirks (cu);
10374
10375 /* Some compilers don't define a DW_AT_high_pc attribute for the
10376 compilation unit. If the DW_AT_high_pc is missing, synthesize
10377 it, by scanning the DIE's below the compilation unit. */
10378 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10379
10380 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10381 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10382
10383 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10384 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10385 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10386 addrmap to help ensure it has an accurate map of pc values belonging to
10387 this comp unit. */
10388 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10389
10390 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10391 SECT_OFF_TEXT (objfile),
10392 0);
10393
10394 if (cust != NULL)
10395 {
10396 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10397
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors, do
10400 not set the language if it was already deduced by start_subfile. */
10401 if (!(cu->language == language_c
10402 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10403 COMPUNIT_FILETABS (cust)->language = cu->language;
10404
10405 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10406 produce DW_AT_location with location lists but it can be possibly
10407 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10408 there were bugs in prologue debug info, fixed later in GCC-4.5
10409 by "unwind info for epilogues" patch (which is not directly related).
10410
10411 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10412 needed, it would be wrong due to missing DW_AT_producer there.
10413
10414 Still one can confuse GDB by using non-standard GCC compilation
10415 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10416 */
10417 if (cu->has_loclist && gcc_4_minor >= 5)
10418 cust->locations_valid = 1;
10419
10420 if (gcc_4_minor >= 5)
10421 cust->epilogue_unwind_valid = 1;
10422
10423 cust->call_site_htab = cu->call_site_htab;
10424 }
10425
10426 if (dwarf2_per_objfile->using_index)
10427 per_cu->v.quick->compunit_symtab = cust;
10428 else
10429 {
10430 struct partial_symtab *pst = per_cu->v.psymtab;
10431 pst->compunit_symtab = cust;
10432 pst->readin = 1;
10433 }
10434
10435 /* Push it for inclusion processing later. */
10436 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10437
10438 /* Not needed any more. */
10439 cu->reset_builder ();
10440 }
10441
10442 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10443 already been loaded into memory. */
10444
10445 static void
10446 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10447 enum language pretend_language)
10448 {
10449 struct dwarf2_cu *cu = per_cu->cu;
10450 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10451 struct objfile *objfile = dwarf2_per_objfile->objfile;
10452 struct compunit_symtab *cust;
10453 struct signatured_type *sig_type;
10454
10455 gdb_assert (per_cu->is_debug_types);
10456 sig_type = (struct signatured_type *) per_cu;
10457
10458 /* Clear the list here in case something was left over. */
10459 cu->method_list.clear ();
10460
10461 cu->language = pretend_language;
10462 cu->language_defn = language_def (cu->language);
10463
10464 /* The symbol tables are set up in read_type_unit_scope. */
10465 process_die (cu->dies, cu);
10466
10467 /* For now fudge the Go package. */
10468 if (cu->language == language_go)
10469 fixup_go_packaging (cu);
10470
10471 /* Now that we have processed all the DIEs in the CU, all the types
10472 should be complete, and it should now be safe to compute all of the
10473 physnames. */
10474 compute_delayed_physnames (cu);
10475
10476 if (cu->language == language_rust)
10477 rust_union_quirks (cu);
10478
10479 /* TUs share symbol tables.
10480 If this is the first TU to use this symtab, complete the construction
10481 of it with end_expandable_symtab. Otherwise, complete the addition of
10482 this TU's symbols to the existing symtab. */
10483 if (sig_type->type_unit_group->compunit_symtab == NULL)
10484 {
10485 buildsym_compunit *builder = cu->get_builder ();
10486 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10487 sig_type->type_unit_group->compunit_symtab = cust;
10488
10489 if (cust != NULL)
10490 {
10491 /* Set symtab language to language from DW_AT_language. If the
10492 compilation is from a C file generated by language preprocessors,
10493 do not set the language if it was already deduced by
10494 start_subfile. */
10495 if (!(cu->language == language_c
10496 && COMPUNIT_FILETABS (cust)->language != language_c))
10497 COMPUNIT_FILETABS (cust)->language = cu->language;
10498 }
10499 }
10500 else
10501 {
10502 cu->get_builder ()->augment_type_symtab ();
10503 cust = sig_type->type_unit_group->compunit_symtab;
10504 }
10505
10506 if (dwarf2_per_objfile->using_index)
10507 per_cu->v.quick->compunit_symtab = cust;
10508 else
10509 {
10510 struct partial_symtab *pst = per_cu->v.psymtab;
10511 pst->compunit_symtab = cust;
10512 pst->readin = 1;
10513 }
10514
10515 /* Not needed any more. */
10516 cu->reset_builder ();
10517 }
10518
10519 /* Process an imported unit DIE. */
10520
10521 static void
10522 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10523 {
10524 struct attribute *attr;
10525
10526 /* For now we don't handle imported units in type units. */
10527 if (cu->per_cu->is_debug_types)
10528 {
10529 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10530 " supported in type units [in module %s]"),
10531 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10532 }
10533
10534 attr = dwarf2_attr (die, DW_AT_import, cu);
10535 if (attr != NULL)
10536 {
10537 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10538 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10539 dwarf2_per_cu_data *per_cu
10540 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10541 cu->per_cu->dwarf2_per_objfile);
10542
10543 /* If necessary, add it to the queue and load its DIEs. */
10544 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10545 load_full_comp_unit (per_cu, false, cu->language);
10546
10547 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10548 per_cu);
10549 }
10550 }
10551
10552 /* RAII object that represents a process_die scope: i.e.,
10553 starts/finishes processing a DIE. */
10554 class process_die_scope
10555 {
10556 public:
10557 process_die_scope (die_info *die, dwarf2_cu *cu)
10558 : m_die (die), m_cu (cu)
10559 {
10560 /* We should only be processing DIEs not already in process. */
10561 gdb_assert (!m_die->in_process);
10562 m_die->in_process = true;
10563 }
10564
10565 ~process_die_scope ()
10566 {
10567 m_die->in_process = false;
10568
10569 /* If we're done processing the DIE for the CU that owns the line
10570 header, we don't need the line header anymore. */
10571 if (m_cu->line_header_die_owner == m_die)
10572 {
10573 delete m_cu->line_header;
10574 m_cu->line_header = NULL;
10575 m_cu->line_header_die_owner = NULL;
10576 }
10577 }
10578
10579 private:
10580 die_info *m_die;
10581 dwarf2_cu *m_cu;
10582 };
10583
10584 /* Process a die and its children. */
10585
10586 static void
10587 process_die (struct die_info *die, struct dwarf2_cu *cu)
10588 {
10589 process_die_scope scope (die, cu);
10590
10591 switch (die->tag)
10592 {
10593 case DW_TAG_padding:
10594 break;
10595 case DW_TAG_compile_unit:
10596 case DW_TAG_partial_unit:
10597 read_file_scope (die, cu);
10598 break;
10599 case DW_TAG_type_unit:
10600 read_type_unit_scope (die, cu);
10601 break;
10602 case DW_TAG_subprogram:
10603 case DW_TAG_inlined_subroutine:
10604 read_func_scope (die, cu);
10605 break;
10606 case DW_TAG_lexical_block:
10607 case DW_TAG_try_block:
10608 case DW_TAG_catch_block:
10609 read_lexical_block_scope (die, cu);
10610 break;
10611 case DW_TAG_call_site:
10612 case DW_TAG_GNU_call_site:
10613 read_call_site_scope (die, cu);
10614 break;
10615 case DW_TAG_class_type:
10616 case DW_TAG_interface_type:
10617 case DW_TAG_structure_type:
10618 case DW_TAG_union_type:
10619 process_structure_scope (die, cu);
10620 break;
10621 case DW_TAG_enumeration_type:
10622 process_enumeration_scope (die, cu);
10623 break;
10624
10625 /* These dies have a type, but processing them does not create
10626 a symbol or recurse to process the children. Therefore we can
10627 read them on-demand through read_type_die. */
10628 case DW_TAG_subroutine_type:
10629 case DW_TAG_set_type:
10630 case DW_TAG_array_type:
10631 case DW_TAG_pointer_type:
10632 case DW_TAG_ptr_to_member_type:
10633 case DW_TAG_reference_type:
10634 case DW_TAG_rvalue_reference_type:
10635 case DW_TAG_string_type:
10636 break;
10637
10638 case DW_TAG_base_type:
10639 case DW_TAG_subrange_type:
10640 case DW_TAG_typedef:
10641 /* Add a typedef symbol for the type definition, if it has a
10642 DW_AT_name. */
10643 new_symbol (die, read_type_die (die, cu), cu);
10644 break;
10645 case DW_TAG_common_block:
10646 read_common_block (die, cu);
10647 break;
10648 case DW_TAG_common_inclusion:
10649 break;
10650 case DW_TAG_namespace:
10651 cu->processing_has_namespace_info = true;
10652 read_namespace (die, cu);
10653 break;
10654 case DW_TAG_module:
10655 cu->processing_has_namespace_info = true;
10656 read_module (die, cu);
10657 break;
10658 case DW_TAG_imported_declaration:
10659 cu->processing_has_namespace_info = true;
10660 if (read_namespace_alias (die, cu))
10661 break;
10662 /* The declaration is not a global namespace alias. */
10663 /* Fall through. */
10664 case DW_TAG_imported_module:
10665 cu->processing_has_namespace_info = true;
10666 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10667 || cu->language != language_fortran))
10668 complaint (_("Tag '%s' has unexpected children"),
10669 dwarf_tag_name (die->tag));
10670 read_import_statement (die, cu);
10671 break;
10672
10673 case DW_TAG_imported_unit:
10674 process_imported_unit_die (die, cu);
10675 break;
10676
10677 case DW_TAG_variable:
10678 read_variable (die, cu);
10679 break;
10680
10681 default:
10682 new_symbol (die, NULL, cu);
10683 break;
10684 }
10685 }
10686 \f
10687 /* DWARF name computation. */
10688
10689 /* A helper function for dwarf2_compute_name which determines whether DIE
10690 needs to have the name of the scope prepended to the name listed in the
10691 die. */
10692
10693 static int
10694 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10695 {
10696 struct attribute *attr;
10697
10698 switch (die->tag)
10699 {
10700 case DW_TAG_namespace:
10701 case DW_TAG_typedef:
10702 case DW_TAG_class_type:
10703 case DW_TAG_interface_type:
10704 case DW_TAG_structure_type:
10705 case DW_TAG_union_type:
10706 case DW_TAG_enumeration_type:
10707 case DW_TAG_enumerator:
10708 case DW_TAG_subprogram:
10709 case DW_TAG_inlined_subroutine:
10710 case DW_TAG_member:
10711 case DW_TAG_imported_declaration:
10712 return 1;
10713
10714 case DW_TAG_variable:
10715 case DW_TAG_constant:
10716 /* We only need to prefix "globally" visible variables. These include
10717 any variable marked with DW_AT_external or any variable that
10718 lives in a namespace. [Variables in anonymous namespaces
10719 require prefixing, but they are not DW_AT_external.] */
10720
10721 if (dwarf2_attr (die, DW_AT_specification, cu))
10722 {
10723 struct dwarf2_cu *spec_cu = cu;
10724
10725 return die_needs_namespace (die_specification (die, &spec_cu),
10726 spec_cu);
10727 }
10728
10729 attr = dwarf2_attr (die, DW_AT_external, cu);
10730 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10731 && die->parent->tag != DW_TAG_module)
10732 return 0;
10733 /* A variable in a lexical block of some kind does not need a
10734 namespace, even though in C++ such variables may be external
10735 and have a mangled name. */
10736 if (die->parent->tag == DW_TAG_lexical_block
10737 || die->parent->tag == DW_TAG_try_block
10738 || die->parent->tag == DW_TAG_catch_block
10739 || die->parent->tag == DW_TAG_subprogram)
10740 return 0;
10741 return 1;
10742
10743 default:
10744 return 0;
10745 }
10746 }
10747
10748 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10749 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10750 defined for the given DIE. */
10751
10752 static struct attribute *
10753 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10754 {
10755 struct attribute *attr;
10756
10757 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10758 if (attr == NULL)
10759 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10760
10761 return attr;
10762 }
10763
10764 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10765 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10766 defined for the given DIE. */
10767
10768 static const char *
10769 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10770 {
10771 const char *linkage_name;
10772
10773 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10774 if (linkage_name == NULL)
10775 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10776
10777 return linkage_name;
10778 }
10779
10780 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10781 compute the physname for the object, which include a method's:
10782 - formal parameters (C++),
10783 - receiver type (Go),
10784
10785 The term "physname" is a bit confusing.
10786 For C++, for example, it is the demangled name.
10787 For Go, for example, it's the mangled name.
10788
10789 For Ada, return the DIE's linkage name rather than the fully qualified
10790 name. PHYSNAME is ignored..
10791
10792 The result is allocated on the objfile_obstack and canonicalized. */
10793
10794 static const char *
10795 dwarf2_compute_name (const char *name,
10796 struct die_info *die, struct dwarf2_cu *cu,
10797 int physname)
10798 {
10799 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10800
10801 if (name == NULL)
10802 name = dwarf2_name (die, cu);
10803
10804 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10805 but otherwise compute it by typename_concat inside GDB.
10806 FIXME: Actually this is not really true, or at least not always true.
10807 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10808 Fortran names because there is no mangling standard. So new_symbol
10809 will set the demangled name to the result of dwarf2_full_name, and it is
10810 the demangled name that GDB uses if it exists. */
10811 if (cu->language == language_ada
10812 || (cu->language == language_fortran && physname))
10813 {
10814 /* For Ada unit, we prefer the linkage name over the name, as
10815 the former contains the exported name, which the user expects
10816 to be able to reference. Ideally, we want the user to be able
10817 to reference this entity using either natural or linkage name,
10818 but we haven't started looking at this enhancement yet. */
10819 const char *linkage_name = dw2_linkage_name (die, cu);
10820
10821 if (linkage_name != NULL)
10822 return linkage_name;
10823 }
10824
10825 /* These are the only languages we know how to qualify names in. */
10826 if (name != NULL
10827 && (cu->language == language_cplus
10828 || cu->language == language_fortran || cu->language == language_d
10829 || cu->language == language_rust))
10830 {
10831 if (die_needs_namespace (die, cu))
10832 {
10833 const char *prefix;
10834 const char *canonical_name = NULL;
10835
10836 string_file buf;
10837
10838 prefix = determine_prefix (die, cu);
10839 if (*prefix != '\0')
10840 {
10841 char *prefixed_name = typename_concat (NULL, prefix, name,
10842 physname, cu);
10843
10844 buf.puts (prefixed_name);
10845 xfree (prefixed_name);
10846 }
10847 else
10848 buf.puts (name);
10849
10850 /* Template parameters may be specified in the DIE's DW_AT_name, or
10851 as children with DW_TAG_template_type_param or
10852 DW_TAG_value_type_param. If the latter, add them to the name
10853 here. If the name already has template parameters, then
10854 skip this step; some versions of GCC emit both, and
10855 it is more efficient to use the pre-computed name.
10856
10857 Something to keep in mind about this process: it is very
10858 unlikely, or in some cases downright impossible, to produce
10859 something that will match the mangled name of a function.
10860 If the definition of the function has the same debug info,
10861 we should be able to match up with it anyway. But fallbacks
10862 using the minimal symbol, for instance to find a method
10863 implemented in a stripped copy of libstdc++, will not work.
10864 If we do not have debug info for the definition, we will have to
10865 match them up some other way.
10866
10867 When we do name matching there is a related problem with function
10868 templates; two instantiated function templates are allowed to
10869 differ only by their return types, which we do not add here. */
10870
10871 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10872 {
10873 struct attribute *attr;
10874 struct die_info *child;
10875 int first = 1;
10876
10877 die->building_fullname = 1;
10878
10879 for (child = die->child; child != NULL; child = child->sibling)
10880 {
10881 struct type *type;
10882 LONGEST value;
10883 const gdb_byte *bytes;
10884 struct dwarf2_locexpr_baton *baton;
10885 struct value *v;
10886
10887 if (child->tag != DW_TAG_template_type_param
10888 && child->tag != DW_TAG_template_value_param)
10889 continue;
10890
10891 if (first)
10892 {
10893 buf.puts ("<");
10894 first = 0;
10895 }
10896 else
10897 buf.puts (", ");
10898
10899 attr = dwarf2_attr (child, DW_AT_type, cu);
10900 if (attr == NULL)
10901 {
10902 complaint (_("template parameter missing DW_AT_type"));
10903 buf.puts ("UNKNOWN_TYPE");
10904 continue;
10905 }
10906 type = die_type (child, cu);
10907
10908 if (child->tag == DW_TAG_template_type_param)
10909 {
10910 c_print_type (type, "", &buf, -1, 0, cu->language,
10911 &type_print_raw_options);
10912 continue;
10913 }
10914
10915 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10916 if (attr == NULL)
10917 {
10918 complaint (_("template parameter missing "
10919 "DW_AT_const_value"));
10920 buf.puts ("UNKNOWN_VALUE");
10921 continue;
10922 }
10923
10924 dwarf2_const_value_attr (attr, type, name,
10925 &cu->comp_unit_obstack, cu,
10926 &value, &bytes, &baton);
10927
10928 if (TYPE_NOSIGN (type))
10929 /* GDB prints characters as NUMBER 'CHAR'. If that's
10930 changed, this can use value_print instead. */
10931 c_printchar (value, type, &buf);
10932 else
10933 {
10934 struct value_print_options opts;
10935
10936 if (baton != NULL)
10937 v = dwarf2_evaluate_loc_desc (type, NULL,
10938 baton->data,
10939 baton->size,
10940 baton->per_cu);
10941 else if (bytes != NULL)
10942 {
10943 v = allocate_value (type);
10944 memcpy (value_contents_writeable (v), bytes,
10945 TYPE_LENGTH (type));
10946 }
10947 else
10948 v = value_from_longest (type, value);
10949
10950 /* Specify decimal so that we do not depend on
10951 the radix. */
10952 get_formatted_print_options (&opts, 'd');
10953 opts.raw = 1;
10954 value_print (v, &buf, &opts);
10955 release_value (v);
10956 }
10957 }
10958
10959 die->building_fullname = 0;
10960
10961 if (!first)
10962 {
10963 /* Close the argument list, with a space if necessary
10964 (nested templates). */
10965 if (!buf.empty () && buf.string ().back () == '>')
10966 buf.puts (" >");
10967 else
10968 buf.puts (">");
10969 }
10970 }
10971
10972 /* For C++ methods, append formal parameter type
10973 information, if PHYSNAME. */
10974
10975 if (physname && die->tag == DW_TAG_subprogram
10976 && cu->language == language_cplus)
10977 {
10978 struct type *type = read_type_die (die, cu);
10979
10980 c_type_print_args (type, &buf, 1, cu->language,
10981 &type_print_raw_options);
10982
10983 if (cu->language == language_cplus)
10984 {
10985 /* Assume that an artificial first parameter is
10986 "this", but do not crash if it is not. RealView
10987 marks unnamed (and thus unused) parameters as
10988 artificial; there is no way to differentiate
10989 the two cases. */
10990 if (TYPE_NFIELDS (type) > 0
10991 && TYPE_FIELD_ARTIFICIAL (type, 0)
10992 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10993 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10994 0))))
10995 buf.puts (" const");
10996 }
10997 }
10998
10999 const std::string &intermediate_name = buf.string ();
11000
11001 if (cu->language == language_cplus)
11002 canonical_name
11003 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11004 &objfile->per_bfd->storage_obstack);
11005
11006 /* If we only computed INTERMEDIATE_NAME, or if
11007 INTERMEDIATE_NAME is already canonical, then we need to
11008 copy it to the appropriate obstack. */
11009 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11010 name = ((const char *)
11011 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11012 intermediate_name.c_str (),
11013 intermediate_name.length ()));
11014 else
11015 name = canonical_name;
11016 }
11017 }
11018
11019 return name;
11020 }
11021
11022 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11023 If scope qualifiers are appropriate they will be added. The result
11024 will be allocated on the storage_obstack, or NULL if the DIE does
11025 not have a name. NAME may either be from a previous call to
11026 dwarf2_name or NULL.
11027
11028 The output string will be canonicalized (if C++). */
11029
11030 static const char *
11031 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11032 {
11033 return dwarf2_compute_name (name, die, cu, 0);
11034 }
11035
11036 /* Construct a physname for the given DIE in CU. NAME may either be
11037 from a previous call to dwarf2_name or NULL. The result will be
11038 allocated on the objfile_objstack or NULL if the DIE does not have a
11039 name.
11040
11041 The output string will be canonicalized (if C++). */
11042
11043 static const char *
11044 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11045 {
11046 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11047 const char *retval, *mangled = NULL, *canon = NULL;
11048 int need_copy = 1;
11049
11050 /* In this case dwarf2_compute_name is just a shortcut not building anything
11051 on its own. */
11052 if (!die_needs_namespace (die, cu))
11053 return dwarf2_compute_name (name, die, cu, 1);
11054
11055 mangled = dw2_linkage_name (die, cu);
11056
11057 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11058 See https://github.com/rust-lang/rust/issues/32925. */
11059 if (cu->language == language_rust && mangled != NULL
11060 && strchr (mangled, '{') != NULL)
11061 mangled = NULL;
11062
11063 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11064 has computed. */
11065 gdb::unique_xmalloc_ptr<char> demangled;
11066 if (mangled != NULL)
11067 {
11068
11069 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11070 {
11071 /* Do nothing (do not demangle the symbol name). */
11072 }
11073 else if (cu->language == language_go)
11074 {
11075 /* This is a lie, but we already lie to the caller new_symbol.
11076 new_symbol assumes we return the mangled name.
11077 This just undoes that lie until things are cleaned up. */
11078 }
11079 else
11080 {
11081 /* Use DMGL_RET_DROP for C++ template functions to suppress
11082 their return type. It is easier for GDB users to search
11083 for such functions as `name(params)' than `long name(params)'.
11084 In such case the minimal symbol names do not match the full
11085 symbol names but for template functions there is never a need
11086 to look up their definition from their declaration so
11087 the only disadvantage remains the minimal symbol variant
11088 `long name(params)' does not have the proper inferior type. */
11089 demangled.reset (gdb_demangle (mangled,
11090 (DMGL_PARAMS | DMGL_ANSI
11091 | DMGL_RET_DROP)));
11092 }
11093 if (demangled)
11094 canon = demangled.get ();
11095 else
11096 {
11097 canon = mangled;
11098 need_copy = 0;
11099 }
11100 }
11101
11102 if (canon == NULL || check_physname)
11103 {
11104 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11105
11106 if (canon != NULL && strcmp (physname, canon) != 0)
11107 {
11108 /* It may not mean a bug in GDB. The compiler could also
11109 compute DW_AT_linkage_name incorrectly. But in such case
11110 GDB would need to be bug-to-bug compatible. */
11111
11112 complaint (_("Computed physname <%s> does not match demangled <%s> "
11113 "(from linkage <%s>) - DIE at %s [in module %s]"),
11114 physname, canon, mangled, sect_offset_str (die->sect_off),
11115 objfile_name (objfile));
11116
11117 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11118 is available here - over computed PHYSNAME. It is safer
11119 against both buggy GDB and buggy compilers. */
11120
11121 retval = canon;
11122 }
11123 else
11124 {
11125 retval = physname;
11126 need_copy = 0;
11127 }
11128 }
11129 else
11130 retval = canon;
11131
11132 if (need_copy)
11133 retval = ((const char *)
11134 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11135 retval, strlen (retval)));
11136
11137 return retval;
11138 }
11139
11140 /* Inspect DIE in CU for a namespace alias. If one exists, record
11141 a new symbol for it.
11142
11143 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11144
11145 static int
11146 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11147 {
11148 struct attribute *attr;
11149
11150 /* If the die does not have a name, this is not a namespace
11151 alias. */
11152 attr = dwarf2_attr (die, DW_AT_name, cu);
11153 if (attr != NULL)
11154 {
11155 int num;
11156 struct die_info *d = die;
11157 struct dwarf2_cu *imported_cu = cu;
11158
11159 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11160 keep inspecting DIEs until we hit the underlying import. */
11161 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11162 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11163 {
11164 attr = dwarf2_attr (d, DW_AT_import, cu);
11165 if (attr == NULL)
11166 break;
11167
11168 d = follow_die_ref (d, attr, &imported_cu);
11169 if (d->tag != DW_TAG_imported_declaration)
11170 break;
11171 }
11172
11173 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11174 {
11175 complaint (_("DIE at %s has too many recursively imported "
11176 "declarations"), sect_offset_str (d->sect_off));
11177 return 0;
11178 }
11179
11180 if (attr != NULL)
11181 {
11182 struct type *type;
11183 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11184
11185 type = get_die_type_at_offset (sect_off, cu->per_cu);
11186 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11187 {
11188 /* This declaration is a global namespace alias. Add
11189 a symbol for it whose type is the aliased namespace. */
11190 new_symbol (die, type, cu);
11191 return 1;
11192 }
11193 }
11194 }
11195
11196 return 0;
11197 }
11198
11199 /* Return the using directives repository (global or local?) to use in the
11200 current context for CU.
11201
11202 For Ada, imported declarations can materialize renamings, which *may* be
11203 global. However it is impossible (for now?) in DWARF to distinguish
11204 "external" imported declarations and "static" ones. As all imported
11205 declarations seem to be static in all other languages, make them all CU-wide
11206 global only in Ada. */
11207
11208 static struct using_direct **
11209 using_directives (struct dwarf2_cu *cu)
11210 {
11211 if (cu->language == language_ada
11212 && cu->get_builder ()->outermost_context_p ())
11213 return cu->get_builder ()->get_global_using_directives ();
11214 else
11215 return cu->get_builder ()->get_local_using_directives ();
11216 }
11217
11218 /* Read the import statement specified by the given die and record it. */
11219
11220 static void
11221 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11222 {
11223 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11224 struct attribute *import_attr;
11225 struct die_info *imported_die, *child_die;
11226 struct dwarf2_cu *imported_cu;
11227 const char *imported_name;
11228 const char *imported_name_prefix;
11229 const char *canonical_name;
11230 const char *import_alias;
11231 const char *imported_declaration = NULL;
11232 const char *import_prefix;
11233 std::vector<const char *> excludes;
11234
11235 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11236 if (import_attr == NULL)
11237 {
11238 complaint (_("Tag '%s' has no DW_AT_import"),
11239 dwarf_tag_name (die->tag));
11240 return;
11241 }
11242
11243 imported_cu = cu;
11244 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11245 imported_name = dwarf2_name (imported_die, imported_cu);
11246 if (imported_name == NULL)
11247 {
11248 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11249
11250 The import in the following code:
11251 namespace A
11252 {
11253 typedef int B;
11254 }
11255
11256 int main ()
11257 {
11258 using A::B;
11259 B b;
11260 return b;
11261 }
11262
11263 ...
11264 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11265 <52> DW_AT_decl_file : 1
11266 <53> DW_AT_decl_line : 6
11267 <54> DW_AT_import : <0x75>
11268 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11269 <59> DW_AT_name : B
11270 <5b> DW_AT_decl_file : 1
11271 <5c> DW_AT_decl_line : 2
11272 <5d> DW_AT_type : <0x6e>
11273 ...
11274 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11275 <76> DW_AT_byte_size : 4
11276 <77> DW_AT_encoding : 5 (signed)
11277
11278 imports the wrong die ( 0x75 instead of 0x58 ).
11279 This case will be ignored until the gcc bug is fixed. */
11280 return;
11281 }
11282
11283 /* Figure out the local name after import. */
11284 import_alias = dwarf2_name (die, cu);
11285
11286 /* Figure out where the statement is being imported to. */
11287 import_prefix = determine_prefix (die, cu);
11288
11289 /* Figure out what the scope of the imported die is and prepend it
11290 to the name of the imported die. */
11291 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11292
11293 if (imported_die->tag != DW_TAG_namespace
11294 && imported_die->tag != DW_TAG_module)
11295 {
11296 imported_declaration = imported_name;
11297 canonical_name = imported_name_prefix;
11298 }
11299 else if (strlen (imported_name_prefix) > 0)
11300 canonical_name = obconcat (&objfile->objfile_obstack,
11301 imported_name_prefix,
11302 (cu->language == language_d ? "." : "::"),
11303 imported_name, (char *) NULL);
11304 else
11305 canonical_name = imported_name;
11306
11307 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11308 for (child_die = die->child; child_die && child_die->tag;
11309 child_die = sibling_die (child_die))
11310 {
11311 /* DWARF-4: A Fortran use statement with a “rename list” may be
11312 represented by an imported module entry with an import attribute
11313 referring to the module and owned entries corresponding to those
11314 entities that are renamed as part of being imported. */
11315
11316 if (child_die->tag != DW_TAG_imported_declaration)
11317 {
11318 complaint (_("child DW_TAG_imported_declaration expected "
11319 "- DIE at %s [in module %s]"),
11320 sect_offset_str (child_die->sect_off),
11321 objfile_name (objfile));
11322 continue;
11323 }
11324
11325 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11326 if (import_attr == NULL)
11327 {
11328 complaint (_("Tag '%s' has no DW_AT_import"),
11329 dwarf_tag_name (child_die->tag));
11330 continue;
11331 }
11332
11333 imported_cu = cu;
11334 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11335 &imported_cu);
11336 imported_name = dwarf2_name (imported_die, imported_cu);
11337 if (imported_name == NULL)
11338 {
11339 complaint (_("child DW_TAG_imported_declaration has unknown "
11340 "imported name - DIE at %s [in module %s]"),
11341 sect_offset_str (child_die->sect_off),
11342 objfile_name (objfile));
11343 continue;
11344 }
11345
11346 excludes.push_back (imported_name);
11347
11348 process_die (child_die, cu);
11349 }
11350
11351 add_using_directive (using_directives (cu),
11352 import_prefix,
11353 canonical_name,
11354 import_alias,
11355 imported_declaration,
11356 excludes,
11357 0,
11358 &objfile->objfile_obstack);
11359 }
11360
11361 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11362 types, but gives them a size of zero. Starting with version 14,
11363 ICC is compatible with GCC. */
11364
11365 static bool
11366 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11367 {
11368 if (!cu->checked_producer)
11369 check_producer (cu);
11370
11371 return cu->producer_is_icc_lt_14;
11372 }
11373
11374 /* ICC generates a DW_AT_type for C void functions. This was observed on
11375 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11376 which says that void functions should not have a DW_AT_type. */
11377
11378 static bool
11379 producer_is_icc (struct dwarf2_cu *cu)
11380 {
11381 if (!cu->checked_producer)
11382 check_producer (cu);
11383
11384 return cu->producer_is_icc;
11385 }
11386
11387 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11388 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11389 this, it was first present in GCC release 4.3.0. */
11390
11391 static bool
11392 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11393 {
11394 if (!cu->checked_producer)
11395 check_producer (cu);
11396
11397 return cu->producer_is_gcc_lt_4_3;
11398 }
11399
11400 static file_and_directory
11401 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11402 {
11403 file_and_directory res;
11404
11405 /* Find the filename. Do not use dwarf2_name here, since the filename
11406 is not a source language identifier. */
11407 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11408 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11409
11410 if (res.comp_dir == NULL
11411 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11412 && IS_ABSOLUTE_PATH (res.name))
11413 {
11414 res.comp_dir_storage = ldirname (res.name);
11415 if (!res.comp_dir_storage.empty ())
11416 res.comp_dir = res.comp_dir_storage.c_str ();
11417 }
11418 if (res.comp_dir != NULL)
11419 {
11420 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11421 directory, get rid of it. */
11422 const char *cp = strchr (res.comp_dir, ':');
11423
11424 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11425 res.comp_dir = cp + 1;
11426 }
11427
11428 if (res.name == NULL)
11429 res.name = "<unknown>";
11430
11431 return res;
11432 }
11433
11434 /* Handle DW_AT_stmt_list for a compilation unit.
11435 DIE is the DW_TAG_compile_unit die for CU.
11436 COMP_DIR is the compilation directory. LOWPC is passed to
11437 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11438
11439 static void
11440 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11441 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11442 {
11443 struct dwarf2_per_objfile *dwarf2_per_objfile
11444 = cu->per_cu->dwarf2_per_objfile;
11445 struct objfile *objfile = dwarf2_per_objfile->objfile;
11446 struct attribute *attr;
11447 struct line_header line_header_local;
11448 hashval_t line_header_local_hash;
11449 void **slot;
11450 int decode_mapping;
11451
11452 gdb_assert (! cu->per_cu->is_debug_types);
11453
11454 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11455 if (attr == NULL)
11456 return;
11457
11458 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11459
11460 /* The line header hash table is only created if needed (it exists to
11461 prevent redundant reading of the line table for partial_units).
11462 If we're given a partial_unit, we'll need it. If we're given a
11463 compile_unit, then use the line header hash table if it's already
11464 created, but don't create one just yet. */
11465
11466 if (dwarf2_per_objfile->line_header_hash == NULL
11467 && die->tag == DW_TAG_partial_unit)
11468 {
11469 dwarf2_per_objfile->line_header_hash
11470 = htab_create_alloc_ex (127, line_header_hash_voidp,
11471 line_header_eq_voidp,
11472 free_line_header_voidp,
11473 &objfile->objfile_obstack,
11474 hashtab_obstack_allocate,
11475 dummy_obstack_deallocate);
11476 }
11477
11478 line_header_local.sect_off = line_offset;
11479 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11480 line_header_local_hash = line_header_hash (&line_header_local);
11481 if (dwarf2_per_objfile->line_header_hash != NULL)
11482 {
11483 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11484 &line_header_local,
11485 line_header_local_hash, NO_INSERT);
11486
11487 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11488 is not present in *SLOT (since if there is something in *SLOT then
11489 it will be for a partial_unit). */
11490 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11491 {
11492 gdb_assert (*slot != NULL);
11493 cu->line_header = (struct line_header *) *slot;
11494 return;
11495 }
11496 }
11497
11498 /* dwarf_decode_line_header does not yet provide sufficient information.
11499 We always have to call also dwarf_decode_lines for it. */
11500 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11501 if (lh == NULL)
11502 return;
11503
11504 cu->line_header = lh.release ();
11505 cu->line_header_die_owner = die;
11506
11507 if (dwarf2_per_objfile->line_header_hash == NULL)
11508 slot = NULL;
11509 else
11510 {
11511 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11512 &line_header_local,
11513 line_header_local_hash, INSERT);
11514 gdb_assert (slot != NULL);
11515 }
11516 if (slot != NULL && *slot == NULL)
11517 {
11518 /* This newly decoded line number information unit will be owned
11519 by line_header_hash hash table. */
11520 *slot = cu->line_header;
11521 cu->line_header_die_owner = NULL;
11522 }
11523 else
11524 {
11525 /* We cannot free any current entry in (*slot) as that struct line_header
11526 may be already used by multiple CUs. Create only temporary decoded
11527 line_header for this CU - it may happen at most once for each line
11528 number information unit. And if we're not using line_header_hash
11529 then this is what we want as well. */
11530 gdb_assert (die->tag != DW_TAG_partial_unit);
11531 }
11532 decode_mapping = (die->tag != DW_TAG_partial_unit);
11533 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11534 decode_mapping);
11535
11536 }
11537
11538 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11539
11540 static void
11541 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11542 {
11543 struct dwarf2_per_objfile *dwarf2_per_objfile
11544 = cu->per_cu->dwarf2_per_objfile;
11545 struct objfile *objfile = dwarf2_per_objfile->objfile;
11546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11547 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11548 CORE_ADDR highpc = ((CORE_ADDR) 0);
11549 struct attribute *attr;
11550 struct die_info *child_die;
11551 CORE_ADDR baseaddr;
11552
11553 prepare_one_comp_unit (cu, die, cu->language);
11554 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11555
11556 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11557
11558 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11559 from finish_block. */
11560 if (lowpc == ((CORE_ADDR) -1))
11561 lowpc = highpc;
11562 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11563
11564 file_and_directory fnd = find_file_and_directory (die, cu);
11565
11566 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11567 standardised yet. As a workaround for the language detection we fall
11568 back to the DW_AT_producer string. */
11569 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11570 cu->language = language_opencl;
11571
11572 /* Similar hack for Go. */
11573 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11574 set_cu_language (DW_LANG_Go, cu);
11575
11576 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11577
11578 /* Decode line number information if present. We do this before
11579 processing child DIEs, so that the line header table is available
11580 for DW_AT_decl_file. */
11581 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11582
11583 /* Process all dies in compilation unit. */
11584 if (die->child != NULL)
11585 {
11586 child_die = die->child;
11587 while (child_die && child_die->tag)
11588 {
11589 process_die (child_die, cu);
11590 child_die = sibling_die (child_die);
11591 }
11592 }
11593
11594 /* Decode macro information, if present. Dwarf 2 macro information
11595 refers to information in the line number info statement program
11596 header, so we can only read it if we've read the header
11597 successfully. */
11598 attr = dwarf2_attr (die, DW_AT_macros, cu);
11599 if (attr == NULL)
11600 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11601 if (attr && cu->line_header)
11602 {
11603 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11604 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11605
11606 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11607 }
11608 else
11609 {
11610 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11611 if (attr && cu->line_header)
11612 {
11613 unsigned int macro_offset = DW_UNSND (attr);
11614
11615 dwarf_decode_macros (cu, macro_offset, 0);
11616 }
11617 }
11618 }
11619
11620 void
11621 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11622 {
11623 struct type_unit_group *tu_group;
11624 int first_time;
11625 struct attribute *attr;
11626 unsigned int i;
11627 struct signatured_type *sig_type;
11628
11629 gdb_assert (per_cu->is_debug_types);
11630 sig_type = (struct signatured_type *) per_cu;
11631
11632 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11633
11634 /* If we're using .gdb_index (includes -readnow) then
11635 per_cu->type_unit_group may not have been set up yet. */
11636 if (sig_type->type_unit_group == NULL)
11637 sig_type->type_unit_group = get_type_unit_group (this, attr);
11638 tu_group = sig_type->type_unit_group;
11639
11640 /* If we've already processed this stmt_list there's no real need to
11641 do it again, we could fake it and just recreate the part we need
11642 (file name,index -> symtab mapping). If data shows this optimization
11643 is useful we can do it then. */
11644 first_time = tu_group->compunit_symtab == NULL;
11645
11646 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11647 debug info. */
11648 line_header_up lh;
11649 if (attr != NULL)
11650 {
11651 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11652 lh = dwarf_decode_line_header (line_offset, this);
11653 }
11654 if (lh == NULL)
11655 {
11656 if (first_time)
11657 start_symtab ("", NULL, 0);
11658 else
11659 {
11660 gdb_assert (tu_group->symtabs == NULL);
11661 gdb_assert (m_builder == nullptr);
11662 struct compunit_symtab *cust = tu_group->compunit_symtab;
11663 m_builder.reset (new struct buildsym_compunit
11664 (COMPUNIT_OBJFILE (cust), "",
11665 COMPUNIT_DIRNAME (cust),
11666 compunit_language (cust),
11667 0, cust));
11668 }
11669 return;
11670 }
11671
11672 line_header = lh.release ();
11673 line_header_die_owner = die;
11674
11675 if (first_time)
11676 {
11677 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11678
11679 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11680 still initializing it, and our caller (a few levels up)
11681 process_full_type_unit still needs to know if this is the first
11682 time. */
11683
11684 tu_group->num_symtabs = line_header->file_names.size ();
11685 tu_group->symtabs = XNEWVEC (struct symtab *,
11686 line_header->file_names.size ());
11687
11688 for (i = 0; i < line_header->file_names.size (); ++i)
11689 {
11690 file_entry &fe = line_header->file_names[i];
11691
11692 dwarf2_start_subfile (this, fe.name,
11693 fe.include_dir (line_header));
11694 buildsym_compunit *b = get_builder ();
11695 if (b->get_current_subfile ()->symtab == NULL)
11696 {
11697 /* NOTE: start_subfile will recognize when it's been
11698 passed a file it has already seen. So we can't
11699 assume there's a simple mapping from
11700 cu->line_header->file_names to subfiles, plus
11701 cu->line_header->file_names may contain dups. */
11702 b->get_current_subfile ()->symtab
11703 = allocate_symtab (cust, b->get_current_subfile ()->name);
11704 }
11705
11706 fe.symtab = b->get_current_subfile ()->symtab;
11707 tu_group->symtabs[i] = fe.symtab;
11708 }
11709 }
11710 else
11711 {
11712 gdb_assert (m_builder == nullptr);
11713 struct compunit_symtab *cust = tu_group->compunit_symtab;
11714 m_builder.reset (new struct buildsym_compunit
11715 (COMPUNIT_OBJFILE (cust), "",
11716 COMPUNIT_DIRNAME (cust),
11717 compunit_language (cust),
11718 0, cust));
11719
11720 for (i = 0; i < line_header->file_names.size (); ++i)
11721 {
11722 file_entry &fe = line_header->file_names[i];
11723
11724 fe.symtab = tu_group->symtabs[i];
11725 }
11726 }
11727
11728 /* The main symtab is allocated last. Type units don't have DW_AT_name
11729 so they don't have a "real" (so to speak) symtab anyway.
11730 There is later code that will assign the main symtab to all symbols
11731 that don't have one. We need to handle the case of a symbol with a
11732 missing symtab (DW_AT_decl_file) anyway. */
11733 }
11734
11735 /* Process DW_TAG_type_unit.
11736 For TUs we want to skip the first top level sibling if it's not the
11737 actual type being defined by this TU. In this case the first top
11738 level sibling is there to provide context only. */
11739
11740 static void
11741 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11742 {
11743 struct die_info *child_die;
11744
11745 prepare_one_comp_unit (cu, die, language_minimal);
11746
11747 /* Initialize (or reinitialize) the machinery for building symtabs.
11748 We do this before processing child DIEs, so that the line header table
11749 is available for DW_AT_decl_file. */
11750 cu->setup_type_unit_groups (die);
11751
11752 if (die->child != NULL)
11753 {
11754 child_die = die->child;
11755 while (child_die && child_die->tag)
11756 {
11757 process_die (child_die, cu);
11758 child_die = sibling_die (child_die);
11759 }
11760 }
11761 }
11762 \f
11763 /* DWO/DWP files.
11764
11765 http://gcc.gnu.org/wiki/DebugFission
11766 http://gcc.gnu.org/wiki/DebugFissionDWP
11767
11768 To simplify handling of both DWO files ("object" files with the DWARF info)
11769 and DWP files (a file with the DWOs packaged up into one file), we treat
11770 DWP files as having a collection of virtual DWO files. */
11771
11772 static hashval_t
11773 hash_dwo_file (const void *item)
11774 {
11775 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11776 hashval_t hash;
11777
11778 hash = htab_hash_string (dwo_file->dwo_name);
11779 if (dwo_file->comp_dir != NULL)
11780 hash += htab_hash_string (dwo_file->comp_dir);
11781 return hash;
11782 }
11783
11784 static int
11785 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11786 {
11787 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11788 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11789
11790 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11791 return 0;
11792 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11793 return lhs->comp_dir == rhs->comp_dir;
11794 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11795 }
11796
11797 /* Allocate a hash table for DWO files. */
11798
11799 static htab_t
11800 allocate_dwo_file_hash_table (struct objfile *objfile)
11801 {
11802 return htab_create_alloc_ex (41,
11803 hash_dwo_file,
11804 eq_dwo_file,
11805 NULL,
11806 &objfile->objfile_obstack,
11807 hashtab_obstack_allocate,
11808 dummy_obstack_deallocate);
11809 }
11810
11811 /* Lookup DWO file DWO_NAME. */
11812
11813 static void **
11814 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11815 const char *dwo_name,
11816 const char *comp_dir)
11817 {
11818 struct dwo_file find_entry;
11819 void **slot;
11820
11821 if (dwarf2_per_objfile->dwo_files == NULL)
11822 dwarf2_per_objfile->dwo_files
11823 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11824
11825 memset (&find_entry, 0, sizeof (find_entry));
11826 find_entry.dwo_name = dwo_name;
11827 find_entry.comp_dir = comp_dir;
11828 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11829
11830 return slot;
11831 }
11832
11833 static hashval_t
11834 hash_dwo_unit (const void *item)
11835 {
11836 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11837
11838 /* This drops the top 32 bits of the id, but is ok for a hash. */
11839 return dwo_unit->signature;
11840 }
11841
11842 static int
11843 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11844 {
11845 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11846 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11847
11848 /* The signature is assumed to be unique within the DWO file.
11849 So while object file CU dwo_id's always have the value zero,
11850 that's OK, assuming each object file DWO file has only one CU,
11851 and that's the rule for now. */
11852 return lhs->signature == rhs->signature;
11853 }
11854
11855 /* Allocate a hash table for DWO CUs,TUs.
11856 There is one of these tables for each of CUs,TUs for each DWO file. */
11857
11858 static htab_t
11859 allocate_dwo_unit_table (struct objfile *objfile)
11860 {
11861 /* Start out with a pretty small number.
11862 Generally DWO files contain only one CU and maybe some TUs. */
11863 return htab_create_alloc_ex (3,
11864 hash_dwo_unit,
11865 eq_dwo_unit,
11866 NULL,
11867 &objfile->objfile_obstack,
11868 hashtab_obstack_allocate,
11869 dummy_obstack_deallocate);
11870 }
11871
11872 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11873
11874 struct create_dwo_cu_data
11875 {
11876 struct dwo_file *dwo_file;
11877 struct dwo_unit dwo_unit;
11878 };
11879
11880 /* die_reader_func for create_dwo_cu. */
11881
11882 static void
11883 create_dwo_cu_reader (const struct die_reader_specs *reader,
11884 const gdb_byte *info_ptr,
11885 struct die_info *comp_unit_die,
11886 int has_children,
11887 void *datap)
11888 {
11889 struct dwarf2_cu *cu = reader->cu;
11890 sect_offset sect_off = cu->per_cu->sect_off;
11891 struct dwarf2_section_info *section = cu->per_cu->section;
11892 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11893 struct dwo_file *dwo_file = data->dwo_file;
11894 struct dwo_unit *dwo_unit = &data->dwo_unit;
11895 struct attribute *attr;
11896
11897 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11898 if (attr == NULL)
11899 {
11900 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11901 " its dwo_id [in module %s]"),
11902 sect_offset_str (sect_off), dwo_file->dwo_name);
11903 return;
11904 }
11905
11906 dwo_unit->dwo_file = dwo_file;
11907 dwo_unit->signature = DW_UNSND (attr);
11908 dwo_unit->section = section;
11909 dwo_unit->sect_off = sect_off;
11910 dwo_unit->length = cu->per_cu->length;
11911
11912 if (dwarf_read_debug)
11913 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11914 sect_offset_str (sect_off),
11915 hex_string (dwo_unit->signature));
11916 }
11917
11918 /* Create the dwo_units for the CUs in a DWO_FILE.
11919 Note: This function processes DWO files only, not DWP files. */
11920
11921 static void
11922 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11923 struct dwo_file &dwo_file, dwarf2_section_info &section,
11924 htab_t &cus_htab)
11925 {
11926 struct objfile *objfile = dwarf2_per_objfile->objfile;
11927 const gdb_byte *info_ptr, *end_ptr;
11928
11929 dwarf2_read_section (objfile, &section);
11930 info_ptr = section.buffer;
11931
11932 if (info_ptr == NULL)
11933 return;
11934
11935 if (dwarf_read_debug)
11936 {
11937 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11938 get_section_name (&section),
11939 get_section_file_name (&section));
11940 }
11941
11942 end_ptr = info_ptr + section.size;
11943 while (info_ptr < end_ptr)
11944 {
11945 struct dwarf2_per_cu_data per_cu;
11946 struct create_dwo_cu_data create_dwo_cu_data;
11947 struct dwo_unit *dwo_unit;
11948 void **slot;
11949 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11950
11951 memset (&create_dwo_cu_data.dwo_unit, 0,
11952 sizeof (create_dwo_cu_data.dwo_unit));
11953 memset (&per_cu, 0, sizeof (per_cu));
11954 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11955 per_cu.is_debug_types = 0;
11956 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11957 per_cu.section = &section;
11958 create_dwo_cu_data.dwo_file = &dwo_file;
11959
11960 init_cutu_and_read_dies_no_follow (
11961 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11962 info_ptr += per_cu.length;
11963
11964 // If the unit could not be parsed, skip it.
11965 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11966 continue;
11967
11968 if (cus_htab == NULL)
11969 cus_htab = allocate_dwo_unit_table (objfile);
11970
11971 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11972 *dwo_unit = create_dwo_cu_data.dwo_unit;
11973 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11974 gdb_assert (slot != NULL);
11975 if (*slot != NULL)
11976 {
11977 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11978 sect_offset dup_sect_off = dup_cu->sect_off;
11979
11980 complaint (_("debug cu entry at offset %s is duplicate to"
11981 " the entry at offset %s, signature %s"),
11982 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11983 hex_string (dwo_unit->signature));
11984 }
11985 *slot = (void *)dwo_unit;
11986 }
11987 }
11988
11989 /* DWP file .debug_{cu,tu}_index section format:
11990 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11991
11992 DWP Version 1:
11993
11994 Both index sections have the same format, and serve to map a 64-bit
11995 signature to a set of section numbers. Each section begins with a header,
11996 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11997 indexes, and a pool of 32-bit section numbers. The index sections will be
11998 aligned at 8-byte boundaries in the file.
11999
12000 The index section header consists of:
12001
12002 V, 32 bit version number
12003 -, 32 bits unused
12004 N, 32 bit number of compilation units or type units in the index
12005 M, 32 bit number of slots in the hash table
12006
12007 Numbers are recorded using the byte order of the application binary.
12008
12009 The hash table begins at offset 16 in the section, and consists of an array
12010 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12011 order of the application binary). Unused slots in the hash table are 0.
12012 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12013
12014 The parallel table begins immediately after the hash table
12015 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12016 array of 32-bit indexes (using the byte order of the application binary),
12017 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12018 table contains a 32-bit index into the pool of section numbers. For unused
12019 hash table slots, the corresponding entry in the parallel table will be 0.
12020
12021 The pool of section numbers begins immediately following the hash table
12022 (at offset 16 + 12 * M from the beginning of the section). The pool of
12023 section numbers consists of an array of 32-bit words (using the byte order
12024 of the application binary). Each item in the array is indexed starting
12025 from 0. The hash table entry provides the index of the first section
12026 number in the set. Additional section numbers in the set follow, and the
12027 set is terminated by a 0 entry (section number 0 is not used in ELF).
12028
12029 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12030 section must be the first entry in the set, and the .debug_abbrev.dwo must
12031 be the second entry. Other members of the set may follow in any order.
12032
12033 ---
12034
12035 DWP Version 2:
12036
12037 DWP Version 2 combines all the .debug_info, etc. sections into one,
12038 and the entries in the index tables are now offsets into these sections.
12039 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12040 section.
12041
12042 Index Section Contents:
12043 Header
12044 Hash Table of Signatures dwp_hash_table.hash_table
12045 Parallel Table of Indices dwp_hash_table.unit_table
12046 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12047 Table of Section Sizes dwp_hash_table.v2.sizes
12048
12049 The index section header consists of:
12050
12051 V, 32 bit version number
12052 L, 32 bit number of columns in the table of section offsets
12053 N, 32 bit number of compilation units or type units in the index
12054 M, 32 bit number of slots in the hash table
12055
12056 Numbers are recorded using the byte order of the application binary.
12057
12058 The hash table has the same format as version 1.
12059 The parallel table of indices has the same format as version 1,
12060 except that the entries are origin-1 indices into the table of sections
12061 offsets and the table of section sizes.
12062
12063 The table of offsets begins immediately following the parallel table
12064 (at offset 16 + 12 * M from the beginning of the section). The table is
12065 a two-dimensional array of 32-bit words (using the byte order of the
12066 application binary), with L columns and N+1 rows, in row-major order.
12067 Each row in the array is indexed starting from 0. The first row provides
12068 a key to the remaining rows: each column in this row provides an identifier
12069 for a debug section, and the offsets in the same column of subsequent rows
12070 refer to that section. The section identifiers are:
12071
12072 DW_SECT_INFO 1 .debug_info.dwo
12073 DW_SECT_TYPES 2 .debug_types.dwo
12074 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12075 DW_SECT_LINE 4 .debug_line.dwo
12076 DW_SECT_LOC 5 .debug_loc.dwo
12077 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12078 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12079 DW_SECT_MACRO 8 .debug_macro.dwo
12080
12081 The offsets provided by the CU and TU index sections are the base offsets
12082 for the contributions made by each CU or TU to the corresponding section
12083 in the package file. Each CU and TU header contains an abbrev_offset
12084 field, used to find the abbreviations table for that CU or TU within the
12085 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12086 be interpreted as relative to the base offset given in the index section.
12087 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12088 should be interpreted as relative to the base offset for .debug_line.dwo,
12089 and offsets into other debug sections obtained from DWARF attributes should
12090 also be interpreted as relative to the corresponding base offset.
12091
12092 The table of sizes begins immediately following the table of offsets.
12093 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12094 with L columns and N rows, in row-major order. Each row in the array is
12095 indexed starting from 1 (row 0 is shared by the two tables).
12096
12097 ---
12098
12099 Hash table lookup is handled the same in version 1 and 2:
12100
12101 We assume that N and M will not exceed 2^32 - 1.
12102 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12103
12104 Given a 64-bit compilation unit signature or a type signature S, an entry
12105 in the hash table is located as follows:
12106
12107 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12108 the low-order k bits all set to 1.
12109
12110 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12111
12112 3) If the hash table entry at index H matches the signature, use that
12113 entry. If the hash table entry at index H is unused (all zeroes),
12114 terminate the search: the signature is not present in the table.
12115
12116 4) Let H = (H + H') modulo M. Repeat at Step 3.
12117
12118 Because M > N and H' and M are relatively prime, the search is guaranteed
12119 to stop at an unused slot or find the match. */
12120
12121 /* Create a hash table to map DWO IDs to their CU/TU entry in
12122 .debug_{info,types}.dwo in DWP_FILE.
12123 Returns NULL if there isn't one.
12124 Note: This function processes DWP files only, not DWO files. */
12125
12126 static struct dwp_hash_table *
12127 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12128 struct dwp_file *dwp_file, int is_debug_types)
12129 {
12130 struct objfile *objfile = dwarf2_per_objfile->objfile;
12131 bfd *dbfd = dwp_file->dbfd.get ();
12132 const gdb_byte *index_ptr, *index_end;
12133 struct dwarf2_section_info *index;
12134 uint32_t version, nr_columns, nr_units, nr_slots;
12135 struct dwp_hash_table *htab;
12136
12137 if (is_debug_types)
12138 index = &dwp_file->sections.tu_index;
12139 else
12140 index = &dwp_file->sections.cu_index;
12141
12142 if (dwarf2_section_empty_p (index))
12143 return NULL;
12144 dwarf2_read_section (objfile, index);
12145
12146 index_ptr = index->buffer;
12147 index_end = index_ptr + index->size;
12148
12149 version = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151 if (version == 2)
12152 nr_columns = read_4_bytes (dbfd, index_ptr);
12153 else
12154 nr_columns = 0;
12155 index_ptr += 4;
12156 nr_units = read_4_bytes (dbfd, index_ptr);
12157 index_ptr += 4;
12158 nr_slots = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160
12161 if (version != 1 && version != 2)
12162 {
12163 error (_("Dwarf Error: unsupported DWP file version (%s)"
12164 " [in module %s]"),
12165 pulongest (version), dwp_file->name);
12166 }
12167 if (nr_slots != (nr_slots & -nr_slots))
12168 {
12169 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12170 " is not power of 2 [in module %s]"),
12171 pulongest (nr_slots), dwp_file->name);
12172 }
12173
12174 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12175 htab->version = version;
12176 htab->nr_columns = nr_columns;
12177 htab->nr_units = nr_units;
12178 htab->nr_slots = nr_slots;
12179 htab->hash_table = index_ptr;
12180 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12181
12182 /* Exit early if the table is empty. */
12183 if (nr_slots == 0 || nr_units == 0
12184 || (version == 2 && nr_columns == 0))
12185 {
12186 /* All must be zero. */
12187 if (nr_slots != 0 || nr_units != 0
12188 || (version == 2 && nr_columns != 0))
12189 {
12190 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12191 " all zero [in modules %s]"),
12192 dwp_file->name);
12193 }
12194 return htab;
12195 }
12196
12197 if (version == 1)
12198 {
12199 htab->section_pool.v1.indices =
12200 htab->unit_table + sizeof (uint32_t) * nr_slots;
12201 /* It's harder to decide whether the section is too small in v1.
12202 V1 is deprecated anyway so we punt. */
12203 }
12204 else
12205 {
12206 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12207 int *ids = htab->section_pool.v2.section_ids;
12208 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12209 /* Reverse map for error checking. */
12210 int ids_seen[DW_SECT_MAX + 1];
12211 int i;
12212
12213 if (nr_columns < 2)
12214 {
12215 error (_("Dwarf Error: bad DWP hash table, too few columns"
12216 " in section table [in module %s]"),
12217 dwp_file->name);
12218 }
12219 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12220 {
12221 error (_("Dwarf Error: bad DWP hash table, too many columns"
12222 " in section table [in module %s]"),
12223 dwp_file->name);
12224 }
12225 memset (ids, 255, sizeof_ids);
12226 memset (ids_seen, 255, sizeof (ids_seen));
12227 for (i = 0; i < nr_columns; ++i)
12228 {
12229 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12230
12231 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12232 {
12233 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12234 " in section table [in module %s]"),
12235 id, dwp_file->name);
12236 }
12237 if (ids_seen[id] != -1)
12238 {
12239 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12240 " id %d in section table [in module %s]"),
12241 id, dwp_file->name);
12242 }
12243 ids_seen[id] = i;
12244 ids[i] = id;
12245 }
12246 /* Must have exactly one info or types section. */
12247 if (((ids_seen[DW_SECT_INFO] != -1)
12248 + (ids_seen[DW_SECT_TYPES] != -1))
12249 != 1)
12250 {
12251 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12252 " DWO info/types section [in module %s]"),
12253 dwp_file->name);
12254 }
12255 /* Must have an abbrev section. */
12256 if (ids_seen[DW_SECT_ABBREV] == -1)
12257 {
12258 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12259 " section [in module %s]"),
12260 dwp_file->name);
12261 }
12262 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12263 htab->section_pool.v2.sizes =
12264 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12265 * nr_units * nr_columns);
12266 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12267 * nr_units * nr_columns))
12268 > index_end)
12269 {
12270 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12271 " [in module %s]"),
12272 dwp_file->name);
12273 }
12274 }
12275
12276 return htab;
12277 }
12278
12279 /* Update SECTIONS with the data from SECTP.
12280
12281 This function is like the other "locate" section routines that are
12282 passed to bfd_map_over_sections, but in this context the sections to
12283 read comes from the DWP V1 hash table, not the full ELF section table.
12284
12285 The result is non-zero for success, or zero if an error was found. */
12286
12287 static int
12288 locate_v1_virtual_dwo_sections (asection *sectp,
12289 struct virtual_v1_dwo_sections *sections)
12290 {
12291 const struct dwop_section_names *names = &dwop_section_names;
12292
12293 if (section_is_p (sectp->name, &names->abbrev_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->abbrev.s.section != NULL)
12297 return 0;
12298 sections->abbrev.s.section = sectp;
12299 sections->abbrev.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->info_dwo)
12302 || section_is_p (sectp->name, &names->types_dwo))
12303 {
12304 /* There can be only one. */
12305 if (sections->info_or_types.s.section != NULL)
12306 return 0;
12307 sections->info_or_types.s.section = sectp;
12308 sections->info_or_types.size = bfd_get_section_size (sectp);
12309 }
12310 else if (section_is_p (sectp->name, &names->line_dwo))
12311 {
12312 /* There can be only one. */
12313 if (sections->line.s.section != NULL)
12314 return 0;
12315 sections->line.s.section = sectp;
12316 sections->line.size = bfd_get_section_size (sectp);
12317 }
12318 else if (section_is_p (sectp->name, &names->loc_dwo))
12319 {
12320 /* There can be only one. */
12321 if (sections->loc.s.section != NULL)
12322 return 0;
12323 sections->loc.s.section = sectp;
12324 sections->loc.size = bfd_get_section_size (sectp);
12325 }
12326 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12327 {
12328 /* There can be only one. */
12329 if (sections->macinfo.s.section != NULL)
12330 return 0;
12331 sections->macinfo.s.section = sectp;
12332 sections->macinfo.size = bfd_get_section_size (sectp);
12333 }
12334 else if (section_is_p (sectp->name, &names->macro_dwo))
12335 {
12336 /* There can be only one. */
12337 if (sections->macro.s.section != NULL)
12338 return 0;
12339 sections->macro.s.section = sectp;
12340 sections->macro.size = bfd_get_section_size (sectp);
12341 }
12342 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12343 {
12344 /* There can be only one. */
12345 if (sections->str_offsets.s.section != NULL)
12346 return 0;
12347 sections->str_offsets.s.section = sectp;
12348 sections->str_offsets.size = bfd_get_section_size (sectp);
12349 }
12350 else
12351 {
12352 /* No other kind of section is valid. */
12353 return 0;
12354 }
12355
12356 return 1;
12357 }
12358
12359 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12360 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12361 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12362 This is for DWP version 1 files. */
12363
12364 static struct dwo_unit *
12365 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12366 struct dwp_file *dwp_file,
12367 uint32_t unit_index,
12368 const char *comp_dir,
12369 ULONGEST signature, int is_debug_types)
12370 {
12371 struct objfile *objfile = dwarf2_per_objfile->objfile;
12372 const struct dwp_hash_table *dwp_htab =
12373 is_debug_types ? dwp_file->tus : dwp_file->cus;
12374 bfd *dbfd = dwp_file->dbfd.get ();
12375 const char *kind = is_debug_types ? "TU" : "CU";
12376 struct dwo_file *dwo_file;
12377 struct dwo_unit *dwo_unit;
12378 struct virtual_v1_dwo_sections sections;
12379 void **dwo_file_slot;
12380 int i;
12381
12382 gdb_assert (dwp_file->version == 1);
12383
12384 if (dwarf_read_debug)
12385 {
12386 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12387 kind,
12388 pulongest (unit_index), hex_string (signature),
12389 dwp_file->name);
12390 }
12391
12392 /* Fetch the sections of this DWO unit.
12393 Put a limit on the number of sections we look for so that bad data
12394 doesn't cause us to loop forever. */
12395
12396 #define MAX_NR_V1_DWO_SECTIONS \
12397 (1 /* .debug_info or .debug_types */ \
12398 + 1 /* .debug_abbrev */ \
12399 + 1 /* .debug_line */ \
12400 + 1 /* .debug_loc */ \
12401 + 1 /* .debug_str_offsets */ \
12402 + 1 /* .debug_macro or .debug_macinfo */ \
12403 + 1 /* trailing zero */)
12404
12405 memset (&sections, 0, sizeof (sections));
12406
12407 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12408 {
12409 asection *sectp;
12410 uint32_t section_nr =
12411 read_4_bytes (dbfd,
12412 dwp_htab->section_pool.v1.indices
12413 + (unit_index + i) * sizeof (uint32_t));
12414
12415 if (section_nr == 0)
12416 break;
12417 if (section_nr >= dwp_file->num_sections)
12418 {
12419 error (_("Dwarf Error: bad DWP hash table, section number too large"
12420 " [in module %s]"),
12421 dwp_file->name);
12422 }
12423
12424 sectp = dwp_file->elf_sections[section_nr];
12425 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12426 {
12427 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12428 " [in module %s]"),
12429 dwp_file->name);
12430 }
12431 }
12432
12433 if (i < 2
12434 || dwarf2_section_empty_p (&sections.info_or_types)
12435 || dwarf2_section_empty_p (&sections.abbrev))
12436 {
12437 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12438 " [in module %s]"),
12439 dwp_file->name);
12440 }
12441 if (i == MAX_NR_V1_DWO_SECTIONS)
12442 {
12443 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12444 " [in module %s]"),
12445 dwp_file->name);
12446 }
12447
12448 /* It's easier for the rest of the code if we fake a struct dwo_file and
12449 have dwo_unit "live" in that. At least for now.
12450
12451 The DWP file can be made up of a random collection of CUs and TUs.
12452 However, for each CU + set of TUs that came from the same original DWO
12453 file, we can combine them back into a virtual DWO file to save space
12454 (fewer struct dwo_file objects to allocate). Remember that for really
12455 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12456
12457 std::string virtual_dwo_name =
12458 string_printf ("virtual-dwo/%d-%d-%d-%d",
12459 get_section_id (&sections.abbrev),
12460 get_section_id (&sections.line),
12461 get_section_id (&sections.loc),
12462 get_section_id (&sections.str_offsets));
12463 /* Can we use an existing virtual DWO file? */
12464 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12465 virtual_dwo_name.c_str (),
12466 comp_dir);
12467 /* Create one if necessary. */
12468 if (*dwo_file_slot == NULL)
12469 {
12470 if (dwarf_read_debug)
12471 {
12472 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12473 virtual_dwo_name.c_str ());
12474 }
12475 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12476 dwo_file->dwo_name
12477 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12478 virtual_dwo_name.c_str (),
12479 virtual_dwo_name.size ());
12480 dwo_file->comp_dir = comp_dir;
12481 dwo_file->sections.abbrev = sections.abbrev;
12482 dwo_file->sections.line = sections.line;
12483 dwo_file->sections.loc = sections.loc;
12484 dwo_file->sections.macinfo = sections.macinfo;
12485 dwo_file->sections.macro = sections.macro;
12486 dwo_file->sections.str_offsets = sections.str_offsets;
12487 /* The "str" section is global to the entire DWP file. */
12488 dwo_file->sections.str = dwp_file->sections.str;
12489 /* The info or types section is assigned below to dwo_unit,
12490 there's no need to record it in dwo_file.
12491 Also, we can't simply record type sections in dwo_file because
12492 we record a pointer into the vector in dwo_unit. As we collect more
12493 types we'll grow the vector and eventually have to reallocate space
12494 for it, invalidating all copies of pointers into the previous
12495 contents. */
12496 *dwo_file_slot = dwo_file;
12497 }
12498 else
12499 {
12500 if (dwarf_read_debug)
12501 {
12502 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12503 virtual_dwo_name.c_str ());
12504 }
12505 dwo_file = (struct dwo_file *) *dwo_file_slot;
12506 }
12507
12508 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12509 dwo_unit->dwo_file = dwo_file;
12510 dwo_unit->signature = signature;
12511 dwo_unit->section =
12512 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12513 *dwo_unit->section = sections.info_or_types;
12514 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12515
12516 return dwo_unit;
12517 }
12518
12519 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12520 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12521 piece within that section used by a TU/CU, return a virtual section
12522 of just that piece. */
12523
12524 static struct dwarf2_section_info
12525 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12526 struct dwarf2_section_info *section,
12527 bfd_size_type offset, bfd_size_type size)
12528 {
12529 struct dwarf2_section_info result;
12530 asection *sectp;
12531
12532 gdb_assert (section != NULL);
12533 gdb_assert (!section->is_virtual);
12534
12535 memset (&result, 0, sizeof (result));
12536 result.s.containing_section = section;
12537 result.is_virtual = 1;
12538
12539 if (size == 0)
12540 return result;
12541
12542 sectp = get_section_bfd_section (section);
12543
12544 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12545 bounds of the real section. This is a pretty-rare event, so just
12546 flag an error (easier) instead of a warning and trying to cope. */
12547 if (sectp == NULL
12548 || offset + size > bfd_get_section_size (sectp))
12549 {
12550 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12551 " in section %s [in module %s]"),
12552 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12553 objfile_name (dwarf2_per_objfile->objfile));
12554 }
12555
12556 result.virtual_offset = offset;
12557 result.size = size;
12558 return result;
12559 }
12560
12561 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12562 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12563 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12564 This is for DWP version 2 files. */
12565
12566 static struct dwo_unit *
12567 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12568 struct dwp_file *dwp_file,
12569 uint32_t unit_index,
12570 const char *comp_dir,
12571 ULONGEST signature, int is_debug_types)
12572 {
12573 struct objfile *objfile = dwarf2_per_objfile->objfile;
12574 const struct dwp_hash_table *dwp_htab =
12575 is_debug_types ? dwp_file->tus : dwp_file->cus;
12576 bfd *dbfd = dwp_file->dbfd.get ();
12577 const char *kind = is_debug_types ? "TU" : "CU";
12578 struct dwo_file *dwo_file;
12579 struct dwo_unit *dwo_unit;
12580 struct virtual_v2_dwo_sections sections;
12581 void **dwo_file_slot;
12582 int i;
12583
12584 gdb_assert (dwp_file->version == 2);
12585
12586 if (dwarf_read_debug)
12587 {
12588 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12589 kind,
12590 pulongest (unit_index), hex_string (signature),
12591 dwp_file->name);
12592 }
12593
12594 /* Fetch the section offsets of this DWO unit. */
12595
12596 memset (&sections, 0, sizeof (sections));
12597
12598 for (i = 0; i < dwp_htab->nr_columns; ++i)
12599 {
12600 uint32_t offset = read_4_bytes (dbfd,
12601 dwp_htab->section_pool.v2.offsets
12602 + (((unit_index - 1) * dwp_htab->nr_columns
12603 + i)
12604 * sizeof (uint32_t)));
12605 uint32_t size = read_4_bytes (dbfd,
12606 dwp_htab->section_pool.v2.sizes
12607 + (((unit_index - 1) * dwp_htab->nr_columns
12608 + i)
12609 * sizeof (uint32_t)));
12610
12611 switch (dwp_htab->section_pool.v2.section_ids[i])
12612 {
12613 case DW_SECT_INFO:
12614 case DW_SECT_TYPES:
12615 sections.info_or_types_offset = offset;
12616 sections.info_or_types_size = size;
12617 break;
12618 case DW_SECT_ABBREV:
12619 sections.abbrev_offset = offset;
12620 sections.abbrev_size = size;
12621 break;
12622 case DW_SECT_LINE:
12623 sections.line_offset = offset;
12624 sections.line_size = size;
12625 break;
12626 case DW_SECT_LOC:
12627 sections.loc_offset = offset;
12628 sections.loc_size = size;
12629 break;
12630 case DW_SECT_STR_OFFSETS:
12631 sections.str_offsets_offset = offset;
12632 sections.str_offsets_size = size;
12633 break;
12634 case DW_SECT_MACINFO:
12635 sections.macinfo_offset = offset;
12636 sections.macinfo_size = size;
12637 break;
12638 case DW_SECT_MACRO:
12639 sections.macro_offset = offset;
12640 sections.macro_size = size;
12641 break;
12642 }
12643 }
12644
12645 /* It's easier for the rest of the code if we fake a struct dwo_file and
12646 have dwo_unit "live" in that. At least for now.
12647
12648 The DWP file can be made up of a random collection of CUs and TUs.
12649 However, for each CU + set of TUs that came from the same original DWO
12650 file, we can combine them back into a virtual DWO file to save space
12651 (fewer struct dwo_file objects to allocate). Remember that for really
12652 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12653
12654 std::string virtual_dwo_name =
12655 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12656 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12657 (long) (sections.line_size ? sections.line_offset : 0),
12658 (long) (sections.loc_size ? sections.loc_offset : 0),
12659 (long) (sections.str_offsets_size
12660 ? sections.str_offsets_offset : 0));
12661 /* Can we use an existing virtual DWO file? */
12662 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12663 virtual_dwo_name.c_str (),
12664 comp_dir);
12665 /* Create one if necessary. */
12666 if (*dwo_file_slot == NULL)
12667 {
12668 if (dwarf_read_debug)
12669 {
12670 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12671 virtual_dwo_name.c_str ());
12672 }
12673 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12674 dwo_file->dwo_name
12675 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12676 virtual_dwo_name.c_str (),
12677 virtual_dwo_name.size ());
12678 dwo_file->comp_dir = comp_dir;
12679 dwo_file->sections.abbrev =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12681 sections.abbrev_offset, sections.abbrev_size);
12682 dwo_file->sections.line =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12684 sections.line_offset, sections.line_size);
12685 dwo_file->sections.loc =
12686 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12687 sections.loc_offset, sections.loc_size);
12688 dwo_file->sections.macinfo =
12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12690 sections.macinfo_offset, sections.macinfo_size);
12691 dwo_file->sections.macro =
12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12693 sections.macro_offset, sections.macro_size);
12694 dwo_file->sections.str_offsets =
12695 create_dwp_v2_section (dwarf2_per_objfile,
12696 &dwp_file->sections.str_offsets,
12697 sections.str_offsets_offset,
12698 sections.str_offsets_size);
12699 /* The "str" section is global to the entire DWP file. */
12700 dwo_file->sections.str = dwp_file->sections.str;
12701 /* The info or types section is assigned below to dwo_unit,
12702 there's no need to record it in dwo_file.
12703 Also, we can't simply record type sections in dwo_file because
12704 we record a pointer into the vector in dwo_unit. As we collect more
12705 types we'll grow the vector and eventually have to reallocate space
12706 for it, invalidating all copies of pointers into the previous
12707 contents. */
12708 *dwo_file_slot = dwo_file;
12709 }
12710 else
12711 {
12712 if (dwarf_read_debug)
12713 {
12714 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12715 virtual_dwo_name.c_str ());
12716 }
12717 dwo_file = (struct dwo_file *) *dwo_file_slot;
12718 }
12719
12720 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12721 dwo_unit->dwo_file = dwo_file;
12722 dwo_unit->signature = signature;
12723 dwo_unit->section =
12724 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12725 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12726 is_debug_types
12727 ? &dwp_file->sections.types
12728 : &dwp_file->sections.info,
12729 sections.info_or_types_offset,
12730 sections.info_or_types_size);
12731 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12732
12733 return dwo_unit;
12734 }
12735
12736 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12737 Returns NULL if the signature isn't found. */
12738
12739 static struct dwo_unit *
12740 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12741 struct dwp_file *dwp_file, const char *comp_dir,
12742 ULONGEST signature, int is_debug_types)
12743 {
12744 const struct dwp_hash_table *dwp_htab =
12745 is_debug_types ? dwp_file->tus : dwp_file->cus;
12746 bfd *dbfd = dwp_file->dbfd.get ();
12747 uint32_t mask = dwp_htab->nr_slots - 1;
12748 uint32_t hash = signature & mask;
12749 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12750 unsigned int i;
12751 void **slot;
12752 struct dwo_unit find_dwo_cu;
12753
12754 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12755 find_dwo_cu.signature = signature;
12756 slot = htab_find_slot (is_debug_types
12757 ? dwp_file->loaded_tus
12758 : dwp_file->loaded_cus,
12759 &find_dwo_cu, INSERT);
12760
12761 if (*slot != NULL)
12762 return (struct dwo_unit *) *slot;
12763
12764 /* Use a for loop so that we don't loop forever on bad debug info. */
12765 for (i = 0; i < dwp_htab->nr_slots; ++i)
12766 {
12767 ULONGEST signature_in_table;
12768
12769 signature_in_table =
12770 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12771 if (signature_in_table == signature)
12772 {
12773 uint32_t unit_index =
12774 read_4_bytes (dbfd,
12775 dwp_htab->unit_table + hash * sizeof (uint32_t));
12776
12777 if (dwp_file->version == 1)
12778 {
12779 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12780 dwp_file, unit_index,
12781 comp_dir, signature,
12782 is_debug_types);
12783 }
12784 else
12785 {
12786 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12787 dwp_file, unit_index,
12788 comp_dir, signature,
12789 is_debug_types);
12790 }
12791 return (struct dwo_unit *) *slot;
12792 }
12793 if (signature_in_table == 0)
12794 return NULL;
12795 hash = (hash + hash2) & mask;
12796 }
12797
12798 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12799 " [in module %s]"),
12800 dwp_file->name);
12801 }
12802
12803 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12804 Open the file specified by FILE_NAME and hand it off to BFD for
12805 preliminary analysis. Return a newly initialized bfd *, which
12806 includes a canonicalized copy of FILE_NAME.
12807 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12808 SEARCH_CWD is true if the current directory is to be searched.
12809 It will be searched before debug-file-directory.
12810 If successful, the file is added to the bfd include table of the
12811 objfile's bfd (see gdb_bfd_record_inclusion).
12812 If unable to find/open the file, return NULL.
12813 NOTE: This function is derived from symfile_bfd_open. */
12814
12815 static gdb_bfd_ref_ptr
12816 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12817 const char *file_name, int is_dwp, int search_cwd)
12818 {
12819 int desc;
12820 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12821 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12822 to debug_file_directory. */
12823 const char *search_path;
12824 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12825
12826 gdb::unique_xmalloc_ptr<char> search_path_holder;
12827 if (search_cwd)
12828 {
12829 if (*debug_file_directory != '\0')
12830 {
12831 search_path_holder.reset (concat (".", dirname_separator_string,
12832 debug_file_directory,
12833 (char *) NULL));
12834 search_path = search_path_holder.get ();
12835 }
12836 else
12837 search_path = ".";
12838 }
12839 else
12840 search_path = debug_file_directory;
12841
12842 openp_flags flags = OPF_RETURN_REALPATH;
12843 if (is_dwp)
12844 flags |= OPF_SEARCH_IN_PATH;
12845
12846 gdb::unique_xmalloc_ptr<char> absolute_name;
12847 desc = openp (search_path, flags, file_name,
12848 O_RDONLY | O_BINARY, &absolute_name);
12849 if (desc < 0)
12850 return NULL;
12851
12852 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12853 gnutarget, desc));
12854 if (sym_bfd == NULL)
12855 return NULL;
12856 bfd_set_cacheable (sym_bfd.get (), 1);
12857
12858 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12859 return NULL;
12860
12861 /* Success. Record the bfd as having been included by the objfile's bfd.
12862 This is important because things like demangled_names_hash lives in the
12863 objfile's per_bfd space and may have references to things like symbol
12864 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12865 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12866
12867 return sym_bfd;
12868 }
12869
12870 /* Try to open DWO file FILE_NAME.
12871 COMP_DIR is the DW_AT_comp_dir attribute.
12872 The result is the bfd handle of the file.
12873 If there is a problem finding or opening the file, return NULL.
12874 Upon success, the canonicalized path of the file is stored in the bfd,
12875 same as symfile_bfd_open. */
12876
12877 static gdb_bfd_ref_ptr
12878 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12879 const char *file_name, const char *comp_dir)
12880 {
12881 if (IS_ABSOLUTE_PATH (file_name))
12882 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12883 0 /*is_dwp*/, 0 /*search_cwd*/);
12884
12885 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12886
12887 if (comp_dir != NULL)
12888 {
12889 char *path_to_try = concat (comp_dir, SLASH_STRING,
12890 file_name, (char *) NULL);
12891
12892 /* NOTE: If comp_dir is a relative path, this will also try the
12893 search path, which seems useful. */
12894 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12895 path_to_try,
12896 0 /*is_dwp*/,
12897 1 /*search_cwd*/));
12898 xfree (path_to_try);
12899 if (abfd != NULL)
12900 return abfd;
12901 }
12902
12903 /* That didn't work, try debug-file-directory, which, despite its name,
12904 is a list of paths. */
12905
12906 if (*debug_file_directory == '\0')
12907 return NULL;
12908
12909 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12910 0 /*is_dwp*/, 1 /*search_cwd*/);
12911 }
12912
12913 /* This function is mapped across the sections and remembers the offset and
12914 size of each of the DWO debugging sections we are interested in. */
12915
12916 static void
12917 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12918 {
12919 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12920 const struct dwop_section_names *names = &dwop_section_names;
12921
12922 if (section_is_p (sectp->name, &names->abbrev_dwo))
12923 {
12924 dwo_sections->abbrev.s.section = sectp;
12925 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->info_dwo))
12928 {
12929 dwo_sections->info.s.section = sectp;
12930 dwo_sections->info.size = bfd_get_section_size (sectp);
12931 }
12932 else if (section_is_p (sectp->name, &names->line_dwo))
12933 {
12934 dwo_sections->line.s.section = sectp;
12935 dwo_sections->line.size = bfd_get_section_size (sectp);
12936 }
12937 else if (section_is_p (sectp->name, &names->loc_dwo))
12938 {
12939 dwo_sections->loc.s.section = sectp;
12940 dwo_sections->loc.size = bfd_get_section_size (sectp);
12941 }
12942 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12943 {
12944 dwo_sections->macinfo.s.section = sectp;
12945 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->macro_dwo))
12948 {
12949 dwo_sections->macro.s.section = sectp;
12950 dwo_sections->macro.size = bfd_get_section_size (sectp);
12951 }
12952 else if (section_is_p (sectp->name, &names->str_dwo))
12953 {
12954 dwo_sections->str.s.section = sectp;
12955 dwo_sections->str.size = bfd_get_section_size (sectp);
12956 }
12957 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12958 {
12959 dwo_sections->str_offsets.s.section = sectp;
12960 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12961 }
12962 else if (section_is_p (sectp->name, &names->types_dwo))
12963 {
12964 struct dwarf2_section_info type_section;
12965
12966 memset (&type_section, 0, sizeof (type_section));
12967 type_section.s.section = sectp;
12968 type_section.size = bfd_get_section_size (sectp);
12969 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12970 &type_section);
12971 }
12972 }
12973
12974 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12975 by PER_CU. This is for the non-DWP case.
12976 The result is NULL if DWO_NAME can't be found. */
12977
12978 static struct dwo_file *
12979 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12980 const char *dwo_name, const char *comp_dir)
12981 {
12982 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12983 struct objfile *objfile = dwarf2_per_objfile->objfile;
12984
12985 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12986 if (dbfd == NULL)
12987 {
12988 if (dwarf_read_debug)
12989 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12990 return NULL;
12991 }
12992
12993 /* We use a unique pointer here, despite the obstack allocation,
12994 because a dwo_file needs some cleanup if it is abandoned. */
12995 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12996 struct dwo_file));
12997 dwo_file->dwo_name = dwo_name;
12998 dwo_file->comp_dir = comp_dir;
12999 dwo_file->dbfd = dbfd.release ();
13000
13001 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13002 &dwo_file->sections);
13003
13004 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13005 dwo_file->cus);
13006
13007 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13008 dwo_file->sections.types, dwo_file->tus);
13009
13010 if (dwarf_read_debug)
13011 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13012
13013 return dwo_file.release ();
13014 }
13015
13016 /* This function is mapped across the sections and remembers the offset and
13017 size of each of the DWP debugging sections common to version 1 and 2 that
13018 we are interested in. */
13019
13020 static void
13021 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13022 void *dwp_file_ptr)
13023 {
13024 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13025 const struct dwop_section_names *names = &dwop_section_names;
13026 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13027
13028 /* Record the ELF section number for later lookup: this is what the
13029 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13030 gdb_assert (elf_section_nr < dwp_file->num_sections);
13031 dwp_file->elf_sections[elf_section_nr] = sectp;
13032
13033 /* Look for specific sections that we need. */
13034 if (section_is_p (sectp->name, &names->str_dwo))
13035 {
13036 dwp_file->sections.str.s.section = sectp;
13037 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13038 }
13039 else if (section_is_p (sectp->name, &names->cu_index))
13040 {
13041 dwp_file->sections.cu_index.s.section = sectp;
13042 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13043 }
13044 else if (section_is_p (sectp->name, &names->tu_index))
13045 {
13046 dwp_file->sections.tu_index.s.section = sectp;
13047 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13048 }
13049 }
13050
13051 /* This function is mapped across the sections and remembers the offset and
13052 size of each of the DWP version 2 debugging sections that we are interested
13053 in. This is split into a separate function because we don't know if we
13054 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13055
13056 static void
13057 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13058 {
13059 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13060 const struct dwop_section_names *names = &dwop_section_names;
13061 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13062
13063 /* Record the ELF section number for later lookup: this is what the
13064 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13065 gdb_assert (elf_section_nr < dwp_file->num_sections);
13066 dwp_file->elf_sections[elf_section_nr] = sectp;
13067
13068 /* Look for specific sections that we need. */
13069 if (section_is_p (sectp->name, &names->abbrev_dwo))
13070 {
13071 dwp_file->sections.abbrev.s.section = sectp;
13072 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13073 }
13074 else if (section_is_p (sectp->name, &names->info_dwo))
13075 {
13076 dwp_file->sections.info.s.section = sectp;
13077 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13078 }
13079 else if (section_is_p (sectp->name, &names->line_dwo))
13080 {
13081 dwp_file->sections.line.s.section = sectp;
13082 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13083 }
13084 else if (section_is_p (sectp->name, &names->loc_dwo))
13085 {
13086 dwp_file->sections.loc.s.section = sectp;
13087 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13088 }
13089 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13090 {
13091 dwp_file->sections.macinfo.s.section = sectp;
13092 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13093 }
13094 else if (section_is_p (sectp->name, &names->macro_dwo))
13095 {
13096 dwp_file->sections.macro.s.section = sectp;
13097 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13098 }
13099 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13100 {
13101 dwp_file->sections.str_offsets.s.section = sectp;
13102 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13103 }
13104 else if (section_is_p (sectp->name, &names->types_dwo))
13105 {
13106 dwp_file->sections.types.s.section = sectp;
13107 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13108 }
13109 }
13110
13111 /* Hash function for dwp_file loaded CUs/TUs. */
13112
13113 static hashval_t
13114 hash_dwp_loaded_cutus (const void *item)
13115 {
13116 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13117
13118 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13119 return dwo_unit->signature;
13120 }
13121
13122 /* Equality function for dwp_file loaded CUs/TUs. */
13123
13124 static int
13125 eq_dwp_loaded_cutus (const void *a, const void *b)
13126 {
13127 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13128 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13129
13130 return dua->signature == dub->signature;
13131 }
13132
13133 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13134
13135 static htab_t
13136 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13137 {
13138 return htab_create_alloc_ex (3,
13139 hash_dwp_loaded_cutus,
13140 eq_dwp_loaded_cutus,
13141 NULL,
13142 &objfile->objfile_obstack,
13143 hashtab_obstack_allocate,
13144 dummy_obstack_deallocate);
13145 }
13146
13147 /* Try to open DWP file FILE_NAME.
13148 The result is the bfd handle of the file.
13149 If there is a problem finding or opening the file, return NULL.
13150 Upon success, the canonicalized path of the file is stored in the bfd,
13151 same as symfile_bfd_open. */
13152
13153 static gdb_bfd_ref_ptr
13154 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13155 const char *file_name)
13156 {
13157 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13158 1 /*is_dwp*/,
13159 1 /*search_cwd*/));
13160 if (abfd != NULL)
13161 return abfd;
13162
13163 /* Work around upstream bug 15652.
13164 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13165 [Whether that's a "bug" is debatable, but it is getting in our way.]
13166 We have no real idea where the dwp file is, because gdb's realpath-ing
13167 of the executable's path may have discarded the needed info.
13168 [IWBN if the dwp file name was recorded in the executable, akin to
13169 .gnu_debuglink, but that doesn't exist yet.]
13170 Strip the directory from FILE_NAME and search again. */
13171 if (*debug_file_directory != '\0')
13172 {
13173 /* Don't implicitly search the current directory here.
13174 If the user wants to search "." to handle this case,
13175 it must be added to debug-file-directory. */
13176 return try_open_dwop_file (dwarf2_per_objfile,
13177 lbasename (file_name), 1 /*is_dwp*/,
13178 0 /*search_cwd*/);
13179 }
13180
13181 return NULL;
13182 }
13183
13184 /* Initialize the use of the DWP file for the current objfile.
13185 By convention the name of the DWP file is ${objfile}.dwp.
13186 The result is NULL if it can't be found. */
13187
13188 static std::unique_ptr<struct dwp_file>
13189 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13190 {
13191 struct objfile *objfile = dwarf2_per_objfile->objfile;
13192
13193 /* Try to find first .dwp for the binary file before any symbolic links
13194 resolving. */
13195
13196 /* If the objfile is a debug file, find the name of the real binary
13197 file and get the name of dwp file from there. */
13198 std::string dwp_name;
13199 if (objfile->separate_debug_objfile_backlink != NULL)
13200 {
13201 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13202 const char *backlink_basename = lbasename (backlink->original_name);
13203
13204 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13205 }
13206 else
13207 dwp_name = objfile->original_name;
13208
13209 dwp_name += ".dwp";
13210
13211 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13212 if (dbfd == NULL
13213 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13214 {
13215 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13216 dwp_name = objfile_name (objfile);
13217 dwp_name += ".dwp";
13218 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13219 }
13220
13221 if (dbfd == NULL)
13222 {
13223 if (dwarf_read_debug)
13224 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13225 return std::unique_ptr<dwp_file> ();
13226 }
13227
13228 const char *name = bfd_get_filename (dbfd.get ());
13229 std::unique_ptr<struct dwp_file> dwp_file
13230 (new struct dwp_file (name, std::move (dbfd)));
13231
13232 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13233 dwp_file->elf_sections =
13234 OBSTACK_CALLOC (&objfile->objfile_obstack,
13235 dwp_file->num_sections, asection *);
13236
13237 bfd_map_over_sections (dwp_file->dbfd.get (),
13238 dwarf2_locate_common_dwp_sections,
13239 dwp_file.get ());
13240
13241 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13242 0);
13243
13244 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13245 1);
13246
13247 /* The DWP file version is stored in the hash table. Oh well. */
13248 if (dwp_file->cus && dwp_file->tus
13249 && dwp_file->cus->version != dwp_file->tus->version)
13250 {
13251 /* Technically speaking, we should try to limp along, but this is
13252 pretty bizarre. We use pulongest here because that's the established
13253 portability solution (e.g, we cannot use %u for uint32_t). */
13254 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13255 " TU version %s [in DWP file %s]"),
13256 pulongest (dwp_file->cus->version),
13257 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13258 }
13259
13260 if (dwp_file->cus)
13261 dwp_file->version = dwp_file->cus->version;
13262 else if (dwp_file->tus)
13263 dwp_file->version = dwp_file->tus->version;
13264 else
13265 dwp_file->version = 2;
13266
13267 if (dwp_file->version == 2)
13268 bfd_map_over_sections (dwp_file->dbfd.get (),
13269 dwarf2_locate_v2_dwp_sections,
13270 dwp_file.get ());
13271
13272 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13273 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13274
13275 if (dwarf_read_debug)
13276 {
13277 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13278 fprintf_unfiltered (gdb_stdlog,
13279 " %s CUs, %s TUs\n",
13280 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13281 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13282 }
13283
13284 return dwp_file;
13285 }
13286
13287 /* Wrapper around open_and_init_dwp_file, only open it once. */
13288
13289 static struct dwp_file *
13290 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13291 {
13292 if (! dwarf2_per_objfile->dwp_checked)
13293 {
13294 dwarf2_per_objfile->dwp_file
13295 = open_and_init_dwp_file (dwarf2_per_objfile);
13296 dwarf2_per_objfile->dwp_checked = 1;
13297 }
13298 return dwarf2_per_objfile->dwp_file.get ();
13299 }
13300
13301 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13302 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13303 or in the DWP file for the objfile, referenced by THIS_UNIT.
13304 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13305 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13306
13307 This is called, for example, when wanting to read a variable with a
13308 complex location. Therefore we don't want to do file i/o for every call.
13309 Therefore we don't want to look for a DWO file on every call.
13310 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13311 then we check if we've already seen DWO_NAME, and only THEN do we check
13312 for a DWO file.
13313
13314 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13315 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13316
13317 static struct dwo_unit *
13318 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13319 const char *dwo_name, const char *comp_dir,
13320 ULONGEST signature, int is_debug_types)
13321 {
13322 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13323 struct objfile *objfile = dwarf2_per_objfile->objfile;
13324 const char *kind = is_debug_types ? "TU" : "CU";
13325 void **dwo_file_slot;
13326 struct dwo_file *dwo_file;
13327 struct dwp_file *dwp_file;
13328
13329 /* First see if there's a DWP file.
13330 If we have a DWP file but didn't find the DWO inside it, don't
13331 look for the original DWO file. It makes gdb behave differently
13332 depending on whether one is debugging in the build tree. */
13333
13334 dwp_file = get_dwp_file (dwarf2_per_objfile);
13335 if (dwp_file != NULL)
13336 {
13337 const struct dwp_hash_table *dwp_htab =
13338 is_debug_types ? dwp_file->tus : dwp_file->cus;
13339
13340 if (dwp_htab != NULL)
13341 {
13342 struct dwo_unit *dwo_cutu =
13343 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13344 signature, is_debug_types);
13345
13346 if (dwo_cutu != NULL)
13347 {
13348 if (dwarf_read_debug)
13349 {
13350 fprintf_unfiltered (gdb_stdlog,
13351 "Virtual DWO %s %s found: @%s\n",
13352 kind, hex_string (signature),
13353 host_address_to_string (dwo_cutu));
13354 }
13355 return dwo_cutu;
13356 }
13357 }
13358 }
13359 else
13360 {
13361 /* No DWP file, look for the DWO file. */
13362
13363 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13364 dwo_name, comp_dir);
13365 if (*dwo_file_slot == NULL)
13366 {
13367 /* Read in the file and build a table of the CUs/TUs it contains. */
13368 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13369 }
13370 /* NOTE: This will be NULL if unable to open the file. */
13371 dwo_file = (struct dwo_file *) *dwo_file_slot;
13372
13373 if (dwo_file != NULL)
13374 {
13375 struct dwo_unit *dwo_cutu = NULL;
13376
13377 if (is_debug_types && dwo_file->tus)
13378 {
13379 struct dwo_unit find_dwo_cutu;
13380
13381 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13382 find_dwo_cutu.signature = signature;
13383 dwo_cutu
13384 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13385 }
13386 else if (!is_debug_types && dwo_file->cus)
13387 {
13388 struct dwo_unit find_dwo_cutu;
13389
13390 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13391 find_dwo_cutu.signature = signature;
13392 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13393 &find_dwo_cutu);
13394 }
13395
13396 if (dwo_cutu != NULL)
13397 {
13398 if (dwarf_read_debug)
13399 {
13400 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13401 kind, dwo_name, hex_string (signature),
13402 host_address_to_string (dwo_cutu));
13403 }
13404 return dwo_cutu;
13405 }
13406 }
13407 }
13408
13409 /* We didn't find it. This could mean a dwo_id mismatch, or
13410 someone deleted the DWO/DWP file, or the search path isn't set up
13411 correctly to find the file. */
13412
13413 if (dwarf_read_debug)
13414 {
13415 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13416 kind, dwo_name, hex_string (signature));
13417 }
13418
13419 /* This is a warning and not a complaint because it can be caused by
13420 pilot error (e.g., user accidentally deleting the DWO). */
13421 {
13422 /* Print the name of the DWP file if we looked there, helps the user
13423 better diagnose the problem. */
13424 std::string dwp_text;
13425
13426 if (dwp_file != NULL)
13427 dwp_text = string_printf (" [in DWP file %s]",
13428 lbasename (dwp_file->name));
13429
13430 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13431 " [in module %s]"),
13432 kind, dwo_name, hex_string (signature),
13433 dwp_text.c_str (),
13434 this_unit->is_debug_types ? "TU" : "CU",
13435 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13436 }
13437 return NULL;
13438 }
13439
13440 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13441 See lookup_dwo_cutu_unit for details. */
13442
13443 static struct dwo_unit *
13444 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13445 const char *dwo_name, const char *comp_dir,
13446 ULONGEST signature)
13447 {
13448 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13449 }
13450
13451 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13452 See lookup_dwo_cutu_unit for details. */
13453
13454 static struct dwo_unit *
13455 lookup_dwo_type_unit (struct signatured_type *this_tu,
13456 const char *dwo_name, const char *comp_dir)
13457 {
13458 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13459 }
13460
13461 /* Traversal function for queue_and_load_all_dwo_tus. */
13462
13463 static int
13464 queue_and_load_dwo_tu (void **slot, void *info)
13465 {
13466 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13467 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13468 ULONGEST signature = dwo_unit->signature;
13469 struct signatured_type *sig_type =
13470 lookup_dwo_signatured_type (per_cu->cu, signature);
13471
13472 if (sig_type != NULL)
13473 {
13474 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13475
13476 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13477 a real dependency of PER_CU on SIG_TYPE. That is detected later
13478 while processing PER_CU. */
13479 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13480 load_full_type_unit (sig_cu);
13481 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13482 }
13483
13484 return 1;
13485 }
13486
13487 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13488 The DWO may have the only definition of the type, though it may not be
13489 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13490 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13491
13492 static void
13493 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13494 {
13495 struct dwo_unit *dwo_unit;
13496 struct dwo_file *dwo_file;
13497
13498 gdb_assert (!per_cu->is_debug_types);
13499 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13500 gdb_assert (per_cu->cu != NULL);
13501
13502 dwo_unit = per_cu->cu->dwo_unit;
13503 gdb_assert (dwo_unit != NULL);
13504
13505 dwo_file = dwo_unit->dwo_file;
13506 if (dwo_file->tus != NULL)
13507 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13508 }
13509
13510 /* Free all resources associated with DWO_FILE.
13511 Close the DWO file and munmap the sections. */
13512
13513 static void
13514 free_dwo_file (struct dwo_file *dwo_file)
13515 {
13516 /* Note: dbfd is NULL for virtual DWO files. */
13517 gdb_bfd_unref (dwo_file->dbfd);
13518
13519 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13520 }
13521
13522 /* Traversal function for free_dwo_files. */
13523
13524 static int
13525 free_dwo_file_from_slot (void **slot, void *info)
13526 {
13527 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13528
13529 free_dwo_file (dwo_file);
13530
13531 return 1;
13532 }
13533
13534 /* Free all resources associated with DWO_FILES. */
13535
13536 static void
13537 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13538 {
13539 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13540 }
13541 \f
13542 /* Read in various DIEs. */
13543
13544 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13545 Inherit only the children of the DW_AT_abstract_origin DIE not being
13546 already referenced by DW_AT_abstract_origin from the children of the
13547 current DIE. */
13548
13549 static void
13550 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13551 {
13552 struct die_info *child_die;
13553 sect_offset *offsetp;
13554 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13555 struct die_info *origin_die;
13556 /* Iterator of the ORIGIN_DIE children. */
13557 struct die_info *origin_child_die;
13558 struct attribute *attr;
13559 struct dwarf2_cu *origin_cu;
13560 struct pending **origin_previous_list_in_scope;
13561
13562 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13563 if (!attr)
13564 return;
13565
13566 /* Note that following die references may follow to a die in a
13567 different cu. */
13568
13569 origin_cu = cu;
13570 origin_die = follow_die_ref (die, attr, &origin_cu);
13571
13572 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13573 symbols in. */
13574 origin_previous_list_in_scope = origin_cu->list_in_scope;
13575 origin_cu->list_in_scope = cu->list_in_scope;
13576
13577 if (die->tag != origin_die->tag
13578 && !(die->tag == DW_TAG_inlined_subroutine
13579 && origin_die->tag == DW_TAG_subprogram))
13580 complaint (_("DIE %s and its abstract origin %s have different tags"),
13581 sect_offset_str (die->sect_off),
13582 sect_offset_str (origin_die->sect_off));
13583
13584 std::vector<sect_offset> offsets;
13585
13586 for (child_die = die->child;
13587 child_die && child_die->tag;
13588 child_die = sibling_die (child_die))
13589 {
13590 struct die_info *child_origin_die;
13591 struct dwarf2_cu *child_origin_cu;
13592
13593 /* We are trying to process concrete instance entries:
13594 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13595 it's not relevant to our analysis here. i.e. detecting DIEs that are
13596 present in the abstract instance but not referenced in the concrete
13597 one. */
13598 if (child_die->tag == DW_TAG_call_site
13599 || child_die->tag == DW_TAG_GNU_call_site)
13600 continue;
13601
13602 /* For each CHILD_DIE, find the corresponding child of
13603 ORIGIN_DIE. If there is more than one layer of
13604 DW_AT_abstract_origin, follow them all; there shouldn't be,
13605 but GCC versions at least through 4.4 generate this (GCC PR
13606 40573). */
13607 child_origin_die = child_die;
13608 child_origin_cu = cu;
13609 while (1)
13610 {
13611 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13612 child_origin_cu);
13613 if (attr == NULL)
13614 break;
13615 child_origin_die = follow_die_ref (child_origin_die, attr,
13616 &child_origin_cu);
13617 }
13618
13619 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13620 counterpart may exist. */
13621 if (child_origin_die != child_die)
13622 {
13623 if (child_die->tag != child_origin_die->tag
13624 && !(child_die->tag == DW_TAG_inlined_subroutine
13625 && child_origin_die->tag == DW_TAG_subprogram))
13626 complaint (_("Child DIE %s and its abstract origin %s have "
13627 "different tags"),
13628 sect_offset_str (child_die->sect_off),
13629 sect_offset_str (child_origin_die->sect_off));
13630 if (child_origin_die->parent != origin_die)
13631 complaint (_("Child DIE %s and its abstract origin %s have "
13632 "different parents"),
13633 sect_offset_str (child_die->sect_off),
13634 sect_offset_str (child_origin_die->sect_off));
13635 else
13636 offsets.push_back (child_origin_die->sect_off);
13637 }
13638 }
13639 std::sort (offsets.begin (), offsets.end ());
13640 sect_offset *offsets_end = offsets.data () + offsets.size ();
13641 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13642 if (offsetp[-1] == *offsetp)
13643 complaint (_("Multiple children of DIE %s refer "
13644 "to DIE %s as their abstract origin"),
13645 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13646
13647 offsetp = offsets.data ();
13648 origin_child_die = origin_die->child;
13649 while (origin_child_die && origin_child_die->tag)
13650 {
13651 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13652 while (offsetp < offsets_end
13653 && *offsetp < origin_child_die->sect_off)
13654 offsetp++;
13655 if (offsetp >= offsets_end
13656 || *offsetp > origin_child_die->sect_off)
13657 {
13658 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13659 Check whether we're already processing ORIGIN_CHILD_DIE.
13660 This can happen with mutually referenced abstract_origins.
13661 PR 16581. */
13662 if (!origin_child_die->in_process)
13663 process_die (origin_child_die, origin_cu);
13664 }
13665 origin_child_die = sibling_die (origin_child_die);
13666 }
13667 origin_cu->list_in_scope = origin_previous_list_in_scope;
13668 }
13669
13670 static void
13671 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13672 {
13673 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13674 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13675 struct context_stack *newobj;
13676 CORE_ADDR lowpc;
13677 CORE_ADDR highpc;
13678 struct die_info *child_die;
13679 struct attribute *attr, *call_line, *call_file;
13680 const char *name;
13681 CORE_ADDR baseaddr;
13682 struct block *block;
13683 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13684 std::vector<struct symbol *> template_args;
13685 struct template_symbol *templ_func = NULL;
13686
13687 if (inlined_func)
13688 {
13689 /* If we do not have call site information, we can't show the
13690 caller of this inlined function. That's too confusing, so
13691 only use the scope for local variables. */
13692 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13693 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13694 if (call_line == NULL || call_file == NULL)
13695 {
13696 read_lexical_block_scope (die, cu);
13697 return;
13698 }
13699 }
13700
13701 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13702
13703 name = dwarf2_name (die, cu);
13704
13705 /* Ignore functions with missing or empty names. These are actually
13706 illegal according to the DWARF standard. */
13707 if (name == NULL)
13708 {
13709 complaint (_("missing name for subprogram DIE at %s"),
13710 sect_offset_str (die->sect_off));
13711 return;
13712 }
13713
13714 /* Ignore functions with missing or invalid low and high pc attributes. */
13715 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13716 <= PC_BOUNDS_INVALID)
13717 {
13718 attr = dwarf2_attr (die, DW_AT_external, cu);
13719 if (!attr || !DW_UNSND (attr))
13720 complaint (_("cannot get low and high bounds "
13721 "for subprogram DIE at %s"),
13722 sect_offset_str (die->sect_off));
13723 return;
13724 }
13725
13726 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13727 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13728
13729 /* If we have any template arguments, then we must allocate a
13730 different sort of symbol. */
13731 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13732 {
13733 if (child_die->tag == DW_TAG_template_type_param
13734 || child_die->tag == DW_TAG_template_value_param)
13735 {
13736 templ_func = allocate_template_symbol (objfile);
13737 templ_func->subclass = SYMBOL_TEMPLATE;
13738 break;
13739 }
13740 }
13741
13742 newobj = cu->get_builder ()->push_context (0, lowpc);
13743 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13744 (struct symbol *) templ_func);
13745
13746 /* If there is a location expression for DW_AT_frame_base, record
13747 it. */
13748 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13749 if (attr)
13750 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13751
13752 /* If there is a location for the static link, record it. */
13753 newobj->static_link = NULL;
13754 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13755 if (attr)
13756 {
13757 newobj->static_link
13758 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13759 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13760 }
13761
13762 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13763
13764 if (die->child != NULL)
13765 {
13766 child_die = die->child;
13767 while (child_die && child_die->tag)
13768 {
13769 if (child_die->tag == DW_TAG_template_type_param
13770 || child_die->tag == DW_TAG_template_value_param)
13771 {
13772 struct symbol *arg = new_symbol (child_die, NULL, cu);
13773
13774 if (arg != NULL)
13775 template_args.push_back (arg);
13776 }
13777 else
13778 process_die (child_die, cu);
13779 child_die = sibling_die (child_die);
13780 }
13781 }
13782
13783 inherit_abstract_dies (die, cu);
13784
13785 /* If we have a DW_AT_specification, we might need to import using
13786 directives from the context of the specification DIE. See the
13787 comment in determine_prefix. */
13788 if (cu->language == language_cplus
13789 && dwarf2_attr (die, DW_AT_specification, cu))
13790 {
13791 struct dwarf2_cu *spec_cu = cu;
13792 struct die_info *spec_die = die_specification (die, &spec_cu);
13793
13794 while (spec_die)
13795 {
13796 child_die = spec_die->child;
13797 while (child_die && child_die->tag)
13798 {
13799 if (child_die->tag == DW_TAG_imported_module)
13800 process_die (child_die, spec_cu);
13801 child_die = sibling_die (child_die);
13802 }
13803
13804 /* In some cases, GCC generates specification DIEs that
13805 themselves contain DW_AT_specification attributes. */
13806 spec_die = die_specification (spec_die, &spec_cu);
13807 }
13808 }
13809
13810 struct context_stack cstk = cu->get_builder ()->pop_context ();
13811 /* Make a block for the local symbols within. */
13812 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13813 cstk.static_link, lowpc, highpc);
13814
13815 /* For C++, set the block's scope. */
13816 if ((cu->language == language_cplus
13817 || cu->language == language_fortran
13818 || cu->language == language_d
13819 || cu->language == language_rust)
13820 && cu->processing_has_namespace_info)
13821 block_set_scope (block, determine_prefix (die, cu),
13822 &objfile->objfile_obstack);
13823
13824 /* If we have address ranges, record them. */
13825 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13826
13827 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13828
13829 /* Attach template arguments to function. */
13830 if (!template_args.empty ())
13831 {
13832 gdb_assert (templ_func != NULL);
13833
13834 templ_func->n_template_arguments = template_args.size ();
13835 templ_func->template_arguments
13836 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13837 templ_func->n_template_arguments);
13838 memcpy (templ_func->template_arguments,
13839 template_args.data (),
13840 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13841
13842 /* Make sure that the symtab is set on the new symbols. Even
13843 though they don't appear in this symtab directly, other parts
13844 of gdb assume that symbols do, and this is reasonably
13845 true. */
13846 for (symbol *sym : template_args)
13847 symbol_set_symtab (sym, symbol_symtab (templ_func));
13848 }
13849
13850 /* In C++, we can have functions nested inside functions (e.g., when
13851 a function declares a class that has methods). This means that
13852 when we finish processing a function scope, we may need to go
13853 back to building a containing block's symbol lists. */
13854 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13855 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13856
13857 /* If we've finished processing a top-level function, subsequent
13858 symbols go in the file symbol list. */
13859 if (cu->get_builder ()->outermost_context_p ())
13860 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13861 }
13862
13863 /* Process all the DIES contained within a lexical block scope. Start
13864 a new scope, process the dies, and then close the scope. */
13865
13866 static void
13867 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13868 {
13869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13871 CORE_ADDR lowpc, highpc;
13872 struct die_info *child_die;
13873 CORE_ADDR baseaddr;
13874
13875 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13876
13877 /* Ignore blocks with missing or invalid low and high pc attributes. */
13878 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13879 as multiple lexical blocks? Handling children in a sane way would
13880 be nasty. Might be easier to properly extend generic blocks to
13881 describe ranges. */
13882 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13883 {
13884 case PC_BOUNDS_NOT_PRESENT:
13885 /* DW_TAG_lexical_block has no attributes, process its children as if
13886 there was no wrapping by that DW_TAG_lexical_block.
13887 GCC does no longer produces such DWARF since GCC r224161. */
13888 for (child_die = die->child;
13889 child_die != NULL && child_die->tag;
13890 child_die = sibling_die (child_die))
13891 process_die (child_die, cu);
13892 return;
13893 case PC_BOUNDS_INVALID:
13894 return;
13895 }
13896 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13897 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13898
13899 cu->get_builder ()->push_context (0, lowpc);
13900 if (die->child != NULL)
13901 {
13902 child_die = die->child;
13903 while (child_die && child_die->tag)
13904 {
13905 process_die (child_die, cu);
13906 child_die = sibling_die (child_die);
13907 }
13908 }
13909 inherit_abstract_dies (die, cu);
13910 struct context_stack cstk = cu->get_builder ()->pop_context ();
13911
13912 if (*cu->get_builder ()->get_local_symbols () != NULL
13913 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13914 {
13915 struct block *block
13916 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13917 cstk.start_addr, highpc);
13918
13919 /* Note that recording ranges after traversing children, as we
13920 do here, means that recording a parent's ranges entails
13921 walking across all its children's ranges as they appear in
13922 the address map, which is quadratic behavior.
13923
13924 It would be nicer to record the parent's ranges before
13925 traversing its children, simply overriding whatever you find
13926 there. But since we don't even decide whether to create a
13927 block until after we've traversed its children, that's hard
13928 to do. */
13929 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13930 }
13931 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13932 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13933 }
13934
13935 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13936
13937 static void
13938 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13939 {
13940 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13941 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13942 CORE_ADDR pc, baseaddr;
13943 struct attribute *attr;
13944 struct call_site *call_site, call_site_local;
13945 void **slot;
13946 int nparams;
13947 struct die_info *child_die;
13948
13949 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13950
13951 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13952 if (attr == NULL)
13953 {
13954 /* This was a pre-DWARF-5 GNU extension alias
13955 for DW_AT_call_return_pc. */
13956 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13957 }
13958 if (!attr)
13959 {
13960 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13961 "DIE %s [in module %s]"),
13962 sect_offset_str (die->sect_off), objfile_name (objfile));
13963 return;
13964 }
13965 pc = attr_value_as_address (attr) + baseaddr;
13966 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13967
13968 if (cu->call_site_htab == NULL)
13969 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13970 NULL, &objfile->objfile_obstack,
13971 hashtab_obstack_allocate, NULL);
13972 call_site_local.pc = pc;
13973 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13974 if (*slot != NULL)
13975 {
13976 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13977 "DIE %s [in module %s]"),
13978 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13979 objfile_name (objfile));
13980 return;
13981 }
13982
13983 /* Count parameters at the caller. */
13984
13985 nparams = 0;
13986 for (child_die = die->child; child_die && child_die->tag;
13987 child_die = sibling_die (child_die))
13988 {
13989 if (child_die->tag != DW_TAG_call_site_parameter
13990 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13991 {
13992 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13993 "DW_TAG_call_site child DIE %s [in module %s]"),
13994 child_die->tag, sect_offset_str (child_die->sect_off),
13995 objfile_name (objfile));
13996 continue;
13997 }
13998
13999 nparams++;
14000 }
14001
14002 call_site
14003 = ((struct call_site *)
14004 obstack_alloc (&objfile->objfile_obstack,
14005 sizeof (*call_site)
14006 + (sizeof (*call_site->parameter) * (nparams - 1))));
14007 *slot = call_site;
14008 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14009 call_site->pc = pc;
14010
14011 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14012 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14013 {
14014 struct die_info *func_die;
14015
14016 /* Skip also over DW_TAG_inlined_subroutine. */
14017 for (func_die = die->parent;
14018 func_die && func_die->tag != DW_TAG_subprogram
14019 && func_die->tag != DW_TAG_subroutine_type;
14020 func_die = func_die->parent);
14021
14022 /* DW_AT_call_all_calls is a superset
14023 of DW_AT_call_all_tail_calls. */
14024 if (func_die
14025 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14026 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14027 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14029 {
14030 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14031 not complete. But keep CALL_SITE for look ups via call_site_htab,
14032 both the initial caller containing the real return address PC and
14033 the final callee containing the current PC of a chain of tail
14034 calls do not need to have the tail call list complete. But any
14035 function candidate for a virtual tail call frame searched via
14036 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14037 determined unambiguously. */
14038 }
14039 else
14040 {
14041 struct type *func_type = NULL;
14042
14043 if (func_die)
14044 func_type = get_die_type (func_die, cu);
14045 if (func_type != NULL)
14046 {
14047 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14048
14049 /* Enlist this call site to the function. */
14050 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14051 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14052 }
14053 else
14054 complaint (_("Cannot find function owning DW_TAG_call_site "
14055 "DIE %s [in module %s]"),
14056 sect_offset_str (die->sect_off), objfile_name (objfile));
14057 }
14058 }
14059
14060 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14061 if (attr == NULL)
14062 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14063 if (attr == NULL)
14064 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14065 if (attr == NULL)
14066 {
14067 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14068 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14069 }
14070 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14071 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14072 /* Keep NULL DWARF_BLOCK. */;
14073 else if (attr_form_is_block (attr))
14074 {
14075 struct dwarf2_locexpr_baton *dlbaton;
14076
14077 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14078 dlbaton->data = DW_BLOCK (attr)->data;
14079 dlbaton->size = DW_BLOCK (attr)->size;
14080 dlbaton->per_cu = cu->per_cu;
14081
14082 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14083 }
14084 else if (attr_form_is_ref (attr))
14085 {
14086 struct dwarf2_cu *target_cu = cu;
14087 struct die_info *target_die;
14088
14089 target_die = follow_die_ref (die, attr, &target_cu);
14090 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14091 if (die_is_declaration (target_die, target_cu))
14092 {
14093 const char *target_physname;
14094
14095 /* Prefer the mangled name; otherwise compute the demangled one. */
14096 target_physname = dw2_linkage_name (target_die, target_cu);
14097 if (target_physname == NULL)
14098 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14099 if (target_physname == NULL)
14100 complaint (_("DW_AT_call_target target DIE has invalid "
14101 "physname, for referencing DIE %s [in module %s]"),
14102 sect_offset_str (die->sect_off), objfile_name (objfile));
14103 else
14104 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14105 }
14106 else
14107 {
14108 CORE_ADDR lowpc;
14109
14110 /* DW_AT_entry_pc should be preferred. */
14111 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14112 <= PC_BOUNDS_INVALID)
14113 complaint (_("DW_AT_call_target target DIE has invalid "
14114 "low pc, for referencing DIE %s [in module %s]"),
14115 sect_offset_str (die->sect_off), objfile_name (objfile));
14116 else
14117 {
14118 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14119 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14120 }
14121 }
14122 }
14123 else
14124 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14125 "block nor reference, for DIE %s [in module %s]"),
14126 sect_offset_str (die->sect_off), objfile_name (objfile));
14127
14128 call_site->per_cu = cu->per_cu;
14129
14130 for (child_die = die->child;
14131 child_die && child_die->tag;
14132 child_die = sibling_die (child_die))
14133 {
14134 struct call_site_parameter *parameter;
14135 struct attribute *loc, *origin;
14136
14137 if (child_die->tag != DW_TAG_call_site_parameter
14138 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14139 {
14140 /* Already printed the complaint above. */
14141 continue;
14142 }
14143
14144 gdb_assert (call_site->parameter_count < nparams);
14145 parameter = &call_site->parameter[call_site->parameter_count];
14146
14147 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14148 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14149 register is contained in DW_AT_call_value. */
14150
14151 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14152 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14153 if (origin == NULL)
14154 {
14155 /* This was a pre-DWARF-5 GNU extension alias
14156 for DW_AT_call_parameter. */
14157 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14158 }
14159 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14160 {
14161 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14162
14163 sect_offset sect_off
14164 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14165 if (!offset_in_cu_p (&cu->header, sect_off))
14166 {
14167 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14168 binding can be done only inside one CU. Such referenced DIE
14169 therefore cannot be even moved to DW_TAG_partial_unit. */
14170 complaint (_("DW_AT_call_parameter offset is not in CU for "
14171 "DW_TAG_call_site child DIE %s [in module %s]"),
14172 sect_offset_str (child_die->sect_off),
14173 objfile_name (objfile));
14174 continue;
14175 }
14176 parameter->u.param_cu_off
14177 = (cu_offset) (sect_off - cu->header.sect_off);
14178 }
14179 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14180 {
14181 complaint (_("No DW_FORM_block* DW_AT_location for "
14182 "DW_TAG_call_site child DIE %s [in module %s]"),
14183 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14184 continue;
14185 }
14186 else
14187 {
14188 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14189 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14190 if (parameter->u.dwarf_reg != -1)
14191 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14192 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14193 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14194 &parameter->u.fb_offset))
14195 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14196 else
14197 {
14198 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14199 "for DW_FORM_block* DW_AT_location is supported for "
14200 "DW_TAG_call_site child DIE %s "
14201 "[in module %s]"),
14202 sect_offset_str (child_die->sect_off),
14203 objfile_name (objfile));
14204 continue;
14205 }
14206 }
14207
14208 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14209 if (attr == NULL)
14210 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14211 if (!attr_form_is_block (attr))
14212 {
14213 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14214 "DW_TAG_call_site child DIE %s [in module %s]"),
14215 sect_offset_str (child_die->sect_off),
14216 objfile_name (objfile));
14217 continue;
14218 }
14219 parameter->value = DW_BLOCK (attr)->data;
14220 parameter->value_size = DW_BLOCK (attr)->size;
14221
14222 /* Parameters are not pre-cleared by memset above. */
14223 parameter->data_value = NULL;
14224 parameter->data_value_size = 0;
14225 call_site->parameter_count++;
14226
14227 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14228 if (attr == NULL)
14229 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14230 if (attr)
14231 {
14232 if (!attr_form_is_block (attr))
14233 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14234 "DW_TAG_call_site child DIE %s [in module %s]"),
14235 sect_offset_str (child_die->sect_off),
14236 objfile_name (objfile));
14237 else
14238 {
14239 parameter->data_value = DW_BLOCK (attr)->data;
14240 parameter->data_value_size = DW_BLOCK (attr)->size;
14241 }
14242 }
14243 }
14244 }
14245
14246 /* Helper function for read_variable. If DIE represents a virtual
14247 table, then return the type of the concrete object that is
14248 associated with the virtual table. Otherwise, return NULL. */
14249
14250 static struct type *
14251 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14252 {
14253 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14254 if (attr == NULL)
14255 return NULL;
14256
14257 /* Find the type DIE. */
14258 struct die_info *type_die = NULL;
14259 struct dwarf2_cu *type_cu = cu;
14260
14261 if (attr_form_is_ref (attr))
14262 type_die = follow_die_ref (die, attr, &type_cu);
14263 if (type_die == NULL)
14264 return NULL;
14265
14266 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14267 return NULL;
14268 return die_containing_type (type_die, type_cu);
14269 }
14270
14271 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14272
14273 static void
14274 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14275 {
14276 struct rust_vtable_symbol *storage = NULL;
14277
14278 if (cu->language == language_rust)
14279 {
14280 struct type *containing_type = rust_containing_type (die, cu);
14281
14282 if (containing_type != NULL)
14283 {
14284 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14285
14286 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14287 struct rust_vtable_symbol);
14288 initialize_objfile_symbol (storage);
14289 storage->concrete_type = containing_type;
14290 storage->subclass = SYMBOL_RUST_VTABLE;
14291 }
14292 }
14293
14294 struct symbol *res = new_symbol (die, NULL, cu, storage);
14295 struct attribute *abstract_origin
14296 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14297 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14298 if (res == NULL && loc && abstract_origin)
14299 {
14300 /* We have a variable without a name, but with a location and an abstract
14301 origin. This may be a concrete instance of an abstract variable
14302 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14303 later. */
14304 struct dwarf2_cu *origin_cu = cu;
14305 struct die_info *origin_die
14306 = follow_die_ref (die, abstract_origin, &origin_cu);
14307 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14308 dpo->abstract_to_concrete[origin_die].push_back (die);
14309 }
14310 }
14311
14312 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14313 reading .debug_rnglists.
14314 Callback's type should be:
14315 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14316 Return true if the attributes are present and valid, otherwise,
14317 return false. */
14318
14319 template <typename Callback>
14320 static bool
14321 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14322 Callback &&callback)
14323 {
14324 struct dwarf2_per_objfile *dwarf2_per_objfile
14325 = cu->per_cu->dwarf2_per_objfile;
14326 struct objfile *objfile = dwarf2_per_objfile->objfile;
14327 bfd *obfd = objfile->obfd;
14328 /* Base address selection entry. */
14329 CORE_ADDR base;
14330 int found_base;
14331 const gdb_byte *buffer;
14332 CORE_ADDR baseaddr;
14333 bool overflow = false;
14334
14335 found_base = cu->base_known;
14336 base = cu->base_address;
14337
14338 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14339 if (offset >= dwarf2_per_objfile->rnglists.size)
14340 {
14341 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14342 offset);
14343 return false;
14344 }
14345 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14346
14347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14348
14349 while (1)
14350 {
14351 /* Initialize it due to a false compiler warning. */
14352 CORE_ADDR range_beginning = 0, range_end = 0;
14353 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14354 + dwarf2_per_objfile->rnglists.size);
14355 unsigned int bytes_read;
14356
14357 if (buffer == buf_end)
14358 {
14359 overflow = true;
14360 break;
14361 }
14362 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14363 switch (rlet)
14364 {
14365 case DW_RLE_end_of_list:
14366 break;
14367 case DW_RLE_base_address:
14368 if (buffer + cu->header.addr_size > buf_end)
14369 {
14370 overflow = true;
14371 break;
14372 }
14373 base = read_address (obfd, buffer, cu, &bytes_read);
14374 found_base = 1;
14375 buffer += bytes_read;
14376 break;
14377 case DW_RLE_start_length:
14378 if (buffer + cu->header.addr_size > buf_end)
14379 {
14380 overflow = true;
14381 break;
14382 }
14383 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14384 buffer += bytes_read;
14385 range_end = (range_beginning
14386 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14387 buffer += bytes_read;
14388 if (buffer > buf_end)
14389 {
14390 overflow = true;
14391 break;
14392 }
14393 break;
14394 case DW_RLE_offset_pair:
14395 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14396 buffer += bytes_read;
14397 if (buffer > buf_end)
14398 {
14399 overflow = true;
14400 break;
14401 }
14402 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14403 buffer += bytes_read;
14404 if (buffer > buf_end)
14405 {
14406 overflow = true;
14407 break;
14408 }
14409 break;
14410 case DW_RLE_start_end:
14411 if (buffer + 2 * cu->header.addr_size > buf_end)
14412 {
14413 overflow = true;
14414 break;
14415 }
14416 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14417 buffer += bytes_read;
14418 range_end = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 break;
14421 default:
14422 complaint (_("Invalid .debug_rnglists data (no base address)"));
14423 return false;
14424 }
14425 if (rlet == DW_RLE_end_of_list || overflow)
14426 break;
14427 if (rlet == DW_RLE_base_address)
14428 continue;
14429
14430 if (!found_base)
14431 {
14432 /* We have no valid base address for the ranges
14433 data. */
14434 complaint (_("Invalid .debug_rnglists data (no base address)"));
14435 return false;
14436 }
14437
14438 if (range_beginning > range_end)
14439 {
14440 /* Inverted range entries are invalid. */
14441 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14442 return false;
14443 }
14444
14445 /* Empty range entries have no effect. */
14446 if (range_beginning == range_end)
14447 continue;
14448
14449 range_beginning += base;
14450 range_end += base;
14451
14452 /* A not-uncommon case of bad debug info.
14453 Don't pollute the addrmap with bad data. */
14454 if (range_beginning + baseaddr == 0
14455 && !dwarf2_per_objfile->has_section_at_zero)
14456 {
14457 complaint (_(".debug_rnglists entry has start address of zero"
14458 " [in module %s]"), objfile_name (objfile));
14459 continue;
14460 }
14461
14462 callback (range_beginning, range_end);
14463 }
14464
14465 if (overflow)
14466 {
14467 complaint (_("Offset %d is not terminated "
14468 "for DW_AT_ranges attribute"),
14469 offset);
14470 return false;
14471 }
14472
14473 return true;
14474 }
14475
14476 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14477 Callback's type should be:
14478 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14479 Return 1 if the attributes are present and valid, otherwise, return 0. */
14480
14481 template <typename Callback>
14482 static int
14483 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14484 Callback &&callback)
14485 {
14486 struct dwarf2_per_objfile *dwarf2_per_objfile
14487 = cu->per_cu->dwarf2_per_objfile;
14488 struct objfile *objfile = dwarf2_per_objfile->objfile;
14489 struct comp_unit_head *cu_header = &cu->header;
14490 bfd *obfd = objfile->obfd;
14491 unsigned int addr_size = cu_header->addr_size;
14492 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14493 /* Base address selection entry. */
14494 CORE_ADDR base;
14495 int found_base;
14496 unsigned int dummy;
14497 const gdb_byte *buffer;
14498 CORE_ADDR baseaddr;
14499
14500 if (cu_header->version >= 5)
14501 return dwarf2_rnglists_process (offset, cu, callback);
14502
14503 found_base = cu->base_known;
14504 base = cu->base_address;
14505
14506 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14507 if (offset >= dwarf2_per_objfile->ranges.size)
14508 {
14509 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14510 offset);
14511 return 0;
14512 }
14513 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14514
14515 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14516
14517 while (1)
14518 {
14519 CORE_ADDR range_beginning, range_end;
14520
14521 range_beginning = read_address (obfd, buffer, cu, &dummy);
14522 buffer += addr_size;
14523 range_end = read_address (obfd, buffer, cu, &dummy);
14524 buffer += addr_size;
14525 offset += 2 * addr_size;
14526
14527 /* An end of list marker is a pair of zero addresses. */
14528 if (range_beginning == 0 && range_end == 0)
14529 /* Found the end of list entry. */
14530 break;
14531
14532 /* Each base address selection entry is a pair of 2 values.
14533 The first is the largest possible address, the second is
14534 the base address. Check for a base address here. */
14535 if ((range_beginning & mask) == mask)
14536 {
14537 /* If we found the largest possible address, then we already
14538 have the base address in range_end. */
14539 base = range_end;
14540 found_base = 1;
14541 continue;
14542 }
14543
14544 if (!found_base)
14545 {
14546 /* We have no valid base address for the ranges
14547 data. */
14548 complaint (_("Invalid .debug_ranges data (no base address)"));
14549 return 0;
14550 }
14551
14552 if (range_beginning > range_end)
14553 {
14554 /* Inverted range entries are invalid. */
14555 complaint (_("Invalid .debug_ranges data (inverted range)"));
14556 return 0;
14557 }
14558
14559 /* Empty range entries have no effect. */
14560 if (range_beginning == range_end)
14561 continue;
14562
14563 range_beginning += base;
14564 range_end += base;
14565
14566 /* A not-uncommon case of bad debug info.
14567 Don't pollute the addrmap with bad data. */
14568 if (range_beginning + baseaddr == 0
14569 && !dwarf2_per_objfile->has_section_at_zero)
14570 {
14571 complaint (_(".debug_ranges entry has start address of zero"
14572 " [in module %s]"), objfile_name (objfile));
14573 continue;
14574 }
14575
14576 callback (range_beginning, range_end);
14577 }
14578
14579 return 1;
14580 }
14581
14582 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14583 Return 1 if the attributes are present and valid, otherwise, return 0.
14584 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14585
14586 static int
14587 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14588 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14589 struct partial_symtab *ranges_pst)
14590 {
14591 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14592 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14593 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14594 SECT_OFF_TEXT (objfile));
14595 int low_set = 0;
14596 CORE_ADDR low = 0;
14597 CORE_ADDR high = 0;
14598 int retval;
14599
14600 retval = dwarf2_ranges_process (offset, cu,
14601 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14602 {
14603 if (ranges_pst != NULL)
14604 {
14605 CORE_ADDR lowpc;
14606 CORE_ADDR highpc;
14607
14608 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14609 range_beginning + baseaddr)
14610 - baseaddr);
14611 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14612 range_end + baseaddr)
14613 - baseaddr);
14614 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14615 lowpc, highpc - 1, ranges_pst);
14616 }
14617
14618 /* FIXME: This is recording everything as a low-high
14619 segment of consecutive addresses. We should have a
14620 data structure for discontiguous block ranges
14621 instead. */
14622 if (! low_set)
14623 {
14624 low = range_beginning;
14625 high = range_end;
14626 low_set = 1;
14627 }
14628 else
14629 {
14630 if (range_beginning < low)
14631 low = range_beginning;
14632 if (range_end > high)
14633 high = range_end;
14634 }
14635 });
14636 if (!retval)
14637 return 0;
14638
14639 if (! low_set)
14640 /* If the first entry is an end-of-list marker, the range
14641 describes an empty scope, i.e. no instructions. */
14642 return 0;
14643
14644 if (low_return)
14645 *low_return = low;
14646 if (high_return)
14647 *high_return = high;
14648 return 1;
14649 }
14650
14651 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14652 definition for the return value. *LOWPC and *HIGHPC are set iff
14653 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14654
14655 static enum pc_bounds_kind
14656 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14657 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14658 struct partial_symtab *pst)
14659 {
14660 struct dwarf2_per_objfile *dwarf2_per_objfile
14661 = cu->per_cu->dwarf2_per_objfile;
14662 struct attribute *attr;
14663 struct attribute *attr_high;
14664 CORE_ADDR low = 0;
14665 CORE_ADDR high = 0;
14666 enum pc_bounds_kind ret;
14667
14668 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14669 if (attr_high)
14670 {
14671 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14672 if (attr)
14673 {
14674 low = attr_value_as_address (attr);
14675 high = attr_value_as_address (attr_high);
14676 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14677 high += low;
14678 }
14679 else
14680 /* Found high w/o low attribute. */
14681 return PC_BOUNDS_INVALID;
14682
14683 /* Found consecutive range of addresses. */
14684 ret = PC_BOUNDS_HIGH_LOW;
14685 }
14686 else
14687 {
14688 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14689 if (attr != NULL)
14690 {
14691 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14692 We take advantage of the fact that DW_AT_ranges does not appear
14693 in DW_TAG_compile_unit of DWO files. */
14694 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14695 unsigned int ranges_offset = (DW_UNSND (attr)
14696 + (need_ranges_base
14697 ? cu->ranges_base
14698 : 0));
14699
14700 /* Value of the DW_AT_ranges attribute is the offset in the
14701 .debug_ranges section. */
14702 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14703 return PC_BOUNDS_INVALID;
14704 /* Found discontinuous range of addresses. */
14705 ret = PC_BOUNDS_RANGES;
14706 }
14707 else
14708 return PC_BOUNDS_NOT_PRESENT;
14709 }
14710
14711 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14712 if (high <= low)
14713 return PC_BOUNDS_INVALID;
14714
14715 /* When using the GNU linker, .gnu.linkonce. sections are used to
14716 eliminate duplicate copies of functions and vtables and such.
14717 The linker will arbitrarily choose one and discard the others.
14718 The AT_*_pc values for such functions refer to local labels in
14719 these sections. If the section from that file was discarded, the
14720 labels are not in the output, so the relocs get a value of 0.
14721 If this is a discarded function, mark the pc bounds as invalid,
14722 so that GDB will ignore it. */
14723 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14724 return PC_BOUNDS_INVALID;
14725
14726 *lowpc = low;
14727 if (highpc)
14728 *highpc = high;
14729 return ret;
14730 }
14731
14732 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14733 its low and high PC addresses. Do nothing if these addresses could not
14734 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14735 and HIGHPC to the high address if greater than HIGHPC. */
14736
14737 static void
14738 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14739 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14740 struct dwarf2_cu *cu)
14741 {
14742 CORE_ADDR low, high;
14743 struct die_info *child = die->child;
14744
14745 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14746 {
14747 *lowpc = std::min (*lowpc, low);
14748 *highpc = std::max (*highpc, high);
14749 }
14750
14751 /* If the language does not allow nested subprograms (either inside
14752 subprograms or lexical blocks), we're done. */
14753 if (cu->language != language_ada)
14754 return;
14755
14756 /* Check all the children of the given DIE. If it contains nested
14757 subprograms, then check their pc bounds. Likewise, we need to
14758 check lexical blocks as well, as they may also contain subprogram
14759 definitions. */
14760 while (child && child->tag)
14761 {
14762 if (child->tag == DW_TAG_subprogram
14763 || child->tag == DW_TAG_lexical_block)
14764 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14765 child = sibling_die (child);
14766 }
14767 }
14768
14769 /* Get the low and high pc's represented by the scope DIE, and store
14770 them in *LOWPC and *HIGHPC. If the correct values can't be
14771 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14772
14773 static void
14774 get_scope_pc_bounds (struct die_info *die,
14775 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14776 struct dwarf2_cu *cu)
14777 {
14778 CORE_ADDR best_low = (CORE_ADDR) -1;
14779 CORE_ADDR best_high = (CORE_ADDR) 0;
14780 CORE_ADDR current_low, current_high;
14781
14782 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14783 >= PC_BOUNDS_RANGES)
14784 {
14785 best_low = current_low;
14786 best_high = current_high;
14787 }
14788 else
14789 {
14790 struct die_info *child = die->child;
14791
14792 while (child && child->tag)
14793 {
14794 switch (child->tag) {
14795 case DW_TAG_subprogram:
14796 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14797 break;
14798 case DW_TAG_namespace:
14799 case DW_TAG_module:
14800 /* FIXME: carlton/2004-01-16: Should we do this for
14801 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14802 that current GCC's always emit the DIEs corresponding
14803 to definitions of methods of classes as children of a
14804 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14805 the DIEs giving the declarations, which could be
14806 anywhere). But I don't see any reason why the
14807 standards says that they have to be there. */
14808 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14809
14810 if (current_low != ((CORE_ADDR) -1))
14811 {
14812 best_low = std::min (best_low, current_low);
14813 best_high = std::max (best_high, current_high);
14814 }
14815 break;
14816 default:
14817 /* Ignore. */
14818 break;
14819 }
14820
14821 child = sibling_die (child);
14822 }
14823 }
14824
14825 *lowpc = best_low;
14826 *highpc = best_high;
14827 }
14828
14829 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14830 in DIE. */
14831
14832 static void
14833 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14834 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14835 {
14836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14837 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14838 struct attribute *attr;
14839 struct attribute *attr_high;
14840
14841 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14842 if (attr_high)
14843 {
14844 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14845 if (attr)
14846 {
14847 CORE_ADDR low = attr_value_as_address (attr);
14848 CORE_ADDR high = attr_value_as_address (attr_high);
14849
14850 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14851 high += low;
14852
14853 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14854 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14855 cu->get_builder ()->record_block_range (block, low, high - 1);
14856 }
14857 }
14858
14859 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14860 if (attr)
14861 {
14862 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14863 We take advantage of the fact that DW_AT_ranges does not appear
14864 in DW_TAG_compile_unit of DWO files. */
14865 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14866
14867 /* The value of the DW_AT_ranges attribute is the offset of the
14868 address range list in the .debug_ranges section. */
14869 unsigned long offset = (DW_UNSND (attr)
14870 + (need_ranges_base ? cu->ranges_base : 0));
14871
14872 std::vector<blockrange> blockvec;
14873 dwarf2_ranges_process (offset, cu,
14874 [&] (CORE_ADDR start, CORE_ADDR end)
14875 {
14876 start += baseaddr;
14877 end += baseaddr;
14878 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14879 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14880 cu->get_builder ()->record_block_range (block, start, end - 1);
14881 blockvec.emplace_back (start, end);
14882 });
14883
14884 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14885 }
14886 }
14887
14888 /* Check whether the producer field indicates either of GCC < 4.6, or the
14889 Intel C/C++ compiler, and cache the result in CU. */
14890
14891 static void
14892 check_producer (struct dwarf2_cu *cu)
14893 {
14894 int major, minor;
14895
14896 if (cu->producer == NULL)
14897 {
14898 /* For unknown compilers expect their behavior is DWARF version
14899 compliant.
14900
14901 GCC started to support .debug_types sections by -gdwarf-4 since
14902 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14903 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14904 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14905 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14906 }
14907 else if (producer_is_gcc (cu->producer, &major, &minor))
14908 {
14909 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14910 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14911 }
14912 else if (producer_is_icc (cu->producer, &major, &minor))
14913 {
14914 cu->producer_is_icc = true;
14915 cu->producer_is_icc_lt_14 = major < 14;
14916 }
14917 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14918 cu->producer_is_codewarrior = true;
14919 else
14920 {
14921 /* For other non-GCC compilers, expect their behavior is DWARF version
14922 compliant. */
14923 }
14924
14925 cu->checked_producer = true;
14926 }
14927
14928 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14929 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14930 during 4.6.0 experimental. */
14931
14932 static bool
14933 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14934 {
14935 if (!cu->checked_producer)
14936 check_producer (cu);
14937
14938 return cu->producer_is_gxx_lt_4_6;
14939 }
14940
14941
14942 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14943 with incorrect is_stmt attributes. */
14944
14945 static bool
14946 producer_is_codewarrior (struct dwarf2_cu *cu)
14947 {
14948 if (!cu->checked_producer)
14949 check_producer (cu);
14950
14951 return cu->producer_is_codewarrior;
14952 }
14953
14954 /* Return the default accessibility type if it is not overriden by
14955 DW_AT_accessibility. */
14956
14957 static enum dwarf_access_attribute
14958 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14959 {
14960 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14961 {
14962 /* The default DWARF 2 accessibility for members is public, the default
14963 accessibility for inheritance is private. */
14964
14965 if (die->tag != DW_TAG_inheritance)
14966 return DW_ACCESS_public;
14967 else
14968 return DW_ACCESS_private;
14969 }
14970 else
14971 {
14972 /* DWARF 3+ defines the default accessibility a different way. The same
14973 rules apply now for DW_TAG_inheritance as for the members and it only
14974 depends on the container kind. */
14975
14976 if (die->parent->tag == DW_TAG_class_type)
14977 return DW_ACCESS_private;
14978 else
14979 return DW_ACCESS_public;
14980 }
14981 }
14982
14983 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14984 offset. If the attribute was not found return 0, otherwise return
14985 1. If it was found but could not properly be handled, set *OFFSET
14986 to 0. */
14987
14988 static int
14989 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14990 LONGEST *offset)
14991 {
14992 struct attribute *attr;
14993
14994 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14995 if (attr != NULL)
14996 {
14997 *offset = 0;
14998
14999 /* Note that we do not check for a section offset first here.
15000 This is because DW_AT_data_member_location is new in DWARF 4,
15001 so if we see it, we can assume that a constant form is really
15002 a constant and not a section offset. */
15003 if (attr_form_is_constant (attr))
15004 *offset = dwarf2_get_attr_constant_value (attr, 0);
15005 else if (attr_form_is_section_offset (attr))
15006 dwarf2_complex_location_expr_complaint ();
15007 else if (attr_form_is_block (attr))
15008 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15009 else
15010 dwarf2_complex_location_expr_complaint ();
15011
15012 return 1;
15013 }
15014
15015 return 0;
15016 }
15017
15018 /* Add an aggregate field to the field list. */
15019
15020 static void
15021 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15022 struct dwarf2_cu *cu)
15023 {
15024 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15026 struct nextfield *new_field;
15027 struct attribute *attr;
15028 struct field *fp;
15029 const char *fieldname = "";
15030
15031 if (die->tag == DW_TAG_inheritance)
15032 {
15033 fip->baseclasses.emplace_back ();
15034 new_field = &fip->baseclasses.back ();
15035 }
15036 else
15037 {
15038 fip->fields.emplace_back ();
15039 new_field = &fip->fields.back ();
15040 }
15041
15042 fip->nfields++;
15043
15044 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15045 if (attr)
15046 new_field->accessibility = DW_UNSND (attr);
15047 else
15048 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15049 if (new_field->accessibility != DW_ACCESS_public)
15050 fip->non_public_fields = 1;
15051
15052 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15053 if (attr)
15054 new_field->virtuality = DW_UNSND (attr);
15055 else
15056 new_field->virtuality = DW_VIRTUALITY_none;
15057
15058 fp = &new_field->field;
15059
15060 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15061 {
15062 LONGEST offset;
15063
15064 /* Data member other than a C++ static data member. */
15065
15066 /* Get type of field. */
15067 fp->type = die_type (die, cu);
15068
15069 SET_FIELD_BITPOS (*fp, 0);
15070
15071 /* Get bit size of field (zero if none). */
15072 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15073 if (attr)
15074 {
15075 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15076 }
15077 else
15078 {
15079 FIELD_BITSIZE (*fp) = 0;
15080 }
15081
15082 /* Get bit offset of field. */
15083 if (handle_data_member_location (die, cu, &offset))
15084 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15085 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15086 if (attr)
15087 {
15088 if (gdbarch_bits_big_endian (gdbarch))
15089 {
15090 /* For big endian bits, the DW_AT_bit_offset gives the
15091 additional bit offset from the MSB of the containing
15092 anonymous object to the MSB of the field. We don't
15093 have to do anything special since we don't need to
15094 know the size of the anonymous object. */
15095 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15096 }
15097 else
15098 {
15099 /* For little endian bits, compute the bit offset to the
15100 MSB of the anonymous object, subtract off the number of
15101 bits from the MSB of the field to the MSB of the
15102 object, and then subtract off the number of bits of
15103 the field itself. The result is the bit offset of
15104 the LSB of the field. */
15105 int anonymous_size;
15106 int bit_offset = DW_UNSND (attr);
15107
15108 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15109 if (attr)
15110 {
15111 /* The size of the anonymous object containing
15112 the bit field is explicit, so use the
15113 indicated size (in bytes). */
15114 anonymous_size = DW_UNSND (attr);
15115 }
15116 else
15117 {
15118 /* The size of the anonymous object containing
15119 the bit field must be inferred from the type
15120 attribute of the data member containing the
15121 bit field. */
15122 anonymous_size = TYPE_LENGTH (fp->type);
15123 }
15124 SET_FIELD_BITPOS (*fp,
15125 (FIELD_BITPOS (*fp)
15126 + anonymous_size * bits_per_byte
15127 - bit_offset - FIELD_BITSIZE (*fp)));
15128 }
15129 }
15130 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15131 if (attr != NULL)
15132 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15133 + dwarf2_get_attr_constant_value (attr, 0)));
15134
15135 /* Get name of field. */
15136 fieldname = dwarf2_name (die, cu);
15137 if (fieldname == NULL)
15138 fieldname = "";
15139
15140 /* The name is already allocated along with this objfile, so we don't
15141 need to duplicate it for the type. */
15142 fp->name = fieldname;
15143
15144 /* Change accessibility for artificial fields (e.g. virtual table
15145 pointer or virtual base class pointer) to private. */
15146 if (dwarf2_attr (die, DW_AT_artificial, cu))
15147 {
15148 FIELD_ARTIFICIAL (*fp) = 1;
15149 new_field->accessibility = DW_ACCESS_private;
15150 fip->non_public_fields = 1;
15151 }
15152 }
15153 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15154 {
15155 /* C++ static member. */
15156
15157 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15158 is a declaration, but all versions of G++ as of this writing
15159 (so through at least 3.2.1) incorrectly generate
15160 DW_TAG_variable tags. */
15161
15162 const char *physname;
15163
15164 /* Get name of field. */
15165 fieldname = dwarf2_name (die, cu);
15166 if (fieldname == NULL)
15167 return;
15168
15169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15170 if (attr
15171 /* Only create a symbol if this is an external value.
15172 new_symbol checks this and puts the value in the global symbol
15173 table, which we want. If it is not external, new_symbol
15174 will try to put the value in cu->list_in_scope which is wrong. */
15175 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15176 {
15177 /* A static const member, not much different than an enum as far as
15178 we're concerned, except that we can support more types. */
15179 new_symbol (die, NULL, cu);
15180 }
15181
15182 /* Get physical name. */
15183 physname = dwarf2_physname (fieldname, die, cu);
15184
15185 /* The name is already allocated along with this objfile, so we don't
15186 need to duplicate it for the type. */
15187 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15188 FIELD_TYPE (*fp) = die_type (die, cu);
15189 FIELD_NAME (*fp) = fieldname;
15190 }
15191 else if (die->tag == DW_TAG_inheritance)
15192 {
15193 LONGEST offset;
15194
15195 /* C++ base class field. */
15196 if (handle_data_member_location (die, cu, &offset))
15197 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15198 FIELD_BITSIZE (*fp) = 0;
15199 FIELD_TYPE (*fp) = die_type (die, cu);
15200 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15201 }
15202 else if (die->tag == DW_TAG_variant_part)
15203 {
15204 /* process_structure_scope will treat this DIE as a union. */
15205 process_structure_scope (die, cu);
15206
15207 /* The variant part is relative to the start of the enclosing
15208 structure. */
15209 SET_FIELD_BITPOS (*fp, 0);
15210 fp->type = get_die_type (die, cu);
15211 fp->artificial = 1;
15212 fp->name = "<<variant>>";
15213
15214 /* Normally a DW_TAG_variant_part won't have a size, but our
15215 representation requires one, so set it to the maximum of the
15216 child sizes. */
15217 if (TYPE_LENGTH (fp->type) == 0)
15218 {
15219 unsigned max = 0;
15220 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15221 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15222 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15223 TYPE_LENGTH (fp->type) = max;
15224 }
15225 }
15226 else
15227 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15228 }
15229
15230 /* Can the type given by DIE define another type? */
15231
15232 static bool
15233 type_can_define_types (const struct die_info *die)
15234 {
15235 switch (die->tag)
15236 {
15237 case DW_TAG_typedef:
15238 case DW_TAG_class_type:
15239 case DW_TAG_structure_type:
15240 case DW_TAG_union_type:
15241 case DW_TAG_enumeration_type:
15242 return true;
15243
15244 default:
15245 return false;
15246 }
15247 }
15248
15249 /* Add a type definition defined in the scope of the FIP's class. */
15250
15251 static void
15252 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15253 struct dwarf2_cu *cu)
15254 {
15255 struct decl_field fp;
15256 memset (&fp, 0, sizeof (fp));
15257
15258 gdb_assert (type_can_define_types (die));
15259
15260 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15261 fp.name = dwarf2_name (die, cu);
15262 fp.type = read_type_die (die, cu);
15263
15264 /* Save accessibility. */
15265 enum dwarf_access_attribute accessibility;
15266 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15267 if (attr != NULL)
15268 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15269 else
15270 accessibility = dwarf2_default_access_attribute (die, cu);
15271 switch (accessibility)
15272 {
15273 case DW_ACCESS_public:
15274 /* The assumed value if neither private nor protected. */
15275 break;
15276 case DW_ACCESS_private:
15277 fp.is_private = 1;
15278 break;
15279 case DW_ACCESS_protected:
15280 fp.is_protected = 1;
15281 break;
15282 default:
15283 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15284 }
15285
15286 if (die->tag == DW_TAG_typedef)
15287 fip->typedef_field_list.push_back (fp);
15288 else
15289 fip->nested_types_list.push_back (fp);
15290 }
15291
15292 /* Create the vector of fields, and attach it to the type. */
15293
15294 static void
15295 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15296 struct dwarf2_cu *cu)
15297 {
15298 int nfields = fip->nfields;
15299
15300 /* Record the field count, allocate space for the array of fields,
15301 and create blank accessibility bitfields if necessary. */
15302 TYPE_NFIELDS (type) = nfields;
15303 TYPE_FIELDS (type) = (struct field *)
15304 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15305
15306 if (fip->non_public_fields && cu->language != language_ada)
15307 {
15308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15309
15310 TYPE_FIELD_PRIVATE_BITS (type) =
15311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15312 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15313
15314 TYPE_FIELD_PROTECTED_BITS (type) =
15315 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15316 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15317
15318 TYPE_FIELD_IGNORE_BITS (type) =
15319 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15320 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15321 }
15322
15323 /* If the type has baseclasses, allocate and clear a bit vector for
15324 TYPE_FIELD_VIRTUAL_BITS. */
15325 if (!fip->baseclasses.empty () && cu->language != language_ada)
15326 {
15327 int num_bytes = B_BYTES (fip->baseclasses.size ());
15328 unsigned char *pointer;
15329
15330 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15331 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15332 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15333 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15334 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15335 }
15336
15337 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15338 {
15339 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15340
15341 for (int index = 0; index < nfields; ++index)
15342 {
15343 struct nextfield &field = fip->fields[index];
15344
15345 if (field.variant.is_discriminant)
15346 di->discriminant_index = index;
15347 else if (field.variant.default_branch)
15348 di->default_index = index;
15349 else
15350 di->discriminants[index] = field.variant.discriminant_value;
15351 }
15352 }
15353
15354 /* Copy the saved-up fields into the field vector. */
15355 for (int i = 0; i < nfields; ++i)
15356 {
15357 struct nextfield &field
15358 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15359 : fip->fields[i - fip->baseclasses.size ()]);
15360
15361 TYPE_FIELD (type, i) = field.field;
15362 switch (field.accessibility)
15363 {
15364 case DW_ACCESS_private:
15365 if (cu->language != language_ada)
15366 SET_TYPE_FIELD_PRIVATE (type, i);
15367 break;
15368
15369 case DW_ACCESS_protected:
15370 if (cu->language != language_ada)
15371 SET_TYPE_FIELD_PROTECTED (type, i);
15372 break;
15373
15374 case DW_ACCESS_public:
15375 break;
15376
15377 default:
15378 /* Unknown accessibility. Complain and treat it as public. */
15379 {
15380 complaint (_("unsupported accessibility %d"),
15381 field.accessibility);
15382 }
15383 break;
15384 }
15385 if (i < fip->baseclasses.size ())
15386 {
15387 switch (field.virtuality)
15388 {
15389 case DW_VIRTUALITY_virtual:
15390 case DW_VIRTUALITY_pure_virtual:
15391 if (cu->language == language_ada)
15392 error (_("unexpected virtuality in component of Ada type"));
15393 SET_TYPE_FIELD_VIRTUAL (type, i);
15394 break;
15395 }
15396 }
15397 }
15398 }
15399
15400 /* Return true if this member function is a constructor, false
15401 otherwise. */
15402
15403 static int
15404 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15405 {
15406 const char *fieldname;
15407 const char *type_name;
15408 int len;
15409
15410 if (die->parent == NULL)
15411 return 0;
15412
15413 if (die->parent->tag != DW_TAG_structure_type
15414 && die->parent->tag != DW_TAG_union_type
15415 && die->parent->tag != DW_TAG_class_type)
15416 return 0;
15417
15418 fieldname = dwarf2_name (die, cu);
15419 type_name = dwarf2_name (die->parent, cu);
15420 if (fieldname == NULL || type_name == NULL)
15421 return 0;
15422
15423 len = strlen (fieldname);
15424 return (strncmp (fieldname, type_name, len) == 0
15425 && (type_name[len] == '\0' || type_name[len] == '<'));
15426 }
15427
15428 /* Add a member function to the proper fieldlist. */
15429
15430 static void
15431 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15432 struct type *type, struct dwarf2_cu *cu)
15433 {
15434 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15435 struct attribute *attr;
15436 int i;
15437 struct fnfieldlist *flp = nullptr;
15438 struct fn_field *fnp;
15439 const char *fieldname;
15440 struct type *this_type;
15441 enum dwarf_access_attribute accessibility;
15442
15443 if (cu->language == language_ada)
15444 error (_("unexpected member function in Ada type"));
15445
15446 /* Get name of member function. */
15447 fieldname = dwarf2_name (die, cu);
15448 if (fieldname == NULL)
15449 return;
15450
15451 /* Look up member function name in fieldlist. */
15452 for (i = 0; i < fip->fnfieldlists.size (); i++)
15453 {
15454 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15455 {
15456 flp = &fip->fnfieldlists[i];
15457 break;
15458 }
15459 }
15460
15461 /* Create a new fnfieldlist if necessary. */
15462 if (flp == nullptr)
15463 {
15464 fip->fnfieldlists.emplace_back ();
15465 flp = &fip->fnfieldlists.back ();
15466 flp->name = fieldname;
15467 i = fip->fnfieldlists.size () - 1;
15468 }
15469
15470 /* Create a new member function field and add it to the vector of
15471 fnfieldlists. */
15472 flp->fnfields.emplace_back ();
15473 fnp = &flp->fnfields.back ();
15474
15475 /* Delay processing of the physname until later. */
15476 if (cu->language == language_cplus)
15477 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15478 die, cu);
15479 else
15480 {
15481 const char *physname = dwarf2_physname (fieldname, die, cu);
15482 fnp->physname = physname ? physname : "";
15483 }
15484
15485 fnp->type = alloc_type (objfile);
15486 this_type = read_type_die (die, cu);
15487 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15488 {
15489 int nparams = TYPE_NFIELDS (this_type);
15490
15491 /* TYPE is the domain of this method, and THIS_TYPE is the type
15492 of the method itself (TYPE_CODE_METHOD). */
15493 smash_to_method_type (fnp->type, type,
15494 TYPE_TARGET_TYPE (this_type),
15495 TYPE_FIELDS (this_type),
15496 TYPE_NFIELDS (this_type),
15497 TYPE_VARARGS (this_type));
15498
15499 /* Handle static member functions.
15500 Dwarf2 has no clean way to discern C++ static and non-static
15501 member functions. G++ helps GDB by marking the first
15502 parameter for non-static member functions (which is the this
15503 pointer) as artificial. We obtain this information from
15504 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15505 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15506 fnp->voffset = VOFFSET_STATIC;
15507 }
15508 else
15509 complaint (_("member function type missing for '%s'"),
15510 dwarf2_full_name (fieldname, die, cu));
15511
15512 /* Get fcontext from DW_AT_containing_type if present. */
15513 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15514 fnp->fcontext = die_containing_type (die, cu);
15515
15516 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15517 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15518
15519 /* Get accessibility. */
15520 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15521 if (attr)
15522 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15523 else
15524 accessibility = dwarf2_default_access_attribute (die, cu);
15525 switch (accessibility)
15526 {
15527 case DW_ACCESS_private:
15528 fnp->is_private = 1;
15529 break;
15530 case DW_ACCESS_protected:
15531 fnp->is_protected = 1;
15532 break;
15533 }
15534
15535 /* Check for artificial methods. */
15536 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15537 if (attr && DW_UNSND (attr) != 0)
15538 fnp->is_artificial = 1;
15539
15540 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15541
15542 /* Get index in virtual function table if it is a virtual member
15543 function. For older versions of GCC, this is an offset in the
15544 appropriate virtual table, as specified by DW_AT_containing_type.
15545 For everyone else, it is an expression to be evaluated relative
15546 to the object address. */
15547
15548 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15549 if (attr)
15550 {
15551 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15552 {
15553 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15554 {
15555 /* Old-style GCC. */
15556 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15557 }
15558 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15559 || (DW_BLOCK (attr)->size > 1
15560 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15561 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15562 {
15563 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15564 if ((fnp->voffset % cu->header.addr_size) != 0)
15565 dwarf2_complex_location_expr_complaint ();
15566 else
15567 fnp->voffset /= cu->header.addr_size;
15568 fnp->voffset += 2;
15569 }
15570 else
15571 dwarf2_complex_location_expr_complaint ();
15572
15573 if (!fnp->fcontext)
15574 {
15575 /* If there is no `this' field and no DW_AT_containing_type,
15576 we cannot actually find a base class context for the
15577 vtable! */
15578 if (TYPE_NFIELDS (this_type) == 0
15579 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15580 {
15581 complaint (_("cannot determine context for virtual member "
15582 "function \"%s\" (offset %s)"),
15583 fieldname, sect_offset_str (die->sect_off));
15584 }
15585 else
15586 {
15587 fnp->fcontext
15588 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15589 }
15590 }
15591 }
15592 else if (attr_form_is_section_offset (attr))
15593 {
15594 dwarf2_complex_location_expr_complaint ();
15595 }
15596 else
15597 {
15598 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15599 fieldname);
15600 }
15601 }
15602 else
15603 {
15604 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15605 if (attr && DW_UNSND (attr))
15606 {
15607 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15608 complaint (_("Member function \"%s\" (offset %s) is virtual "
15609 "but the vtable offset is not specified"),
15610 fieldname, sect_offset_str (die->sect_off));
15611 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15612 TYPE_CPLUS_DYNAMIC (type) = 1;
15613 }
15614 }
15615 }
15616
15617 /* Create the vector of member function fields, and attach it to the type. */
15618
15619 static void
15620 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15621 struct dwarf2_cu *cu)
15622 {
15623 if (cu->language == language_ada)
15624 error (_("unexpected member functions in Ada type"));
15625
15626 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15627 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15628 TYPE_ALLOC (type,
15629 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15630
15631 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15632 {
15633 struct fnfieldlist &nf = fip->fnfieldlists[i];
15634 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15635
15636 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15637 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15638 fn_flp->fn_fields = (struct fn_field *)
15639 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15640
15641 for (int k = 0; k < nf.fnfields.size (); ++k)
15642 fn_flp->fn_fields[k] = nf.fnfields[k];
15643 }
15644
15645 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15646 }
15647
15648 /* Returns non-zero if NAME is the name of a vtable member in CU's
15649 language, zero otherwise. */
15650 static int
15651 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15652 {
15653 static const char vptr[] = "_vptr";
15654
15655 /* Look for the C++ form of the vtable. */
15656 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15657 return 1;
15658
15659 return 0;
15660 }
15661
15662 /* GCC outputs unnamed structures that are really pointers to member
15663 functions, with the ABI-specified layout. If TYPE describes
15664 such a structure, smash it into a member function type.
15665
15666 GCC shouldn't do this; it should just output pointer to member DIEs.
15667 This is GCC PR debug/28767. */
15668
15669 static void
15670 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15671 {
15672 struct type *pfn_type, *self_type, *new_type;
15673
15674 /* Check for a structure with no name and two children. */
15675 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15676 return;
15677
15678 /* Check for __pfn and __delta members. */
15679 if (TYPE_FIELD_NAME (type, 0) == NULL
15680 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15681 || TYPE_FIELD_NAME (type, 1) == NULL
15682 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15683 return;
15684
15685 /* Find the type of the method. */
15686 pfn_type = TYPE_FIELD_TYPE (type, 0);
15687 if (pfn_type == NULL
15688 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15689 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15690 return;
15691
15692 /* Look for the "this" argument. */
15693 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15694 if (TYPE_NFIELDS (pfn_type) == 0
15695 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15696 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15697 return;
15698
15699 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15700 new_type = alloc_type (objfile);
15701 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15702 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15703 TYPE_VARARGS (pfn_type));
15704 smash_to_methodptr_type (type, new_type);
15705 }
15706
15707 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15708 appropriate error checking and issuing complaints if there is a
15709 problem. */
15710
15711 static ULONGEST
15712 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15713 {
15714 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15715
15716 if (attr == nullptr)
15717 return 0;
15718
15719 if (!attr_form_is_constant (attr))
15720 {
15721 complaint (_("DW_AT_alignment must have constant form"
15722 " - DIE at %s [in module %s]"),
15723 sect_offset_str (die->sect_off),
15724 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15725 return 0;
15726 }
15727
15728 ULONGEST align;
15729 if (attr->form == DW_FORM_sdata)
15730 {
15731 LONGEST val = DW_SND (attr);
15732 if (val < 0)
15733 {
15734 complaint (_("DW_AT_alignment value must not be negative"
15735 " - DIE at %s [in module %s]"),
15736 sect_offset_str (die->sect_off),
15737 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15738 return 0;
15739 }
15740 align = val;
15741 }
15742 else
15743 align = DW_UNSND (attr);
15744
15745 if (align == 0)
15746 {
15747 complaint (_("DW_AT_alignment value must not be zero"
15748 " - DIE at %s [in module %s]"),
15749 sect_offset_str (die->sect_off),
15750 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 return 0;
15752 }
15753 if ((align & (align - 1)) != 0)
15754 {
15755 complaint (_("DW_AT_alignment value must be a power of 2"
15756 " - DIE at %s [in module %s]"),
15757 sect_offset_str (die->sect_off),
15758 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15759 return 0;
15760 }
15761
15762 return align;
15763 }
15764
15765 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15766 the alignment for TYPE. */
15767
15768 static void
15769 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15770 struct type *type)
15771 {
15772 if (!set_type_align (type, get_alignment (cu, die)))
15773 complaint (_("DW_AT_alignment value too large"
15774 " - DIE at %s [in module %s]"),
15775 sect_offset_str (die->sect_off),
15776 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15777 }
15778
15779 /* Called when we find the DIE that starts a structure or union scope
15780 (definition) to create a type for the structure or union. Fill in
15781 the type's name and general properties; the members will not be
15782 processed until process_structure_scope. A symbol table entry for
15783 the type will also not be done until process_structure_scope (assuming
15784 the type has a name).
15785
15786 NOTE: we need to call these functions regardless of whether or not the
15787 DIE has a DW_AT_name attribute, since it might be an anonymous
15788 structure or union. This gets the type entered into our set of
15789 user defined types. */
15790
15791 static struct type *
15792 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15793 {
15794 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15795 struct type *type;
15796 struct attribute *attr;
15797 const char *name;
15798
15799 /* If the definition of this type lives in .debug_types, read that type.
15800 Don't follow DW_AT_specification though, that will take us back up
15801 the chain and we want to go down. */
15802 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15803 if (attr)
15804 {
15805 type = get_DW_AT_signature_type (die, attr, cu);
15806
15807 /* The type's CU may not be the same as CU.
15808 Ensure TYPE is recorded with CU in die_type_hash. */
15809 return set_die_type (die, type, cu);
15810 }
15811
15812 type = alloc_type (objfile);
15813 INIT_CPLUS_SPECIFIC (type);
15814
15815 name = dwarf2_name (die, cu);
15816 if (name != NULL)
15817 {
15818 if (cu->language == language_cplus
15819 || cu->language == language_d
15820 || cu->language == language_rust)
15821 {
15822 const char *full_name = dwarf2_full_name (name, die, cu);
15823
15824 /* dwarf2_full_name might have already finished building the DIE's
15825 type. If so, there is no need to continue. */
15826 if (get_die_type (die, cu) != NULL)
15827 return get_die_type (die, cu);
15828
15829 TYPE_NAME (type) = full_name;
15830 }
15831 else
15832 {
15833 /* The name is already allocated along with this objfile, so
15834 we don't need to duplicate it for the type. */
15835 TYPE_NAME (type) = name;
15836 }
15837 }
15838
15839 if (die->tag == DW_TAG_structure_type)
15840 {
15841 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15842 }
15843 else if (die->tag == DW_TAG_union_type)
15844 {
15845 TYPE_CODE (type) = TYPE_CODE_UNION;
15846 }
15847 else if (die->tag == DW_TAG_variant_part)
15848 {
15849 TYPE_CODE (type) = TYPE_CODE_UNION;
15850 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15851 }
15852 else
15853 {
15854 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15855 }
15856
15857 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15858 TYPE_DECLARED_CLASS (type) = 1;
15859
15860 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15861 if (attr)
15862 {
15863 if (attr_form_is_constant (attr))
15864 TYPE_LENGTH (type) = DW_UNSND (attr);
15865 else
15866 {
15867 /* For the moment, dynamic type sizes are not supported
15868 by GDB's struct type. The actual size is determined
15869 on-demand when resolving the type of a given object,
15870 so set the type's length to zero for now. Otherwise,
15871 we record an expression as the length, and that expression
15872 could lead to a very large value, which could eventually
15873 lead to us trying to allocate that much memory when creating
15874 a value of that type. */
15875 TYPE_LENGTH (type) = 0;
15876 }
15877 }
15878 else
15879 {
15880 TYPE_LENGTH (type) = 0;
15881 }
15882
15883 maybe_set_alignment (cu, die, type);
15884
15885 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15886 {
15887 /* ICC<14 does not output the required DW_AT_declaration on
15888 incomplete types, but gives them a size of zero. */
15889 TYPE_STUB (type) = 1;
15890 }
15891 else
15892 TYPE_STUB_SUPPORTED (type) = 1;
15893
15894 if (die_is_declaration (die, cu))
15895 TYPE_STUB (type) = 1;
15896 else if (attr == NULL && die->child == NULL
15897 && producer_is_realview (cu->producer))
15898 /* RealView does not output the required DW_AT_declaration
15899 on incomplete types. */
15900 TYPE_STUB (type) = 1;
15901
15902 /* We need to add the type field to the die immediately so we don't
15903 infinitely recurse when dealing with pointers to the structure
15904 type within the structure itself. */
15905 set_die_type (die, type, cu);
15906
15907 /* set_die_type should be already done. */
15908 set_descriptive_type (type, die, cu);
15909
15910 return type;
15911 }
15912
15913 /* A helper for process_structure_scope that handles a single member
15914 DIE. */
15915
15916 static void
15917 handle_struct_member_die (struct die_info *child_die, struct type *type,
15918 struct field_info *fi,
15919 std::vector<struct symbol *> *template_args,
15920 struct dwarf2_cu *cu)
15921 {
15922 if (child_die->tag == DW_TAG_member
15923 || child_die->tag == DW_TAG_variable
15924 || child_die->tag == DW_TAG_variant_part)
15925 {
15926 /* NOTE: carlton/2002-11-05: A C++ static data member
15927 should be a DW_TAG_member that is a declaration, but
15928 all versions of G++ as of this writing (so through at
15929 least 3.2.1) incorrectly generate DW_TAG_variable
15930 tags for them instead. */
15931 dwarf2_add_field (fi, child_die, cu);
15932 }
15933 else if (child_die->tag == DW_TAG_subprogram)
15934 {
15935 /* Rust doesn't have member functions in the C++ sense.
15936 However, it does emit ordinary functions as children
15937 of a struct DIE. */
15938 if (cu->language == language_rust)
15939 read_func_scope (child_die, cu);
15940 else
15941 {
15942 /* C++ member function. */
15943 dwarf2_add_member_fn (fi, child_die, type, cu);
15944 }
15945 }
15946 else if (child_die->tag == DW_TAG_inheritance)
15947 {
15948 /* C++ base class field. */
15949 dwarf2_add_field (fi, child_die, cu);
15950 }
15951 else if (type_can_define_types (child_die))
15952 dwarf2_add_type_defn (fi, child_die, cu);
15953 else if (child_die->tag == DW_TAG_template_type_param
15954 || child_die->tag == DW_TAG_template_value_param)
15955 {
15956 struct symbol *arg = new_symbol (child_die, NULL, cu);
15957
15958 if (arg != NULL)
15959 template_args->push_back (arg);
15960 }
15961 else if (child_die->tag == DW_TAG_variant)
15962 {
15963 /* In a variant we want to get the discriminant and also add a
15964 field for our sole member child. */
15965 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15966
15967 for (struct die_info *variant_child = child_die->child;
15968 variant_child != NULL;
15969 variant_child = sibling_die (variant_child))
15970 {
15971 if (variant_child->tag == DW_TAG_member)
15972 {
15973 handle_struct_member_die (variant_child, type, fi,
15974 template_args, cu);
15975 /* Only handle the one. */
15976 break;
15977 }
15978 }
15979
15980 /* We don't handle this but we might as well report it if we see
15981 it. */
15982 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15983 complaint (_("DW_AT_discr_list is not supported yet"
15984 " - DIE at %s [in module %s]"),
15985 sect_offset_str (child_die->sect_off),
15986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15987
15988 /* The first field was just added, so we can stash the
15989 discriminant there. */
15990 gdb_assert (!fi->fields.empty ());
15991 if (discr == NULL)
15992 fi->fields.back ().variant.default_branch = true;
15993 else
15994 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15995 }
15996 }
15997
15998 /* Finish creating a structure or union type, including filling in
15999 its members and creating a symbol for it. */
16000
16001 static void
16002 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16003 {
16004 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16005 struct die_info *child_die;
16006 struct type *type;
16007
16008 type = get_die_type (die, cu);
16009 if (type == NULL)
16010 type = read_structure_type (die, cu);
16011
16012 /* When reading a DW_TAG_variant_part, we need to notice when we
16013 read the discriminant member, so we can record it later in the
16014 discriminant_info. */
16015 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16016 sect_offset discr_offset;
16017 bool has_template_parameters = false;
16018
16019 if (is_variant_part)
16020 {
16021 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16022 if (discr == NULL)
16023 {
16024 /* Maybe it's a univariant form, an extension we support.
16025 In this case arrange not to check the offset. */
16026 is_variant_part = false;
16027 }
16028 else if (attr_form_is_ref (discr))
16029 {
16030 struct dwarf2_cu *target_cu = cu;
16031 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16032
16033 discr_offset = target_die->sect_off;
16034 }
16035 else
16036 {
16037 complaint (_("DW_AT_discr does not have DIE reference form"
16038 " - DIE at %s [in module %s]"),
16039 sect_offset_str (die->sect_off),
16040 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16041 is_variant_part = false;
16042 }
16043 }
16044
16045 if (die->child != NULL && ! die_is_declaration (die, cu))
16046 {
16047 struct field_info fi;
16048 std::vector<struct symbol *> template_args;
16049
16050 child_die = die->child;
16051
16052 while (child_die && child_die->tag)
16053 {
16054 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16055
16056 if (is_variant_part && discr_offset == child_die->sect_off)
16057 fi.fields.back ().variant.is_discriminant = true;
16058
16059 child_die = sibling_die (child_die);
16060 }
16061
16062 /* Attach template arguments to type. */
16063 if (!template_args.empty ())
16064 {
16065 has_template_parameters = true;
16066 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16067 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16068 TYPE_TEMPLATE_ARGUMENTS (type)
16069 = XOBNEWVEC (&objfile->objfile_obstack,
16070 struct symbol *,
16071 TYPE_N_TEMPLATE_ARGUMENTS (type));
16072 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16073 template_args.data (),
16074 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16075 * sizeof (struct symbol *)));
16076 }
16077
16078 /* Attach fields and member functions to the type. */
16079 if (fi.nfields)
16080 dwarf2_attach_fields_to_type (&fi, type, cu);
16081 if (!fi.fnfieldlists.empty ())
16082 {
16083 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16084
16085 /* Get the type which refers to the base class (possibly this
16086 class itself) which contains the vtable pointer for the current
16087 class from the DW_AT_containing_type attribute. This use of
16088 DW_AT_containing_type is a GNU extension. */
16089
16090 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16091 {
16092 struct type *t = die_containing_type (die, cu);
16093
16094 set_type_vptr_basetype (type, t);
16095 if (type == t)
16096 {
16097 int i;
16098
16099 /* Our own class provides vtbl ptr. */
16100 for (i = TYPE_NFIELDS (t) - 1;
16101 i >= TYPE_N_BASECLASSES (t);
16102 --i)
16103 {
16104 const char *fieldname = TYPE_FIELD_NAME (t, i);
16105
16106 if (is_vtable_name (fieldname, cu))
16107 {
16108 set_type_vptr_fieldno (type, i);
16109 break;
16110 }
16111 }
16112
16113 /* Complain if virtual function table field not found. */
16114 if (i < TYPE_N_BASECLASSES (t))
16115 complaint (_("virtual function table pointer "
16116 "not found when defining class '%s'"),
16117 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16118 }
16119 else
16120 {
16121 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16122 }
16123 }
16124 else if (cu->producer
16125 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16126 {
16127 /* The IBM XLC compiler does not provide direct indication
16128 of the containing type, but the vtable pointer is
16129 always named __vfp. */
16130
16131 int i;
16132
16133 for (i = TYPE_NFIELDS (type) - 1;
16134 i >= TYPE_N_BASECLASSES (type);
16135 --i)
16136 {
16137 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16138 {
16139 set_type_vptr_fieldno (type, i);
16140 set_type_vptr_basetype (type, type);
16141 break;
16142 }
16143 }
16144 }
16145 }
16146
16147 /* Copy fi.typedef_field_list linked list elements content into the
16148 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16149 if (!fi.typedef_field_list.empty ())
16150 {
16151 int count = fi.typedef_field_list.size ();
16152
16153 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16154 TYPE_TYPEDEF_FIELD_ARRAY (type)
16155 = ((struct decl_field *)
16156 TYPE_ALLOC (type,
16157 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16158 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16159
16160 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16161 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16162 }
16163
16164 /* Copy fi.nested_types_list linked list elements content into the
16165 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16166 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16167 {
16168 int count = fi.nested_types_list.size ();
16169
16170 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16171 TYPE_NESTED_TYPES_ARRAY (type)
16172 = ((struct decl_field *)
16173 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16174 TYPE_NESTED_TYPES_COUNT (type) = count;
16175
16176 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16177 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16178 }
16179 }
16180
16181 quirk_gcc_member_function_pointer (type, objfile);
16182 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16183 cu->rust_unions.push_back (type);
16184
16185 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16186 snapshots) has been known to create a die giving a declaration
16187 for a class that has, as a child, a die giving a definition for a
16188 nested class. So we have to process our children even if the
16189 current die is a declaration. Normally, of course, a declaration
16190 won't have any children at all. */
16191
16192 child_die = die->child;
16193
16194 while (child_die != NULL && child_die->tag)
16195 {
16196 if (child_die->tag == DW_TAG_member
16197 || child_die->tag == DW_TAG_variable
16198 || child_die->tag == DW_TAG_inheritance
16199 || child_die->tag == DW_TAG_template_value_param
16200 || child_die->tag == DW_TAG_template_type_param)
16201 {
16202 /* Do nothing. */
16203 }
16204 else
16205 process_die (child_die, cu);
16206
16207 child_die = sibling_die (child_die);
16208 }
16209
16210 /* Do not consider external references. According to the DWARF standard,
16211 these DIEs are identified by the fact that they have no byte_size
16212 attribute, and a declaration attribute. */
16213 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16214 || !die_is_declaration (die, cu))
16215 {
16216 struct symbol *sym = new_symbol (die, type, cu);
16217
16218 if (has_template_parameters)
16219 {
16220 /* Make sure that the symtab is set on the new symbols.
16221 Even though they don't appear in this symtab directly,
16222 other parts of gdb assume that symbols do, and this is
16223 reasonably true. */
16224 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16225 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16226 symbol_symtab (sym));
16227 }
16228 }
16229 }
16230
16231 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16232 update TYPE using some information only available in DIE's children. */
16233
16234 static void
16235 update_enumeration_type_from_children (struct die_info *die,
16236 struct type *type,
16237 struct dwarf2_cu *cu)
16238 {
16239 struct die_info *child_die;
16240 int unsigned_enum = 1;
16241 int flag_enum = 1;
16242 ULONGEST mask = 0;
16243
16244 auto_obstack obstack;
16245
16246 for (child_die = die->child;
16247 child_die != NULL && child_die->tag;
16248 child_die = sibling_die (child_die))
16249 {
16250 struct attribute *attr;
16251 LONGEST value;
16252 const gdb_byte *bytes;
16253 struct dwarf2_locexpr_baton *baton;
16254 const char *name;
16255
16256 if (child_die->tag != DW_TAG_enumerator)
16257 continue;
16258
16259 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16260 if (attr == NULL)
16261 continue;
16262
16263 name = dwarf2_name (child_die, cu);
16264 if (name == NULL)
16265 name = "<anonymous enumerator>";
16266
16267 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16268 &value, &bytes, &baton);
16269 if (value < 0)
16270 {
16271 unsigned_enum = 0;
16272 flag_enum = 0;
16273 }
16274 else if ((mask & value) != 0)
16275 flag_enum = 0;
16276 else
16277 mask |= value;
16278
16279 /* If we already know that the enum type is neither unsigned, nor
16280 a flag type, no need to look at the rest of the enumerates. */
16281 if (!unsigned_enum && !flag_enum)
16282 break;
16283 }
16284
16285 if (unsigned_enum)
16286 TYPE_UNSIGNED (type) = 1;
16287 if (flag_enum)
16288 TYPE_FLAG_ENUM (type) = 1;
16289 }
16290
16291 /* Given a DW_AT_enumeration_type die, set its type. We do not
16292 complete the type's fields yet, or create any symbols. */
16293
16294 static struct type *
16295 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16296 {
16297 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16298 struct type *type;
16299 struct attribute *attr;
16300 const char *name;
16301
16302 /* If the definition of this type lives in .debug_types, read that type.
16303 Don't follow DW_AT_specification though, that will take us back up
16304 the chain and we want to go down. */
16305 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16306 if (attr)
16307 {
16308 type = get_DW_AT_signature_type (die, attr, cu);
16309
16310 /* The type's CU may not be the same as CU.
16311 Ensure TYPE is recorded with CU in die_type_hash. */
16312 return set_die_type (die, type, cu);
16313 }
16314
16315 type = alloc_type (objfile);
16316
16317 TYPE_CODE (type) = TYPE_CODE_ENUM;
16318 name = dwarf2_full_name (NULL, die, cu);
16319 if (name != NULL)
16320 TYPE_NAME (type) = name;
16321
16322 attr = dwarf2_attr (die, DW_AT_type, cu);
16323 if (attr != NULL)
16324 {
16325 struct type *underlying_type = die_type (die, cu);
16326
16327 TYPE_TARGET_TYPE (type) = underlying_type;
16328 }
16329
16330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16331 if (attr)
16332 {
16333 TYPE_LENGTH (type) = DW_UNSND (attr);
16334 }
16335 else
16336 {
16337 TYPE_LENGTH (type) = 0;
16338 }
16339
16340 maybe_set_alignment (cu, die, type);
16341
16342 /* The enumeration DIE can be incomplete. In Ada, any type can be
16343 declared as private in the package spec, and then defined only
16344 inside the package body. Such types are known as Taft Amendment
16345 Types. When another package uses such a type, an incomplete DIE
16346 may be generated by the compiler. */
16347 if (die_is_declaration (die, cu))
16348 TYPE_STUB (type) = 1;
16349
16350 /* Finish the creation of this type by using the enum's children.
16351 We must call this even when the underlying type has been provided
16352 so that we can determine if we're looking at a "flag" enum. */
16353 update_enumeration_type_from_children (die, type, cu);
16354
16355 /* If this type has an underlying type that is not a stub, then we
16356 may use its attributes. We always use the "unsigned" attribute
16357 in this situation, because ordinarily we guess whether the type
16358 is unsigned -- but the guess can be wrong and the underlying type
16359 can tell us the reality. However, we defer to a local size
16360 attribute if one exists, because this lets the compiler override
16361 the underlying type if needed. */
16362 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16363 {
16364 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16365 if (TYPE_LENGTH (type) == 0)
16366 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16367 if (TYPE_RAW_ALIGN (type) == 0
16368 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16369 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16370 }
16371
16372 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16373
16374 return set_die_type (die, type, cu);
16375 }
16376
16377 /* Given a pointer to a die which begins an enumeration, process all
16378 the dies that define the members of the enumeration, and create the
16379 symbol for the enumeration type.
16380
16381 NOTE: We reverse the order of the element list. */
16382
16383 static void
16384 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16385 {
16386 struct type *this_type;
16387
16388 this_type = get_die_type (die, cu);
16389 if (this_type == NULL)
16390 this_type = read_enumeration_type (die, cu);
16391
16392 if (die->child != NULL)
16393 {
16394 struct die_info *child_die;
16395 struct symbol *sym;
16396 struct field *fields = NULL;
16397 int num_fields = 0;
16398 const char *name;
16399
16400 child_die = die->child;
16401 while (child_die && child_die->tag)
16402 {
16403 if (child_die->tag != DW_TAG_enumerator)
16404 {
16405 process_die (child_die, cu);
16406 }
16407 else
16408 {
16409 name = dwarf2_name (child_die, cu);
16410 if (name)
16411 {
16412 sym = new_symbol (child_die, this_type, cu);
16413
16414 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16415 {
16416 fields = (struct field *)
16417 xrealloc (fields,
16418 (num_fields + DW_FIELD_ALLOC_CHUNK)
16419 * sizeof (struct field));
16420 }
16421
16422 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16423 FIELD_TYPE (fields[num_fields]) = NULL;
16424 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16425 FIELD_BITSIZE (fields[num_fields]) = 0;
16426
16427 num_fields++;
16428 }
16429 }
16430
16431 child_die = sibling_die (child_die);
16432 }
16433
16434 if (num_fields)
16435 {
16436 TYPE_NFIELDS (this_type) = num_fields;
16437 TYPE_FIELDS (this_type) = (struct field *)
16438 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16439 memcpy (TYPE_FIELDS (this_type), fields,
16440 sizeof (struct field) * num_fields);
16441 xfree (fields);
16442 }
16443 }
16444
16445 /* If we are reading an enum from a .debug_types unit, and the enum
16446 is a declaration, and the enum is not the signatured type in the
16447 unit, then we do not want to add a symbol for it. Adding a
16448 symbol would in some cases obscure the true definition of the
16449 enum, giving users an incomplete type when the definition is
16450 actually available. Note that we do not want to do this for all
16451 enums which are just declarations, because C++0x allows forward
16452 enum declarations. */
16453 if (cu->per_cu->is_debug_types
16454 && die_is_declaration (die, cu))
16455 {
16456 struct signatured_type *sig_type;
16457
16458 sig_type = (struct signatured_type *) cu->per_cu;
16459 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16460 if (sig_type->type_offset_in_section != die->sect_off)
16461 return;
16462 }
16463
16464 new_symbol (die, this_type, cu);
16465 }
16466
16467 /* Extract all information from a DW_TAG_array_type DIE and put it in
16468 the DIE's type field. For now, this only handles one dimensional
16469 arrays. */
16470
16471 static struct type *
16472 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16473 {
16474 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16475 struct die_info *child_die;
16476 struct type *type;
16477 struct type *element_type, *range_type, *index_type;
16478 struct attribute *attr;
16479 const char *name;
16480 struct dynamic_prop *byte_stride_prop = NULL;
16481 unsigned int bit_stride = 0;
16482
16483 element_type = die_type (die, cu);
16484
16485 /* The die_type call above may have already set the type for this DIE. */
16486 type = get_die_type (die, cu);
16487 if (type)
16488 return type;
16489
16490 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16491 if (attr != NULL)
16492 {
16493 int stride_ok;
16494
16495 byte_stride_prop
16496 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16497 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16498 if (!stride_ok)
16499 {
16500 complaint (_("unable to read array DW_AT_byte_stride "
16501 " - DIE at %s [in module %s]"),
16502 sect_offset_str (die->sect_off),
16503 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16504 /* Ignore this attribute. We will likely not be able to print
16505 arrays of this type correctly, but there is little we can do
16506 to help if we cannot read the attribute's value. */
16507 byte_stride_prop = NULL;
16508 }
16509 }
16510
16511 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16512 if (attr != NULL)
16513 bit_stride = DW_UNSND (attr);
16514
16515 /* Irix 6.2 native cc creates array types without children for
16516 arrays with unspecified length. */
16517 if (die->child == NULL)
16518 {
16519 index_type = objfile_type (objfile)->builtin_int;
16520 range_type = create_static_range_type (NULL, index_type, 0, -1);
16521 type = create_array_type_with_stride (NULL, element_type, range_type,
16522 byte_stride_prop, bit_stride);
16523 return set_die_type (die, type, cu);
16524 }
16525
16526 std::vector<struct type *> range_types;
16527 child_die = die->child;
16528 while (child_die && child_die->tag)
16529 {
16530 if (child_die->tag == DW_TAG_subrange_type)
16531 {
16532 struct type *child_type = read_type_die (child_die, cu);
16533
16534 if (child_type != NULL)
16535 {
16536 /* The range type was succesfully read. Save it for the
16537 array type creation. */
16538 range_types.push_back (child_type);
16539 }
16540 }
16541 child_die = sibling_die (child_die);
16542 }
16543
16544 /* Dwarf2 dimensions are output from left to right, create the
16545 necessary array types in backwards order. */
16546
16547 type = element_type;
16548
16549 if (read_array_order (die, cu) == DW_ORD_col_major)
16550 {
16551 int i = 0;
16552
16553 while (i < range_types.size ())
16554 type = create_array_type_with_stride (NULL, type, range_types[i++],
16555 byte_stride_prop, bit_stride);
16556 }
16557 else
16558 {
16559 size_t ndim = range_types.size ();
16560 while (ndim-- > 0)
16561 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16562 byte_stride_prop, bit_stride);
16563 }
16564
16565 /* Understand Dwarf2 support for vector types (like they occur on
16566 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16567 array type. This is not part of the Dwarf2/3 standard yet, but a
16568 custom vendor extension. The main difference between a regular
16569 array and the vector variant is that vectors are passed by value
16570 to functions. */
16571 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16572 if (attr)
16573 make_vector_type (type);
16574
16575 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16576 implementation may choose to implement triple vectors using this
16577 attribute. */
16578 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16579 if (attr)
16580 {
16581 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16582 TYPE_LENGTH (type) = DW_UNSND (attr);
16583 else
16584 complaint (_("DW_AT_byte_size for array type smaller "
16585 "than the total size of elements"));
16586 }
16587
16588 name = dwarf2_name (die, cu);
16589 if (name)
16590 TYPE_NAME (type) = name;
16591
16592 maybe_set_alignment (cu, die, type);
16593
16594 /* Install the type in the die. */
16595 set_die_type (die, type, cu);
16596
16597 /* set_die_type should be already done. */
16598 set_descriptive_type (type, die, cu);
16599
16600 return type;
16601 }
16602
16603 static enum dwarf_array_dim_ordering
16604 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16605 {
16606 struct attribute *attr;
16607
16608 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16609
16610 if (attr)
16611 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16612
16613 /* GNU F77 is a special case, as at 08/2004 array type info is the
16614 opposite order to the dwarf2 specification, but data is still
16615 laid out as per normal fortran.
16616
16617 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16618 version checking. */
16619
16620 if (cu->language == language_fortran
16621 && cu->producer && strstr (cu->producer, "GNU F77"))
16622 {
16623 return DW_ORD_row_major;
16624 }
16625
16626 switch (cu->language_defn->la_array_ordering)
16627 {
16628 case array_column_major:
16629 return DW_ORD_col_major;
16630 case array_row_major:
16631 default:
16632 return DW_ORD_row_major;
16633 };
16634 }
16635
16636 /* Extract all information from a DW_TAG_set_type DIE and put it in
16637 the DIE's type field. */
16638
16639 static struct type *
16640 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16641 {
16642 struct type *domain_type, *set_type;
16643 struct attribute *attr;
16644
16645 domain_type = die_type (die, cu);
16646
16647 /* The die_type call above may have already set the type for this DIE. */
16648 set_type = get_die_type (die, cu);
16649 if (set_type)
16650 return set_type;
16651
16652 set_type = create_set_type (NULL, domain_type);
16653
16654 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16655 if (attr)
16656 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16657
16658 maybe_set_alignment (cu, die, set_type);
16659
16660 return set_die_type (die, set_type, cu);
16661 }
16662
16663 /* A helper for read_common_block that creates a locexpr baton.
16664 SYM is the symbol which we are marking as computed.
16665 COMMON_DIE is the DIE for the common block.
16666 COMMON_LOC is the location expression attribute for the common
16667 block itself.
16668 MEMBER_LOC is the location expression attribute for the particular
16669 member of the common block that we are processing.
16670 CU is the CU from which the above come. */
16671
16672 static void
16673 mark_common_block_symbol_computed (struct symbol *sym,
16674 struct die_info *common_die,
16675 struct attribute *common_loc,
16676 struct attribute *member_loc,
16677 struct dwarf2_cu *cu)
16678 {
16679 struct dwarf2_per_objfile *dwarf2_per_objfile
16680 = cu->per_cu->dwarf2_per_objfile;
16681 struct objfile *objfile = dwarf2_per_objfile->objfile;
16682 struct dwarf2_locexpr_baton *baton;
16683 gdb_byte *ptr;
16684 unsigned int cu_off;
16685 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16686 LONGEST offset = 0;
16687
16688 gdb_assert (common_loc && member_loc);
16689 gdb_assert (attr_form_is_block (common_loc));
16690 gdb_assert (attr_form_is_block (member_loc)
16691 || attr_form_is_constant (member_loc));
16692
16693 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16694 baton->per_cu = cu->per_cu;
16695 gdb_assert (baton->per_cu);
16696
16697 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16698
16699 if (attr_form_is_constant (member_loc))
16700 {
16701 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16702 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16703 }
16704 else
16705 baton->size += DW_BLOCK (member_loc)->size;
16706
16707 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16708 baton->data = ptr;
16709
16710 *ptr++ = DW_OP_call4;
16711 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16712 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16713 ptr += 4;
16714
16715 if (attr_form_is_constant (member_loc))
16716 {
16717 *ptr++ = DW_OP_addr;
16718 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16719 ptr += cu->header.addr_size;
16720 }
16721 else
16722 {
16723 /* We have to copy the data here, because DW_OP_call4 will only
16724 use a DW_AT_location attribute. */
16725 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16726 ptr += DW_BLOCK (member_loc)->size;
16727 }
16728
16729 *ptr++ = DW_OP_plus;
16730 gdb_assert (ptr - baton->data == baton->size);
16731
16732 SYMBOL_LOCATION_BATON (sym) = baton;
16733 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16734 }
16735
16736 /* Create appropriate locally-scoped variables for all the
16737 DW_TAG_common_block entries. Also create a struct common_block
16738 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16739 is used to sepate the common blocks name namespace from regular
16740 variable names. */
16741
16742 static void
16743 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16744 {
16745 struct attribute *attr;
16746
16747 attr = dwarf2_attr (die, DW_AT_location, cu);
16748 if (attr)
16749 {
16750 /* Support the .debug_loc offsets. */
16751 if (attr_form_is_block (attr))
16752 {
16753 /* Ok. */
16754 }
16755 else if (attr_form_is_section_offset (attr))
16756 {
16757 dwarf2_complex_location_expr_complaint ();
16758 attr = NULL;
16759 }
16760 else
16761 {
16762 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16763 "common block member");
16764 attr = NULL;
16765 }
16766 }
16767
16768 if (die->child != NULL)
16769 {
16770 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16771 struct die_info *child_die;
16772 size_t n_entries = 0, size;
16773 struct common_block *common_block;
16774 struct symbol *sym;
16775
16776 for (child_die = die->child;
16777 child_die && child_die->tag;
16778 child_die = sibling_die (child_die))
16779 ++n_entries;
16780
16781 size = (sizeof (struct common_block)
16782 + (n_entries - 1) * sizeof (struct symbol *));
16783 common_block
16784 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16785 size);
16786 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16787 common_block->n_entries = 0;
16788
16789 for (child_die = die->child;
16790 child_die && child_die->tag;
16791 child_die = sibling_die (child_die))
16792 {
16793 /* Create the symbol in the DW_TAG_common_block block in the current
16794 symbol scope. */
16795 sym = new_symbol (child_die, NULL, cu);
16796 if (sym != NULL)
16797 {
16798 struct attribute *member_loc;
16799
16800 common_block->contents[common_block->n_entries++] = sym;
16801
16802 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16803 cu);
16804 if (member_loc)
16805 {
16806 /* GDB has handled this for a long time, but it is
16807 not specified by DWARF. It seems to have been
16808 emitted by gfortran at least as recently as:
16809 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16810 complaint (_("Variable in common block has "
16811 "DW_AT_data_member_location "
16812 "- DIE at %s [in module %s]"),
16813 sect_offset_str (child_die->sect_off),
16814 objfile_name (objfile));
16815
16816 if (attr_form_is_section_offset (member_loc))
16817 dwarf2_complex_location_expr_complaint ();
16818 else if (attr_form_is_constant (member_loc)
16819 || attr_form_is_block (member_loc))
16820 {
16821 if (attr)
16822 mark_common_block_symbol_computed (sym, die, attr,
16823 member_loc, cu);
16824 }
16825 else
16826 dwarf2_complex_location_expr_complaint ();
16827 }
16828 }
16829 }
16830
16831 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16832 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16833 }
16834 }
16835
16836 /* Create a type for a C++ namespace. */
16837
16838 static struct type *
16839 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16840 {
16841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16842 const char *previous_prefix, *name;
16843 int is_anonymous;
16844 struct type *type;
16845
16846 /* For extensions, reuse the type of the original namespace. */
16847 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16848 {
16849 struct die_info *ext_die;
16850 struct dwarf2_cu *ext_cu = cu;
16851
16852 ext_die = dwarf2_extension (die, &ext_cu);
16853 type = read_type_die (ext_die, ext_cu);
16854
16855 /* EXT_CU may not be the same as CU.
16856 Ensure TYPE is recorded with CU in die_type_hash. */
16857 return set_die_type (die, type, cu);
16858 }
16859
16860 name = namespace_name (die, &is_anonymous, cu);
16861
16862 /* Now build the name of the current namespace. */
16863
16864 previous_prefix = determine_prefix (die, cu);
16865 if (previous_prefix[0] != '\0')
16866 name = typename_concat (&objfile->objfile_obstack,
16867 previous_prefix, name, 0, cu);
16868
16869 /* Create the type. */
16870 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16871
16872 return set_die_type (die, type, cu);
16873 }
16874
16875 /* Read a namespace scope. */
16876
16877 static void
16878 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16879 {
16880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16881 int is_anonymous;
16882
16883 /* Add a symbol associated to this if we haven't seen the namespace
16884 before. Also, add a using directive if it's an anonymous
16885 namespace. */
16886
16887 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16888 {
16889 struct type *type;
16890
16891 type = read_type_die (die, cu);
16892 new_symbol (die, type, cu);
16893
16894 namespace_name (die, &is_anonymous, cu);
16895 if (is_anonymous)
16896 {
16897 const char *previous_prefix = determine_prefix (die, cu);
16898
16899 std::vector<const char *> excludes;
16900 add_using_directive (using_directives (cu),
16901 previous_prefix, TYPE_NAME (type), NULL,
16902 NULL, excludes, 0, &objfile->objfile_obstack);
16903 }
16904 }
16905
16906 if (die->child != NULL)
16907 {
16908 struct die_info *child_die = die->child;
16909
16910 while (child_die && child_die->tag)
16911 {
16912 process_die (child_die, cu);
16913 child_die = sibling_die (child_die);
16914 }
16915 }
16916 }
16917
16918 /* Read a Fortran module as type. This DIE can be only a declaration used for
16919 imported module. Still we need that type as local Fortran "use ... only"
16920 declaration imports depend on the created type in determine_prefix. */
16921
16922 static struct type *
16923 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16924 {
16925 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16926 const char *module_name;
16927 struct type *type;
16928
16929 module_name = dwarf2_name (die, cu);
16930 if (!module_name)
16931 complaint (_("DW_TAG_module has no name, offset %s"),
16932 sect_offset_str (die->sect_off));
16933 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16934
16935 return set_die_type (die, type, cu);
16936 }
16937
16938 /* Read a Fortran module. */
16939
16940 static void
16941 read_module (struct die_info *die, struct dwarf2_cu *cu)
16942 {
16943 struct die_info *child_die = die->child;
16944 struct type *type;
16945
16946 type = read_type_die (die, cu);
16947 new_symbol (die, type, cu);
16948
16949 while (child_die && child_die->tag)
16950 {
16951 process_die (child_die, cu);
16952 child_die = sibling_die (child_die);
16953 }
16954 }
16955
16956 /* Return the name of the namespace represented by DIE. Set
16957 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16958 namespace. */
16959
16960 static const char *
16961 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16962 {
16963 struct die_info *current_die;
16964 const char *name = NULL;
16965
16966 /* Loop through the extensions until we find a name. */
16967
16968 for (current_die = die;
16969 current_die != NULL;
16970 current_die = dwarf2_extension (die, &cu))
16971 {
16972 /* We don't use dwarf2_name here so that we can detect the absence
16973 of a name -> anonymous namespace. */
16974 name = dwarf2_string_attr (die, DW_AT_name, cu);
16975
16976 if (name != NULL)
16977 break;
16978 }
16979
16980 /* Is it an anonymous namespace? */
16981
16982 *is_anonymous = (name == NULL);
16983 if (*is_anonymous)
16984 name = CP_ANONYMOUS_NAMESPACE_STR;
16985
16986 return name;
16987 }
16988
16989 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16990 the user defined type vector. */
16991
16992 static struct type *
16993 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16994 {
16995 struct gdbarch *gdbarch
16996 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16997 struct comp_unit_head *cu_header = &cu->header;
16998 struct type *type;
16999 struct attribute *attr_byte_size;
17000 struct attribute *attr_address_class;
17001 int byte_size, addr_class;
17002 struct type *target_type;
17003
17004 target_type = die_type (die, cu);
17005
17006 /* The die_type call above may have already set the type for this DIE. */
17007 type = get_die_type (die, cu);
17008 if (type)
17009 return type;
17010
17011 type = lookup_pointer_type (target_type);
17012
17013 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17014 if (attr_byte_size)
17015 byte_size = DW_UNSND (attr_byte_size);
17016 else
17017 byte_size = cu_header->addr_size;
17018
17019 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17020 if (attr_address_class)
17021 addr_class = DW_UNSND (attr_address_class);
17022 else
17023 addr_class = DW_ADDR_none;
17024
17025 ULONGEST alignment = get_alignment (cu, die);
17026
17027 /* If the pointer size, alignment, or address class is different
17028 than the default, create a type variant marked as such and set
17029 the length accordingly. */
17030 if (TYPE_LENGTH (type) != byte_size
17031 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17032 && alignment != TYPE_RAW_ALIGN (type))
17033 || addr_class != DW_ADDR_none)
17034 {
17035 if (gdbarch_address_class_type_flags_p (gdbarch))
17036 {
17037 int type_flags;
17038
17039 type_flags = gdbarch_address_class_type_flags
17040 (gdbarch, byte_size, addr_class);
17041 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17042 == 0);
17043 type = make_type_with_address_space (type, type_flags);
17044 }
17045 else if (TYPE_LENGTH (type) != byte_size)
17046 {
17047 complaint (_("invalid pointer size %d"), byte_size);
17048 }
17049 else if (TYPE_RAW_ALIGN (type) != alignment)
17050 {
17051 complaint (_("Invalid DW_AT_alignment"
17052 " - DIE at %s [in module %s]"),
17053 sect_offset_str (die->sect_off),
17054 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17055 }
17056 else
17057 {
17058 /* Should we also complain about unhandled address classes? */
17059 }
17060 }
17061
17062 TYPE_LENGTH (type) = byte_size;
17063 set_type_align (type, alignment);
17064 return set_die_type (die, type, cu);
17065 }
17066
17067 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17068 the user defined type vector. */
17069
17070 static struct type *
17071 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17072 {
17073 struct type *type;
17074 struct type *to_type;
17075 struct type *domain;
17076
17077 to_type = die_type (die, cu);
17078 domain = die_containing_type (die, cu);
17079
17080 /* The calls above may have already set the type for this DIE. */
17081 type = get_die_type (die, cu);
17082 if (type)
17083 return type;
17084
17085 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17086 type = lookup_methodptr_type (to_type);
17087 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17088 {
17089 struct type *new_type
17090 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17091
17092 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17093 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17094 TYPE_VARARGS (to_type));
17095 type = lookup_methodptr_type (new_type);
17096 }
17097 else
17098 type = lookup_memberptr_type (to_type, domain);
17099
17100 return set_die_type (die, type, cu);
17101 }
17102
17103 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17104 the user defined type vector. */
17105
17106 static struct type *
17107 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17108 enum type_code refcode)
17109 {
17110 struct comp_unit_head *cu_header = &cu->header;
17111 struct type *type, *target_type;
17112 struct attribute *attr;
17113
17114 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17115
17116 target_type = die_type (die, cu);
17117
17118 /* The die_type call above may have already set the type for this DIE. */
17119 type = get_die_type (die, cu);
17120 if (type)
17121 return type;
17122
17123 type = lookup_reference_type (target_type, refcode);
17124 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17125 if (attr)
17126 {
17127 TYPE_LENGTH (type) = DW_UNSND (attr);
17128 }
17129 else
17130 {
17131 TYPE_LENGTH (type) = cu_header->addr_size;
17132 }
17133 maybe_set_alignment (cu, die, type);
17134 return set_die_type (die, type, cu);
17135 }
17136
17137 /* Add the given cv-qualifiers to the element type of the array. GCC
17138 outputs DWARF type qualifiers that apply to an array, not the
17139 element type. But GDB relies on the array element type to carry
17140 the cv-qualifiers. This mimics section 6.7.3 of the C99
17141 specification. */
17142
17143 static struct type *
17144 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17145 struct type *base_type, int cnst, int voltl)
17146 {
17147 struct type *el_type, *inner_array;
17148
17149 base_type = copy_type (base_type);
17150 inner_array = base_type;
17151
17152 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17153 {
17154 TYPE_TARGET_TYPE (inner_array) =
17155 copy_type (TYPE_TARGET_TYPE (inner_array));
17156 inner_array = TYPE_TARGET_TYPE (inner_array);
17157 }
17158
17159 el_type = TYPE_TARGET_TYPE (inner_array);
17160 cnst |= TYPE_CONST (el_type);
17161 voltl |= TYPE_VOLATILE (el_type);
17162 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17163
17164 return set_die_type (die, base_type, cu);
17165 }
17166
17167 static struct type *
17168 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17169 {
17170 struct type *base_type, *cv_type;
17171
17172 base_type = die_type (die, cu);
17173
17174 /* The die_type call above may have already set the type for this DIE. */
17175 cv_type = get_die_type (die, cu);
17176 if (cv_type)
17177 return cv_type;
17178
17179 /* In case the const qualifier is applied to an array type, the element type
17180 is so qualified, not the array type (section 6.7.3 of C99). */
17181 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17182 return add_array_cv_type (die, cu, base_type, 1, 0);
17183
17184 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17185 return set_die_type (die, cv_type, cu);
17186 }
17187
17188 static struct type *
17189 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17190 {
17191 struct type *base_type, *cv_type;
17192
17193 base_type = die_type (die, cu);
17194
17195 /* The die_type call above may have already set the type for this DIE. */
17196 cv_type = get_die_type (die, cu);
17197 if (cv_type)
17198 return cv_type;
17199
17200 /* In case the volatile qualifier is applied to an array type, the
17201 element type is so qualified, not the array type (section 6.7.3
17202 of C99). */
17203 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17204 return add_array_cv_type (die, cu, base_type, 0, 1);
17205
17206 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17207 return set_die_type (die, cv_type, cu);
17208 }
17209
17210 /* Handle DW_TAG_restrict_type. */
17211
17212 static struct type *
17213 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17214 {
17215 struct type *base_type, *cv_type;
17216
17217 base_type = die_type (die, cu);
17218
17219 /* The die_type call above may have already set the type for this DIE. */
17220 cv_type = get_die_type (die, cu);
17221 if (cv_type)
17222 return cv_type;
17223
17224 cv_type = make_restrict_type (base_type);
17225 return set_die_type (die, cv_type, cu);
17226 }
17227
17228 /* Handle DW_TAG_atomic_type. */
17229
17230 static struct type *
17231 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17232 {
17233 struct type *base_type, *cv_type;
17234
17235 base_type = die_type (die, cu);
17236
17237 /* The die_type call above may have already set the type for this DIE. */
17238 cv_type = get_die_type (die, cu);
17239 if (cv_type)
17240 return cv_type;
17241
17242 cv_type = make_atomic_type (base_type);
17243 return set_die_type (die, cv_type, cu);
17244 }
17245
17246 /* Extract all information from a DW_TAG_string_type DIE and add to
17247 the user defined type vector. It isn't really a user defined type,
17248 but it behaves like one, with other DIE's using an AT_user_def_type
17249 attribute to reference it. */
17250
17251 static struct type *
17252 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17253 {
17254 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17255 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17256 struct type *type, *range_type, *index_type, *char_type;
17257 struct attribute *attr;
17258 unsigned int length;
17259
17260 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17261 if (attr)
17262 {
17263 length = DW_UNSND (attr);
17264 }
17265 else
17266 {
17267 /* Check for the DW_AT_byte_size attribute. */
17268 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17269 if (attr)
17270 {
17271 length = DW_UNSND (attr);
17272 }
17273 else
17274 {
17275 length = 1;
17276 }
17277 }
17278
17279 index_type = objfile_type (objfile)->builtin_int;
17280 range_type = create_static_range_type (NULL, index_type, 1, length);
17281 char_type = language_string_char_type (cu->language_defn, gdbarch);
17282 type = create_string_type (NULL, char_type, range_type);
17283
17284 return set_die_type (die, type, cu);
17285 }
17286
17287 /* Assuming that DIE corresponds to a function, returns nonzero
17288 if the function is prototyped. */
17289
17290 static int
17291 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17292 {
17293 struct attribute *attr;
17294
17295 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17296 if (attr && (DW_UNSND (attr) != 0))
17297 return 1;
17298
17299 /* The DWARF standard implies that the DW_AT_prototyped attribute
17300 is only meaninful for C, but the concept also extends to other
17301 languages that allow unprototyped functions (Eg: Objective C).
17302 For all other languages, assume that functions are always
17303 prototyped. */
17304 if (cu->language != language_c
17305 && cu->language != language_objc
17306 && cu->language != language_opencl)
17307 return 1;
17308
17309 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17310 prototyped and unprototyped functions; default to prototyped,
17311 since that is more common in modern code (and RealView warns
17312 about unprototyped functions). */
17313 if (producer_is_realview (cu->producer))
17314 return 1;
17315
17316 return 0;
17317 }
17318
17319 /* Handle DIES due to C code like:
17320
17321 struct foo
17322 {
17323 int (*funcp)(int a, long l);
17324 int b;
17325 };
17326
17327 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17328
17329 static struct type *
17330 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17331 {
17332 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17333 struct type *type; /* Type that this function returns. */
17334 struct type *ftype; /* Function that returns above type. */
17335 struct attribute *attr;
17336
17337 type = die_type (die, cu);
17338
17339 /* The die_type call above may have already set the type for this DIE. */
17340 ftype = get_die_type (die, cu);
17341 if (ftype)
17342 return ftype;
17343
17344 ftype = lookup_function_type (type);
17345
17346 if (prototyped_function_p (die, cu))
17347 TYPE_PROTOTYPED (ftype) = 1;
17348
17349 /* Store the calling convention in the type if it's available in
17350 the subroutine die. Otherwise set the calling convention to
17351 the default value DW_CC_normal. */
17352 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17353 if (attr)
17354 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17355 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17356 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17357 else
17358 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17359
17360 /* Record whether the function returns normally to its caller or not
17361 if the DWARF producer set that information. */
17362 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17363 if (attr && (DW_UNSND (attr) != 0))
17364 TYPE_NO_RETURN (ftype) = 1;
17365
17366 /* We need to add the subroutine type to the die immediately so
17367 we don't infinitely recurse when dealing with parameters
17368 declared as the same subroutine type. */
17369 set_die_type (die, ftype, cu);
17370
17371 if (die->child != NULL)
17372 {
17373 struct type *void_type = objfile_type (objfile)->builtin_void;
17374 struct die_info *child_die;
17375 int nparams, iparams;
17376
17377 /* Count the number of parameters.
17378 FIXME: GDB currently ignores vararg functions, but knows about
17379 vararg member functions. */
17380 nparams = 0;
17381 child_die = die->child;
17382 while (child_die && child_die->tag)
17383 {
17384 if (child_die->tag == DW_TAG_formal_parameter)
17385 nparams++;
17386 else if (child_die->tag == DW_TAG_unspecified_parameters)
17387 TYPE_VARARGS (ftype) = 1;
17388 child_die = sibling_die (child_die);
17389 }
17390
17391 /* Allocate storage for parameters and fill them in. */
17392 TYPE_NFIELDS (ftype) = nparams;
17393 TYPE_FIELDS (ftype) = (struct field *)
17394 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17395
17396 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17397 even if we error out during the parameters reading below. */
17398 for (iparams = 0; iparams < nparams; iparams++)
17399 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17400
17401 iparams = 0;
17402 child_die = die->child;
17403 while (child_die && child_die->tag)
17404 {
17405 if (child_die->tag == DW_TAG_formal_parameter)
17406 {
17407 struct type *arg_type;
17408
17409 /* DWARF version 2 has no clean way to discern C++
17410 static and non-static member functions. G++ helps
17411 GDB by marking the first parameter for non-static
17412 member functions (which is the this pointer) as
17413 artificial. We pass this information to
17414 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17415
17416 DWARF version 3 added DW_AT_object_pointer, which GCC
17417 4.5 does not yet generate. */
17418 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17419 if (attr)
17420 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17421 else
17422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17423 arg_type = die_type (child_die, cu);
17424
17425 /* RealView does not mark THIS as const, which the testsuite
17426 expects. GCC marks THIS as const in method definitions,
17427 but not in the class specifications (GCC PR 43053). */
17428 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17429 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17430 {
17431 int is_this = 0;
17432 struct dwarf2_cu *arg_cu = cu;
17433 const char *name = dwarf2_name (child_die, cu);
17434
17435 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17436 if (attr)
17437 {
17438 /* If the compiler emits this, use it. */
17439 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17440 is_this = 1;
17441 }
17442 else if (name && strcmp (name, "this") == 0)
17443 /* Function definitions will have the argument names. */
17444 is_this = 1;
17445 else if (name == NULL && iparams == 0)
17446 /* Declarations may not have the names, so like
17447 elsewhere in GDB, assume an artificial first
17448 argument is "this". */
17449 is_this = 1;
17450
17451 if (is_this)
17452 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17453 arg_type, 0);
17454 }
17455
17456 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17457 iparams++;
17458 }
17459 child_die = sibling_die (child_die);
17460 }
17461 }
17462
17463 return ftype;
17464 }
17465
17466 static struct type *
17467 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17468 {
17469 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17470 const char *name = NULL;
17471 struct type *this_type, *target_type;
17472
17473 name = dwarf2_full_name (NULL, die, cu);
17474 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17475 TYPE_TARGET_STUB (this_type) = 1;
17476 set_die_type (die, this_type, cu);
17477 target_type = die_type (die, cu);
17478 if (target_type != this_type)
17479 TYPE_TARGET_TYPE (this_type) = target_type;
17480 else
17481 {
17482 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17483 spec and cause infinite loops in GDB. */
17484 complaint (_("Self-referential DW_TAG_typedef "
17485 "- DIE at %s [in module %s]"),
17486 sect_offset_str (die->sect_off), objfile_name (objfile));
17487 TYPE_TARGET_TYPE (this_type) = NULL;
17488 }
17489 return this_type;
17490 }
17491
17492 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17493 (which may be different from NAME) to the architecture back-end to allow
17494 it to guess the correct format if necessary. */
17495
17496 static struct type *
17497 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17498 const char *name_hint)
17499 {
17500 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17501 const struct floatformat **format;
17502 struct type *type;
17503
17504 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17505 if (format)
17506 type = init_float_type (objfile, bits, name, format);
17507 else
17508 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17509
17510 return type;
17511 }
17512
17513 /* Allocate an integer type of size BITS and name NAME. */
17514
17515 static struct type *
17516 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17517 int bits, int unsigned_p, const char *name)
17518 {
17519 struct type *type;
17520
17521 /* Versions of Intel's C Compiler generate an integer type called "void"
17522 instead of using DW_TAG_unspecified_type. This has been seen on
17523 at least versions 14, 17, and 18. */
17524 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17525 && strcmp (name, "void") == 0)
17526 type = objfile_type (objfile)->builtin_void;
17527 else
17528 type = init_integer_type (objfile, bits, unsigned_p, name);
17529
17530 return type;
17531 }
17532
17533 /* Find a representation of a given base type and install
17534 it in the TYPE field of the die. */
17535
17536 static struct type *
17537 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17538 {
17539 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17540 struct type *type;
17541 struct attribute *attr;
17542 int encoding = 0, bits = 0;
17543 const char *name;
17544
17545 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17546 if (attr)
17547 {
17548 encoding = DW_UNSND (attr);
17549 }
17550 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17551 if (attr)
17552 {
17553 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17554 }
17555 name = dwarf2_name (die, cu);
17556 if (!name)
17557 {
17558 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17559 }
17560
17561 switch (encoding)
17562 {
17563 case DW_ATE_address:
17564 /* Turn DW_ATE_address into a void * pointer. */
17565 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17566 type = init_pointer_type (objfile, bits, name, type);
17567 break;
17568 case DW_ATE_boolean:
17569 type = init_boolean_type (objfile, bits, 1, name);
17570 break;
17571 case DW_ATE_complex_float:
17572 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17573 type = init_complex_type (objfile, name, type);
17574 break;
17575 case DW_ATE_decimal_float:
17576 type = init_decfloat_type (objfile, bits, name);
17577 break;
17578 case DW_ATE_float:
17579 type = dwarf2_init_float_type (objfile, bits, name, name);
17580 break;
17581 case DW_ATE_signed:
17582 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17583 break;
17584 case DW_ATE_unsigned:
17585 if (cu->language == language_fortran
17586 && name
17587 && startswith (name, "character("))
17588 type = init_character_type (objfile, bits, 1, name);
17589 else
17590 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17591 break;
17592 case DW_ATE_signed_char:
17593 if (cu->language == language_ada || cu->language == language_m2
17594 || cu->language == language_pascal
17595 || cu->language == language_fortran)
17596 type = init_character_type (objfile, bits, 0, name);
17597 else
17598 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17599 break;
17600 case DW_ATE_unsigned_char:
17601 if (cu->language == language_ada || cu->language == language_m2
17602 || cu->language == language_pascal
17603 || cu->language == language_fortran
17604 || cu->language == language_rust)
17605 type = init_character_type (objfile, bits, 1, name);
17606 else
17607 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17608 break;
17609 case DW_ATE_UTF:
17610 {
17611 gdbarch *arch = get_objfile_arch (objfile);
17612
17613 if (bits == 16)
17614 type = builtin_type (arch)->builtin_char16;
17615 else if (bits == 32)
17616 type = builtin_type (arch)->builtin_char32;
17617 else
17618 {
17619 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17620 bits);
17621 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17622 }
17623 return set_die_type (die, type, cu);
17624 }
17625 break;
17626
17627 default:
17628 complaint (_("unsupported DW_AT_encoding: '%s'"),
17629 dwarf_type_encoding_name (encoding));
17630 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17631 break;
17632 }
17633
17634 if (name && strcmp (name, "char") == 0)
17635 TYPE_NOSIGN (type) = 1;
17636
17637 maybe_set_alignment (cu, die, type);
17638
17639 return set_die_type (die, type, cu);
17640 }
17641
17642 /* Parse dwarf attribute if it's a block, reference or constant and put the
17643 resulting value of the attribute into struct bound_prop.
17644 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17645
17646 static int
17647 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17648 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17649 {
17650 struct dwarf2_property_baton *baton;
17651 struct obstack *obstack
17652 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17653
17654 if (attr == NULL || prop == NULL)
17655 return 0;
17656
17657 if (attr_form_is_block (attr))
17658 {
17659 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17660 baton->referenced_type = NULL;
17661 baton->locexpr.per_cu = cu->per_cu;
17662 baton->locexpr.size = DW_BLOCK (attr)->size;
17663 baton->locexpr.data = DW_BLOCK (attr)->data;
17664 prop->data.baton = baton;
17665 prop->kind = PROP_LOCEXPR;
17666 gdb_assert (prop->data.baton != NULL);
17667 }
17668 else if (attr_form_is_ref (attr))
17669 {
17670 struct dwarf2_cu *target_cu = cu;
17671 struct die_info *target_die;
17672 struct attribute *target_attr;
17673
17674 target_die = follow_die_ref (die, attr, &target_cu);
17675 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17676 if (target_attr == NULL)
17677 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17678 target_cu);
17679 if (target_attr == NULL)
17680 return 0;
17681
17682 switch (target_attr->name)
17683 {
17684 case DW_AT_location:
17685 if (attr_form_is_section_offset (target_attr))
17686 {
17687 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17688 baton->referenced_type = die_type (target_die, target_cu);
17689 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17690 prop->data.baton = baton;
17691 prop->kind = PROP_LOCLIST;
17692 gdb_assert (prop->data.baton != NULL);
17693 }
17694 else if (attr_form_is_block (target_attr))
17695 {
17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17697 baton->referenced_type = die_type (target_die, target_cu);
17698 baton->locexpr.per_cu = cu->per_cu;
17699 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17700 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17701 prop->data.baton = baton;
17702 prop->kind = PROP_LOCEXPR;
17703 gdb_assert (prop->data.baton != NULL);
17704 }
17705 else
17706 {
17707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17708 "dynamic property");
17709 return 0;
17710 }
17711 break;
17712 case DW_AT_data_member_location:
17713 {
17714 LONGEST offset;
17715
17716 if (!handle_data_member_location (target_die, target_cu,
17717 &offset))
17718 return 0;
17719
17720 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17721 baton->referenced_type = read_type_die (target_die->parent,
17722 target_cu);
17723 baton->offset_info.offset = offset;
17724 baton->offset_info.type = die_type (target_die, target_cu);
17725 prop->data.baton = baton;
17726 prop->kind = PROP_ADDR_OFFSET;
17727 break;
17728 }
17729 }
17730 }
17731 else if (attr_form_is_constant (attr))
17732 {
17733 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17734 prop->kind = PROP_CONST;
17735 }
17736 else
17737 {
17738 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17739 dwarf2_name (die, cu));
17740 return 0;
17741 }
17742
17743 return 1;
17744 }
17745
17746 /* Read the given DW_AT_subrange DIE. */
17747
17748 static struct type *
17749 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17750 {
17751 struct type *base_type, *orig_base_type;
17752 struct type *range_type;
17753 struct attribute *attr;
17754 struct dynamic_prop low, high;
17755 int low_default_is_valid;
17756 int high_bound_is_count = 0;
17757 const char *name;
17758 ULONGEST negative_mask;
17759
17760 orig_base_type = die_type (die, cu);
17761 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17762 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17763 creating the range type, but we use the result of check_typedef
17764 when examining properties of the type. */
17765 base_type = check_typedef (orig_base_type);
17766
17767 /* The die_type call above may have already set the type for this DIE. */
17768 range_type = get_die_type (die, cu);
17769 if (range_type)
17770 return range_type;
17771
17772 low.kind = PROP_CONST;
17773 high.kind = PROP_CONST;
17774 high.data.const_val = 0;
17775
17776 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17777 omitting DW_AT_lower_bound. */
17778 switch (cu->language)
17779 {
17780 case language_c:
17781 case language_cplus:
17782 low.data.const_val = 0;
17783 low_default_is_valid = 1;
17784 break;
17785 case language_fortran:
17786 low.data.const_val = 1;
17787 low_default_is_valid = 1;
17788 break;
17789 case language_d:
17790 case language_objc:
17791 case language_rust:
17792 low.data.const_val = 0;
17793 low_default_is_valid = (cu->header.version >= 4);
17794 break;
17795 case language_ada:
17796 case language_m2:
17797 case language_pascal:
17798 low.data.const_val = 1;
17799 low_default_is_valid = (cu->header.version >= 4);
17800 break;
17801 default:
17802 low.data.const_val = 0;
17803 low_default_is_valid = 0;
17804 break;
17805 }
17806
17807 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17808 if (attr)
17809 attr_to_dynamic_prop (attr, die, cu, &low);
17810 else if (!low_default_is_valid)
17811 complaint (_("Missing DW_AT_lower_bound "
17812 "- DIE at %s [in module %s]"),
17813 sect_offset_str (die->sect_off),
17814 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17815
17816 struct attribute *attr_ub, *attr_count;
17817 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17818 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17819 {
17820 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17821 if (attr_to_dynamic_prop (attr, die, cu, &high))
17822 {
17823 /* If bounds are constant do the final calculation here. */
17824 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17825 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17826 else
17827 high_bound_is_count = 1;
17828 }
17829 else
17830 {
17831 if (attr_ub != NULL)
17832 complaint (_("Unresolved DW_AT_upper_bound "
17833 "- DIE at %s [in module %s]"),
17834 sect_offset_str (die->sect_off),
17835 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17836 if (attr_count != NULL)
17837 complaint (_("Unresolved DW_AT_count "
17838 "- DIE at %s [in module %s]"),
17839 sect_offset_str (die->sect_off),
17840 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17841 }
17842
17843 }
17844
17845 /* Dwarf-2 specifications explicitly allows to create subrange types
17846 without specifying a base type.
17847 In that case, the base type must be set to the type of
17848 the lower bound, upper bound or count, in that order, if any of these
17849 three attributes references an object that has a type.
17850 If no base type is found, the Dwarf-2 specifications say that
17851 a signed integer type of size equal to the size of an address should
17852 be used.
17853 For the following C code: `extern char gdb_int [];'
17854 GCC produces an empty range DIE.
17855 FIXME: muller/2010-05-28: Possible references to object for low bound,
17856 high bound or count are not yet handled by this code. */
17857 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17858 {
17859 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17861 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17862 struct type *int_type = objfile_type (objfile)->builtin_int;
17863
17864 /* Test "int", "long int", and "long long int" objfile types,
17865 and select the first one having a size above or equal to the
17866 architecture address size. */
17867 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17868 base_type = int_type;
17869 else
17870 {
17871 int_type = objfile_type (objfile)->builtin_long;
17872 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17873 base_type = int_type;
17874 else
17875 {
17876 int_type = objfile_type (objfile)->builtin_long_long;
17877 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17878 base_type = int_type;
17879 }
17880 }
17881 }
17882
17883 /* Normally, the DWARF producers are expected to use a signed
17884 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17885 But this is unfortunately not always the case, as witnessed
17886 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17887 is used instead. To work around that ambiguity, we treat
17888 the bounds as signed, and thus sign-extend their values, when
17889 the base type is signed. */
17890 negative_mask =
17891 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17892 if (low.kind == PROP_CONST
17893 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17894 low.data.const_val |= negative_mask;
17895 if (high.kind == PROP_CONST
17896 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17897 high.data.const_val |= negative_mask;
17898
17899 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17900
17901 if (high_bound_is_count)
17902 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17903
17904 /* Ada expects an empty array on no boundary attributes. */
17905 if (attr == NULL && cu->language != language_ada)
17906 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17907
17908 name = dwarf2_name (die, cu);
17909 if (name)
17910 TYPE_NAME (range_type) = name;
17911
17912 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17913 if (attr)
17914 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17915
17916 maybe_set_alignment (cu, die, range_type);
17917
17918 set_die_type (die, range_type, cu);
17919
17920 /* set_die_type should be already done. */
17921 set_descriptive_type (range_type, die, cu);
17922
17923 return range_type;
17924 }
17925
17926 static struct type *
17927 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17928 {
17929 struct type *type;
17930
17931 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17932 NULL);
17933 TYPE_NAME (type) = dwarf2_name (die, cu);
17934
17935 /* In Ada, an unspecified type is typically used when the description
17936 of the type is defered to a different unit. When encountering
17937 such a type, we treat it as a stub, and try to resolve it later on,
17938 when needed. */
17939 if (cu->language == language_ada)
17940 TYPE_STUB (type) = 1;
17941
17942 return set_die_type (die, type, cu);
17943 }
17944
17945 /* Read a single die and all its descendents. Set the die's sibling
17946 field to NULL; set other fields in the die correctly, and set all
17947 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17948 location of the info_ptr after reading all of those dies. PARENT
17949 is the parent of the die in question. */
17950
17951 static struct die_info *
17952 read_die_and_children (const struct die_reader_specs *reader,
17953 const gdb_byte *info_ptr,
17954 const gdb_byte **new_info_ptr,
17955 struct die_info *parent)
17956 {
17957 struct die_info *die;
17958 const gdb_byte *cur_ptr;
17959 int has_children;
17960
17961 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17962 if (die == NULL)
17963 {
17964 *new_info_ptr = cur_ptr;
17965 return NULL;
17966 }
17967 store_in_ref_table (die, reader->cu);
17968
17969 if (has_children)
17970 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17971 else
17972 {
17973 die->child = NULL;
17974 *new_info_ptr = cur_ptr;
17975 }
17976
17977 die->sibling = NULL;
17978 die->parent = parent;
17979 return die;
17980 }
17981
17982 /* Read a die, all of its descendents, and all of its siblings; set
17983 all of the fields of all of the dies correctly. Arguments are as
17984 in read_die_and_children. */
17985
17986 static struct die_info *
17987 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17988 const gdb_byte *info_ptr,
17989 const gdb_byte **new_info_ptr,
17990 struct die_info *parent)
17991 {
17992 struct die_info *first_die, *last_sibling;
17993 const gdb_byte *cur_ptr;
17994
17995 cur_ptr = info_ptr;
17996 first_die = last_sibling = NULL;
17997
17998 while (1)
17999 {
18000 struct die_info *die
18001 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18002
18003 if (die == NULL)
18004 {
18005 *new_info_ptr = cur_ptr;
18006 return first_die;
18007 }
18008
18009 if (!first_die)
18010 first_die = die;
18011 else
18012 last_sibling->sibling = die;
18013
18014 last_sibling = die;
18015 }
18016 }
18017
18018 /* Read a die, all of its descendents, and all of its siblings; set
18019 all of the fields of all of the dies correctly. Arguments are as
18020 in read_die_and_children.
18021 This the main entry point for reading a DIE and all its children. */
18022
18023 static struct die_info *
18024 read_die_and_siblings (const struct die_reader_specs *reader,
18025 const gdb_byte *info_ptr,
18026 const gdb_byte **new_info_ptr,
18027 struct die_info *parent)
18028 {
18029 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18030 new_info_ptr, parent);
18031
18032 if (dwarf_die_debug)
18033 {
18034 fprintf_unfiltered (gdb_stdlog,
18035 "Read die from %s@0x%x of %s:\n",
18036 get_section_name (reader->die_section),
18037 (unsigned) (info_ptr - reader->die_section->buffer),
18038 bfd_get_filename (reader->abfd));
18039 dump_die (die, dwarf_die_debug);
18040 }
18041
18042 return die;
18043 }
18044
18045 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18046 attributes.
18047 The caller is responsible for filling in the extra attributes
18048 and updating (*DIEP)->num_attrs.
18049 Set DIEP to point to a newly allocated die with its information,
18050 except for its child, sibling, and parent fields.
18051 Set HAS_CHILDREN to tell whether the die has children or not. */
18052
18053 static const gdb_byte *
18054 read_full_die_1 (const struct die_reader_specs *reader,
18055 struct die_info **diep, const gdb_byte *info_ptr,
18056 int *has_children, int num_extra_attrs)
18057 {
18058 unsigned int abbrev_number, bytes_read, i;
18059 struct abbrev_info *abbrev;
18060 struct die_info *die;
18061 struct dwarf2_cu *cu = reader->cu;
18062 bfd *abfd = reader->abfd;
18063
18064 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18065 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18066 info_ptr += bytes_read;
18067 if (!abbrev_number)
18068 {
18069 *diep = NULL;
18070 *has_children = 0;
18071 return info_ptr;
18072 }
18073
18074 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18075 if (!abbrev)
18076 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18077 abbrev_number,
18078 bfd_get_filename (abfd));
18079
18080 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18081 die->sect_off = sect_off;
18082 die->tag = abbrev->tag;
18083 die->abbrev = abbrev_number;
18084
18085 /* Make the result usable.
18086 The caller needs to update num_attrs after adding the extra
18087 attributes. */
18088 die->num_attrs = abbrev->num_attrs;
18089
18090 for (i = 0; i < abbrev->num_attrs; ++i)
18091 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18092 info_ptr);
18093
18094 *diep = die;
18095 *has_children = abbrev->has_children;
18096 return info_ptr;
18097 }
18098
18099 /* Read a die and all its attributes.
18100 Set DIEP to point to a newly allocated die with its information,
18101 except for its child, sibling, and parent fields.
18102 Set HAS_CHILDREN to tell whether the die has children or not. */
18103
18104 static const gdb_byte *
18105 read_full_die (const struct die_reader_specs *reader,
18106 struct die_info **diep, const gdb_byte *info_ptr,
18107 int *has_children)
18108 {
18109 const gdb_byte *result;
18110
18111 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18112
18113 if (dwarf_die_debug)
18114 {
18115 fprintf_unfiltered (gdb_stdlog,
18116 "Read die from %s@0x%x of %s:\n",
18117 get_section_name (reader->die_section),
18118 (unsigned) (info_ptr - reader->die_section->buffer),
18119 bfd_get_filename (reader->abfd));
18120 dump_die (*diep, dwarf_die_debug);
18121 }
18122
18123 return result;
18124 }
18125 \f
18126 /* Abbreviation tables.
18127
18128 In DWARF version 2, the description of the debugging information is
18129 stored in a separate .debug_abbrev section. Before we read any
18130 dies from a section we read in all abbreviations and install them
18131 in a hash table. */
18132
18133 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18134
18135 struct abbrev_info *
18136 abbrev_table::alloc_abbrev ()
18137 {
18138 struct abbrev_info *abbrev;
18139
18140 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18141 memset (abbrev, 0, sizeof (struct abbrev_info));
18142
18143 return abbrev;
18144 }
18145
18146 /* Add an abbreviation to the table. */
18147
18148 void
18149 abbrev_table::add_abbrev (unsigned int abbrev_number,
18150 struct abbrev_info *abbrev)
18151 {
18152 unsigned int hash_number;
18153
18154 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18155 abbrev->next = m_abbrevs[hash_number];
18156 m_abbrevs[hash_number] = abbrev;
18157 }
18158
18159 /* Look up an abbrev in the table.
18160 Returns NULL if the abbrev is not found. */
18161
18162 struct abbrev_info *
18163 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18164 {
18165 unsigned int hash_number;
18166 struct abbrev_info *abbrev;
18167
18168 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18169 abbrev = m_abbrevs[hash_number];
18170
18171 while (abbrev)
18172 {
18173 if (abbrev->number == abbrev_number)
18174 return abbrev;
18175 abbrev = abbrev->next;
18176 }
18177 return NULL;
18178 }
18179
18180 /* Read in an abbrev table. */
18181
18182 static abbrev_table_up
18183 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18184 struct dwarf2_section_info *section,
18185 sect_offset sect_off)
18186 {
18187 struct objfile *objfile = dwarf2_per_objfile->objfile;
18188 bfd *abfd = get_section_bfd_owner (section);
18189 const gdb_byte *abbrev_ptr;
18190 struct abbrev_info *cur_abbrev;
18191 unsigned int abbrev_number, bytes_read, abbrev_name;
18192 unsigned int abbrev_form;
18193 struct attr_abbrev *cur_attrs;
18194 unsigned int allocated_attrs;
18195
18196 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18197
18198 dwarf2_read_section (objfile, section);
18199 abbrev_ptr = section->buffer + to_underlying (sect_off);
18200 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18201 abbrev_ptr += bytes_read;
18202
18203 allocated_attrs = ATTR_ALLOC_CHUNK;
18204 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18205
18206 /* Loop until we reach an abbrev number of 0. */
18207 while (abbrev_number)
18208 {
18209 cur_abbrev = abbrev_table->alloc_abbrev ();
18210
18211 /* read in abbrev header */
18212 cur_abbrev->number = abbrev_number;
18213 cur_abbrev->tag
18214 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18215 abbrev_ptr += bytes_read;
18216 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18217 abbrev_ptr += 1;
18218
18219 /* now read in declarations */
18220 for (;;)
18221 {
18222 LONGEST implicit_const;
18223
18224 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18225 abbrev_ptr += bytes_read;
18226 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18227 abbrev_ptr += bytes_read;
18228 if (abbrev_form == DW_FORM_implicit_const)
18229 {
18230 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18231 &bytes_read);
18232 abbrev_ptr += bytes_read;
18233 }
18234 else
18235 {
18236 /* Initialize it due to a false compiler warning. */
18237 implicit_const = -1;
18238 }
18239
18240 if (abbrev_name == 0)
18241 break;
18242
18243 if (cur_abbrev->num_attrs == allocated_attrs)
18244 {
18245 allocated_attrs += ATTR_ALLOC_CHUNK;
18246 cur_attrs
18247 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18248 }
18249
18250 cur_attrs[cur_abbrev->num_attrs].name
18251 = (enum dwarf_attribute) abbrev_name;
18252 cur_attrs[cur_abbrev->num_attrs].form
18253 = (enum dwarf_form) abbrev_form;
18254 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18255 ++cur_abbrev->num_attrs;
18256 }
18257
18258 cur_abbrev->attrs =
18259 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18260 cur_abbrev->num_attrs);
18261 memcpy (cur_abbrev->attrs, cur_attrs,
18262 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18263
18264 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18265
18266 /* Get next abbreviation.
18267 Under Irix6 the abbreviations for a compilation unit are not
18268 always properly terminated with an abbrev number of 0.
18269 Exit loop if we encounter an abbreviation which we have
18270 already read (which means we are about to read the abbreviations
18271 for the next compile unit) or if the end of the abbreviation
18272 table is reached. */
18273 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18274 break;
18275 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18276 abbrev_ptr += bytes_read;
18277 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18278 break;
18279 }
18280
18281 xfree (cur_attrs);
18282 return abbrev_table;
18283 }
18284
18285 /* Returns nonzero if TAG represents a type that we might generate a partial
18286 symbol for. */
18287
18288 static int
18289 is_type_tag_for_partial (int tag)
18290 {
18291 switch (tag)
18292 {
18293 #if 0
18294 /* Some types that would be reasonable to generate partial symbols for,
18295 that we don't at present. */
18296 case DW_TAG_array_type:
18297 case DW_TAG_file_type:
18298 case DW_TAG_ptr_to_member_type:
18299 case DW_TAG_set_type:
18300 case DW_TAG_string_type:
18301 case DW_TAG_subroutine_type:
18302 #endif
18303 case DW_TAG_base_type:
18304 case DW_TAG_class_type:
18305 case DW_TAG_interface_type:
18306 case DW_TAG_enumeration_type:
18307 case DW_TAG_structure_type:
18308 case DW_TAG_subrange_type:
18309 case DW_TAG_typedef:
18310 case DW_TAG_union_type:
18311 return 1;
18312 default:
18313 return 0;
18314 }
18315 }
18316
18317 /* Load all DIEs that are interesting for partial symbols into memory. */
18318
18319 static struct partial_die_info *
18320 load_partial_dies (const struct die_reader_specs *reader,
18321 const gdb_byte *info_ptr, int building_psymtab)
18322 {
18323 struct dwarf2_cu *cu = reader->cu;
18324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18325 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18326 unsigned int bytes_read;
18327 unsigned int load_all = 0;
18328 int nesting_level = 1;
18329
18330 parent_die = NULL;
18331 last_die = NULL;
18332
18333 gdb_assert (cu->per_cu != NULL);
18334 if (cu->per_cu->load_all_dies)
18335 load_all = 1;
18336
18337 cu->partial_dies
18338 = htab_create_alloc_ex (cu->header.length / 12,
18339 partial_die_hash,
18340 partial_die_eq,
18341 NULL,
18342 &cu->comp_unit_obstack,
18343 hashtab_obstack_allocate,
18344 dummy_obstack_deallocate);
18345
18346 while (1)
18347 {
18348 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18349
18350 /* A NULL abbrev means the end of a series of children. */
18351 if (abbrev == NULL)
18352 {
18353 if (--nesting_level == 0)
18354 return first_die;
18355
18356 info_ptr += bytes_read;
18357 last_die = parent_die;
18358 parent_die = parent_die->die_parent;
18359 continue;
18360 }
18361
18362 /* Check for template arguments. We never save these; if
18363 they're seen, we just mark the parent, and go on our way. */
18364 if (parent_die != NULL
18365 && cu->language == language_cplus
18366 && (abbrev->tag == DW_TAG_template_type_param
18367 || abbrev->tag == DW_TAG_template_value_param))
18368 {
18369 parent_die->has_template_arguments = 1;
18370
18371 if (!load_all)
18372 {
18373 /* We don't need a partial DIE for the template argument. */
18374 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18375 continue;
18376 }
18377 }
18378
18379 /* We only recurse into c++ subprograms looking for template arguments.
18380 Skip their other children. */
18381 if (!load_all
18382 && cu->language == language_cplus
18383 && parent_die != NULL
18384 && parent_die->tag == DW_TAG_subprogram)
18385 {
18386 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18387 continue;
18388 }
18389
18390 /* Check whether this DIE is interesting enough to save. Normally
18391 we would not be interested in members here, but there may be
18392 later variables referencing them via DW_AT_specification (for
18393 static members). */
18394 if (!load_all
18395 && !is_type_tag_for_partial (abbrev->tag)
18396 && abbrev->tag != DW_TAG_constant
18397 && abbrev->tag != DW_TAG_enumerator
18398 && abbrev->tag != DW_TAG_subprogram
18399 && abbrev->tag != DW_TAG_inlined_subroutine
18400 && abbrev->tag != DW_TAG_lexical_block
18401 && abbrev->tag != DW_TAG_variable
18402 && abbrev->tag != DW_TAG_namespace
18403 && abbrev->tag != DW_TAG_module
18404 && abbrev->tag != DW_TAG_member
18405 && abbrev->tag != DW_TAG_imported_unit
18406 && abbrev->tag != DW_TAG_imported_declaration)
18407 {
18408 /* Otherwise we skip to the next sibling, if any. */
18409 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18410 continue;
18411 }
18412
18413 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18414 abbrev);
18415
18416 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18417
18418 /* This two-pass algorithm for processing partial symbols has a
18419 high cost in cache pressure. Thus, handle some simple cases
18420 here which cover the majority of C partial symbols. DIEs
18421 which neither have specification tags in them, nor could have
18422 specification tags elsewhere pointing at them, can simply be
18423 processed and discarded.
18424
18425 This segment is also optional; scan_partial_symbols and
18426 add_partial_symbol will handle these DIEs if we chain
18427 them in normally. When compilers which do not emit large
18428 quantities of duplicate debug information are more common,
18429 this code can probably be removed. */
18430
18431 /* Any complete simple types at the top level (pretty much all
18432 of them, for a language without namespaces), can be processed
18433 directly. */
18434 if (parent_die == NULL
18435 && pdi.has_specification == 0
18436 && pdi.is_declaration == 0
18437 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18438 || pdi.tag == DW_TAG_base_type
18439 || pdi.tag == DW_TAG_subrange_type))
18440 {
18441 if (building_psymtab && pdi.name != NULL)
18442 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18443 VAR_DOMAIN, LOC_TYPEDEF, -1,
18444 psymbol_placement::STATIC,
18445 0, cu->language, objfile);
18446 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18447 continue;
18448 }
18449
18450 /* The exception for DW_TAG_typedef with has_children above is
18451 a workaround of GCC PR debug/47510. In the case of this complaint
18452 type_name_or_error will error on such types later.
18453
18454 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18455 it could not find the child DIEs referenced later, this is checked
18456 above. In correct DWARF DW_TAG_typedef should have no children. */
18457
18458 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18459 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18460 "- DIE at %s [in module %s]"),
18461 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18462
18463 /* If we're at the second level, and we're an enumerator, and
18464 our parent has no specification (meaning possibly lives in a
18465 namespace elsewhere), then we can add the partial symbol now
18466 instead of queueing it. */
18467 if (pdi.tag == DW_TAG_enumerator
18468 && parent_die != NULL
18469 && parent_die->die_parent == NULL
18470 && parent_die->tag == DW_TAG_enumeration_type
18471 && parent_die->has_specification == 0)
18472 {
18473 if (pdi.name == NULL)
18474 complaint (_("malformed enumerator DIE ignored"));
18475 else if (building_psymtab)
18476 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18477 VAR_DOMAIN, LOC_CONST, -1,
18478 cu->language == language_cplus
18479 ? psymbol_placement::GLOBAL
18480 : psymbol_placement::STATIC,
18481 0, cu->language, objfile);
18482
18483 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18484 continue;
18485 }
18486
18487 struct partial_die_info *part_die
18488 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18489
18490 /* We'll save this DIE so link it in. */
18491 part_die->die_parent = parent_die;
18492 part_die->die_sibling = NULL;
18493 part_die->die_child = NULL;
18494
18495 if (last_die && last_die == parent_die)
18496 last_die->die_child = part_die;
18497 else if (last_die)
18498 last_die->die_sibling = part_die;
18499
18500 last_die = part_die;
18501
18502 if (first_die == NULL)
18503 first_die = part_die;
18504
18505 /* Maybe add the DIE to the hash table. Not all DIEs that we
18506 find interesting need to be in the hash table, because we
18507 also have the parent/sibling/child chains; only those that we
18508 might refer to by offset later during partial symbol reading.
18509
18510 For now this means things that might have be the target of a
18511 DW_AT_specification, DW_AT_abstract_origin, or
18512 DW_AT_extension. DW_AT_extension will refer only to
18513 namespaces; DW_AT_abstract_origin refers to functions (and
18514 many things under the function DIE, but we do not recurse
18515 into function DIEs during partial symbol reading) and
18516 possibly variables as well; DW_AT_specification refers to
18517 declarations. Declarations ought to have the DW_AT_declaration
18518 flag. It happens that GCC forgets to put it in sometimes, but
18519 only for functions, not for types.
18520
18521 Adding more things than necessary to the hash table is harmless
18522 except for the performance cost. Adding too few will result in
18523 wasted time in find_partial_die, when we reread the compilation
18524 unit with load_all_dies set. */
18525
18526 if (load_all
18527 || abbrev->tag == DW_TAG_constant
18528 || abbrev->tag == DW_TAG_subprogram
18529 || abbrev->tag == DW_TAG_variable
18530 || abbrev->tag == DW_TAG_namespace
18531 || part_die->is_declaration)
18532 {
18533 void **slot;
18534
18535 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18536 to_underlying (part_die->sect_off),
18537 INSERT);
18538 *slot = part_die;
18539 }
18540
18541 /* For some DIEs we want to follow their children (if any). For C
18542 we have no reason to follow the children of structures; for other
18543 languages we have to, so that we can get at method physnames
18544 to infer fully qualified class names, for DW_AT_specification,
18545 and for C++ template arguments. For C++, we also look one level
18546 inside functions to find template arguments (if the name of the
18547 function does not already contain the template arguments).
18548
18549 For Ada, we need to scan the children of subprograms and lexical
18550 blocks as well because Ada allows the definition of nested
18551 entities that could be interesting for the debugger, such as
18552 nested subprograms for instance. */
18553 if (last_die->has_children
18554 && (load_all
18555 || last_die->tag == DW_TAG_namespace
18556 || last_die->tag == DW_TAG_module
18557 || last_die->tag == DW_TAG_enumeration_type
18558 || (cu->language == language_cplus
18559 && last_die->tag == DW_TAG_subprogram
18560 && (last_die->name == NULL
18561 || strchr (last_die->name, '<') == NULL))
18562 || (cu->language != language_c
18563 && (last_die->tag == DW_TAG_class_type
18564 || last_die->tag == DW_TAG_interface_type
18565 || last_die->tag == DW_TAG_structure_type
18566 || last_die->tag == DW_TAG_union_type))
18567 || (cu->language == language_ada
18568 && (last_die->tag == DW_TAG_subprogram
18569 || last_die->tag == DW_TAG_lexical_block))))
18570 {
18571 nesting_level++;
18572 parent_die = last_die;
18573 continue;
18574 }
18575
18576 /* Otherwise we skip to the next sibling, if any. */
18577 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18578
18579 /* Back to the top, do it again. */
18580 }
18581 }
18582
18583 partial_die_info::partial_die_info (sect_offset sect_off_,
18584 struct abbrev_info *abbrev)
18585 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18586 {
18587 }
18588
18589 /* Read a minimal amount of information into the minimal die structure.
18590 INFO_PTR should point just after the initial uleb128 of a DIE. */
18591
18592 const gdb_byte *
18593 partial_die_info::read (const struct die_reader_specs *reader,
18594 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18595 {
18596 struct dwarf2_cu *cu = reader->cu;
18597 struct dwarf2_per_objfile *dwarf2_per_objfile
18598 = cu->per_cu->dwarf2_per_objfile;
18599 unsigned int i;
18600 int has_low_pc_attr = 0;
18601 int has_high_pc_attr = 0;
18602 int high_pc_relative = 0;
18603
18604 for (i = 0; i < abbrev.num_attrs; ++i)
18605 {
18606 struct attribute attr;
18607
18608 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18609
18610 /* Store the data if it is of an attribute we want to keep in a
18611 partial symbol table. */
18612 switch (attr.name)
18613 {
18614 case DW_AT_name:
18615 switch (tag)
18616 {
18617 case DW_TAG_compile_unit:
18618 case DW_TAG_partial_unit:
18619 case DW_TAG_type_unit:
18620 /* Compilation units have a DW_AT_name that is a filename, not
18621 a source language identifier. */
18622 case DW_TAG_enumeration_type:
18623 case DW_TAG_enumerator:
18624 /* These tags always have simple identifiers already; no need
18625 to canonicalize them. */
18626 name = DW_STRING (&attr);
18627 break;
18628 default:
18629 {
18630 struct objfile *objfile = dwarf2_per_objfile->objfile;
18631
18632 name
18633 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18634 &objfile->per_bfd->storage_obstack);
18635 }
18636 break;
18637 }
18638 break;
18639 case DW_AT_linkage_name:
18640 case DW_AT_MIPS_linkage_name:
18641 /* Note that both forms of linkage name might appear. We
18642 assume they will be the same, and we only store the last
18643 one we see. */
18644 if (cu->language == language_ada)
18645 name = DW_STRING (&attr);
18646 linkage_name = DW_STRING (&attr);
18647 break;
18648 case DW_AT_low_pc:
18649 has_low_pc_attr = 1;
18650 lowpc = attr_value_as_address (&attr);
18651 break;
18652 case DW_AT_high_pc:
18653 has_high_pc_attr = 1;
18654 highpc = attr_value_as_address (&attr);
18655 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18656 high_pc_relative = 1;
18657 break;
18658 case DW_AT_location:
18659 /* Support the .debug_loc offsets. */
18660 if (attr_form_is_block (&attr))
18661 {
18662 d.locdesc = DW_BLOCK (&attr);
18663 }
18664 else if (attr_form_is_section_offset (&attr))
18665 {
18666 dwarf2_complex_location_expr_complaint ();
18667 }
18668 else
18669 {
18670 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18671 "partial symbol information");
18672 }
18673 break;
18674 case DW_AT_external:
18675 is_external = DW_UNSND (&attr);
18676 break;
18677 case DW_AT_declaration:
18678 is_declaration = DW_UNSND (&attr);
18679 break;
18680 case DW_AT_type:
18681 has_type = 1;
18682 break;
18683 case DW_AT_abstract_origin:
18684 case DW_AT_specification:
18685 case DW_AT_extension:
18686 has_specification = 1;
18687 spec_offset = dwarf2_get_ref_die_offset (&attr);
18688 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18689 || cu->per_cu->is_dwz);
18690 break;
18691 case DW_AT_sibling:
18692 /* Ignore absolute siblings, they might point outside of
18693 the current compile unit. */
18694 if (attr.form == DW_FORM_ref_addr)
18695 complaint (_("ignoring absolute DW_AT_sibling"));
18696 else
18697 {
18698 const gdb_byte *buffer = reader->buffer;
18699 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18700 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18701
18702 if (sibling_ptr < info_ptr)
18703 complaint (_("DW_AT_sibling points backwards"));
18704 else if (sibling_ptr > reader->buffer_end)
18705 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18706 else
18707 sibling = sibling_ptr;
18708 }
18709 break;
18710 case DW_AT_byte_size:
18711 has_byte_size = 1;
18712 break;
18713 case DW_AT_const_value:
18714 has_const_value = 1;
18715 break;
18716 case DW_AT_calling_convention:
18717 /* DWARF doesn't provide a way to identify a program's source-level
18718 entry point. DW_AT_calling_convention attributes are only meant
18719 to describe functions' calling conventions.
18720
18721 However, because it's a necessary piece of information in
18722 Fortran, and before DWARF 4 DW_CC_program was the only
18723 piece of debugging information whose definition refers to
18724 a 'main program' at all, several compilers marked Fortran
18725 main programs with DW_CC_program --- even when those
18726 functions use the standard calling conventions.
18727
18728 Although DWARF now specifies a way to provide this
18729 information, we support this practice for backward
18730 compatibility. */
18731 if (DW_UNSND (&attr) == DW_CC_program
18732 && cu->language == language_fortran)
18733 main_subprogram = 1;
18734 break;
18735 case DW_AT_inline:
18736 if (DW_UNSND (&attr) == DW_INL_inlined
18737 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18738 may_be_inlined = 1;
18739 break;
18740
18741 case DW_AT_import:
18742 if (tag == DW_TAG_imported_unit)
18743 {
18744 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18745 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18746 || cu->per_cu->is_dwz);
18747 }
18748 break;
18749
18750 case DW_AT_main_subprogram:
18751 main_subprogram = DW_UNSND (&attr);
18752 break;
18753
18754 default:
18755 break;
18756 }
18757 }
18758
18759 if (high_pc_relative)
18760 highpc += lowpc;
18761
18762 if (has_low_pc_attr && has_high_pc_attr)
18763 {
18764 /* When using the GNU linker, .gnu.linkonce. sections are used to
18765 eliminate duplicate copies of functions and vtables and such.
18766 The linker will arbitrarily choose one and discard the others.
18767 The AT_*_pc values for such functions refer to local labels in
18768 these sections. If the section from that file was discarded, the
18769 labels are not in the output, so the relocs get a value of 0.
18770 If this is a discarded function, mark the pc bounds as invalid,
18771 so that GDB will ignore it. */
18772 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18773 {
18774 struct objfile *objfile = dwarf2_per_objfile->objfile;
18775 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18776
18777 complaint (_("DW_AT_low_pc %s is zero "
18778 "for DIE at %s [in module %s]"),
18779 paddress (gdbarch, lowpc),
18780 sect_offset_str (sect_off),
18781 objfile_name (objfile));
18782 }
18783 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18784 else if (lowpc >= highpc)
18785 {
18786 struct objfile *objfile = dwarf2_per_objfile->objfile;
18787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18788
18789 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18790 "for DIE at %s [in module %s]"),
18791 paddress (gdbarch, lowpc),
18792 paddress (gdbarch, highpc),
18793 sect_offset_str (sect_off),
18794 objfile_name (objfile));
18795 }
18796 else
18797 has_pc_info = 1;
18798 }
18799
18800 return info_ptr;
18801 }
18802
18803 /* Find a cached partial DIE at OFFSET in CU. */
18804
18805 struct partial_die_info *
18806 dwarf2_cu::find_partial_die (sect_offset sect_off)
18807 {
18808 struct partial_die_info *lookup_die = NULL;
18809 struct partial_die_info part_die (sect_off);
18810
18811 lookup_die = ((struct partial_die_info *)
18812 htab_find_with_hash (partial_dies, &part_die,
18813 to_underlying (sect_off)));
18814
18815 return lookup_die;
18816 }
18817
18818 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18819 except in the case of .debug_types DIEs which do not reference
18820 outside their CU (they do however referencing other types via
18821 DW_FORM_ref_sig8). */
18822
18823 static struct partial_die_info *
18824 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18825 {
18826 struct dwarf2_per_objfile *dwarf2_per_objfile
18827 = cu->per_cu->dwarf2_per_objfile;
18828 struct objfile *objfile = dwarf2_per_objfile->objfile;
18829 struct dwarf2_per_cu_data *per_cu = NULL;
18830 struct partial_die_info *pd = NULL;
18831
18832 if (offset_in_dwz == cu->per_cu->is_dwz
18833 && offset_in_cu_p (&cu->header, sect_off))
18834 {
18835 pd = cu->find_partial_die (sect_off);
18836 if (pd != NULL)
18837 return pd;
18838 /* We missed recording what we needed.
18839 Load all dies and try again. */
18840 per_cu = cu->per_cu;
18841 }
18842 else
18843 {
18844 /* TUs don't reference other CUs/TUs (except via type signatures). */
18845 if (cu->per_cu->is_debug_types)
18846 {
18847 error (_("Dwarf Error: Type Unit at offset %s contains"
18848 " external reference to offset %s [in module %s].\n"),
18849 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18850 bfd_get_filename (objfile->obfd));
18851 }
18852 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18853 dwarf2_per_objfile);
18854
18855 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18856 load_partial_comp_unit (per_cu);
18857
18858 per_cu->cu->last_used = 0;
18859 pd = per_cu->cu->find_partial_die (sect_off);
18860 }
18861
18862 /* If we didn't find it, and not all dies have been loaded,
18863 load them all and try again. */
18864
18865 if (pd == NULL && per_cu->load_all_dies == 0)
18866 {
18867 per_cu->load_all_dies = 1;
18868
18869 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18870 THIS_CU->cu may already be in use. So we can't just free it and
18871 replace its DIEs with the ones we read in. Instead, we leave those
18872 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18873 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18874 set. */
18875 load_partial_comp_unit (per_cu);
18876
18877 pd = per_cu->cu->find_partial_die (sect_off);
18878 }
18879
18880 if (pd == NULL)
18881 internal_error (__FILE__, __LINE__,
18882 _("could not find partial DIE %s "
18883 "in cache [from module %s]\n"),
18884 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18885 return pd;
18886 }
18887
18888 /* See if we can figure out if the class lives in a namespace. We do
18889 this by looking for a member function; its demangled name will
18890 contain namespace info, if there is any. */
18891
18892 static void
18893 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18894 struct dwarf2_cu *cu)
18895 {
18896 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18897 what template types look like, because the demangler
18898 frequently doesn't give the same name as the debug info. We
18899 could fix this by only using the demangled name to get the
18900 prefix (but see comment in read_structure_type). */
18901
18902 struct partial_die_info *real_pdi;
18903 struct partial_die_info *child_pdi;
18904
18905 /* If this DIE (this DIE's specification, if any) has a parent, then
18906 we should not do this. We'll prepend the parent's fully qualified
18907 name when we create the partial symbol. */
18908
18909 real_pdi = struct_pdi;
18910 while (real_pdi->has_specification)
18911 real_pdi = find_partial_die (real_pdi->spec_offset,
18912 real_pdi->spec_is_dwz, cu);
18913
18914 if (real_pdi->die_parent != NULL)
18915 return;
18916
18917 for (child_pdi = struct_pdi->die_child;
18918 child_pdi != NULL;
18919 child_pdi = child_pdi->die_sibling)
18920 {
18921 if (child_pdi->tag == DW_TAG_subprogram
18922 && child_pdi->linkage_name != NULL)
18923 {
18924 char *actual_class_name
18925 = language_class_name_from_physname (cu->language_defn,
18926 child_pdi->linkage_name);
18927 if (actual_class_name != NULL)
18928 {
18929 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18930 struct_pdi->name
18931 = ((const char *)
18932 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18933 actual_class_name,
18934 strlen (actual_class_name)));
18935 xfree (actual_class_name);
18936 }
18937 break;
18938 }
18939 }
18940 }
18941
18942 void
18943 partial_die_info::fixup (struct dwarf2_cu *cu)
18944 {
18945 /* Once we've fixed up a die, there's no point in doing so again.
18946 This also avoids a memory leak if we were to call
18947 guess_partial_die_structure_name multiple times. */
18948 if (fixup_called)
18949 return;
18950
18951 /* If we found a reference attribute and the DIE has no name, try
18952 to find a name in the referred to DIE. */
18953
18954 if (name == NULL && has_specification)
18955 {
18956 struct partial_die_info *spec_die;
18957
18958 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18959
18960 spec_die->fixup (cu);
18961
18962 if (spec_die->name)
18963 {
18964 name = spec_die->name;
18965
18966 /* Copy DW_AT_external attribute if it is set. */
18967 if (spec_die->is_external)
18968 is_external = spec_die->is_external;
18969 }
18970 }
18971
18972 /* Set default names for some unnamed DIEs. */
18973
18974 if (name == NULL && tag == DW_TAG_namespace)
18975 name = CP_ANONYMOUS_NAMESPACE_STR;
18976
18977 /* If there is no parent die to provide a namespace, and there are
18978 children, see if we can determine the namespace from their linkage
18979 name. */
18980 if (cu->language == language_cplus
18981 && !VEC_empty (dwarf2_section_info_def,
18982 cu->per_cu->dwarf2_per_objfile->types)
18983 && die_parent == NULL
18984 && has_children
18985 && (tag == DW_TAG_class_type
18986 || tag == DW_TAG_structure_type
18987 || tag == DW_TAG_union_type))
18988 guess_partial_die_structure_name (this, cu);
18989
18990 /* GCC might emit a nameless struct or union that has a linkage
18991 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18992 if (name == NULL
18993 && (tag == DW_TAG_class_type
18994 || tag == DW_TAG_interface_type
18995 || tag == DW_TAG_structure_type
18996 || tag == DW_TAG_union_type)
18997 && linkage_name != NULL)
18998 {
18999 char *demangled;
19000
19001 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19002 if (demangled)
19003 {
19004 const char *base;
19005
19006 /* Strip any leading namespaces/classes, keep only the base name.
19007 DW_AT_name for named DIEs does not contain the prefixes. */
19008 base = strrchr (demangled, ':');
19009 if (base && base > demangled && base[-1] == ':')
19010 base++;
19011 else
19012 base = demangled;
19013
19014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19015 name
19016 = ((const char *)
19017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19018 base, strlen (base)));
19019 xfree (demangled);
19020 }
19021 }
19022
19023 fixup_called = 1;
19024 }
19025
19026 /* Read an attribute value described by an attribute form. */
19027
19028 static const gdb_byte *
19029 read_attribute_value (const struct die_reader_specs *reader,
19030 struct attribute *attr, unsigned form,
19031 LONGEST implicit_const, const gdb_byte *info_ptr)
19032 {
19033 struct dwarf2_cu *cu = reader->cu;
19034 struct dwarf2_per_objfile *dwarf2_per_objfile
19035 = cu->per_cu->dwarf2_per_objfile;
19036 struct objfile *objfile = dwarf2_per_objfile->objfile;
19037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19038 bfd *abfd = reader->abfd;
19039 struct comp_unit_head *cu_header = &cu->header;
19040 unsigned int bytes_read;
19041 struct dwarf_block *blk;
19042
19043 attr->form = (enum dwarf_form) form;
19044 switch (form)
19045 {
19046 case DW_FORM_ref_addr:
19047 if (cu->header.version == 2)
19048 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19049 else
19050 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19051 &cu->header, &bytes_read);
19052 info_ptr += bytes_read;
19053 break;
19054 case DW_FORM_GNU_ref_alt:
19055 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19056 info_ptr += bytes_read;
19057 break;
19058 case DW_FORM_addr:
19059 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19060 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19061 info_ptr += bytes_read;
19062 break;
19063 case DW_FORM_block2:
19064 blk = dwarf_alloc_block (cu);
19065 blk->size = read_2_bytes (abfd, info_ptr);
19066 info_ptr += 2;
19067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19068 info_ptr += blk->size;
19069 DW_BLOCK (attr) = blk;
19070 break;
19071 case DW_FORM_block4:
19072 blk = dwarf_alloc_block (cu);
19073 blk->size = read_4_bytes (abfd, info_ptr);
19074 info_ptr += 4;
19075 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19076 info_ptr += blk->size;
19077 DW_BLOCK (attr) = blk;
19078 break;
19079 case DW_FORM_data2:
19080 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19081 info_ptr += 2;
19082 break;
19083 case DW_FORM_data4:
19084 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19085 info_ptr += 4;
19086 break;
19087 case DW_FORM_data8:
19088 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19089 info_ptr += 8;
19090 break;
19091 case DW_FORM_data16:
19092 blk = dwarf_alloc_block (cu);
19093 blk->size = 16;
19094 blk->data = read_n_bytes (abfd, info_ptr, 16);
19095 info_ptr += 16;
19096 DW_BLOCK (attr) = blk;
19097 break;
19098 case DW_FORM_sec_offset:
19099 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19100 info_ptr += bytes_read;
19101 break;
19102 case DW_FORM_string:
19103 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19104 DW_STRING_IS_CANONICAL (attr) = 0;
19105 info_ptr += bytes_read;
19106 break;
19107 case DW_FORM_strp:
19108 if (!cu->per_cu->is_dwz)
19109 {
19110 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19111 abfd, info_ptr, cu_header,
19112 &bytes_read);
19113 DW_STRING_IS_CANONICAL (attr) = 0;
19114 info_ptr += bytes_read;
19115 break;
19116 }
19117 /* FALLTHROUGH */
19118 case DW_FORM_line_strp:
19119 if (!cu->per_cu->is_dwz)
19120 {
19121 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19122 abfd, info_ptr,
19123 cu_header, &bytes_read);
19124 DW_STRING_IS_CANONICAL (attr) = 0;
19125 info_ptr += bytes_read;
19126 break;
19127 }
19128 /* FALLTHROUGH */
19129 case DW_FORM_GNU_strp_alt:
19130 {
19131 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19132 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19133 &bytes_read);
19134
19135 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19136 dwz, str_offset);
19137 DW_STRING_IS_CANONICAL (attr) = 0;
19138 info_ptr += bytes_read;
19139 }
19140 break;
19141 case DW_FORM_exprloc:
19142 case DW_FORM_block:
19143 blk = dwarf_alloc_block (cu);
19144 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19145 info_ptr += bytes_read;
19146 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19147 info_ptr += blk->size;
19148 DW_BLOCK (attr) = blk;
19149 break;
19150 case DW_FORM_block1:
19151 blk = dwarf_alloc_block (cu);
19152 blk->size = read_1_byte (abfd, info_ptr);
19153 info_ptr += 1;
19154 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19155 info_ptr += blk->size;
19156 DW_BLOCK (attr) = blk;
19157 break;
19158 case DW_FORM_data1:
19159 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19160 info_ptr += 1;
19161 break;
19162 case DW_FORM_flag:
19163 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19164 info_ptr += 1;
19165 break;
19166 case DW_FORM_flag_present:
19167 DW_UNSND (attr) = 1;
19168 break;
19169 case DW_FORM_sdata:
19170 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19171 info_ptr += bytes_read;
19172 break;
19173 case DW_FORM_udata:
19174 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19175 info_ptr += bytes_read;
19176 break;
19177 case DW_FORM_ref1:
19178 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19179 + read_1_byte (abfd, info_ptr));
19180 info_ptr += 1;
19181 break;
19182 case DW_FORM_ref2:
19183 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19184 + read_2_bytes (abfd, info_ptr));
19185 info_ptr += 2;
19186 break;
19187 case DW_FORM_ref4:
19188 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19189 + read_4_bytes (abfd, info_ptr));
19190 info_ptr += 4;
19191 break;
19192 case DW_FORM_ref8:
19193 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19194 + read_8_bytes (abfd, info_ptr));
19195 info_ptr += 8;
19196 break;
19197 case DW_FORM_ref_sig8:
19198 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19199 info_ptr += 8;
19200 break;
19201 case DW_FORM_ref_udata:
19202 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19203 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19204 info_ptr += bytes_read;
19205 break;
19206 case DW_FORM_indirect:
19207 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19208 info_ptr += bytes_read;
19209 if (form == DW_FORM_implicit_const)
19210 {
19211 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19212 info_ptr += bytes_read;
19213 }
19214 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19215 info_ptr);
19216 break;
19217 case DW_FORM_implicit_const:
19218 DW_SND (attr) = implicit_const;
19219 break;
19220 case DW_FORM_GNU_addr_index:
19221 if (reader->dwo_file == NULL)
19222 {
19223 /* For now flag a hard error.
19224 Later we can turn this into a complaint. */
19225 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19226 dwarf_form_name (form),
19227 bfd_get_filename (abfd));
19228 }
19229 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19230 info_ptr += bytes_read;
19231 break;
19232 case DW_FORM_GNU_str_index:
19233 if (reader->dwo_file == NULL)
19234 {
19235 /* For now flag a hard error.
19236 Later we can turn this into a complaint if warranted. */
19237 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19238 dwarf_form_name (form),
19239 bfd_get_filename (abfd));
19240 }
19241 {
19242 ULONGEST str_index =
19243 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19244
19245 DW_STRING (attr) = read_str_index (reader, str_index);
19246 DW_STRING_IS_CANONICAL (attr) = 0;
19247 info_ptr += bytes_read;
19248 }
19249 break;
19250 default:
19251 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19252 dwarf_form_name (form),
19253 bfd_get_filename (abfd));
19254 }
19255
19256 /* Super hack. */
19257 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19258 attr->form = DW_FORM_GNU_ref_alt;
19259
19260 /* We have seen instances where the compiler tried to emit a byte
19261 size attribute of -1 which ended up being encoded as an unsigned
19262 0xffffffff. Although 0xffffffff is technically a valid size value,
19263 an object of this size seems pretty unlikely so we can relatively
19264 safely treat these cases as if the size attribute was invalid and
19265 treat them as zero by default. */
19266 if (attr->name == DW_AT_byte_size
19267 && form == DW_FORM_data4
19268 && DW_UNSND (attr) >= 0xffffffff)
19269 {
19270 complaint
19271 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19272 hex_string (DW_UNSND (attr)));
19273 DW_UNSND (attr) = 0;
19274 }
19275
19276 return info_ptr;
19277 }
19278
19279 /* Read an attribute described by an abbreviated attribute. */
19280
19281 static const gdb_byte *
19282 read_attribute (const struct die_reader_specs *reader,
19283 struct attribute *attr, struct attr_abbrev *abbrev,
19284 const gdb_byte *info_ptr)
19285 {
19286 attr->name = abbrev->name;
19287 return read_attribute_value (reader, attr, abbrev->form,
19288 abbrev->implicit_const, info_ptr);
19289 }
19290
19291 /* Read dwarf information from a buffer. */
19292
19293 static unsigned int
19294 read_1_byte (bfd *abfd, const gdb_byte *buf)
19295 {
19296 return bfd_get_8 (abfd, buf);
19297 }
19298
19299 static int
19300 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19301 {
19302 return bfd_get_signed_8 (abfd, buf);
19303 }
19304
19305 static unsigned int
19306 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19307 {
19308 return bfd_get_16 (abfd, buf);
19309 }
19310
19311 static int
19312 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19313 {
19314 return bfd_get_signed_16 (abfd, buf);
19315 }
19316
19317 static unsigned int
19318 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19319 {
19320 return bfd_get_32 (abfd, buf);
19321 }
19322
19323 static int
19324 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19325 {
19326 return bfd_get_signed_32 (abfd, buf);
19327 }
19328
19329 static ULONGEST
19330 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19331 {
19332 return bfd_get_64 (abfd, buf);
19333 }
19334
19335 static CORE_ADDR
19336 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19337 unsigned int *bytes_read)
19338 {
19339 struct comp_unit_head *cu_header = &cu->header;
19340 CORE_ADDR retval = 0;
19341
19342 if (cu_header->signed_addr_p)
19343 {
19344 switch (cu_header->addr_size)
19345 {
19346 case 2:
19347 retval = bfd_get_signed_16 (abfd, buf);
19348 break;
19349 case 4:
19350 retval = bfd_get_signed_32 (abfd, buf);
19351 break;
19352 case 8:
19353 retval = bfd_get_signed_64 (abfd, buf);
19354 break;
19355 default:
19356 internal_error (__FILE__, __LINE__,
19357 _("read_address: bad switch, signed [in module %s]"),
19358 bfd_get_filename (abfd));
19359 }
19360 }
19361 else
19362 {
19363 switch (cu_header->addr_size)
19364 {
19365 case 2:
19366 retval = bfd_get_16 (abfd, buf);
19367 break;
19368 case 4:
19369 retval = bfd_get_32 (abfd, buf);
19370 break;
19371 case 8:
19372 retval = bfd_get_64 (abfd, buf);
19373 break;
19374 default:
19375 internal_error (__FILE__, __LINE__,
19376 _("read_address: bad switch, "
19377 "unsigned [in module %s]"),
19378 bfd_get_filename (abfd));
19379 }
19380 }
19381
19382 *bytes_read = cu_header->addr_size;
19383 return retval;
19384 }
19385
19386 /* Read the initial length from a section. The (draft) DWARF 3
19387 specification allows the initial length to take up either 4 bytes
19388 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19389 bytes describe the length and all offsets will be 8 bytes in length
19390 instead of 4.
19391
19392 An older, non-standard 64-bit format is also handled by this
19393 function. The older format in question stores the initial length
19394 as an 8-byte quantity without an escape value. Lengths greater
19395 than 2^32 aren't very common which means that the initial 4 bytes
19396 is almost always zero. Since a length value of zero doesn't make
19397 sense for the 32-bit format, this initial zero can be considered to
19398 be an escape value which indicates the presence of the older 64-bit
19399 format. As written, the code can't detect (old format) lengths
19400 greater than 4GB. If it becomes necessary to handle lengths
19401 somewhat larger than 4GB, we could allow other small values (such
19402 as the non-sensical values of 1, 2, and 3) to also be used as
19403 escape values indicating the presence of the old format.
19404
19405 The value returned via bytes_read should be used to increment the
19406 relevant pointer after calling read_initial_length().
19407
19408 [ Note: read_initial_length() and read_offset() are based on the
19409 document entitled "DWARF Debugging Information Format", revision
19410 3, draft 8, dated November 19, 2001. This document was obtained
19411 from:
19412
19413 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19414
19415 This document is only a draft and is subject to change. (So beware.)
19416
19417 Details regarding the older, non-standard 64-bit format were
19418 determined empirically by examining 64-bit ELF files produced by
19419 the SGI toolchain on an IRIX 6.5 machine.
19420
19421 - Kevin, July 16, 2002
19422 ] */
19423
19424 static LONGEST
19425 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19426 {
19427 LONGEST length = bfd_get_32 (abfd, buf);
19428
19429 if (length == 0xffffffff)
19430 {
19431 length = bfd_get_64 (abfd, buf + 4);
19432 *bytes_read = 12;
19433 }
19434 else if (length == 0)
19435 {
19436 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19437 length = bfd_get_64 (abfd, buf);
19438 *bytes_read = 8;
19439 }
19440 else
19441 {
19442 *bytes_read = 4;
19443 }
19444
19445 return length;
19446 }
19447
19448 /* Cover function for read_initial_length.
19449 Returns the length of the object at BUF, and stores the size of the
19450 initial length in *BYTES_READ and stores the size that offsets will be in
19451 *OFFSET_SIZE.
19452 If the initial length size is not equivalent to that specified in
19453 CU_HEADER then issue a complaint.
19454 This is useful when reading non-comp-unit headers. */
19455
19456 static LONGEST
19457 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19458 const struct comp_unit_head *cu_header,
19459 unsigned int *bytes_read,
19460 unsigned int *offset_size)
19461 {
19462 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19463
19464 gdb_assert (cu_header->initial_length_size == 4
19465 || cu_header->initial_length_size == 8
19466 || cu_header->initial_length_size == 12);
19467
19468 if (cu_header->initial_length_size != *bytes_read)
19469 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19470
19471 *offset_size = (*bytes_read == 4) ? 4 : 8;
19472 return length;
19473 }
19474
19475 /* Read an offset from the data stream. The size of the offset is
19476 given by cu_header->offset_size. */
19477
19478 static LONGEST
19479 read_offset (bfd *abfd, const gdb_byte *buf,
19480 const struct comp_unit_head *cu_header,
19481 unsigned int *bytes_read)
19482 {
19483 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19484
19485 *bytes_read = cu_header->offset_size;
19486 return offset;
19487 }
19488
19489 /* Read an offset from the data stream. */
19490
19491 static LONGEST
19492 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19493 {
19494 LONGEST retval = 0;
19495
19496 switch (offset_size)
19497 {
19498 case 4:
19499 retval = bfd_get_32 (abfd, buf);
19500 break;
19501 case 8:
19502 retval = bfd_get_64 (abfd, buf);
19503 break;
19504 default:
19505 internal_error (__FILE__, __LINE__,
19506 _("read_offset_1: bad switch [in module %s]"),
19507 bfd_get_filename (abfd));
19508 }
19509
19510 return retval;
19511 }
19512
19513 static const gdb_byte *
19514 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19515 {
19516 /* If the size of a host char is 8 bits, we can return a pointer
19517 to the buffer, otherwise we have to copy the data to a buffer
19518 allocated on the temporary obstack. */
19519 gdb_assert (HOST_CHAR_BIT == 8);
19520 return buf;
19521 }
19522
19523 static const char *
19524 read_direct_string (bfd *abfd, const gdb_byte *buf,
19525 unsigned int *bytes_read_ptr)
19526 {
19527 /* If the size of a host char is 8 bits, we can return a pointer
19528 to the string, otherwise we have to copy the string to a buffer
19529 allocated on the temporary obstack. */
19530 gdb_assert (HOST_CHAR_BIT == 8);
19531 if (*buf == '\0')
19532 {
19533 *bytes_read_ptr = 1;
19534 return NULL;
19535 }
19536 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19537 return (const char *) buf;
19538 }
19539
19540 /* Return pointer to string at section SECT offset STR_OFFSET with error
19541 reporting strings FORM_NAME and SECT_NAME. */
19542
19543 static const char *
19544 read_indirect_string_at_offset_from (struct objfile *objfile,
19545 bfd *abfd, LONGEST str_offset,
19546 struct dwarf2_section_info *sect,
19547 const char *form_name,
19548 const char *sect_name)
19549 {
19550 dwarf2_read_section (objfile, sect);
19551 if (sect->buffer == NULL)
19552 error (_("%s used without %s section [in module %s]"),
19553 form_name, sect_name, bfd_get_filename (abfd));
19554 if (str_offset >= sect->size)
19555 error (_("%s pointing outside of %s section [in module %s]"),
19556 form_name, sect_name, bfd_get_filename (abfd));
19557 gdb_assert (HOST_CHAR_BIT == 8);
19558 if (sect->buffer[str_offset] == '\0')
19559 return NULL;
19560 return (const char *) (sect->buffer + str_offset);
19561 }
19562
19563 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19564
19565 static const char *
19566 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19567 bfd *abfd, LONGEST str_offset)
19568 {
19569 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19570 abfd, str_offset,
19571 &dwarf2_per_objfile->str,
19572 "DW_FORM_strp", ".debug_str");
19573 }
19574
19575 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19576
19577 static const char *
19578 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19579 bfd *abfd, LONGEST str_offset)
19580 {
19581 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19582 abfd, str_offset,
19583 &dwarf2_per_objfile->line_str,
19584 "DW_FORM_line_strp",
19585 ".debug_line_str");
19586 }
19587
19588 /* Read a string at offset STR_OFFSET in the .debug_str section from
19589 the .dwz file DWZ. Throw an error if the offset is too large. If
19590 the string consists of a single NUL byte, return NULL; otherwise
19591 return a pointer to the string. */
19592
19593 static const char *
19594 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19595 LONGEST str_offset)
19596 {
19597 dwarf2_read_section (objfile, &dwz->str);
19598
19599 if (dwz->str.buffer == NULL)
19600 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19601 "section [in module %s]"),
19602 bfd_get_filename (dwz->dwz_bfd));
19603 if (str_offset >= dwz->str.size)
19604 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19605 ".debug_str section [in module %s]"),
19606 bfd_get_filename (dwz->dwz_bfd));
19607 gdb_assert (HOST_CHAR_BIT == 8);
19608 if (dwz->str.buffer[str_offset] == '\0')
19609 return NULL;
19610 return (const char *) (dwz->str.buffer + str_offset);
19611 }
19612
19613 /* Return pointer to string at .debug_str offset as read from BUF.
19614 BUF is assumed to be in a compilation unit described by CU_HEADER.
19615 Return *BYTES_READ_PTR count of bytes read from BUF. */
19616
19617 static const char *
19618 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19619 const gdb_byte *buf,
19620 const struct comp_unit_head *cu_header,
19621 unsigned int *bytes_read_ptr)
19622 {
19623 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19624
19625 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19626 }
19627
19628 /* Return pointer to string at .debug_line_str offset as read from BUF.
19629 BUF is assumed to be in a compilation unit described by CU_HEADER.
19630 Return *BYTES_READ_PTR count of bytes read from BUF. */
19631
19632 static const char *
19633 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19634 bfd *abfd, const gdb_byte *buf,
19635 const struct comp_unit_head *cu_header,
19636 unsigned int *bytes_read_ptr)
19637 {
19638 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19639
19640 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19641 str_offset);
19642 }
19643
19644 ULONGEST
19645 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19646 unsigned int *bytes_read_ptr)
19647 {
19648 ULONGEST result;
19649 unsigned int num_read;
19650 int shift;
19651 unsigned char byte;
19652
19653 result = 0;
19654 shift = 0;
19655 num_read = 0;
19656 while (1)
19657 {
19658 byte = bfd_get_8 (abfd, buf);
19659 buf++;
19660 num_read++;
19661 result |= ((ULONGEST) (byte & 127) << shift);
19662 if ((byte & 128) == 0)
19663 {
19664 break;
19665 }
19666 shift += 7;
19667 }
19668 *bytes_read_ptr = num_read;
19669 return result;
19670 }
19671
19672 static LONGEST
19673 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19674 unsigned int *bytes_read_ptr)
19675 {
19676 ULONGEST result;
19677 int shift, num_read;
19678 unsigned char byte;
19679
19680 result = 0;
19681 shift = 0;
19682 num_read = 0;
19683 while (1)
19684 {
19685 byte = bfd_get_8 (abfd, buf);
19686 buf++;
19687 num_read++;
19688 result |= ((ULONGEST) (byte & 127) << shift);
19689 shift += 7;
19690 if ((byte & 128) == 0)
19691 {
19692 break;
19693 }
19694 }
19695 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19696 result |= -(((ULONGEST) 1) << shift);
19697 *bytes_read_ptr = num_read;
19698 return result;
19699 }
19700
19701 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19702 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19703 ADDR_SIZE is the size of addresses from the CU header. */
19704
19705 static CORE_ADDR
19706 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19707 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19708 {
19709 struct objfile *objfile = dwarf2_per_objfile->objfile;
19710 bfd *abfd = objfile->obfd;
19711 const gdb_byte *info_ptr;
19712
19713 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19714 if (dwarf2_per_objfile->addr.buffer == NULL)
19715 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19716 objfile_name (objfile));
19717 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19718 error (_("DW_FORM_addr_index pointing outside of "
19719 ".debug_addr section [in module %s]"),
19720 objfile_name (objfile));
19721 info_ptr = (dwarf2_per_objfile->addr.buffer
19722 + addr_base + addr_index * addr_size);
19723 if (addr_size == 4)
19724 return bfd_get_32 (abfd, info_ptr);
19725 else
19726 return bfd_get_64 (abfd, info_ptr);
19727 }
19728
19729 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19730
19731 static CORE_ADDR
19732 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19733 {
19734 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19735 cu->addr_base, cu->header.addr_size);
19736 }
19737
19738 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19739
19740 static CORE_ADDR
19741 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19742 unsigned int *bytes_read)
19743 {
19744 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19745 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19746
19747 return read_addr_index (cu, addr_index);
19748 }
19749
19750 /* Data structure to pass results from dwarf2_read_addr_index_reader
19751 back to dwarf2_read_addr_index. */
19752
19753 struct dwarf2_read_addr_index_data
19754 {
19755 ULONGEST addr_base;
19756 int addr_size;
19757 };
19758
19759 /* die_reader_func for dwarf2_read_addr_index. */
19760
19761 static void
19762 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19763 const gdb_byte *info_ptr,
19764 struct die_info *comp_unit_die,
19765 int has_children,
19766 void *data)
19767 {
19768 struct dwarf2_cu *cu = reader->cu;
19769 struct dwarf2_read_addr_index_data *aidata =
19770 (struct dwarf2_read_addr_index_data *) data;
19771
19772 aidata->addr_base = cu->addr_base;
19773 aidata->addr_size = cu->header.addr_size;
19774 }
19775
19776 /* Given an index in .debug_addr, fetch the value.
19777 NOTE: This can be called during dwarf expression evaluation,
19778 long after the debug information has been read, and thus per_cu->cu
19779 may no longer exist. */
19780
19781 CORE_ADDR
19782 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19783 unsigned int addr_index)
19784 {
19785 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19786 struct dwarf2_cu *cu = per_cu->cu;
19787 ULONGEST addr_base;
19788 int addr_size;
19789
19790 /* We need addr_base and addr_size.
19791 If we don't have PER_CU->cu, we have to get it.
19792 Nasty, but the alternative is storing the needed info in PER_CU,
19793 which at this point doesn't seem justified: it's not clear how frequently
19794 it would get used and it would increase the size of every PER_CU.
19795 Entry points like dwarf2_per_cu_addr_size do a similar thing
19796 so we're not in uncharted territory here.
19797 Alas we need to be a bit more complicated as addr_base is contained
19798 in the DIE.
19799
19800 We don't need to read the entire CU(/TU).
19801 We just need the header and top level die.
19802
19803 IWBN to use the aging mechanism to let us lazily later discard the CU.
19804 For now we skip this optimization. */
19805
19806 if (cu != NULL)
19807 {
19808 addr_base = cu->addr_base;
19809 addr_size = cu->header.addr_size;
19810 }
19811 else
19812 {
19813 struct dwarf2_read_addr_index_data aidata;
19814
19815 /* Note: We can't use init_cutu_and_read_dies_simple here,
19816 we need addr_base. */
19817 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19818 dwarf2_read_addr_index_reader, &aidata);
19819 addr_base = aidata.addr_base;
19820 addr_size = aidata.addr_size;
19821 }
19822
19823 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19824 addr_size);
19825 }
19826
19827 /* Given a DW_FORM_GNU_str_index, fetch the string.
19828 This is only used by the Fission support. */
19829
19830 static const char *
19831 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19832 {
19833 struct dwarf2_cu *cu = reader->cu;
19834 struct dwarf2_per_objfile *dwarf2_per_objfile
19835 = cu->per_cu->dwarf2_per_objfile;
19836 struct objfile *objfile = dwarf2_per_objfile->objfile;
19837 const char *objf_name = objfile_name (objfile);
19838 bfd *abfd = objfile->obfd;
19839 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19840 struct dwarf2_section_info *str_offsets_section =
19841 &reader->dwo_file->sections.str_offsets;
19842 const gdb_byte *info_ptr;
19843 ULONGEST str_offset;
19844 static const char form_name[] = "DW_FORM_GNU_str_index";
19845
19846 dwarf2_read_section (objfile, str_section);
19847 dwarf2_read_section (objfile, str_offsets_section);
19848 if (str_section->buffer == NULL)
19849 error (_("%s used without .debug_str.dwo section"
19850 " in CU at offset %s [in module %s]"),
19851 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19852 if (str_offsets_section->buffer == NULL)
19853 error (_("%s used without .debug_str_offsets.dwo section"
19854 " in CU at offset %s [in module %s]"),
19855 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19856 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19857 error (_("%s pointing outside of .debug_str_offsets.dwo"
19858 " section in CU at offset %s [in module %s]"),
19859 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19860 info_ptr = (str_offsets_section->buffer
19861 + str_index * cu->header.offset_size);
19862 if (cu->header.offset_size == 4)
19863 str_offset = bfd_get_32 (abfd, info_ptr);
19864 else
19865 str_offset = bfd_get_64 (abfd, info_ptr);
19866 if (str_offset >= str_section->size)
19867 error (_("Offset from %s pointing outside of"
19868 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19869 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19870 return (const char *) (str_section->buffer + str_offset);
19871 }
19872
19873 /* Return the length of an LEB128 number in BUF. */
19874
19875 static int
19876 leb128_size (const gdb_byte *buf)
19877 {
19878 const gdb_byte *begin = buf;
19879 gdb_byte byte;
19880
19881 while (1)
19882 {
19883 byte = *buf++;
19884 if ((byte & 128) == 0)
19885 return buf - begin;
19886 }
19887 }
19888
19889 static void
19890 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19891 {
19892 switch (lang)
19893 {
19894 case DW_LANG_C89:
19895 case DW_LANG_C99:
19896 case DW_LANG_C11:
19897 case DW_LANG_C:
19898 case DW_LANG_UPC:
19899 cu->language = language_c;
19900 break;
19901 case DW_LANG_Java:
19902 case DW_LANG_C_plus_plus:
19903 case DW_LANG_C_plus_plus_11:
19904 case DW_LANG_C_plus_plus_14:
19905 cu->language = language_cplus;
19906 break;
19907 case DW_LANG_D:
19908 cu->language = language_d;
19909 break;
19910 case DW_LANG_Fortran77:
19911 case DW_LANG_Fortran90:
19912 case DW_LANG_Fortran95:
19913 case DW_LANG_Fortran03:
19914 case DW_LANG_Fortran08:
19915 cu->language = language_fortran;
19916 break;
19917 case DW_LANG_Go:
19918 cu->language = language_go;
19919 break;
19920 case DW_LANG_Mips_Assembler:
19921 cu->language = language_asm;
19922 break;
19923 case DW_LANG_Ada83:
19924 case DW_LANG_Ada95:
19925 cu->language = language_ada;
19926 break;
19927 case DW_LANG_Modula2:
19928 cu->language = language_m2;
19929 break;
19930 case DW_LANG_Pascal83:
19931 cu->language = language_pascal;
19932 break;
19933 case DW_LANG_ObjC:
19934 cu->language = language_objc;
19935 break;
19936 case DW_LANG_Rust:
19937 case DW_LANG_Rust_old:
19938 cu->language = language_rust;
19939 break;
19940 case DW_LANG_Cobol74:
19941 case DW_LANG_Cobol85:
19942 default:
19943 cu->language = language_minimal;
19944 break;
19945 }
19946 cu->language_defn = language_def (cu->language);
19947 }
19948
19949 /* Return the named attribute or NULL if not there. */
19950
19951 static struct attribute *
19952 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19953 {
19954 for (;;)
19955 {
19956 unsigned int i;
19957 struct attribute *spec = NULL;
19958
19959 for (i = 0; i < die->num_attrs; ++i)
19960 {
19961 if (die->attrs[i].name == name)
19962 return &die->attrs[i];
19963 if (die->attrs[i].name == DW_AT_specification
19964 || die->attrs[i].name == DW_AT_abstract_origin)
19965 spec = &die->attrs[i];
19966 }
19967
19968 if (!spec)
19969 break;
19970
19971 die = follow_die_ref (die, spec, &cu);
19972 }
19973
19974 return NULL;
19975 }
19976
19977 /* Return the named attribute or NULL if not there,
19978 but do not follow DW_AT_specification, etc.
19979 This is for use in contexts where we're reading .debug_types dies.
19980 Following DW_AT_specification, DW_AT_abstract_origin will take us
19981 back up the chain, and we want to go down. */
19982
19983 static struct attribute *
19984 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19985 {
19986 unsigned int i;
19987
19988 for (i = 0; i < die->num_attrs; ++i)
19989 if (die->attrs[i].name == name)
19990 return &die->attrs[i];
19991
19992 return NULL;
19993 }
19994
19995 /* Return the string associated with a string-typed attribute, or NULL if it
19996 is either not found or is of an incorrect type. */
19997
19998 static const char *
19999 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20000 {
20001 struct attribute *attr;
20002 const char *str = NULL;
20003
20004 attr = dwarf2_attr (die, name, cu);
20005
20006 if (attr != NULL)
20007 {
20008 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20009 || attr->form == DW_FORM_string
20010 || attr->form == DW_FORM_GNU_str_index
20011 || attr->form == DW_FORM_GNU_strp_alt)
20012 str = DW_STRING (attr);
20013 else
20014 complaint (_("string type expected for attribute %s for "
20015 "DIE at %s in module %s"),
20016 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20017 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20018 }
20019
20020 return str;
20021 }
20022
20023 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20024 and holds a non-zero value. This function should only be used for
20025 DW_FORM_flag or DW_FORM_flag_present attributes. */
20026
20027 static int
20028 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20029 {
20030 struct attribute *attr = dwarf2_attr (die, name, cu);
20031
20032 return (attr && DW_UNSND (attr));
20033 }
20034
20035 static int
20036 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20037 {
20038 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20039 which value is non-zero. However, we have to be careful with
20040 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20041 (via dwarf2_flag_true_p) follows this attribute. So we may
20042 end up accidently finding a declaration attribute that belongs
20043 to a different DIE referenced by the specification attribute,
20044 even though the given DIE does not have a declaration attribute. */
20045 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20046 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20047 }
20048
20049 /* Return the die giving the specification for DIE, if there is
20050 one. *SPEC_CU is the CU containing DIE on input, and the CU
20051 containing the return value on output. If there is no
20052 specification, but there is an abstract origin, that is
20053 returned. */
20054
20055 static struct die_info *
20056 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20057 {
20058 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20059 *spec_cu);
20060
20061 if (spec_attr == NULL)
20062 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20063
20064 if (spec_attr == NULL)
20065 return NULL;
20066 else
20067 return follow_die_ref (die, spec_attr, spec_cu);
20068 }
20069
20070 /* Stub for free_line_header to match void * callback types. */
20071
20072 static void
20073 free_line_header_voidp (void *arg)
20074 {
20075 struct line_header *lh = (struct line_header *) arg;
20076
20077 delete lh;
20078 }
20079
20080 void
20081 line_header::add_include_dir (const char *include_dir)
20082 {
20083 if (dwarf_line_debug >= 2)
20084 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20085 include_dirs.size () + 1, include_dir);
20086
20087 include_dirs.push_back (include_dir);
20088 }
20089
20090 void
20091 line_header::add_file_name (const char *name,
20092 dir_index d_index,
20093 unsigned int mod_time,
20094 unsigned int length)
20095 {
20096 if (dwarf_line_debug >= 2)
20097 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20098 (unsigned) file_names.size () + 1, name);
20099
20100 file_names.emplace_back (name, d_index, mod_time, length);
20101 }
20102
20103 /* A convenience function to find the proper .debug_line section for a CU. */
20104
20105 static struct dwarf2_section_info *
20106 get_debug_line_section (struct dwarf2_cu *cu)
20107 {
20108 struct dwarf2_section_info *section;
20109 struct dwarf2_per_objfile *dwarf2_per_objfile
20110 = cu->per_cu->dwarf2_per_objfile;
20111
20112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20113 DWO file. */
20114 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20115 section = &cu->dwo_unit->dwo_file->sections.line;
20116 else if (cu->per_cu->is_dwz)
20117 {
20118 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20119
20120 section = &dwz->line;
20121 }
20122 else
20123 section = &dwarf2_per_objfile->line;
20124
20125 return section;
20126 }
20127
20128 /* Read directory or file name entry format, starting with byte of
20129 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20130 entries count and the entries themselves in the described entry
20131 format. */
20132
20133 static void
20134 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20135 bfd *abfd, const gdb_byte **bufp,
20136 struct line_header *lh,
20137 const struct comp_unit_head *cu_header,
20138 void (*callback) (struct line_header *lh,
20139 const char *name,
20140 dir_index d_index,
20141 unsigned int mod_time,
20142 unsigned int length))
20143 {
20144 gdb_byte format_count, formati;
20145 ULONGEST data_count, datai;
20146 const gdb_byte *buf = *bufp;
20147 const gdb_byte *format_header_data;
20148 unsigned int bytes_read;
20149
20150 format_count = read_1_byte (abfd, buf);
20151 buf += 1;
20152 format_header_data = buf;
20153 for (formati = 0; formati < format_count; formati++)
20154 {
20155 read_unsigned_leb128 (abfd, buf, &bytes_read);
20156 buf += bytes_read;
20157 read_unsigned_leb128 (abfd, buf, &bytes_read);
20158 buf += bytes_read;
20159 }
20160
20161 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20162 buf += bytes_read;
20163 for (datai = 0; datai < data_count; datai++)
20164 {
20165 const gdb_byte *format = format_header_data;
20166 struct file_entry fe;
20167
20168 for (formati = 0; formati < format_count; formati++)
20169 {
20170 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20171 format += bytes_read;
20172
20173 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20174 format += bytes_read;
20175
20176 gdb::optional<const char *> string;
20177 gdb::optional<unsigned int> uint;
20178
20179 switch (form)
20180 {
20181 case DW_FORM_string:
20182 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20183 buf += bytes_read;
20184 break;
20185
20186 case DW_FORM_line_strp:
20187 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20188 abfd, buf,
20189 cu_header,
20190 &bytes_read));
20191 buf += bytes_read;
20192 break;
20193
20194 case DW_FORM_data1:
20195 uint.emplace (read_1_byte (abfd, buf));
20196 buf += 1;
20197 break;
20198
20199 case DW_FORM_data2:
20200 uint.emplace (read_2_bytes (abfd, buf));
20201 buf += 2;
20202 break;
20203
20204 case DW_FORM_data4:
20205 uint.emplace (read_4_bytes (abfd, buf));
20206 buf += 4;
20207 break;
20208
20209 case DW_FORM_data8:
20210 uint.emplace (read_8_bytes (abfd, buf));
20211 buf += 8;
20212 break;
20213
20214 case DW_FORM_udata:
20215 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20216 buf += bytes_read;
20217 break;
20218
20219 case DW_FORM_block:
20220 /* It is valid only for DW_LNCT_timestamp which is ignored by
20221 current GDB. */
20222 break;
20223 }
20224
20225 switch (content_type)
20226 {
20227 case DW_LNCT_path:
20228 if (string.has_value ())
20229 fe.name = *string;
20230 break;
20231 case DW_LNCT_directory_index:
20232 if (uint.has_value ())
20233 fe.d_index = (dir_index) *uint;
20234 break;
20235 case DW_LNCT_timestamp:
20236 if (uint.has_value ())
20237 fe.mod_time = *uint;
20238 break;
20239 case DW_LNCT_size:
20240 if (uint.has_value ())
20241 fe.length = *uint;
20242 break;
20243 case DW_LNCT_MD5:
20244 break;
20245 default:
20246 complaint (_("Unknown format content type %s"),
20247 pulongest (content_type));
20248 }
20249 }
20250
20251 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20252 }
20253
20254 *bufp = buf;
20255 }
20256
20257 /* Read the statement program header starting at OFFSET in
20258 .debug_line, or .debug_line.dwo. Return a pointer
20259 to a struct line_header, allocated using xmalloc.
20260 Returns NULL if there is a problem reading the header, e.g., if it
20261 has a version we don't understand.
20262
20263 NOTE: the strings in the include directory and file name tables of
20264 the returned object point into the dwarf line section buffer,
20265 and must not be freed. */
20266
20267 static line_header_up
20268 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20269 {
20270 const gdb_byte *line_ptr;
20271 unsigned int bytes_read, offset_size;
20272 int i;
20273 const char *cur_dir, *cur_file;
20274 struct dwarf2_section_info *section;
20275 bfd *abfd;
20276 struct dwarf2_per_objfile *dwarf2_per_objfile
20277 = cu->per_cu->dwarf2_per_objfile;
20278
20279 section = get_debug_line_section (cu);
20280 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20281 if (section->buffer == NULL)
20282 {
20283 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20284 complaint (_("missing .debug_line.dwo section"));
20285 else
20286 complaint (_("missing .debug_line section"));
20287 return 0;
20288 }
20289
20290 /* We can't do this until we know the section is non-empty.
20291 Only then do we know we have such a section. */
20292 abfd = get_section_bfd_owner (section);
20293
20294 /* Make sure that at least there's room for the total_length field.
20295 That could be 12 bytes long, but we're just going to fudge that. */
20296 if (to_underlying (sect_off) + 4 >= section->size)
20297 {
20298 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20299 return 0;
20300 }
20301
20302 line_header_up lh (new line_header ());
20303
20304 lh->sect_off = sect_off;
20305 lh->offset_in_dwz = cu->per_cu->is_dwz;
20306
20307 line_ptr = section->buffer + to_underlying (sect_off);
20308
20309 /* Read in the header. */
20310 lh->total_length =
20311 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20312 &bytes_read, &offset_size);
20313 line_ptr += bytes_read;
20314 if (line_ptr + lh->total_length > (section->buffer + section->size))
20315 {
20316 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20317 return 0;
20318 }
20319 lh->statement_program_end = line_ptr + lh->total_length;
20320 lh->version = read_2_bytes (abfd, line_ptr);
20321 line_ptr += 2;
20322 if (lh->version > 5)
20323 {
20324 /* This is a version we don't understand. The format could have
20325 changed in ways we don't handle properly so just punt. */
20326 complaint (_("unsupported version in .debug_line section"));
20327 return NULL;
20328 }
20329 if (lh->version >= 5)
20330 {
20331 gdb_byte segment_selector_size;
20332
20333 /* Skip address size. */
20334 read_1_byte (abfd, line_ptr);
20335 line_ptr += 1;
20336
20337 segment_selector_size = read_1_byte (abfd, line_ptr);
20338 line_ptr += 1;
20339 if (segment_selector_size != 0)
20340 {
20341 complaint (_("unsupported segment selector size %u "
20342 "in .debug_line section"),
20343 segment_selector_size);
20344 return NULL;
20345 }
20346 }
20347 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20348 line_ptr += offset_size;
20349 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20350 line_ptr += 1;
20351 if (lh->version >= 4)
20352 {
20353 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20354 line_ptr += 1;
20355 }
20356 else
20357 lh->maximum_ops_per_instruction = 1;
20358
20359 if (lh->maximum_ops_per_instruction == 0)
20360 {
20361 lh->maximum_ops_per_instruction = 1;
20362 complaint (_("invalid maximum_ops_per_instruction "
20363 "in `.debug_line' section"));
20364 }
20365
20366 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20367 line_ptr += 1;
20368 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20369 line_ptr += 1;
20370 lh->line_range = read_1_byte (abfd, line_ptr);
20371 line_ptr += 1;
20372 lh->opcode_base = read_1_byte (abfd, line_ptr);
20373 line_ptr += 1;
20374 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20375
20376 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20377 for (i = 1; i < lh->opcode_base; ++i)
20378 {
20379 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20380 line_ptr += 1;
20381 }
20382
20383 if (lh->version >= 5)
20384 {
20385 /* Read directory table. */
20386 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20387 &cu->header,
20388 [] (struct line_header *header, const char *name,
20389 dir_index d_index, unsigned int mod_time,
20390 unsigned int length)
20391 {
20392 header->add_include_dir (name);
20393 });
20394
20395 /* Read file name table. */
20396 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20397 &cu->header,
20398 [] (struct line_header *header, const char *name,
20399 dir_index d_index, unsigned int mod_time,
20400 unsigned int length)
20401 {
20402 header->add_file_name (name, d_index, mod_time, length);
20403 });
20404 }
20405 else
20406 {
20407 /* Read directory table. */
20408 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20409 {
20410 line_ptr += bytes_read;
20411 lh->add_include_dir (cur_dir);
20412 }
20413 line_ptr += bytes_read;
20414
20415 /* Read file name table. */
20416 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20417 {
20418 unsigned int mod_time, length;
20419 dir_index d_index;
20420
20421 line_ptr += bytes_read;
20422 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20423 line_ptr += bytes_read;
20424 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20425 line_ptr += bytes_read;
20426 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20427 line_ptr += bytes_read;
20428
20429 lh->add_file_name (cur_file, d_index, mod_time, length);
20430 }
20431 line_ptr += bytes_read;
20432 }
20433 lh->statement_program_start = line_ptr;
20434
20435 if (line_ptr > (section->buffer + section->size))
20436 complaint (_("line number info header doesn't "
20437 "fit in `.debug_line' section"));
20438
20439 return lh;
20440 }
20441
20442 /* Subroutine of dwarf_decode_lines to simplify it.
20443 Return the file name of the psymtab for included file FILE_INDEX
20444 in line header LH of PST.
20445 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20446 If space for the result is malloc'd, *NAME_HOLDER will be set.
20447 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20448
20449 static const char *
20450 psymtab_include_file_name (const struct line_header *lh, int file_index,
20451 const struct partial_symtab *pst,
20452 const char *comp_dir,
20453 gdb::unique_xmalloc_ptr<char> *name_holder)
20454 {
20455 const file_entry &fe = lh->file_names[file_index];
20456 const char *include_name = fe.name;
20457 const char *include_name_to_compare = include_name;
20458 const char *pst_filename;
20459 int file_is_pst;
20460
20461 const char *dir_name = fe.include_dir (lh);
20462
20463 gdb::unique_xmalloc_ptr<char> hold_compare;
20464 if (!IS_ABSOLUTE_PATH (include_name)
20465 && (dir_name != NULL || comp_dir != NULL))
20466 {
20467 /* Avoid creating a duplicate psymtab for PST.
20468 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20469 Before we do the comparison, however, we need to account
20470 for DIR_NAME and COMP_DIR.
20471 First prepend dir_name (if non-NULL). If we still don't
20472 have an absolute path prepend comp_dir (if non-NULL).
20473 However, the directory we record in the include-file's
20474 psymtab does not contain COMP_DIR (to match the
20475 corresponding symtab(s)).
20476
20477 Example:
20478
20479 bash$ cd /tmp
20480 bash$ gcc -g ./hello.c
20481 include_name = "hello.c"
20482 dir_name = "."
20483 DW_AT_comp_dir = comp_dir = "/tmp"
20484 DW_AT_name = "./hello.c"
20485
20486 */
20487
20488 if (dir_name != NULL)
20489 {
20490 name_holder->reset (concat (dir_name, SLASH_STRING,
20491 include_name, (char *) NULL));
20492 include_name = name_holder->get ();
20493 include_name_to_compare = include_name;
20494 }
20495 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20496 {
20497 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20498 include_name, (char *) NULL));
20499 include_name_to_compare = hold_compare.get ();
20500 }
20501 }
20502
20503 pst_filename = pst->filename;
20504 gdb::unique_xmalloc_ptr<char> copied_name;
20505 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20506 {
20507 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20508 pst_filename, (char *) NULL));
20509 pst_filename = copied_name.get ();
20510 }
20511
20512 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20513
20514 if (file_is_pst)
20515 return NULL;
20516 return include_name;
20517 }
20518
20519 /* State machine to track the state of the line number program. */
20520
20521 class lnp_state_machine
20522 {
20523 public:
20524 /* Initialize a machine state for the start of a line number
20525 program. */
20526 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20527 bool record_lines_p);
20528
20529 file_entry *current_file ()
20530 {
20531 /* lh->file_names is 0-based, but the file name numbers in the
20532 statement program are 1-based. */
20533 return m_line_header->file_name_at (m_file);
20534 }
20535
20536 /* Record the line in the state machine. END_SEQUENCE is true if
20537 we're processing the end of a sequence. */
20538 void record_line (bool end_sequence);
20539
20540 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20541 nop-out rest of the lines in this sequence. */
20542 void check_line_address (struct dwarf2_cu *cu,
20543 const gdb_byte *line_ptr,
20544 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20545
20546 void handle_set_discriminator (unsigned int discriminator)
20547 {
20548 m_discriminator = discriminator;
20549 m_line_has_non_zero_discriminator |= discriminator != 0;
20550 }
20551
20552 /* Handle DW_LNE_set_address. */
20553 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20554 {
20555 m_op_index = 0;
20556 address += baseaddr;
20557 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20558 }
20559
20560 /* Handle DW_LNS_advance_pc. */
20561 void handle_advance_pc (CORE_ADDR adjust);
20562
20563 /* Handle a special opcode. */
20564 void handle_special_opcode (unsigned char op_code);
20565
20566 /* Handle DW_LNS_advance_line. */
20567 void handle_advance_line (int line_delta)
20568 {
20569 advance_line (line_delta);
20570 }
20571
20572 /* Handle DW_LNS_set_file. */
20573 void handle_set_file (file_name_index file);
20574
20575 /* Handle DW_LNS_negate_stmt. */
20576 void handle_negate_stmt ()
20577 {
20578 m_is_stmt = !m_is_stmt;
20579 }
20580
20581 /* Handle DW_LNS_const_add_pc. */
20582 void handle_const_add_pc ();
20583
20584 /* Handle DW_LNS_fixed_advance_pc. */
20585 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20586 {
20587 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20588 m_op_index = 0;
20589 }
20590
20591 /* Handle DW_LNS_copy. */
20592 void handle_copy ()
20593 {
20594 record_line (false);
20595 m_discriminator = 0;
20596 }
20597
20598 /* Handle DW_LNE_end_sequence. */
20599 void handle_end_sequence ()
20600 {
20601 m_currently_recording_lines = true;
20602 }
20603
20604 private:
20605 /* Advance the line by LINE_DELTA. */
20606 void advance_line (int line_delta)
20607 {
20608 m_line += line_delta;
20609
20610 if (line_delta != 0)
20611 m_line_has_non_zero_discriminator = m_discriminator != 0;
20612 }
20613
20614 struct dwarf2_cu *m_cu;
20615
20616 gdbarch *m_gdbarch;
20617
20618 /* True if we're recording lines.
20619 Otherwise we're building partial symtabs and are just interested in
20620 finding include files mentioned by the line number program. */
20621 bool m_record_lines_p;
20622
20623 /* The line number header. */
20624 line_header *m_line_header;
20625
20626 /* These are part of the standard DWARF line number state machine,
20627 and initialized according to the DWARF spec. */
20628
20629 unsigned char m_op_index = 0;
20630 /* The line table index (1-based) of the current file. */
20631 file_name_index m_file = (file_name_index) 1;
20632 unsigned int m_line = 1;
20633
20634 /* These are initialized in the constructor. */
20635
20636 CORE_ADDR m_address;
20637 bool m_is_stmt;
20638 unsigned int m_discriminator;
20639
20640 /* Additional bits of state we need to track. */
20641
20642 /* The last file that we called dwarf2_start_subfile for.
20643 This is only used for TLLs. */
20644 unsigned int m_last_file = 0;
20645 /* The last file a line number was recorded for. */
20646 struct subfile *m_last_subfile = NULL;
20647
20648 /* When true, record the lines we decode. */
20649 bool m_currently_recording_lines = false;
20650
20651 /* The last line number that was recorded, used to coalesce
20652 consecutive entries for the same line. This can happen, for
20653 example, when discriminators are present. PR 17276. */
20654 unsigned int m_last_line = 0;
20655 bool m_line_has_non_zero_discriminator = false;
20656 };
20657
20658 void
20659 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20660 {
20661 CORE_ADDR addr_adj = (((m_op_index + adjust)
20662 / m_line_header->maximum_ops_per_instruction)
20663 * m_line_header->minimum_instruction_length);
20664 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20665 m_op_index = ((m_op_index + adjust)
20666 % m_line_header->maximum_ops_per_instruction);
20667 }
20668
20669 void
20670 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20671 {
20672 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20673 CORE_ADDR addr_adj = (((m_op_index
20674 + (adj_opcode / m_line_header->line_range))
20675 / m_line_header->maximum_ops_per_instruction)
20676 * m_line_header->minimum_instruction_length);
20677 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20678 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20679 % m_line_header->maximum_ops_per_instruction);
20680
20681 int line_delta = (m_line_header->line_base
20682 + (adj_opcode % m_line_header->line_range));
20683 advance_line (line_delta);
20684 record_line (false);
20685 m_discriminator = 0;
20686 }
20687
20688 void
20689 lnp_state_machine::handle_set_file (file_name_index file)
20690 {
20691 m_file = file;
20692
20693 const file_entry *fe = current_file ();
20694 if (fe == NULL)
20695 dwarf2_debug_line_missing_file_complaint ();
20696 else if (m_record_lines_p)
20697 {
20698 const char *dir = fe->include_dir (m_line_header);
20699
20700 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20701 m_line_has_non_zero_discriminator = m_discriminator != 0;
20702 dwarf2_start_subfile (m_cu, fe->name, dir);
20703 }
20704 }
20705
20706 void
20707 lnp_state_machine::handle_const_add_pc ()
20708 {
20709 CORE_ADDR adjust
20710 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20711
20712 CORE_ADDR addr_adj
20713 = (((m_op_index + adjust)
20714 / m_line_header->maximum_ops_per_instruction)
20715 * m_line_header->minimum_instruction_length);
20716
20717 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20718 m_op_index = ((m_op_index + adjust)
20719 % m_line_header->maximum_ops_per_instruction);
20720 }
20721
20722 /* Return non-zero if we should add LINE to the line number table.
20723 LINE is the line to add, LAST_LINE is the last line that was added,
20724 LAST_SUBFILE is the subfile for LAST_LINE.
20725 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20726 had a non-zero discriminator.
20727
20728 We have to be careful in the presence of discriminators.
20729 E.g., for this line:
20730
20731 for (i = 0; i < 100000; i++);
20732
20733 clang can emit four line number entries for that one line,
20734 each with a different discriminator.
20735 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20736
20737 However, we want gdb to coalesce all four entries into one.
20738 Otherwise the user could stepi into the middle of the line and
20739 gdb would get confused about whether the pc really was in the
20740 middle of the line.
20741
20742 Things are further complicated by the fact that two consecutive
20743 line number entries for the same line is a heuristic used by gcc
20744 to denote the end of the prologue. So we can't just discard duplicate
20745 entries, we have to be selective about it. The heuristic we use is
20746 that we only collapse consecutive entries for the same line if at least
20747 one of those entries has a non-zero discriminator. PR 17276.
20748
20749 Note: Addresses in the line number state machine can never go backwards
20750 within one sequence, thus this coalescing is ok. */
20751
20752 static int
20753 dwarf_record_line_p (struct dwarf2_cu *cu,
20754 unsigned int line, unsigned int last_line,
20755 int line_has_non_zero_discriminator,
20756 struct subfile *last_subfile)
20757 {
20758 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20759 return 1;
20760 if (line != last_line)
20761 return 1;
20762 /* Same line for the same file that we've seen already.
20763 As a last check, for pr 17276, only record the line if the line
20764 has never had a non-zero discriminator. */
20765 if (!line_has_non_zero_discriminator)
20766 return 1;
20767 return 0;
20768 }
20769
20770 /* Use the CU's builder to record line number LINE beginning at
20771 address ADDRESS in the line table of subfile SUBFILE. */
20772
20773 static void
20774 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20775 unsigned int line, CORE_ADDR address,
20776 struct dwarf2_cu *cu)
20777 {
20778 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20779
20780 if (dwarf_line_debug)
20781 {
20782 fprintf_unfiltered (gdb_stdlog,
20783 "Recording line %u, file %s, address %s\n",
20784 line, lbasename (subfile->name),
20785 paddress (gdbarch, address));
20786 }
20787
20788 if (cu != nullptr)
20789 cu->get_builder ()->record_line (subfile, line, addr);
20790 }
20791
20792 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20793 Mark the end of a set of line number records.
20794 The arguments are the same as for dwarf_record_line_1.
20795 If SUBFILE is NULL the request is ignored. */
20796
20797 static void
20798 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20799 CORE_ADDR address, struct dwarf2_cu *cu)
20800 {
20801 if (subfile == NULL)
20802 return;
20803
20804 if (dwarf_line_debug)
20805 {
20806 fprintf_unfiltered (gdb_stdlog,
20807 "Finishing current line, file %s, address %s\n",
20808 lbasename (subfile->name),
20809 paddress (gdbarch, address));
20810 }
20811
20812 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20813 }
20814
20815 void
20816 lnp_state_machine::record_line (bool end_sequence)
20817 {
20818 if (dwarf_line_debug)
20819 {
20820 fprintf_unfiltered (gdb_stdlog,
20821 "Processing actual line %u: file %u,"
20822 " address %s, is_stmt %u, discrim %u\n",
20823 m_line, to_underlying (m_file),
20824 paddress (m_gdbarch, m_address),
20825 m_is_stmt, m_discriminator);
20826 }
20827
20828 file_entry *fe = current_file ();
20829
20830 if (fe == NULL)
20831 dwarf2_debug_line_missing_file_complaint ();
20832 /* For now we ignore lines not starting on an instruction boundary.
20833 But not when processing end_sequence for compatibility with the
20834 previous version of the code. */
20835 else if (m_op_index == 0 || end_sequence)
20836 {
20837 fe->included_p = 1;
20838 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20839 {
20840 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20841 || end_sequence)
20842 {
20843 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20844 m_currently_recording_lines ? m_cu : nullptr);
20845 }
20846
20847 if (!end_sequence)
20848 {
20849 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20850 m_line_has_non_zero_discriminator,
20851 m_last_subfile))
20852 {
20853 buildsym_compunit *builder = m_cu->get_builder ();
20854 dwarf_record_line_1 (m_gdbarch,
20855 builder->get_current_subfile (),
20856 m_line, m_address,
20857 m_currently_recording_lines ? m_cu : nullptr);
20858 }
20859 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20860 m_last_line = m_line;
20861 }
20862 }
20863 }
20864 }
20865
20866 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20867 line_header *lh, bool record_lines_p)
20868 {
20869 m_cu = cu;
20870 m_gdbarch = arch;
20871 m_record_lines_p = record_lines_p;
20872 m_line_header = lh;
20873
20874 m_currently_recording_lines = true;
20875
20876 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20877 was a line entry for it so that the backend has a chance to adjust it
20878 and also record it in case it needs it. This is currently used by MIPS
20879 code, cf. `mips_adjust_dwarf2_line'. */
20880 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20881 m_is_stmt = lh->default_is_stmt;
20882 m_discriminator = 0;
20883 }
20884
20885 void
20886 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20887 const gdb_byte *line_ptr,
20888 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20889 {
20890 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20891 the pc range of the CU. However, we restrict the test to only ADDRESS
20892 values of zero to preserve GDB's previous behaviour which is to handle
20893 the specific case of a function being GC'd by the linker. */
20894
20895 if (address == 0 && address < unrelocated_lowpc)
20896 {
20897 /* This line table is for a function which has been
20898 GCd by the linker. Ignore it. PR gdb/12528 */
20899
20900 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20901 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20902
20903 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20904 line_offset, objfile_name (objfile));
20905 m_currently_recording_lines = false;
20906 /* Note: m_currently_recording_lines is left as false until we see
20907 DW_LNE_end_sequence. */
20908 }
20909 }
20910
20911 /* Subroutine of dwarf_decode_lines to simplify it.
20912 Process the line number information in LH.
20913 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20914 program in order to set included_p for every referenced header. */
20915
20916 static void
20917 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20918 const int decode_for_pst_p, CORE_ADDR lowpc)
20919 {
20920 const gdb_byte *line_ptr, *extended_end;
20921 const gdb_byte *line_end;
20922 unsigned int bytes_read, extended_len;
20923 unsigned char op_code, extended_op;
20924 CORE_ADDR baseaddr;
20925 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20926 bfd *abfd = objfile->obfd;
20927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20928 /* True if we're recording line info (as opposed to building partial
20929 symtabs and just interested in finding include files mentioned by
20930 the line number program). */
20931 bool record_lines_p = !decode_for_pst_p;
20932
20933 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20934
20935 line_ptr = lh->statement_program_start;
20936 line_end = lh->statement_program_end;
20937
20938 /* Read the statement sequences until there's nothing left. */
20939 while (line_ptr < line_end)
20940 {
20941 /* The DWARF line number program state machine. Reset the state
20942 machine at the start of each sequence. */
20943 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20944 bool end_sequence = false;
20945
20946 if (record_lines_p)
20947 {
20948 /* Start a subfile for the current file of the state
20949 machine. */
20950 const file_entry *fe = state_machine.current_file ();
20951
20952 if (fe != NULL)
20953 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20954 }
20955
20956 /* Decode the table. */
20957 while (line_ptr < line_end && !end_sequence)
20958 {
20959 op_code = read_1_byte (abfd, line_ptr);
20960 line_ptr += 1;
20961
20962 if (op_code >= lh->opcode_base)
20963 {
20964 /* Special opcode. */
20965 state_machine.handle_special_opcode (op_code);
20966 }
20967 else switch (op_code)
20968 {
20969 case DW_LNS_extended_op:
20970 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20971 &bytes_read);
20972 line_ptr += bytes_read;
20973 extended_end = line_ptr + extended_len;
20974 extended_op = read_1_byte (abfd, line_ptr);
20975 line_ptr += 1;
20976 switch (extended_op)
20977 {
20978 case DW_LNE_end_sequence:
20979 state_machine.handle_end_sequence ();
20980 end_sequence = true;
20981 break;
20982 case DW_LNE_set_address:
20983 {
20984 CORE_ADDR address
20985 = read_address (abfd, line_ptr, cu, &bytes_read);
20986 line_ptr += bytes_read;
20987
20988 state_machine.check_line_address (cu, line_ptr,
20989 lowpc - baseaddr, address);
20990 state_machine.handle_set_address (baseaddr, address);
20991 }
20992 break;
20993 case DW_LNE_define_file:
20994 {
20995 const char *cur_file;
20996 unsigned int mod_time, length;
20997 dir_index dindex;
20998
20999 cur_file = read_direct_string (abfd, line_ptr,
21000 &bytes_read);
21001 line_ptr += bytes_read;
21002 dindex = (dir_index)
21003 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21004 line_ptr += bytes_read;
21005 mod_time =
21006 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21007 line_ptr += bytes_read;
21008 length =
21009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21010 line_ptr += bytes_read;
21011 lh->add_file_name (cur_file, dindex, mod_time, length);
21012 }
21013 break;
21014 case DW_LNE_set_discriminator:
21015 {
21016 /* The discriminator is not interesting to the
21017 debugger; just ignore it. We still need to
21018 check its value though:
21019 if there are consecutive entries for the same
21020 (non-prologue) line we want to coalesce them.
21021 PR 17276. */
21022 unsigned int discr
21023 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21024 line_ptr += bytes_read;
21025
21026 state_machine.handle_set_discriminator (discr);
21027 }
21028 break;
21029 default:
21030 complaint (_("mangled .debug_line section"));
21031 return;
21032 }
21033 /* Make sure that we parsed the extended op correctly. If e.g.
21034 we expected a different address size than the producer used,
21035 we may have read the wrong number of bytes. */
21036 if (line_ptr != extended_end)
21037 {
21038 complaint (_("mangled .debug_line section"));
21039 return;
21040 }
21041 break;
21042 case DW_LNS_copy:
21043 state_machine.handle_copy ();
21044 break;
21045 case DW_LNS_advance_pc:
21046 {
21047 CORE_ADDR adjust
21048 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21049 line_ptr += bytes_read;
21050
21051 state_machine.handle_advance_pc (adjust);
21052 }
21053 break;
21054 case DW_LNS_advance_line:
21055 {
21056 int line_delta
21057 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21058 line_ptr += bytes_read;
21059
21060 state_machine.handle_advance_line (line_delta);
21061 }
21062 break;
21063 case DW_LNS_set_file:
21064 {
21065 file_name_index file
21066 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21067 &bytes_read);
21068 line_ptr += bytes_read;
21069
21070 state_machine.handle_set_file (file);
21071 }
21072 break;
21073 case DW_LNS_set_column:
21074 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21075 line_ptr += bytes_read;
21076 break;
21077 case DW_LNS_negate_stmt:
21078 state_machine.handle_negate_stmt ();
21079 break;
21080 case DW_LNS_set_basic_block:
21081 break;
21082 /* Add to the address register of the state machine the
21083 address increment value corresponding to special opcode
21084 255. I.e., this value is scaled by the minimum
21085 instruction length since special opcode 255 would have
21086 scaled the increment. */
21087 case DW_LNS_const_add_pc:
21088 state_machine.handle_const_add_pc ();
21089 break;
21090 case DW_LNS_fixed_advance_pc:
21091 {
21092 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21093 line_ptr += 2;
21094
21095 state_machine.handle_fixed_advance_pc (addr_adj);
21096 }
21097 break;
21098 default:
21099 {
21100 /* Unknown standard opcode, ignore it. */
21101 int i;
21102
21103 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21104 {
21105 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21106 line_ptr += bytes_read;
21107 }
21108 }
21109 }
21110 }
21111
21112 if (!end_sequence)
21113 dwarf2_debug_line_missing_end_sequence_complaint ();
21114
21115 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21116 in which case we still finish recording the last line). */
21117 state_machine.record_line (true);
21118 }
21119 }
21120
21121 /* Decode the Line Number Program (LNP) for the given line_header
21122 structure and CU. The actual information extracted and the type
21123 of structures created from the LNP depends on the value of PST.
21124
21125 1. If PST is NULL, then this procedure uses the data from the program
21126 to create all necessary symbol tables, and their linetables.
21127
21128 2. If PST is not NULL, this procedure reads the program to determine
21129 the list of files included by the unit represented by PST, and
21130 builds all the associated partial symbol tables.
21131
21132 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21133 It is used for relative paths in the line table.
21134 NOTE: When processing partial symtabs (pst != NULL),
21135 comp_dir == pst->dirname.
21136
21137 NOTE: It is important that psymtabs have the same file name (via strcmp)
21138 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21139 symtab we don't use it in the name of the psymtabs we create.
21140 E.g. expand_line_sal requires this when finding psymtabs to expand.
21141 A good testcase for this is mb-inline.exp.
21142
21143 LOWPC is the lowest address in CU (or 0 if not known).
21144
21145 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21146 for its PC<->lines mapping information. Otherwise only the filename
21147 table is read in. */
21148
21149 static void
21150 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21151 struct dwarf2_cu *cu, struct partial_symtab *pst,
21152 CORE_ADDR lowpc, int decode_mapping)
21153 {
21154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21155 const int decode_for_pst_p = (pst != NULL);
21156
21157 if (decode_mapping)
21158 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21159
21160 if (decode_for_pst_p)
21161 {
21162 int file_index;
21163
21164 /* Now that we're done scanning the Line Header Program, we can
21165 create the psymtab of each included file. */
21166 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21167 if (lh->file_names[file_index].included_p == 1)
21168 {
21169 gdb::unique_xmalloc_ptr<char> name_holder;
21170 const char *include_name =
21171 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21172 &name_holder);
21173 if (include_name != NULL)
21174 dwarf2_create_include_psymtab (include_name, pst, objfile);
21175 }
21176 }
21177 else
21178 {
21179 /* Make sure a symtab is created for every file, even files
21180 which contain only variables (i.e. no code with associated
21181 line numbers). */
21182 buildsym_compunit *builder = cu->get_builder ();
21183 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21184 int i;
21185
21186 for (i = 0; i < lh->file_names.size (); i++)
21187 {
21188 file_entry &fe = lh->file_names[i];
21189
21190 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21191
21192 if (builder->get_current_subfile ()->symtab == NULL)
21193 {
21194 builder->get_current_subfile ()->symtab
21195 = allocate_symtab (cust,
21196 builder->get_current_subfile ()->name);
21197 }
21198 fe.symtab = builder->get_current_subfile ()->symtab;
21199 }
21200 }
21201 }
21202
21203 /* Start a subfile for DWARF. FILENAME is the name of the file and
21204 DIRNAME the name of the source directory which contains FILENAME
21205 or NULL if not known.
21206 This routine tries to keep line numbers from identical absolute and
21207 relative file names in a common subfile.
21208
21209 Using the `list' example from the GDB testsuite, which resides in
21210 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21211 of /srcdir/list0.c yields the following debugging information for list0.c:
21212
21213 DW_AT_name: /srcdir/list0.c
21214 DW_AT_comp_dir: /compdir
21215 files.files[0].name: list0.h
21216 files.files[0].dir: /srcdir
21217 files.files[1].name: list0.c
21218 files.files[1].dir: /srcdir
21219
21220 The line number information for list0.c has to end up in a single
21221 subfile, so that `break /srcdir/list0.c:1' works as expected.
21222 start_subfile will ensure that this happens provided that we pass the
21223 concatenation of files.files[1].dir and files.files[1].name as the
21224 subfile's name. */
21225
21226 static void
21227 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21228 const char *dirname)
21229 {
21230 char *copy = NULL;
21231
21232 /* In order not to lose the line information directory,
21233 we concatenate it to the filename when it makes sense.
21234 Note that the Dwarf3 standard says (speaking of filenames in line
21235 information): ``The directory index is ignored for file names
21236 that represent full path names''. Thus ignoring dirname in the
21237 `else' branch below isn't an issue. */
21238
21239 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21240 {
21241 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21242 filename = copy;
21243 }
21244
21245 cu->get_builder ()->start_subfile (filename);
21246
21247 if (copy != NULL)
21248 xfree (copy);
21249 }
21250
21251 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21252 buildsym_compunit constructor. */
21253
21254 struct compunit_symtab *
21255 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21256 CORE_ADDR low_pc)
21257 {
21258 gdb_assert (m_builder == nullptr);
21259
21260 m_builder.reset (new struct buildsym_compunit
21261 (per_cu->dwarf2_per_objfile->objfile,
21262 name, comp_dir, language, low_pc));
21263
21264 list_in_scope = get_builder ()->get_file_symbols ();
21265
21266 get_builder ()->record_debugformat ("DWARF 2");
21267 get_builder ()->record_producer (producer);
21268
21269 processing_has_namespace_info = false;
21270
21271 return get_builder ()->get_compunit_symtab ();
21272 }
21273
21274 static void
21275 var_decode_location (struct attribute *attr, struct symbol *sym,
21276 struct dwarf2_cu *cu)
21277 {
21278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21279 struct comp_unit_head *cu_header = &cu->header;
21280
21281 /* NOTE drow/2003-01-30: There used to be a comment and some special
21282 code here to turn a symbol with DW_AT_external and a
21283 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21284 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21285 with some versions of binutils) where shared libraries could have
21286 relocations against symbols in their debug information - the
21287 minimal symbol would have the right address, but the debug info
21288 would not. It's no longer necessary, because we will explicitly
21289 apply relocations when we read in the debug information now. */
21290
21291 /* A DW_AT_location attribute with no contents indicates that a
21292 variable has been optimized away. */
21293 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21294 {
21295 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21296 return;
21297 }
21298
21299 /* Handle one degenerate form of location expression specially, to
21300 preserve GDB's previous behavior when section offsets are
21301 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21302 then mark this symbol as LOC_STATIC. */
21303
21304 if (attr_form_is_block (attr)
21305 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21306 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21307 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21308 && (DW_BLOCK (attr)->size
21309 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21310 {
21311 unsigned int dummy;
21312
21313 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21314 SYMBOL_VALUE_ADDRESS (sym) =
21315 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21316 else
21317 SYMBOL_VALUE_ADDRESS (sym) =
21318 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21319 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21320 fixup_symbol_section (sym, objfile);
21321 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21322 SYMBOL_SECTION (sym));
21323 return;
21324 }
21325
21326 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21327 expression evaluator, and use LOC_COMPUTED only when necessary
21328 (i.e. when the value of a register or memory location is
21329 referenced, or a thread-local block, etc.). Then again, it might
21330 not be worthwhile. I'm assuming that it isn't unless performance
21331 or memory numbers show me otherwise. */
21332
21333 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21334
21335 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21336 cu->has_loclist = true;
21337 }
21338
21339 /* Given a pointer to a DWARF information entry, figure out if we need
21340 to make a symbol table entry for it, and if so, create a new entry
21341 and return a pointer to it.
21342 If TYPE is NULL, determine symbol type from the die, otherwise
21343 used the passed type.
21344 If SPACE is not NULL, use it to hold the new symbol. If it is
21345 NULL, allocate a new symbol on the objfile's obstack. */
21346
21347 static struct symbol *
21348 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21349 struct symbol *space)
21350 {
21351 struct dwarf2_per_objfile *dwarf2_per_objfile
21352 = cu->per_cu->dwarf2_per_objfile;
21353 struct objfile *objfile = dwarf2_per_objfile->objfile;
21354 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21355 struct symbol *sym = NULL;
21356 const char *name;
21357 struct attribute *attr = NULL;
21358 struct attribute *attr2 = NULL;
21359 CORE_ADDR baseaddr;
21360 struct pending **list_to_add = NULL;
21361
21362 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21363
21364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21365
21366 name = dwarf2_name (die, cu);
21367 if (name)
21368 {
21369 const char *linkagename;
21370 int suppress_add = 0;
21371
21372 if (space)
21373 sym = space;
21374 else
21375 sym = allocate_symbol (objfile);
21376 OBJSTAT (objfile, n_syms++);
21377
21378 /* Cache this symbol's name and the name's demangled form (if any). */
21379 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21380 linkagename = dwarf2_physname (name, die, cu);
21381 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21382
21383 /* Fortran does not have mangling standard and the mangling does differ
21384 between gfortran, iFort etc. */
21385 if (cu->language == language_fortran
21386 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21387 symbol_set_demangled_name (&(sym->ginfo),
21388 dwarf2_full_name (name, die, cu),
21389 NULL);
21390
21391 /* Default assumptions.
21392 Use the passed type or decode it from the die. */
21393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21394 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21395 if (type != NULL)
21396 SYMBOL_TYPE (sym) = type;
21397 else
21398 SYMBOL_TYPE (sym) = die_type (die, cu);
21399 attr = dwarf2_attr (die,
21400 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21401 cu);
21402 if (attr)
21403 {
21404 SYMBOL_LINE (sym) = DW_UNSND (attr);
21405 }
21406
21407 attr = dwarf2_attr (die,
21408 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21409 cu);
21410 if (attr)
21411 {
21412 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21413 struct file_entry *fe;
21414
21415 if (cu->line_header != NULL)
21416 fe = cu->line_header->file_name_at (file_index);
21417 else
21418 fe = NULL;
21419
21420 if (fe == NULL)
21421 complaint (_("file index out of range"));
21422 else
21423 symbol_set_symtab (sym, fe->symtab);
21424 }
21425
21426 switch (die->tag)
21427 {
21428 case DW_TAG_label:
21429 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21430 if (attr)
21431 {
21432 CORE_ADDR addr;
21433
21434 addr = attr_value_as_address (attr);
21435 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21436 SYMBOL_VALUE_ADDRESS (sym) = addr;
21437 }
21438 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21439 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21440 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21441 add_symbol_to_list (sym, cu->list_in_scope);
21442 break;
21443 case DW_TAG_subprogram:
21444 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21445 finish_block. */
21446 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21447 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21448 if ((attr2 && (DW_UNSND (attr2) != 0))
21449 || cu->language == language_ada)
21450 {
21451 /* Subprograms marked external are stored as a global symbol.
21452 Ada subprograms, whether marked external or not, are always
21453 stored as a global symbol, because we want to be able to
21454 access them globally. For instance, we want to be able
21455 to break on a nested subprogram without having to
21456 specify the context. */
21457 list_to_add = cu->get_builder ()->get_global_symbols ();
21458 }
21459 else
21460 {
21461 list_to_add = cu->list_in_scope;
21462 }
21463 break;
21464 case DW_TAG_inlined_subroutine:
21465 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21466 finish_block. */
21467 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21468 SYMBOL_INLINED (sym) = 1;
21469 list_to_add = cu->list_in_scope;
21470 break;
21471 case DW_TAG_template_value_param:
21472 suppress_add = 1;
21473 /* Fall through. */
21474 case DW_TAG_constant:
21475 case DW_TAG_variable:
21476 case DW_TAG_member:
21477 /* Compilation with minimal debug info may result in
21478 variables with missing type entries. Change the
21479 misleading `void' type to something sensible. */
21480 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21481 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21482
21483 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21484 /* In the case of DW_TAG_member, we should only be called for
21485 static const members. */
21486 if (die->tag == DW_TAG_member)
21487 {
21488 /* dwarf2_add_field uses die_is_declaration,
21489 so we do the same. */
21490 gdb_assert (die_is_declaration (die, cu));
21491 gdb_assert (attr);
21492 }
21493 if (attr)
21494 {
21495 dwarf2_const_value (attr, sym, cu);
21496 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21497 if (!suppress_add)
21498 {
21499 if (attr2 && (DW_UNSND (attr2) != 0))
21500 list_to_add = cu->get_builder ()->get_global_symbols ();
21501 else
21502 list_to_add = cu->list_in_scope;
21503 }
21504 break;
21505 }
21506 attr = dwarf2_attr (die, DW_AT_location, cu);
21507 if (attr)
21508 {
21509 var_decode_location (attr, sym, cu);
21510 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21511
21512 /* Fortran explicitly imports any global symbols to the local
21513 scope by DW_TAG_common_block. */
21514 if (cu->language == language_fortran && die->parent
21515 && die->parent->tag == DW_TAG_common_block)
21516 attr2 = NULL;
21517
21518 if (SYMBOL_CLASS (sym) == LOC_STATIC
21519 && SYMBOL_VALUE_ADDRESS (sym) == 0
21520 && !dwarf2_per_objfile->has_section_at_zero)
21521 {
21522 /* When a static variable is eliminated by the linker,
21523 the corresponding debug information is not stripped
21524 out, but the variable address is set to null;
21525 do not add such variables into symbol table. */
21526 }
21527 else if (attr2 && (DW_UNSND (attr2) != 0))
21528 {
21529 /* Workaround gfortran PR debug/40040 - it uses
21530 DW_AT_location for variables in -fPIC libraries which may
21531 get overriden by other libraries/executable and get
21532 a different address. Resolve it by the minimal symbol
21533 which may come from inferior's executable using copy
21534 relocation. Make this workaround only for gfortran as for
21535 other compilers GDB cannot guess the minimal symbol
21536 Fortran mangling kind. */
21537 if (cu->language == language_fortran && die->parent
21538 && die->parent->tag == DW_TAG_module
21539 && cu->producer
21540 && startswith (cu->producer, "GNU Fortran"))
21541 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21542
21543 /* A variable with DW_AT_external is never static,
21544 but it may be block-scoped. */
21545 list_to_add
21546 = ((cu->list_in_scope
21547 == cu->get_builder ()->get_file_symbols ())
21548 ? cu->get_builder ()->get_global_symbols ()
21549 : cu->list_in_scope);
21550 }
21551 else
21552 list_to_add = cu->list_in_scope;
21553 }
21554 else
21555 {
21556 /* We do not know the address of this symbol.
21557 If it is an external symbol and we have type information
21558 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21559 The address of the variable will then be determined from
21560 the minimal symbol table whenever the variable is
21561 referenced. */
21562 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21563
21564 /* Fortran explicitly imports any global symbols to the local
21565 scope by DW_TAG_common_block. */
21566 if (cu->language == language_fortran && die->parent
21567 && die->parent->tag == DW_TAG_common_block)
21568 {
21569 /* SYMBOL_CLASS doesn't matter here because
21570 read_common_block is going to reset it. */
21571 if (!suppress_add)
21572 list_to_add = cu->list_in_scope;
21573 }
21574 else if (attr2 && (DW_UNSND (attr2) != 0)
21575 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21576 {
21577 /* A variable with DW_AT_external is never static, but it
21578 may be block-scoped. */
21579 list_to_add
21580 = ((cu->list_in_scope
21581 == cu->get_builder ()->get_file_symbols ())
21582 ? cu->get_builder ()->get_global_symbols ()
21583 : cu->list_in_scope);
21584
21585 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21586 }
21587 else if (!die_is_declaration (die, cu))
21588 {
21589 /* Use the default LOC_OPTIMIZED_OUT class. */
21590 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21591 if (!suppress_add)
21592 list_to_add = cu->list_in_scope;
21593 }
21594 }
21595 break;
21596 case DW_TAG_formal_parameter:
21597 {
21598 /* If we are inside a function, mark this as an argument. If
21599 not, we might be looking at an argument to an inlined function
21600 when we do not have enough information to show inlined frames;
21601 pretend it's a local variable in that case so that the user can
21602 still see it. */
21603 struct context_stack *curr
21604 = cu->get_builder ()->get_current_context_stack ();
21605 if (curr != nullptr && curr->name != nullptr)
21606 SYMBOL_IS_ARGUMENT (sym) = 1;
21607 attr = dwarf2_attr (die, DW_AT_location, cu);
21608 if (attr)
21609 {
21610 var_decode_location (attr, sym, cu);
21611 }
21612 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21613 if (attr)
21614 {
21615 dwarf2_const_value (attr, sym, cu);
21616 }
21617
21618 list_to_add = cu->list_in_scope;
21619 }
21620 break;
21621 case DW_TAG_unspecified_parameters:
21622 /* From varargs functions; gdb doesn't seem to have any
21623 interest in this information, so just ignore it for now.
21624 (FIXME?) */
21625 break;
21626 case DW_TAG_template_type_param:
21627 suppress_add = 1;
21628 /* Fall through. */
21629 case DW_TAG_class_type:
21630 case DW_TAG_interface_type:
21631 case DW_TAG_structure_type:
21632 case DW_TAG_union_type:
21633 case DW_TAG_set_type:
21634 case DW_TAG_enumeration_type:
21635 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21636 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21637
21638 {
21639 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21640 really ever be static objects: otherwise, if you try
21641 to, say, break of a class's method and you're in a file
21642 which doesn't mention that class, it won't work unless
21643 the check for all static symbols in lookup_symbol_aux
21644 saves you. See the OtherFileClass tests in
21645 gdb.c++/namespace.exp. */
21646
21647 if (!suppress_add)
21648 {
21649 buildsym_compunit *builder = cu->get_builder ();
21650 list_to_add
21651 = (cu->list_in_scope == builder->get_file_symbols ()
21652 && cu->language == language_cplus
21653 ? builder->get_global_symbols ()
21654 : cu->list_in_scope);
21655
21656 /* The semantics of C++ state that "struct foo {
21657 ... }" also defines a typedef for "foo". */
21658 if (cu->language == language_cplus
21659 || cu->language == language_ada
21660 || cu->language == language_d
21661 || cu->language == language_rust)
21662 {
21663 /* The symbol's name is already allocated along
21664 with this objfile, so we don't need to
21665 duplicate it for the type. */
21666 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21667 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21668 }
21669 }
21670 }
21671 break;
21672 case DW_TAG_typedef:
21673 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21674 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21675 list_to_add = cu->list_in_scope;
21676 break;
21677 case DW_TAG_base_type:
21678 case DW_TAG_subrange_type:
21679 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21680 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21681 list_to_add = cu->list_in_scope;
21682 break;
21683 case DW_TAG_enumerator:
21684 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21685 if (attr)
21686 {
21687 dwarf2_const_value (attr, sym, cu);
21688 }
21689 {
21690 /* NOTE: carlton/2003-11-10: See comment above in the
21691 DW_TAG_class_type, etc. block. */
21692
21693 list_to_add
21694 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21695 && cu->language == language_cplus
21696 ? cu->get_builder ()->get_global_symbols ()
21697 : cu->list_in_scope);
21698 }
21699 break;
21700 case DW_TAG_imported_declaration:
21701 case DW_TAG_namespace:
21702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21703 list_to_add = cu->get_builder ()->get_global_symbols ();
21704 break;
21705 case DW_TAG_module:
21706 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21707 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21708 list_to_add = cu->get_builder ()->get_global_symbols ();
21709 break;
21710 case DW_TAG_common_block:
21711 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21712 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21713 add_symbol_to_list (sym, cu->list_in_scope);
21714 break;
21715 default:
21716 /* Not a tag we recognize. Hopefully we aren't processing
21717 trash data, but since we must specifically ignore things
21718 we don't recognize, there is nothing else we should do at
21719 this point. */
21720 complaint (_("unsupported tag: '%s'"),
21721 dwarf_tag_name (die->tag));
21722 break;
21723 }
21724
21725 if (suppress_add)
21726 {
21727 sym->hash_next = objfile->template_symbols;
21728 objfile->template_symbols = sym;
21729 list_to_add = NULL;
21730 }
21731
21732 if (list_to_add != NULL)
21733 add_symbol_to_list (sym, list_to_add);
21734
21735 /* For the benefit of old versions of GCC, check for anonymous
21736 namespaces based on the demangled name. */
21737 if (!cu->processing_has_namespace_info
21738 && cu->language == language_cplus)
21739 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21740 }
21741 return (sym);
21742 }
21743
21744 /* Given an attr with a DW_FORM_dataN value in host byte order,
21745 zero-extend it as appropriate for the symbol's type. The DWARF
21746 standard (v4) is not entirely clear about the meaning of using
21747 DW_FORM_dataN for a constant with a signed type, where the type is
21748 wider than the data. The conclusion of a discussion on the DWARF
21749 list was that this is unspecified. We choose to always zero-extend
21750 because that is the interpretation long in use by GCC. */
21751
21752 static gdb_byte *
21753 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21754 struct dwarf2_cu *cu, LONGEST *value, int bits)
21755 {
21756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21757 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21758 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21759 LONGEST l = DW_UNSND (attr);
21760
21761 if (bits < sizeof (*value) * 8)
21762 {
21763 l &= ((LONGEST) 1 << bits) - 1;
21764 *value = l;
21765 }
21766 else if (bits == sizeof (*value) * 8)
21767 *value = l;
21768 else
21769 {
21770 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21771 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21772 return bytes;
21773 }
21774
21775 return NULL;
21776 }
21777
21778 /* Read a constant value from an attribute. Either set *VALUE, or if
21779 the value does not fit in *VALUE, set *BYTES - either already
21780 allocated on the objfile obstack, or newly allocated on OBSTACK,
21781 or, set *BATON, if we translated the constant to a location
21782 expression. */
21783
21784 static void
21785 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21786 const char *name, struct obstack *obstack,
21787 struct dwarf2_cu *cu,
21788 LONGEST *value, const gdb_byte **bytes,
21789 struct dwarf2_locexpr_baton **baton)
21790 {
21791 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21792 struct comp_unit_head *cu_header = &cu->header;
21793 struct dwarf_block *blk;
21794 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21795 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21796
21797 *value = 0;
21798 *bytes = NULL;
21799 *baton = NULL;
21800
21801 switch (attr->form)
21802 {
21803 case DW_FORM_addr:
21804 case DW_FORM_GNU_addr_index:
21805 {
21806 gdb_byte *data;
21807
21808 if (TYPE_LENGTH (type) != cu_header->addr_size)
21809 dwarf2_const_value_length_mismatch_complaint (name,
21810 cu_header->addr_size,
21811 TYPE_LENGTH (type));
21812 /* Symbols of this form are reasonably rare, so we just
21813 piggyback on the existing location code rather than writing
21814 a new implementation of symbol_computed_ops. */
21815 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21816 (*baton)->per_cu = cu->per_cu;
21817 gdb_assert ((*baton)->per_cu);
21818
21819 (*baton)->size = 2 + cu_header->addr_size;
21820 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21821 (*baton)->data = data;
21822
21823 data[0] = DW_OP_addr;
21824 store_unsigned_integer (&data[1], cu_header->addr_size,
21825 byte_order, DW_ADDR (attr));
21826 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21827 }
21828 break;
21829 case DW_FORM_string:
21830 case DW_FORM_strp:
21831 case DW_FORM_GNU_str_index:
21832 case DW_FORM_GNU_strp_alt:
21833 /* DW_STRING is already allocated on the objfile obstack, point
21834 directly to it. */
21835 *bytes = (const gdb_byte *) DW_STRING (attr);
21836 break;
21837 case DW_FORM_block1:
21838 case DW_FORM_block2:
21839 case DW_FORM_block4:
21840 case DW_FORM_block:
21841 case DW_FORM_exprloc:
21842 case DW_FORM_data16:
21843 blk = DW_BLOCK (attr);
21844 if (TYPE_LENGTH (type) != blk->size)
21845 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21846 TYPE_LENGTH (type));
21847 *bytes = blk->data;
21848 break;
21849
21850 /* The DW_AT_const_value attributes are supposed to carry the
21851 symbol's value "represented as it would be on the target
21852 architecture." By the time we get here, it's already been
21853 converted to host endianness, so we just need to sign- or
21854 zero-extend it as appropriate. */
21855 case DW_FORM_data1:
21856 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21857 break;
21858 case DW_FORM_data2:
21859 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21860 break;
21861 case DW_FORM_data4:
21862 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21863 break;
21864 case DW_FORM_data8:
21865 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21866 break;
21867
21868 case DW_FORM_sdata:
21869 case DW_FORM_implicit_const:
21870 *value = DW_SND (attr);
21871 break;
21872
21873 case DW_FORM_udata:
21874 *value = DW_UNSND (attr);
21875 break;
21876
21877 default:
21878 complaint (_("unsupported const value attribute form: '%s'"),
21879 dwarf_form_name (attr->form));
21880 *value = 0;
21881 break;
21882 }
21883 }
21884
21885
21886 /* Copy constant value from an attribute to a symbol. */
21887
21888 static void
21889 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21890 struct dwarf2_cu *cu)
21891 {
21892 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21893 LONGEST value;
21894 const gdb_byte *bytes;
21895 struct dwarf2_locexpr_baton *baton;
21896
21897 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21898 SYMBOL_PRINT_NAME (sym),
21899 &objfile->objfile_obstack, cu,
21900 &value, &bytes, &baton);
21901
21902 if (baton != NULL)
21903 {
21904 SYMBOL_LOCATION_BATON (sym) = baton;
21905 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21906 }
21907 else if (bytes != NULL)
21908 {
21909 SYMBOL_VALUE_BYTES (sym) = bytes;
21910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21911 }
21912 else
21913 {
21914 SYMBOL_VALUE (sym) = value;
21915 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21916 }
21917 }
21918
21919 /* Return the type of the die in question using its DW_AT_type attribute. */
21920
21921 static struct type *
21922 die_type (struct die_info *die, struct dwarf2_cu *cu)
21923 {
21924 struct attribute *type_attr;
21925
21926 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21927 if (!type_attr)
21928 {
21929 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21930 /* A missing DW_AT_type represents a void type. */
21931 return objfile_type (objfile)->builtin_void;
21932 }
21933
21934 return lookup_die_type (die, type_attr, cu);
21935 }
21936
21937 /* True iff CU's producer generates GNAT Ada auxiliary information
21938 that allows to find parallel types through that information instead
21939 of having to do expensive parallel lookups by type name. */
21940
21941 static int
21942 need_gnat_info (struct dwarf2_cu *cu)
21943 {
21944 /* Assume that the Ada compiler was GNAT, which always produces
21945 the auxiliary information. */
21946 return (cu->language == language_ada);
21947 }
21948
21949 /* Return the auxiliary type of the die in question using its
21950 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21951 attribute is not present. */
21952
21953 static struct type *
21954 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21955 {
21956 struct attribute *type_attr;
21957
21958 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21959 if (!type_attr)
21960 return NULL;
21961
21962 return lookup_die_type (die, type_attr, cu);
21963 }
21964
21965 /* If DIE has a descriptive_type attribute, then set the TYPE's
21966 descriptive type accordingly. */
21967
21968 static void
21969 set_descriptive_type (struct type *type, struct die_info *die,
21970 struct dwarf2_cu *cu)
21971 {
21972 struct type *descriptive_type = die_descriptive_type (die, cu);
21973
21974 if (descriptive_type)
21975 {
21976 ALLOCATE_GNAT_AUX_TYPE (type);
21977 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21978 }
21979 }
21980
21981 /* Return the containing type of the die in question using its
21982 DW_AT_containing_type attribute. */
21983
21984 static struct type *
21985 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21986 {
21987 struct attribute *type_attr;
21988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21989
21990 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21991 if (!type_attr)
21992 error (_("Dwarf Error: Problem turning containing type into gdb type "
21993 "[in module %s]"), objfile_name (objfile));
21994
21995 return lookup_die_type (die, type_attr, cu);
21996 }
21997
21998 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21999
22000 static struct type *
22001 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22002 {
22003 struct dwarf2_per_objfile *dwarf2_per_objfile
22004 = cu->per_cu->dwarf2_per_objfile;
22005 struct objfile *objfile = dwarf2_per_objfile->objfile;
22006 char *saved;
22007
22008 std::string message
22009 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22010 objfile_name (objfile),
22011 sect_offset_str (cu->header.sect_off),
22012 sect_offset_str (die->sect_off));
22013 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22014 message.c_str (), message.length ());
22015
22016 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22017 }
22018
22019 /* Look up the type of DIE in CU using its type attribute ATTR.
22020 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22021 DW_AT_containing_type.
22022 If there is no type substitute an error marker. */
22023
22024 static struct type *
22025 lookup_die_type (struct die_info *die, const struct attribute *attr,
22026 struct dwarf2_cu *cu)
22027 {
22028 struct dwarf2_per_objfile *dwarf2_per_objfile
22029 = cu->per_cu->dwarf2_per_objfile;
22030 struct objfile *objfile = dwarf2_per_objfile->objfile;
22031 struct type *this_type;
22032
22033 gdb_assert (attr->name == DW_AT_type
22034 || attr->name == DW_AT_GNAT_descriptive_type
22035 || attr->name == DW_AT_containing_type);
22036
22037 /* First see if we have it cached. */
22038
22039 if (attr->form == DW_FORM_GNU_ref_alt)
22040 {
22041 struct dwarf2_per_cu_data *per_cu;
22042 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22043
22044 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22045 dwarf2_per_objfile);
22046 this_type = get_die_type_at_offset (sect_off, per_cu);
22047 }
22048 else if (attr_form_is_ref (attr))
22049 {
22050 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22051
22052 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22053 }
22054 else if (attr->form == DW_FORM_ref_sig8)
22055 {
22056 ULONGEST signature = DW_SIGNATURE (attr);
22057
22058 return get_signatured_type (die, signature, cu);
22059 }
22060 else
22061 {
22062 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22063 " at %s [in module %s]"),
22064 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22065 objfile_name (objfile));
22066 return build_error_marker_type (cu, die);
22067 }
22068
22069 /* If not cached we need to read it in. */
22070
22071 if (this_type == NULL)
22072 {
22073 struct die_info *type_die = NULL;
22074 struct dwarf2_cu *type_cu = cu;
22075
22076 if (attr_form_is_ref (attr))
22077 type_die = follow_die_ref (die, attr, &type_cu);
22078 if (type_die == NULL)
22079 return build_error_marker_type (cu, die);
22080 /* If we find the type now, it's probably because the type came
22081 from an inter-CU reference and the type's CU got expanded before
22082 ours. */
22083 this_type = read_type_die (type_die, type_cu);
22084 }
22085
22086 /* If we still don't have a type use an error marker. */
22087
22088 if (this_type == NULL)
22089 return build_error_marker_type (cu, die);
22090
22091 return this_type;
22092 }
22093
22094 /* Return the type in DIE, CU.
22095 Returns NULL for invalid types.
22096
22097 This first does a lookup in die_type_hash,
22098 and only reads the die in if necessary.
22099
22100 NOTE: This can be called when reading in partial or full symbols. */
22101
22102 static struct type *
22103 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22104 {
22105 struct type *this_type;
22106
22107 this_type = get_die_type (die, cu);
22108 if (this_type)
22109 return this_type;
22110
22111 return read_type_die_1 (die, cu);
22112 }
22113
22114 /* Read the type in DIE, CU.
22115 Returns NULL for invalid types. */
22116
22117 static struct type *
22118 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22119 {
22120 struct type *this_type = NULL;
22121
22122 switch (die->tag)
22123 {
22124 case DW_TAG_class_type:
22125 case DW_TAG_interface_type:
22126 case DW_TAG_structure_type:
22127 case DW_TAG_union_type:
22128 this_type = read_structure_type (die, cu);
22129 break;
22130 case DW_TAG_enumeration_type:
22131 this_type = read_enumeration_type (die, cu);
22132 break;
22133 case DW_TAG_subprogram:
22134 case DW_TAG_subroutine_type:
22135 case DW_TAG_inlined_subroutine:
22136 this_type = read_subroutine_type (die, cu);
22137 break;
22138 case DW_TAG_array_type:
22139 this_type = read_array_type (die, cu);
22140 break;
22141 case DW_TAG_set_type:
22142 this_type = read_set_type (die, cu);
22143 break;
22144 case DW_TAG_pointer_type:
22145 this_type = read_tag_pointer_type (die, cu);
22146 break;
22147 case DW_TAG_ptr_to_member_type:
22148 this_type = read_tag_ptr_to_member_type (die, cu);
22149 break;
22150 case DW_TAG_reference_type:
22151 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22152 break;
22153 case DW_TAG_rvalue_reference_type:
22154 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22155 break;
22156 case DW_TAG_const_type:
22157 this_type = read_tag_const_type (die, cu);
22158 break;
22159 case DW_TAG_volatile_type:
22160 this_type = read_tag_volatile_type (die, cu);
22161 break;
22162 case DW_TAG_restrict_type:
22163 this_type = read_tag_restrict_type (die, cu);
22164 break;
22165 case DW_TAG_string_type:
22166 this_type = read_tag_string_type (die, cu);
22167 break;
22168 case DW_TAG_typedef:
22169 this_type = read_typedef (die, cu);
22170 break;
22171 case DW_TAG_subrange_type:
22172 this_type = read_subrange_type (die, cu);
22173 break;
22174 case DW_TAG_base_type:
22175 this_type = read_base_type (die, cu);
22176 break;
22177 case DW_TAG_unspecified_type:
22178 this_type = read_unspecified_type (die, cu);
22179 break;
22180 case DW_TAG_namespace:
22181 this_type = read_namespace_type (die, cu);
22182 break;
22183 case DW_TAG_module:
22184 this_type = read_module_type (die, cu);
22185 break;
22186 case DW_TAG_atomic_type:
22187 this_type = read_tag_atomic_type (die, cu);
22188 break;
22189 default:
22190 complaint (_("unexpected tag in read_type_die: '%s'"),
22191 dwarf_tag_name (die->tag));
22192 break;
22193 }
22194
22195 return this_type;
22196 }
22197
22198 /* See if we can figure out if the class lives in a namespace. We do
22199 this by looking for a member function; its demangled name will
22200 contain namespace info, if there is any.
22201 Return the computed name or NULL.
22202 Space for the result is allocated on the objfile's obstack.
22203 This is the full-die version of guess_partial_die_structure_name.
22204 In this case we know DIE has no useful parent. */
22205
22206 static char *
22207 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22208 {
22209 struct die_info *spec_die;
22210 struct dwarf2_cu *spec_cu;
22211 struct die_info *child;
22212 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22213
22214 spec_cu = cu;
22215 spec_die = die_specification (die, &spec_cu);
22216 if (spec_die != NULL)
22217 {
22218 die = spec_die;
22219 cu = spec_cu;
22220 }
22221
22222 for (child = die->child;
22223 child != NULL;
22224 child = child->sibling)
22225 {
22226 if (child->tag == DW_TAG_subprogram)
22227 {
22228 const char *linkage_name = dw2_linkage_name (child, cu);
22229
22230 if (linkage_name != NULL)
22231 {
22232 char *actual_name
22233 = language_class_name_from_physname (cu->language_defn,
22234 linkage_name);
22235 char *name = NULL;
22236
22237 if (actual_name != NULL)
22238 {
22239 const char *die_name = dwarf2_name (die, cu);
22240
22241 if (die_name != NULL
22242 && strcmp (die_name, actual_name) != 0)
22243 {
22244 /* Strip off the class name from the full name.
22245 We want the prefix. */
22246 int die_name_len = strlen (die_name);
22247 int actual_name_len = strlen (actual_name);
22248
22249 /* Test for '::' as a sanity check. */
22250 if (actual_name_len > die_name_len + 2
22251 && actual_name[actual_name_len
22252 - die_name_len - 1] == ':')
22253 name = (char *) obstack_copy0 (
22254 &objfile->per_bfd->storage_obstack,
22255 actual_name, actual_name_len - die_name_len - 2);
22256 }
22257 }
22258 xfree (actual_name);
22259 return name;
22260 }
22261 }
22262 }
22263
22264 return NULL;
22265 }
22266
22267 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22268 prefix part in such case. See
22269 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22270
22271 static const char *
22272 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22273 {
22274 struct attribute *attr;
22275 const char *base;
22276
22277 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22278 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22279 return NULL;
22280
22281 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22282 return NULL;
22283
22284 attr = dw2_linkage_name_attr (die, cu);
22285 if (attr == NULL || DW_STRING (attr) == NULL)
22286 return NULL;
22287
22288 /* dwarf2_name had to be already called. */
22289 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22290
22291 /* Strip the base name, keep any leading namespaces/classes. */
22292 base = strrchr (DW_STRING (attr), ':');
22293 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22294 return "";
22295
22296 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22297 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22298 DW_STRING (attr),
22299 &base[-1] - DW_STRING (attr));
22300 }
22301
22302 /* Return the name of the namespace/class that DIE is defined within,
22303 or "" if we can't tell. The caller should not xfree the result.
22304
22305 For example, if we're within the method foo() in the following
22306 code:
22307
22308 namespace N {
22309 class C {
22310 void foo () {
22311 }
22312 };
22313 }
22314
22315 then determine_prefix on foo's die will return "N::C". */
22316
22317 static const char *
22318 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22319 {
22320 struct dwarf2_per_objfile *dwarf2_per_objfile
22321 = cu->per_cu->dwarf2_per_objfile;
22322 struct die_info *parent, *spec_die;
22323 struct dwarf2_cu *spec_cu;
22324 struct type *parent_type;
22325 const char *retval;
22326
22327 if (cu->language != language_cplus
22328 && cu->language != language_fortran && cu->language != language_d
22329 && cu->language != language_rust)
22330 return "";
22331
22332 retval = anonymous_struct_prefix (die, cu);
22333 if (retval)
22334 return retval;
22335
22336 /* We have to be careful in the presence of DW_AT_specification.
22337 For example, with GCC 3.4, given the code
22338
22339 namespace N {
22340 void foo() {
22341 // Definition of N::foo.
22342 }
22343 }
22344
22345 then we'll have a tree of DIEs like this:
22346
22347 1: DW_TAG_compile_unit
22348 2: DW_TAG_namespace // N
22349 3: DW_TAG_subprogram // declaration of N::foo
22350 4: DW_TAG_subprogram // definition of N::foo
22351 DW_AT_specification // refers to die #3
22352
22353 Thus, when processing die #4, we have to pretend that we're in
22354 the context of its DW_AT_specification, namely the contex of die
22355 #3. */
22356 spec_cu = cu;
22357 spec_die = die_specification (die, &spec_cu);
22358 if (spec_die == NULL)
22359 parent = die->parent;
22360 else
22361 {
22362 parent = spec_die->parent;
22363 cu = spec_cu;
22364 }
22365
22366 if (parent == NULL)
22367 return "";
22368 else if (parent->building_fullname)
22369 {
22370 const char *name;
22371 const char *parent_name;
22372
22373 /* It has been seen on RealView 2.2 built binaries,
22374 DW_TAG_template_type_param types actually _defined_ as
22375 children of the parent class:
22376
22377 enum E {};
22378 template class <class Enum> Class{};
22379 Class<enum E> class_e;
22380
22381 1: DW_TAG_class_type (Class)
22382 2: DW_TAG_enumeration_type (E)
22383 3: DW_TAG_enumerator (enum1:0)
22384 3: DW_TAG_enumerator (enum2:1)
22385 ...
22386 2: DW_TAG_template_type_param
22387 DW_AT_type DW_FORM_ref_udata (E)
22388
22389 Besides being broken debug info, it can put GDB into an
22390 infinite loop. Consider:
22391
22392 When we're building the full name for Class<E>, we'll start
22393 at Class, and go look over its template type parameters,
22394 finding E. We'll then try to build the full name of E, and
22395 reach here. We're now trying to build the full name of E,
22396 and look over the parent DIE for containing scope. In the
22397 broken case, if we followed the parent DIE of E, we'd again
22398 find Class, and once again go look at its template type
22399 arguments, etc., etc. Simply don't consider such parent die
22400 as source-level parent of this die (it can't be, the language
22401 doesn't allow it), and break the loop here. */
22402 name = dwarf2_name (die, cu);
22403 parent_name = dwarf2_name (parent, cu);
22404 complaint (_("template param type '%s' defined within parent '%s'"),
22405 name ? name : "<unknown>",
22406 parent_name ? parent_name : "<unknown>");
22407 return "";
22408 }
22409 else
22410 switch (parent->tag)
22411 {
22412 case DW_TAG_namespace:
22413 parent_type = read_type_die (parent, cu);
22414 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22415 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22416 Work around this problem here. */
22417 if (cu->language == language_cplus
22418 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22419 return "";
22420 /* We give a name to even anonymous namespaces. */
22421 return TYPE_NAME (parent_type);
22422 case DW_TAG_class_type:
22423 case DW_TAG_interface_type:
22424 case DW_TAG_structure_type:
22425 case DW_TAG_union_type:
22426 case DW_TAG_module:
22427 parent_type = read_type_die (parent, cu);
22428 if (TYPE_NAME (parent_type) != NULL)
22429 return TYPE_NAME (parent_type);
22430 else
22431 /* An anonymous structure is only allowed non-static data
22432 members; no typedefs, no member functions, et cetera.
22433 So it does not need a prefix. */
22434 return "";
22435 case DW_TAG_compile_unit:
22436 case DW_TAG_partial_unit:
22437 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22438 if (cu->language == language_cplus
22439 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22440 && die->child != NULL
22441 && (die->tag == DW_TAG_class_type
22442 || die->tag == DW_TAG_structure_type
22443 || die->tag == DW_TAG_union_type))
22444 {
22445 char *name = guess_full_die_structure_name (die, cu);
22446 if (name != NULL)
22447 return name;
22448 }
22449 return "";
22450 case DW_TAG_enumeration_type:
22451 parent_type = read_type_die (parent, cu);
22452 if (TYPE_DECLARED_CLASS (parent_type))
22453 {
22454 if (TYPE_NAME (parent_type) != NULL)
22455 return TYPE_NAME (parent_type);
22456 return "";
22457 }
22458 /* Fall through. */
22459 default:
22460 return determine_prefix (parent, cu);
22461 }
22462 }
22463
22464 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22465 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22466 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22467 an obconcat, otherwise allocate storage for the result. The CU argument is
22468 used to determine the language and hence, the appropriate separator. */
22469
22470 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22471
22472 static char *
22473 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22474 int physname, struct dwarf2_cu *cu)
22475 {
22476 const char *lead = "";
22477 const char *sep;
22478
22479 if (suffix == NULL || suffix[0] == '\0'
22480 || prefix == NULL || prefix[0] == '\0')
22481 sep = "";
22482 else if (cu->language == language_d)
22483 {
22484 /* For D, the 'main' function could be defined in any module, but it
22485 should never be prefixed. */
22486 if (strcmp (suffix, "D main") == 0)
22487 {
22488 prefix = "";
22489 sep = "";
22490 }
22491 else
22492 sep = ".";
22493 }
22494 else if (cu->language == language_fortran && physname)
22495 {
22496 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22497 DW_AT_MIPS_linkage_name is preferred and used instead. */
22498
22499 lead = "__";
22500 sep = "_MOD_";
22501 }
22502 else
22503 sep = "::";
22504
22505 if (prefix == NULL)
22506 prefix = "";
22507 if (suffix == NULL)
22508 suffix = "";
22509
22510 if (obs == NULL)
22511 {
22512 char *retval
22513 = ((char *)
22514 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22515
22516 strcpy (retval, lead);
22517 strcat (retval, prefix);
22518 strcat (retval, sep);
22519 strcat (retval, suffix);
22520 return retval;
22521 }
22522 else
22523 {
22524 /* We have an obstack. */
22525 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22526 }
22527 }
22528
22529 /* Return sibling of die, NULL if no sibling. */
22530
22531 static struct die_info *
22532 sibling_die (struct die_info *die)
22533 {
22534 return die->sibling;
22535 }
22536
22537 /* Get name of a die, return NULL if not found. */
22538
22539 static const char *
22540 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22541 struct obstack *obstack)
22542 {
22543 if (name && cu->language == language_cplus)
22544 {
22545 std::string canon_name = cp_canonicalize_string (name);
22546
22547 if (!canon_name.empty ())
22548 {
22549 if (canon_name != name)
22550 name = (const char *) obstack_copy0 (obstack,
22551 canon_name.c_str (),
22552 canon_name.length ());
22553 }
22554 }
22555
22556 return name;
22557 }
22558
22559 /* Get name of a die, return NULL if not found.
22560 Anonymous namespaces are converted to their magic string. */
22561
22562 static const char *
22563 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22564 {
22565 struct attribute *attr;
22566 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22567
22568 attr = dwarf2_attr (die, DW_AT_name, cu);
22569 if ((!attr || !DW_STRING (attr))
22570 && die->tag != DW_TAG_namespace
22571 && die->tag != DW_TAG_class_type
22572 && die->tag != DW_TAG_interface_type
22573 && die->tag != DW_TAG_structure_type
22574 && die->tag != DW_TAG_union_type)
22575 return NULL;
22576
22577 switch (die->tag)
22578 {
22579 case DW_TAG_compile_unit:
22580 case DW_TAG_partial_unit:
22581 /* Compilation units have a DW_AT_name that is a filename, not
22582 a source language identifier. */
22583 case DW_TAG_enumeration_type:
22584 case DW_TAG_enumerator:
22585 /* These tags always have simple identifiers already; no need
22586 to canonicalize them. */
22587 return DW_STRING (attr);
22588
22589 case DW_TAG_namespace:
22590 if (attr != NULL && DW_STRING (attr) != NULL)
22591 return DW_STRING (attr);
22592 return CP_ANONYMOUS_NAMESPACE_STR;
22593
22594 case DW_TAG_class_type:
22595 case DW_TAG_interface_type:
22596 case DW_TAG_structure_type:
22597 case DW_TAG_union_type:
22598 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22599 structures or unions. These were of the form "._%d" in GCC 4.1,
22600 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22601 and GCC 4.4. We work around this problem by ignoring these. */
22602 if (attr && DW_STRING (attr)
22603 && (startswith (DW_STRING (attr), "._")
22604 || startswith (DW_STRING (attr), "<anonymous")))
22605 return NULL;
22606
22607 /* GCC might emit a nameless typedef that has a linkage name. See
22608 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22609 if (!attr || DW_STRING (attr) == NULL)
22610 {
22611 char *demangled = NULL;
22612
22613 attr = dw2_linkage_name_attr (die, cu);
22614 if (attr == NULL || DW_STRING (attr) == NULL)
22615 return NULL;
22616
22617 /* Avoid demangling DW_STRING (attr) the second time on a second
22618 call for the same DIE. */
22619 if (!DW_STRING_IS_CANONICAL (attr))
22620 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22621
22622 if (demangled)
22623 {
22624 const char *base;
22625
22626 /* FIXME: we already did this for the partial symbol... */
22627 DW_STRING (attr)
22628 = ((const char *)
22629 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22630 demangled, strlen (demangled)));
22631 DW_STRING_IS_CANONICAL (attr) = 1;
22632 xfree (demangled);
22633
22634 /* Strip any leading namespaces/classes, keep only the base name.
22635 DW_AT_name for named DIEs does not contain the prefixes. */
22636 base = strrchr (DW_STRING (attr), ':');
22637 if (base && base > DW_STRING (attr) && base[-1] == ':')
22638 return &base[1];
22639 else
22640 return DW_STRING (attr);
22641 }
22642 }
22643 break;
22644
22645 default:
22646 break;
22647 }
22648
22649 if (!DW_STRING_IS_CANONICAL (attr))
22650 {
22651 DW_STRING (attr)
22652 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22653 &objfile->per_bfd->storage_obstack);
22654 DW_STRING_IS_CANONICAL (attr) = 1;
22655 }
22656 return DW_STRING (attr);
22657 }
22658
22659 /* Return the die that this die in an extension of, or NULL if there
22660 is none. *EXT_CU is the CU containing DIE on input, and the CU
22661 containing the return value on output. */
22662
22663 static struct die_info *
22664 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22665 {
22666 struct attribute *attr;
22667
22668 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22669 if (attr == NULL)
22670 return NULL;
22671
22672 return follow_die_ref (die, attr, ext_cu);
22673 }
22674
22675 /* Convert a DIE tag into its string name. */
22676
22677 static const char *
22678 dwarf_tag_name (unsigned tag)
22679 {
22680 const char *name = get_DW_TAG_name (tag);
22681
22682 if (name == NULL)
22683 return "DW_TAG_<unknown>";
22684
22685 return name;
22686 }
22687
22688 /* Convert a DWARF attribute code into its string name. */
22689
22690 static const char *
22691 dwarf_attr_name (unsigned attr)
22692 {
22693 const char *name;
22694
22695 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22696 if (attr == DW_AT_MIPS_fde)
22697 return "DW_AT_MIPS_fde";
22698 #else
22699 if (attr == DW_AT_HP_block_index)
22700 return "DW_AT_HP_block_index";
22701 #endif
22702
22703 name = get_DW_AT_name (attr);
22704
22705 if (name == NULL)
22706 return "DW_AT_<unknown>";
22707
22708 return name;
22709 }
22710
22711 /* Convert a DWARF value form code into its string name. */
22712
22713 static const char *
22714 dwarf_form_name (unsigned form)
22715 {
22716 const char *name = get_DW_FORM_name (form);
22717
22718 if (name == NULL)
22719 return "DW_FORM_<unknown>";
22720
22721 return name;
22722 }
22723
22724 static const char *
22725 dwarf_bool_name (unsigned mybool)
22726 {
22727 if (mybool)
22728 return "TRUE";
22729 else
22730 return "FALSE";
22731 }
22732
22733 /* Convert a DWARF type code into its string name. */
22734
22735 static const char *
22736 dwarf_type_encoding_name (unsigned enc)
22737 {
22738 const char *name = get_DW_ATE_name (enc);
22739
22740 if (name == NULL)
22741 return "DW_ATE_<unknown>";
22742
22743 return name;
22744 }
22745
22746 static void
22747 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22748 {
22749 unsigned int i;
22750
22751 print_spaces (indent, f);
22752 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22753 dwarf_tag_name (die->tag), die->abbrev,
22754 sect_offset_str (die->sect_off));
22755
22756 if (die->parent != NULL)
22757 {
22758 print_spaces (indent, f);
22759 fprintf_unfiltered (f, " parent at offset: %s\n",
22760 sect_offset_str (die->parent->sect_off));
22761 }
22762
22763 print_spaces (indent, f);
22764 fprintf_unfiltered (f, " has children: %s\n",
22765 dwarf_bool_name (die->child != NULL));
22766
22767 print_spaces (indent, f);
22768 fprintf_unfiltered (f, " attributes:\n");
22769
22770 for (i = 0; i < die->num_attrs; ++i)
22771 {
22772 print_spaces (indent, f);
22773 fprintf_unfiltered (f, " %s (%s) ",
22774 dwarf_attr_name (die->attrs[i].name),
22775 dwarf_form_name (die->attrs[i].form));
22776
22777 switch (die->attrs[i].form)
22778 {
22779 case DW_FORM_addr:
22780 case DW_FORM_GNU_addr_index:
22781 fprintf_unfiltered (f, "address: ");
22782 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22783 break;
22784 case DW_FORM_block2:
22785 case DW_FORM_block4:
22786 case DW_FORM_block:
22787 case DW_FORM_block1:
22788 fprintf_unfiltered (f, "block: size %s",
22789 pulongest (DW_BLOCK (&die->attrs[i])->size));
22790 break;
22791 case DW_FORM_exprloc:
22792 fprintf_unfiltered (f, "expression: size %s",
22793 pulongest (DW_BLOCK (&die->attrs[i])->size));
22794 break;
22795 case DW_FORM_data16:
22796 fprintf_unfiltered (f, "constant of 16 bytes");
22797 break;
22798 case DW_FORM_ref_addr:
22799 fprintf_unfiltered (f, "ref address: ");
22800 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22801 break;
22802 case DW_FORM_GNU_ref_alt:
22803 fprintf_unfiltered (f, "alt ref address: ");
22804 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22805 break;
22806 case DW_FORM_ref1:
22807 case DW_FORM_ref2:
22808 case DW_FORM_ref4:
22809 case DW_FORM_ref8:
22810 case DW_FORM_ref_udata:
22811 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22812 (long) (DW_UNSND (&die->attrs[i])));
22813 break;
22814 case DW_FORM_data1:
22815 case DW_FORM_data2:
22816 case DW_FORM_data4:
22817 case DW_FORM_data8:
22818 case DW_FORM_udata:
22819 case DW_FORM_sdata:
22820 fprintf_unfiltered (f, "constant: %s",
22821 pulongest (DW_UNSND (&die->attrs[i])));
22822 break;
22823 case DW_FORM_sec_offset:
22824 fprintf_unfiltered (f, "section offset: %s",
22825 pulongest (DW_UNSND (&die->attrs[i])));
22826 break;
22827 case DW_FORM_ref_sig8:
22828 fprintf_unfiltered (f, "signature: %s",
22829 hex_string (DW_SIGNATURE (&die->attrs[i])));
22830 break;
22831 case DW_FORM_string:
22832 case DW_FORM_strp:
22833 case DW_FORM_line_strp:
22834 case DW_FORM_GNU_str_index:
22835 case DW_FORM_GNU_strp_alt:
22836 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22837 DW_STRING (&die->attrs[i])
22838 ? DW_STRING (&die->attrs[i]) : "",
22839 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22840 break;
22841 case DW_FORM_flag:
22842 if (DW_UNSND (&die->attrs[i]))
22843 fprintf_unfiltered (f, "flag: TRUE");
22844 else
22845 fprintf_unfiltered (f, "flag: FALSE");
22846 break;
22847 case DW_FORM_flag_present:
22848 fprintf_unfiltered (f, "flag: TRUE");
22849 break;
22850 case DW_FORM_indirect:
22851 /* The reader will have reduced the indirect form to
22852 the "base form" so this form should not occur. */
22853 fprintf_unfiltered (f,
22854 "unexpected attribute form: DW_FORM_indirect");
22855 break;
22856 case DW_FORM_implicit_const:
22857 fprintf_unfiltered (f, "constant: %s",
22858 plongest (DW_SND (&die->attrs[i])));
22859 break;
22860 default:
22861 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22862 die->attrs[i].form);
22863 break;
22864 }
22865 fprintf_unfiltered (f, "\n");
22866 }
22867 }
22868
22869 static void
22870 dump_die_for_error (struct die_info *die)
22871 {
22872 dump_die_shallow (gdb_stderr, 0, die);
22873 }
22874
22875 static void
22876 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22877 {
22878 int indent = level * 4;
22879
22880 gdb_assert (die != NULL);
22881
22882 if (level >= max_level)
22883 return;
22884
22885 dump_die_shallow (f, indent, die);
22886
22887 if (die->child != NULL)
22888 {
22889 print_spaces (indent, f);
22890 fprintf_unfiltered (f, " Children:");
22891 if (level + 1 < max_level)
22892 {
22893 fprintf_unfiltered (f, "\n");
22894 dump_die_1 (f, level + 1, max_level, die->child);
22895 }
22896 else
22897 {
22898 fprintf_unfiltered (f,
22899 " [not printed, max nesting level reached]\n");
22900 }
22901 }
22902
22903 if (die->sibling != NULL && level > 0)
22904 {
22905 dump_die_1 (f, level, max_level, die->sibling);
22906 }
22907 }
22908
22909 /* This is called from the pdie macro in gdbinit.in.
22910 It's not static so gcc will keep a copy callable from gdb. */
22911
22912 void
22913 dump_die (struct die_info *die, int max_level)
22914 {
22915 dump_die_1 (gdb_stdlog, 0, max_level, die);
22916 }
22917
22918 static void
22919 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22920 {
22921 void **slot;
22922
22923 slot = htab_find_slot_with_hash (cu->die_hash, die,
22924 to_underlying (die->sect_off),
22925 INSERT);
22926
22927 *slot = die;
22928 }
22929
22930 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22931 required kind. */
22932
22933 static sect_offset
22934 dwarf2_get_ref_die_offset (const struct attribute *attr)
22935 {
22936 if (attr_form_is_ref (attr))
22937 return (sect_offset) DW_UNSND (attr);
22938
22939 complaint (_("unsupported die ref attribute form: '%s'"),
22940 dwarf_form_name (attr->form));
22941 return {};
22942 }
22943
22944 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22945 * the value held by the attribute is not constant. */
22946
22947 static LONGEST
22948 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22949 {
22950 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22951 return DW_SND (attr);
22952 else if (attr->form == DW_FORM_udata
22953 || attr->form == DW_FORM_data1
22954 || attr->form == DW_FORM_data2
22955 || attr->form == DW_FORM_data4
22956 || attr->form == DW_FORM_data8)
22957 return DW_UNSND (attr);
22958 else
22959 {
22960 /* For DW_FORM_data16 see attr_form_is_constant. */
22961 complaint (_("Attribute value is not a constant (%s)"),
22962 dwarf_form_name (attr->form));
22963 return default_value;
22964 }
22965 }
22966
22967 /* Follow reference or signature attribute ATTR of SRC_DIE.
22968 On entry *REF_CU is the CU of SRC_DIE.
22969 On exit *REF_CU is the CU of the result. */
22970
22971 static struct die_info *
22972 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22973 struct dwarf2_cu **ref_cu)
22974 {
22975 struct die_info *die;
22976
22977 if (attr_form_is_ref (attr))
22978 die = follow_die_ref (src_die, attr, ref_cu);
22979 else if (attr->form == DW_FORM_ref_sig8)
22980 die = follow_die_sig (src_die, attr, ref_cu);
22981 else
22982 {
22983 dump_die_for_error (src_die);
22984 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22985 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22986 }
22987
22988 return die;
22989 }
22990
22991 /* Follow reference OFFSET.
22992 On entry *REF_CU is the CU of the source die referencing OFFSET.
22993 On exit *REF_CU is the CU of the result.
22994 Returns NULL if OFFSET is invalid. */
22995
22996 static struct die_info *
22997 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22998 struct dwarf2_cu **ref_cu)
22999 {
23000 struct die_info temp_die;
23001 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23002 struct dwarf2_per_objfile *dwarf2_per_objfile
23003 = cu->per_cu->dwarf2_per_objfile;
23004
23005 gdb_assert (cu->per_cu != NULL);
23006
23007 target_cu = cu;
23008
23009 if (cu->per_cu->is_debug_types)
23010 {
23011 /* .debug_types CUs cannot reference anything outside their CU.
23012 If they need to, they have to reference a signatured type via
23013 DW_FORM_ref_sig8. */
23014 if (!offset_in_cu_p (&cu->header, sect_off))
23015 return NULL;
23016 }
23017 else if (offset_in_dwz != cu->per_cu->is_dwz
23018 || !offset_in_cu_p (&cu->header, sect_off))
23019 {
23020 struct dwarf2_per_cu_data *per_cu;
23021
23022 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23023 dwarf2_per_objfile);
23024
23025 /* If necessary, add it to the queue and load its DIEs. */
23026 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23027 load_full_comp_unit (per_cu, false, cu->language);
23028
23029 target_cu = per_cu->cu;
23030 }
23031 else if (cu->dies == NULL)
23032 {
23033 /* We're loading full DIEs during partial symbol reading. */
23034 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23035 load_full_comp_unit (cu->per_cu, false, language_minimal);
23036 }
23037
23038 *ref_cu = target_cu;
23039 temp_die.sect_off = sect_off;
23040
23041 if (target_cu != cu)
23042 target_cu->ancestor = cu;
23043
23044 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23045 &temp_die,
23046 to_underlying (sect_off));
23047 }
23048
23049 /* Follow reference attribute ATTR of SRC_DIE.
23050 On entry *REF_CU is the CU of SRC_DIE.
23051 On exit *REF_CU is the CU of the result. */
23052
23053 static struct die_info *
23054 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23055 struct dwarf2_cu **ref_cu)
23056 {
23057 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23058 struct dwarf2_cu *cu = *ref_cu;
23059 struct die_info *die;
23060
23061 die = follow_die_offset (sect_off,
23062 (attr->form == DW_FORM_GNU_ref_alt
23063 || cu->per_cu->is_dwz),
23064 ref_cu);
23065 if (!die)
23066 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23067 "at %s [in module %s]"),
23068 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23069 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23070
23071 return die;
23072 }
23073
23074 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23075 Returned value is intended for DW_OP_call*. Returned
23076 dwarf2_locexpr_baton->data has lifetime of
23077 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23078
23079 struct dwarf2_locexpr_baton
23080 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23081 struct dwarf2_per_cu_data *per_cu,
23082 CORE_ADDR (*get_frame_pc) (void *baton),
23083 void *baton, bool resolve_abstract_p)
23084 {
23085 struct dwarf2_cu *cu;
23086 struct die_info *die;
23087 struct attribute *attr;
23088 struct dwarf2_locexpr_baton retval;
23089 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23090 struct objfile *objfile = dwarf2_per_objfile->objfile;
23091
23092 if (per_cu->cu == NULL)
23093 load_cu (per_cu, false);
23094 cu = per_cu->cu;
23095 if (cu == NULL)
23096 {
23097 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23098 Instead just throw an error, not much else we can do. */
23099 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23100 sect_offset_str (sect_off), objfile_name (objfile));
23101 }
23102
23103 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23104 if (!die)
23105 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23106 sect_offset_str (sect_off), objfile_name (objfile));
23107
23108 attr = dwarf2_attr (die, DW_AT_location, cu);
23109 if (!attr && resolve_abstract_p
23110 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23111 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23112 {
23113 CORE_ADDR pc = (*get_frame_pc) (baton);
23114
23115 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23116 {
23117 if (!cand->parent
23118 || cand->parent->tag != DW_TAG_subprogram)
23119 continue;
23120
23121 CORE_ADDR pc_low, pc_high;
23122 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23123 if (pc_low == ((CORE_ADDR) -1)
23124 || !(pc_low <= pc && pc < pc_high))
23125 continue;
23126
23127 die = cand;
23128 attr = dwarf2_attr (die, DW_AT_location, cu);
23129 break;
23130 }
23131 }
23132
23133 if (!attr)
23134 {
23135 /* DWARF: "If there is no such attribute, then there is no effect.".
23136 DATA is ignored if SIZE is 0. */
23137
23138 retval.data = NULL;
23139 retval.size = 0;
23140 }
23141 else if (attr_form_is_section_offset (attr))
23142 {
23143 struct dwarf2_loclist_baton loclist_baton;
23144 CORE_ADDR pc = (*get_frame_pc) (baton);
23145 size_t size;
23146
23147 fill_in_loclist_baton (cu, &loclist_baton, attr);
23148
23149 retval.data = dwarf2_find_location_expression (&loclist_baton,
23150 &size, pc);
23151 retval.size = size;
23152 }
23153 else
23154 {
23155 if (!attr_form_is_block (attr))
23156 error (_("Dwarf Error: DIE at %s referenced in module %s "
23157 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23158 sect_offset_str (sect_off), objfile_name (objfile));
23159
23160 retval.data = DW_BLOCK (attr)->data;
23161 retval.size = DW_BLOCK (attr)->size;
23162 }
23163 retval.per_cu = cu->per_cu;
23164
23165 age_cached_comp_units (dwarf2_per_objfile);
23166
23167 return retval;
23168 }
23169
23170 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23171 offset. */
23172
23173 struct dwarf2_locexpr_baton
23174 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23175 struct dwarf2_per_cu_data *per_cu,
23176 CORE_ADDR (*get_frame_pc) (void *baton),
23177 void *baton)
23178 {
23179 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23180
23181 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23182 }
23183
23184 /* Write a constant of a given type as target-ordered bytes into
23185 OBSTACK. */
23186
23187 static const gdb_byte *
23188 write_constant_as_bytes (struct obstack *obstack,
23189 enum bfd_endian byte_order,
23190 struct type *type,
23191 ULONGEST value,
23192 LONGEST *len)
23193 {
23194 gdb_byte *result;
23195
23196 *len = TYPE_LENGTH (type);
23197 result = (gdb_byte *) obstack_alloc (obstack, *len);
23198 store_unsigned_integer (result, *len, byte_order, value);
23199
23200 return result;
23201 }
23202
23203 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23204 pointer to the constant bytes and set LEN to the length of the
23205 data. If memory is needed, allocate it on OBSTACK. If the DIE
23206 does not have a DW_AT_const_value, return NULL. */
23207
23208 const gdb_byte *
23209 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23210 struct dwarf2_per_cu_data *per_cu,
23211 struct obstack *obstack,
23212 LONGEST *len)
23213 {
23214 struct dwarf2_cu *cu;
23215 struct die_info *die;
23216 struct attribute *attr;
23217 const gdb_byte *result = NULL;
23218 struct type *type;
23219 LONGEST value;
23220 enum bfd_endian byte_order;
23221 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23222
23223 if (per_cu->cu == NULL)
23224 load_cu (per_cu, false);
23225 cu = per_cu->cu;
23226 if (cu == NULL)
23227 {
23228 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23229 Instead just throw an error, not much else we can do. */
23230 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23231 sect_offset_str (sect_off), objfile_name (objfile));
23232 }
23233
23234 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23235 if (!die)
23236 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23237 sect_offset_str (sect_off), objfile_name (objfile));
23238
23239 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23240 if (attr == NULL)
23241 return NULL;
23242
23243 byte_order = (bfd_big_endian (objfile->obfd)
23244 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23245
23246 switch (attr->form)
23247 {
23248 case DW_FORM_addr:
23249 case DW_FORM_GNU_addr_index:
23250 {
23251 gdb_byte *tem;
23252
23253 *len = cu->header.addr_size;
23254 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23255 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23256 result = tem;
23257 }
23258 break;
23259 case DW_FORM_string:
23260 case DW_FORM_strp:
23261 case DW_FORM_GNU_str_index:
23262 case DW_FORM_GNU_strp_alt:
23263 /* DW_STRING is already allocated on the objfile obstack, point
23264 directly to it. */
23265 result = (const gdb_byte *) DW_STRING (attr);
23266 *len = strlen (DW_STRING (attr));
23267 break;
23268 case DW_FORM_block1:
23269 case DW_FORM_block2:
23270 case DW_FORM_block4:
23271 case DW_FORM_block:
23272 case DW_FORM_exprloc:
23273 case DW_FORM_data16:
23274 result = DW_BLOCK (attr)->data;
23275 *len = DW_BLOCK (attr)->size;
23276 break;
23277
23278 /* The DW_AT_const_value attributes are supposed to carry the
23279 symbol's value "represented as it would be on the target
23280 architecture." By the time we get here, it's already been
23281 converted to host endianness, so we just need to sign- or
23282 zero-extend it as appropriate. */
23283 case DW_FORM_data1:
23284 type = die_type (die, cu);
23285 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23286 if (result == NULL)
23287 result = write_constant_as_bytes (obstack, byte_order,
23288 type, value, len);
23289 break;
23290 case DW_FORM_data2:
23291 type = die_type (die, cu);
23292 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23293 if (result == NULL)
23294 result = write_constant_as_bytes (obstack, byte_order,
23295 type, value, len);
23296 break;
23297 case DW_FORM_data4:
23298 type = die_type (die, cu);
23299 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23300 if (result == NULL)
23301 result = write_constant_as_bytes (obstack, byte_order,
23302 type, value, len);
23303 break;
23304 case DW_FORM_data8:
23305 type = die_type (die, cu);
23306 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23307 if (result == NULL)
23308 result = write_constant_as_bytes (obstack, byte_order,
23309 type, value, len);
23310 break;
23311
23312 case DW_FORM_sdata:
23313 case DW_FORM_implicit_const:
23314 type = die_type (die, cu);
23315 result = write_constant_as_bytes (obstack, byte_order,
23316 type, DW_SND (attr), len);
23317 break;
23318
23319 case DW_FORM_udata:
23320 type = die_type (die, cu);
23321 result = write_constant_as_bytes (obstack, byte_order,
23322 type, DW_UNSND (attr), len);
23323 break;
23324
23325 default:
23326 complaint (_("unsupported const value attribute form: '%s'"),
23327 dwarf_form_name (attr->form));
23328 break;
23329 }
23330
23331 return result;
23332 }
23333
23334 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23335 valid type for this die is found. */
23336
23337 struct type *
23338 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23339 struct dwarf2_per_cu_data *per_cu)
23340 {
23341 struct dwarf2_cu *cu;
23342 struct die_info *die;
23343
23344 if (per_cu->cu == NULL)
23345 load_cu (per_cu, false);
23346 cu = per_cu->cu;
23347 if (!cu)
23348 return NULL;
23349
23350 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23351 if (!die)
23352 return NULL;
23353
23354 return die_type (die, cu);
23355 }
23356
23357 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23358 PER_CU. */
23359
23360 struct type *
23361 dwarf2_get_die_type (cu_offset die_offset,
23362 struct dwarf2_per_cu_data *per_cu)
23363 {
23364 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23365 return get_die_type_at_offset (die_offset_sect, per_cu);
23366 }
23367
23368 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23369 On entry *REF_CU is the CU of SRC_DIE.
23370 On exit *REF_CU is the CU of the result.
23371 Returns NULL if the referenced DIE isn't found. */
23372
23373 static struct die_info *
23374 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23375 struct dwarf2_cu **ref_cu)
23376 {
23377 struct die_info temp_die;
23378 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23379 struct die_info *die;
23380
23381 /* While it might be nice to assert sig_type->type == NULL here,
23382 we can get here for DW_AT_imported_declaration where we need
23383 the DIE not the type. */
23384
23385 /* If necessary, add it to the queue and load its DIEs. */
23386
23387 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23388 read_signatured_type (sig_type);
23389
23390 sig_cu = sig_type->per_cu.cu;
23391 gdb_assert (sig_cu != NULL);
23392 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23393 temp_die.sect_off = sig_type->type_offset_in_section;
23394 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23395 to_underlying (temp_die.sect_off));
23396 if (die)
23397 {
23398 struct dwarf2_per_objfile *dwarf2_per_objfile
23399 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23400
23401 /* For .gdb_index version 7 keep track of included TUs.
23402 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23403 if (dwarf2_per_objfile->index_table != NULL
23404 && dwarf2_per_objfile->index_table->version <= 7)
23405 {
23406 VEC_safe_push (dwarf2_per_cu_ptr,
23407 (*ref_cu)->per_cu->imported_symtabs,
23408 sig_cu->per_cu);
23409 }
23410
23411 *ref_cu = sig_cu;
23412 if (sig_cu != cu)
23413 sig_cu->ancestor = cu;
23414
23415 return die;
23416 }
23417
23418 return NULL;
23419 }
23420
23421 /* Follow signatured type referenced by ATTR in SRC_DIE.
23422 On entry *REF_CU is the CU of SRC_DIE.
23423 On exit *REF_CU is the CU of the result.
23424 The result is the DIE of the type.
23425 If the referenced type cannot be found an error is thrown. */
23426
23427 static struct die_info *
23428 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23429 struct dwarf2_cu **ref_cu)
23430 {
23431 ULONGEST signature = DW_SIGNATURE (attr);
23432 struct signatured_type *sig_type;
23433 struct die_info *die;
23434
23435 gdb_assert (attr->form == DW_FORM_ref_sig8);
23436
23437 sig_type = lookup_signatured_type (*ref_cu, signature);
23438 /* sig_type will be NULL if the signatured type is missing from
23439 the debug info. */
23440 if (sig_type == NULL)
23441 {
23442 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23443 " from DIE at %s [in module %s]"),
23444 hex_string (signature), sect_offset_str (src_die->sect_off),
23445 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23446 }
23447
23448 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23449 if (die == NULL)
23450 {
23451 dump_die_for_error (src_die);
23452 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23453 " from DIE at %s [in module %s]"),
23454 hex_string (signature), sect_offset_str (src_die->sect_off),
23455 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23456 }
23457
23458 return die;
23459 }
23460
23461 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23462 reading in and processing the type unit if necessary. */
23463
23464 static struct type *
23465 get_signatured_type (struct die_info *die, ULONGEST signature,
23466 struct dwarf2_cu *cu)
23467 {
23468 struct dwarf2_per_objfile *dwarf2_per_objfile
23469 = cu->per_cu->dwarf2_per_objfile;
23470 struct signatured_type *sig_type;
23471 struct dwarf2_cu *type_cu;
23472 struct die_info *type_die;
23473 struct type *type;
23474
23475 sig_type = lookup_signatured_type (cu, signature);
23476 /* sig_type will be NULL if the signatured type is missing from
23477 the debug info. */
23478 if (sig_type == NULL)
23479 {
23480 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23481 " from DIE at %s [in module %s]"),
23482 hex_string (signature), sect_offset_str (die->sect_off),
23483 objfile_name (dwarf2_per_objfile->objfile));
23484 return build_error_marker_type (cu, die);
23485 }
23486
23487 /* If we already know the type we're done. */
23488 if (sig_type->type != NULL)
23489 return sig_type->type;
23490
23491 type_cu = cu;
23492 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23493 if (type_die != NULL)
23494 {
23495 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23496 is created. This is important, for example, because for c++ classes
23497 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23498 type = read_type_die (type_die, type_cu);
23499 if (type == NULL)
23500 {
23501 complaint (_("Dwarf Error: Cannot build signatured type %s"
23502 " referenced from DIE at %s [in module %s]"),
23503 hex_string (signature), sect_offset_str (die->sect_off),
23504 objfile_name (dwarf2_per_objfile->objfile));
23505 type = build_error_marker_type (cu, die);
23506 }
23507 }
23508 else
23509 {
23510 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23511 " from DIE at %s [in module %s]"),
23512 hex_string (signature), sect_offset_str (die->sect_off),
23513 objfile_name (dwarf2_per_objfile->objfile));
23514 type = build_error_marker_type (cu, die);
23515 }
23516 sig_type->type = type;
23517
23518 return type;
23519 }
23520
23521 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23522 reading in and processing the type unit if necessary. */
23523
23524 static struct type *
23525 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23526 struct dwarf2_cu *cu) /* ARI: editCase function */
23527 {
23528 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23529 if (attr_form_is_ref (attr))
23530 {
23531 struct dwarf2_cu *type_cu = cu;
23532 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23533
23534 return read_type_die (type_die, type_cu);
23535 }
23536 else if (attr->form == DW_FORM_ref_sig8)
23537 {
23538 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23539 }
23540 else
23541 {
23542 struct dwarf2_per_objfile *dwarf2_per_objfile
23543 = cu->per_cu->dwarf2_per_objfile;
23544
23545 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23546 " at %s [in module %s]"),
23547 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23548 objfile_name (dwarf2_per_objfile->objfile));
23549 return build_error_marker_type (cu, die);
23550 }
23551 }
23552
23553 /* Load the DIEs associated with type unit PER_CU into memory. */
23554
23555 static void
23556 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23557 {
23558 struct signatured_type *sig_type;
23559
23560 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23561 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23562
23563 /* We have the per_cu, but we need the signatured_type.
23564 Fortunately this is an easy translation. */
23565 gdb_assert (per_cu->is_debug_types);
23566 sig_type = (struct signatured_type *) per_cu;
23567
23568 gdb_assert (per_cu->cu == NULL);
23569
23570 read_signatured_type (sig_type);
23571
23572 gdb_assert (per_cu->cu != NULL);
23573 }
23574
23575 /* die_reader_func for read_signatured_type.
23576 This is identical to load_full_comp_unit_reader,
23577 but is kept separate for now. */
23578
23579 static void
23580 read_signatured_type_reader (const struct die_reader_specs *reader,
23581 const gdb_byte *info_ptr,
23582 struct die_info *comp_unit_die,
23583 int has_children,
23584 void *data)
23585 {
23586 struct dwarf2_cu *cu = reader->cu;
23587
23588 gdb_assert (cu->die_hash == NULL);
23589 cu->die_hash =
23590 htab_create_alloc_ex (cu->header.length / 12,
23591 die_hash,
23592 die_eq,
23593 NULL,
23594 &cu->comp_unit_obstack,
23595 hashtab_obstack_allocate,
23596 dummy_obstack_deallocate);
23597
23598 if (has_children)
23599 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23600 &info_ptr, comp_unit_die);
23601 cu->dies = comp_unit_die;
23602 /* comp_unit_die is not stored in die_hash, no need. */
23603
23604 /* We try not to read any attributes in this function, because not
23605 all CUs needed for references have been loaded yet, and symbol
23606 table processing isn't initialized. But we have to set the CU language,
23607 or we won't be able to build types correctly.
23608 Similarly, if we do not read the producer, we can not apply
23609 producer-specific interpretation. */
23610 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23611 }
23612
23613 /* Read in a signatured type and build its CU and DIEs.
23614 If the type is a stub for the real type in a DWO file,
23615 read in the real type from the DWO file as well. */
23616
23617 static void
23618 read_signatured_type (struct signatured_type *sig_type)
23619 {
23620 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23621
23622 gdb_assert (per_cu->is_debug_types);
23623 gdb_assert (per_cu->cu == NULL);
23624
23625 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23626 read_signatured_type_reader, NULL);
23627 sig_type->per_cu.tu_read = 1;
23628 }
23629
23630 /* Decode simple location descriptions.
23631 Given a pointer to a dwarf block that defines a location, compute
23632 the location and return the value.
23633
23634 NOTE drow/2003-11-18: This function is called in two situations
23635 now: for the address of static or global variables (partial symbols
23636 only) and for offsets into structures which are expected to be
23637 (more or less) constant. The partial symbol case should go away,
23638 and only the constant case should remain. That will let this
23639 function complain more accurately. A few special modes are allowed
23640 without complaint for global variables (for instance, global
23641 register values and thread-local values).
23642
23643 A location description containing no operations indicates that the
23644 object is optimized out. The return value is 0 for that case.
23645 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23646 callers will only want a very basic result and this can become a
23647 complaint.
23648
23649 Note that stack[0] is unused except as a default error return. */
23650
23651 static CORE_ADDR
23652 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23653 {
23654 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23655 size_t i;
23656 size_t size = blk->size;
23657 const gdb_byte *data = blk->data;
23658 CORE_ADDR stack[64];
23659 int stacki;
23660 unsigned int bytes_read, unsnd;
23661 gdb_byte op;
23662
23663 i = 0;
23664 stacki = 0;
23665 stack[stacki] = 0;
23666 stack[++stacki] = 0;
23667
23668 while (i < size)
23669 {
23670 op = data[i++];
23671 switch (op)
23672 {
23673 case DW_OP_lit0:
23674 case DW_OP_lit1:
23675 case DW_OP_lit2:
23676 case DW_OP_lit3:
23677 case DW_OP_lit4:
23678 case DW_OP_lit5:
23679 case DW_OP_lit6:
23680 case DW_OP_lit7:
23681 case DW_OP_lit8:
23682 case DW_OP_lit9:
23683 case DW_OP_lit10:
23684 case DW_OP_lit11:
23685 case DW_OP_lit12:
23686 case DW_OP_lit13:
23687 case DW_OP_lit14:
23688 case DW_OP_lit15:
23689 case DW_OP_lit16:
23690 case DW_OP_lit17:
23691 case DW_OP_lit18:
23692 case DW_OP_lit19:
23693 case DW_OP_lit20:
23694 case DW_OP_lit21:
23695 case DW_OP_lit22:
23696 case DW_OP_lit23:
23697 case DW_OP_lit24:
23698 case DW_OP_lit25:
23699 case DW_OP_lit26:
23700 case DW_OP_lit27:
23701 case DW_OP_lit28:
23702 case DW_OP_lit29:
23703 case DW_OP_lit30:
23704 case DW_OP_lit31:
23705 stack[++stacki] = op - DW_OP_lit0;
23706 break;
23707
23708 case DW_OP_reg0:
23709 case DW_OP_reg1:
23710 case DW_OP_reg2:
23711 case DW_OP_reg3:
23712 case DW_OP_reg4:
23713 case DW_OP_reg5:
23714 case DW_OP_reg6:
23715 case DW_OP_reg7:
23716 case DW_OP_reg8:
23717 case DW_OP_reg9:
23718 case DW_OP_reg10:
23719 case DW_OP_reg11:
23720 case DW_OP_reg12:
23721 case DW_OP_reg13:
23722 case DW_OP_reg14:
23723 case DW_OP_reg15:
23724 case DW_OP_reg16:
23725 case DW_OP_reg17:
23726 case DW_OP_reg18:
23727 case DW_OP_reg19:
23728 case DW_OP_reg20:
23729 case DW_OP_reg21:
23730 case DW_OP_reg22:
23731 case DW_OP_reg23:
23732 case DW_OP_reg24:
23733 case DW_OP_reg25:
23734 case DW_OP_reg26:
23735 case DW_OP_reg27:
23736 case DW_OP_reg28:
23737 case DW_OP_reg29:
23738 case DW_OP_reg30:
23739 case DW_OP_reg31:
23740 stack[++stacki] = op - DW_OP_reg0;
23741 if (i < size)
23742 dwarf2_complex_location_expr_complaint ();
23743 break;
23744
23745 case DW_OP_regx:
23746 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23747 i += bytes_read;
23748 stack[++stacki] = unsnd;
23749 if (i < size)
23750 dwarf2_complex_location_expr_complaint ();
23751 break;
23752
23753 case DW_OP_addr:
23754 stack[++stacki] = read_address (objfile->obfd, &data[i],
23755 cu, &bytes_read);
23756 i += bytes_read;
23757 break;
23758
23759 case DW_OP_const1u:
23760 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23761 i += 1;
23762 break;
23763
23764 case DW_OP_const1s:
23765 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23766 i += 1;
23767 break;
23768
23769 case DW_OP_const2u:
23770 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23771 i += 2;
23772 break;
23773
23774 case DW_OP_const2s:
23775 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23776 i += 2;
23777 break;
23778
23779 case DW_OP_const4u:
23780 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23781 i += 4;
23782 break;
23783
23784 case DW_OP_const4s:
23785 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23786 i += 4;
23787 break;
23788
23789 case DW_OP_const8u:
23790 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23791 i += 8;
23792 break;
23793
23794 case DW_OP_constu:
23795 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23796 &bytes_read);
23797 i += bytes_read;
23798 break;
23799
23800 case DW_OP_consts:
23801 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23802 i += bytes_read;
23803 break;
23804
23805 case DW_OP_dup:
23806 stack[stacki + 1] = stack[stacki];
23807 stacki++;
23808 break;
23809
23810 case DW_OP_plus:
23811 stack[stacki - 1] += stack[stacki];
23812 stacki--;
23813 break;
23814
23815 case DW_OP_plus_uconst:
23816 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23817 &bytes_read);
23818 i += bytes_read;
23819 break;
23820
23821 case DW_OP_minus:
23822 stack[stacki - 1] -= stack[stacki];
23823 stacki--;
23824 break;
23825
23826 case DW_OP_deref:
23827 /* If we're not the last op, then we definitely can't encode
23828 this using GDB's address_class enum. This is valid for partial
23829 global symbols, although the variable's address will be bogus
23830 in the psymtab. */
23831 if (i < size)
23832 dwarf2_complex_location_expr_complaint ();
23833 break;
23834
23835 case DW_OP_GNU_push_tls_address:
23836 case DW_OP_form_tls_address:
23837 /* The top of the stack has the offset from the beginning
23838 of the thread control block at which the variable is located. */
23839 /* Nothing should follow this operator, so the top of stack would
23840 be returned. */
23841 /* This is valid for partial global symbols, but the variable's
23842 address will be bogus in the psymtab. Make it always at least
23843 non-zero to not look as a variable garbage collected by linker
23844 which have DW_OP_addr 0. */
23845 if (i < size)
23846 dwarf2_complex_location_expr_complaint ();
23847 stack[stacki]++;
23848 break;
23849
23850 case DW_OP_GNU_uninit:
23851 break;
23852
23853 case DW_OP_GNU_addr_index:
23854 case DW_OP_GNU_const_index:
23855 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23856 &bytes_read);
23857 i += bytes_read;
23858 break;
23859
23860 default:
23861 {
23862 const char *name = get_DW_OP_name (op);
23863
23864 if (name)
23865 complaint (_("unsupported stack op: '%s'"),
23866 name);
23867 else
23868 complaint (_("unsupported stack op: '%02x'"),
23869 op);
23870 }
23871
23872 return (stack[stacki]);
23873 }
23874
23875 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23876 outside of the allocated space. Also enforce minimum>0. */
23877 if (stacki >= ARRAY_SIZE (stack) - 1)
23878 {
23879 complaint (_("location description stack overflow"));
23880 return 0;
23881 }
23882
23883 if (stacki <= 0)
23884 {
23885 complaint (_("location description stack underflow"));
23886 return 0;
23887 }
23888 }
23889 return (stack[stacki]);
23890 }
23891
23892 /* memory allocation interface */
23893
23894 static struct dwarf_block *
23895 dwarf_alloc_block (struct dwarf2_cu *cu)
23896 {
23897 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23898 }
23899
23900 static struct die_info *
23901 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23902 {
23903 struct die_info *die;
23904 size_t size = sizeof (struct die_info);
23905
23906 if (num_attrs > 1)
23907 size += (num_attrs - 1) * sizeof (struct attribute);
23908
23909 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23910 memset (die, 0, sizeof (struct die_info));
23911 return (die);
23912 }
23913
23914 \f
23915 /* Macro support. */
23916
23917 /* Return file name relative to the compilation directory of file number I in
23918 *LH's file name table. The result is allocated using xmalloc; the caller is
23919 responsible for freeing it. */
23920
23921 static char *
23922 file_file_name (int file, struct line_header *lh)
23923 {
23924 /* Is the file number a valid index into the line header's file name
23925 table? Remember that file numbers start with one, not zero. */
23926 if (1 <= file && file <= lh->file_names.size ())
23927 {
23928 const file_entry &fe = lh->file_names[file - 1];
23929
23930 if (!IS_ABSOLUTE_PATH (fe.name))
23931 {
23932 const char *dir = fe.include_dir (lh);
23933 if (dir != NULL)
23934 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23935 }
23936 return xstrdup (fe.name);
23937 }
23938 else
23939 {
23940 /* The compiler produced a bogus file number. We can at least
23941 record the macro definitions made in the file, even if we
23942 won't be able to find the file by name. */
23943 char fake_name[80];
23944
23945 xsnprintf (fake_name, sizeof (fake_name),
23946 "<bad macro file number %d>", file);
23947
23948 complaint (_("bad file number in macro information (%d)"),
23949 file);
23950
23951 return xstrdup (fake_name);
23952 }
23953 }
23954
23955 /* Return the full name of file number I in *LH's file name table.
23956 Use COMP_DIR as the name of the current directory of the
23957 compilation. The result is allocated using xmalloc; the caller is
23958 responsible for freeing it. */
23959 static char *
23960 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23961 {
23962 /* Is the file number a valid index into the line header's file name
23963 table? Remember that file numbers start with one, not zero. */
23964 if (1 <= file && file <= lh->file_names.size ())
23965 {
23966 char *relative = file_file_name (file, lh);
23967
23968 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23969 return relative;
23970 return reconcat (relative, comp_dir, SLASH_STRING,
23971 relative, (char *) NULL);
23972 }
23973 else
23974 return file_file_name (file, lh);
23975 }
23976
23977
23978 static struct macro_source_file *
23979 macro_start_file (struct dwarf2_cu *cu,
23980 int file, int line,
23981 struct macro_source_file *current_file,
23982 struct line_header *lh)
23983 {
23984 /* File name relative to the compilation directory of this source file. */
23985 char *file_name = file_file_name (file, lh);
23986
23987 if (! current_file)
23988 {
23989 /* Note: We don't create a macro table for this compilation unit
23990 at all until we actually get a filename. */
23991 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23992
23993 /* If we have no current file, then this must be the start_file
23994 directive for the compilation unit's main source file. */
23995 current_file = macro_set_main (macro_table, file_name);
23996 macro_define_special (macro_table);
23997 }
23998 else
23999 current_file = macro_include (current_file, line, file_name);
24000
24001 xfree (file_name);
24002
24003 return current_file;
24004 }
24005
24006 static const char *
24007 consume_improper_spaces (const char *p, const char *body)
24008 {
24009 if (*p == ' ')
24010 {
24011 complaint (_("macro definition contains spaces "
24012 "in formal argument list:\n`%s'"),
24013 body);
24014
24015 while (*p == ' ')
24016 p++;
24017 }
24018
24019 return p;
24020 }
24021
24022
24023 static void
24024 parse_macro_definition (struct macro_source_file *file, int line,
24025 const char *body)
24026 {
24027 const char *p;
24028
24029 /* The body string takes one of two forms. For object-like macro
24030 definitions, it should be:
24031
24032 <macro name> " " <definition>
24033
24034 For function-like macro definitions, it should be:
24035
24036 <macro name> "() " <definition>
24037 or
24038 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24039
24040 Spaces may appear only where explicitly indicated, and in the
24041 <definition>.
24042
24043 The Dwarf 2 spec says that an object-like macro's name is always
24044 followed by a space, but versions of GCC around March 2002 omit
24045 the space when the macro's definition is the empty string.
24046
24047 The Dwarf 2 spec says that there should be no spaces between the
24048 formal arguments in a function-like macro's formal argument list,
24049 but versions of GCC around March 2002 include spaces after the
24050 commas. */
24051
24052
24053 /* Find the extent of the macro name. The macro name is terminated
24054 by either a space or null character (for an object-like macro) or
24055 an opening paren (for a function-like macro). */
24056 for (p = body; *p; p++)
24057 if (*p == ' ' || *p == '(')
24058 break;
24059
24060 if (*p == ' ' || *p == '\0')
24061 {
24062 /* It's an object-like macro. */
24063 int name_len = p - body;
24064 char *name = savestring (body, name_len);
24065 const char *replacement;
24066
24067 if (*p == ' ')
24068 replacement = body + name_len + 1;
24069 else
24070 {
24071 dwarf2_macro_malformed_definition_complaint (body);
24072 replacement = body + name_len;
24073 }
24074
24075 macro_define_object (file, line, name, replacement);
24076
24077 xfree (name);
24078 }
24079 else if (*p == '(')
24080 {
24081 /* It's a function-like macro. */
24082 char *name = savestring (body, p - body);
24083 int argc = 0;
24084 int argv_size = 1;
24085 char **argv = XNEWVEC (char *, argv_size);
24086
24087 p++;
24088
24089 p = consume_improper_spaces (p, body);
24090
24091 /* Parse the formal argument list. */
24092 while (*p && *p != ')')
24093 {
24094 /* Find the extent of the current argument name. */
24095 const char *arg_start = p;
24096
24097 while (*p && *p != ',' && *p != ')' && *p != ' ')
24098 p++;
24099
24100 if (! *p || p == arg_start)
24101 dwarf2_macro_malformed_definition_complaint (body);
24102 else
24103 {
24104 /* Make sure argv has room for the new argument. */
24105 if (argc >= argv_size)
24106 {
24107 argv_size *= 2;
24108 argv = XRESIZEVEC (char *, argv, argv_size);
24109 }
24110
24111 argv[argc++] = savestring (arg_start, p - arg_start);
24112 }
24113
24114 p = consume_improper_spaces (p, body);
24115
24116 /* Consume the comma, if present. */
24117 if (*p == ',')
24118 {
24119 p++;
24120
24121 p = consume_improper_spaces (p, body);
24122 }
24123 }
24124
24125 if (*p == ')')
24126 {
24127 p++;
24128
24129 if (*p == ' ')
24130 /* Perfectly formed definition, no complaints. */
24131 macro_define_function (file, line, name,
24132 argc, (const char **) argv,
24133 p + 1);
24134 else if (*p == '\0')
24135 {
24136 /* Complain, but do define it. */
24137 dwarf2_macro_malformed_definition_complaint (body);
24138 macro_define_function (file, line, name,
24139 argc, (const char **) argv,
24140 p);
24141 }
24142 else
24143 /* Just complain. */
24144 dwarf2_macro_malformed_definition_complaint (body);
24145 }
24146 else
24147 /* Just complain. */
24148 dwarf2_macro_malformed_definition_complaint (body);
24149
24150 xfree (name);
24151 {
24152 int i;
24153
24154 for (i = 0; i < argc; i++)
24155 xfree (argv[i]);
24156 }
24157 xfree (argv);
24158 }
24159 else
24160 dwarf2_macro_malformed_definition_complaint (body);
24161 }
24162
24163 /* Skip some bytes from BYTES according to the form given in FORM.
24164 Returns the new pointer. */
24165
24166 static const gdb_byte *
24167 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24168 enum dwarf_form form,
24169 unsigned int offset_size,
24170 struct dwarf2_section_info *section)
24171 {
24172 unsigned int bytes_read;
24173
24174 switch (form)
24175 {
24176 case DW_FORM_data1:
24177 case DW_FORM_flag:
24178 ++bytes;
24179 break;
24180
24181 case DW_FORM_data2:
24182 bytes += 2;
24183 break;
24184
24185 case DW_FORM_data4:
24186 bytes += 4;
24187 break;
24188
24189 case DW_FORM_data8:
24190 bytes += 8;
24191 break;
24192
24193 case DW_FORM_data16:
24194 bytes += 16;
24195 break;
24196
24197 case DW_FORM_string:
24198 read_direct_string (abfd, bytes, &bytes_read);
24199 bytes += bytes_read;
24200 break;
24201
24202 case DW_FORM_sec_offset:
24203 case DW_FORM_strp:
24204 case DW_FORM_GNU_strp_alt:
24205 bytes += offset_size;
24206 break;
24207
24208 case DW_FORM_block:
24209 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24210 bytes += bytes_read;
24211 break;
24212
24213 case DW_FORM_block1:
24214 bytes += 1 + read_1_byte (abfd, bytes);
24215 break;
24216 case DW_FORM_block2:
24217 bytes += 2 + read_2_bytes (abfd, bytes);
24218 break;
24219 case DW_FORM_block4:
24220 bytes += 4 + read_4_bytes (abfd, bytes);
24221 break;
24222
24223 case DW_FORM_sdata:
24224 case DW_FORM_udata:
24225 case DW_FORM_GNU_addr_index:
24226 case DW_FORM_GNU_str_index:
24227 bytes = gdb_skip_leb128 (bytes, buffer_end);
24228 if (bytes == NULL)
24229 {
24230 dwarf2_section_buffer_overflow_complaint (section);
24231 return NULL;
24232 }
24233 break;
24234
24235 case DW_FORM_implicit_const:
24236 break;
24237
24238 default:
24239 {
24240 complaint (_("invalid form 0x%x in `%s'"),
24241 form, get_section_name (section));
24242 return NULL;
24243 }
24244 }
24245
24246 return bytes;
24247 }
24248
24249 /* A helper for dwarf_decode_macros that handles skipping an unknown
24250 opcode. Returns an updated pointer to the macro data buffer; or,
24251 on error, issues a complaint and returns NULL. */
24252
24253 static const gdb_byte *
24254 skip_unknown_opcode (unsigned int opcode,
24255 const gdb_byte **opcode_definitions,
24256 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24257 bfd *abfd,
24258 unsigned int offset_size,
24259 struct dwarf2_section_info *section)
24260 {
24261 unsigned int bytes_read, i;
24262 unsigned long arg;
24263 const gdb_byte *defn;
24264
24265 if (opcode_definitions[opcode] == NULL)
24266 {
24267 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24268 opcode);
24269 return NULL;
24270 }
24271
24272 defn = opcode_definitions[opcode];
24273 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24274 defn += bytes_read;
24275
24276 for (i = 0; i < arg; ++i)
24277 {
24278 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24279 (enum dwarf_form) defn[i], offset_size,
24280 section);
24281 if (mac_ptr == NULL)
24282 {
24283 /* skip_form_bytes already issued the complaint. */
24284 return NULL;
24285 }
24286 }
24287
24288 return mac_ptr;
24289 }
24290
24291 /* A helper function which parses the header of a macro section.
24292 If the macro section is the extended (for now called "GNU") type,
24293 then this updates *OFFSET_SIZE. Returns a pointer to just after
24294 the header, or issues a complaint and returns NULL on error. */
24295
24296 static const gdb_byte *
24297 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24298 bfd *abfd,
24299 const gdb_byte *mac_ptr,
24300 unsigned int *offset_size,
24301 int section_is_gnu)
24302 {
24303 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24304
24305 if (section_is_gnu)
24306 {
24307 unsigned int version, flags;
24308
24309 version = read_2_bytes (abfd, mac_ptr);
24310 if (version != 4 && version != 5)
24311 {
24312 complaint (_("unrecognized version `%d' in .debug_macro section"),
24313 version);
24314 return NULL;
24315 }
24316 mac_ptr += 2;
24317
24318 flags = read_1_byte (abfd, mac_ptr);
24319 ++mac_ptr;
24320 *offset_size = (flags & 1) ? 8 : 4;
24321
24322 if ((flags & 2) != 0)
24323 /* We don't need the line table offset. */
24324 mac_ptr += *offset_size;
24325
24326 /* Vendor opcode descriptions. */
24327 if ((flags & 4) != 0)
24328 {
24329 unsigned int i, count;
24330
24331 count = read_1_byte (abfd, mac_ptr);
24332 ++mac_ptr;
24333 for (i = 0; i < count; ++i)
24334 {
24335 unsigned int opcode, bytes_read;
24336 unsigned long arg;
24337
24338 opcode = read_1_byte (abfd, mac_ptr);
24339 ++mac_ptr;
24340 opcode_definitions[opcode] = mac_ptr;
24341 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24342 mac_ptr += bytes_read;
24343 mac_ptr += arg;
24344 }
24345 }
24346 }
24347
24348 return mac_ptr;
24349 }
24350
24351 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24352 including DW_MACRO_import. */
24353
24354 static void
24355 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24356 bfd *abfd,
24357 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24358 struct macro_source_file *current_file,
24359 struct line_header *lh,
24360 struct dwarf2_section_info *section,
24361 int section_is_gnu, int section_is_dwz,
24362 unsigned int offset_size,
24363 htab_t include_hash)
24364 {
24365 struct dwarf2_per_objfile *dwarf2_per_objfile
24366 = cu->per_cu->dwarf2_per_objfile;
24367 struct objfile *objfile = dwarf2_per_objfile->objfile;
24368 enum dwarf_macro_record_type macinfo_type;
24369 int at_commandline;
24370 const gdb_byte *opcode_definitions[256];
24371
24372 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24373 &offset_size, section_is_gnu);
24374 if (mac_ptr == NULL)
24375 {
24376 /* We already issued a complaint. */
24377 return;
24378 }
24379
24380 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24381 GDB is still reading the definitions from command line. First
24382 DW_MACINFO_start_file will need to be ignored as it was already executed
24383 to create CURRENT_FILE for the main source holding also the command line
24384 definitions. On first met DW_MACINFO_start_file this flag is reset to
24385 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24386
24387 at_commandline = 1;
24388
24389 do
24390 {
24391 /* Do we at least have room for a macinfo type byte? */
24392 if (mac_ptr >= mac_end)
24393 {
24394 dwarf2_section_buffer_overflow_complaint (section);
24395 break;
24396 }
24397
24398 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24399 mac_ptr++;
24400
24401 /* Note that we rely on the fact that the corresponding GNU and
24402 DWARF constants are the same. */
24403 DIAGNOSTIC_PUSH
24404 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24405 switch (macinfo_type)
24406 {
24407 /* A zero macinfo type indicates the end of the macro
24408 information. */
24409 case 0:
24410 break;
24411
24412 case DW_MACRO_define:
24413 case DW_MACRO_undef:
24414 case DW_MACRO_define_strp:
24415 case DW_MACRO_undef_strp:
24416 case DW_MACRO_define_sup:
24417 case DW_MACRO_undef_sup:
24418 {
24419 unsigned int bytes_read;
24420 int line;
24421 const char *body;
24422 int is_define;
24423
24424 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24425 mac_ptr += bytes_read;
24426
24427 if (macinfo_type == DW_MACRO_define
24428 || macinfo_type == DW_MACRO_undef)
24429 {
24430 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24431 mac_ptr += bytes_read;
24432 }
24433 else
24434 {
24435 LONGEST str_offset;
24436
24437 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24438 mac_ptr += offset_size;
24439
24440 if (macinfo_type == DW_MACRO_define_sup
24441 || macinfo_type == DW_MACRO_undef_sup
24442 || section_is_dwz)
24443 {
24444 struct dwz_file *dwz
24445 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24446
24447 body = read_indirect_string_from_dwz (objfile,
24448 dwz, str_offset);
24449 }
24450 else
24451 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24452 abfd, str_offset);
24453 }
24454
24455 is_define = (macinfo_type == DW_MACRO_define
24456 || macinfo_type == DW_MACRO_define_strp
24457 || macinfo_type == DW_MACRO_define_sup);
24458 if (! current_file)
24459 {
24460 /* DWARF violation as no main source is present. */
24461 complaint (_("debug info with no main source gives macro %s "
24462 "on line %d: %s"),
24463 is_define ? _("definition") : _("undefinition"),
24464 line, body);
24465 break;
24466 }
24467 if ((line == 0 && !at_commandline)
24468 || (line != 0 && at_commandline))
24469 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24470 at_commandline ? _("command-line") : _("in-file"),
24471 is_define ? _("definition") : _("undefinition"),
24472 line == 0 ? _("zero") : _("non-zero"), line, body);
24473
24474 if (is_define)
24475 parse_macro_definition (current_file, line, body);
24476 else
24477 {
24478 gdb_assert (macinfo_type == DW_MACRO_undef
24479 || macinfo_type == DW_MACRO_undef_strp
24480 || macinfo_type == DW_MACRO_undef_sup);
24481 macro_undef (current_file, line, body);
24482 }
24483 }
24484 break;
24485
24486 case DW_MACRO_start_file:
24487 {
24488 unsigned int bytes_read;
24489 int line, file;
24490
24491 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24492 mac_ptr += bytes_read;
24493 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24494 mac_ptr += bytes_read;
24495
24496 if ((line == 0 && !at_commandline)
24497 || (line != 0 && at_commandline))
24498 complaint (_("debug info gives source %d included "
24499 "from %s at %s line %d"),
24500 file, at_commandline ? _("command-line") : _("file"),
24501 line == 0 ? _("zero") : _("non-zero"), line);
24502
24503 if (at_commandline)
24504 {
24505 /* This DW_MACRO_start_file was executed in the
24506 pass one. */
24507 at_commandline = 0;
24508 }
24509 else
24510 current_file = macro_start_file (cu, file, line, current_file,
24511 lh);
24512 }
24513 break;
24514
24515 case DW_MACRO_end_file:
24516 if (! current_file)
24517 complaint (_("macro debug info has an unmatched "
24518 "`close_file' directive"));
24519 else
24520 {
24521 current_file = current_file->included_by;
24522 if (! current_file)
24523 {
24524 enum dwarf_macro_record_type next_type;
24525
24526 /* GCC circa March 2002 doesn't produce the zero
24527 type byte marking the end of the compilation
24528 unit. Complain if it's not there, but exit no
24529 matter what. */
24530
24531 /* Do we at least have room for a macinfo type byte? */
24532 if (mac_ptr >= mac_end)
24533 {
24534 dwarf2_section_buffer_overflow_complaint (section);
24535 return;
24536 }
24537
24538 /* We don't increment mac_ptr here, so this is just
24539 a look-ahead. */
24540 next_type
24541 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24542 mac_ptr);
24543 if (next_type != 0)
24544 complaint (_("no terminating 0-type entry for "
24545 "macros in `.debug_macinfo' section"));
24546
24547 return;
24548 }
24549 }
24550 break;
24551
24552 case DW_MACRO_import:
24553 case DW_MACRO_import_sup:
24554 {
24555 LONGEST offset;
24556 void **slot;
24557 bfd *include_bfd = abfd;
24558 struct dwarf2_section_info *include_section = section;
24559 const gdb_byte *include_mac_end = mac_end;
24560 int is_dwz = section_is_dwz;
24561 const gdb_byte *new_mac_ptr;
24562
24563 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24564 mac_ptr += offset_size;
24565
24566 if (macinfo_type == DW_MACRO_import_sup)
24567 {
24568 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24569
24570 dwarf2_read_section (objfile, &dwz->macro);
24571
24572 include_section = &dwz->macro;
24573 include_bfd = get_section_bfd_owner (include_section);
24574 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24575 is_dwz = 1;
24576 }
24577
24578 new_mac_ptr = include_section->buffer + offset;
24579 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24580
24581 if (*slot != NULL)
24582 {
24583 /* This has actually happened; see
24584 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24585 complaint (_("recursive DW_MACRO_import in "
24586 ".debug_macro section"));
24587 }
24588 else
24589 {
24590 *slot = (void *) new_mac_ptr;
24591
24592 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24593 include_mac_end, current_file, lh,
24594 section, section_is_gnu, is_dwz,
24595 offset_size, include_hash);
24596
24597 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24598 }
24599 }
24600 break;
24601
24602 case DW_MACINFO_vendor_ext:
24603 if (!section_is_gnu)
24604 {
24605 unsigned int bytes_read;
24606
24607 /* This reads the constant, but since we don't recognize
24608 any vendor extensions, we ignore it. */
24609 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24610 mac_ptr += bytes_read;
24611 read_direct_string (abfd, mac_ptr, &bytes_read);
24612 mac_ptr += bytes_read;
24613
24614 /* We don't recognize any vendor extensions. */
24615 break;
24616 }
24617 /* FALLTHROUGH */
24618
24619 default:
24620 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24621 mac_ptr, mac_end, abfd, offset_size,
24622 section);
24623 if (mac_ptr == NULL)
24624 return;
24625 break;
24626 }
24627 DIAGNOSTIC_POP
24628 } while (macinfo_type != 0);
24629 }
24630
24631 static void
24632 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24633 int section_is_gnu)
24634 {
24635 struct dwarf2_per_objfile *dwarf2_per_objfile
24636 = cu->per_cu->dwarf2_per_objfile;
24637 struct objfile *objfile = dwarf2_per_objfile->objfile;
24638 struct line_header *lh = cu->line_header;
24639 bfd *abfd;
24640 const gdb_byte *mac_ptr, *mac_end;
24641 struct macro_source_file *current_file = 0;
24642 enum dwarf_macro_record_type macinfo_type;
24643 unsigned int offset_size = cu->header.offset_size;
24644 const gdb_byte *opcode_definitions[256];
24645 void **slot;
24646 struct dwarf2_section_info *section;
24647 const char *section_name;
24648
24649 if (cu->dwo_unit != NULL)
24650 {
24651 if (section_is_gnu)
24652 {
24653 section = &cu->dwo_unit->dwo_file->sections.macro;
24654 section_name = ".debug_macro.dwo";
24655 }
24656 else
24657 {
24658 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24659 section_name = ".debug_macinfo.dwo";
24660 }
24661 }
24662 else
24663 {
24664 if (section_is_gnu)
24665 {
24666 section = &dwarf2_per_objfile->macro;
24667 section_name = ".debug_macro";
24668 }
24669 else
24670 {
24671 section = &dwarf2_per_objfile->macinfo;
24672 section_name = ".debug_macinfo";
24673 }
24674 }
24675
24676 dwarf2_read_section (objfile, section);
24677 if (section->buffer == NULL)
24678 {
24679 complaint (_("missing %s section"), section_name);
24680 return;
24681 }
24682 abfd = get_section_bfd_owner (section);
24683
24684 /* First pass: Find the name of the base filename.
24685 This filename is needed in order to process all macros whose definition
24686 (or undefinition) comes from the command line. These macros are defined
24687 before the first DW_MACINFO_start_file entry, and yet still need to be
24688 associated to the base file.
24689
24690 To determine the base file name, we scan the macro definitions until we
24691 reach the first DW_MACINFO_start_file entry. We then initialize
24692 CURRENT_FILE accordingly so that any macro definition found before the
24693 first DW_MACINFO_start_file can still be associated to the base file. */
24694
24695 mac_ptr = section->buffer + offset;
24696 mac_end = section->buffer + section->size;
24697
24698 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24699 &offset_size, section_is_gnu);
24700 if (mac_ptr == NULL)
24701 {
24702 /* We already issued a complaint. */
24703 return;
24704 }
24705
24706 do
24707 {
24708 /* Do we at least have room for a macinfo type byte? */
24709 if (mac_ptr >= mac_end)
24710 {
24711 /* Complaint is printed during the second pass as GDB will probably
24712 stop the first pass earlier upon finding
24713 DW_MACINFO_start_file. */
24714 break;
24715 }
24716
24717 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24718 mac_ptr++;
24719
24720 /* Note that we rely on the fact that the corresponding GNU and
24721 DWARF constants are the same. */
24722 DIAGNOSTIC_PUSH
24723 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24724 switch (macinfo_type)
24725 {
24726 /* A zero macinfo type indicates the end of the macro
24727 information. */
24728 case 0:
24729 break;
24730
24731 case DW_MACRO_define:
24732 case DW_MACRO_undef:
24733 /* Only skip the data by MAC_PTR. */
24734 {
24735 unsigned int bytes_read;
24736
24737 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24738 mac_ptr += bytes_read;
24739 read_direct_string (abfd, mac_ptr, &bytes_read);
24740 mac_ptr += bytes_read;
24741 }
24742 break;
24743
24744 case DW_MACRO_start_file:
24745 {
24746 unsigned int bytes_read;
24747 int line, file;
24748
24749 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24750 mac_ptr += bytes_read;
24751 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24752 mac_ptr += bytes_read;
24753
24754 current_file = macro_start_file (cu, file, line, current_file, lh);
24755 }
24756 break;
24757
24758 case DW_MACRO_end_file:
24759 /* No data to skip by MAC_PTR. */
24760 break;
24761
24762 case DW_MACRO_define_strp:
24763 case DW_MACRO_undef_strp:
24764 case DW_MACRO_define_sup:
24765 case DW_MACRO_undef_sup:
24766 {
24767 unsigned int bytes_read;
24768
24769 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24770 mac_ptr += bytes_read;
24771 mac_ptr += offset_size;
24772 }
24773 break;
24774
24775 case DW_MACRO_import:
24776 case DW_MACRO_import_sup:
24777 /* Note that, according to the spec, a transparent include
24778 chain cannot call DW_MACRO_start_file. So, we can just
24779 skip this opcode. */
24780 mac_ptr += offset_size;
24781 break;
24782
24783 case DW_MACINFO_vendor_ext:
24784 /* Only skip the data by MAC_PTR. */
24785 if (!section_is_gnu)
24786 {
24787 unsigned int bytes_read;
24788
24789 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24790 mac_ptr += bytes_read;
24791 read_direct_string (abfd, mac_ptr, &bytes_read);
24792 mac_ptr += bytes_read;
24793 }
24794 /* FALLTHROUGH */
24795
24796 default:
24797 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24798 mac_ptr, mac_end, abfd, offset_size,
24799 section);
24800 if (mac_ptr == NULL)
24801 return;
24802 break;
24803 }
24804 DIAGNOSTIC_POP
24805 } while (macinfo_type != 0 && current_file == NULL);
24806
24807 /* Second pass: Process all entries.
24808
24809 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24810 command-line macro definitions/undefinitions. This flag is unset when we
24811 reach the first DW_MACINFO_start_file entry. */
24812
24813 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24814 htab_eq_pointer,
24815 NULL, xcalloc, xfree));
24816 mac_ptr = section->buffer + offset;
24817 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24818 *slot = (void *) mac_ptr;
24819 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24820 current_file, lh, section,
24821 section_is_gnu, 0, offset_size,
24822 include_hash.get ());
24823 }
24824
24825 /* Check if the attribute's form is a DW_FORM_block*
24826 if so return true else false. */
24827
24828 static int
24829 attr_form_is_block (const struct attribute *attr)
24830 {
24831 return (attr == NULL ? 0 :
24832 attr->form == DW_FORM_block1
24833 || attr->form == DW_FORM_block2
24834 || attr->form == DW_FORM_block4
24835 || attr->form == DW_FORM_block
24836 || attr->form == DW_FORM_exprloc);
24837 }
24838
24839 /* Return non-zero if ATTR's value is a section offset --- classes
24840 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24841 You may use DW_UNSND (attr) to retrieve such offsets.
24842
24843 Section 7.5.4, "Attribute Encodings", explains that no attribute
24844 may have a value that belongs to more than one of these classes; it
24845 would be ambiguous if we did, because we use the same forms for all
24846 of them. */
24847
24848 static int
24849 attr_form_is_section_offset (const struct attribute *attr)
24850 {
24851 return (attr->form == DW_FORM_data4
24852 || attr->form == DW_FORM_data8
24853 || attr->form == DW_FORM_sec_offset);
24854 }
24855
24856 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24857 zero otherwise. When this function returns true, you can apply
24858 dwarf2_get_attr_constant_value to it.
24859
24860 However, note that for some attributes you must check
24861 attr_form_is_section_offset before using this test. DW_FORM_data4
24862 and DW_FORM_data8 are members of both the constant class, and of
24863 the classes that contain offsets into other debug sections
24864 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24865 that, if an attribute's can be either a constant or one of the
24866 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24867 taken as section offsets, not constants.
24868
24869 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24870 cannot handle that. */
24871
24872 static int
24873 attr_form_is_constant (const struct attribute *attr)
24874 {
24875 switch (attr->form)
24876 {
24877 case DW_FORM_sdata:
24878 case DW_FORM_udata:
24879 case DW_FORM_data1:
24880 case DW_FORM_data2:
24881 case DW_FORM_data4:
24882 case DW_FORM_data8:
24883 case DW_FORM_implicit_const:
24884 return 1;
24885 default:
24886 return 0;
24887 }
24888 }
24889
24890
24891 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24892 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24893
24894 static int
24895 attr_form_is_ref (const struct attribute *attr)
24896 {
24897 switch (attr->form)
24898 {
24899 case DW_FORM_ref_addr:
24900 case DW_FORM_ref1:
24901 case DW_FORM_ref2:
24902 case DW_FORM_ref4:
24903 case DW_FORM_ref8:
24904 case DW_FORM_ref_udata:
24905 case DW_FORM_GNU_ref_alt:
24906 return 1;
24907 default:
24908 return 0;
24909 }
24910 }
24911
24912 /* Return the .debug_loc section to use for CU.
24913 For DWO files use .debug_loc.dwo. */
24914
24915 static struct dwarf2_section_info *
24916 cu_debug_loc_section (struct dwarf2_cu *cu)
24917 {
24918 struct dwarf2_per_objfile *dwarf2_per_objfile
24919 = cu->per_cu->dwarf2_per_objfile;
24920
24921 if (cu->dwo_unit)
24922 {
24923 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24924
24925 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24926 }
24927 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24928 : &dwarf2_per_objfile->loc);
24929 }
24930
24931 /* A helper function that fills in a dwarf2_loclist_baton. */
24932
24933 static void
24934 fill_in_loclist_baton (struct dwarf2_cu *cu,
24935 struct dwarf2_loclist_baton *baton,
24936 const struct attribute *attr)
24937 {
24938 struct dwarf2_per_objfile *dwarf2_per_objfile
24939 = cu->per_cu->dwarf2_per_objfile;
24940 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24941
24942 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24943
24944 baton->per_cu = cu->per_cu;
24945 gdb_assert (baton->per_cu);
24946 /* We don't know how long the location list is, but make sure we
24947 don't run off the edge of the section. */
24948 baton->size = section->size - DW_UNSND (attr);
24949 baton->data = section->buffer + DW_UNSND (attr);
24950 baton->base_address = cu->base_address;
24951 baton->from_dwo = cu->dwo_unit != NULL;
24952 }
24953
24954 static void
24955 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24956 struct dwarf2_cu *cu, int is_block)
24957 {
24958 struct dwarf2_per_objfile *dwarf2_per_objfile
24959 = cu->per_cu->dwarf2_per_objfile;
24960 struct objfile *objfile = dwarf2_per_objfile->objfile;
24961 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24962
24963 if (attr_form_is_section_offset (attr)
24964 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24965 the section. If so, fall through to the complaint in the
24966 other branch. */
24967 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24968 {
24969 struct dwarf2_loclist_baton *baton;
24970
24971 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24972
24973 fill_in_loclist_baton (cu, baton, attr);
24974
24975 if (cu->base_known == 0)
24976 complaint (_("Location list used without "
24977 "specifying the CU base address."));
24978
24979 SYMBOL_ACLASS_INDEX (sym) = (is_block
24980 ? dwarf2_loclist_block_index
24981 : dwarf2_loclist_index);
24982 SYMBOL_LOCATION_BATON (sym) = baton;
24983 }
24984 else
24985 {
24986 struct dwarf2_locexpr_baton *baton;
24987
24988 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24989 baton->per_cu = cu->per_cu;
24990 gdb_assert (baton->per_cu);
24991
24992 if (attr_form_is_block (attr))
24993 {
24994 /* Note that we're just copying the block's data pointer
24995 here, not the actual data. We're still pointing into the
24996 info_buffer for SYM's objfile; right now we never release
24997 that buffer, but when we do clean up properly this may
24998 need to change. */
24999 baton->size = DW_BLOCK (attr)->size;
25000 baton->data = DW_BLOCK (attr)->data;
25001 }
25002 else
25003 {
25004 dwarf2_invalid_attrib_class_complaint ("location description",
25005 SYMBOL_NATURAL_NAME (sym));
25006 baton->size = 0;
25007 }
25008
25009 SYMBOL_ACLASS_INDEX (sym) = (is_block
25010 ? dwarf2_locexpr_block_index
25011 : dwarf2_locexpr_index);
25012 SYMBOL_LOCATION_BATON (sym) = baton;
25013 }
25014 }
25015
25016 /* Return the OBJFILE associated with the compilation unit CU. If CU
25017 came from a separate debuginfo file, then the master objfile is
25018 returned. */
25019
25020 struct objfile *
25021 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25022 {
25023 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25024
25025 /* Return the master objfile, so that we can report and look up the
25026 correct file containing this variable. */
25027 if (objfile->separate_debug_objfile_backlink)
25028 objfile = objfile->separate_debug_objfile_backlink;
25029
25030 return objfile;
25031 }
25032
25033 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25034 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25035 CU_HEADERP first. */
25036
25037 static const struct comp_unit_head *
25038 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25039 struct dwarf2_per_cu_data *per_cu)
25040 {
25041 const gdb_byte *info_ptr;
25042
25043 if (per_cu->cu)
25044 return &per_cu->cu->header;
25045
25046 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25047
25048 memset (cu_headerp, 0, sizeof (*cu_headerp));
25049 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25050 rcuh_kind::COMPILE);
25051
25052 return cu_headerp;
25053 }
25054
25055 /* Return the address size given in the compilation unit header for CU. */
25056
25057 int
25058 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25059 {
25060 struct comp_unit_head cu_header_local;
25061 const struct comp_unit_head *cu_headerp;
25062
25063 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25064
25065 return cu_headerp->addr_size;
25066 }
25067
25068 /* Return the offset size given in the compilation unit header for CU. */
25069
25070 int
25071 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25072 {
25073 struct comp_unit_head cu_header_local;
25074 const struct comp_unit_head *cu_headerp;
25075
25076 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25077
25078 return cu_headerp->offset_size;
25079 }
25080
25081 /* See its dwarf2loc.h declaration. */
25082
25083 int
25084 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25085 {
25086 struct comp_unit_head cu_header_local;
25087 const struct comp_unit_head *cu_headerp;
25088
25089 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25090
25091 if (cu_headerp->version == 2)
25092 return cu_headerp->addr_size;
25093 else
25094 return cu_headerp->offset_size;
25095 }
25096
25097 /* Return the text offset of the CU. The returned offset comes from
25098 this CU's objfile. If this objfile came from a separate debuginfo
25099 file, then the offset may be different from the corresponding
25100 offset in the parent objfile. */
25101
25102 CORE_ADDR
25103 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25104 {
25105 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25106
25107 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25108 }
25109
25110 /* Return DWARF version number of PER_CU. */
25111
25112 short
25113 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25114 {
25115 return per_cu->dwarf_version;
25116 }
25117
25118 /* Locate the .debug_info compilation unit from CU's objfile which contains
25119 the DIE at OFFSET. Raises an error on failure. */
25120
25121 static struct dwarf2_per_cu_data *
25122 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25123 unsigned int offset_in_dwz,
25124 struct dwarf2_per_objfile *dwarf2_per_objfile)
25125 {
25126 struct dwarf2_per_cu_data *this_cu;
25127 int low, high;
25128
25129 low = 0;
25130 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25131 while (high > low)
25132 {
25133 struct dwarf2_per_cu_data *mid_cu;
25134 int mid = low + (high - low) / 2;
25135
25136 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25137 if (mid_cu->is_dwz > offset_in_dwz
25138 || (mid_cu->is_dwz == offset_in_dwz
25139 && mid_cu->sect_off + mid_cu->length >= sect_off))
25140 high = mid;
25141 else
25142 low = mid + 1;
25143 }
25144 gdb_assert (low == high);
25145 this_cu = dwarf2_per_objfile->all_comp_units[low];
25146 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25147 {
25148 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25149 error (_("Dwarf Error: could not find partial DIE containing "
25150 "offset %s [in module %s]"),
25151 sect_offset_str (sect_off),
25152 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25153
25154 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25155 <= sect_off);
25156 return dwarf2_per_objfile->all_comp_units[low-1];
25157 }
25158 else
25159 {
25160 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25161 && sect_off >= this_cu->sect_off + this_cu->length)
25162 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25163 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25164 return this_cu;
25165 }
25166 }
25167
25168 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25169
25170 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25171 : per_cu (per_cu_),
25172 mark (false),
25173 has_loclist (false),
25174 checked_producer (false),
25175 producer_is_gxx_lt_4_6 (false),
25176 producer_is_gcc_lt_4_3 (false),
25177 producer_is_icc (false),
25178 producer_is_icc_lt_14 (false),
25179 producer_is_codewarrior (false),
25180 processing_has_namespace_info (false)
25181 {
25182 per_cu->cu = this;
25183 }
25184
25185 /* Destroy a dwarf2_cu. */
25186
25187 dwarf2_cu::~dwarf2_cu ()
25188 {
25189 per_cu->cu = NULL;
25190 }
25191
25192 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25193
25194 static void
25195 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25196 enum language pretend_language)
25197 {
25198 struct attribute *attr;
25199
25200 /* Set the language we're debugging. */
25201 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25202 if (attr)
25203 set_cu_language (DW_UNSND (attr), cu);
25204 else
25205 {
25206 cu->language = pretend_language;
25207 cu->language_defn = language_def (cu->language);
25208 }
25209
25210 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25211 }
25212
25213 /* Increase the age counter on each cached compilation unit, and free
25214 any that are too old. */
25215
25216 static void
25217 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25218 {
25219 struct dwarf2_per_cu_data *per_cu, **last_chain;
25220
25221 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25222 per_cu = dwarf2_per_objfile->read_in_chain;
25223 while (per_cu != NULL)
25224 {
25225 per_cu->cu->last_used ++;
25226 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25227 dwarf2_mark (per_cu->cu);
25228 per_cu = per_cu->cu->read_in_chain;
25229 }
25230
25231 per_cu = dwarf2_per_objfile->read_in_chain;
25232 last_chain = &dwarf2_per_objfile->read_in_chain;
25233 while (per_cu != NULL)
25234 {
25235 struct dwarf2_per_cu_data *next_cu;
25236
25237 next_cu = per_cu->cu->read_in_chain;
25238
25239 if (!per_cu->cu->mark)
25240 {
25241 delete per_cu->cu;
25242 *last_chain = next_cu;
25243 }
25244 else
25245 last_chain = &per_cu->cu->read_in_chain;
25246
25247 per_cu = next_cu;
25248 }
25249 }
25250
25251 /* Remove a single compilation unit from the cache. */
25252
25253 static void
25254 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25255 {
25256 struct dwarf2_per_cu_data *per_cu, **last_chain;
25257 struct dwarf2_per_objfile *dwarf2_per_objfile
25258 = target_per_cu->dwarf2_per_objfile;
25259
25260 per_cu = dwarf2_per_objfile->read_in_chain;
25261 last_chain = &dwarf2_per_objfile->read_in_chain;
25262 while (per_cu != NULL)
25263 {
25264 struct dwarf2_per_cu_data *next_cu;
25265
25266 next_cu = per_cu->cu->read_in_chain;
25267
25268 if (per_cu == target_per_cu)
25269 {
25270 delete per_cu->cu;
25271 per_cu->cu = NULL;
25272 *last_chain = next_cu;
25273 break;
25274 }
25275 else
25276 last_chain = &per_cu->cu->read_in_chain;
25277
25278 per_cu = next_cu;
25279 }
25280 }
25281
25282 /* Cleanup function for the dwarf2_per_objfile data. */
25283
25284 static void
25285 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25286 {
25287 struct dwarf2_per_objfile *dwarf2_per_objfile
25288 = static_cast<struct dwarf2_per_objfile *> (datum);
25289
25290 delete dwarf2_per_objfile;
25291 }
25292
25293 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25294 We store these in a hash table separate from the DIEs, and preserve them
25295 when the DIEs are flushed out of cache.
25296
25297 The CU "per_cu" pointer is needed because offset alone is not enough to
25298 uniquely identify the type. A file may have multiple .debug_types sections,
25299 or the type may come from a DWO file. Furthermore, while it's more logical
25300 to use per_cu->section+offset, with Fission the section with the data is in
25301 the DWO file but we don't know that section at the point we need it.
25302 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25303 because we can enter the lookup routine, get_die_type_at_offset, from
25304 outside this file, and thus won't necessarily have PER_CU->cu.
25305 Fortunately, PER_CU is stable for the life of the objfile. */
25306
25307 struct dwarf2_per_cu_offset_and_type
25308 {
25309 const struct dwarf2_per_cu_data *per_cu;
25310 sect_offset sect_off;
25311 struct type *type;
25312 };
25313
25314 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25315
25316 static hashval_t
25317 per_cu_offset_and_type_hash (const void *item)
25318 {
25319 const struct dwarf2_per_cu_offset_and_type *ofs
25320 = (const struct dwarf2_per_cu_offset_and_type *) item;
25321
25322 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25323 }
25324
25325 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25326
25327 static int
25328 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25329 {
25330 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25331 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25332 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25333 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25334
25335 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25336 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25337 }
25338
25339 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25340 table if necessary. For convenience, return TYPE.
25341
25342 The DIEs reading must have careful ordering to:
25343 * Not cause infite loops trying to read in DIEs as a prerequisite for
25344 reading current DIE.
25345 * Not trying to dereference contents of still incompletely read in types
25346 while reading in other DIEs.
25347 * Enable referencing still incompletely read in types just by a pointer to
25348 the type without accessing its fields.
25349
25350 Therefore caller should follow these rules:
25351 * Try to fetch any prerequisite types we may need to build this DIE type
25352 before building the type and calling set_die_type.
25353 * After building type call set_die_type for current DIE as soon as
25354 possible before fetching more types to complete the current type.
25355 * Make the type as complete as possible before fetching more types. */
25356
25357 static struct type *
25358 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25359 {
25360 struct dwarf2_per_objfile *dwarf2_per_objfile
25361 = cu->per_cu->dwarf2_per_objfile;
25362 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25363 struct objfile *objfile = dwarf2_per_objfile->objfile;
25364 struct attribute *attr;
25365 struct dynamic_prop prop;
25366
25367 /* For Ada types, make sure that the gnat-specific data is always
25368 initialized (if not already set). There are a few types where
25369 we should not be doing so, because the type-specific area is
25370 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25371 where the type-specific area is used to store the floatformat).
25372 But this is not a problem, because the gnat-specific information
25373 is actually not needed for these types. */
25374 if (need_gnat_info (cu)
25375 && TYPE_CODE (type) != TYPE_CODE_FUNC
25376 && TYPE_CODE (type) != TYPE_CODE_FLT
25377 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25378 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25379 && TYPE_CODE (type) != TYPE_CODE_METHOD
25380 && !HAVE_GNAT_AUX_INFO (type))
25381 INIT_GNAT_SPECIFIC (type);
25382
25383 /* Read DW_AT_allocated and set in type. */
25384 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25385 if (attr_form_is_block (attr))
25386 {
25387 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25388 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25389 }
25390 else if (attr != NULL)
25391 {
25392 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25393 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25394 sect_offset_str (die->sect_off));
25395 }
25396
25397 /* Read DW_AT_associated and set in type. */
25398 attr = dwarf2_attr (die, DW_AT_associated, cu);
25399 if (attr_form_is_block (attr))
25400 {
25401 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25402 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25403 }
25404 else if (attr != NULL)
25405 {
25406 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25407 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25408 sect_offset_str (die->sect_off));
25409 }
25410
25411 /* Read DW_AT_data_location and set in type. */
25412 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25413 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25414 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25415
25416 if (dwarf2_per_objfile->die_type_hash == NULL)
25417 {
25418 dwarf2_per_objfile->die_type_hash =
25419 htab_create_alloc_ex (127,
25420 per_cu_offset_and_type_hash,
25421 per_cu_offset_and_type_eq,
25422 NULL,
25423 &objfile->objfile_obstack,
25424 hashtab_obstack_allocate,
25425 dummy_obstack_deallocate);
25426 }
25427
25428 ofs.per_cu = cu->per_cu;
25429 ofs.sect_off = die->sect_off;
25430 ofs.type = type;
25431 slot = (struct dwarf2_per_cu_offset_and_type **)
25432 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25433 if (*slot)
25434 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25435 sect_offset_str (die->sect_off));
25436 *slot = XOBNEW (&objfile->objfile_obstack,
25437 struct dwarf2_per_cu_offset_and_type);
25438 **slot = ofs;
25439 return type;
25440 }
25441
25442 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25443 or return NULL if the die does not have a saved type. */
25444
25445 static struct type *
25446 get_die_type_at_offset (sect_offset sect_off,
25447 struct dwarf2_per_cu_data *per_cu)
25448 {
25449 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25450 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25451
25452 if (dwarf2_per_objfile->die_type_hash == NULL)
25453 return NULL;
25454
25455 ofs.per_cu = per_cu;
25456 ofs.sect_off = sect_off;
25457 slot = ((struct dwarf2_per_cu_offset_and_type *)
25458 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25459 if (slot)
25460 return slot->type;
25461 else
25462 return NULL;
25463 }
25464
25465 /* Look up the type for DIE in CU in die_type_hash,
25466 or return NULL if DIE does not have a saved type. */
25467
25468 static struct type *
25469 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25470 {
25471 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25472 }
25473
25474 /* Add a dependence relationship from CU to REF_PER_CU. */
25475
25476 static void
25477 dwarf2_add_dependence (struct dwarf2_cu *cu,
25478 struct dwarf2_per_cu_data *ref_per_cu)
25479 {
25480 void **slot;
25481
25482 if (cu->dependencies == NULL)
25483 cu->dependencies
25484 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25485 NULL, &cu->comp_unit_obstack,
25486 hashtab_obstack_allocate,
25487 dummy_obstack_deallocate);
25488
25489 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25490 if (*slot == NULL)
25491 *slot = ref_per_cu;
25492 }
25493
25494 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25495 Set the mark field in every compilation unit in the
25496 cache that we must keep because we are keeping CU. */
25497
25498 static int
25499 dwarf2_mark_helper (void **slot, void *data)
25500 {
25501 struct dwarf2_per_cu_data *per_cu;
25502
25503 per_cu = (struct dwarf2_per_cu_data *) *slot;
25504
25505 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25506 reading of the chain. As such dependencies remain valid it is not much
25507 useful to track and undo them during QUIT cleanups. */
25508 if (per_cu->cu == NULL)
25509 return 1;
25510
25511 if (per_cu->cu->mark)
25512 return 1;
25513 per_cu->cu->mark = true;
25514
25515 if (per_cu->cu->dependencies != NULL)
25516 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25517
25518 return 1;
25519 }
25520
25521 /* Set the mark field in CU and in every other compilation unit in the
25522 cache that we must keep because we are keeping CU. */
25523
25524 static void
25525 dwarf2_mark (struct dwarf2_cu *cu)
25526 {
25527 if (cu->mark)
25528 return;
25529 cu->mark = true;
25530 if (cu->dependencies != NULL)
25531 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25532 }
25533
25534 static void
25535 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25536 {
25537 while (per_cu)
25538 {
25539 per_cu->cu->mark = false;
25540 per_cu = per_cu->cu->read_in_chain;
25541 }
25542 }
25543
25544 /* Trivial hash function for partial_die_info: the hash value of a DIE
25545 is its offset in .debug_info for this objfile. */
25546
25547 static hashval_t
25548 partial_die_hash (const void *item)
25549 {
25550 const struct partial_die_info *part_die
25551 = (const struct partial_die_info *) item;
25552
25553 return to_underlying (part_die->sect_off);
25554 }
25555
25556 /* Trivial comparison function for partial_die_info structures: two DIEs
25557 are equal if they have the same offset. */
25558
25559 static int
25560 partial_die_eq (const void *item_lhs, const void *item_rhs)
25561 {
25562 const struct partial_die_info *part_die_lhs
25563 = (const struct partial_die_info *) item_lhs;
25564 const struct partial_die_info *part_die_rhs
25565 = (const struct partial_die_info *) item_rhs;
25566
25567 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25568 }
25569
25570 struct cmd_list_element *set_dwarf_cmdlist;
25571 struct cmd_list_element *show_dwarf_cmdlist;
25572
25573 static void
25574 set_dwarf_cmd (const char *args, int from_tty)
25575 {
25576 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25577 gdb_stdout);
25578 }
25579
25580 static void
25581 show_dwarf_cmd (const char *args, int from_tty)
25582 {
25583 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25584 }
25585
25586 int dwarf_always_disassemble;
25587
25588 static void
25589 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25590 struct cmd_list_element *c, const char *value)
25591 {
25592 fprintf_filtered (file,
25593 _("Whether to always disassemble "
25594 "DWARF expressions is %s.\n"),
25595 value);
25596 }
25597
25598 static void
25599 show_check_physname (struct ui_file *file, int from_tty,
25600 struct cmd_list_element *c, const char *value)
25601 {
25602 fprintf_filtered (file,
25603 _("Whether to check \"physname\" is %s.\n"),
25604 value);
25605 }
25606
25607 void
25608 _initialize_dwarf2_read (void)
25609 {
25610 dwarf2_objfile_data_key
25611 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25612
25613 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25614 Set DWARF specific variables.\n\
25615 Configure DWARF variables such as the cache size"),
25616 &set_dwarf_cmdlist, "maintenance set dwarf ",
25617 0/*allow-unknown*/, &maintenance_set_cmdlist);
25618
25619 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25620 Show DWARF specific variables\n\
25621 Show DWARF variables such as the cache size"),
25622 &show_dwarf_cmdlist, "maintenance show dwarf ",
25623 0/*allow-unknown*/, &maintenance_show_cmdlist);
25624
25625 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25626 &dwarf_max_cache_age, _("\
25627 Set the upper bound on the age of cached DWARF compilation units."), _("\
25628 Show the upper bound on the age of cached DWARF compilation units."), _("\
25629 A higher limit means that cached compilation units will be stored\n\
25630 in memory longer, and more total memory will be used. Zero disables\n\
25631 caching, which can slow down startup."),
25632 NULL,
25633 show_dwarf_max_cache_age,
25634 &set_dwarf_cmdlist,
25635 &show_dwarf_cmdlist);
25636
25637 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25638 &dwarf_always_disassemble, _("\
25639 Set whether `info address' always disassembles DWARF expressions."), _("\
25640 Show whether `info address' always disassembles DWARF expressions."), _("\
25641 When enabled, DWARF expressions are always printed in an assembly-like\n\
25642 syntax. When disabled, expressions will be printed in a more\n\
25643 conversational style, when possible."),
25644 NULL,
25645 show_dwarf_always_disassemble,
25646 &set_dwarf_cmdlist,
25647 &show_dwarf_cmdlist);
25648
25649 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25650 Set debugging of the DWARF reader."), _("\
25651 Show debugging of the DWARF reader."), _("\
25652 When enabled (non-zero), debugging messages are printed during DWARF\n\
25653 reading and symtab expansion. A value of 1 (one) provides basic\n\
25654 information. A value greater than 1 provides more verbose information."),
25655 NULL,
25656 NULL,
25657 &setdebuglist, &showdebuglist);
25658
25659 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25660 Set debugging of the DWARF DIE reader."), _("\
25661 Show debugging of the DWARF DIE reader."), _("\
25662 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25663 The value is the maximum depth to print."),
25664 NULL,
25665 NULL,
25666 &setdebuglist, &showdebuglist);
25667
25668 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25669 Set debugging of the dwarf line reader."), _("\
25670 Show debugging of the dwarf line reader."), _("\
25671 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25672 A value of 1 (one) provides basic information.\n\
25673 A value greater than 1 provides more verbose information."),
25674 NULL,
25675 NULL,
25676 &setdebuglist, &showdebuglist);
25677
25678 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25679 Set cross-checking of \"physname\" code against demangler."), _("\
25680 Show cross-checking of \"physname\" code against demangler."), _("\
25681 When enabled, GDB's internal \"physname\" code is checked against\n\
25682 the demangler."),
25683 NULL, show_check_physname,
25684 &setdebuglist, &showdebuglist);
25685
25686 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25687 no_class, &use_deprecated_index_sections, _("\
25688 Set whether to use deprecated gdb_index sections."), _("\
25689 Show whether to use deprecated gdb_index sections."), _("\
25690 When enabled, deprecated .gdb_index sections are used anyway.\n\
25691 Normally they are ignored either because of a missing feature or\n\
25692 performance issue.\n\
25693 Warning: This option must be enabled before gdb reads the file."),
25694 NULL,
25695 NULL,
25696 &setlist, &showlist);
25697
25698 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25699 &dwarf2_locexpr_funcs);
25700 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25701 &dwarf2_loclist_funcs);
25702
25703 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25704 &dwarf2_block_frame_base_locexpr_funcs);
25705 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25706 &dwarf2_block_frame_base_loclist_funcs);
25707
25708 #if GDB_SELF_TEST
25709 selftests::register_test ("dw2_expand_symtabs_matching",
25710 selftests::dw2_expand_symtabs_matching::run_test);
25711 #endif
25712 }
This page took 0.668452 seconds and 4 git commands to generate.