1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "completer.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
69 #include "filestuff.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
81 #include <sys/types.h>
83 #include <unordered_set>
84 #include <unordered_map>
88 #include <forward_list>
90 /* When == 1, print basic high level tracing messages.
91 When > 1, be more verbose.
92 This is in contrast to the low level DIE reading of dwarf_die_debug. */
93 static unsigned int dwarf_read_debug
= 0;
95 /* When non-zero, dump DIEs after they are read in. */
96 static unsigned int dwarf_die_debug
= 0;
98 /* When non-zero, dump line number entries as they are read in. */
99 static unsigned int dwarf_line_debug
= 0;
101 /* When non-zero, cross-check physname against demangler. */
102 static int check_physname
= 0;
104 /* When non-zero, do not reject deprecated .gdb_index sections. */
105 static int use_deprecated_index_sections
= 0;
107 static const struct objfile_data
*dwarf2_objfile_data_key
;
109 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111 static int dwarf2_locexpr_index
;
112 static int dwarf2_loclist_index
;
113 static int dwarf2_locexpr_block_index
;
114 static int dwarf2_loclist_block_index
;
116 /* A descriptor for dwarf sections.
118 S.ASECTION, SIZE are typically initialized when the objfile is first
119 scanned. BUFFER, READIN are filled in later when the section is read.
120 If the section contained compressed data then SIZE is updated to record
121 the uncompressed size of the section.
123 DWP file format V2 introduces a wrinkle that is easiest to handle by
124 creating the concept of virtual sections contained within a real section.
125 In DWP V2 the sections of the input DWO files are concatenated together
126 into one section, but section offsets are kept relative to the original
128 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
129 the real section this "virtual" section is contained in, and BUFFER,SIZE
130 describe the virtual section. */
132 struct dwarf2_section_info
136 /* If this is a real section, the bfd section. */
138 /* If this is a virtual section, pointer to the containing ("real")
140 struct dwarf2_section_info
*containing_section
;
142 /* Pointer to section data, only valid if readin. */
143 const gdb_byte
*buffer
;
144 /* The size of the section, real or virtual. */
146 /* If this is a virtual section, the offset in the real section.
147 Only valid if is_virtual. */
148 bfd_size_type virtual_offset
;
149 /* True if we have tried to read this section. */
151 /* True if this is a virtual section, False otherwise.
152 This specifies which of s.section and s.containing_section to use. */
156 typedef struct dwarf2_section_info dwarf2_section_info_def
;
157 DEF_VEC_O (dwarf2_section_info_def
);
159 /* All offsets in the index are of this type. It must be
160 architecture-independent. */
161 typedef uint32_t offset_type
;
163 DEF_VEC_I (offset_type
);
165 /* Ensure only legit values are used. */
166 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
168 gdb_assert ((unsigned int) (value) <= 1); \
169 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
172 /* Ensure only legit values are used. */
173 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
175 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
176 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
177 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
180 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
181 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
183 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
184 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
189 /* Convert VALUE between big- and little-endian. */
192 byte_swap (offset_type value
)
196 result
= (value
& 0xff) << 24;
197 result
|= (value
& 0xff00) << 8;
198 result
|= (value
& 0xff0000) >> 8;
199 result
|= (value
& 0xff000000) >> 24;
203 #define MAYBE_SWAP(V) byte_swap (V)
206 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
207 #endif /* WORDS_BIGENDIAN */
209 /* An index into a (C++) symbol name component in a symbol name as
210 recorded in the mapped_index's symbol table. For each C++ symbol
211 in the symbol table, we record one entry for the start of each
212 component in the symbol in a table of name components, and then
213 sort the table, in order to be able to binary search symbol names,
214 ignoring leading namespaces, both completion and regular look up.
215 For example, for symbol "A::B::C", we'll have an entry that points
216 to "A::B::C", another that points to "B::C", and another for "C".
217 Note that function symbols in GDB index have no parameter
218 information, just the function/method names. You can convert a
219 name_component to a "const char *" using the
220 'mapped_index::symbol_name_at(offset_type)' method. */
222 struct name_component
224 /* Offset in the symbol name where the component starts. Stored as
225 a (32-bit) offset instead of a pointer to save memory and improve
226 locality on 64-bit architectures. */
227 offset_type name_offset
;
229 /* The symbol's index in the symbol and constant pool tables of a
234 /* Base class containing bits shared by both .gdb_index and
235 .debug_name indexes. */
237 struct mapped_index_base
239 /* The name_component table (a sorted vector). See name_component's
240 description above. */
241 std::vector
<name_component
> name_components
;
243 /* How NAME_COMPONENTS is sorted. */
244 enum case_sensitivity name_components_casing
;
246 /* Return the number of names in the symbol table. */
247 virtual size_t symbol_name_count () const = 0;
249 /* Get the name of the symbol at IDX in the symbol table. */
250 virtual const char *symbol_name_at (offset_type idx
) const = 0;
252 /* Return whether the name at IDX in the symbol table should be
254 virtual bool symbol_name_slot_invalid (offset_type idx
) const
259 /* Build the symbol name component sorted vector, if we haven't
261 void build_name_components ();
263 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
264 possible matches for LN_NO_PARAMS in the name component
266 std::pair
<std::vector
<name_component
>::const_iterator
,
267 std::vector
<name_component
>::const_iterator
>
268 find_name_components_bounds (const lookup_name_info
&ln_no_params
) const;
270 /* Prevent deleting/destroying via a base class pointer. */
272 ~mapped_index_base() = default;
275 /* A description of the mapped index. The file format is described in
276 a comment by the code that writes the index. */
277 struct mapped_index final
: public mapped_index_base
279 /* A slot/bucket in the symbol table hash. */
280 struct symbol_table_slot
282 const offset_type name
;
283 const offset_type vec
;
286 /* Index data format version. */
289 /* The total length of the buffer. */
292 /* The address table data. */
293 gdb::array_view
<const gdb_byte
> address_table
;
295 /* The symbol table, implemented as a hash table. */
296 gdb::array_view
<symbol_table_slot
> symbol_table
;
298 /* A pointer to the constant pool. */
299 const char *constant_pool
;
301 bool symbol_name_slot_invalid (offset_type idx
) const override
303 const auto &bucket
= this->symbol_table
[idx
];
304 return bucket
.name
== 0 && bucket
.vec
;
307 /* Convenience method to get at the name of the symbol at IDX in the
309 const char *symbol_name_at (offset_type idx
) const override
310 { return this->constant_pool
+ MAYBE_SWAP (this->symbol_table
[idx
].name
); }
312 size_t symbol_name_count () const override
313 { return this->symbol_table
.size (); }
316 /* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318 struct mapped_debug_names final
: public mapped_index_base
320 mapped_debug_names (struct dwarf2_per_objfile
*dwarf2_per_objfile_
)
321 : dwarf2_per_objfile (dwarf2_per_objfile_
)
324 struct dwarf2_per_objfile
*dwarf2_per_objfile
;
325 bfd_endian dwarf5_byte_order
;
326 bool dwarf5_is_dwarf64
;
327 bool augmentation_is_gdb
;
329 uint32_t cu_count
= 0;
330 uint32_t tu_count
, bucket_count
, name_count
;
331 const gdb_byte
*cu_table_reordered
, *tu_table_reordered
;
332 const uint32_t *bucket_table_reordered
, *hash_table_reordered
;
333 const gdb_byte
*name_table_string_offs_reordered
;
334 const gdb_byte
*name_table_entry_offs_reordered
;
335 const gdb_byte
*entry_pool
;
342 /* Attribute name DW_IDX_*. */
345 /* Attribute form DW_FORM_*. */
348 /* Value if FORM is DW_FORM_implicit_const. */
349 LONGEST implicit_const
;
351 std::vector
<attr
> attr_vec
;
354 std::unordered_map
<ULONGEST
, index_val
> abbrev_map
;
356 const char *namei_to_name (uint32_t namei
) const;
358 /* Implementation of the mapped_index_base virtual interface, for
359 the name_components cache. */
361 const char *symbol_name_at (offset_type idx
) const override
362 { return namei_to_name (idx
); }
364 size_t symbol_name_count () const override
365 { return this->name_count
; }
368 typedef struct dwarf2_per_cu_data
*dwarf2_per_cu_ptr
;
369 DEF_VEC_P (dwarf2_per_cu_ptr
);
373 int nr_uniq_abbrev_tables
;
375 int nr_symtab_sharers
;
376 int nr_stmt_less_type_units
;
377 int nr_all_type_units_reallocs
;
380 /* Collection of data recorded per objfile.
381 This hangs off of dwarf2_objfile_data_key. */
383 struct dwarf2_per_objfile
: public allocate_on_obstack
385 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
386 dwarf2 section names, or is NULL if the standard ELF names are
388 dwarf2_per_objfile (struct objfile
*objfile
,
389 const dwarf2_debug_sections
*names
);
391 ~dwarf2_per_objfile ();
393 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile
);
395 /* Free all cached compilation units. */
396 void free_cached_comp_units ();
398 /* This function is mapped across the sections and remembers the
399 offset and size of each of the debugging sections we are
401 void locate_sections (bfd
*abfd
, asection
*sectp
,
402 const dwarf2_debug_sections
&names
);
405 dwarf2_section_info info
{};
406 dwarf2_section_info abbrev
{};
407 dwarf2_section_info line
{};
408 dwarf2_section_info loc
{};
409 dwarf2_section_info loclists
{};
410 dwarf2_section_info macinfo
{};
411 dwarf2_section_info macro
{};
412 dwarf2_section_info str
{};
413 dwarf2_section_info line_str
{};
414 dwarf2_section_info ranges
{};
415 dwarf2_section_info rnglists
{};
416 dwarf2_section_info addr
{};
417 dwarf2_section_info frame
{};
418 dwarf2_section_info eh_frame
{};
419 dwarf2_section_info gdb_index
{};
420 dwarf2_section_info debug_names
{};
421 dwarf2_section_info debug_aranges
{};
423 VEC (dwarf2_section_info_def
) *types
= NULL
;
426 struct objfile
*objfile
= NULL
;
428 /* Table of all the compilation units. This is used to locate
429 the target compilation unit of a particular reference. */
430 struct dwarf2_per_cu_data
**all_comp_units
= NULL
;
432 /* The number of compilation units in ALL_COMP_UNITS. */
433 int n_comp_units
= 0;
435 /* The number of .debug_types-related CUs. */
436 int n_type_units
= 0;
438 /* The number of elements allocated in all_type_units.
439 If there are skeleton-less TUs, we add them to all_type_units lazily. */
440 int n_allocated_type_units
= 0;
442 /* The .debug_types-related CUs (TUs).
443 This is stored in malloc space because we may realloc it. */
444 struct signatured_type
**all_type_units
= NULL
;
446 /* Table of struct type_unit_group objects.
447 The hash key is the DW_AT_stmt_list value. */
448 htab_t type_unit_groups
{};
450 /* A table mapping .debug_types signatures to its signatured_type entry.
451 This is NULL if the .debug_types section hasn't been read in yet. */
452 htab_t signatured_types
{};
454 /* Type unit statistics, to see how well the scaling improvements
456 struct tu_stats tu_stats
{};
458 /* A chain of compilation units that are currently read in, so that
459 they can be freed later. */
460 dwarf2_per_cu_data
*read_in_chain
= NULL
;
462 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
463 This is NULL if the table hasn't been allocated yet. */
466 /* True if we've checked for whether there is a DWP file. */
467 bool dwp_checked
= false;
469 /* The DWP file if there is one, or NULL. */
470 struct dwp_file
*dwp_file
= NULL
;
472 /* The shared '.dwz' file, if one exists. This is used when the
473 original data was compressed using 'dwz -m'. */
474 struct dwz_file
*dwz_file
= NULL
;
476 /* A flag indicating whether this objfile has a section loaded at a
478 bool has_section_at_zero
= false;
480 /* True if we are using the mapped index,
481 or we are faking it for OBJF_READNOW's sake. */
482 bool using_index
= false;
484 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
485 mapped_index
*index_table
= NULL
;
487 /* The mapped index, or NULL if .debug_names is missing or not being used. */
488 std::unique_ptr
<mapped_debug_names
> debug_names_table
;
490 /* When using index_table, this keeps track of all quick_file_names entries.
491 TUs typically share line table entries with a CU, so we maintain a
492 separate table of all line table entries to support the sharing.
493 Note that while there can be way more TUs than CUs, we've already
494 sorted all the TUs into "type unit groups", grouped by their
495 DW_AT_stmt_list value. Therefore the only sharing done here is with a
496 CU and its associated TU group if there is one. */
497 htab_t quick_file_names_table
{};
499 /* Set during partial symbol reading, to prevent queueing of full
501 bool reading_partial_symbols
= false;
503 /* Table mapping type DIEs to their struct type *.
504 This is NULL if not allocated yet.
505 The mapping is done via (CU/TU + DIE offset) -> type. */
506 htab_t die_type_hash
{};
508 /* The CUs we recently read. */
509 VEC (dwarf2_per_cu_ptr
) *just_read_cus
= NULL
;
511 /* Table containing line_header indexed by offset and offset_in_dwz. */
512 htab_t line_header_hash
{};
514 /* Table containing all filenames. This is an optional because the
515 table is lazily constructed on first access. */
516 gdb::optional
<filename_seen_cache
> filenames_cache
;
519 /* Get the dwarf2_per_objfile associated to OBJFILE. */
521 struct dwarf2_per_objfile
*
522 get_dwarf2_per_objfile (struct objfile
*objfile
)
524 return ((struct dwarf2_per_objfile
*)
525 objfile_data (objfile
, dwarf2_objfile_data_key
));
528 /* Set the dwarf2_per_objfile associated to OBJFILE. */
531 set_dwarf2_per_objfile (struct objfile
*objfile
,
532 struct dwarf2_per_objfile
*dwarf2_per_objfile
)
534 gdb_assert (get_dwarf2_per_objfile (objfile
) == NULL
);
535 set_objfile_data (objfile
, dwarf2_objfile_data_key
, dwarf2_per_objfile
);
538 /* Default names of the debugging sections. */
540 /* Note that if the debugging section has been compressed, it might
541 have a name like .zdebug_info. */
543 static const struct dwarf2_debug_sections dwarf2_elf_names
=
545 { ".debug_info", ".zdebug_info" },
546 { ".debug_abbrev", ".zdebug_abbrev" },
547 { ".debug_line", ".zdebug_line" },
548 { ".debug_loc", ".zdebug_loc" },
549 { ".debug_loclists", ".zdebug_loclists" },
550 { ".debug_macinfo", ".zdebug_macinfo" },
551 { ".debug_macro", ".zdebug_macro" },
552 { ".debug_str", ".zdebug_str" },
553 { ".debug_line_str", ".zdebug_line_str" },
554 { ".debug_ranges", ".zdebug_ranges" },
555 { ".debug_rnglists", ".zdebug_rnglists" },
556 { ".debug_types", ".zdebug_types" },
557 { ".debug_addr", ".zdebug_addr" },
558 { ".debug_frame", ".zdebug_frame" },
559 { ".eh_frame", NULL
},
560 { ".gdb_index", ".zgdb_index" },
561 { ".debug_names", ".zdebug_names" },
562 { ".debug_aranges", ".zdebug_aranges" },
566 /* List of DWO/DWP sections. */
568 static const struct dwop_section_names
570 struct dwarf2_section_names abbrev_dwo
;
571 struct dwarf2_section_names info_dwo
;
572 struct dwarf2_section_names line_dwo
;
573 struct dwarf2_section_names loc_dwo
;
574 struct dwarf2_section_names loclists_dwo
;
575 struct dwarf2_section_names macinfo_dwo
;
576 struct dwarf2_section_names macro_dwo
;
577 struct dwarf2_section_names str_dwo
;
578 struct dwarf2_section_names str_offsets_dwo
;
579 struct dwarf2_section_names types_dwo
;
580 struct dwarf2_section_names cu_index
;
581 struct dwarf2_section_names tu_index
;
585 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
586 { ".debug_info.dwo", ".zdebug_info.dwo" },
587 { ".debug_line.dwo", ".zdebug_line.dwo" },
588 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
589 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
590 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
591 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
592 { ".debug_str.dwo", ".zdebug_str.dwo" },
593 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
594 { ".debug_types.dwo", ".zdebug_types.dwo" },
595 { ".debug_cu_index", ".zdebug_cu_index" },
596 { ".debug_tu_index", ".zdebug_tu_index" },
599 /* local data types */
601 /* The data in a compilation unit header, after target2host
602 translation, looks like this. */
603 struct comp_unit_head
607 unsigned char addr_size
;
608 unsigned char signed_addr_p
;
609 sect_offset abbrev_sect_off
;
611 /* Size of file offsets; either 4 or 8. */
612 unsigned int offset_size
;
614 /* Size of the length field; either 4 or 12. */
615 unsigned int initial_length_size
;
617 enum dwarf_unit_type unit_type
;
619 /* Offset to the first byte of this compilation unit header in the
620 .debug_info section, for resolving relative reference dies. */
621 sect_offset sect_off
;
623 /* Offset to first die in this cu from the start of the cu.
624 This will be the first byte following the compilation unit header. */
625 cu_offset first_die_cu_offset
;
627 /* 64-bit signature of this type unit - it is valid only for
628 UNIT_TYPE DW_UT_type. */
631 /* For types, offset in the type's DIE of the type defined by this TU. */
632 cu_offset type_cu_offset_in_tu
;
635 /* Type used for delaying computation of method physnames.
636 See comments for compute_delayed_physnames. */
637 struct delayed_method_info
639 /* The type to which the method is attached, i.e., its parent class. */
642 /* The index of the method in the type's function fieldlists. */
645 /* The index of the method in the fieldlist. */
648 /* The name of the DIE. */
651 /* The DIE associated with this method. */
652 struct die_info
*die
;
655 /* Internal state when decoding a particular compilation unit. */
658 explicit dwarf2_cu (struct dwarf2_per_cu_data
*per_cu
);
661 DISABLE_COPY_AND_ASSIGN (dwarf2_cu
);
663 /* The header of the compilation unit. */
664 struct comp_unit_head header
{};
666 /* Base address of this compilation unit. */
667 CORE_ADDR base_address
= 0;
669 /* Non-zero if base_address has been set. */
672 /* The language we are debugging. */
673 enum language language
= language_unknown
;
674 const struct language_defn
*language_defn
= nullptr;
676 const char *producer
= nullptr;
678 /* The generic symbol table building routines have separate lists for
679 file scope symbols and all all other scopes (local scopes). So
680 we need to select the right one to pass to add_symbol_to_list().
681 We do it by keeping a pointer to the correct list in list_in_scope.
683 FIXME: The original dwarf code just treated the file scope as the
684 first local scope, and all other local scopes as nested local
685 scopes, and worked fine. Check to see if we really need to
686 distinguish these in buildsym.c. */
687 struct pending
**list_in_scope
= nullptr;
689 /* Hash table holding all the loaded partial DIEs
690 with partial_die->offset.SECT_OFF as hash. */
691 htab_t partial_dies
= nullptr;
693 /* Storage for things with the same lifetime as this read-in compilation
694 unit, including partial DIEs. */
695 auto_obstack comp_unit_obstack
;
697 /* When multiple dwarf2_cu structures are living in memory, this field
698 chains them all together, so that they can be released efficiently.
699 We will probably also want a generation counter so that most-recently-used
700 compilation units are cached... */
701 struct dwarf2_per_cu_data
*read_in_chain
= nullptr;
703 /* Backlink to our per_cu entry. */
704 struct dwarf2_per_cu_data
*per_cu
;
706 /* How many compilation units ago was this CU last referenced? */
709 /* A hash table of DIE cu_offset for following references with
710 die_info->offset.sect_off as hash. */
711 htab_t die_hash
= nullptr;
713 /* Full DIEs if read in. */
714 struct die_info
*dies
= nullptr;
716 /* A set of pointers to dwarf2_per_cu_data objects for compilation
717 units referenced by this one. Only set during full symbol processing;
718 partial symbol tables do not have dependencies. */
719 htab_t dependencies
= nullptr;
721 /* Header data from the line table, during full symbol processing. */
722 struct line_header
*line_header
= nullptr;
723 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
724 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
725 this is the DW_TAG_compile_unit die for this CU. We'll hold on
726 to the line header as long as this DIE is being processed. See
727 process_die_scope. */
728 die_info
*line_header_die_owner
= nullptr;
730 /* A list of methods which need to have physnames computed
731 after all type information has been read. */
732 std::vector
<delayed_method_info
> method_list
;
734 /* To be copied to symtab->call_site_htab. */
735 htab_t call_site_htab
= nullptr;
737 /* Non-NULL if this CU came from a DWO file.
738 There is an invariant here that is important to remember:
739 Except for attributes copied from the top level DIE in the "main"
740 (or "stub") file in preparation for reading the DWO file
741 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
742 Either there isn't a DWO file (in which case this is NULL and the point
743 is moot), or there is and either we're not going to read it (in which
744 case this is NULL) or there is and we are reading it (in which case this
746 struct dwo_unit
*dwo_unit
= nullptr;
748 /* The DW_AT_addr_base attribute if present, zero otherwise
749 (zero is a valid value though).
750 Note this value comes from the Fission stub CU/TU's DIE. */
751 ULONGEST addr_base
= 0;
753 /* The DW_AT_ranges_base attribute if present, zero otherwise
754 (zero is a valid value though).
755 Note this value comes from the Fission stub CU/TU's DIE.
756 Also note that the value is zero in the non-DWO case so this value can
757 be used without needing to know whether DWO files are in use or not.
758 N.B. This does not apply to DW_AT_ranges appearing in
759 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
760 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
761 DW_AT_ranges_base *would* have to be applied, and we'd have to care
762 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
763 ULONGEST ranges_base
= 0;
765 /* Mark used when releasing cached dies. */
766 unsigned int mark
: 1;
768 /* This CU references .debug_loc. See the symtab->locations_valid field.
769 This test is imperfect as there may exist optimized debug code not using
770 any location list and still facing inlining issues if handled as
771 unoptimized code. For a future better test see GCC PR other/32998. */
772 unsigned int has_loclist
: 1;
774 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
775 if all the producer_is_* fields are valid. This information is cached
776 because profiling CU expansion showed excessive time spent in
777 producer_is_gxx_lt_4_6. */
778 unsigned int checked_producer
: 1;
779 unsigned int producer_is_gxx_lt_4_6
: 1;
780 unsigned int producer_is_gcc_lt_4_3
: 1;
781 unsigned int producer_is_icc_lt_14
: 1;
783 /* When set, the file that we're processing is known to have
784 debugging info for C++ namespaces. GCC 3.3.x did not produce
785 this information, but later versions do. */
787 unsigned int processing_has_namespace_info
: 1;
790 /* Persistent data held for a compilation unit, even when not
791 processing it. We put a pointer to this structure in the
792 read_symtab_private field of the psymtab. */
794 struct dwarf2_per_cu_data
796 /* The start offset and length of this compilation unit.
797 NOTE: Unlike comp_unit_head.length, this length includes
799 If the DIE refers to a DWO file, this is always of the original die,
801 sect_offset sect_off
;
804 /* DWARF standard version this data has been read from (such as 4 or 5). */
807 /* Flag indicating this compilation unit will be read in before
808 any of the current compilation units are processed. */
809 unsigned int queued
: 1;
811 /* This flag will be set when reading partial DIEs if we need to load
812 absolutely all DIEs for this compilation unit, instead of just the ones
813 we think are interesting. It gets set if we look for a DIE in the
814 hash table and don't find it. */
815 unsigned int load_all_dies
: 1;
817 /* Non-zero if this CU is from .debug_types.
818 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
820 unsigned int is_debug_types
: 1;
822 /* Non-zero if this CU is from the .dwz file. */
823 unsigned int is_dwz
: 1;
825 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
826 This flag is only valid if is_debug_types is true.
827 We can't read a CU directly from a DWO file: There are required
828 attributes in the stub. */
829 unsigned int reading_dwo_directly
: 1;
831 /* Non-zero if the TU has been read.
832 This is used to assist the "Stay in DWO Optimization" for Fission:
833 When reading a DWO, it's faster to read TUs from the DWO instead of
834 fetching them from random other DWOs (due to comdat folding).
835 If the TU has already been read, the optimization is unnecessary
836 (and unwise - we don't want to change where gdb thinks the TU lives
838 This flag is only valid if is_debug_types is true. */
839 unsigned int tu_read
: 1;
841 /* The section this CU/TU lives in.
842 If the DIE refers to a DWO file, this is always the original die,
844 struct dwarf2_section_info
*section
;
846 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
847 of the CU cache it gets reset to NULL again. This is left as NULL for
848 dummy CUs (a CU header, but nothing else). */
849 struct dwarf2_cu
*cu
;
851 /* The corresponding dwarf2_per_objfile. */
852 struct dwarf2_per_objfile
*dwarf2_per_objfile
;
854 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
855 is active. Otherwise, the 'psymtab' field is active. */
858 /* The partial symbol table associated with this compilation unit,
859 or NULL for unread partial units. */
860 struct partial_symtab
*psymtab
;
862 /* Data needed by the "quick" functions. */
863 struct dwarf2_per_cu_quick_data
*quick
;
866 /* The CUs we import using DW_TAG_imported_unit. This is filled in
867 while reading psymtabs, used to compute the psymtab dependencies,
868 and then cleared. Then it is filled in again while reading full
869 symbols, and only deleted when the objfile is destroyed.
871 This is also used to work around a difference between the way gold
872 generates .gdb_index version <=7 and the way gdb does. Arguably this
873 is a gold bug. For symbols coming from TUs, gold records in the index
874 the CU that includes the TU instead of the TU itself. This breaks
875 dw2_lookup_symbol: It assumes that if the index says symbol X lives
876 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
877 will find X. Alas TUs live in their own symtab, so after expanding CU Y
878 we need to look in TU Z to find X. Fortunately, this is akin to
879 DW_TAG_imported_unit, so we just use the same mechanism: For
880 .gdb_index version <=7 this also records the TUs that the CU referred
881 to. Concurrently with this change gdb was modified to emit version 8
882 indices so we only pay a price for gold generated indices.
883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
884 VEC (dwarf2_per_cu_ptr
) *imported_symtabs
;
887 /* Entry in the signatured_types hash table. */
889 struct signatured_type
891 /* The "per_cu" object of this type.
892 This struct is used iff per_cu.is_debug_types.
893 N.B.: This is the first member so that it's easy to convert pointers
895 struct dwarf2_per_cu_data per_cu
;
897 /* The type's signature. */
900 /* Offset in the TU of the type's DIE, as read from the TU header.
901 If this TU is a DWO stub and the definition lives in a DWO file
902 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
903 cu_offset type_offset_in_tu
;
905 /* Offset in the section of the type's DIE.
906 If the definition lives in a DWO file, this is the offset in the
907 .debug_types.dwo section.
908 The value is zero until the actual value is known.
909 Zero is otherwise not a valid section offset. */
910 sect_offset type_offset_in_section
;
912 /* Type units are grouped by their DW_AT_stmt_list entry so that they
913 can share them. This points to the containing symtab. */
914 struct type_unit_group
*type_unit_group
;
917 The first time we encounter this type we fully read it in and install it
918 in the symbol tables. Subsequent times we only need the type. */
921 /* Containing DWO unit.
922 This field is valid iff per_cu.reading_dwo_directly. */
923 struct dwo_unit
*dwo_unit
;
926 typedef struct signatured_type
*sig_type_ptr
;
927 DEF_VEC_P (sig_type_ptr
);
929 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
930 This includes type_unit_group and quick_file_names. */
932 struct stmt_list_hash
934 /* The DWO unit this table is from or NULL if there is none. */
935 struct dwo_unit
*dwo_unit
;
937 /* Offset in .debug_line or .debug_line.dwo. */
938 sect_offset line_sect_off
;
941 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
942 an object of this type. */
944 struct type_unit_group
946 /* dwarf2read.c's main "handle" on a TU symtab.
947 To simplify things we create an artificial CU that "includes" all the
948 type units using this stmt_list so that the rest of the code still has
949 a "per_cu" handle on the symtab.
950 This PER_CU is recognized by having no section. */
951 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
952 struct dwarf2_per_cu_data per_cu
;
954 /* The TUs that share this DW_AT_stmt_list entry.
955 This is added to while parsing type units to build partial symtabs,
956 and is deleted afterwards and not used again. */
957 VEC (sig_type_ptr
) *tus
;
959 /* The compunit symtab.
960 Type units in a group needn't all be defined in the same source file,
961 so we create an essentially anonymous symtab as the compunit symtab. */
962 struct compunit_symtab
*compunit_symtab
;
964 /* The data used to construct the hash key. */
965 struct stmt_list_hash hash
;
967 /* The number of symtabs from the line header.
968 The value here must match line_header.num_file_names. */
969 unsigned int num_symtabs
;
971 /* The symbol tables for this TU (obtained from the files listed in
973 WARNING: The order of entries here must match the order of entries
974 in the line header. After the first TU using this type_unit_group, the
975 line header for the subsequent TUs is recreated from this. This is done
976 because we need to use the same symtabs for each TU using the same
977 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
978 there's no guarantee the line header doesn't have duplicate entries. */
979 struct symtab
**symtabs
;
982 /* These sections are what may appear in a (real or virtual) DWO file. */
986 struct dwarf2_section_info abbrev
;
987 struct dwarf2_section_info line
;
988 struct dwarf2_section_info loc
;
989 struct dwarf2_section_info loclists
;
990 struct dwarf2_section_info macinfo
;
991 struct dwarf2_section_info macro
;
992 struct dwarf2_section_info str
;
993 struct dwarf2_section_info str_offsets
;
994 /* In the case of a virtual DWO file, these two are unused. */
995 struct dwarf2_section_info info
;
996 VEC (dwarf2_section_info_def
) *types
;
999 /* CUs/TUs in DWP/DWO files. */
1003 /* Backlink to the containing struct dwo_file. */
1004 struct dwo_file
*dwo_file
;
1006 /* The "id" that distinguishes this CU/TU.
1007 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1008 Since signatures came first, we stick with it for consistency. */
1011 /* The section this CU/TU lives in, in the DWO file. */
1012 struct dwarf2_section_info
*section
;
1014 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1015 sect_offset sect_off
;
1016 unsigned int length
;
1018 /* For types, offset in the type's DIE of the type defined by this TU. */
1019 cu_offset type_offset_in_tu
;
1022 /* include/dwarf2.h defines the DWP section codes.
1023 It defines a max value but it doesn't define a min value, which we
1024 use for error checking, so provide one. */
1026 enum dwp_v2_section_ids
1031 /* Data for one DWO file.
1033 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1034 appears in a DWP file). DWP files don't really have DWO files per se -
1035 comdat folding of types "loses" the DWO file they came from, and from
1036 a high level view DWP files appear to contain a mass of random types.
1037 However, to maintain consistency with the non-DWP case we pretend DWP
1038 files contain virtual DWO files, and we assign each TU with one virtual
1039 DWO file (generally based on the line and abbrev section offsets -
1040 a heuristic that seems to work in practice). */
1044 /* The DW_AT_GNU_dwo_name attribute.
1045 For virtual DWO files the name is constructed from the section offsets
1046 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1047 from related CU+TUs. */
1048 const char *dwo_name
;
1050 /* The DW_AT_comp_dir attribute. */
1051 const char *comp_dir
;
1053 /* The bfd, when the file is open. Otherwise this is NULL.
1054 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1057 /* The sections that make up this DWO file.
1058 Remember that for virtual DWO files in DWP V2, these are virtual
1059 sections (for lack of a better name). */
1060 struct dwo_sections sections
;
1062 /* The CUs in the file.
1063 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1064 an extension to handle LLVM's Link Time Optimization output (where
1065 multiple source files may be compiled into a single object/dwo pair). */
1068 /* Table of TUs in the file.
1069 Each element is a struct dwo_unit. */
1073 /* These sections are what may appear in a DWP file. */
1077 /* These are used by both DWP version 1 and 2. */
1078 struct dwarf2_section_info str
;
1079 struct dwarf2_section_info cu_index
;
1080 struct dwarf2_section_info tu_index
;
1082 /* These are only used by DWP version 2 files.
1083 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1084 sections are referenced by section number, and are not recorded here.
1085 In DWP version 2 there is at most one copy of all these sections, each
1086 section being (effectively) comprised of the concatenation of all of the
1087 individual sections that exist in the version 1 format.
1088 To keep the code simple we treat each of these concatenated pieces as a
1089 section itself (a virtual section?). */
1090 struct dwarf2_section_info abbrev
;
1091 struct dwarf2_section_info info
;
1092 struct dwarf2_section_info line
;
1093 struct dwarf2_section_info loc
;
1094 struct dwarf2_section_info macinfo
;
1095 struct dwarf2_section_info macro
;
1096 struct dwarf2_section_info str_offsets
;
1097 struct dwarf2_section_info types
;
1100 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1101 A virtual DWO file is a DWO file as it appears in a DWP file. */
1103 struct virtual_v1_dwo_sections
1105 struct dwarf2_section_info abbrev
;
1106 struct dwarf2_section_info line
;
1107 struct dwarf2_section_info loc
;
1108 struct dwarf2_section_info macinfo
;
1109 struct dwarf2_section_info macro
;
1110 struct dwarf2_section_info str_offsets
;
1111 /* Each DWP hash table entry records one CU or one TU.
1112 That is recorded here, and copied to dwo_unit.section. */
1113 struct dwarf2_section_info info_or_types
;
1116 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1117 In version 2, the sections of the DWO files are concatenated together
1118 and stored in one section of that name. Thus each ELF section contains
1119 several "virtual" sections. */
1121 struct virtual_v2_dwo_sections
1123 bfd_size_type abbrev_offset
;
1124 bfd_size_type abbrev_size
;
1126 bfd_size_type line_offset
;
1127 bfd_size_type line_size
;
1129 bfd_size_type loc_offset
;
1130 bfd_size_type loc_size
;
1132 bfd_size_type macinfo_offset
;
1133 bfd_size_type macinfo_size
;
1135 bfd_size_type macro_offset
;
1136 bfd_size_type macro_size
;
1138 bfd_size_type str_offsets_offset
;
1139 bfd_size_type str_offsets_size
;
1141 /* Each DWP hash table entry records one CU or one TU.
1142 That is recorded here, and copied to dwo_unit.section. */
1143 bfd_size_type info_or_types_offset
;
1144 bfd_size_type info_or_types_size
;
1147 /* Contents of DWP hash tables. */
1149 struct dwp_hash_table
1151 uint32_t version
, nr_columns
;
1152 uint32_t nr_units
, nr_slots
;
1153 const gdb_byte
*hash_table
, *unit_table
;
1158 const gdb_byte
*indices
;
1162 /* This is indexed by column number and gives the id of the section
1164 #define MAX_NR_V2_DWO_SECTIONS \
1165 (1 /* .debug_info or .debug_types */ \
1166 + 1 /* .debug_abbrev */ \
1167 + 1 /* .debug_line */ \
1168 + 1 /* .debug_loc */ \
1169 + 1 /* .debug_str_offsets */ \
1170 + 1 /* .debug_macro or .debug_macinfo */)
1171 int section_ids
[MAX_NR_V2_DWO_SECTIONS
];
1172 const gdb_byte
*offsets
;
1173 const gdb_byte
*sizes
;
1178 /* Data for one DWP file. */
1182 /* Name of the file. */
1185 /* File format version. */
1191 /* Section info for this file. */
1192 struct dwp_sections sections
;
1194 /* Table of CUs in the file. */
1195 const struct dwp_hash_table
*cus
;
1197 /* Table of TUs in the file. */
1198 const struct dwp_hash_table
*tus
;
1200 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1204 /* Table to map ELF section numbers to their sections.
1205 This is only needed for the DWP V1 file format. */
1206 unsigned int num_sections
;
1207 asection
**elf_sections
;
1210 /* This represents a '.dwz' file. */
1214 /* A dwz file can only contain a few sections. */
1215 struct dwarf2_section_info abbrev
;
1216 struct dwarf2_section_info info
;
1217 struct dwarf2_section_info str
;
1218 struct dwarf2_section_info line
;
1219 struct dwarf2_section_info macro
;
1220 struct dwarf2_section_info gdb_index
;
1221 struct dwarf2_section_info debug_names
;
1223 /* The dwz's BFD. */
1227 /* Struct used to pass misc. parameters to read_die_and_children, et
1228 al. which are used for both .debug_info and .debug_types dies.
1229 All parameters here are unchanging for the life of the call. This
1230 struct exists to abstract away the constant parameters of die reading. */
1232 struct die_reader_specs
1234 /* The bfd of die_section. */
1237 /* The CU of the DIE we are parsing. */
1238 struct dwarf2_cu
*cu
;
1240 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1241 struct dwo_file
*dwo_file
;
1243 /* The section the die comes from.
1244 This is either .debug_info or .debug_types, or the .dwo variants. */
1245 struct dwarf2_section_info
*die_section
;
1247 /* die_section->buffer. */
1248 const gdb_byte
*buffer
;
1250 /* The end of the buffer. */
1251 const gdb_byte
*buffer_end
;
1253 /* The value of the DW_AT_comp_dir attribute. */
1254 const char *comp_dir
;
1256 /* The abbreviation table to use when reading the DIEs. */
1257 struct abbrev_table
*abbrev_table
;
1260 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1261 typedef void (die_reader_func_ftype
) (const struct die_reader_specs
*reader
,
1262 const gdb_byte
*info_ptr
,
1263 struct die_info
*comp_unit_die
,
1267 /* A 1-based directory index. This is a strong typedef to prevent
1268 accidentally using a directory index as a 0-based index into an
1270 enum class dir_index
: unsigned int {};
1272 /* Likewise, a 1-based file name index. */
1273 enum class file_name_index
: unsigned int {};
1277 file_entry () = default;
1279 file_entry (const char *name_
, dir_index d_index_
,
1280 unsigned int mod_time_
, unsigned int length_
)
1283 mod_time (mod_time_
),
1287 /* Return the include directory at D_INDEX stored in LH. Returns
1288 NULL if D_INDEX is out of bounds. */
1289 const char *include_dir (const line_header
*lh
) const;
1291 /* The file name. Note this is an observing pointer. The memory is
1292 owned by debug_line_buffer. */
1293 const char *name
{};
1295 /* The directory index (1-based). */
1296 dir_index d_index
{};
1298 unsigned int mod_time
{};
1300 unsigned int length
{};
1302 /* True if referenced by the Line Number Program. */
1305 /* The associated symbol table, if any. */
1306 struct symtab
*symtab
{};
1309 /* The line number information for a compilation unit (found in the
1310 .debug_line section) begins with a "statement program header",
1311 which contains the following information. */
1318 /* Add an entry to the include directory table. */
1319 void add_include_dir (const char *include_dir
);
1321 /* Add an entry to the file name table. */
1322 void add_file_name (const char *name
, dir_index d_index
,
1323 unsigned int mod_time
, unsigned int length
);
1325 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1326 is out of bounds. */
1327 const char *include_dir_at (dir_index index
) const
1329 /* Convert directory index number (1-based) to vector index
1331 size_t vec_index
= to_underlying (index
) - 1;
1333 if (vec_index
>= include_dirs
.size ())
1335 return include_dirs
[vec_index
];
1338 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1339 is out of bounds. */
1340 file_entry
*file_name_at (file_name_index index
)
1342 /* Convert file name index number (1-based) to vector index
1344 size_t vec_index
= to_underlying (index
) - 1;
1346 if (vec_index
>= file_names
.size ())
1348 return &file_names
[vec_index
];
1351 /* Const version of the above. */
1352 const file_entry
*file_name_at (unsigned int index
) const
1354 if (index
>= file_names
.size ())
1356 return &file_names
[index
];
1359 /* Offset of line number information in .debug_line section. */
1360 sect_offset sect_off
{};
1362 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1363 unsigned offset_in_dwz
: 1; /* Can't initialize bitfields in-class. */
1365 unsigned int total_length
{};
1366 unsigned short version
{};
1367 unsigned int header_length
{};
1368 unsigned char minimum_instruction_length
{};
1369 unsigned char maximum_ops_per_instruction
{};
1370 unsigned char default_is_stmt
{};
1372 unsigned char line_range
{};
1373 unsigned char opcode_base
{};
1375 /* standard_opcode_lengths[i] is the number of operands for the
1376 standard opcode whose value is i. This means that
1377 standard_opcode_lengths[0] is unused, and the last meaningful
1378 element is standard_opcode_lengths[opcode_base - 1]. */
1379 std::unique_ptr
<unsigned char[]> standard_opcode_lengths
;
1381 /* The include_directories table. Note these are observing
1382 pointers. The memory is owned by debug_line_buffer. */
1383 std::vector
<const char *> include_dirs
;
1385 /* The file_names table. */
1386 std::vector
<file_entry
> file_names
;
1388 /* The start and end of the statement program following this
1389 header. These point into dwarf2_per_objfile->line_buffer. */
1390 const gdb_byte
*statement_program_start
{}, *statement_program_end
{};
1393 typedef std::unique_ptr
<line_header
> line_header_up
;
1396 file_entry::include_dir (const line_header
*lh
) const
1398 return lh
->include_dir_at (d_index
);
1401 /* When we construct a partial symbol table entry we only
1402 need this much information. */
1403 struct partial_die_info
1405 /* Offset of this DIE. */
1406 sect_offset sect_off
;
1408 /* DWARF-2 tag for this DIE. */
1409 ENUM_BITFIELD(dwarf_tag
) tag
: 16;
1411 /* Assorted flags describing the data found in this DIE. */
1412 unsigned int has_children
: 1;
1413 unsigned int is_external
: 1;
1414 unsigned int is_declaration
: 1;
1415 unsigned int has_type
: 1;
1416 unsigned int has_specification
: 1;
1417 unsigned int has_pc_info
: 1;
1418 unsigned int may_be_inlined
: 1;
1420 /* This DIE has been marked DW_AT_main_subprogram. */
1421 unsigned int main_subprogram
: 1;
1423 /* Flag set if the SCOPE field of this structure has been
1425 unsigned int scope_set
: 1;
1427 /* Flag set if the DIE has a byte_size attribute. */
1428 unsigned int has_byte_size
: 1;
1430 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1431 unsigned int has_const_value
: 1;
1433 /* Flag set if any of the DIE's children are template arguments. */
1434 unsigned int has_template_arguments
: 1;
1436 /* Flag set if fixup_partial_die has been called on this die. */
1437 unsigned int fixup_called
: 1;
1439 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1440 unsigned int is_dwz
: 1;
1442 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1443 unsigned int spec_is_dwz
: 1;
1445 /* The name of this DIE. Normally the value of DW_AT_name, but
1446 sometimes a default name for unnamed DIEs. */
1449 /* The linkage name, if present. */
1450 const char *linkage_name
;
1452 /* The scope to prepend to our children. This is generally
1453 allocated on the comp_unit_obstack, so will disappear
1454 when this compilation unit leaves the cache. */
1457 /* Some data associated with the partial DIE. The tag determines
1458 which field is live. */
1461 /* The location description associated with this DIE, if any. */
1462 struct dwarf_block
*locdesc
;
1463 /* The offset of an import, for DW_TAG_imported_unit. */
1464 sect_offset sect_off
;
1467 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1471 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1472 DW_AT_sibling, if any. */
1473 /* NOTE: This member isn't strictly necessary, read_partial_die could
1474 return DW_AT_sibling values to its caller load_partial_dies. */
1475 const gdb_byte
*sibling
;
1477 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1478 DW_AT_specification (or DW_AT_abstract_origin or
1479 DW_AT_extension). */
1480 sect_offset spec_offset
;
1482 /* Pointers to this DIE's parent, first child, and next sibling,
1484 struct partial_die_info
*die_parent
, *die_child
, *die_sibling
;
1487 /* This data structure holds the information of an abbrev. */
1490 unsigned int number
; /* number identifying abbrev */
1491 enum dwarf_tag tag
; /* dwarf tag */
1492 unsigned short has_children
; /* boolean */
1493 unsigned short num_attrs
; /* number of attributes */
1494 struct attr_abbrev
*attrs
; /* an array of attribute descriptions */
1495 struct abbrev_info
*next
; /* next in chain */
1500 ENUM_BITFIELD(dwarf_attribute
) name
: 16;
1501 ENUM_BITFIELD(dwarf_form
) form
: 16;
1503 /* It is valid only if FORM is DW_FORM_implicit_const. */
1504 LONGEST implicit_const
;
1507 /* Size of abbrev_table.abbrev_hash_table. */
1508 #define ABBREV_HASH_SIZE 121
1510 /* Top level data structure to contain an abbreviation table. */
1514 explicit abbrev_table (sect_offset off
)
1518 XOBNEWVEC (&abbrev_obstack
, struct abbrev_info
*, ABBREV_HASH_SIZE
);
1519 memset (m_abbrevs
, 0, ABBREV_HASH_SIZE
* sizeof (struct abbrev_info
*));
1522 DISABLE_COPY_AND_ASSIGN (abbrev_table
);
1524 /* Allocate space for a struct abbrev_info object in
1526 struct abbrev_info
*alloc_abbrev ();
1528 /* Add an abbreviation to the table. */
1529 void add_abbrev (unsigned int abbrev_number
, struct abbrev_info
*abbrev
);
1531 /* Look up an abbrev in the table.
1532 Returns NULL if the abbrev is not found. */
1534 struct abbrev_info
*lookup_abbrev (unsigned int abbrev_number
);
1537 /* Where the abbrev table came from.
1538 This is used as a sanity check when the table is used. */
1539 const sect_offset sect_off
;
1541 /* Storage for the abbrev table. */
1542 auto_obstack abbrev_obstack
;
1546 /* Hash table of abbrevs.
1547 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1548 It could be statically allocated, but the previous code didn't so we
1550 struct abbrev_info
**m_abbrevs
;
1553 typedef std::unique_ptr
<struct abbrev_table
> abbrev_table_up
;
1555 /* Attributes have a name and a value. */
1558 ENUM_BITFIELD(dwarf_attribute
) name
: 16;
1559 ENUM_BITFIELD(dwarf_form
) form
: 15;
1561 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1562 field should be in u.str (existing only for DW_STRING) but it is kept
1563 here for better struct attribute alignment. */
1564 unsigned int string_is_canonical
: 1;
1569 struct dwarf_block
*blk
;
1578 /* This data structure holds a complete die structure. */
1581 /* DWARF-2 tag for this DIE. */
1582 ENUM_BITFIELD(dwarf_tag
) tag
: 16;
1584 /* Number of attributes */
1585 unsigned char num_attrs
;
1587 /* True if we're presently building the full type name for the
1588 type derived from this DIE. */
1589 unsigned char building_fullname
: 1;
1591 /* True if this die is in process. PR 16581. */
1592 unsigned char in_process
: 1;
1595 unsigned int abbrev
;
1597 /* Offset in .debug_info or .debug_types section. */
1598 sect_offset sect_off
;
1600 /* The dies in a compilation unit form an n-ary tree. PARENT
1601 points to this die's parent; CHILD points to the first child of
1602 this node; and all the children of a given node are chained
1603 together via their SIBLING fields. */
1604 struct die_info
*child
; /* Its first child, if any. */
1605 struct die_info
*sibling
; /* Its next sibling, if any. */
1606 struct die_info
*parent
; /* Its parent, if any. */
1608 /* An array of attributes, with NUM_ATTRS elements. There may be
1609 zero, but it's not common and zero-sized arrays are not
1610 sufficiently portable C. */
1611 struct attribute attrs
[1];
1614 /* Get at parts of an attribute structure. */
1616 #define DW_STRING(attr) ((attr)->u.str)
1617 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1618 #define DW_UNSND(attr) ((attr)->u.unsnd)
1619 #define DW_BLOCK(attr) ((attr)->u.blk)
1620 #define DW_SND(attr) ((attr)->u.snd)
1621 #define DW_ADDR(attr) ((attr)->u.addr)
1622 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1624 /* Blocks are a bunch of untyped bytes. */
1629 /* Valid only if SIZE is not zero. */
1630 const gdb_byte
*data
;
1633 #ifndef ATTR_ALLOC_CHUNK
1634 #define ATTR_ALLOC_CHUNK 4
1637 /* Allocate fields for structs, unions and enums in this size. */
1638 #ifndef DW_FIELD_ALLOC_CHUNK
1639 #define DW_FIELD_ALLOC_CHUNK 4
1642 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1643 but this would require a corresponding change in unpack_field_as_long
1645 static int bits_per_byte
= 8;
1649 struct nextfield
*next
;
1657 struct nextfnfield
*next
;
1658 struct fn_field fnfield
;
1665 struct nextfnfield
*head
;
1668 struct decl_field_list
1670 struct decl_field field
;
1671 struct decl_field_list
*next
;
1674 /* The routines that read and process dies for a C struct or C++ class
1675 pass lists of data member fields and lists of member function fields
1676 in an instance of a field_info structure, as defined below. */
1679 /* List of data member and baseclasses fields. */
1680 struct nextfield
*fields
, *baseclasses
;
1682 /* Number of fields (including baseclasses). */
1685 /* Number of baseclasses. */
1688 /* Set if the accesibility of one of the fields is not public. */
1689 int non_public_fields
;
1691 /* Member function fieldlist array, contains name of possibly overloaded
1692 member function, number of overloaded member functions and a pointer
1693 to the head of the member function field chain. */
1694 struct fnfieldlist
*fnfieldlists
;
1696 /* Number of entries in the fnfieldlists array. */
1699 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1700 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1701 struct decl_field_list
*typedef_field_list
;
1702 unsigned typedef_field_list_count
;
1704 /* Nested types defined by this class and the number of elements in this
1706 struct decl_field_list
*nested_types_list
;
1707 unsigned nested_types_list_count
;
1710 /* One item on the queue of compilation units to read in full symbols
1712 struct dwarf2_queue_item
1714 struct dwarf2_per_cu_data
*per_cu
;
1715 enum language pretend_language
;
1716 struct dwarf2_queue_item
*next
;
1719 /* The current queue. */
1720 static struct dwarf2_queue_item
*dwarf2_queue
, *dwarf2_queue_tail
;
1722 /* Loaded secondary compilation units are kept in memory until they
1723 have not been referenced for the processing of this many
1724 compilation units. Set this to zero to disable caching. Cache
1725 sizes of up to at least twenty will improve startup time for
1726 typical inter-CU-reference binaries, at an obvious memory cost. */
1727 static int dwarf_max_cache_age
= 5;
1729 show_dwarf_max_cache_age (struct ui_file
*file
, int from_tty
,
1730 struct cmd_list_element
*c
, const char *value
)
1732 fprintf_filtered (file
, _("The upper bound on the age of cached "
1733 "DWARF compilation units is %s.\n"),
1737 /* local function prototypes */
1739 static const char *get_section_name (const struct dwarf2_section_info
*);
1741 static const char *get_section_file_name (const struct dwarf2_section_info
*);
1743 static void dwarf2_find_base_address (struct die_info
*die
,
1744 struct dwarf2_cu
*cu
);
1746 static struct partial_symtab
*create_partial_symtab
1747 (struct dwarf2_per_cu_data
*per_cu
, const char *name
);
1749 static void build_type_psymtabs_reader (const struct die_reader_specs
*reader
,
1750 const gdb_byte
*info_ptr
,
1751 struct die_info
*type_unit_die
,
1752 int has_children
, void *data
);
1754 static void dwarf2_build_psymtabs_hard
1755 (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
1757 static void scan_partial_symbols (struct partial_die_info
*,
1758 CORE_ADDR
*, CORE_ADDR
*,
1759 int, struct dwarf2_cu
*);
1761 static void add_partial_symbol (struct partial_die_info
*,
1762 struct dwarf2_cu
*);
1764 static void add_partial_namespace (struct partial_die_info
*pdi
,
1765 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
1766 int set_addrmap
, struct dwarf2_cu
*cu
);
1768 static void add_partial_module (struct partial_die_info
*pdi
, CORE_ADDR
*lowpc
,
1769 CORE_ADDR
*highpc
, int set_addrmap
,
1770 struct dwarf2_cu
*cu
);
1772 static void add_partial_enumeration (struct partial_die_info
*enum_pdi
,
1773 struct dwarf2_cu
*cu
);
1775 static void add_partial_subprogram (struct partial_die_info
*pdi
,
1776 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
1777 int need_pc
, struct dwarf2_cu
*cu
);
1779 static void dwarf2_read_symtab (struct partial_symtab
*,
1782 static void psymtab_to_symtab_1 (struct partial_symtab
*);
1784 static abbrev_table_up abbrev_table_read_table
1785 (struct dwarf2_per_objfile
*dwarf2_per_objfile
, struct dwarf2_section_info
*,
1788 static unsigned int peek_abbrev_code (bfd
*, const gdb_byte
*);
1790 static struct partial_die_info
*load_partial_dies
1791 (const struct die_reader_specs
*, const gdb_byte
*, int);
1793 static const gdb_byte
*read_partial_die (const struct die_reader_specs
*,
1794 struct partial_die_info
*,
1795 struct abbrev_info
*,
1799 static struct partial_die_info
*find_partial_die (sect_offset
, int,
1800 struct dwarf2_cu
*);
1802 static void fixup_partial_die (struct partial_die_info
*,
1803 struct dwarf2_cu
*);
1805 static const gdb_byte
*read_attribute (const struct die_reader_specs
*,
1806 struct attribute
*, struct attr_abbrev
*,
1809 static unsigned int read_1_byte (bfd
*, const gdb_byte
*);
1811 static int read_1_signed_byte (bfd
*, const gdb_byte
*);
1813 static unsigned int read_2_bytes (bfd
*, const gdb_byte
*);
1815 static unsigned int read_4_bytes (bfd
*, const gdb_byte
*);
1817 static ULONGEST
read_8_bytes (bfd
*, const gdb_byte
*);
1819 static CORE_ADDR
read_address (bfd
*, const gdb_byte
*ptr
, struct dwarf2_cu
*,
1822 static LONGEST
read_initial_length (bfd
*, const gdb_byte
*, unsigned int *);
1824 static LONGEST read_checked_initial_length_and_offset
1825 (bfd
*, const gdb_byte
*, const struct comp_unit_head
*,
1826 unsigned int *, unsigned int *);
1828 static LONGEST
read_offset (bfd
*, const gdb_byte
*,
1829 const struct comp_unit_head
*,
1832 static LONGEST
read_offset_1 (bfd
*, const gdb_byte
*, unsigned int);
1834 static sect_offset read_abbrev_offset
1835 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
1836 struct dwarf2_section_info
*, sect_offset
);
1838 static const gdb_byte
*read_n_bytes (bfd
*, const gdb_byte
*, unsigned int);
1840 static const char *read_direct_string (bfd
*, const gdb_byte
*, unsigned int *);
1842 static const char *read_indirect_string
1843 (struct dwarf2_per_objfile
*dwarf2_per_objfile
, bfd
*, const gdb_byte
*,
1844 const struct comp_unit_head
*, unsigned int *);
1846 static const char *read_indirect_line_string
1847 (struct dwarf2_per_objfile
*dwarf2_per_objfile
, bfd
*, const gdb_byte
*,
1848 const struct comp_unit_head
*, unsigned int *);
1850 static const char *read_indirect_string_at_offset
1851 (struct dwarf2_per_objfile
*dwarf2_per_objfile
, bfd
*abfd
,
1852 LONGEST str_offset
);
1854 static const char *read_indirect_string_from_dwz
1855 (struct objfile
*objfile
, struct dwz_file
*, LONGEST
);
1857 static LONGEST
read_signed_leb128 (bfd
*, const gdb_byte
*, unsigned int *);
1859 static CORE_ADDR
read_addr_index_from_leb128 (struct dwarf2_cu
*,
1863 static const char *read_str_index (const struct die_reader_specs
*reader
,
1864 ULONGEST str_index
);
1866 static void set_cu_language (unsigned int, struct dwarf2_cu
*);
1868 static struct attribute
*dwarf2_attr (struct die_info
*, unsigned int,
1869 struct dwarf2_cu
*);
1871 static struct attribute
*dwarf2_attr_no_follow (struct die_info
*,
1874 static const char *dwarf2_string_attr (struct die_info
*die
, unsigned int name
,
1875 struct dwarf2_cu
*cu
);
1877 static int dwarf2_flag_true_p (struct die_info
*die
, unsigned name
,
1878 struct dwarf2_cu
*cu
);
1880 static int die_is_declaration (struct die_info
*, struct dwarf2_cu
*cu
);
1882 static struct die_info
*die_specification (struct die_info
*die
,
1883 struct dwarf2_cu
**);
1885 static line_header_up
dwarf_decode_line_header (sect_offset sect_off
,
1886 struct dwarf2_cu
*cu
);
1888 static void dwarf_decode_lines (struct line_header
*, const char *,
1889 struct dwarf2_cu
*, struct partial_symtab
*,
1890 CORE_ADDR
, int decode_mapping
);
1892 static void dwarf2_start_subfile (const char *, const char *);
1894 static struct compunit_symtab
*dwarf2_start_symtab (struct dwarf2_cu
*,
1895 const char *, const char *,
1898 static struct symbol
*new_symbol (struct die_info
*, struct type
*,
1899 struct dwarf2_cu
*, struct symbol
* = NULL
);
1901 static void dwarf2_const_value (const struct attribute
*, struct symbol
*,
1902 struct dwarf2_cu
*);
1904 static void dwarf2_const_value_attr (const struct attribute
*attr
,
1907 struct obstack
*obstack
,
1908 struct dwarf2_cu
*cu
, LONGEST
*value
,
1909 const gdb_byte
**bytes
,
1910 struct dwarf2_locexpr_baton
**baton
);
1912 static struct type
*die_type (struct die_info
*, struct dwarf2_cu
*);
1914 static int need_gnat_info (struct dwarf2_cu
*);
1916 static struct type
*die_descriptive_type (struct die_info
*,
1917 struct dwarf2_cu
*);
1919 static void set_descriptive_type (struct type
*, struct die_info
*,
1920 struct dwarf2_cu
*);
1922 static struct type
*die_containing_type (struct die_info
*,
1923 struct dwarf2_cu
*);
1925 static struct type
*lookup_die_type (struct die_info
*, const struct attribute
*,
1926 struct dwarf2_cu
*);
1928 static struct type
*read_type_die (struct die_info
*, struct dwarf2_cu
*);
1930 static struct type
*read_type_die_1 (struct die_info
*, struct dwarf2_cu
*);
1932 static const char *determine_prefix (struct die_info
*die
, struct dwarf2_cu
*);
1934 static char *typename_concat (struct obstack
*obs
, const char *prefix
,
1935 const char *suffix
, int physname
,
1936 struct dwarf2_cu
*cu
);
1938 static void read_file_scope (struct die_info
*, struct dwarf2_cu
*);
1940 static void read_type_unit_scope (struct die_info
*, struct dwarf2_cu
*);
1942 static void read_func_scope (struct die_info
*, struct dwarf2_cu
*);
1944 static void read_lexical_block_scope (struct die_info
*, struct dwarf2_cu
*);
1946 static void read_call_site_scope (struct die_info
*die
, struct dwarf2_cu
*cu
);
1948 static void read_variable (struct die_info
*die
, struct dwarf2_cu
*cu
);
1950 static int dwarf2_ranges_read (unsigned, CORE_ADDR
*, CORE_ADDR
*,
1951 struct dwarf2_cu
*, struct partial_symtab
*);
1953 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1954 values. Keep the items ordered with increasing constraints compliance. */
1957 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1958 PC_BOUNDS_NOT_PRESENT
,
1960 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1961 were present but they do not form a valid range of PC addresses. */
1964 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1967 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1971 static enum pc_bounds_kind
dwarf2_get_pc_bounds (struct die_info
*,
1972 CORE_ADDR
*, CORE_ADDR
*,
1974 struct partial_symtab
*);
1976 static void get_scope_pc_bounds (struct die_info
*,
1977 CORE_ADDR
*, CORE_ADDR
*,
1978 struct dwarf2_cu
*);
1980 static void dwarf2_record_block_ranges (struct die_info
*, struct block
*,
1981 CORE_ADDR
, struct dwarf2_cu
*);
1983 static void dwarf2_add_field (struct field_info
*, struct die_info
*,
1984 struct dwarf2_cu
*);
1986 static void dwarf2_attach_fields_to_type (struct field_info
*,
1987 struct type
*, struct dwarf2_cu
*);
1989 static void dwarf2_add_member_fn (struct field_info
*,
1990 struct die_info
*, struct type
*,
1991 struct dwarf2_cu
*);
1993 static void dwarf2_attach_fn_fields_to_type (struct field_info
*,
1995 struct dwarf2_cu
*);
1997 static void process_structure_scope (struct die_info
*, struct dwarf2_cu
*);
1999 static void read_common_block (struct die_info
*, struct dwarf2_cu
*);
2001 static void read_namespace (struct die_info
*die
, struct dwarf2_cu
*);
2003 static void read_module (struct die_info
*die
, struct dwarf2_cu
*cu
);
2005 static struct using_direct
**using_directives (enum language
);
2007 static void read_import_statement (struct die_info
*die
, struct dwarf2_cu
*);
2009 static int read_namespace_alias (struct die_info
*die
, struct dwarf2_cu
*cu
);
2011 static struct type
*read_module_type (struct die_info
*die
,
2012 struct dwarf2_cu
*cu
);
2014 static const char *namespace_name (struct die_info
*die
,
2015 int *is_anonymous
, struct dwarf2_cu
*);
2017 static void process_enumeration_scope (struct die_info
*, struct dwarf2_cu
*);
2019 static CORE_ADDR
decode_locdesc (struct dwarf_block
*, struct dwarf2_cu
*);
2021 static enum dwarf_array_dim_ordering
read_array_order (struct die_info
*,
2022 struct dwarf2_cu
*);
2024 static struct die_info
*read_die_and_siblings_1
2025 (const struct die_reader_specs
*, const gdb_byte
*, const gdb_byte
**,
2028 static struct die_info
*read_die_and_siblings (const struct die_reader_specs
*,
2029 const gdb_byte
*info_ptr
,
2030 const gdb_byte
**new_info_ptr
,
2031 struct die_info
*parent
);
2033 static const gdb_byte
*read_full_die_1 (const struct die_reader_specs
*,
2034 struct die_info
**, const gdb_byte
*,
2037 static const gdb_byte
*read_full_die (const struct die_reader_specs
*,
2038 struct die_info
**, const gdb_byte
*,
2041 static void process_die (struct die_info
*, struct dwarf2_cu
*);
2043 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu
*,
2046 static const char *dwarf2_name (struct die_info
*die
, struct dwarf2_cu
*);
2048 static const char *dwarf2_full_name (const char *name
,
2049 struct die_info
*die
,
2050 struct dwarf2_cu
*cu
);
2052 static const char *dwarf2_physname (const char *name
, struct die_info
*die
,
2053 struct dwarf2_cu
*cu
);
2055 static struct die_info
*dwarf2_extension (struct die_info
*die
,
2056 struct dwarf2_cu
**);
2058 static const char *dwarf_tag_name (unsigned int);
2060 static const char *dwarf_attr_name (unsigned int);
2062 static const char *dwarf_form_name (unsigned int);
2064 static const char *dwarf_bool_name (unsigned int);
2066 static const char *dwarf_type_encoding_name (unsigned int);
2068 static struct die_info
*sibling_die (struct die_info
*);
2070 static void dump_die_shallow (struct ui_file
*, int indent
, struct die_info
*);
2072 static void dump_die_for_error (struct die_info
*);
2074 static void dump_die_1 (struct ui_file
*, int level
, int max_level
,
2077 /*static*/ void dump_die (struct die_info
*, int max_level
);
2079 static void store_in_ref_table (struct die_info
*,
2080 struct dwarf2_cu
*);
2082 static sect_offset
dwarf2_get_ref_die_offset (const struct attribute
*);
2084 static LONGEST
dwarf2_get_attr_constant_value (const struct attribute
*, int);
2086 static struct die_info
*follow_die_ref_or_sig (struct die_info
*,
2087 const struct attribute
*,
2088 struct dwarf2_cu
**);
2090 static struct die_info
*follow_die_ref (struct die_info
*,
2091 const struct attribute
*,
2092 struct dwarf2_cu
**);
2094 static struct die_info
*follow_die_sig (struct die_info
*,
2095 const struct attribute
*,
2096 struct dwarf2_cu
**);
2098 static struct type
*get_signatured_type (struct die_info
*, ULONGEST
,
2099 struct dwarf2_cu
*);
2101 static struct type
*get_DW_AT_signature_type (struct die_info
*,
2102 const struct attribute
*,
2103 struct dwarf2_cu
*);
2105 static void load_full_type_unit (struct dwarf2_per_cu_data
*per_cu
);
2107 static void read_signatured_type (struct signatured_type
*);
2109 static int attr_to_dynamic_prop (const struct attribute
*attr
,
2110 struct die_info
*die
, struct dwarf2_cu
*cu
,
2111 struct dynamic_prop
*prop
);
2113 /* memory allocation interface */
2115 static struct dwarf_block
*dwarf_alloc_block (struct dwarf2_cu
*);
2117 static struct die_info
*dwarf_alloc_die (struct dwarf2_cu
*, int);
2119 static void dwarf_decode_macros (struct dwarf2_cu
*, unsigned int, int);
2121 static int attr_form_is_block (const struct attribute
*);
2123 static int attr_form_is_section_offset (const struct attribute
*);
2125 static int attr_form_is_constant (const struct attribute
*);
2127 static int attr_form_is_ref (const struct attribute
*);
2129 static void fill_in_loclist_baton (struct dwarf2_cu
*cu
,
2130 struct dwarf2_loclist_baton
*baton
,
2131 const struct attribute
*attr
);
2133 static void dwarf2_symbol_mark_computed (const struct attribute
*attr
,
2135 struct dwarf2_cu
*cu
,
2138 static const gdb_byte
*skip_one_die (const struct die_reader_specs
*reader
,
2139 const gdb_byte
*info_ptr
,
2140 struct abbrev_info
*abbrev
);
2142 static hashval_t
partial_die_hash (const void *item
);
2144 static int partial_die_eq (const void *item_lhs
, const void *item_rhs
);
2146 static struct dwarf2_per_cu_data
*dwarf2_find_containing_comp_unit
2147 (sect_offset sect_off
, unsigned int offset_in_dwz
,
2148 struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2150 static void prepare_one_comp_unit (struct dwarf2_cu
*cu
,
2151 struct die_info
*comp_unit_die
,
2152 enum language pretend_language
);
2154 static void free_cached_comp_units (void *);
2156 static void age_cached_comp_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2158 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data
*);
2160 static struct type
*set_die_type (struct die_info
*, struct type
*,
2161 struct dwarf2_cu
*);
2163 static void create_all_comp_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2165 static int create_all_type_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2167 static void load_full_comp_unit (struct dwarf2_per_cu_data
*,
2170 static void process_full_comp_unit (struct dwarf2_per_cu_data
*,
2173 static void process_full_type_unit (struct dwarf2_per_cu_data
*,
2176 static void dwarf2_add_dependence (struct dwarf2_cu
*,
2177 struct dwarf2_per_cu_data
*);
2179 static void dwarf2_mark (struct dwarf2_cu
*);
2181 static void dwarf2_clear_marks (struct dwarf2_per_cu_data
*);
2183 static struct type
*get_die_type_at_offset (sect_offset
,
2184 struct dwarf2_per_cu_data
*);
2186 static struct type
*get_die_type (struct die_info
*die
, struct dwarf2_cu
*cu
);
2188 static void queue_comp_unit (struct dwarf2_per_cu_data
*per_cu
,
2189 enum language pretend_language
);
2191 static void process_queue (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2193 /* Class, the destructor of which frees all allocated queue entries. This
2194 will only have work to do if an error was thrown while processing the
2195 dwarf. If no error was thrown then the queue entries should have all
2196 been processed, and freed, as we went along. */
2198 class dwarf2_queue_guard
2201 dwarf2_queue_guard () = default;
2203 /* Free any entries remaining on the queue. There should only be
2204 entries left if we hit an error while processing the dwarf. */
2205 ~dwarf2_queue_guard ()
2207 struct dwarf2_queue_item
*item
, *last
;
2209 item
= dwarf2_queue
;
2212 /* Anything still marked queued is likely to be in an
2213 inconsistent state, so discard it. */
2214 if (item
->per_cu
->queued
)
2216 if (item
->per_cu
->cu
!= NULL
)
2217 free_one_cached_comp_unit (item
->per_cu
);
2218 item
->per_cu
->queued
= 0;
2226 dwarf2_queue
= dwarf2_queue_tail
= NULL
;
2230 /* The return type of find_file_and_directory. Note, the enclosed
2231 string pointers are only valid while this object is valid. */
2233 struct file_and_directory
2235 /* The filename. This is never NULL. */
2238 /* The compilation directory. NULL if not known. If we needed to
2239 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2240 points directly to the DW_AT_comp_dir string attribute owned by
2241 the obstack that owns the DIE. */
2242 const char *comp_dir
;
2244 /* If we needed to build a new string for comp_dir, this is what
2245 owns the storage. */
2246 std::string comp_dir_storage
;
2249 static file_and_directory
find_file_and_directory (struct die_info
*die
,
2250 struct dwarf2_cu
*cu
);
2252 static char *file_full_name (int file
, struct line_header
*lh
,
2253 const char *comp_dir
);
2255 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2256 enum class rcuh_kind
{ COMPILE
, TYPE
};
2258 static const gdb_byte
*read_and_check_comp_unit_head
2259 (struct dwarf2_per_objfile
* dwarf2_per_objfile
,
2260 struct comp_unit_head
*header
,
2261 struct dwarf2_section_info
*section
,
2262 struct dwarf2_section_info
*abbrev_section
, const gdb_byte
*info_ptr
,
2263 rcuh_kind section_kind
);
2265 static void init_cutu_and_read_dies
2266 (struct dwarf2_per_cu_data
*this_cu
, struct abbrev_table
*abbrev_table
,
2267 int use_existing_cu
, int keep
,
2268 die_reader_func_ftype
*die_reader_func
, void *data
);
2270 static void init_cutu_and_read_dies_simple
2271 (struct dwarf2_per_cu_data
*this_cu
,
2272 die_reader_func_ftype
*die_reader_func
, void *data
);
2274 static htab_t
allocate_signatured_type_table (struct objfile
*objfile
);
2276 static htab_t
allocate_dwo_unit_table (struct objfile
*objfile
);
2278 static struct dwo_unit
*lookup_dwo_unit_in_dwp
2279 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
2280 struct dwp_file
*dwp_file
, const char *comp_dir
,
2281 ULONGEST signature
, int is_debug_types
);
2283 static struct dwp_file
*get_dwp_file
2284 (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2286 static struct dwo_unit
*lookup_dwo_comp_unit
2287 (struct dwarf2_per_cu_data
*, const char *, const char *, ULONGEST
);
2289 static struct dwo_unit
*lookup_dwo_type_unit
2290 (struct signatured_type
*, const char *, const char *);
2292 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data
*);
2294 static void free_dwo_file_cleanup (void *);
2296 struct free_dwo_file_cleanup_data
2298 struct dwo_file
*dwo_file
;
2299 struct dwarf2_per_objfile
*dwarf2_per_objfile
;
2302 static void process_cu_includes (struct dwarf2_per_objfile
*dwarf2_per_objfile
);
2304 static void check_producer (struct dwarf2_cu
*cu
);
2306 static void free_line_header_voidp (void *arg
);
2308 /* Various complaints about symbol reading that don't abort the process. */
2311 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2313 complaint (&symfile_complaints
,
2314 _("statement list doesn't fit in .debug_line section"));
2318 dwarf2_debug_line_missing_file_complaint (void)
2320 complaint (&symfile_complaints
,
2321 _(".debug_line section has line data without a file"));
2325 dwarf2_debug_line_missing_end_sequence_complaint (void)
2327 complaint (&symfile_complaints
,
2328 _(".debug_line section has line "
2329 "program sequence without an end"));
2333 dwarf2_complex_location_expr_complaint (void)
2335 complaint (&symfile_complaints
, _("location expression too complex"));
2339 dwarf2_const_value_length_mismatch_complaint (const char *arg1
, int arg2
,
2342 complaint (&symfile_complaints
,
2343 _("const value length mismatch for '%s', got %d, expected %d"),
2348 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info
*section
)
2350 complaint (&symfile_complaints
,
2351 _("debug info runs off end of %s section"
2353 get_section_name (section
),
2354 get_section_file_name (section
));
2358 dwarf2_macro_malformed_definition_complaint (const char *arg1
)
2360 complaint (&symfile_complaints
,
2361 _("macro debug info contains a "
2362 "malformed macro definition:\n`%s'"),
2367 dwarf2_invalid_attrib_class_complaint (const char *arg1
, const char *arg2
)
2369 complaint (&symfile_complaints
,
2370 _("invalid attribute class or form for '%s' in '%s'"),
2374 /* Hash function for line_header_hash. */
2377 line_header_hash (const struct line_header
*ofs
)
2379 return to_underlying (ofs
->sect_off
) ^ ofs
->offset_in_dwz
;
2382 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2385 line_header_hash_voidp (const void *item
)
2387 const struct line_header
*ofs
= (const struct line_header
*) item
;
2389 return line_header_hash (ofs
);
2392 /* Equality function for line_header_hash. */
2395 line_header_eq_voidp (const void *item_lhs
, const void *item_rhs
)
2397 const struct line_header
*ofs_lhs
= (const struct line_header
*) item_lhs
;
2398 const struct line_header
*ofs_rhs
= (const struct line_header
*) item_rhs
;
2400 return (ofs_lhs
->sect_off
== ofs_rhs
->sect_off
2401 && ofs_lhs
->offset_in_dwz
== ofs_rhs
->offset_in_dwz
);
2406 /* Read the given attribute value as an address, taking the attribute's
2407 form into account. */
2410 attr_value_as_address (struct attribute
*attr
)
2414 if (attr
->form
!= DW_FORM_addr
&& attr
->form
!= DW_FORM_GNU_addr_index
)
2416 /* Aside from a few clearly defined exceptions, attributes that
2417 contain an address must always be in DW_FORM_addr form.
2418 Unfortunately, some compilers happen to be violating this
2419 requirement by encoding addresses using other forms, such
2420 as DW_FORM_data4 for example. For those broken compilers,
2421 we try to do our best, without any guarantee of success,
2422 to interpret the address correctly. It would also be nice
2423 to generate a complaint, but that would require us to maintain
2424 a list of legitimate cases where a non-address form is allowed,
2425 as well as update callers to pass in at least the CU's DWARF
2426 version. This is more overhead than what we're willing to
2427 expand for a pretty rare case. */
2428 addr
= DW_UNSND (attr
);
2431 addr
= DW_ADDR (attr
);
2436 /* The suffix for an index file. */
2437 #define INDEX4_SUFFIX ".gdb-index"
2438 #define INDEX5_SUFFIX ".debug_names"
2439 #define DEBUG_STR_SUFFIX ".debug_str"
2441 /* See declaration. */
2443 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile
*objfile_
,
2444 const dwarf2_debug_sections
*names
)
2445 : objfile (objfile_
)
2448 names
= &dwarf2_elf_names
;
2450 bfd
*obfd
= objfile
->obfd
;
2452 for (asection
*sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2453 locate_sections (obfd
, sec
, *names
);
2456 static void free_dwo_files (htab_t dwo_files
, struct objfile
*objfile
);
2458 dwarf2_per_objfile::~dwarf2_per_objfile ()
2460 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2461 free_cached_comp_units ();
2463 if (quick_file_names_table
)
2464 htab_delete (quick_file_names_table
);
2466 if (line_header_hash
)
2467 htab_delete (line_header_hash
);
2469 for (int ix
= 0; ix
< n_comp_units
; ++ix
)
2470 VEC_free (dwarf2_per_cu_ptr
, all_comp_units
[ix
]->imported_symtabs
);
2472 for (int ix
= 0; ix
< n_type_units
; ++ix
)
2473 VEC_free (dwarf2_per_cu_ptr
,
2474 all_type_units
[ix
]->per_cu
.imported_symtabs
);
2475 xfree (all_type_units
);
2477 VEC_free (dwarf2_section_info_def
, types
);
2479 if (dwo_files
!= NULL
)
2480 free_dwo_files (dwo_files
, objfile
);
2481 if (dwp_file
!= NULL
)
2482 gdb_bfd_unref (dwp_file
->dbfd
);
2484 if (dwz_file
!= NULL
&& dwz_file
->dwz_bfd
)
2485 gdb_bfd_unref (dwz_file
->dwz_bfd
);
2487 if (index_table
!= NULL
)
2488 index_table
->~mapped_index ();
2490 /* Everything else should be on the objfile obstack. */
2493 /* See declaration. */
2496 dwarf2_per_objfile::free_cached_comp_units ()
2498 dwarf2_per_cu_data
*per_cu
= read_in_chain
;
2499 dwarf2_per_cu_data
**last_chain
= &read_in_chain
;
2500 while (per_cu
!= NULL
)
2502 dwarf2_per_cu_data
*next_cu
= per_cu
->cu
->read_in_chain
;
2505 *last_chain
= next_cu
;
2510 /* Try to locate the sections we need for DWARF 2 debugging
2511 information and return true if we have enough to do something.
2512 NAMES points to the dwarf2 section names, or is NULL if the standard
2513 ELF names are used. */
2516 dwarf2_has_info (struct objfile
*objfile
,
2517 const struct dwarf2_debug_sections
*names
)
2519 if (objfile
->flags
& OBJF_READNEVER
)
2522 struct dwarf2_per_objfile
*dwarf2_per_objfile
2523 = get_dwarf2_per_objfile (objfile
);
2525 if (dwarf2_per_objfile
== NULL
)
2527 /* Initialize per-objfile state. */
2529 = new (&objfile
->objfile_obstack
) struct dwarf2_per_objfile (objfile
,
2531 set_dwarf2_per_objfile (objfile
, dwarf2_per_objfile
);
2533 return (!dwarf2_per_objfile
->info
.is_virtual
2534 && dwarf2_per_objfile
->info
.s
.section
!= NULL
2535 && !dwarf2_per_objfile
->abbrev
.is_virtual
2536 && dwarf2_per_objfile
->abbrev
.s
.section
!= NULL
);
2539 /* Return the containing section of virtual section SECTION. */
2541 static struct dwarf2_section_info
*
2542 get_containing_section (const struct dwarf2_section_info
*section
)
2544 gdb_assert (section
->is_virtual
);
2545 return section
->s
.containing_section
;
2548 /* Return the bfd owner of SECTION. */
2551 get_section_bfd_owner (const struct dwarf2_section_info
*section
)
2553 if (section
->is_virtual
)
2555 section
= get_containing_section (section
);
2556 gdb_assert (!section
->is_virtual
);
2558 return section
->s
.section
->owner
;
2561 /* Return the bfd section of SECTION.
2562 Returns NULL if the section is not present. */
2565 get_section_bfd_section (const struct dwarf2_section_info
*section
)
2567 if (section
->is_virtual
)
2569 section
= get_containing_section (section
);
2570 gdb_assert (!section
->is_virtual
);
2572 return section
->s
.section
;
2575 /* Return the name of SECTION. */
2578 get_section_name (const struct dwarf2_section_info
*section
)
2580 asection
*sectp
= get_section_bfd_section (section
);
2582 gdb_assert (sectp
!= NULL
);
2583 return bfd_section_name (get_section_bfd_owner (section
), sectp
);
2586 /* Return the name of the file SECTION is in. */
2589 get_section_file_name (const struct dwarf2_section_info
*section
)
2591 bfd
*abfd
= get_section_bfd_owner (section
);
2593 return bfd_get_filename (abfd
);
2596 /* Return the id of SECTION.
2597 Returns 0 if SECTION doesn't exist. */
2600 get_section_id (const struct dwarf2_section_info
*section
)
2602 asection
*sectp
= get_section_bfd_section (section
);
2609 /* Return the flags of SECTION.
2610 SECTION (or containing section if this is a virtual section) must exist. */
2613 get_section_flags (const struct dwarf2_section_info
*section
)
2615 asection
*sectp
= get_section_bfd_section (section
);
2617 gdb_assert (sectp
!= NULL
);
2618 return bfd_get_section_flags (sectp
->owner
, sectp
);
2621 /* When loading sections, we look either for uncompressed section or for
2622 compressed section names. */
2625 section_is_p (const char *section_name
,
2626 const struct dwarf2_section_names
*names
)
2628 if (names
->normal
!= NULL
2629 && strcmp (section_name
, names
->normal
) == 0)
2631 if (names
->compressed
!= NULL
2632 && strcmp (section_name
, names
->compressed
) == 0)
2637 /* See declaration. */
2640 dwarf2_per_objfile::locate_sections (bfd
*abfd
, asection
*sectp
,
2641 const dwarf2_debug_sections
&names
)
2643 flagword aflag
= bfd_get_section_flags (abfd
, sectp
);
2645 if ((aflag
& SEC_HAS_CONTENTS
) == 0)
2648 else if (section_is_p (sectp
->name
, &names
.info
))
2650 this->info
.s
.section
= sectp
;
2651 this->info
.size
= bfd_get_section_size (sectp
);
2653 else if (section_is_p (sectp
->name
, &names
.abbrev
))
2655 this->abbrev
.s
.section
= sectp
;
2656 this->abbrev
.size
= bfd_get_section_size (sectp
);
2658 else if (section_is_p (sectp
->name
, &names
.line
))
2660 this->line
.s
.section
= sectp
;
2661 this->line
.size
= bfd_get_section_size (sectp
);
2663 else if (section_is_p (sectp
->name
, &names
.loc
))
2665 this->loc
.s
.section
= sectp
;
2666 this->loc
.size
= bfd_get_section_size (sectp
);
2668 else if (section_is_p (sectp
->name
, &names
.loclists
))
2670 this->loclists
.s
.section
= sectp
;
2671 this->loclists
.size
= bfd_get_section_size (sectp
);
2673 else if (section_is_p (sectp
->name
, &names
.macinfo
))
2675 this->macinfo
.s
.section
= sectp
;
2676 this->macinfo
.size
= bfd_get_section_size (sectp
);
2678 else if (section_is_p (sectp
->name
, &names
.macro
))
2680 this->macro
.s
.section
= sectp
;
2681 this->macro
.size
= bfd_get_section_size (sectp
);
2683 else if (section_is_p (sectp
->name
, &names
.str
))
2685 this->str
.s
.section
= sectp
;
2686 this->str
.size
= bfd_get_section_size (sectp
);
2688 else if (section_is_p (sectp
->name
, &names
.line_str
))
2690 this->line_str
.s
.section
= sectp
;
2691 this->line_str
.size
= bfd_get_section_size (sectp
);
2693 else if (section_is_p (sectp
->name
, &names
.addr
))
2695 this->addr
.s
.section
= sectp
;
2696 this->addr
.size
= bfd_get_section_size (sectp
);
2698 else if (section_is_p (sectp
->name
, &names
.frame
))
2700 this->frame
.s
.section
= sectp
;
2701 this->frame
.size
= bfd_get_section_size (sectp
);
2703 else if (section_is_p (sectp
->name
, &names
.eh_frame
))
2705 this->eh_frame
.s
.section
= sectp
;
2706 this->eh_frame
.size
= bfd_get_section_size (sectp
);
2708 else if (section_is_p (sectp
->name
, &names
.ranges
))
2710 this->ranges
.s
.section
= sectp
;
2711 this->ranges
.size
= bfd_get_section_size (sectp
);
2713 else if (section_is_p (sectp
->name
, &names
.rnglists
))
2715 this->rnglists
.s
.section
= sectp
;
2716 this->rnglists
.size
= bfd_get_section_size (sectp
);
2718 else if (section_is_p (sectp
->name
, &names
.types
))
2720 struct dwarf2_section_info type_section
;
2722 memset (&type_section
, 0, sizeof (type_section
));
2723 type_section
.s
.section
= sectp
;
2724 type_section
.size
= bfd_get_section_size (sectp
);
2726 VEC_safe_push (dwarf2_section_info_def
, this->types
,
2729 else if (section_is_p (sectp
->name
, &names
.gdb_index
))
2731 this->gdb_index
.s
.section
= sectp
;
2732 this->gdb_index
.size
= bfd_get_section_size (sectp
);
2734 else if (section_is_p (sectp
->name
, &names
.debug_names
))
2736 this->debug_names
.s
.section
= sectp
;
2737 this->debug_names
.size
= bfd_get_section_size (sectp
);
2739 else if (section_is_p (sectp
->name
, &names
.debug_aranges
))
2741 this->debug_aranges
.s
.section
= sectp
;
2742 this->debug_aranges
.size
= bfd_get_section_size (sectp
);
2745 if ((bfd_get_section_flags (abfd
, sectp
) & (SEC_LOAD
| SEC_ALLOC
))
2746 && bfd_section_vma (abfd
, sectp
) == 0)
2747 this->has_section_at_zero
= true;
2750 /* A helper function that decides whether a section is empty,
2754 dwarf2_section_empty_p (const struct dwarf2_section_info
*section
)
2756 if (section
->is_virtual
)
2757 return section
->size
== 0;
2758 return section
->s
.section
== NULL
|| section
->size
== 0;
2761 /* Read the contents of the section INFO.
2762 OBJFILE is the main object file, but not necessarily the file where
2763 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2765 If the section is compressed, uncompress it before returning. */
2768 dwarf2_read_section (struct objfile
*objfile
, struct dwarf2_section_info
*info
)
2772 gdb_byte
*buf
, *retbuf
;
2776 info
->buffer
= NULL
;
2779 if (dwarf2_section_empty_p (info
))
2782 sectp
= get_section_bfd_section (info
);
2784 /* If this is a virtual section we need to read in the real one first. */
2785 if (info
->is_virtual
)
2787 struct dwarf2_section_info
*containing_section
=
2788 get_containing_section (info
);
2790 gdb_assert (sectp
!= NULL
);
2791 if ((sectp
->flags
& SEC_RELOC
) != 0)
2793 error (_("Dwarf Error: DWP format V2 with relocations is not"
2794 " supported in section %s [in module %s]"),
2795 get_section_name (info
), get_section_file_name (info
));
2797 dwarf2_read_section (objfile
, containing_section
);
2798 /* Other code should have already caught virtual sections that don't
2800 gdb_assert (info
->virtual_offset
+ info
->size
2801 <= containing_section
->size
);
2802 /* If the real section is empty or there was a problem reading the
2803 section we shouldn't get here. */
2804 gdb_assert (containing_section
->buffer
!= NULL
);
2805 info
->buffer
= containing_section
->buffer
+ info
->virtual_offset
;
2809 /* If the section has relocations, we must read it ourselves.
2810 Otherwise we attach it to the BFD. */
2811 if ((sectp
->flags
& SEC_RELOC
) == 0)
2813 info
->buffer
= gdb_bfd_map_section (sectp
, &info
->size
);
2817 buf
= (gdb_byte
*) obstack_alloc (&objfile
->objfile_obstack
, info
->size
);
2820 /* When debugging .o files, we may need to apply relocations; see
2821 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2822 We never compress sections in .o files, so we only need to
2823 try this when the section is not compressed. */
2824 retbuf
= symfile_relocate_debug_section (objfile
, sectp
, buf
);
2827 info
->buffer
= retbuf
;
2831 abfd
= get_section_bfd_owner (info
);
2832 gdb_assert (abfd
!= NULL
);
2834 if (bfd_seek (abfd
, sectp
->filepos
, SEEK_SET
) != 0
2835 || bfd_bread (buf
, info
->size
, abfd
) != info
->size
)
2837 error (_("Dwarf Error: Can't read DWARF data"
2838 " in section %s [in module %s]"),
2839 bfd_section_name (abfd
, sectp
), bfd_get_filename (abfd
));
2843 /* A helper function that returns the size of a section in a safe way.
2844 If you are positive that the section has been read before using the
2845 size, then it is safe to refer to the dwarf2_section_info object's
2846 "size" field directly. In other cases, you must call this
2847 function, because for compressed sections the size field is not set
2848 correctly until the section has been read. */
2850 static bfd_size_type
2851 dwarf2_section_size (struct objfile
*objfile
,
2852 struct dwarf2_section_info
*info
)
2855 dwarf2_read_section (objfile
, info
);
2859 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2863 dwarf2_get_section_info (struct objfile
*objfile
,
2864 enum dwarf2_section_enum sect
,
2865 asection
**sectp
, const gdb_byte
**bufp
,
2866 bfd_size_type
*sizep
)
2868 struct dwarf2_per_objfile
*data
2869 = (struct dwarf2_per_objfile
*) objfile_data (objfile
,
2870 dwarf2_objfile_data_key
);
2871 struct dwarf2_section_info
*info
;
2873 /* We may see an objfile without any DWARF, in which case we just
2884 case DWARF2_DEBUG_FRAME
:
2885 info
= &data
->frame
;
2887 case DWARF2_EH_FRAME
:
2888 info
= &data
->eh_frame
;
2891 gdb_assert_not_reached ("unexpected section");
2894 dwarf2_read_section (objfile
, info
);
2896 *sectp
= get_section_bfd_section (info
);
2897 *bufp
= info
->buffer
;
2898 *sizep
= info
->size
;
2901 /* A helper function to find the sections for a .dwz file. */
2904 locate_dwz_sections (bfd
*abfd
, asection
*sectp
, void *arg
)
2906 struct dwz_file
*dwz_file
= (struct dwz_file
*) arg
;
2908 /* Note that we only support the standard ELF names, because .dwz
2909 is ELF-only (at the time of writing). */
2910 if (section_is_p (sectp
->name
, &dwarf2_elf_names
.abbrev
))
2912 dwz_file
->abbrev
.s
.section
= sectp
;
2913 dwz_file
->abbrev
.size
= bfd_get_section_size (sectp
);
2915 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.info
))
2917 dwz_file
->info
.s
.section
= sectp
;
2918 dwz_file
->info
.size
= bfd_get_section_size (sectp
);
2920 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.str
))
2922 dwz_file
->str
.s
.section
= sectp
;
2923 dwz_file
->str
.size
= bfd_get_section_size (sectp
);
2925 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.line
))
2927 dwz_file
->line
.s
.section
= sectp
;
2928 dwz_file
->line
.size
= bfd_get_section_size (sectp
);
2930 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.macro
))
2932 dwz_file
->macro
.s
.section
= sectp
;
2933 dwz_file
->macro
.size
= bfd_get_section_size (sectp
);
2935 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.gdb_index
))
2937 dwz_file
->gdb_index
.s
.section
= sectp
;
2938 dwz_file
->gdb_index
.size
= bfd_get_section_size (sectp
);
2940 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.debug_names
))
2942 dwz_file
->debug_names
.s
.section
= sectp
;
2943 dwz_file
->debug_names
.size
= bfd_get_section_size (sectp
);
2947 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2948 there is no .gnu_debugaltlink section in the file. Error if there
2949 is such a section but the file cannot be found. */
2951 static struct dwz_file
*
2952 dwarf2_get_dwz_file (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
2954 const char *filename
;
2955 struct dwz_file
*result
;
2956 bfd_size_type buildid_len_arg
;
2960 if (dwarf2_per_objfile
->dwz_file
!= NULL
)
2961 return dwarf2_per_objfile
->dwz_file
;
2963 bfd_set_error (bfd_error_no_error
);
2964 gdb::unique_xmalloc_ptr
<char> data
2965 (bfd_get_alt_debug_link_info (dwarf2_per_objfile
->objfile
->obfd
,
2966 &buildid_len_arg
, &buildid
));
2969 if (bfd_get_error () == bfd_error_no_error
)
2971 error (_("could not read '.gnu_debugaltlink' section: %s"),
2972 bfd_errmsg (bfd_get_error ()));
2975 gdb::unique_xmalloc_ptr
<bfd_byte
> buildid_holder (buildid
);
2977 buildid_len
= (size_t) buildid_len_arg
;
2979 filename
= data
.get ();
2981 std::string abs_storage
;
2982 if (!IS_ABSOLUTE_PATH (filename
))
2984 gdb::unique_xmalloc_ptr
<char> abs
2985 = gdb_realpath (objfile_name (dwarf2_per_objfile
->objfile
));
2987 abs_storage
= ldirname (abs
.get ()) + SLASH_STRING
+ filename
;
2988 filename
= abs_storage
.c_str ();
2991 /* First try the file name given in the section. If that doesn't
2992 work, try to use the build-id instead. */
2993 gdb_bfd_ref_ptr
dwz_bfd (gdb_bfd_open (filename
, gnutarget
, -1));
2994 if (dwz_bfd
!= NULL
)
2996 if (!build_id_verify (dwz_bfd
.get (), buildid_len
, buildid
))
3000 if (dwz_bfd
== NULL
)
3001 dwz_bfd
= build_id_to_debug_bfd (buildid_len
, buildid
);
3003 if (dwz_bfd
== NULL
)
3004 error (_("could not find '.gnu_debugaltlink' file for %s"),
3005 objfile_name (dwarf2_per_objfile
->objfile
));
3007 result
= OBSTACK_ZALLOC (&dwarf2_per_objfile
->objfile
->objfile_obstack
,
3009 result
->dwz_bfd
= dwz_bfd
.release ();
3011 bfd_map_over_sections (result
->dwz_bfd
, locate_dwz_sections
, result
);
3013 gdb_bfd_record_inclusion (dwarf2_per_objfile
->objfile
->obfd
, result
->dwz_bfd
);
3014 dwarf2_per_objfile
->dwz_file
= result
;
3018 /* DWARF quick_symbols_functions support. */
3020 /* TUs can share .debug_line entries, and there can be a lot more TUs than
3021 unique line tables, so we maintain a separate table of all .debug_line
3022 derived entries to support the sharing.
3023 All the quick functions need is the list of file names. We discard the
3024 line_header when we're done and don't need to record it here. */
3025 struct quick_file_names
3027 /* The data used to construct the hash key. */
3028 struct stmt_list_hash hash
;
3030 /* The number of entries in file_names, real_names. */
3031 unsigned int num_file_names
;
3033 /* The file names from the line table, after being run through
3035 const char **file_names
;
3037 /* The file names from the line table after being run through
3038 gdb_realpath. These are computed lazily. */
3039 const char **real_names
;
3042 /* When using the index (and thus not using psymtabs), each CU has an
3043 object of this type. This is used to hold information needed by
3044 the various "quick" methods. */
3045 struct dwarf2_per_cu_quick_data
3047 /* The file table. This can be NULL if there was no file table
3048 or it's currently not read in.
3049 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3050 struct quick_file_names
*file_names
;
3052 /* The corresponding symbol table. This is NULL if symbols for this
3053 CU have not yet been read. */
3054 struct compunit_symtab
*compunit_symtab
;
3056 /* A temporary mark bit used when iterating over all CUs in
3057 expand_symtabs_matching. */
3058 unsigned int mark
: 1;
3060 /* True if we've tried to read the file table and found there isn't one.
3061 There will be no point in trying to read it again next time. */
3062 unsigned int no_file_data
: 1;
3065 /* Utility hash function for a stmt_list_hash. */
3068 hash_stmt_list_entry (const struct stmt_list_hash
*stmt_list_hash
)
3072 if (stmt_list_hash
->dwo_unit
!= NULL
)
3073 v
+= (uintptr_t) stmt_list_hash
->dwo_unit
->dwo_file
;
3074 v
+= to_underlying (stmt_list_hash
->line_sect_off
);
3078 /* Utility equality function for a stmt_list_hash. */
3081 eq_stmt_list_entry (const struct stmt_list_hash
*lhs
,
3082 const struct stmt_list_hash
*rhs
)
3084 if ((lhs
->dwo_unit
!= NULL
) != (rhs
->dwo_unit
!= NULL
))
3086 if (lhs
->dwo_unit
!= NULL
3087 && lhs
->dwo_unit
->dwo_file
!= rhs
->dwo_unit
->dwo_file
)
3090 return lhs
->line_sect_off
== rhs
->line_sect_off
;
3093 /* Hash function for a quick_file_names. */
3096 hash_file_name_entry (const void *e
)
3098 const struct quick_file_names
*file_data
3099 = (const struct quick_file_names
*) e
;
3101 return hash_stmt_list_entry (&file_data
->hash
);
3104 /* Equality function for a quick_file_names. */
3107 eq_file_name_entry (const void *a
, const void *b
)
3109 const struct quick_file_names
*ea
= (const struct quick_file_names
*) a
;
3110 const struct quick_file_names
*eb
= (const struct quick_file_names
*) b
;
3112 return eq_stmt_list_entry (&ea
->hash
, &eb
->hash
);
3115 /* Delete function for a quick_file_names. */
3118 delete_file_name_entry (void *e
)
3120 struct quick_file_names
*file_data
= (struct quick_file_names
*) e
;
3123 for (i
= 0; i
< file_data
->num_file_names
; ++i
)
3125 xfree ((void*) file_data
->file_names
[i
]);
3126 if (file_data
->real_names
)
3127 xfree ((void*) file_data
->real_names
[i
]);
3130 /* The space for the struct itself lives on objfile_obstack,
3131 so we don't free it here. */
3134 /* Create a quick_file_names hash table. */
3137 create_quick_file_names_table (unsigned int nr_initial_entries
)
3139 return htab_create_alloc (nr_initial_entries
,
3140 hash_file_name_entry
, eq_file_name_entry
,
3141 delete_file_name_entry
, xcalloc
, xfree
);
3144 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3145 have to be created afterwards. You should call age_cached_comp_units after
3146 processing PER_CU->CU. dw2_setup must have been already called. */
3149 load_cu (struct dwarf2_per_cu_data
*per_cu
)
3151 if (per_cu
->is_debug_types
)
3152 load_full_type_unit (per_cu
);
3154 load_full_comp_unit (per_cu
, language_minimal
);
3156 if (per_cu
->cu
== NULL
)
3157 return; /* Dummy CU. */
3159 dwarf2_find_base_address (per_cu
->cu
->dies
, per_cu
->cu
);
3162 /* Read in the symbols for PER_CU. */
3165 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data
*per_cu
)
3167 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
3169 /* Skip type_unit_groups, reading the type units they contain
3170 is handled elsewhere. */
3171 if (IS_TYPE_UNIT_GROUP (per_cu
))
3174 /* The destructor of dwarf2_queue_guard frees any entries left on
3175 the queue. After this point we're guaranteed to leave this function
3176 with the dwarf queue empty. */
3177 dwarf2_queue_guard q_guard
;
3179 if (dwarf2_per_objfile
->using_index
3180 ? per_cu
->v
.quick
->compunit_symtab
== NULL
3181 : (per_cu
->v
.psymtab
== NULL
|| !per_cu
->v
.psymtab
->readin
))
3183 queue_comp_unit (per_cu
, language_minimal
);
3186 /* If we just loaded a CU from a DWO, and we're working with an index
3187 that may badly handle TUs, load all the TUs in that DWO as well.
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3189 if (!per_cu
->is_debug_types
3190 && per_cu
->cu
!= NULL
3191 && per_cu
->cu
->dwo_unit
!= NULL
3192 && dwarf2_per_objfile
->index_table
!= NULL
3193 && dwarf2_per_objfile
->index_table
->version
<= 7
3194 /* DWP files aren't supported yet. */
3195 && get_dwp_file (dwarf2_per_objfile
) == NULL
)
3196 queue_and_load_all_dwo_tus (per_cu
);
3199 process_queue (dwarf2_per_objfile
);
3201 /* Age the cache, releasing compilation units that have not
3202 been used recently. */
3203 age_cached_comp_units (dwarf2_per_objfile
);
3206 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3207 the objfile from which this CU came. Returns the resulting symbol
3210 static struct compunit_symtab
*
3211 dw2_instantiate_symtab (struct dwarf2_per_cu_data
*per_cu
)
3213 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
3215 gdb_assert (dwarf2_per_objfile
->using_index
);
3216 if (!per_cu
->v
.quick
->compunit_symtab
)
3218 struct cleanup
*back_to
= make_cleanup (free_cached_comp_units
,
3219 dwarf2_per_objfile
);
3220 scoped_restore decrementer
= increment_reading_symtab ();
3221 dw2_do_instantiate_symtab (per_cu
);
3222 process_cu_includes (dwarf2_per_objfile
);
3223 do_cleanups (back_to
);
3226 return per_cu
->v
.quick
->compunit_symtab
;
3229 /* Return the CU/TU given its index.
3231 This is intended for loops like:
3233 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3234 + dwarf2_per_objfile->n_type_units); ++i)
3236 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3242 static struct dwarf2_per_cu_data
*
3243 dw2_get_cutu (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
3246 if (index
>= dwarf2_per_objfile
->n_comp_units
)
3248 index
-= dwarf2_per_objfile
->n_comp_units
;
3249 gdb_assert (index
< dwarf2_per_objfile
->n_type_units
);
3250 return &dwarf2_per_objfile
->all_type_units
[index
]->per_cu
;
3253 return dwarf2_per_objfile
->all_comp_units
[index
];
3256 /* Return the CU given its index.
3257 This differs from dw2_get_cutu in that it's for when you know INDEX
3260 static struct dwarf2_per_cu_data
*
3261 dw2_get_cu (struct dwarf2_per_objfile
*dwarf2_per_objfile
, int index
)
3263 gdb_assert (index
>= 0 && index
< dwarf2_per_objfile
->n_comp_units
);
3265 return dwarf2_per_objfile
->all_comp_units
[index
];
3268 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3269 objfile_obstack, and constructed with the specified field
3272 static dwarf2_per_cu_data
*
3273 create_cu_from_index_list (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
3274 struct dwarf2_section_info
*section
,
3276 sect_offset sect_off
, ULONGEST length
)
3278 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
3279 dwarf2_per_cu_data
*the_cu
3280 = OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
3281 struct dwarf2_per_cu_data
);
3282 the_cu
->sect_off
= sect_off
;
3283 the_cu
->length
= length
;
3284 the_cu
->dwarf2_per_objfile
= dwarf2_per_objfile
;
3285 the_cu
->section
= section
;
3286 the_cu
->v
.quick
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
3287 struct dwarf2_per_cu_quick_data
);
3288 the_cu
->is_dwz
= is_dwz
;
3292 /* A helper for create_cus_from_index that handles a given list of
3296 create_cus_from_index_list (struct objfile
*objfile
,
3297 const gdb_byte
*cu_list
, offset_type n_elements
,
3298 struct dwarf2_section_info
*section
,
3303 struct dwarf2_per_objfile
*dwarf2_per_objfile
3304 = get_dwarf2_per_objfile (objfile
);
3306 for (i
= 0; i
< n_elements
; i
+= 2)
3308 gdb_static_assert (sizeof (ULONGEST
) >= 8);
3310 sect_offset sect_off
3311 = (sect_offset
) extract_unsigned_integer (cu_list
, 8, BFD_ENDIAN_LITTLE
);
3312 ULONGEST length
= extract_unsigned_integer (cu_list
+ 8, 8, BFD_ENDIAN_LITTLE
);
3315 dwarf2_per_objfile
->all_comp_units
[base_offset
+ i
/ 2]
3316 = create_cu_from_index_list (dwarf2_per_objfile
, section
, is_dwz
,
3321 /* Read the CU list from the mapped index, and use it to create all
3322 the CU objects for this objfile. */
3325 create_cus_from_index (struct objfile
*objfile
,
3326 const gdb_byte
*cu_list
, offset_type cu_list_elements
,
3327 const gdb_byte
*dwz_list
, offset_type dwz_elements
)
3329 struct dwz_file
*dwz
;
3330 struct dwarf2_per_objfile
*dwarf2_per_objfile
3331 = get_dwarf2_per_objfile (objfile
);
3333 dwarf2_per_objfile
->n_comp_units
= (cu_list_elements
+ dwz_elements
) / 2;
3334 dwarf2_per_objfile
->all_comp_units
=
3335 XOBNEWVEC (&objfile
->objfile_obstack
, struct dwarf2_per_cu_data
*,
3336 dwarf2_per_objfile
->n_comp_units
);
3338 create_cus_from_index_list (objfile
, cu_list
, cu_list_elements
,
3339 &dwarf2_per_objfile
->info
, 0, 0);
3341 if (dwz_elements
== 0)
3344 dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
3345 create_cus_from_index_list (objfile
, dwz_list
, dwz_elements
, &dwz
->info
, 1,
3346 cu_list_elements
/ 2);
3349 /* Create the signatured type hash table from the index. */
3352 create_signatured_type_table_from_index (struct objfile
*objfile
,
3353 struct dwarf2_section_info
*section
,
3354 const gdb_byte
*bytes
,
3355 offset_type elements
)
3358 htab_t sig_types_hash
;
3359 struct dwarf2_per_objfile
*dwarf2_per_objfile
3360 = get_dwarf2_per_objfile (objfile
);
3362 dwarf2_per_objfile
->n_type_units
3363 = dwarf2_per_objfile
->n_allocated_type_units
3365 dwarf2_per_objfile
->all_type_units
=
3366 XNEWVEC (struct signatured_type
*, dwarf2_per_objfile
->n_type_units
);
3368 sig_types_hash
= allocate_signatured_type_table (objfile
);
3370 for (i
= 0; i
< elements
; i
+= 3)
3372 struct signatured_type
*sig_type
;
3375 cu_offset type_offset_in_tu
;
3377 gdb_static_assert (sizeof (ULONGEST
) >= 8);
3378 sect_offset sect_off
3379 = (sect_offset
) extract_unsigned_integer (bytes
, 8, BFD_ENDIAN_LITTLE
);
3381 = (cu_offset
) extract_unsigned_integer (bytes
+ 8, 8,
3383 signature
= extract_unsigned_integer (bytes
+ 16, 8, BFD_ENDIAN_LITTLE
);
3386 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
3387 struct signatured_type
);
3388 sig_type
->signature
= signature
;
3389 sig_type
->type_offset_in_tu
= type_offset_in_tu
;
3390 sig_type
->per_cu
.is_debug_types
= 1;
3391 sig_type
->per_cu
.section
= section
;
3392 sig_type
->per_cu
.sect_off
= sect_off
;
3393 sig_type
->per_cu
.dwarf2_per_objfile
= dwarf2_per_objfile
;
3394 sig_type
->per_cu
.v
.quick
3395 = OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
3396 struct dwarf2_per_cu_quick_data
);
3398 slot
= htab_find_slot (sig_types_hash
, sig_type
, INSERT
);
3401 dwarf2_per_objfile
->all_type_units
[i
/ 3] = sig_type
;
3404 dwarf2_per_objfile
->signatured_types
= sig_types_hash
;
3407 /* Create the signatured type hash table from .debug_names. */
3410 create_signatured_type_table_from_debug_names
3411 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
3412 const mapped_debug_names
&map
,
3413 struct dwarf2_section_info
*section
,
3414 struct dwarf2_section_info
*abbrev_section
)
3416 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
3418 dwarf2_read_section (objfile
, section
);
3419 dwarf2_read_section (objfile
, abbrev_section
);
3421 dwarf2_per_objfile
->n_type_units
3422 = dwarf2_per_objfile
->n_allocated_type_units
3424 dwarf2_per_objfile
->all_type_units
3425 = XNEWVEC (struct signatured_type
*, dwarf2_per_objfile
->n_type_units
);
3427 htab_t sig_types_hash
= allocate_signatured_type_table (objfile
);
3429 for (uint32_t i
= 0; i
< map
.tu_count
; ++i
)
3431 struct signatured_type
*sig_type
;
3434 cu_offset type_offset_in_tu
;
3436 sect_offset sect_off
3437 = (sect_offset
) (extract_unsigned_integer
3438 (map
.tu_table_reordered
+ i
* map
.offset_size
,
3440 map
.dwarf5_byte_order
));
3442 comp_unit_head cu_header
;
3443 read_and_check_comp_unit_head (dwarf2_per_objfile
, &cu_header
, section
,
3445 section
->buffer
+ to_underlying (sect_off
),
3448 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
3449 struct signatured_type
);
3450 sig_type
->signature
= cu_header
.signature
;
3451 sig_type
->type_offset_in_tu
= cu_header
.type_cu_offset_in_tu
;
3452 sig_type
->per_cu
.is_debug_types
= 1;
3453 sig_type
->per_cu
.section
= section
;
3454 sig_type
->per_cu
.sect_off
= sect_off
;
3455 sig_type
->per_cu
.dwarf2_per_objfile
= dwarf2_per_objfile
;
3456 sig_type
->per_cu
.v
.quick
3457 = OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
3458 struct dwarf2_per_cu_quick_data
);
3460 slot
= htab_find_slot (sig_types_hash
, sig_type
, INSERT
);
3463 dwarf2_per_objfile
->all_type_units
[i
] = sig_type
;
3466 dwarf2_per_objfile
->signatured_types
= sig_types_hash
;
3469 /* Read the address map data from the mapped index, and use it to
3470 populate the objfile's psymtabs_addrmap. */
3473 create_addrmap_from_index (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
3474 struct mapped_index
*index
)
3476 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
3477 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3478 const gdb_byte
*iter
, *end
;
3479 struct addrmap
*mutable_map
;
3482 auto_obstack temp_obstack
;
3484 mutable_map
= addrmap_create_mutable (&temp_obstack
);
3486 iter
= index
->address_table
.data ();
3487 end
= iter
+ index
->address_table
.size ();
3489 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
3493 ULONGEST hi
, lo
, cu_index
;
3494 lo
= extract_unsigned_integer (iter
, 8, BFD_ENDIAN_LITTLE
);
3496 hi
= extract_unsigned_integer (iter
, 8, BFD_ENDIAN_LITTLE
);
3498 cu_index
= extract_unsigned_integer (iter
, 4, BFD_ENDIAN_LITTLE
);
3503 complaint (&symfile_complaints
,
3504 _(".gdb_index address table has invalid range (%s - %s)"),
3505 hex_string (lo
), hex_string (hi
));
3509 if (cu_index
>= dwarf2_per_objfile
->n_comp_units
)
3511 complaint (&symfile_complaints
,
3512 _(".gdb_index address table has invalid CU number %u"),
3513 (unsigned) cu_index
);
3517 lo
= gdbarch_adjust_dwarf2_addr (gdbarch
, lo
+ baseaddr
);
3518 hi
= gdbarch_adjust_dwarf2_addr (gdbarch
, hi
+ baseaddr
);
3519 addrmap_set_empty (mutable_map
, lo
, hi
- 1,
3520 dw2_get_cutu (dwarf2_per_objfile
, cu_index
));
3523 objfile
->psymtabs_addrmap
= addrmap_create_fixed (mutable_map
,
3524 &objfile
->objfile_obstack
);
3527 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3528 populate the objfile's psymtabs_addrmap. */
3531 create_addrmap_from_aranges (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
3532 struct dwarf2_section_info
*section
)
3534 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
3535 bfd
*abfd
= objfile
->obfd
;
3536 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3537 const CORE_ADDR baseaddr
= ANOFFSET (objfile
->section_offsets
,
3538 SECT_OFF_TEXT (objfile
));
3540 auto_obstack temp_obstack
;
3541 addrmap
*mutable_map
= addrmap_create_mutable (&temp_obstack
);
3543 std::unordered_map
<sect_offset
,
3544 dwarf2_per_cu_data
*,
3545 gdb::hash_enum
<sect_offset
>>
3546 debug_info_offset_to_per_cu
;
3547 for (int cui
= 0; cui
< dwarf2_per_objfile
->n_comp_units
; ++cui
)
3549 dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, cui
);
3550 const auto insertpair
3551 = debug_info_offset_to_per_cu
.emplace (per_cu
->sect_off
, per_cu
);
3552 if (!insertpair
.second
)
3554 warning (_("Section .debug_aranges in %s has duplicate "
3555 "debug_info_offset %u, ignoring .debug_aranges."),
3556 objfile_name (objfile
), to_underlying (per_cu
->sect_off
));
3561 dwarf2_read_section (objfile
, section
);
3563 const bfd_endian dwarf5_byte_order
= gdbarch_byte_order (gdbarch
);
3565 const gdb_byte
*addr
= section
->buffer
;
3567 while (addr
< section
->buffer
+ section
->size
)
3569 const gdb_byte
*const entry_addr
= addr
;
3570 unsigned int bytes_read
;
3572 const LONGEST entry_length
= read_initial_length (abfd
, addr
,
3576 const gdb_byte
*const entry_end
= addr
+ entry_length
;
3577 const bool dwarf5_is_dwarf64
= bytes_read
!= 4;
3578 const uint8_t offset_size
= dwarf5_is_dwarf64
? 8 : 4;
3579 if (addr
+ entry_length
> section
->buffer
+ section
->size
)
3581 warning (_("Section .debug_aranges in %s entry at offset %zu "
3582 "length %s exceeds section length %s, "
3583 "ignoring .debug_aranges."),
3584 objfile_name (objfile
), entry_addr
- section
->buffer
,
3585 plongest (bytes_read
+ entry_length
),
3586 pulongest (section
->size
));
3590 /* The version number. */
3591 const uint16_t version
= read_2_bytes (abfd
, addr
);
3595 warning (_("Section .debug_aranges in %s entry at offset %zu "
3596 "has unsupported version %d, ignoring .debug_aranges."),
3597 objfile_name (objfile
), entry_addr
- section
->buffer
,
3602 const uint64_t debug_info_offset
3603 = extract_unsigned_integer (addr
, offset_size
, dwarf5_byte_order
);
3604 addr
+= offset_size
;
3605 const auto per_cu_it
3606 = debug_info_offset_to_per_cu
.find (sect_offset (debug_info_offset
));
3607 if (per_cu_it
== debug_info_offset_to_per_cu
.cend ())
3609 warning (_("Section .debug_aranges in %s entry at offset %zu "
3610 "debug_info_offset %s does not exists, "
3611 "ignoring .debug_aranges."),
3612 objfile_name (objfile
), entry_addr
- section
->buffer
,
3613 pulongest (debug_info_offset
));
3616 dwarf2_per_cu_data
*const per_cu
= per_cu_it
->second
;
3618 const uint8_t address_size
= *addr
++;
3619 if (address_size
< 1 || address_size
> 8)
3621 warning (_("Section .debug_aranges in %s entry at offset %zu "
3622 "address_size %u is invalid, ignoring .debug_aranges."),
3623 objfile_name (objfile
), entry_addr
- section
->buffer
,
3628 const uint8_t segment_selector_size
= *addr
++;
3629 if (segment_selector_size
!= 0)
3631 warning (_("Section .debug_aranges in %s entry at offset %zu "
3632 "segment_selector_size %u is not supported, "
3633 "ignoring .debug_aranges."),
3634 objfile_name (objfile
), entry_addr
- section
->buffer
,
3635 segment_selector_size
);
3639 /* Must pad to an alignment boundary that is twice the address
3640 size. It is undocumented by the DWARF standard but GCC does
3642 for (size_t padding
= ((-(addr
- section
->buffer
))
3643 & (2 * address_size
- 1));
3644 padding
> 0; padding
--)
3647 warning (_("Section .debug_aranges in %s entry at offset %zu "
3648 "padding is not zero, ignoring .debug_aranges."),
3649 objfile_name (objfile
), entry_addr
- section
->buffer
);
3655 if (addr
+ 2 * address_size
> entry_end
)
3657 warning (_("Section .debug_aranges in %s entry at offset %zu "
3658 "address list is not properly terminated, "
3659 "ignoring .debug_aranges."),
3660 objfile_name (objfile
), entry_addr
- section
->buffer
);
3663 ULONGEST start
= extract_unsigned_integer (addr
, address_size
,
3665 addr
+= address_size
;
3666 ULONGEST length
= extract_unsigned_integer (addr
, address_size
,
3668 addr
+= address_size
;
3669 if (start
== 0 && length
== 0)
3671 if (start
== 0 && !dwarf2_per_objfile
->has_section_at_zero
)
3673 /* Symbol was eliminated due to a COMDAT group. */
3676 ULONGEST end
= start
+ length
;
3677 start
= gdbarch_adjust_dwarf2_addr (gdbarch
, start
+ baseaddr
);
3678 end
= gdbarch_adjust_dwarf2_addr (gdbarch
, end
+ baseaddr
);
3679 addrmap_set_empty (mutable_map
, start
, end
- 1, per_cu
);
3683 objfile
->psymtabs_addrmap
= addrmap_create_fixed (mutable_map
,
3684 &objfile
->objfile_obstack
);
3687 /* The hash function for strings in the mapped index. This is the same as
3688 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3689 implementation. This is necessary because the hash function is tied to the
3690 format of the mapped index file. The hash values do not have to match with
3693 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3696 mapped_index_string_hash (int index_version
, const void *p
)
3698 const unsigned char *str
= (const unsigned char *) p
;
3702 while ((c
= *str
++) != 0)
3704 if (index_version
>= 5)
3706 r
= r
* 67 + c
- 113;
3712 /* Find a slot in the mapped index INDEX for the object named NAME.
3713 If NAME is found, set *VEC_OUT to point to the CU vector in the
3714 constant pool and return true. If NAME cannot be found, return
3718 find_slot_in_mapped_hash (struct mapped_index
*index
, const char *name
,
3719 offset_type
**vec_out
)
3722 offset_type slot
, step
;
3723 int (*cmp
) (const char *, const char *);
3725 gdb::unique_xmalloc_ptr
<char> without_params
;
3726 if (current_language
->la_language
== language_cplus
3727 || current_language
->la_language
== language_fortran
3728 || current_language
->la_language
== language_d
)
3730 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3733 if (strchr (name
, '(') != NULL
)
3735 without_params
= cp_remove_params (name
);
3737 if (without_params
!= NULL
)
3738 name
= without_params
.get ();
3742 /* Index version 4 did not support case insensitive searches. But the
3743 indices for case insensitive languages are built in lowercase, therefore
3744 simulate our NAME being searched is also lowercased. */
3745 hash
= mapped_index_string_hash ((index
->version
== 4
3746 && case_sensitivity
== case_sensitive_off
3747 ? 5 : index
->version
),
3750 slot
= hash
& (index
->symbol_table
.size () - 1);
3751 step
= ((hash
* 17) & (index
->symbol_table
.size () - 1)) | 1;
3752 cmp
= (case_sensitivity
== case_sensitive_on
? strcmp
: strcasecmp
);
3758 const auto &bucket
= index
->symbol_table
[slot
];
3759 if (bucket
.name
== 0 && bucket
.vec
== 0)
3762 str
= index
->constant_pool
+ MAYBE_SWAP (bucket
.name
);
3763 if (!cmp (name
, str
))
3765 *vec_out
= (offset_type
*) (index
->constant_pool
3766 + MAYBE_SWAP (bucket
.vec
));
3770 slot
= (slot
+ step
) & (index
->symbol_table
.size () - 1);
3774 /* A helper function that reads the .gdb_index from SECTION and fills
3775 in MAP. FILENAME is the name of the file containing the section;
3776 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3777 ok to use deprecated sections.
3779 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3780 out parameters that are filled in with information about the CU and
3781 TU lists in the section.
3783 Returns 1 if all went well, 0 otherwise. */
3786 read_index_from_section (struct objfile
*objfile
,
3787 const char *filename
,
3789 struct dwarf2_section_info
*section
,
3790 struct mapped_index
*map
,
3791 const gdb_byte
**cu_list
,
3792 offset_type
*cu_list_elements
,
3793 const gdb_byte
**types_list
,
3794 offset_type
*types_list_elements
)
3796 const gdb_byte
*addr
;
3797 offset_type version
;
3798 offset_type
*metadata
;
3801 if (dwarf2_section_empty_p (section
))
3804 /* Older elfutils strip versions could keep the section in the main
3805 executable while splitting it for the separate debug info file. */
3806 if ((get_section_flags (section
) & SEC_HAS_CONTENTS
) == 0)
3809 dwarf2_read_section (objfile
, section
);
3811 addr
= section
->buffer
;
3812 /* Version check. */
3813 version
= MAYBE_SWAP (*(offset_type
*) addr
);
3814 /* Versions earlier than 3 emitted every copy of a psymbol. This
3815 causes the index to behave very poorly for certain requests. Version 3
3816 contained incomplete addrmap. So, it seems better to just ignore such
3820 static int warning_printed
= 0;
3821 if (!warning_printed
)
3823 warning (_("Skipping obsolete .gdb_index section in %s."),
3825 warning_printed
= 1;
3829 /* Index version 4 uses a different hash function than index version
3832 Versions earlier than 6 did not emit psymbols for inlined
3833 functions. Using these files will cause GDB not to be able to
3834 set breakpoints on inlined functions by name, so we ignore these
3835 indices unless the user has done
3836 "set use-deprecated-index-sections on". */
3837 if (version
< 6 && !deprecated_ok
)
3839 static int warning_printed
= 0;
3840 if (!warning_printed
)
3843 Skipping deprecated .gdb_index section in %s.\n\
3844 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3845 to use the section anyway."),
3847 warning_printed
= 1;
3851 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3852 of the TU (for symbols coming from TUs),
3853 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3854 Plus gold-generated indices can have duplicate entries for global symbols,
3855 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3856 These are just performance bugs, and we can't distinguish gdb-generated
3857 indices from gold-generated ones, so issue no warning here. */
3859 /* Indexes with higher version than the one supported by GDB may be no
3860 longer backward compatible. */
3864 map
->version
= version
;
3865 map
->total_size
= section
->size
;
3867 metadata
= (offset_type
*) (addr
+ sizeof (offset_type
));
3870 *cu_list
= addr
+ MAYBE_SWAP (metadata
[i
]);
3871 *cu_list_elements
= ((MAYBE_SWAP (metadata
[i
+ 1]) - MAYBE_SWAP (metadata
[i
]))
3875 *types_list
= addr
+ MAYBE_SWAP (metadata
[i
]);
3876 *types_list_elements
= ((MAYBE_SWAP (metadata
[i
+ 1])
3877 - MAYBE_SWAP (metadata
[i
]))
3881 const gdb_byte
*address_table
= addr
+ MAYBE_SWAP (metadata
[i
]);
3882 const gdb_byte
*address_table_end
= addr
+ MAYBE_SWAP (metadata
[i
+ 1]);
3884 = gdb::array_view
<const gdb_byte
> (address_table
, address_table_end
);
3887 const gdb_byte
*symbol_table
= addr
+ MAYBE_SWAP (metadata
[i
]);
3888 const gdb_byte
*symbol_table_end
= addr
+ MAYBE_SWAP (metadata
[i
+ 1]);
3890 = gdb::array_view
<mapped_index::symbol_table_slot
>
3891 ((mapped_index::symbol_table_slot
*) symbol_table
,
3892 (mapped_index::symbol_table_slot
*) symbol_table_end
);
3895 map
->constant_pool
= (char *) (addr
+ MAYBE_SWAP (metadata
[i
]));
3900 /* Read .gdb_index. If everything went ok, initialize the "quick"
3901 elements of all the CUs and return 1. Otherwise, return 0. */
3904 dwarf2_read_index (struct objfile
*objfile
)
3906 struct mapped_index local_map
, *map
;
3907 const gdb_byte
*cu_list
, *types_list
, *dwz_list
= NULL
;
3908 offset_type cu_list_elements
, types_list_elements
, dwz_list_elements
= 0;
3909 struct dwz_file
*dwz
;
3910 struct dwarf2_per_objfile
*dwarf2_per_objfile
3911 = get_dwarf2_per_objfile (objfile
);
3913 if (!read_index_from_section (objfile
, objfile_name (objfile
),
3914 use_deprecated_index_sections
,
3915 &dwarf2_per_objfile
->gdb_index
, &local_map
,
3916 &cu_list
, &cu_list_elements
,
3917 &types_list
, &types_list_elements
))
3920 /* Don't use the index if it's empty. */
3921 if (local_map
.symbol_table
.empty ())
3924 /* If there is a .dwz file, read it so we can get its CU list as
3926 dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
3929 struct mapped_index dwz_map
;
3930 const gdb_byte
*dwz_types_ignore
;
3931 offset_type dwz_types_elements_ignore
;
3933 if (!read_index_from_section (objfile
, bfd_get_filename (dwz
->dwz_bfd
),
3935 &dwz
->gdb_index
, &dwz_map
,
3936 &dwz_list
, &dwz_list_elements
,
3938 &dwz_types_elements_ignore
))
3940 warning (_("could not read '.gdb_index' section from %s; skipping"),
3941 bfd_get_filename (dwz
->dwz_bfd
));
3946 create_cus_from_index (objfile
, cu_list
, cu_list_elements
, dwz_list
,
3949 if (types_list_elements
)
3951 struct dwarf2_section_info
*section
;
3953 /* We can only handle a single .debug_types when we have an
3955 if (VEC_length (dwarf2_section_info_def
, dwarf2_per_objfile
->types
) != 1)
3958 section
= VEC_index (dwarf2_section_info_def
,
3959 dwarf2_per_objfile
->types
, 0);
3961 create_signatured_type_table_from_index (objfile
, section
, types_list
,
3962 types_list_elements
);
3965 create_addrmap_from_index (dwarf2_per_objfile
, &local_map
);
3967 map
= XOBNEW (&objfile
->objfile_obstack
, struct mapped_index
);
3968 map
= new (map
) mapped_index ();
3971 dwarf2_per_objfile
->index_table
= map
;
3972 dwarf2_per_objfile
->using_index
= 1;
3973 dwarf2_per_objfile
->quick_file_names_table
=
3974 create_quick_file_names_table (dwarf2_per_objfile
->n_comp_units
);
3979 /* die_reader_func for dw2_get_file_names. */
3982 dw2_get_file_names_reader (const struct die_reader_specs
*reader
,
3983 const gdb_byte
*info_ptr
,
3984 struct die_info
*comp_unit_die
,
3988 struct dwarf2_cu
*cu
= reader
->cu
;
3989 struct dwarf2_per_cu_data
*this_cu
= cu
->per_cu
;
3990 struct dwarf2_per_objfile
*dwarf2_per_objfile
3991 = cu
->per_cu
->dwarf2_per_objfile
;
3992 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
3993 struct dwarf2_per_cu_data
*lh_cu
;
3994 struct attribute
*attr
;
3997 struct quick_file_names
*qfn
;
3999 gdb_assert (! this_cu
->is_debug_types
);
4001 /* Our callers never want to match partial units -- instead they
4002 will match the enclosing full CU. */
4003 if (comp_unit_die
->tag
== DW_TAG_partial_unit
)
4005 this_cu
->v
.quick
->no_file_data
= 1;
4013 sect_offset line_offset
{};
4015 attr
= dwarf2_attr (comp_unit_die
, DW_AT_stmt_list
, cu
);
4018 struct quick_file_names find_entry
;
4020 line_offset
= (sect_offset
) DW_UNSND (attr
);
4022 /* We may have already read in this line header (TU line header sharing).
4023 If we have we're done. */
4024 find_entry
.hash
.dwo_unit
= cu
->dwo_unit
;
4025 find_entry
.hash
.line_sect_off
= line_offset
;
4026 slot
= htab_find_slot (dwarf2_per_objfile
->quick_file_names_table
,
4027 &find_entry
, INSERT
);
4030 lh_cu
->v
.quick
->file_names
= (struct quick_file_names
*) *slot
;
4034 lh
= dwarf_decode_line_header (line_offset
, cu
);
4038 lh_cu
->v
.quick
->no_file_data
= 1;
4042 qfn
= XOBNEW (&objfile
->objfile_obstack
, struct quick_file_names
);
4043 qfn
->hash
.dwo_unit
= cu
->dwo_unit
;
4044 qfn
->hash
.line_sect_off
= line_offset
;
4045 gdb_assert (slot
!= NULL
);
4048 file_and_directory fnd
= find_file_and_directory (comp_unit_die
, cu
);
4050 qfn
->num_file_names
= lh
->file_names
.size ();
4052 XOBNEWVEC (&objfile
->objfile_obstack
, const char *, lh
->file_names
.size ());
4053 for (i
= 0; i
< lh
->file_names
.size (); ++i
)
4054 qfn
->file_names
[i
] = file_full_name (i
+ 1, lh
.get (), fnd
.comp_dir
);
4055 qfn
->real_names
= NULL
;
4057 lh_cu
->v
.quick
->file_names
= qfn
;
4060 /* A helper for the "quick" functions which attempts to read the line
4061 table for THIS_CU. */
4063 static struct quick_file_names
*
4064 dw2_get_file_names (struct dwarf2_per_cu_data
*this_cu
)
4066 /* This should never be called for TUs. */
4067 gdb_assert (! this_cu
->is_debug_types
);
4068 /* Nor type unit groups. */
4069 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu
));
4071 if (this_cu
->v
.quick
->file_names
!= NULL
)
4072 return this_cu
->v
.quick
->file_names
;
4073 /* If we know there is no line data, no point in looking again. */
4074 if (this_cu
->v
.quick
->no_file_data
)
4077 init_cutu_and_read_dies_simple (this_cu
, dw2_get_file_names_reader
, NULL
);
4079 if (this_cu
->v
.quick
->no_file_data
)
4081 return this_cu
->v
.quick
->file_names
;
4084 /* A helper for the "quick" functions which computes and caches the
4085 real path for a given file name from the line table. */
4088 dw2_get_real_path (struct objfile
*objfile
,
4089 struct quick_file_names
*qfn
, int index
)
4091 if (qfn
->real_names
== NULL
)
4092 qfn
->real_names
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
4093 qfn
->num_file_names
, const char *);
4095 if (qfn
->real_names
[index
] == NULL
)
4096 qfn
->real_names
[index
] = gdb_realpath (qfn
->file_names
[index
]).release ();
4098 return qfn
->real_names
[index
];
4101 static struct symtab
*
4102 dw2_find_last_source_symtab (struct objfile
*objfile
)
4104 struct dwarf2_per_objfile
*dwarf2_per_objfile
4105 = get_dwarf2_per_objfile (objfile
);
4106 int index
= dwarf2_per_objfile
->n_comp_units
- 1;
4107 dwarf2_per_cu_data
*dwarf_cu
= dw2_get_cutu (dwarf2_per_objfile
, index
);
4108 compunit_symtab
*cust
= dw2_instantiate_symtab (dwarf_cu
);
4113 return compunit_primary_filetab (cust
);
4116 /* Traversal function for dw2_forget_cached_source_info. */
4119 dw2_free_cached_file_names (void **slot
, void *info
)
4121 struct quick_file_names
*file_data
= (struct quick_file_names
*) *slot
;
4123 if (file_data
->real_names
)
4127 for (i
= 0; i
< file_data
->num_file_names
; ++i
)
4129 xfree ((void*) file_data
->real_names
[i
]);
4130 file_data
->real_names
[i
] = NULL
;
4138 dw2_forget_cached_source_info (struct objfile
*objfile
)
4140 struct dwarf2_per_objfile
*dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile
);
4143 htab_traverse_noresize (dwarf2_per_objfile
->quick_file_names_table
,
4144 dw2_free_cached_file_names
, NULL
);
4147 /* Helper function for dw2_map_symtabs_matching_filename that expands
4148 the symtabs and calls the iterator. */
4151 dw2_map_expand_apply (struct objfile
*objfile
,
4152 struct dwarf2_per_cu_data
*per_cu
,
4153 const char *name
, const char *real_path
,
4154 gdb::function_view
<bool (symtab
*)> callback
)
4156 struct compunit_symtab
*last_made
= objfile
->compunit_symtabs
;
4158 /* Don't visit already-expanded CUs. */
4159 if (per_cu
->v
.quick
->compunit_symtab
)
4162 /* This may expand more than one symtab, and we want to iterate over
4164 dw2_instantiate_symtab (per_cu
);
4166 return iterate_over_some_symtabs (name
, real_path
, objfile
->compunit_symtabs
,
4167 last_made
, callback
);
4170 /* Implementation of the map_symtabs_matching_filename method. */
4173 dw2_map_symtabs_matching_filename
4174 (struct objfile
*objfile
, const char *name
, const char *real_path
,
4175 gdb::function_view
<bool (symtab
*)> callback
)
4178 const char *name_basename
= lbasename (name
);
4179 struct dwarf2_per_objfile
*dwarf2_per_objfile
4180 = get_dwarf2_per_objfile (objfile
);
4182 /* The rule is CUs specify all the files, including those used by
4183 any TU, so there's no need to scan TUs here. */
4185 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
4188 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cu (dwarf2_per_objfile
, i
);
4189 struct quick_file_names
*file_data
;
4191 /* We only need to look at symtabs not already expanded. */
4192 if (per_cu
->v
.quick
->compunit_symtab
)
4195 file_data
= dw2_get_file_names (per_cu
);
4196 if (file_data
== NULL
)
4199 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
4201 const char *this_name
= file_data
->file_names
[j
];
4202 const char *this_real_name
;
4204 if (compare_filenames_for_search (this_name
, name
))
4206 if (dw2_map_expand_apply (objfile
, per_cu
, name
, real_path
,
4212 /* Before we invoke realpath, which can get expensive when many
4213 files are involved, do a quick comparison of the basenames. */
4214 if (! basenames_may_differ
4215 && FILENAME_CMP (lbasename (this_name
), name_basename
) != 0)
4218 this_real_name
= dw2_get_real_path (objfile
, file_data
, j
);
4219 if (compare_filenames_for_search (this_real_name
, name
))
4221 if (dw2_map_expand_apply (objfile
, per_cu
, name
, real_path
,
4227 if (real_path
!= NULL
)
4229 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
4230 gdb_assert (IS_ABSOLUTE_PATH (name
));
4231 if (this_real_name
!= NULL
4232 && FILENAME_CMP (real_path
, this_real_name
) == 0)
4234 if (dw2_map_expand_apply (objfile
, per_cu
, name
, real_path
,
4246 /* Struct used to manage iterating over all CUs looking for a symbol. */
4248 struct dw2_symtab_iterator
4250 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4251 struct dwarf2_per_objfile
*dwarf2_per_objfile
;
4252 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4253 int want_specific_block
;
4254 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4255 Unused if !WANT_SPECIFIC_BLOCK. */
4257 /* The kind of symbol we're looking for. */
4259 /* The list of CUs from the index entry of the symbol,
4260 or NULL if not found. */
4262 /* The next element in VEC to look at. */
4264 /* The number of elements in VEC, or zero if there is no match. */
4266 /* Have we seen a global version of the symbol?
4267 If so we can ignore all further global instances.
4268 This is to work around gold/15646, inefficient gold-generated
4273 /* Initialize the index symtab iterator ITER.
4274 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4275 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4278 dw2_symtab_iter_init (struct dw2_symtab_iterator
*iter
,
4279 struct dwarf2_per_objfile
*dwarf2_per_objfile
,
4280 int want_specific_block
,
4285 iter
->dwarf2_per_objfile
= dwarf2_per_objfile
;
4286 iter
->want_specific_block
= want_specific_block
;
4287 iter
->block_index
= block_index
;
4288 iter
->domain
= domain
;
4290 iter
->global_seen
= 0;
4292 mapped_index
*index
= dwarf2_per_objfile
->index_table
;
4294 /* index is NULL if OBJF_READNOW. */
4295 if (index
!= NULL
&& find_slot_in_mapped_hash (index
, name
, &iter
->vec
))
4296 iter
->length
= MAYBE_SWAP (*iter
->vec
);
4304 /* Return the next matching CU or NULL if there are no more. */
4306 static struct dwarf2_per_cu_data
*
4307 dw2_symtab_iter_next (struct dw2_symtab_iterator
*iter
)
4309 struct dwarf2_per_objfile
*dwarf2_per_objfile
= iter
->dwarf2_per_objfile
;
4311 for ( ; iter
->next
< iter
->length
; ++iter
->next
)
4313 offset_type cu_index_and_attrs
=
4314 MAYBE_SWAP (iter
->vec
[iter
->next
+ 1]);
4315 offset_type cu_index
= GDB_INDEX_CU_VALUE (cu_index_and_attrs
);
4316 struct dwarf2_per_cu_data
*per_cu
;
4317 int want_static
= iter
->block_index
!= GLOBAL_BLOCK
;
4318 /* This value is only valid for index versions >= 7. */
4319 int is_static
= GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs
);
4320 gdb_index_symbol_kind symbol_kind
=
4321 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs
);
4322 /* Only check the symbol attributes if they're present.
4323 Indices prior to version 7 don't record them,
4324 and indices >= 7 may elide them for certain symbols
4325 (gold does this). */
4327 (dwarf2_per_objfile
->index_table
->version
>= 7
4328 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_NONE
);
4330 /* Don't crash on bad data. */
4331 if (cu_index
>= (dwarf2_per_objfile
->n_comp_units
4332 + dwarf2_per_objfile
->n_type_units
))
4334 complaint (&symfile_complaints
,
4335 _(".gdb_index entry has bad CU index"
4337 objfile_name (dwarf2_per_objfile
->objfile
));
4341 per_cu
= dw2_get_cutu (dwarf2_per_objfile
, cu_index
);
4343 /* Skip if already read in. */
4344 if (per_cu
->v
.quick
->compunit_symtab
)
4347 /* Check static vs global. */
4350 if (iter
->want_specific_block
4351 && want_static
!= is_static
)
4353 /* Work around gold/15646. */
4354 if (!is_static
&& iter
->global_seen
)
4357 iter
->global_seen
= 1;
4360 /* Only check the symbol's kind if it has one. */
4363 switch (iter
->domain
)
4366 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_VARIABLE
4367 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_FUNCTION
4368 /* Some types are also in VAR_DOMAIN. */
4369 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_TYPE
)
4373 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_TYPE
)
4377 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_OTHER
)
4392 static struct compunit_symtab
*
4393 dw2_lookup_symbol (struct objfile
*objfile
, int block_index
,
4394 const char *name
, domain_enum domain
)
4396 struct compunit_symtab
*stab_best
= NULL
;
4397 struct dwarf2_per_objfile
*dwarf2_per_objfile
4398 = get_dwarf2_per_objfile (objfile
);
4400 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
4402 struct dw2_symtab_iterator iter
;
4403 struct dwarf2_per_cu_data
*per_cu
;
4405 dw2_symtab_iter_init (&iter
, dwarf2_per_objfile
, 1, block_index
, domain
, name
);
4407 while ((per_cu
= dw2_symtab_iter_next (&iter
)) != NULL
)
4409 struct symbol
*sym
, *with_opaque
= NULL
;
4410 struct compunit_symtab
*stab
= dw2_instantiate_symtab (per_cu
);
4411 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (stab
);
4412 struct block
*block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
4414 sym
= block_find_symbol (block
, name
, domain
,
4415 block_find_non_opaque_type_preferred
,
4418 /* Some caution must be observed with overloaded functions
4419 and methods, since the index will not contain any overload
4420 information (but NAME might contain it). */
4423 && SYMBOL_MATCHES_SEARCH_NAME (sym
, lookup_name
))
4425 if (with_opaque
!= NULL
4426 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque
, lookup_name
))
4429 /* Keep looking through other CUs. */
4436 dw2_print_stats (struct objfile
*objfile
)
4438 struct dwarf2_per_objfile
*dwarf2_per_objfile
4439 = get_dwarf2_per_objfile (objfile
);
4440 int total
= dwarf2_per_objfile
->n_comp_units
+ dwarf2_per_objfile
->n_type_units
;
4443 for (int i
= 0; i
< total
; ++i
)
4445 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, i
);
4447 if (!per_cu
->v
.quick
->compunit_symtab
)
4450 printf_filtered (_(" Number of read CUs: %d\n"), total
- count
);
4451 printf_filtered (_(" Number of unread CUs: %d\n"), count
);
4454 /* This dumps minimal information about the index.
4455 It is called via "mt print objfiles".
4456 One use is to verify .gdb_index has been loaded by the
4457 gdb.dwarf2/gdb-index.exp testcase. */
4460 dw2_dump (struct objfile
*objfile
)
4462 struct dwarf2_per_objfile
*dwarf2_per_objfile
4463 = get_dwarf2_per_objfile (objfile
);
4465 gdb_assert (dwarf2_per_objfile
->using_index
);
4466 printf_filtered (".gdb_index:");
4467 if (dwarf2_per_objfile
->index_table
!= NULL
)
4469 printf_filtered (" version %d\n",
4470 dwarf2_per_objfile
->index_table
->version
);
4473 printf_filtered (" faked for \"readnow\"\n");
4474 printf_filtered ("\n");
4478 dw2_relocate (struct objfile
*objfile
,
4479 const struct section_offsets
*new_offsets
,
4480 const struct section_offsets
*delta
)
4482 /* There's nothing to relocate here. */
4486 dw2_expand_symtabs_for_function (struct objfile
*objfile
,
4487 const char *func_name
)
4489 struct dwarf2_per_objfile
*dwarf2_per_objfile
4490 = get_dwarf2_per_objfile (objfile
);
4492 struct dw2_symtab_iterator iter
;
4493 struct dwarf2_per_cu_data
*per_cu
;
4495 /* Note: It doesn't matter what we pass for block_index here. */
4496 dw2_symtab_iter_init (&iter
, dwarf2_per_objfile
, 0, GLOBAL_BLOCK
, VAR_DOMAIN
,
4499 while ((per_cu
= dw2_symtab_iter_next (&iter
)) != NULL
)
4500 dw2_instantiate_symtab (per_cu
);
4505 dw2_expand_all_symtabs (struct objfile
*objfile
)
4507 struct dwarf2_per_objfile
*dwarf2_per_objfile
4508 = get_dwarf2_per_objfile (objfile
);
4509 int total_units
= (dwarf2_per_objfile
->n_comp_units
4510 + dwarf2_per_objfile
->n_type_units
);
4512 for (int i
= 0; i
< total_units
; ++i
)
4514 struct dwarf2_per_cu_data
*per_cu
4515 = dw2_get_cutu (dwarf2_per_objfile
, i
);
4517 dw2_instantiate_symtab (per_cu
);
4522 dw2_expand_symtabs_with_fullname (struct objfile
*objfile
,
4523 const char *fullname
)
4525 struct dwarf2_per_objfile
*dwarf2_per_objfile
4526 = get_dwarf2_per_objfile (objfile
);
4528 /* We don't need to consider type units here.
4529 This is only called for examining code, e.g. expand_line_sal.
4530 There can be an order of magnitude (or more) more type units
4531 than comp units, and we avoid them if we can. */
4533 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
4536 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, i
);
4537 struct quick_file_names
*file_data
;
4539 /* We only need to look at symtabs not already expanded. */
4540 if (per_cu
->v
.quick
->compunit_symtab
)
4543 file_data
= dw2_get_file_names (per_cu
);
4544 if (file_data
== NULL
)
4547 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
4549 const char *this_fullname
= file_data
->file_names
[j
];
4551 if (filename_cmp (this_fullname
, fullname
) == 0)
4553 dw2_instantiate_symtab (per_cu
);
4561 dw2_map_matching_symbols (struct objfile
*objfile
,
4562 const char * name
, domain_enum domain
,
4564 int (*callback
) (struct block
*,
4565 struct symbol
*, void *),
4566 void *data
, symbol_name_match_type match
,
4567 symbol_compare_ftype
*ordered_compare
)
4569 /* Currently unimplemented; used for Ada. The function can be called if the
4570 current language is Ada for a non-Ada objfile using GNU index. As Ada
4571 does not look for non-Ada symbols this function should just return. */
4574 /* Symbol name matcher for .gdb_index names.
4576 Symbol names in .gdb_index have a few particularities:
4578 - There's no indication of which is the language of each symbol.
4580 Since each language has its own symbol name matching algorithm,
4581 and we don't know which language is the right one, we must match
4582 each symbol against all languages. This would be a potential
4583 performance problem if it were not mitigated by the
4584 mapped_index::name_components lookup table, which significantly
4585 reduces the number of times we need to call into this matcher,
4586 making it a non-issue.
4588 - Symbol names in the index have no overload (parameter)
4589 information. I.e., in C++, "foo(int)" and "foo(long)" both
4590 appear as "foo" in the index, for example.
4592 This means that the lookup names passed to the symbol name
4593 matcher functions must have no parameter information either
4594 because (e.g.) symbol search name "foo" does not match
4595 lookup-name "foo(int)" [while swapping search name for lookup
4598 class gdb_index_symbol_name_matcher
4601 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4602 gdb_index_symbol_name_matcher (const lookup_name_info
&lookup_name
);
4604 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4605 Returns true if any matcher matches. */
4606 bool matches (const char *symbol_name
);
4609 /* A reference to the lookup name we're matching against. */
4610 const lookup_name_info
&m_lookup_name
;
4612 /* A vector holding all the different symbol name matchers, for all
4614 std::vector
<symbol_name_matcher_ftype
*> m_symbol_name_matcher_funcs
;
4617 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4618 (const lookup_name_info
&lookup_name
)
4619 : m_lookup_name (lookup_name
)
4621 /* Prepare the vector of comparison functions upfront, to avoid
4622 doing the same work for each symbol. Care is taken to avoid
4623 matching with the same matcher more than once if/when multiple
4624 languages use the same matcher function. */
4625 auto &matchers
= m_symbol_name_matcher_funcs
;
4626 matchers
.reserve (nr_languages
);
4628 matchers
.push_back (default_symbol_name_matcher
);
4630 for (int i
= 0; i
< nr_languages
; i
++)
4632 const language_defn
*lang
= language_def ((enum language
) i
);
4633 symbol_name_matcher_ftype
*name_matcher
4634 = get_symbol_name_matcher (lang
, m_lookup_name
);
4636 /* Don't insert the same comparison routine more than once.
4637 Note that we do this linear walk instead of a seemingly
4638 cheaper sorted insert, or use a std::set or something like
4639 that, because relative order of function addresses is not
4640 stable. This is not a problem in practice because the number
4641 of supported languages is low, and the cost here is tiny
4642 compared to the number of searches we'll do afterwards using
4644 if (name_matcher
!= default_symbol_name_matcher
4645 && (std::find (matchers
.begin (), matchers
.end (), name_matcher
)
4646 == matchers
.end ()))
4647 matchers
.push_back (name_matcher
);
4652 gdb_index_symbol_name_matcher::matches (const char *symbol_name
)
4654 for (auto matches_name
: m_symbol_name_matcher_funcs
)
4655 if (matches_name (symbol_name
, m_lookup_name
, NULL
))
4661 /* Starting from a search name, return the string that finds the upper
4662 bound of all strings that start with SEARCH_NAME in a sorted name
4663 list. Returns the empty string to indicate that the upper bound is
4664 the end of the list. */
4667 make_sort_after_prefix_name (const char *search_name
)
4669 /* When looking to complete "func", we find the upper bound of all
4670 symbols that start with "func" by looking for where we'd insert
4671 the closest string that would follow "func" in lexicographical
4672 order. Usually, that's "func"-with-last-character-incremented,
4673 i.e. "fund". Mind non-ASCII characters, though. Usually those
4674 will be UTF-8 multi-byte sequences, but we can't be certain.
4675 Especially mind the 0xff character, which is a valid character in
4676 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4677 rule out compilers allowing it in identifiers. Note that
4678 conveniently, strcmp/strcasecmp are specified to compare
4679 characters interpreted as unsigned char. So what we do is treat
4680 the whole string as a base 256 number composed of a sequence of
4681 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4682 to 0, and carries 1 to the following more-significant position.
4683 If the very first character in SEARCH_NAME ends up incremented
4684 and carries/overflows, then the upper bound is the end of the
4685 list. The string after the empty string is also the empty
4688 Some examples of this operation:
4690 SEARCH_NAME => "+1" RESULT
4694 "\xff" "a" "\xff" => "\xff" "b"
4699 Then, with these symbols for example:
4705 completing "func" looks for symbols between "func" and
4706 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4707 which finds "func" and "func1", but not "fund".
4711 funcÿ (Latin1 'ÿ' [0xff])
4715 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4716 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4720 ÿÿ (Latin1 'ÿ' [0xff])
4723 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4724 the end of the list.
4726 std::string after
= search_name
;
4727 while (!after
.empty () && (unsigned char) after
.back () == 0xff)
4729 if (!after
.empty ())
4730 after
.back () = (unsigned char) after
.back () + 1;
4734 /* See declaration. */
4736 std::pair
<std::vector
<name_component
>::const_iterator
,
4737 std::vector
<name_component
>::const_iterator
>
4738 mapped_index_base::find_name_components_bounds
4739 (const lookup_name_info
&lookup_name_without_params
) const
4742 = this->name_components_casing
== case_sensitive_on
? strcmp
: strcasecmp
;
4745 = lookup_name_without_params
.cplus ().lookup_name ().c_str ();
4747 /* Comparison function object for lower_bound that matches against a
4748 given symbol name. */
4749 auto lookup_compare_lower
= [&] (const name_component
&elem
,
4752 const char *elem_qualified
= this->symbol_name_at (elem
.idx
);
4753 const char *elem_name
= elem_qualified
+ elem
.name_offset
;
4754 return name_cmp (elem_name
, name
) < 0;
4757 /* Comparison function object for upper_bound that matches against a
4758 given symbol name. */
4759 auto lookup_compare_upper
= [&] (const char *name
,
4760 const name_component
&elem
)
4762 const char *elem_qualified
= this->symbol_name_at (elem
.idx
);
4763 const char *elem_name
= elem_qualified
+ elem
.name_offset
;
4764 return name_cmp (name
, elem_name
) < 0;
4767 auto begin
= this->name_components
.begin ();
4768 auto end
= this->name_components
.end ();
4770 /* Find the lower bound. */
4773 if (lookup_name_without_params
.completion_mode () && cplus
[0] == '\0')
4776 return std::lower_bound (begin
, end
, cplus
, lookup_compare_lower
);
4779 /* Find the upper bound. */
4782 if (lookup_name_without_params
.completion_mode ())
4784 /* In completion mode, we want UPPER to point past all
4785 symbols names that have the same prefix. I.e., with
4786 these symbols, and completing "func":
4788 function << lower bound
4790 other_function << upper bound
4792 We find the upper bound by looking for the insertion
4793 point of "func"-with-last-character-incremented,
4795 std::string after
= make_sort_after_prefix_name (cplus
);
4798 return std::lower_bound (lower
, end
, after
.c_str (),
4799 lookup_compare_lower
);
4802 return std::upper_bound (lower
, end
, cplus
, lookup_compare_upper
);
4805 return {lower
, upper
};
4808 /* See declaration. */
4811 mapped_index_base::build_name_components ()
4813 if (!this->name_components
.empty ())
4816 this->name_components_casing
= case_sensitivity
;
4818 = this->name_components_casing
== case_sensitive_on
? strcmp
: strcasecmp
;
4820 /* The code below only knows how to break apart components of C++
4821 symbol names (and other languages that use '::' as
4822 namespace/module separator). If we add support for wild matching
4823 to some language that uses some other operator (E.g., Ada, Go and
4824 D use '.'), then we'll need to try splitting the symbol name
4825 according to that language too. Note that Ada does support wild
4826 matching, but doesn't currently support .gdb_index. */
4827 auto count
= this->symbol_name_count ();
4828 for (offset_type idx
= 0; idx
< count
; idx
++)
4830 if (this->symbol_name_slot_invalid (idx
))
4833 const char *name
= this->symbol_name_at (idx
);
4835 /* Add each name component to the name component table. */
4836 unsigned int previous_len
= 0;
4837 for (unsigned int current_len
= cp_find_first_component (name
);
4838 name
[current_len
] != '\0';
4839 current_len
+= cp_find_first_component (name
+ current_len
))
4841 gdb_assert (name
[current_len
] == ':');
4842 this->name_components
.push_back ({previous_len
, idx
});
4843 /* Skip the '::'. */
4845 previous_len
= current_len
;
4847 this->name_components
.push_back ({previous_len
, idx
});
4850 /* Sort name_components elements by name. */
4851 auto name_comp_compare
= [&] (const name_component
&left
,
4852 const name_component
&right
)
4854 const char *left_qualified
= this->symbol_name_at (left
.idx
);
4855 const char *right_qualified
= this->symbol_name_at (right
.idx
);
4857 const char *left_name
= left_qualified
+ left
.name_offset
;
4858 const char *right_name
= right_qualified
+ right
.name_offset
;
4860 return name_cmp (left_name
, right_name
) < 0;
4863 std::sort (this->name_components
.begin (),
4864 this->name_components
.end (),
4868 /* Helper for dw2_expand_symtabs_matching that works with a
4869 mapped_index_base instead of the containing objfile. This is split
4870 to a separate function in order to be able to unit test the
4871 name_components matching using a mock mapped_index_base. For each
4872 symbol name that matches, calls MATCH_CALLBACK, passing it the
4873 symbol's index in the mapped_index_base symbol table. */
4876 dw2_expand_symtabs_matching_symbol
4877 (mapped_index_base
&index
,
4878 const lookup_name_info
&lookup_name_in
,
4879 gdb::function_view
<expand_symtabs_symbol_matcher_ftype
> symbol_matcher
,
4880 enum search_domain kind
,
4881 gdb::function_view
<void (offset_type
)> match_callback
)
4883 lookup_name_info lookup_name_without_params
4884 = lookup_name_in
.make_ignore_params ();
4885 gdb_index_symbol_name_matcher lookup_name_matcher
4886 (lookup_name_without_params
);
4888 /* Build the symbol name component sorted vector, if we haven't
4890 index
.build_name_components ();
4892 auto bounds
= index
.find_name_components_bounds (lookup_name_without_params
);
4894 /* Now for each symbol name in range, check to see if we have a name
4895 match, and if so, call the MATCH_CALLBACK callback. */
4897 /* The same symbol may appear more than once in the range though.
4898 E.g., if we're looking for symbols that complete "w", and we have
4899 a symbol named "w1::w2", we'll find the two name components for
4900 that same symbol in the range. To be sure we only call the
4901 callback once per symbol, we first collect the symbol name
4902 indexes that matched in a temporary vector and ignore
4904 std::vector
<offset_type
> matches
;
4905 matches
.reserve (std::distance (bounds
.first
, bounds
.second
));
4907 for (; bounds
.first
!= bounds
.second
; ++bounds
.first
)
4909 const char *qualified
= index
.symbol_name_at (bounds
.first
->idx
);
4911 if (!lookup_name_matcher
.matches (qualified
)
4912 || (symbol_matcher
!= NULL
&& !symbol_matcher (qualified
)))
4915 matches
.push_back (bounds
.first
->idx
);
4918 std::sort (matches
.begin (), matches
.end ());
4920 /* Finally call the callback, once per match. */
4922 for (offset_type idx
: matches
)
4926 match_callback (idx
);
4931 /* Above we use a type wider than idx's for 'prev', since 0 and
4932 (offset_type)-1 are both possible values. */
4933 static_assert (sizeof (prev
) > sizeof (offset_type
), "");
4938 namespace selftests
{ namespace dw2_expand_symtabs_matching
{
4940 /* A mock .gdb_index/.debug_names-like name index table, enough to
4941 exercise dw2_expand_symtabs_matching_symbol, which works with the
4942 mapped_index_base interface. Builds an index from the symbol list
4943 passed as parameter to the constructor. */
4944 class mock_mapped_index
: public mapped_index_base
4947 mock_mapped_index (gdb::array_view
<const char *> symbols
)
4948 : m_symbol_table (symbols
)
4951 DISABLE_COPY_AND_ASSIGN (mock_mapped_index
);
4953 /* Return the number of names in the symbol table. */
4954 virtual size_t symbol_name_count () const
4956 return m_symbol_table
.size ();
4959 /* Get the name of the symbol at IDX in the symbol table. */
4960 virtual const char *symbol_name_at (offset_type idx
) const
4962 return m_symbol_table
[idx
];
4966 gdb::array_view
<const char *> m_symbol_table
;
4969 /* Convenience function that converts a NULL pointer to a "<null>"
4970 string, to pass to print routines. */
4973 string_or_null (const char *str
)
4975 return str
!= NULL
? str
: "<null>";
4978 /* Check if a lookup_name_info built from
4979 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4980 index. EXPECTED_LIST is the list of expected matches, in expected
4981 matching order. If no match expected, then an empty list is
4982 specified. Returns true on success. On failure prints a warning
4983 indicating the file:line that failed, and returns false. */
4986 check_match (const char *file
, int line
,
4987 mock_mapped_index
&mock_index
,
4988 const char *name
, symbol_name_match_type match_type
,
4989 bool completion_mode
,
4990 std::initializer_list
<const char *> expected_list
)
4992 lookup_name_info
lookup_name (name
, match_type
, completion_mode
);
4994 bool matched
= true;
4996 auto mismatch
= [&] (const char *expected_str
,
4999 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
5000 "expected=\"%s\", got=\"%s\"\n"),
5002 (match_type
== symbol_name_match_type::FULL
5004 name
, string_or_null (expected_str
), string_or_null (got
));
5008 auto expected_it
= expected_list
.begin ();
5009 auto expected_end
= expected_list
.end ();
5011 dw2_expand_symtabs_matching_symbol (mock_index
, lookup_name
,
5013 [&] (offset_type idx
)
5015 const char *matched_name
= mock_index
.symbol_name_at (idx
);
5016 const char *expected_str
5017 = expected_it
== expected_end
? NULL
: *expected_it
++;
5019 if (expected_str
== NULL
|| strcmp (expected_str
, matched_name
) != 0)
5020 mismatch (expected_str
, matched_name
);
5023 const char *expected_str
5024 = expected_it
== expected_end
? NULL
: *expected_it
++;
5025 if (expected_str
!= NULL
)
5026 mismatch (expected_str
, NULL
);
5031 /* The symbols added to the mock mapped_index for testing (in
5033 static const char *test_symbols
[] = {
5042 "ns2::tmpl<int>::foo2",
5043 "(anonymous namespace)::A::B::C",
5045 /* These are used to check that the increment-last-char in the
5046 matching algorithm for completion doesn't match "t1_fund" when
5047 completing "t1_func". */
5053 /* A UTF-8 name with multi-byte sequences to make sure that
5054 cp-name-parser understands this as a single identifier ("função"
5055 is "function" in PT). */
5058 /* \377 (0xff) is Latin1 'ÿ'. */
5061 /* \377 (0xff) is Latin1 'ÿ'. */
5065 /* A name with all sorts of complications. Starts with "z" to make
5066 it easier for the completion tests below. */
5067 #define Z_SYM_NAME \
5068 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5069 "::tuple<(anonymous namespace)::ui*, " \
5070 "std::default_delete<(anonymous namespace)::ui>, void>"
5075 /* Returns true if the mapped_index_base::find_name_component_bounds
5076 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5077 in completion mode. */
5080 check_find_bounds_finds (mapped_index_base
&index
,
5081 const char *search_name
,
5082 gdb::array_view
<const char *> expected_syms
)
5084 lookup_name_info
lookup_name (search_name
,
5085 symbol_name_match_type::FULL
, true);
5087 auto bounds
= index
.find_name_components_bounds (lookup_name
);
5089 size_t distance
= std::distance (bounds
.first
, bounds
.second
);
5090 if (distance
!= expected_syms
.size ())
5093 for (size_t exp_elem
= 0; exp_elem
< distance
; exp_elem
++)
5095 auto nc_elem
= bounds
.first
+ exp_elem
;
5096 const char *qualified
= index
.symbol_name_at (nc_elem
->idx
);
5097 if (strcmp (qualified
, expected_syms
[exp_elem
]) != 0)
5104 /* Test the lower-level mapped_index::find_name_component_bounds
5108 test_mapped_index_find_name_component_bounds ()
5110 mock_mapped_index
mock_index (test_symbols
);
5112 mock_index
.build_name_components ();
5114 /* Test the lower-level mapped_index::find_name_component_bounds
5115 method in completion mode. */
5117 static const char *expected_syms
[] = {
5122 SELF_CHECK (check_find_bounds_finds (mock_index
,
5123 "t1_func", expected_syms
));
5126 /* Check that the increment-last-char in the name matching algorithm
5127 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5129 static const char *expected_syms1
[] = {
5133 SELF_CHECK (check_find_bounds_finds (mock_index
,
5134 "\377", expected_syms1
));
5136 static const char *expected_syms2
[] = {
5139 SELF_CHECK (check_find_bounds_finds (mock_index
,
5140 "\377\377", expected_syms2
));
5144 /* Test dw2_expand_symtabs_matching_symbol. */
5147 test_dw2_expand_symtabs_matching_symbol ()
5149 mock_mapped_index
mock_index (test_symbols
);
5151 /* We let all tests run until the end even if some fails, for debug
5153 bool any_mismatch
= false;
5155 /* Create the expected symbols list (an initializer_list). Needed
5156 because lists have commas, and we need to pass them to CHECK,
5157 which is a macro. */
5158 #define EXPECT(...) { __VA_ARGS__ }
5160 /* Wrapper for check_match that passes down the current
5161 __FILE__/__LINE__. */
5162 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5163 any_mismatch |= !check_match (__FILE__, __LINE__, \
5165 NAME, MATCH_TYPE, COMPLETION_MODE, \
5168 /* Identity checks. */
5169 for (const char *sym
: test_symbols
)
5171 /* Should be able to match all existing symbols. */
5172 CHECK_MATCH (sym
, symbol_name_match_type::FULL
, false,
5175 /* Should be able to match all existing symbols with
5177 std::string with_params
= std::string (sym
) + "(int)";
5178 CHECK_MATCH (with_params
.c_str (), symbol_name_match_type::FULL
, false,
5181 /* Should be able to match all existing symbols with
5182 parameters and qualifiers. */
5183 with_params
= std::string (sym
) + " ( int ) const";
5184 CHECK_MATCH (with_params
.c_str (), symbol_name_match_type::FULL
, false,
5187 /* This should really find sym, but cp-name-parser.y doesn't
5188 know about lvalue/rvalue qualifiers yet. */
5189 with_params
= std::string (sym
) + " ( int ) &&";
5190 CHECK_MATCH (with_params
.c_str (), symbol_name_match_type::FULL
, false,
5194 /* Check that the name matching algorithm for completion doesn't get
5195 confused with Latin1 'ÿ' / 0xff. */
5197 static const char str
[] = "\377";
5198 CHECK_MATCH (str
, symbol_name_match_type::FULL
, true,
5199 EXPECT ("\377", "\377\377123"));
5202 /* Check that the increment-last-char in the matching algorithm for
5203 completion doesn't match "t1_fund" when completing "t1_func". */
5205 static const char str
[] = "t1_func";
5206 CHECK_MATCH (str
, symbol_name_match_type::FULL
, true,
5207 EXPECT ("t1_func", "t1_func1"));
5210 /* Check that completion mode works at each prefix of the expected
5213 static const char str
[] = "function(int)";
5214 size_t len
= strlen (str
);
5217 for (size_t i
= 1; i
< len
; i
++)
5219 lookup
.assign (str
, i
);
5220 CHECK_MATCH (lookup
.c_str (), symbol_name_match_type::FULL
, true,
5221 EXPECT ("function"));
5225 /* While "w" is a prefix of both components, the match function
5226 should still only be called once. */
5228 CHECK_MATCH ("w", symbol_name_match_type::FULL
, true,
5230 CHECK_MATCH ("w", symbol_name_match_type::WILD
, true,
5234 /* Same, with a "complicated" symbol. */
5236 static const char str
[] = Z_SYM_NAME
;
5237 size_t len
= strlen (str
);
5240 for (size_t i
= 1; i
< len
; i
++)
5242 lookup
.assign (str
, i
);
5243 CHECK_MATCH (lookup
.c_str (), symbol_name_match_type::FULL
, true,
5244 EXPECT (Z_SYM_NAME
));
5248 /* In FULL mode, an incomplete symbol doesn't match. */
5250 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL
, false,
5254 /* A complete symbol with parameters matches any overload, since the
5255 index has no overload info. */
5257 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL
, true,
5258 EXPECT ("std::zfunction", "std::zfunction2"));
5259 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD
, true,
5260 EXPECT ("std::zfunction", "std::zfunction2"));
5261 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD
, true,
5262 EXPECT ("std::zfunction", "std::zfunction2"));
5265 /* Check that whitespace is ignored appropriately. A symbol with a
5266 template argument list. */
5268 static const char expected
[] = "ns::foo<int>";
5269 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL
, false,
5271 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD
, false,
5275 /* Check that whitespace is ignored appropriately. A symbol with a
5276 template argument list that includes a pointer. */
5278 static const char expected
[] = "ns::foo<char*>";
5279 /* Try both completion and non-completion modes. */
5280 static const bool completion_mode
[2] = {false, true};
5281 for (size_t i
= 0; i
< 2; i
++)
5283 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL
,
5284 completion_mode
[i
], EXPECT (expected
));
5285 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD
,
5286 completion_mode
[i
], EXPECT (expected
));
5288 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL
,
5289 completion_mode
[i
], EXPECT (expected
));
5290 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD
,
5291 completion_mode
[i
], EXPECT (expected
));
5296 /* Check method qualifiers are ignored. */
5297 static const char expected
[] = "ns::foo<char*>";
5298 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5299 symbol_name_match_type::FULL
, true, EXPECT (expected
));
5300 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5301 symbol_name_match_type::FULL
, true, EXPECT (expected
));
5302 CHECK_MATCH ("foo < char * > ( int ) const",
5303 symbol_name_match_type::WILD
, true, EXPECT (expected
));
5304 CHECK_MATCH ("foo < char * > ( int ) &&",
5305 symbol_name_match_type::WILD
, true, EXPECT (expected
));
5308 /* Test lookup names that don't match anything. */
5310 CHECK_MATCH ("bar2", symbol_name_match_type::WILD
, false,
5313 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL
, false,
5317 /* Some wild matching tests, exercising "(anonymous namespace)",
5318 which should not be confused with a parameter list. */
5320 static const char *syms
[] = {
5324 "A :: B :: C ( int )",
5329 for (const char *s
: syms
)
5331 CHECK_MATCH (s
, symbol_name_match_type::WILD
, false,
5332 EXPECT ("(anonymous namespace)::A::B::C"));
5337 static const char expected
[] = "ns2::tmpl<int>::foo2";
5338 CHECK_MATCH ("tmp", symbol_name_match_type::WILD
, true,
5340 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD
, true,
5344 SELF_CHECK (!any_mismatch
);
5353 test_mapped_index_find_name_component_bounds ();
5354 test_dw2_expand_symtabs_matching_symbol ();
5357 }} // namespace selftests::dw2_expand_symtabs_matching
5359 #endif /* GDB_SELF_TEST */
5361 /* If FILE_MATCHER is NULL or if PER_CU has
5362 dwarf2_per_cu_quick_data::MARK set (see
5363 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5364 EXPANSION_NOTIFY on it. */
5367 dw2_expand_symtabs_matching_one
5368 (struct dwarf2_per_cu_data
*per_cu
,
5369 gdb::function_view
<expand_symtabs_file_matcher_ftype
> file_matcher
,
5370 gdb::function_view
<expand_symtabs_exp_notify_ftype
> expansion_notify
)
5372 if (file_matcher
== NULL
|| per_cu
->v
.quick
->mark
)
5374 bool symtab_was_null
5375 = (per_cu
->v
.quick
->compunit_symtab
== NULL
);
5377 dw2_instantiate_symtab (per_cu
);
5379 if (expansion_notify
!= NULL
5381 && per_cu
->v
.quick
->compunit_symtab
!= NULL
)
5382 expansion_notify (per_cu
->v
.quick
->compunit_symtab
);
5386 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5387 matched, to expand corresponding CUs that were marked. IDX is the
5388 index of the symbol name that matched. */
5391 dw2_expand_marked_cus
5392 (struct dwarf2_per_objfile
*dwarf2_per_objfile
, offset_type idx
,
5393 gdb::function_view
<expand_symtabs_file_matcher_ftype
> file_matcher
,
5394 gdb::function_view
<expand_symtabs_exp_notify_ftype
> expansion_notify
,
5397 offset_type
*vec
, vec_len
, vec_idx
;
5398 bool global_seen
= false;
5399 mapped_index
&index
= *dwarf2_per_objfile
->index_table
;
5401 vec
= (offset_type
*) (index
.constant_pool
5402 + MAYBE_SWAP (index
.symbol_table
[idx
].vec
));
5403 vec_len
= MAYBE_SWAP (vec
[0]);
5404 for (vec_idx
= 0; vec_idx
< vec_len
; ++vec_idx
)
5406 struct dwarf2_per_cu_data
*per_cu
;
5407 offset_type cu_index_and_attrs
= MAYBE_SWAP (vec
[vec_idx
+ 1]);
5408 /* This value is only valid for index versions >= 7. */
5409 int is_static
= GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs
);
5410 gdb_index_symbol_kind symbol_kind
=
5411 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs
);
5412 int cu_index
= GDB_INDEX_CU_VALUE (cu_index_and_attrs
);
5413 /* Only check the symbol attributes if they're present.
5414 Indices prior to version 7 don't record them,
5415 and indices >= 7 may elide them for certain symbols
5416 (gold does this). */
5419 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_NONE
);
5421 /* Work around gold/15646. */
5424 if (!is_static
&& global_seen
)
5430 /* Only check the symbol's kind if it has one. */
5435 case VARIABLES_DOMAIN
:
5436 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_VARIABLE
)
5439 case FUNCTIONS_DOMAIN
:
5440 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_FUNCTION
)
5444 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_TYPE
)
5452 /* Don't crash on bad data. */
5453 if (cu_index
>= (dwarf2_per_objfile
->n_comp_units
5454 + dwarf2_per_objfile
->n_type_units
))
5456 complaint (&symfile_complaints
,
5457 _(".gdb_index entry has bad CU index"
5459 objfile_name (dwarf2_per_objfile
->objfile
));
5463 per_cu
= dw2_get_cutu (dwarf2_per_objfile
, cu_index
);
5464 dw2_expand_symtabs_matching_one (per_cu
, file_matcher
,
5469 /* If FILE_MATCHER is non-NULL, set all the
5470 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5471 that match FILE_MATCHER. */
5474 dw_expand_symtabs_matching_file_matcher
5475 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
5476 gdb::function_view
<expand_symtabs_file_matcher_ftype
> file_matcher
)
5478 if (file_matcher
== NULL
)
5481 objfile
*const objfile
= dwarf2_per_objfile
->objfile
;
5483 htab_up
visited_found (htab_create_alloc (10, htab_hash_pointer
,
5485 NULL
, xcalloc
, xfree
));
5486 htab_up
visited_not_found (htab_create_alloc (10, htab_hash_pointer
,
5488 NULL
, xcalloc
, xfree
));
5490 /* The rule is CUs specify all the files, including those used by
5491 any TU, so there's no need to scan TUs here. */
5493 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
5496 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cu (dwarf2_per_objfile
, i
);
5497 struct quick_file_names
*file_data
;
5502 per_cu
->v
.quick
->mark
= 0;
5504 /* We only need to look at symtabs not already expanded. */
5505 if (per_cu
->v
.quick
->compunit_symtab
)
5508 file_data
= dw2_get_file_names (per_cu
);
5509 if (file_data
== NULL
)
5512 if (htab_find (visited_not_found
.get (), file_data
) != NULL
)
5514 else if (htab_find (visited_found
.get (), file_data
) != NULL
)
5516 per_cu
->v
.quick
->mark
= 1;
5520 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
5522 const char *this_real_name
;
5524 if (file_matcher (file_data
->file_names
[j
], false))
5526 per_cu
->v
.quick
->mark
= 1;
5530 /* Before we invoke realpath, which can get expensive when many
5531 files are involved, do a quick comparison of the basenames. */
5532 if (!basenames_may_differ
5533 && !file_matcher (lbasename (file_data
->file_names
[j
]),
5537 this_real_name
= dw2_get_real_path (objfile
, file_data
, j
);
5538 if (file_matcher (this_real_name
, false))
5540 per_cu
->v
.quick
->mark
= 1;
5545 slot
= htab_find_slot (per_cu
->v
.quick
->mark
5546 ? visited_found
.get ()
5547 : visited_not_found
.get (),
5554 dw2_expand_symtabs_matching
5555 (struct objfile
*objfile
,
5556 gdb::function_view
<expand_symtabs_file_matcher_ftype
> file_matcher
,
5557 const lookup_name_info
&lookup_name
,
5558 gdb::function_view
<expand_symtabs_symbol_matcher_ftype
> symbol_matcher
,
5559 gdb::function_view
<expand_symtabs_exp_notify_ftype
> expansion_notify
,
5560 enum search_domain kind
)
5562 struct dwarf2_per_objfile
*dwarf2_per_objfile
5563 = get_dwarf2_per_objfile (objfile
);
5565 /* index_table is NULL if OBJF_READNOW. */
5566 if (!dwarf2_per_objfile
->index_table
)
5569 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile
, file_matcher
);
5571 mapped_index
&index
= *dwarf2_per_objfile
->index_table
;
5573 dw2_expand_symtabs_matching_symbol (index
, lookup_name
,
5575 kind
, [&] (offset_type idx
)
5577 dw2_expand_marked_cus (dwarf2_per_objfile
, idx
, file_matcher
,
5578 expansion_notify
, kind
);
5582 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5585 static struct compunit_symtab
*
5586 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab
*cust
,
5591 if (COMPUNIT_BLOCKVECTOR (cust
) != NULL
5592 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust
), pc
))
5595 if (cust
->includes
== NULL
)
5598 for (i
= 0; cust
->includes
[i
]; ++i
)
5600 struct compunit_symtab
*s
= cust
->includes
[i
];
5602 s
= recursively_find_pc_sect_compunit_symtab (s
, pc
);
5610 static struct compunit_symtab
*
5611 dw2_find_pc_sect_compunit_symtab (struct objfile
*objfile
,
5612 struct bound_minimal_symbol msymbol
,
5614 struct obj_section
*section
,
5617 struct dwarf2_per_cu_data
*data
;
5618 struct compunit_symtab
*result
;
5620 if (!objfile
->psymtabs_addrmap
)
5623 data
= (struct dwarf2_per_cu_data
*) addrmap_find (objfile
->psymtabs_addrmap
,
5628 if (warn_if_readin
&& data
->v
.quick
->compunit_symtab
)
5629 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5630 paddress (get_objfile_arch (objfile
), pc
));
5633 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data
),
5635 gdb_assert (result
!= NULL
);
5640 dw2_map_symbol_filenames (struct objfile
*objfile
, symbol_filename_ftype
*fun
,
5641 void *data
, int need_fullname
)
5643 struct dwarf2_per_objfile
*dwarf2_per_objfile
5644 = get_dwarf2_per_objfile (objfile
);
5646 if (!dwarf2_per_objfile
->filenames_cache
)
5648 dwarf2_per_objfile
->filenames_cache
.emplace ();
5650 htab_up
visited (htab_create_alloc (10,
5651 htab_hash_pointer
, htab_eq_pointer
,
5652 NULL
, xcalloc
, xfree
));
5654 /* The rule is CUs specify all the files, including those used
5655 by any TU, so there's no need to scan TUs here. We can
5656 ignore file names coming from already-expanded CUs. */
5658 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
5660 dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, i
);
5662 if (per_cu
->v
.quick
->compunit_symtab
)
5664 void **slot
= htab_find_slot (visited
.get (),
5665 per_cu
->v
.quick
->file_names
,
5668 *slot
= per_cu
->v
.quick
->file_names
;
5672 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
5674 dwarf2_per_cu_data
*per_cu
= dw2_get_cu (dwarf2_per_objfile
, i
);
5675 struct quick_file_names
*file_data
;
5678 /* We only need to look at symtabs not already expanded. */
5679 if (per_cu
->v
.quick
->compunit_symtab
)
5682 file_data
= dw2_get_file_names (per_cu
);
5683 if (file_data
== NULL
)
5686 slot
= htab_find_slot (visited
.get (), file_data
, INSERT
);
5689 /* Already visited. */
5694 for (int j
= 0; j
< file_data
->num_file_names
; ++j
)
5696 const char *filename
= file_data
->file_names
[j
];
5697 dwarf2_per_objfile
->filenames_cache
->seen (filename
);
5702 dwarf2_per_objfile
->filenames_cache
->traverse ([&] (const char *filename
)
5704 gdb::unique_xmalloc_ptr
<char> this_real_name
;
5707 this_real_name
= gdb_realpath (filename
);
5708 (*fun
) (filename
, this_real_name
.get (), data
);
5713 dw2_has_symbols (struct objfile
*objfile
)
5718 const struct quick_symbol_functions dwarf2_gdb_index_functions
=
5721 dw2_find_last_source_symtab
,
5722 dw2_forget_cached_source_info
,
5723 dw2_map_symtabs_matching_filename
,
5728 dw2_expand_symtabs_for_function
,
5729 dw2_expand_all_symtabs
,
5730 dw2_expand_symtabs_with_fullname
,
5731 dw2_map_matching_symbols
,
5732 dw2_expand_symtabs_matching
,
5733 dw2_find_pc_sect_compunit_symtab
,
5735 dw2_map_symbol_filenames
5738 /* DWARF-5 debug_names reader. */
5740 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5741 static const gdb_byte dwarf5_augmentation
[] = { 'G', 'D', 'B', 0 };
5743 /* A helper function that reads the .debug_names section in SECTION
5744 and fills in MAP. FILENAME is the name of the file containing the
5745 section; it is used for error reporting.
5747 Returns true if all went well, false otherwise. */
5750 read_debug_names_from_section (struct objfile
*objfile
,
5751 const char *filename
,
5752 struct dwarf2_section_info
*section
,
5753 mapped_debug_names
&map
)
5755 if (dwarf2_section_empty_p (section
))
5758 /* Older elfutils strip versions could keep the section in the main
5759 executable while splitting it for the separate debug info file. */
5760 if ((get_section_flags (section
) & SEC_HAS_CONTENTS
) == 0)
5763 dwarf2_read_section (objfile
, section
);
5765 map
.dwarf5_byte_order
= gdbarch_byte_order (get_objfile_arch (objfile
));
5767 const gdb_byte
*addr
= section
->buffer
;
5769 bfd
*const abfd
= get_section_bfd_owner (section
);
5771 unsigned int bytes_read
;
5772 LONGEST length
= read_initial_length (abfd
, addr
, &bytes_read
);
5775 map
.dwarf5_is_dwarf64
= bytes_read
!= 4;
5776 map
.offset_size
= map
.dwarf5_is_dwarf64
? 8 : 4;
5777 if (bytes_read
+ length
!= section
->size
)
5779 /* There may be multiple per-CU indices. */
5780 warning (_("Section .debug_names in %s length %s does not match "
5781 "section length %s, ignoring .debug_names."),
5782 filename
, plongest (bytes_read
+ length
),
5783 pulongest (section
->size
));
5787 /* The version number. */
5788 uint16_t version
= read_2_bytes (abfd
, addr
);
5792 warning (_("Section .debug_names in %s has unsupported version %d, "
5793 "ignoring .debug_names."),
5799 uint16_t padding
= read_2_bytes (abfd
, addr
);
5803 warning (_("Section .debug_names in %s has unsupported padding %d, "
5804 "ignoring .debug_names."),
5809 /* comp_unit_count - The number of CUs in the CU list. */
5810 map
.cu_count
= read_4_bytes (abfd
, addr
);
5813 /* local_type_unit_count - The number of TUs in the local TU
5815 map
.tu_count
= read_4_bytes (abfd
, addr
);
5818 /* foreign_type_unit_count - The number of TUs in the foreign TU
5820 uint32_t foreign_tu_count
= read_4_bytes (abfd
, addr
);
5822 if (foreign_tu_count
!= 0)
5824 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5825 "ignoring .debug_names."),
5826 filename
, static_cast<unsigned long> (foreign_tu_count
));
5830 /* bucket_count - The number of hash buckets in the hash lookup
5832 map
.bucket_count
= read_4_bytes (abfd
, addr
);
5835 /* name_count - The number of unique names in the index. */
5836 map
.name_count
= read_4_bytes (abfd
, addr
);
5839 /* abbrev_table_size - The size in bytes of the abbreviations
5841 uint32_t abbrev_table_size
= read_4_bytes (abfd
, addr
);
5844 /* augmentation_string_size - The size in bytes of the augmentation
5845 string. This value is rounded up to a multiple of 4. */
5846 uint32_t augmentation_string_size
= read_4_bytes (abfd
, addr
);
5848 map
.augmentation_is_gdb
= ((augmentation_string_size
5849 == sizeof (dwarf5_augmentation
))
5850 && memcmp (addr
, dwarf5_augmentation
,
5851 sizeof (dwarf5_augmentation
)) == 0);
5852 augmentation_string_size
+= (-augmentation_string_size
) & 3;
5853 addr
+= augmentation_string_size
;
5856 map
.cu_table_reordered
= addr
;
5857 addr
+= map
.cu_count
* map
.offset_size
;
5859 /* List of Local TUs */
5860 map
.tu_table_reordered
= addr
;
5861 addr
+= map
.tu_count
* map
.offset_size
;
5863 /* Hash Lookup Table */
5864 map
.bucket_table_reordered
= reinterpret_cast<const uint32_t *> (addr
);
5865 addr
+= map
.bucket_count
* 4;
5866 map
.hash_table_reordered
= reinterpret_cast<const uint32_t *> (addr
);
5867 addr
+= map
.name_count
* 4;
5870 map
.name_table_string_offs_reordered
= addr
;
5871 addr
+= map
.name_count
* map
.offset_size
;
5872 map
.name_table_entry_offs_reordered
= addr
;
5873 addr
+= map
.name_count
* map
.offset_size
;
5875 const gdb_byte
*abbrev_table_start
= addr
;
5878 unsigned int bytes_read
;
5879 const ULONGEST index_num
= read_unsigned_leb128 (abfd
, addr
, &bytes_read
);
5884 const auto insertpair
5885 = map
.abbrev_map
.emplace (index_num
, mapped_debug_names::index_val ());
5886 if (!insertpair
.second
)
5888 warning (_("Section .debug_names in %s has duplicate index %s, "
5889 "ignoring .debug_names."),
5890 filename
, pulongest (index_num
));
5893 mapped_debug_names::index_val
&indexval
= insertpair
.first
->second
;
5894 indexval
.dwarf_tag
= read_unsigned_leb128 (abfd
, addr
, &bytes_read
);
5899 mapped_debug_names::index_val::attr attr
;
5900 attr
.dw_idx
= read_unsigned_leb128 (abfd
, addr
, &bytes_read
);
5902 attr
.form
= read_unsigned_leb128 (abfd
, addr
, &bytes_read
);
5904 if (attr
.form
== DW_FORM_implicit_const
)
5906 attr
.implicit_const
= read_signed_leb128 (abfd
, addr
,
5910 if (attr
.dw_idx
== 0 && attr
.form
== 0)
5912 indexval
.attr_vec
.push_back (std::move (attr
));
5915 if (addr
!= abbrev_table_start
+ abbrev_table_size
)
5917 warning (_("Section .debug_names in %s has abbreviation_table "
5918 "of size %zu vs. written as %u, ignoring .debug_names."),
5919 filename
, addr
- abbrev_table_start
, abbrev_table_size
);
5922 map
.entry_pool
= addr
;
5927 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5931 create_cus_from_debug_names_list (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
5932 const mapped_debug_names
&map
,
5933 dwarf2_section_info
§ion
,
5934 bool is_dwz
, int base_offset
)
5936 sect_offset sect_off_prev
;
5937 for (uint32_t i
= 0; i
<= map
.cu_count
; ++i
)
5939 sect_offset sect_off_next
;
5940 if (i
< map
.cu_count
)
5943 = (sect_offset
) (extract_unsigned_integer
5944 (map
.cu_table_reordered
+ i
* map
.offset_size
,
5946 map
.dwarf5_byte_order
));
5949 sect_off_next
= (sect_offset
) section
.size
;
5952 const ULONGEST length
= sect_off_next
- sect_off_prev
;
5953 dwarf2_per_objfile
->all_comp_units
[base_offset
+ (i
- 1)]
5954 = create_cu_from_index_list (dwarf2_per_objfile
, §ion
, is_dwz
,
5955 sect_off_prev
, length
);
5957 sect_off_prev
= sect_off_next
;
5961 /* Read the CU list from the mapped index, and use it to create all
5962 the CU objects for this dwarf2_per_objfile. */
5965 create_cus_from_debug_names (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
5966 const mapped_debug_names
&map
,
5967 const mapped_debug_names
&dwz_map
)
5969 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
5971 dwarf2_per_objfile
->n_comp_units
= map
.cu_count
+ dwz_map
.cu_count
;
5972 dwarf2_per_objfile
->all_comp_units
5973 = XOBNEWVEC (&objfile
->objfile_obstack
, struct dwarf2_per_cu_data
*,
5974 dwarf2_per_objfile
->n_comp_units
);
5976 create_cus_from_debug_names_list (dwarf2_per_objfile
, map
,
5977 dwarf2_per_objfile
->info
,
5979 0 /* base_offset */);
5981 if (dwz_map
.cu_count
== 0)
5984 dwz_file
*dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
5985 create_cus_from_debug_names_list (dwarf2_per_objfile
, dwz_map
, dwz
->info
,
5987 map
.cu_count
/* base_offset */);
5990 /* Read .debug_names. If everything went ok, initialize the "quick"
5991 elements of all the CUs and return true. Otherwise, return false. */
5994 dwarf2_read_debug_names (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
5996 mapped_debug_names
local_map (dwarf2_per_objfile
);
5997 mapped_debug_names
dwz_map (dwarf2_per_objfile
);
5998 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
6000 if (!read_debug_names_from_section (objfile
, objfile_name (objfile
),
6001 &dwarf2_per_objfile
->debug_names
,
6005 /* Don't use the index if it's empty. */
6006 if (local_map
.name_count
== 0)
6009 /* If there is a .dwz file, read it so we can get its CU list as
6011 dwz_file
*dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
6014 if (!read_debug_names_from_section (objfile
,
6015 bfd_get_filename (dwz
->dwz_bfd
),
6016 &dwz
->debug_names
, dwz_map
))
6018 warning (_("could not read '.debug_names' section from %s; skipping"),
6019 bfd_get_filename (dwz
->dwz_bfd
));
6024 create_cus_from_debug_names (dwarf2_per_objfile
, local_map
, dwz_map
);
6026 if (local_map
.tu_count
!= 0)
6028 /* We can only handle a single .debug_types when we have an
6030 if (VEC_length (dwarf2_section_info_def
, dwarf2_per_objfile
->types
) != 1)
6033 dwarf2_section_info
*section
= VEC_index (dwarf2_section_info_def
,
6034 dwarf2_per_objfile
->types
, 0);
6036 create_signatured_type_table_from_debug_names
6037 (dwarf2_per_objfile
, local_map
, section
, &dwarf2_per_objfile
->abbrev
);
6040 create_addrmap_from_aranges (dwarf2_per_objfile
,
6041 &dwarf2_per_objfile
->debug_aranges
);
6043 dwarf2_per_objfile
->debug_names_table
.reset
6044 (new mapped_debug_names (dwarf2_per_objfile
));
6045 *dwarf2_per_objfile
->debug_names_table
= std::move (local_map
);
6046 dwarf2_per_objfile
->using_index
= 1;
6047 dwarf2_per_objfile
->quick_file_names_table
=
6048 create_quick_file_names_table (dwarf2_per_objfile
->n_comp_units
);
6053 /* Symbol name hashing function as specified by DWARF-5. */
6056 dwarf5_djb_hash (const char *str_
)
6058 const unsigned char *str
= (const unsigned char *) str_
;
6060 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6061 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6063 uint32_t hash
= 5381;
6064 while (int c
= *str
++)
6065 hash
= hash
* 33 + tolower (c
);
6069 /* Type used to manage iterating over all CUs looking for a symbol for
6072 class dw2_debug_names_iterator
6075 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6076 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6077 dw2_debug_names_iterator (const mapped_debug_names
&map
,
6078 bool want_specific_block
,
6079 block_enum block_index
, domain_enum domain
,
6081 : m_map (map
), m_want_specific_block (want_specific_block
),
6082 m_block_index (block_index
), m_domain (domain
),
6083 m_addr (find_vec_in_debug_names (map
, name
))
6086 dw2_debug_names_iterator (const mapped_debug_names
&map
,
6087 search_domain search
, uint32_t namei
)
6090 m_addr (find_vec_in_debug_names (map
, namei
))
6093 /* Return the next matching CU or NULL if there are no more. */
6094 dwarf2_per_cu_data
*next ();
6097 static const gdb_byte
*find_vec_in_debug_names (const mapped_debug_names
&map
,
6099 static const gdb_byte
*find_vec_in_debug_names (const mapped_debug_names
&map
,
6102 /* The internalized form of .debug_names. */
6103 const mapped_debug_names
&m_map
;
6105 /* If true, only look for symbols that match BLOCK_INDEX. */
6106 const bool m_want_specific_block
= false;
6108 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6109 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6111 const block_enum m_block_index
= FIRST_LOCAL_BLOCK
;
6113 /* The kind of symbol we're looking for. */
6114 const domain_enum m_domain
= UNDEF_DOMAIN
;
6115 const search_domain m_search
= ALL_DOMAIN
;
6117 /* The list of CUs from the index entry of the symbol, or NULL if
6119 const gdb_byte
*m_addr
;
6123 mapped_debug_names::namei_to_name (uint32_t namei
) const
6125 const ULONGEST namei_string_offs
6126 = extract_unsigned_integer ((name_table_string_offs_reordered
6127 + namei
* offset_size
),
6130 return read_indirect_string_at_offset
6131 (dwarf2_per_objfile
, dwarf2_per_objfile
->objfile
->obfd
, namei_string_offs
);
6134 /* Find a slot in .debug_names for the object named NAME. If NAME is
6135 found, return pointer to its pool data. If NAME cannot be found,
6139 dw2_debug_names_iterator::find_vec_in_debug_names
6140 (const mapped_debug_names
&map
, const char *name
)
6142 int (*cmp
) (const char *, const char *);
6144 if (current_language
->la_language
== language_cplus
6145 || current_language
->la_language
== language_fortran
6146 || current_language
->la_language
== language_d
)
6148 /* NAME is already canonical. Drop any qualifiers as
6149 .debug_names does not contain any. */
6151 if (strchr (name
, '(') != NULL
)
6153 gdb::unique_xmalloc_ptr
<char> without_params
6154 = cp_remove_params (name
);
6156 if (without_params
!= NULL
)
6158 name
= without_params
.get();
6163 cmp
= (case_sensitivity
== case_sensitive_on
? strcmp
: strcasecmp
);
6165 const uint32_t full_hash
= dwarf5_djb_hash (name
);
6167 = extract_unsigned_integer (reinterpret_cast<const gdb_byte
*>
6168 (map
.bucket_table_reordered
6169 + (full_hash
% map
.bucket_count
)), 4,
6170 map
.dwarf5_byte_order
);
6174 if (namei
>= map
.name_count
)
6176 complaint (&symfile_complaints
,
6177 _("Wrong .debug_names with name index %u but name_count=%u "
6179 namei
, map
.name_count
,
6180 objfile_name (map
.dwarf2_per_objfile
->objfile
));
6186 const uint32_t namei_full_hash
6187 = extract_unsigned_integer (reinterpret_cast<const gdb_byte
*>
6188 (map
.hash_table_reordered
+ namei
), 4,
6189 map
.dwarf5_byte_order
);
6190 if (full_hash
% map
.bucket_count
!= namei_full_hash
% map
.bucket_count
)
6193 if (full_hash
== namei_full_hash
)
6195 const char *const namei_string
= map
.namei_to_name (namei
);
6197 #if 0 /* An expensive sanity check. */
6198 if (namei_full_hash
!= dwarf5_djb_hash (namei_string
))
6200 complaint (&symfile_complaints
,
6201 _("Wrong .debug_names hash for string at index %u "
6203 namei
, objfile_name (dwarf2_per_objfile
->objfile
));
6208 if (cmp (namei_string
, name
) == 0)
6210 const ULONGEST namei_entry_offs
6211 = extract_unsigned_integer ((map
.name_table_entry_offs_reordered
6212 + namei
* map
.offset_size
),
6213 map
.offset_size
, map
.dwarf5_byte_order
);
6214 return map
.entry_pool
+ namei_entry_offs
;
6219 if (namei
>= map
.name_count
)
6225 dw2_debug_names_iterator::find_vec_in_debug_names
6226 (const mapped_debug_names
&map
, uint32_t namei
)
6228 if (namei
>= map
.name_count
)
6230 complaint (&symfile_complaints
,
6231 _("Wrong .debug_names with name index %u but name_count=%u "
6233 namei
, map
.name_count
,
6234 objfile_name (map
.dwarf2_per_objfile
->objfile
));
6238 const ULONGEST namei_entry_offs
6239 = extract_unsigned_integer ((map
.name_table_entry_offs_reordered
6240 + namei
* map
.offset_size
),
6241 map
.offset_size
, map
.dwarf5_byte_order
);
6242 return map
.entry_pool
+ namei_entry_offs
;
6245 /* See dw2_debug_names_iterator. */
6247 dwarf2_per_cu_data
*
6248 dw2_debug_names_iterator::next ()
6253 struct dwarf2_per_objfile
*dwarf2_per_objfile
= m_map
.dwarf2_per_objfile
;
6254 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
6255 bfd
*const abfd
= objfile
->obfd
;
6259 unsigned int bytes_read
;
6260 const ULONGEST abbrev
= read_unsigned_leb128 (abfd
, m_addr
, &bytes_read
);
6261 m_addr
+= bytes_read
;
6265 const auto indexval_it
= m_map
.abbrev_map
.find (abbrev
);
6266 if (indexval_it
== m_map
.abbrev_map
.cend ())
6268 complaint (&symfile_complaints
,
6269 _("Wrong .debug_names undefined abbrev code %s "
6271 pulongest (abbrev
), objfile_name (objfile
));
6274 const mapped_debug_names::index_val
&indexval
= indexval_it
->second
;
6275 bool have_is_static
= false;
6277 dwarf2_per_cu_data
*per_cu
= NULL
;
6278 for (const mapped_debug_names::index_val::attr
&attr
: indexval
.attr_vec
)
6283 case DW_FORM_implicit_const
:
6284 ull
= attr
.implicit_const
;
6286 case DW_FORM_flag_present
:
6290 ull
= read_unsigned_leb128 (abfd
, m_addr
, &bytes_read
);
6291 m_addr
+= bytes_read
;
6294 complaint (&symfile_complaints
,
6295 _("Unsupported .debug_names form %s [in module %s]"),
6296 dwarf_form_name (attr
.form
),
6297 objfile_name (objfile
));
6300 switch (attr
.dw_idx
)
6302 case DW_IDX_compile_unit
:
6303 /* Don't crash on bad data. */
6304 if (ull
>= dwarf2_per_objfile
->n_comp_units
)
6306 complaint (&symfile_complaints
,
6307 _(".debug_names entry has bad CU index %s"
6310 objfile_name (dwarf2_per_objfile
->objfile
));
6313 per_cu
= dw2_get_cutu (dwarf2_per_objfile
, ull
);
6315 case DW_IDX_type_unit
:
6316 /* Don't crash on bad data. */
6317 if (ull
>= dwarf2_per_objfile
->n_type_units
)
6319 complaint (&symfile_complaints
,
6320 _(".debug_names entry has bad TU index %s"
6323 objfile_name (dwarf2_per_objfile
->objfile
));
6326 per_cu
= dw2_get_cutu (dwarf2_per_objfile
,
6327 dwarf2_per_objfile
->n_comp_units
+ ull
);
6329 case DW_IDX_GNU_internal
:
6330 if (!m_map
.augmentation_is_gdb
)
6332 have_is_static
= true;
6335 case DW_IDX_GNU_external
:
6336 if (!m_map
.augmentation_is_gdb
)
6338 have_is_static
= true;
6344 /* Skip if already read in. */
6345 if (per_cu
->v
.quick
->compunit_symtab
)
6348 /* Check static vs global. */
6351 const bool want_static
= m_block_index
!= GLOBAL_BLOCK
;
6352 if (m_want_specific_block
&& want_static
!= is_static
)
6356 /* Match dw2_symtab_iter_next, symbol_kind
6357 and debug_names::psymbol_tag. */
6361 switch (indexval
.dwarf_tag
)
6363 case DW_TAG_variable
:
6364 case DW_TAG_subprogram
:
6365 /* Some types are also in VAR_DOMAIN. */
6366 case DW_TAG_typedef
:
6367 case DW_TAG_structure_type
:
6374 switch (indexval
.dwarf_tag
)
6376 case DW_TAG_typedef
:
6377 case DW_TAG_structure_type
:
6384 switch (indexval
.dwarf_tag
)
6387 case DW_TAG_variable
:
6397 /* Match dw2_expand_symtabs_matching, symbol_kind and
6398 debug_names::psymbol_tag. */
6401 case VARIABLES_DOMAIN
:
6402 switch (indexval
.dwarf_tag
)
6404 case DW_TAG_variable
:
6410 case FUNCTIONS_DOMAIN
:
6411 switch (indexval
.dwarf_tag
)
6413 case DW_TAG_subprogram
:
6420 switch (indexval
.dwarf_tag
)
6422 case DW_TAG_typedef
:
6423 case DW_TAG_structure_type
:
6436 static struct compunit_symtab
*
6437 dw2_debug_names_lookup_symbol (struct objfile
*objfile
, int block_index_int
,
6438 const char *name
, domain_enum domain
)
6440 const block_enum block_index
= static_cast<block_enum
> (block_index_int
);
6441 struct dwarf2_per_objfile
*dwarf2_per_objfile
6442 = get_dwarf2_per_objfile (objfile
);
6444 const auto &mapp
= dwarf2_per_objfile
->debug_names_table
;
6447 /* index is NULL if OBJF_READNOW. */
6450 const auto &map
= *mapp
;
6452 dw2_debug_names_iterator
iter (map
, true /* want_specific_block */,
6453 block_index
, domain
, name
);
6455 struct compunit_symtab
*stab_best
= NULL
;
6456 struct dwarf2_per_cu_data
*per_cu
;
6457 while ((per_cu
= iter
.next ()) != NULL
)
6459 struct symbol
*sym
, *with_opaque
= NULL
;
6460 struct compunit_symtab
*stab
= dw2_instantiate_symtab (per_cu
);
6461 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (stab
);
6462 struct block
*block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
6464 sym
= block_find_symbol (block
, name
, domain
,
6465 block_find_non_opaque_type_preferred
,
6468 /* Some caution must be observed with overloaded functions and
6469 methods, since the index will not contain any overload
6470 information (but NAME might contain it). */
6473 && strcmp_iw (SYMBOL_SEARCH_NAME (sym
), name
) == 0)
6475 if (with_opaque
!= NULL
6476 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque
), name
) == 0)
6479 /* Keep looking through other CUs. */
6485 /* This dumps minimal information about .debug_names. It is called
6486 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6487 uses this to verify that .debug_names has been loaded. */
6490 dw2_debug_names_dump (struct objfile
*objfile
)
6492 struct dwarf2_per_objfile
*dwarf2_per_objfile
6493 = get_dwarf2_per_objfile (objfile
);
6495 gdb_assert (dwarf2_per_objfile
->using_index
);
6496 printf_filtered (".debug_names:");
6497 if (dwarf2_per_objfile
->debug_names_table
)
6498 printf_filtered (" exists\n");
6500 printf_filtered (" faked for \"readnow\"\n");
6501 printf_filtered ("\n");
6505 dw2_debug_names_expand_symtabs_for_function (struct objfile
*objfile
,
6506 const char *func_name
)
6508 struct dwarf2_per_objfile
*dwarf2_per_objfile
6509 = get_dwarf2_per_objfile (objfile
);
6511 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6512 if (dwarf2_per_objfile
->debug_names_table
)
6514 const mapped_debug_names
&map
= *dwarf2_per_objfile
->debug_names_table
;
6516 /* Note: It doesn't matter what we pass for block_index here. */
6517 dw2_debug_names_iterator
iter (map
, false /* want_specific_block */,
6518 GLOBAL_BLOCK
, VAR_DOMAIN
, func_name
);
6520 struct dwarf2_per_cu_data
*per_cu
;
6521 while ((per_cu
= iter
.next ()) != NULL
)
6522 dw2_instantiate_symtab (per_cu
);
6527 dw2_debug_names_expand_symtabs_matching
6528 (struct objfile
*objfile
,
6529 gdb::function_view
<expand_symtabs_file_matcher_ftype
> file_matcher
,
6530 const lookup_name_info
&lookup_name
,
6531 gdb::function_view
<expand_symtabs_symbol_matcher_ftype
> symbol_matcher
,
6532 gdb::function_view
<expand_symtabs_exp_notify_ftype
> expansion_notify
,
6533 enum search_domain kind
)
6535 struct dwarf2_per_objfile
*dwarf2_per_objfile
6536 = get_dwarf2_per_objfile (objfile
);
6538 /* debug_names_table is NULL if OBJF_READNOW. */
6539 if (!dwarf2_per_objfile
->debug_names_table
)
6542 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile
, file_matcher
);
6544 mapped_debug_names
&map
= *dwarf2_per_objfile
->debug_names_table
;
6546 dw2_expand_symtabs_matching_symbol (map
, lookup_name
,
6548 kind
, [&] (offset_type namei
)
6550 /* The name was matched, now expand corresponding CUs that were
6552 dw2_debug_names_iterator
iter (map
, kind
, namei
);
6554 struct dwarf2_per_cu_data
*per_cu
;
6555 while ((per_cu
= iter
.next ()) != NULL
)
6556 dw2_expand_symtabs_matching_one (per_cu
, file_matcher
,
6561 const struct quick_symbol_functions dwarf2_debug_names_functions
=
6564 dw2_find_last_source_symtab
,
6565 dw2_forget_cached_source_info
,
6566 dw2_map_symtabs_matching_filename
,
6567 dw2_debug_names_lookup_symbol
,
6569 dw2_debug_names_dump
,
6571 dw2_debug_names_expand_symtabs_for_function
,
6572 dw2_expand_all_symtabs
,
6573 dw2_expand_symtabs_with_fullname
,
6574 dw2_map_matching_symbols
,
6575 dw2_debug_names_expand_symtabs_matching
,
6576 dw2_find_pc_sect_compunit_symtab
,
6578 dw2_map_symbol_filenames
6581 /* See symfile.h. */
6584 dwarf2_initialize_objfile (struct objfile
*objfile
, dw_index_kind
*index_kind
)
6586 struct dwarf2_per_objfile
*dwarf2_per_objfile
6587 = get_dwarf2_per_objfile (objfile
);
6589 /* If we're about to read full symbols, don't bother with the
6590 indices. In this case we also don't care if some other debug
6591 format is making psymtabs, because they are all about to be
6593 if ((objfile
->flags
& OBJF_READNOW
))
6597 dwarf2_per_objfile
->using_index
= 1;
6598 create_all_comp_units (dwarf2_per_objfile
);
6599 create_all_type_units (dwarf2_per_objfile
);
6600 dwarf2_per_objfile
->quick_file_names_table
=
6601 create_quick_file_names_table (dwarf2_per_objfile
->n_comp_units
);
6603 for (i
= 0; i
< (dwarf2_per_objfile
->n_comp_units
6604 + dwarf2_per_objfile
->n_type_units
); ++i
)
6606 dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, i
);
6608 per_cu
->v
.quick
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
6609 struct dwarf2_per_cu_quick_data
);
6612 /* Return 1 so that gdb sees the "quick" functions. However,
6613 these functions will be no-ops because we will have expanded
6615 *index_kind
= dw_index_kind::GDB_INDEX
;
6619 if (dwarf2_read_debug_names (dwarf2_per_objfile
))
6621 *index_kind
= dw_index_kind::DEBUG_NAMES
;
6625 if (dwarf2_read_index (objfile
))
6627 *index_kind
= dw_index_kind::GDB_INDEX
;
6636 /* Build a partial symbol table. */
6639 dwarf2_build_psymtabs (struct objfile
*objfile
)
6641 struct dwarf2_per_objfile
*dwarf2_per_objfile
6642 = get_dwarf2_per_objfile (objfile
);
6644 if (objfile
->global_psymbols
.capacity () == 0
6645 && objfile
->static_psymbols
.capacity () == 0)
6646 init_psymbol_list (objfile
, 1024);
6650 /* This isn't really ideal: all the data we allocate on the
6651 objfile's obstack is still uselessly kept around. However,
6652 freeing it seems unsafe. */
6653 psymtab_discarder
psymtabs (objfile
);
6654 dwarf2_build_psymtabs_hard (dwarf2_per_objfile
);
6657 CATCH (except
, RETURN_MASK_ERROR
)
6659 exception_print (gdb_stderr
, except
);
6664 /* Return the total length of the CU described by HEADER. */
6667 get_cu_length (const struct comp_unit_head
*header
)
6669 return header
->initial_length_size
+ header
->length
;
6672 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6675 offset_in_cu_p (const comp_unit_head
*cu_header
, sect_offset sect_off
)
6677 sect_offset bottom
= cu_header
->sect_off
;
6678 sect_offset top
= cu_header
->sect_off
+ get_cu_length (cu_header
);
6680 return sect_off
>= bottom
&& sect_off
< top
;
6683 /* Find the base address of the compilation unit for range lists and
6684 location lists. It will normally be specified by DW_AT_low_pc.
6685 In DWARF-3 draft 4, the base address could be overridden by
6686 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6687 compilation units with discontinuous ranges. */
6690 dwarf2_find_base_address (struct die_info
*die
, struct dwarf2_cu
*cu
)
6692 struct attribute
*attr
;
6695 cu
->base_address
= 0;
6697 attr
= dwarf2_attr (die
, DW_AT_entry_pc
, cu
);
6700 cu
->base_address
= attr_value_as_address (attr
);
6705 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
6708 cu
->base_address
= attr_value_as_address (attr
);
6714 /* Read in the comp unit header information from the debug_info at info_ptr.
6715 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6716 NOTE: This leaves members offset, first_die_offset to be filled in
6719 static const gdb_byte
*
6720 read_comp_unit_head (struct comp_unit_head
*cu_header
,
6721 const gdb_byte
*info_ptr
,
6722 struct dwarf2_section_info
*section
,
6723 rcuh_kind section_kind
)
6726 unsigned int bytes_read
;
6727 const char *filename
= get_section_file_name (section
);
6728 bfd
*abfd
= get_section_bfd_owner (section
);
6730 cu_header
->length
= read_initial_length (abfd
, info_ptr
, &bytes_read
);
6731 cu_header
->initial_length_size
= bytes_read
;
6732 cu_header
->offset_size
= (bytes_read
== 4) ? 4 : 8;
6733 info_ptr
+= bytes_read
;
6734 cu_header
->version
= read_2_bytes (abfd
, info_ptr
);
6736 if (cu_header
->version
< 5)
6737 switch (section_kind
)
6739 case rcuh_kind::COMPILE
:
6740 cu_header
->unit_type
= DW_UT_compile
;
6742 case rcuh_kind::TYPE
:
6743 cu_header
->unit_type
= DW_UT_type
;
6746 internal_error (__FILE__
, __LINE__
,
6747 _("read_comp_unit_head: invalid section_kind"));
6751 cu_header
->unit_type
= static_cast<enum dwarf_unit_type
>
6752 (read_1_byte (abfd
, info_ptr
));
6754 switch (cu_header
->unit_type
)
6757 if (section_kind
!= rcuh_kind::COMPILE
)
6758 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6759 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6763 section_kind
= rcuh_kind::TYPE
;
6766 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6767 "(is %d, should be %d or %d) [in module %s]"),
6768 cu_header
->unit_type
, DW_UT_compile
, DW_UT_type
, filename
);
6771 cu_header
->addr_size
= read_1_byte (abfd
, info_ptr
);
6774 cu_header
->abbrev_sect_off
= (sect_offset
) read_offset (abfd
, info_ptr
,
6777 info_ptr
+= bytes_read
;
6778 if (cu_header
->version
< 5)
6780 cu_header
->addr_size
= read_1_byte (abfd
, info_ptr
);
6783 signed_addr
= bfd_get_sign_extend_vma (abfd
);
6784 if (signed_addr
< 0)
6785 internal_error (__FILE__
, __LINE__
,
6786 _("read_comp_unit_head: dwarf from non elf file"));
6787 cu_header
->signed_addr_p
= signed_addr
;
6789 if (section_kind
== rcuh_kind::TYPE
)
6791 LONGEST type_offset
;
6793 cu_header
->signature
= read_8_bytes (abfd
, info_ptr
);
6796 type_offset
= read_offset (abfd
, info_ptr
, cu_header
, &bytes_read
);
6797 info_ptr
+= bytes_read
;
6798 cu_header
->type_cu_offset_in_tu
= (cu_offset
) type_offset
;
6799 if (to_underlying (cu_header
->type_cu_offset_in_tu
) != type_offset
)
6800 error (_("Dwarf Error: Too big type_offset in compilation unit "
6801 "header (is %s) [in module %s]"), plongest (type_offset
),
6808 /* Helper function that returns the proper abbrev section for
6811 static struct dwarf2_section_info
*
6812 get_abbrev_section_for_cu (struct dwarf2_per_cu_data
*this_cu
)
6814 struct dwarf2_section_info
*abbrev
;
6815 struct dwarf2_per_objfile
*dwarf2_per_objfile
= this_cu
->dwarf2_per_objfile
;
6817 if (this_cu
->is_dwz
)
6818 abbrev
= &dwarf2_get_dwz_file (dwarf2_per_objfile
)->abbrev
;
6820 abbrev
= &dwarf2_per_objfile
->abbrev
;
6825 /* Subroutine of read_and_check_comp_unit_head and
6826 read_and_check_type_unit_head to simplify them.
6827 Perform various error checking on the header. */
6830 error_check_comp_unit_head (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
6831 struct comp_unit_head
*header
,
6832 struct dwarf2_section_info
*section
,
6833 struct dwarf2_section_info
*abbrev_section
)
6835 const char *filename
= get_section_file_name (section
);
6837 if (header
->version
< 2 || header
->version
> 5)
6838 error (_("Dwarf Error: wrong version in compilation unit header "
6839 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header
->version
,
6842 if (to_underlying (header
->abbrev_sect_off
)
6843 >= dwarf2_section_size (dwarf2_per_objfile
->objfile
, abbrev_section
))
6844 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
6845 "(offset 0x%x + 6) [in module %s]"),
6846 to_underlying (header
->abbrev_sect_off
),
6847 to_underlying (header
->sect_off
),
6850 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6851 avoid potential 32-bit overflow. */
6852 if (((ULONGEST
) header
->sect_off
+ get_cu_length (header
))
6854 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6855 "(offset 0x%x + 0) [in module %s]"),
6856 header
->length
, to_underlying (header
->sect_off
),
6860 /* Read in a CU/TU header and perform some basic error checking.
6861 The contents of the header are stored in HEADER.
6862 The result is a pointer to the start of the first DIE. */
6864 static const gdb_byte
*
6865 read_and_check_comp_unit_head (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
6866 struct comp_unit_head
*header
,
6867 struct dwarf2_section_info
*section
,
6868 struct dwarf2_section_info
*abbrev_section
,
6869 const gdb_byte
*info_ptr
,
6870 rcuh_kind section_kind
)
6872 const gdb_byte
*beg_of_comp_unit
= info_ptr
;
6874 header
->sect_off
= (sect_offset
) (beg_of_comp_unit
- section
->buffer
);
6876 info_ptr
= read_comp_unit_head (header
, info_ptr
, section
, section_kind
);
6878 header
->first_die_cu_offset
= (cu_offset
) (info_ptr
- beg_of_comp_unit
);
6880 error_check_comp_unit_head (dwarf2_per_objfile
, header
, section
,
6886 /* Fetch the abbreviation table offset from a comp or type unit header. */
6889 read_abbrev_offset (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
6890 struct dwarf2_section_info
*section
,
6891 sect_offset sect_off
)
6893 bfd
*abfd
= get_section_bfd_owner (section
);
6894 const gdb_byte
*info_ptr
;
6895 unsigned int initial_length_size
, offset_size
;
6898 dwarf2_read_section (dwarf2_per_objfile
->objfile
, section
);
6899 info_ptr
= section
->buffer
+ to_underlying (sect_off
);
6900 read_initial_length (abfd
, info_ptr
, &initial_length_size
);
6901 offset_size
= initial_length_size
== 4 ? 4 : 8;
6902 info_ptr
+= initial_length_size
;
6904 version
= read_2_bytes (abfd
, info_ptr
);
6908 /* Skip unit type and address size. */
6912 return (sect_offset
) read_offset_1 (abfd
, info_ptr
, offset_size
);
6915 /* Allocate a new partial symtab for file named NAME and mark this new
6916 partial symtab as being an include of PST. */
6919 dwarf2_create_include_psymtab (const char *name
, struct partial_symtab
*pst
,
6920 struct objfile
*objfile
)
6922 struct partial_symtab
*subpst
= allocate_psymtab (name
, objfile
);
6924 if (!IS_ABSOLUTE_PATH (subpst
->filename
))
6926 /* It shares objfile->objfile_obstack. */
6927 subpst
->dirname
= pst
->dirname
;
6930 subpst
->textlow
= 0;
6931 subpst
->texthigh
= 0;
6933 subpst
->dependencies
6934 = XOBNEW (&objfile
->objfile_obstack
, struct partial_symtab
*);
6935 subpst
->dependencies
[0] = pst
;
6936 subpst
->number_of_dependencies
= 1;
6938 subpst
->globals_offset
= 0;
6939 subpst
->n_global_syms
= 0;
6940 subpst
->statics_offset
= 0;
6941 subpst
->n_static_syms
= 0;
6942 subpst
->compunit_symtab
= NULL
;
6943 subpst
->read_symtab
= pst
->read_symtab
;
6946 /* No private part is necessary for include psymtabs. This property
6947 can be used to differentiate between such include psymtabs and
6948 the regular ones. */
6949 subpst
->read_symtab_private
= NULL
;
6952 /* Read the Line Number Program data and extract the list of files
6953 included by the source file represented by PST. Build an include
6954 partial symtab for each of these included files. */
6957 dwarf2_build_include_psymtabs (struct dwarf2_cu
*cu
,
6958 struct die_info
*die
,
6959 struct partial_symtab
*pst
)
6962 struct attribute
*attr
;
6964 attr
= dwarf2_attr (die
, DW_AT_stmt_list
, cu
);
6966 lh
= dwarf_decode_line_header ((sect_offset
) DW_UNSND (attr
), cu
);
6968 return; /* No linetable, so no includes. */
6970 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6971 dwarf_decode_lines (lh
.get (), pst
->dirname
, cu
, pst
, pst
->textlow
, 1);
6975 hash_signatured_type (const void *item
)
6977 const struct signatured_type
*sig_type
6978 = (const struct signatured_type
*) item
;
6980 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6981 return sig_type
->signature
;
6985 eq_signatured_type (const void *item_lhs
, const void *item_rhs
)
6987 const struct signatured_type
*lhs
= (const struct signatured_type
*) item_lhs
;
6988 const struct signatured_type
*rhs
= (const struct signatured_type
*) item_rhs
;
6990 return lhs
->signature
== rhs
->signature
;
6993 /* Allocate a hash table for signatured types. */
6996 allocate_signatured_type_table (struct objfile
*objfile
)
6998 return htab_create_alloc_ex (41,
6999 hash_signatured_type
,
7002 &objfile
->objfile_obstack
,
7003 hashtab_obstack_allocate
,
7004 dummy_obstack_deallocate
);
7007 /* A helper function to add a signatured type CU to a table. */
7010 add_signatured_type_cu_to_table (void **slot
, void *datum
)
7012 struct signatured_type
*sigt
= (struct signatured_type
*) *slot
;
7013 struct signatured_type
***datap
= (struct signatured_type
***) datum
;
7021 /* A helper for create_debug_types_hash_table. Read types from SECTION
7022 and fill them into TYPES_HTAB. It will process only type units,
7023 therefore DW_UT_type. */
7026 create_debug_type_hash_table (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
7027 struct dwo_file
*dwo_file
,
7028 dwarf2_section_info
*section
, htab_t
&types_htab
,
7029 rcuh_kind section_kind
)
7031 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
7032 struct dwarf2_section_info
*abbrev_section
;
7034 const gdb_byte
*info_ptr
, *end_ptr
;
7036 abbrev_section
= (dwo_file
!= NULL
7037 ? &dwo_file
->sections
.abbrev
7038 : &dwarf2_per_objfile
->abbrev
);
7040 if (dwarf_read_debug
)
7041 fprintf_unfiltered (gdb_stdlog
, "Reading %s for %s:\n",
7042 get_section_name (section
),
7043 get_section_file_name (abbrev_section
));
7045 dwarf2_read_section (objfile
, section
);
7046 info_ptr
= section
->buffer
;
7048 if (info_ptr
== NULL
)
7051 /* We can't set abfd until now because the section may be empty or
7052 not present, in which case the bfd is unknown. */
7053 abfd
= get_section_bfd_owner (section
);
7055 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7056 because we don't need to read any dies: the signature is in the
7059 end_ptr
= info_ptr
+ section
->size
;
7060 while (info_ptr
< end_ptr
)
7062 struct signatured_type
*sig_type
;
7063 struct dwo_unit
*dwo_tu
;
7065 const gdb_byte
*ptr
= info_ptr
;
7066 struct comp_unit_head header
;
7067 unsigned int length
;
7069 sect_offset sect_off
= (sect_offset
) (ptr
- section
->buffer
);
7071 /* Initialize it due to a false compiler warning. */
7072 header
.signature
= -1;
7073 header
.type_cu_offset_in_tu
= (cu_offset
) -1;
7075 /* We need to read the type's signature in order to build the hash
7076 table, but we don't need anything else just yet. */
7078 ptr
= read_and_check_comp_unit_head (dwarf2_per_objfile
, &header
, section
,
7079 abbrev_section
, ptr
, section_kind
);
7081 length
= get_cu_length (&header
);
7083 /* Skip dummy type units. */
7084 if (ptr
>= info_ptr
+ length
7085 || peek_abbrev_code (abfd
, ptr
) == 0
7086 || header
.unit_type
!= DW_UT_type
)
7092 if (types_htab
== NULL
)
7095 types_htab
= allocate_dwo_unit_table (objfile
);
7097 types_htab
= allocate_signatured_type_table (objfile
);
7103 dwo_tu
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
7105 dwo_tu
->dwo_file
= dwo_file
;
7106 dwo_tu
->signature
= header
.signature
;
7107 dwo_tu
->type_offset_in_tu
= header
.type_cu_offset_in_tu
;
7108 dwo_tu
->section
= section
;
7109 dwo_tu
->sect_off
= sect_off
;
7110 dwo_tu
->length
= length
;
7114 /* N.B.: type_offset is not usable if this type uses a DWO file.
7115 The real type_offset is in the DWO file. */
7117 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
7118 struct signatured_type
);
7119 sig_type
->signature
= header
.signature
;
7120 sig_type
->type_offset_in_tu
= header
.type_cu_offset_in_tu
;
7121 sig_type
->per_cu
.dwarf2_per_objfile
= dwarf2_per_objfile
;
7122 sig_type
->per_cu
.is_debug_types
= 1;
7123 sig_type
->per_cu
.section
= section
;
7124 sig_type
->per_cu
.sect_off
= sect_off
;
7125 sig_type
->per_cu
.length
= length
;
7128 slot
= htab_find_slot (types_htab
,
7129 dwo_file
? (void*) dwo_tu
: (void *) sig_type
,
7131 gdb_assert (slot
!= NULL
);
7134 sect_offset dup_sect_off
;
7138 const struct dwo_unit
*dup_tu
7139 = (const struct dwo_unit
*) *slot
;
7141 dup_sect_off
= dup_tu
->sect_off
;
7145 const struct signatured_type
*dup_tu
7146 = (const struct signatured_type
*) *slot
;
7148 dup_sect_off
= dup_tu
->per_cu
.sect_off
;
7151 complaint (&symfile_complaints
,
7152 _("debug type entry at offset 0x%x is duplicate to"
7153 " the entry at offset 0x%x, signature %s"),
7154 to_underlying (sect_off
), to_underlying (dup_sect_off
),
7155 hex_string (header
.signature
));
7157 *slot
= dwo_file
? (void *) dwo_tu
: (void *) sig_type
;
7159 if (dwarf_read_debug
> 1)
7160 fprintf_unfiltered (gdb_stdlog
, " offset 0x%x, signature %s\n",
7161 to_underlying (sect_off
),
7162 hex_string (header
.signature
));
7168 /* Create the hash table of all entries in the .debug_types
7169 (or .debug_types.dwo) section(s).
7170 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7171 otherwise it is NULL.
7173 The result is a pointer to the hash table or NULL if there are no types.
7175 Note: This function processes DWO files only, not DWP files. */
7178 create_debug_types_hash_table (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
7179 struct dwo_file
*dwo_file
,
7180 VEC (dwarf2_section_info_def
) *types
,
7184 struct dwarf2_section_info
*section
;
7186 if (VEC_empty (dwarf2_section_info_def
, types
))
7190 VEC_iterate (dwarf2_section_info_def
, types
, ix
, section
);
7192 create_debug_type_hash_table (dwarf2_per_objfile
, dwo_file
, section
,
7193 types_htab
, rcuh_kind::TYPE
);
7196 /* Create the hash table of all entries in the .debug_types section,
7197 and initialize all_type_units.
7198 The result is zero if there is an error (e.g. missing .debug_types section),
7199 otherwise non-zero. */
7202 create_all_type_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
7204 htab_t types_htab
= NULL
;
7205 struct signatured_type
**iter
;
7207 create_debug_type_hash_table (dwarf2_per_objfile
, NULL
,
7208 &dwarf2_per_objfile
->info
, types_htab
,
7209 rcuh_kind::COMPILE
);
7210 create_debug_types_hash_table (dwarf2_per_objfile
, NULL
,
7211 dwarf2_per_objfile
->types
, types_htab
);
7212 if (types_htab
== NULL
)
7214 dwarf2_per_objfile
->signatured_types
= NULL
;
7218 dwarf2_per_objfile
->signatured_types
= types_htab
;
7220 dwarf2_per_objfile
->n_type_units
7221 = dwarf2_per_objfile
->n_allocated_type_units
7222 = htab_elements (types_htab
);
7223 dwarf2_per_objfile
->all_type_units
=
7224 XNEWVEC (struct signatured_type
*, dwarf2_per_objfile
->n_type_units
);
7225 iter
= &dwarf2_per_objfile
->all_type_units
[0];
7226 htab_traverse_noresize (types_htab
, add_signatured_type_cu_to_table
, &iter
);
7227 gdb_assert (iter
- &dwarf2_per_objfile
->all_type_units
[0]
7228 == dwarf2_per_objfile
->n_type_units
);
7233 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7234 If SLOT is non-NULL, it is the entry to use in the hash table.
7235 Otherwise we find one. */
7237 static struct signatured_type
*
7238 add_type_unit (struct dwarf2_per_objfile
*dwarf2_per_objfile
, ULONGEST sig
,
7241 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
7242 int n_type_units
= dwarf2_per_objfile
->n_type_units
;
7243 struct signatured_type
*sig_type
;
7245 gdb_assert (n_type_units
<= dwarf2_per_objfile
->n_allocated_type_units
);
7247 if (n_type_units
> dwarf2_per_objfile
->n_allocated_type_units
)
7249 if (dwarf2_per_objfile
->n_allocated_type_units
== 0)
7250 dwarf2_per_objfile
->n_allocated_type_units
= 1;
7251 dwarf2_per_objfile
->n_allocated_type_units
*= 2;
7252 dwarf2_per_objfile
->all_type_units
7253 = XRESIZEVEC (struct signatured_type
*,
7254 dwarf2_per_objfile
->all_type_units
,
7255 dwarf2_per_objfile
->n_allocated_type_units
);
7256 ++dwarf2_per_objfile
->tu_stats
.nr_all_type_units_reallocs
;
7258 dwarf2_per_objfile
->n_type_units
= n_type_units
;
7260 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
7261 struct signatured_type
);
7262 dwarf2_per_objfile
->all_type_units
[n_type_units
- 1] = sig_type
;
7263 sig_type
->signature
= sig
;
7264 sig_type
->per_cu
.is_debug_types
= 1;
7265 if (dwarf2_per_objfile
->using_index
)
7267 sig_type
->per_cu
.v
.quick
=
7268 OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
7269 struct dwarf2_per_cu_quick_data
);
7274 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
,
7277 gdb_assert (*slot
== NULL
);
7279 /* The rest of sig_type must be filled in by the caller. */
7283 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7284 Fill in SIG_ENTRY with DWO_ENTRY. */
7287 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
7288 struct signatured_type
*sig_entry
,
7289 struct dwo_unit
*dwo_entry
)
7291 /* Make sure we're not clobbering something we don't expect to. */
7292 gdb_assert (! sig_entry
->per_cu
.queued
);
7293 gdb_assert (sig_entry
->per_cu
.cu
== NULL
);
7294 if (dwarf2_per_objfile
->using_index
)
7296 gdb_assert (sig_entry
->per_cu
.v
.quick
!= NULL
);
7297 gdb_assert (sig_entry
->per_cu
.v
.quick
->compunit_symtab
== NULL
);
7300 gdb_assert (sig_entry
->per_cu
.v
.psymtab
== NULL
);
7301 gdb_assert (sig_entry
->signature
== dwo_entry
->signature
);
7302 gdb_assert (to_underlying (sig_entry
->type_offset_in_section
) == 0);
7303 gdb_assert (sig_entry
->type_unit_group
== NULL
);
7304 gdb_assert (sig_entry
->dwo_unit
== NULL
);
7306 sig_entry
->per_cu
.section
= dwo_entry
->section
;
7307 sig_entry
->per_cu
.sect_off
= dwo_entry
->sect_off
;
7308 sig_entry
->per_cu
.length
= dwo_entry
->length
;
7309 sig_entry
->per_cu
.reading_dwo_directly
= 1;
7310 sig_entry
->per_cu
.dwarf2_per_objfile
= dwarf2_per_objfile
;
7311 sig_entry
->type_offset_in_tu
= dwo_entry
->type_offset_in_tu
;
7312 sig_entry
->dwo_unit
= dwo_entry
;
7315 /* Subroutine of lookup_signatured_type.
7316 If we haven't read the TU yet, create the signatured_type data structure
7317 for a TU to be read in directly from a DWO file, bypassing the stub.
7318 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7319 using .gdb_index, then when reading a CU we want to stay in the DWO file
7320 containing that CU. Otherwise we could end up reading several other DWO
7321 files (due to comdat folding) to process the transitive closure of all the
7322 mentioned TUs, and that can be slow. The current DWO file will have every
7323 type signature that it needs.
7324 We only do this for .gdb_index because in the psymtab case we already have
7325 to read all the DWOs to build the type unit groups. */
7327 static struct signatured_type
*
7328 lookup_dwo_signatured_type (struct dwarf2_cu
*cu
, ULONGEST sig
)
7330 struct dwarf2_per_objfile
*dwarf2_per_objfile
7331 = cu
->per_cu
->dwarf2_per_objfile
;
7332 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
7333 struct dwo_file
*dwo_file
;
7334 struct dwo_unit find_dwo_entry
, *dwo_entry
;
7335 struct signatured_type find_sig_entry
, *sig_entry
;
7338 gdb_assert (cu
->dwo_unit
&& dwarf2_per_objfile
->using_index
);
7340 /* If TU skeletons have been removed then we may not have read in any
7342 if (dwarf2_per_objfile
->signatured_types
== NULL
)
7344 dwarf2_per_objfile
->signatured_types
7345 = allocate_signatured_type_table (objfile
);
7348 /* We only ever need to read in one copy of a signatured type.
7349 Use the global signatured_types array to do our own comdat-folding
7350 of types. If this is the first time we're reading this TU, and
7351 the TU has an entry in .gdb_index, replace the recorded data from
7352 .gdb_index with this TU. */
7354 find_sig_entry
.signature
= sig
;
7355 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
,
7356 &find_sig_entry
, INSERT
);
7357 sig_entry
= (struct signatured_type
*) *slot
;
7359 /* We can get here with the TU already read, *or* in the process of being
7360 read. Don't reassign the global entry to point to this DWO if that's
7361 the case. Also note that if the TU is already being read, it may not
7362 have come from a DWO, the program may be a mix of Fission-compiled
7363 code and non-Fission-compiled code. */
7365 /* Have we already tried to read this TU?
7366 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7367 needn't exist in the global table yet). */
7368 if (sig_entry
!= NULL
&& sig_entry
->per_cu
.tu_read
)
7371 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7372 dwo_unit of the TU itself. */
7373 dwo_file
= cu
->dwo_unit
->dwo_file
;
7375 /* Ok, this is the first time we're reading this TU. */
7376 if (dwo_file
->tus
== NULL
)
7378 find_dwo_entry
.signature
= sig
;
7379 dwo_entry
= (struct dwo_unit
*) htab_find (dwo_file
->tus
, &find_dwo_entry
);
7380 if (dwo_entry
== NULL
)
7383 /* If the global table doesn't have an entry for this TU, add one. */
7384 if (sig_entry
== NULL
)
7385 sig_entry
= add_type_unit (dwarf2_per_objfile
, sig
, slot
);
7387 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile
, sig_entry
, dwo_entry
);
7388 sig_entry
->per_cu
.tu_read
= 1;
7392 /* Subroutine of lookup_signatured_type.
7393 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7394 then try the DWP file. If the TU stub (skeleton) has been removed then
7395 it won't be in .gdb_index. */
7397 static struct signatured_type
*
7398 lookup_dwp_signatured_type (struct dwarf2_cu
*cu
, ULONGEST sig
)
7400 struct dwarf2_per_objfile
*dwarf2_per_objfile
7401 = cu
->per_cu
->dwarf2_per_objfile
;
7402 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
7403 struct dwp_file
*dwp_file
= get_dwp_file (dwarf2_per_objfile
);
7404 struct dwo_unit
*dwo_entry
;
7405 struct signatured_type find_sig_entry
, *sig_entry
;
7408 gdb_assert (cu
->dwo_unit
&& dwarf2_per_objfile
->using_index
);
7409 gdb_assert (dwp_file
!= NULL
);
7411 /* If TU skeletons have been removed then we may not have read in any
7413 if (dwarf2_per_objfile
->signatured_types
== NULL
)
7415 dwarf2_per_objfile
->signatured_types
7416 = allocate_signatured_type_table (objfile
);
7419 find_sig_entry
.signature
= sig
;
7420 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
,
7421 &find_sig_entry
, INSERT
);
7422 sig_entry
= (struct signatured_type
*) *slot
;
7424 /* Have we already tried to read this TU?
7425 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7426 needn't exist in the global table yet). */
7427 if (sig_entry
!= NULL
)
7430 if (dwp_file
->tus
== NULL
)
7432 dwo_entry
= lookup_dwo_unit_in_dwp (dwarf2_per_objfile
, dwp_file
, NULL
,
7433 sig
, 1 /* is_debug_types */);
7434 if (dwo_entry
== NULL
)
7437 sig_entry
= add_type_unit (dwarf2_per_objfile
, sig
, slot
);
7438 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile
, sig_entry
, dwo_entry
);
7443 /* Lookup a signature based type for DW_FORM_ref_sig8.
7444 Returns NULL if signature SIG is not present in the table.
7445 It is up to the caller to complain about this. */
7447 static struct signatured_type
*
7448 lookup_signatured_type (struct dwarf2_cu
*cu
, ULONGEST sig
)
7450 struct dwarf2_per_objfile
*dwarf2_per_objfile
7451 = cu
->per_cu
->dwarf2_per_objfile
;
7454 && dwarf2_per_objfile
->using_index
)
7456 /* We're in a DWO/DWP file, and we're using .gdb_index.
7457 These cases require special processing. */
7458 if (get_dwp_file (dwarf2_per_objfile
) == NULL
)
7459 return lookup_dwo_signatured_type (cu
, sig
);
7461 return lookup_dwp_signatured_type (cu
, sig
);
7465 struct signatured_type find_entry
, *entry
;
7467 if (dwarf2_per_objfile
->signatured_types
== NULL
)
7469 find_entry
.signature
= sig
;
7470 entry
= ((struct signatured_type
*)
7471 htab_find (dwarf2_per_objfile
->signatured_types
, &find_entry
));
7476 /* Low level DIE reading support. */
7478 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7481 init_cu_die_reader (struct die_reader_specs
*reader
,
7482 struct dwarf2_cu
*cu
,
7483 struct dwarf2_section_info
*section
,
7484 struct dwo_file
*dwo_file
,
7485 struct abbrev_table
*abbrev_table
)
7487 gdb_assert (section
->readin
&& section
->buffer
!= NULL
);
7488 reader
->abfd
= get_section_bfd_owner (section
);
7490 reader
->dwo_file
= dwo_file
;
7491 reader
->die_section
= section
;
7492 reader
->buffer
= section
->buffer
;
7493 reader
->buffer_end
= section
->buffer
+ section
->size
;
7494 reader
->comp_dir
= NULL
;
7495 reader
->abbrev_table
= abbrev_table
;
7498 /* Subroutine of init_cutu_and_read_dies to simplify it.
7499 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7500 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7503 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7504 from it to the DIE in the DWO. If NULL we are skipping the stub.
7505 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7506 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7507 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7508 STUB_COMP_DIR may be non-NULL.
7509 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7510 are filled in with the info of the DIE from the DWO file.
7511 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7512 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7513 kept around for at least as long as *RESULT_READER.
7515 The result is non-zero if a valid (non-dummy) DIE was found. */
7518 read_cutu_die_from_dwo (struct dwarf2_per_cu_data
*this_cu
,
7519 struct dwo_unit
*dwo_unit
,
7520 struct die_info
*stub_comp_unit_die
,
7521 const char *stub_comp_dir
,
7522 struct die_reader_specs
*result_reader
,
7523 const gdb_byte
**result_info_ptr
,
7524 struct die_info
**result_comp_unit_die
,
7525 int *result_has_children
,
7526 abbrev_table_up
*result_dwo_abbrev_table
)
7528 struct dwarf2_per_objfile
*dwarf2_per_objfile
= this_cu
->dwarf2_per_objfile
;
7529 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
7530 struct dwarf2_cu
*cu
= this_cu
->cu
;
7532 const gdb_byte
*begin_info_ptr
, *info_ptr
;
7533 struct attribute
*comp_dir
, *stmt_list
, *low_pc
, *high_pc
, *ranges
;
7534 int i
,num_extra_attrs
;
7535 struct dwarf2_section_info
*dwo_abbrev_section
;
7536 struct attribute
*attr
;
7537 struct die_info
*comp_unit_die
;
7539 /* At most one of these may be provided. */
7540 gdb_assert ((stub_comp_unit_die
!= NULL
) + (stub_comp_dir
!= NULL
) <= 1);
7542 /* These attributes aren't processed until later:
7543 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7544 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7545 referenced later. However, these attributes are found in the stub
7546 which we won't have later. In order to not impose this complication
7547 on the rest of the code, we read them here and copy them to the
7556 if (stub_comp_unit_die
!= NULL
)
7558 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7560 if (! this_cu
->is_debug_types
)
7561 stmt_list
= dwarf2_attr (stub_comp_unit_die
, DW_AT_stmt_list
, cu
);
7562 low_pc
= dwarf2_attr (stub_comp_unit_die
, DW_AT_low_pc
, cu
);
7563 high_pc
= dwarf2_attr (stub_comp_unit_die
, DW_AT_high_pc
, cu
);
7564 ranges
= dwarf2_attr (stub_comp_unit_die
, DW_AT_ranges
, cu
);
7565 comp_dir
= dwarf2_attr (stub_comp_unit_die
, DW_AT_comp_dir
, cu
);
7567 /* There should be a DW_AT_addr_base attribute here (if needed).
7568 We need the value before we can process DW_FORM_GNU_addr_index. */
7570 attr
= dwarf2_attr (stub_comp_unit_die
, DW_AT_GNU_addr_base
, cu
);
7572 cu
->addr_base
= DW_UNSND (attr
);
7574 /* There should be a DW_AT_ranges_base attribute here (if needed).
7575 We need the value before we can process DW_AT_ranges. */
7576 cu
->ranges_base
= 0;
7577 attr
= dwarf2_attr (stub_comp_unit_die
, DW_AT_GNU_ranges_base
, cu
);
7579 cu
->ranges_base
= DW_UNSND (attr
);
7581 else if (stub_comp_dir
!= NULL
)
7583 /* Reconstruct the comp_dir attribute to simplify the code below. */
7584 comp_dir
= XOBNEW (&cu
->comp_unit_obstack
, struct attribute
);
7585 comp_dir
->name
= DW_AT_comp_dir
;
7586 comp_dir
->form
= DW_FORM_string
;
7587 DW_STRING_IS_CANONICAL (comp_dir
) = 0;
7588 DW_STRING (comp_dir
) = stub_comp_dir
;
7591 /* Set up for reading the DWO CU/TU. */
7592 cu
->dwo_unit
= dwo_unit
;
7593 dwarf2_section_info
*section
= dwo_unit
->section
;
7594 dwarf2_read_section (objfile
, section
);
7595 abfd
= get_section_bfd_owner (section
);
7596 begin_info_ptr
= info_ptr
= (section
->buffer
7597 + to_underlying (dwo_unit
->sect_off
));
7598 dwo_abbrev_section
= &dwo_unit
->dwo_file
->sections
.abbrev
;
7600 if (this_cu
->is_debug_types
)
7602 struct signatured_type
*sig_type
= (struct signatured_type
*) this_cu
;
7604 info_ptr
= read_and_check_comp_unit_head (dwarf2_per_objfile
,
7605 &cu
->header
, section
,
7607 info_ptr
, rcuh_kind::TYPE
);
7608 /* This is not an assert because it can be caused by bad debug info. */
7609 if (sig_type
->signature
!= cu
->header
.signature
)
7611 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7612 " TU at offset 0x%x [in module %s]"),
7613 hex_string (sig_type
->signature
),
7614 hex_string (cu
->header
.signature
),
7615 to_underlying (dwo_unit
->sect_off
),
7616 bfd_get_filename (abfd
));
7618 gdb_assert (dwo_unit
->sect_off
== cu
->header
.sect_off
);
7619 /* For DWOs coming from DWP files, we don't know the CU length
7620 nor the type's offset in the TU until now. */
7621 dwo_unit
->length
= get_cu_length (&cu
->header
);
7622 dwo_unit
->type_offset_in_tu
= cu
->header
.type_cu_offset_in_tu
;
7624 /* Establish the type offset that can be used to lookup the type.
7625 For DWO files, we don't know it until now. */
7626 sig_type
->type_offset_in_section
7627 = dwo_unit
->sect_off
+ to_underlying (dwo_unit
->type_offset_in_tu
);
7631 info_ptr
= read_and_check_comp_unit_head (dwarf2_per_objfile
,
7632 &cu
->header
, section
,
7634 info_ptr
, rcuh_kind::COMPILE
);
7635 gdb_assert (dwo_unit
->sect_off
== cu
->header
.sect_off
);
7636 /* For DWOs coming from DWP files, we don't know the CU length
7638 dwo_unit
->length
= get_cu_length (&cu
->header
);
7641 *result_dwo_abbrev_table
7642 = abbrev_table_read_table (dwarf2_per_objfile
, dwo_abbrev_section
,
7643 cu
->header
.abbrev_sect_off
);
7644 init_cu_die_reader (result_reader
, cu
, section
, dwo_unit
->dwo_file
,
7645 result_dwo_abbrev_table
->get ());
7647 /* Read in the die, but leave space to copy over the attributes
7648 from the stub. This has the benefit of simplifying the rest of
7649 the code - all the work to maintain the illusion of a single
7650 DW_TAG_{compile,type}_unit DIE is done here. */
7651 num_extra_attrs
= ((stmt_list
!= NULL
)
7655 + (comp_dir
!= NULL
));
7656 info_ptr
= read_full_die_1 (result_reader
, result_comp_unit_die
, info_ptr
,
7657 result_has_children
, num_extra_attrs
);
7659 /* Copy over the attributes from the stub to the DIE we just read in. */
7660 comp_unit_die
= *result_comp_unit_die
;
7661 i
= comp_unit_die
->num_attrs
;
7662 if (stmt_list
!= NULL
)
7663 comp_unit_die
->attrs
[i
++] = *stmt_list
;
7665 comp_unit_die
->attrs
[i
++] = *low_pc
;
7666 if (high_pc
!= NULL
)
7667 comp_unit_die
->attrs
[i
++] = *high_pc
;
7669 comp_unit_die
->attrs
[i
++] = *ranges
;
7670 if (comp_dir
!= NULL
)
7671 comp_unit_die
->attrs
[i
++] = *comp_dir
;
7672 comp_unit_die
->num_attrs
+= num_extra_attrs
;
7674 if (dwarf_die_debug
)
7676 fprintf_unfiltered (gdb_stdlog
,
7677 "Read die from %s@0x%x of %s:\n",
7678 get_section_name (section
),
7679 (unsigned) (begin_info_ptr
- section
->buffer
),
7680 bfd_get_filename (abfd
));
7681 dump_die (comp_unit_die
, dwarf_die_debug
);
7684 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7685 TUs by skipping the stub and going directly to the entry in the DWO file.
7686 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7687 to get it via circuitous means. Blech. */
7688 if (comp_dir
!= NULL
)
7689 result_reader
->comp_dir
= DW_STRING (comp_dir
);
7691 /* Skip dummy compilation units. */
7692 if (info_ptr
>= begin_info_ptr
+ dwo_unit
->length
7693 || peek_abbrev_code (abfd
, info_ptr
) == 0)
7696 *result_info_ptr
= info_ptr
;
7700 /* Subroutine of init_cutu_and_read_dies to simplify it.
7701 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7702 Returns NULL if the specified DWO unit cannot be found. */
7704 static struct dwo_unit
*
7705 lookup_dwo_unit (struct dwarf2_per_cu_data
*this_cu
,
7706 struct die_info
*comp_unit_die
)
7708 struct dwarf2_cu
*cu
= this_cu
->cu
;
7710 struct dwo_unit
*dwo_unit
;
7711 const char *comp_dir
, *dwo_name
;
7713 gdb_assert (cu
!= NULL
);
7715 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7716 dwo_name
= dwarf2_string_attr (comp_unit_die
, DW_AT_GNU_dwo_name
, cu
);
7717 comp_dir
= dwarf2_string_attr (comp_unit_die
, DW_AT_comp_dir
, cu
);
7719 if (this_cu
->is_debug_types
)
7721 struct signatured_type
*sig_type
;
7723 /* Since this_cu is the first member of struct signatured_type,
7724 we can go from a pointer to one to a pointer to the other. */
7725 sig_type
= (struct signatured_type
*) this_cu
;
7726 signature
= sig_type
->signature
;
7727 dwo_unit
= lookup_dwo_type_unit (sig_type
, dwo_name
, comp_dir
);
7731 struct attribute
*attr
;
7733 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_id
, cu
);
7735 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7737 dwo_name
, objfile_name (this_cu
->dwarf2_per_objfile
->objfile
));
7738 signature
= DW_UNSND (attr
);
7739 dwo_unit
= lookup_dwo_comp_unit (this_cu
, dwo_name
, comp_dir
,
7746 /* Subroutine of init_cutu_and_read_dies to simplify it.
7747 See it for a description of the parameters.
7748 Read a TU directly from a DWO file, bypassing the stub. */
7751 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data
*this_cu
,
7752 int use_existing_cu
, int keep
,
7753 die_reader_func_ftype
*die_reader_func
,
7756 std::unique_ptr
<dwarf2_cu
> new_cu
;
7757 struct signatured_type
*sig_type
;
7758 struct die_reader_specs reader
;
7759 const gdb_byte
*info_ptr
;
7760 struct die_info
*comp_unit_die
;
7762 struct dwarf2_per_objfile
*dwarf2_per_objfile
= this_cu
->dwarf2_per_objfile
;
7764 /* Verify we can do the following downcast, and that we have the
7766 gdb_assert (this_cu
->is_debug_types
&& this_cu
->reading_dwo_directly
);
7767 sig_type
= (struct signatured_type
*) this_cu
;
7768 gdb_assert (sig_type
->dwo_unit
!= NULL
);
7770 if (use_existing_cu
&& this_cu
->cu
!= NULL
)
7772 gdb_assert (this_cu
->cu
->dwo_unit
== sig_type
->dwo_unit
);
7773 /* There's no need to do the rereading_dwo_cu handling that
7774 init_cutu_and_read_dies does since we don't read the stub. */
7778 /* If !use_existing_cu, this_cu->cu must be NULL. */
7779 gdb_assert (this_cu
->cu
== NULL
);
7780 new_cu
.reset (new dwarf2_cu (this_cu
));
7783 /* A future optimization, if needed, would be to use an existing
7784 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7785 could share abbrev tables. */
7787 /* The abbreviation table used by READER, this must live at least as long as
7789 abbrev_table_up dwo_abbrev_table
;
7791 if (read_cutu_die_from_dwo (this_cu
, sig_type
->dwo_unit
,
7792 NULL
/* stub_comp_unit_die */,
7793 sig_type
->dwo_unit
->dwo_file
->comp_dir
,
7795 &comp_unit_die
, &has_children
,
7796 &dwo_abbrev_table
) == 0)
7802 /* All the "real" work is done here. */
7803 die_reader_func (&reader
, info_ptr
, comp_unit_die
, has_children
, data
);
7805 /* This duplicates the code in init_cutu_and_read_dies,
7806 but the alternative is making the latter more complex.
7807 This function is only for the special case of using DWO files directly:
7808 no point in overly complicating the general case just to handle this. */
7809 if (new_cu
!= NULL
&& keep
)
7811 /* Link this CU into read_in_chain. */
7812 this_cu
->cu
->read_in_chain
= dwarf2_per_objfile
->read_in_chain
;
7813 dwarf2_per_objfile
->read_in_chain
= this_cu
;
7814 /* The chain owns it now. */
7819 /* Initialize a CU (or TU) and read its DIEs.
7820 If the CU defers to a DWO file, read the DWO file as well.
7822 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7823 Otherwise the table specified in the comp unit header is read in and used.
7824 This is an optimization for when we already have the abbrev table.
7826 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7827 Otherwise, a new CU is allocated with xmalloc.
7829 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7830 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7832 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7833 linker) then DIE_READER_FUNC will not get called. */
7836 init_cutu_and_read_dies (struct dwarf2_per_cu_data
*this_cu
,
7837 struct abbrev_table
*abbrev_table
,
7838 int use_existing_cu
, int keep
,
7839 die_reader_func_ftype
*die_reader_func
,
7842 struct dwarf2_per_objfile
*dwarf2_per_objfile
= this_cu
->dwarf2_per_objfile
;
7843 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
7844 struct dwarf2_section_info
*section
= this_cu
->section
;
7845 bfd
*abfd
= get_section_bfd_owner (section
);
7846 struct dwarf2_cu
*cu
;
7847 const gdb_byte
*begin_info_ptr
, *info_ptr
;
7848 struct die_reader_specs reader
;
7849 struct die_info
*comp_unit_die
;
7851 struct attribute
*attr
;
7852 struct signatured_type
*sig_type
= NULL
;
7853 struct dwarf2_section_info
*abbrev_section
;
7854 /* Non-zero if CU currently points to a DWO file and we need to
7855 reread it. When this happens we need to reread the skeleton die
7856 before we can reread the DWO file (this only applies to CUs, not TUs). */
7857 int rereading_dwo_cu
= 0;
7859 if (dwarf_die_debug
)
7860 fprintf_unfiltered (gdb_stdlog
, "Reading %s unit at offset 0x%x\n",
7861 this_cu
->is_debug_types
? "type" : "comp",
7862 to_underlying (this_cu
->sect_off
));
7864 if (use_existing_cu
)
7867 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7868 file (instead of going through the stub), short-circuit all of this. */
7869 if (this_cu
->reading_dwo_directly
)
7871 /* Narrow down the scope of possibilities to have to understand. */
7872 gdb_assert (this_cu
->is_debug_types
);
7873 gdb_assert (abbrev_table
== NULL
);
7874 init_tu_and_read_dwo_dies (this_cu
, use_existing_cu
, keep
,
7875 die_reader_func
, data
);
7879 /* This is cheap if the section is already read in. */
7880 dwarf2_read_section (objfile
, section
);
7882 begin_info_ptr
= info_ptr
= section
->buffer
+ to_underlying (this_cu
->sect_off
);
7884 abbrev_section
= get_abbrev_section_for_cu (this_cu
);
7886 std::unique_ptr
<dwarf2_cu
> new_cu
;
7887 if (use_existing_cu
&& this_cu
->cu
!= NULL
)
7890 /* If this CU is from a DWO file we need to start over, we need to
7891 refetch the attributes from the skeleton CU.
7892 This could be optimized by retrieving those attributes from when we
7893 were here the first time: the previous comp_unit_die was stored in
7894 comp_unit_obstack. But there's no data yet that we need this
7896 if (cu
->dwo_unit
!= NULL
)
7897 rereading_dwo_cu
= 1;
7901 /* If !use_existing_cu, this_cu->cu must be NULL. */
7902 gdb_assert (this_cu
->cu
== NULL
);
7903 new_cu
.reset (new dwarf2_cu (this_cu
));
7907 /* Get the header. */
7908 if (to_underlying (cu
->header
.first_die_cu_offset
) != 0 && !rereading_dwo_cu
)
7910 /* We already have the header, there's no need to read it in again. */
7911 info_ptr
+= to_underlying (cu
->header
.first_die_cu_offset
);
7915 if (this_cu
->is_debug_types
)
7917 info_ptr
= read_and_check_comp_unit_head (dwarf2_per_objfile
,
7918 &cu
->header
, section
,
7919 abbrev_section
, info_ptr
,
7922 /* Since per_cu is the first member of struct signatured_type,
7923 we can go from a pointer to one to a pointer to the other. */
7924 sig_type
= (struct signatured_type
*) this_cu
;
7925 gdb_assert (sig_type
->signature
== cu
->header
.signature
);
7926 gdb_assert (sig_type
->type_offset_in_tu
7927 == cu
->header
.type_cu_offset_in_tu
);
7928 gdb_assert (this_cu
->sect_off
== cu
->header
.sect_off
);
7930 /* LENGTH has not been set yet for type units if we're
7931 using .gdb_index. */
7932 this_cu
->length
= get_cu_length (&cu
->header
);
7934 /* Establish the type offset that can be used to lookup the type. */
7935 sig_type
->type_offset_in_section
=
7936 this_cu
->sect_off
+ to_underlying (sig_type
->type_offset_in_tu
);
7938 this_cu
->dwarf_version
= cu
->header
.version
;
7942 info_ptr
= read_and_check_comp_unit_head (dwarf2_per_objfile
,
7943 &cu
->header
, section
,
7946 rcuh_kind::COMPILE
);
7948 gdb_assert (this_cu
->sect_off
== cu
->header
.sect_off
);
7949 gdb_assert (this_cu
->length
== get_cu_length (&cu
->header
));
7950 this_cu
->dwarf_version
= cu
->header
.version
;
7954 /* Skip dummy compilation units. */
7955 if (info_ptr
>= begin_info_ptr
+ this_cu
->length
7956 || peek_abbrev_code (abfd
, info_ptr
) == 0)
7959 /* If we don't have them yet, read the abbrevs for this compilation unit.
7960 And if we need to read them now, make sure they're freed when we're
7961 done (own the table through ABBREV_TABLE_HOLDER). */
7962 abbrev_table_up abbrev_table_holder
;
7963 if (abbrev_table
!= NULL
)
7964 gdb_assert (cu
->header
.abbrev_sect_off
== abbrev_table
->sect_off
);
7968 = abbrev_table_read_table (dwarf2_per_objfile
, abbrev_section
,
7969 cu
->header
.abbrev_sect_off
);
7970 abbrev_table
= abbrev_table_holder
.get ();
7973 /* Read the top level CU/TU die. */
7974 init_cu_die_reader (&reader
, cu
, section
, NULL
, abbrev_table
);
7975 info_ptr
= read_full_die (&reader
, &comp_unit_die
, info_ptr
, &has_children
);
7977 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7978 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7979 table from the DWO file and pass the ownership over to us. It will be
7980 referenced from READER, so we must make sure to free it after we're done
7983 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7984 DWO CU, that this test will fail (the attribute will not be present). */
7985 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_name
, cu
);
7986 abbrev_table_up dwo_abbrev_table
;
7989 struct dwo_unit
*dwo_unit
;
7990 struct die_info
*dwo_comp_unit_die
;
7994 complaint (&symfile_complaints
,
7995 _("compilation unit with DW_AT_GNU_dwo_name"
7996 " has children (offset 0x%x) [in module %s]"),
7997 to_underlying (this_cu
->sect_off
), bfd_get_filename (abfd
));
7999 dwo_unit
= lookup_dwo_unit (this_cu
, comp_unit_die
);
8000 if (dwo_unit
!= NULL
)
8002 if (read_cutu_die_from_dwo (this_cu
, dwo_unit
,
8003 comp_unit_die
, NULL
,
8005 &dwo_comp_unit_die
, &has_children
,
8006 &dwo_abbrev_table
) == 0)
8011 comp_unit_die
= dwo_comp_unit_die
;
8015 /* Yikes, we couldn't find the rest of the DIE, we only have
8016 the stub. A complaint has already been logged. There's
8017 not much more we can do except pass on the stub DIE to
8018 die_reader_func. We don't want to throw an error on bad
8023 /* All of the above is setup for this call. Yikes. */
8024 die_reader_func (&reader
, info_ptr
, comp_unit_die
, has_children
, data
);
8026 /* Done, clean up. */
8027 if (new_cu
!= NULL
&& keep
)
8029 /* Link this CU into read_in_chain. */
8030 this_cu
->cu
->read_in_chain
= dwarf2_per_objfile
->read_in_chain
;
8031 dwarf2_per_objfile
->read_in_chain
= this_cu
;
8032 /* The chain owns it now. */
8037 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8038 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8039 to have already done the lookup to find the DWO file).
8041 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8042 THIS_CU->is_debug_types, but nothing else.
8044 We fill in THIS_CU->length.
8046 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8047 linker) then DIE_READER_FUNC will not get called.
8049 THIS_CU->cu is always freed when done.
8050 This is done in order to not leave THIS_CU->cu in a state where we have
8051 to care whether it refers to the "main" CU or the DWO CU. */
8054 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data
*this_cu
,
8055 struct dwo_file
*dwo_file
,
8056 die_reader_func_ftype
*die_reader_func
,
8059 struct dwarf2_per_objfile
*dwarf2_per_objfile
= this_cu
->dwarf2_per_objfile
;
8060 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
8061 struct dwarf2_section_info
*section
= this_cu
->section
;
8062 bfd
*abfd
= get_section_bfd_owner (section
);
8063 struct dwarf2_section_info
*abbrev_section
;
8064 const gdb_byte
*begin_info_ptr
, *info_ptr
;
8065 struct die_reader_specs reader
;
8066 struct die_info
*comp_unit_die
;
8069 if (dwarf_die_debug
)
8070 fprintf_unfiltered (gdb_stdlog
, "Reading %s unit at offset 0x%x\n",
8071 this_cu
->is_debug_types
? "type" : "comp",
8072 to_underlying (this_cu
->sect_off
));
8074 gdb_assert (this_cu
->cu
== NULL
);
8076 abbrev_section
= (dwo_file
!= NULL
8077 ? &dwo_file
->sections
.abbrev
8078 : get_abbrev_section_for_cu (this_cu
));
8080 /* This is cheap if the section is already read in. */
8081 dwarf2_read_section (objfile
, section
);
8083 struct dwarf2_cu
cu (this_cu
);
8085 begin_info_ptr
= info_ptr
= section
->buffer
+ to_underlying (this_cu
->sect_off
);
8086 info_ptr
= read_and_check_comp_unit_head (dwarf2_per_objfile
,
8087 &cu
.header
, section
,
8088 abbrev_section
, info_ptr
,
8089 (this_cu
->is_debug_types
8091 : rcuh_kind::COMPILE
));
8093 this_cu
->length
= get_cu_length (&cu
.header
);
8095 /* Skip dummy compilation units. */
8096 if (info_ptr
>= begin_info_ptr
+ this_cu
->length
8097 || peek_abbrev_code (abfd
, info_ptr
) == 0)
8100 abbrev_table_up abbrev_table
8101 = abbrev_table_read_table (dwarf2_per_objfile
, abbrev_section
,
8102 cu
.header
.abbrev_sect_off
);
8104 init_cu_die_reader (&reader
, &cu
, section
, dwo_file
, abbrev_table
.get ());
8105 info_ptr
= read_full_die (&reader
, &comp_unit_die
, info_ptr
, &has_children
);
8107 die_reader_func (&reader
, info_ptr
, comp_unit_die
, has_children
, data
);
8110 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8111 does not lookup the specified DWO file.
8112 This cannot be used to read DWO files.
8114 THIS_CU->cu is always freed when done.
8115 This is done in order to not leave THIS_CU->cu in a state where we have
8116 to care whether it refers to the "main" CU or the DWO CU.
8117 We can revisit this if the data shows there's a performance issue. */
8120 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data
*this_cu
,
8121 die_reader_func_ftype
*die_reader_func
,
8124 init_cutu_and_read_dies_no_follow (this_cu
, NULL
, die_reader_func
, data
);
8127 /* Type Unit Groups.
8129 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8130 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8131 so that all types coming from the same compilation (.o file) are grouped
8132 together. A future step could be to put the types in the same symtab as
8133 the CU the types ultimately came from. */
8136 hash_type_unit_group (const void *item
)
8138 const struct type_unit_group
*tu_group
8139 = (const struct type_unit_group
*) item
;
8141 return hash_stmt_list_entry (&tu_group
->hash
);
8145 eq_type_unit_group (const void *item_lhs
, const void *item_rhs
)
8147 const struct type_unit_group
*lhs
= (const struct type_unit_group
*) item_lhs
;
8148 const struct type_unit_group
*rhs
= (const struct type_unit_group
*) item_rhs
;
8150 return eq_stmt_list_entry (&lhs
->hash
, &rhs
->hash
);
8153 /* Allocate a hash table for type unit groups. */
8156 allocate_type_unit_groups_table (struct objfile
*objfile
)
8158 return htab_create_alloc_ex (3,
8159 hash_type_unit_group
,
8162 &objfile
->objfile_obstack
,
8163 hashtab_obstack_allocate
,
8164 dummy_obstack_deallocate
);
8167 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8168 partial symtabs. We combine several TUs per psymtab to not let the size
8169 of any one psymtab grow too big. */
8170 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8171 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8173 /* Helper routine for get_type_unit_group.
8174 Create the type_unit_group object used to hold one or more TUs. */
8176 static struct type_unit_group
*
8177 create_type_unit_group (struct dwarf2_cu
*cu
, sect_offset line_offset_struct
)
8179 struct dwarf2_per_objfile
*dwarf2_per_objfile
8180 = cu
->per_cu
->dwarf2_per_objfile
;
8181 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
8182 struct dwarf2_per_cu_data
*per_cu
;
8183 struct type_unit_group
*tu_group
;
8185 tu_group
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
8186 struct type_unit_group
);
8187 per_cu
= &tu_group
->per_cu
;
8188 per_cu
->dwarf2_per_objfile
= dwarf2_per_objfile
;
8190 if (dwarf2_per_objfile
->using_index
)
8192 per_cu
->v
.quick
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
8193 struct dwarf2_per_cu_quick_data
);
8197 unsigned int line_offset
= to_underlying (line_offset_struct
);
8198 struct partial_symtab
*pst
;
8201 /* Give the symtab a useful name for debug purposes. */
8202 if ((line_offset
& NO_STMT_LIST_TYPE_UNIT_PSYMTAB
) != 0)
8203 name
= xstrprintf ("<type_units_%d>",
8204 (line_offset
& ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB
));
8206 name
= xstrprintf ("<type_units_at_0x%x>", line_offset
);
8208 pst
= create_partial_symtab (per_cu
, name
);
8214 tu_group
->hash
.dwo_unit
= cu
->dwo_unit
;
8215 tu_group
->hash
.line_sect_off
= line_offset_struct
;
8220 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8221 STMT_LIST is a DW_AT_stmt_list attribute. */
8223 static struct type_unit_group
*
8224 get_type_unit_group (struct dwarf2_cu
*cu
, const struct attribute
*stmt_list
)
8226 struct dwarf2_per_objfile
*dwarf2_per_objfile
8227 = cu
->per_cu
->dwarf2_per_objfile
;
8228 struct tu_stats
*tu_stats
= &dwarf2_per_objfile
->tu_stats
;
8229 struct type_unit_group
*tu_group
;
8231 unsigned int line_offset
;
8232 struct type_unit_group type_unit_group_for_lookup
;
8234 if (dwarf2_per_objfile
->type_unit_groups
== NULL
)
8236 dwarf2_per_objfile
->type_unit_groups
=
8237 allocate_type_unit_groups_table (dwarf2_per_objfile
->objfile
);
8240 /* Do we need to create a new group, or can we use an existing one? */
8244 line_offset
= DW_UNSND (stmt_list
);
8245 ++tu_stats
->nr_symtab_sharers
;
8249 /* Ugh, no stmt_list. Rare, but we have to handle it.
8250 We can do various things here like create one group per TU or
8251 spread them over multiple groups to split up the expansion work.
8252 To avoid worst case scenarios (too many groups or too large groups)
8253 we, umm, group them in bunches. */
8254 line_offset
= (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8255 | (tu_stats
->nr_stmt_less_type_units
8256 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE
));
8257 ++tu_stats
->nr_stmt_less_type_units
;
8260 type_unit_group_for_lookup
.hash
.dwo_unit
= cu
->dwo_unit
;
8261 type_unit_group_for_lookup
.hash
.line_sect_off
= (sect_offset
) line_offset
;
8262 slot
= htab_find_slot (dwarf2_per_objfile
->type_unit_groups
,
8263 &type_unit_group_for_lookup
, INSERT
);
8266 tu_group
= (struct type_unit_group
*) *slot
;
8267 gdb_assert (tu_group
!= NULL
);
8271 sect_offset line_offset_struct
= (sect_offset
) line_offset
;
8272 tu_group
= create_type_unit_group (cu
, line_offset_struct
);
8274 ++tu_stats
->nr_symtabs
;
8280 /* Partial symbol tables. */
8282 /* Create a psymtab named NAME and assign it to PER_CU.
8284 The caller must fill in the following details:
8285 dirname, textlow, texthigh. */
8287 static struct partial_symtab
*
8288 create_partial_symtab (struct dwarf2_per_cu_data
*per_cu
, const char *name
)
8290 struct objfile
*objfile
= per_cu
->dwarf2_per_objfile
->objfile
;
8291 struct partial_symtab
*pst
;
8293 pst
= start_psymtab_common (objfile
, name
, 0,
8294 objfile
->global_psymbols
,
8295 objfile
->static_psymbols
);
8297 pst
->psymtabs_addrmap_supported
= 1;
8299 /* This is the glue that links PST into GDB's symbol API. */
8300 pst
->read_symtab_private
= per_cu
;
8301 pst
->read_symtab
= dwarf2_read_symtab
;
8302 per_cu
->v
.psymtab
= pst
;
8307 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8310 struct process_psymtab_comp_unit_data
8312 /* True if we are reading a DW_TAG_partial_unit. */
8314 int want_partial_unit
;
8316 /* The "pretend" language that is used if the CU doesn't declare a
8319 enum language pretend_language
;
8322 /* die_reader_func for process_psymtab_comp_unit. */
8325 process_psymtab_comp_unit_reader (const struct die_reader_specs
*reader
,
8326 const gdb_byte
*info_ptr
,
8327 struct die_info
*comp_unit_die
,
8331 struct dwarf2_cu
*cu
= reader
->cu
;
8332 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
8333 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
8334 struct dwarf2_per_cu_data
*per_cu
= cu
->per_cu
;
8336 CORE_ADDR best_lowpc
= 0, best_highpc
= 0;
8337 struct partial_symtab
*pst
;
8338 enum pc_bounds_kind cu_bounds_kind
;
8339 const char *filename
;
8340 struct process_psymtab_comp_unit_data
*info
8341 = (struct process_psymtab_comp_unit_data
*) data
;
8343 if (comp_unit_die
->tag
== DW_TAG_partial_unit
&& !info
->want_partial_unit
)
8346 gdb_assert (! per_cu
->is_debug_types
);
8348 prepare_one_comp_unit (cu
, comp_unit_die
, info
->pretend_language
);
8350 cu
->list_in_scope
= &file_symbols
;
8352 /* Allocate a new partial symbol table structure. */
8353 filename
= dwarf2_string_attr (comp_unit_die
, DW_AT_name
, cu
);
8354 if (filename
== NULL
)
8357 pst
= create_partial_symtab (per_cu
, filename
);
8359 /* This must be done before calling dwarf2_build_include_psymtabs. */
8360 pst
->dirname
= dwarf2_string_attr (comp_unit_die
, DW_AT_comp_dir
, cu
);
8362 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
8364 dwarf2_find_base_address (comp_unit_die
, cu
);
8366 /* Possibly set the default values of LOWPC and HIGHPC from
8368 cu_bounds_kind
= dwarf2_get_pc_bounds (comp_unit_die
, &best_lowpc
,
8369 &best_highpc
, cu
, pst
);
8370 if (cu_bounds_kind
== PC_BOUNDS_HIGH_LOW
&& best_lowpc
< best_highpc
)
8371 /* Store the contiguous range if it is not empty; it can be empty for
8372 CUs with no code. */
8373 addrmap_set_empty (objfile
->psymtabs_addrmap
,
8374 gdbarch_adjust_dwarf2_addr (gdbarch
,
8375 best_lowpc
+ baseaddr
),
8376 gdbarch_adjust_dwarf2_addr (gdbarch
,
8377 best_highpc
+ baseaddr
) - 1,
8380 /* Check if comp unit has_children.
8381 If so, read the rest of the partial symbols from this comp unit.
8382 If not, there's no more debug_info for this comp unit. */
8385 struct partial_die_info
*first_die
;
8386 CORE_ADDR lowpc
, highpc
;
8388 lowpc
= ((CORE_ADDR
) -1);
8389 highpc
= ((CORE_ADDR
) 0);
8391 first_die
= load_partial_dies (reader
, info_ptr
, 1);
8393 scan_partial_symbols (first_die
, &lowpc
, &highpc
,
8394 cu_bounds_kind
<= PC_BOUNDS_INVALID
, cu
);
8396 /* If we didn't find a lowpc, set it to highpc to avoid
8397 complaints from `maint check'. */
8398 if (lowpc
== ((CORE_ADDR
) -1))
8401 /* If the compilation unit didn't have an explicit address range,
8402 then use the information extracted from its child dies. */
8403 if (cu_bounds_kind
<= PC_BOUNDS_INVALID
)
8406 best_highpc
= highpc
;
8409 pst
->textlow
= gdbarch_adjust_dwarf2_addr (gdbarch
, best_lowpc
+ baseaddr
);
8410 pst
->texthigh
= gdbarch_adjust_dwarf2_addr (gdbarch
, best_highpc
+ baseaddr
);
8412 end_psymtab_common (objfile
, pst
);
8414 if (!VEC_empty (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
))
8417 int len
= VEC_length (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
);
8418 struct dwarf2_per_cu_data
*iter
;
8420 /* Fill in 'dependencies' here; we fill in 'users' in a
8422 pst
->number_of_dependencies
= len
;
8424 XOBNEWVEC (&objfile
->objfile_obstack
, struct partial_symtab
*, len
);
8426 VEC_iterate (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
,
8429 pst
->dependencies
[i
] = iter
->v
.psymtab
;
8431 VEC_free (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
);
8434 /* Get the list of files included in the current compilation unit,
8435 and build a psymtab for each of them. */
8436 dwarf2_build_include_psymtabs (cu
, comp_unit_die
, pst
);
8438 if (dwarf_read_debug
)
8440 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
8442 fprintf_unfiltered (gdb_stdlog
,
8443 "Psymtab for %s unit @0x%x: %s - %s"
8444 ", %d global, %d static syms\n",
8445 per_cu
->is_debug_types
? "type" : "comp",
8446 to_underlying (per_cu
->sect_off
),
8447 paddress (gdbarch
, pst
->textlow
),
8448 paddress (gdbarch
, pst
->texthigh
),
8449 pst
->n_global_syms
, pst
->n_static_syms
);
8453 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8454 Process compilation unit THIS_CU for a psymtab. */
8457 process_psymtab_comp_unit (struct dwarf2_per_cu_data
*this_cu
,
8458 int want_partial_unit
,
8459 enum language pretend_language
)
8461 /* If this compilation unit was already read in, free the
8462 cached copy in order to read it in again. This is
8463 necessary because we skipped some symbols when we first
8464 read in the compilation unit (see load_partial_dies).
8465 This problem could be avoided, but the benefit is unclear. */
8466 if (this_cu
->cu
!= NULL
)
8467 free_one_cached_comp_unit (this_cu
);
8469 if (this_cu
->is_debug_types
)
8470 init_cutu_and_read_dies (this_cu
, NULL
, 0, 0, build_type_psymtabs_reader
,
8474 process_psymtab_comp_unit_data info
;
8475 info
.want_partial_unit
= want_partial_unit
;
8476 info
.pretend_language
= pretend_language
;
8477 init_cutu_and_read_dies (this_cu
, NULL
, 0, 0,
8478 process_psymtab_comp_unit_reader
, &info
);
8481 /* Age out any secondary CUs. */
8482 age_cached_comp_units (this_cu
->dwarf2_per_objfile
);
8485 /* Reader function for build_type_psymtabs. */
8488 build_type_psymtabs_reader (const struct die_reader_specs
*reader
,
8489 const gdb_byte
*info_ptr
,
8490 struct die_info
*type_unit_die
,
8494 struct dwarf2_per_objfile
*dwarf2_per_objfile
8495 = reader
->cu
->per_cu
->dwarf2_per_objfile
;
8496 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
8497 struct dwarf2_cu
*cu
= reader
->cu
;
8498 struct dwarf2_per_cu_data
*per_cu
= cu
->per_cu
;
8499 struct signatured_type
*sig_type
;
8500 struct type_unit_group
*tu_group
;
8501 struct attribute
*attr
;
8502 struct partial_die_info
*first_die
;
8503 CORE_ADDR lowpc
, highpc
;
8504 struct partial_symtab
*pst
;
8506 gdb_assert (data
== NULL
);
8507 gdb_assert (per_cu
->is_debug_types
);
8508 sig_type
= (struct signatured_type
*) per_cu
;
8513 attr
= dwarf2_attr_no_follow (type_unit_die
, DW_AT_stmt_list
);
8514 tu_group
= get_type_unit_group (cu
, attr
);
8516 VEC_safe_push (sig_type_ptr
, tu_group
->tus
, sig_type
);
8518 prepare_one_comp_unit (cu
, type_unit_die
, language_minimal
);
8519 cu
->list_in_scope
= &file_symbols
;
8520 pst
= create_partial_symtab (per_cu
, "");
8523 first_die
= load_partial_dies (reader
, info_ptr
, 1);
8525 lowpc
= (CORE_ADDR
) -1;
8526 highpc
= (CORE_ADDR
) 0;
8527 scan_partial_symbols (first_die
, &lowpc
, &highpc
, 0, cu
);
8529 end_psymtab_common (objfile
, pst
);
8532 /* Struct used to sort TUs by their abbreviation table offset. */
8534 struct tu_abbrev_offset
8536 struct signatured_type
*sig_type
;
8537 sect_offset abbrev_offset
;
8540 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8543 sort_tu_by_abbrev_offset (const void *ap
, const void *bp
)
8545 const struct tu_abbrev_offset
* const *a
8546 = (const struct tu_abbrev_offset
* const*) ap
;
8547 const struct tu_abbrev_offset
* const *b
8548 = (const struct tu_abbrev_offset
* const*) bp
;
8549 sect_offset aoff
= (*a
)->abbrev_offset
;
8550 sect_offset boff
= (*b
)->abbrev_offset
;
8552 return (aoff
> boff
) - (aoff
< boff
);
8555 /* Efficiently read all the type units.
8556 This does the bulk of the work for build_type_psymtabs.
8558 The efficiency is because we sort TUs by the abbrev table they use and
8559 only read each abbrev table once. In one program there are 200K TUs
8560 sharing 8K abbrev tables.
8562 The main purpose of this function is to support building the
8563 dwarf2_per_objfile->type_unit_groups table.
8564 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8565 can collapse the search space by grouping them by stmt_list.
8566 The savings can be significant, in the same program from above the 200K TUs
8567 share 8K stmt_list tables.
8569 FUNC is expected to call get_type_unit_group, which will create the
8570 struct type_unit_group if necessary and add it to
8571 dwarf2_per_objfile->type_unit_groups. */
8574 build_type_psymtabs_1 (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8576 struct tu_stats
*tu_stats
= &dwarf2_per_objfile
->tu_stats
;
8577 struct cleanup
*cleanups
;
8578 abbrev_table_up abbrev_table
;
8579 sect_offset abbrev_offset
;
8580 struct tu_abbrev_offset
*sorted_by_abbrev
;
8583 /* It's up to the caller to not call us multiple times. */
8584 gdb_assert (dwarf2_per_objfile
->type_unit_groups
== NULL
);
8586 if (dwarf2_per_objfile
->n_type_units
== 0)
8589 /* TUs typically share abbrev tables, and there can be way more TUs than
8590 abbrev tables. Sort by abbrev table to reduce the number of times we
8591 read each abbrev table in.
8592 Alternatives are to punt or to maintain a cache of abbrev tables.
8593 This is simpler and efficient enough for now.
8595 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8596 symtab to use). Typically TUs with the same abbrev offset have the same
8597 stmt_list value too so in practice this should work well.
8599 The basic algorithm here is:
8601 sort TUs by abbrev table
8602 for each TU with same abbrev table:
8603 read abbrev table if first user
8604 read TU top level DIE
8605 [IWBN if DWO skeletons had DW_AT_stmt_list]
8608 if (dwarf_read_debug
)
8609 fprintf_unfiltered (gdb_stdlog
, "Building type unit groups ...\n");
8611 /* Sort in a separate table to maintain the order of all_type_units
8612 for .gdb_index: TU indices directly index all_type_units. */
8613 sorted_by_abbrev
= XNEWVEC (struct tu_abbrev_offset
,
8614 dwarf2_per_objfile
->n_type_units
);
8615 for (i
= 0; i
< dwarf2_per_objfile
->n_type_units
; ++i
)
8617 struct signatured_type
*sig_type
= dwarf2_per_objfile
->all_type_units
[i
];
8619 sorted_by_abbrev
[i
].sig_type
= sig_type
;
8620 sorted_by_abbrev
[i
].abbrev_offset
=
8621 read_abbrev_offset (dwarf2_per_objfile
,
8622 sig_type
->per_cu
.section
,
8623 sig_type
->per_cu
.sect_off
);
8625 cleanups
= make_cleanup (xfree
, sorted_by_abbrev
);
8626 qsort (sorted_by_abbrev
, dwarf2_per_objfile
->n_type_units
,
8627 sizeof (struct tu_abbrev_offset
), sort_tu_by_abbrev_offset
);
8629 abbrev_offset
= (sect_offset
) ~(unsigned) 0;
8631 for (i
= 0; i
< dwarf2_per_objfile
->n_type_units
; ++i
)
8633 const struct tu_abbrev_offset
*tu
= &sorted_by_abbrev
[i
];
8635 /* Switch to the next abbrev table if necessary. */
8636 if (abbrev_table
== NULL
8637 || tu
->abbrev_offset
!= abbrev_offset
)
8639 abbrev_offset
= tu
->abbrev_offset
;
8641 abbrev_table_read_table (dwarf2_per_objfile
,
8642 &dwarf2_per_objfile
->abbrev
,
8644 ++tu_stats
->nr_uniq_abbrev_tables
;
8647 init_cutu_and_read_dies (&tu
->sig_type
->per_cu
, abbrev_table
.get (),
8648 0, 0, build_type_psymtabs_reader
, NULL
);
8651 do_cleanups (cleanups
);
8654 /* Print collected type unit statistics. */
8657 print_tu_stats (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8659 struct tu_stats
*tu_stats
= &dwarf2_per_objfile
->tu_stats
;
8661 fprintf_unfiltered (gdb_stdlog
, "Type unit statistics:\n");
8662 fprintf_unfiltered (gdb_stdlog
, " %d TUs\n",
8663 dwarf2_per_objfile
->n_type_units
);
8664 fprintf_unfiltered (gdb_stdlog
, " %d uniq abbrev tables\n",
8665 tu_stats
->nr_uniq_abbrev_tables
);
8666 fprintf_unfiltered (gdb_stdlog
, " %d symtabs from stmt_list entries\n",
8667 tu_stats
->nr_symtabs
);
8668 fprintf_unfiltered (gdb_stdlog
, " %d symtab sharers\n",
8669 tu_stats
->nr_symtab_sharers
);
8670 fprintf_unfiltered (gdb_stdlog
, " %d type units without a stmt_list\n",
8671 tu_stats
->nr_stmt_less_type_units
);
8672 fprintf_unfiltered (gdb_stdlog
, " %d all_type_units reallocs\n",
8673 tu_stats
->nr_all_type_units_reallocs
);
8676 /* Traversal function for build_type_psymtabs. */
8679 build_type_psymtab_dependencies (void **slot
, void *info
)
8681 struct dwarf2_per_objfile
*dwarf2_per_objfile
8682 = (struct dwarf2_per_objfile
*) info
;
8683 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
8684 struct type_unit_group
*tu_group
= (struct type_unit_group
*) *slot
;
8685 struct dwarf2_per_cu_data
*per_cu
= &tu_group
->per_cu
;
8686 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
8687 int len
= VEC_length (sig_type_ptr
, tu_group
->tus
);
8688 struct signatured_type
*iter
;
8691 gdb_assert (len
> 0);
8692 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu
));
8694 pst
->number_of_dependencies
= len
;
8696 XOBNEWVEC (&objfile
->objfile_obstack
, struct partial_symtab
*, len
);
8698 VEC_iterate (sig_type_ptr
, tu_group
->tus
, i
, iter
);
8701 gdb_assert (iter
->per_cu
.is_debug_types
);
8702 pst
->dependencies
[i
] = iter
->per_cu
.v
.psymtab
;
8703 iter
->type_unit_group
= tu_group
;
8706 VEC_free (sig_type_ptr
, tu_group
->tus
);
8711 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8712 Build partial symbol tables for the .debug_types comp-units. */
8715 build_type_psymtabs (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8717 if (! create_all_type_units (dwarf2_per_objfile
))
8720 build_type_psymtabs_1 (dwarf2_per_objfile
);
8723 /* Traversal function for process_skeletonless_type_unit.
8724 Read a TU in a DWO file and build partial symbols for it. */
8727 process_skeletonless_type_unit (void **slot
, void *info
)
8729 struct dwo_unit
*dwo_unit
= (struct dwo_unit
*) *slot
;
8730 struct dwarf2_per_objfile
*dwarf2_per_objfile
8731 = (struct dwarf2_per_objfile
*) info
;
8732 struct signatured_type find_entry
, *entry
;
8734 /* If this TU doesn't exist in the global table, add it and read it in. */
8736 if (dwarf2_per_objfile
->signatured_types
== NULL
)
8738 dwarf2_per_objfile
->signatured_types
8739 = allocate_signatured_type_table (dwarf2_per_objfile
->objfile
);
8742 find_entry
.signature
= dwo_unit
->signature
;
8743 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
, &find_entry
,
8745 /* If we've already seen this type there's nothing to do. What's happening
8746 is we're doing our own version of comdat-folding here. */
8750 /* This does the job that create_all_type_units would have done for
8752 entry
= add_type_unit (dwarf2_per_objfile
, dwo_unit
->signature
, slot
);
8753 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile
, entry
, dwo_unit
);
8756 /* This does the job that build_type_psymtabs_1 would have done. */
8757 init_cutu_and_read_dies (&entry
->per_cu
, NULL
, 0, 0,
8758 build_type_psymtabs_reader
, NULL
);
8763 /* Traversal function for process_skeletonless_type_units. */
8766 process_dwo_file_for_skeletonless_type_units (void **slot
, void *info
)
8768 struct dwo_file
*dwo_file
= (struct dwo_file
*) *slot
;
8770 if (dwo_file
->tus
!= NULL
)
8772 htab_traverse_noresize (dwo_file
->tus
,
8773 process_skeletonless_type_unit
, info
);
8779 /* Scan all TUs of DWO files, verifying we've processed them.
8780 This is needed in case a TU was emitted without its skeleton.
8781 Note: This can't be done until we know what all the DWO files are. */
8784 process_skeletonless_type_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8786 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8787 if (get_dwp_file (dwarf2_per_objfile
) == NULL
8788 && dwarf2_per_objfile
->dwo_files
!= NULL
)
8790 htab_traverse_noresize (dwarf2_per_objfile
->dwo_files
,
8791 process_dwo_file_for_skeletonless_type_units
,
8792 dwarf2_per_objfile
);
8796 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8799 set_partial_user (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8803 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
8805 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, i
);
8806 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
8812 for (j
= 0; j
< pst
->number_of_dependencies
; ++j
)
8814 /* Set the 'user' field only if it is not already set. */
8815 if (pst
->dependencies
[j
]->user
== NULL
)
8816 pst
->dependencies
[j
]->user
= pst
;
8821 /* Build the partial symbol table by doing a quick pass through the
8822 .debug_info and .debug_abbrev sections. */
8825 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8827 struct cleanup
*back_to
;
8829 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
8831 if (dwarf_read_debug
)
8833 fprintf_unfiltered (gdb_stdlog
, "Building psymtabs of objfile %s ...\n",
8834 objfile_name (objfile
));
8837 dwarf2_per_objfile
->reading_partial_symbols
= 1;
8839 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->info
);
8841 /* Any cached compilation units will be linked by the per-objfile
8842 read_in_chain. Make sure to free them when we're done. */
8843 back_to
= make_cleanup (free_cached_comp_units
, dwarf2_per_objfile
);
8845 build_type_psymtabs (dwarf2_per_objfile
);
8847 create_all_comp_units (dwarf2_per_objfile
);
8849 /* Create a temporary address map on a temporary obstack. We later
8850 copy this to the final obstack. */
8851 auto_obstack temp_obstack
;
8853 scoped_restore save_psymtabs_addrmap
8854 = make_scoped_restore (&objfile
->psymtabs_addrmap
,
8855 addrmap_create_mutable (&temp_obstack
));
8857 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
8859 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (dwarf2_per_objfile
, i
);
8861 process_psymtab_comp_unit (per_cu
, 0, language_minimal
);
8864 /* This has to wait until we read the CUs, we need the list of DWOs. */
8865 process_skeletonless_type_units (dwarf2_per_objfile
);
8867 /* Now that all TUs have been processed we can fill in the dependencies. */
8868 if (dwarf2_per_objfile
->type_unit_groups
!= NULL
)
8870 htab_traverse_noresize (dwarf2_per_objfile
->type_unit_groups
,
8871 build_type_psymtab_dependencies
, dwarf2_per_objfile
);
8874 if (dwarf_read_debug
)
8875 print_tu_stats (dwarf2_per_objfile
);
8877 set_partial_user (dwarf2_per_objfile
);
8879 objfile
->psymtabs_addrmap
= addrmap_create_fixed (objfile
->psymtabs_addrmap
,
8880 &objfile
->objfile_obstack
);
8881 /* At this point we want to keep the address map. */
8882 save_psymtabs_addrmap
.release ();
8884 do_cleanups (back_to
);
8886 if (dwarf_read_debug
)
8887 fprintf_unfiltered (gdb_stdlog
, "Done building psymtabs of %s\n",
8888 objfile_name (objfile
));
8891 /* die_reader_func for load_partial_comp_unit. */
8894 load_partial_comp_unit_reader (const struct die_reader_specs
*reader
,
8895 const gdb_byte
*info_ptr
,
8896 struct die_info
*comp_unit_die
,
8900 struct dwarf2_cu
*cu
= reader
->cu
;
8902 prepare_one_comp_unit (cu
, comp_unit_die
, language_minimal
);
8904 /* Check if comp unit has_children.
8905 If so, read the rest of the partial symbols from this comp unit.
8906 If not, there's no more debug_info for this comp unit. */
8908 load_partial_dies (reader
, info_ptr
, 0);
8911 /* Load the partial DIEs for a secondary CU into memory.
8912 This is also used when rereading a primary CU with load_all_dies. */
8915 load_partial_comp_unit (struct dwarf2_per_cu_data
*this_cu
)
8917 init_cutu_and_read_dies (this_cu
, NULL
, 1, 1,
8918 load_partial_comp_unit_reader
, NULL
);
8922 read_comp_units_from_section (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
8923 struct dwarf2_section_info
*section
,
8924 struct dwarf2_section_info
*abbrev_section
,
8925 unsigned int is_dwz
,
8928 struct dwarf2_per_cu_data
***all_comp_units
)
8930 const gdb_byte
*info_ptr
;
8931 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
8933 if (dwarf_read_debug
)
8934 fprintf_unfiltered (gdb_stdlog
, "Reading %s for %s\n",
8935 get_section_name (section
),
8936 get_section_file_name (section
));
8938 dwarf2_read_section (objfile
, section
);
8940 info_ptr
= section
->buffer
;
8942 while (info_ptr
< section
->buffer
+ section
->size
)
8944 struct dwarf2_per_cu_data
*this_cu
;
8946 sect_offset sect_off
= (sect_offset
) (info_ptr
- section
->buffer
);
8948 comp_unit_head cu_header
;
8949 read_and_check_comp_unit_head (dwarf2_per_objfile
, &cu_header
, section
,
8950 abbrev_section
, info_ptr
,
8951 rcuh_kind::COMPILE
);
8953 /* Save the compilation unit for later lookup. */
8954 if (cu_header
.unit_type
!= DW_UT_type
)
8956 this_cu
= XOBNEW (&objfile
->objfile_obstack
,
8957 struct dwarf2_per_cu_data
);
8958 memset (this_cu
, 0, sizeof (*this_cu
));
8962 auto sig_type
= XOBNEW (&objfile
->objfile_obstack
,
8963 struct signatured_type
);
8964 memset (sig_type
, 0, sizeof (*sig_type
));
8965 sig_type
->signature
= cu_header
.signature
;
8966 sig_type
->type_offset_in_tu
= cu_header
.type_cu_offset_in_tu
;
8967 this_cu
= &sig_type
->per_cu
;
8969 this_cu
->is_debug_types
= (cu_header
.unit_type
== DW_UT_type
);
8970 this_cu
->sect_off
= sect_off
;
8971 this_cu
->length
= cu_header
.length
+ cu_header
.initial_length_size
;
8972 this_cu
->is_dwz
= is_dwz
;
8973 this_cu
->dwarf2_per_objfile
= dwarf2_per_objfile
;
8974 this_cu
->section
= section
;
8976 if (*n_comp_units
== *n_allocated
)
8979 *all_comp_units
= XRESIZEVEC (struct dwarf2_per_cu_data
*,
8980 *all_comp_units
, *n_allocated
);
8982 (*all_comp_units
)[*n_comp_units
] = this_cu
;
8985 info_ptr
= info_ptr
+ this_cu
->length
;
8989 /* Create a list of all compilation units in OBJFILE.
8990 This is only done for -readnow and building partial symtabs. */
8993 create_all_comp_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
8997 struct dwarf2_per_cu_data
**all_comp_units
;
8998 struct dwz_file
*dwz
;
8999 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9003 all_comp_units
= XNEWVEC (struct dwarf2_per_cu_data
*, n_allocated
);
9005 read_comp_units_from_section (dwarf2_per_objfile
, &dwarf2_per_objfile
->info
,
9006 &dwarf2_per_objfile
->abbrev
, 0,
9007 &n_allocated
, &n_comp_units
, &all_comp_units
);
9009 dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
9011 read_comp_units_from_section (dwarf2_per_objfile
, &dwz
->info
, &dwz
->abbrev
,
9012 1, &n_allocated
, &n_comp_units
,
9015 dwarf2_per_objfile
->all_comp_units
= XOBNEWVEC (&objfile
->objfile_obstack
,
9016 struct dwarf2_per_cu_data
*,
9018 memcpy (dwarf2_per_objfile
->all_comp_units
, all_comp_units
,
9019 n_comp_units
* sizeof (struct dwarf2_per_cu_data
*));
9020 xfree (all_comp_units
);
9021 dwarf2_per_objfile
->n_comp_units
= n_comp_units
;
9024 /* Process all loaded DIEs for compilation unit CU, starting at
9025 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9026 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9027 DW_AT_ranges). See the comments of add_partial_subprogram on how
9028 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9031 scan_partial_symbols (struct partial_die_info
*first_die
, CORE_ADDR
*lowpc
,
9032 CORE_ADDR
*highpc
, int set_addrmap
,
9033 struct dwarf2_cu
*cu
)
9035 struct partial_die_info
*pdi
;
9037 /* Now, march along the PDI's, descending into ones which have
9038 interesting children but skipping the children of the other ones,
9039 until we reach the end of the compilation unit. */
9045 fixup_partial_die (pdi
, cu
);
9047 /* Anonymous namespaces or modules have no name but have interesting
9048 children, so we need to look at them. Ditto for anonymous
9051 if (pdi
->name
!= NULL
|| pdi
->tag
== DW_TAG_namespace
9052 || pdi
->tag
== DW_TAG_module
|| pdi
->tag
== DW_TAG_enumeration_type
9053 || pdi
->tag
== DW_TAG_imported_unit
9054 || pdi
->tag
== DW_TAG_inlined_subroutine
)
9058 case DW_TAG_subprogram
:
9059 case DW_TAG_inlined_subroutine
:
9060 add_partial_subprogram (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
9062 case DW_TAG_constant
:
9063 case DW_TAG_variable
:
9064 case DW_TAG_typedef
:
9065 case DW_TAG_union_type
:
9066 if (!pdi
->is_declaration
)
9068 add_partial_symbol (pdi
, cu
);
9071 case DW_TAG_class_type
:
9072 case DW_TAG_interface_type
:
9073 case DW_TAG_structure_type
:
9074 if (!pdi
->is_declaration
)
9076 add_partial_symbol (pdi
, cu
);
9078 if (cu
->language
== language_rust
&& pdi
->has_children
)
9079 scan_partial_symbols (pdi
->die_child
, lowpc
, highpc
,
9082 case DW_TAG_enumeration_type
:
9083 if (!pdi
->is_declaration
)
9084 add_partial_enumeration (pdi
, cu
);
9086 case DW_TAG_base_type
:
9087 case DW_TAG_subrange_type
:
9088 /* File scope base type definitions are added to the partial
9090 add_partial_symbol (pdi
, cu
);
9092 case DW_TAG_namespace
:
9093 add_partial_namespace (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
9096 add_partial_module (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
9098 case DW_TAG_imported_unit
:
9100 struct dwarf2_per_cu_data
*per_cu
;
9102 /* For now we don't handle imported units in type units. */
9103 if (cu
->per_cu
->is_debug_types
)
9105 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9106 " supported in type units [in module %s]"),
9107 objfile_name (cu
->per_cu
->dwarf2_per_objfile
->objfile
));
9110 per_cu
= dwarf2_find_containing_comp_unit
9111 (pdi
->d
.sect_off
, pdi
->is_dwz
,
9112 cu
->per_cu
->dwarf2_per_objfile
);
9114 /* Go read the partial unit, if needed. */
9115 if (per_cu
->v
.psymtab
== NULL
)
9116 process_psymtab_comp_unit (per_cu
, 1, cu
->language
);
9118 VEC_safe_push (dwarf2_per_cu_ptr
,
9119 cu
->per_cu
->imported_symtabs
, per_cu
);
9122 case DW_TAG_imported_declaration
:
9123 add_partial_symbol (pdi
, cu
);
9130 /* If the die has a sibling, skip to the sibling. */
9132 pdi
= pdi
->die_sibling
;
9136 /* Functions used to compute the fully scoped name of a partial DIE.
9138 Normally, this is simple. For C++, the parent DIE's fully scoped
9139 name is concatenated with "::" and the partial DIE's name.
9140 Enumerators are an exception; they use the scope of their parent
9141 enumeration type, i.e. the name of the enumeration type is not
9142 prepended to the enumerator.
9144 There are two complexities. One is DW_AT_specification; in this
9145 case "parent" means the parent of the target of the specification,
9146 instead of the direct parent of the DIE. The other is compilers
9147 which do not emit DW_TAG_namespace; in this case we try to guess
9148 the fully qualified name of structure types from their members'
9149 linkage names. This must be done using the DIE's children rather
9150 than the children of any DW_AT_specification target. We only need
9151 to do this for structures at the top level, i.e. if the target of
9152 any DW_AT_specification (if any; otherwise the DIE itself) does not
9155 /* Compute the scope prefix associated with PDI's parent, in
9156 compilation unit CU. The result will be allocated on CU's
9157 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9158 field. NULL is returned if no prefix is necessary. */
9160 partial_die_parent_scope (struct partial_die_info
*pdi
,
9161 struct dwarf2_cu
*cu
)
9163 const char *grandparent_scope
;
9164 struct partial_die_info
*parent
, *real_pdi
;
9166 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9167 then this means the parent of the specification DIE. */
9170 while (real_pdi
->has_specification
)
9171 real_pdi
= find_partial_die (real_pdi
->spec_offset
,
9172 real_pdi
->spec_is_dwz
, cu
);
9174 parent
= real_pdi
->die_parent
;
9178 if (parent
->scope_set
)
9179 return parent
->scope
;
9181 fixup_partial_die (parent
, cu
);
9183 grandparent_scope
= partial_die_parent_scope (parent
, cu
);
9185 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9186 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9187 Work around this problem here. */
9188 if (cu
->language
== language_cplus
9189 && parent
->tag
== DW_TAG_namespace
9190 && strcmp (parent
->name
, "::") == 0
9191 && grandparent_scope
== NULL
)
9193 parent
->scope
= NULL
;
9194 parent
->scope_set
= 1;
9198 if (pdi
->tag
== DW_TAG_enumerator
)
9199 /* Enumerators should not get the name of the enumeration as a prefix. */
9200 parent
->scope
= grandparent_scope
;
9201 else if (parent
->tag
== DW_TAG_namespace
9202 || parent
->tag
== DW_TAG_module
9203 || parent
->tag
== DW_TAG_structure_type
9204 || parent
->tag
== DW_TAG_class_type
9205 || parent
->tag
== DW_TAG_interface_type
9206 || parent
->tag
== DW_TAG_union_type
9207 || parent
->tag
== DW_TAG_enumeration_type
)
9209 if (grandparent_scope
== NULL
)
9210 parent
->scope
= parent
->name
;
9212 parent
->scope
= typename_concat (&cu
->comp_unit_obstack
,
9214 parent
->name
, 0, cu
);
9218 /* FIXME drow/2004-04-01: What should we be doing with
9219 function-local names? For partial symbols, we should probably be
9221 complaint (&symfile_complaints
,
9222 _("unhandled containing DIE tag %d for DIE at %d"),
9223 parent
->tag
, to_underlying (pdi
->sect_off
));
9224 parent
->scope
= grandparent_scope
;
9227 parent
->scope_set
= 1;
9228 return parent
->scope
;
9231 /* Return the fully scoped name associated with PDI, from compilation unit
9232 CU. The result will be allocated with malloc. */
9235 partial_die_full_name (struct partial_die_info
*pdi
,
9236 struct dwarf2_cu
*cu
)
9238 const char *parent_scope
;
9240 /* If this is a template instantiation, we can not work out the
9241 template arguments from partial DIEs. So, unfortunately, we have
9242 to go through the full DIEs. At least any work we do building
9243 types here will be reused if full symbols are loaded later. */
9244 if (pdi
->has_template_arguments
)
9246 fixup_partial_die (pdi
, cu
);
9248 if (pdi
->name
!= NULL
&& strchr (pdi
->name
, '<') == NULL
)
9250 struct die_info
*die
;
9251 struct attribute attr
;
9252 struct dwarf2_cu
*ref_cu
= cu
;
9254 /* DW_FORM_ref_addr is using section offset. */
9255 attr
.name
= (enum dwarf_attribute
) 0;
9256 attr
.form
= DW_FORM_ref_addr
;
9257 attr
.u
.unsnd
= to_underlying (pdi
->sect_off
);
9258 die
= follow_die_ref (NULL
, &attr
, &ref_cu
);
9260 return xstrdup (dwarf2_full_name (NULL
, die
, ref_cu
));
9264 parent_scope
= partial_die_parent_scope (pdi
, cu
);
9265 if (parent_scope
== NULL
)
9268 return typename_concat (NULL
, parent_scope
, pdi
->name
, 0, cu
);
9272 add_partial_symbol (struct partial_die_info
*pdi
, struct dwarf2_cu
*cu
)
9274 struct dwarf2_per_objfile
*dwarf2_per_objfile
9275 = cu
->per_cu
->dwarf2_per_objfile
;
9276 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9277 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
9279 const char *actual_name
= NULL
;
9281 char *built_actual_name
;
9283 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
9285 built_actual_name
= partial_die_full_name (pdi
, cu
);
9286 if (built_actual_name
!= NULL
)
9287 actual_name
= built_actual_name
;
9289 if (actual_name
== NULL
)
9290 actual_name
= pdi
->name
;
9294 case DW_TAG_inlined_subroutine
:
9295 case DW_TAG_subprogram
:
9296 addr
= gdbarch_adjust_dwarf2_addr (gdbarch
, pdi
->lowpc
+ baseaddr
);
9297 if (pdi
->is_external
|| cu
->language
== language_ada
)
9299 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9300 of the global scope. But in Ada, we want to be able to access
9301 nested procedures globally. So all Ada subprograms are stored
9302 in the global scope. */
9303 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9304 built_actual_name
!= NULL
,
9305 VAR_DOMAIN
, LOC_BLOCK
,
9306 &objfile
->global_psymbols
,
9307 addr
, cu
->language
, objfile
);
9311 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9312 built_actual_name
!= NULL
,
9313 VAR_DOMAIN
, LOC_BLOCK
,
9314 &objfile
->static_psymbols
,
9315 addr
, cu
->language
, objfile
);
9318 if (pdi
->main_subprogram
&& actual_name
!= NULL
)
9319 set_objfile_main_name (objfile
, actual_name
, cu
->language
);
9321 case DW_TAG_constant
:
9323 std::vector
<partial_symbol
*> *list
;
9325 if (pdi
->is_external
)
9326 list
= &objfile
->global_psymbols
;
9328 list
= &objfile
->static_psymbols
;
9329 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9330 built_actual_name
!= NULL
, VAR_DOMAIN
, LOC_STATIC
,
9331 list
, 0, cu
->language
, objfile
);
9334 case DW_TAG_variable
:
9336 addr
= decode_locdesc (pdi
->d
.locdesc
, cu
);
9340 && !dwarf2_per_objfile
->has_section_at_zero
)
9342 /* A global or static variable may also have been stripped
9343 out by the linker if unused, in which case its address
9344 will be nullified; do not add such variables into partial
9345 symbol table then. */
9347 else if (pdi
->is_external
)
9350 Don't enter into the minimal symbol tables as there is
9351 a minimal symbol table entry from the ELF symbols already.
9352 Enter into partial symbol table if it has a location
9353 descriptor or a type.
9354 If the location descriptor is missing, new_symbol will create
9355 a LOC_UNRESOLVED symbol, the address of the variable will then
9356 be determined from the minimal symbol table whenever the variable
9358 The address for the partial symbol table entry is not
9359 used by GDB, but it comes in handy for debugging partial symbol
9362 if (pdi
->d
.locdesc
|| pdi
->has_type
)
9363 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9364 built_actual_name
!= NULL
,
9365 VAR_DOMAIN
, LOC_STATIC
,
9366 &objfile
->global_psymbols
,
9368 cu
->language
, objfile
);
9372 int has_loc
= pdi
->d
.locdesc
!= NULL
;
9374 /* Static Variable. Skip symbols whose value we cannot know (those
9375 without location descriptors or constant values). */
9376 if (!has_loc
&& !pdi
->has_const_value
)
9378 xfree (built_actual_name
);
9382 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9383 built_actual_name
!= NULL
,
9384 VAR_DOMAIN
, LOC_STATIC
,
9385 &objfile
->static_psymbols
,
9386 has_loc
? addr
+ baseaddr
: (CORE_ADDR
) 0,
9387 cu
->language
, objfile
);
9390 case DW_TAG_typedef
:
9391 case DW_TAG_base_type
:
9392 case DW_TAG_subrange_type
:
9393 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9394 built_actual_name
!= NULL
,
9395 VAR_DOMAIN
, LOC_TYPEDEF
,
9396 &objfile
->static_psymbols
,
9397 0, cu
->language
, objfile
);
9399 case DW_TAG_imported_declaration
:
9400 case DW_TAG_namespace
:
9401 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9402 built_actual_name
!= NULL
,
9403 VAR_DOMAIN
, LOC_TYPEDEF
,
9404 &objfile
->global_psymbols
,
9405 0, cu
->language
, objfile
);
9408 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9409 built_actual_name
!= NULL
,
9410 MODULE_DOMAIN
, LOC_TYPEDEF
,
9411 &objfile
->global_psymbols
,
9412 0, cu
->language
, objfile
);
9414 case DW_TAG_class_type
:
9415 case DW_TAG_interface_type
:
9416 case DW_TAG_structure_type
:
9417 case DW_TAG_union_type
:
9418 case DW_TAG_enumeration_type
:
9419 /* Skip external references. The DWARF standard says in the section
9420 about "Structure, Union, and Class Type Entries": "An incomplete
9421 structure, union or class type is represented by a structure,
9422 union or class entry that does not have a byte size attribute
9423 and that has a DW_AT_declaration attribute." */
9424 if (!pdi
->has_byte_size
&& pdi
->is_declaration
)
9426 xfree (built_actual_name
);
9430 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9431 static vs. global. */
9432 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9433 built_actual_name
!= NULL
,
9434 STRUCT_DOMAIN
, LOC_TYPEDEF
,
9435 cu
->language
== language_cplus
9436 ? &objfile
->global_psymbols
9437 : &objfile
->static_psymbols
,
9438 0, cu
->language
, objfile
);
9441 case DW_TAG_enumerator
:
9442 add_psymbol_to_list (actual_name
, strlen (actual_name
),
9443 built_actual_name
!= NULL
,
9444 VAR_DOMAIN
, LOC_CONST
,
9445 cu
->language
== language_cplus
9446 ? &objfile
->global_psymbols
9447 : &objfile
->static_psymbols
,
9448 0, cu
->language
, objfile
);
9454 xfree (built_actual_name
);
9457 /* Read a partial die corresponding to a namespace; also, add a symbol
9458 corresponding to that namespace to the symbol table. NAMESPACE is
9459 the name of the enclosing namespace. */
9462 add_partial_namespace (struct partial_die_info
*pdi
,
9463 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
9464 int set_addrmap
, struct dwarf2_cu
*cu
)
9466 /* Add a symbol for the namespace. */
9468 add_partial_symbol (pdi
, cu
);
9470 /* Now scan partial symbols in that namespace. */
9472 if (pdi
->has_children
)
9473 scan_partial_symbols (pdi
->die_child
, lowpc
, highpc
, set_addrmap
, cu
);
9476 /* Read a partial die corresponding to a Fortran module. */
9479 add_partial_module (struct partial_die_info
*pdi
, CORE_ADDR
*lowpc
,
9480 CORE_ADDR
*highpc
, int set_addrmap
, struct dwarf2_cu
*cu
)
9482 /* Add a symbol for the namespace. */
9484 add_partial_symbol (pdi
, cu
);
9486 /* Now scan partial symbols in that module. */
9488 if (pdi
->has_children
)
9489 scan_partial_symbols (pdi
->die_child
, lowpc
, highpc
, set_addrmap
, cu
);
9492 /* Read a partial die corresponding to a subprogram or an inlined
9493 subprogram and create a partial symbol for that subprogram.
9494 When the CU language allows it, this routine also defines a partial
9495 symbol for each nested subprogram that this subprogram contains.
9496 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9497 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9499 PDI may also be a lexical block, in which case we simply search
9500 recursively for subprograms defined inside that lexical block.
9501 Again, this is only performed when the CU language allows this
9502 type of definitions. */
9505 add_partial_subprogram (struct partial_die_info
*pdi
,
9506 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
9507 int set_addrmap
, struct dwarf2_cu
*cu
)
9509 if (pdi
->tag
== DW_TAG_subprogram
|| pdi
->tag
== DW_TAG_inlined_subroutine
)
9511 if (pdi
->has_pc_info
)
9513 if (pdi
->lowpc
< *lowpc
)
9514 *lowpc
= pdi
->lowpc
;
9515 if (pdi
->highpc
> *highpc
)
9516 *highpc
= pdi
->highpc
;
9519 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
9520 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
9525 baseaddr
= ANOFFSET (objfile
->section_offsets
,
9526 SECT_OFF_TEXT (objfile
));
9527 lowpc
= gdbarch_adjust_dwarf2_addr (gdbarch
,
9528 pdi
->lowpc
+ baseaddr
);
9529 highpc
= gdbarch_adjust_dwarf2_addr (gdbarch
,
9530 pdi
->highpc
+ baseaddr
);
9531 addrmap_set_empty (objfile
->psymtabs_addrmap
, lowpc
, highpc
- 1,
9532 cu
->per_cu
->v
.psymtab
);
9536 if (pdi
->has_pc_info
|| (!pdi
->is_external
&& pdi
->may_be_inlined
))
9538 if (!pdi
->is_declaration
)
9539 /* Ignore subprogram DIEs that do not have a name, they are
9540 illegal. Do not emit a complaint at this point, we will
9541 do so when we convert this psymtab into a symtab. */
9543 add_partial_symbol (pdi
, cu
);
9547 if (! pdi
->has_children
)
9550 if (cu
->language
== language_ada
)
9552 pdi
= pdi
->die_child
;
9555 fixup_partial_die (pdi
, cu
);
9556 if (pdi
->tag
== DW_TAG_subprogram
9557 || pdi
->tag
== DW_TAG_inlined_subroutine
9558 || pdi
->tag
== DW_TAG_lexical_block
)
9559 add_partial_subprogram (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
9560 pdi
= pdi
->die_sibling
;
9565 /* Read a partial die corresponding to an enumeration type. */
9568 add_partial_enumeration (struct partial_die_info
*enum_pdi
,
9569 struct dwarf2_cu
*cu
)
9571 struct partial_die_info
*pdi
;
9573 if (enum_pdi
->name
!= NULL
)
9574 add_partial_symbol (enum_pdi
, cu
);
9576 pdi
= enum_pdi
->die_child
;
9579 if (pdi
->tag
!= DW_TAG_enumerator
|| pdi
->name
== NULL
)
9580 complaint (&symfile_complaints
, _("malformed enumerator DIE ignored"));
9582 add_partial_symbol (pdi
, cu
);
9583 pdi
= pdi
->die_sibling
;
9587 /* Return the initial uleb128 in the die at INFO_PTR. */
9590 peek_abbrev_code (bfd
*abfd
, const gdb_byte
*info_ptr
)
9592 unsigned int bytes_read
;
9594 return read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
9597 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9598 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9600 Return the corresponding abbrev, or NULL if the number is zero (indicating
9601 an empty DIE). In either case *BYTES_READ will be set to the length of
9602 the initial number. */
9604 static struct abbrev_info
*
9605 peek_die_abbrev (const die_reader_specs
&reader
,
9606 const gdb_byte
*info_ptr
, unsigned int *bytes_read
)
9608 dwarf2_cu
*cu
= reader
.cu
;
9609 bfd
*abfd
= cu
->per_cu
->dwarf2_per_objfile
->objfile
->obfd
;
9610 unsigned int abbrev_number
9611 = read_unsigned_leb128 (abfd
, info_ptr
, bytes_read
);
9613 if (abbrev_number
== 0)
9616 abbrev_info
*abbrev
= reader
.abbrev_table
->lookup_abbrev (abbrev_number
);
9619 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9620 " at offset 0x%x [in module %s]"),
9621 abbrev_number
, cu
->per_cu
->is_debug_types
? "TU" : "CU",
9622 to_underlying (cu
->header
.sect_off
), bfd_get_filename (abfd
));
9628 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9629 Returns a pointer to the end of a series of DIEs, terminated by an empty
9630 DIE. Any children of the skipped DIEs will also be skipped. */
9632 static const gdb_byte
*
9633 skip_children (const struct die_reader_specs
*reader
, const gdb_byte
*info_ptr
)
9637 unsigned int bytes_read
;
9638 abbrev_info
*abbrev
= peek_die_abbrev (*reader
, info_ptr
, &bytes_read
);
9641 return info_ptr
+ bytes_read
;
9643 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
9647 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9648 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9649 abbrev corresponding to that skipped uleb128 should be passed in
9650 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9653 static const gdb_byte
*
9654 skip_one_die (const struct die_reader_specs
*reader
, const gdb_byte
*info_ptr
,
9655 struct abbrev_info
*abbrev
)
9657 unsigned int bytes_read
;
9658 struct attribute attr
;
9659 bfd
*abfd
= reader
->abfd
;
9660 struct dwarf2_cu
*cu
= reader
->cu
;
9661 const gdb_byte
*buffer
= reader
->buffer
;
9662 const gdb_byte
*buffer_end
= reader
->buffer_end
;
9663 unsigned int form
, i
;
9665 for (i
= 0; i
< abbrev
->num_attrs
; i
++)
9667 /* The only abbrev we care about is DW_AT_sibling. */
9668 if (abbrev
->attrs
[i
].name
== DW_AT_sibling
)
9670 read_attribute (reader
, &attr
, &abbrev
->attrs
[i
], info_ptr
);
9671 if (attr
.form
== DW_FORM_ref_addr
)
9672 complaint (&symfile_complaints
,
9673 _("ignoring absolute DW_AT_sibling"));
9676 sect_offset off
= dwarf2_get_ref_die_offset (&attr
);
9677 const gdb_byte
*sibling_ptr
= buffer
+ to_underlying (off
);
9679 if (sibling_ptr
< info_ptr
)
9680 complaint (&symfile_complaints
,
9681 _("DW_AT_sibling points backwards"));
9682 else if (sibling_ptr
> reader
->buffer_end
)
9683 dwarf2_section_buffer_overflow_complaint (reader
->die_section
);
9689 /* If it isn't DW_AT_sibling, skip this attribute. */
9690 form
= abbrev
->attrs
[i
].form
;
9694 case DW_FORM_ref_addr
:
9695 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9696 and later it is offset sized. */
9697 if (cu
->header
.version
== 2)
9698 info_ptr
+= cu
->header
.addr_size
;
9700 info_ptr
+= cu
->header
.offset_size
;
9702 case DW_FORM_GNU_ref_alt
:
9703 info_ptr
+= cu
->header
.offset_size
;
9706 info_ptr
+= cu
->header
.addr_size
;
9713 case DW_FORM_flag_present
:
9714 case DW_FORM_implicit_const
:
9726 case DW_FORM_ref_sig8
:
9729 case DW_FORM_data16
:
9732 case DW_FORM_string
:
9733 read_direct_string (abfd
, info_ptr
, &bytes_read
);
9734 info_ptr
+= bytes_read
;
9736 case DW_FORM_sec_offset
:
9738 case DW_FORM_GNU_strp_alt
:
9739 info_ptr
+= cu
->header
.offset_size
;
9741 case DW_FORM_exprloc
:
9743 info_ptr
+= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
9744 info_ptr
+= bytes_read
;
9746 case DW_FORM_block1
:
9747 info_ptr
+= 1 + read_1_byte (abfd
, info_ptr
);
9749 case DW_FORM_block2
:
9750 info_ptr
+= 2 + read_2_bytes (abfd
, info_ptr
);
9752 case DW_FORM_block4
:
9753 info_ptr
+= 4 + read_4_bytes (abfd
, info_ptr
);
9757 case DW_FORM_ref_udata
:
9758 case DW_FORM_GNU_addr_index
:
9759 case DW_FORM_GNU_str_index
:
9760 info_ptr
= safe_skip_leb128 (info_ptr
, buffer_end
);
9762 case DW_FORM_indirect
:
9763 form
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
9764 info_ptr
+= bytes_read
;
9765 /* We need to continue parsing from here, so just go back to
9767 goto skip_attribute
;
9770 error (_("Dwarf Error: Cannot handle %s "
9771 "in DWARF reader [in module %s]"),
9772 dwarf_form_name (form
),
9773 bfd_get_filename (abfd
));
9777 if (abbrev
->has_children
)
9778 return skip_children (reader
, info_ptr
);
9783 /* Locate ORIG_PDI's sibling.
9784 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9786 static const gdb_byte
*
9787 locate_pdi_sibling (const struct die_reader_specs
*reader
,
9788 struct partial_die_info
*orig_pdi
,
9789 const gdb_byte
*info_ptr
)
9791 /* Do we know the sibling already? */
9793 if (orig_pdi
->sibling
)
9794 return orig_pdi
->sibling
;
9796 /* Are there any children to deal with? */
9798 if (!orig_pdi
->has_children
)
9801 /* Skip the children the long way. */
9803 return skip_children (reader
, info_ptr
);
9806 /* Expand this partial symbol table into a full symbol table. SELF is
9810 dwarf2_read_symtab (struct partial_symtab
*self
,
9811 struct objfile
*objfile
)
9813 struct dwarf2_per_objfile
*dwarf2_per_objfile
9814 = get_dwarf2_per_objfile (objfile
);
9818 warning (_("bug: psymtab for %s is already read in."),
9825 printf_filtered (_("Reading in symbols for %s..."),
9827 gdb_flush (gdb_stdout
);
9830 /* If this psymtab is constructed from a debug-only objfile, the
9831 has_section_at_zero flag will not necessarily be correct. We
9832 can get the correct value for this flag by looking at the data
9833 associated with the (presumably stripped) associated objfile. */
9834 if (objfile
->separate_debug_objfile_backlink
)
9836 struct dwarf2_per_objfile
*dpo_backlink
9837 = get_dwarf2_per_objfile (objfile
->separate_debug_objfile_backlink
);
9839 dwarf2_per_objfile
->has_section_at_zero
9840 = dpo_backlink
->has_section_at_zero
;
9843 dwarf2_per_objfile
->reading_partial_symbols
= 0;
9845 psymtab_to_symtab_1 (self
);
9847 /* Finish up the debug error message. */
9849 printf_filtered (_("done.\n"));
9852 process_cu_includes (dwarf2_per_objfile
);
9855 /* Reading in full CUs. */
9857 /* Add PER_CU to the queue. */
9860 queue_comp_unit (struct dwarf2_per_cu_data
*per_cu
,
9861 enum language pretend_language
)
9863 struct dwarf2_queue_item
*item
;
9866 item
= XNEW (struct dwarf2_queue_item
);
9867 item
->per_cu
= per_cu
;
9868 item
->pretend_language
= pretend_language
;
9871 if (dwarf2_queue
== NULL
)
9872 dwarf2_queue
= item
;
9874 dwarf2_queue_tail
->next
= item
;
9876 dwarf2_queue_tail
= item
;
9879 /* If PER_CU is not yet queued, add it to the queue.
9880 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9882 The result is non-zero if PER_CU was queued, otherwise the result is zero
9883 meaning either PER_CU is already queued or it is already loaded.
9885 N.B. There is an invariant here that if a CU is queued then it is loaded.
9886 The caller is required to load PER_CU if we return non-zero. */
9889 maybe_queue_comp_unit (struct dwarf2_cu
*dependent_cu
,
9890 struct dwarf2_per_cu_data
*per_cu
,
9891 enum language pretend_language
)
9893 /* We may arrive here during partial symbol reading, if we need full
9894 DIEs to process an unusual case (e.g. template arguments). Do
9895 not queue PER_CU, just tell our caller to load its DIEs. */
9896 if (per_cu
->dwarf2_per_objfile
->reading_partial_symbols
)
9898 if (per_cu
->cu
== NULL
|| per_cu
->cu
->dies
== NULL
)
9903 /* Mark the dependence relation so that we don't flush PER_CU
9905 if (dependent_cu
!= NULL
)
9906 dwarf2_add_dependence (dependent_cu
, per_cu
);
9908 /* If it's already on the queue, we have nothing to do. */
9912 /* If the compilation unit is already loaded, just mark it as
9914 if (per_cu
->cu
!= NULL
)
9916 per_cu
->cu
->last_used
= 0;
9920 /* Add it to the queue. */
9921 queue_comp_unit (per_cu
, pretend_language
);
9926 /* Process the queue. */
9929 process_queue (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
9931 struct dwarf2_queue_item
*item
, *next_item
;
9933 if (dwarf_read_debug
)
9935 fprintf_unfiltered (gdb_stdlog
,
9936 "Expanding one or more symtabs of objfile %s ...\n",
9937 objfile_name (dwarf2_per_objfile
->objfile
));
9940 /* The queue starts out with one item, but following a DIE reference
9941 may load a new CU, adding it to the end of the queue. */
9942 for (item
= dwarf2_queue
; item
!= NULL
; dwarf2_queue
= item
= next_item
)
9944 if ((dwarf2_per_objfile
->using_index
9945 ? !item
->per_cu
->v
.quick
->compunit_symtab
9946 : (item
->per_cu
->v
.psymtab
&& !item
->per_cu
->v
.psymtab
->readin
))
9947 /* Skip dummy CUs. */
9948 && item
->per_cu
->cu
!= NULL
)
9950 struct dwarf2_per_cu_data
*per_cu
= item
->per_cu
;
9951 unsigned int debug_print_threshold
;
9954 if (per_cu
->is_debug_types
)
9956 struct signatured_type
*sig_type
=
9957 (struct signatured_type
*) per_cu
;
9959 sprintf (buf
, "TU %s at offset 0x%x",
9960 hex_string (sig_type
->signature
),
9961 to_underlying (per_cu
->sect_off
));
9962 /* There can be 100s of TUs.
9963 Only print them in verbose mode. */
9964 debug_print_threshold
= 2;
9968 sprintf (buf
, "CU at offset 0x%x",
9969 to_underlying (per_cu
->sect_off
));
9970 debug_print_threshold
= 1;
9973 if (dwarf_read_debug
>= debug_print_threshold
)
9974 fprintf_unfiltered (gdb_stdlog
, "Expanding symtab of %s\n", buf
);
9976 if (per_cu
->is_debug_types
)
9977 process_full_type_unit (per_cu
, item
->pretend_language
);
9979 process_full_comp_unit (per_cu
, item
->pretend_language
);
9981 if (dwarf_read_debug
>= debug_print_threshold
)
9982 fprintf_unfiltered (gdb_stdlog
, "Done expanding %s\n", buf
);
9985 item
->per_cu
->queued
= 0;
9986 next_item
= item
->next
;
9990 dwarf2_queue_tail
= NULL
;
9992 if (dwarf_read_debug
)
9994 fprintf_unfiltered (gdb_stdlog
, "Done expanding symtabs of %s.\n",
9995 objfile_name (dwarf2_per_objfile
->objfile
));
9999 /* Read in full symbols for PST, and anything it depends on. */
10002 psymtab_to_symtab_1 (struct partial_symtab
*pst
)
10004 struct dwarf2_per_cu_data
*per_cu
;
10010 for (i
= 0; i
< pst
->number_of_dependencies
; i
++)
10011 if (!pst
->dependencies
[i
]->readin
10012 && pst
->dependencies
[i
]->user
== NULL
)
10014 /* Inform about additional files that need to be read in. */
10017 /* FIXME: i18n: Need to make this a single string. */
10018 fputs_filtered (" ", gdb_stdout
);
10020 fputs_filtered ("and ", gdb_stdout
);
10022 printf_filtered ("%s...", pst
->dependencies
[i
]->filename
);
10023 wrap_here (""); /* Flush output. */
10024 gdb_flush (gdb_stdout
);
10026 psymtab_to_symtab_1 (pst
->dependencies
[i
]);
10029 per_cu
= (struct dwarf2_per_cu_data
*) pst
->read_symtab_private
;
10031 if (per_cu
== NULL
)
10033 /* It's an include file, no symbols to read for it.
10034 Everything is in the parent symtab. */
10039 dw2_do_instantiate_symtab (per_cu
);
10042 /* Trivial hash function for die_info: the hash value of a DIE
10043 is its offset in .debug_info for this objfile. */
10046 die_hash (const void *item
)
10048 const struct die_info
*die
= (const struct die_info
*) item
;
10050 return to_underlying (die
->sect_off
);
10053 /* Trivial comparison function for die_info structures: two DIEs
10054 are equal if they have the same offset. */
10057 die_eq (const void *item_lhs
, const void *item_rhs
)
10059 const struct die_info
*die_lhs
= (const struct die_info
*) item_lhs
;
10060 const struct die_info
*die_rhs
= (const struct die_info
*) item_rhs
;
10062 return die_lhs
->sect_off
== die_rhs
->sect_off
;
10065 /* die_reader_func for load_full_comp_unit.
10066 This is identical to read_signatured_type_reader,
10067 but is kept separate for now. */
10070 load_full_comp_unit_reader (const struct die_reader_specs
*reader
,
10071 const gdb_byte
*info_ptr
,
10072 struct die_info
*comp_unit_die
,
10076 struct dwarf2_cu
*cu
= reader
->cu
;
10077 enum language
*language_ptr
= (enum language
*) data
;
10079 gdb_assert (cu
->die_hash
== NULL
);
10081 htab_create_alloc_ex (cu
->header
.length
/ 12,
10085 &cu
->comp_unit_obstack
,
10086 hashtab_obstack_allocate
,
10087 dummy_obstack_deallocate
);
10090 comp_unit_die
->child
= read_die_and_siblings (reader
, info_ptr
,
10091 &info_ptr
, comp_unit_die
);
10092 cu
->dies
= comp_unit_die
;
10093 /* comp_unit_die is not stored in die_hash, no need. */
10095 /* We try not to read any attributes in this function, because not
10096 all CUs needed for references have been loaded yet, and symbol
10097 table processing isn't initialized. But we have to set the CU language,
10098 or we won't be able to build types correctly.
10099 Similarly, if we do not read the producer, we can not apply
10100 producer-specific interpretation. */
10101 prepare_one_comp_unit (cu
, cu
->dies
, *language_ptr
);
10104 /* Load the DIEs associated with PER_CU into memory. */
10107 load_full_comp_unit (struct dwarf2_per_cu_data
*this_cu
,
10108 enum language pretend_language
)
10110 gdb_assert (! this_cu
->is_debug_types
);
10112 init_cutu_and_read_dies (this_cu
, NULL
, 1, 1,
10113 load_full_comp_unit_reader
, &pretend_language
);
10116 /* Add a DIE to the delayed physname list. */
10119 add_to_method_list (struct type
*type
, int fnfield_index
, int index
,
10120 const char *name
, struct die_info
*die
,
10121 struct dwarf2_cu
*cu
)
10123 struct delayed_method_info mi
;
10125 mi
.fnfield_index
= fnfield_index
;
10129 cu
->method_list
.push_back (mi
);
10132 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10133 "const" / "volatile". If so, decrements LEN by the length of the
10134 modifier and return true. Otherwise return false. */
10138 check_modifier (const char *physname
, size_t &len
, const char (&mod
)[N
])
10140 size_t mod_len
= sizeof (mod
) - 1;
10141 if (len
> mod_len
&& startswith (physname
+ (len
- mod_len
), mod
))
10149 /* Compute the physnames of any methods on the CU's method list.
10151 The computation of method physnames is delayed in order to avoid the
10152 (bad) condition that one of the method's formal parameters is of an as yet
10153 incomplete type. */
10156 compute_delayed_physnames (struct dwarf2_cu
*cu
)
10158 /* Only C++ delays computing physnames. */
10159 if (cu
->method_list
.empty ())
10161 gdb_assert (cu
->language
== language_cplus
);
10163 for (struct delayed_method_info
&mi
: cu
->method_list
)
10165 const char *physname
;
10166 struct fn_fieldlist
*fn_flp
10167 = &TYPE_FN_FIELDLIST (mi
.type
, mi
.fnfield_index
);
10168 physname
= dwarf2_physname (mi
.name
, mi
.die
, cu
);
10169 TYPE_FN_FIELD_PHYSNAME (fn_flp
->fn_fields
, mi
.index
)
10170 = physname
? physname
: "";
10172 /* Since there's no tag to indicate whether a method is a
10173 const/volatile overload, extract that information out of the
10175 if (physname
!= NULL
)
10177 size_t len
= strlen (physname
);
10181 if (physname
[len
] == ')') /* shortcut */
10183 else if (check_modifier (physname
, len
, " const"))
10184 TYPE_FN_FIELD_CONST (fn_flp
->fn_fields
, mi
.index
) = 1;
10185 else if (check_modifier (physname
, len
, " volatile"))
10186 TYPE_FN_FIELD_VOLATILE (fn_flp
->fn_fields
, mi
.index
) = 1;
10193 /* The list is no longer needed. */
10194 cu
->method_list
.clear ();
10197 /* Go objects should be embedded in a DW_TAG_module DIE,
10198 and it's not clear if/how imported objects will appear.
10199 To keep Go support simple until that's worked out,
10200 go back through what we've read and create something usable.
10201 We could do this while processing each DIE, and feels kinda cleaner,
10202 but that way is more invasive.
10203 This is to, for example, allow the user to type "p var" or "b main"
10204 without having to specify the package name, and allow lookups
10205 of module.object to work in contexts that use the expression
10209 fixup_go_packaging (struct dwarf2_cu
*cu
)
10211 char *package_name
= NULL
;
10212 struct pending
*list
;
10215 for (list
= global_symbols
; list
!= NULL
; list
= list
->next
)
10217 for (i
= 0; i
< list
->nsyms
; ++i
)
10219 struct symbol
*sym
= list
->symbol
[i
];
10221 if (SYMBOL_LANGUAGE (sym
) == language_go
10222 && SYMBOL_CLASS (sym
) == LOC_BLOCK
)
10224 char *this_package_name
= go_symbol_package_name (sym
);
10226 if (this_package_name
== NULL
)
10228 if (package_name
== NULL
)
10229 package_name
= this_package_name
;
10232 struct objfile
*objfile
10233 = cu
->per_cu
->dwarf2_per_objfile
->objfile
;
10234 if (strcmp (package_name
, this_package_name
) != 0)
10235 complaint (&symfile_complaints
,
10236 _("Symtab %s has objects from two different Go packages: %s and %s"),
10237 (symbol_symtab (sym
) != NULL
10238 ? symtab_to_filename_for_display
10239 (symbol_symtab (sym
))
10240 : objfile_name (objfile
)),
10241 this_package_name
, package_name
);
10242 xfree (this_package_name
);
10248 if (package_name
!= NULL
)
10250 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
10251 const char *saved_package_name
10252 = (const char *) obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
10254 strlen (package_name
));
10255 struct type
*type
= init_type (objfile
, TYPE_CODE_MODULE
, 0,
10256 saved_package_name
);
10257 struct symbol
*sym
;
10259 TYPE_TAG_NAME (type
) = TYPE_NAME (type
);
10261 sym
= allocate_symbol (objfile
);
10262 SYMBOL_SET_LANGUAGE (sym
, language_go
, &objfile
->objfile_obstack
);
10263 SYMBOL_SET_NAMES (sym
, saved_package_name
,
10264 strlen (saved_package_name
), 0, objfile
);
10265 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10266 e.g., "main" finds the "main" module and not C's main(). */
10267 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
10268 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
10269 SYMBOL_TYPE (sym
) = type
;
10271 add_symbol_to_list (sym
, &global_symbols
);
10273 xfree (package_name
);
10277 /* Return the symtab for PER_CU. This works properly regardless of
10278 whether we're using the index or psymtabs. */
10280 static struct compunit_symtab
*
10281 get_compunit_symtab (struct dwarf2_per_cu_data
*per_cu
)
10283 return (per_cu
->dwarf2_per_objfile
->using_index
10284 ? per_cu
->v
.quick
->compunit_symtab
10285 : per_cu
->v
.psymtab
->compunit_symtab
);
10288 /* A helper function for computing the list of all symbol tables
10289 included by PER_CU. */
10292 recursively_compute_inclusions (VEC (compunit_symtab_ptr
) **result
,
10293 htab_t all_children
, htab_t all_type_symtabs
,
10294 struct dwarf2_per_cu_data
*per_cu
,
10295 struct compunit_symtab
*immediate_parent
)
10299 struct compunit_symtab
*cust
;
10300 struct dwarf2_per_cu_data
*iter
;
10302 slot
= htab_find_slot (all_children
, per_cu
, INSERT
);
10305 /* This inclusion and its children have been processed. */
10310 /* Only add a CU if it has a symbol table. */
10311 cust
= get_compunit_symtab (per_cu
);
10314 /* If this is a type unit only add its symbol table if we haven't
10315 seen it yet (type unit per_cu's can share symtabs). */
10316 if (per_cu
->is_debug_types
)
10318 slot
= htab_find_slot (all_type_symtabs
, cust
, INSERT
);
10322 VEC_safe_push (compunit_symtab_ptr
, *result
, cust
);
10323 if (cust
->user
== NULL
)
10324 cust
->user
= immediate_parent
;
10329 VEC_safe_push (compunit_symtab_ptr
, *result
, cust
);
10330 if (cust
->user
== NULL
)
10331 cust
->user
= immediate_parent
;
10336 VEC_iterate (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
, ix
, iter
);
10339 recursively_compute_inclusions (result
, all_children
,
10340 all_type_symtabs
, iter
, cust
);
10344 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10348 compute_compunit_symtab_includes (struct dwarf2_per_cu_data
*per_cu
)
10350 gdb_assert (! per_cu
->is_debug_types
);
10352 if (!VEC_empty (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
))
10355 struct dwarf2_per_cu_data
*per_cu_iter
;
10356 struct compunit_symtab
*compunit_symtab_iter
;
10357 VEC (compunit_symtab_ptr
) *result_symtabs
= NULL
;
10358 htab_t all_children
, all_type_symtabs
;
10359 struct compunit_symtab
*cust
= get_compunit_symtab (per_cu
);
10361 /* If we don't have a symtab, we can just skip this case. */
10365 all_children
= htab_create_alloc (1, htab_hash_pointer
, htab_eq_pointer
,
10366 NULL
, xcalloc
, xfree
);
10367 all_type_symtabs
= htab_create_alloc (1, htab_hash_pointer
, htab_eq_pointer
,
10368 NULL
, xcalloc
, xfree
);
10371 VEC_iterate (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
,
10375 recursively_compute_inclusions (&result_symtabs
, all_children
,
10376 all_type_symtabs
, per_cu_iter
,
10380 /* Now we have a transitive closure of all the included symtabs. */
10381 len
= VEC_length (compunit_symtab_ptr
, result_symtabs
);
10383 = XOBNEWVEC (&per_cu
->dwarf2_per_objfile
->objfile
->objfile_obstack
,
10384 struct compunit_symtab
*, len
+ 1);
10386 VEC_iterate (compunit_symtab_ptr
, result_symtabs
, ix
,
10387 compunit_symtab_iter
);
10389 cust
->includes
[ix
] = compunit_symtab_iter
;
10390 cust
->includes
[len
] = NULL
;
10392 VEC_free (compunit_symtab_ptr
, result_symtabs
);
10393 htab_delete (all_children
);
10394 htab_delete (all_type_symtabs
);
10398 /* Compute the 'includes' field for the symtabs of all the CUs we just
10402 process_cu_includes (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
10405 struct dwarf2_per_cu_data
*iter
;
10408 VEC_iterate (dwarf2_per_cu_ptr
, dwarf2_per_objfile
->just_read_cus
,
10412 if (! iter
->is_debug_types
)
10413 compute_compunit_symtab_includes (iter
);
10416 VEC_free (dwarf2_per_cu_ptr
, dwarf2_per_objfile
->just_read_cus
);
10419 /* Generate full symbol information for PER_CU, whose DIEs have
10420 already been loaded into memory. */
10423 process_full_comp_unit (struct dwarf2_per_cu_data
*per_cu
,
10424 enum language pretend_language
)
10426 struct dwarf2_cu
*cu
= per_cu
->cu
;
10427 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
10428 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10429 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
10430 CORE_ADDR lowpc
, highpc
;
10431 struct compunit_symtab
*cust
;
10432 CORE_ADDR baseaddr
;
10433 struct block
*static_block
;
10436 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
10439 scoped_free_pendings free_pending
;
10441 /* Clear the list here in case something was left over. */
10442 cu
->method_list
.clear ();
10444 cu
->list_in_scope
= &file_symbols
;
10446 cu
->language
= pretend_language
;
10447 cu
->language_defn
= language_def (cu
->language
);
10449 /* Do line number decoding in read_file_scope () */
10450 process_die (cu
->dies
, cu
);
10452 /* For now fudge the Go package. */
10453 if (cu
->language
== language_go
)
10454 fixup_go_packaging (cu
);
10456 /* Now that we have processed all the DIEs in the CU, all the types
10457 should be complete, and it should now be safe to compute all of the
10459 compute_delayed_physnames (cu
);
10461 /* Some compilers don't define a DW_AT_high_pc attribute for the
10462 compilation unit. If the DW_AT_high_pc is missing, synthesize
10463 it, by scanning the DIE's below the compilation unit. */
10464 get_scope_pc_bounds (cu
->dies
, &lowpc
, &highpc
, cu
);
10466 addr
= gdbarch_adjust_dwarf2_addr (gdbarch
, highpc
+ baseaddr
);
10467 static_block
= end_symtab_get_static_block (addr
, 0, 1);
10469 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10470 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10471 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10472 addrmap to help ensure it has an accurate map of pc values belonging to
10474 dwarf2_record_block_ranges (cu
->dies
, static_block
, baseaddr
, cu
);
10476 cust
= end_symtab_from_static_block (static_block
,
10477 SECT_OFF_TEXT (objfile
), 0);
10481 int gcc_4_minor
= producer_is_gcc_ge_4 (cu
->producer
);
10483 /* Set symtab language to language from DW_AT_language. If the
10484 compilation is from a C file generated by language preprocessors, do
10485 not set the language if it was already deduced by start_subfile. */
10486 if (!(cu
->language
== language_c
10487 && COMPUNIT_FILETABS (cust
)->language
!= language_unknown
))
10488 COMPUNIT_FILETABS (cust
)->language
= cu
->language
;
10490 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10491 produce DW_AT_location with location lists but it can be possibly
10492 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10493 there were bugs in prologue debug info, fixed later in GCC-4.5
10494 by "unwind info for epilogues" patch (which is not directly related).
10496 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10497 needed, it would be wrong due to missing DW_AT_producer there.
10499 Still one can confuse GDB by using non-standard GCC compilation
10500 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10502 if (cu
->has_loclist
&& gcc_4_minor
>= 5)
10503 cust
->locations_valid
= 1;
10505 if (gcc_4_minor
>= 5)
10506 cust
->epilogue_unwind_valid
= 1;
10508 cust
->call_site_htab
= cu
->call_site_htab
;
10511 if (dwarf2_per_objfile
->using_index
)
10512 per_cu
->v
.quick
->compunit_symtab
= cust
;
10515 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
10516 pst
->compunit_symtab
= cust
;
10520 /* Push it for inclusion processing later. */
10521 VEC_safe_push (dwarf2_per_cu_ptr
, dwarf2_per_objfile
->just_read_cus
, per_cu
);
10524 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10525 already been loaded into memory. */
10528 process_full_type_unit (struct dwarf2_per_cu_data
*per_cu
,
10529 enum language pretend_language
)
10531 struct dwarf2_cu
*cu
= per_cu
->cu
;
10532 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
10533 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10534 struct compunit_symtab
*cust
;
10535 struct signatured_type
*sig_type
;
10537 gdb_assert (per_cu
->is_debug_types
);
10538 sig_type
= (struct signatured_type
*) per_cu
;
10541 scoped_free_pendings free_pending
;
10543 /* Clear the list here in case something was left over. */
10544 cu
->method_list
.clear ();
10546 cu
->list_in_scope
= &file_symbols
;
10548 cu
->language
= pretend_language
;
10549 cu
->language_defn
= language_def (cu
->language
);
10551 /* The symbol tables are set up in read_type_unit_scope. */
10552 process_die (cu
->dies
, cu
);
10554 /* For now fudge the Go package. */
10555 if (cu
->language
== language_go
)
10556 fixup_go_packaging (cu
);
10558 /* Now that we have processed all the DIEs in the CU, all the types
10559 should be complete, and it should now be safe to compute all of the
10561 compute_delayed_physnames (cu
);
10563 /* TUs share symbol tables.
10564 If this is the first TU to use this symtab, complete the construction
10565 of it with end_expandable_symtab. Otherwise, complete the addition of
10566 this TU's symbols to the existing symtab. */
10567 if (sig_type
->type_unit_group
->compunit_symtab
== NULL
)
10569 cust
= end_expandable_symtab (0, SECT_OFF_TEXT (objfile
));
10570 sig_type
->type_unit_group
->compunit_symtab
= cust
;
10574 /* Set symtab language to language from DW_AT_language. If the
10575 compilation is from a C file generated by language preprocessors,
10576 do not set the language if it was already deduced by
10578 if (!(cu
->language
== language_c
10579 && COMPUNIT_FILETABS (cust
)->language
!= language_c
))
10580 COMPUNIT_FILETABS (cust
)->language
= cu
->language
;
10585 augment_type_symtab ();
10586 cust
= sig_type
->type_unit_group
->compunit_symtab
;
10589 if (dwarf2_per_objfile
->using_index
)
10590 per_cu
->v
.quick
->compunit_symtab
= cust
;
10593 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
10594 pst
->compunit_symtab
= cust
;
10599 /* Process an imported unit DIE. */
10602 process_imported_unit_die (struct die_info
*die
, struct dwarf2_cu
*cu
)
10604 struct attribute
*attr
;
10606 /* For now we don't handle imported units in type units. */
10607 if (cu
->per_cu
->is_debug_types
)
10609 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10610 " supported in type units [in module %s]"),
10611 objfile_name (cu
->per_cu
->dwarf2_per_objfile
->objfile
));
10614 attr
= dwarf2_attr (die
, DW_AT_import
, cu
);
10617 sect_offset sect_off
= dwarf2_get_ref_die_offset (attr
);
10618 bool is_dwz
= (attr
->form
== DW_FORM_GNU_ref_alt
|| cu
->per_cu
->is_dwz
);
10619 dwarf2_per_cu_data
*per_cu
10620 = dwarf2_find_containing_comp_unit (sect_off
, is_dwz
,
10621 cu
->per_cu
->dwarf2_per_objfile
);
10623 /* If necessary, add it to the queue and load its DIEs. */
10624 if (maybe_queue_comp_unit (cu
, per_cu
, cu
->language
))
10625 load_full_comp_unit (per_cu
, cu
->language
);
10627 VEC_safe_push (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
,
10632 /* RAII object that represents a process_die scope: i.e.,
10633 starts/finishes processing a DIE. */
10634 class process_die_scope
10637 process_die_scope (die_info
*die
, dwarf2_cu
*cu
)
10638 : m_die (die
), m_cu (cu
)
10640 /* We should only be processing DIEs not already in process. */
10641 gdb_assert (!m_die
->in_process
);
10642 m_die
->in_process
= true;
10645 ~process_die_scope ()
10647 m_die
->in_process
= false;
10649 /* If we're done processing the DIE for the CU that owns the line
10650 header, we don't need the line header anymore. */
10651 if (m_cu
->line_header_die_owner
== m_die
)
10653 delete m_cu
->line_header
;
10654 m_cu
->line_header
= NULL
;
10655 m_cu
->line_header_die_owner
= NULL
;
10664 /* Process a die and its children. */
10667 process_die (struct die_info
*die
, struct dwarf2_cu
*cu
)
10669 process_die_scope
scope (die
, cu
);
10673 case DW_TAG_padding
:
10675 case DW_TAG_compile_unit
:
10676 case DW_TAG_partial_unit
:
10677 read_file_scope (die
, cu
);
10679 case DW_TAG_type_unit
:
10680 read_type_unit_scope (die
, cu
);
10682 case DW_TAG_subprogram
:
10683 case DW_TAG_inlined_subroutine
:
10684 read_func_scope (die
, cu
);
10686 case DW_TAG_lexical_block
:
10687 case DW_TAG_try_block
:
10688 case DW_TAG_catch_block
:
10689 read_lexical_block_scope (die
, cu
);
10691 case DW_TAG_call_site
:
10692 case DW_TAG_GNU_call_site
:
10693 read_call_site_scope (die
, cu
);
10695 case DW_TAG_class_type
:
10696 case DW_TAG_interface_type
:
10697 case DW_TAG_structure_type
:
10698 case DW_TAG_union_type
:
10699 process_structure_scope (die
, cu
);
10701 case DW_TAG_enumeration_type
:
10702 process_enumeration_scope (die
, cu
);
10705 /* These dies have a type, but processing them does not create
10706 a symbol or recurse to process the children. Therefore we can
10707 read them on-demand through read_type_die. */
10708 case DW_TAG_subroutine_type
:
10709 case DW_TAG_set_type
:
10710 case DW_TAG_array_type
:
10711 case DW_TAG_pointer_type
:
10712 case DW_TAG_ptr_to_member_type
:
10713 case DW_TAG_reference_type
:
10714 case DW_TAG_rvalue_reference_type
:
10715 case DW_TAG_string_type
:
10718 case DW_TAG_base_type
:
10719 case DW_TAG_subrange_type
:
10720 case DW_TAG_typedef
:
10721 /* Add a typedef symbol for the type definition, if it has a
10723 new_symbol (die
, read_type_die (die
, cu
), cu
);
10725 case DW_TAG_common_block
:
10726 read_common_block (die
, cu
);
10728 case DW_TAG_common_inclusion
:
10730 case DW_TAG_namespace
:
10731 cu
->processing_has_namespace_info
= 1;
10732 read_namespace (die
, cu
);
10734 case DW_TAG_module
:
10735 cu
->processing_has_namespace_info
= 1;
10736 read_module (die
, cu
);
10738 case DW_TAG_imported_declaration
:
10739 cu
->processing_has_namespace_info
= 1;
10740 if (read_namespace_alias (die
, cu
))
10742 /* The declaration is not a global namespace alias: fall through. */
10743 case DW_TAG_imported_module
:
10744 cu
->processing_has_namespace_info
= 1;
10745 if (die
->child
!= NULL
&& (die
->tag
== DW_TAG_imported_declaration
10746 || cu
->language
!= language_fortran
))
10747 complaint (&symfile_complaints
, _("Tag '%s' has unexpected children"),
10748 dwarf_tag_name (die
->tag
));
10749 read_import_statement (die
, cu
);
10752 case DW_TAG_imported_unit
:
10753 process_imported_unit_die (die
, cu
);
10756 case DW_TAG_variable
:
10757 read_variable (die
, cu
);
10761 new_symbol (die
, NULL
, cu
);
10766 /* DWARF name computation. */
10768 /* A helper function for dwarf2_compute_name which determines whether DIE
10769 needs to have the name of the scope prepended to the name listed in the
10773 die_needs_namespace (struct die_info
*die
, struct dwarf2_cu
*cu
)
10775 struct attribute
*attr
;
10779 case DW_TAG_namespace
:
10780 case DW_TAG_typedef
:
10781 case DW_TAG_class_type
:
10782 case DW_TAG_interface_type
:
10783 case DW_TAG_structure_type
:
10784 case DW_TAG_union_type
:
10785 case DW_TAG_enumeration_type
:
10786 case DW_TAG_enumerator
:
10787 case DW_TAG_subprogram
:
10788 case DW_TAG_inlined_subroutine
:
10789 case DW_TAG_member
:
10790 case DW_TAG_imported_declaration
:
10793 case DW_TAG_variable
:
10794 case DW_TAG_constant
:
10795 /* We only need to prefix "globally" visible variables. These include
10796 any variable marked with DW_AT_external or any variable that
10797 lives in a namespace. [Variables in anonymous namespaces
10798 require prefixing, but they are not DW_AT_external.] */
10800 if (dwarf2_attr (die
, DW_AT_specification
, cu
))
10802 struct dwarf2_cu
*spec_cu
= cu
;
10804 return die_needs_namespace (die_specification (die
, &spec_cu
),
10808 attr
= dwarf2_attr (die
, DW_AT_external
, cu
);
10809 if (attr
== NULL
&& die
->parent
->tag
!= DW_TAG_namespace
10810 && die
->parent
->tag
!= DW_TAG_module
)
10812 /* A variable in a lexical block of some kind does not need a
10813 namespace, even though in C++ such variables may be external
10814 and have a mangled name. */
10815 if (die
->parent
->tag
== DW_TAG_lexical_block
10816 || die
->parent
->tag
== DW_TAG_try_block
10817 || die
->parent
->tag
== DW_TAG_catch_block
10818 || die
->parent
->tag
== DW_TAG_subprogram
)
10827 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10828 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10829 defined for the given DIE. */
10831 static struct attribute
*
10832 dw2_linkage_name_attr (struct die_info
*die
, struct dwarf2_cu
*cu
)
10834 struct attribute
*attr
;
10836 attr
= dwarf2_attr (die
, DW_AT_linkage_name
, cu
);
10838 attr
= dwarf2_attr (die
, DW_AT_MIPS_linkage_name
, cu
);
10843 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10844 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10845 defined for the given DIE. */
10847 static const char *
10848 dw2_linkage_name (struct die_info
*die
, struct dwarf2_cu
*cu
)
10850 const char *linkage_name
;
10852 linkage_name
= dwarf2_string_attr (die
, DW_AT_linkage_name
, cu
);
10853 if (linkage_name
== NULL
)
10854 linkage_name
= dwarf2_string_attr (die
, DW_AT_MIPS_linkage_name
, cu
);
10856 return linkage_name
;
10859 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10860 compute the physname for the object, which include a method's:
10861 - formal parameters (C++),
10862 - receiver type (Go),
10864 The term "physname" is a bit confusing.
10865 For C++, for example, it is the demangled name.
10866 For Go, for example, it's the mangled name.
10868 For Ada, return the DIE's linkage name rather than the fully qualified
10869 name. PHYSNAME is ignored..
10871 The result is allocated on the objfile_obstack and canonicalized. */
10873 static const char *
10874 dwarf2_compute_name (const char *name
,
10875 struct die_info
*die
, struct dwarf2_cu
*cu
,
10878 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
10881 name
= dwarf2_name (die
, cu
);
10883 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10884 but otherwise compute it by typename_concat inside GDB.
10885 FIXME: Actually this is not really true, or at least not always true.
10886 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10887 Fortran names because there is no mangling standard. So new_symbol
10888 will set the demangled name to the result of dwarf2_full_name, and it is
10889 the demangled name that GDB uses if it exists. */
10890 if (cu
->language
== language_ada
10891 || (cu
->language
== language_fortran
&& physname
))
10893 /* For Ada unit, we prefer the linkage name over the name, as
10894 the former contains the exported name, which the user expects
10895 to be able to reference. Ideally, we want the user to be able
10896 to reference this entity using either natural or linkage name,
10897 but we haven't started looking at this enhancement yet. */
10898 const char *linkage_name
= dw2_linkage_name (die
, cu
);
10900 if (linkage_name
!= NULL
)
10901 return linkage_name
;
10904 /* These are the only languages we know how to qualify names in. */
10906 && (cu
->language
== language_cplus
10907 || cu
->language
== language_fortran
|| cu
->language
== language_d
10908 || cu
->language
== language_rust
))
10910 if (die_needs_namespace (die
, cu
))
10912 const char *prefix
;
10913 const char *canonical_name
= NULL
;
10917 prefix
= determine_prefix (die
, cu
);
10918 if (*prefix
!= '\0')
10920 char *prefixed_name
= typename_concat (NULL
, prefix
, name
,
10923 buf
.puts (prefixed_name
);
10924 xfree (prefixed_name
);
10929 /* Template parameters may be specified in the DIE's DW_AT_name, or
10930 as children with DW_TAG_template_type_param or
10931 DW_TAG_value_type_param. If the latter, add them to the name
10932 here. If the name already has template parameters, then
10933 skip this step; some versions of GCC emit both, and
10934 it is more efficient to use the pre-computed name.
10936 Something to keep in mind about this process: it is very
10937 unlikely, or in some cases downright impossible, to produce
10938 something that will match the mangled name of a function.
10939 If the definition of the function has the same debug info,
10940 we should be able to match up with it anyway. But fallbacks
10941 using the minimal symbol, for instance to find a method
10942 implemented in a stripped copy of libstdc++, will not work.
10943 If we do not have debug info for the definition, we will have to
10944 match them up some other way.
10946 When we do name matching there is a related problem with function
10947 templates; two instantiated function templates are allowed to
10948 differ only by their return types, which we do not add here. */
10950 if (cu
->language
== language_cplus
&& strchr (name
, '<') == NULL
)
10952 struct attribute
*attr
;
10953 struct die_info
*child
;
10956 die
->building_fullname
= 1;
10958 for (child
= die
->child
; child
!= NULL
; child
= child
->sibling
)
10962 const gdb_byte
*bytes
;
10963 struct dwarf2_locexpr_baton
*baton
;
10966 if (child
->tag
!= DW_TAG_template_type_param
10967 && child
->tag
!= DW_TAG_template_value_param
)
10978 attr
= dwarf2_attr (child
, DW_AT_type
, cu
);
10981 complaint (&symfile_complaints
,
10982 _("template parameter missing DW_AT_type"));
10983 buf
.puts ("UNKNOWN_TYPE");
10986 type
= die_type (child
, cu
);
10988 if (child
->tag
== DW_TAG_template_type_param
)
10990 c_print_type (type
, "", &buf
, -1, 0, &type_print_raw_options
);
10994 attr
= dwarf2_attr (child
, DW_AT_const_value
, cu
);
10997 complaint (&symfile_complaints
,
10998 _("template parameter missing "
10999 "DW_AT_const_value"));
11000 buf
.puts ("UNKNOWN_VALUE");
11004 dwarf2_const_value_attr (attr
, type
, name
,
11005 &cu
->comp_unit_obstack
, cu
,
11006 &value
, &bytes
, &baton
);
11008 if (TYPE_NOSIGN (type
))
11009 /* GDB prints characters as NUMBER 'CHAR'. If that's
11010 changed, this can use value_print instead. */
11011 c_printchar (value
, type
, &buf
);
11014 struct value_print_options opts
;
11017 v
= dwarf2_evaluate_loc_desc (type
, NULL
,
11021 else if (bytes
!= NULL
)
11023 v
= allocate_value (type
);
11024 memcpy (value_contents_writeable (v
), bytes
,
11025 TYPE_LENGTH (type
));
11028 v
= value_from_longest (type
, value
);
11030 /* Specify decimal so that we do not depend on
11032 get_formatted_print_options (&opts
, 'd');
11034 value_print (v
, &buf
, &opts
);
11040 die
->building_fullname
= 0;
11044 /* Close the argument list, with a space if necessary
11045 (nested templates). */
11046 if (!buf
.empty () && buf
.string ().back () == '>')
11053 /* For C++ methods, append formal parameter type
11054 information, if PHYSNAME. */
11056 if (physname
&& die
->tag
== DW_TAG_subprogram
11057 && cu
->language
== language_cplus
)
11059 struct type
*type
= read_type_die (die
, cu
);
11061 c_type_print_args (type
, &buf
, 1, cu
->language
,
11062 &type_print_raw_options
);
11064 if (cu
->language
== language_cplus
)
11066 /* Assume that an artificial first parameter is
11067 "this", but do not crash if it is not. RealView
11068 marks unnamed (and thus unused) parameters as
11069 artificial; there is no way to differentiate
11071 if (TYPE_NFIELDS (type
) > 0
11072 && TYPE_FIELD_ARTIFICIAL (type
, 0)
11073 && TYPE_CODE (TYPE_FIELD_TYPE (type
, 0)) == TYPE_CODE_PTR
11074 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
,
11076 buf
.puts (" const");
11080 const std::string
&intermediate_name
= buf
.string ();
11082 if (cu
->language
== language_cplus
)
11084 = dwarf2_canonicalize_name (intermediate_name
.c_str (), cu
,
11085 &objfile
->per_bfd
->storage_obstack
);
11087 /* If we only computed INTERMEDIATE_NAME, or if
11088 INTERMEDIATE_NAME is already canonical, then we need to
11089 copy it to the appropriate obstack. */
11090 if (canonical_name
== NULL
|| canonical_name
== intermediate_name
.c_str ())
11091 name
= ((const char *)
11092 obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
11093 intermediate_name
.c_str (),
11094 intermediate_name
.length ()));
11096 name
= canonical_name
;
11103 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11104 If scope qualifiers are appropriate they will be added. The result
11105 will be allocated on the storage_obstack, or NULL if the DIE does
11106 not have a name. NAME may either be from a previous call to
11107 dwarf2_name or NULL.
11109 The output string will be canonicalized (if C++). */
11111 static const char *
11112 dwarf2_full_name (const char *name
, struct die_info
*die
, struct dwarf2_cu
*cu
)
11114 return dwarf2_compute_name (name
, die
, cu
, 0);
11117 /* Construct a physname for the given DIE in CU. NAME may either be
11118 from a previous call to dwarf2_name or NULL. The result will be
11119 allocated on the objfile_objstack or NULL if the DIE does not have a
11122 The output string will be canonicalized (if C++). */
11124 static const char *
11125 dwarf2_physname (const char *name
, struct die_info
*die
, struct dwarf2_cu
*cu
)
11127 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
11128 const char *retval
, *mangled
= NULL
, *canon
= NULL
;
11131 /* In this case dwarf2_compute_name is just a shortcut not building anything
11133 if (!die_needs_namespace (die
, cu
))
11134 return dwarf2_compute_name (name
, die
, cu
, 1);
11136 mangled
= dw2_linkage_name (die
, cu
);
11138 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11139 See https://github.com/rust-lang/rust/issues/32925. */
11140 if (cu
->language
== language_rust
&& mangled
!= NULL
11141 && strchr (mangled
, '{') != NULL
)
11144 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11146 gdb::unique_xmalloc_ptr
<char> demangled
;
11147 if (mangled
!= NULL
)
11150 if (cu
->language
== language_go
)
11152 /* This is a lie, but we already lie to the caller new_symbol.
11153 new_symbol assumes we return the mangled name.
11154 This just undoes that lie until things are cleaned up. */
11158 /* Use DMGL_RET_DROP for C++ template functions to suppress
11159 their return type. It is easier for GDB users to search
11160 for such functions as `name(params)' than `long name(params)'.
11161 In such case the minimal symbol names do not match the full
11162 symbol names but for template functions there is never a need
11163 to look up their definition from their declaration so
11164 the only disadvantage remains the minimal symbol variant
11165 `long name(params)' does not have the proper inferior type. */
11166 demangled
.reset (gdb_demangle (mangled
,
11167 (DMGL_PARAMS
| DMGL_ANSI
11168 | DMGL_RET_DROP
)));
11171 canon
= demangled
.get ();
11179 if (canon
== NULL
|| check_physname
)
11181 const char *physname
= dwarf2_compute_name (name
, die
, cu
, 1);
11183 if (canon
!= NULL
&& strcmp (physname
, canon
) != 0)
11185 /* It may not mean a bug in GDB. The compiler could also
11186 compute DW_AT_linkage_name incorrectly. But in such case
11187 GDB would need to be bug-to-bug compatible. */
11189 complaint (&symfile_complaints
,
11190 _("Computed physname <%s> does not match demangled <%s> "
11191 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
11192 physname
, canon
, mangled
, to_underlying (die
->sect_off
),
11193 objfile_name (objfile
));
11195 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11196 is available here - over computed PHYSNAME. It is safer
11197 against both buggy GDB and buggy compilers. */
11211 retval
= ((const char *)
11212 obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
11213 retval
, strlen (retval
)));
11218 /* Inspect DIE in CU for a namespace alias. If one exists, record
11219 a new symbol for it.
11221 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11224 read_namespace_alias (struct die_info
*die
, struct dwarf2_cu
*cu
)
11226 struct attribute
*attr
;
11228 /* If the die does not have a name, this is not a namespace
11230 attr
= dwarf2_attr (die
, DW_AT_name
, cu
);
11234 struct die_info
*d
= die
;
11235 struct dwarf2_cu
*imported_cu
= cu
;
11237 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11238 keep inspecting DIEs until we hit the underlying import. */
11239 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11240 for (num
= 0; num
< MAX_NESTED_IMPORTED_DECLARATIONS
; ++num
)
11242 attr
= dwarf2_attr (d
, DW_AT_import
, cu
);
11246 d
= follow_die_ref (d
, attr
, &imported_cu
);
11247 if (d
->tag
!= DW_TAG_imported_declaration
)
11251 if (num
== MAX_NESTED_IMPORTED_DECLARATIONS
)
11253 complaint (&symfile_complaints
,
11254 _("DIE at 0x%x has too many recursively imported "
11255 "declarations"), to_underlying (d
->sect_off
));
11262 sect_offset sect_off
= dwarf2_get_ref_die_offset (attr
);
11264 type
= get_die_type_at_offset (sect_off
, cu
->per_cu
);
11265 if (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_NAMESPACE
)
11267 /* This declaration is a global namespace alias. Add
11268 a symbol for it whose type is the aliased namespace. */
11269 new_symbol (die
, type
, cu
);
11278 /* Return the using directives repository (global or local?) to use in the
11279 current context for LANGUAGE.
11281 For Ada, imported declarations can materialize renamings, which *may* be
11282 global. However it is impossible (for now?) in DWARF to distinguish
11283 "external" imported declarations and "static" ones. As all imported
11284 declarations seem to be static in all other languages, make them all CU-wide
11285 global only in Ada. */
11287 static struct using_direct
**
11288 using_directives (enum language language
)
11290 if (language
== language_ada
&& context_stack_depth
== 0)
11291 return &global_using_directives
;
11293 return &local_using_directives
;
11296 /* Read the import statement specified by the given die and record it. */
11299 read_import_statement (struct die_info
*die
, struct dwarf2_cu
*cu
)
11301 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
11302 struct attribute
*import_attr
;
11303 struct die_info
*imported_die
, *child_die
;
11304 struct dwarf2_cu
*imported_cu
;
11305 const char *imported_name
;
11306 const char *imported_name_prefix
;
11307 const char *canonical_name
;
11308 const char *import_alias
;
11309 const char *imported_declaration
= NULL
;
11310 const char *import_prefix
;
11311 std::vector
<const char *> excludes
;
11313 import_attr
= dwarf2_attr (die
, DW_AT_import
, cu
);
11314 if (import_attr
== NULL
)
11316 complaint (&symfile_complaints
, _("Tag '%s' has no DW_AT_import"),
11317 dwarf_tag_name (die
->tag
));
11322 imported_die
= follow_die_ref_or_sig (die
, import_attr
, &imported_cu
);
11323 imported_name
= dwarf2_name (imported_die
, imported_cu
);
11324 if (imported_name
== NULL
)
11326 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11328 The import in the following code:
11342 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11343 <52> DW_AT_decl_file : 1
11344 <53> DW_AT_decl_line : 6
11345 <54> DW_AT_import : <0x75>
11346 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11347 <59> DW_AT_name : B
11348 <5b> DW_AT_decl_file : 1
11349 <5c> DW_AT_decl_line : 2
11350 <5d> DW_AT_type : <0x6e>
11352 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11353 <76> DW_AT_byte_size : 4
11354 <77> DW_AT_encoding : 5 (signed)
11356 imports the wrong die ( 0x75 instead of 0x58 ).
11357 This case will be ignored until the gcc bug is fixed. */
11361 /* Figure out the local name after import. */
11362 import_alias
= dwarf2_name (die
, cu
);
11364 /* Figure out where the statement is being imported to. */
11365 import_prefix
= determine_prefix (die
, cu
);
11367 /* Figure out what the scope of the imported die is and prepend it
11368 to the name of the imported die. */
11369 imported_name_prefix
= determine_prefix (imported_die
, imported_cu
);
11371 if (imported_die
->tag
!= DW_TAG_namespace
11372 && imported_die
->tag
!= DW_TAG_module
)
11374 imported_declaration
= imported_name
;
11375 canonical_name
= imported_name_prefix
;
11377 else if (strlen (imported_name_prefix
) > 0)
11378 canonical_name
= obconcat (&objfile
->objfile_obstack
,
11379 imported_name_prefix
,
11380 (cu
->language
== language_d
? "." : "::"),
11381 imported_name
, (char *) NULL
);
11383 canonical_name
= imported_name
;
11385 if (die
->tag
== DW_TAG_imported_module
&& cu
->language
== language_fortran
)
11386 for (child_die
= die
->child
; child_die
&& child_die
->tag
;
11387 child_die
= sibling_die (child_die
))
11389 /* DWARF-4: A Fortran use statement with a “rename list” may be
11390 represented by an imported module entry with an import attribute
11391 referring to the module and owned entries corresponding to those
11392 entities that are renamed as part of being imported. */
11394 if (child_die
->tag
!= DW_TAG_imported_declaration
)
11396 complaint (&symfile_complaints
,
11397 _("child DW_TAG_imported_declaration expected "
11398 "- DIE at 0x%x [in module %s]"),
11399 to_underlying (child_die
->sect_off
), objfile_name (objfile
));
11403 import_attr
= dwarf2_attr (child_die
, DW_AT_import
, cu
);
11404 if (import_attr
== NULL
)
11406 complaint (&symfile_complaints
, _("Tag '%s' has no DW_AT_import"),
11407 dwarf_tag_name (child_die
->tag
));
11412 imported_die
= follow_die_ref_or_sig (child_die
, import_attr
,
11414 imported_name
= dwarf2_name (imported_die
, imported_cu
);
11415 if (imported_name
== NULL
)
11417 complaint (&symfile_complaints
,
11418 _("child DW_TAG_imported_declaration has unknown "
11419 "imported name - DIE at 0x%x [in module %s]"),
11420 to_underlying (child_die
->sect_off
), objfile_name (objfile
));
11424 excludes
.push_back (imported_name
);
11426 process_die (child_die
, cu
);
11429 add_using_directive (using_directives (cu
->language
),
11433 imported_declaration
,
11436 &objfile
->objfile_obstack
);
11439 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11440 types, but gives them a size of zero. Starting with version 14,
11441 ICC is compatible with GCC. */
11444 producer_is_icc_lt_14 (struct dwarf2_cu
*cu
)
11446 if (!cu
->checked_producer
)
11447 check_producer (cu
);
11449 return cu
->producer_is_icc_lt_14
;
11452 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11453 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11454 this, it was first present in GCC release 4.3.0. */
11457 producer_is_gcc_lt_4_3 (struct dwarf2_cu
*cu
)
11459 if (!cu
->checked_producer
)
11460 check_producer (cu
);
11462 return cu
->producer_is_gcc_lt_4_3
;
11465 static file_and_directory
11466 find_file_and_directory (struct die_info
*die
, struct dwarf2_cu
*cu
)
11468 file_and_directory res
;
11470 /* Find the filename. Do not use dwarf2_name here, since the filename
11471 is not a source language identifier. */
11472 res
.name
= dwarf2_string_attr (die
, DW_AT_name
, cu
);
11473 res
.comp_dir
= dwarf2_string_attr (die
, DW_AT_comp_dir
, cu
);
11475 if (res
.comp_dir
== NULL
11476 && producer_is_gcc_lt_4_3 (cu
) && res
.name
!= NULL
11477 && IS_ABSOLUTE_PATH (res
.name
))
11479 res
.comp_dir_storage
= ldirname (res
.name
);
11480 if (!res
.comp_dir_storage
.empty ())
11481 res
.comp_dir
= res
.comp_dir_storage
.c_str ();
11483 if (res
.comp_dir
!= NULL
)
11485 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11486 directory, get rid of it. */
11487 const char *cp
= strchr (res
.comp_dir
, ':');
11489 if (cp
&& cp
!= res
.comp_dir
&& cp
[-1] == '.' && cp
[1] == '/')
11490 res
.comp_dir
= cp
+ 1;
11493 if (res
.name
== NULL
)
11494 res
.name
= "<unknown>";
11499 /* Handle DW_AT_stmt_list for a compilation unit.
11500 DIE is the DW_TAG_compile_unit die for CU.
11501 COMP_DIR is the compilation directory. LOWPC is passed to
11502 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11505 handle_DW_AT_stmt_list (struct die_info
*die
, struct dwarf2_cu
*cu
,
11506 const char *comp_dir
, CORE_ADDR lowpc
) /* ARI: editCase function */
11508 struct dwarf2_per_objfile
*dwarf2_per_objfile
11509 = cu
->per_cu
->dwarf2_per_objfile
;
11510 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
11511 struct attribute
*attr
;
11512 struct line_header line_header_local
;
11513 hashval_t line_header_local_hash
;
11515 int decode_mapping
;
11517 gdb_assert (! cu
->per_cu
->is_debug_types
);
11519 attr
= dwarf2_attr (die
, DW_AT_stmt_list
, cu
);
11523 sect_offset line_offset
= (sect_offset
) DW_UNSND (attr
);
11525 /* The line header hash table is only created if needed (it exists to
11526 prevent redundant reading of the line table for partial_units).
11527 If we're given a partial_unit, we'll need it. If we're given a
11528 compile_unit, then use the line header hash table if it's already
11529 created, but don't create one just yet. */
11531 if (dwarf2_per_objfile
->line_header_hash
== NULL
11532 && die
->tag
== DW_TAG_partial_unit
)
11534 dwarf2_per_objfile
->line_header_hash
11535 = htab_create_alloc_ex (127, line_header_hash_voidp
,
11536 line_header_eq_voidp
,
11537 free_line_header_voidp
,
11538 &objfile
->objfile_obstack
,
11539 hashtab_obstack_allocate
,
11540 dummy_obstack_deallocate
);
11543 line_header_local
.sect_off
= line_offset
;
11544 line_header_local
.offset_in_dwz
= cu
->per_cu
->is_dwz
;
11545 line_header_local_hash
= line_header_hash (&line_header_local
);
11546 if (dwarf2_per_objfile
->line_header_hash
!= NULL
)
11548 slot
= htab_find_slot_with_hash (dwarf2_per_objfile
->line_header_hash
,
11549 &line_header_local
,
11550 line_header_local_hash
, NO_INSERT
);
11552 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11553 is not present in *SLOT (since if there is something in *SLOT then
11554 it will be for a partial_unit). */
11555 if (die
->tag
== DW_TAG_partial_unit
&& slot
!= NULL
)
11557 gdb_assert (*slot
!= NULL
);
11558 cu
->line_header
= (struct line_header
*) *slot
;
11563 /* dwarf_decode_line_header does not yet provide sufficient information.
11564 We always have to call also dwarf_decode_lines for it. */
11565 line_header_up lh
= dwarf_decode_line_header (line_offset
, cu
);
11569 cu
->line_header
= lh
.release ();
11570 cu
->line_header_die_owner
= die
;
11572 if (dwarf2_per_objfile
->line_header_hash
== NULL
)
11576 slot
= htab_find_slot_with_hash (dwarf2_per_objfile
->line_header_hash
,
11577 &line_header_local
,
11578 line_header_local_hash
, INSERT
);
11579 gdb_assert (slot
!= NULL
);
11581 if (slot
!= NULL
&& *slot
== NULL
)
11583 /* This newly decoded line number information unit will be owned
11584 by line_header_hash hash table. */
11585 *slot
= cu
->line_header
;
11586 cu
->line_header_die_owner
= NULL
;
11590 /* We cannot free any current entry in (*slot) as that struct line_header
11591 may be already used by multiple CUs. Create only temporary decoded
11592 line_header for this CU - it may happen at most once for each line
11593 number information unit. And if we're not using line_header_hash
11594 then this is what we want as well. */
11595 gdb_assert (die
->tag
!= DW_TAG_partial_unit
);
11597 decode_mapping
= (die
->tag
!= DW_TAG_partial_unit
);
11598 dwarf_decode_lines (cu
->line_header
, comp_dir
, cu
, NULL
, lowpc
,
11603 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11606 read_file_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
11608 struct dwarf2_per_objfile
*dwarf2_per_objfile
11609 = cu
->per_cu
->dwarf2_per_objfile
;
11610 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
11611 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
11612 CORE_ADDR lowpc
= ((CORE_ADDR
) -1);
11613 CORE_ADDR highpc
= ((CORE_ADDR
) 0);
11614 struct attribute
*attr
;
11615 struct die_info
*child_die
;
11616 CORE_ADDR baseaddr
;
11618 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
11620 get_scope_pc_bounds (die
, &lowpc
, &highpc
, cu
);
11622 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11623 from finish_block. */
11624 if (lowpc
== ((CORE_ADDR
) -1))
11626 lowpc
= gdbarch_adjust_dwarf2_addr (gdbarch
, lowpc
+ baseaddr
);
11628 file_and_directory fnd
= find_file_and_directory (die
, cu
);
11630 prepare_one_comp_unit (cu
, die
, cu
->language
);
11632 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11633 standardised yet. As a workaround for the language detection we fall
11634 back to the DW_AT_producer string. */
11635 if (cu
->producer
&& strstr (cu
->producer
, "IBM XL C for OpenCL") != NULL
)
11636 cu
->language
= language_opencl
;
11638 /* Similar hack for Go. */
11639 if (cu
->producer
&& strstr (cu
->producer
, "GNU Go ") != NULL
)
11640 set_cu_language (DW_LANG_Go
, cu
);
11642 dwarf2_start_symtab (cu
, fnd
.name
, fnd
.comp_dir
, lowpc
);
11644 /* Decode line number information if present. We do this before
11645 processing child DIEs, so that the line header table is available
11646 for DW_AT_decl_file. */
11647 handle_DW_AT_stmt_list (die
, cu
, fnd
.comp_dir
, lowpc
);
11649 /* Process all dies in compilation unit. */
11650 if (die
->child
!= NULL
)
11652 child_die
= die
->child
;
11653 while (child_die
&& child_die
->tag
)
11655 process_die (child_die
, cu
);
11656 child_die
= sibling_die (child_die
);
11660 /* Decode macro information, if present. Dwarf 2 macro information
11661 refers to information in the line number info statement program
11662 header, so we can only read it if we've read the header
11664 attr
= dwarf2_attr (die
, DW_AT_macros
, cu
);
11666 attr
= dwarf2_attr (die
, DW_AT_GNU_macros
, cu
);
11667 if (attr
&& cu
->line_header
)
11669 if (dwarf2_attr (die
, DW_AT_macro_info
, cu
))
11670 complaint (&symfile_complaints
,
11671 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11673 dwarf_decode_macros (cu
, DW_UNSND (attr
), 1);
11677 attr
= dwarf2_attr (die
, DW_AT_macro_info
, cu
);
11678 if (attr
&& cu
->line_header
)
11680 unsigned int macro_offset
= DW_UNSND (attr
);
11682 dwarf_decode_macros (cu
, macro_offset
, 0);
11687 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11688 Create the set of symtabs used by this TU, or if this TU is sharing
11689 symtabs with another TU and the symtabs have already been created
11690 then restore those symtabs in the line header.
11691 We don't need the pc/line-number mapping for type units. */
11694 setup_type_unit_groups (struct die_info
*die
, struct dwarf2_cu
*cu
)
11696 struct dwarf2_per_cu_data
*per_cu
= cu
->per_cu
;
11697 struct type_unit_group
*tu_group
;
11699 struct attribute
*attr
;
11701 struct signatured_type
*sig_type
;
11703 gdb_assert (per_cu
->is_debug_types
);
11704 sig_type
= (struct signatured_type
*) per_cu
;
11706 attr
= dwarf2_attr (die
, DW_AT_stmt_list
, cu
);
11708 /* If we're using .gdb_index (includes -readnow) then
11709 per_cu->type_unit_group may not have been set up yet. */
11710 if (sig_type
->type_unit_group
== NULL
)
11711 sig_type
->type_unit_group
= get_type_unit_group (cu
, attr
);
11712 tu_group
= sig_type
->type_unit_group
;
11714 /* If we've already processed this stmt_list there's no real need to
11715 do it again, we could fake it and just recreate the part we need
11716 (file name,index -> symtab mapping). If data shows this optimization
11717 is useful we can do it then. */
11718 first_time
= tu_group
->compunit_symtab
== NULL
;
11720 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11725 sect_offset line_offset
= (sect_offset
) DW_UNSND (attr
);
11726 lh
= dwarf_decode_line_header (line_offset
, cu
);
11731 dwarf2_start_symtab (cu
, "", NULL
, 0);
11734 gdb_assert (tu_group
->symtabs
== NULL
);
11735 restart_symtab (tu_group
->compunit_symtab
, "", 0);
11740 cu
->line_header
= lh
.release ();
11741 cu
->line_header_die_owner
= die
;
11745 struct compunit_symtab
*cust
= dwarf2_start_symtab (cu
, "", NULL
, 0);
11747 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11748 still initializing it, and our caller (a few levels up)
11749 process_full_type_unit still needs to know if this is the first
11752 tu_group
->num_symtabs
= cu
->line_header
->file_names
.size ();
11753 tu_group
->symtabs
= XNEWVEC (struct symtab
*,
11754 cu
->line_header
->file_names
.size ());
11756 for (i
= 0; i
< cu
->line_header
->file_names
.size (); ++i
)
11758 file_entry
&fe
= cu
->line_header
->file_names
[i
];
11760 dwarf2_start_subfile (fe
.name
, fe
.include_dir (cu
->line_header
));
11762 if (current_subfile
->symtab
== NULL
)
11764 /* NOTE: start_subfile will recognize when it's been
11765 passed a file it has already seen. So we can't
11766 assume there's a simple mapping from
11767 cu->line_header->file_names to subfiles, plus
11768 cu->line_header->file_names may contain dups. */
11769 current_subfile
->symtab
11770 = allocate_symtab (cust
, current_subfile
->name
);
11773 fe
.symtab
= current_subfile
->symtab
;
11774 tu_group
->symtabs
[i
] = fe
.symtab
;
11779 restart_symtab (tu_group
->compunit_symtab
, "", 0);
11781 for (i
= 0; i
< cu
->line_header
->file_names
.size (); ++i
)
11783 file_entry
&fe
= cu
->line_header
->file_names
[i
];
11785 fe
.symtab
= tu_group
->symtabs
[i
];
11789 /* The main symtab is allocated last. Type units don't have DW_AT_name
11790 so they don't have a "real" (so to speak) symtab anyway.
11791 There is later code that will assign the main symtab to all symbols
11792 that don't have one. We need to handle the case of a symbol with a
11793 missing symtab (DW_AT_decl_file) anyway. */
11796 /* Process DW_TAG_type_unit.
11797 For TUs we want to skip the first top level sibling if it's not the
11798 actual type being defined by this TU. In this case the first top
11799 level sibling is there to provide context only. */
11802 read_type_unit_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
11804 struct die_info
*child_die
;
11806 prepare_one_comp_unit (cu
, die
, language_minimal
);
11808 /* Initialize (or reinitialize) the machinery for building symtabs.
11809 We do this before processing child DIEs, so that the line header table
11810 is available for DW_AT_decl_file. */
11811 setup_type_unit_groups (die
, cu
);
11813 if (die
->child
!= NULL
)
11815 child_die
= die
->child
;
11816 while (child_die
&& child_die
->tag
)
11818 process_die (child_die
, cu
);
11819 child_die
= sibling_die (child_die
);
11826 http://gcc.gnu.org/wiki/DebugFission
11827 http://gcc.gnu.org/wiki/DebugFissionDWP
11829 To simplify handling of both DWO files ("object" files with the DWARF info)
11830 and DWP files (a file with the DWOs packaged up into one file), we treat
11831 DWP files as having a collection of virtual DWO files. */
11834 hash_dwo_file (const void *item
)
11836 const struct dwo_file
*dwo_file
= (const struct dwo_file
*) item
;
11839 hash
= htab_hash_string (dwo_file
->dwo_name
);
11840 if (dwo_file
->comp_dir
!= NULL
)
11841 hash
+= htab_hash_string (dwo_file
->comp_dir
);
11846 eq_dwo_file (const void *item_lhs
, const void *item_rhs
)
11848 const struct dwo_file
*lhs
= (const struct dwo_file
*) item_lhs
;
11849 const struct dwo_file
*rhs
= (const struct dwo_file
*) item_rhs
;
11851 if (strcmp (lhs
->dwo_name
, rhs
->dwo_name
) != 0)
11853 if (lhs
->comp_dir
== NULL
|| rhs
->comp_dir
== NULL
)
11854 return lhs
->comp_dir
== rhs
->comp_dir
;
11855 return strcmp (lhs
->comp_dir
, rhs
->comp_dir
) == 0;
11858 /* Allocate a hash table for DWO files. */
11861 allocate_dwo_file_hash_table (struct objfile
*objfile
)
11863 return htab_create_alloc_ex (41,
11867 &objfile
->objfile_obstack
,
11868 hashtab_obstack_allocate
,
11869 dummy_obstack_deallocate
);
11872 /* Lookup DWO file DWO_NAME. */
11875 lookup_dwo_file_slot (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
11876 const char *dwo_name
,
11877 const char *comp_dir
)
11879 struct dwo_file find_entry
;
11882 if (dwarf2_per_objfile
->dwo_files
== NULL
)
11883 dwarf2_per_objfile
->dwo_files
11884 = allocate_dwo_file_hash_table (dwarf2_per_objfile
->objfile
);
11886 memset (&find_entry
, 0, sizeof (find_entry
));
11887 find_entry
.dwo_name
= dwo_name
;
11888 find_entry
.comp_dir
= comp_dir
;
11889 slot
= htab_find_slot (dwarf2_per_objfile
->dwo_files
, &find_entry
, INSERT
);
11895 hash_dwo_unit (const void *item
)
11897 const struct dwo_unit
*dwo_unit
= (const struct dwo_unit
*) item
;
11899 /* This drops the top 32 bits of the id, but is ok for a hash. */
11900 return dwo_unit
->signature
;
11904 eq_dwo_unit (const void *item_lhs
, const void *item_rhs
)
11906 const struct dwo_unit
*lhs
= (const struct dwo_unit
*) item_lhs
;
11907 const struct dwo_unit
*rhs
= (const struct dwo_unit
*) item_rhs
;
11909 /* The signature is assumed to be unique within the DWO file.
11910 So while object file CU dwo_id's always have the value zero,
11911 that's OK, assuming each object file DWO file has only one CU,
11912 and that's the rule for now. */
11913 return lhs
->signature
== rhs
->signature
;
11916 /* Allocate a hash table for DWO CUs,TUs.
11917 There is one of these tables for each of CUs,TUs for each DWO file. */
11920 allocate_dwo_unit_table (struct objfile
*objfile
)
11922 /* Start out with a pretty small number.
11923 Generally DWO files contain only one CU and maybe some TUs. */
11924 return htab_create_alloc_ex (3,
11928 &objfile
->objfile_obstack
,
11929 hashtab_obstack_allocate
,
11930 dummy_obstack_deallocate
);
11933 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11935 struct create_dwo_cu_data
11937 struct dwo_file
*dwo_file
;
11938 struct dwo_unit dwo_unit
;
11941 /* die_reader_func for create_dwo_cu. */
11944 create_dwo_cu_reader (const struct die_reader_specs
*reader
,
11945 const gdb_byte
*info_ptr
,
11946 struct die_info
*comp_unit_die
,
11950 struct dwarf2_cu
*cu
= reader
->cu
;
11951 sect_offset sect_off
= cu
->per_cu
->sect_off
;
11952 struct dwarf2_section_info
*section
= cu
->per_cu
->section
;
11953 struct create_dwo_cu_data
*data
= (struct create_dwo_cu_data
*) datap
;
11954 struct dwo_file
*dwo_file
= data
->dwo_file
;
11955 struct dwo_unit
*dwo_unit
= &data
->dwo_unit
;
11956 struct attribute
*attr
;
11958 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_id
, cu
);
11961 complaint (&symfile_complaints
,
11962 _("Dwarf Error: debug entry at offset 0x%x is missing"
11963 " its dwo_id [in module %s]"),
11964 to_underlying (sect_off
), dwo_file
->dwo_name
);
11968 dwo_unit
->dwo_file
= dwo_file
;
11969 dwo_unit
->signature
= DW_UNSND (attr
);
11970 dwo_unit
->section
= section
;
11971 dwo_unit
->sect_off
= sect_off
;
11972 dwo_unit
->length
= cu
->per_cu
->length
;
11974 if (dwarf_read_debug
)
11975 fprintf_unfiltered (gdb_stdlog
, " offset 0x%x, dwo_id %s\n",
11976 to_underlying (sect_off
),
11977 hex_string (dwo_unit
->signature
));
11980 /* Create the dwo_units for the CUs in a DWO_FILE.
11981 Note: This function processes DWO files only, not DWP files. */
11984 create_cus_hash_table (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
11985 struct dwo_file
&dwo_file
, dwarf2_section_info
§ion
,
11988 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
11989 const gdb_byte
*info_ptr
, *end_ptr
;
11991 dwarf2_read_section (objfile
, §ion
);
11992 info_ptr
= section
.buffer
;
11994 if (info_ptr
== NULL
)
11997 if (dwarf_read_debug
)
11999 fprintf_unfiltered (gdb_stdlog
, "Reading %s for %s:\n",
12000 get_section_name (§ion
),
12001 get_section_file_name (§ion
));
12004 end_ptr
= info_ptr
+ section
.size
;
12005 while (info_ptr
< end_ptr
)
12007 struct dwarf2_per_cu_data per_cu
;
12008 struct create_dwo_cu_data create_dwo_cu_data
;
12009 struct dwo_unit
*dwo_unit
;
12011 sect_offset sect_off
= (sect_offset
) (info_ptr
- section
.buffer
);
12013 memset (&create_dwo_cu_data
.dwo_unit
, 0,
12014 sizeof (create_dwo_cu_data
.dwo_unit
));
12015 memset (&per_cu
, 0, sizeof (per_cu
));
12016 per_cu
.dwarf2_per_objfile
= dwarf2_per_objfile
;
12017 per_cu
.is_debug_types
= 0;
12018 per_cu
.sect_off
= sect_offset (info_ptr
- section
.buffer
);
12019 per_cu
.section
= §ion
;
12020 create_dwo_cu_data
.dwo_file
= &dwo_file
;
12022 init_cutu_and_read_dies_no_follow (
12023 &per_cu
, &dwo_file
, create_dwo_cu_reader
, &create_dwo_cu_data
);
12024 info_ptr
+= per_cu
.length
;
12026 // If the unit could not be parsed, skip it.
12027 if (create_dwo_cu_data
.dwo_unit
.dwo_file
== NULL
)
12030 if (cus_htab
== NULL
)
12031 cus_htab
= allocate_dwo_unit_table (objfile
);
12033 dwo_unit
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_unit
);
12034 *dwo_unit
= create_dwo_cu_data
.dwo_unit
;
12035 slot
= htab_find_slot (cus_htab
, dwo_unit
, INSERT
);
12036 gdb_assert (slot
!= NULL
);
12039 const struct dwo_unit
*dup_cu
= (const struct dwo_unit
*)*slot
;
12040 sect_offset dup_sect_off
= dup_cu
->sect_off
;
12042 complaint (&symfile_complaints
,
12043 _("debug cu entry at offset 0x%x is duplicate to"
12044 " the entry at offset 0x%x, signature %s"),
12045 to_underlying (sect_off
), to_underlying (dup_sect_off
),
12046 hex_string (dwo_unit
->signature
));
12048 *slot
= (void *)dwo_unit
;
12052 /* DWP file .debug_{cu,tu}_index section format:
12053 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12057 Both index sections have the same format, and serve to map a 64-bit
12058 signature to a set of section numbers. Each section begins with a header,
12059 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12060 indexes, and a pool of 32-bit section numbers. The index sections will be
12061 aligned at 8-byte boundaries in the file.
12063 The index section header consists of:
12065 V, 32 bit version number
12067 N, 32 bit number of compilation units or type units in the index
12068 M, 32 bit number of slots in the hash table
12070 Numbers are recorded using the byte order of the application binary.
12072 The hash table begins at offset 16 in the section, and consists of an array
12073 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12074 order of the application binary). Unused slots in the hash table are 0.
12075 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12077 The parallel table begins immediately after the hash table
12078 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12079 array of 32-bit indexes (using the byte order of the application binary),
12080 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12081 table contains a 32-bit index into the pool of section numbers. For unused
12082 hash table slots, the corresponding entry in the parallel table will be 0.
12084 The pool of section numbers begins immediately following the hash table
12085 (at offset 16 + 12 * M from the beginning of the section). The pool of
12086 section numbers consists of an array of 32-bit words (using the byte order
12087 of the application binary). Each item in the array is indexed starting
12088 from 0. The hash table entry provides the index of the first section
12089 number in the set. Additional section numbers in the set follow, and the
12090 set is terminated by a 0 entry (section number 0 is not used in ELF).
12092 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12093 section must be the first entry in the set, and the .debug_abbrev.dwo must
12094 be the second entry. Other members of the set may follow in any order.
12100 DWP Version 2 combines all the .debug_info, etc. sections into one,
12101 and the entries in the index tables are now offsets into these sections.
12102 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12105 Index Section Contents:
12107 Hash Table of Signatures dwp_hash_table.hash_table
12108 Parallel Table of Indices dwp_hash_table.unit_table
12109 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12110 Table of Section Sizes dwp_hash_table.v2.sizes
12112 The index section header consists of:
12114 V, 32 bit version number
12115 L, 32 bit number of columns in the table of section offsets
12116 N, 32 bit number of compilation units or type units in the index
12117 M, 32 bit number of slots in the hash table
12119 Numbers are recorded using the byte order of the application binary.
12121 The hash table has the same format as version 1.
12122 The parallel table of indices has the same format as version 1,
12123 except that the entries are origin-1 indices into the table of sections
12124 offsets and the table of section sizes.
12126 The table of offsets begins immediately following the parallel table
12127 (at offset 16 + 12 * M from the beginning of the section). The table is
12128 a two-dimensional array of 32-bit words (using the byte order of the
12129 application binary), with L columns and N+1 rows, in row-major order.
12130 Each row in the array is indexed starting from 0. The first row provides
12131 a key to the remaining rows: each column in this row provides an identifier
12132 for a debug section, and the offsets in the same column of subsequent rows
12133 refer to that section. The section identifiers are:
12135 DW_SECT_INFO 1 .debug_info.dwo
12136 DW_SECT_TYPES 2 .debug_types.dwo
12137 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12138 DW_SECT_LINE 4 .debug_line.dwo
12139 DW_SECT_LOC 5 .debug_loc.dwo
12140 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12141 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12142 DW_SECT_MACRO 8 .debug_macro.dwo
12144 The offsets provided by the CU and TU index sections are the base offsets
12145 for the contributions made by each CU or TU to the corresponding section
12146 in the package file. Each CU and TU header contains an abbrev_offset
12147 field, used to find the abbreviations table for that CU or TU within the
12148 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12149 be interpreted as relative to the base offset given in the index section.
12150 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12151 should be interpreted as relative to the base offset for .debug_line.dwo,
12152 and offsets into other debug sections obtained from DWARF attributes should
12153 also be interpreted as relative to the corresponding base offset.
12155 The table of sizes begins immediately following the table of offsets.
12156 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12157 with L columns and N rows, in row-major order. Each row in the array is
12158 indexed starting from 1 (row 0 is shared by the two tables).
12162 Hash table lookup is handled the same in version 1 and 2:
12164 We assume that N and M will not exceed 2^32 - 1.
12165 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12167 Given a 64-bit compilation unit signature or a type signature S, an entry
12168 in the hash table is located as follows:
12170 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12171 the low-order k bits all set to 1.
12173 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12175 3) If the hash table entry at index H matches the signature, use that
12176 entry. If the hash table entry at index H is unused (all zeroes),
12177 terminate the search: the signature is not present in the table.
12179 4) Let H = (H + H') modulo M. Repeat at Step 3.
12181 Because M > N and H' and M are relatively prime, the search is guaranteed
12182 to stop at an unused slot or find the match. */
12184 /* Create a hash table to map DWO IDs to their CU/TU entry in
12185 .debug_{info,types}.dwo in DWP_FILE.
12186 Returns NULL if there isn't one.
12187 Note: This function processes DWP files only, not DWO files. */
12189 static struct dwp_hash_table
*
12190 create_dwp_hash_table (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12191 struct dwp_file
*dwp_file
, int is_debug_types
)
12193 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
12194 bfd
*dbfd
= dwp_file
->dbfd
;
12195 const gdb_byte
*index_ptr
, *index_end
;
12196 struct dwarf2_section_info
*index
;
12197 uint32_t version
, nr_columns
, nr_units
, nr_slots
;
12198 struct dwp_hash_table
*htab
;
12200 if (is_debug_types
)
12201 index
= &dwp_file
->sections
.tu_index
;
12203 index
= &dwp_file
->sections
.cu_index
;
12205 if (dwarf2_section_empty_p (index
))
12207 dwarf2_read_section (objfile
, index
);
12209 index_ptr
= index
->buffer
;
12210 index_end
= index_ptr
+ index
->size
;
12212 version
= read_4_bytes (dbfd
, index_ptr
);
12215 nr_columns
= read_4_bytes (dbfd
, index_ptr
);
12219 nr_units
= read_4_bytes (dbfd
, index_ptr
);
12221 nr_slots
= read_4_bytes (dbfd
, index_ptr
);
12224 if (version
!= 1 && version
!= 2)
12226 error (_("Dwarf Error: unsupported DWP file version (%s)"
12227 " [in module %s]"),
12228 pulongest (version
), dwp_file
->name
);
12230 if (nr_slots
!= (nr_slots
& -nr_slots
))
12232 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12233 " is not power of 2 [in module %s]"),
12234 pulongest (nr_slots
), dwp_file
->name
);
12237 htab
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwp_hash_table
);
12238 htab
->version
= version
;
12239 htab
->nr_columns
= nr_columns
;
12240 htab
->nr_units
= nr_units
;
12241 htab
->nr_slots
= nr_slots
;
12242 htab
->hash_table
= index_ptr
;
12243 htab
->unit_table
= htab
->hash_table
+ sizeof (uint64_t) * nr_slots
;
12245 /* Exit early if the table is empty. */
12246 if (nr_slots
== 0 || nr_units
== 0
12247 || (version
== 2 && nr_columns
== 0))
12249 /* All must be zero. */
12250 if (nr_slots
!= 0 || nr_units
!= 0
12251 || (version
== 2 && nr_columns
!= 0))
12253 complaint (&symfile_complaints
,
12254 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12255 " all zero [in modules %s]"),
12263 htab
->section_pool
.v1
.indices
=
12264 htab
->unit_table
+ sizeof (uint32_t) * nr_slots
;
12265 /* It's harder to decide whether the section is too small in v1.
12266 V1 is deprecated anyway so we punt. */
12270 const gdb_byte
*ids_ptr
= htab
->unit_table
+ sizeof (uint32_t) * nr_slots
;
12271 int *ids
= htab
->section_pool
.v2
.section_ids
;
12272 /* Reverse map for error checking. */
12273 int ids_seen
[DW_SECT_MAX
+ 1];
12276 if (nr_columns
< 2)
12278 error (_("Dwarf Error: bad DWP hash table, too few columns"
12279 " in section table [in module %s]"),
12282 if (nr_columns
> MAX_NR_V2_DWO_SECTIONS
)
12284 error (_("Dwarf Error: bad DWP hash table, too many columns"
12285 " in section table [in module %s]"),
12288 memset (ids
, 255, (DW_SECT_MAX
+ 1) * sizeof (int32_t));
12289 memset (ids_seen
, 255, (DW_SECT_MAX
+ 1) * sizeof (int32_t));
12290 for (i
= 0; i
< nr_columns
; ++i
)
12292 int id
= read_4_bytes (dbfd
, ids_ptr
+ i
* sizeof (uint32_t));
12294 if (id
< DW_SECT_MIN
|| id
> DW_SECT_MAX
)
12296 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12297 " in section table [in module %s]"),
12298 id
, dwp_file
->name
);
12300 if (ids_seen
[id
] != -1)
12302 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12303 " id %d in section table [in module %s]"),
12304 id
, dwp_file
->name
);
12309 /* Must have exactly one info or types section. */
12310 if (((ids_seen
[DW_SECT_INFO
] != -1)
12311 + (ids_seen
[DW_SECT_TYPES
] != -1))
12314 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12315 " DWO info/types section [in module %s]"),
12318 /* Must have an abbrev section. */
12319 if (ids_seen
[DW_SECT_ABBREV
] == -1)
12321 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12322 " section [in module %s]"),
12325 htab
->section_pool
.v2
.offsets
= ids_ptr
+ sizeof (uint32_t) * nr_columns
;
12326 htab
->section_pool
.v2
.sizes
=
12327 htab
->section_pool
.v2
.offsets
+ (sizeof (uint32_t)
12328 * nr_units
* nr_columns
);
12329 if ((htab
->section_pool
.v2
.sizes
+ (sizeof (uint32_t)
12330 * nr_units
* nr_columns
))
12333 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12334 " [in module %s]"),
12342 /* Update SECTIONS with the data from SECTP.
12344 This function is like the other "locate" section routines that are
12345 passed to bfd_map_over_sections, but in this context the sections to
12346 read comes from the DWP V1 hash table, not the full ELF section table.
12348 The result is non-zero for success, or zero if an error was found. */
12351 locate_v1_virtual_dwo_sections (asection
*sectp
,
12352 struct virtual_v1_dwo_sections
*sections
)
12354 const struct dwop_section_names
*names
= &dwop_section_names
;
12356 if (section_is_p (sectp
->name
, &names
->abbrev_dwo
))
12358 /* There can be only one. */
12359 if (sections
->abbrev
.s
.section
!= NULL
)
12361 sections
->abbrev
.s
.section
= sectp
;
12362 sections
->abbrev
.size
= bfd_get_section_size (sectp
);
12364 else if (section_is_p (sectp
->name
, &names
->info_dwo
)
12365 || section_is_p (sectp
->name
, &names
->types_dwo
))
12367 /* There can be only one. */
12368 if (sections
->info_or_types
.s
.section
!= NULL
)
12370 sections
->info_or_types
.s
.section
= sectp
;
12371 sections
->info_or_types
.size
= bfd_get_section_size (sectp
);
12373 else if (section_is_p (sectp
->name
, &names
->line_dwo
))
12375 /* There can be only one. */
12376 if (sections
->line
.s
.section
!= NULL
)
12378 sections
->line
.s
.section
= sectp
;
12379 sections
->line
.size
= bfd_get_section_size (sectp
);
12381 else if (section_is_p (sectp
->name
, &names
->loc_dwo
))
12383 /* There can be only one. */
12384 if (sections
->loc
.s
.section
!= NULL
)
12386 sections
->loc
.s
.section
= sectp
;
12387 sections
->loc
.size
= bfd_get_section_size (sectp
);
12389 else if (section_is_p (sectp
->name
, &names
->macinfo_dwo
))
12391 /* There can be only one. */
12392 if (sections
->macinfo
.s
.section
!= NULL
)
12394 sections
->macinfo
.s
.section
= sectp
;
12395 sections
->macinfo
.size
= bfd_get_section_size (sectp
);
12397 else if (section_is_p (sectp
->name
, &names
->macro_dwo
))
12399 /* There can be only one. */
12400 if (sections
->macro
.s
.section
!= NULL
)
12402 sections
->macro
.s
.section
= sectp
;
12403 sections
->macro
.size
= bfd_get_section_size (sectp
);
12405 else if (section_is_p (sectp
->name
, &names
->str_offsets_dwo
))
12407 /* There can be only one. */
12408 if (sections
->str_offsets
.s
.section
!= NULL
)
12410 sections
->str_offsets
.s
.section
= sectp
;
12411 sections
->str_offsets
.size
= bfd_get_section_size (sectp
);
12415 /* No other kind of section is valid. */
12422 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12423 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12424 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12425 This is for DWP version 1 files. */
12427 static struct dwo_unit
*
12428 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12429 struct dwp_file
*dwp_file
,
12430 uint32_t unit_index
,
12431 const char *comp_dir
,
12432 ULONGEST signature
, int is_debug_types
)
12434 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
12435 const struct dwp_hash_table
*dwp_htab
=
12436 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
12437 bfd
*dbfd
= dwp_file
->dbfd
;
12438 const char *kind
= is_debug_types
? "TU" : "CU";
12439 struct dwo_file
*dwo_file
;
12440 struct dwo_unit
*dwo_unit
;
12441 struct virtual_v1_dwo_sections sections
;
12442 void **dwo_file_slot
;
12445 gdb_assert (dwp_file
->version
== 1);
12447 if (dwarf_read_debug
)
12449 fprintf_unfiltered (gdb_stdlog
, "Reading %s %s/%s in DWP V1 file: %s\n",
12451 pulongest (unit_index
), hex_string (signature
),
12455 /* Fetch the sections of this DWO unit.
12456 Put a limit on the number of sections we look for so that bad data
12457 doesn't cause us to loop forever. */
12459 #define MAX_NR_V1_DWO_SECTIONS \
12460 (1 /* .debug_info or .debug_types */ \
12461 + 1 /* .debug_abbrev */ \
12462 + 1 /* .debug_line */ \
12463 + 1 /* .debug_loc */ \
12464 + 1 /* .debug_str_offsets */ \
12465 + 1 /* .debug_macro or .debug_macinfo */ \
12466 + 1 /* trailing zero */)
12468 memset (§ions
, 0, sizeof (sections
));
12470 for (i
= 0; i
< MAX_NR_V1_DWO_SECTIONS
; ++i
)
12473 uint32_t section_nr
=
12474 read_4_bytes (dbfd
,
12475 dwp_htab
->section_pool
.v1
.indices
12476 + (unit_index
+ i
) * sizeof (uint32_t));
12478 if (section_nr
== 0)
12480 if (section_nr
>= dwp_file
->num_sections
)
12482 error (_("Dwarf Error: bad DWP hash table, section number too large"
12483 " [in module %s]"),
12487 sectp
= dwp_file
->elf_sections
[section_nr
];
12488 if (! locate_v1_virtual_dwo_sections (sectp
, §ions
))
12490 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12491 " [in module %s]"),
12497 || dwarf2_section_empty_p (§ions
.info_or_types
)
12498 || dwarf2_section_empty_p (§ions
.abbrev
))
12500 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12501 " [in module %s]"),
12504 if (i
== MAX_NR_V1_DWO_SECTIONS
)
12506 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12507 " [in module %s]"),
12511 /* It's easier for the rest of the code if we fake a struct dwo_file and
12512 have dwo_unit "live" in that. At least for now.
12514 The DWP file can be made up of a random collection of CUs and TUs.
12515 However, for each CU + set of TUs that came from the same original DWO
12516 file, we can combine them back into a virtual DWO file to save space
12517 (fewer struct dwo_file objects to allocate). Remember that for really
12518 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12520 std::string virtual_dwo_name
=
12521 string_printf ("virtual-dwo/%d-%d-%d-%d",
12522 get_section_id (§ions
.abbrev
),
12523 get_section_id (§ions
.line
),
12524 get_section_id (§ions
.loc
),
12525 get_section_id (§ions
.str_offsets
));
12526 /* Can we use an existing virtual DWO file? */
12527 dwo_file_slot
= lookup_dwo_file_slot (dwarf2_per_objfile
,
12528 virtual_dwo_name
.c_str (),
12530 /* Create one if necessary. */
12531 if (*dwo_file_slot
== NULL
)
12533 if (dwarf_read_debug
)
12535 fprintf_unfiltered (gdb_stdlog
, "Creating virtual DWO: %s\n",
12536 virtual_dwo_name
.c_str ());
12538 dwo_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_file
);
12540 = (const char *) obstack_copy0 (&objfile
->objfile_obstack
,
12541 virtual_dwo_name
.c_str (),
12542 virtual_dwo_name
.size ());
12543 dwo_file
->comp_dir
= comp_dir
;
12544 dwo_file
->sections
.abbrev
= sections
.abbrev
;
12545 dwo_file
->sections
.line
= sections
.line
;
12546 dwo_file
->sections
.loc
= sections
.loc
;
12547 dwo_file
->sections
.macinfo
= sections
.macinfo
;
12548 dwo_file
->sections
.macro
= sections
.macro
;
12549 dwo_file
->sections
.str_offsets
= sections
.str_offsets
;
12550 /* The "str" section is global to the entire DWP file. */
12551 dwo_file
->sections
.str
= dwp_file
->sections
.str
;
12552 /* The info or types section is assigned below to dwo_unit,
12553 there's no need to record it in dwo_file.
12554 Also, we can't simply record type sections in dwo_file because
12555 we record a pointer into the vector in dwo_unit. As we collect more
12556 types we'll grow the vector and eventually have to reallocate space
12557 for it, invalidating all copies of pointers into the previous
12559 *dwo_file_slot
= dwo_file
;
12563 if (dwarf_read_debug
)
12565 fprintf_unfiltered (gdb_stdlog
, "Using existing virtual DWO: %s\n",
12566 virtual_dwo_name
.c_str ());
12568 dwo_file
= (struct dwo_file
*) *dwo_file_slot
;
12571 dwo_unit
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_unit
);
12572 dwo_unit
->dwo_file
= dwo_file
;
12573 dwo_unit
->signature
= signature
;
12574 dwo_unit
->section
=
12575 XOBNEW (&objfile
->objfile_obstack
, struct dwarf2_section_info
);
12576 *dwo_unit
->section
= sections
.info_or_types
;
12577 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12582 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12583 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12584 piece within that section used by a TU/CU, return a virtual section
12585 of just that piece. */
12587 static struct dwarf2_section_info
12588 create_dwp_v2_section (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12589 struct dwarf2_section_info
*section
,
12590 bfd_size_type offset
, bfd_size_type size
)
12592 struct dwarf2_section_info result
;
12595 gdb_assert (section
!= NULL
);
12596 gdb_assert (!section
->is_virtual
);
12598 memset (&result
, 0, sizeof (result
));
12599 result
.s
.containing_section
= section
;
12600 result
.is_virtual
= 1;
12605 sectp
= get_section_bfd_section (section
);
12607 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12608 bounds of the real section. This is a pretty-rare event, so just
12609 flag an error (easier) instead of a warning and trying to cope. */
12611 || offset
+ size
> bfd_get_section_size (sectp
))
12613 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12614 " in section %s [in module %s]"),
12615 sectp
? bfd_section_name (abfd
, sectp
) : "<unknown>",
12616 objfile_name (dwarf2_per_objfile
->objfile
));
12619 result
.virtual_offset
= offset
;
12620 result
.size
= size
;
12624 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12625 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12626 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12627 This is for DWP version 2 files. */
12629 static struct dwo_unit
*
12630 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12631 struct dwp_file
*dwp_file
,
12632 uint32_t unit_index
,
12633 const char *comp_dir
,
12634 ULONGEST signature
, int is_debug_types
)
12636 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
12637 const struct dwp_hash_table
*dwp_htab
=
12638 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
12639 bfd
*dbfd
= dwp_file
->dbfd
;
12640 const char *kind
= is_debug_types
? "TU" : "CU";
12641 struct dwo_file
*dwo_file
;
12642 struct dwo_unit
*dwo_unit
;
12643 struct virtual_v2_dwo_sections sections
;
12644 void **dwo_file_slot
;
12647 gdb_assert (dwp_file
->version
== 2);
12649 if (dwarf_read_debug
)
12651 fprintf_unfiltered (gdb_stdlog
, "Reading %s %s/%s in DWP V2 file: %s\n",
12653 pulongest (unit_index
), hex_string (signature
),
12657 /* Fetch the section offsets of this DWO unit. */
12659 memset (§ions
, 0, sizeof (sections
));
12661 for (i
= 0; i
< dwp_htab
->nr_columns
; ++i
)
12663 uint32_t offset
= read_4_bytes (dbfd
,
12664 dwp_htab
->section_pool
.v2
.offsets
12665 + (((unit_index
- 1) * dwp_htab
->nr_columns
12667 * sizeof (uint32_t)));
12668 uint32_t size
= read_4_bytes (dbfd
,
12669 dwp_htab
->section_pool
.v2
.sizes
12670 + (((unit_index
- 1) * dwp_htab
->nr_columns
12672 * sizeof (uint32_t)));
12674 switch (dwp_htab
->section_pool
.v2
.section_ids
[i
])
12677 case DW_SECT_TYPES
:
12678 sections
.info_or_types_offset
= offset
;
12679 sections
.info_or_types_size
= size
;
12681 case DW_SECT_ABBREV
:
12682 sections
.abbrev_offset
= offset
;
12683 sections
.abbrev_size
= size
;
12686 sections
.line_offset
= offset
;
12687 sections
.line_size
= size
;
12690 sections
.loc_offset
= offset
;
12691 sections
.loc_size
= size
;
12693 case DW_SECT_STR_OFFSETS
:
12694 sections
.str_offsets_offset
= offset
;
12695 sections
.str_offsets_size
= size
;
12697 case DW_SECT_MACINFO
:
12698 sections
.macinfo_offset
= offset
;
12699 sections
.macinfo_size
= size
;
12701 case DW_SECT_MACRO
:
12702 sections
.macro_offset
= offset
;
12703 sections
.macro_size
= size
;
12708 /* It's easier for the rest of the code if we fake a struct dwo_file and
12709 have dwo_unit "live" in that. At least for now.
12711 The DWP file can be made up of a random collection of CUs and TUs.
12712 However, for each CU + set of TUs that came from the same original DWO
12713 file, we can combine them back into a virtual DWO file to save space
12714 (fewer struct dwo_file objects to allocate). Remember that for really
12715 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12717 std::string virtual_dwo_name
=
12718 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12719 (long) (sections
.abbrev_size
? sections
.abbrev_offset
: 0),
12720 (long) (sections
.line_size
? sections
.line_offset
: 0),
12721 (long) (sections
.loc_size
? sections
.loc_offset
: 0),
12722 (long) (sections
.str_offsets_size
12723 ? sections
.str_offsets_offset
: 0));
12724 /* Can we use an existing virtual DWO file? */
12725 dwo_file_slot
= lookup_dwo_file_slot (dwarf2_per_objfile
,
12726 virtual_dwo_name
.c_str (),
12728 /* Create one if necessary. */
12729 if (*dwo_file_slot
== NULL
)
12731 if (dwarf_read_debug
)
12733 fprintf_unfiltered (gdb_stdlog
, "Creating virtual DWO: %s\n",
12734 virtual_dwo_name
.c_str ());
12736 dwo_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_file
);
12738 = (const char *) obstack_copy0 (&objfile
->objfile_obstack
,
12739 virtual_dwo_name
.c_str (),
12740 virtual_dwo_name
.size ());
12741 dwo_file
->comp_dir
= comp_dir
;
12742 dwo_file
->sections
.abbrev
=
12743 create_dwp_v2_section (dwarf2_per_objfile
, &dwp_file
->sections
.abbrev
,
12744 sections
.abbrev_offset
, sections
.abbrev_size
);
12745 dwo_file
->sections
.line
=
12746 create_dwp_v2_section (dwarf2_per_objfile
, &dwp_file
->sections
.line
,
12747 sections
.line_offset
, sections
.line_size
);
12748 dwo_file
->sections
.loc
=
12749 create_dwp_v2_section (dwarf2_per_objfile
, &dwp_file
->sections
.loc
,
12750 sections
.loc_offset
, sections
.loc_size
);
12751 dwo_file
->sections
.macinfo
=
12752 create_dwp_v2_section (dwarf2_per_objfile
, &dwp_file
->sections
.macinfo
,
12753 sections
.macinfo_offset
, sections
.macinfo_size
);
12754 dwo_file
->sections
.macro
=
12755 create_dwp_v2_section (dwarf2_per_objfile
, &dwp_file
->sections
.macro
,
12756 sections
.macro_offset
, sections
.macro_size
);
12757 dwo_file
->sections
.str_offsets
=
12758 create_dwp_v2_section (dwarf2_per_objfile
,
12759 &dwp_file
->sections
.str_offsets
,
12760 sections
.str_offsets_offset
,
12761 sections
.str_offsets_size
);
12762 /* The "str" section is global to the entire DWP file. */
12763 dwo_file
->sections
.str
= dwp_file
->sections
.str
;
12764 /* The info or types section is assigned below to dwo_unit,
12765 there's no need to record it in dwo_file.
12766 Also, we can't simply record type sections in dwo_file because
12767 we record a pointer into the vector in dwo_unit. As we collect more
12768 types we'll grow the vector and eventually have to reallocate space
12769 for it, invalidating all copies of pointers into the previous
12771 *dwo_file_slot
= dwo_file
;
12775 if (dwarf_read_debug
)
12777 fprintf_unfiltered (gdb_stdlog
, "Using existing virtual DWO: %s\n",
12778 virtual_dwo_name
.c_str ());
12780 dwo_file
= (struct dwo_file
*) *dwo_file_slot
;
12783 dwo_unit
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_unit
);
12784 dwo_unit
->dwo_file
= dwo_file
;
12785 dwo_unit
->signature
= signature
;
12786 dwo_unit
->section
=
12787 XOBNEW (&objfile
->objfile_obstack
, struct dwarf2_section_info
);
12788 *dwo_unit
->section
= create_dwp_v2_section (dwarf2_per_objfile
,
12790 ? &dwp_file
->sections
.types
12791 : &dwp_file
->sections
.info
,
12792 sections
.info_or_types_offset
,
12793 sections
.info_or_types_size
);
12794 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12799 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12800 Returns NULL if the signature isn't found. */
12802 static struct dwo_unit
*
12803 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12804 struct dwp_file
*dwp_file
, const char *comp_dir
,
12805 ULONGEST signature
, int is_debug_types
)
12807 const struct dwp_hash_table
*dwp_htab
=
12808 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
12809 bfd
*dbfd
= dwp_file
->dbfd
;
12810 uint32_t mask
= dwp_htab
->nr_slots
- 1;
12811 uint32_t hash
= signature
& mask
;
12812 uint32_t hash2
= ((signature
>> 32) & mask
) | 1;
12815 struct dwo_unit find_dwo_cu
;
12817 memset (&find_dwo_cu
, 0, sizeof (find_dwo_cu
));
12818 find_dwo_cu
.signature
= signature
;
12819 slot
= htab_find_slot (is_debug_types
12820 ? dwp_file
->loaded_tus
12821 : dwp_file
->loaded_cus
,
12822 &find_dwo_cu
, INSERT
);
12825 return (struct dwo_unit
*) *slot
;
12827 /* Use a for loop so that we don't loop forever on bad debug info. */
12828 for (i
= 0; i
< dwp_htab
->nr_slots
; ++i
)
12830 ULONGEST signature_in_table
;
12832 signature_in_table
=
12833 read_8_bytes (dbfd
, dwp_htab
->hash_table
+ hash
* sizeof (uint64_t));
12834 if (signature_in_table
== signature
)
12836 uint32_t unit_index
=
12837 read_4_bytes (dbfd
,
12838 dwp_htab
->unit_table
+ hash
* sizeof (uint32_t));
12840 if (dwp_file
->version
== 1)
12842 *slot
= create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile
,
12843 dwp_file
, unit_index
,
12844 comp_dir
, signature
,
12849 *slot
= create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile
,
12850 dwp_file
, unit_index
,
12851 comp_dir
, signature
,
12854 return (struct dwo_unit
*) *slot
;
12856 if (signature_in_table
== 0)
12858 hash
= (hash
+ hash2
) & mask
;
12861 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12862 " [in module %s]"),
12866 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12867 Open the file specified by FILE_NAME and hand it off to BFD for
12868 preliminary analysis. Return a newly initialized bfd *, which
12869 includes a canonicalized copy of FILE_NAME.
12870 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12871 SEARCH_CWD is true if the current directory is to be searched.
12872 It will be searched before debug-file-directory.
12873 If successful, the file is added to the bfd include table of the
12874 objfile's bfd (see gdb_bfd_record_inclusion).
12875 If unable to find/open the file, return NULL.
12876 NOTE: This function is derived from symfile_bfd_open. */
12878 static gdb_bfd_ref_ptr
12879 try_open_dwop_file (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12880 const char *file_name
, int is_dwp
, int search_cwd
)
12883 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12884 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12885 to debug_file_directory. */
12886 const char *search_path
;
12887 static const char dirname_separator_string
[] = { DIRNAME_SEPARATOR
, '\0' };
12889 gdb::unique_xmalloc_ptr
<char> search_path_holder
;
12892 if (*debug_file_directory
!= '\0')
12894 search_path_holder
.reset (concat (".", dirname_separator_string
,
12895 debug_file_directory
,
12897 search_path
= search_path_holder
.get ();
12903 search_path
= debug_file_directory
;
12905 openp_flags flags
= OPF_RETURN_REALPATH
;
12907 flags
|= OPF_SEARCH_IN_PATH
;
12909 gdb::unique_xmalloc_ptr
<char> absolute_name
;
12910 desc
= openp (search_path
, flags
, file_name
,
12911 O_RDONLY
| O_BINARY
, &absolute_name
);
12915 gdb_bfd_ref_ptr
sym_bfd (gdb_bfd_open (absolute_name
.get (),
12917 if (sym_bfd
== NULL
)
12919 bfd_set_cacheable (sym_bfd
.get (), 1);
12921 if (!bfd_check_format (sym_bfd
.get (), bfd_object
))
12924 /* Success. Record the bfd as having been included by the objfile's bfd.
12925 This is important because things like demangled_names_hash lives in the
12926 objfile's per_bfd space and may have references to things like symbol
12927 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12928 gdb_bfd_record_inclusion (dwarf2_per_objfile
->objfile
->obfd
, sym_bfd
.get ());
12933 /* Try to open DWO file FILE_NAME.
12934 COMP_DIR is the DW_AT_comp_dir attribute.
12935 The result is the bfd handle of the file.
12936 If there is a problem finding or opening the file, return NULL.
12937 Upon success, the canonicalized path of the file is stored in the bfd,
12938 same as symfile_bfd_open. */
12940 static gdb_bfd_ref_ptr
12941 open_dwo_file (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
12942 const char *file_name
, const char *comp_dir
)
12944 if (IS_ABSOLUTE_PATH (file_name
))
12945 return try_open_dwop_file (dwarf2_per_objfile
, file_name
,
12946 0 /*is_dwp*/, 0 /*search_cwd*/);
12948 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12950 if (comp_dir
!= NULL
)
12952 char *path_to_try
= concat (comp_dir
, SLASH_STRING
,
12953 file_name
, (char *) NULL
);
12955 /* NOTE: If comp_dir is a relative path, this will also try the
12956 search path, which seems useful. */
12957 gdb_bfd_ref_ptr
abfd (try_open_dwop_file (dwarf2_per_objfile
,
12960 1 /*search_cwd*/));
12961 xfree (path_to_try
);
12966 /* That didn't work, try debug-file-directory, which, despite its name,
12967 is a list of paths. */
12969 if (*debug_file_directory
== '\0')
12972 return try_open_dwop_file (dwarf2_per_objfile
, file_name
,
12973 0 /*is_dwp*/, 1 /*search_cwd*/);
12976 /* This function is mapped across the sections and remembers the offset and
12977 size of each of the DWO debugging sections we are interested in. */
12980 dwarf2_locate_dwo_sections (bfd
*abfd
, asection
*sectp
, void *dwo_sections_ptr
)
12982 struct dwo_sections
*dwo_sections
= (struct dwo_sections
*) dwo_sections_ptr
;
12983 const struct dwop_section_names
*names
= &dwop_section_names
;
12985 if (section_is_p (sectp
->name
, &names
->abbrev_dwo
))
12987 dwo_sections
->abbrev
.s
.section
= sectp
;
12988 dwo_sections
->abbrev
.size
= bfd_get_section_size (sectp
);
12990 else if (section_is_p (sectp
->name
, &names
->info_dwo
))
12992 dwo_sections
->info
.s
.section
= sectp
;
12993 dwo_sections
->info
.size
= bfd_get_section_size (sectp
);
12995 else if (section_is_p (sectp
->name
, &names
->line_dwo
))
12997 dwo_sections
->line
.s
.section
= sectp
;
12998 dwo_sections
->line
.size
= bfd_get_section_size (sectp
);
13000 else if (section_is_p (sectp
->name
, &names
->loc_dwo
))
13002 dwo_sections
->loc
.s
.section
= sectp
;
13003 dwo_sections
->loc
.size
= bfd_get_section_size (sectp
);
13005 else if (section_is_p (sectp
->name
, &names
->macinfo_dwo
))
13007 dwo_sections
->macinfo
.s
.section
= sectp
;
13008 dwo_sections
->macinfo
.size
= bfd_get_section_size (sectp
);
13010 else if (section_is_p (sectp
->name
, &names
->macro_dwo
))
13012 dwo_sections
->macro
.s
.section
= sectp
;
13013 dwo_sections
->macro
.size
= bfd_get_section_size (sectp
);
13015 else if (section_is_p (sectp
->name
, &names
->str_dwo
))
13017 dwo_sections
->str
.s
.section
= sectp
;
13018 dwo_sections
->str
.size
= bfd_get_section_size (sectp
);
13020 else if (section_is_p (sectp
->name
, &names
->str_offsets_dwo
))
13022 dwo_sections
->str_offsets
.s
.section
= sectp
;
13023 dwo_sections
->str_offsets
.size
= bfd_get_section_size (sectp
);
13025 else if (section_is_p (sectp
->name
, &names
->types_dwo
))
13027 struct dwarf2_section_info type_section
;
13029 memset (&type_section
, 0, sizeof (type_section
));
13030 type_section
.s
.section
= sectp
;
13031 type_section
.size
= bfd_get_section_size (sectp
);
13032 VEC_safe_push (dwarf2_section_info_def
, dwo_sections
->types
,
13037 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13038 by PER_CU. This is for the non-DWP case.
13039 The result is NULL if DWO_NAME can't be found. */
13041 static struct dwo_file
*
13042 open_and_init_dwo_file (struct dwarf2_per_cu_data
*per_cu
,
13043 const char *dwo_name
, const char *comp_dir
)
13045 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
13046 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
13047 struct dwo_file
*dwo_file
;
13048 struct cleanup
*cleanups
;
13050 gdb_bfd_ref_ptr
dbfd (open_dwo_file (dwarf2_per_objfile
, dwo_name
, comp_dir
));
13053 if (dwarf_read_debug
)
13054 fprintf_unfiltered (gdb_stdlog
, "DWO file not found: %s\n", dwo_name
);
13057 dwo_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_file
);
13058 dwo_file
->dwo_name
= dwo_name
;
13059 dwo_file
->comp_dir
= comp_dir
;
13060 dwo_file
->dbfd
= dbfd
.release ();
13062 free_dwo_file_cleanup_data
*cleanup_data
= XNEW (free_dwo_file_cleanup_data
);
13063 cleanup_data
->dwo_file
= dwo_file
;
13064 cleanup_data
->dwarf2_per_objfile
= dwarf2_per_objfile
;
13066 cleanups
= make_cleanup (free_dwo_file_cleanup
, cleanup_data
);
13068 bfd_map_over_sections (dwo_file
->dbfd
, dwarf2_locate_dwo_sections
,
13069 &dwo_file
->sections
);
13071 create_cus_hash_table (dwarf2_per_objfile
, *dwo_file
, dwo_file
->sections
.info
,
13074 create_debug_types_hash_table (dwarf2_per_objfile
, dwo_file
,
13075 dwo_file
->sections
.types
, dwo_file
->tus
);
13077 discard_cleanups (cleanups
);
13079 if (dwarf_read_debug
)
13080 fprintf_unfiltered (gdb_stdlog
, "DWO file found: %s\n", dwo_name
);
13085 /* This function is mapped across the sections and remembers the offset and
13086 size of each of the DWP debugging sections common to version 1 and 2 that
13087 we are interested in. */
13090 dwarf2_locate_common_dwp_sections (bfd
*abfd
, asection
*sectp
,
13091 void *dwp_file_ptr
)
13093 struct dwp_file
*dwp_file
= (struct dwp_file
*) dwp_file_ptr
;
13094 const struct dwop_section_names
*names
= &dwop_section_names
;
13095 unsigned int elf_section_nr
= elf_section_data (sectp
)->this_idx
;
13097 /* Record the ELF section number for later lookup: this is what the
13098 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13099 gdb_assert (elf_section_nr
< dwp_file
->num_sections
);
13100 dwp_file
->elf_sections
[elf_section_nr
] = sectp
;
13102 /* Look for specific sections that we need. */
13103 if (section_is_p (sectp
->name
, &names
->str_dwo
))
13105 dwp_file
->sections
.str
.s
.section
= sectp
;
13106 dwp_file
->sections
.str
.size
= bfd_get_section_size (sectp
);
13108 else if (section_is_p (sectp
->name
, &names
->cu_index
))
13110 dwp_file
->sections
.cu_index
.s
.section
= sectp
;
13111 dwp_file
->sections
.cu_index
.size
= bfd_get_section_size (sectp
);
13113 else if (section_is_p (sectp
->name
, &names
->tu_index
))
13115 dwp_file
->sections
.tu_index
.s
.section
= sectp
;
13116 dwp_file
->sections
.tu_index
.size
= bfd_get_section_size (sectp
);
13120 /* This function is mapped across the sections and remembers the offset and
13121 size of each of the DWP version 2 debugging sections that we are interested
13122 in. This is split into a separate function because we don't know if we
13123 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13126 dwarf2_locate_v2_dwp_sections (bfd
*abfd
, asection
*sectp
, void *dwp_file_ptr
)
13128 struct dwp_file
*dwp_file
= (struct dwp_file
*) dwp_file_ptr
;
13129 const struct dwop_section_names
*names
= &dwop_section_names
;
13130 unsigned int elf_section_nr
= elf_section_data (sectp
)->this_idx
;
13132 /* Record the ELF section number for later lookup: this is what the
13133 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13134 gdb_assert (elf_section_nr
< dwp_file
->num_sections
);
13135 dwp_file
->elf_sections
[elf_section_nr
] = sectp
;
13137 /* Look for specific sections that we need. */
13138 if (section_is_p (sectp
->name
, &names
->abbrev_dwo
))
13140 dwp_file
->sections
.abbrev
.s
.section
= sectp
;
13141 dwp_file
->sections
.abbrev
.size
= bfd_get_section_size (sectp
);
13143 else if (section_is_p (sectp
->name
, &names
->info_dwo
))
13145 dwp_file
->sections
.info
.s
.section
= sectp
;
13146 dwp_file
->sections
.info
.size
= bfd_get_section_size (sectp
);
13148 else if (section_is_p (sectp
->name
, &names
->line_dwo
))
13150 dwp_file
->sections
.line
.s
.section
= sectp
;
13151 dwp_file
->sections
.line
.size
= bfd_get_section_size (sectp
);
13153 else if (section_is_p (sectp
->name
, &names
->loc_dwo
))
13155 dwp_file
->sections
.loc
.s
.section
= sectp
;
13156 dwp_file
->sections
.loc
.size
= bfd_get_section_size (sectp
);
13158 else if (section_is_p (sectp
->name
, &names
->macinfo_dwo
))
13160 dwp_file
->sections
.macinfo
.s
.section
= sectp
;
13161 dwp_file
->sections
.macinfo
.size
= bfd_get_section_size (sectp
);
13163 else if (section_is_p (sectp
->name
, &names
->macro_dwo
))
13165 dwp_file
->sections
.macro
.s
.section
= sectp
;
13166 dwp_file
->sections
.macro
.size
= bfd_get_section_size (sectp
);
13168 else if (section_is_p (sectp
->name
, &names
->str_offsets_dwo
))
13170 dwp_file
->sections
.str_offsets
.s
.section
= sectp
;
13171 dwp_file
->sections
.str_offsets
.size
= bfd_get_section_size (sectp
);
13173 else if (section_is_p (sectp
->name
, &names
->types_dwo
))
13175 dwp_file
->sections
.types
.s
.section
= sectp
;
13176 dwp_file
->sections
.types
.size
= bfd_get_section_size (sectp
);
13180 /* Hash function for dwp_file loaded CUs/TUs. */
13183 hash_dwp_loaded_cutus (const void *item
)
13185 const struct dwo_unit
*dwo_unit
= (const struct dwo_unit
*) item
;
13187 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13188 return dwo_unit
->signature
;
13191 /* Equality function for dwp_file loaded CUs/TUs. */
13194 eq_dwp_loaded_cutus (const void *a
, const void *b
)
13196 const struct dwo_unit
*dua
= (const struct dwo_unit
*) a
;
13197 const struct dwo_unit
*dub
= (const struct dwo_unit
*) b
;
13199 return dua
->signature
== dub
->signature
;
13202 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13205 allocate_dwp_loaded_cutus_table (struct objfile
*objfile
)
13207 return htab_create_alloc_ex (3,
13208 hash_dwp_loaded_cutus
,
13209 eq_dwp_loaded_cutus
,
13211 &objfile
->objfile_obstack
,
13212 hashtab_obstack_allocate
,
13213 dummy_obstack_deallocate
);
13216 /* Try to open DWP file FILE_NAME.
13217 The result is the bfd handle of the file.
13218 If there is a problem finding or opening the file, return NULL.
13219 Upon success, the canonicalized path of the file is stored in the bfd,
13220 same as symfile_bfd_open. */
13222 static gdb_bfd_ref_ptr
13223 open_dwp_file (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
13224 const char *file_name
)
13226 gdb_bfd_ref_ptr
abfd (try_open_dwop_file (dwarf2_per_objfile
, file_name
,
13228 1 /*search_cwd*/));
13232 /* Work around upstream bug 15652.
13233 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13234 [Whether that's a "bug" is debatable, but it is getting in our way.]
13235 We have no real idea where the dwp file is, because gdb's realpath-ing
13236 of the executable's path may have discarded the needed info.
13237 [IWBN if the dwp file name was recorded in the executable, akin to
13238 .gnu_debuglink, but that doesn't exist yet.]
13239 Strip the directory from FILE_NAME and search again. */
13240 if (*debug_file_directory
!= '\0')
13242 /* Don't implicitly search the current directory here.
13243 If the user wants to search "." to handle this case,
13244 it must be added to debug-file-directory. */
13245 return try_open_dwop_file (dwarf2_per_objfile
,
13246 lbasename (file_name
), 1 /*is_dwp*/,
13253 /* Initialize the use of the DWP file for the current objfile.
13254 By convention the name of the DWP file is ${objfile}.dwp.
13255 The result is NULL if it can't be found. */
13257 static struct dwp_file
*
13258 open_and_init_dwp_file (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
13260 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
13261 struct dwp_file
*dwp_file
;
13263 /* Try to find first .dwp for the binary file before any symbolic links
13266 /* If the objfile is a debug file, find the name of the real binary
13267 file and get the name of dwp file from there. */
13268 std::string dwp_name
;
13269 if (objfile
->separate_debug_objfile_backlink
!= NULL
)
13271 struct objfile
*backlink
= objfile
->separate_debug_objfile_backlink
;
13272 const char *backlink_basename
= lbasename (backlink
->original_name
);
13274 dwp_name
= ldirname (objfile
->original_name
) + SLASH_STRING
+ backlink_basename
;
13277 dwp_name
= objfile
->original_name
;
13279 dwp_name
+= ".dwp";
13281 gdb_bfd_ref_ptr
dbfd (open_dwp_file (dwarf2_per_objfile
, dwp_name
.c_str ()));
13283 && strcmp (objfile
->original_name
, objfile_name (objfile
)) != 0)
13285 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13286 dwp_name
= objfile_name (objfile
);
13287 dwp_name
+= ".dwp";
13288 dbfd
= open_dwp_file (dwarf2_per_objfile
, dwp_name
.c_str ());
13293 if (dwarf_read_debug
)
13294 fprintf_unfiltered (gdb_stdlog
, "DWP file not found: %s\n", dwp_name
.c_str ());
13297 dwp_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwp_file
);
13298 dwp_file
->name
= bfd_get_filename (dbfd
.get ());
13299 dwp_file
->dbfd
= dbfd
.release ();
13301 /* +1: section 0 is unused */
13302 dwp_file
->num_sections
= bfd_count_sections (dwp_file
->dbfd
) + 1;
13303 dwp_file
->elf_sections
=
13304 OBSTACK_CALLOC (&objfile
->objfile_obstack
,
13305 dwp_file
->num_sections
, asection
*);
13307 bfd_map_over_sections (dwp_file
->dbfd
, dwarf2_locate_common_dwp_sections
,
13310 dwp_file
->cus
= create_dwp_hash_table (dwarf2_per_objfile
, dwp_file
, 0);
13312 dwp_file
->tus
= create_dwp_hash_table (dwarf2_per_objfile
, dwp_file
, 1);
13314 /* The DWP file version is stored in the hash table. Oh well. */
13315 if (dwp_file
->cus
&& dwp_file
->tus
13316 && dwp_file
->cus
->version
!= dwp_file
->tus
->version
)
13318 /* Technically speaking, we should try to limp along, but this is
13319 pretty bizarre. We use pulongest here because that's the established
13320 portability solution (e.g, we cannot use %u for uint32_t). */
13321 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13322 " TU version %s [in DWP file %s]"),
13323 pulongest (dwp_file
->cus
->version
),
13324 pulongest (dwp_file
->tus
->version
), dwp_name
.c_str ());
13328 dwp_file
->version
= dwp_file
->cus
->version
;
13329 else if (dwp_file
->tus
)
13330 dwp_file
->version
= dwp_file
->tus
->version
;
13332 dwp_file
->version
= 2;
13334 if (dwp_file
->version
== 2)
13335 bfd_map_over_sections (dwp_file
->dbfd
, dwarf2_locate_v2_dwp_sections
,
13338 dwp_file
->loaded_cus
= allocate_dwp_loaded_cutus_table (objfile
);
13339 dwp_file
->loaded_tus
= allocate_dwp_loaded_cutus_table (objfile
);
13341 if (dwarf_read_debug
)
13343 fprintf_unfiltered (gdb_stdlog
, "DWP file found: %s\n", dwp_file
->name
);
13344 fprintf_unfiltered (gdb_stdlog
,
13345 " %s CUs, %s TUs\n",
13346 pulongest (dwp_file
->cus
? dwp_file
->cus
->nr_units
: 0),
13347 pulongest (dwp_file
->tus
? dwp_file
->tus
->nr_units
: 0));
13353 /* Wrapper around open_and_init_dwp_file, only open it once. */
13355 static struct dwp_file
*
13356 get_dwp_file (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
13358 if (! dwarf2_per_objfile
->dwp_checked
)
13360 dwarf2_per_objfile
->dwp_file
13361 = open_and_init_dwp_file (dwarf2_per_objfile
);
13362 dwarf2_per_objfile
->dwp_checked
= 1;
13364 return dwarf2_per_objfile
->dwp_file
;
13367 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13368 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13369 or in the DWP file for the objfile, referenced by THIS_UNIT.
13370 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13371 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13373 This is called, for example, when wanting to read a variable with a
13374 complex location. Therefore we don't want to do file i/o for every call.
13375 Therefore we don't want to look for a DWO file on every call.
13376 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13377 then we check if we've already seen DWO_NAME, and only THEN do we check
13380 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13381 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13383 static struct dwo_unit
*
13384 lookup_dwo_cutu (struct dwarf2_per_cu_data
*this_unit
,
13385 const char *dwo_name
, const char *comp_dir
,
13386 ULONGEST signature
, int is_debug_types
)
13388 struct dwarf2_per_objfile
*dwarf2_per_objfile
= this_unit
->dwarf2_per_objfile
;
13389 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
13390 const char *kind
= is_debug_types
? "TU" : "CU";
13391 void **dwo_file_slot
;
13392 struct dwo_file
*dwo_file
;
13393 struct dwp_file
*dwp_file
;
13395 /* First see if there's a DWP file.
13396 If we have a DWP file but didn't find the DWO inside it, don't
13397 look for the original DWO file. It makes gdb behave differently
13398 depending on whether one is debugging in the build tree. */
13400 dwp_file
= get_dwp_file (dwarf2_per_objfile
);
13401 if (dwp_file
!= NULL
)
13403 const struct dwp_hash_table
*dwp_htab
=
13404 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
13406 if (dwp_htab
!= NULL
)
13408 struct dwo_unit
*dwo_cutu
=
13409 lookup_dwo_unit_in_dwp (dwarf2_per_objfile
, dwp_file
, comp_dir
,
13410 signature
, is_debug_types
);
13412 if (dwo_cutu
!= NULL
)
13414 if (dwarf_read_debug
)
13416 fprintf_unfiltered (gdb_stdlog
,
13417 "Virtual DWO %s %s found: @%s\n",
13418 kind
, hex_string (signature
),
13419 host_address_to_string (dwo_cutu
));
13427 /* No DWP file, look for the DWO file. */
13429 dwo_file_slot
= lookup_dwo_file_slot (dwarf2_per_objfile
,
13430 dwo_name
, comp_dir
);
13431 if (*dwo_file_slot
== NULL
)
13433 /* Read in the file and build a table of the CUs/TUs it contains. */
13434 *dwo_file_slot
= open_and_init_dwo_file (this_unit
, dwo_name
, comp_dir
);
13436 /* NOTE: This will be NULL if unable to open the file. */
13437 dwo_file
= (struct dwo_file
*) *dwo_file_slot
;
13439 if (dwo_file
!= NULL
)
13441 struct dwo_unit
*dwo_cutu
= NULL
;
13443 if (is_debug_types
&& dwo_file
->tus
)
13445 struct dwo_unit find_dwo_cutu
;
13447 memset (&find_dwo_cutu
, 0, sizeof (find_dwo_cutu
));
13448 find_dwo_cutu
.signature
= signature
;
13450 = (struct dwo_unit
*) htab_find (dwo_file
->tus
, &find_dwo_cutu
);
13452 else if (!is_debug_types
&& dwo_file
->cus
)
13454 struct dwo_unit find_dwo_cutu
;
13456 memset (&find_dwo_cutu
, 0, sizeof (find_dwo_cutu
));
13457 find_dwo_cutu
.signature
= signature
;
13458 dwo_cutu
= (struct dwo_unit
*)htab_find (dwo_file
->cus
,
13462 if (dwo_cutu
!= NULL
)
13464 if (dwarf_read_debug
)
13466 fprintf_unfiltered (gdb_stdlog
, "DWO %s %s(%s) found: @%s\n",
13467 kind
, dwo_name
, hex_string (signature
),
13468 host_address_to_string (dwo_cutu
));
13475 /* We didn't find it. This could mean a dwo_id mismatch, or
13476 someone deleted the DWO/DWP file, or the search path isn't set up
13477 correctly to find the file. */
13479 if (dwarf_read_debug
)
13481 fprintf_unfiltered (gdb_stdlog
, "DWO %s %s(%s) not found\n",
13482 kind
, dwo_name
, hex_string (signature
));
13485 /* This is a warning and not a complaint because it can be caused by
13486 pilot error (e.g., user accidentally deleting the DWO). */
13488 /* Print the name of the DWP file if we looked there, helps the user
13489 better diagnose the problem. */
13490 std::string dwp_text
;
13492 if (dwp_file
!= NULL
)
13493 dwp_text
= string_printf (" [in DWP file %s]",
13494 lbasename (dwp_file
->name
));
13496 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
13497 " [in module %s]"),
13498 kind
, dwo_name
, hex_string (signature
),
13500 this_unit
->is_debug_types
? "TU" : "CU",
13501 to_underlying (this_unit
->sect_off
), objfile_name (objfile
));
13506 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13507 See lookup_dwo_cutu_unit for details. */
13509 static struct dwo_unit
*
13510 lookup_dwo_comp_unit (struct dwarf2_per_cu_data
*this_cu
,
13511 const char *dwo_name
, const char *comp_dir
,
13512 ULONGEST signature
)
13514 return lookup_dwo_cutu (this_cu
, dwo_name
, comp_dir
, signature
, 0);
13517 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13518 See lookup_dwo_cutu_unit for details. */
13520 static struct dwo_unit
*
13521 lookup_dwo_type_unit (struct signatured_type
*this_tu
,
13522 const char *dwo_name
, const char *comp_dir
)
13524 return lookup_dwo_cutu (&this_tu
->per_cu
, dwo_name
, comp_dir
, this_tu
->signature
, 1);
13527 /* Traversal function for queue_and_load_all_dwo_tus. */
13530 queue_and_load_dwo_tu (void **slot
, void *info
)
13532 struct dwo_unit
*dwo_unit
= (struct dwo_unit
*) *slot
;
13533 struct dwarf2_per_cu_data
*per_cu
= (struct dwarf2_per_cu_data
*) info
;
13534 ULONGEST signature
= dwo_unit
->signature
;
13535 struct signatured_type
*sig_type
=
13536 lookup_dwo_signatured_type (per_cu
->cu
, signature
);
13538 if (sig_type
!= NULL
)
13540 struct dwarf2_per_cu_data
*sig_cu
= &sig_type
->per_cu
;
13542 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13543 a real dependency of PER_CU on SIG_TYPE. That is detected later
13544 while processing PER_CU. */
13545 if (maybe_queue_comp_unit (NULL
, sig_cu
, per_cu
->cu
->language
))
13546 load_full_type_unit (sig_cu
);
13547 VEC_safe_push (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
, sig_cu
);
13553 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13554 The DWO may have the only definition of the type, though it may not be
13555 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13556 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13559 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data
*per_cu
)
13561 struct dwo_unit
*dwo_unit
;
13562 struct dwo_file
*dwo_file
;
13564 gdb_assert (!per_cu
->is_debug_types
);
13565 gdb_assert (get_dwp_file (per_cu
->dwarf2_per_objfile
) == NULL
);
13566 gdb_assert (per_cu
->cu
!= NULL
);
13568 dwo_unit
= per_cu
->cu
->dwo_unit
;
13569 gdb_assert (dwo_unit
!= NULL
);
13571 dwo_file
= dwo_unit
->dwo_file
;
13572 if (dwo_file
->tus
!= NULL
)
13573 htab_traverse_noresize (dwo_file
->tus
, queue_and_load_dwo_tu
, per_cu
);
13576 /* Free all resources associated with DWO_FILE.
13577 Close the DWO file and munmap the sections.
13578 All memory should be on the objfile obstack. */
13581 free_dwo_file (struct dwo_file
*dwo_file
, struct objfile
*objfile
)
13584 /* Note: dbfd is NULL for virtual DWO files. */
13585 gdb_bfd_unref (dwo_file
->dbfd
);
13587 VEC_free (dwarf2_section_info_def
, dwo_file
->sections
.types
);
13590 /* Wrapper for free_dwo_file for use in cleanups. */
13593 free_dwo_file_cleanup (void *arg
)
13595 struct free_dwo_file_cleanup_data
*data
13596 = (struct free_dwo_file_cleanup_data
*) arg
;
13597 struct objfile
*objfile
= data
->dwarf2_per_objfile
->objfile
;
13599 free_dwo_file (data
->dwo_file
, objfile
);
13604 /* Traversal function for free_dwo_files. */
13607 free_dwo_file_from_slot (void **slot
, void *info
)
13609 struct dwo_file
*dwo_file
= (struct dwo_file
*) *slot
;
13610 struct objfile
*objfile
= (struct objfile
*) info
;
13612 free_dwo_file (dwo_file
, objfile
);
13617 /* Free all resources associated with DWO_FILES. */
13620 free_dwo_files (htab_t dwo_files
, struct objfile
*objfile
)
13622 htab_traverse_noresize (dwo_files
, free_dwo_file_from_slot
, objfile
);
13625 /* Read in various DIEs. */
13627 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13628 Inherit only the children of the DW_AT_abstract_origin DIE not being
13629 already referenced by DW_AT_abstract_origin from the children of the
13633 inherit_abstract_dies (struct die_info
*die
, struct dwarf2_cu
*cu
)
13635 struct die_info
*child_die
;
13636 sect_offset
*offsetp
;
13637 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13638 struct die_info
*origin_die
;
13639 /* Iterator of the ORIGIN_DIE children. */
13640 struct die_info
*origin_child_die
;
13641 struct attribute
*attr
;
13642 struct dwarf2_cu
*origin_cu
;
13643 struct pending
**origin_previous_list_in_scope
;
13645 attr
= dwarf2_attr (die
, DW_AT_abstract_origin
, cu
);
13649 /* Note that following die references may follow to a die in a
13653 origin_die
= follow_die_ref (die
, attr
, &origin_cu
);
13655 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13657 origin_previous_list_in_scope
= origin_cu
->list_in_scope
;
13658 origin_cu
->list_in_scope
= cu
->list_in_scope
;
13660 if (die
->tag
!= origin_die
->tag
13661 && !(die
->tag
== DW_TAG_inlined_subroutine
13662 && origin_die
->tag
== DW_TAG_subprogram
))
13663 complaint (&symfile_complaints
,
13664 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
13665 to_underlying (die
->sect_off
),
13666 to_underlying (origin_die
->sect_off
));
13668 std::vector
<sect_offset
> offsets
;
13670 for (child_die
= die
->child
;
13671 child_die
&& child_die
->tag
;
13672 child_die
= sibling_die (child_die
))
13674 struct die_info
*child_origin_die
;
13675 struct dwarf2_cu
*child_origin_cu
;
13677 /* We are trying to process concrete instance entries:
13678 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13679 it's not relevant to our analysis here. i.e. detecting DIEs that are
13680 present in the abstract instance but not referenced in the concrete
13682 if (child_die
->tag
== DW_TAG_call_site
13683 || child_die
->tag
== DW_TAG_GNU_call_site
)
13686 /* For each CHILD_DIE, find the corresponding child of
13687 ORIGIN_DIE. If there is more than one layer of
13688 DW_AT_abstract_origin, follow them all; there shouldn't be,
13689 but GCC versions at least through 4.4 generate this (GCC PR
13691 child_origin_die
= child_die
;
13692 child_origin_cu
= cu
;
13695 attr
= dwarf2_attr (child_origin_die
, DW_AT_abstract_origin
,
13699 child_origin_die
= follow_die_ref (child_origin_die
, attr
,
13703 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13704 counterpart may exist. */
13705 if (child_origin_die
!= child_die
)
13707 if (child_die
->tag
!= child_origin_die
->tag
13708 && !(child_die
->tag
== DW_TAG_inlined_subroutine
13709 && child_origin_die
->tag
== DW_TAG_subprogram
))
13710 complaint (&symfile_complaints
,
13711 _("Child DIE 0x%x and its abstract origin 0x%x have "
13713 to_underlying (child_die
->sect_off
),
13714 to_underlying (child_origin_die
->sect_off
));
13715 if (child_origin_die
->parent
!= origin_die
)
13716 complaint (&symfile_complaints
,
13717 _("Child DIE 0x%x and its abstract origin 0x%x have "
13718 "different parents"),
13719 to_underlying (child_die
->sect_off
),
13720 to_underlying (child_origin_die
->sect_off
));
13722 offsets
.push_back (child_origin_die
->sect_off
);
13725 std::sort (offsets
.begin (), offsets
.end ());
13726 sect_offset
*offsets_end
= offsets
.data () + offsets
.size ();
13727 for (offsetp
= offsets
.data () + 1; offsetp
< offsets_end
; offsetp
++)
13728 if (offsetp
[-1] == *offsetp
)
13729 complaint (&symfile_complaints
,
13730 _("Multiple children of DIE 0x%x refer "
13731 "to DIE 0x%x as their abstract origin"),
13732 to_underlying (die
->sect_off
), to_underlying (*offsetp
));
13734 offsetp
= offsets
.data ();
13735 origin_child_die
= origin_die
->child
;
13736 while (origin_child_die
&& origin_child_die
->tag
)
13738 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13739 while (offsetp
< offsets_end
13740 && *offsetp
< origin_child_die
->sect_off
)
13742 if (offsetp
>= offsets_end
13743 || *offsetp
> origin_child_die
->sect_off
)
13745 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13746 Check whether we're already processing ORIGIN_CHILD_DIE.
13747 This can happen with mutually referenced abstract_origins.
13749 if (!origin_child_die
->in_process
)
13750 process_die (origin_child_die
, origin_cu
);
13752 origin_child_die
= sibling_die (origin_child_die
);
13754 origin_cu
->list_in_scope
= origin_previous_list_in_scope
;
13758 read_func_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
13760 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
13761 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
13762 struct context_stack
*newobj
;
13765 struct die_info
*child_die
;
13766 struct attribute
*attr
, *call_line
, *call_file
;
13768 CORE_ADDR baseaddr
;
13769 struct block
*block
;
13770 int inlined_func
= (die
->tag
== DW_TAG_inlined_subroutine
);
13771 std::vector
<struct symbol
*> template_args
;
13772 struct template_symbol
*templ_func
= NULL
;
13776 /* If we do not have call site information, we can't show the
13777 caller of this inlined function. That's too confusing, so
13778 only use the scope for local variables. */
13779 call_line
= dwarf2_attr (die
, DW_AT_call_line
, cu
);
13780 call_file
= dwarf2_attr (die
, DW_AT_call_file
, cu
);
13781 if (call_line
== NULL
|| call_file
== NULL
)
13783 read_lexical_block_scope (die
, cu
);
13788 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
13790 name
= dwarf2_name (die
, cu
);
13792 /* Ignore functions with missing or empty names. These are actually
13793 illegal according to the DWARF standard. */
13796 complaint (&symfile_complaints
,
13797 _("missing name for subprogram DIE at %d"),
13798 to_underlying (die
->sect_off
));
13802 /* Ignore functions with missing or invalid low and high pc attributes. */
13803 if (dwarf2_get_pc_bounds (die
, &lowpc
, &highpc
, cu
, NULL
)
13804 <= PC_BOUNDS_INVALID
)
13806 attr
= dwarf2_attr (die
, DW_AT_external
, cu
);
13807 if (!attr
|| !DW_UNSND (attr
))
13808 complaint (&symfile_complaints
,
13809 _("cannot get low and high bounds "
13810 "for subprogram DIE at %d"),
13811 to_underlying (die
->sect_off
));
13815 lowpc
= gdbarch_adjust_dwarf2_addr (gdbarch
, lowpc
+ baseaddr
);
13816 highpc
= gdbarch_adjust_dwarf2_addr (gdbarch
, highpc
+ baseaddr
);
13818 /* If we have any template arguments, then we must allocate a
13819 different sort of symbol. */
13820 for (child_die
= die
->child
; child_die
; child_die
= sibling_die (child_die
))
13822 if (child_die
->tag
== DW_TAG_template_type_param
13823 || child_die
->tag
== DW_TAG_template_value_param
)
13825 templ_func
= allocate_template_symbol (objfile
);
13826 templ_func
->subclass
= SYMBOL_TEMPLATE
;
13831 newobj
= push_context (0, lowpc
);
13832 newobj
->name
= new_symbol (die
, read_type_die (die
, cu
), cu
,
13833 (struct symbol
*) templ_func
);
13835 /* If there is a location expression for DW_AT_frame_base, record
13837 attr
= dwarf2_attr (die
, DW_AT_frame_base
, cu
);
13839 dwarf2_symbol_mark_computed (attr
, newobj
->name
, cu
, 1);
13841 /* If there is a location for the static link, record it. */
13842 newobj
->static_link
= NULL
;
13843 attr
= dwarf2_attr (die
, DW_AT_static_link
, cu
);
13846 newobj
->static_link
13847 = XOBNEW (&objfile
->objfile_obstack
, struct dynamic_prop
);
13848 attr_to_dynamic_prop (attr
, die
, cu
, newobj
->static_link
);
13851 cu
->list_in_scope
= &local_symbols
;
13853 if (die
->child
!= NULL
)
13855 child_die
= die
->child
;
13856 while (child_die
&& child_die
->tag
)
13858 if (child_die
->tag
== DW_TAG_template_type_param
13859 || child_die
->tag
== DW_TAG_template_value_param
)
13861 struct symbol
*arg
= new_symbol (child_die
, NULL
, cu
);
13864 template_args
.push_back (arg
);
13867 process_die (child_die
, cu
);
13868 child_die
= sibling_die (child_die
);
13872 inherit_abstract_dies (die
, cu
);
13874 /* If we have a DW_AT_specification, we might need to import using
13875 directives from the context of the specification DIE. See the
13876 comment in determine_prefix. */
13877 if (cu
->language
== language_cplus
13878 && dwarf2_attr (die
, DW_AT_specification
, cu
))
13880 struct dwarf2_cu
*spec_cu
= cu
;
13881 struct die_info
*spec_die
= die_specification (die
, &spec_cu
);
13885 child_die
= spec_die
->child
;
13886 while (child_die
&& child_die
->tag
)
13888 if (child_die
->tag
== DW_TAG_imported_module
)
13889 process_die (child_die
, spec_cu
);
13890 child_die
= sibling_die (child_die
);
13893 /* In some cases, GCC generates specification DIEs that
13894 themselves contain DW_AT_specification attributes. */
13895 spec_die
= die_specification (spec_die
, &spec_cu
);
13899 newobj
= pop_context ();
13900 /* Make a block for the local symbols within. */
13901 block
= finish_block (newobj
->name
, &local_symbols
, newobj
->old_blocks
,
13902 newobj
->static_link
, lowpc
, highpc
);
13904 /* For C++, set the block's scope. */
13905 if ((cu
->language
== language_cplus
13906 || cu
->language
== language_fortran
13907 || cu
->language
== language_d
13908 || cu
->language
== language_rust
)
13909 && cu
->processing_has_namespace_info
)
13910 block_set_scope (block
, determine_prefix (die
, cu
),
13911 &objfile
->objfile_obstack
);
13913 /* If we have address ranges, record them. */
13914 dwarf2_record_block_ranges (die
, block
, baseaddr
, cu
);
13916 gdbarch_make_symbol_special (gdbarch
, newobj
->name
, objfile
);
13918 /* Attach template arguments to function. */
13919 if (!template_args
.empty ())
13921 gdb_assert (templ_func
!= NULL
);
13923 templ_func
->n_template_arguments
= template_args
.size ();
13924 templ_func
->template_arguments
13925 = XOBNEWVEC (&objfile
->objfile_obstack
, struct symbol
*,
13926 templ_func
->n_template_arguments
);
13927 memcpy (templ_func
->template_arguments
,
13928 template_args
.data (),
13929 (templ_func
->n_template_arguments
* sizeof (struct symbol
*)));
13932 /* In C++, we can have functions nested inside functions (e.g., when
13933 a function declares a class that has methods). This means that
13934 when we finish processing a function scope, we may need to go
13935 back to building a containing block's symbol lists. */
13936 local_symbols
= newobj
->locals
;
13937 local_using_directives
= newobj
->local_using_directives
;
13939 /* If we've finished processing a top-level function, subsequent
13940 symbols go in the file symbol list. */
13941 if (outermost_context_p ())
13942 cu
->list_in_scope
= &file_symbols
;
13945 /* Process all the DIES contained within a lexical block scope. Start
13946 a new scope, process the dies, and then close the scope. */
13949 read_lexical_block_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
13951 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
13952 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
13953 struct context_stack
*newobj
;
13954 CORE_ADDR lowpc
, highpc
;
13955 struct die_info
*child_die
;
13956 CORE_ADDR baseaddr
;
13958 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
13960 /* Ignore blocks with missing or invalid low and high pc attributes. */
13961 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13962 as multiple lexical blocks? Handling children in a sane way would
13963 be nasty. Might be easier to properly extend generic blocks to
13964 describe ranges. */
13965 switch (dwarf2_get_pc_bounds (die
, &lowpc
, &highpc
, cu
, NULL
))
13967 case PC_BOUNDS_NOT_PRESENT
:
13968 /* DW_TAG_lexical_block has no attributes, process its children as if
13969 there was no wrapping by that DW_TAG_lexical_block.
13970 GCC does no longer produces such DWARF since GCC r224161. */
13971 for (child_die
= die
->child
;
13972 child_die
!= NULL
&& child_die
->tag
;
13973 child_die
= sibling_die (child_die
))
13974 process_die (child_die
, cu
);
13976 case PC_BOUNDS_INVALID
:
13979 lowpc
= gdbarch_adjust_dwarf2_addr (gdbarch
, lowpc
+ baseaddr
);
13980 highpc
= gdbarch_adjust_dwarf2_addr (gdbarch
, highpc
+ baseaddr
);
13982 push_context (0, lowpc
);
13983 if (die
->child
!= NULL
)
13985 child_die
= die
->child
;
13986 while (child_die
&& child_die
->tag
)
13988 process_die (child_die
, cu
);
13989 child_die
= sibling_die (child_die
);
13992 inherit_abstract_dies (die
, cu
);
13993 newobj
= pop_context ();
13995 if (local_symbols
!= NULL
|| local_using_directives
!= NULL
)
13997 struct block
*block
13998 = finish_block (0, &local_symbols
, newobj
->old_blocks
, NULL
,
13999 newobj
->start_addr
, highpc
);
14001 /* Note that recording ranges after traversing children, as we
14002 do here, means that recording a parent's ranges entails
14003 walking across all its children's ranges as they appear in
14004 the address map, which is quadratic behavior.
14006 It would be nicer to record the parent's ranges before
14007 traversing its children, simply overriding whatever you find
14008 there. But since we don't even decide whether to create a
14009 block until after we've traversed its children, that's hard
14011 dwarf2_record_block_ranges (die
, block
, baseaddr
, cu
);
14013 local_symbols
= newobj
->locals
;
14014 local_using_directives
= newobj
->local_using_directives
;
14017 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14020 read_call_site_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
14022 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
14023 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
14024 CORE_ADDR pc
, baseaddr
;
14025 struct attribute
*attr
;
14026 struct call_site
*call_site
, call_site_local
;
14029 struct die_info
*child_die
;
14031 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
14033 attr
= dwarf2_attr (die
, DW_AT_call_return_pc
, cu
);
14036 /* This was a pre-DWARF-5 GNU extension alias
14037 for DW_AT_call_return_pc. */
14038 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
14042 complaint (&symfile_complaints
,
14043 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14044 "DIE 0x%x [in module %s]"),
14045 to_underlying (die
->sect_off
), objfile_name (objfile
));
14048 pc
= attr_value_as_address (attr
) + baseaddr
;
14049 pc
= gdbarch_adjust_dwarf2_addr (gdbarch
, pc
);
14051 if (cu
->call_site_htab
== NULL
)
14052 cu
->call_site_htab
= htab_create_alloc_ex (16, core_addr_hash
, core_addr_eq
,
14053 NULL
, &objfile
->objfile_obstack
,
14054 hashtab_obstack_allocate
, NULL
);
14055 call_site_local
.pc
= pc
;
14056 slot
= htab_find_slot (cu
->call_site_htab
, &call_site_local
, INSERT
);
14059 complaint (&symfile_complaints
,
14060 _("Duplicate PC %s for DW_TAG_call_site "
14061 "DIE 0x%x [in module %s]"),
14062 paddress (gdbarch
, pc
), to_underlying (die
->sect_off
),
14063 objfile_name (objfile
));
14067 /* Count parameters at the caller. */
14070 for (child_die
= die
->child
; child_die
&& child_die
->tag
;
14071 child_die
= sibling_die (child_die
))
14073 if (child_die
->tag
!= DW_TAG_call_site_parameter
14074 && child_die
->tag
!= DW_TAG_GNU_call_site_parameter
)
14076 complaint (&symfile_complaints
,
14077 _("Tag %d is not DW_TAG_call_site_parameter in "
14078 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14079 child_die
->tag
, to_underlying (child_die
->sect_off
),
14080 objfile_name (objfile
));
14088 = ((struct call_site
*)
14089 obstack_alloc (&objfile
->objfile_obstack
,
14090 sizeof (*call_site
)
14091 + (sizeof (*call_site
->parameter
) * (nparams
- 1))));
14093 memset (call_site
, 0, sizeof (*call_site
) - sizeof (*call_site
->parameter
));
14094 call_site
->pc
= pc
;
14096 if (dwarf2_flag_true_p (die
, DW_AT_call_tail_call
, cu
)
14097 || dwarf2_flag_true_p (die
, DW_AT_GNU_tail_call
, cu
))
14099 struct die_info
*func_die
;
14101 /* Skip also over DW_TAG_inlined_subroutine. */
14102 for (func_die
= die
->parent
;
14103 func_die
&& func_die
->tag
!= DW_TAG_subprogram
14104 && func_die
->tag
!= DW_TAG_subroutine_type
;
14105 func_die
= func_die
->parent
);
14107 /* DW_AT_call_all_calls is a superset
14108 of DW_AT_call_all_tail_calls. */
14110 && !dwarf2_flag_true_p (func_die
, DW_AT_call_all_calls
, cu
)
14111 && !dwarf2_flag_true_p (func_die
, DW_AT_GNU_all_call_sites
, cu
)
14112 && !dwarf2_flag_true_p (func_die
, DW_AT_call_all_tail_calls
, cu
)
14113 && !dwarf2_flag_true_p (func_die
, DW_AT_GNU_all_tail_call_sites
, cu
))
14115 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14116 not complete. But keep CALL_SITE for look ups via call_site_htab,
14117 both the initial caller containing the real return address PC and
14118 the final callee containing the current PC of a chain of tail
14119 calls do not need to have the tail call list complete. But any
14120 function candidate for a virtual tail call frame searched via
14121 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14122 determined unambiguously. */
14126 struct type
*func_type
= NULL
;
14129 func_type
= get_die_type (func_die
, cu
);
14130 if (func_type
!= NULL
)
14132 gdb_assert (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
);
14134 /* Enlist this call site to the function. */
14135 call_site
->tail_call_next
= TYPE_TAIL_CALL_LIST (func_type
);
14136 TYPE_TAIL_CALL_LIST (func_type
) = call_site
;
14139 complaint (&symfile_complaints
,
14140 _("Cannot find function owning DW_TAG_call_site "
14141 "DIE 0x%x [in module %s]"),
14142 to_underlying (die
->sect_off
), objfile_name (objfile
));
14146 attr
= dwarf2_attr (die
, DW_AT_call_target
, cu
);
14148 attr
= dwarf2_attr (die
, DW_AT_GNU_call_site_target
, cu
);
14150 attr
= dwarf2_attr (die
, DW_AT_call_origin
, cu
);
14153 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14154 attr
= dwarf2_attr (die
, DW_AT_abstract_origin
, cu
);
14156 SET_FIELD_DWARF_BLOCK (call_site
->target
, NULL
);
14157 if (!attr
|| (attr_form_is_block (attr
) && DW_BLOCK (attr
)->size
== 0))
14158 /* Keep NULL DWARF_BLOCK. */;
14159 else if (attr_form_is_block (attr
))
14161 struct dwarf2_locexpr_baton
*dlbaton
;
14163 dlbaton
= XOBNEW (&objfile
->objfile_obstack
, struct dwarf2_locexpr_baton
);
14164 dlbaton
->data
= DW_BLOCK (attr
)->data
;
14165 dlbaton
->size
= DW_BLOCK (attr
)->size
;
14166 dlbaton
->per_cu
= cu
->per_cu
;
14168 SET_FIELD_DWARF_BLOCK (call_site
->target
, dlbaton
);
14170 else if (attr_form_is_ref (attr
))
14172 struct dwarf2_cu
*target_cu
= cu
;
14173 struct die_info
*target_die
;
14175 target_die
= follow_die_ref (die
, attr
, &target_cu
);
14176 gdb_assert (target_cu
->per_cu
->dwarf2_per_objfile
->objfile
== objfile
);
14177 if (die_is_declaration (target_die
, target_cu
))
14179 const char *target_physname
;
14181 /* Prefer the mangled name; otherwise compute the demangled one. */
14182 target_physname
= dw2_linkage_name (target_die
, target_cu
);
14183 if (target_physname
== NULL
)
14184 target_physname
= dwarf2_physname (NULL
, target_die
, target_cu
);
14185 if (target_physname
== NULL
)
14186 complaint (&symfile_complaints
,
14187 _("DW_AT_call_target target DIE has invalid "
14188 "physname, for referencing DIE 0x%x [in module %s]"),
14189 to_underlying (die
->sect_off
), objfile_name (objfile
));
14191 SET_FIELD_PHYSNAME (call_site
->target
, target_physname
);
14197 /* DW_AT_entry_pc should be preferred. */
14198 if (dwarf2_get_pc_bounds (target_die
, &lowpc
, NULL
, target_cu
, NULL
)
14199 <= PC_BOUNDS_INVALID
)
14200 complaint (&symfile_complaints
,
14201 _("DW_AT_call_target target DIE has invalid "
14202 "low pc, for referencing DIE 0x%x [in module %s]"),
14203 to_underlying (die
->sect_off
), objfile_name (objfile
));
14206 lowpc
= gdbarch_adjust_dwarf2_addr (gdbarch
, lowpc
+ baseaddr
);
14207 SET_FIELD_PHYSADDR (call_site
->target
, lowpc
);
14212 complaint (&symfile_complaints
,
14213 _("DW_TAG_call_site DW_AT_call_target is neither "
14214 "block nor reference, for DIE 0x%x [in module %s]"),
14215 to_underlying (die
->sect_off
), objfile_name (objfile
));
14217 call_site
->per_cu
= cu
->per_cu
;
14219 for (child_die
= die
->child
;
14220 child_die
&& child_die
->tag
;
14221 child_die
= sibling_die (child_die
))
14223 struct call_site_parameter
*parameter
;
14224 struct attribute
*loc
, *origin
;
14226 if (child_die
->tag
!= DW_TAG_call_site_parameter
14227 && child_die
->tag
!= DW_TAG_GNU_call_site_parameter
)
14229 /* Already printed the complaint above. */
14233 gdb_assert (call_site
->parameter_count
< nparams
);
14234 parameter
= &call_site
->parameter
[call_site
->parameter_count
];
14236 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14237 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14238 register is contained in DW_AT_call_value. */
14240 loc
= dwarf2_attr (child_die
, DW_AT_location
, cu
);
14241 origin
= dwarf2_attr (child_die
, DW_AT_call_parameter
, cu
);
14242 if (origin
== NULL
)
14244 /* This was a pre-DWARF-5 GNU extension alias
14245 for DW_AT_call_parameter. */
14246 origin
= dwarf2_attr (child_die
, DW_AT_abstract_origin
, cu
);
14248 if (loc
== NULL
&& origin
!= NULL
&& attr_form_is_ref (origin
))
14250 parameter
->kind
= CALL_SITE_PARAMETER_PARAM_OFFSET
;
14252 sect_offset sect_off
14253 = (sect_offset
) dwarf2_get_ref_die_offset (origin
);
14254 if (!offset_in_cu_p (&cu
->header
, sect_off
))
14256 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14257 binding can be done only inside one CU. Such referenced DIE
14258 therefore cannot be even moved to DW_TAG_partial_unit. */
14259 complaint (&symfile_complaints
,
14260 _("DW_AT_call_parameter offset is not in CU for "
14261 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14262 to_underlying (child_die
->sect_off
),
14263 objfile_name (objfile
));
14266 parameter
->u
.param_cu_off
14267 = (cu_offset
) (sect_off
- cu
->header
.sect_off
);
14269 else if (loc
== NULL
|| origin
!= NULL
|| !attr_form_is_block (loc
))
14271 complaint (&symfile_complaints
,
14272 _("No DW_FORM_block* DW_AT_location for "
14273 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14274 to_underlying (child_die
->sect_off
), objfile_name (objfile
));
14279 parameter
->u
.dwarf_reg
= dwarf_block_to_dwarf_reg
14280 (DW_BLOCK (loc
)->data
, &DW_BLOCK (loc
)->data
[DW_BLOCK (loc
)->size
]);
14281 if (parameter
->u
.dwarf_reg
!= -1)
14282 parameter
->kind
= CALL_SITE_PARAMETER_DWARF_REG
;
14283 else if (dwarf_block_to_sp_offset (gdbarch
, DW_BLOCK (loc
)->data
,
14284 &DW_BLOCK (loc
)->data
[DW_BLOCK (loc
)->size
],
14285 ¶meter
->u
.fb_offset
))
14286 parameter
->kind
= CALL_SITE_PARAMETER_FB_OFFSET
;
14289 complaint (&symfile_complaints
,
14290 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14291 "for DW_FORM_block* DW_AT_location is supported for "
14292 "DW_TAG_call_site child DIE 0x%x "
14294 to_underlying (child_die
->sect_off
),
14295 objfile_name (objfile
));
14300 attr
= dwarf2_attr (child_die
, DW_AT_call_value
, cu
);
14302 attr
= dwarf2_attr (child_die
, DW_AT_GNU_call_site_value
, cu
);
14303 if (!attr_form_is_block (attr
))
14305 complaint (&symfile_complaints
,
14306 _("No DW_FORM_block* DW_AT_call_value for "
14307 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14308 to_underlying (child_die
->sect_off
),
14309 objfile_name (objfile
));
14312 parameter
->value
= DW_BLOCK (attr
)->data
;
14313 parameter
->value_size
= DW_BLOCK (attr
)->size
;
14315 /* Parameters are not pre-cleared by memset above. */
14316 parameter
->data_value
= NULL
;
14317 parameter
->data_value_size
= 0;
14318 call_site
->parameter_count
++;
14320 attr
= dwarf2_attr (child_die
, DW_AT_call_data_value
, cu
);
14322 attr
= dwarf2_attr (child_die
, DW_AT_GNU_call_site_data_value
, cu
);
14325 if (!attr_form_is_block (attr
))
14326 complaint (&symfile_complaints
,
14327 _("No DW_FORM_block* DW_AT_call_data_value for "
14328 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14329 to_underlying (child_die
->sect_off
),
14330 objfile_name (objfile
));
14333 parameter
->data_value
= DW_BLOCK (attr
)->data
;
14334 parameter
->data_value_size
= DW_BLOCK (attr
)->size
;
14340 /* Helper function for read_variable. If DIE represents a virtual
14341 table, then return the type of the concrete object that is
14342 associated with the virtual table. Otherwise, return NULL. */
14344 static struct type
*
14345 rust_containing_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14347 struct attribute
*attr
= dwarf2_attr (die
, DW_AT_type
, cu
);
14351 /* Find the type DIE. */
14352 struct die_info
*type_die
= NULL
;
14353 struct dwarf2_cu
*type_cu
= cu
;
14355 if (attr_form_is_ref (attr
))
14356 type_die
= follow_die_ref (die
, attr
, &type_cu
);
14357 if (type_die
== NULL
)
14360 if (dwarf2_attr (type_die
, DW_AT_containing_type
, type_cu
) == NULL
)
14362 return die_containing_type (type_die
, type_cu
);
14365 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14368 read_variable (struct die_info
*die
, struct dwarf2_cu
*cu
)
14370 struct rust_vtable_symbol
*storage
= NULL
;
14372 if (cu
->language
== language_rust
)
14374 struct type
*containing_type
= rust_containing_type (die
, cu
);
14376 if (containing_type
!= NULL
)
14378 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
14380 storage
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
14381 struct rust_vtable_symbol
);
14382 initialize_objfile_symbol (storage
);
14383 storage
->concrete_type
= containing_type
;
14384 storage
->subclass
= SYMBOL_RUST_VTABLE
;
14388 new_symbol (die
, NULL
, cu
, storage
);
14391 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14392 reading .debug_rnglists.
14393 Callback's type should be:
14394 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14395 Return true if the attributes are present and valid, otherwise,
14398 template <typename Callback
>
14400 dwarf2_rnglists_process (unsigned offset
, struct dwarf2_cu
*cu
,
14401 Callback
&&callback
)
14403 struct dwarf2_per_objfile
*dwarf2_per_objfile
14404 = cu
->per_cu
->dwarf2_per_objfile
;
14405 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
14406 bfd
*obfd
= objfile
->obfd
;
14407 /* Base address selection entry. */
14410 const gdb_byte
*buffer
;
14411 CORE_ADDR baseaddr
;
14412 bool overflow
= false;
14414 found_base
= cu
->base_known
;
14415 base
= cu
->base_address
;
14417 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->rnglists
);
14418 if (offset
>= dwarf2_per_objfile
->rnglists
.size
)
14420 complaint (&symfile_complaints
,
14421 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14425 buffer
= dwarf2_per_objfile
->rnglists
.buffer
+ offset
;
14427 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
14431 /* Initialize it due to a false compiler warning. */
14432 CORE_ADDR range_beginning
= 0, range_end
= 0;
14433 const gdb_byte
*buf_end
= (dwarf2_per_objfile
->rnglists
.buffer
14434 + dwarf2_per_objfile
->rnglists
.size
);
14435 unsigned int bytes_read
;
14437 if (buffer
== buf_end
)
14442 const auto rlet
= static_cast<enum dwarf_range_list_entry
>(*buffer
++);
14445 case DW_RLE_end_of_list
:
14447 case DW_RLE_base_address
:
14448 if (buffer
+ cu
->header
.addr_size
> buf_end
)
14453 base
= read_address (obfd
, buffer
, cu
, &bytes_read
);
14455 buffer
+= bytes_read
;
14457 case DW_RLE_start_length
:
14458 if (buffer
+ cu
->header
.addr_size
> buf_end
)
14463 range_beginning
= read_address (obfd
, buffer
, cu
, &bytes_read
);
14464 buffer
+= bytes_read
;
14465 range_end
= (range_beginning
14466 + read_unsigned_leb128 (obfd
, buffer
, &bytes_read
));
14467 buffer
+= bytes_read
;
14468 if (buffer
> buf_end
)
14474 case DW_RLE_offset_pair
:
14475 range_beginning
= read_unsigned_leb128 (obfd
, buffer
, &bytes_read
);
14476 buffer
+= bytes_read
;
14477 if (buffer
> buf_end
)
14482 range_end
= read_unsigned_leb128 (obfd
, buffer
, &bytes_read
);
14483 buffer
+= bytes_read
;
14484 if (buffer
> buf_end
)
14490 case DW_RLE_start_end
:
14491 if (buffer
+ 2 * cu
->header
.addr_size
> buf_end
)
14496 range_beginning
= read_address (obfd
, buffer
, cu
, &bytes_read
);
14497 buffer
+= bytes_read
;
14498 range_end
= read_address (obfd
, buffer
, cu
, &bytes_read
);
14499 buffer
+= bytes_read
;
14502 complaint (&symfile_complaints
,
14503 _("Invalid .debug_rnglists data (no base address)"));
14506 if (rlet
== DW_RLE_end_of_list
|| overflow
)
14508 if (rlet
== DW_RLE_base_address
)
14513 /* We have no valid base address for the ranges
14515 complaint (&symfile_complaints
,
14516 _("Invalid .debug_rnglists data (no base address)"));
14520 if (range_beginning
> range_end
)
14522 /* Inverted range entries are invalid. */
14523 complaint (&symfile_complaints
,
14524 _("Invalid .debug_rnglists data (inverted range)"));
14528 /* Empty range entries have no effect. */
14529 if (range_beginning
== range_end
)
14532 range_beginning
+= base
;
14535 /* A not-uncommon case of bad debug info.
14536 Don't pollute the addrmap with bad data. */
14537 if (range_beginning
+ baseaddr
== 0
14538 && !dwarf2_per_objfile
->has_section_at_zero
)
14540 complaint (&symfile_complaints
,
14541 _(".debug_rnglists entry has start address of zero"
14542 " [in module %s]"), objfile_name (objfile
));
14546 callback (range_beginning
, range_end
);
14551 complaint (&symfile_complaints
,
14552 _("Offset %d is not terminated "
14553 "for DW_AT_ranges attribute"),
14561 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14562 Callback's type should be:
14563 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14564 Return 1 if the attributes are present and valid, otherwise, return 0. */
14566 template <typename Callback
>
14568 dwarf2_ranges_process (unsigned offset
, struct dwarf2_cu
*cu
,
14569 Callback
&&callback
)
14571 struct dwarf2_per_objfile
*dwarf2_per_objfile
14572 = cu
->per_cu
->dwarf2_per_objfile
;
14573 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
14574 struct comp_unit_head
*cu_header
= &cu
->header
;
14575 bfd
*obfd
= objfile
->obfd
;
14576 unsigned int addr_size
= cu_header
->addr_size
;
14577 CORE_ADDR mask
= ~(~(CORE_ADDR
)1 << (addr_size
* 8 - 1));
14578 /* Base address selection entry. */
14581 unsigned int dummy
;
14582 const gdb_byte
*buffer
;
14583 CORE_ADDR baseaddr
;
14585 if (cu_header
->version
>= 5)
14586 return dwarf2_rnglists_process (offset
, cu
, callback
);
14588 found_base
= cu
->base_known
;
14589 base
= cu
->base_address
;
14591 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->ranges
);
14592 if (offset
>= dwarf2_per_objfile
->ranges
.size
)
14594 complaint (&symfile_complaints
,
14595 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14599 buffer
= dwarf2_per_objfile
->ranges
.buffer
+ offset
;
14601 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
14605 CORE_ADDR range_beginning
, range_end
;
14607 range_beginning
= read_address (obfd
, buffer
, cu
, &dummy
);
14608 buffer
+= addr_size
;
14609 range_end
= read_address (obfd
, buffer
, cu
, &dummy
);
14610 buffer
+= addr_size
;
14611 offset
+= 2 * addr_size
;
14613 /* An end of list marker is a pair of zero addresses. */
14614 if (range_beginning
== 0 && range_end
== 0)
14615 /* Found the end of list entry. */
14618 /* Each base address selection entry is a pair of 2 values.
14619 The first is the largest possible address, the second is
14620 the base address. Check for a base address here. */
14621 if ((range_beginning
& mask
) == mask
)
14623 /* If we found the largest possible address, then we already
14624 have the base address in range_end. */
14632 /* We have no valid base address for the ranges
14634 complaint (&symfile_complaints
,
14635 _("Invalid .debug_ranges data (no base address)"));
14639 if (range_beginning
> range_end
)
14641 /* Inverted range entries are invalid. */
14642 complaint (&symfile_complaints
,
14643 _("Invalid .debug_ranges data (inverted range)"));
14647 /* Empty range entries have no effect. */
14648 if (range_beginning
== range_end
)
14651 range_beginning
+= base
;
14654 /* A not-uncommon case of bad debug info.
14655 Don't pollute the addrmap with bad data. */
14656 if (range_beginning
+ baseaddr
== 0
14657 && !dwarf2_per_objfile
->has_section_at_zero
)
14659 complaint (&symfile_complaints
,
14660 _(".debug_ranges entry has start address of zero"
14661 " [in module %s]"), objfile_name (objfile
));
14665 callback (range_beginning
, range_end
);
14671 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14672 Return 1 if the attributes are present and valid, otherwise, return 0.
14673 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14676 dwarf2_ranges_read (unsigned offset
, CORE_ADDR
*low_return
,
14677 CORE_ADDR
*high_return
, struct dwarf2_cu
*cu
,
14678 struct partial_symtab
*ranges_pst
)
14680 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
14681 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
14682 const CORE_ADDR baseaddr
= ANOFFSET (objfile
->section_offsets
,
14683 SECT_OFF_TEXT (objfile
));
14686 CORE_ADDR high
= 0;
14689 retval
= dwarf2_ranges_process (offset
, cu
,
14690 [&] (CORE_ADDR range_beginning
, CORE_ADDR range_end
)
14692 if (ranges_pst
!= NULL
)
14697 lowpc
= gdbarch_adjust_dwarf2_addr (gdbarch
,
14698 range_beginning
+ baseaddr
);
14699 highpc
= gdbarch_adjust_dwarf2_addr (gdbarch
,
14700 range_end
+ baseaddr
);
14701 addrmap_set_empty (objfile
->psymtabs_addrmap
, lowpc
, highpc
- 1,
14705 /* FIXME: This is recording everything as a low-high
14706 segment of consecutive addresses. We should have a
14707 data structure for discontiguous block ranges
14711 low
= range_beginning
;
14717 if (range_beginning
< low
)
14718 low
= range_beginning
;
14719 if (range_end
> high
)
14727 /* If the first entry is an end-of-list marker, the range
14728 describes an empty scope, i.e. no instructions. */
14734 *high_return
= high
;
14738 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14739 definition for the return value. *LOWPC and *HIGHPC are set iff
14740 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14742 static enum pc_bounds_kind
14743 dwarf2_get_pc_bounds (struct die_info
*die
, CORE_ADDR
*lowpc
,
14744 CORE_ADDR
*highpc
, struct dwarf2_cu
*cu
,
14745 struct partial_symtab
*pst
)
14747 struct dwarf2_per_objfile
*dwarf2_per_objfile
14748 = cu
->per_cu
->dwarf2_per_objfile
;
14749 struct attribute
*attr
;
14750 struct attribute
*attr_high
;
14752 CORE_ADDR high
= 0;
14753 enum pc_bounds_kind ret
;
14755 attr_high
= dwarf2_attr (die
, DW_AT_high_pc
, cu
);
14758 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
14761 low
= attr_value_as_address (attr
);
14762 high
= attr_value_as_address (attr_high
);
14763 if (cu
->header
.version
>= 4 && attr_form_is_constant (attr_high
))
14767 /* Found high w/o low attribute. */
14768 return PC_BOUNDS_INVALID
;
14770 /* Found consecutive range of addresses. */
14771 ret
= PC_BOUNDS_HIGH_LOW
;
14775 attr
= dwarf2_attr (die
, DW_AT_ranges
, cu
);
14778 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14779 We take advantage of the fact that DW_AT_ranges does not appear
14780 in DW_TAG_compile_unit of DWO files. */
14781 int need_ranges_base
= die
->tag
!= DW_TAG_compile_unit
;
14782 unsigned int ranges_offset
= (DW_UNSND (attr
)
14783 + (need_ranges_base
14787 /* Value of the DW_AT_ranges attribute is the offset in the
14788 .debug_ranges section. */
14789 if (!dwarf2_ranges_read (ranges_offset
, &low
, &high
, cu
, pst
))
14790 return PC_BOUNDS_INVALID
;
14791 /* Found discontinuous range of addresses. */
14792 ret
= PC_BOUNDS_RANGES
;
14795 return PC_BOUNDS_NOT_PRESENT
;
14798 /* read_partial_die has also the strict LOW < HIGH requirement. */
14800 return PC_BOUNDS_INVALID
;
14802 /* When using the GNU linker, .gnu.linkonce. sections are used to
14803 eliminate duplicate copies of functions and vtables and such.
14804 The linker will arbitrarily choose one and discard the others.
14805 The AT_*_pc values for such functions refer to local labels in
14806 these sections. If the section from that file was discarded, the
14807 labels are not in the output, so the relocs get a value of 0.
14808 If this is a discarded function, mark the pc bounds as invalid,
14809 so that GDB will ignore it. */
14810 if (low
== 0 && !dwarf2_per_objfile
->has_section_at_zero
)
14811 return PC_BOUNDS_INVALID
;
14819 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14820 its low and high PC addresses. Do nothing if these addresses could not
14821 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14822 and HIGHPC to the high address if greater than HIGHPC. */
14825 dwarf2_get_subprogram_pc_bounds (struct die_info
*die
,
14826 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
14827 struct dwarf2_cu
*cu
)
14829 CORE_ADDR low
, high
;
14830 struct die_info
*child
= die
->child
;
14832 if (dwarf2_get_pc_bounds (die
, &low
, &high
, cu
, NULL
) >= PC_BOUNDS_RANGES
)
14834 *lowpc
= std::min (*lowpc
, low
);
14835 *highpc
= std::max (*highpc
, high
);
14838 /* If the language does not allow nested subprograms (either inside
14839 subprograms or lexical blocks), we're done. */
14840 if (cu
->language
!= language_ada
)
14843 /* Check all the children of the given DIE. If it contains nested
14844 subprograms, then check their pc bounds. Likewise, we need to
14845 check lexical blocks as well, as they may also contain subprogram
14847 while (child
&& child
->tag
)
14849 if (child
->tag
== DW_TAG_subprogram
14850 || child
->tag
== DW_TAG_lexical_block
)
14851 dwarf2_get_subprogram_pc_bounds (child
, lowpc
, highpc
, cu
);
14852 child
= sibling_die (child
);
14856 /* Get the low and high pc's represented by the scope DIE, and store
14857 them in *LOWPC and *HIGHPC. If the correct values can't be
14858 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14861 get_scope_pc_bounds (struct die_info
*die
,
14862 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
14863 struct dwarf2_cu
*cu
)
14865 CORE_ADDR best_low
= (CORE_ADDR
) -1;
14866 CORE_ADDR best_high
= (CORE_ADDR
) 0;
14867 CORE_ADDR current_low
, current_high
;
14869 if (dwarf2_get_pc_bounds (die
, ¤t_low
, ¤t_high
, cu
, NULL
)
14870 >= PC_BOUNDS_RANGES
)
14872 best_low
= current_low
;
14873 best_high
= current_high
;
14877 struct die_info
*child
= die
->child
;
14879 while (child
&& child
->tag
)
14881 switch (child
->tag
) {
14882 case DW_TAG_subprogram
:
14883 dwarf2_get_subprogram_pc_bounds (child
, &best_low
, &best_high
, cu
);
14885 case DW_TAG_namespace
:
14886 case DW_TAG_module
:
14887 /* FIXME: carlton/2004-01-16: Should we do this for
14888 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14889 that current GCC's always emit the DIEs corresponding
14890 to definitions of methods of classes as children of a
14891 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14892 the DIEs giving the declarations, which could be
14893 anywhere). But I don't see any reason why the
14894 standards says that they have to be there. */
14895 get_scope_pc_bounds (child
, ¤t_low
, ¤t_high
, cu
);
14897 if (current_low
!= ((CORE_ADDR
) -1))
14899 best_low
= std::min (best_low
, current_low
);
14900 best_high
= std::max (best_high
, current_high
);
14908 child
= sibling_die (child
);
14913 *highpc
= best_high
;
14916 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14920 dwarf2_record_block_ranges (struct die_info
*die
, struct block
*block
,
14921 CORE_ADDR baseaddr
, struct dwarf2_cu
*cu
)
14923 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
14924 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
14925 struct attribute
*attr
;
14926 struct attribute
*attr_high
;
14928 attr_high
= dwarf2_attr (die
, DW_AT_high_pc
, cu
);
14931 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
14934 CORE_ADDR low
= attr_value_as_address (attr
);
14935 CORE_ADDR high
= attr_value_as_address (attr_high
);
14937 if (cu
->header
.version
>= 4 && attr_form_is_constant (attr_high
))
14940 low
= gdbarch_adjust_dwarf2_addr (gdbarch
, low
+ baseaddr
);
14941 high
= gdbarch_adjust_dwarf2_addr (gdbarch
, high
+ baseaddr
);
14942 record_block_range (block
, low
, high
- 1);
14946 attr
= dwarf2_attr (die
, DW_AT_ranges
, cu
);
14949 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14950 We take advantage of the fact that DW_AT_ranges does not appear
14951 in DW_TAG_compile_unit of DWO files. */
14952 int need_ranges_base
= die
->tag
!= DW_TAG_compile_unit
;
14954 /* The value of the DW_AT_ranges attribute is the offset of the
14955 address range list in the .debug_ranges section. */
14956 unsigned long offset
= (DW_UNSND (attr
)
14957 + (need_ranges_base
? cu
->ranges_base
: 0));
14958 const gdb_byte
*buffer
;
14960 /* For some target architectures, but not others, the
14961 read_address function sign-extends the addresses it returns.
14962 To recognize base address selection entries, we need a
14964 unsigned int addr_size
= cu
->header
.addr_size
;
14965 CORE_ADDR base_select_mask
= ~(~(CORE_ADDR
)1 << (addr_size
* 8 - 1));
14967 /* The base address, to which the next pair is relative. Note
14968 that this 'base' is a DWARF concept: most entries in a range
14969 list are relative, to reduce the number of relocs against the
14970 debugging information. This is separate from this function's
14971 'baseaddr' argument, which GDB uses to relocate debugging
14972 information from a shared library based on the address at
14973 which the library was loaded. */
14974 CORE_ADDR base
= cu
->base_address
;
14975 int base_known
= cu
->base_known
;
14977 dwarf2_ranges_process (offset
, cu
,
14978 [&] (CORE_ADDR start
, CORE_ADDR end
)
14982 start
= gdbarch_adjust_dwarf2_addr (gdbarch
, start
);
14983 end
= gdbarch_adjust_dwarf2_addr (gdbarch
, end
);
14984 record_block_range (block
, start
, end
- 1);
14989 /* Check whether the producer field indicates either of GCC < 4.6, or the
14990 Intel C/C++ compiler, and cache the result in CU. */
14993 check_producer (struct dwarf2_cu
*cu
)
14997 if (cu
->producer
== NULL
)
14999 /* For unknown compilers expect their behavior is DWARF version
15002 GCC started to support .debug_types sections by -gdwarf-4 since
15003 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15004 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15005 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15006 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15008 else if (producer_is_gcc (cu
->producer
, &major
, &minor
))
15010 cu
->producer_is_gxx_lt_4_6
= major
< 4 || (major
== 4 && minor
< 6);
15011 cu
->producer_is_gcc_lt_4_3
= major
< 4 || (major
== 4 && minor
< 3);
15013 else if (producer_is_icc (cu
->producer
, &major
, &minor
))
15014 cu
->producer_is_icc_lt_14
= major
< 14;
15017 /* For other non-GCC compilers, expect their behavior is DWARF version
15021 cu
->checked_producer
= 1;
15024 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15025 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15026 during 4.6.0 experimental. */
15029 producer_is_gxx_lt_4_6 (struct dwarf2_cu
*cu
)
15031 if (!cu
->checked_producer
)
15032 check_producer (cu
);
15034 return cu
->producer_is_gxx_lt_4_6
;
15037 /* Return the default accessibility type if it is not overriden by
15038 DW_AT_accessibility. */
15040 static enum dwarf_access_attribute
15041 dwarf2_default_access_attribute (struct die_info
*die
, struct dwarf2_cu
*cu
)
15043 if (cu
->header
.version
< 3 || producer_is_gxx_lt_4_6 (cu
))
15045 /* The default DWARF 2 accessibility for members is public, the default
15046 accessibility for inheritance is private. */
15048 if (die
->tag
!= DW_TAG_inheritance
)
15049 return DW_ACCESS_public
;
15051 return DW_ACCESS_private
;
15055 /* DWARF 3+ defines the default accessibility a different way. The same
15056 rules apply now for DW_TAG_inheritance as for the members and it only
15057 depends on the container kind. */
15059 if (die
->parent
->tag
== DW_TAG_class_type
)
15060 return DW_ACCESS_private
;
15062 return DW_ACCESS_public
;
15066 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15067 offset. If the attribute was not found return 0, otherwise return
15068 1. If it was found but could not properly be handled, set *OFFSET
15072 handle_data_member_location (struct die_info
*die
, struct dwarf2_cu
*cu
,
15075 struct attribute
*attr
;
15077 attr
= dwarf2_attr (die
, DW_AT_data_member_location
, cu
);
15082 /* Note that we do not check for a section offset first here.
15083 This is because DW_AT_data_member_location is new in DWARF 4,
15084 so if we see it, we can assume that a constant form is really
15085 a constant and not a section offset. */
15086 if (attr_form_is_constant (attr
))
15087 *offset
= dwarf2_get_attr_constant_value (attr
, 0);
15088 else if (attr_form_is_section_offset (attr
))
15089 dwarf2_complex_location_expr_complaint ();
15090 else if (attr_form_is_block (attr
))
15091 *offset
= decode_locdesc (DW_BLOCK (attr
), cu
);
15093 dwarf2_complex_location_expr_complaint ();
15101 /* Add an aggregate field to the field list. */
15104 dwarf2_add_field (struct field_info
*fip
, struct die_info
*die
,
15105 struct dwarf2_cu
*cu
)
15107 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
15108 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
15109 struct nextfield
*new_field
;
15110 struct attribute
*attr
;
15112 const char *fieldname
= "";
15114 /* Allocate a new field list entry and link it in. */
15115 new_field
= XNEW (struct nextfield
);
15116 make_cleanup (xfree
, new_field
);
15117 memset (new_field
, 0, sizeof (struct nextfield
));
15119 if (die
->tag
== DW_TAG_inheritance
)
15121 new_field
->next
= fip
->baseclasses
;
15122 fip
->baseclasses
= new_field
;
15126 new_field
->next
= fip
->fields
;
15127 fip
->fields
= new_field
;
15131 attr
= dwarf2_attr (die
, DW_AT_accessibility
, cu
);
15133 new_field
->accessibility
= DW_UNSND (attr
);
15135 new_field
->accessibility
= dwarf2_default_access_attribute (die
, cu
);
15136 if (new_field
->accessibility
!= DW_ACCESS_public
)
15137 fip
->non_public_fields
= 1;
15139 attr
= dwarf2_attr (die
, DW_AT_virtuality
, cu
);
15141 new_field
->virtuality
= DW_UNSND (attr
);
15143 new_field
->virtuality
= DW_VIRTUALITY_none
;
15145 fp
= &new_field
->field
;
15147 if (die
->tag
== DW_TAG_member
&& ! die_is_declaration (die
, cu
))
15151 /* Data member other than a C++ static data member. */
15153 /* Get type of field. */
15154 fp
->type
= die_type (die
, cu
);
15156 SET_FIELD_BITPOS (*fp
, 0);
15158 /* Get bit size of field (zero if none). */
15159 attr
= dwarf2_attr (die
, DW_AT_bit_size
, cu
);
15162 FIELD_BITSIZE (*fp
) = DW_UNSND (attr
);
15166 FIELD_BITSIZE (*fp
) = 0;
15169 /* Get bit offset of field. */
15170 if (handle_data_member_location (die
, cu
, &offset
))
15171 SET_FIELD_BITPOS (*fp
, offset
* bits_per_byte
);
15172 attr
= dwarf2_attr (die
, DW_AT_bit_offset
, cu
);
15175 if (gdbarch_bits_big_endian (gdbarch
))
15177 /* For big endian bits, the DW_AT_bit_offset gives the
15178 additional bit offset from the MSB of the containing
15179 anonymous object to the MSB of the field. We don't
15180 have to do anything special since we don't need to
15181 know the size of the anonymous object. */
15182 SET_FIELD_BITPOS (*fp
, FIELD_BITPOS (*fp
) + DW_UNSND (attr
));
15186 /* For little endian bits, compute the bit offset to the
15187 MSB of the anonymous object, subtract off the number of
15188 bits from the MSB of the field to the MSB of the
15189 object, and then subtract off the number of bits of
15190 the field itself. The result is the bit offset of
15191 the LSB of the field. */
15192 int anonymous_size
;
15193 int bit_offset
= DW_UNSND (attr
);
15195 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
15198 /* The size of the anonymous object containing
15199 the bit field is explicit, so use the
15200 indicated size (in bytes). */
15201 anonymous_size
= DW_UNSND (attr
);
15205 /* The size of the anonymous object containing
15206 the bit field must be inferred from the type
15207 attribute of the data member containing the
15209 anonymous_size
= TYPE_LENGTH (fp
->type
);
15211 SET_FIELD_BITPOS (*fp
,
15212 (FIELD_BITPOS (*fp
)
15213 + anonymous_size
* bits_per_byte
15214 - bit_offset
- FIELD_BITSIZE (*fp
)));
15217 attr
= dwarf2_attr (die
, DW_AT_data_bit_offset
, cu
);
15219 SET_FIELD_BITPOS (*fp
, (FIELD_BITPOS (*fp
)
15220 + dwarf2_get_attr_constant_value (attr
, 0)));
15222 /* Get name of field. */
15223 fieldname
= dwarf2_name (die
, cu
);
15224 if (fieldname
== NULL
)
15227 /* The name is already allocated along with this objfile, so we don't
15228 need to duplicate it for the type. */
15229 fp
->name
= fieldname
;
15231 /* Change accessibility for artificial fields (e.g. virtual table
15232 pointer or virtual base class pointer) to private. */
15233 if (dwarf2_attr (die
, DW_AT_artificial
, cu
))
15235 FIELD_ARTIFICIAL (*fp
) = 1;
15236 new_field
->accessibility
= DW_ACCESS_private
;
15237 fip
->non_public_fields
= 1;
15240 else if (die
->tag
== DW_TAG_member
|| die
->tag
== DW_TAG_variable
)
15242 /* C++ static member. */
15244 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15245 is a declaration, but all versions of G++ as of this writing
15246 (so through at least 3.2.1) incorrectly generate
15247 DW_TAG_variable tags. */
15249 const char *physname
;
15251 /* Get name of field. */
15252 fieldname
= dwarf2_name (die
, cu
);
15253 if (fieldname
== NULL
)
15256 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
15258 /* Only create a symbol if this is an external value.
15259 new_symbol checks this and puts the value in the global symbol
15260 table, which we want. If it is not external, new_symbol
15261 will try to put the value in cu->list_in_scope which is wrong. */
15262 && dwarf2_flag_true_p (die
, DW_AT_external
, cu
))
15264 /* A static const member, not much different than an enum as far as
15265 we're concerned, except that we can support more types. */
15266 new_symbol (die
, NULL
, cu
);
15269 /* Get physical name. */
15270 physname
= dwarf2_physname (fieldname
, die
, cu
);
15272 /* The name is already allocated along with this objfile, so we don't
15273 need to duplicate it for the type. */
15274 SET_FIELD_PHYSNAME (*fp
, physname
? physname
: "");
15275 FIELD_TYPE (*fp
) = die_type (die
, cu
);
15276 FIELD_NAME (*fp
) = fieldname
;
15278 else if (die
->tag
== DW_TAG_inheritance
)
15282 /* C++ base class field. */
15283 if (handle_data_member_location (die
, cu
, &offset
))
15284 SET_FIELD_BITPOS (*fp
, offset
* bits_per_byte
);
15285 FIELD_BITSIZE (*fp
) = 0;
15286 FIELD_TYPE (*fp
) = die_type (die
, cu
);
15287 FIELD_NAME (*fp
) = type_name_no_tag (fp
->type
);
15288 fip
->nbaseclasses
++;
15292 /* Can the type given by DIE define another type? */
15295 type_can_define_types (const struct die_info
*die
)
15299 case DW_TAG_typedef
:
15300 case DW_TAG_class_type
:
15301 case DW_TAG_structure_type
:
15302 case DW_TAG_union_type
:
15303 case DW_TAG_enumeration_type
:
15311 /* Add a type definition defined in the scope of the FIP's class. */
15314 dwarf2_add_type_defn (struct field_info
*fip
, struct die_info
*die
,
15315 struct dwarf2_cu
*cu
)
15317 struct decl_field_list
*new_field
;
15318 struct decl_field
*fp
;
15320 /* Allocate a new field list entry and link it in. */
15321 new_field
= XCNEW (struct decl_field_list
);
15322 make_cleanup (xfree
, new_field
);
15324 gdb_assert (type_can_define_types (die
));
15326 fp
= &new_field
->field
;
15328 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15329 fp
->name
= dwarf2_name (die
, cu
);
15330 fp
->type
= read_type_die (die
, cu
);
15332 /* Save accessibility. */
15333 enum dwarf_access_attribute accessibility
;
15334 struct attribute
*attr
= dwarf2_attr (die
, DW_AT_accessibility
, cu
);
15336 accessibility
= (enum dwarf_access_attribute
) DW_UNSND (attr
);
15338 accessibility
= dwarf2_default_access_attribute (die
, cu
);
15339 switch (accessibility
)
15341 case DW_ACCESS_public
:
15342 /* The assumed value if neither private nor protected. */
15344 case DW_ACCESS_private
:
15345 fp
->is_private
= 1;
15347 case DW_ACCESS_protected
:
15348 fp
->is_protected
= 1;
15351 complaint (&symfile_complaints
,
15352 _("Unhandled DW_AT_accessibility value (%x)"), accessibility
);
15355 if (die
->tag
== DW_TAG_typedef
)
15357 new_field
->next
= fip
->typedef_field_list
;
15358 fip
->typedef_field_list
= new_field
;
15359 fip
->typedef_field_list_count
++;
15363 new_field
->next
= fip
->nested_types_list
;
15364 fip
->nested_types_list
= new_field
;
15365 fip
->nested_types_list_count
++;
15369 /* Create the vector of fields, and attach it to the type. */
15372 dwarf2_attach_fields_to_type (struct field_info
*fip
, struct type
*type
,
15373 struct dwarf2_cu
*cu
)
15375 int nfields
= fip
->nfields
;
15377 /* Record the field count, allocate space for the array of fields,
15378 and create blank accessibility bitfields if necessary. */
15379 TYPE_NFIELDS (type
) = nfields
;
15380 TYPE_FIELDS (type
) = (struct field
*)
15381 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
15382 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nfields
);
15384 if (fip
->non_public_fields
&& cu
->language
!= language_ada
)
15386 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
15388 TYPE_FIELD_PRIVATE_BITS (type
) =
15389 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
15390 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type
), nfields
);
15392 TYPE_FIELD_PROTECTED_BITS (type
) =
15393 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
15394 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type
), nfields
);
15396 TYPE_FIELD_IGNORE_BITS (type
) =
15397 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
15398 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type
), nfields
);
15401 /* If the type has baseclasses, allocate and clear a bit vector for
15402 TYPE_FIELD_VIRTUAL_BITS. */
15403 if (fip
->nbaseclasses
&& cu
->language
!= language_ada
)
15405 int num_bytes
= B_BYTES (fip
->nbaseclasses
);
15406 unsigned char *pointer
;
15408 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
15409 pointer
= (unsigned char *) TYPE_ALLOC (type
, num_bytes
);
15410 TYPE_FIELD_VIRTUAL_BITS (type
) = pointer
;
15411 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type
), fip
->nbaseclasses
);
15412 TYPE_N_BASECLASSES (type
) = fip
->nbaseclasses
;
15415 /* Copy the saved-up fields into the field vector. Start from the head of
15416 the list, adding to the tail of the field array, so that they end up in
15417 the same order in the array in which they were added to the list. */
15418 while (nfields
-- > 0)
15420 struct nextfield
*fieldp
;
15424 fieldp
= fip
->fields
;
15425 fip
->fields
= fieldp
->next
;
15429 fieldp
= fip
->baseclasses
;
15430 fip
->baseclasses
= fieldp
->next
;
15433 TYPE_FIELD (type
, nfields
) = fieldp
->field
;
15434 switch (fieldp
->accessibility
)
15436 case DW_ACCESS_private
:
15437 if (cu
->language
!= language_ada
)
15438 SET_TYPE_FIELD_PRIVATE (type
, nfields
);
15441 case DW_ACCESS_protected
:
15442 if (cu
->language
!= language_ada
)
15443 SET_TYPE_FIELD_PROTECTED (type
, nfields
);
15446 case DW_ACCESS_public
:
15450 /* Unknown accessibility. Complain and treat it as public. */
15452 complaint (&symfile_complaints
, _("unsupported accessibility %d"),
15453 fieldp
->accessibility
);
15457 if (nfields
< fip
->nbaseclasses
)
15459 switch (fieldp
->virtuality
)
15461 case DW_VIRTUALITY_virtual
:
15462 case DW_VIRTUALITY_pure_virtual
:
15463 if (cu
->language
== language_ada
)
15464 error (_("unexpected virtuality in component of Ada type"));
15465 SET_TYPE_FIELD_VIRTUAL (type
, nfields
);
15472 /* Return true if this member function is a constructor, false
15476 dwarf2_is_constructor (struct die_info
*die
, struct dwarf2_cu
*cu
)
15478 const char *fieldname
;
15479 const char *type_name
;
15482 if (die
->parent
== NULL
)
15485 if (die
->parent
->tag
!= DW_TAG_structure_type
15486 && die
->parent
->tag
!= DW_TAG_union_type
15487 && die
->parent
->tag
!= DW_TAG_class_type
)
15490 fieldname
= dwarf2_name (die
, cu
);
15491 type_name
= dwarf2_name (die
->parent
, cu
);
15492 if (fieldname
== NULL
|| type_name
== NULL
)
15495 len
= strlen (fieldname
);
15496 return (strncmp (fieldname
, type_name
, len
) == 0
15497 && (type_name
[len
] == '\0' || type_name
[len
] == '<'));
15500 /* Add a member function to the proper fieldlist. */
15503 dwarf2_add_member_fn (struct field_info
*fip
, struct die_info
*die
,
15504 struct type
*type
, struct dwarf2_cu
*cu
)
15506 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
15507 struct attribute
*attr
;
15508 struct fnfieldlist
*flp
;
15510 struct fn_field
*fnp
;
15511 const char *fieldname
;
15512 struct nextfnfield
*new_fnfield
;
15513 struct type
*this_type
;
15514 enum dwarf_access_attribute accessibility
;
15516 if (cu
->language
== language_ada
)
15517 error (_("unexpected member function in Ada type"));
15519 /* Get name of member function. */
15520 fieldname
= dwarf2_name (die
, cu
);
15521 if (fieldname
== NULL
)
15524 /* Look up member function name in fieldlist. */
15525 for (i
= 0; i
< fip
->nfnfields
; i
++)
15527 if (strcmp (fip
->fnfieldlists
[i
].name
, fieldname
) == 0)
15531 /* Create new list element if necessary. */
15532 if (i
< fip
->nfnfields
)
15533 flp
= &fip
->fnfieldlists
[i
];
15536 if ((fip
->nfnfields
% DW_FIELD_ALLOC_CHUNK
) == 0)
15538 fip
->fnfieldlists
= (struct fnfieldlist
*)
15539 xrealloc (fip
->fnfieldlists
,
15540 (fip
->nfnfields
+ DW_FIELD_ALLOC_CHUNK
)
15541 * sizeof (struct fnfieldlist
));
15542 if (fip
->nfnfields
== 0)
15543 make_cleanup (free_current_contents
, &fip
->fnfieldlists
);
15545 flp
= &fip
->fnfieldlists
[fip
->nfnfields
];
15546 flp
->name
= fieldname
;
15549 i
= fip
->nfnfields
++;
15552 /* Create a new member function field and chain it to the field list
15554 new_fnfield
= XNEW (struct nextfnfield
);
15555 make_cleanup (xfree
, new_fnfield
);
15556 memset (new_fnfield
, 0, sizeof (struct nextfnfield
));
15557 new_fnfield
->next
= flp
->head
;
15558 flp
->head
= new_fnfield
;
15561 /* Fill in the member function field info. */
15562 fnp
= &new_fnfield
->fnfield
;
15564 /* Delay processing of the physname until later. */
15565 if (cu
->language
== language_cplus
)
15567 add_to_method_list (type
, i
, flp
->length
- 1, fieldname
,
15572 const char *physname
= dwarf2_physname (fieldname
, die
, cu
);
15573 fnp
->physname
= physname
? physname
: "";
15576 fnp
->type
= alloc_type (objfile
);
15577 this_type
= read_type_die (die
, cu
);
15578 if (this_type
&& TYPE_CODE (this_type
) == TYPE_CODE_FUNC
)
15580 int nparams
= TYPE_NFIELDS (this_type
);
15582 /* TYPE is the domain of this method, and THIS_TYPE is the type
15583 of the method itself (TYPE_CODE_METHOD). */
15584 smash_to_method_type (fnp
->type
, type
,
15585 TYPE_TARGET_TYPE (this_type
),
15586 TYPE_FIELDS (this_type
),
15587 TYPE_NFIELDS (this_type
),
15588 TYPE_VARARGS (this_type
));
15590 /* Handle static member functions.
15591 Dwarf2 has no clean way to discern C++ static and non-static
15592 member functions. G++ helps GDB by marking the first
15593 parameter for non-static member functions (which is the this
15594 pointer) as artificial. We obtain this information from
15595 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15596 if (nparams
== 0 || TYPE_FIELD_ARTIFICIAL (this_type
, 0) == 0)
15597 fnp
->voffset
= VOFFSET_STATIC
;
15600 complaint (&symfile_complaints
, _("member function type missing for '%s'"),
15601 dwarf2_full_name (fieldname
, die
, cu
));
15603 /* Get fcontext from DW_AT_containing_type if present. */
15604 if (dwarf2_attr (die
, DW_AT_containing_type
, cu
) != NULL
)
15605 fnp
->fcontext
= die_containing_type (die
, cu
);
15607 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15608 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15610 /* Get accessibility. */
15611 attr
= dwarf2_attr (die
, DW_AT_accessibility
, cu
);
15613 accessibility
= (enum dwarf_access_attribute
) DW_UNSND (attr
);
15615 accessibility
= dwarf2_default_access_attribute (die
, cu
);
15616 switch (accessibility
)
15618 case DW_ACCESS_private
:
15619 fnp
->is_private
= 1;
15621 case DW_ACCESS_protected
:
15622 fnp
->is_protected
= 1;
15626 /* Check for artificial methods. */
15627 attr
= dwarf2_attr (die
, DW_AT_artificial
, cu
);
15628 if (attr
&& DW_UNSND (attr
) != 0)
15629 fnp
->is_artificial
= 1;
15631 fnp
->is_constructor
= dwarf2_is_constructor (die
, cu
);
15633 /* Get index in virtual function table if it is a virtual member
15634 function. For older versions of GCC, this is an offset in the
15635 appropriate virtual table, as specified by DW_AT_containing_type.
15636 For everyone else, it is an expression to be evaluated relative
15637 to the object address. */
15639 attr
= dwarf2_attr (die
, DW_AT_vtable_elem_location
, cu
);
15642 if (attr_form_is_block (attr
) && DW_BLOCK (attr
)->size
> 0)
15644 if (DW_BLOCK (attr
)->data
[0] == DW_OP_constu
)
15646 /* Old-style GCC. */
15647 fnp
->voffset
= decode_locdesc (DW_BLOCK (attr
), cu
) + 2;
15649 else if (DW_BLOCK (attr
)->data
[0] == DW_OP_deref
15650 || (DW_BLOCK (attr
)->size
> 1
15651 && DW_BLOCK (attr
)->data
[0] == DW_OP_deref_size
15652 && DW_BLOCK (attr
)->data
[1] == cu
->header
.addr_size
))
15654 fnp
->voffset
= decode_locdesc (DW_BLOCK (attr
), cu
);
15655 if ((fnp
->voffset
% cu
->header
.addr_size
) != 0)
15656 dwarf2_complex_location_expr_complaint ();
15658 fnp
->voffset
/= cu
->header
.addr_size
;
15662 dwarf2_complex_location_expr_complaint ();
15664 if (!fnp
->fcontext
)
15666 /* If there is no `this' field and no DW_AT_containing_type,
15667 we cannot actually find a base class context for the
15669 if (TYPE_NFIELDS (this_type
) == 0
15670 || !TYPE_FIELD_ARTIFICIAL (this_type
, 0))
15672 complaint (&symfile_complaints
,
15673 _("cannot determine context for virtual member "
15674 "function \"%s\" (offset %d)"),
15675 fieldname
, to_underlying (die
->sect_off
));
15680 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type
, 0));
15684 else if (attr_form_is_section_offset (attr
))
15686 dwarf2_complex_location_expr_complaint ();
15690 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15696 attr
= dwarf2_attr (die
, DW_AT_virtuality
, cu
);
15697 if (attr
&& DW_UNSND (attr
))
15699 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15700 complaint (&symfile_complaints
,
15701 _("Member function \"%s\" (offset %d) is virtual "
15702 "but the vtable offset is not specified"),
15703 fieldname
, to_underlying (die
->sect_off
));
15704 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
15705 TYPE_CPLUS_DYNAMIC (type
) = 1;
15710 /* Create the vector of member function fields, and attach it to the type. */
15713 dwarf2_attach_fn_fields_to_type (struct field_info
*fip
, struct type
*type
,
15714 struct dwarf2_cu
*cu
)
15716 struct fnfieldlist
*flp
;
15719 if (cu
->language
== language_ada
)
15720 error (_("unexpected member functions in Ada type"));
15722 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
15723 TYPE_FN_FIELDLISTS (type
) = (struct fn_fieldlist
*)
15724 TYPE_ALLOC (type
, sizeof (struct fn_fieldlist
) * fip
->nfnfields
);
15726 for (i
= 0, flp
= fip
->fnfieldlists
; i
< fip
->nfnfields
; i
++, flp
++)
15728 struct nextfnfield
*nfp
= flp
->head
;
15729 struct fn_fieldlist
*fn_flp
= &TYPE_FN_FIELDLIST (type
, i
);
15732 TYPE_FN_FIELDLIST_NAME (type
, i
) = flp
->name
;
15733 TYPE_FN_FIELDLIST_LENGTH (type
, i
) = flp
->length
;
15734 fn_flp
->fn_fields
= (struct fn_field
*)
15735 TYPE_ALLOC (type
, sizeof (struct fn_field
) * flp
->length
);
15736 for (k
= flp
->length
; (k
--, nfp
); nfp
= nfp
->next
)
15737 fn_flp
->fn_fields
[k
] = nfp
->fnfield
;
15740 TYPE_NFN_FIELDS (type
) = fip
->nfnfields
;
15743 /* Returns non-zero if NAME is the name of a vtable member in CU's
15744 language, zero otherwise. */
15746 is_vtable_name (const char *name
, struct dwarf2_cu
*cu
)
15748 static const char vptr
[] = "_vptr";
15750 /* Look for the C++ form of the vtable. */
15751 if (startswith (name
, vptr
) && is_cplus_marker (name
[sizeof (vptr
) - 1]))
15757 /* GCC outputs unnamed structures that are really pointers to member
15758 functions, with the ABI-specified layout. If TYPE describes
15759 such a structure, smash it into a member function type.
15761 GCC shouldn't do this; it should just output pointer to member DIEs.
15762 This is GCC PR debug/28767. */
15765 quirk_gcc_member_function_pointer (struct type
*type
, struct objfile
*objfile
)
15767 struct type
*pfn_type
, *self_type
, *new_type
;
15769 /* Check for a structure with no name and two children. */
15770 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
|| TYPE_NFIELDS (type
) != 2)
15773 /* Check for __pfn and __delta members. */
15774 if (TYPE_FIELD_NAME (type
, 0) == NULL
15775 || strcmp (TYPE_FIELD_NAME (type
, 0), "__pfn") != 0
15776 || TYPE_FIELD_NAME (type
, 1) == NULL
15777 || strcmp (TYPE_FIELD_NAME (type
, 1), "__delta") != 0)
15780 /* Find the type of the method. */
15781 pfn_type
= TYPE_FIELD_TYPE (type
, 0);
15782 if (pfn_type
== NULL
15783 || TYPE_CODE (pfn_type
) != TYPE_CODE_PTR
15784 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type
)) != TYPE_CODE_FUNC
)
15787 /* Look for the "this" argument. */
15788 pfn_type
= TYPE_TARGET_TYPE (pfn_type
);
15789 if (TYPE_NFIELDS (pfn_type
) == 0
15790 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15791 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type
, 0)) != TYPE_CODE_PTR
)
15794 self_type
= TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type
, 0));
15795 new_type
= alloc_type (objfile
);
15796 smash_to_method_type (new_type
, self_type
, TYPE_TARGET_TYPE (pfn_type
),
15797 TYPE_FIELDS (pfn_type
), TYPE_NFIELDS (pfn_type
),
15798 TYPE_VARARGS (pfn_type
));
15799 smash_to_methodptr_type (type
, new_type
);
15803 /* Called when we find the DIE that starts a structure or union scope
15804 (definition) to create a type for the structure or union. Fill in
15805 the type's name and general properties; the members will not be
15806 processed until process_structure_scope. A symbol table entry for
15807 the type will also not be done until process_structure_scope (assuming
15808 the type has a name).
15810 NOTE: we need to call these functions regardless of whether or not the
15811 DIE has a DW_AT_name attribute, since it might be an anonymous
15812 structure or union. This gets the type entered into our set of
15813 user defined types. */
15815 static struct type
*
15816 read_structure_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
15818 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
15820 struct attribute
*attr
;
15823 /* If the definition of this type lives in .debug_types, read that type.
15824 Don't follow DW_AT_specification though, that will take us back up
15825 the chain and we want to go down. */
15826 attr
= dwarf2_attr_no_follow (die
, DW_AT_signature
);
15829 type
= get_DW_AT_signature_type (die
, attr
, cu
);
15831 /* The type's CU may not be the same as CU.
15832 Ensure TYPE is recorded with CU in die_type_hash. */
15833 return set_die_type (die
, type
, cu
);
15836 type
= alloc_type (objfile
);
15837 INIT_CPLUS_SPECIFIC (type
);
15839 name
= dwarf2_name (die
, cu
);
15842 if (cu
->language
== language_cplus
15843 || cu
->language
== language_d
15844 || cu
->language
== language_rust
)
15846 const char *full_name
= dwarf2_full_name (name
, die
, cu
);
15848 /* dwarf2_full_name might have already finished building the DIE's
15849 type. If so, there is no need to continue. */
15850 if (get_die_type (die
, cu
) != NULL
)
15851 return get_die_type (die
, cu
);
15853 TYPE_TAG_NAME (type
) = full_name
;
15854 if (die
->tag
== DW_TAG_structure_type
15855 || die
->tag
== DW_TAG_class_type
)
15856 TYPE_NAME (type
) = TYPE_TAG_NAME (type
);
15860 /* The name is already allocated along with this objfile, so
15861 we don't need to duplicate it for the type. */
15862 TYPE_TAG_NAME (type
) = name
;
15863 if (die
->tag
== DW_TAG_class_type
)
15864 TYPE_NAME (type
) = TYPE_TAG_NAME (type
);
15868 if (die
->tag
== DW_TAG_structure_type
)
15870 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
15872 else if (die
->tag
== DW_TAG_union_type
)
15874 TYPE_CODE (type
) = TYPE_CODE_UNION
;
15878 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
15881 if (cu
->language
== language_cplus
&& die
->tag
== DW_TAG_class_type
)
15882 TYPE_DECLARED_CLASS (type
) = 1;
15884 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
15887 if (attr_form_is_constant (attr
))
15888 TYPE_LENGTH (type
) = DW_UNSND (attr
);
15891 /* For the moment, dynamic type sizes are not supported
15892 by GDB's struct type. The actual size is determined
15893 on-demand when resolving the type of a given object,
15894 so set the type's length to zero for now. Otherwise,
15895 we record an expression as the length, and that expression
15896 could lead to a very large value, which could eventually
15897 lead to us trying to allocate that much memory when creating
15898 a value of that type. */
15899 TYPE_LENGTH (type
) = 0;
15904 TYPE_LENGTH (type
) = 0;
15907 if (producer_is_icc_lt_14 (cu
) && (TYPE_LENGTH (type
) == 0))
15909 /* ICC<14 does not output the required DW_AT_declaration on
15910 incomplete types, but gives them a size of zero. */
15911 TYPE_STUB (type
) = 1;
15914 TYPE_STUB_SUPPORTED (type
) = 1;
15916 if (die_is_declaration (die
, cu
))
15917 TYPE_STUB (type
) = 1;
15918 else if (attr
== NULL
&& die
->child
== NULL
15919 && producer_is_realview (cu
->producer
))
15920 /* RealView does not output the required DW_AT_declaration
15921 on incomplete types. */
15922 TYPE_STUB (type
) = 1;
15924 /* We need to add the type field to the die immediately so we don't
15925 infinitely recurse when dealing with pointers to the structure
15926 type within the structure itself. */
15927 set_die_type (die
, type
, cu
);
15929 /* set_die_type should be already done. */
15930 set_descriptive_type (type
, die
, cu
);
15935 /* Finish creating a structure or union type, including filling in
15936 its members and creating a symbol for it. */
15939 process_structure_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
15941 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
15942 struct die_info
*child_die
;
15945 type
= get_die_type (die
, cu
);
15947 type
= read_structure_type (die
, cu
);
15949 if (die
->child
!= NULL
&& ! die_is_declaration (die
, cu
))
15951 struct field_info fi
;
15952 std::vector
<struct symbol
*> template_args
;
15953 struct cleanup
*back_to
= make_cleanup (null_cleanup
, 0);
15955 memset (&fi
, 0, sizeof (struct field_info
));
15957 child_die
= die
->child
;
15959 while (child_die
&& child_die
->tag
)
15961 if (child_die
->tag
== DW_TAG_member
15962 || child_die
->tag
== DW_TAG_variable
)
15964 /* NOTE: carlton/2002-11-05: A C++ static data member
15965 should be a DW_TAG_member that is a declaration, but
15966 all versions of G++ as of this writing (so through at
15967 least 3.2.1) incorrectly generate DW_TAG_variable
15968 tags for them instead. */
15969 dwarf2_add_field (&fi
, child_die
, cu
);
15971 else if (child_die
->tag
== DW_TAG_subprogram
)
15973 /* Rust doesn't have member functions in the C++ sense.
15974 However, it does emit ordinary functions as children
15975 of a struct DIE. */
15976 if (cu
->language
== language_rust
)
15977 read_func_scope (child_die
, cu
);
15980 /* C++ member function. */
15981 dwarf2_add_member_fn (&fi
, child_die
, type
, cu
);
15984 else if (child_die
->tag
== DW_TAG_inheritance
)
15986 /* C++ base class field. */
15987 dwarf2_add_field (&fi
, child_die
, cu
);
15989 else if (type_can_define_types (child_die
))
15990 dwarf2_add_type_defn (&fi
, child_die
, cu
);
15991 else if (child_die
->tag
== DW_TAG_template_type_param
15992 || child_die
->tag
== DW_TAG_template_value_param
)
15994 struct symbol
*arg
= new_symbol (child_die
, NULL
, cu
);
15997 template_args
.push_back (arg
);
16000 child_die
= sibling_die (child_die
);
16003 /* Attach template arguments to type. */
16004 if (!template_args
.empty ())
16006 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
16007 TYPE_N_TEMPLATE_ARGUMENTS (type
) = template_args
.size ();
16008 TYPE_TEMPLATE_ARGUMENTS (type
)
16009 = XOBNEWVEC (&objfile
->objfile_obstack
,
16011 TYPE_N_TEMPLATE_ARGUMENTS (type
));
16012 memcpy (TYPE_TEMPLATE_ARGUMENTS (type
),
16013 template_args
.data (),
16014 (TYPE_N_TEMPLATE_ARGUMENTS (type
)
16015 * sizeof (struct symbol
*)));
16018 /* Attach fields and member functions to the type. */
16020 dwarf2_attach_fields_to_type (&fi
, type
, cu
);
16023 dwarf2_attach_fn_fields_to_type (&fi
, type
, cu
);
16025 /* Get the type which refers to the base class (possibly this
16026 class itself) which contains the vtable pointer for the current
16027 class from the DW_AT_containing_type attribute. This use of
16028 DW_AT_containing_type is a GNU extension. */
16030 if (dwarf2_attr (die
, DW_AT_containing_type
, cu
) != NULL
)
16032 struct type
*t
= die_containing_type (die
, cu
);
16034 set_type_vptr_basetype (type
, t
);
16039 /* Our own class provides vtbl ptr. */
16040 for (i
= TYPE_NFIELDS (t
) - 1;
16041 i
>= TYPE_N_BASECLASSES (t
);
16044 const char *fieldname
= TYPE_FIELD_NAME (t
, i
);
16046 if (is_vtable_name (fieldname
, cu
))
16048 set_type_vptr_fieldno (type
, i
);
16053 /* Complain if virtual function table field not found. */
16054 if (i
< TYPE_N_BASECLASSES (t
))
16055 complaint (&symfile_complaints
,
16056 _("virtual function table pointer "
16057 "not found when defining class '%s'"),
16058 TYPE_TAG_NAME (type
) ? TYPE_TAG_NAME (type
) :
16063 set_type_vptr_fieldno (type
, TYPE_VPTR_FIELDNO (t
));
16066 else if (cu
->producer
16067 && startswith (cu
->producer
, "IBM(R) XL C/C++ Advanced Edition"))
16069 /* The IBM XLC compiler does not provide direct indication
16070 of the containing type, but the vtable pointer is
16071 always named __vfp. */
16075 for (i
= TYPE_NFIELDS (type
) - 1;
16076 i
>= TYPE_N_BASECLASSES (type
);
16079 if (strcmp (TYPE_FIELD_NAME (type
, i
), "__vfp") == 0)
16081 set_type_vptr_fieldno (type
, i
);
16082 set_type_vptr_basetype (type
, type
);
16089 /* Copy fi.typedef_field_list linked list elements content into the
16090 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16091 if (fi
.typedef_field_list
)
16093 int i
= fi
.typedef_field_list_count
;
16095 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
16096 TYPE_TYPEDEF_FIELD_ARRAY (type
)
16097 = ((struct decl_field
*)
16098 TYPE_ALLOC (type
, sizeof (TYPE_TYPEDEF_FIELD (type
, 0)) * i
));
16099 TYPE_TYPEDEF_FIELD_COUNT (type
) = i
;
16101 /* Reverse the list order to keep the debug info elements order. */
16104 struct decl_field
*dest
, *src
;
16106 dest
= &TYPE_TYPEDEF_FIELD (type
, i
);
16107 src
= &fi
.typedef_field_list
->field
;
16108 fi
.typedef_field_list
= fi
.typedef_field_list
->next
;
16113 /* Copy fi.nested_types_list linked list elements content into the
16114 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16115 if (fi
.nested_types_list
!= NULL
&& cu
->language
!= language_ada
)
16117 int i
= fi
.nested_types_list_count
;
16119 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
16120 TYPE_NESTED_TYPES_ARRAY (type
)
16121 = ((struct decl_field
*)
16122 TYPE_ALLOC (type
, sizeof (struct decl_field
) * i
));
16123 TYPE_NESTED_TYPES_COUNT (type
) = i
;
16125 /* Reverse the list order to keep the debug info elements order. */
16128 struct decl_field
*dest
, *src
;
16130 dest
= &TYPE_NESTED_TYPES_FIELD (type
, i
);
16131 src
= &fi
.nested_types_list
->field
;
16132 fi
.nested_types_list
= fi
.nested_types_list
->next
;
16137 do_cleanups (back_to
);
16140 quirk_gcc_member_function_pointer (type
, objfile
);
16142 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16143 snapshots) has been known to create a die giving a declaration
16144 for a class that has, as a child, a die giving a definition for a
16145 nested class. So we have to process our children even if the
16146 current die is a declaration. Normally, of course, a declaration
16147 won't have any children at all. */
16149 child_die
= die
->child
;
16151 while (child_die
!= NULL
&& child_die
->tag
)
16153 if (child_die
->tag
== DW_TAG_member
16154 || child_die
->tag
== DW_TAG_variable
16155 || child_die
->tag
== DW_TAG_inheritance
16156 || child_die
->tag
== DW_TAG_template_value_param
16157 || child_die
->tag
== DW_TAG_template_type_param
)
16162 process_die (child_die
, cu
);
16164 child_die
= sibling_die (child_die
);
16167 /* Do not consider external references. According to the DWARF standard,
16168 these DIEs are identified by the fact that they have no byte_size
16169 attribute, and a declaration attribute. */
16170 if (dwarf2_attr (die
, DW_AT_byte_size
, cu
) != NULL
16171 || !die_is_declaration (die
, cu
))
16172 new_symbol (die
, type
, cu
);
16175 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16176 update TYPE using some information only available in DIE's children. */
16179 update_enumeration_type_from_children (struct die_info
*die
,
16181 struct dwarf2_cu
*cu
)
16183 struct die_info
*child_die
;
16184 int unsigned_enum
= 1;
16188 auto_obstack obstack
;
16190 for (child_die
= die
->child
;
16191 child_die
!= NULL
&& child_die
->tag
;
16192 child_die
= sibling_die (child_die
))
16194 struct attribute
*attr
;
16196 const gdb_byte
*bytes
;
16197 struct dwarf2_locexpr_baton
*baton
;
16200 if (child_die
->tag
!= DW_TAG_enumerator
)
16203 attr
= dwarf2_attr (child_die
, DW_AT_const_value
, cu
);
16207 name
= dwarf2_name (child_die
, cu
);
16209 name
= "<anonymous enumerator>";
16211 dwarf2_const_value_attr (attr
, type
, name
, &obstack
, cu
,
16212 &value
, &bytes
, &baton
);
16218 else if ((mask
& value
) != 0)
16223 /* If we already know that the enum type is neither unsigned, nor
16224 a flag type, no need to look at the rest of the enumerates. */
16225 if (!unsigned_enum
&& !flag_enum
)
16230 TYPE_UNSIGNED (type
) = 1;
16232 TYPE_FLAG_ENUM (type
) = 1;
16235 /* Given a DW_AT_enumeration_type die, set its type. We do not
16236 complete the type's fields yet, or create any symbols. */
16238 static struct type
*
16239 read_enumeration_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
16241 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
16243 struct attribute
*attr
;
16246 /* If the definition of this type lives in .debug_types, read that type.
16247 Don't follow DW_AT_specification though, that will take us back up
16248 the chain and we want to go down. */
16249 attr
= dwarf2_attr_no_follow (die
, DW_AT_signature
);
16252 type
= get_DW_AT_signature_type (die
, attr
, cu
);
16254 /* The type's CU may not be the same as CU.
16255 Ensure TYPE is recorded with CU in die_type_hash. */
16256 return set_die_type (die
, type
, cu
);
16259 type
= alloc_type (objfile
);
16261 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
16262 name
= dwarf2_full_name (NULL
, die
, cu
);
16264 TYPE_TAG_NAME (type
) = name
;
16266 attr
= dwarf2_attr (die
, DW_AT_type
, cu
);
16269 struct type
*underlying_type
= die_type (die
, cu
);
16271 TYPE_TARGET_TYPE (type
) = underlying_type
;
16274 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
16277 TYPE_LENGTH (type
) = DW_UNSND (attr
);
16281 TYPE_LENGTH (type
) = 0;
16284 /* The enumeration DIE can be incomplete. In Ada, any type can be
16285 declared as private in the package spec, and then defined only
16286 inside the package body. Such types are known as Taft Amendment
16287 Types. When another package uses such a type, an incomplete DIE
16288 may be generated by the compiler. */
16289 if (die_is_declaration (die
, cu
))
16290 TYPE_STUB (type
) = 1;
16292 /* Finish the creation of this type by using the enum's children.
16293 We must call this even when the underlying type has been provided
16294 so that we can determine if we're looking at a "flag" enum. */
16295 update_enumeration_type_from_children (die
, type
, cu
);
16297 /* If this type has an underlying type that is not a stub, then we
16298 may use its attributes. We always use the "unsigned" attribute
16299 in this situation, because ordinarily we guess whether the type
16300 is unsigned -- but the guess can be wrong and the underlying type
16301 can tell us the reality. However, we defer to a local size
16302 attribute if one exists, because this lets the compiler override
16303 the underlying type if needed. */
16304 if (TYPE_TARGET_TYPE (type
) != NULL
&& !TYPE_STUB (TYPE_TARGET_TYPE (type
)))
16306 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type
));
16307 if (TYPE_LENGTH (type
) == 0)
16308 TYPE_LENGTH (type
) = TYPE_LENGTH (TYPE_TARGET_TYPE (type
));
16311 TYPE_DECLARED_CLASS (type
) = dwarf2_flag_true_p (die
, DW_AT_enum_class
, cu
);
16313 return set_die_type (die
, type
, cu
);
16316 /* Given a pointer to a die which begins an enumeration, process all
16317 the dies that define the members of the enumeration, and create the
16318 symbol for the enumeration type.
16320 NOTE: We reverse the order of the element list. */
16323 process_enumeration_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
16325 struct type
*this_type
;
16327 this_type
= get_die_type (die
, cu
);
16328 if (this_type
== NULL
)
16329 this_type
= read_enumeration_type (die
, cu
);
16331 if (die
->child
!= NULL
)
16333 struct die_info
*child_die
;
16334 struct symbol
*sym
;
16335 struct field
*fields
= NULL
;
16336 int num_fields
= 0;
16339 child_die
= die
->child
;
16340 while (child_die
&& child_die
->tag
)
16342 if (child_die
->tag
!= DW_TAG_enumerator
)
16344 process_die (child_die
, cu
);
16348 name
= dwarf2_name (child_die
, cu
);
16351 sym
= new_symbol (child_die
, this_type
, cu
);
16353 if ((num_fields
% DW_FIELD_ALLOC_CHUNK
) == 0)
16355 fields
= (struct field
*)
16357 (num_fields
+ DW_FIELD_ALLOC_CHUNK
)
16358 * sizeof (struct field
));
16361 FIELD_NAME (fields
[num_fields
]) = SYMBOL_LINKAGE_NAME (sym
);
16362 FIELD_TYPE (fields
[num_fields
]) = NULL
;
16363 SET_FIELD_ENUMVAL (fields
[num_fields
], SYMBOL_VALUE (sym
));
16364 FIELD_BITSIZE (fields
[num_fields
]) = 0;
16370 child_die
= sibling_die (child_die
);
16375 TYPE_NFIELDS (this_type
) = num_fields
;
16376 TYPE_FIELDS (this_type
) = (struct field
*)
16377 TYPE_ALLOC (this_type
, sizeof (struct field
) * num_fields
);
16378 memcpy (TYPE_FIELDS (this_type
), fields
,
16379 sizeof (struct field
) * num_fields
);
16384 /* If we are reading an enum from a .debug_types unit, and the enum
16385 is a declaration, and the enum is not the signatured type in the
16386 unit, then we do not want to add a symbol for it. Adding a
16387 symbol would in some cases obscure the true definition of the
16388 enum, giving users an incomplete type when the definition is
16389 actually available. Note that we do not want to do this for all
16390 enums which are just declarations, because C++0x allows forward
16391 enum declarations. */
16392 if (cu
->per_cu
->is_debug_types
16393 && die_is_declaration (die
, cu
))
16395 struct signatured_type
*sig_type
;
16397 sig_type
= (struct signatured_type
*) cu
->per_cu
;
16398 gdb_assert (to_underlying (sig_type
->type_offset_in_section
) != 0);
16399 if (sig_type
->type_offset_in_section
!= die
->sect_off
)
16403 new_symbol (die
, this_type
, cu
);
16406 /* Extract all information from a DW_TAG_array_type DIE and put it in
16407 the DIE's type field. For now, this only handles one dimensional
16410 static struct type
*
16411 read_array_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
16413 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
16414 struct die_info
*child_die
;
16416 struct type
*element_type
, *range_type
, *index_type
;
16417 struct attribute
*attr
;
16419 struct dynamic_prop
*byte_stride_prop
= NULL
;
16420 unsigned int bit_stride
= 0;
16422 element_type
= die_type (die
, cu
);
16424 /* The die_type call above may have already set the type for this DIE. */
16425 type
= get_die_type (die
, cu
);
16429 attr
= dwarf2_attr (die
, DW_AT_byte_stride
, cu
);
16435 = (struct dynamic_prop
*) alloca (sizeof (struct dynamic_prop
));
16436 stride_ok
= attr_to_dynamic_prop (attr
, die
, cu
, byte_stride_prop
);
16439 complaint (&symfile_complaints
,
16440 _("unable to read array DW_AT_byte_stride "
16441 " - DIE at 0x%x [in module %s]"),
16442 to_underlying (die
->sect_off
),
16443 objfile_name (cu
->per_cu
->dwarf2_per_objfile
->objfile
));
16444 /* Ignore this attribute. We will likely not be able to print
16445 arrays of this type correctly, but there is little we can do
16446 to help if we cannot read the attribute's value. */
16447 byte_stride_prop
= NULL
;
16451 attr
= dwarf2_attr (die
, DW_AT_bit_stride
, cu
);
16453 bit_stride
= DW_UNSND (attr
);
16455 /* Irix 6.2 native cc creates array types without children for
16456 arrays with unspecified length. */
16457 if (die
->child
== NULL
)
16459 index_type
= objfile_type (objfile
)->builtin_int
;
16460 range_type
= create_static_range_type (NULL
, index_type
, 0, -1);
16461 type
= create_array_type_with_stride (NULL
, element_type
, range_type
,
16462 byte_stride_prop
, bit_stride
);
16463 return set_die_type (die
, type
, cu
);
16466 std::vector
<struct type
*> range_types
;
16467 child_die
= die
->child
;
16468 while (child_die
&& child_die
->tag
)
16470 if (child_die
->tag
== DW_TAG_subrange_type
)
16472 struct type
*child_type
= read_type_die (child_die
, cu
);
16474 if (child_type
!= NULL
)
16476 /* The range type was succesfully read. Save it for the
16477 array type creation. */
16478 range_types
.push_back (child_type
);
16481 child_die
= sibling_die (child_die
);
16484 /* Dwarf2 dimensions are output from left to right, create the
16485 necessary array types in backwards order. */
16487 type
= element_type
;
16489 if (read_array_order (die
, cu
) == DW_ORD_col_major
)
16493 while (i
< range_types
.size ())
16494 type
= create_array_type_with_stride (NULL
, type
, range_types
[i
++],
16495 byte_stride_prop
, bit_stride
);
16499 size_t ndim
= range_types
.size ();
16501 type
= create_array_type_with_stride (NULL
, type
, range_types
[ndim
],
16502 byte_stride_prop
, bit_stride
);
16505 /* Understand Dwarf2 support for vector types (like they occur on
16506 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16507 array type. This is not part of the Dwarf2/3 standard yet, but a
16508 custom vendor extension. The main difference between a regular
16509 array and the vector variant is that vectors are passed by value
16511 attr
= dwarf2_attr (die
, DW_AT_GNU_vector
, cu
);
16513 make_vector_type (type
);
16515 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16516 implementation may choose to implement triple vectors using this
16518 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
16521 if (DW_UNSND (attr
) >= TYPE_LENGTH (type
))
16522 TYPE_LENGTH (type
) = DW_UNSND (attr
);
16524 complaint (&symfile_complaints
,
16525 _("DW_AT_byte_size for array type smaller "
16526 "than the total size of elements"));
16529 name
= dwarf2_name (die
, cu
);
16531 TYPE_NAME (type
) = name
;
16533 /* Install the type in the die. */
16534 set_die_type (die
, type
, cu
);
16536 /* set_die_type should be already done. */
16537 set_descriptive_type (type
, die
, cu
);
16542 static enum dwarf_array_dim_ordering
16543 read_array_order (struct die_info
*die
, struct dwarf2_cu
*cu
)
16545 struct attribute
*attr
;
16547 attr
= dwarf2_attr (die
, DW_AT_ordering
, cu
);
16550 return (enum dwarf_array_dim_ordering
) DW_SND (attr
);
16552 /* GNU F77 is a special case, as at 08/2004 array type info is the
16553 opposite order to the dwarf2 specification, but data is still
16554 laid out as per normal fortran.
16556 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16557 version checking. */
16559 if (cu
->language
== language_fortran
16560 && cu
->producer
&& strstr (cu
->producer
, "GNU F77"))
16562 return DW_ORD_row_major
;
16565 switch (cu
->language_defn
->la_array_ordering
)
16567 case array_column_major
:
16568 return DW_ORD_col_major
;
16569 case array_row_major
:
16571 return DW_ORD_row_major
;
16575 /* Extract all information from a DW_TAG_set_type DIE and put it in
16576 the DIE's type field. */
16578 static struct type
*
16579 read_set_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
16581 struct type
*domain_type
, *set_type
;
16582 struct attribute
*attr
;
16584 domain_type
= die_type (die
, cu
);
16586 /* The die_type call above may have already set the type for this DIE. */
16587 set_type
= get_die_type (die
, cu
);
16591 set_type
= create_set_type (NULL
, domain_type
);
16593 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
16595 TYPE_LENGTH (set_type
) = DW_UNSND (attr
);
16597 return set_die_type (die
, set_type
, cu
);
16600 /* A helper for read_common_block that creates a locexpr baton.
16601 SYM is the symbol which we are marking as computed.
16602 COMMON_DIE is the DIE for the common block.
16603 COMMON_LOC is the location expression attribute for the common
16605 MEMBER_LOC is the location expression attribute for the particular
16606 member of the common block that we are processing.
16607 CU is the CU from which the above come. */
16610 mark_common_block_symbol_computed (struct symbol
*sym
,
16611 struct die_info
*common_die
,
16612 struct attribute
*common_loc
,
16613 struct attribute
*member_loc
,
16614 struct dwarf2_cu
*cu
)
16616 struct dwarf2_per_objfile
*dwarf2_per_objfile
16617 = cu
->per_cu
->dwarf2_per_objfile
;
16618 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
16619 struct dwarf2_locexpr_baton
*baton
;
16621 unsigned int cu_off
;
16622 enum bfd_endian byte_order
= gdbarch_byte_order (get_objfile_arch (objfile
));
16623 LONGEST offset
= 0;
16625 gdb_assert (common_loc
&& member_loc
);
16626 gdb_assert (attr_form_is_block (common_loc
));
16627 gdb_assert (attr_form_is_block (member_loc
)
16628 || attr_form_is_constant (member_loc
));
16630 baton
= XOBNEW (&objfile
->objfile_obstack
, struct dwarf2_locexpr_baton
);
16631 baton
->per_cu
= cu
->per_cu
;
16632 gdb_assert (baton
->per_cu
);
16634 baton
->size
= 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16636 if (attr_form_is_constant (member_loc
))
16638 offset
= dwarf2_get_attr_constant_value (member_loc
, 0);
16639 baton
->size
+= 1 /* DW_OP_addr */ + cu
->header
.addr_size
;
16642 baton
->size
+= DW_BLOCK (member_loc
)->size
;
16644 ptr
= (gdb_byte
*) obstack_alloc (&objfile
->objfile_obstack
, baton
->size
);
16647 *ptr
++ = DW_OP_call4
;
16648 cu_off
= common_die
->sect_off
- cu
->per_cu
->sect_off
;
16649 store_unsigned_integer (ptr
, 4, byte_order
, cu_off
);
16652 if (attr_form_is_constant (member_loc
))
16654 *ptr
++ = DW_OP_addr
;
16655 store_unsigned_integer (ptr
, cu
->header
.addr_size
, byte_order
, offset
);
16656 ptr
+= cu
->header
.addr_size
;
16660 /* We have to copy the data here, because DW_OP_call4 will only
16661 use a DW_AT_location attribute. */
16662 memcpy (ptr
, DW_BLOCK (member_loc
)->data
, DW_BLOCK (member_loc
)->size
);
16663 ptr
+= DW_BLOCK (member_loc
)->size
;
16666 *ptr
++ = DW_OP_plus
;
16667 gdb_assert (ptr
- baton
->data
== baton
->size
);
16669 SYMBOL_LOCATION_BATON (sym
) = baton
;
16670 SYMBOL_ACLASS_INDEX (sym
) = dwarf2_locexpr_index
;
16673 /* Create appropriate locally-scoped variables for all the
16674 DW_TAG_common_block entries. Also create a struct common_block
16675 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16676 is used to sepate the common blocks name namespace from regular
16680 read_common_block (struct die_info
*die
, struct dwarf2_cu
*cu
)
16682 struct attribute
*attr
;
16684 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
16687 /* Support the .debug_loc offsets. */
16688 if (attr_form_is_block (attr
))
16692 else if (attr_form_is_section_offset (attr
))
16694 dwarf2_complex_location_expr_complaint ();
16699 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16700 "common block member");
16705 if (die
->child
!= NULL
)
16707 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
16708 struct die_info
*child_die
;
16709 size_t n_entries
= 0, size
;
16710 struct common_block
*common_block
;
16711 struct symbol
*sym
;
16713 for (child_die
= die
->child
;
16714 child_die
&& child_die
->tag
;
16715 child_die
= sibling_die (child_die
))
16718 size
= (sizeof (struct common_block
)
16719 + (n_entries
- 1) * sizeof (struct symbol
*));
16721 = (struct common_block
*) obstack_alloc (&objfile
->objfile_obstack
,
16723 memset (common_block
->contents
, 0, n_entries
* sizeof (struct symbol
*));
16724 common_block
->n_entries
= 0;
16726 for (child_die
= die
->child
;
16727 child_die
&& child_die
->tag
;
16728 child_die
= sibling_die (child_die
))
16730 /* Create the symbol in the DW_TAG_common_block block in the current
16732 sym
= new_symbol (child_die
, NULL
, cu
);
16735 struct attribute
*member_loc
;
16737 common_block
->contents
[common_block
->n_entries
++] = sym
;
16739 member_loc
= dwarf2_attr (child_die
, DW_AT_data_member_location
,
16743 /* GDB has handled this for a long time, but it is
16744 not specified by DWARF. It seems to have been
16745 emitted by gfortran at least as recently as:
16746 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16747 complaint (&symfile_complaints
,
16748 _("Variable in common block has "
16749 "DW_AT_data_member_location "
16750 "- DIE at 0x%x [in module %s]"),
16751 to_underlying (child_die
->sect_off
),
16752 objfile_name (objfile
));
16754 if (attr_form_is_section_offset (member_loc
))
16755 dwarf2_complex_location_expr_complaint ();
16756 else if (attr_form_is_constant (member_loc
)
16757 || attr_form_is_block (member_loc
))
16760 mark_common_block_symbol_computed (sym
, die
, attr
,
16764 dwarf2_complex_location_expr_complaint ();
16769 sym
= new_symbol (die
, objfile_type (objfile
)->builtin_void
, cu
);
16770 SYMBOL_VALUE_COMMON_BLOCK (sym
) = common_block
;
16774 /* Create a type for a C++ namespace. */
16776 static struct type
*
16777 read_namespace_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
16779 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
16780 const char *previous_prefix
, *name
;
16784 /* For extensions, reuse the type of the original namespace. */
16785 if (dwarf2_attr (die
, DW_AT_extension
, cu
) != NULL
)
16787 struct die_info
*ext_die
;
16788 struct dwarf2_cu
*ext_cu
= cu
;
16790 ext_die
= dwarf2_extension (die
, &ext_cu
);
16791 type
= read_type_die (ext_die
, ext_cu
);
16793 /* EXT_CU may not be the same as CU.
16794 Ensure TYPE is recorded with CU in die_type_hash. */
16795 return set_die_type (die
, type
, cu
);
16798 name
= namespace_name (die
, &is_anonymous
, cu
);
16800 /* Now build the name of the current namespace. */
16802 previous_prefix
= determine_prefix (die
, cu
);
16803 if (previous_prefix
[0] != '\0')
16804 name
= typename_concat (&objfile
->objfile_obstack
,
16805 previous_prefix
, name
, 0, cu
);
16807 /* Create the type. */
16808 type
= init_type (objfile
, TYPE_CODE_NAMESPACE
, 0, name
);
16809 TYPE_TAG_NAME (type
) = TYPE_NAME (type
);
16811 return set_die_type (die
, type
, cu
);
16814 /* Read a namespace scope. */
16817 read_namespace (struct die_info
*die
, struct dwarf2_cu
*cu
)
16819 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
16822 /* Add a symbol associated to this if we haven't seen the namespace
16823 before. Also, add a using directive if it's an anonymous
16826 if (dwarf2_attr (die
, DW_AT_extension
, cu
) == NULL
)
16830 type
= read_type_die (die
, cu
);
16831 new_symbol (die
, type
, cu
);
16833 namespace_name (die
, &is_anonymous
, cu
);
16836 const char *previous_prefix
= determine_prefix (die
, cu
);
16838 std::vector
<const char *> excludes
;
16839 add_using_directive (using_directives (cu
->language
),
16840 previous_prefix
, TYPE_NAME (type
), NULL
,
16841 NULL
, excludes
, 0, &objfile
->objfile_obstack
);
16845 if (die
->child
!= NULL
)
16847 struct die_info
*child_die
= die
->child
;
16849 while (child_die
&& child_die
->tag
)
16851 process_die (child_die
, cu
);
16852 child_die
= sibling_die (child_die
);
16857 /* Read a Fortran module as type. This DIE can be only a declaration used for
16858 imported module. Still we need that type as local Fortran "use ... only"
16859 declaration imports depend on the created type in determine_prefix. */
16861 static struct type
*
16862 read_module_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
16864 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
16865 const char *module_name
;
16868 module_name
= dwarf2_name (die
, cu
);
16870 complaint (&symfile_complaints
,
16871 _("DW_TAG_module has no name, offset 0x%x"),
16872 to_underlying (die
->sect_off
));
16873 type
= init_type (objfile
, TYPE_CODE_MODULE
, 0, module_name
);
16875 /* determine_prefix uses TYPE_TAG_NAME. */
16876 TYPE_TAG_NAME (type
) = TYPE_NAME (type
);
16878 return set_die_type (die
, type
, cu
);
16881 /* Read a Fortran module. */
16884 read_module (struct die_info
*die
, struct dwarf2_cu
*cu
)
16886 struct die_info
*child_die
= die
->child
;
16889 type
= read_type_die (die
, cu
);
16890 new_symbol (die
, type
, cu
);
16892 while (child_die
&& child_die
->tag
)
16894 process_die (child_die
, cu
);
16895 child_die
= sibling_die (child_die
);
16899 /* Return the name of the namespace represented by DIE. Set
16900 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16903 static const char *
16904 namespace_name (struct die_info
*die
, int *is_anonymous
, struct dwarf2_cu
*cu
)
16906 struct die_info
*current_die
;
16907 const char *name
= NULL
;
16909 /* Loop through the extensions until we find a name. */
16911 for (current_die
= die
;
16912 current_die
!= NULL
;
16913 current_die
= dwarf2_extension (die
, &cu
))
16915 /* We don't use dwarf2_name here so that we can detect the absence
16916 of a name -> anonymous namespace. */
16917 name
= dwarf2_string_attr (die
, DW_AT_name
, cu
);
16923 /* Is it an anonymous namespace? */
16925 *is_anonymous
= (name
== NULL
);
16927 name
= CP_ANONYMOUS_NAMESPACE_STR
;
16932 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16933 the user defined type vector. */
16935 static struct type
*
16936 read_tag_pointer_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
16938 struct gdbarch
*gdbarch
16939 = get_objfile_arch (cu
->per_cu
->dwarf2_per_objfile
->objfile
);
16940 struct comp_unit_head
*cu_header
= &cu
->header
;
16942 struct attribute
*attr_byte_size
;
16943 struct attribute
*attr_address_class
;
16944 int byte_size
, addr_class
;
16945 struct type
*target_type
;
16947 target_type
= die_type (die
, cu
);
16949 /* The die_type call above may have already set the type for this DIE. */
16950 type
= get_die_type (die
, cu
);
16954 type
= lookup_pointer_type (target_type
);
16956 attr_byte_size
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
16957 if (attr_byte_size
)
16958 byte_size
= DW_UNSND (attr_byte_size
);
16960 byte_size
= cu_header
->addr_size
;
16962 attr_address_class
= dwarf2_attr (die
, DW_AT_address_class
, cu
);
16963 if (attr_address_class
)
16964 addr_class
= DW_UNSND (attr_address_class
);
16966 addr_class
= DW_ADDR_none
;
16968 /* If the pointer size or address class is different than the
16969 default, create a type variant marked as such and set the
16970 length accordingly. */
16971 if (TYPE_LENGTH (type
) != byte_size
|| addr_class
!= DW_ADDR_none
)
16973 if (gdbarch_address_class_type_flags_p (gdbarch
))
16977 type_flags
= gdbarch_address_class_type_flags
16978 (gdbarch
, byte_size
, addr_class
);
16979 gdb_assert ((type_flags
& ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL
)
16981 type
= make_type_with_address_space (type
, type_flags
);
16983 else if (TYPE_LENGTH (type
) != byte_size
)
16985 complaint (&symfile_complaints
,
16986 _("invalid pointer size %d"), byte_size
);
16990 /* Should we also complain about unhandled address classes? */
16994 TYPE_LENGTH (type
) = byte_size
;
16995 return set_die_type (die
, type
, cu
);
16998 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16999 the user defined type vector. */
17001 static struct type
*
17002 read_tag_ptr_to_member_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17005 struct type
*to_type
;
17006 struct type
*domain
;
17008 to_type
= die_type (die
, cu
);
17009 domain
= die_containing_type (die
, cu
);
17011 /* The calls above may have already set the type for this DIE. */
17012 type
= get_die_type (die
, cu
);
17016 if (TYPE_CODE (check_typedef (to_type
)) == TYPE_CODE_METHOD
)
17017 type
= lookup_methodptr_type (to_type
);
17018 else if (TYPE_CODE (check_typedef (to_type
)) == TYPE_CODE_FUNC
)
17020 struct type
*new_type
17021 = alloc_type (cu
->per_cu
->dwarf2_per_objfile
->objfile
);
17023 smash_to_method_type (new_type
, domain
, TYPE_TARGET_TYPE (to_type
),
17024 TYPE_FIELDS (to_type
), TYPE_NFIELDS (to_type
),
17025 TYPE_VARARGS (to_type
));
17026 type
= lookup_methodptr_type (new_type
);
17029 type
= lookup_memberptr_type (to_type
, domain
);
17031 return set_die_type (die
, type
, cu
);
17034 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17035 the user defined type vector. */
17037 static struct type
*
17038 read_tag_reference_type (struct die_info
*die
, struct dwarf2_cu
*cu
,
17039 enum type_code refcode
)
17041 struct comp_unit_head
*cu_header
= &cu
->header
;
17042 struct type
*type
, *target_type
;
17043 struct attribute
*attr
;
17045 gdb_assert (refcode
== TYPE_CODE_REF
|| refcode
== TYPE_CODE_RVALUE_REF
);
17047 target_type
= die_type (die
, cu
);
17049 /* The die_type call above may have already set the type for this DIE. */
17050 type
= get_die_type (die
, cu
);
17054 type
= lookup_reference_type (target_type
, refcode
);
17055 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
17058 TYPE_LENGTH (type
) = DW_UNSND (attr
);
17062 TYPE_LENGTH (type
) = cu_header
->addr_size
;
17064 return set_die_type (die
, type
, cu
);
17067 /* Add the given cv-qualifiers to the element type of the array. GCC
17068 outputs DWARF type qualifiers that apply to an array, not the
17069 element type. But GDB relies on the array element type to carry
17070 the cv-qualifiers. This mimics section 6.7.3 of the C99
17073 static struct type
*
17074 add_array_cv_type (struct die_info
*die
, struct dwarf2_cu
*cu
,
17075 struct type
*base_type
, int cnst
, int voltl
)
17077 struct type
*el_type
, *inner_array
;
17079 base_type
= copy_type (base_type
);
17080 inner_array
= base_type
;
17082 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array
)) == TYPE_CODE_ARRAY
)
17084 TYPE_TARGET_TYPE (inner_array
) =
17085 copy_type (TYPE_TARGET_TYPE (inner_array
));
17086 inner_array
= TYPE_TARGET_TYPE (inner_array
);
17089 el_type
= TYPE_TARGET_TYPE (inner_array
);
17090 cnst
|= TYPE_CONST (el_type
);
17091 voltl
|= TYPE_VOLATILE (el_type
);
17092 TYPE_TARGET_TYPE (inner_array
) = make_cv_type (cnst
, voltl
, el_type
, NULL
);
17094 return set_die_type (die
, base_type
, cu
);
17097 static struct type
*
17098 read_tag_const_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17100 struct type
*base_type
, *cv_type
;
17102 base_type
= die_type (die
, cu
);
17104 /* The die_type call above may have already set the type for this DIE. */
17105 cv_type
= get_die_type (die
, cu
);
17109 /* In case the const qualifier is applied to an array type, the element type
17110 is so qualified, not the array type (section 6.7.3 of C99). */
17111 if (TYPE_CODE (base_type
) == TYPE_CODE_ARRAY
)
17112 return add_array_cv_type (die
, cu
, base_type
, 1, 0);
17114 cv_type
= make_cv_type (1, TYPE_VOLATILE (base_type
), base_type
, 0);
17115 return set_die_type (die
, cv_type
, cu
);
17118 static struct type
*
17119 read_tag_volatile_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17121 struct type
*base_type
, *cv_type
;
17123 base_type
= die_type (die
, cu
);
17125 /* The die_type call above may have already set the type for this DIE. */
17126 cv_type
= get_die_type (die
, cu
);
17130 /* In case the volatile qualifier is applied to an array type, the
17131 element type is so qualified, not the array type (section 6.7.3
17133 if (TYPE_CODE (base_type
) == TYPE_CODE_ARRAY
)
17134 return add_array_cv_type (die
, cu
, base_type
, 0, 1);
17136 cv_type
= make_cv_type (TYPE_CONST (base_type
), 1, base_type
, 0);
17137 return set_die_type (die
, cv_type
, cu
);
17140 /* Handle DW_TAG_restrict_type. */
17142 static struct type
*
17143 read_tag_restrict_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17145 struct type
*base_type
, *cv_type
;
17147 base_type
= die_type (die
, cu
);
17149 /* The die_type call above may have already set the type for this DIE. */
17150 cv_type
= get_die_type (die
, cu
);
17154 cv_type
= make_restrict_type (base_type
);
17155 return set_die_type (die
, cv_type
, cu
);
17158 /* Handle DW_TAG_atomic_type. */
17160 static struct type
*
17161 read_tag_atomic_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17163 struct type
*base_type
, *cv_type
;
17165 base_type
= die_type (die
, cu
);
17167 /* The die_type call above may have already set the type for this DIE. */
17168 cv_type
= get_die_type (die
, cu
);
17172 cv_type
= make_atomic_type (base_type
);
17173 return set_die_type (die
, cv_type
, cu
);
17176 /* Extract all information from a DW_TAG_string_type DIE and add to
17177 the user defined type vector. It isn't really a user defined type,
17178 but it behaves like one, with other DIE's using an AT_user_def_type
17179 attribute to reference it. */
17181 static struct type
*
17182 read_tag_string_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17184 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
17185 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
17186 struct type
*type
, *range_type
, *index_type
, *char_type
;
17187 struct attribute
*attr
;
17188 unsigned int length
;
17190 attr
= dwarf2_attr (die
, DW_AT_string_length
, cu
);
17193 length
= DW_UNSND (attr
);
17197 /* Check for the DW_AT_byte_size attribute. */
17198 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
17201 length
= DW_UNSND (attr
);
17209 index_type
= objfile_type (objfile
)->builtin_int
;
17210 range_type
= create_static_range_type (NULL
, index_type
, 1, length
);
17211 char_type
= language_string_char_type (cu
->language_defn
, gdbarch
);
17212 type
= create_string_type (NULL
, char_type
, range_type
);
17214 return set_die_type (die
, type
, cu
);
17217 /* Assuming that DIE corresponds to a function, returns nonzero
17218 if the function is prototyped. */
17221 prototyped_function_p (struct die_info
*die
, struct dwarf2_cu
*cu
)
17223 struct attribute
*attr
;
17225 attr
= dwarf2_attr (die
, DW_AT_prototyped
, cu
);
17226 if (attr
&& (DW_UNSND (attr
) != 0))
17229 /* The DWARF standard implies that the DW_AT_prototyped attribute
17230 is only meaninful for C, but the concept also extends to other
17231 languages that allow unprototyped functions (Eg: Objective C).
17232 For all other languages, assume that functions are always
17234 if (cu
->language
!= language_c
17235 && cu
->language
!= language_objc
17236 && cu
->language
!= language_opencl
)
17239 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17240 prototyped and unprototyped functions; default to prototyped,
17241 since that is more common in modern code (and RealView warns
17242 about unprototyped functions). */
17243 if (producer_is_realview (cu
->producer
))
17249 /* Handle DIES due to C code like:
17253 int (*funcp)(int a, long l);
17257 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17259 static struct type
*
17260 read_subroutine_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17262 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
17263 struct type
*type
; /* Type that this function returns. */
17264 struct type
*ftype
; /* Function that returns above type. */
17265 struct attribute
*attr
;
17267 type
= die_type (die
, cu
);
17269 /* The die_type call above may have already set the type for this DIE. */
17270 ftype
= get_die_type (die
, cu
);
17274 ftype
= lookup_function_type (type
);
17276 if (prototyped_function_p (die
, cu
))
17277 TYPE_PROTOTYPED (ftype
) = 1;
17279 /* Store the calling convention in the type if it's available in
17280 the subroutine die. Otherwise set the calling convention to
17281 the default value DW_CC_normal. */
17282 attr
= dwarf2_attr (die
, DW_AT_calling_convention
, cu
);
17284 TYPE_CALLING_CONVENTION (ftype
) = DW_UNSND (attr
);
17285 else if (cu
->producer
&& strstr (cu
->producer
, "IBM XL C for OpenCL"))
17286 TYPE_CALLING_CONVENTION (ftype
) = DW_CC_GDB_IBM_OpenCL
;
17288 TYPE_CALLING_CONVENTION (ftype
) = DW_CC_normal
;
17290 /* Record whether the function returns normally to its caller or not
17291 if the DWARF producer set that information. */
17292 attr
= dwarf2_attr (die
, DW_AT_noreturn
, cu
);
17293 if (attr
&& (DW_UNSND (attr
) != 0))
17294 TYPE_NO_RETURN (ftype
) = 1;
17296 /* We need to add the subroutine type to the die immediately so
17297 we don't infinitely recurse when dealing with parameters
17298 declared as the same subroutine type. */
17299 set_die_type (die
, ftype
, cu
);
17301 if (die
->child
!= NULL
)
17303 struct type
*void_type
= objfile_type (objfile
)->builtin_void
;
17304 struct die_info
*child_die
;
17305 int nparams
, iparams
;
17307 /* Count the number of parameters.
17308 FIXME: GDB currently ignores vararg functions, but knows about
17309 vararg member functions. */
17311 child_die
= die
->child
;
17312 while (child_die
&& child_die
->tag
)
17314 if (child_die
->tag
== DW_TAG_formal_parameter
)
17316 else if (child_die
->tag
== DW_TAG_unspecified_parameters
)
17317 TYPE_VARARGS (ftype
) = 1;
17318 child_die
= sibling_die (child_die
);
17321 /* Allocate storage for parameters and fill them in. */
17322 TYPE_NFIELDS (ftype
) = nparams
;
17323 TYPE_FIELDS (ftype
) = (struct field
*)
17324 TYPE_ZALLOC (ftype
, nparams
* sizeof (struct field
));
17326 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17327 even if we error out during the parameters reading below. */
17328 for (iparams
= 0; iparams
< nparams
; iparams
++)
17329 TYPE_FIELD_TYPE (ftype
, iparams
) = void_type
;
17332 child_die
= die
->child
;
17333 while (child_die
&& child_die
->tag
)
17335 if (child_die
->tag
== DW_TAG_formal_parameter
)
17337 struct type
*arg_type
;
17339 /* DWARF version 2 has no clean way to discern C++
17340 static and non-static member functions. G++ helps
17341 GDB by marking the first parameter for non-static
17342 member functions (which is the this pointer) as
17343 artificial. We pass this information to
17344 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17346 DWARF version 3 added DW_AT_object_pointer, which GCC
17347 4.5 does not yet generate. */
17348 attr
= dwarf2_attr (child_die
, DW_AT_artificial
, cu
);
17350 TYPE_FIELD_ARTIFICIAL (ftype
, iparams
) = DW_UNSND (attr
);
17352 TYPE_FIELD_ARTIFICIAL (ftype
, iparams
) = 0;
17353 arg_type
= die_type (child_die
, cu
);
17355 /* RealView does not mark THIS as const, which the testsuite
17356 expects. GCC marks THIS as const in method definitions,
17357 but not in the class specifications (GCC PR 43053). */
17358 if (cu
->language
== language_cplus
&& !TYPE_CONST (arg_type
)
17359 && TYPE_FIELD_ARTIFICIAL (ftype
, iparams
))
17362 struct dwarf2_cu
*arg_cu
= cu
;
17363 const char *name
= dwarf2_name (child_die
, cu
);
17365 attr
= dwarf2_attr (die
, DW_AT_object_pointer
, cu
);
17368 /* If the compiler emits this, use it. */
17369 if (follow_die_ref (die
, attr
, &arg_cu
) == child_die
)
17372 else if (name
&& strcmp (name
, "this") == 0)
17373 /* Function definitions will have the argument names. */
17375 else if (name
== NULL
&& iparams
== 0)
17376 /* Declarations may not have the names, so like
17377 elsewhere in GDB, assume an artificial first
17378 argument is "this". */
17382 arg_type
= make_cv_type (1, TYPE_VOLATILE (arg_type
),
17386 TYPE_FIELD_TYPE (ftype
, iparams
) = arg_type
;
17389 child_die
= sibling_die (child_die
);
17396 static struct type
*
17397 read_typedef (struct die_info
*die
, struct dwarf2_cu
*cu
)
17399 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
17400 const char *name
= NULL
;
17401 struct type
*this_type
, *target_type
;
17403 name
= dwarf2_full_name (NULL
, die
, cu
);
17404 this_type
= init_type (objfile
, TYPE_CODE_TYPEDEF
, 0, name
);
17405 TYPE_TARGET_STUB (this_type
) = 1;
17406 set_die_type (die
, this_type
, cu
);
17407 target_type
= die_type (die
, cu
);
17408 if (target_type
!= this_type
)
17409 TYPE_TARGET_TYPE (this_type
) = target_type
;
17412 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17413 spec and cause infinite loops in GDB. */
17414 complaint (&symfile_complaints
,
17415 _("Self-referential DW_TAG_typedef "
17416 "- DIE at 0x%x [in module %s]"),
17417 to_underlying (die
->sect_off
), objfile_name (objfile
));
17418 TYPE_TARGET_TYPE (this_type
) = NULL
;
17423 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17424 (which may be different from NAME) to the architecture back-end to allow
17425 it to guess the correct format if necessary. */
17427 static struct type
*
17428 dwarf2_init_float_type (struct objfile
*objfile
, int bits
, const char *name
,
17429 const char *name_hint
)
17431 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
17432 const struct floatformat
**format
;
17435 format
= gdbarch_floatformat_for_type (gdbarch
, name_hint
, bits
);
17437 type
= init_float_type (objfile
, bits
, name
, format
);
17439 type
= init_type (objfile
, TYPE_CODE_ERROR
, bits
, name
);
17444 /* Find a representation of a given base type and install
17445 it in the TYPE field of the die. */
17447 static struct type
*
17448 read_base_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17450 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
17452 struct attribute
*attr
;
17453 int encoding
= 0, bits
= 0;
17456 attr
= dwarf2_attr (die
, DW_AT_encoding
, cu
);
17459 encoding
= DW_UNSND (attr
);
17461 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
17464 bits
= DW_UNSND (attr
) * TARGET_CHAR_BIT
;
17466 name
= dwarf2_name (die
, cu
);
17469 complaint (&symfile_complaints
,
17470 _("DW_AT_name missing from DW_TAG_base_type"));
17475 case DW_ATE_address
:
17476 /* Turn DW_ATE_address into a void * pointer. */
17477 type
= init_type (objfile
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
, NULL
);
17478 type
= init_pointer_type (objfile
, bits
, name
, type
);
17480 case DW_ATE_boolean
:
17481 type
= init_boolean_type (objfile
, bits
, 1, name
);
17483 case DW_ATE_complex_float
:
17484 type
= dwarf2_init_float_type (objfile
, bits
/ 2, NULL
, name
);
17485 type
= init_complex_type (objfile
, name
, type
);
17487 case DW_ATE_decimal_float
:
17488 type
= init_decfloat_type (objfile
, bits
, name
);
17491 type
= dwarf2_init_float_type (objfile
, bits
, name
, name
);
17493 case DW_ATE_signed
:
17494 type
= init_integer_type (objfile
, bits
, 0, name
);
17496 case DW_ATE_unsigned
:
17497 if (cu
->language
== language_fortran
17499 && startswith (name
, "character("))
17500 type
= init_character_type (objfile
, bits
, 1, name
);
17502 type
= init_integer_type (objfile
, bits
, 1, name
);
17504 case DW_ATE_signed_char
:
17505 if (cu
->language
== language_ada
|| cu
->language
== language_m2
17506 || cu
->language
== language_pascal
17507 || cu
->language
== language_fortran
)
17508 type
= init_character_type (objfile
, bits
, 0, name
);
17510 type
= init_integer_type (objfile
, bits
, 0, name
);
17512 case DW_ATE_unsigned_char
:
17513 if (cu
->language
== language_ada
|| cu
->language
== language_m2
17514 || cu
->language
== language_pascal
17515 || cu
->language
== language_fortran
17516 || cu
->language
== language_rust
)
17517 type
= init_character_type (objfile
, bits
, 1, name
);
17519 type
= init_integer_type (objfile
, bits
, 1, name
);
17523 gdbarch
*arch
= get_objfile_arch (objfile
);
17526 type
= builtin_type (arch
)->builtin_char16
;
17527 else if (bits
== 32)
17528 type
= builtin_type (arch
)->builtin_char32
;
17531 complaint (&symfile_complaints
,
17532 _("unsupported DW_ATE_UTF bit size: '%d'"),
17534 type
= init_integer_type (objfile
, bits
, 1, name
);
17536 return set_die_type (die
, type
, cu
);
17541 complaint (&symfile_complaints
, _("unsupported DW_AT_encoding: '%s'"),
17542 dwarf_type_encoding_name (encoding
));
17543 type
= init_type (objfile
, TYPE_CODE_ERROR
, bits
, name
);
17547 if (name
&& strcmp (name
, "char") == 0)
17548 TYPE_NOSIGN (type
) = 1;
17550 return set_die_type (die
, type
, cu
);
17553 /* Parse dwarf attribute if it's a block, reference or constant and put the
17554 resulting value of the attribute into struct bound_prop.
17555 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17558 attr_to_dynamic_prop (const struct attribute
*attr
, struct die_info
*die
,
17559 struct dwarf2_cu
*cu
, struct dynamic_prop
*prop
)
17561 struct dwarf2_property_baton
*baton
;
17562 struct obstack
*obstack
17563 = &cu
->per_cu
->dwarf2_per_objfile
->objfile
->objfile_obstack
;
17565 if (attr
== NULL
|| prop
== NULL
)
17568 if (attr_form_is_block (attr
))
17570 baton
= XOBNEW (obstack
, struct dwarf2_property_baton
);
17571 baton
->referenced_type
= NULL
;
17572 baton
->locexpr
.per_cu
= cu
->per_cu
;
17573 baton
->locexpr
.size
= DW_BLOCK (attr
)->size
;
17574 baton
->locexpr
.data
= DW_BLOCK (attr
)->data
;
17575 prop
->data
.baton
= baton
;
17576 prop
->kind
= PROP_LOCEXPR
;
17577 gdb_assert (prop
->data
.baton
!= NULL
);
17579 else if (attr_form_is_ref (attr
))
17581 struct dwarf2_cu
*target_cu
= cu
;
17582 struct die_info
*target_die
;
17583 struct attribute
*target_attr
;
17585 target_die
= follow_die_ref (die
, attr
, &target_cu
);
17586 target_attr
= dwarf2_attr (target_die
, DW_AT_location
, target_cu
);
17587 if (target_attr
== NULL
)
17588 target_attr
= dwarf2_attr (target_die
, DW_AT_data_member_location
,
17590 if (target_attr
== NULL
)
17593 switch (target_attr
->name
)
17595 case DW_AT_location
:
17596 if (attr_form_is_section_offset (target_attr
))
17598 baton
= XOBNEW (obstack
, struct dwarf2_property_baton
);
17599 baton
->referenced_type
= die_type (target_die
, target_cu
);
17600 fill_in_loclist_baton (cu
, &baton
->loclist
, target_attr
);
17601 prop
->data
.baton
= baton
;
17602 prop
->kind
= PROP_LOCLIST
;
17603 gdb_assert (prop
->data
.baton
!= NULL
);
17605 else if (attr_form_is_block (target_attr
))
17607 baton
= XOBNEW (obstack
, struct dwarf2_property_baton
);
17608 baton
->referenced_type
= die_type (target_die
, target_cu
);
17609 baton
->locexpr
.per_cu
= cu
->per_cu
;
17610 baton
->locexpr
.size
= DW_BLOCK (target_attr
)->size
;
17611 baton
->locexpr
.data
= DW_BLOCK (target_attr
)->data
;
17612 prop
->data
.baton
= baton
;
17613 prop
->kind
= PROP_LOCEXPR
;
17614 gdb_assert (prop
->data
.baton
!= NULL
);
17618 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17619 "dynamic property");
17623 case DW_AT_data_member_location
:
17627 if (!handle_data_member_location (target_die
, target_cu
,
17631 baton
= XOBNEW (obstack
, struct dwarf2_property_baton
);
17632 baton
->referenced_type
= read_type_die (target_die
->parent
,
17634 baton
->offset_info
.offset
= offset
;
17635 baton
->offset_info
.type
= die_type (target_die
, target_cu
);
17636 prop
->data
.baton
= baton
;
17637 prop
->kind
= PROP_ADDR_OFFSET
;
17642 else if (attr_form_is_constant (attr
))
17644 prop
->data
.const_val
= dwarf2_get_attr_constant_value (attr
, 0);
17645 prop
->kind
= PROP_CONST
;
17649 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr
->form
),
17650 dwarf2_name (die
, cu
));
17657 /* Read the given DW_AT_subrange DIE. */
17659 static struct type
*
17660 read_subrange_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17662 struct type
*base_type
, *orig_base_type
;
17663 struct type
*range_type
;
17664 struct attribute
*attr
;
17665 struct dynamic_prop low
, high
;
17666 int low_default_is_valid
;
17667 int high_bound_is_count
= 0;
17669 LONGEST negative_mask
;
17671 orig_base_type
= die_type (die
, cu
);
17672 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17673 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17674 creating the range type, but we use the result of check_typedef
17675 when examining properties of the type. */
17676 base_type
= check_typedef (orig_base_type
);
17678 /* The die_type call above may have already set the type for this DIE. */
17679 range_type
= get_die_type (die
, cu
);
17683 low
.kind
= PROP_CONST
;
17684 high
.kind
= PROP_CONST
;
17685 high
.data
.const_val
= 0;
17687 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17688 omitting DW_AT_lower_bound. */
17689 switch (cu
->language
)
17692 case language_cplus
:
17693 low
.data
.const_val
= 0;
17694 low_default_is_valid
= 1;
17696 case language_fortran
:
17697 low
.data
.const_val
= 1;
17698 low_default_is_valid
= 1;
17701 case language_objc
:
17702 case language_rust
:
17703 low
.data
.const_val
= 0;
17704 low_default_is_valid
= (cu
->header
.version
>= 4);
17708 case language_pascal
:
17709 low
.data
.const_val
= 1;
17710 low_default_is_valid
= (cu
->header
.version
>= 4);
17713 low
.data
.const_val
= 0;
17714 low_default_is_valid
= 0;
17718 attr
= dwarf2_attr (die
, DW_AT_lower_bound
, cu
);
17720 attr_to_dynamic_prop (attr
, die
, cu
, &low
);
17721 else if (!low_default_is_valid
)
17722 complaint (&symfile_complaints
, _("Missing DW_AT_lower_bound "
17723 "- DIE at 0x%x [in module %s]"),
17724 to_underlying (die
->sect_off
),
17725 objfile_name (cu
->per_cu
->dwarf2_per_objfile
->objfile
));
17727 attr
= dwarf2_attr (die
, DW_AT_upper_bound
, cu
);
17728 if (!attr_to_dynamic_prop (attr
, die
, cu
, &high
))
17730 attr
= dwarf2_attr (die
, DW_AT_count
, cu
);
17731 if (attr_to_dynamic_prop (attr
, die
, cu
, &high
))
17733 /* If bounds are constant do the final calculation here. */
17734 if (low
.kind
== PROP_CONST
&& high
.kind
== PROP_CONST
)
17735 high
.data
.const_val
= low
.data
.const_val
+ high
.data
.const_val
- 1;
17737 high_bound_is_count
= 1;
17741 /* Dwarf-2 specifications explicitly allows to create subrange types
17742 without specifying a base type.
17743 In that case, the base type must be set to the type of
17744 the lower bound, upper bound or count, in that order, if any of these
17745 three attributes references an object that has a type.
17746 If no base type is found, the Dwarf-2 specifications say that
17747 a signed integer type of size equal to the size of an address should
17749 For the following C code: `extern char gdb_int [];'
17750 GCC produces an empty range DIE.
17751 FIXME: muller/2010-05-28: Possible references to object for low bound,
17752 high bound or count are not yet handled by this code. */
17753 if (TYPE_CODE (base_type
) == TYPE_CODE_VOID
)
17755 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
17756 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
17757 int addr_size
= gdbarch_addr_bit (gdbarch
) /8;
17758 struct type
*int_type
= objfile_type (objfile
)->builtin_int
;
17760 /* Test "int", "long int", and "long long int" objfile types,
17761 and select the first one having a size above or equal to the
17762 architecture address size. */
17763 if (int_type
&& TYPE_LENGTH (int_type
) >= addr_size
)
17764 base_type
= int_type
;
17767 int_type
= objfile_type (objfile
)->builtin_long
;
17768 if (int_type
&& TYPE_LENGTH (int_type
) >= addr_size
)
17769 base_type
= int_type
;
17772 int_type
= objfile_type (objfile
)->builtin_long_long
;
17773 if (int_type
&& TYPE_LENGTH (int_type
) >= addr_size
)
17774 base_type
= int_type
;
17779 /* Normally, the DWARF producers are expected to use a signed
17780 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17781 But this is unfortunately not always the case, as witnessed
17782 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17783 is used instead. To work around that ambiguity, we treat
17784 the bounds as signed, and thus sign-extend their values, when
17785 the base type is signed. */
17787 -((LONGEST
) 1 << (TYPE_LENGTH (base_type
) * TARGET_CHAR_BIT
- 1));
17788 if (low
.kind
== PROP_CONST
17789 && !TYPE_UNSIGNED (base_type
) && (low
.data
.const_val
& negative_mask
))
17790 low
.data
.const_val
|= negative_mask
;
17791 if (high
.kind
== PROP_CONST
17792 && !TYPE_UNSIGNED (base_type
) && (high
.data
.const_val
& negative_mask
))
17793 high
.data
.const_val
|= negative_mask
;
17795 range_type
= create_range_type (NULL
, orig_base_type
, &low
, &high
);
17797 if (high_bound_is_count
)
17798 TYPE_RANGE_DATA (range_type
)->flag_upper_bound_is_count
= 1;
17800 /* Ada expects an empty array on no boundary attributes. */
17801 if (attr
== NULL
&& cu
->language
!= language_ada
)
17802 TYPE_HIGH_BOUND_KIND (range_type
) = PROP_UNDEFINED
;
17804 name
= dwarf2_name (die
, cu
);
17806 TYPE_NAME (range_type
) = name
;
17808 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
17810 TYPE_LENGTH (range_type
) = DW_UNSND (attr
);
17812 set_die_type (die
, range_type
, cu
);
17814 /* set_die_type should be already done. */
17815 set_descriptive_type (range_type
, die
, cu
);
17820 static struct type
*
17821 read_unspecified_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
17825 type
= init_type (cu
->per_cu
->dwarf2_per_objfile
->objfile
, TYPE_CODE_VOID
,0,
17827 TYPE_NAME (type
) = dwarf2_name (die
, cu
);
17829 /* In Ada, an unspecified type is typically used when the description
17830 of the type is defered to a different unit. When encountering
17831 such a type, we treat it as a stub, and try to resolve it later on,
17833 if (cu
->language
== language_ada
)
17834 TYPE_STUB (type
) = 1;
17836 return set_die_type (die
, type
, cu
);
17839 /* Read a single die and all its descendents. Set the die's sibling
17840 field to NULL; set other fields in the die correctly, and set all
17841 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17842 location of the info_ptr after reading all of those dies. PARENT
17843 is the parent of the die in question. */
17845 static struct die_info
*
17846 read_die_and_children (const struct die_reader_specs
*reader
,
17847 const gdb_byte
*info_ptr
,
17848 const gdb_byte
**new_info_ptr
,
17849 struct die_info
*parent
)
17851 struct die_info
*die
;
17852 const gdb_byte
*cur_ptr
;
17855 cur_ptr
= read_full_die_1 (reader
, &die
, info_ptr
, &has_children
, 0);
17858 *new_info_ptr
= cur_ptr
;
17861 store_in_ref_table (die
, reader
->cu
);
17864 die
->child
= read_die_and_siblings_1 (reader
, cur_ptr
, new_info_ptr
, die
);
17868 *new_info_ptr
= cur_ptr
;
17871 die
->sibling
= NULL
;
17872 die
->parent
= parent
;
17876 /* Read a die, all of its descendents, and all of its siblings; set
17877 all of the fields of all of the dies correctly. Arguments are as
17878 in read_die_and_children. */
17880 static struct die_info
*
17881 read_die_and_siblings_1 (const struct die_reader_specs
*reader
,
17882 const gdb_byte
*info_ptr
,
17883 const gdb_byte
**new_info_ptr
,
17884 struct die_info
*parent
)
17886 struct die_info
*first_die
, *last_sibling
;
17887 const gdb_byte
*cur_ptr
;
17889 cur_ptr
= info_ptr
;
17890 first_die
= last_sibling
= NULL
;
17894 struct die_info
*die
17895 = read_die_and_children (reader
, cur_ptr
, &cur_ptr
, parent
);
17899 *new_info_ptr
= cur_ptr
;
17906 last_sibling
->sibling
= die
;
17908 last_sibling
= die
;
17912 /* Read a die, all of its descendents, and all of its siblings; set
17913 all of the fields of all of the dies correctly. Arguments are as
17914 in read_die_and_children.
17915 This the main entry point for reading a DIE and all its children. */
17917 static struct die_info
*
17918 read_die_and_siblings (const struct die_reader_specs
*reader
,
17919 const gdb_byte
*info_ptr
,
17920 const gdb_byte
**new_info_ptr
,
17921 struct die_info
*parent
)
17923 struct die_info
*die
= read_die_and_siblings_1 (reader
, info_ptr
,
17924 new_info_ptr
, parent
);
17926 if (dwarf_die_debug
)
17928 fprintf_unfiltered (gdb_stdlog
,
17929 "Read die from %s@0x%x of %s:\n",
17930 get_section_name (reader
->die_section
),
17931 (unsigned) (info_ptr
- reader
->die_section
->buffer
),
17932 bfd_get_filename (reader
->abfd
));
17933 dump_die (die
, dwarf_die_debug
);
17939 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17941 The caller is responsible for filling in the extra attributes
17942 and updating (*DIEP)->num_attrs.
17943 Set DIEP to point to a newly allocated die with its information,
17944 except for its child, sibling, and parent fields.
17945 Set HAS_CHILDREN to tell whether the die has children or not. */
17947 static const gdb_byte
*
17948 read_full_die_1 (const struct die_reader_specs
*reader
,
17949 struct die_info
**diep
, const gdb_byte
*info_ptr
,
17950 int *has_children
, int num_extra_attrs
)
17952 unsigned int abbrev_number
, bytes_read
, i
;
17953 struct abbrev_info
*abbrev
;
17954 struct die_info
*die
;
17955 struct dwarf2_cu
*cu
= reader
->cu
;
17956 bfd
*abfd
= reader
->abfd
;
17958 sect_offset sect_off
= (sect_offset
) (info_ptr
- reader
->buffer
);
17959 abbrev_number
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
17960 info_ptr
+= bytes_read
;
17961 if (!abbrev_number
)
17968 abbrev
= reader
->abbrev_table
->lookup_abbrev (abbrev_number
);
17970 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17972 bfd_get_filename (abfd
));
17974 die
= dwarf_alloc_die (cu
, abbrev
->num_attrs
+ num_extra_attrs
);
17975 die
->sect_off
= sect_off
;
17976 die
->tag
= abbrev
->tag
;
17977 die
->abbrev
= abbrev_number
;
17979 /* Make the result usable.
17980 The caller needs to update num_attrs after adding the extra
17982 die
->num_attrs
= abbrev
->num_attrs
;
17984 for (i
= 0; i
< abbrev
->num_attrs
; ++i
)
17985 info_ptr
= read_attribute (reader
, &die
->attrs
[i
], &abbrev
->attrs
[i
],
17989 *has_children
= abbrev
->has_children
;
17993 /* Read a die and all its attributes.
17994 Set DIEP to point to a newly allocated die with its information,
17995 except for its child, sibling, and parent fields.
17996 Set HAS_CHILDREN to tell whether the die has children or not. */
17998 static const gdb_byte
*
17999 read_full_die (const struct die_reader_specs
*reader
,
18000 struct die_info
**diep
, const gdb_byte
*info_ptr
,
18003 const gdb_byte
*result
;
18005 result
= read_full_die_1 (reader
, diep
, info_ptr
, has_children
, 0);
18007 if (dwarf_die_debug
)
18009 fprintf_unfiltered (gdb_stdlog
,
18010 "Read die from %s@0x%x of %s:\n",
18011 get_section_name (reader
->die_section
),
18012 (unsigned) (info_ptr
- reader
->die_section
->buffer
),
18013 bfd_get_filename (reader
->abfd
));
18014 dump_die (*diep
, dwarf_die_debug
);
18020 /* Abbreviation tables.
18022 In DWARF version 2, the description of the debugging information is
18023 stored in a separate .debug_abbrev section. Before we read any
18024 dies from a section we read in all abbreviations and install them
18025 in a hash table. */
18027 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18029 struct abbrev_info
*
18030 abbrev_table::alloc_abbrev ()
18032 struct abbrev_info
*abbrev
;
18034 abbrev
= XOBNEW (&abbrev_obstack
, struct abbrev_info
);
18035 memset (abbrev
, 0, sizeof (struct abbrev_info
));
18040 /* Add an abbreviation to the table. */
18043 abbrev_table::add_abbrev (unsigned int abbrev_number
,
18044 struct abbrev_info
*abbrev
)
18046 unsigned int hash_number
;
18048 hash_number
= abbrev_number
% ABBREV_HASH_SIZE
;
18049 abbrev
->next
= m_abbrevs
[hash_number
];
18050 m_abbrevs
[hash_number
] = abbrev
;
18053 /* Look up an abbrev in the table.
18054 Returns NULL if the abbrev is not found. */
18056 struct abbrev_info
*
18057 abbrev_table::lookup_abbrev (unsigned int abbrev_number
)
18059 unsigned int hash_number
;
18060 struct abbrev_info
*abbrev
;
18062 hash_number
= abbrev_number
% ABBREV_HASH_SIZE
;
18063 abbrev
= m_abbrevs
[hash_number
];
18067 if (abbrev
->number
== abbrev_number
)
18069 abbrev
= abbrev
->next
;
18074 /* Read in an abbrev table. */
18076 static abbrev_table_up
18077 abbrev_table_read_table (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
18078 struct dwarf2_section_info
*section
,
18079 sect_offset sect_off
)
18081 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
18082 bfd
*abfd
= get_section_bfd_owner (section
);
18083 const gdb_byte
*abbrev_ptr
;
18084 struct abbrev_info
*cur_abbrev
;
18085 unsigned int abbrev_number
, bytes_read
, abbrev_name
;
18086 unsigned int abbrev_form
;
18087 struct attr_abbrev
*cur_attrs
;
18088 unsigned int allocated_attrs
;
18090 abbrev_table_up
abbrev_table (new struct abbrev_table (sect_off
));
18092 dwarf2_read_section (objfile
, section
);
18093 abbrev_ptr
= section
->buffer
+ to_underlying (sect_off
);
18094 abbrev_number
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
18095 abbrev_ptr
+= bytes_read
;
18097 allocated_attrs
= ATTR_ALLOC_CHUNK
;
18098 cur_attrs
= XNEWVEC (struct attr_abbrev
, allocated_attrs
);
18100 /* Loop until we reach an abbrev number of 0. */
18101 while (abbrev_number
)
18103 cur_abbrev
= abbrev_table
->alloc_abbrev ();
18105 /* read in abbrev header */
18106 cur_abbrev
->number
= abbrev_number
;
18108 = (enum dwarf_tag
) read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
18109 abbrev_ptr
+= bytes_read
;
18110 cur_abbrev
->has_children
= read_1_byte (abfd
, abbrev_ptr
);
18113 /* now read in declarations */
18116 LONGEST implicit_const
;
18118 abbrev_name
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
18119 abbrev_ptr
+= bytes_read
;
18120 abbrev_form
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
18121 abbrev_ptr
+= bytes_read
;
18122 if (abbrev_form
== DW_FORM_implicit_const
)
18124 implicit_const
= read_signed_leb128 (abfd
, abbrev_ptr
,
18126 abbrev_ptr
+= bytes_read
;
18130 /* Initialize it due to a false compiler warning. */
18131 implicit_const
= -1;
18134 if (abbrev_name
== 0)
18137 if (cur_abbrev
->num_attrs
== allocated_attrs
)
18139 allocated_attrs
+= ATTR_ALLOC_CHUNK
;
18141 = XRESIZEVEC (struct attr_abbrev
, cur_attrs
, allocated_attrs
);
18144 cur_attrs
[cur_abbrev
->num_attrs
].name
18145 = (enum dwarf_attribute
) abbrev_name
;
18146 cur_attrs
[cur_abbrev
->num_attrs
].form
18147 = (enum dwarf_form
) abbrev_form
;
18148 cur_attrs
[cur_abbrev
->num_attrs
].implicit_const
= implicit_const
;
18149 ++cur_abbrev
->num_attrs
;
18152 cur_abbrev
->attrs
=
18153 XOBNEWVEC (&abbrev_table
->abbrev_obstack
, struct attr_abbrev
,
18154 cur_abbrev
->num_attrs
);
18155 memcpy (cur_abbrev
->attrs
, cur_attrs
,
18156 cur_abbrev
->num_attrs
* sizeof (struct attr_abbrev
));
18158 abbrev_table
->add_abbrev (abbrev_number
, cur_abbrev
);
18160 /* Get next abbreviation.
18161 Under Irix6 the abbreviations for a compilation unit are not
18162 always properly terminated with an abbrev number of 0.
18163 Exit loop if we encounter an abbreviation which we have
18164 already read (which means we are about to read the abbreviations
18165 for the next compile unit) or if the end of the abbreviation
18166 table is reached. */
18167 if ((unsigned int) (abbrev_ptr
- section
->buffer
) >= section
->size
)
18169 abbrev_number
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
18170 abbrev_ptr
+= bytes_read
;
18171 if (abbrev_table
->lookup_abbrev (abbrev_number
) != NULL
)
18176 return abbrev_table
;
18179 /* Returns nonzero if TAG represents a type that we might generate a partial
18183 is_type_tag_for_partial (int tag
)
18188 /* Some types that would be reasonable to generate partial symbols for,
18189 that we don't at present. */
18190 case DW_TAG_array_type
:
18191 case DW_TAG_file_type
:
18192 case DW_TAG_ptr_to_member_type
:
18193 case DW_TAG_set_type
:
18194 case DW_TAG_string_type
:
18195 case DW_TAG_subroutine_type
:
18197 case DW_TAG_base_type
:
18198 case DW_TAG_class_type
:
18199 case DW_TAG_interface_type
:
18200 case DW_TAG_enumeration_type
:
18201 case DW_TAG_structure_type
:
18202 case DW_TAG_subrange_type
:
18203 case DW_TAG_typedef
:
18204 case DW_TAG_union_type
:
18211 /* Load all DIEs that are interesting for partial symbols into memory. */
18213 static struct partial_die_info
*
18214 load_partial_dies (const struct die_reader_specs
*reader
,
18215 const gdb_byte
*info_ptr
, int building_psymtab
)
18217 struct dwarf2_cu
*cu
= reader
->cu
;
18218 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
18219 struct partial_die_info
*part_die
;
18220 struct partial_die_info
*parent_die
, *last_die
, *first_die
= NULL
;
18221 unsigned int bytes_read
;
18222 unsigned int load_all
= 0;
18223 int nesting_level
= 1;
18228 gdb_assert (cu
->per_cu
!= NULL
);
18229 if (cu
->per_cu
->load_all_dies
)
18233 = htab_create_alloc_ex (cu
->header
.length
/ 12,
18237 &cu
->comp_unit_obstack
,
18238 hashtab_obstack_allocate
,
18239 dummy_obstack_deallocate
);
18241 part_die
= XOBNEW (&cu
->comp_unit_obstack
, struct partial_die_info
);
18245 abbrev_info
*abbrev
= peek_die_abbrev (*reader
, info_ptr
, &bytes_read
);
18247 /* A NULL abbrev means the end of a series of children. */
18248 if (abbrev
== NULL
)
18250 if (--nesting_level
== 0)
18252 /* PART_DIE was probably the last thing allocated on the
18253 comp_unit_obstack, so we could call obstack_free
18254 here. We don't do that because the waste is small,
18255 and will be cleaned up when we're done with this
18256 compilation unit. This way, we're also more robust
18257 against other users of the comp_unit_obstack. */
18260 info_ptr
+= bytes_read
;
18261 last_die
= parent_die
;
18262 parent_die
= parent_die
->die_parent
;
18266 /* Check for template arguments. We never save these; if
18267 they're seen, we just mark the parent, and go on our way. */
18268 if (parent_die
!= NULL
18269 && cu
->language
== language_cplus
18270 && (abbrev
->tag
== DW_TAG_template_type_param
18271 || abbrev
->tag
== DW_TAG_template_value_param
))
18273 parent_die
->has_template_arguments
= 1;
18277 /* We don't need a partial DIE for the template argument. */
18278 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
18283 /* We only recurse into c++ subprograms looking for template arguments.
18284 Skip their other children. */
18286 && cu
->language
== language_cplus
18287 && parent_die
!= NULL
18288 && parent_die
->tag
== DW_TAG_subprogram
)
18290 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
18294 /* Check whether this DIE is interesting enough to save. Normally
18295 we would not be interested in members here, but there may be
18296 later variables referencing them via DW_AT_specification (for
18297 static members). */
18299 && !is_type_tag_for_partial (abbrev
->tag
)
18300 && abbrev
->tag
!= DW_TAG_constant
18301 && abbrev
->tag
!= DW_TAG_enumerator
18302 && abbrev
->tag
!= DW_TAG_subprogram
18303 && abbrev
->tag
!= DW_TAG_inlined_subroutine
18304 && abbrev
->tag
!= DW_TAG_lexical_block
18305 && abbrev
->tag
!= DW_TAG_variable
18306 && abbrev
->tag
!= DW_TAG_namespace
18307 && abbrev
->tag
!= DW_TAG_module
18308 && abbrev
->tag
!= DW_TAG_member
18309 && abbrev
->tag
!= DW_TAG_imported_unit
18310 && abbrev
->tag
!= DW_TAG_imported_declaration
)
18312 /* Otherwise we skip to the next sibling, if any. */
18313 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
18317 info_ptr
= read_partial_die (reader
, part_die
, abbrev
, bytes_read
,
18320 /* This two-pass algorithm for processing partial symbols has a
18321 high cost in cache pressure. Thus, handle some simple cases
18322 here which cover the majority of C partial symbols. DIEs
18323 which neither have specification tags in them, nor could have
18324 specification tags elsewhere pointing at them, can simply be
18325 processed and discarded.
18327 This segment is also optional; scan_partial_symbols and
18328 add_partial_symbol will handle these DIEs if we chain
18329 them in normally. When compilers which do not emit large
18330 quantities of duplicate debug information are more common,
18331 this code can probably be removed. */
18333 /* Any complete simple types at the top level (pretty much all
18334 of them, for a language without namespaces), can be processed
18336 if (parent_die
== NULL
18337 && part_die
->has_specification
== 0
18338 && part_die
->is_declaration
== 0
18339 && ((part_die
->tag
== DW_TAG_typedef
&& !part_die
->has_children
)
18340 || part_die
->tag
== DW_TAG_base_type
18341 || part_die
->tag
== DW_TAG_subrange_type
))
18343 if (building_psymtab
&& part_die
->name
!= NULL
)
18344 add_psymbol_to_list (part_die
->name
, strlen (part_die
->name
), 0,
18345 VAR_DOMAIN
, LOC_TYPEDEF
,
18346 &objfile
->static_psymbols
,
18347 0, cu
->language
, objfile
);
18348 info_ptr
= locate_pdi_sibling (reader
, part_die
, info_ptr
);
18352 /* The exception for DW_TAG_typedef with has_children above is
18353 a workaround of GCC PR debug/47510. In the case of this complaint
18354 type_name_no_tag_or_error will error on such types later.
18356 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18357 it could not find the child DIEs referenced later, this is checked
18358 above. In correct DWARF DW_TAG_typedef should have no children. */
18360 if (part_die
->tag
== DW_TAG_typedef
&& part_die
->has_children
)
18361 complaint (&symfile_complaints
,
18362 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18363 "- DIE at 0x%x [in module %s]"),
18364 to_underlying (part_die
->sect_off
), objfile_name (objfile
));
18366 /* If we're at the second level, and we're an enumerator, and
18367 our parent has no specification (meaning possibly lives in a
18368 namespace elsewhere), then we can add the partial symbol now
18369 instead of queueing it. */
18370 if (part_die
->tag
== DW_TAG_enumerator
18371 && parent_die
!= NULL
18372 && parent_die
->die_parent
== NULL
18373 && parent_die
->tag
== DW_TAG_enumeration_type
18374 && parent_die
->has_specification
== 0)
18376 if (part_die
->name
== NULL
)
18377 complaint (&symfile_complaints
,
18378 _("malformed enumerator DIE ignored"));
18379 else if (building_psymtab
)
18380 add_psymbol_to_list (part_die
->name
, strlen (part_die
->name
), 0,
18381 VAR_DOMAIN
, LOC_CONST
,
18382 cu
->language
== language_cplus
18383 ? &objfile
->global_psymbols
18384 : &objfile
->static_psymbols
,
18385 0, cu
->language
, objfile
);
18387 info_ptr
= locate_pdi_sibling (reader
, part_die
, info_ptr
);
18391 /* We'll save this DIE so link it in. */
18392 part_die
->die_parent
= parent_die
;
18393 part_die
->die_sibling
= NULL
;
18394 part_die
->die_child
= NULL
;
18396 if (last_die
&& last_die
== parent_die
)
18397 last_die
->die_child
= part_die
;
18399 last_die
->die_sibling
= part_die
;
18401 last_die
= part_die
;
18403 if (first_die
== NULL
)
18404 first_die
= part_die
;
18406 /* Maybe add the DIE to the hash table. Not all DIEs that we
18407 find interesting need to be in the hash table, because we
18408 also have the parent/sibling/child chains; only those that we
18409 might refer to by offset later during partial symbol reading.
18411 For now this means things that might have be the target of a
18412 DW_AT_specification, DW_AT_abstract_origin, or
18413 DW_AT_extension. DW_AT_extension will refer only to
18414 namespaces; DW_AT_abstract_origin refers to functions (and
18415 many things under the function DIE, but we do not recurse
18416 into function DIEs during partial symbol reading) and
18417 possibly variables as well; DW_AT_specification refers to
18418 declarations. Declarations ought to have the DW_AT_declaration
18419 flag. It happens that GCC forgets to put it in sometimes, but
18420 only for functions, not for types.
18422 Adding more things than necessary to the hash table is harmless
18423 except for the performance cost. Adding too few will result in
18424 wasted time in find_partial_die, when we reread the compilation
18425 unit with load_all_dies set. */
18428 || abbrev
->tag
== DW_TAG_constant
18429 || abbrev
->tag
== DW_TAG_subprogram
18430 || abbrev
->tag
== DW_TAG_variable
18431 || abbrev
->tag
== DW_TAG_namespace
18432 || part_die
->is_declaration
)
18436 slot
= htab_find_slot_with_hash (cu
->partial_dies
, part_die
,
18437 to_underlying (part_die
->sect_off
),
18442 part_die
= XOBNEW (&cu
->comp_unit_obstack
, struct partial_die_info
);
18444 /* For some DIEs we want to follow their children (if any). For C
18445 we have no reason to follow the children of structures; for other
18446 languages we have to, so that we can get at method physnames
18447 to infer fully qualified class names, for DW_AT_specification,
18448 and for C++ template arguments. For C++, we also look one level
18449 inside functions to find template arguments (if the name of the
18450 function does not already contain the template arguments).
18452 For Ada, we need to scan the children of subprograms and lexical
18453 blocks as well because Ada allows the definition of nested
18454 entities that could be interesting for the debugger, such as
18455 nested subprograms for instance. */
18456 if (last_die
->has_children
18458 || last_die
->tag
== DW_TAG_namespace
18459 || last_die
->tag
== DW_TAG_module
18460 || last_die
->tag
== DW_TAG_enumeration_type
18461 || (cu
->language
== language_cplus
18462 && last_die
->tag
== DW_TAG_subprogram
18463 && (last_die
->name
== NULL
18464 || strchr (last_die
->name
, '<') == NULL
))
18465 || (cu
->language
!= language_c
18466 && (last_die
->tag
== DW_TAG_class_type
18467 || last_die
->tag
== DW_TAG_interface_type
18468 || last_die
->tag
== DW_TAG_structure_type
18469 || last_die
->tag
== DW_TAG_union_type
))
18470 || (cu
->language
== language_ada
18471 && (last_die
->tag
== DW_TAG_subprogram
18472 || last_die
->tag
== DW_TAG_lexical_block
))))
18475 parent_die
= last_die
;
18479 /* Otherwise we skip to the next sibling, if any. */
18480 info_ptr
= locate_pdi_sibling (reader
, last_die
, info_ptr
);
18482 /* Back to the top, do it again. */
18486 /* Read a minimal amount of information into the minimal die structure. */
18488 static const gdb_byte
*
18489 read_partial_die (const struct die_reader_specs
*reader
,
18490 struct partial_die_info
*part_die
,
18491 struct abbrev_info
*abbrev
, unsigned int abbrev_len
,
18492 const gdb_byte
*info_ptr
)
18494 struct dwarf2_cu
*cu
= reader
->cu
;
18495 struct dwarf2_per_objfile
*dwarf2_per_objfile
18496 = cu
->per_cu
->dwarf2_per_objfile
;
18497 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
18498 const gdb_byte
*buffer
= reader
->buffer
;
18500 struct attribute attr
;
18501 int has_low_pc_attr
= 0;
18502 int has_high_pc_attr
= 0;
18503 int high_pc_relative
= 0;
18505 memset (part_die
, 0, sizeof (struct partial_die_info
));
18507 part_die
->sect_off
= (sect_offset
) (info_ptr
- buffer
);
18509 info_ptr
+= abbrev_len
;
18511 if (abbrev
== NULL
)
18514 part_die
->tag
= abbrev
->tag
;
18515 part_die
->has_children
= abbrev
->has_children
;
18517 for (i
= 0; i
< abbrev
->num_attrs
; ++i
)
18519 info_ptr
= read_attribute (reader
, &attr
, &abbrev
->attrs
[i
], info_ptr
);
18521 /* Store the data if it is of an attribute we want to keep in a
18522 partial symbol table. */
18526 switch (part_die
->tag
)
18528 case DW_TAG_compile_unit
:
18529 case DW_TAG_partial_unit
:
18530 case DW_TAG_type_unit
:
18531 /* Compilation units have a DW_AT_name that is a filename, not
18532 a source language identifier. */
18533 case DW_TAG_enumeration_type
:
18534 case DW_TAG_enumerator
:
18535 /* These tags always have simple identifiers already; no need
18536 to canonicalize them. */
18537 part_die
->name
= DW_STRING (&attr
);
18541 = dwarf2_canonicalize_name (DW_STRING (&attr
), cu
,
18542 &objfile
->per_bfd
->storage_obstack
);
18546 case DW_AT_linkage_name
:
18547 case DW_AT_MIPS_linkage_name
:
18548 /* Note that both forms of linkage name might appear. We
18549 assume they will be the same, and we only store the last
18551 if (cu
->language
== language_ada
)
18552 part_die
->name
= DW_STRING (&attr
);
18553 part_die
->linkage_name
= DW_STRING (&attr
);
18556 has_low_pc_attr
= 1;
18557 part_die
->lowpc
= attr_value_as_address (&attr
);
18559 case DW_AT_high_pc
:
18560 has_high_pc_attr
= 1;
18561 part_die
->highpc
= attr_value_as_address (&attr
);
18562 if (cu
->header
.version
>= 4 && attr_form_is_constant (&attr
))
18563 high_pc_relative
= 1;
18565 case DW_AT_location
:
18566 /* Support the .debug_loc offsets. */
18567 if (attr_form_is_block (&attr
))
18569 part_die
->d
.locdesc
= DW_BLOCK (&attr
);
18571 else if (attr_form_is_section_offset (&attr
))
18573 dwarf2_complex_location_expr_complaint ();
18577 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18578 "partial symbol information");
18581 case DW_AT_external
:
18582 part_die
->is_external
= DW_UNSND (&attr
);
18584 case DW_AT_declaration
:
18585 part_die
->is_declaration
= DW_UNSND (&attr
);
18588 part_die
->has_type
= 1;
18590 case DW_AT_abstract_origin
:
18591 case DW_AT_specification
:
18592 case DW_AT_extension
:
18593 part_die
->has_specification
= 1;
18594 part_die
->spec_offset
= dwarf2_get_ref_die_offset (&attr
);
18595 part_die
->spec_is_dwz
= (attr
.form
== DW_FORM_GNU_ref_alt
18596 || cu
->per_cu
->is_dwz
);
18598 case DW_AT_sibling
:
18599 /* Ignore absolute siblings, they might point outside of
18600 the current compile unit. */
18601 if (attr
.form
== DW_FORM_ref_addr
)
18602 complaint (&symfile_complaints
,
18603 _("ignoring absolute DW_AT_sibling"));
18606 sect_offset off
= dwarf2_get_ref_die_offset (&attr
);
18607 const gdb_byte
*sibling_ptr
= buffer
+ to_underlying (off
);
18609 if (sibling_ptr
< info_ptr
)
18610 complaint (&symfile_complaints
,
18611 _("DW_AT_sibling points backwards"));
18612 else if (sibling_ptr
> reader
->buffer_end
)
18613 dwarf2_section_buffer_overflow_complaint (reader
->die_section
);
18615 part_die
->sibling
= sibling_ptr
;
18618 case DW_AT_byte_size
:
18619 part_die
->has_byte_size
= 1;
18621 case DW_AT_const_value
:
18622 part_die
->has_const_value
= 1;
18624 case DW_AT_calling_convention
:
18625 /* DWARF doesn't provide a way to identify a program's source-level
18626 entry point. DW_AT_calling_convention attributes are only meant
18627 to describe functions' calling conventions.
18629 However, because it's a necessary piece of information in
18630 Fortran, and before DWARF 4 DW_CC_program was the only
18631 piece of debugging information whose definition refers to
18632 a 'main program' at all, several compilers marked Fortran
18633 main programs with DW_CC_program --- even when those
18634 functions use the standard calling conventions.
18636 Although DWARF now specifies a way to provide this
18637 information, we support this practice for backward
18639 if (DW_UNSND (&attr
) == DW_CC_program
18640 && cu
->language
== language_fortran
)
18641 part_die
->main_subprogram
= 1;
18644 if (DW_UNSND (&attr
) == DW_INL_inlined
18645 || DW_UNSND (&attr
) == DW_INL_declared_inlined
)
18646 part_die
->may_be_inlined
= 1;
18650 if (part_die
->tag
== DW_TAG_imported_unit
)
18652 part_die
->d
.sect_off
= dwarf2_get_ref_die_offset (&attr
);
18653 part_die
->is_dwz
= (attr
.form
== DW_FORM_GNU_ref_alt
18654 || cu
->per_cu
->is_dwz
);
18658 case DW_AT_main_subprogram
:
18659 part_die
->main_subprogram
= DW_UNSND (&attr
);
18667 if (high_pc_relative
)
18668 part_die
->highpc
+= part_die
->lowpc
;
18670 if (has_low_pc_attr
&& has_high_pc_attr
)
18672 /* When using the GNU linker, .gnu.linkonce. sections are used to
18673 eliminate duplicate copies of functions and vtables and such.
18674 The linker will arbitrarily choose one and discard the others.
18675 The AT_*_pc values for such functions refer to local labels in
18676 these sections. If the section from that file was discarded, the
18677 labels are not in the output, so the relocs get a value of 0.
18678 If this is a discarded function, mark the pc bounds as invalid,
18679 so that GDB will ignore it. */
18680 if (part_die
->lowpc
== 0 && !dwarf2_per_objfile
->has_section_at_zero
)
18682 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
18684 complaint (&symfile_complaints
,
18685 _("DW_AT_low_pc %s is zero "
18686 "for DIE at 0x%x [in module %s]"),
18687 paddress (gdbarch
, part_die
->lowpc
),
18688 to_underlying (part_die
->sect_off
), objfile_name (objfile
));
18690 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18691 else if (part_die
->lowpc
>= part_die
->highpc
)
18693 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
18695 complaint (&symfile_complaints
,
18696 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18697 "for DIE at 0x%x [in module %s]"),
18698 paddress (gdbarch
, part_die
->lowpc
),
18699 paddress (gdbarch
, part_die
->highpc
),
18700 to_underlying (part_die
->sect_off
),
18701 objfile_name (objfile
));
18704 part_die
->has_pc_info
= 1;
18710 /* Find a cached partial DIE at OFFSET in CU. */
18712 static struct partial_die_info
*
18713 find_partial_die_in_comp_unit (sect_offset sect_off
, struct dwarf2_cu
*cu
)
18715 struct partial_die_info
*lookup_die
= NULL
;
18716 struct partial_die_info part_die
;
18718 part_die
.sect_off
= sect_off
;
18719 lookup_die
= ((struct partial_die_info
*)
18720 htab_find_with_hash (cu
->partial_dies
, &part_die
,
18721 to_underlying (sect_off
)));
18726 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18727 except in the case of .debug_types DIEs which do not reference
18728 outside their CU (they do however referencing other types via
18729 DW_FORM_ref_sig8). */
18731 static struct partial_die_info
*
18732 find_partial_die (sect_offset sect_off
, int offset_in_dwz
, struct dwarf2_cu
*cu
)
18734 struct dwarf2_per_objfile
*dwarf2_per_objfile
18735 = cu
->per_cu
->dwarf2_per_objfile
;
18736 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
18737 struct dwarf2_per_cu_data
*per_cu
= NULL
;
18738 struct partial_die_info
*pd
= NULL
;
18740 if (offset_in_dwz
== cu
->per_cu
->is_dwz
18741 && offset_in_cu_p (&cu
->header
, sect_off
))
18743 pd
= find_partial_die_in_comp_unit (sect_off
, cu
);
18746 /* We missed recording what we needed.
18747 Load all dies and try again. */
18748 per_cu
= cu
->per_cu
;
18752 /* TUs don't reference other CUs/TUs (except via type signatures). */
18753 if (cu
->per_cu
->is_debug_types
)
18755 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
18756 " external reference to offset 0x%x [in module %s].\n"),
18757 to_underlying (cu
->header
.sect_off
), to_underlying (sect_off
),
18758 bfd_get_filename (objfile
->obfd
));
18760 per_cu
= dwarf2_find_containing_comp_unit (sect_off
, offset_in_dwz
,
18761 dwarf2_per_objfile
);
18763 if (per_cu
->cu
== NULL
|| per_cu
->cu
->partial_dies
== NULL
)
18764 load_partial_comp_unit (per_cu
);
18766 per_cu
->cu
->last_used
= 0;
18767 pd
= find_partial_die_in_comp_unit (sect_off
, per_cu
->cu
);
18770 /* If we didn't find it, and not all dies have been loaded,
18771 load them all and try again. */
18773 if (pd
== NULL
&& per_cu
->load_all_dies
== 0)
18775 per_cu
->load_all_dies
= 1;
18777 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18778 THIS_CU->cu may already be in use. So we can't just free it and
18779 replace its DIEs with the ones we read in. Instead, we leave those
18780 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18781 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18783 load_partial_comp_unit (per_cu
);
18785 pd
= find_partial_die_in_comp_unit (sect_off
, per_cu
->cu
);
18789 internal_error (__FILE__
, __LINE__
,
18790 _("could not find partial DIE 0x%x "
18791 "in cache [from module %s]\n"),
18792 to_underlying (sect_off
), bfd_get_filename (objfile
->obfd
));
18796 /* See if we can figure out if the class lives in a namespace. We do
18797 this by looking for a member function; its demangled name will
18798 contain namespace info, if there is any. */
18801 guess_partial_die_structure_name (struct partial_die_info
*struct_pdi
,
18802 struct dwarf2_cu
*cu
)
18804 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18805 what template types look like, because the demangler
18806 frequently doesn't give the same name as the debug info. We
18807 could fix this by only using the demangled name to get the
18808 prefix (but see comment in read_structure_type). */
18810 struct partial_die_info
*real_pdi
;
18811 struct partial_die_info
*child_pdi
;
18813 /* If this DIE (this DIE's specification, if any) has a parent, then
18814 we should not do this. We'll prepend the parent's fully qualified
18815 name when we create the partial symbol. */
18817 real_pdi
= struct_pdi
;
18818 while (real_pdi
->has_specification
)
18819 real_pdi
= find_partial_die (real_pdi
->spec_offset
,
18820 real_pdi
->spec_is_dwz
, cu
);
18822 if (real_pdi
->die_parent
!= NULL
)
18825 for (child_pdi
= struct_pdi
->die_child
;
18827 child_pdi
= child_pdi
->die_sibling
)
18829 if (child_pdi
->tag
== DW_TAG_subprogram
18830 && child_pdi
->linkage_name
!= NULL
)
18832 char *actual_class_name
18833 = language_class_name_from_physname (cu
->language_defn
,
18834 child_pdi
->linkage_name
);
18835 if (actual_class_name
!= NULL
)
18837 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
18840 obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
18842 strlen (actual_class_name
)));
18843 xfree (actual_class_name
);
18850 /* Adjust PART_DIE before generating a symbol for it. This function
18851 may set the is_external flag or change the DIE's name. */
18854 fixup_partial_die (struct partial_die_info
*part_die
,
18855 struct dwarf2_cu
*cu
)
18857 /* Once we've fixed up a die, there's no point in doing so again.
18858 This also avoids a memory leak if we were to call
18859 guess_partial_die_structure_name multiple times. */
18860 if (part_die
->fixup_called
)
18863 /* If we found a reference attribute and the DIE has no name, try
18864 to find a name in the referred to DIE. */
18866 if (part_die
->name
== NULL
&& part_die
->has_specification
)
18868 struct partial_die_info
*spec_die
;
18870 spec_die
= find_partial_die (part_die
->spec_offset
,
18871 part_die
->spec_is_dwz
, cu
);
18873 fixup_partial_die (spec_die
, cu
);
18875 if (spec_die
->name
)
18877 part_die
->name
= spec_die
->name
;
18879 /* Copy DW_AT_external attribute if it is set. */
18880 if (spec_die
->is_external
)
18881 part_die
->is_external
= spec_die
->is_external
;
18885 /* Set default names for some unnamed DIEs. */
18887 if (part_die
->name
== NULL
&& part_die
->tag
== DW_TAG_namespace
)
18888 part_die
->name
= CP_ANONYMOUS_NAMESPACE_STR
;
18890 /* If there is no parent die to provide a namespace, and there are
18891 children, see if we can determine the namespace from their linkage
18893 if (cu
->language
== language_cplus
18894 && !VEC_empty (dwarf2_section_info_def
,
18895 cu
->per_cu
->dwarf2_per_objfile
->types
)
18896 && part_die
->die_parent
== NULL
18897 && part_die
->has_children
18898 && (part_die
->tag
== DW_TAG_class_type
18899 || part_die
->tag
== DW_TAG_structure_type
18900 || part_die
->tag
== DW_TAG_union_type
))
18901 guess_partial_die_structure_name (part_die
, cu
);
18903 /* GCC might emit a nameless struct or union that has a linkage
18904 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18905 if (part_die
->name
== NULL
18906 && (part_die
->tag
== DW_TAG_class_type
18907 || part_die
->tag
== DW_TAG_interface_type
18908 || part_die
->tag
== DW_TAG_structure_type
18909 || part_die
->tag
== DW_TAG_union_type
)
18910 && part_die
->linkage_name
!= NULL
)
18914 demangled
= gdb_demangle (part_die
->linkage_name
, DMGL_TYPES
);
18919 /* Strip any leading namespaces/classes, keep only the base name.
18920 DW_AT_name for named DIEs does not contain the prefixes. */
18921 base
= strrchr (demangled
, ':');
18922 if (base
&& base
> demangled
&& base
[-1] == ':')
18927 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
18930 obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
18931 base
, strlen (base
)));
18936 part_die
->fixup_called
= 1;
18939 /* Read an attribute value described by an attribute form. */
18941 static const gdb_byte
*
18942 read_attribute_value (const struct die_reader_specs
*reader
,
18943 struct attribute
*attr
, unsigned form
,
18944 LONGEST implicit_const
, const gdb_byte
*info_ptr
)
18946 struct dwarf2_cu
*cu
= reader
->cu
;
18947 struct dwarf2_per_objfile
*dwarf2_per_objfile
18948 = cu
->per_cu
->dwarf2_per_objfile
;
18949 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
18950 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
18951 bfd
*abfd
= reader
->abfd
;
18952 struct comp_unit_head
*cu_header
= &cu
->header
;
18953 unsigned int bytes_read
;
18954 struct dwarf_block
*blk
;
18956 attr
->form
= (enum dwarf_form
) form
;
18959 case DW_FORM_ref_addr
:
18960 if (cu
->header
.version
== 2)
18961 DW_UNSND (attr
) = read_address (abfd
, info_ptr
, cu
, &bytes_read
);
18963 DW_UNSND (attr
) = read_offset (abfd
, info_ptr
,
18964 &cu
->header
, &bytes_read
);
18965 info_ptr
+= bytes_read
;
18967 case DW_FORM_GNU_ref_alt
:
18968 DW_UNSND (attr
) = read_offset (abfd
, info_ptr
, &cu
->header
, &bytes_read
);
18969 info_ptr
+= bytes_read
;
18972 DW_ADDR (attr
) = read_address (abfd
, info_ptr
, cu
, &bytes_read
);
18973 DW_ADDR (attr
) = gdbarch_adjust_dwarf2_addr (gdbarch
, DW_ADDR (attr
));
18974 info_ptr
+= bytes_read
;
18976 case DW_FORM_block2
:
18977 blk
= dwarf_alloc_block (cu
);
18978 blk
->size
= read_2_bytes (abfd
, info_ptr
);
18980 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
18981 info_ptr
+= blk
->size
;
18982 DW_BLOCK (attr
) = blk
;
18984 case DW_FORM_block4
:
18985 blk
= dwarf_alloc_block (cu
);
18986 blk
->size
= read_4_bytes (abfd
, info_ptr
);
18988 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
18989 info_ptr
+= blk
->size
;
18990 DW_BLOCK (attr
) = blk
;
18992 case DW_FORM_data2
:
18993 DW_UNSND (attr
) = read_2_bytes (abfd
, info_ptr
);
18996 case DW_FORM_data4
:
18997 DW_UNSND (attr
) = read_4_bytes (abfd
, info_ptr
);
19000 case DW_FORM_data8
:
19001 DW_UNSND (attr
) = read_8_bytes (abfd
, info_ptr
);
19004 case DW_FORM_data16
:
19005 blk
= dwarf_alloc_block (cu
);
19007 blk
->data
= read_n_bytes (abfd
, info_ptr
, 16);
19009 DW_BLOCK (attr
) = blk
;
19011 case DW_FORM_sec_offset
:
19012 DW_UNSND (attr
) = read_offset (abfd
, info_ptr
, &cu
->header
, &bytes_read
);
19013 info_ptr
+= bytes_read
;
19015 case DW_FORM_string
:
19016 DW_STRING (attr
) = read_direct_string (abfd
, info_ptr
, &bytes_read
);
19017 DW_STRING_IS_CANONICAL (attr
) = 0;
19018 info_ptr
+= bytes_read
;
19021 if (!cu
->per_cu
->is_dwz
)
19023 DW_STRING (attr
) = read_indirect_string (dwarf2_per_objfile
,
19024 abfd
, info_ptr
, cu_header
,
19026 DW_STRING_IS_CANONICAL (attr
) = 0;
19027 info_ptr
+= bytes_read
;
19031 case DW_FORM_line_strp
:
19032 if (!cu
->per_cu
->is_dwz
)
19034 DW_STRING (attr
) = read_indirect_line_string (dwarf2_per_objfile
,
19036 cu_header
, &bytes_read
);
19037 DW_STRING_IS_CANONICAL (attr
) = 0;
19038 info_ptr
+= bytes_read
;
19042 case DW_FORM_GNU_strp_alt
:
19044 struct dwz_file
*dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
19045 LONGEST str_offset
= read_offset (abfd
, info_ptr
, cu_header
,
19048 DW_STRING (attr
) = read_indirect_string_from_dwz (objfile
,
19050 DW_STRING_IS_CANONICAL (attr
) = 0;
19051 info_ptr
+= bytes_read
;
19054 case DW_FORM_exprloc
:
19055 case DW_FORM_block
:
19056 blk
= dwarf_alloc_block (cu
);
19057 blk
->size
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
19058 info_ptr
+= bytes_read
;
19059 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
19060 info_ptr
+= blk
->size
;
19061 DW_BLOCK (attr
) = blk
;
19063 case DW_FORM_block1
:
19064 blk
= dwarf_alloc_block (cu
);
19065 blk
->size
= read_1_byte (abfd
, info_ptr
);
19067 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
19068 info_ptr
+= blk
->size
;
19069 DW_BLOCK (attr
) = blk
;
19071 case DW_FORM_data1
:
19072 DW_UNSND (attr
) = read_1_byte (abfd
, info_ptr
);
19076 DW_UNSND (attr
) = read_1_byte (abfd
, info_ptr
);
19079 case DW_FORM_flag_present
:
19080 DW_UNSND (attr
) = 1;
19082 case DW_FORM_sdata
:
19083 DW_SND (attr
) = read_signed_leb128 (abfd
, info_ptr
, &bytes_read
);
19084 info_ptr
+= bytes_read
;
19086 case DW_FORM_udata
:
19087 DW_UNSND (attr
) = read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
19088 info_ptr
+= bytes_read
;
19091 DW_UNSND (attr
) = (to_underlying (cu
->header
.sect_off
)
19092 + read_1_byte (abfd
, info_ptr
));
19096 DW_UNSND (attr
) = (to_underlying (cu
->header
.sect_off
)
19097 + read_2_bytes (abfd
, info_ptr
));
19101 DW_UNSND (attr
) = (to_underlying (cu
->header
.sect_off
)
19102 + read_4_bytes (abfd
, info_ptr
));
19106 DW_UNSND (attr
) = (to_underlying (cu
->header
.sect_off
)
19107 + read_8_bytes (abfd
, info_ptr
));
19110 case DW_FORM_ref_sig8
:
19111 DW_SIGNATURE (attr
) = read_8_bytes (abfd
, info_ptr
);
19114 case DW_FORM_ref_udata
:
19115 DW_UNSND (attr
) = (to_underlying (cu
->header
.sect_off
)
19116 + read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
));
19117 info_ptr
+= bytes_read
;
19119 case DW_FORM_indirect
:
19120 form
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
19121 info_ptr
+= bytes_read
;
19122 if (form
== DW_FORM_implicit_const
)
19124 implicit_const
= read_signed_leb128 (abfd
, info_ptr
, &bytes_read
);
19125 info_ptr
+= bytes_read
;
19127 info_ptr
= read_attribute_value (reader
, attr
, form
, implicit_const
,
19130 case DW_FORM_implicit_const
:
19131 DW_SND (attr
) = implicit_const
;
19133 case DW_FORM_GNU_addr_index
:
19134 if (reader
->dwo_file
== NULL
)
19136 /* For now flag a hard error.
19137 Later we can turn this into a complaint. */
19138 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19139 dwarf_form_name (form
),
19140 bfd_get_filename (abfd
));
19142 DW_ADDR (attr
) = read_addr_index_from_leb128 (cu
, info_ptr
, &bytes_read
);
19143 info_ptr
+= bytes_read
;
19145 case DW_FORM_GNU_str_index
:
19146 if (reader
->dwo_file
== NULL
)
19148 /* For now flag a hard error.
19149 Later we can turn this into a complaint if warranted. */
19150 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19151 dwarf_form_name (form
),
19152 bfd_get_filename (abfd
));
19155 ULONGEST str_index
=
19156 read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
19158 DW_STRING (attr
) = read_str_index (reader
, str_index
);
19159 DW_STRING_IS_CANONICAL (attr
) = 0;
19160 info_ptr
+= bytes_read
;
19164 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19165 dwarf_form_name (form
),
19166 bfd_get_filename (abfd
));
19170 if (cu
->per_cu
->is_dwz
&& attr_form_is_ref (attr
))
19171 attr
->form
= DW_FORM_GNU_ref_alt
;
19173 /* We have seen instances where the compiler tried to emit a byte
19174 size attribute of -1 which ended up being encoded as an unsigned
19175 0xffffffff. Although 0xffffffff is technically a valid size value,
19176 an object of this size seems pretty unlikely so we can relatively
19177 safely treat these cases as if the size attribute was invalid and
19178 treat them as zero by default. */
19179 if (attr
->name
== DW_AT_byte_size
19180 && form
== DW_FORM_data4
19181 && DW_UNSND (attr
) >= 0xffffffff)
19184 (&symfile_complaints
,
19185 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19186 hex_string (DW_UNSND (attr
)));
19187 DW_UNSND (attr
) = 0;
19193 /* Read an attribute described by an abbreviated attribute. */
19195 static const gdb_byte
*
19196 read_attribute (const struct die_reader_specs
*reader
,
19197 struct attribute
*attr
, struct attr_abbrev
*abbrev
,
19198 const gdb_byte
*info_ptr
)
19200 attr
->name
= abbrev
->name
;
19201 return read_attribute_value (reader
, attr
, abbrev
->form
,
19202 abbrev
->implicit_const
, info_ptr
);
19205 /* Read dwarf information from a buffer. */
19207 static unsigned int
19208 read_1_byte (bfd
*abfd
, const gdb_byte
*buf
)
19210 return bfd_get_8 (abfd
, buf
);
19214 read_1_signed_byte (bfd
*abfd
, const gdb_byte
*buf
)
19216 return bfd_get_signed_8 (abfd
, buf
);
19219 static unsigned int
19220 read_2_bytes (bfd
*abfd
, const gdb_byte
*buf
)
19222 return bfd_get_16 (abfd
, buf
);
19226 read_2_signed_bytes (bfd
*abfd
, const gdb_byte
*buf
)
19228 return bfd_get_signed_16 (abfd
, buf
);
19231 static unsigned int
19232 read_4_bytes (bfd
*abfd
, const gdb_byte
*buf
)
19234 return bfd_get_32 (abfd
, buf
);
19238 read_4_signed_bytes (bfd
*abfd
, const gdb_byte
*buf
)
19240 return bfd_get_signed_32 (abfd
, buf
);
19244 read_8_bytes (bfd
*abfd
, const gdb_byte
*buf
)
19246 return bfd_get_64 (abfd
, buf
);
19250 read_address (bfd
*abfd
, const gdb_byte
*buf
, struct dwarf2_cu
*cu
,
19251 unsigned int *bytes_read
)
19253 struct comp_unit_head
*cu_header
= &cu
->header
;
19254 CORE_ADDR retval
= 0;
19256 if (cu_header
->signed_addr_p
)
19258 switch (cu_header
->addr_size
)
19261 retval
= bfd_get_signed_16 (abfd
, buf
);
19264 retval
= bfd_get_signed_32 (abfd
, buf
);
19267 retval
= bfd_get_signed_64 (abfd
, buf
);
19270 internal_error (__FILE__
, __LINE__
,
19271 _("read_address: bad switch, signed [in module %s]"),
19272 bfd_get_filename (abfd
));
19277 switch (cu_header
->addr_size
)
19280 retval
= bfd_get_16 (abfd
, buf
);
19283 retval
= bfd_get_32 (abfd
, buf
);
19286 retval
= bfd_get_64 (abfd
, buf
);
19289 internal_error (__FILE__
, __LINE__
,
19290 _("read_address: bad switch, "
19291 "unsigned [in module %s]"),
19292 bfd_get_filename (abfd
));
19296 *bytes_read
= cu_header
->addr_size
;
19300 /* Read the initial length from a section. The (draft) DWARF 3
19301 specification allows the initial length to take up either 4 bytes
19302 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19303 bytes describe the length and all offsets will be 8 bytes in length
19306 An older, non-standard 64-bit format is also handled by this
19307 function. The older format in question stores the initial length
19308 as an 8-byte quantity without an escape value. Lengths greater
19309 than 2^32 aren't very common which means that the initial 4 bytes
19310 is almost always zero. Since a length value of zero doesn't make
19311 sense for the 32-bit format, this initial zero can be considered to
19312 be an escape value which indicates the presence of the older 64-bit
19313 format. As written, the code can't detect (old format) lengths
19314 greater than 4GB. If it becomes necessary to handle lengths
19315 somewhat larger than 4GB, we could allow other small values (such
19316 as the non-sensical values of 1, 2, and 3) to also be used as
19317 escape values indicating the presence of the old format.
19319 The value returned via bytes_read should be used to increment the
19320 relevant pointer after calling read_initial_length().
19322 [ Note: read_initial_length() and read_offset() are based on the
19323 document entitled "DWARF Debugging Information Format", revision
19324 3, draft 8, dated November 19, 2001. This document was obtained
19327 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19329 This document is only a draft and is subject to change. (So beware.)
19331 Details regarding the older, non-standard 64-bit format were
19332 determined empirically by examining 64-bit ELF files produced by
19333 the SGI toolchain on an IRIX 6.5 machine.
19335 - Kevin, July 16, 2002
19339 read_initial_length (bfd
*abfd
, const gdb_byte
*buf
, unsigned int *bytes_read
)
19341 LONGEST length
= bfd_get_32 (abfd
, buf
);
19343 if (length
== 0xffffffff)
19345 length
= bfd_get_64 (abfd
, buf
+ 4);
19348 else if (length
== 0)
19350 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19351 length
= bfd_get_64 (abfd
, buf
);
19362 /* Cover function for read_initial_length.
19363 Returns the length of the object at BUF, and stores the size of the
19364 initial length in *BYTES_READ and stores the size that offsets will be in
19366 If the initial length size is not equivalent to that specified in
19367 CU_HEADER then issue a complaint.
19368 This is useful when reading non-comp-unit headers. */
19371 read_checked_initial_length_and_offset (bfd
*abfd
, const gdb_byte
*buf
,
19372 const struct comp_unit_head
*cu_header
,
19373 unsigned int *bytes_read
,
19374 unsigned int *offset_size
)
19376 LONGEST length
= read_initial_length (abfd
, buf
, bytes_read
);
19378 gdb_assert (cu_header
->initial_length_size
== 4
19379 || cu_header
->initial_length_size
== 8
19380 || cu_header
->initial_length_size
== 12);
19382 if (cu_header
->initial_length_size
!= *bytes_read
)
19383 complaint (&symfile_complaints
,
19384 _("intermixed 32-bit and 64-bit DWARF sections"));
19386 *offset_size
= (*bytes_read
== 4) ? 4 : 8;
19390 /* Read an offset from the data stream. The size of the offset is
19391 given by cu_header->offset_size. */
19394 read_offset (bfd
*abfd
, const gdb_byte
*buf
,
19395 const struct comp_unit_head
*cu_header
,
19396 unsigned int *bytes_read
)
19398 LONGEST offset
= read_offset_1 (abfd
, buf
, cu_header
->offset_size
);
19400 *bytes_read
= cu_header
->offset_size
;
19404 /* Read an offset from the data stream. */
19407 read_offset_1 (bfd
*abfd
, const gdb_byte
*buf
, unsigned int offset_size
)
19409 LONGEST retval
= 0;
19411 switch (offset_size
)
19414 retval
= bfd_get_32 (abfd
, buf
);
19417 retval
= bfd_get_64 (abfd
, buf
);
19420 internal_error (__FILE__
, __LINE__
,
19421 _("read_offset_1: bad switch [in module %s]"),
19422 bfd_get_filename (abfd
));
19428 static const gdb_byte
*
19429 read_n_bytes (bfd
*abfd
, const gdb_byte
*buf
, unsigned int size
)
19431 /* If the size of a host char is 8 bits, we can return a pointer
19432 to the buffer, otherwise we have to copy the data to a buffer
19433 allocated on the temporary obstack. */
19434 gdb_assert (HOST_CHAR_BIT
== 8);
19438 static const char *
19439 read_direct_string (bfd
*abfd
, const gdb_byte
*buf
,
19440 unsigned int *bytes_read_ptr
)
19442 /* If the size of a host char is 8 bits, we can return a pointer
19443 to the string, otherwise we have to copy the string to a buffer
19444 allocated on the temporary obstack. */
19445 gdb_assert (HOST_CHAR_BIT
== 8);
19448 *bytes_read_ptr
= 1;
19451 *bytes_read_ptr
= strlen ((const char *) buf
) + 1;
19452 return (const char *) buf
;
19455 /* Return pointer to string at section SECT offset STR_OFFSET with error
19456 reporting strings FORM_NAME and SECT_NAME. */
19458 static const char *
19459 read_indirect_string_at_offset_from (struct objfile
*objfile
,
19460 bfd
*abfd
, LONGEST str_offset
,
19461 struct dwarf2_section_info
*sect
,
19462 const char *form_name
,
19463 const char *sect_name
)
19465 dwarf2_read_section (objfile
, sect
);
19466 if (sect
->buffer
== NULL
)
19467 error (_("%s used without %s section [in module %s]"),
19468 form_name
, sect_name
, bfd_get_filename (abfd
));
19469 if (str_offset
>= sect
->size
)
19470 error (_("%s pointing outside of %s section [in module %s]"),
19471 form_name
, sect_name
, bfd_get_filename (abfd
));
19472 gdb_assert (HOST_CHAR_BIT
== 8);
19473 if (sect
->buffer
[str_offset
] == '\0')
19475 return (const char *) (sect
->buffer
+ str_offset
);
19478 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19480 static const char *
19481 read_indirect_string_at_offset (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
19482 bfd
*abfd
, LONGEST str_offset
)
19484 return read_indirect_string_at_offset_from (dwarf2_per_objfile
->objfile
,
19486 &dwarf2_per_objfile
->str
,
19487 "DW_FORM_strp", ".debug_str");
19490 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19492 static const char *
19493 read_indirect_line_string_at_offset (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
19494 bfd
*abfd
, LONGEST str_offset
)
19496 return read_indirect_string_at_offset_from (dwarf2_per_objfile
->objfile
,
19498 &dwarf2_per_objfile
->line_str
,
19499 "DW_FORM_line_strp",
19500 ".debug_line_str");
19503 /* Read a string at offset STR_OFFSET in the .debug_str section from
19504 the .dwz file DWZ. Throw an error if the offset is too large. If
19505 the string consists of a single NUL byte, return NULL; otherwise
19506 return a pointer to the string. */
19508 static const char *
19509 read_indirect_string_from_dwz (struct objfile
*objfile
, struct dwz_file
*dwz
,
19510 LONGEST str_offset
)
19512 dwarf2_read_section (objfile
, &dwz
->str
);
19514 if (dwz
->str
.buffer
== NULL
)
19515 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19516 "section [in module %s]"),
19517 bfd_get_filename (dwz
->dwz_bfd
));
19518 if (str_offset
>= dwz
->str
.size
)
19519 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19520 ".debug_str section [in module %s]"),
19521 bfd_get_filename (dwz
->dwz_bfd
));
19522 gdb_assert (HOST_CHAR_BIT
== 8);
19523 if (dwz
->str
.buffer
[str_offset
] == '\0')
19525 return (const char *) (dwz
->str
.buffer
+ str_offset
);
19528 /* Return pointer to string at .debug_str offset as read from BUF.
19529 BUF is assumed to be in a compilation unit described by CU_HEADER.
19530 Return *BYTES_READ_PTR count of bytes read from BUF. */
19532 static const char *
19533 read_indirect_string (struct dwarf2_per_objfile
*dwarf2_per_objfile
, bfd
*abfd
,
19534 const gdb_byte
*buf
,
19535 const struct comp_unit_head
*cu_header
,
19536 unsigned int *bytes_read_ptr
)
19538 LONGEST str_offset
= read_offset (abfd
, buf
, cu_header
, bytes_read_ptr
);
19540 return read_indirect_string_at_offset (dwarf2_per_objfile
, abfd
, str_offset
);
19543 /* Return pointer to string at .debug_line_str offset as read from BUF.
19544 BUF is assumed to be in a compilation unit described by CU_HEADER.
19545 Return *BYTES_READ_PTR count of bytes read from BUF. */
19547 static const char *
19548 read_indirect_line_string (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
19549 bfd
*abfd
, const gdb_byte
*buf
,
19550 const struct comp_unit_head
*cu_header
,
19551 unsigned int *bytes_read_ptr
)
19553 LONGEST str_offset
= read_offset (abfd
, buf
, cu_header
, bytes_read_ptr
);
19555 return read_indirect_line_string_at_offset (dwarf2_per_objfile
, abfd
,
19560 read_unsigned_leb128 (bfd
*abfd
, const gdb_byte
*buf
,
19561 unsigned int *bytes_read_ptr
)
19564 unsigned int num_read
;
19566 unsigned char byte
;
19573 byte
= bfd_get_8 (abfd
, buf
);
19576 result
|= ((ULONGEST
) (byte
& 127) << shift
);
19577 if ((byte
& 128) == 0)
19583 *bytes_read_ptr
= num_read
;
19588 read_signed_leb128 (bfd
*abfd
, const gdb_byte
*buf
,
19589 unsigned int *bytes_read_ptr
)
19592 int shift
, num_read
;
19593 unsigned char byte
;
19600 byte
= bfd_get_8 (abfd
, buf
);
19603 result
|= ((LONGEST
) (byte
& 127) << shift
);
19605 if ((byte
& 128) == 0)
19610 if ((shift
< 8 * sizeof (result
)) && (byte
& 0x40))
19611 result
|= -(((LONGEST
) 1) << shift
);
19612 *bytes_read_ptr
= num_read
;
19616 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19617 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19618 ADDR_SIZE is the size of addresses from the CU header. */
19621 read_addr_index_1 (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
19622 unsigned int addr_index
, ULONGEST addr_base
, int addr_size
)
19624 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
19625 bfd
*abfd
= objfile
->obfd
;
19626 const gdb_byte
*info_ptr
;
19628 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->addr
);
19629 if (dwarf2_per_objfile
->addr
.buffer
== NULL
)
19630 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19631 objfile_name (objfile
));
19632 if (addr_base
+ addr_index
* addr_size
>= dwarf2_per_objfile
->addr
.size
)
19633 error (_("DW_FORM_addr_index pointing outside of "
19634 ".debug_addr section [in module %s]"),
19635 objfile_name (objfile
));
19636 info_ptr
= (dwarf2_per_objfile
->addr
.buffer
19637 + addr_base
+ addr_index
* addr_size
);
19638 if (addr_size
== 4)
19639 return bfd_get_32 (abfd
, info_ptr
);
19641 return bfd_get_64 (abfd
, info_ptr
);
19644 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19647 read_addr_index (struct dwarf2_cu
*cu
, unsigned int addr_index
)
19649 return read_addr_index_1 (cu
->per_cu
->dwarf2_per_objfile
, addr_index
,
19650 cu
->addr_base
, cu
->header
.addr_size
);
19653 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19656 read_addr_index_from_leb128 (struct dwarf2_cu
*cu
, const gdb_byte
*info_ptr
,
19657 unsigned int *bytes_read
)
19659 bfd
*abfd
= cu
->per_cu
->dwarf2_per_objfile
->objfile
->obfd
;
19660 unsigned int addr_index
= read_unsigned_leb128 (abfd
, info_ptr
, bytes_read
);
19662 return read_addr_index (cu
, addr_index
);
19665 /* Data structure to pass results from dwarf2_read_addr_index_reader
19666 back to dwarf2_read_addr_index. */
19668 struct dwarf2_read_addr_index_data
19670 ULONGEST addr_base
;
19674 /* die_reader_func for dwarf2_read_addr_index. */
19677 dwarf2_read_addr_index_reader (const struct die_reader_specs
*reader
,
19678 const gdb_byte
*info_ptr
,
19679 struct die_info
*comp_unit_die
,
19683 struct dwarf2_cu
*cu
= reader
->cu
;
19684 struct dwarf2_read_addr_index_data
*aidata
=
19685 (struct dwarf2_read_addr_index_data
*) data
;
19687 aidata
->addr_base
= cu
->addr_base
;
19688 aidata
->addr_size
= cu
->header
.addr_size
;
19691 /* Given an index in .debug_addr, fetch the value.
19692 NOTE: This can be called during dwarf expression evaluation,
19693 long after the debug information has been read, and thus per_cu->cu
19694 may no longer exist. */
19697 dwarf2_read_addr_index (struct dwarf2_per_cu_data
*per_cu
,
19698 unsigned int addr_index
)
19700 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
19701 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
19702 struct dwarf2_cu
*cu
= per_cu
->cu
;
19703 ULONGEST addr_base
;
19706 /* We need addr_base and addr_size.
19707 If we don't have PER_CU->cu, we have to get it.
19708 Nasty, but the alternative is storing the needed info in PER_CU,
19709 which at this point doesn't seem justified: it's not clear how frequently
19710 it would get used and it would increase the size of every PER_CU.
19711 Entry points like dwarf2_per_cu_addr_size do a similar thing
19712 so we're not in uncharted territory here.
19713 Alas we need to be a bit more complicated as addr_base is contained
19716 We don't need to read the entire CU(/TU).
19717 We just need the header and top level die.
19719 IWBN to use the aging mechanism to let us lazily later discard the CU.
19720 For now we skip this optimization. */
19724 addr_base
= cu
->addr_base
;
19725 addr_size
= cu
->header
.addr_size
;
19729 struct dwarf2_read_addr_index_data aidata
;
19731 /* Note: We can't use init_cutu_and_read_dies_simple here,
19732 we need addr_base. */
19733 init_cutu_and_read_dies (per_cu
, NULL
, 0, 0,
19734 dwarf2_read_addr_index_reader
, &aidata
);
19735 addr_base
= aidata
.addr_base
;
19736 addr_size
= aidata
.addr_size
;
19739 return read_addr_index_1 (dwarf2_per_objfile
, addr_index
, addr_base
,
19743 /* Given a DW_FORM_GNU_str_index, fetch the string.
19744 This is only used by the Fission support. */
19746 static const char *
19747 read_str_index (const struct die_reader_specs
*reader
, ULONGEST str_index
)
19749 struct dwarf2_cu
*cu
= reader
->cu
;
19750 struct dwarf2_per_objfile
*dwarf2_per_objfile
19751 = cu
->per_cu
->dwarf2_per_objfile
;
19752 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
19753 const char *objf_name
= objfile_name (objfile
);
19754 bfd
*abfd
= objfile
->obfd
;
19755 struct dwarf2_section_info
*str_section
= &reader
->dwo_file
->sections
.str
;
19756 struct dwarf2_section_info
*str_offsets_section
=
19757 &reader
->dwo_file
->sections
.str_offsets
;
19758 const gdb_byte
*info_ptr
;
19759 ULONGEST str_offset
;
19760 static const char form_name
[] = "DW_FORM_GNU_str_index";
19762 dwarf2_read_section (objfile
, str_section
);
19763 dwarf2_read_section (objfile
, str_offsets_section
);
19764 if (str_section
->buffer
== NULL
)
19765 error (_("%s used without .debug_str.dwo section"
19766 " in CU at offset 0x%x [in module %s]"),
19767 form_name
, to_underlying (cu
->header
.sect_off
), objf_name
);
19768 if (str_offsets_section
->buffer
== NULL
)
19769 error (_("%s used without .debug_str_offsets.dwo section"
19770 " in CU at offset 0x%x [in module %s]"),
19771 form_name
, to_underlying (cu
->header
.sect_off
), objf_name
);
19772 if (str_index
* cu
->header
.offset_size
>= str_offsets_section
->size
)
19773 error (_("%s pointing outside of .debug_str_offsets.dwo"
19774 " section in CU at offset 0x%x [in module %s]"),
19775 form_name
, to_underlying (cu
->header
.sect_off
), objf_name
);
19776 info_ptr
= (str_offsets_section
->buffer
19777 + str_index
* cu
->header
.offset_size
);
19778 if (cu
->header
.offset_size
== 4)
19779 str_offset
= bfd_get_32 (abfd
, info_ptr
);
19781 str_offset
= bfd_get_64 (abfd
, info_ptr
);
19782 if (str_offset
>= str_section
->size
)
19783 error (_("Offset from %s pointing outside of"
19784 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
19785 form_name
, to_underlying (cu
->header
.sect_off
), objf_name
);
19786 return (const char *) (str_section
->buffer
+ str_offset
);
19789 /* Return the length of an LEB128 number in BUF. */
19792 leb128_size (const gdb_byte
*buf
)
19794 const gdb_byte
*begin
= buf
;
19800 if ((byte
& 128) == 0)
19801 return buf
- begin
;
19806 set_cu_language (unsigned int lang
, struct dwarf2_cu
*cu
)
19815 cu
->language
= language_c
;
19818 case DW_LANG_C_plus_plus
:
19819 case DW_LANG_C_plus_plus_11
:
19820 case DW_LANG_C_plus_plus_14
:
19821 cu
->language
= language_cplus
;
19824 cu
->language
= language_d
;
19826 case DW_LANG_Fortran77
:
19827 case DW_LANG_Fortran90
:
19828 case DW_LANG_Fortran95
:
19829 case DW_LANG_Fortran03
:
19830 case DW_LANG_Fortran08
:
19831 cu
->language
= language_fortran
;
19834 cu
->language
= language_go
;
19836 case DW_LANG_Mips_Assembler
:
19837 cu
->language
= language_asm
;
19839 case DW_LANG_Ada83
:
19840 case DW_LANG_Ada95
:
19841 cu
->language
= language_ada
;
19843 case DW_LANG_Modula2
:
19844 cu
->language
= language_m2
;
19846 case DW_LANG_Pascal83
:
19847 cu
->language
= language_pascal
;
19850 cu
->language
= language_objc
;
19853 case DW_LANG_Rust_old
:
19854 cu
->language
= language_rust
;
19856 case DW_LANG_Cobol74
:
19857 case DW_LANG_Cobol85
:
19859 cu
->language
= language_minimal
;
19862 cu
->language_defn
= language_def (cu
->language
);
19865 /* Return the named attribute or NULL if not there. */
19867 static struct attribute
*
19868 dwarf2_attr (struct die_info
*die
, unsigned int name
, struct dwarf2_cu
*cu
)
19873 struct attribute
*spec
= NULL
;
19875 for (i
= 0; i
< die
->num_attrs
; ++i
)
19877 if (die
->attrs
[i
].name
== name
)
19878 return &die
->attrs
[i
];
19879 if (die
->attrs
[i
].name
== DW_AT_specification
19880 || die
->attrs
[i
].name
== DW_AT_abstract_origin
)
19881 spec
= &die
->attrs
[i
];
19887 die
= follow_die_ref (die
, spec
, &cu
);
19893 /* Return the named attribute or NULL if not there,
19894 but do not follow DW_AT_specification, etc.
19895 This is for use in contexts where we're reading .debug_types dies.
19896 Following DW_AT_specification, DW_AT_abstract_origin will take us
19897 back up the chain, and we want to go down. */
19899 static struct attribute
*
19900 dwarf2_attr_no_follow (struct die_info
*die
, unsigned int name
)
19904 for (i
= 0; i
< die
->num_attrs
; ++i
)
19905 if (die
->attrs
[i
].name
== name
)
19906 return &die
->attrs
[i
];
19911 /* Return the string associated with a string-typed attribute, or NULL if it
19912 is either not found or is of an incorrect type. */
19914 static const char *
19915 dwarf2_string_attr (struct die_info
*die
, unsigned int name
, struct dwarf2_cu
*cu
)
19917 struct attribute
*attr
;
19918 const char *str
= NULL
;
19920 attr
= dwarf2_attr (die
, name
, cu
);
19924 if (attr
->form
== DW_FORM_strp
|| attr
->form
== DW_FORM_line_strp
19925 || attr
->form
== DW_FORM_string
19926 || attr
->form
== DW_FORM_GNU_str_index
19927 || attr
->form
== DW_FORM_GNU_strp_alt
)
19928 str
= DW_STRING (attr
);
19930 complaint (&symfile_complaints
,
19931 _("string type expected for attribute %s for "
19932 "DIE at 0x%x in module %s"),
19933 dwarf_attr_name (name
), to_underlying (die
->sect_off
),
19934 objfile_name (cu
->per_cu
->dwarf2_per_objfile
->objfile
));
19940 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19941 and holds a non-zero value. This function should only be used for
19942 DW_FORM_flag or DW_FORM_flag_present attributes. */
19945 dwarf2_flag_true_p (struct die_info
*die
, unsigned name
, struct dwarf2_cu
*cu
)
19947 struct attribute
*attr
= dwarf2_attr (die
, name
, cu
);
19949 return (attr
&& DW_UNSND (attr
));
19953 die_is_declaration (struct die_info
*die
, struct dwarf2_cu
*cu
)
19955 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19956 which value is non-zero. However, we have to be careful with
19957 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19958 (via dwarf2_flag_true_p) follows this attribute. So we may
19959 end up accidently finding a declaration attribute that belongs
19960 to a different DIE referenced by the specification attribute,
19961 even though the given DIE does not have a declaration attribute. */
19962 return (dwarf2_flag_true_p (die
, DW_AT_declaration
, cu
)
19963 && dwarf2_attr (die
, DW_AT_specification
, cu
) == NULL
);
19966 /* Return the die giving the specification for DIE, if there is
19967 one. *SPEC_CU is the CU containing DIE on input, and the CU
19968 containing the return value on output. If there is no
19969 specification, but there is an abstract origin, that is
19972 static struct die_info
*
19973 die_specification (struct die_info
*die
, struct dwarf2_cu
**spec_cu
)
19975 struct attribute
*spec_attr
= dwarf2_attr (die
, DW_AT_specification
,
19978 if (spec_attr
== NULL
)
19979 spec_attr
= dwarf2_attr (die
, DW_AT_abstract_origin
, *spec_cu
);
19981 if (spec_attr
== NULL
)
19984 return follow_die_ref (die
, spec_attr
, spec_cu
);
19987 /* Stub for free_line_header to match void * callback types. */
19990 free_line_header_voidp (void *arg
)
19992 struct line_header
*lh
= (struct line_header
*) arg
;
19998 line_header::add_include_dir (const char *include_dir
)
20000 if (dwarf_line_debug
>= 2)
20001 fprintf_unfiltered (gdb_stdlog
, "Adding dir %zu: %s\n",
20002 include_dirs
.size () + 1, include_dir
);
20004 include_dirs
.push_back (include_dir
);
20008 line_header::add_file_name (const char *name
,
20010 unsigned int mod_time
,
20011 unsigned int length
)
20013 if (dwarf_line_debug
>= 2)
20014 fprintf_unfiltered (gdb_stdlog
, "Adding file %u: %s\n",
20015 (unsigned) file_names
.size () + 1, name
);
20017 file_names
.emplace_back (name
, d_index
, mod_time
, length
);
20020 /* A convenience function to find the proper .debug_line section for a CU. */
20022 static struct dwarf2_section_info
*
20023 get_debug_line_section (struct dwarf2_cu
*cu
)
20025 struct dwarf2_section_info
*section
;
20026 struct dwarf2_per_objfile
*dwarf2_per_objfile
20027 = cu
->per_cu
->dwarf2_per_objfile
;
20029 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20031 if (cu
->dwo_unit
&& cu
->per_cu
->is_debug_types
)
20032 section
= &cu
->dwo_unit
->dwo_file
->sections
.line
;
20033 else if (cu
->per_cu
->is_dwz
)
20035 struct dwz_file
*dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
20037 section
= &dwz
->line
;
20040 section
= &dwarf2_per_objfile
->line
;
20045 /* Read directory or file name entry format, starting with byte of
20046 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20047 entries count and the entries themselves in the described entry
20051 read_formatted_entries (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
20052 bfd
*abfd
, const gdb_byte
**bufp
,
20053 struct line_header
*lh
,
20054 const struct comp_unit_head
*cu_header
,
20055 void (*callback
) (struct line_header
*lh
,
20058 unsigned int mod_time
,
20059 unsigned int length
))
20061 gdb_byte format_count
, formati
;
20062 ULONGEST data_count
, datai
;
20063 const gdb_byte
*buf
= *bufp
;
20064 const gdb_byte
*format_header_data
;
20065 unsigned int bytes_read
;
20067 format_count
= read_1_byte (abfd
, buf
);
20069 format_header_data
= buf
;
20070 for (formati
= 0; formati
< format_count
; formati
++)
20072 read_unsigned_leb128 (abfd
, buf
, &bytes_read
);
20074 read_unsigned_leb128 (abfd
, buf
, &bytes_read
);
20078 data_count
= read_unsigned_leb128 (abfd
, buf
, &bytes_read
);
20080 for (datai
= 0; datai
< data_count
; datai
++)
20082 const gdb_byte
*format
= format_header_data
;
20083 struct file_entry fe
;
20085 for (formati
= 0; formati
< format_count
; formati
++)
20087 ULONGEST content_type
= read_unsigned_leb128 (abfd
, format
, &bytes_read
);
20088 format
+= bytes_read
;
20090 ULONGEST form
= read_unsigned_leb128 (abfd
, format
, &bytes_read
);
20091 format
+= bytes_read
;
20093 gdb::optional
<const char *> string
;
20094 gdb::optional
<unsigned int> uint
;
20098 case DW_FORM_string
:
20099 string
.emplace (read_direct_string (abfd
, buf
, &bytes_read
));
20103 case DW_FORM_line_strp
:
20104 string
.emplace (read_indirect_line_string (dwarf2_per_objfile
,
20111 case DW_FORM_data1
:
20112 uint
.emplace (read_1_byte (abfd
, buf
));
20116 case DW_FORM_data2
:
20117 uint
.emplace (read_2_bytes (abfd
, buf
));
20121 case DW_FORM_data4
:
20122 uint
.emplace (read_4_bytes (abfd
, buf
));
20126 case DW_FORM_data8
:
20127 uint
.emplace (read_8_bytes (abfd
, buf
));
20131 case DW_FORM_udata
:
20132 uint
.emplace (read_unsigned_leb128 (abfd
, buf
, &bytes_read
));
20136 case DW_FORM_block
:
20137 /* It is valid only for DW_LNCT_timestamp which is ignored by
20142 switch (content_type
)
20145 if (string
.has_value ())
20148 case DW_LNCT_directory_index
:
20149 if (uint
.has_value ())
20150 fe
.d_index
= (dir_index
) *uint
;
20152 case DW_LNCT_timestamp
:
20153 if (uint
.has_value ())
20154 fe
.mod_time
= *uint
;
20157 if (uint
.has_value ())
20163 complaint (&symfile_complaints
,
20164 _("Unknown format content type %s"),
20165 pulongest (content_type
));
20169 callback (lh
, fe
.name
, fe
.d_index
, fe
.mod_time
, fe
.length
);
20175 /* Read the statement program header starting at OFFSET in
20176 .debug_line, or .debug_line.dwo. Return a pointer
20177 to a struct line_header, allocated using xmalloc.
20178 Returns NULL if there is a problem reading the header, e.g., if it
20179 has a version we don't understand.
20181 NOTE: the strings in the include directory and file name tables of
20182 the returned object point into the dwarf line section buffer,
20183 and must not be freed. */
20185 static line_header_up
20186 dwarf_decode_line_header (sect_offset sect_off
, struct dwarf2_cu
*cu
)
20188 const gdb_byte
*line_ptr
;
20189 unsigned int bytes_read
, offset_size
;
20191 const char *cur_dir
, *cur_file
;
20192 struct dwarf2_section_info
*section
;
20194 struct dwarf2_per_objfile
*dwarf2_per_objfile
20195 = cu
->per_cu
->dwarf2_per_objfile
;
20197 section
= get_debug_line_section (cu
);
20198 dwarf2_read_section (dwarf2_per_objfile
->objfile
, section
);
20199 if (section
->buffer
== NULL
)
20201 if (cu
->dwo_unit
&& cu
->per_cu
->is_debug_types
)
20202 complaint (&symfile_complaints
, _("missing .debug_line.dwo section"));
20204 complaint (&symfile_complaints
, _("missing .debug_line section"));
20208 /* We can't do this until we know the section is non-empty.
20209 Only then do we know we have such a section. */
20210 abfd
= get_section_bfd_owner (section
);
20212 /* Make sure that at least there's room for the total_length field.
20213 That could be 12 bytes long, but we're just going to fudge that. */
20214 if (to_underlying (sect_off
) + 4 >= section
->size
)
20216 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20220 line_header_up
lh (new line_header ());
20222 lh
->sect_off
= sect_off
;
20223 lh
->offset_in_dwz
= cu
->per_cu
->is_dwz
;
20225 line_ptr
= section
->buffer
+ to_underlying (sect_off
);
20227 /* Read in the header. */
20229 read_checked_initial_length_and_offset (abfd
, line_ptr
, &cu
->header
,
20230 &bytes_read
, &offset_size
);
20231 line_ptr
+= bytes_read
;
20232 if (line_ptr
+ lh
->total_length
> (section
->buffer
+ section
->size
))
20234 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20237 lh
->statement_program_end
= line_ptr
+ lh
->total_length
;
20238 lh
->version
= read_2_bytes (abfd
, line_ptr
);
20240 if (lh
->version
> 5)
20242 /* This is a version we don't understand. The format could have
20243 changed in ways we don't handle properly so just punt. */
20244 complaint (&symfile_complaints
,
20245 _("unsupported version in .debug_line section"));
20248 if (lh
->version
>= 5)
20250 gdb_byte segment_selector_size
;
20252 /* Skip address size. */
20253 read_1_byte (abfd
, line_ptr
);
20256 segment_selector_size
= read_1_byte (abfd
, line_ptr
);
20258 if (segment_selector_size
!= 0)
20260 complaint (&symfile_complaints
,
20261 _("unsupported segment selector size %u "
20262 "in .debug_line section"),
20263 segment_selector_size
);
20267 lh
->header_length
= read_offset_1 (abfd
, line_ptr
, offset_size
);
20268 line_ptr
+= offset_size
;
20269 lh
->minimum_instruction_length
= read_1_byte (abfd
, line_ptr
);
20271 if (lh
->version
>= 4)
20273 lh
->maximum_ops_per_instruction
= read_1_byte (abfd
, line_ptr
);
20277 lh
->maximum_ops_per_instruction
= 1;
20279 if (lh
->maximum_ops_per_instruction
== 0)
20281 lh
->maximum_ops_per_instruction
= 1;
20282 complaint (&symfile_complaints
,
20283 _("invalid maximum_ops_per_instruction "
20284 "in `.debug_line' section"));
20287 lh
->default_is_stmt
= read_1_byte (abfd
, line_ptr
);
20289 lh
->line_base
= read_1_signed_byte (abfd
, line_ptr
);
20291 lh
->line_range
= read_1_byte (abfd
, line_ptr
);
20293 lh
->opcode_base
= read_1_byte (abfd
, line_ptr
);
20295 lh
->standard_opcode_lengths
.reset (new unsigned char[lh
->opcode_base
]);
20297 lh
->standard_opcode_lengths
[0] = 1; /* This should never be used anyway. */
20298 for (i
= 1; i
< lh
->opcode_base
; ++i
)
20300 lh
->standard_opcode_lengths
[i
] = read_1_byte (abfd
, line_ptr
);
20304 if (lh
->version
>= 5)
20306 /* Read directory table. */
20307 read_formatted_entries (dwarf2_per_objfile
, abfd
, &line_ptr
, lh
.get (),
20309 [] (struct line_header
*lh
, const char *name
,
20310 dir_index d_index
, unsigned int mod_time
,
20311 unsigned int length
)
20313 lh
->add_include_dir (name
);
20316 /* Read file name table. */
20317 read_formatted_entries (dwarf2_per_objfile
, abfd
, &line_ptr
, lh
.get (),
20319 [] (struct line_header
*lh
, const char *name
,
20320 dir_index d_index
, unsigned int mod_time
,
20321 unsigned int length
)
20323 lh
->add_file_name (name
, d_index
, mod_time
, length
);
20328 /* Read directory table. */
20329 while ((cur_dir
= read_direct_string (abfd
, line_ptr
, &bytes_read
)) != NULL
)
20331 line_ptr
+= bytes_read
;
20332 lh
->add_include_dir (cur_dir
);
20334 line_ptr
+= bytes_read
;
20336 /* Read file name table. */
20337 while ((cur_file
= read_direct_string (abfd
, line_ptr
, &bytes_read
)) != NULL
)
20339 unsigned int mod_time
, length
;
20342 line_ptr
+= bytes_read
;
20343 d_index
= (dir_index
) read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20344 line_ptr
+= bytes_read
;
20345 mod_time
= read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20346 line_ptr
+= bytes_read
;
20347 length
= read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20348 line_ptr
+= bytes_read
;
20350 lh
->add_file_name (cur_file
, d_index
, mod_time
, length
);
20352 line_ptr
+= bytes_read
;
20354 lh
->statement_program_start
= line_ptr
;
20356 if (line_ptr
> (section
->buffer
+ section
->size
))
20357 complaint (&symfile_complaints
,
20358 _("line number info header doesn't "
20359 "fit in `.debug_line' section"));
20364 /* Subroutine of dwarf_decode_lines to simplify it.
20365 Return the file name of the psymtab for included file FILE_INDEX
20366 in line header LH of PST.
20367 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20368 If space for the result is malloc'd, *NAME_HOLDER will be set.
20369 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20371 static const char *
20372 psymtab_include_file_name (const struct line_header
*lh
, int file_index
,
20373 const struct partial_symtab
*pst
,
20374 const char *comp_dir
,
20375 gdb::unique_xmalloc_ptr
<char> *name_holder
)
20377 const file_entry
&fe
= lh
->file_names
[file_index
];
20378 const char *include_name
= fe
.name
;
20379 const char *include_name_to_compare
= include_name
;
20380 const char *pst_filename
;
20383 const char *dir_name
= fe
.include_dir (lh
);
20385 gdb::unique_xmalloc_ptr
<char> hold_compare
;
20386 if (!IS_ABSOLUTE_PATH (include_name
)
20387 && (dir_name
!= NULL
|| comp_dir
!= NULL
))
20389 /* Avoid creating a duplicate psymtab for PST.
20390 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20391 Before we do the comparison, however, we need to account
20392 for DIR_NAME and COMP_DIR.
20393 First prepend dir_name (if non-NULL). If we still don't
20394 have an absolute path prepend comp_dir (if non-NULL).
20395 However, the directory we record in the include-file's
20396 psymtab does not contain COMP_DIR (to match the
20397 corresponding symtab(s)).
20402 bash$ gcc -g ./hello.c
20403 include_name = "hello.c"
20405 DW_AT_comp_dir = comp_dir = "/tmp"
20406 DW_AT_name = "./hello.c"
20410 if (dir_name
!= NULL
)
20412 name_holder
->reset (concat (dir_name
, SLASH_STRING
,
20413 include_name
, (char *) NULL
));
20414 include_name
= name_holder
->get ();
20415 include_name_to_compare
= include_name
;
20417 if (!IS_ABSOLUTE_PATH (include_name
) && comp_dir
!= NULL
)
20419 hold_compare
.reset (concat (comp_dir
, SLASH_STRING
,
20420 include_name
, (char *) NULL
));
20421 include_name_to_compare
= hold_compare
.get ();
20425 pst_filename
= pst
->filename
;
20426 gdb::unique_xmalloc_ptr
<char> copied_name
;
20427 if (!IS_ABSOLUTE_PATH (pst_filename
) && pst
->dirname
!= NULL
)
20429 copied_name
.reset (concat (pst
->dirname
, SLASH_STRING
,
20430 pst_filename
, (char *) NULL
));
20431 pst_filename
= copied_name
.get ();
20434 file_is_pst
= FILENAME_CMP (include_name_to_compare
, pst_filename
) == 0;
20438 return include_name
;
20441 /* State machine to track the state of the line number program. */
20443 class lnp_state_machine
20446 /* Initialize a machine state for the start of a line number
20448 lnp_state_machine (gdbarch
*arch
, line_header
*lh
, bool record_lines_p
);
20450 file_entry
*current_file ()
20452 /* lh->file_names is 0-based, but the file name numbers in the
20453 statement program are 1-based. */
20454 return m_line_header
->file_name_at (m_file
);
20457 /* Record the line in the state machine. END_SEQUENCE is true if
20458 we're processing the end of a sequence. */
20459 void record_line (bool end_sequence
);
20461 /* Check address and if invalid nop-out the rest of the lines in this
20463 void check_line_address (struct dwarf2_cu
*cu
,
20464 const gdb_byte
*line_ptr
,
20465 CORE_ADDR lowpc
, CORE_ADDR address
);
20467 void handle_set_discriminator (unsigned int discriminator
)
20469 m_discriminator
= discriminator
;
20470 m_line_has_non_zero_discriminator
|= discriminator
!= 0;
20473 /* Handle DW_LNE_set_address. */
20474 void handle_set_address (CORE_ADDR baseaddr
, CORE_ADDR address
)
20477 address
+= baseaddr
;
20478 m_address
= gdbarch_adjust_dwarf2_line (m_gdbarch
, address
, false);
20481 /* Handle DW_LNS_advance_pc. */
20482 void handle_advance_pc (CORE_ADDR adjust
);
20484 /* Handle a special opcode. */
20485 void handle_special_opcode (unsigned char op_code
);
20487 /* Handle DW_LNS_advance_line. */
20488 void handle_advance_line (int line_delta
)
20490 advance_line (line_delta
);
20493 /* Handle DW_LNS_set_file. */
20494 void handle_set_file (file_name_index file
);
20496 /* Handle DW_LNS_negate_stmt. */
20497 void handle_negate_stmt ()
20499 m_is_stmt
= !m_is_stmt
;
20502 /* Handle DW_LNS_const_add_pc. */
20503 void handle_const_add_pc ();
20505 /* Handle DW_LNS_fixed_advance_pc. */
20506 void handle_fixed_advance_pc (CORE_ADDR addr_adj
)
20508 m_address
+= gdbarch_adjust_dwarf2_line (m_gdbarch
, addr_adj
, true);
20512 /* Handle DW_LNS_copy. */
20513 void handle_copy ()
20515 record_line (false);
20516 m_discriminator
= 0;
20519 /* Handle DW_LNE_end_sequence. */
20520 void handle_end_sequence ()
20522 m_record_line_callback
= ::record_line
;
20526 /* Advance the line by LINE_DELTA. */
20527 void advance_line (int line_delta
)
20529 m_line
+= line_delta
;
20531 if (line_delta
!= 0)
20532 m_line_has_non_zero_discriminator
= m_discriminator
!= 0;
20535 gdbarch
*m_gdbarch
;
20537 /* True if we're recording lines.
20538 Otherwise we're building partial symtabs and are just interested in
20539 finding include files mentioned by the line number program. */
20540 bool m_record_lines_p
;
20542 /* The line number header. */
20543 line_header
*m_line_header
;
20545 /* These are part of the standard DWARF line number state machine,
20546 and initialized according to the DWARF spec. */
20548 unsigned char m_op_index
= 0;
20549 /* The line table index (1-based) of the current file. */
20550 file_name_index m_file
= (file_name_index
) 1;
20551 unsigned int m_line
= 1;
20553 /* These are initialized in the constructor. */
20555 CORE_ADDR m_address
;
20557 unsigned int m_discriminator
;
20559 /* Additional bits of state we need to track. */
20561 /* The last file that we called dwarf2_start_subfile for.
20562 This is only used for TLLs. */
20563 unsigned int m_last_file
= 0;
20564 /* The last file a line number was recorded for. */
20565 struct subfile
*m_last_subfile
= NULL
;
20567 /* The function to call to record a line. */
20568 record_line_ftype
*m_record_line_callback
= NULL
;
20570 /* The last line number that was recorded, used to coalesce
20571 consecutive entries for the same line. This can happen, for
20572 example, when discriminators are present. PR 17276. */
20573 unsigned int m_last_line
= 0;
20574 bool m_line_has_non_zero_discriminator
= false;
20578 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust
)
20580 CORE_ADDR addr_adj
= (((m_op_index
+ adjust
)
20581 / m_line_header
->maximum_ops_per_instruction
)
20582 * m_line_header
->minimum_instruction_length
);
20583 m_address
+= gdbarch_adjust_dwarf2_line (m_gdbarch
, addr_adj
, true);
20584 m_op_index
= ((m_op_index
+ adjust
)
20585 % m_line_header
->maximum_ops_per_instruction
);
20589 lnp_state_machine::handle_special_opcode (unsigned char op_code
)
20591 unsigned char adj_opcode
= op_code
- m_line_header
->opcode_base
;
20592 CORE_ADDR addr_adj
= (((m_op_index
20593 + (adj_opcode
/ m_line_header
->line_range
))
20594 / m_line_header
->maximum_ops_per_instruction
)
20595 * m_line_header
->minimum_instruction_length
);
20596 m_address
+= gdbarch_adjust_dwarf2_line (m_gdbarch
, addr_adj
, true);
20597 m_op_index
= ((m_op_index
+ (adj_opcode
/ m_line_header
->line_range
))
20598 % m_line_header
->maximum_ops_per_instruction
);
20600 int line_delta
= (m_line_header
->line_base
20601 + (adj_opcode
% m_line_header
->line_range
));
20602 advance_line (line_delta
);
20603 record_line (false);
20604 m_discriminator
= 0;
20608 lnp_state_machine::handle_set_file (file_name_index file
)
20612 const file_entry
*fe
= current_file ();
20614 dwarf2_debug_line_missing_file_complaint ();
20615 else if (m_record_lines_p
)
20617 const char *dir
= fe
->include_dir (m_line_header
);
20619 m_last_subfile
= current_subfile
;
20620 m_line_has_non_zero_discriminator
= m_discriminator
!= 0;
20621 dwarf2_start_subfile (fe
->name
, dir
);
20626 lnp_state_machine::handle_const_add_pc ()
20629 = (255 - m_line_header
->opcode_base
) / m_line_header
->line_range
;
20632 = (((m_op_index
+ adjust
)
20633 / m_line_header
->maximum_ops_per_instruction
)
20634 * m_line_header
->minimum_instruction_length
);
20636 m_address
+= gdbarch_adjust_dwarf2_line (m_gdbarch
, addr_adj
, true);
20637 m_op_index
= ((m_op_index
+ adjust
)
20638 % m_line_header
->maximum_ops_per_instruction
);
20641 /* Ignore this record_line request. */
20644 noop_record_line (struct subfile
*subfile
, int line
, CORE_ADDR pc
)
20649 /* Return non-zero if we should add LINE to the line number table.
20650 LINE is the line to add, LAST_LINE is the last line that was added,
20651 LAST_SUBFILE is the subfile for LAST_LINE.
20652 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20653 had a non-zero discriminator.
20655 We have to be careful in the presence of discriminators.
20656 E.g., for this line:
20658 for (i = 0; i < 100000; i++);
20660 clang can emit four line number entries for that one line,
20661 each with a different discriminator.
20662 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20664 However, we want gdb to coalesce all four entries into one.
20665 Otherwise the user could stepi into the middle of the line and
20666 gdb would get confused about whether the pc really was in the
20667 middle of the line.
20669 Things are further complicated by the fact that two consecutive
20670 line number entries for the same line is a heuristic used by gcc
20671 to denote the end of the prologue. So we can't just discard duplicate
20672 entries, we have to be selective about it. The heuristic we use is
20673 that we only collapse consecutive entries for the same line if at least
20674 one of those entries has a non-zero discriminator. PR 17276.
20676 Note: Addresses in the line number state machine can never go backwards
20677 within one sequence, thus this coalescing is ok. */
20680 dwarf_record_line_p (unsigned int line
, unsigned int last_line
,
20681 int line_has_non_zero_discriminator
,
20682 struct subfile
*last_subfile
)
20684 if (current_subfile
!= last_subfile
)
20686 if (line
!= last_line
)
20688 /* Same line for the same file that we've seen already.
20689 As a last check, for pr 17276, only record the line if the line
20690 has never had a non-zero discriminator. */
20691 if (!line_has_non_zero_discriminator
)
20696 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20697 in the line table of subfile SUBFILE. */
20700 dwarf_record_line_1 (struct gdbarch
*gdbarch
, struct subfile
*subfile
,
20701 unsigned int line
, CORE_ADDR address
,
20702 record_line_ftype p_record_line
)
20704 CORE_ADDR addr
= gdbarch_addr_bits_remove (gdbarch
, address
);
20706 if (dwarf_line_debug
)
20708 fprintf_unfiltered (gdb_stdlog
,
20709 "Recording line %u, file %s, address %s\n",
20710 line
, lbasename (subfile
->name
),
20711 paddress (gdbarch
, address
));
20714 (*p_record_line
) (subfile
, line
, addr
);
20717 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20718 Mark the end of a set of line number records.
20719 The arguments are the same as for dwarf_record_line_1.
20720 If SUBFILE is NULL the request is ignored. */
20723 dwarf_finish_line (struct gdbarch
*gdbarch
, struct subfile
*subfile
,
20724 CORE_ADDR address
, record_line_ftype p_record_line
)
20726 if (subfile
== NULL
)
20729 if (dwarf_line_debug
)
20731 fprintf_unfiltered (gdb_stdlog
,
20732 "Finishing current line, file %s, address %s\n",
20733 lbasename (subfile
->name
),
20734 paddress (gdbarch
, address
));
20737 dwarf_record_line_1 (gdbarch
, subfile
, 0, address
, p_record_line
);
20741 lnp_state_machine::record_line (bool end_sequence
)
20743 if (dwarf_line_debug
)
20745 fprintf_unfiltered (gdb_stdlog
,
20746 "Processing actual line %u: file %u,"
20747 " address %s, is_stmt %u, discrim %u\n",
20748 m_line
, to_underlying (m_file
),
20749 paddress (m_gdbarch
, m_address
),
20750 m_is_stmt
, m_discriminator
);
20753 file_entry
*fe
= current_file ();
20756 dwarf2_debug_line_missing_file_complaint ();
20757 /* For now we ignore lines not starting on an instruction boundary.
20758 But not when processing end_sequence for compatibility with the
20759 previous version of the code. */
20760 else if (m_op_index
== 0 || end_sequence
)
20762 fe
->included_p
= 1;
20763 if (m_record_lines_p
&& m_is_stmt
)
20765 if (m_last_subfile
!= current_subfile
|| end_sequence
)
20767 dwarf_finish_line (m_gdbarch
, m_last_subfile
,
20768 m_address
, m_record_line_callback
);
20773 if (dwarf_record_line_p (m_line
, m_last_line
,
20774 m_line_has_non_zero_discriminator
,
20777 dwarf_record_line_1 (m_gdbarch
, current_subfile
,
20779 m_record_line_callback
);
20781 m_last_subfile
= current_subfile
;
20782 m_last_line
= m_line
;
20788 lnp_state_machine::lnp_state_machine (gdbarch
*arch
, line_header
*lh
,
20789 bool record_lines_p
)
20792 m_record_lines_p
= record_lines_p
;
20793 m_line_header
= lh
;
20795 m_record_line_callback
= ::record_line
;
20797 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20798 was a line entry for it so that the backend has a chance to adjust it
20799 and also record it in case it needs it. This is currently used by MIPS
20800 code, cf. `mips_adjust_dwarf2_line'. */
20801 m_address
= gdbarch_adjust_dwarf2_line (arch
, 0, 0);
20802 m_is_stmt
= lh
->default_is_stmt
;
20803 m_discriminator
= 0;
20807 lnp_state_machine::check_line_address (struct dwarf2_cu
*cu
,
20808 const gdb_byte
*line_ptr
,
20809 CORE_ADDR lowpc
, CORE_ADDR address
)
20811 /* If address < lowpc then it's not a usable value, it's outside the
20812 pc range of the CU. However, we restrict the test to only address
20813 values of zero to preserve GDB's previous behaviour which is to
20814 handle the specific case of a function being GC'd by the linker. */
20816 if (address
== 0 && address
< lowpc
)
20818 /* This line table is for a function which has been
20819 GCd by the linker. Ignore it. PR gdb/12528 */
20821 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
20822 long line_offset
= line_ptr
- get_debug_line_section (cu
)->buffer
;
20824 complaint (&symfile_complaints
,
20825 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20826 line_offset
, objfile_name (objfile
));
20827 m_record_line_callback
= noop_record_line
;
20828 /* Note: record_line_callback is left as noop_record_line until
20829 we see DW_LNE_end_sequence. */
20833 /* Subroutine of dwarf_decode_lines to simplify it.
20834 Process the line number information in LH.
20835 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20836 program in order to set included_p for every referenced header. */
20839 dwarf_decode_lines_1 (struct line_header
*lh
, struct dwarf2_cu
*cu
,
20840 const int decode_for_pst_p
, CORE_ADDR lowpc
)
20842 const gdb_byte
*line_ptr
, *extended_end
;
20843 const gdb_byte
*line_end
;
20844 unsigned int bytes_read
, extended_len
;
20845 unsigned char op_code
, extended_op
;
20846 CORE_ADDR baseaddr
;
20847 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
20848 bfd
*abfd
= objfile
->obfd
;
20849 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
20850 /* True if we're recording line info (as opposed to building partial
20851 symtabs and just interested in finding include files mentioned by
20852 the line number program). */
20853 bool record_lines_p
= !decode_for_pst_p
;
20855 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
20857 line_ptr
= lh
->statement_program_start
;
20858 line_end
= lh
->statement_program_end
;
20860 /* Read the statement sequences until there's nothing left. */
20861 while (line_ptr
< line_end
)
20863 /* The DWARF line number program state machine. Reset the state
20864 machine at the start of each sequence. */
20865 lnp_state_machine
state_machine (gdbarch
, lh
, record_lines_p
);
20866 bool end_sequence
= false;
20868 if (record_lines_p
)
20870 /* Start a subfile for the current file of the state
20872 const file_entry
*fe
= state_machine
.current_file ();
20875 dwarf2_start_subfile (fe
->name
, fe
->include_dir (lh
));
20878 /* Decode the table. */
20879 while (line_ptr
< line_end
&& !end_sequence
)
20881 op_code
= read_1_byte (abfd
, line_ptr
);
20884 if (op_code
>= lh
->opcode_base
)
20886 /* Special opcode. */
20887 state_machine
.handle_special_opcode (op_code
);
20889 else switch (op_code
)
20891 case DW_LNS_extended_op
:
20892 extended_len
= read_unsigned_leb128 (abfd
, line_ptr
,
20894 line_ptr
+= bytes_read
;
20895 extended_end
= line_ptr
+ extended_len
;
20896 extended_op
= read_1_byte (abfd
, line_ptr
);
20898 switch (extended_op
)
20900 case DW_LNE_end_sequence
:
20901 state_machine
.handle_end_sequence ();
20902 end_sequence
= true;
20904 case DW_LNE_set_address
:
20907 = read_address (abfd
, line_ptr
, cu
, &bytes_read
);
20908 line_ptr
+= bytes_read
;
20910 state_machine
.check_line_address (cu
, line_ptr
,
20912 state_machine
.handle_set_address (baseaddr
, address
);
20915 case DW_LNE_define_file
:
20917 const char *cur_file
;
20918 unsigned int mod_time
, length
;
20921 cur_file
= read_direct_string (abfd
, line_ptr
,
20923 line_ptr
+= bytes_read
;
20924 dindex
= (dir_index
)
20925 read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20926 line_ptr
+= bytes_read
;
20928 read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20929 line_ptr
+= bytes_read
;
20931 read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20932 line_ptr
+= bytes_read
;
20933 lh
->add_file_name (cur_file
, dindex
, mod_time
, length
);
20936 case DW_LNE_set_discriminator
:
20938 /* The discriminator is not interesting to the
20939 debugger; just ignore it. We still need to
20940 check its value though:
20941 if there are consecutive entries for the same
20942 (non-prologue) line we want to coalesce them.
20945 = read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20946 line_ptr
+= bytes_read
;
20948 state_machine
.handle_set_discriminator (discr
);
20952 complaint (&symfile_complaints
,
20953 _("mangled .debug_line section"));
20956 /* Make sure that we parsed the extended op correctly. If e.g.
20957 we expected a different address size than the producer used,
20958 we may have read the wrong number of bytes. */
20959 if (line_ptr
!= extended_end
)
20961 complaint (&symfile_complaints
,
20962 _("mangled .debug_line section"));
20967 state_machine
.handle_copy ();
20969 case DW_LNS_advance_pc
:
20972 = read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20973 line_ptr
+= bytes_read
;
20975 state_machine
.handle_advance_pc (adjust
);
20978 case DW_LNS_advance_line
:
20981 = read_signed_leb128 (abfd
, line_ptr
, &bytes_read
);
20982 line_ptr
+= bytes_read
;
20984 state_machine
.handle_advance_line (line_delta
);
20987 case DW_LNS_set_file
:
20989 file_name_index file
20990 = (file_name_index
) read_unsigned_leb128 (abfd
, line_ptr
,
20992 line_ptr
+= bytes_read
;
20994 state_machine
.handle_set_file (file
);
20997 case DW_LNS_set_column
:
20998 (void) read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
20999 line_ptr
+= bytes_read
;
21001 case DW_LNS_negate_stmt
:
21002 state_machine
.handle_negate_stmt ();
21004 case DW_LNS_set_basic_block
:
21006 /* Add to the address register of the state machine the
21007 address increment value corresponding to special opcode
21008 255. I.e., this value is scaled by the minimum
21009 instruction length since special opcode 255 would have
21010 scaled the increment. */
21011 case DW_LNS_const_add_pc
:
21012 state_machine
.handle_const_add_pc ();
21014 case DW_LNS_fixed_advance_pc
:
21016 CORE_ADDR addr_adj
= read_2_bytes (abfd
, line_ptr
);
21019 state_machine
.handle_fixed_advance_pc (addr_adj
);
21024 /* Unknown standard opcode, ignore it. */
21027 for (i
= 0; i
< lh
->standard_opcode_lengths
[op_code
]; i
++)
21029 (void) read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
21030 line_ptr
+= bytes_read
;
21037 dwarf2_debug_line_missing_end_sequence_complaint ();
21039 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21040 in which case we still finish recording the last line). */
21041 state_machine
.record_line (true);
21045 /* Decode the Line Number Program (LNP) for the given line_header
21046 structure and CU. The actual information extracted and the type
21047 of structures created from the LNP depends on the value of PST.
21049 1. If PST is NULL, then this procedure uses the data from the program
21050 to create all necessary symbol tables, and their linetables.
21052 2. If PST is not NULL, this procedure reads the program to determine
21053 the list of files included by the unit represented by PST, and
21054 builds all the associated partial symbol tables.
21056 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21057 It is used for relative paths in the line table.
21058 NOTE: When processing partial symtabs (pst != NULL),
21059 comp_dir == pst->dirname.
21061 NOTE: It is important that psymtabs have the same file name (via strcmp)
21062 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21063 symtab we don't use it in the name of the psymtabs we create.
21064 E.g. expand_line_sal requires this when finding psymtabs to expand.
21065 A good testcase for this is mb-inline.exp.
21067 LOWPC is the lowest address in CU (or 0 if not known).
21069 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21070 for its PC<->lines mapping information. Otherwise only the filename
21071 table is read in. */
21074 dwarf_decode_lines (struct line_header
*lh
, const char *comp_dir
,
21075 struct dwarf2_cu
*cu
, struct partial_symtab
*pst
,
21076 CORE_ADDR lowpc
, int decode_mapping
)
21078 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21079 const int decode_for_pst_p
= (pst
!= NULL
);
21081 if (decode_mapping
)
21082 dwarf_decode_lines_1 (lh
, cu
, decode_for_pst_p
, lowpc
);
21084 if (decode_for_pst_p
)
21088 /* Now that we're done scanning the Line Header Program, we can
21089 create the psymtab of each included file. */
21090 for (file_index
= 0; file_index
< lh
->file_names
.size (); file_index
++)
21091 if (lh
->file_names
[file_index
].included_p
== 1)
21093 gdb::unique_xmalloc_ptr
<char> name_holder
;
21094 const char *include_name
=
21095 psymtab_include_file_name (lh
, file_index
, pst
, comp_dir
,
21097 if (include_name
!= NULL
)
21098 dwarf2_create_include_psymtab (include_name
, pst
, objfile
);
21103 /* Make sure a symtab is created for every file, even files
21104 which contain only variables (i.e. no code with associated
21106 struct compunit_symtab
*cust
= buildsym_compunit_symtab ();
21109 for (i
= 0; i
< lh
->file_names
.size (); i
++)
21111 file_entry
&fe
= lh
->file_names
[i
];
21113 dwarf2_start_subfile (fe
.name
, fe
.include_dir (lh
));
21115 if (current_subfile
->symtab
== NULL
)
21117 current_subfile
->symtab
21118 = allocate_symtab (cust
, current_subfile
->name
);
21120 fe
.symtab
= current_subfile
->symtab
;
21125 /* Start a subfile for DWARF. FILENAME is the name of the file and
21126 DIRNAME the name of the source directory which contains FILENAME
21127 or NULL if not known.
21128 This routine tries to keep line numbers from identical absolute and
21129 relative file names in a common subfile.
21131 Using the `list' example from the GDB testsuite, which resides in
21132 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21133 of /srcdir/list0.c yields the following debugging information for list0.c:
21135 DW_AT_name: /srcdir/list0.c
21136 DW_AT_comp_dir: /compdir
21137 files.files[0].name: list0.h
21138 files.files[0].dir: /srcdir
21139 files.files[1].name: list0.c
21140 files.files[1].dir: /srcdir
21142 The line number information for list0.c has to end up in a single
21143 subfile, so that `break /srcdir/list0.c:1' works as expected.
21144 start_subfile will ensure that this happens provided that we pass the
21145 concatenation of files.files[1].dir and files.files[1].name as the
21149 dwarf2_start_subfile (const char *filename
, const char *dirname
)
21153 /* In order not to lose the line information directory,
21154 we concatenate it to the filename when it makes sense.
21155 Note that the Dwarf3 standard says (speaking of filenames in line
21156 information): ``The directory index is ignored for file names
21157 that represent full path names''. Thus ignoring dirname in the
21158 `else' branch below isn't an issue. */
21160 if (!IS_ABSOLUTE_PATH (filename
) && dirname
!= NULL
)
21162 copy
= concat (dirname
, SLASH_STRING
, filename
, (char *)NULL
);
21166 start_subfile (filename
);
21172 /* Start a symtab for DWARF.
21173 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21175 static struct compunit_symtab
*
21176 dwarf2_start_symtab (struct dwarf2_cu
*cu
,
21177 const char *name
, const char *comp_dir
, CORE_ADDR low_pc
)
21179 struct compunit_symtab
*cust
21180 = start_symtab (cu
->per_cu
->dwarf2_per_objfile
->objfile
, name
, comp_dir
,
21181 low_pc
, cu
->language
);
21183 record_debugformat ("DWARF 2");
21184 record_producer (cu
->producer
);
21186 /* We assume that we're processing GCC output. */
21187 processing_gcc_compilation
= 2;
21189 cu
->processing_has_namespace_info
= 0;
21195 var_decode_location (struct attribute
*attr
, struct symbol
*sym
,
21196 struct dwarf2_cu
*cu
)
21198 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21199 struct comp_unit_head
*cu_header
= &cu
->header
;
21201 /* NOTE drow/2003-01-30: There used to be a comment and some special
21202 code here to turn a symbol with DW_AT_external and a
21203 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21204 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21205 with some versions of binutils) where shared libraries could have
21206 relocations against symbols in their debug information - the
21207 minimal symbol would have the right address, but the debug info
21208 would not. It's no longer necessary, because we will explicitly
21209 apply relocations when we read in the debug information now. */
21211 /* A DW_AT_location attribute with no contents indicates that a
21212 variable has been optimized away. */
21213 if (attr_form_is_block (attr
) && DW_BLOCK (attr
)->size
== 0)
21215 SYMBOL_ACLASS_INDEX (sym
) = LOC_OPTIMIZED_OUT
;
21219 /* Handle one degenerate form of location expression specially, to
21220 preserve GDB's previous behavior when section offsets are
21221 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21222 then mark this symbol as LOC_STATIC. */
21224 if (attr_form_is_block (attr
)
21225 && ((DW_BLOCK (attr
)->data
[0] == DW_OP_addr
21226 && DW_BLOCK (attr
)->size
== 1 + cu_header
->addr_size
)
21227 || (DW_BLOCK (attr
)->data
[0] == DW_OP_GNU_addr_index
21228 && (DW_BLOCK (attr
)->size
21229 == 1 + leb128_size (&DW_BLOCK (attr
)->data
[1])))))
21231 unsigned int dummy
;
21233 if (DW_BLOCK (attr
)->data
[0] == DW_OP_addr
)
21234 SYMBOL_VALUE_ADDRESS (sym
) =
21235 read_address (objfile
->obfd
, DW_BLOCK (attr
)->data
+ 1, cu
, &dummy
);
21237 SYMBOL_VALUE_ADDRESS (sym
) =
21238 read_addr_index_from_leb128 (cu
, DW_BLOCK (attr
)->data
+ 1, &dummy
);
21239 SYMBOL_ACLASS_INDEX (sym
) = LOC_STATIC
;
21240 fixup_symbol_section (sym
, objfile
);
21241 SYMBOL_VALUE_ADDRESS (sym
) += ANOFFSET (objfile
->section_offsets
,
21242 SYMBOL_SECTION (sym
));
21246 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21247 expression evaluator, and use LOC_COMPUTED only when necessary
21248 (i.e. when the value of a register or memory location is
21249 referenced, or a thread-local block, etc.). Then again, it might
21250 not be worthwhile. I'm assuming that it isn't unless performance
21251 or memory numbers show me otherwise. */
21253 dwarf2_symbol_mark_computed (attr
, sym
, cu
, 0);
21255 if (SYMBOL_COMPUTED_OPS (sym
)->location_has_loclist
)
21256 cu
->has_loclist
= 1;
21259 /* Given a pointer to a DWARF information entry, figure out if we need
21260 to make a symbol table entry for it, and if so, create a new entry
21261 and return a pointer to it.
21262 If TYPE is NULL, determine symbol type from the die, otherwise
21263 used the passed type.
21264 If SPACE is not NULL, use it to hold the new symbol. If it is
21265 NULL, allocate a new symbol on the objfile's obstack. */
21267 static struct symbol
*
21268 new_symbol (struct die_info
*die
, struct type
*type
, struct dwarf2_cu
*cu
,
21269 struct symbol
*space
)
21271 struct dwarf2_per_objfile
*dwarf2_per_objfile
21272 = cu
->per_cu
->dwarf2_per_objfile
;
21273 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
21274 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
21275 struct symbol
*sym
= NULL
;
21277 struct attribute
*attr
= NULL
;
21278 struct attribute
*attr2
= NULL
;
21279 CORE_ADDR baseaddr
;
21280 struct pending
**list_to_add
= NULL
;
21282 int inlined_func
= (die
->tag
== DW_TAG_inlined_subroutine
);
21284 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
21286 name
= dwarf2_name (die
, cu
);
21289 const char *linkagename
;
21290 int suppress_add
= 0;
21295 sym
= allocate_symbol (objfile
);
21296 OBJSTAT (objfile
, n_syms
++);
21298 /* Cache this symbol's name and the name's demangled form (if any). */
21299 SYMBOL_SET_LANGUAGE (sym
, cu
->language
, &objfile
->objfile_obstack
);
21300 linkagename
= dwarf2_physname (name
, die
, cu
);
21301 SYMBOL_SET_NAMES (sym
, linkagename
, strlen (linkagename
), 0, objfile
);
21303 /* Fortran does not have mangling standard and the mangling does differ
21304 between gfortran, iFort etc. */
21305 if (cu
->language
== language_fortran
21306 && symbol_get_demangled_name (&(sym
->ginfo
)) == NULL
)
21307 symbol_set_demangled_name (&(sym
->ginfo
),
21308 dwarf2_full_name (name
, die
, cu
),
21311 /* Default assumptions.
21312 Use the passed type or decode it from the die. */
21313 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
21314 SYMBOL_ACLASS_INDEX (sym
) = LOC_OPTIMIZED_OUT
;
21316 SYMBOL_TYPE (sym
) = type
;
21318 SYMBOL_TYPE (sym
) = die_type (die
, cu
);
21319 attr
= dwarf2_attr (die
,
21320 inlined_func
? DW_AT_call_line
: DW_AT_decl_line
,
21324 SYMBOL_LINE (sym
) = DW_UNSND (attr
);
21327 attr
= dwarf2_attr (die
,
21328 inlined_func
? DW_AT_call_file
: DW_AT_decl_file
,
21332 file_name_index file_index
= (file_name_index
) DW_UNSND (attr
);
21333 struct file_entry
*fe
;
21335 if (cu
->line_header
!= NULL
)
21336 fe
= cu
->line_header
->file_name_at (file_index
);
21341 complaint (&symfile_complaints
,
21342 _("file index out of range"));
21344 symbol_set_symtab (sym
, fe
->symtab
);
21350 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
21355 addr
= attr_value_as_address (attr
);
21356 addr
= gdbarch_adjust_dwarf2_addr (gdbarch
, addr
+ baseaddr
);
21357 SYMBOL_VALUE_ADDRESS (sym
) = addr
;
21359 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_core_addr
;
21360 SYMBOL_DOMAIN (sym
) = LABEL_DOMAIN
;
21361 SYMBOL_ACLASS_INDEX (sym
) = LOC_LABEL
;
21362 add_symbol_to_list (sym
, cu
->list_in_scope
);
21364 case DW_TAG_subprogram
:
21365 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21367 SYMBOL_ACLASS_INDEX (sym
) = LOC_BLOCK
;
21368 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
21369 if ((attr2
&& (DW_UNSND (attr2
) != 0))
21370 || cu
->language
== language_ada
)
21372 /* Subprograms marked external are stored as a global symbol.
21373 Ada subprograms, whether marked external or not, are always
21374 stored as a global symbol, because we want to be able to
21375 access them globally. For instance, we want to be able
21376 to break on a nested subprogram without having to
21377 specify the context. */
21378 list_to_add
= &global_symbols
;
21382 list_to_add
= cu
->list_in_scope
;
21385 case DW_TAG_inlined_subroutine
:
21386 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21388 SYMBOL_ACLASS_INDEX (sym
) = LOC_BLOCK
;
21389 SYMBOL_INLINED (sym
) = 1;
21390 list_to_add
= cu
->list_in_scope
;
21392 case DW_TAG_template_value_param
:
21394 /* Fall through. */
21395 case DW_TAG_constant
:
21396 case DW_TAG_variable
:
21397 case DW_TAG_member
:
21398 /* Compilation with minimal debug info may result in
21399 variables with missing type entries. Change the
21400 misleading `void' type to something sensible. */
21401 if (TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_VOID
)
21402 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_int
;
21404 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
21405 /* In the case of DW_TAG_member, we should only be called for
21406 static const members. */
21407 if (die
->tag
== DW_TAG_member
)
21409 /* dwarf2_add_field uses die_is_declaration,
21410 so we do the same. */
21411 gdb_assert (die_is_declaration (die
, cu
));
21416 dwarf2_const_value (attr
, sym
, cu
);
21417 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
21420 if (attr2
&& (DW_UNSND (attr2
) != 0))
21421 list_to_add
= &global_symbols
;
21423 list_to_add
= cu
->list_in_scope
;
21427 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
21430 var_decode_location (attr
, sym
, cu
);
21431 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
21433 /* Fortran explicitly imports any global symbols to the local
21434 scope by DW_TAG_common_block. */
21435 if (cu
->language
== language_fortran
&& die
->parent
21436 && die
->parent
->tag
== DW_TAG_common_block
)
21439 if (SYMBOL_CLASS (sym
) == LOC_STATIC
21440 && SYMBOL_VALUE_ADDRESS (sym
) == 0
21441 && !dwarf2_per_objfile
->has_section_at_zero
)
21443 /* When a static variable is eliminated by the linker,
21444 the corresponding debug information is not stripped
21445 out, but the variable address is set to null;
21446 do not add such variables into symbol table. */
21448 else if (attr2
&& (DW_UNSND (attr2
) != 0))
21450 /* Workaround gfortran PR debug/40040 - it uses
21451 DW_AT_location for variables in -fPIC libraries which may
21452 get overriden by other libraries/executable and get
21453 a different address. Resolve it by the minimal symbol
21454 which may come from inferior's executable using copy
21455 relocation. Make this workaround only for gfortran as for
21456 other compilers GDB cannot guess the minimal symbol
21457 Fortran mangling kind. */
21458 if (cu
->language
== language_fortran
&& die
->parent
21459 && die
->parent
->tag
== DW_TAG_module
21461 && startswith (cu
->producer
, "GNU Fortran"))
21462 SYMBOL_ACLASS_INDEX (sym
) = LOC_UNRESOLVED
;
21464 /* A variable with DW_AT_external is never static,
21465 but it may be block-scoped. */
21466 list_to_add
= (cu
->list_in_scope
== &file_symbols
21467 ? &global_symbols
: cu
->list_in_scope
);
21470 list_to_add
= cu
->list_in_scope
;
21474 /* We do not know the address of this symbol.
21475 If it is an external symbol and we have type information
21476 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21477 The address of the variable will then be determined from
21478 the minimal symbol table whenever the variable is
21480 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
21482 /* Fortran explicitly imports any global symbols to the local
21483 scope by DW_TAG_common_block. */
21484 if (cu
->language
== language_fortran
&& die
->parent
21485 && die
->parent
->tag
== DW_TAG_common_block
)
21487 /* SYMBOL_CLASS doesn't matter here because
21488 read_common_block is going to reset it. */
21490 list_to_add
= cu
->list_in_scope
;
21492 else if (attr2
&& (DW_UNSND (attr2
) != 0)
21493 && dwarf2_attr (die
, DW_AT_type
, cu
) != NULL
)
21495 /* A variable with DW_AT_external is never static, but it
21496 may be block-scoped. */
21497 list_to_add
= (cu
->list_in_scope
== &file_symbols
21498 ? &global_symbols
: cu
->list_in_scope
);
21500 SYMBOL_ACLASS_INDEX (sym
) = LOC_UNRESOLVED
;
21502 else if (!die_is_declaration (die
, cu
))
21504 /* Use the default LOC_OPTIMIZED_OUT class. */
21505 gdb_assert (SYMBOL_CLASS (sym
) == LOC_OPTIMIZED_OUT
);
21507 list_to_add
= cu
->list_in_scope
;
21511 case DW_TAG_formal_parameter
:
21512 /* If we are inside a function, mark this as an argument. If
21513 not, we might be looking at an argument to an inlined function
21514 when we do not have enough information to show inlined frames;
21515 pretend it's a local variable in that case so that the user can
21517 if (context_stack_depth
> 0
21518 && context_stack
[context_stack_depth
- 1].name
!= NULL
)
21519 SYMBOL_IS_ARGUMENT (sym
) = 1;
21520 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
21523 var_decode_location (attr
, sym
, cu
);
21525 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
21528 dwarf2_const_value (attr
, sym
, cu
);
21531 list_to_add
= cu
->list_in_scope
;
21533 case DW_TAG_unspecified_parameters
:
21534 /* From varargs functions; gdb doesn't seem to have any
21535 interest in this information, so just ignore it for now.
21538 case DW_TAG_template_type_param
:
21540 /* Fall through. */
21541 case DW_TAG_class_type
:
21542 case DW_TAG_interface_type
:
21543 case DW_TAG_structure_type
:
21544 case DW_TAG_union_type
:
21545 case DW_TAG_set_type
:
21546 case DW_TAG_enumeration_type
:
21547 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
21548 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
21551 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21552 really ever be static objects: otherwise, if you try
21553 to, say, break of a class's method and you're in a file
21554 which doesn't mention that class, it won't work unless
21555 the check for all static symbols in lookup_symbol_aux
21556 saves you. See the OtherFileClass tests in
21557 gdb.c++/namespace.exp. */
21561 list_to_add
= (cu
->list_in_scope
== &file_symbols
21562 && cu
->language
== language_cplus
21563 ? &global_symbols
: cu
->list_in_scope
);
21565 /* The semantics of C++ state that "struct foo {
21566 ... }" also defines a typedef for "foo". */
21567 if (cu
->language
== language_cplus
21568 || cu
->language
== language_ada
21569 || cu
->language
== language_d
21570 || cu
->language
== language_rust
)
21572 /* The symbol's name is already allocated along
21573 with this objfile, so we don't need to
21574 duplicate it for the type. */
21575 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
21576 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_SEARCH_NAME (sym
);
21581 case DW_TAG_typedef
:
21582 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
21583 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
21584 list_to_add
= cu
->list_in_scope
;
21586 case DW_TAG_base_type
:
21587 case DW_TAG_subrange_type
:
21588 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
21589 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
21590 list_to_add
= cu
->list_in_scope
;
21592 case DW_TAG_enumerator
:
21593 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
21596 dwarf2_const_value (attr
, sym
, cu
);
21599 /* NOTE: carlton/2003-11-10: See comment above in the
21600 DW_TAG_class_type, etc. block. */
21602 list_to_add
= (cu
->list_in_scope
== &file_symbols
21603 && cu
->language
== language_cplus
21604 ? &global_symbols
: cu
->list_in_scope
);
21607 case DW_TAG_imported_declaration
:
21608 case DW_TAG_namespace
:
21609 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
21610 list_to_add
= &global_symbols
;
21612 case DW_TAG_module
:
21613 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
21614 SYMBOL_DOMAIN (sym
) = MODULE_DOMAIN
;
21615 list_to_add
= &global_symbols
;
21617 case DW_TAG_common_block
:
21618 SYMBOL_ACLASS_INDEX (sym
) = LOC_COMMON_BLOCK
;
21619 SYMBOL_DOMAIN (sym
) = COMMON_BLOCK_DOMAIN
;
21620 add_symbol_to_list (sym
, cu
->list_in_scope
);
21623 /* Not a tag we recognize. Hopefully we aren't processing
21624 trash data, but since we must specifically ignore things
21625 we don't recognize, there is nothing else we should do at
21627 complaint (&symfile_complaints
, _("unsupported tag: '%s'"),
21628 dwarf_tag_name (die
->tag
));
21634 sym
->hash_next
= objfile
->template_symbols
;
21635 objfile
->template_symbols
= sym
;
21636 list_to_add
= NULL
;
21639 if (list_to_add
!= NULL
)
21640 add_symbol_to_list (sym
, list_to_add
);
21642 /* For the benefit of old versions of GCC, check for anonymous
21643 namespaces based on the demangled name. */
21644 if (!cu
->processing_has_namespace_info
21645 && cu
->language
== language_cplus
)
21646 cp_scan_for_anonymous_namespaces (sym
, objfile
);
21651 /* Given an attr with a DW_FORM_dataN value in host byte order,
21652 zero-extend it as appropriate for the symbol's type. The DWARF
21653 standard (v4) is not entirely clear about the meaning of using
21654 DW_FORM_dataN for a constant with a signed type, where the type is
21655 wider than the data. The conclusion of a discussion on the DWARF
21656 list was that this is unspecified. We choose to always zero-extend
21657 because that is the interpretation long in use by GCC. */
21660 dwarf2_const_value_data (const struct attribute
*attr
, struct obstack
*obstack
,
21661 struct dwarf2_cu
*cu
, LONGEST
*value
, int bits
)
21663 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21664 enum bfd_endian byte_order
= bfd_big_endian (objfile
->obfd
) ?
21665 BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
;
21666 LONGEST l
= DW_UNSND (attr
);
21668 if (bits
< sizeof (*value
) * 8)
21670 l
&= ((LONGEST
) 1 << bits
) - 1;
21673 else if (bits
== sizeof (*value
) * 8)
21677 gdb_byte
*bytes
= (gdb_byte
*) obstack_alloc (obstack
, bits
/ 8);
21678 store_unsigned_integer (bytes
, bits
/ 8, byte_order
, l
);
21685 /* Read a constant value from an attribute. Either set *VALUE, or if
21686 the value does not fit in *VALUE, set *BYTES - either already
21687 allocated on the objfile obstack, or newly allocated on OBSTACK,
21688 or, set *BATON, if we translated the constant to a location
21692 dwarf2_const_value_attr (const struct attribute
*attr
, struct type
*type
,
21693 const char *name
, struct obstack
*obstack
,
21694 struct dwarf2_cu
*cu
,
21695 LONGEST
*value
, const gdb_byte
**bytes
,
21696 struct dwarf2_locexpr_baton
**baton
)
21698 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21699 struct comp_unit_head
*cu_header
= &cu
->header
;
21700 struct dwarf_block
*blk
;
21701 enum bfd_endian byte_order
= (bfd_big_endian (objfile
->obfd
) ?
21702 BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
);
21708 switch (attr
->form
)
21711 case DW_FORM_GNU_addr_index
:
21715 if (TYPE_LENGTH (type
) != cu_header
->addr_size
)
21716 dwarf2_const_value_length_mismatch_complaint (name
,
21717 cu_header
->addr_size
,
21718 TYPE_LENGTH (type
));
21719 /* Symbols of this form are reasonably rare, so we just
21720 piggyback on the existing location code rather than writing
21721 a new implementation of symbol_computed_ops. */
21722 *baton
= XOBNEW (obstack
, struct dwarf2_locexpr_baton
);
21723 (*baton
)->per_cu
= cu
->per_cu
;
21724 gdb_assert ((*baton
)->per_cu
);
21726 (*baton
)->size
= 2 + cu_header
->addr_size
;
21727 data
= (gdb_byte
*) obstack_alloc (obstack
, (*baton
)->size
);
21728 (*baton
)->data
= data
;
21730 data
[0] = DW_OP_addr
;
21731 store_unsigned_integer (&data
[1], cu_header
->addr_size
,
21732 byte_order
, DW_ADDR (attr
));
21733 data
[cu_header
->addr_size
+ 1] = DW_OP_stack_value
;
21736 case DW_FORM_string
:
21738 case DW_FORM_GNU_str_index
:
21739 case DW_FORM_GNU_strp_alt
:
21740 /* DW_STRING is already allocated on the objfile obstack, point
21742 *bytes
= (const gdb_byte
*) DW_STRING (attr
);
21744 case DW_FORM_block1
:
21745 case DW_FORM_block2
:
21746 case DW_FORM_block4
:
21747 case DW_FORM_block
:
21748 case DW_FORM_exprloc
:
21749 case DW_FORM_data16
:
21750 blk
= DW_BLOCK (attr
);
21751 if (TYPE_LENGTH (type
) != blk
->size
)
21752 dwarf2_const_value_length_mismatch_complaint (name
, blk
->size
,
21753 TYPE_LENGTH (type
));
21754 *bytes
= blk
->data
;
21757 /* The DW_AT_const_value attributes are supposed to carry the
21758 symbol's value "represented as it would be on the target
21759 architecture." By the time we get here, it's already been
21760 converted to host endianness, so we just need to sign- or
21761 zero-extend it as appropriate. */
21762 case DW_FORM_data1
:
21763 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 8);
21765 case DW_FORM_data2
:
21766 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 16);
21768 case DW_FORM_data4
:
21769 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 32);
21771 case DW_FORM_data8
:
21772 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 64);
21775 case DW_FORM_sdata
:
21776 case DW_FORM_implicit_const
:
21777 *value
= DW_SND (attr
);
21780 case DW_FORM_udata
:
21781 *value
= DW_UNSND (attr
);
21785 complaint (&symfile_complaints
,
21786 _("unsupported const value attribute form: '%s'"),
21787 dwarf_form_name (attr
->form
));
21794 /* Copy constant value from an attribute to a symbol. */
21797 dwarf2_const_value (const struct attribute
*attr
, struct symbol
*sym
,
21798 struct dwarf2_cu
*cu
)
21800 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21802 const gdb_byte
*bytes
;
21803 struct dwarf2_locexpr_baton
*baton
;
21805 dwarf2_const_value_attr (attr
, SYMBOL_TYPE (sym
),
21806 SYMBOL_PRINT_NAME (sym
),
21807 &objfile
->objfile_obstack
, cu
,
21808 &value
, &bytes
, &baton
);
21812 SYMBOL_LOCATION_BATON (sym
) = baton
;
21813 SYMBOL_ACLASS_INDEX (sym
) = dwarf2_locexpr_index
;
21815 else if (bytes
!= NULL
)
21817 SYMBOL_VALUE_BYTES (sym
) = bytes
;
21818 SYMBOL_ACLASS_INDEX (sym
) = LOC_CONST_BYTES
;
21822 SYMBOL_VALUE (sym
) = value
;
21823 SYMBOL_ACLASS_INDEX (sym
) = LOC_CONST
;
21827 /* Return the type of the die in question using its DW_AT_type attribute. */
21829 static struct type
*
21830 die_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
21832 struct attribute
*type_attr
;
21834 type_attr
= dwarf2_attr (die
, DW_AT_type
, cu
);
21837 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21838 /* A missing DW_AT_type represents a void type. */
21839 return objfile_type (objfile
)->builtin_void
;
21842 return lookup_die_type (die
, type_attr
, cu
);
21845 /* True iff CU's producer generates GNAT Ada auxiliary information
21846 that allows to find parallel types through that information instead
21847 of having to do expensive parallel lookups by type name. */
21850 need_gnat_info (struct dwarf2_cu
*cu
)
21852 /* Assume that the Ada compiler was GNAT, which always produces
21853 the auxiliary information. */
21854 return (cu
->language
== language_ada
);
21857 /* Return the auxiliary type of the die in question using its
21858 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21859 attribute is not present. */
21861 static struct type
*
21862 die_descriptive_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
21864 struct attribute
*type_attr
;
21866 type_attr
= dwarf2_attr (die
, DW_AT_GNAT_descriptive_type
, cu
);
21870 return lookup_die_type (die
, type_attr
, cu
);
21873 /* If DIE has a descriptive_type attribute, then set the TYPE's
21874 descriptive type accordingly. */
21877 set_descriptive_type (struct type
*type
, struct die_info
*die
,
21878 struct dwarf2_cu
*cu
)
21880 struct type
*descriptive_type
= die_descriptive_type (die
, cu
);
21882 if (descriptive_type
)
21884 ALLOCATE_GNAT_AUX_TYPE (type
);
21885 TYPE_DESCRIPTIVE_TYPE (type
) = descriptive_type
;
21889 /* Return the containing type of the die in question using its
21890 DW_AT_containing_type attribute. */
21892 static struct type
*
21893 die_containing_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
21895 struct attribute
*type_attr
;
21896 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
21898 type_attr
= dwarf2_attr (die
, DW_AT_containing_type
, cu
);
21900 error (_("Dwarf Error: Problem turning containing type into gdb type "
21901 "[in module %s]"), objfile_name (objfile
));
21903 return lookup_die_type (die
, type_attr
, cu
);
21906 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21908 static struct type
*
21909 build_error_marker_type (struct dwarf2_cu
*cu
, struct die_info
*die
)
21911 struct dwarf2_per_objfile
*dwarf2_per_objfile
21912 = cu
->per_cu
->dwarf2_per_objfile
;
21913 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
21914 char *message
, *saved
;
21916 message
= xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
21917 objfile_name (objfile
),
21918 to_underlying (cu
->header
.sect_off
),
21919 to_underlying (die
->sect_off
));
21920 saved
= (char *) obstack_copy0 (&objfile
->objfile_obstack
,
21921 message
, strlen (message
));
21924 return init_type (objfile
, TYPE_CODE_ERROR
, 0, saved
);
21927 /* Look up the type of DIE in CU using its type attribute ATTR.
21928 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21929 DW_AT_containing_type.
21930 If there is no type substitute an error marker. */
21932 static struct type
*
21933 lookup_die_type (struct die_info
*die
, const struct attribute
*attr
,
21934 struct dwarf2_cu
*cu
)
21936 struct dwarf2_per_objfile
*dwarf2_per_objfile
21937 = cu
->per_cu
->dwarf2_per_objfile
;
21938 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
21939 struct type
*this_type
;
21941 gdb_assert (attr
->name
== DW_AT_type
21942 || attr
->name
== DW_AT_GNAT_descriptive_type
21943 || attr
->name
== DW_AT_containing_type
);
21945 /* First see if we have it cached. */
21947 if (attr
->form
== DW_FORM_GNU_ref_alt
)
21949 struct dwarf2_per_cu_data
*per_cu
;
21950 sect_offset sect_off
= dwarf2_get_ref_die_offset (attr
);
21952 per_cu
= dwarf2_find_containing_comp_unit (sect_off
, 1,
21953 dwarf2_per_objfile
);
21954 this_type
= get_die_type_at_offset (sect_off
, per_cu
);
21956 else if (attr_form_is_ref (attr
))
21958 sect_offset sect_off
= dwarf2_get_ref_die_offset (attr
);
21960 this_type
= get_die_type_at_offset (sect_off
, cu
->per_cu
);
21962 else if (attr
->form
== DW_FORM_ref_sig8
)
21964 ULONGEST signature
= DW_SIGNATURE (attr
);
21966 return get_signatured_type (die
, signature
, cu
);
21970 complaint (&symfile_complaints
,
21971 _("Dwarf Error: Bad type attribute %s in DIE"
21972 " at 0x%x [in module %s]"),
21973 dwarf_attr_name (attr
->name
), to_underlying (die
->sect_off
),
21974 objfile_name (objfile
));
21975 return build_error_marker_type (cu
, die
);
21978 /* If not cached we need to read it in. */
21980 if (this_type
== NULL
)
21982 struct die_info
*type_die
= NULL
;
21983 struct dwarf2_cu
*type_cu
= cu
;
21985 if (attr_form_is_ref (attr
))
21986 type_die
= follow_die_ref (die
, attr
, &type_cu
);
21987 if (type_die
== NULL
)
21988 return build_error_marker_type (cu
, die
);
21989 /* If we find the type now, it's probably because the type came
21990 from an inter-CU reference and the type's CU got expanded before
21992 this_type
= read_type_die (type_die
, type_cu
);
21995 /* If we still don't have a type use an error marker. */
21997 if (this_type
== NULL
)
21998 return build_error_marker_type (cu
, die
);
22003 /* Return the type in DIE, CU.
22004 Returns NULL for invalid types.
22006 This first does a lookup in die_type_hash,
22007 and only reads the die in if necessary.
22009 NOTE: This can be called when reading in partial or full symbols. */
22011 static struct type
*
22012 read_type_die (struct die_info
*die
, struct dwarf2_cu
*cu
)
22014 struct type
*this_type
;
22016 this_type
= get_die_type (die
, cu
);
22020 return read_type_die_1 (die
, cu
);
22023 /* Read the type in DIE, CU.
22024 Returns NULL for invalid types. */
22026 static struct type
*
22027 read_type_die_1 (struct die_info
*die
, struct dwarf2_cu
*cu
)
22029 struct type
*this_type
= NULL
;
22033 case DW_TAG_class_type
:
22034 case DW_TAG_interface_type
:
22035 case DW_TAG_structure_type
:
22036 case DW_TAG_union_type
:
22037 this_type
= read_structure_type (die
, cu
);
22039 case DW_TAG_enumeration_type
:
22040 this_type
= read_enumeration_type (die
, cu
);
22042 case DW_TAG_subprogram
:
22043 case DW_TAG_subroutine_type
:
22044 case DW_TAG_inlined_subroutine
:
22045 this_type
= read_subroutine_type (die
, cu
);
22047 case DW_TAG_array_type
:
22048 this_type
= read_array_type (die
, cu
);
22050 case DW_TAG_set_type
:
22051 this_type
= read_set_type (die
, cu
);
22053 case DW_TAG_pointer_type
:
22054 this_type
= read_tag_pointer_type (die
, cu
);
22056 case DW_TAG_ptr_to_member_type
:
22057 this_type
= read_tag_ptr_to_member_type (die
, cu
);
22059 case DW_TAG_reference_type
:
22060 this_type
= read_tag_reference_type (die
, cu
, TYPE_CODE_REF
);
22062 case DW_TAG_rvalue_reference_type
:
22063 this_type
= read_tag_reference_type (die
, cu
, TYPE_CODE_RVALUE_REF
);
22065 case DW_TAG_const_type
:
22066 this_type
= read_tag_const_type (die
, cu
);
22068 case DW_TAG_volatile_type
:
22069 this_type
= read_tag_volatile_type (die
, cu
);
22071 case DW_TAG_restrict_type
:
22072 this_type
= read_tag_restrict_type (die
, cu
);
22074 case DW_TAG_string_type
:
22075 this_type
= read_tag_string_type (die
, cu
);
22077 case DW_TAG_typedef
:
22078 this_type
= read_typedef (die
, cu
);
22080 case DW_TAG_subrange_type
:
22081 this_type
= read_subrange_type (die
, cu
);
22083 case DW_TAG_base_type
:
22084 this_type
= read_base_type (die
, cu
);
22086 case DW_TAG_unspecified_type
:
22087 this_type
= read_unspecified_type (die
, cu
);
22089 case DW_TAG_namespace
:
22090 this_type
= read_namespace_type (die
, cu
);
22092 case DW_TAG_module
:
22093 this_type
= read_module_type (die
, cu
);
22095 case DW_TAG_atomic_type
:
22096 this_type
= read_tag_atomic_type (die
, cu
);
22099 complaint (&symfile_complaints
,
22100 _("unexpected tag in read_type_die: '%s'"),
22101 dwarf_tag_name (die
->tag
));
22108 /* See if we can figure out if the class lives in a namespace. We do
22109 this by looking for a member function; its demangled name will
22110 contain namespace info, if there is any.
22111 Return the computed name or NULL.
22112 Space for the result is allocated on the objfile's obstack.
22113 This is the full-die version of guess_partial_die_structure_name.
22114 In this case we know DIE has no useful parent. */
22117 guess_full_die_structure_name (struct die_info
*die
, struct dwarf2_cu
*cu
)
22119 struct die_info
*spec_die
;
22120 struct dwarf2_cu
*spec_cu
;
22121 struct die_info
*child
;
22122 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
22125 spec_die
= die_specification (die
, &spec_cu
);
22126 if (spec_die
!= NULL
)
22132 for (child
= die
->child
;
22134 child
= child
->sibling
)
22136 if (child
->tag
== DW_TAG_subprogram
)
22138 const char *linkage_name
= dw2_linkage_name (child
, cu
);
22140 if (linkage_name
!= NULL
)
22143 = language_class_name_from_physname (cu
->language_defn
,
22147 if (actual_name
!= NULL
)
22149 const char *die_name
= dwarf2_name (die
, cu
);
22151 if (die_name
!= NULL
22152 && strcmp (die_name
, actual_name
) != 0)
22154 /* Strip off the class name from the full name.
22155 We want the prefix. */
22156 int die_name_len
= strlen (die_name
);
22157 int actual_name_len
= strlen (actual_name
);
22159 /* Test for '::' as a sanity check. */
22160 if (actual_name_len
> die_name_len
+ 2
22161 && actual_name
[actual_name_len
22162 - die_name_len
- 1] == ':')
22163 name
= (char *) obstack_copy0 (
22164 &objfile
->per_bfd
->storage_obstack
,
22165 actual_name
, actual_name_len
- die_name_len
- 2);
22168 xfree (actual_name
);
22177 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22178 prefix part in such case. See
22179 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22181 static const char *
22182 anonymous_struct_prefix (struct die_info
*die
, struct dwarf2_cu
*cu
)
22184 struct attribute
*attr
;
22187 if (die
->tag
!= DW_TAG_class_type
&& die
->tag
!= DW_TAG_interface_type
22188 && die
->tag
!= DW_TAG_structure_type
&& die
->tag
!= DW_TAG_union_type
)
22191 if (dwarf2_string_attr (die
, DW_AT_name
, cu
) != NULL
)
22194 attr
= dw2_linkage_name_attr (die
, cu
);
22195 if (attr
== NULL
|| DW_STRING (attr
) == NULL
)
22198 /* dwarf2_name had to be already called. */
22199 gdb_assert (DW_STRING_IS_CANONICAL (attr
));
22201 /* Strip the base name, keep any leading namespaces/classes. */
22202 base
= strrchr (DW_STRING (attr
), ':');
22203 if (base
== NULL
|| base
== DW_STRING (attr
) || base
[-1] != ':')
22206 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
22207 return (char *) obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
22209 &base
[-1] - DW_STRING (attr
));
22212 /* Return the name of the namespace/class that DIE is defined within,
22213 or "" if we can't tell. The caller should not xfree the result.
22215 For example, if we're within the method foo() in the following
22225 then determine_prefix on foo's die will return "N::C". */
22227 static const char *
22228 determine_prefix (struct die_info
*die
, struct dwarf2_cu
*cu
)
22230 struct dwarf2_per_objfile
*dwarf2_per_objfile
22231 = cu
->per_cu
->dwarf2_per_objfile
;
22232 struct die_info
*parent
, *spec_die
;
22233 struct dwarf2_cu
*spec_cu
;
22234 struct type
*parent_type
;
22235 const char *retval
;
22237 if (cu
->language
!= language_cplus
22238 && cu
->language
!= language_fortran
&& cu
->language
!= language_d
22239 && cu
->language
!= language_rust
)
22242 retval
= anonymous_struct_prefix (die
, cu
);
22246 /* We have to be careful in the presence of DW_AT_specification.
22247 For example, with GCC 3.4, given the code
22251 // Definition of N::foo.
22255 then we'll have a tree of DIEs like this:
22257 1: DW_TAG_compile_unit
22258 2: DW_TAG_namespace // N
22259 3: DW_TAG_subprogram // declaration of N::foo
22260 4: DW_TAG_subprogram // definition of N::foo
22261 DW_AT_specification // refers to die #3
22263 Thus, when processing die #4, we have to pretend that we're in
22264 the context of its DW_AT_specification, namely the contex of die
22267 spec_die
= die_specification (die
, &spec_cu
);
22268 if (spec_die
== NULL
)
22269 parent
= die
->parent
;
22272 parent
= spec_die
->parent
;
22276 if (parent
== NULL
)
22278 else if (parent
->building_fullname
)
22281 const char *parent_name
;
22283 /* It has been seen on RealView 2.2 built binaries,
22284 DW_TAG_template_type_param types actually _defined_ as
22285 children of the parent class:
22288 template class <class Enum> Class{};
22289 Class<enum E> class_e;
22291 1: DW_TAG_class_type (Class)
22292 2: DW_TAG_enumeration_type (E)
22293 3: DW_TAG_enumerator (enum1:0)
22294 3: DW_TAG_enumerator (enum2:1)
22296 2: DW_TAG_template_type_param
22297 DW_AT_type DW_FORM_ref_udata (E)
22299 Besides being broken debug info, it can put GDB into an
22300 infinite loop. Consider:
22302 When we're building the full name for Class<E>, we'll start
22303 at Class, and go look over its template type parameters,
22304 finding E. We'll then try to build the full name of E, and
22305 reach here. We're now trying to build the full name of E,
22306 and look over the parent DIE for containing scope. In the
22307 broken case, if we followed the parent DIE of E, we'd again
22308 find Class, and once again go look at its template type
22309 arguments, etc., etc. Simply don't consider such parent die
22310 as source-level parent of this die (it can't be, the language
22311 doesn't allow it), and break the loop here. */
22312 name
= dwarf2_name (die
, cu
);
22313 parent_name
= dwarf2_name (parent
, cu
);
22314 complaint (&symfile_complaints
,
22315 _("template param type '%s' defined within parent '%s'"),
22316 name
? name
: "<unknown>",
22317 parent_name
? parent_name
: "<unknown>");
22321 switch (parent
->tag
)
22323 case DW_TAG_namespace
:
22324 parent_type
= read_type_die (parent
, cu
);
22325 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22326 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22327 Work around this problem here. */
22328 if (cu
->language
== language_cplus
22329 && strcmp (TYPE_TAG_NAME (parent_type
), "::") == 0)
22331 /* We give a name to even anonymous namespaces. */
22332 return TYPE_TAG_NAME (parent_type
);
22333 case DW_TAG_class_type
:
22334 case DW_TAG_interface_type
:
22335 case DW_TAG_structure_type
:
22336 case DW_TAG_union_type
:
22337 case DW_TAG_module
:
22338 parent_type
= read_type_die (parent
, cu
);
22339 if (TYPE_TAG_NAME (parent_type
) != NULL
)
22340 return TYPE_TAG_NAME (parent_type
);
22342 /* An anonymous structure is only allowed non-static data
22343 members; no typedefs, no member functions, et cetera.
22344 So it does not need a prefix. */
22346 case DW_TAG_compile_unit
:
22347 case DW_TAG_partial_unit
:
22348 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22349 if (cu
->language
== language_cplus
22350 && !VEC_empty (dwarf2_section_info_def
, dwarf2_per_objfile
->types
)
22351 && die
->child
!= NULL
22352 && (die
->tag
== DW_TAG_class_type
22353 || die
->tag
== DW_TAG_structure_type
22354 || die
->tag
== DW_TAG_union_type
))
22356 char *name
= guess_full_die_structure_name (die
, cu
);
22361 case DW_TAG_enumeration_type
:
22362 parent_type
= read_type_die (parent
, cu
);
22363 if (TYPE_DECLARED_CLASS (parent_type
))
22365 if (TYPE_TAG_NAME (parent_type
) != NULL
)
22366 return TYPE_TAG_NAME (parent_type
);
22369 /* Fall through. */
22371 return determine_prefix (parent
, cu
);
22375 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22376 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22377 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22378 an obconcat, otherwise allocate storage for the result. The CU argument is
22379 used to determine the language and hence, the appropriate separator. */
22381 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22384 typename_concat (struct obstack
*obs
, const char *prefix
, const char *suffix
,
22385 int physname
, struct dwarf2_cu
*cu
)
22387 const char *lead
= "";
22390 if (suffix
== NULL
|| suffix
[0] == '\0'
22391 || prefix
== NULL
|| prefix
[0] == '\0')
22393 else if (cu
->language
== language_d
)
22395 /* For D, the 'main' function could be defined in any module, but it
22396 should never be prefixed. */
22397 if (strcmp (suffix
, "D main") == 0)
22405 else if (cu
->language
== language_fortran
&& physname
)
22407 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22408 DW_AT_MIPS_linkage_name is preferred and used instead. */
22416 if (prefix
== NULL
)
22418 if (suffix
== NULL
)
22425 xmalloc (strlen (prefix
) + MAX_SEP_LEN
+ strlen (suffix
) + 1));
22427 strcpy (retval
, lead
);
22428 strcat (retval
, prefix
);
22429 strcat (retval
, sep
);
22430 strcat (retval
, suffix
);
22435 /* We have an obstack. */
22436 return obconcat (obs
, lead
, prefix
, sep
, suffix
, (char *) NULL
);
22440 /* Return sibling of die, NULL if no sibling. */
22442 static struct die_info
*
22443 sibling_die (struct die_info
*die
)
22445 return die
->sibling
;
22448 /* Get name of a die, return NULL if not found. */
22450 static const char *
22451 dwarf2_canonicalize_name (const char *name
, struct dwarf2_cu
*cu
,
22452 struct obstack
*obstack
)
22454 if (name
&& cu
->language
== language_cplus
)
22456 std::string canon_name
= cp_canonicalize_string (name
);
22458 if (!canon_name
.empty ())
22460 if (canon_name
!= name
)
22461 name
= (const char *) obstack_copy0 (obstack
,
22462 canon_name
.c_str (),
22463 canon_name
.length ());
22470 /* Get name of a die, return NULL if not found.
22471 Anonymous namespaces are converted to their magic string. */
22473 static const char *
22474 dwarf2_name (struct die_info
*die
, struct dwarf2_cu
*cu
)
22476 struct attribute
*attr
;
22477 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
22479 attr
= dwarf2_attr (die
, DW_AT_name
, cu
);
22480 if ((!attr
|| !DW_STRING (attr
))
22481 && die
->tag
!= DW_TAG_namespace
22482 && die
->tag
!= DW_TAG_class_type
22483 && die
->tag
!= DW_TAG_interface_type
22484 && die
->tag
!= DW_TAG_structure_type
22485 && die
->tag
!= DW_TAG_union_type
)
22490 case DW_TAG_compile_unit
:
22491 case DW_TAG_partial_unit
:
22492 /* Compilation units have a DW_AT_name that is a filename, not
22493 a source language identifier. */
22494 case DW_TAG_enumeration_type
:
22495 case DW_TAG_enumerator
:
22496 /* These tags always have simple identifiers already; no need
22497 to canonicalize them. */
22498 return DW_STRING (attr
);
22500 case DW_TAG_namespace
:
22501 if (attr
!= NULL
&& DW_STRING (attr
) != NULL
)
22502 return DW_STRING (attr
);
22503 return CP_ANONYMOUS_NAMESPACE_STR
;
22505 case DW_TAG_class_type
:
22506 case DW_TAG_interface_type
:
22507 case DW_TAG_structure_type
:
22508 case DW_TAG_union_type
:
22509 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22510 structures or unions. These were of the form "._%d" in GCC 4.1,
22511 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22512 and GCC 4.4. We work around this problem by ignoring these. */
22513 if (attr
&& DW_STRING (attr
)
22514 && (startswith (DW_STRING (attr
), "._")
22515 || startswith (DW_STRING (attr
), "<anonymous")))
22518 /* GCC might emit a nameless typedef that has a linkage name. See
22519 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22520 if (!attr
|| DW_STRING (attr
) == NULL
)
22522 char *demangled
= NULL
;
22524 attr
= dw2_linkage_name_attr (die
, cu
);
22525 if (attr
== NULL
|| DW_STRING (attr
) == NULL
)
22528 /* Avoid demangling DW_STRING (attr) the second time on a second
22529 call for the same DIE. */
22530 if (!DW_STRING_IS_CANONICAL (attr
))
22531 demangled
= gdb_demangle (DW_STRING (attr
), DMGL_TYPES
);
22537 /* FIXME: we already did this for the partial symbol... */
22540 obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
22541 demangled
, strlen (demangled
)));
22542 DW_STRING_IS_CANONICAL (attr
) = 1;
22545 /* Strip any leading namespaces/classes, keep only the base name.
22546 DW_AT_name for named DIEs does not contain the prefixes. */
22547 base
= strrchr (DW_STRING (attr
), ':');
22548 if (base
&& base
> DW_STRING (attr
) && base
[-1] == ':')
22551 return DW_STRING (attr
);
22560 if (!DW_STRING_IS_CANONICAL (attr
))
22563 = dwarf2_canonicalize_name (DW_STRING (attr
), cu
,
22564 &objfile
->per_bfd
->storage_obstack
);
22565 DW_STRING_IS_CANONICAL (attr
) = 1;
22567 return DW_STRING (attr
);
22570 /* Return the die that this die in an extension of, or NULL if there
22571 is none. *EXT_CU is the CU containing DIE on input, and the CU
22572 containing the return value on output. */
22574 static struct die_info
*
22575 dwarf2_extension (struct die_info
*die
, struct dwarf2_cu
**ext_cu
)
22577 struct attribute
*attr
;
22579 attr
= dwarf2_attr (die
, DW_AT_extension
, *ext_cu
);
22583 return follow_die_ref (die
, attr
, ext_cu
);
22586 /* Convert a DIE tag into its string name. */
22588 static const char *
22589 dwarf_tag_name (unsigned tag
)
22591 const char *name
= get_DW_TAG_name (tag
);
22594 return "DW_TAG_<unknown>";
22599 /* Convert a DWARF attribute code into its string name. */
22601 static const char *
22602 dwarf_attr_name (unsigned attr
)
22606 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22607 if (attr
== DW_AT_MIPS_fde
)
22608 return "DW_AT_MIPS_fde";
22610 if (attr
== DW_AT_HP_block_index
)
22611 return "DW_AT_HP_block_index";
22614 name
= get_DW_AT_name (attr
);
22617 return "DW_AT_<unknown>";
22622 /* Convert a DWARF value form code into its string name. */
22624 static const char *
22625 dwarf_form_name (unsigned form
)
22627 const char *name
= get_DW_FORM_name (form
);
22630 return "DW_FORM_<unknown>";
22635 static const char *
22636 dwarf_bool_name (unsigned mybool
)
22644 /* Convert a DWARF type code into its string name. */
22646 static const char *
22647 dwarf_type_encoding_name (unsigned enc
)
22649 const char *name
= get_DW_ATE_name (enc
);
22652 return "DW_ATE_<unknown>";
22658 dump_die_shallow (struct ui_file
*f
, int indent
, struct die_info
*die
)
22662 print_spaces (indent
, f
);
22663 fprintf_unfiltered (f
, "Die: %s (abbrev %d, offset 0x%x)\n",
22664 dwarf_tag_name (die
->tag
), die
->abbrev
,
22665 to_underlying (die
->sect_off
));
22667 if (die
->parent
!= NULL
)
22669 print_spaces (indent
, f
);
22670 fprintf_unfiltered (f
, " parent at offset: 0x%x\n",
22671 to_underlying (die
->parent
->sect_off
));
22674 print_spaces (indent
, f
);
22675 fprintf_unfiltered (f
, " has children: %s\n",
22676 dwarf_bool_name (die
->child
!= NULL
));
22678 print_spaces (indent
, f
);
22679 fprintf_unfiltered (f
, " attributes:\n");
22681 for (i
= 0; i
< die
->num_attrs
; ++i
)
22683 print_spaces (indent
, f
);
22684 fprintf_unfiltered (f
, " %s (%s) ",
22685 dwarf_attr_name (die
->attrs
[i
].name
),
22686 dwarf_form_name (die
->attrs
[i
].form
));
22688 switch (die
->attrs
[i
].form
)
22691 case DW_FORM_GNU_addr_index
:
22692 fprintf_unfiltered (f
, "address: ");
22693 fputs_filtered (hex_string (DW_ADDR (&die
->attrs
[i
])), f
);
22695 case DW_FORM_block2
:
22696 case DW_FORM_block4
:
22697 case DW_FORM_block
:
22698 case DW_FORM_block1
:
22699 fprintf_unfiltered (f
, "block: size %s",
22700 pulongest (DW_BLOCK (&die
->attrs
[i
])->size
));
22702 case DW_FORM_exprloc
:
22703 fprintf_unfiltered (f
, "expression: size %s",
22704 pulongest (DW_BLOCK (&die
->attrs
[i
])->size
));
22706 case DW_FORM_data16
:
22707 fprintf_unfiltered (f
, "constant of 16 bytes");
22709 case DW_FORM_ref_addr
:
22710 fprintf_unfiltered (f
, "ref address: ");
22711 fputs_filtered (hex_string (DW_UNSND (&die
->attrs
[i
])), f
);
22713 case DW_FORM_GNU_ref_alt
:
22714 fprintf_unfiltered (f
, "alt ref address: ");
22715 fputs_filtered (hex_string (DW_UNSND (&die
->attrs
[i
])), f
);
22721 case DW_FORM_ref_udata
:
22722 fprintf_unfiltered (f
, "constant ref: 0x%lx (adjusted)",
22723 (long) (DW_UNSND (&die
->attrs
[i
])));
22725 case DW_FORM_data1
:
22726 case DW_FORM_data2
:
22727 case DW_FORM_data4
:
22728 case DW_FORM_data8
:
22729 case DW_FORM_udata
:
22730 case DW_FORM_sdata
:
22731 fprintf_unfiltered (f
, "constant: %s",
22732 pulongest (DW_UNSND (&die
->attrs
[i
])));
22734 case DW_FORM_sec_offset
:
22735 fprintf_unfiltered (f
, "section offset: %s",
22736 pulongest (DW_UNSND (&die
->attrs
[i
])));
22738 case DW_FORM_ref_sig8
:
22739 fprintf_unfiltered (f
, "signature: %s",
22740 hex_string (DW_SIGNATURE (&die
->attrs
[i
])));
22742 case DW_FORM_string
:
22744 case DW_FORM_line_strp
:
22745 case DW_FORM_GNU_str_index
:
22746 case DW_FORM_GNU_strp_alt
:
22747 fprintf_unfiltered (f
, "string: \"%s\" (%s canonicalized)",
22748 DW_STRING (&die
->attrs
[i
])
22749 ? DW_STRING (&die
->attrs
[i
]) : "",
22750 DW_STRING_IS_CANONICAL (&die
->attrs
[i
]) ? "is" : "not");
22753 if (DW_UNSND (&die
->attrs
[i
]))
22754 fprintf_unfiltered (f
, "flag: TRUE");
22756 fprintf_unfiltered (f
, "flag: FALSE");
22758 case DW_FORM_flag_present
:
22759 fprintf_unfiltered (f
, "flag: TRUE");
22761 case DW_FORM_indirect
:
22762 /* The reader will have reduced the indirect form to
22763 the "base form" so this form should not occur. */
22764 fprintf_unfiltered (f
,
22765 "unexpected attribute form: DW_FORM_indirect");
22767 case DW_FORM_implicit_const
:
22768 fprintf_unfiltered (f
, "constant: %s",
22769 plongest (DW_SND (&die
->attrs
[i
])));
22772 fprintf_unfiltered (f
, "unsupported attribute form: %d.",
22773 die
->attrs
[i
].form
);
22776 fprintf_unfiltered (f
, "\n");
22781 dump_die_for_error (struct die_info
*die
)
22783 dump_die_shallow (gdb_stderr
, 0, die
);
22787 dump_die_1 (struct ui_file
*f
, int level
, int max_level
, struct die_info
*die
)
22789 int indent
= level
* 4;
22791 gdb_assert (die
!= NULL
);
22793 if (level
>= max_level
)
22796 dump_die_shallow (f
, indent
, die
);
22798 if (die
->child
!= NULL
)
22800 print_spaces (indent
, f
);
22801 fprintf_unfiltered (f
, " Children:");
22802 if (level
+ 1 < max_level
)
22804 fprintf_unfiltered (f
, "\n");
22805 dump_die_1 (f
, level
+ 1, max_level
, die
->child
);
22809 fprintf_unfiltered (f
,
22810 " [not printed, max nesting level reached]\n");
22814 if (die
->sibling
!= NULL
&& level
> 0)
22816 dump_die_1 (f
, level
, max_level
, die
->sibling
);
22820 /* This is called from the pdie macro in gdbinit.in.
22821 It's not static so gcc will keep a copy callable from gdb. */
22824 dump_die (struct die_info
*die
, int max_level
)
22826 dump_die_1 (gdb_stdlog
, 0, max_level
, die
);
22830 store_in_ref_table (struct die_info
*die
, struct dwarf2_cu
*cu
)
22834 slot
= htab_find_slot_with_hash (cu
->die_hash
, die
,
22835 to_underlying (die
->sect_off
),
22841 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22845 dwarf2_get_ref_die_offset (const struct attribute
*attr
)
22847 if (attr_form_is_ref (attr
))
22848 return (sect_offset
) DW_UNSND (attr
);
22850 complaint (&symfile_complaints
,
22851 _("unsupported die ref attribute form: '%s'"),
22852 dwarf_form_name (attr
->form
));
22856 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22857 * the value held by the attribute is not constant. */
22860 dwarf2_get_attr_constant_value (const struct attribute
*attr
, int default_value
)
22862 if (attr
->form
== DW_FORM_sdata
|| attr
->form
== DW_FORM_implicit_const
)
22863 return DW_SND (attr
);
22864 else if (attr
->form
== DW_FORM_udata
22865 || attr
->form
== DW_FORM_data1
22866 || attr
->form
== DW_FORM_data2
22867 || attr
->form
== DW_FORM_data4
22868 || attr
->form
== DW_FORM_data8
)
22869 return DW_UNSND (attr
);
22872 /* For DW_FORM_data16 see attr_form_is_constant. */
22873 complaint (&symfile_complaints
,
22874 _("Attribute value is not a constant (%s)"),
22875 dwarf_form_name (attr
->form
));
22876 return default_value
;
22880 /* Follow reference or signature attribute ATTR of SRC_DIE.
22881 On entry *REF_CU is the CU of SRC_DIE.
22882 On exit *REF_CU is the CU of the result. */
22884 static struct die_info
*
22885 follow_die_ref_or_sig (struct die_info
*src_die
, const struct attribute
*attr
,
22886 struct dwarf2_cu
**ref_cu
)
22888 struct die_info
*die
;
22890 if (attr_form_is_ref (attr
))
22891 die
= follow_die_ref (src_die
, attr
, ref_cu
);
22892 else if (attr
->form
== DW_FORM_ref_sig8
)
22893 die
= follow_die_sig (src_die
, attr
, ref_cu
);
22896 dump_die_for_error (src_die
);
22897 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22898 objfile_name ((*ref_cu
)->per_cu
->dwarf2_per_objfile
->objfile
));
22904 /* Follow reference OFFSET.
22905 On entry *REF_CU is the CU of the source die referencing OFFSET.
22906 On exit *REF_CU is the CU of the result.
22907 Returns NULL if OFFSET is invalid. */
22909 static struct die_info
*
22910 follow_die_offset (sect_offset sect_off
, int offset_in_dwz
,
22911 struct dwarf2_cu
**ref_cu
)
22913 struct die_info temp_die
;
22914 struct dwarf2_cu
*target_cu
, *cu
= *ref_cu
;
22915 struct dwarf2_per_objfile
*dwarf2_per_objfile
22916 = cu
->per_cu
->dwarf2_per_objfile
;
22917 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
22919 gdb_assert (cu
->per_cu
!= NULL
);
22923 if (cu
->per_cu
->is_debug_types
)
22925 /* .debug_types CUs cannot reference anything outside their CU.
22926 If they need to, they have to reference a signatured type via
22927 DW_FORM_ref_sig8. */
22928 if (!offset_in_cu_p (&cu
->header
, sect_off
))
22931 else if (offset_in_dwz
!= cu
->per_cu
->is_dwz
22932 || !offset_in_cu_p (&cu
->header
, sect_off
))
22934 struct dwarf2_per_cu_data
*per_cu
;
22936 per_cu
= dwarf2_find_containing_comp_unit (sect_off
, offset_in_dwz
,
22937 dwarf2_per_objfile
);
22939 /* If necessary, add it to the queue and load its DIEs. */
22940 if (maybe_queue_comp_unit (cu
, per_cu
, cu
->language
))
22941 load_full_comp_unit (per_cu
, cu
->language
);
22943 target_cu
= per_cu
->cu
;
22945 else if (cu
->dies
== NULL
)
22947 /* We're loading full DIEs during partial symbol reading. */
22948 gdb_assert (dwarf2_per_objfile
->reading_partial_symbols
);
22949 load_full_comp_unit (cu
->per_cu
, language_minimal
);
22952 *ref_cu
= target_cu
;
22953 temp_die
.sect_off
= sect_off
;
22954 return (struct die_info
*) htab_find_with_hash (target_cu
->die_hash
,
22956 to_underlying (sect_off
));
22959 /* Follow reference attribute ATTR of SRC_DIE.
22960 On entry *REF_CU is the CU of SRC_DIE.
22961 On exit *REF_CU is the CU of the result. */
22963 static struct die_info
*
22964 follow_die_ref (struct die_info
*src_die
, const struct attribute
*attr
,
22965 struct dwarf2_cu
**ref_cu
)
22967 sect_offset sect_off
= dwarf2_get_ref_die_offset (attr
);
22968 struct dwarf2_cu
*cu
= *ref_cu
;
22969 struct die_info
*die
;
22971 die
= follow_die_offset (sect_off
,
22972 (attr
->form
== DW_FORM_GNU_ref_alt
22973 || cu
->per_cu
->is_dwz
),
22976 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
22977 "at 0x%x [in module %s]"),
22978 to_underlying (sect_off
), to_underlying (src_die
->sect_off
),
22979 objfile_name (cu
->per_cu
->dwarf2_per_objfile
->objfile
));
22984 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22985 Returned value is intended for DW_OP_call*. Returned
22986 dwarf2_locexpr_baton->data has lifetime of
22987 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22989 struct dwarf2_locexpr_baton
22990 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off
,
22991 struct dwarf2_per_cu_data
*per_cu
,
22992 CORE_ADDR (*get_frame_pc
) (void *baton
),
22995 struct dwarf2_cu
*cu
;
22996 struct die_info
*die
;
22997 struct attribute
*attr
;
22998 struct dwarf2_locexpr_baton retval
;
22999 struct objfile
*objfile
= per_cu
->dwarf2_per_objfile
->objfile
;
23000 struct dwarf2_per_objfile
*dwarf2_per_objfile
23001 = get_dwarf2_per_objfile (objfile
);
23003 if (per_cu
->cu
== NULL
)
23008 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23009 Instead just throw an error, not much else we can do. */
23010 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
23011 to_underlying (sect_off
), objfile_name (objfile
));
23014 die
= follow_die_offset (sect_off
, per_cu
->is_dwz
, &cu
);
23016 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23017 to_underlying (sect_off
), objfile_name (objfile
));
23019 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
23022 /* DWARF: "If there is no such attribute, then there is no effect.".
23023 DATA is ignored if SIZE is 0. */
23025 retval
.data
= NULL
;
23028 else if (attr_form_is_section_offset (attr
))
23030 struct dwarf2_loclist_baton loclist_baton
;
23031 CORE_ADDR pc
= (*get_frame_pc
) (baton
);
23034 fill_in_loclist_baton (cu
, &loclist_baton
, attr
);
23036 retval
.data
= dwarf2_find_location_expression (&loclist_baton
,
23038 retval
.size
= size
;
23042 if (!attr_form_is_block (attr
))
23043 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
23044 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23045 to_underlying (sect_off
), objfile_name (objfile
));
23047 retval
.data
= DW_BLOCK (attr
)->data
;
23048 retval
.size
= DW_BLOCK (attr
)->size
;
23050 retval
.per_cu
= cu
->per_cu
;
23052 age_cached_comp_units (dwarf2_per_objfile
);
23057 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23060 struct dwarf2_locexpr_baton
23061 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu
,
23062 struct dwarf2_per_cu_data
*per_cu
,
23063 CORE_ADDR (*get_frame_pc
) (void *baton
),
23066 sect_offset sect_off
= per_cu
->sect_off
+ to_underlying (offset_in_cu
);
23068 return dwarf2_fetch_die_loc_sect_off (sect_off
, per_cu
, get_frame_pc
, baton
);
23071 /* Write a constant of a given type as target-ordered bytes into
23074 static const gdb_byte
*
23075 write_constant_as_bytes (struct obstack
*obstack
,
23076 enum bfd_endian byte_order
,
23083 *len
= TYPE_LENGTH (type
);
23084 result
= (gdb_byte
*) obstack_alloc (obstack
, *len
);
23085 store_unsigned_integer (result
, *len
, byte_order
, value
);
23090 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23091 pointer to the constant bytes and set LEN to the length of the
23092 data. If memory is needed, allocate it on OBSTACK. If the DIE
23093 does not have a DW_AT_const_value, return NULL. */
23096 dwarf2_fetch_constant_bytes (sect_offset sect_off
,
23097 struct dwarf2_per_cu_data
*per_cu
,
23098 struct obstack
*obstack
,
23101 struct dwarf2_cu
*cu
;
23102 struct die_info
*die
;
23103 struct attribute
*attr
;
23104 const gdb_byte
*result
= NULL
;
23107 enum bfd_endian byte_order
;
23108 struct objfile
*objfile
= per_cu
->dwarf2_per_objfile
->objfile
;
23110 if (per_cu
->cu
== NULL
)
23115 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23116 Instead just throw an error, not much else we can do. */
23117 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
23118 to_underlying (sect_off
), objfile_name (objfile
));
23121 die
= follow_die_offset (sect_off
, per_cu
->is_dwz
, &cu
);
23123 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23124 to_underlying (sect_off
), objfile_name (objfile
));
23127 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
23131 byte_order
= (bfd_big_endian (objfile
->obfd
)
23132 ? BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
);
23134 switch (attr
->form
)
23137 case DW_FORM_GNU_addr_index
:
23141 *len
= cu
->header
.addr_size
;
23142 tem
= (gdb_byte
*) obstack_alloc (obstack
, *len
);
23143 store_unsigned_integer (tem
, *len
, byte_order
, DW_ADDR (attr
));
23147 case DW_FORM_string
:
23149 case DW_FORM_GNU_str_index
:
23150 case DW_FORM_GNU_strp_alt
:
23151 /* DW_STRING is already allocated on the objfile obstack, point
23153 result
= (const gdb_byte
*) DW_STRING (attr
);
23154 *len
= strlen (DW_STRING (attr
));
23156 case DW_FORM_block1
:
23157 case DW_FORM_block2
:
23158 case DW_FORM_block4
:
23159 case DW_FORM_block
:
23160 case DW_FORM_exprloc
:
23161 case DW_FORM_data16
:
23162 result
= DW_BLOCK (attr
)->data
;
23163 *len
= DW_BLOCK (attr
)->size
;
23166 /* The DW_AT_const_value attributes are supposed to carry the
23167 symbol's value "represented as it would be on the target
23168 architecture." By the time we get here, it's already been
23169 converted to host endianness, so we just need to sign- or
23170 zero-extend it as appropriate. */
23171 case DW_FORM_data1
:
23172 type
= die_type (die
, cu
);
23173 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 8);
23174 if (result
== NULL
)
23175 result
= write_constant_as_bytes (obstack
, byte_order
,
23178 case DW_FORM_data2
:
23179 type
= die_type (die
, cu
);
23180 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 16);
23181 if (result
== NULL
)
23182 result
= write_constant_as_bytes (obstack
, byte_order
,
23185 case DW_FORM_data4
:
23186 type
= die_type (die
, cu
);
23187 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 32);
23188 if (result
== NULL
)
23189 result
= write_constant_as_bytes (obstack
, byte_order
,
23192 case DW_FORM_data8
:
23193 type
= die_type (die
, cu
);
23194 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 64);
23195 if (result
== NULL
)
23196 result
= write_constant_as_bytes (obstack
, byte_order
,
23200 case DW_FORM_sdata
:
23201 case DW_FORM_implicit_const
:
23202 type
= die_type (die
, cu
);
23203 result
= write_constant_as_bytes (obstack
, byte_order
,
23204 type
, DW_SND (attr
), len
);
23207 case DW_FORM_udata
:
23208 type
= die_type (die
, cu
);
23209 result
= write_constant_as_bytes (obstack
, byte_order
,
23210 type
, DW_UNSND (attr
), len
);
23214 complaint (&symfile_complaints
,
23215 _("unsupported const value attribute form: '%s'"),
23216 dwarf_form_name (attr
->form
));
23223 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23224 valid type for this die is found. */
23227 dwarf2_fetch_die_type_sect_off (sect_offset sect_off
,
23228 struct dwarf2_per_cu_data
*per_cu
)
23230 struct dwarf2_cu
*cu
;
23231 struct die_info
*die
;
23233 if (per_cu
->cu
== NULL
)
23239 die
= follow_die_offset (sect_off
, per_cu
->is_dwz
, &cu
);
23243 return die_type (die
, cu
);
23246 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23250 dwarf2_get_die_type (cu_offset die_offset
,
23251 struct dwarf2_per_cu_data
*per_cu
)
23253 sect_offset die_offset_sect
= per_cu
->sect_off
+ to_underlying (die_offset
);
23254 return get_die_type_at_offset (die_offset_sect
, per_cu
);
23257 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23258 On entry *REF_CU is the CU of SRC_DIE.
23259 On exit *REF_CU is the CU of the result.
23260 Returns NULL if the referenced DIE isn't found. */
23262 static struct die_info
*
23263 follow_die_sig_1 (struct die_info
*src_die
, struct signatured_type
*sig_type
,
23264 struct dwarf2_cu
**ref_cu
)
23266 struct die_info temp_die
;
23267 struct dwarf2_cu
*sig_cu
;
23268 struct die_info
*die
;
23270 /* While it might be nice to assert sig_type->type == NULL here,
23271 we can get here for DW_AT_imported_declaration where we need
23272 the DIE not the type. */
23274 /* If necessary, add it to the queue and load its DIEs. */
23276 if (maybe_queue_comp_unit (*ref_cu
, &sig_type
->per_cu
, language_minimal
))
23277 read_signatured_type (sig_type
);
23279 sig_cu
= sig_type
->per_cu
.cu
;
23280 gdb_assert (sig_cu
!= NULL
);
23281 gdb_assert (to_underlying (sig_type
->type_offset_in_section
) != 0);
23282 temp_die
.sect_off
= sig_type
->type_offset_in_section
;
23283 die
= (struct die_info
*) htab_find_with_hash (sig_cu
->die_hash
, &temp_die
,
23284 to_underlying (temp_die
.sect_off
));
23287 struct dwarf2_per_objfile
*dwarf2_per_objfile
23288 = (*ref_cu
)->per_cu
->dwarf2_per_objfile
;
23290 /* For .gdb_index version 7 keep track of included TUs.
23291 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23292 if (dwarf2_per_objfile
->index_table
!= NULL
23293 && dwarf2_per_objfile
->index_table
->version
<= 7)
23295 VEC_safe_push (dwarf2_per_cu_ptr
,
23296 (*ref_cu
)->per_cu
->imported_symtabs
,
23307 /* Follow signatured type referenced by ATTR in SRC_DIE.
23308 On entry *REF_CU is the CU of SRC_DIE.
23309 On exit *REF_CU is the CU of the result.
23310 The result is the DIE of the type.
23311 If the referenced type cannot be found an error is thrown. */
23313 static struct die_info
*
23314 follow_die_sig (struct die_info
*src_die
, const struct attribute
*attr
,
23315 struct dwarf2_cu
**ref_cu
)
23317 ULONGEST signature
= DW_SIGNATURE (attr
);
23318 struct signatured_type
*sig_type
;
23319 struct die_info
*die
;
23321 gdb_assert (attr
->form
== DW_FORM_ref_sig8
);
23323 sig_type
= lookup_signatured_type (*ref_cu
, signature
);
23324 /* sig_type will be NULL if the signatured type is missing from
23326 if (sig_type
== NULL
)
23328 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23329 " from DIE at 0x%x [in module %s]"),
23330 hex_string (signature
), to_underlying (src_die
->sect_off
),
23331 objfile_name ((*ref_cu
)->per_cu
->dwarf2_per_objfile
->objfile
));
23334 die
= follow_die_sig_1 (src_die
, sig_type
, ref_cu
);
23337 dump_die_for_error (src_die
);
23338 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23339 " from DIE at 0x%x [in module %s]"),
23340 hex_string (signature
), to_underlying (src_die
->sect_off
),
23341 objfile_name ((*ref_cu
)->per_cu
->dwarf2_per_objfile
->objfile
));
23347 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23348 reading in and processing the type unit if necessary. */
23350 static struct type
*
23351 get_signatured_type (struct die_info
*die
, ULONGEST signature
,
23352 struct dwarf2_cu
*cu
)
23354 struct dwarf2_per_objfile
*dwarf2_per_objfile
23355 = cu
->per_cu
->dwarf2_per_objfile
;
23356 struct signatured_type
*sig_type
;
23357 struct dwarf2_cu
*type_cu
;
23358 struct die_info
*type_die
;
23361 sig_type
= lookup_signatured_type (cu
, signature
);
23362 /* sig_type will be NULL if the signatured type is missing from
23364 if (sig_type
== NULL
)
23366 complaint (&symfile_complaints
,
23367 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23368 " from DIE at 0x%x [in module %s]"),
23369 hex_string (signature
), to_underlying (die
->sect_off
),
23370 objfile_name (dwarf2_per_objfile
->objfile
));
23371 return build_error_marker_type (cu
, die
);
23374 /* If we already know the type we're done. */
23375 if (sig_type
->type
!= NULL
)
23376 return sig_type
->type
;
23379 type_die
= follow_die_sig_1 (die
, sig_type
, &type_cu
);
23380 if (type_die
!= NULL
)
23382 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23383 is created. This is important, for example, because for c++ classes
23384 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23385 type
= read_type_die (type_die
, type_cu
);
23388 complaint (&symfile_complaints
,
23389 _("Dwarf Error: Cannot build signatured type %s"
23390 " referenced from DIE at 0x%x [in module %s]"),
23391 hex_string (signature
), to_underlying (die
->sect_off
),
23392 objfile_name (dwarf2_per_objfile
->objfile
));
23393 type
= build_error_marker_type (cu
, die
);
23398 complaint (&symfile_complaints
,
23399 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23400 " from DIE at 0x%x [in module %s]"),
23401 hex_string (signature
), to_underlying (die
->sect_off
),
23402 objfile_name (dwarf2_per_objfile
->objfile
));
23403 type
= build_error_marker_type (cu
, die
);
23405 sig_type
->type
= type
;
23410 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23411 reading in and processing the type unit if necessary. */
23413 static struct type
*
23414 get_DW_AT_signature_type (struct die_info
*die
, const struct attribute
*attr
,
23415 struct dwarf2_cu
*cu
) /* ARI: editCase function */
23417 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23418 if (attr_form_is_ref (attr
))
23420 struct dwarf2_cu
*type_cu
= cu
;
23421 struct die_info
*type_die
= follow_die_ref (die
, attr
, &type_cu
);
23423 return read_type_die (type_die
, type_cu
);
23425 else if (attr
->form
== DW_FORM_ref_sig8
)
23427 return get_signatured_type (die
, DW_SIGNATURE (attr
), cu
);
23431 struct dwarf2_per_objfile
*dwarf2_per_objfile
23432 = cu
->per_cu
->dwarf2_per_objfile
;
23434 complaint (&symfile_complaints
,
23435 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23436 " at 0x%x [in module %s]"),
23437 dwarf_form_name (attr
->form
), to_underlying (die
->sect_off
),
23438 objfile_name (dwarf2_per_objfile
->objfile
));
23439 return build_error_marker_type (cu
, die
);
23443 /* Load the DIEs associated with type unit PER_CU into memory. */
23446 load_full_type_unit (struct dwarf2_per_cu_data
*per_cu
)
23448 struct signatured_type
*sig_type
;
23450 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23451 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu
));
23453 /* We have the per_cu, but we need the signatured_type.
23454 Fortunately this is an easy translation. */
23455 gdb_assert (per_cu
->is_debug_types
);
23456 sig_type
= (struct signatured_type
*) per_cu
;
23458 gdb_assert (per_cu
->cu
== NULL
);
23460 read_signatured_type (sig_type
);
23462 gdb_assert (per_cu
->cu
!= NULL
);
23465 /* die_reader_func for read_signatured_type.
23466 This is identical to load_full_comp_unit_reader,
23467 but is kept separate for now. */
23470 read_signatured_type_reader (const struct die_reader_specs
*reader
,
23471 const gdb_byte
*info_ptr
,
23472 struct die_info
*comp_unit_die
,
23476 struct dwarf2_cu
*cu
= reader
->cu
;
23478 gdb_assert (cu
->die_hash
== NULL
);
23480 htab_create_alloc_ex (cu
->header
.length
/ 12,
23484 &cu
->comp_unit_obstack
,
23485 hashtab_obstack_allocate
,
23486 dummy_obstack_deallocate
);
23489 comp_unit_die
->child
= read_die_and_siblings (reader
, info_ptr
,
23490 &info_ptr
, comp_unit_die
);
23491 cu
->dies
= comp_unit_die
;
23492 /* comp_unit_die is not stored in die_hash, no need. */
23494 /* We try not to read any attributes in this function, because not
23495 all CUs needed for references have been loaded yet, and symbol
23496 table processing isn't initialized. But we have to set the CU language,
23497 or we won't be able to build types correctly.
23498 Similarly, if we do not read the producer, we can not apply
23499 producer-specific interpretation. */
23500 prepare_one_comp_unit (cu
, cu
->dies
, language_minimal
);
23503 /* Read in a signatured type and build its CU and DIEs.
23504 If the type is a stub for the real type in a DWO file,
23505 read in the real type from the DWO file as well. */
23508 read_signatured_type (struct signatured_type
*sig_type
)
23510 struct dwarf2_per_cu_data
*per_cu
= &sig_type
->per_cu
;
23512 gdb_assert (per_cu
->is_debug_types
);
23513 gdb_assert (per_cu
->cu
== NULL
);
23515 init_cutu_and_read_dies (per_cu
, NULL
, 0, 1,
23516 read_signatured_type_reader
, NULL
);
23517 sig_type
->per_cu
.tu_read
= 1;
23520 /* Decode simple location descriptions.
23521 Given a pointer to a dwarf block that defines a location, compute
23522 the location and return the value.
23524 NOTE drow/2003-11-18: This function is called in two situations
23525 now: for the address of static or global variables (partial symbols
23526 only) and for offsets into structures which are expected to be
23527 (more or less) constant. The partial symbol case should go away,
23528 and only the constant case should remain. That will let this
23529 function complain more accurately. A few special modes are allowed
23530 without complaint for global variables (for instance, global
23531 register values and thread-local values).
23533 A location description containing no operations indicates that the
23534 object is optimized out. The return value is 0 for that case.
23535 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23536 callers will only want a very basic result and this can become a
23539 Note that stack[0] is unused except as a default error return. */
23542 decode_locdesc (struct dwarf_block
*blk
, struct dwarf2_cu
*cu
)
23544 struct objfile
*objfile
= cu
->per_cu
->dwarf2_per_objfile
->objfile
;
23546 size_t size
= blk
->size
;
23547 const gdb_byte
*data
= blk
->data
;
23548 CORE_ADDR stack
[64];
23550 unsigned int bytes_read
, unsnd
;
23556 stack
[++stacki
] = 0;
23595 stack
[++stacki
] = op
- DW_OP_lit0
;
23630 stack
[++stacki
] = op
- DW_OP_reg0
;
23632 dwarf2_complex_location_expr_complaint ();
23636 unsnd
= read_unsigned_leb128 (NULL
, (data
+ i
), &bytes_read
);
23638 stack
[++stacki
] = unsnd
;
23640 dwarf2_complex_location_expr_complaint ();
23644 stack
[++stacki
] = read_address (objfile
->obfd
, &data
[i
],
23649 case DW_OP_const1u
:
23650 stack
[++stacki
] = read_1_byte (objfile
->obfd
, &data
[i
]);
23654 case DW_OP_const1s
:
23655 stack
[++stacki
] = read_1_signed_byte (objfile
->obfd
, &data
[i
]);
23659 case DW_OP_const2u
:
23660 stack
[++stacki
] = read_2_bytes (objfile
->obfd
, &data
[i
]);
23664 case DW_OP_const2s
:
23665 stack
[++stacki
] = read_2_signed_bytes (objfile
->obfd
, &data
[i
]);
23669 case DW_OP_const4u
:
23670 stack
[++stacki
] = read_4_bytes (objfile
->obfd
, &data
[i
]);
23674 case DW_OP_const4s
:
23675 stack
[++stacki
] = read_4_signed_bytes (objfile
->obfd
, &data
[i
]);
23679 case DW_OP_const8u
:
23680 stack
[++stacki
] = read_8_bytes (objfile
->obfd
, &data
[i
]);
23685 stack
[++stacki
] = read_unsigned_leb128 (NULL
, (data
+ i
),
23691 stack
[++stacki
] = read_signed_leb128 (NULL
, (data
+ i
), &bytes_read
);
23696 stack
[stacki
+ 1] = stack
[stacki
];
23701 stack
[stacki
- 1] += stack
[stacki
];
23705 case DW_OP_plus_uconst
:
23706 stack
[stacki
] += read_unsigned_leb128 (NULL
, (data
+ i
),
23712 stack
[stacki
- 1] -= stack
[stacki
];
23717 /* If we're not the last op, then we definitely can't encode
23718 this using GDB's address_class enum. This is valid for partial
23719 global symbols, although the variable's address will be bogus
23722 dwarf2_complex_location_expr_complaint ();
23725 case DW_OP_GNU_push_tls_address
:
23726 case DW_OP_form_tls_address
:
23727 /* The top of the stack has the offset from the beginning
23728 of the thread control block at which the variable is located. */
23729 /* Nothing should follow this operator, so the top of stack would
23731 /* This is valid for partial global symbols, but the variable's
23732 address will be bogus in the psymtab. Make it always at least
23733 non-zero to not look as a variable garbage collected by linker
23734 which have DW_OP_addr 0. */
23736 dwarf2_complex_location_expr_complaint ();
23740 case DW_OP_GNU_uninit
:
23743 case DW_OP_GNU_addr_index
:
23744 case DW_OP_GNU_const_index
:
23745 stack
[++stacki
] = read_addr_index_from_leb128 (cu
, &data
[i
],
23752 const char *name
= get_DW_OP_name (op
);
23755 complaint (&symfile_complaints
, _("unsupported stack op: '%s'"),
23758 complaint (&symfile_complaints
, _("unsupported stack op: '%02x'"),
23762 return (stack
[stacki
]);
23765 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23766 outside of the allocated space. Also enforce minimum>0. */
23767 if (stacki
>= ARRAY_SIZE (stack
) - 1)
23769 complaint (&symfile_complaints
,
23770 _("location description stack overflow"));
23776 complaint (&symfile_complaints
,
23777 _("location description stack underflow"));
23781 return (stack
[stacki
]);
23784 /* memory allocation interface */
23786 static struct dwarf_block
*
23787 dwarf_alloc_block (struct dwarf2_cu
*cu
)
23789 return XOBNEW (&cu
->comp_unit_obstack
, struct dwarf_block
);
23792 static struct die_info
*
23793 dwarf_alloc_die (struct dwarf2_cu
*cu
, int num_attrs
)
23795 struct die_info
*die
;
23796 size_t size
= sizeof (struct die_info
);
23799 size
+= (num_attrs
- 1) * sizeof (struct attribute
);
23801 die
= (struct die_info
*) obstack_alloc (&cu
->comp_unit_obstack
, size
);
23802 memset (die
, 0, sizeof (struct die_info
));
23807 /* Macro support. */
23809 /* Return file name relative to the compilation directory of file number I in
23810 *LH's file name table. The result is allocated using xmalloc; the caller is
23811 responsible for freeing it. */
23814 file_file_name (int file
, struct line_header
*lh
)
23816 /* Is the file number a valid index into the line header's file name
23817 table? Remember that file numbers start with one, not zero. */
23818 if (1 <= file
&& file
<= lh
->file_names
.size ())
23820 const file_entry
&fe
= lh
->file_names
[file
- 1];
23822 if (!IS_ABSOLUTE_PATH (fe
.name
))
23824 const char *dir
= fe
.include_dir (lh
);
23826 return concat (dir
, SLASH_STRING
, fe
.name
, (char *) NULL
);
23828 return xstrdup (fe
.name
);
23832 /* The compiler produced a bogus file number. We can at least
23833 record the macro definitions made in the file, even if we
23834 won't be able to find the file by name. */
23835 char fake_name
[80];
23837 xsnprintf (fake_name
, sizeof (fake_name
),
23838 "<bad macro file number %d>", file
);
23840 complaint (&symfile_complaints
,
23841 _("bad file number in macro information (%d)"),
23844 return xstrdup (fake_name
);
23848 /* Return the full name of file number I in *LH's file name table.
23849 Use COMP_DIR as the name of the current directory of the
23850 compilation. The result is allocated using xmalloc; the caller is
23851 responsible for freeing it. */
23853 file_full_name (int file
, struct line_header
*lh
, const char *comp_dir
)
23855 /* Is the file number a valid index into the line header's file name
23856 table? Remember that file numbers start with one, not zero. */
23857 if (1 <= file
&& file
<= lh
->file_names
.size ())
23859 char *relative
= file_file_name (file
, lh
);
23861 if (IS_ABSOLUTE_PATH (relative
) || comp_dir
== NULL
)
23863 return reconcat (relative
, comp_dir
, SLASH_STRING
,
23864 relative
, (char *) NULL
);
23867 return file_file_name (file
, lh
);
23871 static struct macro_source_file
*
23872 macro_start_file (int file
, int line
,
23873 struct macro_source_file
*current_file
,
23874 struct line_header
*lh
)
23876 /* File name relative to the compilation directory of this source file. */
23877 char *file_name
= file_file_name (file
, lh
);
23879 if (! current_file
)
23881 /* Note: We don't create a macro table for this compilation unit
23882 at all until we actually get a filename. */
23883 struct macro_table
*macro_table
= get_macro_table ();
23885 /* If we have no current file, then this must be the start_file
23886 directive for the compilation unit's main source file. */
23887 current_file
= macro_set_main (macro_table
, file_name
);
23888 macro_define_special (macro_table
);
23891 current_file
= macro_include (current_file
, line
, file_name
);
23895 return current_file
;
23898 static const char *
23899 consume_improper_spaces (const char *p
, const char *body
)
23903 complaint (&symfile_complaints
,
23904 _("macro definition contains spaces "
23905 "in formal argument list:\n`%s'"),
23917 parse_macro_definition (struct macro_source_file
*file
, int line
,
23922 /* The body string takes one of two forms. For object-like macro
23923 definitions, it should be:
23925 <macro name> " " <definition>
23927 For function-like macro definitions, it should be:
23929 <macro name> "() " <definition>
23931 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23933 Spaces may appear only where explicitly indicated, and in the
23936 The Dwarf 2 spec says that an object-like macro's name is always
23937 followed by a space, but versions of GCC around March 2002 omit
23938 the space when the macro's definition is the empty string.
23940 The Dwarf 2 spec says that there should be no spaces between the
23941 formal arguments in a function-like macro's formal argument list,
23942 but versions of GCC around March 2002 include spaces after the
23946 /* Find the extent of the macro name. The macro name is terminated
23947 by either a space or null character (for an object-like macro) or
23948 an opening paren (for a function-like macro). */
23949 for (p
= body
; *p
; p
++)
23950 if (*p
== ' ' || *p
== '(')
23953 if (*p
== ' ' || *p
== '\0')
23955 /* It's an object-like macro. */
23956 int name_len
= p
- body
;
23957 char *name
= savestring (body
, name_len
);
23958 const char *replacement
;
23961 replacement
= body
+ name_len
+ 1;
23964 dwarf2_macro_malformed_definition_complaint (body
);
23965 replacement
= body
+ name_len
;
23968 macro_define_object (file
, line
, name
, replacement
);
23972 else if (*p
== '(')
23974 /* It's a function-like macro. */
23975 char *name
= savestring (body
, p
- body
);
23978 char **argv
= XNEWVEC (char *, argv_size
);
23982 p
= consume_improper_spaces (p
, body
);
23984 /* Parse the formal argument list. */
23985 while (*p
&& *p
!= ')')
23987 /* Find the extent of the current argument name. */
23988 const char *arg_start
= p
;
23990 while (*p
&& *p
!= ',' && *p
!= ')' && *p
!= ' ')
23993 if (! *p
|| p
== arg_start
)
23994 dwarf2_macro_malformed_definition_complaint (body
);
23997 /* Make sure argv has room for the new argument. */
23998 if (argc
>= argv_size
)
24001 argv
= XRESIZEVEC (char *, argv
, argv_size
);
24004 argv
[argc
++] = savestring (arg_start
, p
- arg_start
);
24007 p
= consume_improper_spaces (p
, body
);
24009 /* Consume the comma, if present. */
24014 p
= consume_improper_spaces (p
, body
);
24023 /* Perfectly formed definition, no complaints. */
24024 macro_define_function (file
, line
, name
,
24025 argc
, (const char **) argv
,
24027 else if (*p
== '\0')
24029 /* Complain, but do define it. */
24030 dwarf2_macro_malformed_definition_complaint (body
);
24031 macro_define_function (file
, line
, name
,
24032 argc
, (const char **) argv
,
24036 /* Just complain. */
24037 dwarf2_macro_malformed_definition_complaint (body
);
24040 /* Just complain. */
24041 dwarf2_macro_malformed_definition_complaint (body
);
24047 for (i
= 0; i
< argc
; i
++)
24053 dwarf2_macro_malformed_definition_complaint (body
);
24056 /* Skip some bytes from BYTES according to the form given in FORM.
24057 Returns the new pointer. */
24059 static const gdb_byte
*
24060 skip_form_bytes (bfd
*abfd
, const gdb_byte
*bytes
, const gdb_byte
*buffer_end
,
24061 enum dwarf_form form
,
24062 unsigned int offset_size
,
24063 struct dwarf2_section_info
*section
)
24065 unsigned int bytes_read
;
24069 case DW_FORM_data1
:
24074 case DW_FORM_data2
:
24078 case DW_FORM_data4
:
24082 case DW_FORM_data8
:
24086 case DW_FORM_data16
:
24090 case DW_FORM_string
:
24091 read_direct_string (abfd
, bytes
, &bytes_read
);
24092 bytes
+= bytes_read
;
24095 case DW_FORM_sec_offset
:
24097 case DW_FORM_GNU_strp_alt
:
24098 bytes
+= offset_size
;
24101 case DW_FORM_block
:
24102 bytes
+= read_unsigned_leb128 (abfd
, bytes
, &bytes_read
);
24103 bytes
+= bytes_read
;
24106 case DW_FORM_block1
:
24107 bytes
+= 1 + read_1_byte (abfd
, bytes
);
24109 case DW_FORM_block2
:
24110 bytes
+= 2 + read_2_bytes (abfd
, bytes
);
24112 case DW_FORM_block4
:
24113 bytes
+= 4 + read_4_bytes (abfd
, bytes
);
24116 case DW_FORM_sdata
:
24117 case DW_FORM_udata
:
24118 case DW_FORM_GNU_addr_index
:
24119 case DW_FORM_GNU_str_index
:
24120 bytes
= gdb_skip_leb128 (bytes
, buffer_end
);
24123 dwarf2_section_buffer_overflow_complaint (section
);
24128 case DW_FORM_implicit_const
:
24133 complaint (&symfile_complaints
,
24134 _("invalid form 0x%x in `%s'"),
24135 form
, get_section_name (section
));
24143 /* A helper for dwarf_decode_macros that handles skipping an unknown
24144 opcode. Returns an updated pointer to the macro data buffer; or,
24145 on error, issues a complaint and returns NULL. */
24147 static const gdb_byte
*
24148 skip_unknown_opcode (unsigned int opcode
,
24149 const gdb_byte
**opcode_definitions
,
24150 const gdb_byte
*mac_ptr
, const gdb_byte
*mac_end
,
24152 unsigned int offset_size
,
24153 struct dwarf2_section_info
*section
)
24155 unsigned int bytes_read
, i
;
24157 const gdb_byte
*defn
;
24159 if (opcode_definitions
[opcode
] == NULL
)
24161 complaint (&symfile_complaints
,
24162 _("unrecognized DW_MACFINO opcode 0x%x"),
24167 defn
= opcode_definitions
[opcode
];
24168 arg
= read_unsigned_leb128 (abfd
, defn
, &bytes_read
);
24169 defn
+= bytes_read
;
24171 for (i
= 0; i
< arg
; ++i
)
24173 mac_ptr
= skip_form_bytes (abfd
, mac_ptr
, mac_end
,
24174 (enum dwarf_form
) defn
[i
], offset_size
,
24176 if (mac_ptr
== NULL
)
24178 /* skip_form_bytes already issued the complaint. */
24186 /* A helper function which parses the header of a macro section.
24187 If the macro section is the extended (for now called "GNU") type,
24188 then this updates *OFFSET_SIZE. Returns a pointer to just after
24189 the header, or issues a complaint and returns NULL on error. */
24191 static const gdb_byte
*
24192 dwarf_parse_macro_header (const gdb_byte
**opcode_definitions
,
24194 const gdb_byte
*mac_ptr
,
24195 unsigned int *offset_size
,
24196 int section_is_gnu
)
24198 memset (opcode_definitions
, 0, 256 * sizeof (gdb_byte
*));
24200 if (section_is_gnu
)
24202 unsigned int version
, flags
;
24204 version
= read_2_bytes (abfd
, mac_ptr
);
24205 if (version
!= 4 && version
!= 5)
24207 complaint (&symfile_complaints
,
24208 _("unrecognized version `%d' in .debug_macro section"),
24214 flags
= read_1_byte (abfd
, mac_ptr
);
24216 *offset_size
= (flags
& 1) ? 8 : 4;
24218 if ((flags
& 2) != 0)
24219 /* We don't need the line table offset. */
24220 mac_ptr
+= *offset_size
;
24222 /* Vendor opcode descriptions. */
24223 if ((flags
& 4) != 0)
24225 unsigned int i
, count
;
24227 count
= read_1_byte (abfd
, mac_ptr
);
24229 for (i
= 0; i
< count
; ++i
)
24231 unsigned int opcode
, bytes_read
;
24234 opcode
= read_1_byte (abfd
, mac_ptr
);
24236 opcode_definitions
[opcode
] = mac_ptr
;
24237 arg
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24238 mac_ptr
+= bytes_read
;
24247 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24248 including DW_MACRO_import. */
24251 dwarf_decode_macro_bytes (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
24253 const gdb_byte
*mac_ptr
, const gdb_byte
*mac_end
,
24254 struct macro_source_file
*current_file
,
24255 struct line_header
*lh
,
24256 struct dwarf2_section_info
*section
,
24257 int section_is_gnu
, int section_is_dwz
,
24258 unsigned int offset_size
,
24259 htab_t include_hash
)
24261 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
24262 enum dwarf_macro_record_type macinfo_type
;
24263 int at_commandline
;
24264 const gdb_byte
*opcode_definitions
[256];
24266 mac_ptr
= dwarf_parse_macro_header (opcode_definitions
, abfd
, mac_ptr
,
24267 &offset_size
, section_is_gnu
);
24268 if (mac_ptr
== NULL
)
24270 /* We already issued a complaint. */
24274 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24275 GDB is still reading the definitions from command line. First
24276 DW_MACINFO_start_file will need to be ignored as it was already executed
24277 to create CURRENT_FILE for the main source holding also the command line
24278 definitions. On first met DW_MACINFO_start_file this flag is reset to
24279 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24281 at_commandline
= 1;
24285 /* Do we at least have room for a macinfo type byte? */
24286 if (mac_ptr
>= mac_end
)
24288 dwarf2_section_buffer_overflow_complaint (section
);
24292 macinfo_type
= (enum dwarf_macro_record_type
) read_1_byte (abfd
, mac_ptr
);
24295 /* Note that we rely on the fact that the corresponding GNU and
24296 DWARF constants are the same. */
24298 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24299 switch (macinfo_type
)
24301 /* A zero macinfo type indicates the end of the macro
24306 case DW_MACRO_define
:
24307 case DW_MACRO_undef
:
24308 case DW_MACRO_define_strp
:
24309 case DW_MACRO_undef_strp
:
24310 case DW_MACRO_define_sup
:
24311 case DW_MACRO_undef_sup
:
24313 unsigned int bytes_read
;
24318 line
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24319 mac_ptr
+= bytes_read
;
24321 if (macinfo_type
== DW_MACRO_define
24322 || macinfo_type
== DW_MACRO_undef
)
24324 body
= read_direct_string (abfd
, mac_ptr
, &bytes_read
);
24325 mac_ptr
+= bytes_read
;
24329 LONGEST str_offset
;
24331 str_offset
= read_offset_1 (abfd
, mac_ptr
, offset_size
);
24332 mac_ptr
+= offset_size
;
24334 if (macinfo_type
== DW_MACRO_define_sup
24335 || macinfo_type
== DW_MACRO_undef_sup
24338 struct dwz_file
*dwz
24339 = dwarf2_get_dwz_file (dwarf2_per_objfile
);
24341 body
= read_indirect_string_from_dwz (objfile
,
24345 body
= read_indirect_string_at_offset (dwarf2_per_objfile
,
24349 is_define
= (macinfo_type
== DW_MACRO_define
24350 || macinfo_type
== DW_MACRO_define_strp
24351 || macinfo_type
== DW_MACRO_define_sup
);
24352 if (! current_file
)
24354 /* DWARF violation as no main source is present. */
24355 complaint (&symfile_complaints
,
24356 _("debug info with no main source gives macro %s "
24358 is_define
? _("definition") : _("undefinition"),
24362 if ((line
== 0 && !at_commandline
)
24363 || (line
!= 0 && at_commandline
))
24364 complaint (&symfile_complaints
,
24365 _("debug info gives %s macro %s with %s line %d: %s"),
24366 at_commandline
? _("command-line") : _("in-file"),
24367 is_define
? _("definition") : _("undefinition"),
24368 line
== 0 ? _("zero") : _("non-zero"), line
, body
);
24371 parse_macro_definition (current_file
, line
, body
);
24374 gdb_assert (macinfo_type
== DW_MACRO_undef
24375 || macinfo_type
== DW_MACRO_undef_strp
24376 || macinfo_type
== DW_MACRO_undef_sup
);
24377 macro_undef (current_file
, line
, body
);
24382 case DW_MACRO_start_file
:
24384 unsigned int bytes_read
;
24387 line
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24388 mac_ptr
+= bytes_read
;
24389 file
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24390 mac_ptr
+= bytes_read
;
24392 if ((line
== 0 && !at_commandline
)
24393 || (line
!= 0 && at_commandline
))
24394 complaint (&symfile_complaints
,
24395 _("debug info gives source %d included "
24396 "from %s at %s line %d"),
24397 file
, at_commandline
? _("command-line") : _("file"),
24398 line
== 0 ? _("zero") : _("non-zero"), line
);
24400 if (at_commandline
)
24402 /* This DW_MACRO_start_file was executed in the
24404 at_commandline
= 0;
24407 current_file
= macro_start_file (file
, line
, current_file
, lh
);
24411 case DW_MACRO_end_file
:
24412 if (! current_file
)
24413 complaint (&symfile_complaints
,
24414 _("macro debug info has an unmatched "
24415 "`close_file' directive"));
24418 current_file
= current_file
->included_by
;
24419 if (! current_file
)
24421 enum dwarf_macro_record_type next_type
;
24423 /* GCC circa March 2002 doesn't produce the zero
24424 type byte marking the end of the compilation
24425 unit. Complain if it's not there, but exit no
24428 /* Do we at least have room for a macinfo type byte? */
24429 if (mac_ptr
>= mac_end
)
24431 dwarf2_section_buffer_overflow_complaint (section
);
24435 /* We don't increment mac_ptr here, so this is just
24438 = (enum dwarf_macro_record_type
) read_1_byte (abfd
,
24440 if (next_type
!= 0)
24441 complaint (&symfile_complaints
,
24442 _("no terminating 0-type entry for "
24443 "macros in `.debug_macinfo' section"));
24450 case DW_MACRO_import
:
24451 case DW_MACRO_import_sup
:
24455 bfd
*include_bfd
= abfd
;
24456 struct dwarf2_section_info
*include_section
= section
;
24457 const gdb_byte
*include_mac_end
= mac_end
;
24458 int is_dwz
= section_is_dwz
;
24459 const gdb_byte
*new_mac_ptr
;
24461 offset
= read_offset_1 (abfd
, mac_ptr
, offset_size
);
24462 mac_ptr
+= offset_size
;
24464 if (macinfo_type
== DW_MACRO_import_sup
)
24466 struct dwz_file
*dwz
= dwarf2_get_dwz_file (dwarf2_per_objfile
);
24468 dwarf2_read_section (objfile
, &dwz
->macro
);
24470 include_section
= &dwz
->macro
;
24471 include_bfd
= get_section_bfd_owner (include_section
);
24472 include_mac_end
= dwz
->macro
.buffer
+ dwz
->macro
.size
;
24476 new_mac_ptr
= include_section
->buffer
+ offset
;
24477 slot
= htab_find_slot (include_hash
, new_mac_ptr
, INSERT
);
24481 /* This has actually happened; see
24482 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24483 complaint (&symfile_complaints
,
24484 _("recursive DW_MACRO_import in "
24485 ".debug_macro section"));
24489 *slot
= (void *) new_mac_ptr
;
24491 dwarf_decode_macro_bytes (dwarf2_per_objfile
,
24492 include_bfd
, new_mac_ptr
,
24493 include_mac_end
, current_file
, lh
,
24494 section
, section_is_gnu
, is_dwz
,
24495 offset_size
, include_hash
);
24497 htab_remove_elt (include_hash
, (void *) new_mac_ptr
);
24502 case DW_MACINFO_vendor_ext
:
24503 if (!section_is_gnu
)
24505 unsigned int bytes_read
;
24507 /* This reads the constant, but since we don't recognize
24508 any vendor extensions, we ignore it. */
24509 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24510 mac_ptr
+= bytes_read
;
24511 read_direct_string (abfd
, mac_ptr
, &bytes_read
);
24512 mac_ptr
+= bytes_read
;
24514 /* We don't recognize any vendor extensions. */
24520 mac_ptr
= skip_unknown_opcode (macinfo_type
, opcode_definitions
,
24521 mac_ptr
, mac_end
, abfd
, offset_size
,
24523 if (mac_ptr
== NULL
)
24528 } while (macinfo_type
!= 0);
24532 dwarf_decode_macros (struct dwarf2_cu
*cu
, unsigned int offset
,
24533 int section_is_gnu
)
24535 struct dwarf2_per_objfile
*dwarf2_per_objfile
24536 = cu
->per_cu
->dwarf2_per_objfile
;
24537 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
24538 struct line_header
*lh
= cu
->line_header
;
24540 const gdb_byte
*mac_ptr
, *mac_end
;
24541 struct macro_source_file
*current_file
= 0;
24542 enum dwarf_macro_record_type macinfo_type
;
24543 unsigned int offset_size
= cu
->header
.offset_size
;
24544 const gdb_byte
*opcode_definitions
[256];
24546 struct dwarf2_section_info
*section
;
24547 const char *section_name
;
24549 if (cu
->dwo_unit
!= NULL
)
24551 if (section_is_gnu
)
24553 section
= &cu
->dwo_unit
->dwo_file
->sections
.macro
;
24554 section_name
= ".debug_macro.dwo";
24558 section
= &cu
->dwo_unit
->dwo_file
->sections
.macinfo
;
24559 section_name
= ".debug_macinfo.dwo";
24564 if (section_is_gnu
)
24566 section
= &dwarf2_per_objfile
->macro
;
24567 section_name
= ".debug_macro";
24571 section
= &dwarf2_per_objfile
->macinfo
;
24572 section_name
= ".debug_macinfo";
24576 dwarf2_read_section (objfile
, section
);
24577 if (section
->buffer
== NULL
)
24579 complaint (&symfile_complaints
, _("missing %s section"), section_name
);
24582 abfd
= get_section_bfd_owner (section
);
24584 /* First pass: Find the name of the base filename.
24585 This filename is needed in order to process all macros whose definition
24586 (or undefinition) comes from the command line. These macros are defined
24587 before the first DW_MACINFO_start_file entry, and yet still need to be
24588 associated to the base file.
24590 To determine the base file name, we scan the macro definitions until we
24591 reach the first DW_MACINFO_start_file entry. We then initialize
24592 CURRENT_FILE accordingly so that any macro definition found before the
24593 first DW_MACINFO_start_file can still be associated to the base file. */
24595 mac_ptr
= section
->buffer
+ offset
;
24596 mac_end
= section
->buffer
+ section
->size
;
24598 mac_ptr
= dwarf_parse_macro_header (opcode_definitions
, abfd
, mac_ptr
,
24599 &offset_size
, section_is_gnu
);
24600 if (mac_ptr
== NULL
)
24602 /* We already issued a complaint. */
24608 /* Do we at least have room for a macinfo type byte? */
24609 if (mac_ptr
>= mac_end
)
24611 /* Complaint is printed during the second pass as GDB will probably
24612 stop the first pass earlier upon finding
24613 DW_MACINFO_start_file. */
24617 macinfo_type
= (enum dwarf_macro_record_type
) read_1_byte (abfd
, mac_ptr
);
24620 /* Note that we rely on the fact that the corresponding GNU and
24621 DWARF constants are the same. */
24623 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24624 switch (macinfo_type
)
24626 /* A zero macinfo type indicates the end of the macro
24631 case DW_MACRO_define
:
24632 case DW_MACRO_undef
:
24633 /* Only skip the data by MAC_PTR. */
24635 unsigned int bytes_read
;
24637 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24638 mac_ptr
+= bytes_read
;
24639 read_direct_string (abfd
, mac_ptr
, &bytes_read
);
24640 mac_ptr
+= bytes_read
;
24644 case DW_MACRO_start_file
:
24646 unsigned int bytes_read
;
24649 line
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24650 mac_ptr
+= bytes_read
;
24651 file
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24652 mac_ptr
+= bytes_read
;
24654 current_file
= macro_start_file (file
, line
, current_file
, lh
);
24658 case DW_MACRO_end_file
:
24659 /* No data to skip by MAC_PTR. */
24662 case DW_MACRO_define_strp
:
24663 case DW_MACRO_undef_strp
:
24664 case DW_MACRO_define_sup
:
24665 case DW_MACRO_undef_sup
:
24667 unsigned int bytes_read
;
24669 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24670 mac_ptr
+= bytes_read
;
24671 mac_ptr
+= offset_size
;
24675 case DW_MACRO_import
:
24676 case DW_MACRO_import_sup
:
24677 /* Note that, according to the spec, a transparent include
24678 chain cannot call DW_MACRO_start_file. So, we can just
24679 skip this opcode. */
24680 mac_ptr
+= offset_size
;
24683 case DW_MACINFO_vendor_ext
:
24684 /* Only skip the data by MAC_PTR. */
24685 if (!section_is_gnu
)
24687 unsigned int bytes_read
;
24689 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
24690 mac_ptr
+= bytes_read
;
24691 read_direct_string (abfd
, mac_ptr
, &bytes_read
);
24692 mac_ptr
+= bytes_read
;
24697 mac_ptr
= skip_unknown_opcode (macinfo_type
, opcode_definitions
,
24698 mac_ptr
, mac_end
, abfd
, offset_size
,
24700 if (mac_ptr
== NULL
)
24705 } while (macinfo_type
!= 0 && current_file
== NULL
);
24707 /* Second pass: Process all entries.
24709 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24710 command-line macro definitions/undefinitions. This flag is unset when we
24711 reach the first DW_MACINFO_start_file entry. */
24713 htab_up
include_hash (htab_create_alloc (1, htab_hash_pointer
,
24715 NULL
, xcalloc
, xfree
));
24716 mac_ptr
= section
->buffer
+ offset
;
24717 slot
= htab_find_slot (include_hash
.get (), mac_ptr
, INSERT
);
24718 *slot
= (void *) mac_ptr
;
24719 dwarf_decode_macro_bytes (dwarf2_per_objfile
,
24720 abfd
, mac_ptr
, mac_end
,
24721 current_file
, lh
, section
,
24722 section_is_gnu
, 0, offset_size
,
24723 include_hash
.get ());
24726 /* Check if the attribute's form is a DW_FORM_block*
24727 if so return true else false. */
24730 attr_form_is_block (const struct attribute
*attr
)
24732 return (attr
== NULL
? 0 :
24733 attr
->form
== DW_FORM_block1
24734 || attr
->form
== DW_FORM_block2
24735 || attr
->form
== DW_FORM_block4
24736 || attr
->form
== DW_FORM_block
24737 || attr
->form
== DW_FORM_exprloc
);
24740 /* Return non-zero if ATTR's value is a section offset --- classes
24741 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24742 You may use DW_UNSND (attr) to retrieve such offsets.
24744 Section 7.5.4, "Attribute Encodings", explains that no attribute
24745 may have a value that belongs to more than one of these classes; it
24746 would be ambiguous if we did, because we use the same forms for all
24750 attr_form_is_section_offset (const struct attribute
*attr
)
24752 return (attr
->form
== DW_FORM_data4
24753 || attr
->form
== DW_FORM_data8
24754 || attr
->form
== DW_FORM_sec_offset
);
24757 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24758 zero otherwise. When this function returns true, you can apply
24759 dwarf2_get_attr_constant_value to it.
24761 However, note that for some attributes you must check
24762 attr_form_is_section_offset before using this test. DW_FORM_data4
24763 and DW_FORM_data8 are members of both the constant class, and of
24764 the classes that contain offsets into other debug sections
24765 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24766 that, if an attribute's can be either a constant or one of the
24767 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24768 taken as section offsets, not constants.
24770 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24771 cannot handle that. */
24774 attr_form_is_constant (const struct attribute
*attr
)
24776 switch (attr
->form
)
24778 case DW_FORM_sdata
:
24779 case DW_FORM_udata
:
24780 case DW_FORM_data1
:
24781 case DW_FORM_data2
:
24782 case DW_FORM_data4
:
24783 case DW_FORM_data8
:
24784 case DW_FORM_implicit_const
:
24792 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24793 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24796 attr_form_is_ref (const struct attribute
*attr
)
24798 switch (attr
->form
)
24800 case DW_FORM_ref_addr
:
24805 case DW_FORM_ref_udata
:
24806 case DW_FORM_GNU_ref_alt
:
24813 /* Return the .debug_loc section to use for CU.
24814 For DWO files use .debug_loc.dwo. */
24816 static struct dwarf2_section_info
*
24817 cu_debug_loc_section (struct dwarf2_cu
*cu
)
24819 struct dwarf2_per_objfile
*dwarf2_per_objfile
24820 = cu
->per_cu
->dwarf2_per_objfile
;
24824 struct dwo_sections
*sections
= &cu
->dwo_unit
->dwo_file
->sections
;
24826 return cu
->header
.version
>= 5 ? §ions
->loclists
: §ions
->loc
;
24828 return (cu
->header
.version
>= 5 ? &dwarf2_per_objfile
->loclists
24829 : &dwarf2_per_objfile
->loc
);
24832 /* A helper function that fills in a dwarf2_loclist_baton. */
24835 fill_in_loclist_baton (struct dwarf2_cu
*cu
,
24836 struct dwarf2_loclist_baton
*baton
,
24837 const struct attribute
*attr
)
24839 struct dwarf2_per_objfile
*dwarf2_per_objfile
24840 = cu
->per_cu
->dwarf2_per_objfile
;
24841 struct dwarf2_section_info
*section
= cu_debug_loc_section (cu
);
24843 dwarf2_read_section (dwarf2_per_objfile
->objfile
, section
);
24845 baton
->per_cu
= cu
->per_cu
;
24846 gdb_assert (baton
->per_cu
);
24847 /* We don't know how long the location list is, but make sure we
24848 don't run off the edge of the section. */
24849 baton
->size
= section
->size
- DW_UNSND (attr
);
24850 baton
->data
= section
->buffer
+ DW_UNSND (attr
);
24851 baton
->base_address
= cu
->base_address
;
24852 baton
->from_dwo
= cu
->dwo_unit
!= NULL
;
24856 dwarf2_symbol_mark_computed (const struct attribute
*attr
, struct symbol
*sym
,
24857 struct dwarf2_cu
*cu
, int is_block
)
24859 struct dwarf2_per_objfile
*dwarf2_per_objfile
24860 = cu
->per_cu
->dwarf2_per_objfile
;
24861 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
24862 struct dwarf2_section_info
*section
= cu_debug_loc_section (cu
);
24864 if (attr_form_is_section_offset (attr
)
24865 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24866 the section. If so, fall through to the complaint in the
24868 && DW_UNSND (attr
) < dwarf2_section_size (objfile
, section
))
24870 struct dwarf2_loclist_baton
*baton
;
24872 baton
= XOBNEW (&objfile
->objfile_obstack
, struct dwarf2_loclist_baton
);
24874 fill_in_loclist_baton (cu
, baton
, attr
);
24876 if (cu
->base_known
== 0)
24877 complaint (&symfile_complaints
,
24878 _("Location list used without "
24879 "specifying the CU base address."));
24881 SYMBOL_ACLASS_INDEX (sym
) = (is_block
24882 ? dwarf2_loclist_block_index
24883 : dwarf2_loclist_index
);
24884 SYMBOL_LOCATION_BATON (sym
) = baton
;
24888 struct dwarf2_locexpr_baton
*baton
;
24890 baton
= XOBNEW (&objfile
->objfile_obstack
, struct dwarf2_locexpr_baton
);
24891 baton
->per_cu
= cu
->per_cu
;
24892 gdb_assert (baton
->per_cu
);
24894 if (attr_form_is_block (attr
))
24896 /* Note that we're just copying the block's data pointer
24897 here, not the actual data. We're still pointing into the
24898 info_buffer for SYM's objfile; right now we never release
24899 that buffer, but when we do clean up properly this may
24901 baton
->size
= DW_BLOCK (attr
)->size
;
24902 baton
->data
= DW_BLOCK (attr
)->data
;
24906 dwarf2_invalid_attrib_class_complaint ("location description",
24907 SYMBOL_NATURAL_NAME (sym
));
24911 SYMBOL_ACLASS_INDEX (sym
) = (is_block
24912 ? dwarf2_locexpr_block_index
24913 : dwarf2_locexpr_index
);
24914 SYMBOL_LOCATION_BATON (sym
) = baton
;
24918 /* Return the OBJFILE associated with the compilation unit CU. If CU
24919 came from a separate debuginfo file, then the master objfile is
24923 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data
*per_cu
)
24925 struct objfile
*objfile
= per_cu
->dwarf2_per_objfile
->objfile
;
24927 /* Return the master objfile, so that we can report and look up the
24928 correct file containing this variable. */
24929 if (objfile
->separate_debug_objfile_backlink
)
24930 objfile
= objfile
->separate_debug_objfile_backlink
;
24935 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24936 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24937 CU_HEADERP first. */
24939 static const struct comp_unit_head
*
24940 per_cu_header_read_in (struct comp_unit_head
*cu_headerp
,
24941 struct dwarf2_per_cu_data
*per_cu
)
24943 const gdb_byte
*info_ptr
;
24946 return &per_cu
->cu
->header
;
24948 info_ptr
= per_cu
->section
->buffer
+ to_underlying (per_cu
->sect_off
);
24950 memset (cu_headerp
, 0, sizeof (*cu_headerp
));
24951 read_comp_unit_head (cu_headerp
, info_ptr
, per_cu
->section
,
24952 rcuh_kind::COMPILE
);
24957 /* Return the address size given in the compilation unit header for CU. */
24960 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data
*per_cu
)
24962 struct comp_unit_head cu_header_local
;
24963 const struct comp_unit_head
*cu_headerp
;
24965 cu_headerp
= per_cu_header_read_in (&cu_header_local
, per_cu
);
24967 return cu_headerp
->addr_size
;
24970 /* Return the offset size given in the compilation unit header for CU. */
24973 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data
*per_cu
)
24975 struct comp_unit_head cu_header_local
;
24976 const struct comp_unit_head
*cu_headerp
;
24978 cu_headerp
= per_cu_header_read_in (&cu_header_local
, per_cu
);
24980 return cu_headerp
->offset_size
;
24983 /* See its dwarf2loc.h declaration. */
24986 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data
*per_cu
)
24988 struct comp_unit_head cu_header_local
;
24989 const struct comp_unit_head
*cu_headerp
;
24991 cu_headerp
= per_cu_header_read_in (&cu_header_local
, per_cu
);
24993 if (cu_headerp
->version
== 2)
24994 return cu_headerp
->addr_size
;
24996 return cu_headerp
->offset_size
;
24999 /* Return the text offset of the CU. The returned offset comes from
25000 this CU's objfile. If this objfile came from a separate debuginfo
25001 file, then the offset may be different from the corresponding
25002 offset in the parent objfile. */
25005 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data
*per_cu
)
25007 struct objfile
*objfile
= per_cu
->dwarf2_per_objfile
->objfile
;
25009 return ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
25012 /* Return DWARF version number of PER_CU. */
25015 dwarf2_version (struct dwarf2_per_cu_data
*per_cu
)
25017 return per_cu
->dwarf_version
;
25020 /* Locate the .debug_info compilation unit from CU's objfile which contains
25021 the DIE at OFFSET. Raises an error on failure. */
25023 static struct dwarf2_per_cu_data
*
25024 dwarf2_find_containing_comp_unit (sect_offset sect_off
,
25025 unsigned int offset_in_dwz
,
25026 struct dwarf2_per_objfile
*dwarf2_per_objfile
)
25028 struct dwarf2_per_cu_data
*this_cu
;
25030 const sect_offset
*cu_off
;
25033 high
= dwarf2_per_objfile
->n_comp_units
- 1;
25036 struct dwarf2_per_cu_data
*mid_cu
;
25037 int mid
= low
+ (high
- low
) / 2;
25039 mid_cu
= dwarf2_per_objfile
->all_comp_units
[mid
];
25040 cu_off
= &mid_cu
->sect_off
;
25041 if (mid_cu
->is_dwz
> offset_in_dwz
25042 || (mid_cu
->is_dwz
== offset_in_dwz
&& *cu_off
>= sect_off
))
25047 gdb_assert (low
== high
);
25048 this_cu
= dwarf2_per_objfile
->all_comp_units
[low
];
25049 cu_off
= &this_cu
->sect_off
;
25050 if (this_cu
->is_dwz
!= offset_in_dwz
|| *cu_off
> sect_off
)
25052 if (low
== 0 || this_cu
->is_dwz
!= offset_in_dwz
)
25053 error (_("Dwarf Error: could not find partial DIE containing "
25054 "offset 0x%x [in module %s]"),
25055 to_underlying (sect_off
),
25056 bfd_get_filename (dwarf2_per_objfile
->objfile
->obfd
));
25058 gdb_assert (dwarf2_per_objfile
->all_comp_units
[low
-1]->sect_off
25060 return dwarf2_per_objfile
->all_comp_units
[low
-1];
25064 this_cu
= dwarf2_per_objfile
->all_comp_units
[low
];
25065 if (low
== dwarf2_per_objfile
->n_comp_units
- 1
25066 && sect_off
>= this_cu
->sect_off
+ this_cu
->length
)
25067 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off
));
25068 gdb_assert (sect_off
< this_cu
->sect_off
+ this_cu
->length
);
25073 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25075 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data
*per_cu_
)
25076 : per_cu (per_cu_
),
25079 checked_producer (0),
25080 producer_is_gxx_lt_4_6 (0),
25081 producer_is_gcc_lt_4_3 (0),
25082 producer_is_icc_lt_14 (0),
25083 processing_has_namespace_info (0)
25088 /* Destroy a dwarf2_cu. */
25090 dwarf2_cu::~dwarf2_cu ()
25095 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25098 prepare_one_comp_unit (struct dwarf2_cu
*cu
, struct die_info
*comp_unit_die
,
25099 enum language pretend_language
)
25101 struct attribute
*attr
;
25103 /* Set the language we're debugging. */
25104 attr
= dwarf2_attr (comp_unit_die
, DW_AT_language
, cu
);
25106 set_cu_language (DW_UNSND (attr
), cu
);
25109 cu
->language
= pretend_language
;
25110 cu
->language_defn
= language_def (cu
->language
);
25113 cu
->producer
= dwarf2_string_attr (comp_unit_die
, DW_AT_producer
, cu
);
25116 /* Free all cached compilation units. */
25119 free_cached_comp_units (void *data
)
25121 struct dwarf2_per_objfile
*dwarf2_per_objfile
25122 = (struct dwarf2_per_objfile
*) data
;
25124 dwarf2_per_objfile
->free_cached_comp_units ();
25127 /* Increase the age counter on each cached compilation unit, and free
25128 any that are too old. */
25131 age_cached_comp_units (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
25133 struct dwarf2_per_cu_data
*per_cu
, **last_chain
;
25135 dwarf2_clear_marks (dwarf2_per_objfile
->read_in_chain
);
25136 per_cu
= dwarf2_per_objfile
->read_in_chain
;
25137 while (per_cu
!= NULL
)
25139 per_cu
->cu
->last_used
++;
25140 if (per_cu
->cu
->last_used
<= dwarf_max_cache_age
)
25141 dwarf2_mark (per_cu
->cu
);
25142 per_cu
= per_cu
->cu
->read_in_chain
;
25145 per_cu
= dwarf2_per_objfile
->read_in_chain
;
25146 last_chain
= &dwarf2_per_objfile
->read_in_chain
;
25147 while (per_cu
!= NULL
)
25149 struct dwarf2_per_cu_data
*next_cu
;
25151 next_cu
= per_cu
->cu
->read_in_chain
;
25153 if (!per_cu
->cu
->mark
)
25156 *last_chain
= next_cu
;
25159 last_chain
= &per_cu
->cu
->read_in_chain
;
25165 /* Remove a single compilation unit from the cache. */
25168 free_one_cached_comp_unit (struct dwarf2_per_cu_data
*target_per_cu
)
25170 struct dwarf2_per_cu_data
*per_cu
, **last_chain
;
25171 struct dwarf2_per_objfile
*dwarf2_per_objfile
25172 = target_per_cu
->dwarf2_per_objfile
;
25174 per_cu
= dwarf2_per_objfile
->read_in_chain
;
25175 last_chain
= &dwarf2_per_objfile
->read_in_chain
;
25176 while (per_cu
!= NULL
)
25178 struct dwarf2_per_cu_data
*next_cu
;
25180 next_cu
= per_cu
->cu
->read_in_chain
;
25182 if (per_cu
== target_per_cu
)
25186 *last_chain
= next_cu
;
25190 last_chain
= &per_cu
->cu
->read_in_chain
;
25196 /* Release all extra memory associated with OBJFILE. */
25199 dwarf2_free_objfile (struct objfile
*objfile
)
25201 struct dwarf2_per_objfile
*dwarf2_per_objfile
25202 = get_dwarf2_per_objfile (objfile
);
25204 delete dwarf2_per_objfile
;
25207 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25208 We store these in a hash table separate from the DIEs, and preserve them
25209 when the DIEs are flushed out of cache.
25211 The CU "per_cu" pointer is needed because offset alone is not enough to
25212 uniquely identify the type. A file may have multiple .debug_types sections,
25213 or the type may come from a DWO file. Furthermore, while it's more logical
25214 to use per_cu->section+offset, with Fission the section with the data is in
25215 the DWO file but we don't know that section at the point we need it.
25216 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25217 because we can enter the lookup routine, get_die_type_at_offset, from
25218 outside this file, and thus won't necessarily have PER_CU->cu.
25219 Fortunately, PER_CU is stable for the life of the objfile. */
25221 struct dwarf2_per_cu_offset_and_type
25223 const struct dwarf2_per_cu_data
*per_cu
;
25224 sect_offset sect_off
;
25228 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25231 per_cu_offset_and_type_hash (const void *item
)
25233 const struct dwarf2_per_cu_offset_and_type
*ofs
25234 = (const struct dwarf2_per_cu_offset_and_type
*) item
;
25236 return (uintptr_t) ofs
->per_cu
+ to_underlying (ofs
->sect_off
);
25239 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25242 per_cu_offset_and_type_eq (const void *item_lhs
, const void *item_rhs
)
25244 const struct dwarf2_per_cu_offset_and_type
*ofs_lhs
25245 = (const struct dwarf2_per_cu_offset_and_type
*) item_lhs
;
25246 const struct dwarf2_per_cu_offset_and_type
*ofs_rhs
25247 = (const struct dwarf2_per_cu_offset_and_type
*) item_rhs
;
25249 return (ofs_lhs
->per_cu
== ofs_rhs
->per_cu
25250 && ofs_lhs
->sect_off
== ofs_rhs
->sect_off
);
25253 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25254 table if necessary. For convenience, return TYPE.
25256 The DIEs reading must have careful ordering to:
25257 * Not cause infite loops trying to read in DIEs as a prerequisite for
25258 reading current DIE.
25259 * Not trying to dereference contents of still incompletely read in types
25260 while reading in other DIEs.
25261 * Enable referencing still incompletely read in types just by a pointer to
25262 the type without accessing its fields.
25264 Therefore caller should follow these rules:
25265 * Try to fetch any prerequisite types we may need to build this DIE type
25266 before building the type and calling set_die_type.
25267 * After building type call set_die_type for current DIE as soon as
25268 possible before fetching more types to complete the current type.
25269 * Make the type as complete as possible before fetching more types. */
25271 static struct type
*
25272 set_die_type (struct die_info
*die
, struct type
*type
, struct dwarf2_cu
*cu
)
25274 struct dwarf2_per_objfile
*dwarf2_per_objfile
25275 = cu
->per_cu
->dwarf2_per_objfile
;
25276 struct dwarf2_per_cu_offset_and_type
**slot
, ofs
;
25277 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
25278 struct attribute
*attr
;
25279 struct dynamic_prop prop
;
25281 /* For Ada types, make sure that the gnat-specific data is always
25282 initialized (if not already set). There are a few types where
25283 we should not be doing so, because the type-specific area is
25284 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25285 where the type-specific area is used to store the floatformat).
25286 But this is not a problem, because the gnat-specific information
25287 is actually not needed for these types. */
25288 if (need_gnat_info (cu
)
25289 && TYPE_CODE (type
) != TYPE_CODE_FUNC
25290 && TYPE_CODE (type
) != TYPE_CODE_FLT
25291 && TYPE_CODE (type
) != TYPE_CODE_METHODPTR
25292 && TYPE_CODE (type
) != TYPE_CODE_MEMBERPTR
25293 && TYPE_CODE (type
) != TYPE_CODE_METHOD
25294 && !HAVE_GNAT_AUX_INFO (type
))
25295 INIT_GNAT_SPECIFIC (type
);
25297 /* Read DW_AT_allocated and set in type. */
25298 attr
= dwarf2_attr (die
, DW_AT_allocated
, cu
);
25299 if (attr_form_is_block (attr
))
25301 if (attr_to_dynamic_prop (attr
, die
, cu
, &prop
))
25302 add_dyn_prop (DYN_PROP_ALLOCATED
, prop
, type
);
25304 else if (attr
!= NULL
)
25306 complaint (&symfile_complaints
,
25307 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
25308 (attr
!= NULL
? dwarf_form_name (attr
->form
) : "n/a"),
25309 to_underlying (die
->sect_off
));
25312 /* Read DW_AT_associated and set in type. */
25313 attr
= dwarf2_attr (die
, DW_AT_associated
, cu
);
25314 if (attr_form_is_block (attr
))
25316 if (attr_to_dynamic_prop (attr
, die
, cu
, &prop
))
25317 add_dyn_prop (DYN_PROP_ASSOCIATED
, prop
, type
);
25319 else if (attr
!= NULL
)
25321 complaint (&symfile_complaints
,
25322 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
25323 (attr
!= NULL
? dwarf_form_name (attr
->form
) : "n/a"),
25324 to_underlying (die
->sect_off
));
25327 /* Read DW_AT_data_location and set in type. */
25328 attr
= dwarf2_attr (die
, DW_AT_data_location
, cu
);
25329 if (attr_to_dynamic_prop (attr
, die
, cu
, &prop
))
25330 add_dyn_prop (DYN_PROP_DATA_LOCATION
, prop
, type
);
25332 if (dwarf2_per_objfile
->die_type_hash
== NULL
)
25334 dwarf2_per_objfile
->die_type_hash
=
25335 htab_create_alloc_ex (127,
25336 per_cu_offset_and_type_hash
,
25337 per_cu_offset_and_type_eq
,
25339 &objfile
->objfile_obstack
,
25340 hashtab_obstack_allocate
,
25341 dummy_obstack_deallocate
);
25344 ofs
.per_cu
= cu
->per_cu
;
25345 ofs
.sect_off
= die
->sect_off
;
25347 slot
= (struct dwarf2_per_cu_offset_and_type
**)
25348 htab_find_slot (dwarf2_per_objfile
->die_type_hash
, &ofs
, INSERT
);
25350 complaint (&symfile_complaints
,
25351 _("A problem internal to GDB: DIE 0x%x has type already set"),
25352 to_underlying (die
->sect_off
));
25353 *slot
= XOBNEW (&objfile
->objfile_obstack
,
25354 struct dwarf2_per_cu_offset_and_type
);
25359 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25360 or return NULL if the die does not have a saved type. */
25362 static struct type
*
25363 get_die_type_at_offset (sect_offset sect_off
,
25364 struct dwarf2_per_cu_data
*per_cu
)
25366 struct dwarf2_per_cu_offset_and_type
*slot
, ofs
;
25367 struct dwarf2_per_objfile
*dwarf2_per_objfile
= per_cu
->dwarf2_per_objfile
;
25369 if (dwarf2_per_objfile
->die_type_hash
== NULL
)
25372 ofs
.per_cu
= per_cu
;
25373 ofs
.sect_off
= sect_off
;
25374 slot
= ((struct dwarf2_per_cu_offset_and_type
*)
25375 htab_find (dwarf2_per_objfile
->die_type_hash
, &ofs
));
25382 /* Look up the type for DIE in CU in die_type_hash,
25383 or return NULL if DIE does not have a saved type. */
25385 static struct type
*
25386 get_die_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
25388 return get_die_type_at_offset (die
->sect_off
, cu
->per_cu
);
25391 /* Add a dependence relationship from CU to REF_PER_CU. */
25394 dwarf2_add_dependence (struct dwarf2_cu
*cu
,
25395 struct dwarf2_per_cu_data
*ref_per_cu
)
25399 if (cu
->dependencies
== NULL
)
25401 = htab_create_alloc_ex (5, htab_hash_pointer
, htab_eq_pointer
,
25402 NULL
, &cu
->comp_unit_obstack
,
25403 hashtab_obstack_allocate
,
25404 dummy_obstack_deallocate
);
25406 slot
= htab_find_slot (cu
->dependencies
, ref_per_cu
, INSERT
);
25408 *slot
= ref_per_cu
;
25411 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25412 Set the mark field in every compilation unit in the
25413 cache that we must keep because we are keeping CU. */
25416 dwarf2_mark_helper (void **slot
, void *data
)
25418 struct dwarf2_per_cu_data
*per_cu
;
25420 per_cu
= (struct dwarf2_per_cu_data
*) *slot
;
25422 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25423 reading of the chain. As such dependencies remain valid it is not much
25424 useful to track and undo them during QUIT cleanups. */
25425 if (per_cu
->cu
== NULL
)
25428 if (per_cu
->cu
->mark
)
25430 per_cu
->cu
->mark
= 1;
25432 if (per_cu
->cu
->dependencies
!= NULL
)
25433 htab_traverse (per_cu
->cu
->dependencies
, dwarf2_mark_helper
, NULL
);
25438 /* Set the mark field in CU and in every other compilation unit in the
25439 cache that we must keep because we are keeping CU. */
25442 dwarf2_mark (struct dwarf2_cu
*cu
)
25447 if (cu
->dependencies
!= NULL
)
25448 htab_traverse (cu
->dependencies
, dwarf2_mark_helper
, NULL
);
25452 dwarf2_clear_marks (struct dwarf2_per_cu_data
*per_cu
)
25456 per_cu
->cu
->mark
= 0;
25457 per_cu
= per_cu
->cu
->read_in_chain
;
25461 /* Trivial hash function for partial_die_info: the hash value of a DIE
25462 is its offset in .debug_info for this objfile. */
25465 partial_die_hash (const void *item
)
25467 const struct partial_die_info
*part_die
25468 = (const struct partial_die_info
*) item
;
25470 return to_underlying (part_die
->sect_off
);
25473 /* Trivial comparison function for partial_die_info structures: two DIEs
25474 are equal if they have the same offset. */
25477 partial_die_eq (const void *item_lhs
, const void *item_rhs
)
25479 const struct partial_die_info
*part_die_lhs
25480 = (const struct partial_die_info
*) item_lhs
;
25481 const struct partial_die_info
*part_die_rhs
25482 = (const struct partial_die_info
*) item_rhs
;
25484 return part_die_lhs
->sect_off
== part_die_rhs
->sect_off
;
25487 static struct cmd_list_element
*set_dwarf_cmdlist
;
25488 static struct cmd_list_element
*show_dwarf_cmdlist
;
25491 set_dwarf_cmd (const char *args
, int from_tty
)
25493 help_list (set_dwarf_cmdlist
, "maintenance set dwarf ", all_commands
,
25498 show_dwarf_cmd (const char *args
, int from_tty
)
25500 cmd_show_list (show_dwarf_cmdlist
, from_tty
, "");
25503 /* The "save gdb-index" command. */
25505 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25509 file_write (FILE *file
, const void *data
, size_t size
)
25511 if (fwrite (data
, 1, size
, file
) != size
)
25512 error (_("couldn't data write to file"));
25515 /* Write the contents of VEC to FILE, with error checking. */
25517 template<typename Elem
, typename Alloc
>
25519 file_write (FILE *file
, const std::vector
<Elem
, Alloc
> &vec
)
25521 file_write (file
, vec
.data (), vec
.size () * sizeof (vec
[0]));
25524 /* In-memory buffer to prepare data to be written later to a file. */
25528 /* Copy DATA to the end of the buffer. */
25529 template<typename T
>
25530 void append_data (const T
&data
)
25532 std::copy (reinterpret_cast<const gdb_byte
*> (&data
),
25533 reinterpret_cast<const gdb_byte
*> (&data
+ 1),
25534 grow (sizeof (data
)));
25537 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25538 terminating zero is appended too. */
25539 void append_cstr0 (const char *cstr
)
25541 const size_t size
= strlen (cstr
) + 1;
25542 std::copy (cstr
, cstr
+ size
, grow (size
));
25545 /* Store INPUT as ULEB128 to the end of buffer. */
25546 void append_unsigned_leb128 (ULONGEST input
)
25550 gdb_byte output
= input
& 0x7f;
25554 append_data (output
);
25560 /* Accept a host-format integer in VAL and append it to the buffer
25561 as a target-format integer which is LEN bytes long. */
25562 void append_uint (size_t len
, bfd_endian byte_order
, ULONGEST val
)
25564 ::store_unsigned_integer (grow (len
), len
, byte_order
, val
);
25567 /* Return the size of the buffer. */
25568 size_t size () const
25570 return m_vec
.size ();
25573 /* Return true iff the buffer is empty. */
25574 bool empty () const
25576 return m_vec
.empty ();
25579 /* Write the buffer to FILE. */
25580 void file_write (FILE *file
) const
25582 ::file_write (file
, m_vec
);
25586 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25587 the start of the new block. */
25588 gdb_byte
*grow (size_t size
)
25590 m_vec
.resize (m_vec
.size () + size
);
25591 return &*m_vec
.end () - size
;
25594 gdb::byte_vector m_vec
;
25597 /* An entry in the symbol table. */
25598 struct symtab_index_entry
25600 /* The name of the symbol. */
25602 /* The offset of the name in the constant pool. */
25603 offset_type index_offset
;
25604 /* A sorted vector of the indices of all the CUs that hold an object
25606 std::vector
<offset_type
> cu_indices
;
25609 /* The symbol table. This is a power-of-2-sized hash table. */
25610 struct mapped_symtab
25614 data
.resize (1024);
25617 offset_type n_elements
= 0;
25618 std::vector
<symtab_index_entry
> data
;
25621 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25624 Function is used only during write_hash_table so no index format backward
25625 compatibility is needed. */
25627 static symtab_index_entry
&
25628 find_slot (struct mapped_symtab
*symtab
, const char *name
)
25630 offset_type index
, step
, hash
= mapped_index_string_hash (INT_MAX
, name
);
25632 index
= hash
& (symtab
->data
.size () - 1);
25633 step
= ((hash
* 17) & (symtab
->data
.size () - 1)) | 1;
25637 if (symtab
->data
[index
].name
== NULL
25638 || strcmp (name
, symtab
->data
[index
].name
) == 0)
25639 return symtab
->data
[index
];
25640 index
= (index
+ step
) & (symtab
->data
.size () - 1);
25644 /* Expand SYMTAB's hash table. */
25647 hash_expand (struct mapped_symtab
*symtab
)
25649 auto old_entries
= std::move (symtab
->data
);
25651 symtab
->data
.clear ();
25652 symtab
->data
.resize (old_entries
.size () * 2);
25654 for (auto &it
: old_entries
)
25655 if (it
.name
!= NULL
)
25657 auto &ref
= find_slot (symtab
, it
.name
);
25658 ref
= std::move (it
);
25662 /* Add an entry to SYMTAB. NAME is the name of the symbol.
25663 CU_INDEX is the index of the CU in which the symbol appears.
25664 IS_STATIC is one if the symbol is static, otherwise zero (global). */
25667 add_index_entry (struct mapped_symtab
*symtab
, const char *name
,
25668 int is_static
, gdb_index_symbol_kind kind
,
25669 offset_type cu_index
)
25671 offset_type cu_index_and_attrs
;
25673 ++symtab
->n_elements
;
25674 if (4 * symtab
->n_elements
/ 3 >= symtab
->data
.size ())
25675 hash_expand (symtab
);
25677 symtab_index_entry
&slot
= find_slot (symtab
, name
);
25678 if (slot
.name
== NULL
)
25681 /* index_offset is set later. */
25684 cu_index_and_attrs
= 0;
25685 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs
, cu_index
);
25686 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs
, is_static
);
25687 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs
, kind
);
25689 /* We don't want to record an index value twice as we want to avoid the
25691 We process all global symbols and then all static symbols
25692 (which would allow us to avoid the duplication by only having to check
25693 the last entry pushed), but a symbol could have multiple kinds in one CU.
25694 To keep things simple we don't worry about the duplication here and
25695 sort and uniqufy the list after we've processed all symbols. */
25696 slot
.cu_indices
.push_back (cu_index_and_attrs
);
25699 /* Sort and remove duplicates of all symbols' cu_indices lists. */
25702 uniquify_cu_indices (struct mapped_symtab
*symtab
)
25704 for (auto &entry
: symtab
->data
)
25706 if (entry
.name
!= NULL
&& !entry
.cu_indices
.empty ())
25708 auto &cu_indices
= entry
.cu_indices
;
25709 std::sort (cu_indices
.begin (), cu_indices
.end ());
25710 auto from
= std::unique (cu_indices
.begin (), cu_indices
.end ());
25711 cu_indices
.erase (from
, cu_indices
.end ());
25716 /* A form of 'const char *' suitable for container keys. Only the
25717 pointer is stored. The strings themselves are compared, not the
25722 c_str_view (const char *cstr
)
25726 bool operator== (const c_str_view
&other
) const
25728 return strcmp (m_cstr
, other
.m_cstr
) == 0;
25731 /* Return the underlying C string. Note, the returned string is
25732 only a reference with lifetime of this object. */
25733 const char *c_str () const
25739 friend class c_str_view_hasher
;
25740 const char *const m_cstr
;
25743 /* A std::unordered_map::hasher for c_str_view that uses the right
25744 hash function for strings in a mapped index. */
25745 class c_str_view_hasher
25748 size_t operator () (const c_str_view
&x
) const
25750 return mapped_index_string_hash (INT_MAX
, x
.m_cstr
);
25754 /* A std::unordered_map::hasher for std::vector<>. */
25755 template<typename T
>
25756 class vector_hasher
25759 size_t operator () (const std::vector
<T
> &key
) const
25761 return iterative_hash (key
.data (),
25762 sizeof (key
.front ()) * key
.size (), 0);
25766 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
25767 constant pool entries going into the data buffer CPOOL. */
25770 write_hash_table (mapped_symtab
*symtab
, data_buf
&output
, data_buf
&cpool
)
25773 /* Elements are sorted vectors of the indices of all the CUs that
25774 hold an object of this name. */
25775 std::unordered_map
<std::vector
<offset_type
>, offset_type
,
25776 vector_hasher
<offset_type
>>
25779 /* We add all the index vectors to the constant pool first, to
25780 ensure alignment is ok. */
25781 for (symtab_index_entry
&entry
: symtab
->data
)
25783 if (entry
.name
== NULL
)
25785 gdb_assert (entry
.index_offset
== 0);
25787 /* Finding before inserting is faster than always trying to
25788 insert, because inserting always allocates a node, does the
25789 lookup, and then destroys the new node if another node
25790 already had the same key. C++17 try_emplace will avoid
25793 = symbol_hash_table
.find (entry
.cu_indices
);
25794 if (found
!= symbol_hash_table
.end ())
25796 entry
.index_offset
= found
->second
;
25800 symbol_hash_table
.emplace (entry
.cu_indices
, cpool
.size ());
25801 entry
.index_offset
= cpool
.size ();
25802 cpool
.append_data (MAYBE_SWAP (entry
.cu_indices
.size ()));
25803 for (const auto index
: entry
.cu_indices
)
25804 cpool
.append_data (MAYBE_SWAP (index
));
25808 /* Now write out the hash table. */
25809 std::unordered_map
<c_str_view
, offset_type
, c_str_view_hasher
> str_table
;
25810 for (const auto &entry
: symtab
->data
)
25812 offset_type str_off
, vec_off
;
25814 if (entry
.name
!= NULL
)
25816 const auto insertpair
= str_table
.emplace (entry
.name
, cpool
.size ());
25817 if (insertpair
.second
)
25818 cpool
.append_cstr0 (entry
.name
);
25819 str_off
= insertpair
.first
->second
;
25820 vec_off
= entry
.index_offset
;
25824 /* While 0 is a valid constant pool index, it is not valid
25825 to have 0 for both offsets. */
25830 output
.append_data (MAYBE_SWAP (str_off
));
25831 output
.append_data (MAYBE_SWAP (vec_off
));
25835 typedef std::unordered_map
<partial_symtab
*, unsigned int> psym_index_map
;
25837 /* Helper struct for building the address table. */
25838 struct addrmap_index_data
25840 addrmap_index_data (data_buf
&addr_vec_
, psym_index_map
&cu_index_htab_
)
25841 : addr_vec (addr_vec_
), cu_index_htab (cu_index_htab_
)
25844 struct objfile
*objfile
;
25845 data_buf
&addr_vec
;
25846 psym_index_map
&cu_index_htab
;
25848 /* Non-zero if the previous_* fields are valid.
25849 We can't write an entry until we see the next entry (since it is only then
25850 that we know the end of the entry). */
25851 int previous_valid
;
25852 /* Index of the CU in the table of all CUs in the index file. */
25853 unsigned int previous_cu_index
;
25854 /* Start address of the CU. */
25855 CORE_ADDR previous_cu_start
;
25858 /* Write an address entry to ADDR_VEC. */
25861 add_address_entry (struct objfile
*objfile
, data_buf
&addr_vec
,
25862 CORE_ADDR start
, CORE_ADDR end
, unsigned int cu_index
)
25864 CORE_ADDR baseaddr
;
25866 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
25868 addr_vec
.append_uint (8, BFD_ENDIAN_LITTLE
, start
- baseaddr
);
25869 addr_vec
.append_uint (8, BFD_ENDIAN_LITTLE
, end
- baseaddr
);
25870 addr_vec
.append_data (MAYBE_SWAP (cu_index
));
25873 /* Worker function for traversing an addrmap to build the address table. */
25876 add_address_entry_worker (void *datap
, CORE_ADDR start_addr
, void *obj
)
25878 struct addrmap_index_data
*data
= (struct addrmap_index_data
*) datap
;
25879 struct partial_symtab
*pst
= (struct partial_symtab
*) obj
;
25881 if (data
->previous_valid
)
25882 add_address_entry (data
->objfile
, data
->addr_vec
,
25883 data
->previous_cu_start
, start_addr
,
25884 data
->previous_cu_index
);
25886 data
->previous_cu_start
= start_addr
;
25889 const auto it
= data
->cu_index_htab
.find (pst
);
25890 gdb_assert (it
!= data
->cu_index_htab
.cend ());
25891 data
->previous_cu_index
= it
->second
;
25892 data
->previous_valid
= 1;
25895 data
->previous_valid
= 0;
25900 /* Write OBJFILE's address map to ADDR_VEC.
25901 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
25902 in the index file. */
25905 write_address_map (struct objfile
*objfile
, data_buf
&addr_vec
,
25906 psym_index_map
&cu_index_htab
)
25908 struct addrmap_index_data
addrmap_index_data (addr_vec
, cu_index_htab
);
25910 /* When writing the address table, we have to cope with the fact that
25911 the addrmap iterator only provides the start of a region; we have to
25912 wait until the next invocation to get the start of the next region. */
25914 addrmap_index_data
.objfile
= objfile
;
25915 addrmap_index_data
.previous_valid
= 0;
25917 addrmap_foreach (objfile
->psymtabs_addrmap
, add_address_entry_worker
,
25918 &addrmap_index_data
);
25920 /* It's highly unlikely the last entry (end address = 0xff...ff)
25921 is valid, but we should still handle it.
25922 The end address is recorded as the start of the next region, but that
25923 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
25925 if (addrmap_index_data
.previous_valid
)
25926 add_address_entry (objfile
, addr_vec
,
25927 addrmap_index_data
.previous_cu_start
, (CORE_ADDR
) -1,
25928 addrmap_index_data
.previous_cu_index
);
25931 /* Return the symbol kind of PSYM. */
25933 static gdb_index_symbol_kind
25934 symbol_kind (struct partial_symbol
*psym
)
25936 domain_enum domain
= PSYMBOL_DOMAIN (psym
);
25937 enum address_class aclass
= PSYMBOL_CLASS (psym
);
25945 return GDB_INDEX_SYMBOL_KIND_FUNCTION
;
25947 return GDB_INDEX_SYMBOL_KIND_TYPE
;
25949 case LOC_CONST_BYTES
:
25950 case LOC_OPTIMIZED_OUT
:
25952 return GDB_INDEX_SYMBOL_KIND_VARIABLE
;
25954 /* Note: It's currently impossible to recognize psyms as enum values
25955 short of reading the type info. For now punt. */
25956 return GDB_INDEX_SYMBOL_KIND_VARIABLE
;
25958 /* There are other LOC_FOO values that one might want to classify
25959 as variables, but dwarf2read.c doesn't currently use them. */
25960 return GDB_INDEX_SYMBOL_KIND_OTHER
;
25962 case STRUCT_DOMAIN
:
25963 return GDB_INDEX_SYMBOL_KIND_TYPE
;
25965 return GDB_INDEX_SYMBOL_KIND_OTHER
;
25969 /* Add a list of partial symbols to SYMTAB. */
25972 write_psymbols (struct mapped_symtab
*symtab
,
25973 std::unordered_set
<partial_symbol
*> &psyms_seen
,
25974 struct partial_symbol
**psymp
,
25976 offset_type cu_index
,
25979 for (; count
-- > 0; ++psymp
)
25981 struct partial_symbol
*psym
= *psymp
;
25983 if (SYMBOL_LANGUAGE (psym
) == language_ada
)
25984 error (_("Ada is not currently supported by the index"));
25986 /* Only add a given psymbol once. */
25987 if (psyms_seen
.insert (psym
).second
)
25989 gdb_index_symbol_kind kind
= symbol_kind (psym
);
25991 add_index_entry (symtab
, SYMBOL_SEARCH_NAME (psym
),
25992 is_static
, kind
, cu_index
);
25997 /* A helper struct used when iterating over debug_types. */
25998 struct signatured_type_index_data
26000 signatured_type_index_data (data_buf
&types_list_
,
26001 std::unordered_set
<partial_symbol
*> &psyms_seen_
)
26002 : types_list (types_list_
), psyms_seen (psyms_seen_
)
26005 struct objfile
*objfile
;
26006 struct mapped_symtab
*symtab
;
26007 data_buf
&types_list
;
26008 std::unordered_set
<partial_symbol
*> &psyms_seen
;
26012 /* A helper function that writes a single signatured_type to an
26016 write_one_signatured_type (void **slot
, void *d
)
26018 struct signatured_type_index_data
*info
26019 = (struct signatured_type_index_data
*) d
;
26020 struct signatured_type
*entry
= (struct signatured_type
*) *slot
;
26021 struct partial_symtab
*psymtab
= entry
->per_cu
.v
.psymtab
;
26023 write_psymbols (info
->symtab
,
26025 &info
->objfile
->global_psymbols
[psymtab
->globals_offset
],
26026 psymtab
->n_global_syms
, info
->cu_index
,
26028 write_psymbols (info
->symtab
,
26030 &info
->objfile
->static_psymbols
[psymtab
->statics_offset
],
26031 psymtab
->n_static_syms
, info
->cu_index
,
26034 info
->types_list
.append_uint (8, BFD_ENDIAN_LITTLE
,
26035 to_underlying (entry
->per_cu
.sect_off
));
26036 info
->types_list
.append_uint (8, BFD_ENDIAN_LITTLE
,
26037 to_underlying (entry
->type_offset_in_tu
));
26038 info
->types_list
.append_uint (8, BFD_ENDIAN_LITTLE
, entry
->signature
);
26045 /* Recurse into all "included" dependencies and count their symbols as
26046 if they appeared in this psymtab. */
26049 recursively_count_psymbols (struct partial_symtab
*psymtab
,
26050 size_t &psyms_seen
)
26052 for (int i
= 0; i
< psymtab
->number_of_dependencies
; ++i
)
26053 if (psymtab
->dependencies
[i
]->user
!= NULL
)
26054 recursively_count_psymbols (psymtab
->dependencies
[i
],
26057 psyms_seen
+= psymtab
->n_global_syms
;
26058 psyms_seen
+= psymtab
->n_static_syms
;
26061 /* Recurse into all "included" dependencies and write their symbols as
26062 if they appeared in this psymtab. */
26065 recursively_write_psymbols (struct objfile
*objfile
,
26066 struct partial_symtab
*psymtab
,
26067 struct mapped_symtab
*symtab
,
26068 std::unordered_set
<partial_symbol
*> &psyms_seen
,
26069 offset_type cu_index
)
26073 for (i
= 0; i
< psymtab
->number_of_dependencies
; ++i
)
26074 if (psymtab
->dependencies
[i
]->user
!= NULL
)
26075 recursively_write_psymbols (objfile
, psymtab
->dependencies
[i
],
26076 symtab
, psyms_seen
, cu_index
);
26078 write_psymbols (symtab
,
26080 &objfile
->global_psymbols
[psymtab
->globals_offset
],
26081 psymtab
->n_global_syms
, cu_index
,
26083 write_psymbols (symtab
,
26085 &objfile
->static_psymbols
[psymtab
->statics_offset
],
26086 psymtab
->n_static_syms
, cu_index
,
26090 /* DWARF-5 .debug_names builder. */
26094 debug_names (struct dwarf2_per_objfile
*dwarf2_per_objfile
, bool is_dwarf64
,
26095 bfd_endian dwarf5_byte_order
)
26096 : m_dwarf5_byte_order (dwarf5_byte_order
),
26097 m_dwarf32 (dwarf5_byte_order
),
26098 m_dwarf64 (dwarf5_byte_order
),
26099 m_dwarf (is_dwarf64
26100 ? static_cast<dwarf
&> (m_dwarf64
)
26101 : static_cast<dwarf
&> (m_dwarf32
)),
26102 m_name_table_string_offs (m_dwarf
.name_table_string_offs
),
26103 m_name_table_entry_offs (m_dwarf
.name_table_entry_offs
),
26104 m_debugstrlookup (dwarf2_per_objfile
)
26107 int dwarf5_offset_size () const
26109 const bool dwarf5_is_dwarf64
= &m_dwarf
== &m_dwarf64
;
26110 return dwarf5_is_dwarf64
? 8 : 4;
26113 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26114 enum class unit_kind
{ cu
, tu
};
26116 /* Insert one symbol. */
26117 void insert (const partial_symbol
*psym
, int cu_index
, bool is_static
,
26120 const int dwarf_tag
= psymbol_tag (psym
);
26121 if (dwarf_tag
== 0)
26123 const char *const name
= SYMBOL_SEARCH_NAME (psym
);
26124 const auto insertpair
26125 = m_name_to_value_set
.emplace (c_str_view (name
),
26126 std::set
<symbol_value
> ());
26127 std::set
<symbol_value
> &value_set
= insertpair
.first
->second
;
26128 value_set
.emplace (symbol_value (dwarf_tag
, cu_index
, is_static
, kind
));
26131 /* Build all the tables. All symbols must be already inserted.
26132 This function does not call file_write, caller has to do it
26136 /* Verify the build method has not be called twice. */
26137 gdb_assert (m_abbrev_table
.empty ());
26138 const size_t name_count
= m_name_to_value_set
.size ();
26139 m_bucket_table
.resize
26140 (std::pow (2, std::ceil (std::log2 (name_count
* 4 / 3))));
26141 m_hash_table
.reserve (name_count
);
26142 m_name_table_string_offs
.reserve (name_count
);
26143 m_name_table_entry_offs
.reserve (name_count
);
26145 /* Map each hash of symbol to its name and value. */
26146 struct hash_it_pair
26149 decltype (m_name_to_value_set
)::const_iterator it
;
26151 std::vector
<std::forward_list
<hash_it_pair
>> bucket_hash
;
26152 bucket_hash
.resize (m_bucket_table
.size ());
26153 for (decltype (m_name_to_value_set
)::const_iterator it
26154 = m_name_to_value_set
.cbegin ();
26155 it
!= m_name_to_value_set
.cend ();
26158 const char *const name
= it
->first
.c_str ();
26159 const uint32_t hash
= dwarf5_djb_hash (name
);
26160 hash_it_pair hashitpair
;
26161 hashitpair
.hash
= hash
;
26162 hashitpair
.it
= it
;
26163 auto &slot
= bucket_hash
[hash
% bucket_hash
.size()];
26164 slot
.push_front (std::move (hashitpair
));
26166 for (size_t bucket_ix
= 0; bucket_ix
< bucket_hash
.size (); ++bucket_ix
)
26168 const std::forward_list
<hash_it_pair
> &hashitlist
26169 = bucket_hash
[bucket_ix
];
26170 if (hashitlist
.empty ())
26172 uint32_t &bucket_slot
= m_bucket_table
[bucket_ix
];
26173 /* The hashes array is indexed starting at 1. */
26174 store_unsigned_integer (reinterpret_cast<gdb_byte
*> (&bucket_slot
),
26175 sizeof (bucket_slot
), m_dwarf5_byte_order
,
26176 m_hash_table
.size () + 1);
26177 for (const hash_it_pair
&hashitpair
: hashitlist
)
26179 m_hash_table
.push_back (0);
26180 store_unsigned_integer (reinterpret_cast<gdb_byte
*>
26181 (&m_hash_table
.back ()),
26182 sizeof (m_hash_table
.back ()),
26183 m_dwarf5_byte_order
, hashitpair
.hash
);
26184 const c_str_view
&name
= hashitpair
.it
->first
;
26185 const std::set
<symbol_value
> &value_set
= hashitpair
.it
->second
;
26186 m_name_table_string_offs
.push_back_reorder
26187 (m_debugstrlookup
.lookup (name
.c_str ()));
26188 m_name_table_entry_offs
.push_back_reorder (m_entry_pool
.size ());
26189 gdb_assert (!value_set
.empty ());
26190 for (const symbol_value
&value
: value_set
)
26192 int &idx
= m_indexkey_to_idx
[index_key (value
.dwarf_tag
,
26197 idx
= m_idx_next
++;
26198 m_abbrev_table
.append_unsigned_leb128 (idx
);
26199 m_abbrev_table
.append_unsigned_leb128 (value
.dwarf_tag
);
26200 m_abbrev_table
.append_unsigned_leb128
26201 (value
.kind
== unit_kind::cu
? DW_IDX_compile_unit
26202 : DW_IDX_type_unit
);
26203 m_abbrev_table
.append_unsigned_leb128 (DW_FORM_udata
);
26204 m_abbrev_table
.append_unsigned_leb128 (value
.is_static
26205 ? DW_IDX_GNU_internal
26206 : DW_IDX_GNU_external
);
26207 m_abbrev_table
.append_unsigned_leb128 (DW_FORM_flag_present
);
26209 /* Terminate attributes list. */
26210 m_abbrev_table
.append_unsigned_leb128 (0);
26211 m_abbrev_table
.append_unsigned_leb128 (0);
26214 m_entry_pool
.append_unsigned_leb128 (idx
);
26215 m_entry_pool
.append_unsigned_leb128 (value
.cu_index
);
26218 /* Terminate the list of CUs. */
26219 m_entry_pool
.append_unsigned_leb128 (0);
26222 gdb_assert (m_hash_table
.size () == name_count
);
26224 /* Terminate tags list. */
26225 m_abbrev_table
.append_unsigned_leb128 (0);
26228 /* Return .debug_names bucket count. This must be called only after
26229 calling the build method. */
26230 uint32_t bucket_count () const
26232 /* Verify the build method has been already called. */
26233 gdb_assert (!m_abbrev_table
.empty ());
26234 const uint32_t retval
= m_bucket_table
.size ();
26236 /* Check for overflow. */
26237 gdb_assert (retval
== m_bucket_table
.size ());
26241 /* Return .debug_names names count. This must be called only after
26242 calling the build method. */
26243 uint32_t name_count () const
26245 /* Verify the build method has been already called. */
26246 gdb_assert (!m_abbrev_table
.empty ());
26247 const uint32_t retval
= m_hash_table
.size ();
26249 /* Check for overflow. */
26250 gdb_assert (retval
== m_hash_table
.size ());
26254 /* Return number of bytes of .debug_names abbreviation table. This
26255 must be called only after calling the build method. */
26256 uint32_t abbrev_table_bytes () const
26258 gdb_assert (!m_abbrev_table
.empty ());
26259 return m_abbrev_table
.size ();
26262 /* Recurse into all "included" dependencies and store their symbols
26263 as if they appeared in this psymtab. */
26264 void recursively_write_psymbols
26265 (struct objfile
*objfile
,
26266 struct partial_symtab
*psymtab
,
26267 std::unordered_set
<partial_symbol
*> &psyms_seen
,
26270 for (int i
= 0; i
< psymtab
->number_of_dependencies
; ++i
)
26271 if (psymtab
->dependencies
[i
]->user
!= NULL
)
26272 recursively_write_psymbols (objfile
, psymtab
->dependencies
[i
],
26273 psyms_seen
, cu_index
);
26275 write_psymbols (psyms_seen
,
26276 &objfile
->global_psymbols
[psymtab
->globals_offset
],
26277 psymtab
->n_global_syms
, cu_index
, false, unit_kind::cu
);
26278 write_psymbols (psyms_seen
,
26279 &objfile
->static_psymbols
[psymtab
->statics_offset
],
26280 psymtab
->n_static_syms
, cu_index
, true, unit_kind::cu
);
26283 /* Return number of bytes the .debug_names section will have. This
26284 must be called only after calling the build method. */
26285 size_t bytes () const
26287 /* Verify the build method has been already called. */
26288 gdb_assert (!m_abbrev_table
.empty ());
26289 size_t expected_bytes
= 0;
26290 expected_bytes
+= m_bucket_table
.size () * sizeof (m_bucket_table
[0]);
26291 expected_bytes
+= m_hash_table
.size () * sizeof (m_hash_table
[0]);
26292 expected_bytes
+= m_name_table_string_offs
.bytes ();
26293 expected_bytes
+= m_name_table_entry_offs
.bytes ();
26294 expected_bytes
+= m_abbrev_table
.size ();
26295 expected_bytes
+= m_entry_pool
.size ();
26296 return expected_bytes
;
26299 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26300 FILE_STR. This must be called only after calling the build
26302 void file_write (FILE *file_names
, FILE *file_str
) const
26304 /* Verify the build method has been already called. */
26305 gdb_assert (!m_abbrev_table
.empty ());
26306 ::file_write (file_names
, m_bucket_table
);
26307 ::file_write (file_names
, m_hash_table
);
26308 m_name_table_string_offs
.file_write (file_names
);
26309 m_name_table_entry_offs
.file_write (file_names
);
26310 m_abbrev_table
.file_write (file_names
);
26311 m_entry_pool
.file_write (file_names
);
26312 m_debugstrlookup
.file_write (file_str
);
26315 /* A helper user data for write_one_signatured_type. */
26316 class write_one_signatured_type_data
26319 write_one_signatured_type_data (debug_names
&nametable_
,
26320 signatured_type_index_data
&&info_
)
26321 : nametable (nametable_
), info (std::move (info_
))
26323 debug_names
&nametable
;
26324 struct signatured_type_index_data info
;
26327 /* A helper function to pass write_one_signatured_type to
26328 htab_traverse_noresize. */
26330 write_one_signatured_type (void **slot
, void *d
)
26332 write_one_signatured_type_data
*data
= (write_one_signatured_type_data
*) d
;
26333 struct signatured_type_index_data
*info
= &data
->info
;
26334 struct signatured_type
*entry
= (struct signatured_type
*) *slot
;
26336 data
->nametable
.write_one_signatured_type (entry
, info
);
26343 /* Storage for symbol names mapping them to their .debug_str section
26345 class debug_str_lookup
26349 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26350 All .debug_str section strings are automatically stored. */
26351 debug_str_lookup (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
26352 : m_abfd (dwarf2_per_objfile
->objfile
->obfd
),
26353 m_dwarf2_per_objfile (dwarf2_per_objfile
)
26355 dwarf2_read_section (dwarf2_per_objfile
->objfile
,
26356 &dwarf2_per_objfile
->str
);
26357 if (dwarf2_per_objfile
->str
.buffer
== NULL
)
26359 for (const gdb_byte
*data
= dwarf2_per_objfile
->str
.buffer
;
26360 data
< (dwarf2_per_objfile
->str
.buffer
26361 + dwarf2_per_objfile
->str
.size
);)
26363 const char *const s
= reinterpret_cast<const char *> (data
);
26364 const auto insertpair
26365 = m_str_table
.emplace (c_str_view (s
),
26366 data
- dwarf2_per_objfile
->str
.buffer
);
26367 if (!insertpair
.second
)
26368 complaint (&symfile_complaints
,
26369 _("Duplicate string \"%s\" in "
26370 ".debug_str section [in module %s]"),
26371 s
, bfd_get_filename (m_abfd
));
26372 data
+= strlen (s
) + 1;
26376 /* Return offset of symbol name S in the .debug_str section. Add
26377 such symbol to the section's end if it does not exist there
26379 size_t lookup (const char *s
)
26381 const auto it
= m_str_table
.find (c_str_view (s
));
26382 if (it
!= m_str_table
.end ())
26384 const size_t offset
= (m_dwarf2_per_objfile
->str
.size
26385 + m_str_add_buf
.size ());
26386 m_str_table
.emplace (c_str_view (s
), offset
);
26387 m_str_add_buf
.append_cstr0 (s
);
26391 /* Append the end of the .debug_str section to FILE. */
26392 void file_write (FILE *file
) const
26394 m_str_add_buf
.file_write (file
);
26398 std::unordered_map
<c_str_view
, size_t, c_str_view_hasher
> m_str_table
;
26400 struct dwarf2_per_objfile
*m_dwarf2_per_objfile
;
26402 /* Data to add at the end of .debug_str for new needed symbol names. */
26403 data_buf m_str_add_buf
;
26406 /* Container to map used DWARF tags to their .debug_names abbreviation
26411 index_key (int dwarf_tag_
, bool is_static_
, unit_kind kind_
)
26412 : dwarf_tag (dwarf_tag_
), is_static (is_static_
), kind (kind_
)
26417 operator== (const index_key
&other
) const
26419 return (dwarf_tag
== other
.dwarf_tag
&& is_static
== other
.is_static
26420 && kind
== other
.kind
);
26423 const int dwarf_tag
;
26424 const bool is_static
;
26425 const unit_kind kind
;
26428 /* Provide std::unordered_map::hasher for index_key. */
26429 class index_key_hasher
26433 operator () (const index_key
&key
) const
26435 return (std::hash
<int>() (key
.dwarf_tag
) << 1) | key
.is_static
;
26439 /* Parameters of one symbol entry. */
26443 const int dwarf_tag
, cu_index
;
26444 const bool is_static
;
26445 const unit_kind kind
;
26447 symbol_value (int dwarf_tag_
, int cu_index_
, bool is_static_
,
26449 : dwarf_tag (dwarf_tag_
), cu_index (cu_index_
), is_static (is_static_
),
26454 operator< (const symbol_value
&other
) const
26474 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26479 const bfd_endian dwarf5_byte_order
;
26481 explicit offset_vec (bfd_endian dwarf5_byte_order_
)
26482 : dwarf5_byte_order (dwarf5_byte_order_
)
26485 /* Call std::vector::reserve for NELEM elements. */
26486 virtual void reserve (size_t nelem
) = 0;
26488 /* Call std::vector::push_back with store_unsigned_integer byte
26489 reordering for ELEM. */
26490 virtual void push_back_reorder (size_t elem
) = 0;
26492 /* Return expected output size in bytes. */
26493 virtual size_t bytes () const = 0;
26495 /* Write name table to FILE. */
26496 virtual void file_write (FILE *file
) const = 0;
26499 /* Template to unify DWARF-32 and DWARF-64 output. */
26500 template<typename OffsetSize
>
26501 class offset_vec_tmpl
: public offset_vec
26504 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_
)
26505 : offset_vec (dwarf5_byte_order_
)
26508 /* Implement offset_vec::reserve. */
26509 void reserve (size_t nelem
) override
26511 m_vec
.reserve (nelem
);
26514 /* Implement offset_vec::push_back_reorder. */
26515 void push_back_reorder (size_t elem
) override
26517 m_vec
.push_back (elem
);
26518 /* Check for overflow. */
26519 gdb_assert (m_vec
.back () == elem
);
26520 store_unsigned_integer (reinterpret_cast<gdb_byte
*> (&m_vec
.back ()),
26521 sizeof (m_vec
.back ()), dwarf5_byte_order
, elem
);
26524 /* Implement offset_vec::bytes. */
26525 size_t bytes () const override
26527 return m_vec
.size () * sizeof (m_vec
[0]);
26530 /* Implement offset_vec::file_write. */
26531 void file_write (FILE *file
) const override
26533 ::file_write (file
, m_vec
);
26537 std::vector
<OffsetSize
> m_vec
;
26540 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26541 respecting name table width. */
26545 offset_vec
&name_table_string_offs
, &name_table_entry_offs
;
26547 dwarf (offset_vec
&name_table_string_offs_
,
26548 offset_vec
&name_table_entry_offs_
)
26549 : name_table_string_offs (name_table_string_offs_
),
26550 name_table_entry_offs (name_table_entry_offs_
)
26555 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26556 respecting name table width. */
26557 template<typename OffsetSize
>
26558 class dwarf_tmpl
: public dwarf
26561 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_
)
26562 : dwarf (m_name_table_string_offs
, m_name_table_entry_offs
),
26563 m_name_table_string_offs (dwarf5_byte_order_
),
26564 m_name_table_entry_offs (dwarf5_byte_order_
)
26568 offset_vec_tmpl
<OffsetSize
> m_name_table_string_offs
;
26569 offset_vec_tmpl
<OffsetSize
> m_name_table_entry_offs
;
26572 /* Try to reconstruct original DWARF tag for given partial_symbol.
26573 This function is not DWARF-5 compliant but it is sufficient for
26574 GDB as a DWARF-5 index consumer. */
26575 static int psymbol_tag (const struct partial_symbol
*psym
)
26577 domain_enum domain
= PSYMBOL_DOMAIN (psym
);
26578 enum address_class aclass
= PSYMBOL_CLASS (psym
);
26586 return DW_TAG_subprogram
;
26588 return DW_TAG_typedef
;
26590 case LOC_CONST_BYTES
:
26591 case LOC_OPTIMIZED_OUT
:
26593 return DW_TAG_variable
;
26595 /* Note: It's currently impossible to recognize psyms as enum values
26596 short of reading the type info. For now punt. */
26597 return DW_TAG_variable
;
26599 /* There are other LOC_FOO values that one might want to classify
26600 as variables, but dwarf2read.c doesn't currently use them. */
26601 return DW_TAG_variable
;
26603 case STRUCT_DOMAIN
:
26604 return DW_TAG_structure_type
;
26610 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26611 void write_psymbols (std::unordered_set
<partial_symbol
*> &psyms_seen
,
26612 struct partial_symbol
**psymp
, int count
, int cu_index
,
26613 bool is_static
, unit_kind kind
)
26615 for (; count
-- > 0; ++psymp
)
26617 struct partial_symbol
*psym
= *psymp
;
26619 if (SYMBOL_LANGUAGE (psym
) == language_ada
)
26620 error (_("Ada is not currently supported by the index"));
26622 /* Only add a given psymbol once. */
26623 if (psyms_seen
.insert (psym
).second
)
26624 insert (psym
, cu_index
, is_static
, kind
);
26628 /* A helper function that writes a single signatured_type
26629 to a debug_names. */
26631 write_one_signatured_type (struct signatured_type
*entry
,
26632 struct signatured_type_index_data
*info
)
26634 struct partial_symtab
*psymtab
= entry
->per_cu
.v
.psymtab
;
26636 write_psymbols (info
->psyms_seen
,
26637 &info
->objfile
->global_psymbols
[psymtab
->globals_offset
],
26638 psymtab
->n_global_syms
, info
->cu_index
, false,
26640 write_psymbols (info
->psyms_seen
,
26641 &info
->objfile
->static_psymbols
[psymtab
->statics_offset
],
26642 psymtab
->n_static_syms
, info
->cu_index
, true,
26645 info
->types_list
.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order
,
26646 to_underlying (entry
->per_cu
.sect_off
));
26651 /* Store value of each symbol. */
26652 std::unordered_map
<c_str_view
, std::set
<symbol_value
>, c_str_view_hasher
>
26653 m_name_to_value_set
;
26655 /* Tables of DWARF-5 .debug_names. They are in object file byte
26657 std::vector
<uint32_t> m_bucket_table
;
26658 std::vector
<uint32_t> m_hash_table
;
26660 const bfd_endian m_dwarf5_byte_order
;
26661 dwarf_tmpl
<uint32_t> m_dwarf32
;
26662 dwarf_tmpl
<uint64_t> m_dwarf64
;
26664 offset_vec
&m_name_table_string_offs
, &m_name_table_entry_offs
;
26665 debug_str_lookup m_debugstrlookup
;
26667 /* Map each used .debug_names abbreviation tag parameter to its
26669 std::unordered_map
<index_key
, int, index_key_hasher
> m_indexkey_to_idx
;
26671 /* Next unused .debug_names abbreviation tag for
26672 m_indexkey_to_idx. */
26673 int m_idx_next
= 1;
26675 /* .debug_names abbreviation table. */
26676 data_buf m_abbrev_table
;
26678 /* .debug_names entry pool. */
26679 data_buf m_entry_pool
;
26682 /* Return iff any of the needed offsets does not fit into 32-bit
26683 .debug_names section. */
26686 check_dwarf64_offsets (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
26688 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
26690 const dwarf2_per_cu_data
&per_cu
= *dwarf2_per_objfile
->all_comp_units
[i
];
26692 if (to_underlying (per_cu
.sect_off
) >= (static_cast<uint64_t> (1) << 32))
26695 for (int i
= 0; i
< dwarf2_per_objfile
->n_type_units
; ++i
)
26697 const signatured_type
&sigtype
= *dwarf2_per_objfile
->all_type_units
[i
];
26698 const dwarf2_per_cu_data
&per_cu
= sigtype
.per_cu
;
26700 if (to_underlying (per_cu
.sect_off
) >= (static_cast<uint64_t> (1) << 32))
26706 /* The psyms_seen set is potentially going to be largish (~40k
26707 elements when indexing a -g3 build of GDB itself). Estimate the
26708 number of elements in order to avoid too many rehashes, which
26709 require rebuilding buckets and thus many trips to
26713 psyms_seen_size (struct dwarf2_per_objfile
*dwarf2_per_objfile
)
26715 size_t psyms_count
= 0;
26716 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
26718 struct dwarf2_per_cu_data
*per_cu
26719 = dwarf2_per_objfile
->all_comp_units
[i
];
26720 struct partial_symtab
*psymtab
= per_cu
->v
.psymtab
;
26722 if (psymtab
!= NULL
&& psymtab
->user
== NULL
)
26723 recursively_count_psymbols (psymtab
, psyms_count
);
26725 /* Generating an index for gdb itself shows a ratio of
26726 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
26727 return psyms_count
/ 4;
26730 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
26731 Return how many bytes were expected to be written into OUT_FILE. */
26734 write_gdbindex (struct dwarf2_per_objfile
*dwarf2_per_objfile
, FILE *out_file
)
26736 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
26737 mapped_symtab symtab
;
26740 /* While we're scanning CU's create a table that maps a psymtab pointer
26741 (which is what addrmap records) to its index (which is what is recorded
26742 in the index file). This will later be needed to write the address
26744 psym_index_map cu_index_htab
;
26745 cu_index_htab
.reserve (dwarf2_per_objfile
->n_comp_units
);
26747 /* The CU list is already sorted, so we don't need to do additional
26748 work here. Also, the debug_types entries do not appear in
26749 all_comp_units, but only in their own hash table. */
26751 std::unordered_set
<partial_symbol
*> psyms_seen
26752 (psyms_seen_size (dwarf2_per_objfile
));
26753 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
26755 struct dwarf2_per_cu_data
*per_cu
26756 = dwarf2_per_objfile
->all_comp_units
[i
];
26757 struct partial_symtab
*psymtab
= per_cu
->v
.psymtab
;
26759 /* CU of a shared file from 'dwz -m' may be unused by this main file.
26760 It may be referenced from a local scope but in such case it does not
26761 need to be present in .gdb_index. */
26762 if (psymtab
== NULL
)
26765 if (psymtab
->user
== NULL
)
26766 recursively_write_psymbols (objfile
, psymtab
, &symtab
,
26769 const auto insertpair
= cu_index_htab
.emplace (psymtab
, i
);
26770 gdb_assert (insertpair
.second
);
26772 cu_list
.append_uint (8, BFD_ENDIAN_LITTLE
,
26773 to_underlying (per_cu
->sect_off
));
26774 cu_list
.append_uint (8, BFD_ENDIAN_LITTLE
, per_cu
->length
);
26777 /* Dump the address map. */
26779 write_address_map (objfile
, addr_vec
, cu_index_htab
);
26781 /* Write out the .debug_type entries, if any. */
26782 data_buf types_cu_list
;
26783 if (dwarf2_per_objfile
->signatured_types
)
26785 signatured_type_index_data
sig_data (types_cu_list
,
26788 sig_data
.objfile
= objfile
;
26789 sig_data
.symtab
= &symtab
;
26790 sig_data
.cu_index
= dwarf2_per_objfile
->n_comp_units
;
26791 htab_traverse_noresize (dwarf2_per_objfile
->signatured_types
,
26792 write_one_signatured_type
, &sig_data
);
26795 /* Now that we've processed all symbols we can shrink their cu_indices
26797 uniquify_cu_indices (&symtab
);
26799 data_buf symtab_vec
, constant_pool
;
26800 write_hash_table (&symtab
, symtab_vec
, constant_pool
);
26803 const offset_type size_of_contents
= 6 * sizeof (offset_type
);
26804 offset_type total_len
= size_of_contents
;
26806 /* The version number. */
26807 contents
.append_data (MAYBE_SWAP (8));
26809 /* The offset of the CU list from the start of the file. */
26810 contents
.append_data (MAYBE_SWAP (total_len
));
26811 total_len
+= cu_list
.size ();
26813 /* The offset of the types CU list from the start of the file. */
26814 contents
.append_data (MAYBE_SWAP (total_len
));
26815 total_len
+= types_cu_list
.size ();
26817 /* The offset of the address table from the start of the file. */
26818 contents
.append_data (MAYBE_SWAP (total_len
));
26819 total_len
+= addr_vec
.size ();
26821 /* The offset of the symbol table from the start of the file. */
26822 contents
.append_data (MAYBE_SWAP (total_len
));
26823 total_len
+= symtab_vec
.size ();
26825 /* The offset of the constant pool from the start of the file. */
26826 contents
.append_data (MAYBE_SWAP (total_len
));
26827 total_len
+= constant_pool
.size ();
26829 gdb_assert (contents
.size () == size_of_contents
);
26831 contents
.file_write (out_file
);
26832 cu_list
.file_write (out_file
);
26833 types_cu_list
.file_write (out_file
);
26834 addr_vec
.file_write (out_file
);
26835 symtab_vec
.file_write (out_file
);
26836 constant_pool
.file_write (out_file
);
26841 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
26842 static const gdb_byte dwarf5_gdb_augmentation
[] = { 'G', 'D', 'B', 0 };
26844 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
26845 needed addition to .debug_str section to OUT_FILE_STR. Return how
26846 many bytes were expected to be written into OUT_FILE. */
26849 write_debug_names (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
26850 FILE *out_file
, FILE *out_file_str
)
26852 const bool dwarf5_is_dwarf64
= check_dwarf64_offsets (dwarf2_per_objfile
);
26853 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
26854 const enum bfd_endian dwarf5_byte_order
26855 = gdbarch_byte_order (get_objfile_arch (objfile
));
26857 /* The CU list is already sorted, so we don't need to do additional
26858 work here. Also, the debug_types entries do not appear in
26859 all_comp_units, but only in their own hash table. */
26861 debug_names
nametable (dwarf2_per_objfile
, dwarf5_is_dwarf64
,
26862 dwarf5_byte_order
);
26863 std::unordered_set
<partial_symbol
*>
26864 psyms_seen (psyms_seen_size (dwarf2_per_objfile
));
26865 for (int i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
26867 const dwarf2_per_cu_data
*per_cu
= dwarf2_per_objfile
->all_comp_units
[i
];
26868 partial_symtab
*psymtab
= per_cu
->v
.psymtab
;
26870 /* CU of a shared file from 'dwz -m' may be unused by this main
26871 file. It may be referenced from a local scope but in such
26872 case it does not need to be present in .debug_names. */
26873 if (psymtab
== NULL
)
26876 if (psymtab
->user
== NULL
)
26877 nametable
.recursively_write_psymbols (objfile
, psymtab
, psyms_seen
, i
);
26879 cu_list
.append_uint (nametable
.dwarf5_offset_size (), dwarf5_byte_order
,
26880 to_underlying (per_cu
->sect_off
));
26883 /* Write out the .debug_type entries, if any. */
26884 data_buf types_cu_list
;
26885 if (dwarf2_per_objfile
->signatured_types
)
26887 debug_names::write_one_signatured_type_data
sig_data (nametable
,
26888 signatured_type_index_data (types_cu_list
, psyms_seen
));
26890 sig_data
.info
.objfile
= objfile
;
26891 /* It is used only for gdb_index. */
26892 sig_data
.info
.symtab
= nullptr;
26893 sig_data
.info
.cu_index
= 0;
26894 htab_traverse_noresize (dwarf2_per_objfile
->signatured_types
,
26895 debug_names::write_one_signatured_type
,
26899 nametable
.build ();
26901 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
26903 const offset_type bytes_of_header
26904 = ((dwarf5_is_dwarf64
? 12 : 4)
26906 + sizeof (dwarf5_gdb_augmentation
));
26907 size_t expected_bytes
= 0;
26908 expected_bytes
+= bytes_of_header
;
26909 expected_bytes
+= cu_list
.size ();
26910 expected_bytes
+= types_cu_list
.size ();
26911 expected_bytes
+= nametable
.bytes ();
26914 if (!dwarf5_is_dwarf64
)
26916 const uint64_t size64
= expected_bytes
- 4;
26917 gdb_assert (size64
< 0xfffffff0);
26918 header
.append_uint (4, dwarf5_byte_order
, size64
);
26922 header
.append_uint (4, dwarf5_byte_order
, 0xffffffff);
26923 header
.append_uint (8, dwarf5_byte_order
, expected_bytes
- 12);
26926 /* The version number. */
26927 header
.append_uint (2, dwarf5_byte_order
, 5);
26930 header
.append_uint (2, dwarf5_byte_order
, 0);
26932 /* comp_unit_count - The number of CUs in the CU list. */
26933 header
.append_uint (4, dwarf5_byte_order
, dwarf2_per_objfile
->n_comp_units
);
26935 /* local_type_unit_count - The number of TUs in the local TU
26937 header
.append_uint (4, dwarf5_byte_order
, dwarf2_per_objfile
->n_type_units
);
26939 /* foreign_type_unit_count - The number of TUs in the foreign TU
26941 header
.append_uint (4, dwarf5_byte_order
, 0);
26943 /* bucket_count - The number of hash buckets in the hash lookup
26945 header
.append_uint (4, dwarf5_byte_order
, nametable
.bucket_count ());
26947 /* name_count - The number of unique names in the index. */
26948 header
.append_uint (4, dwarf5_byte_order
, nametable
.name_count ());
26950 /* abbrev_table_size - The size in bytes of the abbreviations
26952 header
.append_uint (4, dwarf5_byte_order
, nametable
.abbrev_table_bytes ());
26954 /* augmentation_string_size - The size in bytes of the augmentation
26955 string. This value is rounded up to a multiple of 4. */
26956 static_assert (sizeof (dwarf5_gdb_augmentation
) % 4 == 0, "");
26957 header
.append_uint (4, dwarf5_byte_order
, sizeof (dwarf5_gdb_augmentation
));
26958 header
.append_data (dwarf5_gdb_augmentation
);
26960 gdb_assert (header
.size () == bytes_of_header
);
26962 header
.file_write (out_file
);
26963 cu_list
.file_write (out_file
);
26964 types_cu_list
.file_write (out_file
);
26965 nametable
.file_write (out_file
, out_file_str
);
26967 return expected_bytes
;
26970 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
26971 position is at the end of the file. */
26974 assert_file_size (FILE *file
, const char *filename
, size_t expected_size
)
26976 const auto file_size
= ftell (file
);
26977 if (file_size
== -1)
26978 error (_("Can't get `%s' size"), filename
);
26979 gdb_assert (file_size
== expected_size
);
26982 /* Create an index file for OBJFILE in the directory DIR. */
26985 write_psymtabs_to_index (struct dwarf2_per_objfile
*dwarf2_per_objfile
,
26987 dw_index_kind index_kind
)
26989 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
26991 if (dwarf2_per_objfile
->using_index
)
26992 error (_("Cannot use an index to create the index"));
26994 if (VEC_length (dwarf2_section_info_def
, dwarf2_per_objfile
->types
) > 1)
26995 error (_("Cannot make an index when the file has multiple .debug_types sections"));
26997 if (!objfile
->psymtabs
|| !objfile
->psymtabs_addrmap
)
27001 if (stat (objfile_name (objfile
), &st
) < 0)
27002 perror_with_name (objfile_name (objfile
));
27004 std::string
filename (std::string (dir
) + SLASH_STRING
27005 + lbasename (objfile_name (objfile
))
27006 + (index_kind
== dw_index_kind::DEBUG_NAMES
27007 ? INDEX5_SUFFIX
: INDEX4_SUFFIX
));
27009 FILE *out_file
= gdb_fopen_cloexec (filename
.c_str (), "wb").release ();
27011 error (_("Can't open `%s' for writing"), filename
.c_str ());
27013 /* Order matters here; we want FILE to be closed before FILENAME is
27014 unlinked, because on MS-Windows one cannot delete a file that is
27015 still open. (Don't call anything here that might throw until
27016 file_closer is created.) */
27017 gdb::unlinker
unlink_file (filename
.c_str ());
27018 gdb_file_up
close_out_file (out_file
);
27020 if (index_kind
== dw_index_kind::DEBUG_NAMES
)
27022 std::string
filename_str (std::string (dir
) + SLASH_STRING
27023 + lbasename (objfile_name (objfile
))
27024 + DEBUG_STR_SUFFIX
);
27026 = gdb_fopen_cloexec (filename_str
.c_str (), "wb").release ();
27028 error (_("Can't open `%s' for writing"), filename_str
.c_str ());
27029 gdb::unlinker
unlink_file_str (filename_str
.c_str ());
27030 gdb_file_up
close_out_file_str (out_file_str
);
27032 const size_t total_len
27033 = write_debug_names (dwarf2_per_objfile
, out_file
, out_file_str
);
27034 assert_file_size (out_file
, filename
.c_str (), total_len
);
27036 /* We want to keep the file .debug_str file too. */
27037 unlink_file_str
.keep ();
27041 const size_t total_len
27042 = write_gdbindex (dwarf2_per_objfile
, out_file
);
27043 assert_file_size (out_file
, filename
.c_str (), total_len
);
27046 /* We want to keep the file. */
27047 unlink_file
.keep ();
27050 /* Implementation of the `save gdb-index' command.
27052 Note that the .gdb_index file format used by this command is
27053 documented in the GDB manual. Any changes here must be documented
27057 save_gdb_index_command (const char *arg
, int from_tty
)
27059 struct objfile
*objfile
;
27060 const char dwarf5space
[] = "-dwarf-5 ";
27061 dw_index_kind index_kind
= dw_index_kind::GDB_INDEX
;
27066 arg
= skip_spaces (arg
);
27067 if (strncmp (arg
, dwarf5space
, strlen (dwarf5space
)) == 0)
27069 index_kind
= dw_index_kind::DEBUG_NAMES
;
27070 arg
+= strlen (dwarf5space
);
27071 arg
= skip_spaces (arg
);
27075 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27077 ALL_OBJFILES (objfile
)
27081 /* If the objfile does not correspond to an actual file, skip it. */
27082 if (stat (objfile_name (objfile
), &st
) < 0)
27085 struct dwarf2_per_objfile
*dwarf2_per_objfile
27086 = get_dwarf2_per_objfile (objfile
);
27088 if (dwarf2_per_objfile
!= NULL
)
27092 write_psymtabs_to_index (dwarf2_per_objfile
, arg
, index_kind
);
27094 CATCH (except
, RETURN_MASK_ERROR
)
27096 exception_fprintf (gdb_stderr
, except
,
27097 _("Error while writing index for `%s': "),
27098 objfile_name (objfile
));
27108 int dwarf_always_disassemble
;
27111 show_dwarf_always_disassemble (struct ui_file
*file
, int from_tty
,
27112 struct cmd_list_element
*c
, const char *value
)
27114 fprintf_filtered (file
,
27115 _("Whether to always disassemble "
27116 "DWARF expressions is %s.\n"),
27121 show_check_physname (struct ui_file
*file
, int from_tty
,
27122 struct cmd_list_element
*c
, const char *value
)
27124 fprintf_filtered (file
,
27125 _("Whether to check \"physname\" is %s.\n"),
27130 _initialize_dwarf2_read (void)
27132 struct cmd_list_element
*c
;
27134 dwarf2_objfile_data_key
= register_objfile_data ();
27136 add_prefix_cmd ("dwarf", class_maintenance
, set_dwarf_cmd
, _("\
27137 Set DWARF specific variables.\n\
27138 Configure DWARF variables such as the cache size"),
27139 &set_dwarf_cmdlist
, "maintenance set dwarf ",
27140 0/*allow-unknown*/, &maintenance_set_cmdlist
);
27142 add_prefix_cmd ("dwarf", class_maintenance
, show_dwarf_cmd
, _("\
27143 Show DWARF specific variables\n\
27144 Show DWARF variables such as the cache size"),
27145 &show_dwarf_cmdlist
, "maintenance show dwarf ",
27146 0/*allow-unknown*/, &maintenance_show_cmdlist
);
27148 add_setshow_zinteger_cmd ("max-cache-age", class_obscure
,
27149 &dwarf_max_cache_age
, _("\
27150 Set the upper bound on the age of cached DWARF compilation units."), _("\
27151 Show the upper bound on the age of cached DWARF compilation units."), _("\
27152 A higher limit means that cached compilation units will be stored\n\
27153 in memory longer, and more total memory will be used. Zero disables\n\
27154 caching, which can slow down startup."),
27156 show_dwarf_max_cache_age
,
27157 &set_dwarf_cmdlist
,
27158 &show_dwarf_cmdlist
);
27160 add_setshow_boolean_cmd ("always-disassemble", class_obscure
,
27161 &dwarf_always_disassemble
, _("\
27162 Set whether `info address' always disassembles DWARF expressions."), _("\
27163 Show whether `info address' always disassembles DWARF expressions."), _("\
27164 When enabled, DWARF expressions are always printed in an assembly-like\n\
27165 syntax. When disabled, expressions will be printed in a more\n\
27166 conversational style, when possible."),
27168 show_dwarf_always_disassemble
,
27169 &set_dwarf_cmdlist
,
27170 &show_dwarf_cmdlist
);
27172 add_setshow_zuinteger_cmd ("dwarf-read", no_class
, &dwarf_read_debug
, _("\
27173 Set debugging of the DWARF reader."), _("\
27174 Show debugging of the DWARF reader."), _("\
27175 When enabled (non-zero), debugging messages are printed during DWARF\n\
27176 reading and symtab expansion. A value of 1 (one) provides basic\n\
27177 information. A value greater than 1 provides more verbose information."),
27180 &setdebuglist
, &showdebuglist
);
27182 add_setshow_zuinteger_cmd ("dwarf-die", no_class
, &dwarf_die_debug
, _("\
27183 Set debugging of the DWARF DIE reader."), _("\
27184 Show debugging of the DWARF DIE reader."), _("\
27185 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27186 The value is the maximum depth to print."),
27189 &setdebuglist
, &showdebuglist
);
27191 add_setshow_zuinteger_cmd ("dwarf-line", no_class
, &dwarf_line_debug
, _("\
27192 Set debugging of the dwarf line reader."), _("\
27193 Show debugging of the dwarf line reader."), _("\
27194 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27195 A value of 1 (one) provides basic information.\n\
27196 A value greater than 1 provides more verbose information."),
27199 &setdebuglist
, &showdebuglist
);
27201 add_setshow_boolean_cmd ("check-physname", no_class
, &check_physname
, _("\
27202 Set cross-checking of \"physname\" code against demangler."), _("\
27203 Show cross-checking of \"physname\" code against demangler."), _("\
27204 When enabled, GDB's internal \"physname\" code is checked against\n\
27206 NULL
, show_check_physname
,
27207 &setdebuglist
, &showdebuglist
);
27209 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27210 no_class
, &use_deprecated_index_sections
, _("\
27211 Set whether to use deprecated gdb_index sections."), _("\
27212 Show whether to use deprecated gdb_index sections."), _("\
27213 When enabled, deprecated .gdb_index sections are used anyway.\n\
27214 Normally they are ignored either because of a missing feature or\n\
27215 performance issue.\n\
27216 Warning: This option must be enabled before gdb reads the file."),
27219 &setlist
, &showlist
);
27221 c
= add_cmd ("gdb-index", class_files
, save_gdb_index_command
,
27223 Save a gdb-index file.\n\
27224 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27226 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27227 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27228 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27230 set_cmd_completer (c
, filename_completer
);
27232 dwarf2_locexpr_index
= register_symbol_computed_impl (LOC_COMPUTED
,
27233 &dwarf2_locexpr_funcs
);
27234 dwarf2_loclist_index
= register_symbol_computed_impl (LOC_COMPUTED
,
27235 &dwarf2_loclist_funcs
);
27237 dwarf2_locexpr_block_index
= register_symbol_block_impl (LOC_BLOCK
,
27238 &dwarf2_block_frame_base_locexpr_funcs
);
27239 dwarf2_loclist_block_index
= register_symbol_block_impl (LOC_BLOCK
,
27240 &dwarf2_block_frame_base_loclist_funcs
);
27243 selftests::register_test ("dw2_expand_symtabs_matching",
27244 selftests::dw2_expand_symtabs_matching::run_test
);