7466d1538b589c82c4d5037905aa96b9f37f3189
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If set, only look for symbols that match that block. Valid values are
3885 GLOBAL_BLOCK and STATIC_BLOCK. */
3886 gdb::optional<int> block_index;
3887 /* The kind of symbol we're looking for. */
3888 domain_enum domain;
3889 /* The list of CUs from the index entry of the symbol,
3890 or NULL if not found. */
3891 offset_type *vec;
3892 /* The next element in VEC to look at. */
3893 int next;
3894 /* The number of elements in VEC, or zero if there is no match. */
3895 int length;
3896 /* Have we seen a global version of the symbol?
3897 If so we can ignore all further global instances.
3898 This is to work around gold/15646, inefficient gold-generated
3899 indices. */
3900 int global_seen;
3901 };
3902
3903 /* Initialize the index symtab iterator ITER. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 gdb::optional<int> block_index,
3909 domain_enum domain,
3910 const char *name)
3911 {
3912 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3913 iter->block_index = block_index;
3914 iter->domain = domain;
3915 iter->next = 0;
3916 iter->global_seen = 0;
3917
3918 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3922 iter->length = MAYBE_SWAP (*iter->vec);
3923 else
3924 {
3925 iter->vec = NULL;
3926 iter->length = 0;
3927 }
3928 }
3929
3930 /* Return the next matching CU or NULL if there are no more. */
3931
3932 static struct dwarf2_per_cu_data *
3933 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3934 {
3935 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3936
3937 for ( ; iter->next < iter->length; ++iter->next)
3938 {
3939 offset_type cu_index_and_attrs =
3940 MAYBE_SWAP (iter->vec[iter->next + 1]);
3941 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3972
3973 if (iter->block_index.has_value ())
3974 {
3975 bool want_static = *iter->block_index == STATIC_BLOCK;
3976
3977 if (is_static != want_static)
3978 continue;
3979 }
3980
3981 /* Work around gold/15646. */
3982 if (!is_static && iter->global_seen)
3983 continue;
3984 if (!is_static)
3985 iter->global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (iter->domain)
3992 {
3993 case VAR_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3996 /* Some types are also in VAR_DOMAIN. */
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 case STRUCT_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4002 continue;
4003 break;
4004 case LABEL_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4006 continue;
4007 break;
4008 default:
4009 break;
4010 }
4011 }
4012
4013 ++iter->next;
4014 return per_cu;
4015 }
4016
4017 return NULL;
4018 }
4019
4020 static struct compunit_symtab *
4021 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4022 const char *name, domain_enum domain)
4023 {
4024 struct compunit_symtab *stab_best = NULL;
4025 struct dwarf2_per_objfile *dwarf2_per_objfile
4026 = get_dwarf2_per_objfile (objfile);
4027
4028 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4029
4030 struct dw2_symtab_iterator iter;
4031 struct dwarf2_per_cu_data *per_cu;
4032
4033 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4034
4035 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4036 {
4037 struct symbol *sym, *with_opaque = NULL;
4038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4041
4042 sym = block_find_symbol (block, name, domain,
4043 block_find_non_opaque_type_preferred,
4044 &with_opaque);
4045
4046 /* Some caution must be observed with overloaded functions
4047 and methods, since the index will not contain any overload
4048 information (but NAME might contain it). */
4049
4050 if (sym != NULL
4051 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4052 return stab;
4053 if (with_opaque != NULL
4054 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 stab_best = stab;
4056
4057 /* Keep looking through other CUs. */
4058 }
4059
4060 return stab_best;
4061 }
4062
4063 static void
4064 dw2_print_stats (struct objfile *objfile)
4065 {
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068 int total = (dwarf2_per_objfile->all_comp_units.size ()
4069 + dwarf2_per_objfile->all_type_units.size ());
4070 int count = 0;
4071
4072 for (int i = 0; i < total; ++i)
4073 {
4074 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4075
4076 if (!per_cu->v.quick->compunit_symtab)
4077 ++count;
4078 }
4079 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4080 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 }
4082
4083 /* This dumps minimal information about the index.
4084 It is called via "mt print objfiles".
4085 One use is to verify .gdb_index has been loaded by the
4086 gdb.dwarf2/gdb-index.exp testcase. */
4087
4088 static void
4089 dw2_dump (struct objfile *objfile)
4090 {
4091 struct dwarf2_per_objfile *dwarf2_per_objfile
4092 = get_dwarf2_per_objfile (objfile);
4093
4094 gdb_assert (dwarf2_per_objfile->using_index);
4095 printf_filtered (".gdb_index:");
4096 if (dwarf2_per_objfile->index_table != NULL)
4097 {
4098 printf_filtered (" version %d\n",
4099 dwarf2_per_objfile->index_table->version);
4100 }
4101 else
4102 printf_filtered (" faked for \"readnow\"\n");
4103 printf_filtered ("\n");
4104 }
4105
4106 static void
4107 dw2_expand_symtabs_for_function (struct objfile *objfile,
4108 const char *func_name)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112
4113 struct dw2_symtab_iterator iter;
4114 struct dwarf2_per_cu_data *per_cu;
4115
4116 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 dw2_debug_names_iterator (const mapped_debug_names &map,
5661 gdb::optional<block_enum> block_index,
5662 domain_enum domain,
5663 const char *name)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, name))
5666 {}
5667
5668 dw2_debug_names_iterator (const mapped_debug_names &map,
5669 search_domain search, uint32_t namei)
5670 : m_map (map),
5671 m_search (search),
5672 m_addr (find_vec_in_debug_names (map, namei))
5673 {}
5674
5675 /* Return the next matching CU or NULL if there are no more. */
5676 dwarf2_per_cu_data *next ();
5677
5678 private:
5679 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5680 const char *name);
5681 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5682 uint32_t namei);
5683
5684 /* The internalized form of .debug_names. */
5685 const mapped_debug_names &m_map;
5686
5687 /* If set, only look for symbols that match that block. Valid values are
5688 GLOBAL_BLOCK and STATIC_BLOCK. */
5689 const gdb::optional<block_enum> m_block_index;
5690
5691 /* The kind of symbol we're looking for. */
5692 const domain_enum m_domain = UNDEF_DOMAIN;
5693 const search_domain m_search = ALL_DOMAIN;
5694
5695 /* The list of CUs from the index entry of the symbol, or NULL if
5696 not found. */
5697 const gdb_byte *m_addr;
5698 };
5699
5700 const char *
5701 mapped_debug_names::namei_to_name (uint32_t namei) const
5702 {
5703 const ULONGEST namei_string_offs
5704 = extract_unsigned_integer ((name_table_string_offs_reordered
5705 + namei * offset_size),
5706 offset_size,
5707 dwarf5_byte_order);
5708 return read_indirect_string_at_offset
5709 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5710 }
5711
5712 /* Find a slot in .debug_names for the object named NAME. If NAME is
5713 found, return pointer to its pool data. If NAME cannot be found,
5714 return NULL. */
5715
5716 const gdb_byte *
5717 dw2_debug_names_iterator::find_vec_in_debug_names
5718 (const mapped_debug_names &map, const char *name)
5719 {
5720 int (*cmp) (const char *, const char *);
5721
5722 gdb::unique_xmalloc_ptr<char> without_params;
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 without_params = cp_remove_params (name);
5733 if (without_params != NULL)
5734 name = without_params.get ();
5735 }
5736 }
5737
5738 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5739
5740 const uint32_t full_hash = dwarf5_djb_hash (name);
5741 uint32_t namei
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.bucket_table_reordered
5744 + (full_hash % map.bucket_count)), 4,
5745 map.dwarf5_byte_order);
5746 if (namei == 0)
5747 return NULL;
5748 --namei;
5749 if (namei >= map.name_count)
5750 {
5751 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5752 "[in module %s]"),
5753 namei, map.name_count,
5754 objfile_name (map.dwarf2_per_objfile->objfile));
5755 return NULL;
5756 }
5757
5758 for (;;)
5759 {
5760 const uint32_t namei_full_hash
5761 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5762 (map.hash_table_reordered + namei), 4,
5763 map.dwarf5_byte_order);
5764 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5765 return NULL;
5766
5767 if (full_hash == namei_full_hash)
5768 {
5769 const char *const namei_string = map.namei_to_name (namei);
5770
5771 #if 0 /* An expensive sanity check. */
5772 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5773 {
5774 complaint (_("Wrong .debug_names hash for string at index %u "
5775 "[in module %s]"),
5776 namei, objfile_name (dwarf2_per_objfile->objfile));
5777 return NULL;
5778 }
5779 #endif
5780
5781 if (cmp (namei_string, name) == 0)
5782 {
5783 const ULONGEST namei_entry_offs
5784 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5785 + namei * map.offset_size),
5786 map.offset_size, map.dwarf5_byte_order);
5787 return map.entry_pool + namei_entry_offs;
5788 }
5789 }
5790
5791 ++namei;
5792 if (namei >= map.name_count)
5793 return NULL;
5794 }
5795 }
5796
5797 const gdb_byte *
5798 dw2_debug_names_iterator::find_vec_in_debug_names
5799 (const mapped_debug_names &map, uint32_t namei)
5800 {
5801 if (namei >= map.name_count)
5802 {
5803 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5804 "[in module %s]"),
5805 namei, map.name_count,
5806 objfile_name (map.dwarf2_per_objfile->objfile));
5807 return NULL;
5808 }
5809
5810 const ULONGEST namei_entry_offs
5811 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5812 + namei * map.offset_size),
5813 map.offset_size, map.dwarf5_byte_order);
5814 return map.entry_pool + namei_entry_offs;
5815 }
5816
5817 /* See dw2_debug_names_iterator. */
5818
5819 dwarf2_per_cu_data *
5820 dw2_debug_names_iterator::next ()
5821 {
5822 if (m_addr == NULL)
5823 return NULL;
5824
5825 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5826 struct objfile *objfile = dwarf2_per_objfile->objfile;
5827 bfd *const abfd = objfile->obfd;
5828
5829 again:
5830
5831 unsigned int bytes_read;
5832 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5833 m_addr += bytes_read;
5834 if (abbrev == 0)
5835 return NULL;
5836
5837 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5838 if (indexval_it == m_map.abbrev_map.cend ())
5839 {
5840 complaint (_("Wrong .debug_names undefined abbrev code %s "
5841 "[in module %s]"),
5842 pulongest (abbrev), objfile_name (objfile));
5843 return NULL;
5844 }
5845 const mapped_debug_names::index_val &indexval = indexval_it->second;
5846 gdb::optional<bool> is_static;
5847 dwarf2_per_cu_data *per_cu = NULL;
5848 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5849 {
5850 ULONGEST ull;
5851 switch (attr.form)
5852 {
5853 case DW_FORM_implicit_const:
5854 ull = attr.implicit_const;
5855 break;
5856 case DW_FORM_flag_present:
5857 ull = 1;
5858 break;
5859 case DW_FORM_udata:
5860 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5861 m_addr += bytes_read;
5862 break;
5863 default:
5864 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5865 dwarf_form_name (attr.form),
5866 objfile_name (objfile));
5867 return NULL;
5868 }
5869 switch (attr.dw_idx)
5870 {
5871 case DW_IDX_compile_unit:
5872 /* Don't crash on bad data. */
5873 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5874 {
5875 complaint (_(".debug_names entry has bad CU index %s"
5876 " [in module %s]"),
5877 pulongest (ull),
5878 objfile_name (dwarf2_per_objfile->objfile));
5879 continue;
5880 }
5881 per_cu = dwarf2_per_objfile->get_cutu (ull);
5882 break;
5883 case DW_IDX_type_unit:
5884 /* Don't crash on bad data. */
5885 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5886 {
5887 complaint (_(".debug_names entry has bad TU index %s"
5888 " [in module %s]"),
5889 pulongest (ull),
5890 objfile_name (dwarf2_per_objfile->objfile));
5891 continue;
5892 }
5893 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5894 break;
5895 case DW_IDX_GNU_internal:
5896 if (!m_map.augmentation_is_gdb)
5897 break;
5898 is_static = true;
5899 break;
5900 case DW_IDX_GNU_external:
5901 if (!m_map.augmentation_is_gdb)
5902 break;
5903 is_static = false;
5904 break;
5905 }
5906 }
5907
5908 /* Skip if already read in. */
5909 if (per_cu->v.quick->compunit_symtab)
5910 goto again;
5911
5912 /* Check static vs global. */
5913 if (is_static.has_value () && m_block_index.has_value ())
5914 {
5915 const bool want_static = *m_block_index == STATIC_BLOCK;
5916 if (want_static != *is_static)
5917 goto again;
5918 }
5919
5920 /* Match dw2_symtab_iter_next, symbol_kind
5921 and debug_names::psymbol_tag. */
5922 switch (m_domain)
5923 {
5924 case VAR_DOMAIN:
5925 switch (indexval.dwarf_tag)
5926 {
5927 case DW_TAG_variable:
5928 case DW_TAG_subprogram:
5929 /* Some types are also in VAR_DOMAIN. */
5930 case DW_TAG_typedef:
5931 case DW_TAG_structure_type:
5932 break;
5933 default:
5934 goto again;
5935 }
5936 break;
5937 case STRUCT_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_typedef:
5941 case DW_TAG_structure_type:
5942 break;
5943 default:
5944 goto again;
5945 }
5946 break;
5947 case LABEL_DOMAIN:
5948 switch (indexval.dwarf_tag)
5949 {
5950 case 0:
5951 case DW_TAG_variable:
5952 break;
5953 default:
5954 goto again;
5955 }
5956 break;
5957 default:
5958 break;
5959 }
5960
5961 /* Match dw2_expand_symtabs_matching, symbol_kind and
5962 debug_names::psymbol_tag. */
5963 switch (m_search)
5964 {
5965 case VARIABLES_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_variable:
5969 break;
5970 default:
5971 goto again;
5972 }
5973 break;
5974 case FUNCTIONS_DOMAIN:
5975 switch (indexval.dwarf_tag)
5976 {
5977 case DW_TAG_subprogram:
5978 break;
5979 default:
5980 goto again;
5981 }
5982 break;
5983 case TYPES_DOMAIN:
5984 switch (indexval.dwarf_tag)
5985 {
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 default:
5994 break;
5995 }
5996
5997 return per_cu;
5998 }
5999
6000 static struct compunit_symtab *
6001 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6002 const char *name, domain_enum domain)
6003 {
6004 const block_enum block_index = static_cast<block_enum> (block_index_int);
6005 struct dwarf2_per_objfile *dwarf2_per_objfile
6006 = get_dwarf2_per_objfile (objfile);
6007
6008 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6009 if (!mapp)
6010 {
6011 /* index is NULL if OBJF_READNOW. */
6012 return NULL;
6013 }
6014 const auto &map = *mapp;
6015
6016 dw2_debug_names_iterator iter (map, block_index, domain, name);
6017
6018 struct compunit_symtab *stab_best = NULL;
6019 struct dwarf2_per_cu_data *per_cu;
6020 while ((per_cu = iter.next ()) != NULL)
6021 {
6022 struct symbol *sym, *with_opaque = NULL;
6023 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6024 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6025 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6026
6027 sym = block_find_symbol (block, name, domain,
6028 block_find_non_opaque_type_preferred,
6029 &with_opaque);
6030
6031 /* Some caution must be observed with overloaded functions and
6032 methods, since the index will not contain any overload
6033 information (but NAME might contain it). */
6034
6035 if (sym != NULL
6036 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6037 return stab;
6038 if (with_opaque != NULL
6039 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6040 stab_best = stab;
6041
6042 /* Keep looking through other CUs. */
6043 }
6044
6045 return stab_best;
6046 }
6047
6048 /* This dumps minimal information about .debug_names. It is called
6049 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6050 uses this to verify that .debug_names has been loaded. */
6051
6052 static void
6053 dw2_debug_names_dump (struct objfile *objfile)
6054 {
6055 struct dwarf2_per_objfile *dwarf2_per_objfile
6056 = get_dwarf2_per_objfile (objfile);
6057
6058 gdb_assert (dwarf2_per_objfile->using_index);
6059 printf_filtered (".debug_names:");
6060 if (dwarf2_per_objfile->debug_names_table)
6061 printf_filtered (" exists\n");
6062 else
6063 printf_filtered (" faked for \"readnow\"\n");
6064 printf_filtered ("\n");
6065 }
6066
6067 static void
6068 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6069 const char *func_name)
6070 {
6071 struct dwarf2_per_objfile *dwarf2_per_objfile
6072 = get_dwarf2_per_objfile (objfile);
6073
6074 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6075 if (dwarf2_per_objfile->debug_names_table)
6076 {
6077 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6078
6079 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6080
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6083 dw2_instantiate_symtab (per_cu, false);
6084 }
6085 }
6086
6087 static void
6088 dw2_debug_names_expand_symtabs_matching
6089 (struct objfile *objfile,
6090 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6091 const lookup_name_info &lookup_name,
6092 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6093 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6094 enum search_domain kind)
6095 {
6096 struct dwarf2_per_objfile *dwarf2_per_objfile
6097 = get_dwarf2_per_objfile (objfile);
6098
6099 /* debug_names_table is NULL if OBJF_READNOW. */
6100 if (!dwarf2_per_objfile->debug_names_table)
6101 return;
6102
6103 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6104
6105 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6106
6107 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6108 symbol_matcher,
6109 kind, [&] (offset_type namei)
6110 {
6111 /* The name was matched, now expand corresponding CUs that were
6112 marked. */
6113 dw2_debug_names_iterator iter (map, kind, namei);
6114
6115 struct dwarf2_per_cu_data *per_cu;
6116 while ((per_cu = iter.next ()) != NULL)
6117 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6118 expansion_notify);
6119 });
6120 }
6121
6122 const struct quick_symbol_functions dwarf2_debug_names_functions =
6123 {
6124 dw2_has_symbols,
6125 dw2_find_last_source_symtab,
6126 dw2_forget_cached_source_info,
6127 dw2_map_symtabs_matching_filename,
6128 dw2_debug_names_lookup_symbol,
6129 dw2_print_stats,
6130 dw2_debug_names_dump,
6131 dw2_debug_names_expand_symtabs_for_function,
6132 dw2_expand_all_symtabs,
6133 dw2_expand_symtabs_with_fullname,
6134 dw2_map_matching_symbols,
6135 dw2_debug_names_expand_symtabs_matching,
6136 dw2_find_pc_sect_compunit_symtab,
6137 NULL,
6138 dw2_map_symbol_filenames
6139 };
6140
6141 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6142 to either a dwarf2_per_objfile or dwz_file object. */
6143
6144 template <typename T>
6145 static gdb::array_view<const gdb_byte>
6146 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6147 {
6148 dwarf2_section_info *section = &section_owner->gdb_index;
6149
6150 if (dwarf2_section_empty_p (section))
6151 return {};
6152
6153 /* Older elfutils strip versions could keep the section in the main
6154 executable while splitting it for the separate debug info file. */
6155 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6156 return {};
6157
6158 dwarf2_read_section (obj, section);
6159
6160 /* dwarf2_section_info::size is a bfd_size_type, while
6161 gdb::array_view works with size_t. On 32-bit hosts, with
6162 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6163 is 32-bit. So we need an explicit narrowing conversion here.
6164 This is fine, because it's impossible to allocate or mmap an
6165 array/buffer larger than what size_t can represent. */
6166 return gdb::make_array_view (section->buffer, section->size);
6167 }
6168
6169 /* Lookup the index cache for the contents of the index associated to
6170 DWARF2_OBJ. */
6171
6172 static gdb::array_view<const gdb_byte>
6173 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6174 {
6175 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6176 if (build_id == nullptr)
6177 return {};
6178
6179 return global_index_cache.lookup_gdb_index (build_id,
6180 &dwarf2_obj->index_cache_res);
6181 }
6182
6183 /* Same as the above, but for DWZ. */
6184
6185 static gdb::array_view<const gdb_byte>
6186 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6187 {
6188 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6189 if (build_id == nullptr)
6190 return {};
6191
6192 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6193 }
6194
6195 /* See symfile.h. */
6196
6197 bool
6198 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6199 {
6200 struct dwarf2_per_objfile *dwarf2_per_objfile
6201 = get_dwarf2_per_objfile (objfile);
6202
6203 /* If we're about to read full symbols, don't bother with the
6204 indices. In this case we also don't care if some other debug
6205 format is making psymtabs, because they are all about to be
6206 expanded anyway. */
6207 if ((objfile->flags & OBJF_READNOW))
6208 {
6209 dwarf2_per_objfile->using_index = 1;
6210 create_all_comp_units (dwarf2_per_objfile);
6211 create_all_type_units (dwarf2_per_objfile);
6212 dwarf2_per_objfile->quick_file_names_table
6213 = create_quick_file_names_table
6214 (dwarf2_per_objfile->all_comp_units.size ());
6215
6216 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6217 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6218 {
6219 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6220
6221 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6222 struct dwarf2_per_cu_quick_data);
6223 }
6224
6225 /* Return 1 so that gdb sees the "quick" functions. However,
6226 these functions will be no-ops because we will have expanded
6227 all symtabs. */
6228 *index_kind = dw_index_kind::GDB_INDEX;
6229 return true;
6230 }
6231
6232 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6233 {
6234 *index_kind = dw_index_kind::DEBUG_NAMES;
6235 return true;
6236 }
6237
6238 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6239 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6240 get_gdb_index_contents_from_section<dwz_file>))
6241 {
6242 *index_kind = dw_index_kind::GDB_INDEX;
6243 return true;
6244 }
6245
6246 /* ... otherwise, try to find the index in the index cache. */
6247 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6248 get_gdb_index_contents_from_cache,
6249 get_gdb_index_contents_from_cache_dwz))
6250 {
6251 global_index_cache.hit ();
6252 *index_kind = dw_index_kind::GDB_INDEX;
6253 return true;
6254 }
6255
6256 global_index_cache.miss ();
6257 return false;
6258 }
6259
6260 \f
6261
6262 /* Build a partial symbol table. */
6263
6264 void
6265 dwarf2_build_psymtabs (struct objfile *objfile)
6266 {
6267 struct dwarf2_per_objfile *dwarf2_per_objfile
6268 = get_dwarf2_per_objfile (objfile);
6269
6270 init_psymbol_list (objfile, 1024);
6271
6272 try
6273 {
6274 /* This isn't really ideal: all the data we allocate on the
6275 objfile's obstack is still uselessly kept around. However,
6276 freeing it seems unsafe. */
6277 psymtab_discarder psymtabs (objfile);
6278 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6279 psymtabs.keep ();
6280
6281 /* (maybe) store an index in the cache. */
6282 global_index_cache.store (dwarf2_per_objfile);
6283 }
6284 catch (const gdb_exception_error &except)
6285 {
6286 exception_print (gdb_stderr, except);
6287 }
6288 }
6289
6290 /* Return the total length of the CU described by HEADER. */
6291
6292 static unsigned int
6293 get_cu_length (const struct comp_unit_head *header)
6294 {
6295 return header->initial_length_size + header->length;
6296 }
6297
6298 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6299
6300 static inline bool
6301 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6302 {
6303 sect_offset bottom = cu_header->sect_off;
6304 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6305
6306 return sect_off >= bottom && sect_off < top;
6307 }
6308
6309 /* Find the base address of the compilation unit for range lists and
6310 location lists. It will normally be specified by DW_AT_low_pc.
6311 In DWARF-3 draft 4, the base address could be overridden by
6312 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6313 compilation units with discontinuous ranges. */
6314
6315 static void
6316 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6317 {
6318 struct attribute *attr;
6319
6320 cu->base_known = 0;
6321 cu->base_address = 0;
6322
6323 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6324 if (attr)
6325 {
6326 cu->base_address = attr_value_as_address (attr);
6327 cu->base_known = 1;
6328 }
6329 else
6330 {
6331 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6332 if (attr)
6333 {
6334 cu->base_address = attr_value_as_address (attr);
6335 cu->base_known = 1;
6336 }
6337 }
6338 }
6339
6340 /* Read in the comp unit header information from the debug_info at info_ptr.
6341 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6342 NOTE: This leaves members offset, first_die_offset to be filled in
6343 by the caller. */
6344
6345 static const gdb_byte *
6346 read_comp_unit_head (struct comp_unit_head *cu_header,
6347 const gdb_byte *info_ptr,
6348 struct dwarf2_section_info *section,
6349 rcuh_kind section_kind)
6350 {
6351 int signed_addr;
6352 unsigned int bytes_read;
6353 const char *filename = get_section_file_name (section);
6354 bfd *abfd = get_section_bfd_owner (section);
6355
6356 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6357 cu_header->initial_length_size = bytes_read;
6358 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6359 info_ptr += bytes_read;
6360 cu_header->version = read_2_bytes (abfd, info_ptr);
6361 if (cu_header->version < 2 || cu_header->version > 5)
6362 error (_("Dwarf Error: wrong version in compilation unit header "
6363 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6364 cu_header->version, filename);
6365 info_ptr += 2;
6366 if (cu_header->version < 5)
6367 switch (section_kind)
6368 {
6369 case rcuh_kind::COMPILE:
6370 cu_header->unit_type = DW_UT_compile;
6371 break;
6372 case rcuh_kind::TYPE:
6373 cu_header->unit_type = DW_UT_type;
6374 break;
6375 default:
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: invalid section_kind"));
6378 }
6379 else
6380 {
6381 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6382 (read_1_byte (abfd, info_ptr));
6383 info_ptr += 1;
6384 switch (cu_header->unit_type)
6385 {
6386 case DW_UT_compile:
6387 if (section_kind != rcuh_kind::COMPILE)
6388 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6389 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6390 filename);
6391 break;
6392 case DW_UT_type:
6393 section_kind = rcuh_kind::TYPE;
6394 break;
6395 default:
6396 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6397 "(is %d, should be %d or %d) [in module %s]"),
6398 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6399 }
6400
6401 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6402 info_ptr += 1;
6403 }
6404 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6405 cu_header,
6406 &bytes_read);
6407 info_ptr += bytes_read;
6408 if (cu_header->version < 5)
6409 {
6410 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6411 info_ptr += 1;
6412 }
6413 signed_addr = bfd_get_sign_extend_vma (abfd);
6414 if (signed_addr < 0)
6415 internal_error (__FILE__, __LINE__,
6416 _("read_comp_unit_head: dwarf from non elf file"));
6417 cu_header->signed_addr_p = signed_addr;
6418
6419 if (section_kind == rcuh_kind::TYPE)
6420 {
6421 LONGEST type_offset;
6422
6423 cu_header->signature = read_8_bytes (abfd, info_ptr);
6424 info_ptr += 8;
6425
6426 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6427 info_ptr += bytes_read;
6428 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6429 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6430 error (_("Dwarf Error: Too big type_offset in compilation unit "
6431 "header (is %s) [in module %s]"), plongest (type_offset),
6432 filename);
6433 }
6434
6435 return info_ptr;
6436 }
6437
6438 /* Helper function that returns the proper abbrev section for
6439 THIS_CU. */
6440
6441 static struct dwarf2_section_info *
6442 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6443 {
6444 struct dwarf2_section_info *abbrev;
6445 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6446
6447 if (this_cu->is_dwz)
6448 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6449 else
6450 abbrev = &dwarf2_per_objfile->abbrev;
6451
6452 return abbrev;
6453 }
6454
6455 /* Subroutine of read_and_check_comp_unit_head and
6456 read_and_check_type_unit_head to simplify them.
6457 Perform various error checking on the header. */
6458
6459 static void
6460 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6461 struct comp_unit_head *header,
6462 struct dwarf2_section_info *section,
6463 struct dwarf2_section_info *abbrev_section)
6464 {
6465 const char *filename = get_section_file_name (section);
6466
6467 if (to_underlying (header->abbrev_sect_off)
6468 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6469 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6470 "(offset %s + 6) [in module %s]"),
6471 sect_offset_str (header->abbrev_sect_off),
6472 sect_offset_str (header->sect_off),
6473 filename);
6474
6475 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6476 avoid potential 32-bit overflow. */
6477 if (((ULONGEST) header->sect_off + get_cu_length (header))
6478 > section->size)
6479 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6480 "(offset %s + 0) [in module %s]"),
6481 header->length, sect_offset_str (header->sect_off),
6482 filename);
6483 }
6484
6485 /* Read in a CU/TU header and perform some basic error checking.
6486 The contents of the header are stored in HEADER.
6487 The result is a pointer to the start of the first DIE. */
6488
6489 static const gdb_byte *
6490 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6491 struct comp_unit_head *header,
6492 struct dwarf2_section_info *section,
6493 struct dwarf2_section_info *abbrev_section,
6494 const gdb_byte *info_ptr,
6495 rcuh_kind section_kind)
6496 {
6497 const gdb_byte *beg_of_comp_unit = info_ptr;
6498
6499 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6500
6501 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6502
6503 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6504
6505 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6506 abbrev_section);
6507
6508 return info_ptr;
6509 }
6510
6511 /* Fetch the abbreviation table offset from a comp or type unit header. */
6512
6513 static sect_offset
6514 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6515 struct dwarf2_section_info *section,
6516 sect_offset sect_off)
6517 {
6518 bfd *abfd = get_section_bfd_owner (section);
6519 const gdb_byte *info_ptr;
6520 unsigned int initial_length_size, offset_size;
6521 uint16_t version;
6522
6523 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6524 info_ptr = section->buffer + to_underlying (sect_off);
6525 read_initial_length (abfd, info_ptr, &initial_length_size);
6526 offset_size = initial_length_size == 4 ? 4 : 8;
6527 info_ptr += initial_length_size;
6528
6529 version = read_2_bytes (abfd, info_ptr);
6530 info_ptr += 2;
6531 if (version >= 5)
6532 {
6533 /* Skip unit type and address size. */
6534 info_ptr += 2;
6535 }
6536
6537 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6538 }
6539
6540 /* Allocate a new partial symtab for file named NAME and mark this new
6541 partial symtab as being an include of PST. */
6542
6543 static void
6544 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6545 struct objfile *objfile)
6546 {
6547 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6548
6549 if (!IS_ABSOLUTE_PATH (subpst->filename))
6550 {
6551 /* It shares objfile->objfile_obstack. */
6552 subpst->dirname = pst->dirname;
6553 }
6554
6555 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6556 subpst->dependencies[0] = pst;
6557 subpst->number_of_dependencies = 1;
6558
6559 subpst->read_symtab = pst->read_symtab;
6560
6561 /* No private part is necessary for include psymtabs. This property
6562 can be used to differentiate between such include psymtabs and
6563 the regular ones. */
6564 subpst->read_symtab_private = NULL;
6565 }
6566
6567 /* Read the Line Number Program data and extract the list of files
6568 included by the source file represented by PST. Build an include
6569 partial symtab for each of these included files. */
6570
6571 static void
6572 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6573 struct die_info *die,
6574 struct partial_symtab *pst)
6575 {
6576 line_header_up lh;
6577 struct attribute *attr;
6578
6579 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6580 if (attr)
6581 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6582 if (lh == NULL)
6583 return; /* No linetable, so no includes. */
6584
6585 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6586 that we pass in the raw text_low here; that is ok because we're
6587 only decoding the line table to make include partial symtabs, and
6588 so the addresses aren't really used. */
6589 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6590 pst->raw_text_low (), 1);
6591 }
6592
6593 static hashval_t
6594 hash_signatured_type (const void *item)
6595 {
6596 const struct signatured_type *sig_type
6597 = (const struct signatured_type *) item;
6598
6599 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6600 return sig_type->signature;
6601 }
6602
6603 static int
6604 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6605 {
6606 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6607 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6608
6609 return lhs->signature == rhs->signature;
6610 }
6611
6612 /* Allocate a hash table for signatured types. */
6613
6614 static htab_t
6615 allocate_signatured_type_table (struct objfile *objfile)
6616 {
6617 return htab_create_alloc_ex (41,
6618 hash_signatured_type,
6619 eq_signatured_type,
6620 NULL,
6621 &objfile->objfile_obstack,
6622 hashtab_obstack_allocate,
6623 dummy_obstack_deallocate);
6624 }
6625
6626 /* A helper function to add a signatured type CU to a table. */
6627
6628 static int
6629 add_signatured_type_cu_to_table (void **slot, void *datum)
6630 {
6631 struct signatured_type *sigt = (struct signatured_type *) *slot;
6632 std::vector<signatured_type *> *all_type_units
6633 = (std::vector<signatured_type *> *) datum;
6634
6635 all_type_units->push_back (sigt);
6636
6637 return 1;
6638 }
6639
6640 /* A helper for create_debug_types_hash_table. Read types from SECTION
6641 and fill them into TYPES_HTAB. It will process only type units,
6642 therefore DW_UT_type. */
6643
6644 static void
6645 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6646 struct dwo_file *dwo_file,
6647 dwarf2_section_info *section, htab_t &types_htab,
6648 rcuh_kind section_kind)
6649 {
6650 struct objfile *objfile = dwarf2_per_objfile->objfile;
6651 struct dwarf2_section_info *abbrev_section;
6652 bfd *abfd;
6653 const gdb_byte *info_ptr, *end_ptr;
6654
6655 abbrev_section = (dwo_file != NULL
6656 ? &dwo_file->sections.abbrev
6657 : &dwarf2_per_objfile->abbrev);
6658
6659 if (dwarf_read_debug)
6660 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6661 get_section_name (section),
6662 get_section_file_name (abbrev_section));
6663
6664 dwarf2_read_section (objfile, section);
6665 info_ptr = section->buffer;
6666
6667 if (info_ptr == NULL)
6668 return;
6669
6670 /* We can't set abfd until now because the section may be empty or
6671 not present, in which case the bfd is unknown. */
6672 abfd = get_section_bfd_owner (section);
6673
6674 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6675 because we don't need to read any dies: the signature is in the
6676 header. */
6677
6678 end_ptr = info_ptr + section->size;
6679 while (info_ptr < end_ptr)
6680 {
6681 struct signatured_type *sig_type;
6682 struct dwo_unit *dwo_tu;
6683 void **slot;
6684 const gdb_byte *ptr = info_ptr;
6685 struct comp_unit_head header;
6686 unsigned int length;
6687
6688 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6689
6690 /* Initialize it due to a false compiler warning. */
6691 header.signature = -1;
6692 header.type_cu_offset_in_tu = (cu_offset) -1;
6693
6694 /* We need to read the type's signature in order to build the hash
6695 table, but we don't need anything else just yet. */
6696
6697 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6698 abbrev_section, ptr, section_kind);
6699
6700 length = get_cu_length (&header);
6701
6702 /* Skip dummy type units. */
6703 if (ptr >= info_ptr + length
6704 || peek_abbrev_code (abfd, ptr) == 0
6705 || header.unit_type != DW_UT_type)
6706 {
6707 info_ptr += length;
6708 continue;
6709 }
6710
6711 if (types_htab == NULL)
6712 {
6713 if (dwo_file)
6714 types_htab = allocate_dwo_unit_table (objfile);
6715 else
6716 types_htab = allocate_signatured_type_table (objfile);
6717 }
6718
6719 if (dwo_file)
6720 {
6721 sig_type = NULL;
6722 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6723 struct dwo_unit);
6724 dwo_tu->dwo_file = dwo_file;
6725 dwo_tu->signature = header.signature;
6726 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6727 dwo_tu->section = section;
6728 dwo_tu->sect_off = sect_off;
6729 dwo_tu->length = length;
6730 }
6731 else
6732 {
6733 /* N.B.: type_offset is not usable if this type uses a DWO file.
6734 The real type_offset is in the DWO file. */
6735 dwo_tu = NULL;
6736 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6737 struct signatured_type);
6738 sig_type->signature = header.signature;
6739 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6740 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6741 sig_type->per_cu.is_debug_types = 1;
6742 sig_type->per_cu.section = section;
6743 sig_type->per_cu.sect_off = sect_off;
6744 sig_type->per_cu.length = length;
6745 }
6746
6747 slot = htab_find_slot (types_htab,
6748 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6749 INSERT);
6750 gdb_assert (slot != NULL);
6751 if (*slot != NULL)
6752 {
6753 sect_offset dup_sect_off;
6754
6755 if (dwo_file)
6756 {
6757 const struct dwo_unit *dup_tu
6758 = (const struct dwo_unit *) *slot;
6759
6760 dup_sect_off = dup_tu->sect_off;
6761 }
6762 else
6763 {
6764 const struct signatured_type *dup_tu
6765 = (const struct signatured_type *) *slot;
6766
6767 dup_sect_off = dup_tu->per_cu.sect_off;
6768 }
6769
6770 complaint (_("debug type entry at offset %s is duplicate to"
6771 " the entry at offset %s, signature %s"),
6772 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6773 hex_string (header.signature));
6774 }
6775 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6776
6777 if (dwarf_read_debug > 1)
6778 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6779 sect_offset_str (sect_off),
6780 hex_string (header.signature));
6781
6782 info_ptr += length;
6783 }
6784 }
6785
6786 /* Create the hash table of all entries in the .debug_types
6787 (or .debug_types.dwo) section(s).
6788 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6789 otherwise it is NULL.
6790
6791 The result is a pointer to the hash table or NULL if there are no types.
6792
6793 Note: This function processes DWO files only, not DWP files. */
6794
6795 static void
6796 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6797 struct dwo_file *dwo_file,
6798 gdb::array_view<dwarf2_section_info> type_sections,
6799 htab_t &types_htab)
6800 {
6801 for (dwarf2_section_info &section : type_sections)
6802 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6803 types_htab, rcuh_kind::TYPE);
6804 }
6805
6806 /* Create the hash table of all entries in the .debug_types section,
6807 and initialize all_type_units.
6808 The result is zero if there is an error (e.g. missing .debug_types section),
6809 otherwise non-zero. */
6810
6811 static int
6812 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6813 {
6814 htab_t types_htab = NULL;
6815
6816 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6817 &dwarf2_per_objfile->info, types_htab,
6818 rcuh_kind::COMPILE);
6819 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6820 dwarf2_per_objfile->types, types_htab);
6821 if (types_htab == NULL)
6822 {
6823 dwarf2_per_objfile->signatured_types = NULL;
6824 return 0;
6825 }
6826
6827 dwarf2_per_objfile->signatured_types = types_htab;
6828
6829 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6830 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6831
6832 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6833 &dwarf2_per_objfile->all_type_units);
6834
6835 return 1;
6836 }
6837
6838 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6839 If SLOT is non-NULL, it is the entry to use in the hash table.
6840 Otherwise we find one. */
6841
6842 static struct signatured_type *
6843 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6844 void **slot)
6845 {
6846 struct objfile *objfile = dwarf2_per_objfile->objfile;
6847
6848 if (dwarf2_per_objfile->all_type_units.size ()
6849 == dwarf2_per_objfile->all_type_units.capacity ())
6850 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6851
6852 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6853 struct signatured_type);
6854
6855 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6856 sig_type->signature = sig;
6857 sig_type->per_cu.is_debug_types = 1;
6858 if (dwarf2_per_objfile->using_index)
6859 {
6860 sig_type->per_cu.v.quick =
6861 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6862 struct dwarf2_per_cu_quick_data);
6863 }
6864
6865 if (slot == NULL)
6866 {
6867 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6868 sig_type, INSERT);
6869 }
6870 gdb_assert (*slot == NULL);
6871 *slot = sig_type;
6872 /* The rest of sig_type must be filled in by the caller. */
6873 return sig_type;
6874 }
6875
6876 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6877 Fill in SIG_ENTRY with DWO_ENTRY. */
6878
6879 static void
6880 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6881 struct signatured_type *sig_entry,
6882 struct dwo_unit *dwo_entry)
6883 {
6884 /* Make sure we're not clobbering something we don't expect to. */
6885 gdb_assert (! sig_entry->per_cu.queued);
6886 gdb_assert (sig_entry->per_cu.cu == NULL);
6887 if (dwarf2_per_objfile->using_index)
6888 {
6889 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6890 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6891 }
6892 else
6893 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6894 gdb_assert (sig_entry->signature == dwo_entry->signature);
6895 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6896 gdb_assert (sig_entry->type_unit_group == NULL);
6897 gdb_assert (sig_entry->dwo_unit == NULL);
6898
6899 sig_entry->per_cu.section = dwo_entry->section;
6900 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6901 sig_entry->per_cu.length = dwo_entry->length;
6902 sig_entry->per_cu.reading_dwo_directly = 1;
6903 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6904 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6905 sig_entry->dwo_unit = dwo_entry;
6906 }
6907
6908 /* Subroutine of lookup_signatured_type.
6909 If we haven't read the TU yet, create the signatured_type data structure
6910 for a TU to be read in directly from a DWO file, bypassing the stub.
6911 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6912 using .gdb_index, then when reading a CU we want to stay in the DWO file
6913 containing that CU. Otherwise we could end up reading several other DWO
6914 files (due to comdat folding) to process the transitive closure of all the
6915 mentioned TUs, and that can be slow. The current DWO file will have every
6916 type signature that it needs.
6917 We only do this for .gdb_index because in the psymtab case we already have
6918 to read all the DWOs to build the type unit groups. */
6919
6920 static struct signatured_type *
6921 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6922 {
6923 struct dwarf2_per_objfile *dwarf2_per_objfile
6924 = cu->per_cu->dwarf2_per_objfile;
6925 struct objfile *objfile = dwarf2_per_objfile->objfile;
6926 struct dwo_file *dwo_file;
6927 struct dwo_unit find_dwo_entry, *dwo_entry;
6928 struct signatured_type find_sig_entry, *sig_entry;
6929 void **slot;
6930
6931 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6932
6933 /* If TU skeletons have been removed then we may not have read in any
6934 TUs yet. */
6935 if (dwarf2_per_objfile->signatured_types == NULL)
6936 {
6937 dwarf2_per_objfile->signatured_types
6938 = allocate_signatured_type_table (objfile);
6939 }
6940
6941 /* We only ever need to read in one copy of a signatured type.
6942 Use the global signatured_types array to do our own comdat-folding
6943 of types. If this is the first time we're reading this TU, and
6944 the TU has an entry in .gdb_index, replace the recorded data from
6945 .gdb_index with this TU. */
6946
6947 find_sig_entry.signature = sig;
6948 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6949 &find_sig_entry, INSERT);
6950 sig_entry = (struct signatured_type *) *slot;
6951
6952 /* We can get here with the TU already read, *or* in the process of being
6953 read. Don't reassign the global entry to point to this DWO if that's
6954 the case. Also note that if the TU is already being read, it may not
6955 have come from a DWO, the program may be a mix of Fission-compiled
6956 code and non-Fission-compiled code. */
6957
6958 /* Have we already tried to read this TU?
6959 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6960 needn't exist in the global table yet). */
6961 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6962 return sig_entry;
6963
6964 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6965 dwo_unit of the TU itself. */
6966 dwo_file = cu->dwo_unit->dwo_file;
6967
6968 /* Ok, this is the first time we're reading this TU. */
6969 if (dwo_file->tus == NULL)
6970 return NULL;
6971 find_dwo_entry.signature = sig;
6972 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6973 if (dwo_entry == NULL)
6974 return NULL;
6975
6976 /* If the global table doesn't have an entry for this TU, add one. */
6977 if (sig_entry == NULL)
6978 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6979
6980 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6981 sig_entry->per_cu.tu_read = 1;
6982 return sig_entry;
6983 }
6984
6985 /* Subroutine of lookup_signatured_type.
6986 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6987 then try the DWP file. If the TU stub (skeleton) has been removed then
6988 it won't be in .gdb_index. */
6989
6990 static struct signatured_type *
6991 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6992 {
6993 struct dwarf2_per_objfile *dwarf2_per_objfile
6994 = cu->per_cu->dwarf2_per_objfile;
6995 struct objfile *objfile = dwarf2_per_objfile->objfile;
6996 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6997 struct dwo_unit *dwo_entry;
6998 struct signatured_type find_sig_entry, *sig_entry;
6999 void **slot;
7000
7001 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7002 gdb_assert (dwp_file != NULL);
7003
7004 /* If TU skeletons have been removed then we may not have read in any
7005 TUs yet. */
7006 if (dwarf2_per_objfile->signatured_types == NULL)
7007 {
7008 dwarf2_per_objfile->signatured_types
7009 = allocate_signatured_type_table (objfile);
7010 }
7011
7012 find_sig_entry.signature = sig;
7013 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7014 &find_sig_entry, INSERT);
7015 sig_entry = (struct signatured_type *) *slot;
7016
7017 /* Have we already tried to read this TU?
7018 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7019 needn't exist in the global table yet). */
7020 if (sig_entry != NULL)
7021 return sig_entry;
7022
7023 if (dwp_file->tus == NULL)
7024 return NULL;
7025 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7026 sig, 1 /* is_debug_types */);
7027 if (dwo_entry == NULL)
7028 return NULL;
7029
7030 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7031 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7032
7033 return sig_entry;
7034 }
7035
7036 /* Lookup a signature based type for DW_FORM_ref_sig8.
7037 Returns NULL if signature SIG is not present in the table.
7038 It is up to the caller to complain about this. */
7039
7040 static struct signatured_type *
7041 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7042 {
7043 struct dwarf2_per_objfile *dwarf2_per_objfile
7044 = cu->per_cu->dwarf2_per_objfile;
7045
7046 if (cu->dwo_unit
7047 && dwarf2_per_objfile->using_index)
7048 {
7049 /* We're in a DWO/DWP file, and we're using .gdb_index.
7050 These cases require special processing. */
7051 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7052 return lookup_dwo_signatured_type (cu, sig);
7053 else
7054 return lookup_dwp_signatured_type (cu, sig);
7055 }
7056 else
7057 {
7058 struct signatured_type find_entry, *entry;
7059
7060 if (dwarf2_per_objfile->signatured_types == NULL)
7061 return NULL;
7062 find_entry.signature = sig;
7063 entry = ((struct signatured_type *)
7064 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7065 return entry;
7066 }
7067 }
7068 \f
7069 /* Low level DIE reading support. */
7070
7071 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7072
7073 static void
7074 init_cu_die_reader (struct die_reader_specs *reader,
7075 struct dwarf2_cu *cu,
7076 struct dwarf2_section_info *section,
7077 struct dwo_file *dwo_file,
7078 struct abbrev_table *abbrev_table)
7079 {
7080 gdb_assert (section->readin && section->buffer != NULL);
7081 reader->abfd = get_section_bfd_owner (section);
7082 reader->cu = cu;
7083 reader->dwo_file = dwo_file;
7084 reader->die_section = section;
7085 reader->buffer = section->buffer;
7086 reader->buffer_end = section->buffer + section->size;
7087 reader->comp_dir = NULL;
7088 reader->abbrev_table = abbrev_table;
7089 }
7090
7091 /* Subroutine of init_cutu_and_read_dies to simplify it.
7092 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7093 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7094 already.
7095
7096 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7097 from it to the DIE in the DWO. If NULL we are skipping the stub.
7098 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7099 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7100 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7101 STUB_COMP_DIR may be non-NULL.
7102 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7103 are filled in with the info of the DIE from the DWO file.
7104 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7105 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7106 kept around for at least as long as *RESULT_READER.
7107
7108 The result is non-zero if a valid (non-dummy) DIE was found. */
7109
7110 static int
7111 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7112 struct dwo_unit *dwo_unit,
7113 struct die_info *stub_comp_unit_die,
7114 const char *stub_comp_dir,
7115 struct die_reader_specs *result_reader,
7116 const gdb_byte **result_info_ptr,
7117 struct die_info **result_comp_unit_die,
7118 int *result_has_children,
7119 abbrev_table_up *result_dwo_abbrev_table)
7120 {
7121 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7122 struct objfile *objfile = dwarf2_per_objfile->objfile;
7123 struct dwarf2_cu *cu = this_cu->cu;
7124 bfd *abfd;
7125 const gdb_byte *begin_info_ptr, *info_ptr;
7126 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7127 int i,num_extra_attrs;
7128 struct dwarf2_section_info *dwo_abbrev_section;
7129 struct attribute *attr;
7130 struct die_info *comp_unit_die;
7131
7132 /* At most one of these may be provided. */
7133 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7134
7135 /* These attributes aren't processed until later:
7136 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7137 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7138 referenced later. However, these attributes are found in the stub
7139 which we won't have later. In order to not impose this complication
7140 on the rest of the code, we read them here and copy them to the
7141 DWO CU/TU die. */
7142
7143 stmt_list = NULL;
7144 low_pc = NULL;
7145 high_pc = NULL;
7146 ranges = NULL;
7147 comp_dir = NULL;
7148
7149 if (stub_comp_unit_die != NULL)
7150 {
7151 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7152 DWO file. */
7153 if (! this_cu->is_debug_types)
7154 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7155 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7156 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7157 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7158 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7159
7160 /* There should be a DW_AT_addr_base attribute here (if needed).
7161 We need the value before we can process DW_FORM_GNU_addr_index
7162 or DW_FORM_addrx. */
7163 cu->addr_base = 0;
7164 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7165 if (attr)
7166 cu->addr_base = DW_UNSND (attr);
7167
7168 /* There should be a DW_AT_ranges_base attribute here (if needed).
7169 We need the value before we can process DW_AT_ranges. */
7170 cu->ranges_base = 0;
7171 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7172 if (attr)
7173 cu->ranges_base = DW_UNSND (attr);
7174 }
7175 else if (stub_comp_dir != NULL)
7176 {
7177 /* Reconstruct the comp_dir attribute to simplify the code below. */
7178 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7179 comp_dir->name = DW_AT_comp_dir;
7180 comp_dir->form = DW_FORM_string;
7181 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7182 DW_STRING (comp_dir) = stub_comp_dir;
7183 }
7184
7185 /* Set up for reading the DWO CU/TU. */
7186 cu->dwo_unit = dwo_unit;
7187 dwarf2_section_info *section = dwo_unit->section;
7188 dwarf2_read_section (objfile, section);
7189 abfd = get_section_bfd_owner (section);
7190 begin_info_ptr = info_ptr = (section->buffer
7191 + to_underlying (dwo_unit->sect_off));
7192 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7193
7194 if (this_cu->is_debug_types)
7195 {
7196 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7197
7198 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7199 &cu->header, section,
7200 dwo_abbrev_section,
7201 info_ptr, rcuh_kind::TYPE);
7202 /* This is not an assert because it can be caused by bad debug info. */
7203 if (sig_type->signature != cu->header.signature)
7204 {
7205 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7206 " TU at offset %s [in module %s]"),
7207 hex_string (sig_type->signature),
7208 hex_string (cu->header.signature),
7209 sect_offset_str (dwo_unit->sect_off),
7210 bfd_get_filename (abfd));
7211 }
7212 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7213 /* For DWOs coming from DWP files, we don't know the CU length
7214 nor the type's offset in the TU until now. */
7215 dwo_unit->length = get_cu_length (&cu->header);
7216 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7217
7218 /* Establish the type offset that can be used to lookup the type.
7219 For DWO files, we don't know it until now. */
7220 sig_type->type_offset_in_section
7221 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7222 }
7223 else
7224 {
7225 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7226 &cu->header, section,
7227 dwo_abbrev_section,
7228 info_ptr, rcuh_kind::COMPILE);
7229 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7230 /* For DWOs coming from DWP files, we don't know the CU length
7231 until now. */
7232 dwo_unit->length = get_cu_length (&cu->header);
7233 }
7234
7235 *result_dwo_abbrev_table
7236 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7237 cu->header.abbrev_sect_off);
7238 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7239 result_dwo_abbrev_table->get ());
7240
7241 /* Read in the die, but leave space to copy over the attributes
7242 from the stub. This has the benefit of simplifying the rest of
7243 the code - all the work to maintain the illusion of a single
7244 DW_TAG_{compile,type}_unit DIE is done here. */
7245 num_extra_attrs = ((stmt_list != NULL)
7246 + (low_pc != NULL)
7247 + (high_pc != NULL)
7248 + (ranges != NULL)
7249 + (comp_dir != NULL));
7250 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7251 result_has_children, num_extra_attrs);
7252
7253 /* Copy over the attributes from the stub to the DIE we just read in. */
7254 comp_unit_die = *result_comp_unit_die;
7255 i = comp_unit_die->num_attrs;
7256 if (stmt_list != NULL)
7257 comp_unit_die->attrs[i++] = *stmt_list;
7258 if (low_pc != NULL)
7259 comp_unit_die->attrs[i++] = *low_pc;
7260 if (high_pc != NULL)
7261 comp_unit_die->attrs[i++] = *high_pc;
7262 if (ranges != NULL)
7263 comp_unit_die->attrs[i++] = *ranges;
7264 if (comp_dir != NULL)
7265 comp_unit_die->attrs[i++] = *comp_dir;
7266 comp_unit_die->num_attrs += num_extra_attrs;
7267
7268 if (dwarf_die_debug)
7269 {
7270 fprintf_unfiltered (gdb_stdlog,
7271 "Read die from %s@0x%x of %s:\n",
7272 get_section_name (section),
7273 (unsigned) (begin_info_ptr - section->buffer),
7274 bfd_get_filename (abfd));
7275 dump_die (comp_unit_die, dwarf_die_debug);
7276 }
7277
7278 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7279 TUs by skipping the stub and going directly to the entry in the DWO file.
7280 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7281 to get it via circuitous means. Blech. */
7282 if (comp_dir != NULL)
7283 result_reader->comp_dir = DW_STRING (comp_dir);
7284
7285 /* Skip dummy compilation units. */
7286 if (info_ptr >= begin_info_ptr + dwo_unit->length
7287 || peek_abbrev_code (abfd, info_ptr) == 0)
7288 return 0;
7289
7290 *result_info_ptr = info_ptr;
7291 return 1;
7292 }
7293
7294 /* Subroutine of init_cutu_and_read_dies to simplify it.
7295 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7296 Returns NULL if the specified DWO unit cannot be found. */
7297
7298 static struct dwo_unit *
7299 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7300 struct die_info *comp_unit_die)
7301 {
7302 struct dwarf2_cu *cu = this_cu->cu;
7303 ULONGEST signature;
7304 struct dwo_unit *dwo_unit;
7305 const char *comp_dir, *dwo_name;
7306
7307 gdb_assert (cu != NULL);
7308
7309 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7310 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7311 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7312
7313 if (this_cu->is_debug_types)
7314 {
7315 struct signatured_type *sig_type;
7316
7317 /* Since this_cu is the first member of struct signatured_type,
7318 we can go from a pointer to one to a pointer to the other. */
7319 sig_type = (struct signatured_type *) this_cu;
7320 signature = sig_type->signature;
7321 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7322 }
7323 else
7324 {
7325 struct attribute *attr;
7326
7327 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7328 if (! attr)
7329 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7330 " [in module %s]"),
7331 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7332 signature = DW_UNSND (attr);
7333 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7334 signature);
7335 }
7336
7337 return dwo_unit;
7338 }
7339
7340 /* Subroutine of init_cutu_and_read_dies to simplify it.
7341 See it for a description of the parameters.
7342 Read a TU directly from a DWO file, bypassing the stub. */
7343
7344 static void
7345 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7346 int use_existing_cu, int keep,
7347 die_reader_func_ftype *die_reader_func,
7348 void *data)
7349 {
7350 std::unique_ptr<dwarf2_cu> new_cu;
7351 struct signatured_type *sig_type;
7352 struct die_reader_specs reader;
7353 const gdb_byte *info_ptr;
7354 struct die_info *comp_unit_die;
7355 int has_children;
7356 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7357
7358 /* Verify we can do the following downcast, and that we have the
7359 data we need. */
7360 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7361 sig_type = (struct signatured_type *) this_cu;
7362 gdb_assert (sig_type->dwo_unit != NULL);
7363
7364 if (use_existing_cu && this_cu->cu != NULL)
7365 {
7366 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7367 /* There's no need to do the rereading_dwo_cu handling that
7368 init_cutu_and_read_dies does since we don't read the stub. */
7369 }
7370 else
7371 {
7372 /* If !use_existing_cu, this_cu->cu must be NULL. */
7373 gdb_assert (this_cu->cu == NULL);
7374 new_cu.reset (new dwarf2_cu (this_cu));
7375 }
7376
7377 /* A future optimization, if needed, would be to use an existing
7378 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7379 could share abbrev tables. */
7380
7381 /* The abbreviation table used by READER, this must live at least as long as
7382 READER. */
7383 abbrev_table_up dwo_abbrev_table;
7384
7385 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7386 NULL /* stub_comp_unit_die */,
7387 sig_type->dwo_unit->dwo_file->comp_dir,
7388 &reader, &info_ptr,
7389 &comp_unit_die, &has_children,
7390 &dwo_abbrev_table) == 0)
7391 {
7392 /* Dummy die. */
7393 return;
7394 }
7395
7396 /* All the "real" work is done here. */
7397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7398
7399 /* This duplicates the code in init_cutu_and_read_dies,
7400 but the alternative is making the latter more complex.
7401 This function is only for the special case of using DWO files directly:
7402 no point in overly complicating the general case just to handle this. */
7403 if (new_cu != NULL && keep)
7404 {
7405 /* Link this CU into read_in_chain. */
7406 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7407 dwarf2_per_objfile->read_in_chain = this_cu;
7408 /* The chain owns it now. */
7409 new_cu.release ();
7410 }
7411 }
7412
7413 /* Initialize a CU (or TU) and read its DIEs.
7414 If the CU defers to a DWO file, read the DWO file as well.
7415
7416 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7417 Otherwise the table specified in the comp unit header is read in and used.
7418 This is an optimization for when we already have the abbrev table.
7419
7420 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7421 Otherwise, a new CU is allocated with xmalloc.
7422
7423 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7424 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7425
7426 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7427 linker) then DIE_READER_FUNC will not get called. */
7428
7429 static void
7430 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7431 struct abbrev_table *abbrev_table,
7432 int use_existing_cu, int keep,
7433 bool skip_partial,
7434 die_reader_func_ftype *die_reader_func,
7435 void *data)
7436 {
7437 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7438 struct objfile *objfile = dwarf2_per_objfile->objfile;
7439 struct dwarf2_section_info *section = this_cu->section;
7440 bfd *abfd = get_section_bfd_owner (section);
7441 struct dwarf2_cu *cu;
7442 const gdb_byte *begin_info_ptr, *info_ptr;
7443 struct die_reader_specs reader;
7444 struct die_info *comp_unit_die;
7445 int has_children;
7446 struct attribute *attr;
7447 struct signatured_type *sig_type = NULL;
7448 struct dwarf2_section_info *abbrev_section;
7449 /* Non-zero if CU currently points to a DWO file and we need to
7450 reread it. When this happens we need to reread the skeleton die
7451 before we can reread the DWO file (this only applies to CUs, not TUs). */
7452 int rereading_dwo_cu = 0;
7453
7454 if (dwarf_die_debug)
7455 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7456 this_cu->is_debug_types ? "type" : "comp",
7457 sect_offset_str (this_cu->sect_off));
7458
7459 if (use_existing_cu)
7460 gdb_assert (keep);
7461
7462 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7463 file (instead of going through the stub), short-circuit all of this. */
7464 if (this_cu->reading_dwo_directly)
7465 {
7466 /* Narrow down the scope of possibilities to have to understand. */
7467 gdb_assert (this_cu->is_debug_types);
7468 gdb_assert (abbrev_table == NULL);
7469 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7470 die_reader_func, data);
7471 return;
7472 }
7473
7474 /* This is cheap if the section is already read in. */
7475 dwarf2_read_section (objfile, section);
7476
7477 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7478
7479 abbrev_section = get_abbrev_section_for_cu (this_cu);
7480
7481 std::unique_ptr<dwarf2_cu> new_cu;
7482 if (use_existing_cu && this_cu->cu != NULL)
7483 {
7484 cu = this_cu->cu;
7485 /* If this CU is from a DWO file we need to start over, we need to
7486 refetch the attributes from the skeleton CU.
7487 This could be optimized by retrieving those attributes from when we
7488 were here the first time: the previous comp_unit_die was stored in
7489 comp_unit_obstack. But there's no data yet that we need this
7490 optimization. */
7491 if (cu->dwo_unit != NULL)
7492 rereading_dwo_cu = 1;
7493 }
7494 else
7495 {
7496 /* If !use_existing_cu, this_cu->cu must be NULL. */
7497 gdb_assert (this_cu->cu == NULL);
7498 new_cu.reset (new dwarf2_cu (this_cu));
7499 cu = new_cu.get ();
7500 }
7501
7502 /* Get the header. */
7503 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7504 {
7505 /* We already have the header, there's no need to read it in again. */
7506 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7507 }
7508 else
7509 {
7510 if (this_cu->is_debug_types)
7511 {
7512 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7513 &cu->header, section,
7514 abbrev_section, info_ptr,
7515 rcuh_kind::TYPE);
7516
7517 /* Since per_cu is the first member of struct signatured_type,
7518 we can go from a pointer to one to a pointer to the other. */
7519 sig_type = (struct signatured_type *) this_cu;
7520 gdb_assert (sig_type->signature == cu->header.signature);
7521 gdb_assert (sig_type->type_offset_in_tu
7522 == cu->header.type_cu_offset_in_tu);
7523 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7524
7525 /* LENGTH has not been set yet for type units if we're
7526 using .gdb_index. */
7527 this_cu->length = get_cu_length (&cu->header);
7528
7529 /* Establish the type offset that can be used to lookup the type. */
7530 sig_type->type_offset_in_section =
7531 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7532
7533 this_cu->dwarf_version = cu->header.version;
7534 }
7535 else
7536 {
7537 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7538 &cu->header, section,
7539 abbrev_section,
7540 info_ptr,
7541 rcuh_kind::COMPILE);
7542
7543 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7544 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7545 this_cu->dwarf_version = cu->header.version;
7546 }
7547 }
7548
7549 /* Skip dummy compilation units. */
7550 if (info_ptr >= begin_info_ptr + this_cu->length
7551 || peek_abbrev_code (abfd, info_ptr) == 0)
7552 return;
7553
7554 /* If we don't have them yet, read the abbrevs for this compilation unit.
7555 And if we need to read them now, make sure they're freed when we're
7556 done (own the table through ABBREV_TABLE_HOLDER). */
7557 abbrev_table_up abbrev_table_holder;
7558 if (abbrev_table != NULL)
7559 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7560 else
7561 {
7562 abbrev_table_holder
7563 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7564 cu->header.abbrev_sect_off);
7565 abbrev_table = abbrev_table_holder.get ();
7566 }
7567
7568 /* Read the top level CU/TU die. */
7569 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7570 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7571
7572 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7573 return;
7574
7575 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7576 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7577 table from the DWO file and pass the ownership over to us. It will be
7578 referenced from READER, so we must make sure to free it after we're done
7579 with READER.
7580
7581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7582 DWO CU, that this test will fail (the attribute will not be present). */
7583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7584 abbrev_table_up dwo_abbrev_table;
7585 if (attr)
7586 {
7587 struct dwo_unit *dwo_unit;
7588 struct die_info *dwo_comp_unit_die;
7589
7590 if (has_children)
7591 {
7592 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7593 " has children (offset %s) [in module %s]"),
7594 sect_offset_str (this_cu->sect_off),
7595 bfd_get_filename (abfd));
7596 }
7597 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7598 if (dwo_unit != NULL)
7599 {
7600 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7601 comp_unit_die, NULL,
7602 &reader, &info_ptr,
7603 &dwo_comp_unit_die, &has_children,
7604 &dwo_abbrev_table) == 0)
7605 {
7606 /* Dummy die. */
7607 return;
7608 }
7609 comp_unit_die = dwo_comp_unit_die;
7610 }
7611 else
7612 {
7613 /* Yikes, we couldn't find the rest of the DIE, we only have
7614 the stub. A complaint has already been logged. There's
7615 not much more we can do except pass on the stub DIE to
7616 die_reader_func. We don't want to throw an error on bad
7617 debug info. */
7618 }
7619 }
7620
7621 /* All of the above is setup for this call. Yikes. */
7622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7623
7624 /* Done, clean up. */
7625 if (new_cu != NULL && keep)
7626 {
7627 /* Link this CU into read_in_chain. */
7628 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7629 dwarf2_per_objfile->read_in_chain = this_cu;
7630 /* The chain owns it now. */
7631 new_cu.release ();
7632 }
7633 }
7634
7635 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7636 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7637 to have already done the lookup to find the DWO file).
7638
7639 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7640 THIS_CU->is_debug_types, but nothing else.
7641
7642 We fill in THIS_CU->length.
7643
7644 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7645 linker) then DIE_READER_FUNC will not get called.
7646
7647 THIS_CU->cu is always freed when done.
7648 This is done in order to not leave THIS_CU->cu in a state where we have
7649 to care whether it refers to the "main" CU or the DWO CU. */
7650
7651 static void
7652 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7653 struct dwo_file *dwo_file,
7654 die_reader_func_ftype *die_reader_func,
7655 void *data)
7656 {
7657 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7658 struct objfile *objfile = dwarf2_per_objfile->objfile;
7659 struct dwarf2_section_info *section = this_cu->section;
7660 bfd *abfd = get_section_bfd_owner (section);
7661 struct dwarf2_section_info *abbrev_section;
7662 const gdb_byte *begin_info_ptr, *info_ptr;
7663 struct die_reader_specs reader;
7664 struct die_info *comp_unit_die;
7665 int has_children;
7666
7667 if (dwarf_die_debug)
7668 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7669 this_cu->is_debug_types ? "type" : "comp",
7670 sect_offset_str (this_cu->sect_off));
7671
7672 gdb_assert (this_cu->cu == NULL);
7673
7674 abbrev_section = (dwo_file != NULL
7675 ? &dwo_file->sections.abbrev
7676 : get_abbrev_section_for_cu (this_cu));
7677
7678 /* This is cheap if the section is already read in. */
7679 dwarf2_read_section (objfile, section);
7680
7681 struct dwarf2_cu cu (this_cu);
7682
7683 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7684 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7685 &cu.header, section,
7686 abbrev_section, info_ptr,
7687 (this_cu->is_debug_types
7688 ? rcuh_kind::TYPE
7689 : rcuh_kind::COMPILE));
7690
7691 this_cu->length = get_cu_length (&cu.header);
7692
7693 /* Skip dummy compilation units. */
7694 if (info_ptr >= begin_info_ptr + this_cu->length
7695 || peek_abbrev_code (abfd, info_ptr) == 0)
7696 return;
7697
7698 abbrev_table_up abbrev_table
7699 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7700 cu.header.abbrev_sect_off);
7701
7702 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7703 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7704
7705 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7706 }
7707
7708 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7709 does not lookup the specified DWO file.
7710 This cannot be used to read DWO files.
7711
7712 THIS_CU->cu is always freed when done.
7713 This is done in order to not leave THIS_CU->cu in a state where we have
7714 to care whether it refers to the "main" CU or the DWO CU.
7715 We can revisit this if the data shows there's a performance issue. */
7716
7717 static void
7718 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7719 die_reader_func_ftype *die_reader_func,
7720 void *data)
7721 {
7722 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7723 }
7724 \f
7725 /* Type Unit Groups.
7726
7727 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7728 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7729 so that all types coming from the same compilation (.o file) are grouped
7730 together. A future step could be to put the types in the same symtab as
7731 the CU the types ultimately came from. */
7732
7733 static hashval_t
7734 hash_type_unit_group (const void *item)
7735 {
7736 const struct type_unit_group *tu_group
7737 = (const struct type_unit_group *) item;
7738
7739 return hash_stmt_list_entry (&tu_group->hash);
7740 }
7741
7742 static int
7743 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7744 {
7745 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7746 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7747
7748 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7749 }
7750
7751 /* Allocate a hash table for type unit groups. */
7752
7753 static htab_t
7754 allocate_type_unit_groups_table (struct objfile *objfile)
7755 {
7756 return htab_create_alloc_ex (3,
7757 hash_type_unit_group,
7758 eq_type_unit_group,
7759 NULL,
7760 &objfile->objfile_obstack,
7761 hashtab_obstack_allocate,
7762 dummy_obstack_deallocate);
7763 }
7764
7765 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7766 partial symtabs. We combine several TUs per psymtab to not let the size
7767 of any one psymtab grow too big. */
7768 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7769 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7770
7771 /* Helper routine for get_type_unit_group.
7772 Create the type_unit_group object used to hold one or more TUs. */
7773
7774 static struct type_unit_group *
7775 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7776 {
7777 struct dwarf2_per_objfile *dwarf2_per_objfile
7778 = cu->per_cu->dwarf2_per_objfile;
7779 struct objfile *objfile = dwarf2_per_objfile->objfile;
7780 struct dwarf2_per_cu_data *per_cu;
7781 struct type_unit_group *tu_group;
7782
7783 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7784 struct type_unit_group);
7785 per_cu = &tu_group->per_cu;
7786 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7787
7788 if (dwarf2_per_objfile->using_index)
7789 {
7790 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7791 struct dwarf2_per_cu_quick_data);
7792 }
7793 else
7794 {
7795 unsigned int line_offset = to_underlying (line_offset_struct);
7796 struct partial_symtab *pst;
7797 std::string name;
7798
7799 /* Give the symtab a useful name for debug purposes. */
7800 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7801 name = string_printf ("<type_units_%d>",
7802 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7803 else
7804 name = string_printf ("<type_units_at_0x%x>", line_offset);
7805
7806 pst = create_partial_symtab (per_cu, name.c_str ());
7807 pst->anonymous = 1;
7808 }
7809
7810 tu_group->hash.dwo_unit = cu->dwo_unit;
7811 tu_group->hash.line_sect_off = line_offset_struct;
7812
7813 return tu_group;
7814 }
7815
7816 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7817 STMT_LIST is a DW_AT_stmt_list attribute. */
7818
7819 static struct type_unit_group *
7820 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7821 {
7822 struct dwarf2_per_objfile *dwarf2_per_objfile
7823 = cu->per_cu->dwarf2_per_objfile;
7824 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7825 struct type_unit_group *tu_group;
7826 void **slot;
7827 unsigned int line_offset;
7828 struct type_unit_group type_unit_group_for_lookup;
7829
7830 if (dwarf2_per_objfile->type_unit_groups == NULL)
7831 {
7832 dwarf2_per_objfile->type_unit_groups =
7833 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7834 }
7835
7836 /* Do we need to create a new group, or can we use an existing one? */
7837
7838 if (stmt_list)
7839 {
7840 line_offset = DW_UNSND (stmt_list);
7841 ++tu_stats->nr_symtab_sharers;
7842 }
7843 else
7844 {
7845 /* Ugh, no stmt_list. Rare, but we have to handle it.
7846 We can do various things here like create one group per TU or
7847 spread them over multiple groups to split up the expansion work.
7848 To avoid worst case scenarios (too many groups or too large groups)
7849 we, umm, group them in bunches. */
7850 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7851 | (tu_stats->nr_stmt_less_type_units
7852 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7853 ++tu_stats->nr_stmt_less_type_units;
7854 }
7855
7856 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7857 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7858 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7859 &type_unit_group_for_lookup, INSERT);
7860 if (*slot != NULL)
7861 {
7862 tu_group = (struct type_unit_group *) *slot;
7863 gdb_assert (tu_group != NULL);
7864 }
7865 else
7866 {
7867 sect_offset line_offset_struct = (sect_offset) line_offset;
7868 tu_group = create_type_unit_group (cu, line_offset_struct);
7869 *slot = tu_group;
7870 ++tu_stats->nr_symtabs;
7871 }
7872
7873 return tu_group;
7874 }
7875 \f
7876 /* Partial symbol tables. */
7877
7878 /* Create a psymtab named NAME and assign it to PER_CU.
7879
7880 The caller must fill in the following details:
7881 dirname, textlow, texthigh. */
7882
7883 static struct partial_symtab *
7884 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7885 {
7886 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7887 struct partial_symtab *pst;
7888
7889 pst = start_psymtab_common (objfile, name, 0);
7890
7891 pst->psymtabs_addrmap_supported = 1;
7892
7893 /* This is the glue that links PST into GDB's symbol API. */
7894 pst->read_symtab_private = per_cu;
7895 pst->read_symtab = dwarf2_read_symtab;
7896 per_cu->v.psymtab = pst;
7897
7898 return pst;
7899 }
7900
7901 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7902 type. */
7903
7904 struct process_psymtab_comp_unit_data
7905 {
7906 /* True if we are reading a DW_TAG_partial_unit. */
7907
7908 int want_partial_unit;
7909
7910 /* The "pretend" language that is used if the CU doesn't declare a
7911 language. */
7912
7913 enum language pretend_language;
7914 };
7915
7916 /* die_reader_func for process_psymtab_comp_unit. */
7917
7918 static void
7919 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7920 const gdb_byte *info_ptr,
7921 struct die_info *comp_unit_die,
7922 int has_children,
7923 void *data)
7924 {
7925 struct dwarf2_cu *cu = reader->cu;
7926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7928 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7929 CORE_ADDR baseaddr;
7930 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7931 struct partial_symtab *pst;
7932 enum pc_bounds_kind cu_bounds_kind;
7933 const char *filename;
7934 struct process_psymtab_comp_unit_data *info
7935 = (struct process_psymtab_comp_unit_data *) data;
7936
7937 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7938 return;
7939
7940 gdb_assert (! per_cu->is_debug_types);
7941
7942 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7943
7944 /* Allocate a new partial symbol table structure. */
7945 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7946 if (filename == NULL)
7947 filename = "";
7948
7949 pst = create_partial_symtab (per_cu, filename);
7950
7951 /* This must be done before calling dwarf2_build_include_psymtabs. */
7952 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7953
7954 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7955
7956 dwarf2_find_base_address (comp_unit_die, cu);
7957
7958 /* Possibly set the default values of LOWPC and HIGHPC from
7959 `DW_AT_ranges'. */
7960 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7961 &best_highpc, cu, pst);
7962 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7963 {
7964 CORE_ADDR low
7965 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7966 - baseaddr);
7967 CORE_ADDR high
7968 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7969 - baseaddr - 1);
7970 /* Store the contiguous range if it is not empty; it can be
7971 empty for CUs with no code. */
7972 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7973 low, high, pst);
7974 }
7975
7976 /* Check if comp unit has_children.
7977 If so, read the rest of the partial symbols from this comp unit.
7978 If not, there's no more debug_info for this comp unit. */
7979 if (has_children)
7980 {
7981 struct partial_die_info *first_die;
7982 CORE_ADDR lowpc, highpc;
7983
7984 lowpc = ((CORE_ADDR) -1);
7985 highpc = ((CORE_ADDR) 0);
7986
7987 first_die = load_partial_dies (reader, info_ptr, 1);
7988
7989 scan_partial_symbols (first_die, &lowpc, &highpc,
7990 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7991
7992 /* If we didn't find a lowpc, set it to highpc to avoid
7993 complaints from `maint check'. */
7994 if (lowpc == ((CORE_ADDR) -1))
7995 lowpc = highpc;
7996
7997 /* If the compilation unit didn't have an explicit address range,
7998 then use the information extracted from its child dies. */
7999 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8000 {
8001 best_lowpc = lowpc;
8002 best_highpc = highpc;
8003 }
8004 }
8005 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8006 best_lowpc + baseaddr)
8007 - baseaddr);
8008 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8009 best_highpc + baseaddr)
8010 - baseaddr);
8011
8012 end_psymtab_common (objfile, pst);
8013
8014 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8015 {
8016 int i;
8017 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8018 struct dwarf2_per_cu_data *iter;
8019
8020 /* Fill in 'dependencies' here; we fill in 'users' in a
8021 post-pass. */
8022 pst->number_of_dependencies = len;
8023 pst->dependencies
8024 = objfile->partial_symtabs->allocate_dependencies (len);
8025 for (i = 0;
8026 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8027 i, iter);
8028 ++i)
8029 pst->dependencies[i] = iter->v.psymtab;
8030
8031 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8032 }
8033
8034 /* Get the list of files included in the current compilation unit,
8035 and build a psymtab for each of them. */
8036 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8037
8038 if (dwarf_read_debug)
8039 fprintf_unfiltered (gdb_stdlog,
8040 "Psymtab for %s unit @%s: %s - %s"
8041 ", %d global, %d static syms\n",
8042 per_cu->is_debug_types ? "type" : "comp",
8043 sect_offset_str (per_cu->sect_off),
8044 paddress (gdbarch, pst->text_low (objfile)),
8045 paddress (gdbarch, pst->text_high (objfile)),
8046 pst->n_global_syms, pst->n_static_syms);
8047 }
8048
8049 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8050 Process compilation unit THIS_CU for a psymtab. */
8051
8052 static void
8053 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8054 int want_partial_unit,
8055 enum language pretend_language)
8056 {
8057 /* If this compilation unit was already read in, free the
8058 cached copy in order to read it in again. This is
8059 necessary because we skipped some symbols when we first
8060 read in the compilation unit (see load_partial_dies).
8061 This problem could be avoided, but the benefit is unclear. */
8062 if (this_cu->cu != NULL)
8063 free_one_cached_comp_unit (this_cu);
8064
8065 if (this_cu->is_debug_types)
8066 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8067 build_type_psymtabs_reader, NULL);
8068 else
8069 {
8070 process_psymtab_comp_unit_data info;
8071 info.want_partial_unit = want_partial_unit;
8072 info.pretend_language = pretend_language;
8073 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8074 process_psymtab_comp_unit_reader, &info);
8075 }
8076
8077 /* Age out any secondary CUs. */
8078 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8079 }
8080
8081 /* Reader function for build_type_psymtabs. */
8082
8083 static void
8084 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8085 const gdb_byte *info_ptr,
8086 struct die_info *type_unit_die,
8087 int has_children,
8088 void *data)
8089 {
8090 struct dwarf2_per_objfile *dwarf2_per_objfile
8091 = reader->cu->per_cu->dwarf2_per_objfile;
8092 struct objfile *objfile = dwarf2_per_objfile->objfile;
8093 struct dwarf2_cu *cu = reader->cu;
8094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8095 struct signatured_type *sig_type;
8096 struct type_unit_group *tu_group;
8097 struct attribute *attr;
8098 struct partial_die_info *first_die;
8099 CORE_ADDR lowpc, highpc;
8100 struct partial_symtab *pst;
8101
8102 gdb_assert (data == NULL);
8103 gdb_assert (per_cu->is_debug_types);
8104 sig_type = (struct signatured_type *) per_cu;
8105
8106 if (! has_children)
8107 return;
8108
8109 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8110 tu_group = get_type_unit_group (cu, attr);
8111
8112 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8113
8114 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8115 pst = create_partial_symtab (per_cu, "");
8116 pst->anonymous = 1;
8117
8118 first_die = load_partial_dies (reader, info_ptr, 1);
8119
8120 lowpc = (CORE_ADDR) -1;
8121 highpc = (CORE_ADDR) 0;
8122 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8123
8124 end_psymtab_common (objfile, pst);
8125 }
8126
8127 /* Struct used to sort TUs by their abbreviation table offset. */
8128
8129 struct tu_abbrev_offset
8130 {
8131 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8132 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8133 {}
8134
8135 signatured_type *sig_type;
8136 sect_offset abbrev_offset;
8137 };
8138
8139 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8140
8141 static bool
8142 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8143 const struct tu_abbrev_offset &b)
8144 {
8145 return a.abbrev_offset < b.abbrev_offset;
8146 }
8147
8148 /* Efficiently read all the type units.
8149 This does the bulk of the work for build_type_psymtabs.
8150
8151 The efficiency is because we sort TUs by the abbrev table they use and
8152 only read each abbrev table once. In one program there are 200K TUs
8153 sharing 8K abbrev tables.
8154
8155 The main purpose of this function is to support building the
8156 dwarf2_per_objfile->type_unit_groups table.
8157 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8158 can collapse the search space by grouping them by stmt_list.
8159 The savings can be significant, in the same program from above the 200K TUs
8160 share 8K stmt_list tables.
8161
8162 FUNC is expected to call get_type_unit_group, which will create the
8163 struct type_unit_group if necessary and add it to
8164 dwarf2_per_objfile->type_unit_groups. */
8165
8166 static void
8167 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8168 {
8169 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8170 abbrev_table_up abbrev_table;
8171 sect_offset abbrev_offset;
8172
8173 /* It's up to the caller to not call us multiple times. */
8174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8175
8176 if (dwarf2_per_objfile->all_type_units.empty ())
8177 return;
8178
8179 /* TUs typically share abbrev tables, and there can be way more TUs than
8180 abbrev tables. Sort by abbrev table to reduce the number of times we
8181 read each abbrev table in.
8182 Alternatives are to punt or to maintain a cache of abbrev tables.
8183 This is simpler and efficient enough for now.
8184
8185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8186 symtab to use). Typically TUs with the same abbrev offset have the same
8187 stmt_list value too so in practice this should work well.
8188
8189 The basic algorithm here is:
8190
8191 sort TUs by abbrev table
8192 for each TU with same abbrev table:
8193 read abbrev table if first user
8194 read TU top level DIE
8195 [IWBN if DWO skeletons had DW_AT_stmt_list]
8196 call FUNC */
8197
8198 if (dwarf_read_debug)
8199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8200
8201 /* Sort in a separate table to maintain the order of all_type_units
8202 for .gdb_index: TU indices directly index all_type_units. */
8203 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8204 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8205
8206 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8207 sorted_by_abbrev.emplace_back
8208 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8209 sig_type->per_cu.section,
8210 sig_type->per_cu.sect_off));
8211
8212 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8213 sort_tu_by_abbrev_offset);
8214
8215 abbrev_offset = (sect_offset) ~(unsigned) 0;
8216
8217 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8218 {
8219 /* Switch to the next abbrev table if necessary. */
8220 if (abbrev_table == NULL
8221 || tu.abbrev_offset != abbrev_offset)
8222 {
8223 abbrev_offset = tu.abbrev_offset;
8224 abbrev_table =
8225 abbrev_table_read_table (dwarf2_per_objfile,
8226 &dwarf2_per_objfile->abbrev,
8227 abbrev_offset);
8228 ++tu_stats->nr_uniq_abbrev_tables;
8229 }
8230
8231 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8232 0, 0, false, build_type_psymtabs_reader, NULL);
8233 }
8234 }
8235
8236 /* Print collected type unit statistics. */
8237
8238 static void
8239 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8240 {
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242
8243 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8244 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8245 dwarf2_per_objfile->all_type_units.size ());
8246 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8247 tu_stats->nr_uniq_abbrev_tables);
8248 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8249 tu_stats->nr_symtabs);
8250 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8251 tu_stats->nr_symtab_sharers);
8252 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8253 tu_stats->nr_stmt_less_type_units);
8254 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8255 tu_stats->nr_all_type_units_reallocs);
8256 }
8257
8258 /* Traversal function for build_type_psymtabs. */
8259
8260 static int
8261 build_type_psymtab_dependencies (void **slot, void *info)
8262 {
8263 struct dwarf2_per_objfile *dwarf2_per_objfile
8264 = (struct dwarf2_per_objfile *) info;
8265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8266 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8267 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8268 struct partial_symtab *pst = per_cu->v.psymtab;
8269 int len = VEC_length (sig_type_ptr, tu_group->tus);
8270 struct signatured_type *iter;
8271 int i;
8272
8273 gdb_assert (len > 0);
8274 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8275
8276 pst->number_of_dependencies = len;
8277 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8278 for (i = 0;
8279 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8280 ++i)
8281 {
8282 gdb_assert (iter->per_cu.is_debug_types);
8283 pst->dependencies[i] = iter->per_cu.v.psymtab;
8284 iter->type_unit_group = tu_group;
8285 }
8286
8287 VEC_free (sig_type_ptr, tu_group->tus);
8288
8289 return 1;
8290 }
8291
8292 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8293 Build partial symbol tables for the .debug_types comp-units. */
8294
8295 static void
8296 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8297 {
8298 if (! create_all_type_units (dwarf2_per_objfile))
8299 return;
8300
8301 build_type_psymtabs_1 (dwarf2_per_objfile);
8302 }
8303
8304 /* Traversal function for process_skeletonless_type_unit.
8305 Read a TU in a DWO file and build partial symbols for it. */
8306
8307 static int
8308 process_skeletonless_type_unit (void **slot, void *info)
8309 {
8310 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8311 struct dwarf2_per_objfile *dwarf2_per_objfile
8312 = (struct dwarf2_per_objfile *) info;
8313 struct signatured_type find_entry, *entry;
8314
8315 /* If this TU doesn't exist in the global table, add it and read it in. */
8316
8317 if (dwarf2_per_objfile->signatured_types == NULL)
8318 {
8319 dwarf2_per_objfile->signatured_types
8320 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8321 }
8322
8323 find_entry.signature = dwo_unit->signature;
8324 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8325 INSERT);
8326 /* If we've already seen this type there's nothing to do. What's happening
8327 is we're doing our own version of comdat-folding here. */
8328 if (*slot != NULL)
8329 return 1;
8330
8331 /* This does the job that create_all_type_units would have done for
8332 this TU. */
8333 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8334 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8335 *slot = entry;
8336
8337 /* This does the job that build_type_psymtabs_1 would have done. */
8338 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8339 build_type_psymtabs_reader, NULL);
8340
8341 return 1;
8342 }
8343
8344 /* Traversal function for process_skeletonless_type_units. */
8345
8346 static int
8347 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8348 {
8349 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8350
8351 if (dwo_file->tus != NULL)
8352 {
8353 htab_traverse_noresize (dwo_file->tus,
8354 process_skeletonless_type_unit, info);
8355 }
8356
8357 return 1;
8358 }
8359
8360 /* Scan all TUs of DWO files, verifying we've processed them.
8361 This is needed in case a TU was emitted without its skeleton.
8362 Note: This can't be done until we know what all the DWO files are. */
8363
8364 static void
8365 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8366 {
8367 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8368 if (get_dwp_file (dwarf2_per_objfile) == NULL
8369 && dwarf2_per_objfile->dwo_files != NULL)
8370 {
8371 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8372 process_dwo_file_for_skeletonless_type_units,
8373 dwarf2_per_objfile);
8374 }
8375 }
8376
8377 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8378
8379 static void
8380 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8381 {
8382 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8383 {
8384 struct partial_symtab *pst = per_cu->v.psymtab;
8385
8386 if (pst == NULL)
8387 continue;
8388
8389 for (int j = 0; j < pst->number_of_dependencies; ++j)
8390 {
8391 /* Set the 'user' field only if it is not already set. */
8392 if (pst->dependencies[j]->user == NULL)
8393 pst->dependencies[j]->user = pst;
8394 }
8395 }
8396 }
8397
8398 /* Build the partial symbol table by doing a quick pass through the
8399 .debug_info and .debug_abbrev sections. */
8400
8401 static void
8402 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8403 {
8404 struct objfile *objfile = dwarf2_per_objfile->objfile;
8405
8406 if (dwarf_read_debug)
8407 {
8408 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8409 objfile_name (objfile));
8410 }
8411
8412 dwarf2_per_objfile->reading_partial_symbols = 1;
8413
8414 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8415
8416 /* Any cached compilation units will be linked by the per-objfile
8417 read_in_chain. Make sure to free them when we're done. */
8418 free_cached_comp_units freer (dwarf2_per_objfile);
8419
8420 build_type_psymtabs (dwarf2_per_objfile);
8421
8422 create_all_comp_units (dwarf2_per_objfile);
8423
8424 /* Create a temporary address map on a temporary obstack. We later
8425 copy this to the final obstack. */
8426 auto_obstack temp_obstack;
8427
8428 scoped_restore save_psymtabs_addrmap
8429 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8430 addrmap_create_mutable (&temp_obstack));
8431
8432 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8433 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8434
8435 /* This has to wait until we read the CUs, we need the list of DWOs. */
8436 process_skeletonless_type_units (dwarf2_per_objfile);
8437
8438 /* Now that all TUs have been processed we can fill in the dependencies. */
8439 if (dwarf2_per_objfile->type_unit_groups != NULL)
8440 {
8441 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8442 build_type_psymtab_dependencies, dwarf2_per_objfile);
8443 }
8444
8445 if (dwarf_read_debug)
8446 print_tu_stats (dwarf2_per_objfile);
8447
8448 set_partial_user (dwarf2_per_objfile);
8449
8450 objfile->partial_symtabs->psymtabs_addrmap
8451 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8452 objfile->partial_symtabs->obstack ());
8453 /* At this point we want to keep the address map. */
8454 save_psymtabs_addrmap.release ();
8455
8456 if (dwarf_read_debug)
8457 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8458 objfile_name (objfile));
8459 }
8460
8461 /* die_reader_func for load_partial_comp_unit. */
8462
8463 static void
8464 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8465 const gdb_byte *info_ptr,
8466 struct die_info *comp_unit_die,
8467 int has_children,
8468 void *data)
8469 {
8470 struct dwarf2_cu *cu = reader->cu;
8471
8472 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8473
8474 /* Check if comp unit has_children.
8475 If so, read the rest of the partial symbols from this comp unit.
8476 If not, there's no more debug_info for this comp unit. */
8477 if (has_children)
8478 load_partial_dies (reader, info_ptr, 0);
8479 }
8480
8481 /* Load the partial DIEs for a secondary CU into memory.
8482 This is also used when rereading a primary CU with load_all_dies. */
8483
8484 static void
8485 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8486 {
8487 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8488 load_partial_comp_unit_reader, NULL);
8489 }
8490
8491 static void
8492 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8493 struct dwarf2_section_info *section,
8494 struct dwarf2_section_info *abbrev_section,
8495 unsigned int is_dwz)
8496 {
8497 const gdb_byte *info_ptr;
8498 struct objfile *objfile = dwarf2_per_objfile->objfile;
8499
8500 if (dwarf_read_debug)
8501 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8502 get_section_name (section),
8503 get_section_file_name (section));
8504
8505 dwarf2_read_section (objfile, section);
8506
8507 info_ptr = section->buffer;
8508
8509 while (info_ptr < section->buffer + section->size)
8510 {
8511 struct dwarf2_per_cu_data *this_cu;
8512
8513 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8514
8515 comp_unit_head cu_header;
8516 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8517 abbrev_section, info_ptr,
8518 rcuh_kind::COMPILE);
8519
8520 /* Save the compilation unit for later lookup. */
8521 if (cu_header.unit_type != DW_UT_type)
8522 {
8523 this_cu = XOBNEW (&objfile->objfile_obstack,
8524 struct dwarf2_per_cu_data);
8525 memset (this_cu, 0, sizeof (*this_cu));
8526 }
8527 else
8528 {
8529 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8530 struct signatured_type);
8531 memset (sig_type, 0, sizeof (*sig_type));
8532 sig_type->signature = cu_header.signature;
8533 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8534 this_cu = &sig_type->per_cu;
8535 }
8536 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8537 this_cu->sect_off = sect_off;
8538 this_cu->length = cu_header.length + cu_header.initial_length_size;
8539 this_cu->is_dwz = is_dwz;
8540 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8541 this_cu->section = section;
8542
8543 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8544
8545 info_ptr = info_ptr + this_cu->length;
8546 }
8547 }
8548
8549 /* Create a list of all compilation units in OBJFILE.
8550 This is only done for -readnow and building partial symtabs. */
8551
8552 static void
8553 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8554 {
8555 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8556 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8557 &dwarf2_per_objfile->abbrev, 0);
8558
8559 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8560 if (dwz != NULL)
8561 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8562 1);
8563 }
8564
8565 /* Process all loaded DIEs for compilation unit CU, starting at
8566 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8567 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8568 DW_AT_ranges). See the comments of add_partial_subprogram on how
8569 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8570
8571 static void
8572 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8573 CORE_ADDR *highpc, int set_addrmap,
8574 struct dwarf2_cu *cu)
8575 {
8576 struct partial_die_info *pdi;
8577
8578 /* Now, march along the PDI's, descending into ones which have
8579 interesting children but skipping the children of the other ones,
8580 until we reach the end of the compilation unit. */
8581
8582 pdi = first_die;
8583
8584 while (pdi != NULL)
8585 {
8586 pdi->fixup (cu);
8587
8588 /* Anonymous namespaces or modules have no name but have interesting
8589 children, so we need to look at them. Ditto for anonymous
8590 enums. */
8591
8592 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8593 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8594 || pdi->tag == DW_TAG_imported_unit
8595 || pdi->tag == DW_TAG_inlined_subroutine)
8596 {
8597 switch (pdi->tag)
8598 {
8599 case DW_TAG_subprogram:
8600 case DW_TAG_inlined_subroutine:
8601 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8602 break;
8603 case DW_TAG_constant:
8604 case DW_TAG_variable:
8605 case DW_TAG_typedef:
8606 case DW_TAG_union_type:
8607 if (!pdi->is_declaration)
8608 {
8609 add_partial_symbol (pdi, cu);
8610 }
8611 break;
8612 case DW_TAG_class_type:
8613 case DW_TAG_interface_type:
8614 case DW_TAG_structure_type:
8615 if (!pdi->is_declaration)
8616 {
8617 add_partial_symbol (pdi, cu);
8618 }
8619 if ((cu->language == language_rust
8620 || cu->language == language_cplus) && pdi->has_children)
8621 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8622 set_addrmap, cu);
8623 break;
8624 case DW_TAG_enumeration_type:
8625 if (!pdi->is_declaration)
8626 add_partial_enumeration (pdi, cu);
8627 break;
8628 case DW_TAG_base_type:
8629 case DW_TAG_subrange_type:
8630 /* File scope base type definitions are added to the partial
8631 symbol table. */
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 case DW_TAG_namespace:
8635 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8636 break;
8637 case DW_TAG_module:
8638 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8639 break;
8640 case DW_TAG_imported_unit:
8641 {
8642 struct dwarf2_per_cu_data *per_cu;
8643
8644 /* For now we don't handle imported units in type units. */
8645 if (cu->per_cu->is_debug_types)
8646 {
8647 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8648 " supported in type units [in module %s]"),
8649 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8650 }
8651
8652 per_cu = dwarf2_find_containing_comp_unit
8653 (pdi->d.sect_off, pdi->is_dwz,
8654 cu->per_cu->dwarf2_per_objfile);
8655
8656 /* Go read the partial unit, if needed. */
8657 if (per_cu->v.psymtab == NULL)
8658 process_psymtab_comp_unit (per_cu, 1, cu->language);
8659
8660 VEC_safe_push (dwarf2_per_cu_ptr,
8661 cu->per_cu->imported_symtabs, per_cu);
8662 }
8663 break;
8664 case DW_TAG_imported_declaration:
8665 add_partial_symbol (pdi, cu);
8666 break;
8667 default:
8668 break;
8669 }
8670 }
8671
8672 /* If the die has a sibling, skip to the sibling. */
8673
8674 pdi = pdi->die_sibling;
8675 }
8676 }
8677
8678 /* Functions used to compute the fully scoped name of a partial DIE.
8679
8680 Normally, this is simple. For C++, the parent DIE's fully scoped
8681 name is concatenated with "::" and the partial DIE's name.
8682 Enumerators are an exception; they use the scope of their parent
8683 enumeration type, i.e. the name of the enumeration type is not
8684 prepended to the enumerator.
8685
8686 There are two complexities. One is DW_AT_specification; in this
8687 case "parent" means the parent of the target of the specification,
8688 instead of the direct parent of the DIE. The other is compilers
8689 which do not emit DW_TAG_namespace; in this case we try to guess
8690 the fully qualified name of structure types from their members'
8691 linkage names. This must be done using the DIE's children rather
8692 than the children of any DW_AT_specification target. We only need
8693 to do this for structures at the top level, i.e. if the target of
8694 any DW_AT_specification (if any; otherwise the DIE itself) does not
8695 have a parent. */
8696
8697 /* Compute the scope prefix associated with PDI's parent, in
8698 compilation unit CU. The result will be allocated on CU's
8699 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8700 field. NULL is returned if no prefix is necessary. */
8701 static const char *
8702 partial_die_parent_scope (struct partial_die_info *pdi,
8703 struct dwarf2_cu *cu)
8704 {
8705 const char *grandparent_scope;
8706 struct partial_die_info *parent, *real_pdi;
8707
8708 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8709 then this means the parent of the specification DIE. */
8710
8711 real_pdi = pdi;
8712 while (real_pdi->has_specification)
8713 {
8714 auto res = find_partial_die (real_pdi->spec_offset,
8715 real_pdi->spec_is_dwz, cu);
8716 real_pdi = res.pdi;
8717 cu = res.cu;
8718 }
8719
8720 parent = real_pdi->die_parent;
8721 if (parent == NULL)
8722 return NULL;
8723
8724 if (parent->scope_set)
8725 return parent->scope;
8726
8727 parent->fixup (cu);
8728
8729 grandparent_scope = partial_die_parent_scope (parent, cu);
8730
8731 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8732 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8733 Work around this problem here. */
8734 if (cu->language == language_cplus
8735 && parent->tag == DW_TAG_namespace
8736 && strcmp (parent->name, "::") == 0
8737 && grandparent_scope == NULL)
8738 {
8739 parent->scope = NULL;
8740 parent->scope_set = 1;
8741 return NULL;
8742 }
8743
8744 if (pdi->tag == DW_TAG_enumerator)
8745 /* Enumerators should not get the name of the enumeration as a prefix. */
8746 parent->scope = grandparent_scope;
8747 else if (parent->tag == DW_TAG_namespace
8748 || parent->tag == DW_TAG_module
8749 || parent->tag == DW_TAG_structure_type
8750 || parent->tag == DW_TAG_class_type
8751 || parent->tag == DW_TAG_interface_type
8752 || parent->tag == DW_TAG_union_type
8753 || parent->tag == DW_TAG_enumeration_type)
8754 {
8755 if (grandparent_scope == NULL)
8756 parent->scope = parent->name;
8757 else
8758 parent->scope = typename_concat (&cu->comp_unit_obstack,
8759 grandparent_scope,
8760 parent->name, 0, cu);
8761 }
8762 else
8763 {
8764 /* FIXME drow/2004-04-01: What should we be doing with
8765 function-local names? For partial symbols, we should probably be
8766 ignoring them. */
8767 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8768 dwarf_tag_name (parent->tag),
8769 sect_offset_str (pdi->sect_off));
8770 parent->scope = grandparent_scope;
8771 }
8772
8773 parent->scope_set = 1;
8774 return parent->scope;
8775 }
8776
8777 /* Return the fully scoped name associated with PDI, from compilation unit
8778 CU. The result will be allocated with malloc. */
8779
8780 static char *
8781 partial_die_full_name (struct partial_die_info *pdi,
8782 struct dwarf2_cu *cu)
8783 {
8784 const char *parent_scope;
8785
8786 /* If this is a template instantiation, we can not work out the
8787 template arguments from partial DIEs. So, unfortunately, we have
8788 to go through the full DIEs. At least any work we do building
8789 types here will be reused if full symbols are loaded later. */
8790 if (pdi->has_template_arguments)
8791 {
8792 pdi->fixup (cu);
8793
8794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8795 {
8796 struct die_info *die;
8797 struct attribute attr;
8798 struct dwarf2_cu *ref_cu = cu;
8799
8800 /* DW_FORM_ref_addr is using section offset. */
8801 attr.name = (enum dwarf_attribute) 0;
8802 attr.form = DW_FORM_ref_addr;
8803 attr.u.unsnd = to_underlying (pdi->sect_off);
8804 die = follow_die_ref (NULL, &attr, &ref_cu);
8805
8806 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8807 }
8808 }
8809
8810 parent_scope = partial_die_parent_scope (pdi, cu);
8811 if (parent_scope == NULL)
8812 return NULL;
8813 else
8814 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8815 }
8816
8817 static void
8818 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8819 {
8820 struct dwarf2_per_objfile *dwarf2_per_objfile
8821 = cu->per_cu->dwarf2_per_objfile;
8822 struct objfile *objfile = dwarf2_per_objfile->objfile;
8823 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8824 CORE_ADDR addr = 0;
8825 const char *actual_name = NULL;
8826 CORE_ADDR baseaddr;
8827 char *built_actual_name;
8828
8829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8830
8831 built_actual_name = partial_die_full_name (pdi, cu);
8832 if (built_actual_name != NULL)
8833 actual_name = built_actual_name;
8834
8835 if (actual_name == NULL)
8836 actual_name = pdi->name;
8837
8838 switch (pdi->tag)
8839 {
8840 case DW_TAG_inlined_subroutine:
8841 case DW_TAG_subprogram:
8842 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8843 - baseaddr);
8844 if (pdi->is_external || cu->language == language_ada)
8845 {
8846 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8847 of the global scope. But in Ada, we want to be able to access
8848 nested procedures globally. So all Ada subprograms are stored
8849 in the global scope. */
8850 add_psymbol_to_list (actual_name, strlen (actual_name),
8851 built_actual_name != NULL,
8852 VAR_DOMAIN, LOC_BLOCK,
8853 SECT_OFF_TEXT (objfile),
8854 psymbol_placement::GLOBAL,
8855 addr,
8856 cu->language, objfile);
8857 }
8858 else
8859 {
8860 add_psymbol_to_list (actual_name, strlen (actual_name),
8861 built_actual_name != NULL,
8862 VAR_DOMAIN, LOC_BLOCK,
8863 SECT_OFF_TEXT (objfile),
8864 psymbol_placement::STATIC,
8865 addr, cu->language, objfile);
8866 }
8867
8868 if (pdi->main_subprogram && actual_name != NULL)
8869 set_objfile_main_name (objfile, actual_name, cu->language);
8870 break;
8871 case DW_TAG_constant:
8872 add_psymbol_to_list (actual_name, strlen (actual_name),
8873 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8874 -1, (pdi->is_external
8875 ? psymbol_placement::GLOBAL
8876 : psymbol_placement::STATIC),
8877 0, cu->language, objfile);
8878 break;
8879 case DW_TAG_variable:
8880 if (pdi->d.locdesc)
8881 addr = decode_locdesc (pdi->d.locdesc, cu);
8882
8883 if (pdi->d.locdesc
8884 && addr == 0
8885 && !dwarf2_per_objfile->has_section_at_zero)
8886 {
8887 /* A global or static variable may also have been stripped
8888 out by the linker if unused, in which case its address
8889 will be nullified; do not add such variables into partial
8890 symbol table then. */
8891 }
8892 else if (pdi->is_external)
8893 {
8894 /* Global Variable.
8895 Don't enter into the minimal symbol tables as there is
8896 a minimal symbol table entry from the ELF symbols already.
8897 Enter into partial symbol table if it has a location
8898 descriptor or a type.
8899 If the location descriptor is missing, new_symbol will create
8900 a LOC_UNRESOLVED symbol, the address of the variable will then
8901 be determined from the minimal symbol table whenever the variable
8902 is referenced.
8903 The address for the partial symbol table entry is not
8904 used by GDB, but it comes in handy for debugging partial symbol
8905 table building. */
8906
8907 if (pdi->d.locdesc || pdi->has_type)
8908 add_psymbol_to_list (actual_name, strlen (actual_name),
8909 built_actual_name != NULL,
8910 VAR_DOMAIN, LOC_STATIC,
8911 SECT_OFF_TEXT (objfile),
8912 psymbol_placement::GLOBAL,
8913 addr, cu->language, objfile);
8914 }
8915 else
8916 {
8917 int has_loc = pdi->d.locdesc != NULL;
8918
8919 /* Static Variable. Skip symbols whose value we cannot know (those
8920 without location descriptors or constant values). */
8921 if (!has_loc && !pdi->has_const_value)
8922 {
8923 xfree (built_actual_name);
8924 return;
8925 }
8926
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_STATIC,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 has_loc ? addr : 0,
8933 cu->language, objfile);
8934 }
8935 break;
8936 case DW_TAG_typedef:
8937 case DW_TAG_base_type:
8938 case DW_TAG_subrange_type:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 VAR_DOMAIN, LOC_TYPEDEF, -1,
8942 psymbol_placement::STATIC,
8943 0, cu->language, objfile);
8944 break;
8945 case DW_TAG_imported_declaration:
8946 case DW_TAG_namespace:
8947 add_psymbol_to_list (actual_name, strlen (actual_name),
8948 built_actual_name != NULL,
8949 VAR_DOMAIN, LOC_TYPEDEF, -1,
8950 psymbol_placement::GLOBAL,
8951 0, cu->language, objfile);
8952 break;
8953 case DW_TAG_module:
8954 /* With Fortran 77 there might be a "BLOCK DATA" module
8955 available without any name. If so, we skip the module as it
8956 doesn't bring any value. */
8957 if (actual_name != nullptr)
8958 add_psymbol_to_list (actual_name, strlen (actual_name),
8959 built_actual_name != NULL,
8960 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8961 psymbol_placement::GLOBAL,
8962 0, cu->language, objfile);
8963 break;
8964 case DW_TAG_class_type:
8965 case DW_TAG_interface_type:
8966 case DW_TAG_structure_type:
8967 case DW_TAG_union_type:
8968 case DW_TAG_enumeration_type:
8969 /* Skip external references. The DWARF standard says in the section
8970 about "Structure, Union, and Class Type Entries": "An incomplete
8971 structure, union or class type is represented by a structure,
8972 union or class entry that does not have a byte size attribute
8973 and that has a DW_AT_declaration attribute." */
8974 if (!pdi->has_byte_size && pdi->is_declaration)
8975 {
8976 xfree (built_actual_name);
8977 return;
8978 }
8979
8980 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8981 static vs. global. */
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8985 cu->language == language_cplus
8986 ? psymbol_placement::GLOBAL
8987 : psymbol_placement::STATIC,
8988 0, cu->language, objfile);
8989
8990 break;
8991 case DW_TAG_enumerator:
8992 add_psymbol_to_list (actual_name, strlen (actual_name),
8993 built_actual_name != NULL,
8994 VAR_DOMAIN, LOC_CONST, -1,
8995 cu->language == language_cplus
8996 ? psymbol_placement::GLOBAL
8997 : psymbol_placement::STATIC,
8998 0, cu->language, objfile);
8999 break;
9000 default:
9001 break;
9002 }
9003
9004 xfree (built_actual_name);
9005 }
9006
9007 /* Read a partial die corresponding to a namespace; also, add a symbol
9008 corresponding to that namespace to the symbol table. NAMESPACE is
9009 the name of the enclosing namespace. */
9010
9011 static void
9012 add_partial_namespace (struct partial_die_info *pdi,
9013 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9014 int set_addrmap, struct dwarf2_cu *cu)
9015 {
9016 /* Add a symbol for the namespace. */
9017
9018 add_partial_symbol (pdi, cu);
9019
9020 /* Now scan partial symbols in that namespace. */
9021
9022 if (pdi->has_children)
9023 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9024 }
9025
9026 /* Read a partial die corresponding to a Fortran module. */
9027
9028 static void
9029 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9030 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9031 {
9032 /* Add a symbol for the namespace. */
9033
9034 add_partial_symbol (pdi, cu);
9035
9036 /* Now scan partial symbols in that module. */
9037
9038 if (pdi->has_children)
9039 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9040 }
9041
9042 /* Read a partial die corresponding to a subprogram or an inlined
9043 subprogram and create a partial symbol for that subprogram.
9044 When the CU language allows it, this routine also defines a partial
9045 symbol for each nested subprogram that this subprogram contains.
9046 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9047 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9048
9049 PDI may also be a lexical block, in which case we simply search
9050 recursively for subprograms defined inside that lexical block.
9051 Again, this is only performed when the CU language allows this
9052 type of definitions. */
9053
9054 static void
9055 add_partial_subprogram (struct partial_die_info *pdi,
9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9057 int set_addrmap, struct dwarf2_cu *cu)
9058 {
9059 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9060 {
9061 if (pdi->has_pc_info)
9062 {
9063 if (pdi->lowpc < *lowpc)
9064 *lowpc = pdi->lowpc;
9065 if (pdi->highpc > *highpc)
9066 *highpc = pdi->highpc;
9067 if (set_addrmap)
9068 {
9069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9071 CORE_ADDR baseaddr;
9072 CORE_ADDR this_highpc;
9073 CORE_ADDR this_lowpc;
9074
9075 baseaddr = ANOFFSET (objfile->section_offsets,
9076 SECT_OFF_TEXT (objfile));
9077 this_lowpc
9078 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9079 pdi->lowpc + baseaddr)
9080 - baseaddr);
9081 this_highpc
9082 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9083 pdi->highpc + baseaddr)
9084 - baseaddr);
9085 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9086 this_lowpc, this_highpc - 1,
9087 cu->per_cu->v.psymtab);
9088 }
9089 }
9090
9091 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9092 {
9093 if (!pdi->is_declaration)
9094 /* Ignore subprogram DIEs that do not have a name, they are
9095 illegal. Do not emit a complaint at this point, we will
9096 do so when we convert this psymtab into a symtab. */
9097 if (pdi->name)
9098 add_partial_symbol (pdi, cu);
9099 }
9100 }
9101
9102 if (! pdi->has_children)
9103 return;
9104
9105 if (cu->language == language_ada)
9106 {
9107 pdi = pdi->die_child;
9108 while (pdi != NULL)
9109 {
9110 pdi->fixup (cu);
9111 if (pdi->tag == DW_TAG_subprogram
9112 || pdi->tag == DW_TAG_inlined_subroutine
9113 || pdi->tag == DW_TAG_lexical_block)
9114 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9115 pdi = pdi->die_sibling;
9116 }
9117 }
9118 }
9119
9120 /* Read a partial die corresponding to an enumeration type. */
9121
9122 static void
9123 add_partial_enumeration (struct partial_die_info *enum_pdi,
9124 struct dwarf2_cu *cu)
9125 {
9126 struct partial_die_info *pdi;
9127
9128 if (enum_pdi->name != NULL)
9129 add_partial_symbol (enum_pdi, cu);
9130
9131 pdi = enum_pdi->die_child;
9132 while (pdi)
9133 {
9134 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9135 complaint (_("malformed enumerator DIE ignored"));
9136 else
9137 add_partial_symbol (pdi, cu);
9138 pdi = pdi->die_sibling;
9139 }
9140 }
9141
9142 /* Return the initial uleb128 in the die at INFO_PTR. */
9143
9144 static unsigned int
9145 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9146 {
9147 unsigned int bytes_read;
9148
9149 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9150 }
9151
9152 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9153 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9154
9155 Return the corresponding abbrev, or NULL if the number is zero (indicating
9156 an empty DIE). In either case *BYTES_READ will be set to the length of
9157 the initial number. */
9158
9159 static struct abbrev_info *
9160 peek_die_abbrev (const die_reader_specs &reader,
9161 const gdb_byte *info_ptr, unsigned int *bytes_read)
9162 {
9163 dwarf2_cu *cu = reader.cu;
9164 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9165 unsigned int abbrev_number
9166 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9167
9168 if (abbrev_number == 0)
9169 return NULL;
9170
9171 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9172 if (!abbrev)
9173 {
9174 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9175 " at offset %s [in module %s]"),
9176 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9177 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9178 }
9179
9180 return abbrev;
9181 }
9182
9183 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9184 Returns a pointer to the end of a series of DIEs, terminated by an empty
9185 DIE. Any children of the skipped DIEs will also be skipped. */
9186
9187 static const gdb_byte *
9188 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9189 {
9190 while (1)
9191 {
9192 unsigned int bytes_read;
9193 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9194
9195 if (abbrev == NULL)
9196 return info_ptr + bytes_read;
9197 else
9198 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9199 }
9200 }
9201
9202 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9203 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9204 abbrev corresponding to that skipped uleb128 should be passed in
9205 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9206 children. */
9207
9208 static const gdb_byte *
9209 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9210 struct abbrev_info *abbrev)
9211 {
9212 unsigned int bytes_read;
9213 struct attribute attr;
9214 bfd *abfd = reader->abfd;
9215 struct dwarf2_cu *cu = reader->cu;
9216 const gdb_byte *buffer = reader->buffer;
9217 const gdb_byte *buffer_end = reader->buffer_end;
9218 unsigned int form, i;
9219
9220 for (i = 0; i < abbrev->num_attrs; i++)
9221 {
9222 /* The only abbrev we care about is DW_AT_sibling. */
9223 if (abbrev->attrs[i].name == DW_AT_sibling)
9224 {
9225 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9226 if (attr.form == DW_FORM_ref_addr)
9227 complaint (_("ignoring absolute DW_AT_sibling"));
9228 else
9229 {
9230 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9231 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9232
9233 if (sibling_ptr < info_ptr)
9234 complaint (_("DW_AT_sibling points backwards"));
9235 else if (sibling_ptr > reader->buffer_end)
9236 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9237 else
9238 return sibling_ptr;
9239 }
9240 }
9241
9242 /* If it isn't DW_AT_sibling, skip this attribute. */
9243 form = abbrev->attrs[i].form;
9244 skip_attribute:
9245 switch (form)
9246 {
9247 case DW_FORM_ref_addr:
9248 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9249 and later it is offset sized. */
9250 if (cu->header.version == 2)
9251 info_ptr += cu->header.addr_size;
9252 else
9253 info_ptr += cu->header.offset_size;
9254 break;
9255 case DW_FORM_GNU_ref_alt:
9256 info_ptr += cu->header.offset_size;
9257 break;
9258 case DW_FORM_addr:
9259 info_ptr += cu->header.addr_size;
9260 break;
9261 case DW_FORM_data1:
9262 case DW_FORM_ref1:
9263 case DW_FORM_flag:
9264 info_ptr += 1;
9265 break;
9266 case DW_FORM_flag_present:
9267 case DW_FORM_implicit_const:
9268 break;
9269 case DW_FORM_data2:
9270 case DW_FORM_ref2:
9271 info_ptr += 2;
9272 break;
9273 case DW_FORM_data4:
9274 case DW_FORM_ref4:
9275 info_ptr += 4;
9276 break;
9277 case DW_FORM_data8:
9278 case DW_FORM_ref8:
9279 case DW_FORM_ref_sig8:
9280 info_ptr += 8;
9281 break;
9282 case DW_FORM_data16:
9283 info_ptr += 16;
9284 break;
9285 case DW_FORM_string:
9286 read_direct_string (abfd, info_ptr, &bytes_read);
9287 info_ptr += bytes_read;
9288 break;
9289 case DW_FORM_sec_offset:
9290 case DW_FORM_strp:
9291 case DW_FORM_GNU_strp_alt:
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_exprloc:
9295 case DW_FORM_block:
9296 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9297 info_ptr += bytes_read;
9298 break;
9299 case DW_FORM_block1:
9300 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9301 break;
9302 case DW_FORM_block2:
9303 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9304 break;
9305 case DW_FORM_block4:
9306 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9307 break;
9308 case DW_FORM_addrx:
9309 case DW_FORM_strx:
9310 case DW_FORM_sdata:
9311 case DW_FORM_udata:
9312 case DW_FORM_ref_udata:
9313 case DW_FORM_GNU_addr_index:
9314 case DW_FORM_GNU_str_index:
9315 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9316 break;
9317 case DW_FORM_indirect:
9318 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9319 info_ptr += bytes_read;
9320 /* We need to continue parsing from here, so just go back to
9321 the top. */
9322 goto skip_attribute;
9323
9324 default:
9325 error (_("Dwarf Error: Cannot handle %s "
9326 "in DWARF reader [in module %s]"),
9327 dwarf_form_name (form),
9328 bfd_get_filename (abfd));
9329 }
9330 }
9331
9332 if (abbrev->has_children)
9333 return skip_children (reader, info_ptr);
9334 else
9335 return info_ptr;
9336 }
9337
9338 /* Locate ORIG_PDI's sibling.
9339 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9340
9341 static const gdb_byte *
9342 locate_pdi_sibling (const struct die_reader_specs *reader,
9343 struct partial_die_info *orig_pdi,
9344 const gdb_byte *info_ptr)
9345 {
9346 /* Do we know the sibling already? */
9347
9348 if (orig_pdi->sibling)
9349 return orig_pdi->sibling;
9350
9351 /* Are there any children to deal with? */
9352
9353 if (!orig_pdi->has_children)
9354 return info_ptr;
9355
9356 /* Skip the children the long way. */
9357
9358 return skip_children (reader, info_ptr);
9359 }
9360
9361 /* Expand this partial symbol table into a full symbol table. SELF is
9362 not NULL. */
9363
9364 static void
9365 dwarf2_read_symtab (struct partial_symtab *self,
9366 struct objfile *objfile)
9367 {
9368 struct dwarf2_per_objfile *dwarf2_per_objfile
9369 = get_dwarf2_per_objfile (objfile);
9370
9371 if (self->readin)
9372 {
9373 warning (_("bug: psymtab for %s is already read in."),
9374 self->filename);
9375 }
9376 else
9377 {
9378 if (info_verbose)
9379 {
9380 printf_filtered (_("Reading in symbols for %s..."),
9381 self->filename);
9382 gdb_flush (gdb_stdout);
9383 }
9384
9385 /* If this psymtab is constructed from a debug-only objfile, the
9386 has_section_at_zero flag will not necessarily be correct. We
9387 can get the correct value for this flag by looking at the data
9388 associated with the (presumably stripped) associated objfile. */
9389 if (objfile->separate_debug_objfile_backlink)
9390 {
9391 struct dwarf2_per_objfile *dpo_backlink
9392 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9393
9394 dwarf2_per_objfile->has_section_at_zero
9395 = dpo_backlink->has_section_at_zero;
9396 }
9397
9398 dwarf2_per_objfile->reading_partial_symbols = 0;
9399
9400 psymtab_to_symtab_1 (self);
9401
9402 /* Finish up the debug error message. */
9403 if (info_verbose)
9404 printf_filtered (_("done.\n"));
9405 }
9406
9407 process_cu_includes (dwarf2_per_objfile);
9408 }
9409 \f
9410 /* Reading in full CUs. */
9411
9412 /* Add PER_CU to the queue. */
9413
9414 static void
9415 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9416 enum language pretend_language)
9417 {
9418 struct dwarf2_queue_item *item;
9419
9420 per_cu->queued = 1;
9421 item = XNEW (struct dwarf2_queue_item);
9422 item->per_cu = per_cu;
9423 item->pretend_language = pretend_language;
9424 item->next = NULL;
9425
9426 if (dwarf2_queue == NULL)
9427 dwarf2_queue = item;
9428 else
9429 dwarf2_queue_tail->next = item;
9430
9431 dwarf2_queue_tail = item;
9432 }
9433
9434 /* If PER_CU is not yet queued, add it to the queue.
9435 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9436 dependency.
9437 The result is non-zero if PER_CU was queued, otherwise the result is zero
9438 meaning either PER_CU is already queued or it is already loaded.
9439
9440 N.B. There is an invariant here that if a CU is queued then it is loaded.
9441 The caller is required to load PER_CU if we return non-zero. */
9442
9443 static int
9444 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9445 struct dwarf2_per_cu_data *per_cu,
9446 enum language pretend_language)
9447 {
9448 /* We may arrive here during partial symbol reading, if we need full
9449 DIEs to process an unusual case (e.g. template arguments). Do
9450 not queue PER_CU, just tell our caller to load its DIEs. */
9451 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9452 {
9453 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9454 return 1;
9455 return 0;
9456 }
9457
9458 /* Mark the dependence relation so that we don't flush PER_CU
9459 too early. */
9460 if (dependent_cu != NULL)
9461 dwarf2_add_dependence (dependent_cu, per_cu);
9462
9463 /* If it's already on the queue, we have nothing to do. */
9464 if (per_cu->queued)
9465 return 0;
9466
9467 /* If the compilation unit is already loaded, just mark it as
9468 used. */
9469 if (per_cu->cu != NULL)
9470 {
9471 per_cu->cu->last_used = 0;
9472 return 0;
9473 }
9474
9475 /* Add it to the queue. */
9476 queue_comp_unit (per_cu, pretend_language);
9477
9478 return 1;
9479 }
9480
9481 /* Process the queue. */
9482
9483 static void
9484 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9485 {
9486 struct dwarf2_queue_item *item, *next_item;
9487
9488 if (dwarf_read_debug)
9489 {
9490 fprintf_unfiltered (gdb_stdlog,
9491 "Expanding one or more symtabs of objfile %s ...\n",
9492 objfile_name (dwarf2_per_objfile->objfile));
9493 }
9494
9495 /* The queue starts out with one item, but following a DIE reference
9496 may load a new CU, adding it to the end of the queue. */
9497 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9498 {
9499 if ((dwarf2_per_objfile->using_index
9500 ? !item->per_cu->v.quick->compunit_symtab
9501 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9502 /* Skip dummy CUs. */
9503 && item->per_cu->cu != NULL)
9504 {
9505 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9506 unsigned int debug_print_threshold;
9507 char buf[100];
9508
9509 if (per_cu->is_debug_types)
9510 {
9511 struct signatured_type *sig_type =
9512 (struct signatured_type *) per_cu;
9513
9514 sprintf (buf, "TU %s at offset %s",
9515 hex_string (sig_type->signature),
9516 sect_offset_str (per_cu->sect_off));
9517 /* There can be 100s of TUs.
9518 Only print them in verbose mode. */
9519 debug_print_threshold = 2;
9520 }
9521 else
9522 {
9523 sprintf (buf, "CU at offset %s",
9524 sect_offset_str (per_cu->sect_off));
9525 debug_print_threshold = 1;
9526 }
9527
9528 if (dwarf_read_debug >= debug_print_threshold)
9529 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9530
9531 if (per_cu->is_debug_types)
9532 process_full_type_unit (per_cu, item->pretend_language);
9533 else
9534 process_full_comp_unit (per_cu, item->pretend_language);
9535
9536 if (dwarf_read_debug >= debug_print_threshold)
9537 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9538 }
9539
9540 item->per_cu->queued = 0;
9541 next_item = item->next;
9542 xfree (item);
9543 }
9544
9545 dwarf2_queue_tail = NULL;
9546
9547 if (dwarf_read_debug)
9548 {
9549 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9550 objfile_name (dwarf2_per_objfile->objfile));
9551 }
9552 }
9553
9554 /* Read in full symbols for PST, and anything it depends on. */
9555
9556 static void
9557 psymtab_to_symtab_1 (struct partial_symtab *pst)
9558 {
9559 struct dwarf2_per_cu_data *per_cu;
9560 int i;
9561
9562 if (pst->readin)
9563 return;
9564
9565 for (i = 0; i < pst->number_of_dependencies; i++)
9566 if (!pst->dependencies[i]->readin
9567 && pst->dependencies[i]->user == NULL)
9568 {
9569 /* Inform about additional files that need to be read in. */
9570 if (info_verbose)
9571 {
9572 /* FIXME: i18n: Need to make this a single string. */
9573 fputs_filtered (" ", gdb_stdout);
9574 wrap_here ("");
9575 fputs_filtered ("and ", gdb_stdout);
9576 wrap_here ("");
9577 printf_filtered ("%s...", pst->dependencies[i]->filename);
9578 wrap_here (""); /* Flush output. */
9579 gdb_flush (gdb_stdout);
9580 }
9581 psymtab_to_symtab_1 (pst->dependencies[i]);
9582 }
9583
9584 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9585
9586 if (per_cu == NULL)
9587 {
9588 /* It's an include file, no symbols to read for it.
9589 Everything is in the parent symtab. */
9590 pst->readin = 1;
9591 return;
9592 }
9593
9594 dw2_do_instantiate_symtab (per_cu, false);
9595 }
9596
9597 /* Trivial hash function for die_info: the hash value of a DIE
9598 is its offset in .debug_info for this objfile. */
9599
9600 static hashval_t
9601 die_hash (const void *item)
9602 {
9603 const struct die_info *die = (const struct die_info *) item;
9604
9605 return to_underlying (die->sect_off);
9606 }
9607
9608 /* Trivial comparison function for die_info structures: two DIEs
9609 are equal if they have the same offset. */
9610
9611 static int
9612 die_eq (const void *item_lhs, const void *item_rhs)
9613 {
9614 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9615 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9616
9617 return die_lhs->sect_off == die_rhs->sect_off;
9618 }
9619
9620 /* die_reader_func for load_full_comp_unit.
9621 This is identical to read_signatured_type_reader,
9622 but is kept separate for now. */
9623
9624 static void
9625 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9626 const gdb_byte *info_ptr,
9627 struct die_info *comp_unit_die,
9628 int has_children,
9629 void *data)
9630 {
9631 struct dwarf2_cu *cu = reader->cu;
9632 enum language *language_ptr = (enum language *) data;
9633
9634 gdb_assert (cu->die_hash == NULL);
9635 cu->die_hash =
9636 htab_create_alloc_ex (cu->header.length / 12,
9637 die_hash,
9638 die_eq,
9639 NULL,
9640 &cu->comp_unit_obstack,
9641 hashtab_obstack_allocate,
9642 dummy_obstack_deallocate);
9643
9644 if (has_children)
9645 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9646 &info_ptr, comp_unit_die);
9647 cu->dies = comp_unit_die;
9648 /* comp_unit_die is not stored in die_hash, no need. */
9649
9650 /* We try not to read any attributes in this function, because not
9651 all CUs needed for references have been loaded yet, and symbol
9652 table processing isn't initialized. But we have to set the CU language,
9653 or we won't be able to build types correctly.
9654 Similarly, if we do not read the producer, we can not apply
9655 producer-specific interpretation. */
9656 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9657 }
9658
9659 /* Load the DIEs associated with PER_CU into memory. */
9660
9661 static void
9662 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9663 bool skip_partial,
9664 enum language pretend_language)
9665 {
9666 gdb_assert (! this_cu->is_debug_types);
9667
9668 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9669 load_full_comp_unit_reader, &pretend_language);
9670 }
9671
9672 /* Add a DIE to the delayed physname list. */
9673
9674 static void
9675 add_to_method_list (struct type *type, int fnfield_index, int index,
9676 const char *name, struct die_info *die,
9677 struct dwarf2_cu *cu)
9678 {
9679 struct delayed_method_info mi;
9680 mi.type = type;
9681 mi.fnfield_index = fnfield_index;
9682 mi.index = index;
9683 mi.name = name;
9684 mi.die = die;
9685 cu->method_list.push_back (mi);
9686 }
9687
9688 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9689 "const" / "volatile". If so, decrements LEN by the length of the
9690 modifier and return true. Otherwise return false. */
9691
9692 template<size_t N>
9693 static bool
9694 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9695 {
9696 size_t mod_len = sizeof (mod) - 1;
9697 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9698 {
9699 len -= mod_len;
9700 return true;
9701 }
9702 return false;
9703 }
9704
9705 /* Compute the physnames of any methods on the CU's method list.
9706
9707 The computation of method physnames is delayed in order to avoid the
9708 (bad) condition that one of the method's formal parameters is of an as yet
9709 incomplete type. */
9710
9711 static void
9712 compute_delayed_physnames (struct dwarf2_cu *cu)
9713 {
9714 /* Only C++ delays computing physnames. */
9715 if (cu->method_list.empty ())
9716 return;
9717 gdb_assert (cu->language == language_cplus);
9718
9719 for (const delayed_method_info &mi : cu->method_list)
9720 {
9721 const char *physname;
9722 struct fn_fieldlist *fn_flp
9723 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9724 physname = dwarf2_physname (mi.name, mi.die, cu);
9725 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9726 = physname ? physname : "";
9727
9728 /* Since there's no tag to indicate whether a method is a
9729 const/volatile overload, extract that information out of the
9730 demangled name. */
9731 if (physname != NULL)
9732 {
9733 size_t len = strlen (physname);
9734
9735 while (1)
9736 {
9737 if (physname[len] == ')') /* shortcut */
9738 break;
9739 else if (check_modifier (physname, len, " const"))
9740 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9741 else if (check_modifier (physname, len, " volatile"))
9742 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9743 else
9744 break;
9745 }
9746 }
9747 }
9748
9749 /* The list is no longer needed. */
9750 cu->method_list.clear ();
9751 }
9752
9753 /* Go objects should be embedded in a DW_TAG_module DIE,
9754 and it's not clear if/how imported objects will appear.
9755 To keep Go support simple until that's worked out,
9756 go back through what we've read and create something usable.
9757 We could do this while processing each DIE, and feels kinda cleaner,
9758 but that way is more invasive.
9759 This is to, for example, allow the user to type "p var" or "b main"
9760 without having to specify the package name, and allow lookups
9761 of module.object to work in contexts that use the expression
9762 parser. */
9763
9764 static void
9765 fixup_go_packaging (struct dwarf2_cu *cu)
9766 {
9767 char *package_name = NULL;
9768 struct pending *list;
9769 int i;
9770
9771 for (list = *cu->get_builder ()->get_global_symbols ();
9772 list != NULL;
9773 list = list->next)
9774 {
9775 for (i = 0; i < list->nsyms; ++i)
9776 {
9777 struct symbol *sym = list->symbol[i];
9778
9779 if (SYMBOL_LANGUAGE (sym) == language_go
9780 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9781 {
9782 char *this_package_name = go_symbol_package_name (sym);
9783
9784 if (this_package_name == NULL)
9785 continue;
9786 if (package_name == NULL)
9787 package_name = this_package_name;
9788 else
9789 {
9790 struct objfile *objfile
9791 = cu->per_cu->dwarf2_per_objfile->objfile;
9792 if (strcmp (package_name, this_package_name) != 0)
9793 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9794 (symbol_symtab (sym) != NULL
9795 ? symtab_to_filename_for_display
9796 (symbol_symtab (sym))
9797 : objfile_name (objfile)),
9798 this_package_name, package_name);
9799 xfree (this_package_name);
9800 }
9801 }
9802 }
9803 }
9804
9805 if (package_name != NULL)
9806 {
9807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9808 const char *saved_package_name
9809 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9810 package_name,
9811 strlen (package_name));
9812 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9813 saved_package_name);
9814 struct symbol *sym;
9815
9816 sym = allocate_symbol (objfile);
9817 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9818 SYMBOL_SET_NAMES (sym, saved_package_name,
9819 strlen (saved_package_name), 0, objfile);
9820 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9821 e.g., "main" finds the "main" module and not C's main(). */
9822 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9824 SYMBOL_TYPE (sym) = type;
9825
9826 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9827
9828 xfree (package_name);
9829 }
9830 }
9831
9832 /* Allocate a fully-qualified name consisting of the two parts on the
9833 obstack. */
9834
9835 static const char *
9836 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9837 {
9838 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9839 }
9840
9841 /* A helper that allocates a struct discriminant_info to attach to a
9842 union type. */
9843
9844 static struct discriminant_info *
9845 alloc_discriminant_info (struct type *type, int discriminant_index,
9846 int default_index)
9847 {
9848 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9849 gdb_assert (discriminant_index == -1
9850 || (discriminant_index >= 0
9851 && discriminant_index < TYPE_NFIELDS (type)));
9852 gdb_assert (default_index == -1
9853 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9854
9855 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9856
9857 struct discriminant_info *disc
9858 = ((struct discriminant_info *)
9859 TYPE_ZALLOC (type,
9860 offsetof (struct discriminant_info, discriminants)
9861 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9862 disc->default_index = default_index;
9863 disc->discriminant_index = discriminant_index;
9864
9865 struct dynamic_prop prop;
9866 prop.kind = PROP_UNDEFINED;
9867 prop.data.baton = disc;
9868
9869 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9870
9871 return disc;
9872 }
9873
9874 /* Some versions of rustc emitted enums in an unusual way.
9875
9876 Ordinary enums were emitted as unions. The first element of each
9877 structure in the union was named "RUST$ENUM$DISR". This element
9878 held the discriminant.
9879
9880 These versions of Rust also implemented the "non-zero"
9881 optimization. When the enum had two values, and one is empty and
9882 the other holds a pointer that cannot be zero, the pointer is used
9883 as the discriminant, with a zero value meaning the empty variant.
9884 Here, the union's first member is of the form
9885 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9886 where the fieldnos are the indices of the fields that should be
9887 traversed in order to find the field (which may be several fields deep)
9888 and the variantname is the name of the variant of the case when the
9889 field is zero.
9890
9891 This function recognizes whether TYPE is of one of these forms,
9892 and, if so, smashes it to be a variant type. */
9893
9894 static void
9895 quirk_rust_enum (struct type *type, struct objfile *objfile)
9896 {
9897 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9898
9899 /* We don't need to deal with empty enums. */
9900 if (TYPE_NFIELDS (type) == 0)
9901 return;
9902
9903 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9904 if (TYPE_NFIELDS (type) == 1
9905 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9906 {
9907 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9908
9909 /* Decode the field name to find the offset of the
9910 discriminant. */
9911 ULONGEST bit_offset = 0;
9912 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9913 while (name[0] >= '0' && name[0] <= '9')
9914 {
9915 char *tail;
9916 unsigned long index = strtoul (name, &tail, 10);
9917 name = tail;
9918 if (*name != '$'
9919 || index >= TYPE_NFIELDS (field_type)
9920 || (TYPE_FIELD_LOC_KIND (field_type, index)
9921 != FIELD_LOC_KIND_BITPOS))
9922 {
9923 complaint (_("Could not parse Rust enum encoding string \"%s\""
9924 "[in module %s]"),
9925 TYPE_FIELD_NAME (type, 0),
9926 objfile_name (objfile));
9927 return;
9928 }
9929 ++name;
9930
9931 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9932 field_type = TYPE_FIELD_TYPE (field_type, index);
9933 }
9934
9935 /* Make a union to hold the variants. */
9936 struct type *union_type = alloc_type (objfile);
9937 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9938 TYPE_NFIELDS (union_type) = 3;
9939 TYPE_FIELDS (union_type)
9940 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9941 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9942 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9943
9944 /* Put the discriminant must at index 0. */
9945 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9946 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9947 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9948 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9949
9950 /* The order of fields doesn't really matter, so put the real
9951 field at index 1 and the data-less field at index 2. */
9952 struct discriminant_info *disc
9953 = alloc_discriminant_info (union_type, 0, 1);
9954 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9955 TYPE_FIELD_NAME (union_type, 1)
9956 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9957 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9958 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9959 TYPE_FIELD_NAME (union_type, 1));
9960
9961 const char *dataless_name
9962 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9963 name);
9964 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9965 dataless_name);
9966 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9967 /* NAME points into the original discriminant name, which
9968 already has the correct lifetime. */
9969 TYPE_FIELD_NAME (union_type, 2) = name;
9970 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9971 disc->discriminants[2] = 0;
9972
9973 /* Smash this type to be a structure type. We have to do this
9974 because the type has already been recorded. */
9975 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9976 TYPE_NFIELDS (type) = 1;
9977 TYPE_FIELDS (type)
9978 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9979
9980 /* Install the variant part. */
9981 TYPE_FIELD_TYPE (type, 0) = union_type;
9982 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9983 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9984 }
9985 else if (TYPE_NFIELDS (type) == 1)
9986 {
9987 /* We assume that a union with a single field is a univariant
9988 enum. */
9989 /* Smash this type to be a structure type. We have to do this
9990 because the type has already been recorded. */
9991 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9992
9993 /* Make a union to hold the variants. */
9994 struct type *union_type = alloc_type (objfile);
9995 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9996 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9997 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9998 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9999 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10000
10001 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10002 const char *variant_name
10003 = rust_last_path_segment (TYPE_NAME (field_type));
10004 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10005 TYPE_NAME (field_type)
10006 = rust_fully_qualify (&objfile->objfile_obstack,
10007 TYPE_NAME (type), variant_name);
10008
10009 /* Install the union in the outer struct type. */
10010 TYPE_NFIELDS (type) = 1;
10011 TYPE_FIELDS (type)
10012 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10013 TYPE_FIELD_TYPE (type, 0) = union_type;
10014 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10015 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10016
10017 alloc_discriminant_info (union_type, -1, 0);
10018 }
10019 else
10020 {
10021 struct type *disr_type = nullptr;
10022 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10023 {
10024 disr_type = TYPE_FIELD_TYPE (type, i);
10025
10026 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10027 {
10028 /* All fields of a true enum will be structs. */
10029 return;
10030 }
10031 else if (TYPE_NFIELDS (disr_type) == 0)
10032 {
10033 /* Could be data-less variant, so keep going. */
10034 disr_type = nullptr;
10035 }
10036 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10037 "RUST$ENUM$DISR") != 0)
10038 {
10039 /* Not a Rust enum. */
10040 return;
10041 }
10042 else
10043 {
10044 /* Found one. */
10045 break;
10046 }
10047 }
10048
10049 /* If we got here without a discriminant, then it's probably
10050 just a union. */
10051 if (disr_type == nullptr)
10052 return;
10053
10054 /* Smash this type to be a structure type. We have to do this
10055 because the type has already been recorded. */
10056 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10057
10058 /* Make a union to hold the variants. */
10059 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10060 struct type *union_type = alloc_type (objfile);
10061 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10062 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10063 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10064 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10065 TYPE_FIELDS (union_type)
10066 = (struct field *) TYPE_ZALLOC (union_type,
10067 (TYPE_NFIELDS (union_type)
10068 * sizeof (struct field)));
10069
10070 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10071 TYPE_NFIELDS (type) * sizeof (struct field));
10072
10073 /* Install the discriminant at index 0 in the union. */
10074 TYPE_FIELD (union_type, 0) = *disr_field;
10075 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10076 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10077
10078 /* Install the union in the outer struct type. */
10079 TYPE_FIELD_TYPE (type, 0) = union_type;
10080 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10081 TYPE_NFIELDS (type) = 1;
10082
10083 /* Set the size and offset of the union type. */
10084 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10085
10086 /* We need a way to find the correct discriminant given a
10087 variant name. For convenience we build a map here. */
10088 struct type *enum_type = FIELD_TYPE (*disr_field);
10089 std::unordered_map<std::string, ULONGEST> discriminant_map;
10090 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10091 {
10092 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10093 {
10094 const char *name
10095 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10096 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10097 }
10098 }
10099
10100 int n_fields = TYPE_NFIELDS (union_type);
10101 struct discriminant_info *disc
10102 = alloc_discriminant_info (union_type, 0, -1);
10103 /* Skip the discriminant here. */
10104 for (int i = 1; i < n_fields; ++i)
10105 {
10106 /* Find the final word in the name of this variant's type.
10107 That name can be used to look up the correct
10108 discriminant. */
10109 const char *variant_name
10110 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10111 i)));
10112
10113 auto iter = discriminant_map.find (variant_name);
10114 if (iter != discriminant_map.end ())
10115 disc->discriminants[i] = iter->second;
10116
10117 /* Remove the discriminant field, if it exists. */
10118 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10119 if (TYPE_NFIELDS (sub_type) > 0)
10120 {
10121 --TYPE_NFIELDS (sub_type);
10122 ++TYPE_FIELDS (sub_type);
10123 }
10124 TYPE_FIELD_NAME (union_type, i) = variant_name;
10125 TYPE_NAME (sub_type)
10126 = rust_fully_qualify (&objfile->objfile_obstack,
10127 TYPE_NAME (type), variant_name);
10128 }
10129 }
10130 }
10131
10132 /* Rewrite some Rust unions to be structures with variants parts. */
10133
10134 static void
10135 rust_union_quirks (struct dwarf2_cu *cu)
10136 {
10137 gdb_assert (cu->language == language_rust);
10138 for (type *type_ : cu->rust_unions)
10139 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10140 /* We don't need this any more. */
10141 cu->rust_unions.clear ();
10142 }
10143
10144 /* Return the symtab for PER_CU. This works properly regardless of
10145 whether we're using the index or psymtabs. */
10146
10147 static struct compunit_symtab *
10148 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10149 {
10150 return (per_cu->dwarf2_per_objfile->using_index
10151 ? per_cu->v.quick->compunit_symtab
10152 : per_cu->v.psymtab->compunit_symtab);
10153 }
10154
10155 /* A helper function for computing the list of all symbol tables
10156 included by PER_CU. */
10157
10158 static void
10159 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10160 htab_t all_children, htab_t all_type_symtabs,
10161 struct dwarf2_per_cu_data *per_cu,
10162 struct compunit_symtab *immediate_parent)
10163 {
10164 void **slot;
10165 int ix;
10166 struct compunit_symtab *cust;
10167 struct dwarf2_per_cu_data *iter;
10168
10169 slot = htab_find_slot (all_children, per_cu, INSERT);
10170 if (*slot != NULL)
10171 {
10172 /* This inclusion and its children have been processed. */
10173 return;
10174 }
10175
10176 *slot = per_cu;
10177 /* Only add a CU if it has a symbol table. */
10178 cust = get_compunit_symtab (per_cu);
10179 if (cust != NULL)
10180 {
10181 /* If this is a type unit only add its symbol table if we haven't
10182 seen it yet (type unit per_cu's can share symtabs). */
10183 if (per_cu->is_debug_types)
10184 {
10185 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10186 if (*slot == NULL)
10187 {
10188 *slot = cust;
10189 result->push_back (cust);
10190 if (cust->user == NULL)
10191 cust->user = immediate_parent;
10192 }
10193 }
10194 else
10195 {
10196 result->push_back (cust);
10197 if (cust->user == NULL)
10198 cust->user = immediate_parent;
10199 }
10200 }
10201
10202 for (ix = 0;
10203 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10204 ++ix)
10205 {
10206 recursively_compute_inclusions (result, all_children,
10207 all_type_symtabs, iter, cust);
10208 }
10209 }
10210
10211 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10212 PER_CU. */
10213
10214 static void
10215 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10216 {
10217 gdb_assert (! per_cu->is_debug_types);
10218
10219 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10220 {
10221 int ix, len;
10222 struct dwarf2_per_cu_data *per_cu_iter;
10223 std::vector<compunit_symtab *> result_symtabs;
10224 htab_t all_children, all_type_symtabs;
10225 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10226
10227 /* If we don't have a symtab, we can just skip this case. */
10228 if (cust == NULL)
10229 return;
10230
10231 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10232 NULL, xcalloc, xfree);
10233 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10234 NULL, xcalloc, xfree);
10235
10236 for (ix = 0;
10237 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10238 ix, per_cu_iter);
10239 ++ix)
10240 {
10241 recursively_compute_inclusions (&result_symtabs, all_children,
10242 all_type_symtabs, per_cu_iter,
10243 cust);
10244 }
10245
10246 /* Now we have a transitive closure of all the included symtabs. */
10247 len = result_symtabs.size ();
10248 cust->includes
10249 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10250 struct compunit_symtab *, len + 1);
10251 memcpy (cust->includes, result_symtabs.data (),
10252 len * sizeof (compunit_symtab *));
10253 cust->includes[len] = NULL;
10254
10255 htab_delete (all_children);
10256 htab_delete (all_type_symtabs);
10257 }
10258 }
10259
10260 /* Compute the 'includes' field for the symtabs of all the CUs we just
10261 read. */
10262
10263 static void
10264 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10265 {
10266 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10267 {
10268 if (! iter->is_debug_types)
10269 compute_compunit_symtab_includes (iter);
10270 }
10271
10272 dwarf2_per_objfile->just_read_cus.clear ();
10273 }
10274
10275 /* Generate full symbol information for PER_CU, whose DIEs have
10276 already been loaded into memory. */
10277
10278 static void
10279 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10280 enum language pretend_language)
10281 {
10282 struct dwarf2_cu *cu = per_cu->cu;
10283 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10284 struct objfile *objfile = dwarf2_per_objfile->objfile;
10285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10286 CORE_ADDR lowpc, highpc;
10287 struct compunit_symtab *cust;
10288 CORE_ADDR baseaddr;
10289 struct block *static_block;
10290 CORE_ADDR addr;
10291
10292 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10293
10294 /* Clear the list here in case something was left over. */
10295 cu->method_list.clear ();
10296
10297 cu->language = pretend_language;
10298 cu->language_defn = language_def (cu->language);
10299
10300 /* Do line number decoding in read_file_scope () */
10301 process_die (cu->dies, cu);
10302
10303 /* For now fudge the Go package. */
10304 if (cu->language == language_go)
10305 fixup_go_packaging (cu);
10306
10307 /* Now that we have processed all the DIEs in the CU, all the types
10308 should be complete, and it should now be safe to compute all of the
10309 physnames. */
10310 compute_delayed_physnames (cu);
10311
10312 if (cu->language == language_rust)
10313 rust_union_quirks (cu);
10314
10315 /* Some compilers don't define a DW_AT_high_pc attribute for the
10316 compilation unit. If the DW_AT_high_pc is missing, synthesize
10317 it, by scanning the DIE's below the compilation unit. */
10318 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10319
10320 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10321 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10322
10323 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10324 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10325 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10326 addrmap to help ensure it has an accurate map of pc values belonging to
10327 this comp unit. */
10328 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10329
10330 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10331 SECT_OFF_TEXT (objfile),
10332 0);
10333
10334 if (cust != NULL)
10335 {
10336 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10337
10338 /* Set symtab language to language from DW_AT_language. If the
10339 compilation is from a C file generated by language preprocessors, do
10340 not set the language if it was already deduced by start_subfile. */
10341 if (!(cu->language == language_c
10342 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10343 COMPUNIT_FILETABS (cust)->language = cu->language;
10344
10345 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10346 produce DW_AT_location with location lists but it can be possibly
10347 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10348 there were bugs in prologue debug info, fixed later in GCC-4.5
10349 by "unwind info for epilogues" patch (which is not directly related).
10350
10351 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10352 needed, it would be wrong due to missing DW_AT_producer there.
10353
10354 Still one can confuse GDB by using non-standard GCC compilation
10355 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10356 */
10357 if (cu->has_loclist && gcc_4_minor >= 5)
10358 cust->locations_valid = 1;
10359
10360 if (gcc_4_minor >= 5)
10361 cust->epilogue_unwind_valid = 1;
10362
10363 cust->call_site_htab = cu->call_site_htab;
10364 }
10365
10366 if (dwarf2_per_objfile->using_index)
10367 per_cu->v.quick->compunit_symtab = cust;
10368 else
10369 {
10370 struct partial_symtab *pst = per_cu->v.psymtab;
10371 pst->compunit_symtab = cust;
10372 pst->readin = 1;
10373 }
10374
10375 /* Push it for inclusion processing later. */
10376 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10377
10378 /* Not needed any more. */
10379 cu->reset_builder ();
10380 }
10381
10382 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10383 already been loaded into memory. */
10384
10385 static void
10386 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10387 enum language pretend_language)
10388 {
10389 struct dwarf2_cu *cu = per_cu->cu;
10390 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10391 struct objfile *objfile = dwarf2_per_objfile->objfile;
10392 struct compunit_symtab *cust;
10393 struct signatured_type *sig_type;
10394
10395 gdb_assert (per_cu->is_debug_types);
10396 sig_type = (struct signatured_type *) per_cu;
10397
10398 /* Clear the list here in case something was left over. */
10399 cu->method_list.clear ();
10400
10401 cu->language = pretend_language;
10402 cu->language_defn = language_def (cu->language);
10403
10404 /* The symbol tables are set up in read_type_unit_scope. */
10405 process_die (cu->dies, cu);
10406
10407 /* For now fudge the Go package. */
10408 if (cu->language == language_go)
10409 fixup_go_packaging (cu);
10410
10411 /* Now that we have processed all the DIEs in the CU, all the types
10412 should be complete, and it should now be safe to compute all of the
10413 physnames. */
10414 compute_delayed_physnames (cu);
10415
10416 if (cu->language == language_rust)
10417 rust_union_quirks (cu);
10418
10419 /* TUs share symbol tables.
10420 If this is the first TU to use this symtab, complete the construction
10421 of it with end_expandable_symtab. Otherwise, complete the addition of
10422 this TU's symbols to the existing symtab. */
10423 if (sig_type->type_unit_group->compunit_symtab == NULL)
10424 {
10425 buildsym_compunit *builder = cu->get_builder ();
10426 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10427 sig_type->type_unit_group->compunit_symtab = cust;
10428
10429 if (cust != NULL)
10430 {
10431 /* Set symtab language to language from DW_AT_language. If the
10432 compilation is from a C file generated by language preprocessors,
10433 do not set the language if it was already deduced by
10434 start_subfile. */
10435 if (!(cu->language == language_c
10436 && COMPUNIT_FILETABS (cust)->language != language_c))
10437 COMPUNIT_FILETABS (cust)->language = cu->language;
10438 }
10439 }
10440 else
10441 {
10442 cu->get_builder ()->augment_type_symtab ();
10443 cust = sig_type->type_unit_group->compunit_symtab;
10444 }
10445
10446 if (dwarf2_per_objfile->using_index)
10447 per_cu->v.quick->compunit_symtab = cust;
10448 else
10449 {
10450 struct partial_symtab *pst = per_cu->v.psymtab;
10451 pst->compunit_symtab = cust;
10452 pst->readin = 1;
10453 }
10454
10455 /* Not needed any more. */
10456 cu->reset_builder ();
10457 }
10458
10459 /* Process an imported unit DIE. */
10460
10461 static void
10462 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10463 {
10464 struct attribute *attr;
10465
10466 /* For now we don't handle imported units in type units. */
10467 if (cu->per_cu->is_debug_types)
10468 {
10469 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10470 " supported in type units [in module %s]"),
10471 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10472 }
10473
10474 attr = dwarf2_attr (die, DW_AT_import, cu);
10475 if (attr != NULL)
10476 {
10477 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10478 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10479 dwarf2_per_cu_data *per_cu
10480 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10481 cu->per_cu->dwarf2_per_objfile);
10482
10483 /* If necessary, add it to the queue and load its DIEs. */
10484 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10485 load_full_comp_unit (per_cu, false, cu->language);
10486
10487 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10488 per_cu);
10489 }
10490 }
10491
10492 /* RAII object that represents a process_die scope: i.e.,
10493 starts/finishes processing a DIE. */
10494 class process_die_scope
10495 {
10496 public:
10497 process_die_scope (die_info *die, dwarf2_cu *cu)
10498 : m_die (die), m_cu (cu)
10499 {
10500 /* We should only be processing DIEs not already in process. */
10501 gdb_assert (!m_die->in_process);
10502 m_die->in_process = true;
10503 }
10504
10505 ~process_die_scope ()
10506 {
10507 m_die->in_process = false;
10508
10509 /* If we're done processing the DIE for the CU that owns the line
10510 header, we don't need the line header anymore. */
10511 if (m_cu->line_header_die_owner == m_die)
10512 {
10513 delete m_cu->line_header;
10514 m_cu->line_header = NULL;
10515 m_cu->line_header_die_owner = NULL;
10516 }
10517 }
10518
10519 private:
10520 die_info *m_die;
10521 dwarf2_cu *m_cu;
10522 };
10523
10524 /* Process a die and its children. */
10525
10526 static void
10527 process_die (struct die_info *die, struct dwarf2_cu *cu)
10528 {
10529 process_die_scope scope (die, cu);
10530
10531 switch (die->tag)
10532 {
10533 case DW_TAG_padding:
10534 break;
10535 case DW_TAG_compile_unit:
10536 case DW_TAG_partial_unit:
10537 read_file_scope (die, cu);
10538 break;
10539 case DW_TAG_type_unit:
10540 read_type_unit_scope (die, cu);
10541 break;
10542 case DW_TAG_subprogram:
10543 case DW_TAG_inlined_subroutine:
10544 read_func_scope (die, cu);
10545 break;
10546 case DW_TAG_lexical_block:
10547 case DW_TAG_try_block:
10548 case DW_TAG_catch_block:
10549 read_lexical_block_scope (die, cu);
10550 break;
10551 case DW_TAG_call_site:
10552 case DW_TAG_GNU_call_site:
10553 read_call_site_scope (die, cu);
10554 break;
10555 case DW_TAG_class_type:
10556 case DW_TAG_interface_type:
10557 case DW_TAG_structure_type:
10558 case DW_TAG_union_type:
10559 process_structure_scope (die, cu);
10560 break;
10561 case DW_TAG_enumeration_type:
10562 process_enumeration_scope (die, cu);
10563 break;
10564
10565 /* These dies have a type, but processing them does not create
10566 a symbol or recurse to process the children. Therefore we can
10567 read them on-demand through read_type_die. */
10568 case DW_TAG_subroutine_type:
10569 case DW_TAG_set_type:
10570 case DW_TAG_array_type:
10571 case DW_TAG_pointer_type:
10572 case DW_TAG_ptr_to_member_type:
10573 case DW_TAG_reference_type:
10574 case DW_TAG_rvalue_reference_type:
10575 case DW_TAG_string_type:
10576 break;
10577
10578 case DW_TAG_base_type:
10579 case DW_TAG_subrange_type:
10580 case DW_TAG_typedef:
10581 /* Add a typedef symbol for the type definition, if it has a
10582 DW_AT_name. */
10583 new_symbol (die, read_type_die (die, cu), cu);
10584 break;
10585 case DW_TAG_common_block:
10586 read_common_block (die, cu);
10587 break;
10588 case DW_TAG_common_inclusion:
10589 break;
10590 case DW_TAG_namespace:
10591 cu->processing_has_namespace_info = true;
10592 read_namespace (die, cu);
10593 break;
10594 case DW_TAG_module:
10595 cu->processing_has_namespace_info = true;
10596 read_module (die, cu);
10597 break;
10598 case DW_TAG_imported_declaration:
10599 cu->processing_has_namespace_info = true;
10600 if (read_namespace_alias (die, cu))
10601 break;
10602 /* The declaration is not a global namespace alias. */
10603 /* Fall through. */
10604 case DW_TAG_imported_module:
10605 cu->processing_has_namespace_info = true;
10606 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10607 || cu->language != language_fortran))
10608 complaint (_("Tag '%s' has unexpected children"),
10609 dwarf_tag_name (die->tag));
10610 read_import_statement (die, cu);
10611 break;
10612
10613 case DW_TAG_imported_unit:
10614 process_imported_unit_die (die, cu);
10615 break;
10616
10617 case DW_TAG_variable:
10618 read_variable (die, cu);
10619 break;
10620
10621 default:
10622 new_symbol (die, NULL, cu);
10623 break;
10624 }
10625 }
10626 \f
10627 /* DWARF name computation. */
10628
10629 /* A helper function for dwarf2_compute_name which determines whether DIE
10630 needs to have the name of the scope prepended to the name listed in the
10631 die. */
10632
10633 static int
10634 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10635 {
10636 struct attribute *attr;
10637
10638 switch (die->tag)
10639 {
10640 case DW_TAG_namespace:
10641 case DW_TAG_typedef:
10642 case DW_TAG_class_type:
10643 case DW_TAG_interface_type:
10644 case DW_TAG_structure_type:
10645 case DW_TAG_union_type:
10646 case DW_TAG_enumeration_type:
10647 case DW_TAG_enumerator:
10648 case DW_TAG_subprogram:
10649 case DW_TAG_inlined_subroutine:
10650 case DW_TAG_member:
10651 case DW_TAG_imported_declaration:
10652 return 1;
10653
10654 case DW_TAG_variable:
10655 case DW_TAG_constant:
10656 /* We only need to prefix "globally" visible variables. These include
10657 any variable marked with DW_AT_external or any variable that
10658 lives in a namespace. [Variables in anonymous namespaces
10659 require prefixing, but they are not DW_AT_external.] */
10660
10661 if (dwarf2_attr (die, DW_AT_specification, cu))
10662 {
10663 struct dwarf2_cu *spec_cu = cu;
10664
10665 return die_needs_namespace (die_specification (die, &spec_cu),
10666 spec_cu);
10667 }
10668
10669 attr = dwarf2_attr (die, DW_AT_external, cu);
10670 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10671 && die->parent->tag != DW_TAG_module)
10672 return 0;
10673 /* A variable in a lexical block of some kind does not need a
10674 namespace, even though in C++ such variables may be external
10675 and have a mangled name. */
10676 if (die->parent->tag == DW_TAG_lexical_block
10677 || die->parent->tag == DW_TAG_try_block
10678 || die->parent->tag == DW_TAG_catch_block
10679 || die->parent->tag == DW_TAG_subprogram)
10680 return 0;
10681 return 1;
10682
10683 default:
10684 return 0;
10685 }
10686 }
10687
10688 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10689 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10690 defined for the given DIE. */
10691
10692 static struct attribute *
10693 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10694 {
10695 struct attribute *attr;
10696
10697 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10698 if (attr == NULL)
10699 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10700
10701 return attr;
10702 }
10703
10704 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10705 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10706 defined for the given DIE. */
10707
10708 static const char *
10709 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10710 {
10711 const char *linkage_name;
10712
10713 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10714 if (linkage_name == NULL)
10715 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10716
10717 return linkage_name;
10718 }
10719
10720 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10721 compute the physname for the object, which include a method's:
10722 - formal parameters (C++),
10723 - receiver type (Go),
10724
10725 The term "physname" is a bit confusing.
10726 For C++, for example, it is the demangled name.
10727 For Go, for example, it's the mangled name.
10728
10729 For Ada, return the DIE's linkage name rather than the fully qualified
10730 name. PHYSNAME is ignored..
10731
10732 The result is allocated on the objfile_obstack and canonicalized. */
10733
10734 static const char *
10735 dwarf2_compute_name (const char *name,
10736 struct die_info *die, struct dwarf2_cu *cu,
10737 int physname)
10738 {
10739 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10740
10741 if (name == NULL)
10742 name = dwarf2_name (die, cu);
10743
10744 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10745 but otherwise compute it by typename_concat inside GDB.
10746 FIXME: Actually this is not really true, or at least not always true.
10747 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10748 Fortran names because there is no mangling standard. So new_symbol
10749 will set the demangled name to the result of dwarf2_full_name, and it is
10750 the demangled name that GDB uses if it exists. */
10751 if (cu->language == language_ada
10752 || (cu->language == language_fortran && physname))
10753 {
10754 /* For Ada unit, we prefer the linkage name over the name, as
10755 the former contains the exported name, which the user expects
10756 to be able to reference. Ideally, we want the user to be able
10757 to reference this entity using either natural or linkage name,
10758 but we haven't started looking at this enhancement yet. */
10759 const char *linkage_name = dw2_linkage_name (die, cu);
10760
10761 if (linkage_name != NULL)
10762 return linkage_name;
10763 }
10764
10765 /* These are the only languages we know how to qualify names in. */
10766 if (name != NULL
10767 && (cu->language == language_cplus
10768 || cu->language == language_fortran || cu->language == language_d
10769 || cu->language == language_rust))
10770 {
10771 if (die_needs_namespace (die, cu))
10772 {
10773 const char *prefix;
10774 const char *canonical_name = NULL;
10775
10776 string_file buf;
10777
10778 prefix = determine_prefix (die, cu);
10779 if (*prefix != '\0')
10780 {
10781 char *prefixed_name = typename_concat (NULL, prefix, name,
10782 physname, cu);
10783
10784 buf.puts (prefixed_name);
10785 xfree (prefixed_name);
10786 }
10787 else
10788 buf.puts (name);
10789
10790 /* Template parameters may be specified in the DIE's DW_AT_name, or
10791 as children with DW_TAG_template_type_param or
10792 DW_TAG_value_type_param. If the latter, add them to the name
10793 here. If the name already has template parameters, then
10794 skip this step; some versions of GCC emit both, and
10795 it is more efficient to use the pre-computed name.
10796
10797 Something to keep in mind about this process: it is very
10798 unlikely, or in some cases downright impossible, to produce
10799 something that will match the mangled name of a function.
10800 If the definition of the function has the same debug info,
10801 we should be able to match up with it anyway. But fallbacks
10802 using the minimal symbol, for instance to find a method
10803 implemented in a stripped copy of libstdc++, will not work.
10804 If we do not have debug info for the definition, we will have to
10805 match them up some other way.
10806
10807 When we do name matching there is a related problem with function
10808 templates; two instantiated function templates are allowed to
10809 differ only by their return types, which we do not add here. */
10810
10811 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10812 {
10813 struct attribute *attr;
10814 struct die_info *child;
10815 int first = 1;
10816
10817 die->building_fullname = 1;
10818
10819 for (child = die->child; child != NULL; child = child->sibling)
10820 {
10821 struct type *type;
10822 LONGEST value;
10823 const gdb_byte *bytes;
10824 struct dwarf2_locexpr_baton *baton;
10825 struct value *v;
10826
10827 if (child->tag != DW_TAG_template_type_param
10828 && child->tag != DW_TAG_template_value_param)
10829 continue;
10830
10831 if (first)
10832 {
10833 buf.puts ("<");
10834 first = 0;
10835 }
10836 else
10837 buf.puts (", ");
10838
10839 attr = dwarf2_attr (child, DW_AT_type, cu);
10840 if (attr == NULL)
10841 {
10842 complaint (_("template parameter missing DW_AT_type"));
10843 buf.puts ("UNKNOWN_TYPE");
10844 continue;
10845 }
10846 type = die_type (child, cu);
10847
10848 if (child->tag == DW_TAG_template_type_param)
10849 {
10850 c_print_type (type, "", &buf, -1, 0, cu->language,
10851 &type_print_raw_options);
10852 continue;
10853 }
10854
10855 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10856 if (attr == NULL)
10857 {
10858 complaint (_("template parameter missing "
10859 "DW_AT_const_value"));
10860 buf.puts ("UNKNOWN_VALUE");
10861 continue;
10862 }
10863
10864 dwarf2_const_value_attr (attr, type, name,
10865 &cu->comp_unit_obstack, cu,
10866 &value, &bytes, &baton);
10867
10868 if (TYPE_NOSIGN (type))
10869 /* GDB prints characters as NUMBER 'CHAR'. If that's
10870 changed, this can use value_print instead. */
10871 c_printchar (value, type, &buf);
10872 else
10873 {
10874 struct value_print_options opts;
10875
10876 if (baton != NULL)
10877 v = dwarf2_evaluate_loc_desc (type, NULL,
10878 baton->data,
10879 baton->size,
10880 baton->per_cu);
10881 else if (bytes != NULL)
10882 {
10883 v = allocate_value (type);
10884 memcpy (value_contents_writeable (v), bytes,
10885 TYPE_LENGTH (type));
10886 }
10887 else
10888 v = value_from_longest (type, value);
10889
10890 /* Specify decimal so that we do not depend on
10891 the radix. */
10892 get_formatted_print_options (&opts, 'd');
10893 opts.raw = 1;
10894 value_print (v, &buf, &opts);
10895 release_value (v);
10896 }
10897 }
10898
10899 die->building_fullname = 0;
10900
10901 if (!first)
10902 {
10903 /* Close the argument list, with a space if necessary
10904 (nested templates). */
10905 if (!buf.empty () && buf.string ().back () == '>')
10906 buf.puts (" >");
10907 else
10908 buf.puts (">");
10909 }
10910 }
10911
10912 /* For C++ methods, append formal parameter type
10913 information, if PHYSNAME. */
10914
10915 if (physname && die->tag == DW_TAG_subprogram
10916 && cu->language == language_cplus)
10917 {
10918 struct type *type = read_type_die (die, cu);
10919
10920 c_type_print_args (type, &buf, 1, cu->language,
10921 &type_print_raw_options);
10922
10923 if (cu->language == language_cplus)
10924 {
10925 /* Assume that an artificial first parameter is
10926 "this", but do not crash if it is not. RealView
10927 marks unnamed (and thus unused) parameters as
10928 artificial; there is no way to differentiate
10929 the two cases. */
10930 if (TYPE_NFIELDS (type) > 0
10931 && TYPE_FIELD_ARTIFICIAL (type, 0)
10932 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10933 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10934 0))))
10935 buf.puts (" const");
10936 }
10937 }
10938
10939 const std::string &intermediate_name = buf.string ();
10940
10941 if (cu->language == language_cplus)
10942 canonical_name
10943 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10944 &objfile->per_bfd->storage_obstack);
10945
10946 /* If we only computed INTERMEDIATE_NAME, or if
10947 INTERMEDIATE_NAME is already canonical, then we need to
10948 copy it to the appropriate obstack. */
10949 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10950 name = ((const char *)
10951 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10952 intermediate_name.c_str (),
10953 intermediate_name.length ()));
10954 else
10955 name = canonical_name;
10956 }
10957 }
10958
10959 return name;
10960 }
10961
10962 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10963 If scope qualifiers are appropriate they will be added. The result
10964 will be allocated on the storage_obstack, or NULL if the DIE does
10965 not have a name. NAME may either be from a previous call to
10966 dwarf2_name or NULL.
10967
10968 The output string will be canonicalized (if C++). */
10969
10970 static const char *
10971 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10972 {
10973 return dwarf2_compute_name (name, die, cu, 0);
10974 }
10975
10976 /* Construct a physname for the given DIE in CU. NAME may either be
10977 from a previous call to dwarf2_name or NULL. The result will be
10978 allocated on the objfile_objstack or NULL if the DIE does not have a
10979 name.
10980
10981 The output string will be canonicalized (if C++). */
10982
10983 static const char *
10984 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10985 {
10986 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10987 const char *retval, *mangled = NULL, *canon = NULL;
10988 int need_copy = 1;
10989
10990 /* In this case dwarf2_compute_name is just a shortcut not building anything
10991 on its own. */
10992 if (!die_needs_namespace (die, cu))
10993 return dwarf2_compute_name (name, die, cu, 1);
10994
10995 mangled = dw2_linkage_name (die, cu);
10996
10997 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10998 See https://github.com/rust-lang/rust/issues/32925. */
10999 if (cu->language == language_rust && mangled != NULL
11000 && strchr (mangled, '{') != NULL)
11001 mangled = NULL;
11002
11003 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11004 has computed. */
11005 gdb::unique_xmalloc_ptr<char> demangled;
11006 if (mangled != NULL)
11007 {
11008
11009 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11010 {
11011 /* Do nothing (do not demangle the symbol name). */
11012 }
11013 else if (cu->language == language_go)
11014 {
11015 /* This is a lie, but we already lie to the caller new_symbol.
11016 new_symbol assumes we return the mangled name.
11017 This just undoes that lie until things are cleaned up. */
11018 }
11019 else
11020 {
11021 /* Use DMGL_RET_DROP for C++ template functions to suppress
11022 their return type. It is easier for GDB users to search
11023 for such functions as `name(params)' than `long name(params)'.
11024 In such case the minimal symbol names do not match the full
11025 symbol names but for template functions there is never a need
11026 to look up their definition from their declaration so
11027 the only disadvantage remains the minimal symbol variant
11028 `long name(params)' does not have the proper inferior type. */
11029 demangled.reset (gdb_demangle (mangled,
11030 (DMGL_PARAMS | DMGL_ANSI
11031 | DMGL_RET_DROP)));
11032 }
11033 if (demangled)
11034 canon = demangled.get ();
11035 else
11036 {
11037 canon = mangled;
11038 need_copy = 0;
11039 }
11040 }
11041
11042 if (canon == NULL || check_physname)
11043 {
11044 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11045
11046 if (canon != NULL && strcmp (physname, canon) != 0)
11047 {
11048 /* It may not mean a bug in GDB. The compiler could also
11049 compute DW_AT_linkage_name incorrectly. But in such case
11050 GDB would need to be bug-to-bug compatible. */
11051
11052 complaint (_("Computed physname <%s> does not match demangled <%s> "
11053 "(from linkage <%s>) - DIE at %s [in module %s]"),
11054 physname, canon, mangled, sect_offset_str (die->sect_off),
11055 objfile_name (objfile));
11056
11057 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11058 is available here - over computed PHYSNAME. It is safer
11059 against both buggy GDB and buggy compilers. */
11060
11061 retval = canon;
11062 }
11063 else
11064 {
11065 retval = physname;
11066 need_copy = 0;
11067 }
11068 }
11069 else
11070 retval = canon;
11071
11072 if (need_copy)
11073 retval = ((const char *)
11074 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11075 retval, strlen (retval)));
11076
11077 return retval;
11078 }
11079
11080 /* Inspect DIE in CU for a namespace alias. If one exists, record
11081 a new symbol for it.
11082
11083 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11084
11085 static int
11086 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11087 {
11088 struct attribute *attr;
11089
11090 /* If the die does not have a name, this is not a namespace
11091 alias. */
11092 attr = dwarf2_attr (die, DW_AT_name, cu);
11093 if (attr != NULL)
11094 {
11095 int num;
11096 struct die_info *d = die;
11097 struct dwarf2_cu *imported_cu = cu;
11098
11099 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11100 keep inspecting DIEs until we hit the underlying import. */
11101 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11102 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11103 {
11104 attr = dwarf2_attr (d, DW_AT_import, cu);
11105 if (attr == NULL)
11106 break;
11107
11108 d = follow_die_ref (d, attr, &imported_cu);
11109 if (d->tag != DW_TAG_imported_declaration)
11110 break;
11111 }
11112
11113 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11114 {
11115 complaint (_("DIE at %s has too many recursively imported "
11116 "declarations"), sect_offset_str (d->sect_off));
11117 return 0;
11118 }
11119
11120 if (attr != NULL)
11121 {
11122 struct type *type;
11123 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11124
11125 type = get_die_type_at_offset (sect_off, cu->per_cu);
11126 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11127 {
11128 /* This declaration is a global namespace alias. Add
11129 a symbol for it whose type is the aliased namespace. */
11130 new_symbol (die, type, cu);
11131 return 1;
11132 }
11133 }
11134 }
11135
11136 return 0;
11137 }
11138
11139 /* Return the using directives repository (global or local?) to use in the
11140 current context for CU.
11141
11142 For Ada, imported declarations can materialize renamings, which *may* be
11143 global. However it is impossible (for now?) in DWARF to distinguish
11144 "external" imported declarations and "static" ones. As all imported
11145 declarations seem to be static in all other languages, make them all CU-wide
11146 global only in Ada. */
11147
11148 static struct using_direct **
11149 using_directives (struct dwarf2_cu *cu)
11150 {
11151 if (cu->language == language_ada
11152 && cu->get_builder ()->outermost_context_p ())
11153 return cu->get_builder ()->get_global_using_directives ();
11154 else
11155 return cu->get_builder ()->get_local_using_directives ();
11156 }
11157
11158 /* Read the import statement specified by the given die and record it. */
11159
11160 static void
11161 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11162 {
11163 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11164 struct attribute *import_attr;
11165 struct die_info *imported_die, *child_die;
11166 struct dwarf2_cu *imported_cu;
11167 const char *imported_name;
11168 const char *imported_name_prefix;
11169 const char *canonical_name;
11170 const char *import_alias;
11171 const char *imported_declaration = NULL;
11172 const char *import_prefix;
11173 std::vector<const char *> excludes;
11174
11175 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11176 if (import_attr == NULL)
11177 {
11178 complaint (_("Tag '%s' has no DW_AT_import"),
11179 dwarf_tag_name (die->tag));
11180 return;
11181 }
11182
11183 imported_cu = cu;
11184 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11185 imported_name = dwarf2_name (imported_die, imported_cu);
11186 if (imported_name == NULL)
11187 {
11188 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11189
11190 The import in the following code:
11191 namespace A
11192 {
11193 typedef int B;
11194 }
11195
11196 int main ()
11197 {
11198 using A::B;
11199 B b;
11200 return b;
11201 }
11202
11203 ...
11204 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11205 <52> DW_AT_decl_file : 1
11206 <53> DW_AT_decl_line : 6
11207 <54> DW_AT_import : <0x75>
11208 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11209 <59> DW_AT_name : B
11210 <5b> DW_AT_decl_file : 1
11211 <5c> DW_AT_decl_line : 2
11212 <5d> DW_AT_type : <0x6e>
11213 ...
11214 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11215 <76> DW_AT_byte_size : 4
11216 <77> DW_AT_encoding : 5 (signed)
11217
11218 imports the wrong die ( 0x75 instead of 0x58 ).
11219 This case will be ignored until the gcc bug is fixed. */
11220 return;
11221 }
11222
11223 /* Figure out the local name after import. */
11224 import_alias = dwarf2_name (die, cu);
11225
11226 /* Figure out where the statement is being imported to. */
11227 import_prefix = determine_prefix (die, cu);
11228
11229 /* Figure out what the scope of the imported die is and prepend it
11230 to the name of the imported die. */
11231 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11232
11233 if (imported_die->tag != DW_TAG_namespace
11234 && imported_die->tag != DW_TAG_module)
11235 {
11236 imported_declaration = imported_name;
11237 canonical_name = imported_name_prefix;
11238 }
11239 else if (strlen (imported_name_prefix) > 0)
11240 canonical_name = obconcat (&objfile->objfile_obstack,
11241 imported_name_prefix,
11242 (cu->language == language_d ? "." : "::"),
11243 imported_name, (char *) NULL);
11244 else
11245 canonical_name = imported_name;
11246
11247 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11248 for (child_die = die->child; child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 /* DWARF-4: A Fortran use statement with a “rename list” may be
11252 represented by an imported module entry with an import attribute
11253 referring to the module and owned entries corresponding to those
11254 entities that are renamed as part of being imported. */
11255
11256 if (child_die->tag != DW_TAG_imported_declaration)
11257 {
11258 complaint (_("child DW_TAG_imported_declaration expected "
11259 "- DIE at %s [in module %s]"),
11260 sect_offset_str (child_die->sect_off),
11261 objfile_name (objfile));
11262 continue;
11263 }
11264
11265 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11266 if (import_attr == NULL)
11267 {
11268 complaint (_("Tag '%s' has no DW_AT_import"),
11269 dwarf_tag_name (child_die->tag));
11270 continue;
11271 }
11272
11273 imported_cu = cu;
11274 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11275 &imported_cu);
11276 imported_name = dwarf2_name (imported_die, imported_cu);
11277 if (imported_name == NULL)
11278 {
11279 complaint (_("child DW_TAG_imported_declaration has unknown "
11280 "imported name - DIE at %s [in module %s]"),
11281 sect_offset_str (child_die->sect_off),
11282 objfile_name (objfile));
11283 continue;
11284 }
11285
11286 excludes.push_back (imported_name);
11287
11288 process_die (child_die, cu);
11289 }
11290
11291 add_using_directive (using_directives (cu),
11292 import_prefix,
11293 canonical_name,
11294 import_alias,
11295 imported_declaration,
11296 excludes,
11297 0,
11298 &objfile->objfile_obstack);
11299 }
11300
11301 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11302 types, but gives them a size of zero. Starting with version 14,
11303 ICC is compatible with GCC. */
11304
11305 static bool
11306 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11307 {
11308 if (!cu->checked_producer)
11309 check_producer (cu);
11310
11311 return cu->producer_is_icc_lt_14;
11312 }
11313
11314 /* ICC generates a DW_AT_type for C void functions. This was observed on
11315 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11316 which says that void functions should not have a DW_AT_type. */
11317
11318 static bool
11319 producer_is_icc (struct dwarf2_cu *cu)
11320 {
11321 if (!cu->checked_producer)
11322 check_producer (cu);
11323
11324 return cu->producer_is_icc;
11325 }
11326
11327 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11328 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11329 this, it was first present in GCC release 4.3.0. */
11330
11331 static bool
11332 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11333 {
11334 if (!cu->checked_producer)
11335 check_producer (cu);
11336
11337 return cu->producer_is_gcc_lt_4_3;
11338 }
11339
11340 static file_and_directory
11341 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11342 {
11343 file_and_directory res;
11344
11345 /* Find the filename. Do not use dwarf2_name here, since the filename
11346 is not a source language identifier. */
11347 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11348 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11349
11350 if (res.comp_dir == NULL
11351 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11352 && IS_ABSOLUTE_PATH (res.name))
11353 {
11354 res.comp_dir_storage = ldirname (res.name);
11355 if (!res.comp_dir_storage.empty ())
11356 res.comp_dir = res.comp_dir_storage.c_str ();
11357 }
11358 if (res.comp_dir != NULL)
11359 {
11360 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11361 directory, get rid of it. */
11362 const char *cp = strchr (res.comp_dir, ':');
11363
11364 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11365 res.comp_dir = cp + 1;
11366 }
11367
11368 if (res.name == NULL)
11369 res.name = "<unknown>";
11370
11371 return res;
11372 }
11373
11374 /* Handle DW_AT_stmt_list for a compilation unit.
11375 DIE is the DW_TAG_compile_unit die for CU.
11376 COMP_DIR is the compilation directory. LOWPC is passed to
11377 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11378
11379 static void
11380 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11381 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11382 {
11383 struct dwarf2_per_objfile *dwarf2_per_objfile
11384 = cu->per_cu->dwarf2_per_objfile;
11385 struct objfile *objfile = dwarf2_per_objfile->objfile;
11386 struct attribute *attr;
11387 struct line_header line_header_local;
11388 hashval_t line_header_local_hash;
11389 void **slot;
11390 int decode_mapping;
11391
11392 gdb_assert (! cu->per_cu->is_debug_types);
11393
11394 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11395 if (attr == NULL)
11396 return;
11397
11398 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11399
11400 /* The line header hash table is only created if needed (it exists to
11401 prevent redundant reading of the line table for partial_units).
11402 If we're given a partial_unit, we'll need it. If we're given a
11403 compile_unit, then use the line header hash table if it's already
11404 created, but don't create one just yet. */
11405
11406 if (dwarf2_per_objfile->line_header_hash == NULL
11407 && die->tag == DW_TAG_partial_unit)
11408 {
11409 dwarf2_per_objfile->line_header_hash
11410 = htab_create_alloc_ex (127, line_header_hash_voidp,
11411 line_header_eq_voidp,
11412 free_line_header_voidp,
11413 &objfile->objfile_obstack,
11414 hashtab_obstack_allocate,
11415 dummy_obstack_deallocate);
11416 }
11417
11418 line_header_local.sect_off = line_offset;
11419 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11420 line_header_local_hash = line_header_hash (&line_header_local);
11421 if (dwarf2_per_objfile->line_header_hash != NULL)
11422 {
11423 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11424 &line_header_local,
11425 line_header_local_hash, NO_INSERT);
11426
11427 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11428 is not present in *SLOT (since if there is something in *SLOT then
11429 it will be for a partial_unit). */
11430 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11431 {
11432 gdb_assert (*slot != NULL);
11433 cu->line_header = (struct line_header *) *slot;
11434 return;
11435 }
11436 }
11437
11438 /* dwarf_decode_line_header does not yet provide sufficient information.
11439 We always have to call also dwarf_decode_lines for it. */
11440 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11441 if (lh == NULL)
11442 return;
11443
11444 cu->line_header = lh.release ();
11445 cu->line_header_die_owner = die;
11446
11447 if (dwarf2_per_objfile->line_header_hash == NULL)
11448 slot = NULL;
11449 else
11450 {
11451 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11452 &line_header_local,
11453 line_header_local_hash, INSERT);
11454 gdb_assert (slot != NULL);
11455 }
11456 if (slot != NULL && *slot == NULL)
11457 {
11458 /* This newly decoded line number information unit will be owned
11459 by line_header_hash hash table. */
11460 *slot = cu->line_header;
11461 cu->line_header_die_owner = NULL;
11462 }
11463 else
11464 {
11465 /* We cannot free any current entry in (*slot) as that struct line_header
11466 may be already used by multiple CUs. Create only temporary decoded
11467 line_header for this CU - it may happen at most once for each line
11468 number information unit. And if we're not using line_header_hash
11469 then this is what we want as well. */
11470 gdb_assert (die->tag != DW_TAG_partial_unit);
11471 }
11472 decode_mapping = (die->tag != DW_TAG_partial_unit);
11473 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11474 decode_mapping);
11475
11476 }
11477
11478 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11479
11480 static void
11481 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11482 {
11483 struct dwarf2_per_objfile *dwarf2_per_objfile
11484 = cu->per_cu->dwarf2_per_objfile;
11485 struct objfile *objfile = dwarf2_per_objfile->objfile;
11486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11487 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11488 CORE_ADDR highpc = ((CORE_ADDR) 0);
11489 struct attribute *attr;
11490 struct die_info *child_die;
11491 CORE_ADDR baseaddr;
11492
11493 prepare_one_comp_unit (cu, die, cu->language);
11494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11495
11496 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11497
11498 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11499 from finish_block. */
11500 if (lowpc == ((CORE_ADDR) -1))
11501 lowpc = highpc;
11502 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11503
11504 file_and_directory fnd = find_file_and_directory (die, cu);
11505
11506 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11507 standardised yet. As a workaround for the language detection we fall
11508 back to the DW_AT_producer string. */
11509 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11510 cu->language = language_opencl;
11511
11512 /* Similar hack for Go. */
11513 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11514 set_cu_language (DW_LANG_Go, cu);
11515
11516 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11517
11518 /* Decode line number information if present. We do this before
11519 processing child DIEs, so that the line header table is available
11520 for DW_AT_decl_file. */
11521 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11522
11523 /* Process all dies in compilation unit. */
11524 if (die->child != NULL)
11525 {
11526 child_die = die->child;
11527 while (child_die && child_die->tag)
11528 {
11529 process_die (child_die, cu);
11530 child_die = sibling_die (child_die);
11531 }
11532 }
11533
11534 /* Decode macro information, if present. Dwarf 2 macro information
11535 refers to information in the line number info statement program
11536 header, so we can only read it if we've read the header
11537 successfully. */
11538 attr = dwarf2_attr (die, DW_AT_macros, cu);
11539 if (attr == NULL)
11540 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11541 if (attr && cu->line_header)
11542 {
11543 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11544 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11545
11546 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11547 }
11548 else
11549 {
11550 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11551 if (attr && cu->line_header)
11552 {
11553 unsigned int macro_offset = DW_UNSND (attr);
11554
11555 dwarf_decode_macros (cu, macro_offset, 0);
11556 }
11557 }
11558 }
11559
11560 void
11561 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11562 {
11563 struct type_unit_group *tu_group;
11564 int first_time;
11565 struct attribute *attr;
11566 unsigned int i;
11567 struct signatured_type *sig_type;
11568
11569 gdb_assert (per_cu->is_debug_types);
11570 sig_type = (struct signatured_type *) per_cu;
11571
11572 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11573
11574 /* If we're using .gdb_index (includes -readnow) then
11575 per_cu->type_unit_group may not have been set up yet. */
11576 if (sig_type->type_unit_group == NULL)
11577 sig_type->type_unit_group = get_type_unit_group (this, attr);
11578 tu_group = sig_type->type_unit_group;
11579
11580 /* If we've already processed this stmt_list there's no real need to
11581 do it again, we could fake it and just recreate the part we need
11582 (file name,index -> symtab mapping). If data shows this optimization
11583 is useful we can do it then. */
11584 first_time = tu_group->compunit_symtab == NULL;
11585
11586 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11587 debug info. */
11588 line_header_up lh;
11589 if (attr != NULL)
11590 {
11591 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11592 lh = dwarf_decode_line_header (line_offset, this);
11593 }
11594 if (lh == NULL)
11595 {
11596 if (first_time)
11597 start_symtab ("", NULL, 0);
11598 else
11599 {
11600 gdb_assert (tu_group->symtabs == NULL);
11601 gdb_assert (m_builder == nullptr);
11602 struct compunit_symtab *cust = tu_group->compunit_symtab;
11603 m_builder.reset (new struct buildsym_compunit
11604 (COMPUNIT_OBJFILE (cust), "",
11605 COMPUNIT_DIRNAME (cust),
11606 compunit_language (cust),
11607 0, cust));
11608 }
11609 return;
11610 }
11611
11612 line_header = lh.release ();
11613 line_header_die_owner = die;
11614
11615 if (first_time)
11616 {
11617 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11618
11619 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11620 still initializing it, and our caller (a few levels up)
11621 process_full_type_unit still needs to know if this is the first
11622 time. */
11623
11624 tu_group->num_symtabs = line_header->file_names.size ();
11625 tu_group->symtabs = XNEWVEC (struct symtab *,
11626 line_header->file_names.size ());
11627
11628 for (i = 0; i < line_header->file_names.size (); ++i)
11629 {
11630 file_entry &fe = line_header->file_names[i];
11631
11632 dwarf2_start_subfile (this, fe.name,
11633 fe.include_dir (line_header));
11634 buildsym_compunit *b = get_builder ();
11635 if (b->get_current_subfile ()->symtab == NULL)
11636 {
11637 /* NOTE: start_subfile will recognize when it's been
11638 passed a file it has already seen. So we can't
11639 assume there's a simple mapping from
11640 cu->line_header->file_names to subfiles, plus
11641 cu->line_header->file_names may contain dups. */
11642 b->get_current_subfile ()->symtab
11643 = allocate_symtab (cust, b->get_current_subfile ()->name);
11644 }
11645
11646 fe.symtab = b->get_current_subfile ()->symtab;
11647 tu_group->symtabs[i] = fe.symtab;
11648 }
11649 }
11650 else
11651 {
11652 gdb_assert (m_builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 m_builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
11659
11660 for (i = 0; i < line_header->file_names.size (); ++i)
11661 {
11662 file_entry &fe = line_header->file_names[i];
11663
11664 fe.symtab = tu_group->symtabs[i];
11665 }
11666 }
11667
11668 /* The main symtab is allocated last. Type units don't have DW_AT_name
11669 so they don't have a "real" (so to speak) symtab anyway.
11670 There is later code that will assign the main symtab to all symbols
11671 that don't have one. We need to handle the case of a symbol with a
11672 missing symtab (DW_AT_decl_file) anyway. */
11673 }
11674
11675 /* Process DW_TAG_type_unit.
11676 For TUs we want to skip the first top level sibling if it's not the
11677 actual type being defined by this TU. In this case the first top
11678 level sibling is there to provide context only. */
11679
11680 static void
11681 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11682 {
11683 struct die_info *child_die;
11684
11685 prepare_one_comp_unit (cu, die, language_minimal);
11686
11687 /* Initialize (or reinitialize) the machinery for building symtabs.
11688 We do this before processing child DIEs, so that the line header table
11689 is available for DW_AT_decl_file. */
11690 cu->setup_type_unit_groups (die);
11691
11692 if (die->child != NULL)
11693 {
11694 child_die = die->child;
11695 while (child_die && child_die->tag)
11696 {
11697 process_die (child_die, cu);
11698 child_die = sibling_die (child_die);
11699 }
11700 }
11701 }
11702 \f
11703 /* DWO/DWP files.
11704
11705 http://gcc.gnu.org/wiki/DebugFission
11706 http://gcc.gnu.org/wiki/DebugFissionDWP
11707
11708 To simplify handling of both DWO files ("object" files with the DWARF info)
11709 and DWP files (a file with the DWOs packaged up into one file), we treat
11710 DWP files as having a collection of virtual DWO files. */
11711
11712 static hashval_t
11713 hash_dwo_file (const void *item)
11714 {
11715 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11716 hashval_t hash;
11717
11718 hash = htab_hash_string (dwo_file->dwo_name);
11719 if (dwo_file->comp_dir != NULL)
11720 hash += htab_hash_string (dwo_file->comp_dir);
11721 return hash;
11722 }
11723
11724 static int
11725 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11726 {
11727 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11728 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11729
11730 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11731 return 0;
11732 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11733 return lhs->comp_dir == rhs->comp_dir;
11734 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11735 }
11736
11737 /* Allocate a hash table for DWO files. */
11738
11739 static htab_up
11740 allocate_dwo_file_hash_table (struct objfile *objfile)
11741 {
11742 auto delete_dwo_file = [] (void *item)
11743 {
11744 struct dwo_file *dwo_file = (struct dwo_file *) item;
11745
11746 delete dwo_file;
11747 };
11748
11749 return htab_up (htab_create_alloc_ex (41,
11750 hash_dwo_file,
11751 eq_dwo_file,
11752 delete_dwo_file,
11753 &objfile->objfile_obstack,
11754 hashtab_obstack_allocate,
11755 dummy_obstack_deallocate));
11756 }
11757
11758 /* Lookup DWO file DWO_NAME. */
11759
11760 static void **
11761 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11762 const char *dwo_name,
11763 const char *comp_dir)
11764 {
11765 struct dwo_file find_entry;
11766 void **slot;
11767
11768 if (dwarf2_per_objfile->dwo_files == NULL)
11769 dwarf2_per_objfile->dwo_files
11770 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11771
11772 find_entry.dwo_name = dwo_name;
11773 find_entry.comp_dir = comp_dir;
11774 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11775 INSERT);
11776
11777 return slot;
11778 }
11779
11780 static hashval_t
11781 hash_dwo_unit (const void *item)
11782 {
11783 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11784
11785 /* This drops the top 32 bits of the id, but is ok for a hash. */
11786 return dwo_unit->signature;
11787 }
11788
11789 static int
11790 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11791 {
11792 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11793 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11794
11795 /* The signature is assumed to be unique within the DWO file.
11796 So while object file CU dwo_id's always have the value zero,
11797 that's OK, assuming each object file DWO file has only one CU,
11798 and that's the rule for now. */
11799 return lhs->signature == rhs->signature;
11800 }
11801
11802 /* Allocate a hash table for DWO CUs,TUs.
11803 There is one of these tables for each of CUs,TUs for each DWO file. */
11804
11805 static htab_t
11806 allocate_dwo_unit_table (struct objfile *objfile)
11807 {
11808 /* Start out with a pretty small number.
11809 Generally DWO files contain only one CU and maybe some TUs. */
11810 return htab_create_alloc_ex (3,
11811 hash_dwo_unit,
11812 eq_dwo_unit,
11813 NULL,
11814 &objfile->objfile_obstack,
11815 hashtab_obstack_allocate,
11816 dummy_obstack_deallocate);
11817 }
11818
11819 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11820
11821 struct create_dwo_cu_data
11822 {
11823 struct dwo_file *dwo_file;
11824 struct dwo_unit dwo_unit;
11825 };
11826
11827 /* die_reader_func for create_dwo_cu. */
11828
11829 static void
11830 create_dwo_cu_reader (const struct die_reader_specs *reader,
11831 const gdb_byte *info_ptr,
11832 struct die_info *comp_unit_die,
11833 int has_children,
11834 void *datap)
11835 {
11836 struct dwarf2_cu *cu = reader->cu;
11837 sect_offset sect_off = cu->per_cu->sect_off;
11838 struct dwarf2_section_info *section = cu->per_cu->section;
11839 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11840 struct dwo_file *dwo_file = data->dwo_file;
11841 struct dwo_unit *dwo_unit = &data->dwo_unit;
11842 struct attribute *attr;
11843
11844 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11845 if (attr == NULL)
11846 {
11847 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11848 " its dwo_id [in module %s]"),
11849 sect_offset_str (sect_off), dwo_file->dwo_name);
11850 return;
11851 }
11852
11853 dwo_unit->dwo_file = dwo_file;
11854 dwo_unit->signature = DW_UNSND (attr);
11855 dwo_unit->section = section;
11856 dwo_unit->sect_off = sect_off;
11857 dwo_unit->length = cu->per_cu->length;
11858
11859 if (dwarf_read_debug)
11860 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11861 sect_offset_str (sect_off),
11862 hex_string (dwo_unit->signature));
11863 }
11864
11865 /* Create the dwo_units for the CUs in a DWO_FILE.
11866 Note: This function processes DWO files only, not DWP files. */
11867
11868 static void
11869 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11870 struct dwo_file &dwo_file, dwarf2_section_info &section,
11871 htab_t &cus_htab)
11872 {
11873 struct objfile *objfile = dwarf2_per_objfile->objfile;
11874 const gdb_byte *info_ptr, *end_ptr;
11875
11876 dwarf2_read_section (objfile, &section);
11877 info_ptr = section.buffer;
11878
11879 if (info_ptr == NULL)
11880 return;
11881
11882 if (dwarf_read_debug)
11883 {
11884 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11885 get_section_name (&section),
11886 get_section_file_name (&section));
11887 }
11888
11889 end_ptr = info_ptr + section.size;
11890 while (info_ptr < end_ptr)
11891 {
11892 struct dwarf2_per_cu_data per_cu;
11893 struct create_dwo_cu_data create_dwo_cu_data;
11894 struct dwo_unit *dwo_unit;
11895 void **slot;
11896 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11897
11898 memset (&create_dwo_cu_data.dwo_unit, 0,
11899 sizeof (create_dwo_cu_data.dwo_unit));
11900 memset (&per_cu, 0, sizeof (per_cu));
11901 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11902 per_cu.is_debug_types = 0;
11903 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11904 per_cu.section = &section;
11905 create_dwo_cu_data.dwo_file = &dwo_file;
11906
11907 init_cutu_and_read_dies_no_follow (
11908 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11909 info_ptr += per_cu.length;
11910
11911 // If the unit could not be parsed, skip it.
11912 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11913 continue;
11914
11915 if (cus_htab == NULL)
11916 cus_htab = allocate_dwo_unit_table (objfile);
11917
11918 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11919 *dwo_unit = create_dwo_cu_data.dwo_unit;
11920 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11921 gdb_assert (slot != NULL);
11922 if (*slot != NULL)
11923 {
11924 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11925 sect_offset dup_sect_off = dup_cu->sect_off;
11926
11927 complaint (_("debug cu entry at offset %s is duplicate to"
11928 " the entry at offset %s, signature %s"),
11929 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11930 hex_string (dwo_unit->signature));
11931 }
11932 *slot = (void *)dwo_unit;
11933 }
11934 }
11935
11936 /* DWP file .debug_{cu,tu}_index section format:
11937 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11938
11939 DWP Version 1:
11940
11941 Both index sections have the same format, and serve to map a 64-bit
11942 signature to a set of section numbers. Each section begins with a header,
11943 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11944 indexes, and a pool of 32-bit section numbers. The index sections will be
11945 aligned at 8-byte boundaries in the file.
11946
11947 The index section header consists of:
11948
11949 V, 32 bit version number
11950 -, 32 bits unused
11951 N, 32 bit number of compilation units or type units in the index
11952 M, 32 bit number of slots in the hash table
11953
11954 Numbers are recorded using the byte order of the application binary.
11955
11956 The hash table begins at offset 16 in the section, and consists of an array
11957 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11958 order of the application binary). Unused slots in the hash table are 0.
11959 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11960
11961 The parallel table begins immediately after the hash table
11962 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11963 array of 32-bit indexes (using the byte order of the application binary),
11964 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11965 table contains a 32-bit index into the pool of section numbers. For unused
11966 hash table slots, the corresponding entry in the parallel table will be 0.
11967
11968 The pool of section numbers begins immediately following the hash table
11969 (at offset 16 + 12 * M from the beginning of the section). The pool of
11970 section numbers consists of an array of 32-bit words (using the byte order
11971 of the application binary). Each item in the array is indexed starting
11972 from 0. The hash table entry provides the index of the first section
11973 number in the set. Additional section numbers in the set follow, and the
11974 set is terminated by a 0 entry (section number 0 is not used in ELF).
11975
11976 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11977 section must be the first entry in the set, and the .debug_abbrev.dwo must
11978 be the second entry. Other members of the set may follow in any order.
11979
11980 ---
11981
11982 DWP Version 2:
11983
11984 DWP Version 2 combines all the .debug_info, etc. sections into one,
11985 and the entries in the index tables are now offsets into these sections.
11986 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11987 section.
11988
11989 Index Section Contents:
11990 Header
11991 Hash Table of Signatures dwp_hash_table.hash_table
11992 Parallel Table of Indices dwp_hash_table.unit_table
11993 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11994 Table of Section Sizes dwp_hash_table.v2.sizes
11995
11996 The index section header consists of:
11997
11998 V, 32 bit version number
11999 L, 32 bit number of columns in the table of section offsets
12000 N, 32 bit number of compilation units or type units in the index
12001 M, 32 bit number of slots in the hash table
12002
12003 Numbers are recorded using the byte order of the application binary.
12004
12005 The hash table has the same format as version 1.
12006 The parallel table of indices has the same format as version 1,
12007 except that the entries are origin-1 indices into the table of sections
12008 offsets and the table of section sizes.
12009
12010 The table of offsets begins immediately following the parallel table
12011 (at offset 16 + 12 * M from the beginning of the section). The table is
12012 a two-dimensional array of 32-bit words (using the byte order of the
12013 application binary), with L columns and N+1 rows, in row-major order.
12014 Each row in the array is indexed starting from 0. The first row provides
12015 a key to the remaining rows: each column in this row provides an identifier
12016 for a debug section, and the offsets in the same column of subsequent rows
12017 refer to that section. The section identifiers are:
12018
12019 DW_SECT_INFO 1 .debug_info.dwo
12020 DW_SECT_TYPES 2 .debug_types.dwo
12021 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12022 DW_SECT_LINE 4 .debug_line.dwo
12023 DW_SECT_LOC 5 .debug_loc.dwo
12024 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12025 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12026 DW_SECT_MACRO 8 .debug_macro.dwo
12027
12028 The offsets provided by the CU and TU index sections are the base offsets
12029 for the contributions made by each CU or TU to the corresponding section
12030 in the package file. Each CU and TU header contains an abbrev_offset
12031 field, used to find the abbreviations table for that CU or TU within the
12032 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12033 be interpreted as relative to the base offset given in the index section.
12034 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12035 should be interpreted as relative to the base offset for .debug_line.dwo,
12036 and offsets into other debug sections obtained from DWARF attributes should
12037 also be interpreted as relative to the corresponding base offset.
12038
12039 The table of sizes begins immediately following the table of offsets.
12040 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12041 with L columns and N rows, in row-major order. Each row in the array is
12042 indexed starting from 1 (row 0 is shared by the two tables).
12043
12044 ---
12045
12046 Hash table lookup is handled the same in version 1 and 2:
12047
12048 We assume that N and M will not exceed 2^32 - 1.
12049 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12050
12051 Given a 64-bit compilation unit signature or a type signature S, an entry
12052 in the hash table is located as follows:
12053
12054 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12055 the low-order k bits all set to 1.
12056
12057 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12058
12059 3) If the hash table entry at index H matches the signature, use that
12060 entry. If the hash table entry at index H is unused (all zeroes),
12061 terminate the search: the signature is not present in the table.
12062
12063 4) Let H = (H + H') modulo M. Repeat at Step 3.
12064
12065 Because M > N and H' and M are relatively prime, the search is guaranteed
12066 to stop at an unused slot or find the match. */
12067
12068 /* Create a hash table to map DWO IDs to their CU/TU entry in
12069 .debug_{info,types}.dwo in DWP_FILE.
12070 Returns NULL if there isn't one.
12071 Note: This function processes DWP files only, not DWO files. */
12072
12073 static struct dwp_hash_table *
12074 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12075 struct dwp_file *dwp_file, int is_debug_types)
12076 {
12077 struct objfile *objfile = dwarf2_per_objfile->objfile;
12078 bfd *dbfd = dwp_file->dbfd.get ();
12079 const gdb_byte *index_ptr, *index_end;
12080 struct dwarf2_section_info *index;
12081 uint32_t version, nr_columns, nr_units, nr_slots;
12082 struct dwp_hash_table *htab;
12083
12084 if (is_debug_types)
12085 index = &dwp_file->sections.tu_index;
12086 else
12087 index = &dwp_file->sections.cu_index;
12088
12089 if (dwarf2_section_empty_p (index))
12090 return NULL;
12091 dwarf2_read_section (objfile, index);
12092
12093 index_ptr = index->buffer;
12094 index_end = index_ptr + index->size;
12095
12096 version = read_4_bytes (dbfd, index_ptr);
12097 index_ptr += 4;
12098 if (version == 2)
12099 nr_columns = read_4_bytes (dbfd, index_ptr);
12100 else
12101 nr_columns = 0;
12102 index_ptr += 4;
12103 nr_units = read_4_bytes (dbfd, index_ptr);
12104 index_ptr += 4;
12105 nr_slots = read_4_bytes (dbfd, index_ptr);
12106 index_ptr += 4;
12107
12108 if (version != 1 && version != 2)
12109 {
12110 error (_("Dwarf Error: unsupported DWP file version (%s)"
12111 " [in module %s]"),
12112 pulongest (version), dwp_file->name);
12113 }
12114 if (nr_slots != (nr_slots & -nr_slots))
12115 {
12116 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12117 " is not power of 2 [in module %s]"),
12118 pulongest (nr_slots), dwp_file->name);
12119 }
12120
12121 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12122 htab->version = version;
12123 htab->nr_columns = nr_columns;
12124 htab->nr_units = nr_units;
12125 htab->nr_slots = nr_slots;
12126 htab->hash_table = index_ptr;
12127 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12128
12129 /* Exit early if the table is empty. */
12130 if (nr_slots == 0 || nr_units == 0
12131 || (version == 2 && nr_columns == 0))
12132 {
12133 /* All must be zero. */
12134 if (nr_slots != 0 || nr_units != 0
12135 || (version == 2 && nr_columns != 0))
12136 {
12137 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12138 " all zero [in modules %s]"),
12139 dwp_file->name);
12140 }
12141 return htab;
12142 }
12143
12144 if (version == 1)
12145 {
12146 htab->section_pool.v1.indices =
12147 htab->unit_table + sizeof (uint32_t) * nr_slots;
12148 /* It's harder to decide whether the section is too small in v1.
12149 V1 is deprecated anyway so we punt. */
12150 }
12151 else
12152 {
12153 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12154 int *ids = htab->section_pool.v2.section_ids;
12155 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12156 /* Reverse map for error checking. */
12157 int ids_seen[DW_SECT_MAX + 1];
12158 int i;
12159
12160 if (nr_columns < 2)
12161 {
12162 error (_("Dwarf Error: bad DWP hash table, too few columns"
12163 " in section table [in module %s]"),
12164 dwp_file->name);
12165 }
12166 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12167 {
12168 error (_("Dwarf Error: bad DWP hash table, too many columns"
12169 " in section table [in module %s]"),
12170 dwp_file->name);
12171 }
12172 memset (ids, 255, sizeof_ids);
12173 memset (ids_seen, 255, sizeof (ids_seen));
12174 for (i = 0; i < nr_columns; ++i)
12175 {
12176 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12177
12178 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12179 {
12180 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12181 " in section table [in module %s]"),
12182 id, dwp_file->name);
12183 }
12184 if (ids_seen[id] != -1)
12185 {
12186 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12187 " id %d in section table [in module %s]"),
12188 id, dwp_file->name);
12189 }
12190 ids_seen[id] = i;
12191 ids[i] = id;
12192 }
12193 /* Must have exactly one info or types section. */
12194 if (((ids_seen[DW_SECT_INFO] != -1)
12195 + (ids_seen[DW_SECT_TYPES] != -1))
12196 != 1)
12197 {
12198 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12199 " DWO info/types section [in module %s]"),
12200 dwp_file->name);
12201 }
12202 /* Must have an abbrev section. */
12203 if (ids_seen[DW_SECT_ABBREV] == -1)
12204 {
12205 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12206 " section [in module %s]"),
12207 dwp_file->name);
12208 }
12209 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12210 htab->section_pool.v2.sizes =
12211 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12212 * nr_units * nr_columns);
12213 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12214 * nr_units * nr_columns))
12215 > index_end)
12216 {
12217 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12218 " [in module %s]"),
12219 dwp_file->name);
12220 }
12221 }
12222
12223 return htab;
12224 }
12225
12226 /* Update SECTIONS with the data from SECTP.
12227
12228 This function is like the other "locate" section routines that are
12229 passed to bfd_map_over_sections, but in this context the sections to
12230 read comes from the DWP V1 hash table, not the full ELF section table.
12231
12232 The result is non-zero for success, or zero if an error was found. */
12233
12234 static int
12235 locate_v1_virtual_dwo_sections (asection *sectp,
12236 struct virtual_v1_dwo_sections *sections)
12237 {
12238 const struct dwop_section_names *names = &dwop_section_names;
12239
12240 if (section_is_p (sectp->name, &names->abbrev_dwo))
12241 {
12242 /* There can be only one. */
12243 if (sections->abbrev.s.section != NULL)
12244 return 0;
12245 sections->abbrev.s.section = sectp;
12246 sections->abbrev.size = bfd_get_section_size (sectp);
12247 }
12248 else if (section_is_p (sectp->name, &names->info_dwo)
12249 || section_is_p (sectp->name, &names->types_dwo))
12250 {
12251 /* There can be only one. */
12252 if (sections->info_or_types.s.section != NULL)
12253 return 0;
12254 sections->info_or_types.s.section = sectp;
12255 sections->info_or_types.size = bfd_get_section_size (sectp);
12256 }
12257 else if (section_is_p (sectp->name, &names->line_dwo))
12258 {
12259 /* There can be only one. */
12260 if (sections->line.s.section != NULL)
12261 return 0;
12262 sections->line.s.section = sectp;
12263 sections->line.size = bfd_get_section_size (sectp);
12264 }
12265 else if (section_is_p (sectp->name, &names->loc_dwo))
12266 {
12267 /* There can be only one. */
12268 if (sections->loc.s.section != NULL)
12269 return 0;
12270 sections->loc.s.section = sectp;
12271 sections->loc.size = bfd_get_section_size (sectp);
12272 }
12273 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12274 {
12275 /* There can be only one. */
12276 if (sections->macinfo.s.section != NULL)
12277 return 0;
12278 sections->macinfo.s.section = sectp;
12279 sections->macinfo.size = bfd_get_section_size (sectp);
12280 }
12281 else if (section_is_p (sectp->name, &names->macro_dwo))
12282 {
12283 /* There can be only one. */
12284 if (sections->macro.s.section != NULL)
12285 return 0;
12286 sections->macro.s.section = sectp;
12287 sections->macro.size = bfd_get_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12290 {
12291 /* There can be only one. */
12292 if (sections->str_offsets.s.section != NULL)
12293 return 0;
12294 sections->str_offsets.s.section = sectp;
12295 sections->str_offsets.size = bfd_get_section_size (sectp);
12296 }
12297 else
12298 {
12299 /* No other kind of section is valid. */
12300 return 0;
12301 }
12302
12303 return 1;
12304 }
12305
12306 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12307 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12308 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12309 This is for DWP version 1 files. */
12310
12311 static struct dwo_unit *
12312 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12313 struct dwp_file *dwp_file,
12314 uint32_t unit_index,
12315 const char *comp_dir,
12316 ULONGEST signature, int is_debug_types)
12317 {
12318 struct objfile *objfile = dwarf2_per_objfile->objfile;
12319 const struct dwp_hash_table *dwp_htab =
12320 is_debug_types ? dwp_file->tus : dwp_file->cus;
12321 bfd *dbfd = dwp_file->dbfd.get ();
12322 const char *kind = is_debug_types ? "TU" : "CU";
12323 struct dwo_file *dwo_file;
12324 struct dwo_unit *dwo_unit;
12325 struct virtual_v1_dwo_sections sections;
12326 void **dwo_file_slot;
12327 int i;
12328
12329 gdb_assert (dwp_file->version == 1);
12330
12331 if (dwarf_read_debug)
12332 {
12333 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12334 kind,
12335 pulongest (unit_index), hex_string (signature),
12336 dwp_file->name);
12337 }
12338
12339 /* Fetch the sections of this DWO unit.
12340 Put a limit on the number of sections we look for so that bad data
12341 doesn't cause us to loop forever. */
12342
12343 #define MAX_NR_V1_DWO_SECTIONS \
12344 (1 /* .debug_info or .debug_types */ \
12345 + 1 /* .debug_abbrev */ \
12346 + 1 /* .debug_line */ \
12347 + 1 /* .debug_loc */ \
12348 + 1 /* .debug_str_offsets */ \
12349 + 1 /* .debug_macro or .debug_macinfo */ \
12350 + 1 /* trailing zero */)
12351
12352 memset (&sections, 0, sizeof (sections));
12353
12354 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12355 {
12356 asection *sectp;
12357 uint32_t section_nr =
12358 read_4_bytes (dbfd,
12359 dwp_htab->section_pool.v1.indices
12360 + (unit_index + i) * sizeof (uint32_t));
12361
12362 if (section_nr == 0)
12363 break;
12364 if (section_nr >= dwp_file->num_sections)
12365 {
12366 error (_("Dwarf Error: bad DWP hash table, section number too large"
12367 " [in module %s]"),
12368 dwp_file->name);
12369 }
12370
12371 sectp = dwp_file->elf_sections[section_nr];
12372 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12373 {
12374 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12375 " [in module %s]"),
12376 dwp_file->name);
12377 }
12378 }
12379
12380 if (i < 2
12381 || dwarf2_section_empty_p (&sections.info_or_types)
12382 || dwarf2_section_empty_p (&sections.abbrev))
12383 {
12384 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12385 " [in module %s]"),
12386 dwp_file->name);
12387 }
12388 if (i == MAX_NR_V1_DWO_SECTIONS)
12389 {
12390 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12391 " [in module %s]"),
12392 dwp_file->name);
12393 }
12394
12395 /* It's easier for the rest of the code if we fake a struct dwo_file and
12396 have dwo_unit "live" in that. At least for now.
12397
12398 The DWP file can be made up of a random collection of CUs and TUs.
12399 However, for each CU + set of TUs that came from the same original DWO
12400 file, we can combine them back into a virtual DWO file to save space
12401 (fewer struct dwo_file objects to allocate). Remember that for really
12402 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12403
12404 std::string virtual_dwo_name =
12405 string_printf ("virtual-dwo/%d-%d-%d-%d",
12406 get_section_id (&sections.abbrev),
12407 get_section_id (&sections.line),
12408 get_section_id (&sections.loc),
12409 get_section_id (&sections.str_offsets));
12410 /* Can we use an existing virtual DWO file? */
12411 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12412 virtual_dwo_name.c_str (),
12413 comp_dir);
12414 /* Create one if necessary. */
12415 if (*dwo_file_slot == NULL)
12416 {
12417 if (dwarf_read_debug)
12418 {
12419 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12420 virtual_dwo_name.c_str ());
12421 }
12422 dwo_file = new struct dwo_file;
12423 dwo_file->dwo_name
12424 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12425 virtual_dwo_name.c_str (),
12426 virtual_dwo_name.size ());
12427 dwo_file->comp_dir = comp_dir;
12428 dwo_file->sections.abbrev = sections.abbrev;
12429 dwo_file->sections.line = sections.line;
12430 dwo_file->sections.loc = sections.loc;
12431 dwo_file->sections.macinfo = sections.macinfo;
12432 dwo_file->sections.macro = sections.macro;
12433 dwo_file->sections.str_offsets = sections.str_offsets;
12434 /* The "str" section is global to the entire DWP file. */
12435 dwo_file->sections.str = dwp_file->sections.str;
12436 /* The info or types section is assigned below to dwo_unit,
12437 there's no need to record it in dwo_file.
12438 Also, we can't simply record type sections in dwo_file because
12439 we record a pointer into the vector in dwo_unit. As we collect more
12440 types we'll grow the vector and eventually have to reallocate space
12441 for it, invalidating all copies of pointers into the previous
12442 contents. */
12443 *dwo_file_slot = dwo_file;
12444 }
12445 else
12446 {
12447 if (dwarf_read_debug)
12448 {
12449 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12450 virtual_dwo_name.c_str ());
12451 }
12452 dwo_file = (struct dwo_file *) *dwo_file_slot;
12453 }
12454
12455 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12456 dwo_unit->dwo_file = dwo_file;
12457 dwo_unit->signature = signature;
12458 dwo_unit->section =
12459 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12460 *dwo_unit->section = sections.info_or_types;
12461 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12462
12463 return dwo_unit;
12464 }
12465
12466 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12467 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12468 piece within that section used by a TU/CU, return a virtual section
12469 of just that piece. */
12470
12471 static struct dwarf2_section_info
12472 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12473 struct dwarf2_section_info *section,
12474 bfd_size_type offset, bfd_size_type size)
12475 {
12476 struct dwarf2_section_info result;
12477 asection *sectp;
12478
12479 gdb_assert (section != NULL);
12480 gdb_assert (!section->is_virtual);
12481
12482 memset (&result, 0, sizeof (result));
12483 result.s.containing_section = section;
12484 result.is_virtual = true;
12485
12486 if (size == 0)
12487 return result;
12488
12489 sectp = get_section_bfd_section (section);
12490
12491 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12492 bounds of the real section. This is a pretty-rare event, so just
12493 flag an error (easier) instead of a warning and trying to cope. */
12494 if (sectp == NULL
12495 || offset + size > bfd_get_section_size (sectp))
12496 {
12497 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12498 " in section %s [in module %s]"),
12499 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12500 objfile_name (dwarf2_per_objfile->objfile));
12501 }
12502
12503 result.virtual_offset = offset;
12504 result.size = size;
12505 return result;
12506 }
12507
12508 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12509 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12510 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12511 This is for DWP version 2 files. */
12512
12513 static struct dwo_unit *
12514 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12515 struct dwp_file *dwp_file,
12516 uint32_t unit_index,
12517 const char *comp_dir,
12518 ULONGEST signature, int is_debug_types)
12519 {
12520 struct objfile *objfile = dwarf2_per_objfile->objfile;
12521 const struct dwp_hash_table *dwp_htab =
12522 is_debug_types ? dwp_file->tus : dwp_file->cus;
12523 bfd *dbfd = dwp_file->dbfd.get ();
12524 const char *kind = is_debug_types ? "TU" : "CU";
12525 struct dwo_file *dwo_file;
12526 struct dwo_unit *dwo_unit;
12527 struct virtual_v2_dwo_sections sections;
12528 void **dwo_file_slot;
12529 int i;
12530
12531 gdb_assert (dwp_file->version == 2);
12532
12533 if (dwarf_read_debug)
12534 {
12535 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12536 kind,
12537 pulongest (unit_index), hex_string (signature),
12538 dwp_file->name);
12539 }
12540
12541 /* Fetch the section offsets of this DWO unit. */
12542
12543 memset (&sections, 0, sizeof (sections));
12544
12545 for (i = 0; i < dwp_htab->nr_columns; ++i)
12546 {
12547 uint32_t offset = read_4_bytes (dbfd,
12548 dwp_htab->section_pool.v2.offsets
12549 + (((unit_index - 1) * dwp_htab->nr_columns
12550 + i)
12551 * sizeof (uint32_t)));
12552 uint32_t size = read_4_bytes (dbfd,
12553 dwp_htab->section_pool.v2.sizes
12554 + (((unit_index - 1) * dwp_htab->nr_columns
12555 + i)
12556 * sizeof (uint32_t)));
12557
12558 switch (dwp_htab->section_pool.v2.section_ids[i])
12559 {
12560 case DW_SECT_INFO:
12561 case DW_SECT_TYPES:
12562 sections.info_or_types_offset = offset;
12563 sections.info_or_types_size = size;
12564 break;
12565 case DW_SECT_ABBREV:
12566 sections.abbrev_offset = offset;
12567 sections.abbrev_size = size;
12568 break;
12569 case DW_SECT_LINE:
12570 sections.line_offset = offset;
12571 sections.line_size = size;
12572 break;
12573 case DW_SECT_LOC:
12574 sections.loc_offset = offset;
12575 sections.loc_size = size;
12576 break;
12577 case DW_SECT_STR_OFFSETS:
12578 sections.str_offsets_offset = offset;
12579 sections.str_offsets_size = size;
12580 break;
12581 case DW_SECT_MACINFO:
12582 sections.macinfo_offset = offset;
12583 sections.macinfo_size = size;
12584 break;
12585 case DW_SECT_MACRO:
12586 sections.macro_offset = offset;
12587 sections.macro_size = size;
12588 break;
12589 }
12590 }
12591
12592 /* It's easier for the rest of the code if we fake a struct dwo_file and
12593 have dwo_unit "live" in that. At least for now.
12594
12595 The DWP file can be made up of a random collection of CUs and TUs.
12596 However, for each CU + set of TUs that came from the same original DWO
12597 file, we can combine them back into a virtual DWO file to save space
12598 (fewer struct dwo_file objects to allocate). Remember that for really
12599 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12600
12601 std::string virtual_dwo_name =
12602 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12603 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12604 (long) (sections.line_size ? sections.line_offset : 0),
12605 (long) (sections.loc_size ? sections.loc_offset : 0),
12606 (long) (sections.str_offsets_size
12607 ? sections.str_offsets_offset : 0));
12608 /* Can we use an existing virtual DWO file? */
12609 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12610 virtual_dwo_name.c_str (),
12611 comp_dir);
12612 /* Create one if necessary. */
12613 if (*dwo_file_slot == NULL)
12614 {
12615 if (dwarf_read_debug)
12616 {
12617 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12618 virtual_dwo_name.c_str ());
12619 }
12620 dwo_file = new struct dwo_file;
12621 dwo_file->dwo_name
12622 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12623 virtual_dwo_name.c_str (),
12624 virtual_dwo_name.size ());
12625 dwo_file->comp_dir = comp_dir;
12626 dwo_file->sections.abbrev =
12627 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12628 sections.abbrev_offset, sections.abbrev_size);
12629 dwo_file->sections.line =
12630 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12631 sections.line_offset, sections.line_size);
12632 dwo_file->sections.loc =
12633 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12634 sections.loc_offset, sections.loc_size);
12635 dwo_file->sections.macinfo =
12636 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12637 sections.macinfo_offset, sections.macinfo_size);
12638 dwo_file->sections.macro =
12639 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12640 sections.macro_offset, sections.macro_size);
12641 dwo_file->sections.str_offsets =
12642 create_dwp_v2_section (dwarf2_per_objfile,
12643 &dwp_file->sections.str_offsets,
12644 sections.str_offsets_offset,
12645 sections.str_offsets_size);
12646 /* The "str" section is global to the entire DWP file. */
12647 dwo_file->sections.str = dwp_file->sections.str;
12648 /* The info or types section is assigned below to dwo_unit,
12649 there's no need to record it in dwo_file.
12650 Also, we can't simply record type sections in dwo_file because
12651 we record a pointer into the vector in dwo_unit. As we collect more
12652 types we'll grow the vector and eventually have to reallocate space
12653 for it, invalidating all copies of pointers into the previous
12654 contents. */
12655 *dwo_file_slot = dwo_file;
12656 }
12657 else
12658 {
12659 if (dwarf_read_debug)
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12662 virtual_dwo_name.c_str ());
12663 }
12664 dwo_file = (struct dwo_file *) *dwo_file_slot;
12665 }
12666
12667 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12668 dwo_unit->dwo_file = dwo_file;
12669 dwo_unit->signature = signature;
12670 dwo_unit->section =
12671 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12672 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12673 is_debug_types
12674 ? &dwp_file->sections.types
12675 : &dwp_file->sections.info,
12676 sections.info_or_types_offset,
12677 sections.info_or_types_size);
12678 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12679
12680 return dwo_unit;
12681 }
12682
12683 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12684 Returns NULL if the signature isn't found. */
12685
12686 static struct dwo_unit *
12687 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12688 struct dwp_file *dwp_file, const char *comp_dir,
12689 ULONGEST signature, int is_debug_types)
12690 {
12691 const struct dwp_hash_table *dwp_htab =
12692 is_debug_types ? dwp_file->tus : dwp_file->cus;
12693 bfd *dbfd = dwp_file->dbfd.get ();
12694 uint32_t mask = dwp_htab->nr_slots - 1;
12695 uint32_t hash = signature & mask;
12696 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12697 unsigned int i;
12698 void **slot;
12699 struct dwo_unit find_dwo_cu;
12700
12701 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12702 find_dwo_cu.signature = signature;
12703 slot = htab_find_slot (is_debug_types
12704 ? dwp_file->loaded_tus
12705 : dwp_file->loaded_cus,
12706 &find_dwo_cu, INSERT);
12707
12708 if (*slot != NULL)
12709 return (struct dwo_unit *) *slot;
12710
12711 /* Use a for loop so that we don't loop forever on bad debug info. */
12712 for (i = 0; i < dwp_htab->nr_slots; ++i)
12713 {
12714 ULONGEST signature_in_table;
12715
12716 signature_in_table =
12717 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12718 if (signature_in_table == signature)
12719 {
12720 uint32_t unit_index =
12721 read_4_bytes (dbfd,
12722 dwp_htab->unit_table + hash * sizeof (uint32_t));
12723
12724 if (dwp_file->version == 1)
12725 {
12726 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12727 dwp_file, unit_index,
12728 comp_dir, signature,
12729 is_debug_types);
12730 }
12731 else
12732 {
12733 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12734 dwp_file, unit_index,
12735 comp_dir, signature,
12736 is_debug_types);
12737 }
12738 return (struct dwo_unit *) *slot;
12739 }
12740 if (signature_in_table == 0)
12741 return NULL;
12742 hash = (hash + hash2) & mask;
12743 }
12744
12745 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12746 " [in module %s]"),
12747 dwp_file->name);
12748 }
12749
12750 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12751 Open the file specified by FILE_NAME and hand it off to BFD for
12752 preliminary analysis. Return a newly initialized bfd *, which
12753 includes a canonicalized copy of FILE_NAME.
12754 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12755 SEARCH_CWD is true if the current directory is to be searched.
12756 It will be searched before debug-file-directory.
12757 If successful, the file is added to the bfd include table of the
12758 objfile's bfd (see gdb_bfd_record_inclusion).
12759 If unable to find/open the file, return NULL.
12760 NOTE: This function is derived from symfile_bfd_open. */
12761
12762 static gdb_bfd_ref_ptr
12763 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12764 const char *file_name, int is_dwp, int search_cwd)
12765 {
12766 int desc;
12767 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12768 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12769 to debug_file_directory. */
12770 const char *search_path;
12771 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12772
12773 gdb::unique_xmalloc_ptr<char> search_path_holder;
12774 if (search_cwd)
12775 {
12776 if (*debug_file_directory != '\0')
12777 {
12778 search_path_holder.reset (concat (".", dirname_separator_string,
12779 debug_file_directory,
12780 (char *) NULL));
12781 search_path = search_path_holder.get ();
12782 }
12783 else
12784 search_path = ".";
12785 }
12786 else
12787 search_path = debug_file_directory;
12788
12789 openp_flags flags = OPF_RETURN_REALPATH;
12790 if (is_dwp)
12791 flags |= OPF_SEARCH_IN_PATH;
12792
12793 gdb::unique_xmalloc_ptr<char> absolute_name;
12794 desc = openp (search_path, flags, file_name,
12795 O_RDONLY | O_BINARY, &absolute_name);
12796 if (desc < 0)
12797 return NULL;
12798
12799 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12800 gnutarget, desc));
12801 if (sym_bfd == NULL)
12802 return NULL;
12803 bfd_set_cacheable (sym_bfd.get (), 1);
12804
12805 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12806 return NULL;
12807
12808 /* Success. Record the bfd as having been included by the objfile's bfd.
12809 This is important because things like demangled_names_hash lives in the
12810 objfile's per_bfd space and may have references to things like symbol
12811 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12812 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12813
12814 return sym_bfd;
12815 }
12816
12817 /* Try to open DWO file FILE_NAME.
12818 COMP_DIR is the DW_AT_comp_dir attribute.
12819 The result is the bfd handle of the file.
12820 If there is a problem finding or opening the file, return NULL.
12821 Upon success, the canonicalized path of the file is stored in the bfd,
12822 same as symfile_bfd_open. */
12823
12824 static gdb_bfd_ref_ptr
12825 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12826 const char *file_name, const char *comp_dir)
12827 {
12828 if (IS_ABSOLUTE_PATH (file_name))
12829 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12830 0 /*is_dwp*/, 0 /*search_cwd*/);
12831
12832 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12833
12834 if (comp_dir != NULL)
12835 {
12836 char *path_to_try = concat (comp_dir, SLASH_STRING,
12837 file_name, (char *) NULL);
12838
12839 /* NOTE: If comp_dir is a relative path, this will also try the
12840 search path, which seems useful. */
12841 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12842 path_to_try,
12843 0 /*is_dwp*/,
12844 1 /*search_cwd*/));
12845 xfree (path_to_try);
12846 if (abfd != NULL)
12847 return abfd;
12848 }
12849
12850 /* That didn't work, try debug-file-directory, which, despite its name,
12851 is a list of paths. */
12852
12853 if (*debug_file_directory == '\0')
12854 return NULL;
12855
12856 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12857 0 /*is_dwp*/, 1 /*search_cwd*/);
12858 }
12859
12860 /* This function is mapped across the sections and remembers the offset and
12861 size of each of the DWO debugging sections we are interested in. */
12862
12863 static void
12864 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12865 {
12866 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12867 const struct dwop_section_names *names = &dwop_section_names;
12868
12869 if (section_is_p (sectp->name, &names->abbrev_dwo))
12870 {
12871 dwo_sections->abbrev.s.section = sectp;
12872 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12873 }
12874 else if (section_is_p (sectp->name, &names->info_dwo))
12875 {
12876 dwo_sections->info.s.section = sectp;
12877 dwo_sections->info.size = bfd_get_section_size (sectp);
12878 }
12879 else if (section_is_p (sectp->name, &names->line_dwo))
12880 {
12881 dwo_sections->line.s.section = sectp;
12882 dwo_sections->line.size = bfd_get_section_size (sectp);
12883 }
12884 else if (section_is_p (sectp->name, &names->loc_dwo))
12885 {
12886 dwo_sections->loc.s.section = sectp;
12887 dwo_sections->loc.size = bfd_get_section_size (sectp);
12888 }
12889 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12890 {
12891 dwo_sections->macinfo.s.section = sectp;
12892 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12893 }
12894 else if (section_is_p (sectp->name, &names->macro_dwo))
12895 {
12896 dwo_sections->macro.s.section = sectp;
12897 dwo_sections->macro.size = bfd_get_section_size (sectp);
12898 }
12899 else if (section_is_p (sectp->name, &names->str_dwo))
12900 {
12901 dwo_sections->str.s.section = sectp;
12902 dwo_sections->str.size = bfd_get_section_size (sectp);
12903 }
12904 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12905 {
12906 dwo_sections->str_offsets.s.section = sectp;
12907 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12908 }
12909 else if (section_is_p (sectp->name, &names->types_dwo))
12910 {
12911 struct dwarf2_section_info type_section;
12912
12913 memset (&type_section, 0, sizeof (type_section));
12914 type_section.s.section = sectp;
12915 type_section.size = bfd_get_section_size (sectp);
12916 dwo_sections->types.push_back (type_section);
12917 }
12918 }
12919
12920 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12921 by PER_CU. This is for the non-DWP case.
12922 The result is NULL if DWO_NAME can't be found. */
12923
12924 static struct dwo_file *
12925 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12926 const char *dwo_name, const char *comp_dir)
12927 {
12928 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12929
12930 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12931 if (dbfd == NULL)
12932 {
12933 if (dwarf_read_debug)
12934 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12935 return NULL;
12936 }
12937
12938 dwo_file_up dwo_file (new struct dwo_file);
12939 dwo_file->dwo_name = dwo_name;
12940 dwo_file->comp_dir = comp_dir;
12941 dwo_file->dbfd = std::move (dbfd);
12942
12943 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12944 &dwo_file->sections);
12945
12946 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12947 dwo_file->cus);
12948
12949 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12950 dwo_file->sections.types, dwo_file->tus);
12951
12952 if (dwarf_read_debug)
12953 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12954
12955 return dwo_file.release ();
12956 }
12957
12958 /* This function is mapped across the sections and remembers the offset and
12959 size of each of the DWP debugging sections common to version 1 and 2 that
12960 we are interested in. */
12961
12962 static void
12963 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12964 void *dwp_file_ptr)
12965 {
12966 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12967 const struct dwop_section_names *names = &dwop_section_names;
12968 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12969
12970 /* Record the ELF section number for later lookup: this is what the
12971 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12972 gdb_assert (elf_section_nr < dwp_file->num_sections);
12973 dwp_file->elf_sections[elf_section_nr] = sectp;
12974
12975 /* Look for specific sections that we need. */
12976 if (section_is_p (sectp->name, &names->str_dwo))
12977 {
12978 dwp_file->sections.str.s.section = sectp;
12979 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12980 }
12981 else if (section_is_p (sectp->name, &names->cu_index))
12982 {
12983 dwp_file->sections.cu_index.s.section = sectp;
12984 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12985 }
12986 else if (section_is_p (sectp->name, &names->tu_index))
12987 {
12988 dwp_file->sections.tu_index.s.section = sectp;
12989 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12990 }
12991 }
12992
12993 /* This function is mapped across the sections and remembers the offset and
12994 size of each of the DWP version 2 debugging sections that we are interested
12995 in. This is split into a separate function because we don't know if we
12996 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12997
12998 static void
12999 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13000 {
13001 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13002 const struct dwop_section_names *names = &dwop_section_names;
13003 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13004
13005 /* Record the ELF section number for later lookup: this is what the
13006 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13007 gdb_assert (elf_section_nr < dwp_file->num_sections);
13008 dwp_file->elf_sections[elf_section_nr] = sectp;
13009
13010 /* Look for specific sections that we need. */
13011 if (section_is_p (sectp->name, &names->abbrev_dwo))
13012 {
13013 dwp_file->sections.abbrev.s.section = sectp;
13014 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13015 }
13016 else if (section_is_p (sectp->name, &names->info_dwo))
13017 {
13018 dwp_file->sections.info.s.section = sectp;
13019 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13020 }
13021 else if (section_is_p (sectp->name, &names->line_dwo))
13022 {
13023 dwp_file->sections.line.s.section = sectp;
13024 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13025 }
13026 else if (section_is_p (sectp->name, &names->loc_dwo))
13027 {
13028 dwp_file->sections.loc.s.section = sectp;
13029 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13030 }
13031 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13032 {
13033 dwp_file->sections.macinfo.s.section = sectp;
13034 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13035 }
13036 else if (section_is_p (sectp->name, &names->macro_dwo))
13037 {
13038 dwp_file->sections.macro.s.section = sectp;
13039 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13040 }
13041 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13042 {
13043 dwp_file->sections.str_offsets.s.section = sectp;
13044 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13045 }
13046 else if (section_is_p (sectp->name, &names->types_dwo))
13047 {
13048 dwp_file->sections.types.s.section = sectp;
13049 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13050 }
13051 }
13052
13053 /* Hash function for dwp_file loaded CUs/TUs. */
13054
13055 static hashval_t
13056 hash_dwp_loaded_cutus (const void *item)
13057 {
13058 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13059
13060 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13061 return dwo_unit->signature;
13062 }
13063
13064 /* Equality function for dwp_file loaded CUs/TUs. */
13065
13066 static int
13067 eq_dwp_loaded_cutus (const void *a, const void *b)
13068 {
13069 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13070 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13071
13072 return dua->signature == dub->signature;
13073 }
13074
13075 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13076
13077 static htab_t
13078 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13079 {
13080 return htab_create_alloc_ex (3,
13081 hash_dwp_loaded_cutus,
13082 eq_dwp_loaded_cutus,
13083 NULL,
13084 &objfile->objfile_obstack,
13085 hashtab_obstack_allocate,
13086 dummy_obstack_deallocate);
13087 }
13088
13089 /* Try to open DWP file FILE_NAME.
13090 The result is the bfd handle of the file.
13091 If there is a problem finding or opening the file, return NULL.
13092 Upon success, the canonicalized path of the file is stored in the bfd,
13093 same as symfile_bfd_open. */
13094
13095 static gdb_bfd_ref_ptr
13096 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13097 const char *file_name)
13098 {
13099 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13100 1 /*is_dwp*/,
13101 1 /*search_cwd*/));
13102 if (abfd != NULL)
13103 return abfd;
13104
13105 /* Work around upstream bug 15652.
13106 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13107 [Whether that's a "bug" is debatable, but it is getting in our way.]
13108 We have no real idea where the dwp file is, because gdb's realpath-ing
13109 of the executable's path may have discarded the needed info.
13110 [IWBN if the dwp file name was recorded in the executable, akin to
13111 .gnu_debuglink, but that doesn't exist yet.]
13112 Strip the directory from FILE_NAME and search again. */
13113 if (*debug_file_directory != '\0')
13114 {
13115 /* Don't implicitly search the current directory here.
13116 If the user wants to search "." to handle this case,
13117 it must be added to debug-file-directory. */
13118 return try_open_dwop_file (dwarf2_per_objfile,
13119 lbasename (file_name), 1 /*is_dwp*/,
13120 0 /*search_cwd*/);
13121 }
13122
13123 return NULL;
13124 }
13125
13126 /* Initialize the use of the DWP file for the current objfile.
13127 By convention the name of the DWP file is ${objfile}.dwp.
13128 The result is NULL if it can't be found. */
13129
13130 static std::unique_ptr<struct dwp_file>
13131 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13132 {
13133 struct objfile *objfile = dwarf2_per_objfile->objfile;
13134
13135 /* Try to find first .dwp for the binary file before any symbolic links
13136 resolving. */
13137
13138 /* If the objfile is a debug file, find the name of the real binary
13139 file and get the name of dwp file from there. */
13140 std::string dwp_name;
13141 if (objfile->separate_debug_objfile_backlink != NULL)
13142 {
13143 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13144 const char *backlink_basename = lbasename (backlink->original_name);
13145
13146 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13147 }
13148 else
13149 dwp_name = objfile->original_name;
13150
13151 dwp_name += ".dwp";
13152
13153 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13154 if (dbfd == NULL
13155 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13156 {
13157 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13158 dwp_name = objfile_name (objfile);
13159 dwp_name += ".dwp";
13160 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13161 }
13162
13163 if (dbfd == NULL)
13164 {
13165 if (dwarf_read_debug)
13166 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13167 return std::unique_ptr<dwp_file> ();
13168 }
13169
13170 const char *name = bfd_get_filename (dbfd.get ());
13171 std::unique_ptr<struct dwp_file> dwp_file
13172 (new struct dwp_file (name, std::move (dbfd)));
13173
13174 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13175 dwp_file->elf_sections =
13176 OBSTACK_CALLOC (&objfile->objfile_obstack,
13177 dwp_file->num_sections, asection *);
13178
13179 bfd_map_over_sections (dwp_file->dbfd.get (),
13180 dwarf2_locate_common_dwp_sections,
13181 dwp_file.get ());
13182
13183 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13184 0);
13185
13186 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13187 1);
13188
13189 /* The DWP file version is stored in the hash table. Oh well. */
13190 if (dwp_file->cus && dwp_file->tus
13191 && dwp_file->cus->version != dwp_file->tus->version)
13192 {
13193 /* Technically speaking, we should try to limp along, but this is
13194 pretty bizarre. We use pulongest here because that's the established
13195 portability solution (e.g, we cannot use %u for uint32_t). */
13196 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13197 " TU version %s [in DWP file %s]"),
13198 pulongest (dwp_file->cus->version),
13199 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13200 }
13201
13202 if (dwp_file->cus)
13203 dwp_file->version = dwp_file->cus->version;
13204 else if (dwp_file->tus)
13205 dwp_file->version = dwp_file->tus->version;
13206 else
13207 dwp_file->version = 2;
13208
13209 if (dwp_file->version == 2)
13210 bfd_map_over_sections (dwp_file->dbfd.get (),
13211 dwarf2_locate_v2_dwp_sections,
13212 dwp_file.get ());
13213
13214 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13215 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13216
13217 if (dwarf_read_debug)
13218 {
13219 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13220 fprintf_unfiltered (gdb_stdlog,
13221 " %s CUs, %s TUs\n",
13222 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13223 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13224 }
13225
13226 return dwp_file;
13227 }
13228
13229 /* Wrapper around open_and_init_dwp_file, only open it once. */
13230
13231 static struct dwp_file *
13232 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13233 {
13234 if (! dwarf2_per_objfile->dwp_checked)
13235 {
13236 dwarf2_per_objfile->dwp_file
13237 = open_and_init_dwp_file (dwarf2_per_objfile);
13238 dwarf2_per_objfile->dwp_checked = 1;
13239 }
13240 return dwarf2_per_objfile->dwp_file.get ();
13241 }
13242
13243 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13244 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13245 or in the DWP file for the objfile, referenced by THIS_UNIT.
13246 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13247 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13248
13249 This is called, for example, when wanting to read a variable with a
13250 complex location. Therefore we don't want to do file i/o for every call.
13251 Therefore we don't want to look for a DWO file on every call.
13252 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13253 then we check if we've already seen DWO_NAME, and only THEN do we check
13254 for a DWO file.
13255
13256 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13257 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13258
13259 static struct dwo_unit *
13260 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13261 const char *dwo_name, const char *comp_dir,
13262 ULONGEST signature, int is_debug_types)
13263 {
13264 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13265 struct objfile *objfile = dwarf2_per_objfile->objfile;
13266 const char *kind = is_debug_types ? "TU" : "CU";
13267 void **dwo_file_slot;
13268 struct dwo_file *dwo_file;
13269 struct dwp_file *dwp_file;
13270
13271 /* First see if there's a DWP file.
13272 If we have a DWP file but didn't find the DWO inside it, don't
13273 look for the original DWO file. It makes gdb behave differently
13274 depending on whether one is debugging in the build tree. */
13275
13276 dwp_file = get_dwp_file (dwarf2_per_objfile);
13277 if (dwp_file != NULL)
13278 {
13279 const struct dwp_hash_table *dwp_htab =
13280 is_debug_types ? dwp_file->tus : dwp_file->cus;
13281
13282 if (dwp_htab != NULL)
13283 {
13284 struct dwo_unit *dwo_cutu =
13285 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13286 signature, is_debug_types);
13287
13288 if (dwo_cutu != NULL)
13289 {
13290 if (dwarf_read_debug)
13291 {
13292 fprintf_unfiltered (gdb_stdlog,
13293 "Virtual DWO %s %s found: @%s\n",
13294 kind, hex_string (signature),
13295 host_address_to_string (dwo_cutu));
13296 }
13297 return dwo_cutu;
13298 }
13299 }
13300 }
13301 else
13302 {
13303 /* No DWP file, look for the DWO file. */
13304
13305 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13306 dwo_name, comp_dir);
13307 if (*dwo_file_slot == NULL)
13308 {
13309 /* Read in the file and build a table of the CUs/TUs it contains. */
13310 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13311 }
13312 /* NOTE: This will be NULL if unable to open the file. */
13313 dwo_file = (struct dwo_file *) *dwo_file_slot;
13314
13315 if (dwo_file != NULL)
13316 {
13317 struct dwo_unit *dwo_cutu = NULL;
13318
13319 if (is_debug_types && dwo_file->tus)
13320 {
13321 struct dwo_unit find_dwo_cutu;
13322
13323 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13324 find_dwo_cutu.signature = signature;
13325 dwo_cutu
13326 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13327 }
13328 else if (!is_debug_types && dwo_file->cus)
13329 {
13330 struct dwo_unit find_dwo_cutu;
13331
13332 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13333 find_dwo_cutu.signature = signature;
13334 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13335 &find_dwo_cutu);
13336 }
13337
13338 if (dwo_cutu != NULL)
13339 {
13340 if (dwarf_read_debug)
13341 {
13342 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13343 kind, dwo_name, hex_string (signature),
13344 host_address_to_string (dwo_cutu));
13345 }
13346 return dwo_cutu;
13347 }
13348 }
13349 }
13350
13351 /* We didn't find it. This could mean a dwo_id mismatch, or
13352 someone deleted the DWO/DWP file, or the search path isn't set up
13353 correctly to find the file. */
13354
13355 if (dwarf_read_debug)
13356 {
13357 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13358 kind, dwo_name, hex_string (signature));
13359 }
13360
13361 /* This is a warning and not a complaint because it can be caused by
13362 pilot error (e.g., user accidentally deleting the DWO). */
13363 {
13364 /* Print the name of the DWP file if we looked there, helps the user
13365 better diagnose the problem. */
13366 std::string dwp_text;
13367
13368 if (dwp_file != NULL)
13369 dwp_text = string_printf (" [in DWP file %s]",
13370 lbasename (dwp_file->name));
13371
13372 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13373 " [in module %s]"),
13374 kind, dwo_name, hex_string (signature),
13375 dwp_text.c_str (),
13376 this_unit->is_debug_types ? "TU" : "CU",
13377 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13378 }
13379 return NULL;
13380 }
13381
13382 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13383 See lookup_dwo_cutu_unit for details. */
13384
13385 static struct dwo_unit *
13386 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13387 const char *dwo_name, const char *comp_dir,
13388 ULONGEST signature)
13389 {
13390 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13391 }
13392
13393 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13394 See lookup_dwo_cutu_unit for details. */
13395
13396 static struct dwo_unit *
13397 lookup_dwo_type_unit (struct signatured_type *this_tu,
13398 const char *dwo_name, const char *comp_dir)
13399 {
13400 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13401 }
13402
13403 /* Traversal function for queue_and_load_all_dwo_tus. */
13404
13405 static int
13406 queue_and_load_dwo_tu (void **slot, void *info)
13407 {
13408 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13409 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13410 ULONGEST signature = dwo_unit->signature;
13411 struct signatured_type *sig_type =
13412 lookup_dwo_signatured_type (per_cu->cu, signature);
13413
13414 if (sig_type != NULL)
13415 {
13416 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13417
13418 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13419 a real dependency of PER_CU on SIG_TYPE. That is detected later
13420 while processing PER_CU. */
13421 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13422 load_full_type_unit (sig_cu);
13423 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13424 }
13425
13426 return 1;
13427 }
13428
13429 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13430 The DWO may have the only definition of the type, though it may not be
13431 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13432 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13433
13434 static void
13435 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13436 {
13437 struct dwo_unit *dwo_unit;
13438 struct dwo_file *dwo_file;
13439
13440 gdb_assert (!per_cu->is_debug_types);
13441 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13442 gdb_assert (per_cu->cu != NULL);
13443
13444 dwo_unit = per_cu->cu->dwo_unit;
13445 gdb_assert (dwo_unit != NULL);
13446
13447 dwo_file = dwo_unit->dwo_file;
13448 if (dwo_file->tus != NULL)
13449 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13450 }
13451
13452 /* Read in various DIEs. */
13453
13454 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13455 Inherit only the children of the DW_AT_abstract_origin DIE not being
13456 already referenced by DW_AT_abstract_origin from the children of the
13457 current DIE. */
13458
13459 static void
13460 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13461 {
13462 struct die_info *child_die;
13463 sect_offset *offsetp;
13464 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13465 struct die_info *origin_die;
13466 /* Iterator of the ORIGIN_DIE children. */
13467 struct die_info *origin_child_die;
13468 struct attribute *attr;
13469 struct dwarf2_cu *origin_cu;
13470 struct pending **origin_previous_list_in_scope;
13471
13472 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13473 if (!attr)
13474 return;
13475
13476 /* Note that following die references may follow to a die in a
13477 different cu. */
13478
13479 origin_cu = cu;
13480 origin_die = follow_die_ref (die, attr, &origin_cu);
13481
13482 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13483 symbols in. */
13484 origin_previous_list_in_scope = origin_cu->list_in_scope;
13485 origin_cu->list_in_scope = cu->list_in_scope;
13486
13487 if (die->tag != origin_die->tag
13488 && !(die->tag == DW_TAG_inlined_subroutine
13489 && origin_die->tag == DW_TAG_subprogram))
13490 complaint (_("DIE %s and its abstract origin %s have different tags"),
13491 sect_offset_str (die->sect_off),
13492 sect_offset_str (origin_die->sect_off));
13493
13494 std::vector<sect_offset> offsets;
13495
13496 for (child_die = die->child;
13497 child_die && child_die->tag;
13498 child_die = sibling_die (child_die))
13499 {
13500 struct die_info *child_origin_die;
13501 struct dwarf2_cu *child_origin_cu;
13502
13503 /* We are trying to process concrete instance entries:
13504 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13505 it's not relevant to our analysis here. i.e. detecting DIEs that are
13506 present in the abstract instance but not referenced in the concrete
13507 one. */
13508 if (child_die->tag == DW_TAG_call_site
13509 || child_die->tag == DW_TAG_GNU_call_site)
13510 continue;
13511
13512 /* For each CHILD_DIE, find the corresponding child of
13513 ORIGIN_DIE. If there is more than one layer of
13514 DW_AT_abstract_origin, follow them all; there shouldn't be,
13515 but GCC versions at least through 4.4 generate this (GCC PR
13516 40573). */
13517 child_origin_die = child_die;
13518 child_origin_cu = cu;
13519 while (1)
13520 {
13521 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13522 child_origin_cu);
13523 if (attr == NULL)
13524 break;
13525 child_origin_die = follow_die_ref (child_origin_die, attr,
13526 &child_origin_cu);
13527 }
13528
13529 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13530 counterpart may exist. */
13531 if (child_origin_die != child_die)
13532 {
13533 if (child_die->tag != child_origin_die->tag
13534 && !(child_die->tag == DW_TAG_inlined_subroutine
13535 && child_origin_die->tag == DW_TAG_subprogram))
13536 complaint (_("Child DIE %s and its abstract origin %s have "
13537 "different tags"),
13538 sect_offset_str (child_die->sect_off),
13539 sect_offset_str (child_origin_die->sect_off));
13540 if (child_origin_die->parent != origin_die)
13541 complaint (_("Child DIE %s and its abstract origin %s have "
13542 "different parents"),
13543 sect_offset_str (child_die->sect_off),
13544 sect_offset_str (child_origin_die->sect_off));
13545 else
13546 offsets.push_back (child_origin_die->sect_off);
13547 }
13548 }
13549 std::sort (offsets.begin (), offsets.end ());
13550 sect_offset *offsets_end = offsets.data () + offsets.size ();
13551 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13552 if (offsetp[-1] == *offsetp)
13553 complaint (_("Multiple children of DIE %s refer "
13554 "to DIE %s as their abstract origin"),
13555 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13556
13557 offsetp = offsets.data ();
13558 origin_child_die = origin_die->child;
13559 while (origin_child_die && origin_child_die->tag)
13560 {
13561 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13562 while (offsetp < offsets_end
13563 && *offsetp < origin_child_die->sect_off)
13564 offsetp++;
13565 if (offsetp >= offsets_end
13566 || *offsetp > origin_child_die->sect_off)
13567 {
13568 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13569 Check whether we're already processing ORIGIN_CHILD_DIE.
13570 This can happen with mutually referenced abstract_origins.
13571 PR 16581. */
13572 if (!origin_child_die->in_process)
13573 process_die (origin_child_die, origin_cu);
13574 }
13575 origin_child_die = sibling_die (origin_child_die);
13576 }
13577 origin_cu->list_in_scope = origin_previous_list_in_scope;
13578 }
13579
13580 static void
13581 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13582 {
13583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13585 struct context_stack *newobj;
13586 CORE_ADDR lowpc;
13587 CORE_ADDR highpc;
13588 struct die_info *child_die;
13589 struct attribute *attr, *call_line, *call_file;
13590 const char *name;
13591 CORE_ADDR baseaddr;
13592 struct block *block;
13593 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13594 std::vector<struct symbol *> template_args;
13595 struct template_symbol *templ_func = NULL;
13596
13597 if (inlined_func)
13598 {
13599 /* If we do not have call site information, we can't show the
13600 caller of this inlined function. That's too confusing, so
13601 only use the scope for local variables. */
13602 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13603 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13604 if (call_line == NULL || call_file == NULL)
13605 {
13606 read_lexical_block_scope (die, cu);
13607 return;
13608 }
13609 }
13610
13611 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13612
13613 name = dwarf2_name (die, cu);
13614
13615 /* Ignore functions with missing or empty names. These are actually
13616 illegal according to the DWARF standard. */
13617 if (name == NULL)
13618 {
13619 complaint (_("missing name for subprogram DIE at %s"),
13620 sect_offset_str (die->sect_off));
13621 return;
13622 }
13623
13624 /* Ignore functions with missing or invalid low and high pc attributes. */
13625 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13626 <= PC_BOUNDS_INVALID)
13627 {
13628 attr = dwarf2_attr (die, DW_AT_external, cu);
13629 if (!attr || !DW_UNSND (attr))
13630 complaint (_("cannot get low and high bounds "
13631 "for subprogram DIE at %s"),
13632 sect_offset_str (die->sect_off));
13633 return;
13634 }
13635
13636 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13637 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13638
13639 /* If we have any template arguments, then we must allocate a
13640 different sort of symbol. */
13641 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13642 {
13643 if (child_die->tag == DW_TAG_template_type_param
13644 || child_die->tag == DW_TAG_template_value_param)
13645 {
13646 templ_func = allocate_template_symbol (objfile);
13647 templ_func->subclass = SYMBOL_TEMPLATE;
13648 break;
13649 }
13650 }
13651
13652 newobj = cu->get_builder ()->push_context (0, lowpc);
13653 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13654 (struct symbol *) templ_func);
13655
13656 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13657 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13658 cu->language);
13659
13660 /* If there is a location expression for DW_AT_frame_base, record
13661 it. */
13662 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13663 if (attr)
13664 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13665
13666 /* If there is a location for the static link, record it. */
13667 newobj->static_link = NULL;
13668 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13669 if (attr)
13670 {
13671 newobj->static_link
13672 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13673 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13674 dwarf2_per_cu_addr_type (cu->per_cu));
13675 }
13676
13677 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13678
13679 if (die->child != NULL)
13680 {
13681 child_die = die->child;
13682 while (child_die && child_die->tag)
13683 {
13684 if (child_die->tag == DW_TAG_template_type_param
13685 || child_die->tag == DW_TAG_template_value_param)
13686 {
13687 struct symbol *arg = new_symbol (child_die, NULL, cu);
13688
13689 if (arg != NULL)
13690 template_args.push_back (arg);
13691 }
13692 else
13693 process_die (child_die, cu);
13694 child_die = sibling_die (child_die);
13695 }
13696 }
13697
13698 inherit_abstract_dies (die, cu);
13699
13700 /* If we have a DW_AT_specification, we might need to import using
13701 directives from the context of the specification DIE. See the
13702 comment in determine_prefix. */
13703 if (cu->language == language_cplus
13704 && dwarf2_attr (die, DW_AT_specification, cu))
13705 {
13706 struct dwarf2_cu *spec_cu = cu;
13707 struct die_info *spec_die = die_specification (die, &spec_cu);
13708
13709 while (spec_die)
13710 {
13711 child_die = spec_die->child;
13712 while (child_die && child_die->tag)
13713 {
13714 if (child_die->tag == DW_TAG_imported_module)
13715 process_die (child_die, spec_cu);
13716 child_die = sibling_die (child_die);
13717 }
13718
13719 /* In some cases, GCC generates specification DIEs that
13720 themselves contain DW_AT_specification attributes. */
13721 spec_die = die_specification (spec_die, &spec_cu);
13722 }
13723 }
13724
13725 struct context_stack cstk = cu->get_builder ()->pop_context ();
13726 /* Make a block for the local symbols within. */
13727 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13728 cstk.static_link, lowpc, highpc);
13729
13730 /* For C++, set the block's scope. */
13731 if ((cu->language == language_cplus
13732 || cu->language == language_fortran
13733 || cu->language == language_d
13734 || cu->language == language_rust)
13735 && cu->processing_has_namespace_info)
13736 block_set_scope (block, determine_prefix (die, cu),
13737 &objfile->objfile_obstack);
13738
13739 /* If we have address ranges, record them. */
13740 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13741
13742 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13743
13744 /* Attach template arguments to function. */
13745 if (!template_args.empty ())
13746 {
13747 gdb_assert (templ_func != NULL);
13748
13749 templ_func->n_template_arguments = template_args.size ();
13750 templ_func->template_arguments
13751 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13752 templ_func->n_template_arguments);
13753 memcpy (templ_func->template_arguments,
13754 template_args.data (),
13755 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13756
13757 /* Make sure that the symtab is set on the new symbols. Even
13758 though they don't appear in this symtab directly, other parts
13759 of gdb assume that symbols do, and this is reasonably
13760 true. */
13761 for (symbol *sym : template_args)
13762 symbol_set_symtab (sym, symbol_symtab (templ_func));
13763 }
13764
13765 /* In C++, we can have functions nested inside functions (e.g., when
13766 a function declares a class that has methods). This means that
13767 when we finish processing a function scope, we may need to go
13768 back to building a containing block's symbol lists. */
13769 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13770 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13771
13772 /* If we've finished processing a top-level function, subsequent
13773 symbols go in the file symbol list. */
13774 if (cu->get_builder ()->outermost_context_p ())
13775 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13776 }
13777
13778 /* Process all the DIES contained within a lexical block scope. Start
13779 a new scope, process the dies, and then close the scope. */
13780
13781 static void
13782 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13783 {
13784 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13786 CORE_ADDR lowpc, highpc;
13787 struct die_info *child_die;
13788 CORE_ADDR baseaddr;
13789
13790 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13791
13792 /* Ignore blocks with missing or invalid low and high pc attributes. */
13793 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13794 as multiple lexical blocks? Handling children in a sane way would
13795 be nasty. Might be easier to properly extend generic blocks to
13796 describe ranges. */
13797 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13798 {
13799 case PC_BOUNDS_NOT_PRESENT:
13800 /* DW_TAG_lexical_block has no attributes, process its children as if
13801 there was no wrapping by that DW_TAG_lexical_block.
13802 GCC does no longer produces such DWARF since GCC r224161. */
13803 for (child_die = die->child;
13804 child_die != NULL && child_die->tag;
13805 child_die = sibling_die (child_die))
13806 process_die (child_die, cu);
13807 return;
13808 case PC_BOUNDS_INVALID:
13809 return;
13810 }
13811 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13812 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13813
13814 cu->get_builder ()->push_context (0, lowpc);
13815 if (die->child != NULL)
13816 {
13817 child_die = die->child;
13818 while (child_die && child_die->tag)
13819 {
13820 process_die (child_die, cu);
13821 child_die = sibling_die (child_die);
13822 }
13823 }
13824 inherit_abstract_dies (die, cu);
13825 struct context_stack cstk = cu->get_builder ()->pop_context ();
13826
13827 if (*cu->get_builder ()->get_local_symbols () != NULL
13828 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13829 {
13830 struct block *block
13831 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13832 cstk.start_addr, highpc);
13833
13834 /* Note that recording ranges after traversing children, as we
13835 do here, means that recording a parent's ranges entails
13836 walking across all its children's ranges as they appear in
13837 the address map, which is quadratic behavior.
13838
13839 It would be nicer to record the parent's ranges before
13840 traversing its children, simply overriding whatever you find
13841 there. But since we don't even decide whether to create a
13842 block until after we've traversed its children, that's hard
13843 to do. */
13844 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13845 }
13846 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13847 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13848 }
13849
13850 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13851
13852 static void
13853 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13854 {
13855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13857 CORE_ADDR pc, baseaddr;
13858 struct attribute *attr;
13859 struct call_site *call_site, call_site_local;
13860 void **slot;
13861 int nparams;
13862 struct die_info *child_die;
13863
13864 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13865
13866 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13867 if (attr == NULL)
13868 {
13869 /* This was a pre-DWARF-5 GNU extension alias
13870 for DW_AT_call_return_pc. */
13871 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13872 }
13873 if (!attr)
13874 {
13875 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13876 "DIE %s [in module %s]"),
13877 sect_offset_str (die->sect_off), objfile_name (objfile));
13878 return;
13879 }
13880 pc = attr_value_as_address (attr) + baseaddr;
13881 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13882
13883 if (cu->call_site_htab == NULL)
13884 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13885 NULL, &objfile->objfile_obstack,
13886 hashtab_obstack_allocate, NULL);
13887 call_site_local.pc = pc;
13888 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13889 if (*slot != NULL)
13890 {
13891 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13892 "DIE %s [in module %s]"),
13893 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13894 objfile_name (objfile));
13895 return;
13896 }
13897
13898 /* Count parameters at the caller. */
13899
13900 nparams = 0;
13901 for (child_die = die->child; child_die && child_die->tag;
13902 child_die = sibling_die (child_die))
13903 {
13904 if (child_die->tag != DW_TAG_call_site_parameter
13905 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13906 {
13907 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13908 "DW_TAG_call_site child DIE %s [in module %s]"),
13909 child_die->tag, sect_offset_str (child_die->sect_off),
13910 objfile_name (objfile));
13911 continue;
13912 }
13913
13914 nparams++;
13915 }
13916
13917 call_site
13918 = ((struct call_site *)
13919 obstack_alloc (&objfile->objfile_obstack,
13920 sizeof (*call_site)
13921 + (sizeof (*call_site->parameter) * (nparams - 1))));
13922 *slot = call_site;
13923 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13924 call_site->pc = pc;
13925
13926 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13927 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13928 {
13929 struct die_info *func_die;
13930
13931 /* Skip also over DW_TAG_inlined_subroutine. */
13932 for (func_die = die->parent;
13933 func_die && func_die->tag != DW_TAG_subprogram
13934 && func_die->tag != DW_TAG_subroutine_type;
13935 func_die = func_die->parent);
13936
13937 /* DW_AT_call_all_calls is a superset
13938 of DW_AT_call_all_tail_calls. */
13939 if (func_die
13940 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13941 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13942 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13943 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13944 {
13945 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13946 not complete. But keep CALL_SITE for look ups via call_site_htab,
13947 both the initial caller containing the real return address PC and
13948 the final callee containing the current PC of a chain of tail
13949 calls do not need to have the tail call list complete. But any
13950 function candidate for a virtual tail call frame searched via
13951 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13952 determined unambiguously. */
13953 }
13954 else
13955 {
13956 struct type *func_type = NULL;
13957
13958 if (func_die)
13959 func_type = get_die_type (func_die, cu);
13960 if (func_type != NULL)
13961 {
13962 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13963
13964 /* Enlist this call site to the function. */
13965 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13966 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13967 }
13968 else
13969 complaint (_("Cannot find function owning DW_TAG_call_site "
13970 "DIE %s [in module %s]"),
13971 sect_offset_str (die->sect_off), objfile_name (objfile));
13972 }
13973 }
13974
13975 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13976 if (attr == NULL)
13977 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13978 if (attr == NULL)
13979 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13980 if (attr == NULL)
13981 {
13982 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13983 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13984 }
13985 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13986 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13987 /* Keep NULL DWARF_BLOCK. */;
13988 else if (attr_form_is_block (attr))
13989 {
13990 struct dwarf2_locexpr_baton *dlbaton;
13991
13992 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13993 dlbaton->data = DW_BLOCK (attr)->data;
13994 dlbaton->size = DW_BLOCK (attr)->size;
13995 dlbaton->per_cu = cu->per_cu;
13996
13997 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13998 }
13999 else if (attr_form_is_ref (attr))
14000 {
14001 struct dwarf2_cu *target_cu = cu;
14002 struct die_info *target_die;
14003
14004 target_die = follow_die_ref (die, attr, &target_cu);
14005 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14006 if (die_is_declaration (target_die, target_cu))
14007 {
14008 const char *target_physname;
14009
14010 /* Prefer the mangled name; otherwise compute the demangled one. */
14011 target_physname = dw2_linkage_name (target_die, target_cu);
14012 if (target_physname == NULL)
14013 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14014 if (target_physname == NULL)
14015 complaint (_("DW_AT_call_target target DIE has invalid "
14016 "physname, for referencing DIE %s [in module %s]"),
14017 sect_offset_str (die->sect_off), objfile_name (objfile));
14018 else
14019 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14020 }
14021 else
14022 {
14023 CORE_ADDR lowpc;
14024
14025 /* DW_AT_entry_pc should be preferred. */
14026 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14027 <= PC_BOUNDS_INVALID)
14028 complaint (_("DW_AT_call_target target DIE has invalid "
14029 "low pc, for referencing DIE %s [in module %s]"),
14030 sect_offset_str (die->sect_off), objfile_name (objfile));
14031 else
14032 {
14033 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14034 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14035 }
14036 }
14037 }
14038 else
14039 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14040 "block nor reference, for DIE %s [in module %s]"),
14041 sect_offset_str (die->sect_off), objfile_name (objfile));
14042
14043 call_site->per_cu = cu->per_cu;
14044
14045 for (child_die = die->child;
14046 child_die && child_die->tag;
14047 child_die = sibling_die (child_die))
14048 {
14049 struct call_site_parameter *parameter;
14050 struct attribute *loc, *origin;
14051
14052 if (child_die->tag != DW_TAG_call_site_parameter
14053 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14054 {
14055 /* Already printed the complaint above. */
14056 continue;
14057 }
14058
14059 gdb_assert (call_site->parameter_count < nparams);
14060 parameter = &call_site->parameter[call_site->parameter_count];
14061
14062 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14063 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14064 register is contained in DW_AT_call_value. */
14065
14066 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14067 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14068 if (origin == NULL)
14069 {
14070 /* This was a pre-DWARF-5 GNU extension alias
14071 for DW_AT_call_parameter. */
14072 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14073 }
14074 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14075 {
14076 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14077
14078 sect_offset sect_off
14079 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14080 if (!offset_in_cu_p (&cu->header, sect_off))
14081 {
14082 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14083 binding can be done only inside one CU. Such referenced DIE
14084 therefore cannot be even moved to DW_TAG_partial_unit. */
14085 complaint (_("DW_AT_call_parameter offset is not in CU for "
14086 "DW_TAG_call_site child DIE %s [in module %s]"),
14087 sect_offset_str (child_die->sect_off),
14088 objfile_name (objfile));
14089 continue;
14090 }
14091 parameter->u.param_cu_off
14092 = (cu_offset) (sect_off - cu->header.sect_off);
14093 }
14094 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14095 {
14096 complaint (_("No DW_FORM_block* DW_AT_location for "
14097 "DW_TAG_call_site child DIE %s [in module %s]"),
14098 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14099 continue;
14100 }
14101 else
14102 {
14103 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14104 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14105 if (parameter->u.dwarf_reg != -1)
14106 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14107 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14108 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14109 &parameter->u.fb_offset))
14110 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14111 else
14112 {
14113 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14114 "for DW_FORM_block* DW_AT_location is supported for "
14115 "DW_TAG_call_site child DIE %s "
14116 "[in module %s]"),
14117 sect_offset_str (child_die->sect_off),
14118 objfile_name (objfile));
14119 continue;
14120 }
14121 }
14122
14123 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14124 if (attr == NULL)
14125 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14126 if (!attr_form_is_block (attr))
14127 {
14128 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14129 "DW_TAG_call_site child DIE %s [in module %s]"),
14130 sect_offset_str (child_die->sect_off),
14131 objfile_name (objfile));
14132 continue;
14133 }
14134 parameter->value = DW_BLOCK (attr)->data;
14135 parameter->value_size = DW_BLOCK (attr)->size;
14136
14137 /* Parameters are not pre-cleared by memset above. */
14138 parameter->data_value = NULL;
14139 parameter->data_value_size = 0;
14140 call_site->parameter_count++;
14141
14142 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14143 if (attr == NULL)
14144 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14145 if (attr)
14146 {
14147 if (!attr_form_is_block (attr))
14148 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14149 "DW_TAG_call_site child DIE %s [in module %s]"),
14150 sect_offset_str (child_die->sect_off),
14151 objfile_name (objfile));
14152 else
14153 {
14154 parameter->data_value = DW_BLOCK (attr)->data;
14155 parameter->data_value_size = DW_BLOCK (attr)->size;
14156 }
14157 }
14158 }
14159 }
14160
14161 /* Helper function for read_variable. If DIE represents a virtual
14162 table, then return the type of the concrete object that is
14163 associated with the virtual table. Otherwise, return NULL. */
14164
14165 static struct type *
14166 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14167 {
14168 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14169 if (attr == NULL)
14170 return NULL;
14171
14172 /* Find the type DIE. */
14173 struct die_info *type_die = NULL;
14174 struct dwarf2_cu *type_cu = cu;
14175
14176 if (attr_form_is_ref (attr))
14177 type_die = follow_die_ref (die, attr, &type_cu);
14178 if (type_die == NULL)
14179 return NULL;
14180
14181 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14182 return NULL;
14183 return die_containing_type (type_die, type_cu);
14184 }
14185
14186 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14187
14188 static void
14189 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14190 {
14191 struct rust_vtable_symbol *storage = NULL;
14192
14193 if (cu->language == language_rust)
14194 {
14195 struct type *containing_type = rust_containing_type (die, cu);
14196
14197 if (containing_type != NULL)
14198 {
14199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14200
14201 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14202 struct rust_vtable_symbol);
14203 initialize_objfile_symbol (storage);
14204 storage->concrete_type = containing_type;
14205 storage->subclass = SYMBOL_RUST_VTABLE;
14206 }
14207 }
14208
14209 struct symbol *res = new_symbol (die, NULL, cu, storage);
14210 struct attribute *abstract_origin
14211 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14212 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14213 if (res == NULL && loc && abstract_origin)
14214 {
14215 /* We have a variable without a name, but with a location and an abstract
14216 origin. This may be a concrete instance of an abstract variable
14217 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14218 later. */
14219 struct dwarf2_cu *origin_cu = cu;
14220 struct die_info *origin_die
14221 = follow_die_ref (die, abstract_origin, &origin_cu);
14222 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14223 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14224 }
14225 }
14226
14227 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14228 reading .debug_rnglists.
14229 Callback's type should be:
14230 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14231 Return true if the attributes are present and valid, otherwise,
14232 return false. */
14233
14234 template <typename Callback>
14235 static bool
14236 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14237 Callback &&callback)
14238 {
14239 struct dwarf2_per_objfile *dwarf2_per_objfile
14240 = cu->per_cu->dwarf2_per_objfile;
14241 struct objfile *objfile = dwarf2_per_objfile->objfile;
14242 bfd *obfd = objfile->obfd;
14243 /* Base address selection entry. */
14244 CORE_ADDR base;
14245 int found_base;
14246 const gdb_byte *buffer;
14247 CORE_ADDR baseaddr;
14248 bool overflow = false;
14249
14250 found_base = cu->base_known;
14251 base = cu->base_address;
14252
14253 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14254 if (offset >= dwarf2_per_objfile->rnglists.size)
14255 {
14256 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14257 offset);
14258 return false;
14259 }
14260 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14261
14262 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14263
14264 while (1)
14265 {
14266 /* Initialize it due to a false compiler warning. */
14267 CORE_ADDR range_beginning = 0, range_end = 0;
14268 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14269 + dwarf2_per_objfile->rnglists.size);
14270 unsigned int bytes_read;
14271
14272 if (buffer == buf_end)
14273 {
14274 overflow = true;
14275 break;
14276 }
14277 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14278 switch (rlet)
14279 {
14280 case DW_RLE_end_of_list:
14281 break;
14282 case DW_RLE_base_address:
14283 if (buffer + cu->header.addr_size > buf_end)
14284 {
14285 overflow = true;
14286 break;
14287 }
14288 base = read_address (obfd, buffer, cu, &bytes_read);
14289 found_base = 1;
14290 buffer += bytes_read;
14291 break;
14292 case DW_RLE_start_length:
14293 if (buffer + cu->header.addr_size > buf_end)
14294 {
14295 overflow = true;
14296 break;
14297 }
14298 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14299 buffer += bytes_read;
14300 range_end = (range_beginning
14301 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14302 buffer += bytes_read;
14303 if (buffer > buf_end)
14304 {
14305 overflow = true;
14306 break;
14307 }
14308 break;
14309 case DW_RLE_offset_pair:
14310 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14311 buffer += bytes_read;
14312 if (buffer > buf_end)
14313 {
14314 overflow = true;
14315 break;
14316 }
14317 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14318 buffer += bytes_read;
14319 if (buffer > buf_end)
14320 {
14321 overflow = true;
14322 break;
14323 }
14324 break;
14325 case DW_RLE_start_end:
14326 if (buffer + 2 * cu->header.addr_size > buf_end)
14327 {
14328 overflow = true;
14329 break;
14330 }
14331 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14332 buffer += bytes_read;
14333 range_end = read_address (obfd, buffer, cu, &bytes_read);
14334 buffer += bytes_read;
14335 break;
14336 default:
14337 complaint (_("Invalid .debug_rnglists data (no base address)"));
14338 return false;
14339 }
14340 if (rlet == DW_RLE_end_of_list || overflow)
14341 break;
14342 if (rlet == DW_RLE_base_address)
14343 continue;
14344
14345 if (!found_base)
14346 {
14347 /* We have no valid base address for the ranges
14348 data. */
14349 complaint (_("Invalid .debug_rnglists data (no base address)"));
14350 return false;
14351 }
14352
14353 if (range_beginning > range_end)
14354 {
14355 /* Inverted range entries are invalid. */
14356 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14357 return false;
14358 }
14359
14360 /* Empty range entries have no effect. */
14361 if (range_beginning == range_end)
14362 continue;
14363
14364 range_beginning += base;
14365 range_end += base;
14366
14367 /* A not-uncommon case of bad debug info.
14368 Don't pollute the addrmap with bad data. */
14369 if (range_beginning + baseaddr == 0
14370 && !dwarf2_per_objfile->has_section_at_zero)
14371 {
14372 complaint (_(".debug_rnglists entry has start address of zero"
14373 " [in module %s]"), objfile_name (objfile));
14374 continue;
14375 }
14376
14377 callback (range_beginning, range_end);
14378 }
14379
14380 if (overflow)
14381 {
14382 complaint (_("Offset %d is not terminated "
14383 "for DW_AT_ranges attribute"),
14384 offset);
14385 return false;
14386 }
14387
14388 return true;
14389 }
14390
14391 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14392 Callback's type should be:
14393 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14394 Return 1 if the attributes are present and valid, otherwise, return 0. */
14395
14396 template <typename Callback>
14397 static int
14398 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14399 Callback &&callback)
14400 {
14401 struct dwarf2_per_objfile *dwarf2_per_objfile
14402 = cu->per_cu->dwarf2_per_objfile;
14403 struct objfile *objfile = dwarf2_per_objfile->objfile;
14404 struct comp_unit_head *cu_header = &cu->header;
14405 bfd *obfd = objfile->obfd;
14406 unsigned int addr_size = cu_header->addr_size;
14407 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14408 /* Base address selection entry. */
14409 CORE_ADDR base;
14410 int found_base;
14411 unsigned int dummy;
14412 const gdb_byte *buffer;
14413 CORE_ADDR baseaddr;
14414
14415 if (cu_header->version >= 5)
14416 return dwarf2_rnglists_process (offset, cu, callback);
14417
14418 found_base = cu->base_known;
14419 base = cu->base_address;
14420
14421 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14422 if (offset >= dwarf2_per_objfile->ranges.size)
14423 {
14424 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14425 offset);
14426 return 0;
14427 }
14428 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14429
14430 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14431
14432 while (1)
14433 {
14434 CORE_ADDR range_beginning, range_end;
14435
14436 range_beginning = read_address (obfd, buffer, cu, &dummy);
14437 buffer += addr_size;
14438 range_end = read_address (obfd, buffer, cu, &dummy);
14439 buffer += addr_size;
14440 offset += 2 * addr_size;
14441
14442 /* An end of list marker is a pair of zero addresses. */
14443 if (range_beginning == 0 && range_end == 0)
14444 /* Found the end of list entry. */
14445 break;
14446
14447 /* Each base address selection entry is a pair of 2 values.
14448 The first is the largest possible address, the second is
14449 the base address. Check for a base address here. */
14450 if ((range_beginning & mask) == mask)
14451 {
14452 /* If we found the largest possible address, then we already
14453 have the base address in range_end. */
14454 base = range_end;
14455 found_base = 1;
14456 continue;
14457 }
14458
14459 if (!found_base)
14460 {
14461 /* We have no valid base address for the ranges
14462 data. */
14463 complaint (_("Invalid .debug_ranges data (no base address)"));
14464 return 0;
14465 }
14466
14467 if (range_beginning > range_end)
14468 {
14469 /* Inverted range entries are invalid. */
14470 complaint (_("Invalid .debug_ranges data (inverted range)"));
14471 return 0;
14472 }
14473
14474 /* Empty range entries have no effect. */
14475 if (range_beginning == range_end)
14476 continue;
14477
14478 range_beginning += base;
14479 range_end += base;
14480
14481 /* A not-uncommon case of bad debug info.
14482 Don't pollute the addrmap with bad data. */
14483 if (range_beginning + baseaddr == 0
14484 && !dwarf2_per_objfile->has_section_at_zero)
14485 {
14486 complaint (_(".debug_ranges entry has start address of zero"
14487 " [in module %s]"), objfile_name (objfile));
14488 continue;
14489 }
14490
14491 callback (range_beginning, range_end);
14492 }
14493
14494 return 1;
14495 }
14496
14497 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14498 Return 1 if the attributes are present and valid, otherwise, return 0.
14499 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14500
14501 static int
14502 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14503 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14504 struct partial_symtab *ranges_pst)
14505 {
14506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14507 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14508 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14509 SECT_OFF_TEXT (objfile));
14510 int low_set = 0;
14511 CORE_ADDR low = 0;
14512 CORE_ADDR high = 0;
14513 int retval;
14514
14515 retval = dwarf2_ranges_process (offset, cu,
14516 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14517 {
14518 if (ranges_pst != NULL)
14519 {
14520 CORE_ADDR lowpc;
14521 CORE_ADDR highpc;
14522
14523 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14524 range_beginning + baseaddr)
14525 - baseaddr);
14526 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14527 range_end + baseaddr)
14528 - baseaddr);
14529 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14530 lowpc, highpc - 1, ranges_pst);
14531 }
14532
14533 /* FIXME: This is recording everything as a low-high
14534 segment of consecutive addresses. We should have a
14535 data structure for discontiguous block ranges
14536 instead. */
14537 if (! low_set)
14538 {
14539 low = range_beginning;
14540 high = range_end;
14541 low_set = 1;
14542 }
14543 else
14544 {
14545 if (range_beginning < low)
14546 low = range_beginning;
14547 if (range_end > high)
14548 high = range_end;
14549 }
14550 });
14551 if (!retval)
14552 return 0;
14553
14554 if (! low_set)
14555 /* If the first entry is an end-of-list marker, the range
14556 describes an empty scope, i.e. no instructions. */
14557 return 0;
14558
14559 if (low_return)
14560 *low_return = low;
14561 if (high_return)
14562 *high_return = high;
14563 return 1;
14564 }
14565
14566 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14567 definition for the return value. *LOWPC and *HIGHPC are set iff
14568 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14569
14570 static enum pc_bounds_kind
14571 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14572 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14573 struct partial_symtab *pst)
14574 {
14575 struct dwarf2_per_objfile *dwarf2_per_objfile
14576 = cu->per_cu->dwarf2_per_objfile;
14577 struct attribute *attr;
14578 struct attribute *attr_high;
14579 CORE_ADDR low = 0;
14580 CORE_ADDR high = 0;
14581 enum pc_bounds_kind ret;
14582
14583 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14584 if (attr_high)
14585 {
14586 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14587 if (attr)
14588 {
14589 low = attr_value_as_address (attr);
14590 high = attr_value_as_address (attr_high);
14591 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14592 high += low;
14593 }
14594 else
14595 /* Found high w/o low attribute. */
14596 return PC_BOUNDS_INVALID;
14597
14598 /* Found consecutive range of addresses. */
14599 ret = PC_BOUNDS_HIGH_LOW;
14600 }
14601 else
14602 {
14603 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14604 if (attr != NULL)
14605 {
14606 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14607 We take advantage of the fact that DW_AT_ranges does not appear
14608 in DW_TAG_compile_unit of DWO files. */
14609 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14610 unsigned int ranges_offset = (DW_UNSND (attr)
14611 + (need_ranges_base
14612 ? cu->ranges_base
14613 : 0));
14614
14615 /* Value of the DW_AT_ranges attribute is the offset in the
14616 .debug_ranges section. */
14617 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14618 return PC_BOUNDS_INVALID;
14619 /* Found discontinuous range of addresses. */
14620 ret = PC_BOUNDS_RANGES;
14621 }
14622 else
14623 return PC_BOUNDS_NOT_PRESENT;
14624 }
14625
14626 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14627 if (high <= low)
14628 return PC_BOUNDS_INVALID;
14629
14630 /* When using the GNU linker, .gnu.linkonce. sections are used to
14631 eliminate duplicate copies of functions and vtables and such.
14632 The linker will arbitrarily choose one and discard the others.
14633 The AT_*_pc values for such functions refer to local labels in
14634 these sections. If the section from that file was discarded, the
14635 labels are not in the output, so the relocs get a value of 0.
14636 If this is a discarded function, mark the pc bounds as invalid,
14637 so that GDB will ignore it. */
14638 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14639 return PC_BOUNDS_INVALID;
14640
14641 *lowpc = low;
14642 if (highpc)
14643 *highpc = high;
14644 return ret;
14645 }
14646
14647 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14648 its low and high PC addresses. Do nothing if these addresses could not
14649 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14650 and HIGHPC to the high address if greater than HIGHPC. */
14651
14652 static void
14653 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14654 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14655 struct dwarf2_cu *cu)
14656 {
14657 CORE_ADDR low, high;
14658 struct die_info *child = die->child;
14659
14660 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14661 {
14662 *lowpc = std::min (*lowpc, low);
14663 *highpc = std::max (*highpc, high);
14664 }
14665
14666 /* If the language does not allow nested subprograms (either inside
14667 subprograms or lexical blocks), we're done. */
14668 if (cu->language != language_ada)
14669 return;
14670
14671 /* Check all the children of the given DIE. If it contains nested
14672 subprograms, then check their pc bounds. Likewise, we need to
14673 check lexical blocks as well, as they may also contain subprogram
14674 definitions. */
14675 while (child && child->tag)
14676 {
14677 if (child->tag == DW_TAG_subprogram
14678 || child->tag == DW_TAG_lexical_block)
14679 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14680 child = sibling_die (child);
14681 }
14682 }
14683
14684 /* Get the low and high pc's represented by the scope DIE, and store
14685 them in *LOWPC and *HIGHPC. If the correct values can't be
14686 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14687
14688 static void
14689 get_scope_pc_bounds (struct die_info *die,
14690 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14691 struct dwarf2_cu *cu)
14692 {
14693 CORE_ADDR best_low = (CORE_ADDR) -1;
14694 CORE_ADDR best_high = (CORE_ADDR) 0;
14695 CORE_ADDR current_low, current_high;
14696
14697 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14698 >= PC_BOUNDS_RANGES)
14699 {
14700 best_low = current_low;
14701 best_high = current_high;
14702 }
14703 else
14704 {
14705 struct die_info *child = die->child;
14706
14707 while (child && child->tag)
14708 {
14709 switch (child->tag) {
14710 case DW_TAG_subprogram:
14711 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14712 break;
14713 case DW_TAG_namespace:
14714 case DW_TAG_module:
14715 /* FIXME: carlton/2004-01-16: Should we do this for
14716 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14717 that current GCC's always emit the DIEs corresponding
14718 to definitions of methods of classes as children of a
14719 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14720 the DIEs giving the declarations, which could be
14721 anywhere). But I don't see any reason why the
14722 standards says that they have to be there. */
14723 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14724
14725 if (current_low != ((CORE_ADDR) -1))
14726 {
14727 best_low = std::min (best_low, current_low);
14728 best_high = std::max (best_high, current_high);
14729 }
14730 break;
14731 default:
14732 /* Ignore. */
14733 break;
14734 }
14735
14736 child = sibling_die (child);
14737 }
14738 }
14739
14740 *lowpc = best_low;
14741 *highpc = best_high;
14742 }
14743
14744 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14745 in DIE. */
14746
14747 static void
14748 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14749 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14750 {
14751 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14752 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14753 struct attribute *attr;
14754 struct attribute *attr_high;
14755
14756 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14757 if (attr_high)
14758 {
14759 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14760 if (attr)
14761 {
14762 CORE_ADDR low = attr_value_as_address (attr);
14763 CORE_ADDR high = attr_value_as_address (attr_high);
14764
14765 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14766 high += low;
14767
14768 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14769 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14770 cu->get_builder ()->record_block_range (block, low, high - 1);
14771 }
14772 }
14773
14774 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14775 if (attr)
14776 {
14777 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14778 We take advantage of the fact that DW_AT_ranges does not appear
14779 in DW_TAG_compile_unit of DWO files. */
14780 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14781
14782 /* The value of the DW_AT_ranges attribute is the offset of the
14783 address range list in the .debug_ranges section. */
14784 unsigned long offset = (DW_UNSND (attr)
14785 + (need_ranges_base ? cu->ranges_base : 0));
14786
14787 std::vector<blockrange> blockvec;
14788 dwarf2_ranges_process (offset, cu,
14789 [&] (CORE_ADDR start, CORE_ADDR end)
14790 {
14791 start += baseaddr;
14792 end += baseaddr;
14793 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14794 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14795 cu->get_builder ()->record_block_range (block, start, end - 1);
14796 blockvec.emplace_back (start, end);
14797 });
14798
14799 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14800 }
14801 }
14802
14803 /* Check whether the producer field indicates either of GCC < 4.6, or the
14804 Intel C/C++ compiler, and cache the result in CU. */
14805
14806 static void
14807 check_producer (struct dwarf2_cu *cu)
14808 {
14809 int major, minor;
14810
14811 if (cu->producer == NULL)
14812 {
14813 /* For unknown compilers expect their behavior is DWARF version
14814 compliant.
14815
14816 GCC started to support .debug_types sections by -gdwarf-4 since
14817 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14818 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14819 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14820 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14821 }
14822 else if (producer_is_gcc (cu->producer, &major, &minor))
14823 {
14824 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14825 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14826 }
14827 else if (producer_is_icc (cu->producer, &major, &minor))
14828 {
14829 cu->producer_is_icc = true;
14830 cu->producer_is_icc_lt_14 = major < 14;
14831 }
14832 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14833 cu->producer_is_codewarrior = true;
14834 else
14835 {
14836 /* For other non-GCC compilers, expect their behavior is DWARF version
14837 compliant. */
14838 }
14839
14840 cu->checked_producer = true;
14841 }
14842
14843 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14844 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14845 during 4.6.0 experimental. */
14846
14847 static bool
14848 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14849 {
14850 if (!cu->checked_producer)
14851 check_producer (cu);
14852
14853 return cu->producer_is_gxx_lt_4_6;
14854 }
14855
14856
14857 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14858 with incorrect is_stmt attributes. */
14859
14860 static bool
14861 producer_is_codewarrior (struct dwarf2_cu *cu)
14862 {
14863 if (!cu->checked_producer)
14864 check_producer (cu);
14865
14866 return cu->producer_is_codewarrior;
14867 }
14868
14869 /* Return the default accessibility type if it is not overriden by
14870 DW_AT_accessibility. */
14871
14872 static enum dwarf_access_attribute
14873 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14874 {
14875 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14876 {
14877 /* The default DWARF 2 accessibility for members is public, the default
14878 accessibility for inheritance is private. */
14879
14880 if (die->tag != DW_TAG_inheritance)
14881 return DW_ACCESS_public;
14882 else
14883 return DW_ACCESS_private;
14884 }
14885 else
14886 {
14887 /* DWARF 3+ defines the default accessibility a different way. The same
14888 rules apply now for DW_TAG_inheritance as for the members and it only
14889 depends on the container kind. */
14890
14891 if (die->parent->tag == DW_TAG_class_type)
14892 return DW_ACCESS_private;
14893 else
14894 return DW_ACCESS_public;
14895 }
14896 }
14897
14898 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14899 offset. If the attribute was not found return 0, otherwise return
14900 1. If it was found but could not properly be handled, set *OFFSET
14901 to 0. */
14902
14903 static int
14904 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14905 LONGEST *offset)
14906 {
14907 struct attribute *attr;
14908
14909 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14910 if (attr != NULL)
14911 {
14912 *offset = 0;
14913
14914 /* Note that we do not check for a section offset first here.
14915 This is because DW_AT_data_member_location is new in DWARF 4,
14916 so if we see it, we can assume that a constant form is really
14917 a constant and not a section offset. */
14918 if (attr_form_is_constant (attr))
14919 *offset = dwarf2_get_attr_constant_value (attr, 0);
14920 else if (attr_form_is_section_offset (attr))
14921 dwarf2_complex_location_expr_complaint ();
14922 else if (attr_form_is_block (attr))
14923 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14924 else
14925 dwarf2_complex_location_expr_complaint ();
14926
14927 return 1;
14928 }
14929
14930 return 0;
14931 }
14932
14933 /* Add an aggregate field to the field list. */
14934
14935 static void
14936 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14937 struct dwarf2_cu *cu)
14938 {
14939 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14941 struct nextfield *new_field;
14942 struct attribute *attr;
14943 struct field *fp;
14944 const char *fieldname = "";
14945
14946 if (die->tag == DW_TAG_inheritance)
14947 {
14948 fip->baseclasses.emplace_back ();
14949 new_field = &fip->baseclasses.back ();
14950 }
14951 else
14952 {
14953 fip->fields.emplace_back ();
14954 new_field = &fip->fields.back ();
14955 }
14956
14957 fip->nfields++;
14958
14959 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14960 if (attr)
14961 new_field->accessibility = DW_UNSND (attr);
14962 else
14963 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14964 if (new_field->accessibility != DW_ACCESS_public)
14965 fip->non_public_fields = 1;
14966
14967 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14968 if (attr)
14969 new_field->virtuality = DW_UNSND (attr);
14970 else
14971 new_field->virtuality = DW_VIRTUALITY_none;
14972
14973 fp = &new_field->field;
14974
14975 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14976 {
14977 LONGEST offset;
14978
14979 /* Data member other than a C++ static data member. */
14980
14981 /* Get type of field. */
14982 fp->type = die_type (die, cu);
14983
14984 SET_FIELD_BITPOS (*fp, 0);
14985
14986 /* Get bit size of field (zero if none). */
14987 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14988 if (attr)
14989 {
14990 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14991 }
14992 else
14993 {
14994 FIELD_BITSIZE (*fp) = 0;
14995 }
14996
14997 /* Get bit offset of field. */
14998 if (handle_data_member_location (die, cu, &offset))
14999 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15000 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15001 if (attr)
15002 {
15003 if (gdbarch_bits_big_endian (gdbarch))
15004 {
15005 /* For big endian bits, the DW_AT_bit_offset gives the
15006 additional bit offset from the MSB of the containing
15007 anonymous object to the MSB of the field. We don't
15008 have to do anything special since we don't need to
15009 know the size of the anonymous object. */
15010 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15011 }
15012 else
15013 {
15014 /* For little endian bits, compute the bit offset to the
15015 MSB of the anonymous object, subtract off the number of
15016 bits from the MSB of the field to the MSB of the
15017 object, and then subtract off the number of bits of
15018 the field itself. The result is the bit offset of
15019 the LSB of the field. */
15020 int anonymous_size;
15021 int bit_offset = DW_UNSND (attr);
15022
15023 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15024 if (attr)
15025 {
15026 /* The size of the anonymous object containing
15027 the bit field is explicit, so use the
15028 indicated size (in bytes). */
15029 anonymous_size = DW_UNSND (attr);
15030 }
15031 else
15032 {
15033 /* The size of the anonymous object containing
15034 the bit field must be inferred from the type
15035 attribute of the data member containing the
15036 bit field. */
15037 anonymous_size = TYPE_LENGTH (fp->type);
15038 }
15039 SET_FIELD_BITPOS (*fp,
15040 (FIELD_BITPOS (*fp)
15041 + anonymous_size * bits_per_byte
15042 - bit_offset - FIELD_BITSIZE (*fp)));
15043 }
15044 }
15045 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15046 if (attr != NULL)
15047 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15048 + dwarf2_get_attr_constant_value (attr, 0)));
15049
15050 /* Get name of field. */
15051 fieldname = dwarf2_name (die, cu);
15052 if (fieldname == NULL)
15053 fieldname = "";
15054
15055 /* The name is already allocated along with this objfile, so we don't
15056 need to duplicate it for the type. */
15057 fp->name = fieldname;
15058
15059 /* Change accessibility for artificial fields (e.g. virtual table
15060 pointer or virtual base class pointer) to private. */
15061 if (dwarf2_attr (die, DW_AT_artificial, cu))
15062 {
15063 FIELD_ARTIFICIAL (*fp) = 1;
15064 new_field->accessibility = DW_ACCESS_private;
15065 fip->non_public_fields = 1;
15066 }
15067 }
15068 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15069 {
15070 /* C++ static member. */
15071
15072 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15073 is a declaration, but all versions of G++ as of this writing
15074 (so through at least 3.2.1) incorrectly generate
15075 DW_TAG_variable tags. */
15076
15077 const char *physname;
15078
15079 /* Get name of field. */
15080 fieldname = dwarf2_name (die, cu);
15081 if (fieldname == NULL)
15082 return;
15083
15084 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15085 if (attr
15086 /* Only create a symbol if this is an external value.
15087 new_symbol checks this and puts the value in the global symbol
15088 table, which we want. If it is not external, new_symbol
15089 will try to put the value in cu->list_in_scope which is wrong. */
15090 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15091 {
15092 /* A static const member, not much different than an enum as far as
15093 we're concerned, except that we can support more types. */
15094 new_symbol (die, NULL, cu);
15095 }
15096
15097 /* Get physical name. */
15098 physname = dwarf2_physname (fieldname, die, cu);
15099
15100 /* The name is already allocated along with this objfile, so we don't
15101 need to duplicate it for the type. */
15102 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15103 FIELD_TYPE (*fp) = die_type (die, cu);
15104 FIELD_NAME (*fp) = fieldname;
15105 }
15106 else if (die->tag == DW_TAG_inheritance)
15107 {
15108 LONGEST offset;
15109
15110 /* C++ base class field. */
15111 if (handle_data_member_location (die, cu, &offset))
15112 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15113 FIELD_BITSIZE (*fp) = 0;
15114 FIELD_TYPE (*fp) = die_type (die, cu);
15115 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15116 }
15117 else if (die->tag == DW_TAG_variant_part)
15118 {
15119 /* process_structure_scope will treat this DIE as a union. */
15120 process_structure_scope (die, cu);
15121
15122 /* The variant part is relative to the start of the enclosing
15123 structure. */
15124 SET_FIELD_BITPOS (*fp, 0);
15125 fp->type = get_die_type (die, cu);
15126 fp->artificial = 1;
15127 fp->name = "<<variant>>";
15128
15129 /* Normally a DW_TAG_variant_part won't have a size, but our
15130 representation requires one, so set it to the maximum of the
15131 child sizes. */
15132 if (TYPE_LENGTH (fp->type) == 0)
15133 {
15134 unsigned max = 0;
15135 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15136 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15137 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15138 TYPE_LENGTH (fp->type) = max;
15139 }
15140 }
15141 else
15142 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15143 }
15144
15145 /* Can the type given by DIE define another type? */
15146
15147 static bool
15148 type_can_define_types (const struct die_info *die)
15149 {
15150 switch (die->tag)
15151 {
15152 case DW_TAG_typedef:
15153 case DW_TAG_class_type:
15154 case DW_TAG_structure_type:
15155 case DW_TAG_union_type:
15156 case DW_TAG_enumeration_type:
15157 return true;
15158
15159 default:
15160 return false;
15161 }
15162 }
15163
15164 /* Add a type definition defined in the scope of the FIP's class. */
15165
15166 static void
15167 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15168 struct dwarf2_cu *cu)
15169 {
15170 struct decl_field fp;
15171 memset (&fp, 0, sizeof (fp));
15172
15173 gdb_assert (type_can_define_types (die));
15174
15175 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15176 fp.name = dwarf2_name (die, cu);
15177 fp.type = read_type_die (die, cu);
15178
15179 /* Save accessibility. */
15180 enum dwarf_access_attribute accessibility;
15181 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15182 if (attr != NULL)
15183 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15184 else
15185 accessibility = dwarf2_default_access_attribute (die, cu);
15186 switch (accessibility)
15187 {
15188 case DW_ACCESS_public:
15189 /* The assumed value if neither private nor protected. */
15190 break;
15191 case DW_ACCESS_private:
15192 fp.is_private = 1;
15193 break;
15194 case DW_ACCESS_protected:
15195 fp.is_protected = 1;
15196 break;
15197 default:
15198 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15199 }
15200
15201 if (die->tag == DW_TAG_typedef)
15202 fip->typedef_field_list.push_back (fp);
15203 else
15204 fip->nested_types_list.push_back (fp);
15205 }
15206
15207 /* Create the vector of fields, and attach it to the type. */
15208
15209 static void
15210 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15211 struct dwarf2_cu *cu)
15212 {
15213 int nfields = fip->nfields;
15214
15215 /* Record the field count, allocate space for the array of fields,
15216 and create blank accessibility bitfields if necessary. */
15217 TYPE_NFIELDS (type) = nfields;
15218 TYPE_FIELDS (type) = (struct field *)
15219 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15220
15221 if (fip->non_public_fields && cu->language != language_ada)
15222 {
15223 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15224
15225 TYPE_FIELD_PRIVATE_BITS (type) =
15226 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15227 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15228
15229 TYPE_FIELD_PROTECTED_BITS (type) =
15230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15231 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15232
15233 TYPE_FIELD_IGNORE_BITS (type) =
15234 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15235 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15236 }
15237
15238 /* If the type has baseclasses, allocate and clear a bit vector for
15239 TYPE_FIELD_VIRTUAL_BITS. */
15240 if (!fip->baseclasses.empty () && cu->language != language_ada)
15241 {
15242 int num_bytes = B_BYTES (fip->baseclasses.size ());
15243 unsigned char *pointer;
15244
15245 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15246 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15247 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15248 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15249 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15250 }
15251
15252 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15253 {
15254 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15255
15256 for (int index = 0; index < nfields; ++index)
15257 {
15258 struct nextfield &field = fip->fields[index];
15259
15260 if (field.variant.is_discriminant)
15261 di->discriminant_index = index;
15262 else if (field.variant.default_branch)
15263 di->default_index = index;
15264 else
15265 di->discriminants[index] = field.variant.discriminant_value;
15266 }
15267 }
15268
15269 /* Copy the saved-up fields into the field vector. */
15270 for (int i = 0; i < nfields; ++i)
15271 {
15272 struct nextfield &field
15273 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15274 : fip->fields[i - fip->baseclasses.size ()]);
15275
15276 TYPE_FIELD (type, i) = field.field;
15277 switch (field.accessibility)
15278 {
15279 case DW_ACCESS_private:
15280 if (cu->language != language_ada)
15281 SET_TYPE_FIELD_PRIVATE (type, i);
15282 break;
15283
15284 case DW_ACCESS_protected:
15285 if (cu->language != language_ada)
15286 SET_TYPE_FIELD_PROTECTED (type, i);
15287 break;
15288
15289 case DW_ACCESS_public:
15290 break;
15291
15292 default:
15293 /* Unknown accessibility. Complain and treat it as public. */
15294 {
15295 complaint (_("unsupported accessibility %d"),
15296 field.accessibility);
15297 }
15298 break;
15299 }
15300 if (i < fip->baseclasses.size ())
15301 {
15302 switch (field.virtuality)
15303 {
15304 case DW_VIRTUALITY_virtual:
15305 case DW_VIRTUALITY_pure_virtual:
15306 if (cu->language == language_ada)
15307 error (_("unexpected virtuality in component of Ada type"));
15308 SET_TYPE_FIELD_VIRTUAL (type, i);
15309 break;
15310 }
15311 }
15312 }
15313 }
15314
15315 /* Return true if this member function is a constructor, false
15316 otherwise. */
15317
15318 static int
15319 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15320 {
15321 const char *fieldname;
15322 const char *type_name;
15323 int len;
15324
15325 if (die->parent == NULL)
15326 return 0;
15327
15328 if (die->parent->tag != DW_TAG_structure_type
15329 && die->parent->tag != DW_TAG_union_type
15330 && die->parent->tag != DW_TAG_class_type)
15331 return 0;
15332
15333 fieldname = dwarf2_name (die, cu);
15334 type_name = dwarf2_name (die->parent, cu);
15335 if (fieldname == NULL || type_name == NULL)
15336 return 0;
15337
15338 len = strlen (fieldname);
15339 return (strncmp (fieldname, type_name, len) == 0
15340 && (type_name[len] == '\0' || type_name[len] == '<'));
15341 }
15342
15343 /* Add a member function to the proper fieldlist. */
15344
15345 static void
15346 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15347 struct type *type, struct dwarf2_cu *cu)
15348 {
15349 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15350 struct attribute *attr;
15351 int i;
15352 struct fnfieldlist *flp = nullptr;
15353 struct fn_field *fnp;
15354 const char *fieldname;
15355 struct type *this_type;
15356 enum dwarf_access_attribute accessibility;
15357
15358 if (cu->language == language_ada)
15359 error (_("unexpected member function in Ada type"));
15360
15361 /* Get name of member function. */
15362 fieldname = dwarf2_name (die, cu);
15363 if (fieldname == NULL)
15364 return;
15365
15366 /* Look up member function name in fieldlist. */
15367 for (i = 0; i < fip->fnfieldlists.size (); i++)
15368 {
15369 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15370 {
15371 flp = &fip->fnfieldlists[i];
15372 break;
15373 }
15374 }
15375
15376 /* Create a new fnfieldlist if necessary. */
15377 if (flp == nullptr)
15378 {
15379 fip->fnfieldlists.emplace_back ();
15380 flp = &fip->fnfieldlists.back ();
15381 flp->name = fieldname;
15382 i = fip->fnfieldlists.size () - 1;
15383 }
15384
15385 /* Create a new member function field and add it to the vector of
15386 fnfieldlists. */
15387 flp->fnfields.emplace_back ();
15388 fnp = &flp->fnfields.back ();
15389
15390 /* Delay processing of the physname until later. */
15391 if (cu->language == language_cplus)
15392 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15393 die, cu);
15394 else
15395 {
15396 const char *physname = dwarf2_physname (fieldname, die, cu);
15397 fnp->physname = physname ? physname : "";
15398 }
15399
15400 fnp->type = alloc_type (objfile);
15401 this_type = read_type_die (die, cu);
15402 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15403 {
15404 int nparams = TYPE_NFIELDS (this_type);
15405
15406 /* TYPE is the domain of this method, and THIS_TYPE is the type
15407 of the method itself (TYPE_CODE_METHOD). */
15408 smash_to_method_type (fnp->type, type,
15409 TYPE_TARGET_TYPE (this_type),
15410 TYPE_FIELDS (this_type),
15411 TYPE_NFIELDS (this_type),
15412 TYPE_VARARGS (this_type));
15413
15414 /* Handle static member functions.
15415 Dwarf2 has no clean way to discern C++ static and non-static
15416 member functions. G++ helps GDB by marking the first
15417 parameter for non-static member functions (which is the this
15418 pointer) as artificial. We obtain this information from
15419 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15420 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15421 fnp->voffset = VOFFSET_STATIC;
15422 }
15423 else
15424 complaint (_("member function type missing for '%s'"),
15425 dwarf2_full_name (fieldname, die, cu));
15426
15427 /* Get fcontext from DW_AT_containing_type if present. */
15428 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15429 fnp->fcontext = die_containing_type (die, cu);
15430
15431 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15432 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15433
15434 /* Get accessibility. */
15435 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15436 if (attr)
15437 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15438 else
15439 accessibility = dwarf2_default_access_attribute (die, cu);
15440 switch (accessibility)
15441 {
15442 case DW_ACCESS_private:
15443 fnp->is_private = 1;
15444 break;
15445 case DW_ACCESS_protected:
15446 fnp->is_protected = 1;
15447 break;
15448 }
15449
15450 /* Check for artificial methods. */
15451 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15452 if (attr && DW_UNSND (attr) != 0)
15453 fnp->is_artificial = 1;
15454
15455 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15456
15457 /* Get index in virtual function table if it is a virtual member
15458 function. For older versions of GCC, this is an offset in the
15459 appropriate virtual table, as specified by DW_AT_containing_type.
15460 For everyone else, it is an expression to be evaluated relative
15461 to the object address. */
15462
15463 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15464 if (attr)
15465 {
15466 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15467 {
15468 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15469 {
15470 /* Old-style GCC. */
15471 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15472 }
15473 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15474 || (DW_BLOCK (attr)->size > 1
15475 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15476 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15477 {
15478 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15479 if ((fnp->voffset % cu->header.addr_size) != 0)
15480 dwarf2_complex_location_expr_complaint ();
15481 else
15482 fnp->voffset /= cu->header.addr_size;
15483 fnp->voffset += 2;
15484 }
15485 else
15486 dwarf2_complex_location_expr_complaint ();
15487
15488 if (!fnp->fcontext)
15489 {
15490 /* If there is no `this' field and no DW_AT_containing_type,
15491 we cannot actually find a base class context for the
15492 vtable! */
15493 if (TYPE_NFIELDS (this_type) == 0
15494 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15495 {
15496 complaint (_("cannot determine context for virtual member "
15497 "function \"%s\" (offset %s)"),
15498 fieldname, sect_offset_str (die->sect_off));
15499 }
15500 else
15501 {
15502 fnp->fcontext
15503 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15504 }
15505 }
15506 }
15507 else if (attr_form_is_section_offset (attr))
15508 {
15509 dwarf2_complex_location_expr_complaint ();
15510 }
15511 else
15512 {
15513 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15514 fieldname);
15515 }
15516 }
15517 else
15518 {
15519 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15520 if (attr && DW_UNSND (attr))
15521 {
15522 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15523 complaint (_("Member function \"%s\" (offset %s) is virtual "
15524 "but the vtable offset is not specified"),
15525 fieldname, sect_offset_str (die->sect_off));
15526 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15527 TYPE_CPLUS_DYNAMIC (type) = 1;
15528 }
15529 }
15530 }
15531
15532 /* Create the vector of member function fields, and attach it to the type. */
15533
15534 static void
15535 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15536 struct dwarf2_cu *cu)
15537 {
15538 if (cu->language == language_ada)
15539 error (_("unexpected member functions in Ada type"));
15540
15541 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15542 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15543 TYPE_ALLOC (type,
15544 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15545
15546 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15547 {
15548 struct fnfieldlist &nf = fip->fnfieldlists[i];
15549 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15550
15551 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15552 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15553 fn_flp->fn_fields = (struct fn_field *)
15554 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15555
15556 for (int k = 0; k < nf.fnfields.size (); ++k)
15557 fn_flp->fn_fields[k] = nf.fnfields[k];
15558 }
15559
15560 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15561 }
15562
15563 /* Returns non-zero if NAME is the name of a vtable member in CU's
15564 language, zero otherwise. */
15565 static int
15566 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15567 {
15568 static const char vptr[] = "_vptr";
15569
15570 /* Look for the C++ form of the vtable. */
15571 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15572 return 1;
15573
15574 return 0;
15575 }
15576
15577 /* GCC outputs unnamed structures that are really pointers to member
15578 functions, with the ABI-specified layout. If TYPE describes
15579 such a structure, smash it into a member function type.
15580
15581 GCC shouldn't do this; it should just output pointer to member DIEs.
15582 This is GCC PR debug/28767. */
15583
15584 static void
15585 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15586 {
15587 struct type *pfn_type, *self_type, *new_type;
15588
15589 /* Check for a structure with no name and two children. */
15590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15591 return;
15592
15593 /* Check for __pfn and __delta members. */
15594 if (TYPE_FIELD_NAME (type, 0) == NULL
15595 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15596 || TYPE_FIELD_NAME (type, 1) == NULL
15597 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15598 return;
15599
15600 /* Find the type of the method. */
15601 pfn_type = TYPE_FIELD_TYPE (type, 0);
15602 if (pfn_type == NULL
15603 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15604 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15605 return;
15606
15607 /* Look for the "this" argument. */
15608 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15609 if (TYPE_NFIELDS (pfn_type) == 0
15610 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15611 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15612 return;
15613
15614 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15615 new_type = alloc_type (objfile);
15616 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15617 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15618 TYPE_VARARGS (pfn_type));
15619 smash_to_methodptr_type (type, new_type);
15620 }
15621
15622 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15623 appropriate error checking and issuing complaints if there is a
15624 problem. */
15625
15626 static ULONGEST
15627 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15628 {
15629 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15630
15631 if (attr == nullptr)
15632 return 0;
15633
15634 if (!attr_form_is_constant (attr))
15635 {
15636 complaint (_("DW_AT_alignment must have constant form"
15637 " - DIE at %s [in module %s]"),
15638 sect_offset_str (die->sect_off),
15639 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15640 return 0;
15641 }
15642
15643 ULONGEST align;
15644 if (attr->form == DW_FORM_sdata)
15645 {
15646 LONGEST val = DW_SND (attr);
15647 if (val < 0)
15648 {
15649 complaint (_("DW_AT_alignment value must not be negative"
15650 " - DIE at %s [in module %s]"),
15651 sect_offset_str (die->sect_off),
15652 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15653 return 0;
15654 }
15655 align = val;
15656 }
15657 else
15658 align = DW_UNSND (attr);
15659
15660 if (align == 0)
15661 {
15662 complaint (_("DW_AT_alignment value must not be zero"
15663 " - DIE at %s [in module %s]"),
15664 sect_offset_str (die->sect_off),
15665 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15666 return 0;
15667 }
15668 if ((align & (align - 1)) != 0)
15669 {
15670 complaint (_("DW_AT_alignment value must be a power of 2"
15671 " - DIE at %s [in module %s]"),
15672 sect_offset_str (die->sect_off),
15673 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15674 return 0;
15675 }
15676
15677 return align;
15678 }
15679
15680 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15681 the alignment for TYPE. */
15682
15683 static void
15684 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15685 struct type *type)
15686 {
15687 if (!set_type_align (type, get_alignment (cu, die)))
15688 complaint (_("DW_AT_alignment value too large"
15689 " - DIE at %s [in module %s]"),
15690 sect_offset_str (die->sect_off),
15691 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15692 }
15693
15694 /* Called when we find the DIE that starts a structure or union scope
15695 (definition) to create a type for the structure or union. Fill in
15696 the type's name and general properties; the members will not be
15697 processed until process_structure_scope. A symbol table entry for
15698 the type will also not be done until process_structure_scope (assuming
15699 the type has a name).
15700
15701 NOTE: we need to call these functions regardless of whether or not the
15702 DIE has a DW_AT_name attribute, since it might be an anonymous
15703 structure or union. This gets the type entered into our set of
15704 user defined types. */
15705
15706 static struct type *
15707 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15708 {
15709 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15710 struct type *type;
15711 struct attribute *attr;
15712 const char *name;
15713
15714 /* If the definition of this type lives in .debug_types, read that type.
15715 Don't follow DW_AT_specification though, that will take us back up
15716 the chain and we want to go down. */
15717 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15718 if (attr)
15719 {
15720 type = get_DW_AT_signature_type (die, attr, cu);
15721
15722 /* The type's CU may not be the same as CU.
15723 Ensure TYPE is recorded with CU in die_type_hash. */
15724 return set_die_type (die, type, cu);
15725 }
15726
15727 type = alloc_type (objfile);
15728 INIT_CPLUS_SPECIFIC (type);
15729
15730 name = dwarf2_name (die, cu);
15731 if (name != NULL)
15732 {
15733 if (cu->language == language_cplus
15734 || cu->language == language_d
15735 || cu->language == language_rust)
15736 {
15737 const char *full_name = dwarf2_full_name (name, die, cu);
15738
15739 /* dwarf2_full_name might have already finished building the DIE's
15740 type. If so, there is no need to continue. */
15741 if (get_die_type (die, cu) != NULL)
15742 return get_die_type (die, cu);
15743
15744 TYPE_NAME (type) = full_name;
15745 }
15746 else
15747 {
15748 /* The name is already allocated along with this objfile, so
15749 we don't need to duplicate it for the type. */
15750 TYPE_NAME (type) = name;
15751 }
15752 }
15753
15754 if (die->tag == DW_TAG_structure_type)
15755 {
15756 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15757 }
15758 else if (die->tag == DW_TAG_union_type)
15759 {
15760 TYPE_CODE (type) = TYPE_CODE_UNION;
15761 }
15762 else if (die->tag == DW_TAG_variant_part)
15763 {
15764 TYPE_CODE (type) = TYPE_CODE_UNION;
15765 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15766 }
15767 else
15768 {
15769 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15770 }
15771
15772 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15773 TYPE_DECLARED_CLASS (type) = 1;
15774
15775 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15776 if (attr)
15777 {
15778 if (attr_form_is_constant (attr))
15779 TYPE_LENGTH (type) = DW_UNSND (attr);
15780 else
15781 {
15782 /* For the moment, dynamic type sizes are not supported
15783 by GDB's struct type. The actual size is determined
15784 on-demand when resolving the type of a given object,
15785 so set the type's length to zero for now. Otherwise,
15786 we record an expression as the length, and that expression
15787 could lead to a very large value, which could eventually
15788 lead to us trying to allocate that much memory when creating
15789 a value of that type. */
15790 TYPE_LENGTH (type) = 0;
15791 }
15792 }
15793 else
15794 {
15795 TYPE_LENGTH (type) = 0;
15796 }
15797
15798 maybe_set_alignment (cu, die, type);
15799
15800 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15801 {
15802 /* ICC<14 does not output the required DW_AT_declaration on
15803 incomplete types, but gives them a size of zero. */
15804 TYPE_STUB (type) = 1;
15805 }
15806 else
15807 TYPE_STUB_SUPPORTED (type) = 1;
15808
15809 if (die_is_declaration (die, cu))
15810 TYPE_STUB (type) = 1;
15811 else if (attr == NULL && die->child == NULL
15812 && producer_is_realview (cu->producer))
15813 /* RealView does not output the required DW_AT_declaration
15814 on incomplete types. */
15815 TYPE_STUB (type) = 1;
15816
15817 /* We need to add the type field to the die immediately so we don't
15818 infinitely recurse when dealing with pointers to the structure
15819 type within the structure itself. */
15820 set_die_type (die, type, cu);
15821
15822 /* set_die_type should be already done. */
15823 set_descriptive_type (type, die, cu);
15824
15825 return type;
15826 }
15827
15828 /* A helper for process_structure_scope that handles a single member
15829 DIE. */
15830
15831 static void
15832 handle_struct_member_die (struct die_info *child_die, struct type *type,
15833 struct field_info *fi,
15834 std::vector<struct symbol *> *template_args,
15835 struct dwarf2_cu *cu)
15836 {
15837 if (child_die->tag == DW_TAG_member
15838 || child_die->tag == DW_TAG_variable
15839 || child_die->tag == DW_TAG_variant_part)
15840 {
15841 /* NOTE: carlton/2002-11-05: A C++ static data member
15842 should be a DW_TAG_member that is a declaration, but
15843 all versions of G++ as of this writing (so through at
15844 least 3.2.1) incorrectly generate DW_TAG_variable
15845 tags for them instead. */
15846 dwarf2_add_field (fi, child_die, cu);
15847 }
15848 else if (child_die->tag == DW_TAG_subprogram)
15849 {
15850 /* Rust doesn't have member functions in the C++ sense.
15851 However, it does emit ordinary functions as children
15852 of a struct DIE. */
15853 if (cu->language == language_rust)
15854 read_func_scope (child_die, cu);
15855 else
15856 {
15857 /* C++ member function. */
15858 dwarf2_add_member_fn (fi, child_die, type, cu);
15859 }
15860 }
15861 else if (child_die->tag == DW_TAG_inheritance)
15862 {
15863 /* C++ base class field. */
15864 dwarf2_add_field (fi, child_die, cu);
15865 }
15866 else if (type_can_define_types (child_die))
15867 dwarf2_add_type_defn (fi, child_die, cu);
15868 else if (child_die->tag == DW_TAG_template_type_param
15869 || child_die->tag == DW_TAG_template_value_param)
15870 {
15871 struct symbol *arg = new_symbol (child_die, NULL, cu);
15872
15873 if (arg != NULL)
15874 template_args->push_back (arg);
15875 }
15876 else if (child_die->tag == DW_TAG_variant)
15877 {
15878 /* In a variant we want to get the discriminant and also add a
15879 field for our sole member child. */
15880 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15881
15882 for (die_info *variant_child = child_die->child;
15883 variant_child != NULL;
15884 variant_child = sibling_die (variant_child))
15885 {
15886 if (variant_child->tag == DW_TAG_member)
15887 {
15888 handle_struct_member_die (variant_child, type, fi,
15889 template_args, cu);
15890 /* Only handle the one. */
15891 break;
15892 }
15893 }
15894
15895 /* We don't handle this but we might as well report it if we see
15896 it. */
15897 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15898 complaint (_("DW_AT_discr_list is not supported yet"
15899 " - DIE at %s [in module %s]"),
15900 sect_offset_str (child_die->sect_off),
15901 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15902
15903 /* The first field was just added, so we can stash the
15904 discriminant there. */
15905 gdb_assert (!fi->fields.empty ());
15906 if (discr == NULL)
15907 fi->fields.back ().variant.default_branch = true;
15908 else
15909 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15910 }
15911 }
15912
15913 /* Finish creating a structure or union type, including filling in
15914 its members and creating a symbol for it. */
15915
15916 static void
15917 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15918 {
15919 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15920 struct die_info *child_die;
15921 struct type *type;
15922
15923 type = get_die_type (die, cu);
15924 if (type == NULL)
15925 type = read_structure_type (die, cu);
15926
15927 /* When reading a DW_TAG_variant_part, we need to notice when we
15928 read the discriminant member, so we can record it later in the
15929 discriminant_info. */
15930 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15931 sect_offset discr_offset;
15932 bool has_template_parameters = false;
15933
15934 if (is_variant_part)
15935 {
15936 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15937 if (discr == NULL)
15938 {
15939 /* Maybe it's a univariant form, an extension we support.
15940 In this case arrange not to check the offset. */
15941 is_variant_part = false;
15942 }
15943 else if (attr_form_is_ref (discr))
15944 {
15945 struct dwarf2_cu *target_cu = cu;
15946 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15947
15948 discr_offset = target_die->sect_off;
15949 }
15950 else
15951 {
15952 complaint (_("DW_AT_discr does not have DIE reference form"
15953 " - DIE at %s [in module %s]"),
15954 sect_offset_str (die->sect_off),
15955 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15956 is_variant_part = false;
15957 }
15958 }
15959
15960 if (die->child != NULL && ! die_is_declaration (die, cu))
15961 {
15962 struct field_info fi;
15963 std::vector<struct symbol *> template_args;
15964
15965 child_die = die->child;
15966
15967 while (child_die && child_die->tag)
15968 {
15969 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15970
15971 if (is_variant_part && discr_offset == child_die->sect_off)
15972 fi.fields.back ().variant.is_discriminant = true;
15973
15974 child_die = sibling_die (child_die);
15975 }
15976
15977 /* Attach template arguments to type. */
15978 if (!template_args.empty ())
15979 {
15980 has_template_parameters = true;
15981 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15982 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15983 TYPE_TEMPLATE_ARGUMENTS (type)
15984 = XOBNEWVEC (&objfile->objfile_obstack,
15985 struct symbol *,
15986 TYPE_N_TEMPLATE_ARGUMENTS (type));
15987 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15988 template_args.data (),
15989 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15990 * sizeof (struct symbol *)));
15991 }
15992
15993 /* Attach fields and member functions to the type. */
15994 if (fi.nfields)
15995 dwarf2_attach_fields_to_type (&fi, type, cu);
15996 if (!fi.fnfieldlists.empty ())
15997 {
15998 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15999
16000 /* Get the type which refers to the base class (possibly this
16001 class itself) which contains the vtable pointer for the current
16002 class from the DW_AT_containing_type attribute. This use of
16003 DW_AT_containing_type is a GNU extension. */
16004
16005 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16006 {
16007 struct type *t = die_containing_type (die, cu);
16008
16009 set_type_vptr_basetype (type, t);
16010 if (type == t)
16011 {
16012 int i;
16013
16014 /* Our own class provides vtbl ptr. */
16015 for (i = TYPE_NFIELDS (t) - 1;
16016 i >= TYPE_N_BASECLASSES (t);
16017 --i)
16018 {
16019 const char *fieldname = TYPE_FIELD_NAME (t, i);
16020
16021 if (is_vtable_name (fieldname, cu))
16022 {
16023 set_type_vptr_fieldno (type, i);
16024 break;
16025 }
16026 }
16027
16028 /* Complain if virtual function table field not found. */
16029 if (i < TYPE_N_BASECLASSES (t))
16030 complaint (_("virtual function table pointer "
16031 "not found when defining class '%s'"),
16032 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16033 }
16034 else
16035 {
16036 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16037 }
16038 }
16039 else if (cu->producer
16040 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16041 {
16042 /* The IBM XLC compiler does not provide direct indication
16043 of the containing type, but the vtable pointer is
16044 always named __vfp. */
16045
16046 int i;
16047
16048 for (i = TYPE_NFIELDS (type) - 1;
16049 i >= TYPE_N_BASECLASSES (type);
16050 --i)
16051 {
16052 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16053 {
16054 set_type_vptr_fieldno (type, i);
16055 set_type_vptr_basetype (type, type);
16056 break;
16057 }
16058 }
16059 }
16060 }
16061
16062 /* Copy fi.typedef_field_list linked list elements content into the
16063 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16064 if (!fi.typedef_field_list.empty ())
16065 {
16066 int count = fi.typedef_field_list.size ();
16067
16068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16069 TYPE_TYPEDEF_FIELD_ARRAY (type)
16070 = ((struct decl_field *)
16071 TYPE_ALLOC (type,
16072 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16073 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16074
16075 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16076 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16077 }
16078
16079 /* Copy fi.nested_types_list linked list elements content into the
16080 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16081 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16082 {
16083 int count = fi.nested_types_list.size ();
16084
16085 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16086 TYPE_NESTED_TYPES_ARRAY (type)
16087 = ((struct decl_field *)
16088 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16089 TYPE_NESTED_TYPES_COUNT (type) = count;
16090
16091 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16092 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16093 }
16094 }
16095
16096 quirk_gcc_member_function_pointer (type, objfile);
16097 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16098 cu->rust_unions.push_back (type);
16099
16100 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16101 snapshots) has been known to create a die giving a declaration
16102 for a class that has, as a child, a die giving a definition for a
16103 nested class. So we have to process our children even if the
16104 current die is a declaration. Normally, of course, a declaration
16105 won't have any children at all. */
16106
16107 child_die = die->child;
16108
16109 while (child_die != NULL && child_die->tag)
16110 {
16111 if (child_die->tag == DW_TAG_member
16112 || child_die->tag == DW_TAG_variable
16113 || child_die->tag == DW_TAG_inheritance
16114 || child_die->tag == DW_TAG_template_value_param
16115 || child_die->tag == DW_TAG_template_type_param)
16116 {
16117 /* Do nothing. */
16118 }
16119 else
16120 process_die (child_die, cu);
16121
16122 child_die = sibling_die (child_die);
16123 }
16124
16125 /* Do not consider external references. According to the DWARF standard,
16126 these DIEs are identified by the fact that they have no byte_size
16127 attribute, and a declaration attribute. */
16128 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16129 || !die_is_declaration (die, cu))
16130 {
16131 struct symbol *sym = new_symbol (die, type, cu);
16132
16133 if (has_template_parameters)
16134 {
16135 struct symtab *symtab;
16136 if (sym != nullptr)
16137 symtab = symbol_symtab (sym);
16138 else if (cu->line_header != nullptr)
16139 {
16140 /* Any related symtab will do. */
16141 symtab
16142 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16143 }
16144 else
16145 {
16146 symtab = nullptr;
16147 complaint (_("could not find suitable "
16148 "symtab for template parameter"
16149 " - DIE at %s [in module %s]"),
16150 sect_offset_str (die->sect_off),
16151 objfile_name (objfile));
16152 }
16153
16154 if (symtab != nullptr)
16155 {
16156 /* Make sure that the symtab is set on the new symbols.
16157 Even though they don't appear in this symtab directly,
16158 other parts of gdb assume that symbols do, and this is
16159 reasonably true. */
16160 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16161 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16162 }
16163 }
16164 }
16165 }
16166
16167 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16168 update TYPE using some information only available in DIE's children. */
16169
16170 static void
16171 update_enumeration_type_from_children (struct die_info *die,
16172 struct type *type,
16173 struct dwarf2_cu *cu)
16174 {
16175 struct die_info *child_die;
16176 int unsigned_enum = 1;
16177 int flag_enum = 1;
16178 ULONGEST mask = 0;
16179
16180 auto_obstack obstack;
16181
16182 for (child_die = die->child;
16183 child_die != NULL && child_die->tag;
16184 child_die = sibling_die (child_die))
16185 {
16186 struct attribute *attr;
16187 LONGEST value;
16188 const gdb_byte *bytes;
16189 struct dwarf2_locexpr_baton *baton;
16190 const char *name;
16191
16192 if (child_die->tag != DW_TAG_enumerator)
16193 continue;
16194
16195 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16196 if (attr == NULL)
16197 continue;
16198
16199 name = dwarf2_name (child_die, cu);
16200 if (name == NULL)
16201 name = "<anonymous enumerator>";
16202
16203 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16204 &value, &bytes, &baton);
16205 if (value < 0)
16206 {
16207 unsigned_enum = 0;
16208 flag_enum = 0;
16209 }
16210 else if ((mask & value) != 0)
16211 flag_enum = 0;
16212 else
16213 mask |= value;
16214
16215 /* If we already know that the enum type is neither unsigned, nor
16216 a flag type, no need to look at the rest of the enumerates. */
16217 if (!unsigned_enum && !flag_enum)
16218 break;
16219 }
16220
16221 if (unsigned_enum)
16222 TYPE_UNSIGNED (type) = 1;
16223 if (flag_enum)
16224 TYPE_FLAG_ENUM (type) = 1;
16225 }
16226
16227 /* Given a DW_AT_enumeration_type die, set its type. We do not
16228 complete the type's fields yet, or create any symbols. */
16229
16230 static struct type *
16231 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16232 {
16233 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16234 struct type *type;
16235 struct attribute *attr;
16236 const char *name;
16237
16238 /* If the definition of this type lives in .debug_types, read that type.
16239 Don't follow DW_AT_specification though, that will take us back up
16240 the chain and we want to go down. */
16241 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16242 if (attr)
16243 {
16244 type = get_DW_AT_signature_type (die, attr, cu);
16245
16246 /* The type's CU may not be the same as CU.
16247 Ensure TYPE is recorded with CU in die_type_hash. */
16248 return set_die_type (die, type, cu);
16249 }
16250
16251 type = alloc_type (objfile);
16252
16253 TYPE_CODE (type) = TYPE_CODE_ENUM;
16254 name = dwarf2_full_name (NULL, die, cu);
16255 if (name != NULL)
16256 TYPE_NAME (type) = name;
16257
16258 attr = dwarf2_attr (die, DW_AT_type, cu);
16259 if (attr != NULL)
16260 {
16261 struct type *underlying_type = die_type (die, cu);
16262
16263 TYPE_TARGET_TYPE (type) = underlying_type;
16264 }
16265
16266 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16267 if (attr)
16268 {
16269 TYPE_LENGTH (type) = DW_UNSND (attr);
16270 }
16271 else
16272 {
16273 TYPE_LENGTH (type) = 0;
16274 }
16275
16276 maybe_set_alignment (cu, die, type);
16277
16278 /* The enumeration DIE can be incomplete. In Ada, any type can be
16279 declared as private in the package spec, and then defined only
16280 inside the package body. Such types are known as Taft Amendment
16281 Types. When another package uses such a type, an incomplete DIE
16282 may be generated by the compiler. */
16283 if (die_is_declaration (die, cu))
16284 TYPE_STUB (type) = 1;
16285
16286 /* Finish the creation of this type by using the enum's children.
16287 We must call this even when the underlying type has been provided
16288 so that we can determine if we're looking at a "flag" enum. */
16289 update_enumeration_type_from_children (die, type, cu);
16290
16291 /* If this type has an underlying type that is not a stub, then we
16292 may use its attributes. We always use the "unsigned" attribute
16293 in this situation, because ordinarily we guess whether the type
16294 is unsigned -- but the guess can be wrong and the underlying type
16295 can tell us the reality. However, we defer to a local size
16296 attribute if one exists, because this lets the compiler override
16297 the underlying type if needed. */
16298 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16299 {
16300 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16301 if (TYPE_LENGTH (type) == 0)
16302 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16303 if (TYPE_RAW_ALIGN (type) == 0
16304 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16305 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16306 }
16307
16308 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16309
16310 return set_die_type (die, type, cu);
16311 }
16312
16313 /* Given a pointer to a die which begins an enumeration, process all
16314 the dies that define the members of the enumeration, and create the
16315 symbol for the enumeration type.
16316
16317 NOTE: We reverse the order of the element list. */
16318
16319 static void
16320 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16321 {
16322 struct type *this_type;
16323
16324 this_type = get_die_type (die, cu);
16325 if (this_type == NULL)
16326 this_type = read_enumeration_type (die, cu);
16327
16328 if (die->child != NULL)
16329 {
16330 struct die_info *child_die;
16331 struct symbol *sym;
16332 struct field *fields = NULL;
16333 int num_fields = 0;
16334 const char *name;
16335
16336 child_die = die->child;
16337 while (child_die && child_die->tag)
16338 {
16339 if (child_die->tag != DW_TAG_enumerator)
16340 {
16341 process_die (child_die, cu);
16342 }
16343 else
16344 {
16345 name = dwarf2_name (child_die, cu);
16346 if (name)
16347 {
16348 sym = new_symbol (child_die, this_type, cu);
16349
16350 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16351 {
16352 fields = (struct field *)
16353 xrealloc (fields,
16354 (num_fields + DW_FIELD_ALLOC_CHUNK)
16355 * sizeof (struct field));
16356 }
16357
16358 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16359 FIELD_TYPE (fields[num_fields]) = NULL;
16360 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16361 FIELD_BITSIZE (fields[num_fields]) = 0;
16362
16363 num_fields++;
16364 }
16365 }
16366
16367 child_die = sibling_die (child_die);
16368 }
16369
16370 if (num_fields)
16371 {
16372 TYPE_NFIELDS (this_type) = num_fields;
16373 TYPE_FIELDS (this_type) = (struct field *)
16374 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16375 memcpy (TYPE_FIELDS (this_type), fields,
16376 sizeof (struct field) * num_fields);
16377 xfree (fields);
16378 }
16379 }
16380
16381 /* If we are reading an enum from a .debug_types unit, and the enum
16382 is a declaration, and the enum is not the signatured type in the
16383 unit, then we do not want to add a symbol for it. Adding a
16384 symbol would in some cases obscure the true definition of the
16385 enum, giving users an incomplete type when the definition is
16386 actually available. Note that we do not want to do this for all
16387 enums which are just declarations, because C++0x allows forward
16388 enum declarations. */
16389 if (cu->per_cu->is_debug_types
16390 && die_is_declaration (die, cu))
16391 {
16392 struct signatured_type *sig_type;
16393
16394 sig_type = (struct signatured_type *) cu->per_cu;
16395 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16396 if (sig_type->type_offset_in_section != die->sect_off)
16397 return;
16398 }
16399
16400 new_symbol (die, this_type, cu);
16401 }
16402
16403 /* Extract all information from a DW_TAG_array_type DIE and put it in
16404 the DIE's type field. For now, this only handles one dimensional
16405 arrays. */
16406
16407 static struct type *
16408 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16409 {
16410 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16411 struct die_info *child_die;
16412 struct type *type;
16413 struct type *element_type, *range_type, *index_type;
16414 struct attribute *attr;
16415 const char *name;
16416 struct dynamic_prop *byte_stride_prop = NULL;
16417 unsigned int bit_stride = 0;
16418
16419 element_type = die_type (die, cu);
16420
16421 /* The die_type call above may have already set the type for this DIE. */
16422 type = get_die_type (die, cu);
16423 if (type)
16424 return type;
16425
16426 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16427 if (attr != NULL)
16428 {
16429 int stride_ok;
16430 struct type *prop_type
16431 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16432
16433 byte_stride_prop
16434 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16435 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16436 prop_type);
16437 if (!stride_ok)
16438 {
16439 complaint (_("unable to read array DW_AT_byte_stride "
16440 " - DIE at %s [in module %s]"),
16441 sect_offset_str (die->sect_off),
16442 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16443 /* Ignore this attribute. We will likely not be able to print
16444 arrays of this type correctly, but there is little we can do
16445 to help if we cannot read the attribute's value. */
16446 byte_stride_prop = NULL;
16447 }
16448 }
16449
16450 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16451 if (attr != NULL)
16452 bit_stride = DW_UNSND (attr);
16453
16454 /* Irix 6.2 native cc creates array types without children for
16455 arrays with unspecified length. */
16456 if (die->child == NULL)
16457 {
16458 index_type = objfile_type (objfile)->builtin_int;
16459 range_type = create_static_range_type (NULL, index_type, 0, -1);
16460 type = create_array_type_with_stride (NULL, element_type, range_type,
16461 byte_stride_prop, bit_stride);
16462 return set_die_type (die, type, cu);
16463 }
16464
16465 std::vector<struct type *> range_types;
16466 child_die = die->child;
16467 while (child_die && child_die->tag)
16468 {
16469 if (child_die->tag == DW_TAG_subrange_type)
16470 {
16471 struct type *child_type = read_type_die (child_die, cu);
16472
16473 if (child_type != NULL)
16474 {
16475 /* The range type was succesfully read. Save it for the
16476 array type creation. */
16477 range_types.push_back (child_type);
16478 }
16479 }
16480 child_die = sibling_die (child_die);
16481 }
16482
16483 /* Dwarf2 dimensions are output from left to right, create the
16484 necessary array types in backwards order. */
16485
16486 type = element_type;
16487
16488 if (read_array_order (die, cu) == DW_ORD_col_major)
16489 {
16490 int i = 0;
16491
16492 while (i < range_types.size ())
16493 type = create_array_type_with_stride (NULL, type, range_types[i++],
16494 byte_stride_prop, bit_stride);
16495 }
16496 else
16497 {
16498 size_t ndim = range_types.size ();
16499 while (ndim-- > 0)
16500 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16501 byte_stride_prop, bit_stride);
16502 }
16503
16504 /* Understand Dwarf2 support for vector types (like they occur on
16505 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16506 array type. This is not part of the Dwarf2/3 standard yet, but a
16507 custom vendor extension. The main difference between a regular
16508 array and the vector variant is that vectors are passed by value
16509 to functions. */
16510 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16511 if (attr)
16512 make_vector_type (type);
16513
16514 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16515 implementation may choose to implement triple vectors using this
16516 attribute. */
16517 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16518 if (attr)
16519 {
16520 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16521 TYPE_LENGTH (type) = DW_UNSND (attr);
16522 else
16523 complaint (_("DW_AT_byte_size for array type smaller "
16524 "than the total size of elements"));
16525 }
16526
16527 name = dwarf2_name (die, cu);
16528 if (name)
16529 TYPE_NAME (type) = name;
16530
16531 maybe_set_alignment (cu, die, type);
16532
16533 /* Install the type in the die. */
16534 set_die_type (die, type, cu);
16535
16536 /* set_die_type should be already done. */
16537 set_descriptive_type (type, die, cu);
16538
16539 return type;
16540 }
16541
16542 static enum dwarf_array_dim_ordering
16543 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16544 {
16545 struct attribute *attr;
16546
16547 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16548
16549 if (attr)
16550 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16551
16552 /* GNU F77 is a special case, as at 08/2004 array type info is the
16553 opposite order to the dwarf2 specification, but data is still
16554 laid out as per normal fortran.
16555
16556 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16557 version checking. */
16558
16559 if (cu->language == language_fortran
16560 && cu->producer && strstr (cu->producer, "GNU F77"))
16561 {
16562 return DW_ORD_row_major;
16563 }
16564
16565 switch (cu->language_defn->la_array_ordering)
16566 {
16567 case array_column_major:
16568 return DW_ORD_col_major;
16569 case array_row_major:
16570 default:
16571 return DW_ORD_row_major;
16572 };
16573 }
16574
16575 /* Extract all information from a DW_TAG_set_type DIE and put it in
16576 the DIE's type field. */
16577
16578 static struct type *
16579 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16580 {
16581 struct type *domain_type, *set_type;
16582 struct attribute *attr;
16583
16584 domain_type = die_type (die, cu);
16585
16586 /* The die_type call above may have already set the type for this DIE. */
16587 set_type = get_die_type (die, cu);
16588 if (set_type)
16589 return set_type;
16590
16591 set_type = create_set_type (NULL, domain_type);
16592
16593 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16594 if (attr)
16595 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16596
16597 maybe_set_alignment (cu, die, set_type);
16598
16599 return set_die_type (die, set_type, cu);
16600 }
16601
16602 /* A helper for read_common_block that creates a locexpr baton.
16603 SYM is the symbol which we are marking as computed.
16604 COMMON_DIE is the DIE for the common block.
16605 COMMON_LOC is the location expression attribute for the common
16606 block itself.
16607 MEMBER_LOC is the location expression attribute for the particular
16608 member of the common block that we are processing.
16609 CU is the CU from which the above come. */
16610
16611 static void
16612 mark_common_block_symbol_computed (struct symbol *sym,
16613 struct die_info *common_die,
16614 struct attribute *common_loc,
16615 struct attribute *member_loc,
16616 struct dwarf2_cu *cu)
16617 {
16618 struct dwarf2_per_objfile *dwarf2_per_objfile
16619 = cu->per_cu->dwarf2_per_objfile;
16620 struct objfile *objfile = dwarf2_per_objfile->objfile;
16621 struct dwarf2_locexpr_baton *baton;
16622 gdb_byte *ptr;
16623 unsigned int cu_off;
16624 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16625 LONGEST offset = 0;
16626
16627 gdb_assert (common_loc && member_loc);
16628 gdb_assert (attr_form_is_block (common_loc));
16629 gdb_assert (attr_form_is_block (member_loc)
16630 || attr_form_is_constant (member_loc));
16631
16632 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16633 baton->per_cu = cu->per_cu;
16634 gdb_assert (baton->per_cu);
16635
16636 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16637
16638 if (attr_form_is_constant (member_loc))
16639 {
16640 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16641 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16642 }
16643 else
16644 baton->size += DW_BLOCK (member_loc)->size;
16645
16646 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16647 baton->data = ptr;
16648
16649 *ptr++ = DW_OP_call4;
16650 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16651 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16652 ptr += 4;
16653
16654 if (attr_form_is_constant (member_loc))
16655 {
16656 *ptr++ = DW_OP_addr;
16657 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16658 ptr += cu->header.addr_size;
16659 }
16660 else
16661 {
16662 /* We have to copy the data here, because DW_OP_call4 will only
16663 use a DW_AT_location attribute. */
16664 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16665 ptr += DW_BLOCK (member_loc)->size;
16666 }
16667
16668 *ptr++ = DW_OP_plus;
16669 gdb_assert (ptr - baton->data == baton->size);
16670
16671 SYMBOL_LOCATION_BATON (sym) = baton;
16672 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16673 }
16674
16675 /* Create appropriate locally-scoped variables for all the
16676 DW_TAG_common_block entries. Also create a struct common_block
16677 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16678 is used to sepate the common blocks name namespace from regular
16679 variable names. */
16680
16681 static void
16682 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16683 {
16684 struct attribute *attr;
16685
16686 attr = dwarf2_attr (die, DW_AT_location, cu);
16687 if (attr)
16688 {
16689 /* Support the .debug_loc offsets. */
16690 if (attr_form_is_block (attr))
16691 {
16692 /* Ok. */
16693 }
16694 else if (attr_form_is_section_offset (attr))
16695 {
16696 dwarf2_complex_location_expr_complaint ();
16697 attr = NULL;
16698 }
16699 else
16700 {
16701 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16702 "common block member");
16703 attr = NULL;
16704 }
16705 }
16706
16707 if (die->child != NULL)
16708 {
16709 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16710 struct die_info *child_die;
16711 size_t n_entries = 0, size;
16712 struct common_block *common_block;
16713 struct symbol *sym;
16714
16715 for (child_die = die->child;
16716 child_die && child_die->tag;
16717 child_die = sibling_die (child_die))
16718 ++n_entries;
16719
16720 size = (sizeof (struct common_block)
16721 + (n_entries - 1) * sizeof (struct symbol *));
16722 common_block
16723 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16724 size);
16725 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16726 common_block->n_entries = 0;
16727
16728 for (child_die = die->child;
16729 child_die && child_die->tag;
16730 child_die = sibling_die (child_die))
16731 {
16732 /* Create the symbol in the DW_TAG_common_block block in the current
16733 symbol scope. */
16734 sym = new_symbol (child_die, NULL, cu);
16735 if (sym != NULL)
16736 {
16737 struct attribute *member_loc;
16738
16739 common_block->contents[common_block->n_entries++] = sym;
16740
16741 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16742 cu);
16743 if (member_loc)
16744 {
16745 /* GDB has handled this for a long time, but it is
16746 not specified by DWARF. It seems to have been
16747 emitted by gfortran at least as recently as:
16748 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16749 complaint (_("Variable in common block has "
16750 "DW_AT_data_member_location "
16751 "- DIE at %s [in module %s]"),
16752 sect_offset_str (child_die->sect_off),
16753 objfile_name (objfile));
16754
16755 if (attr_form_is_section_offset (member_loc))
16756 dwarf2_complex_location_expr_complaint ();
16757 else if (attr_form_is_constant (member_loc)
16758 || attr_form_is_block (member_loc))
16759 {
16760 if (attr)
16761 mark_common_block_symbol_computed (sym, die, attr,
16762 member_loc, cu);
16763 }
16764 else
16765 dwarf2_complex_location_expr_complaint ();
16766 }
16767 }
16768 }
16769
16770 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16771 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16772 }
16773 }
16774
16775 /* Create a type for a C++ namespace. */
16776
16777 static struct type *
16778 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16779 {
16780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16781 const char *previous_prefix, *name;
16782 int is_anonymous;
16783 struct type *type;
16784
16785 /* For extensions, reuse the type of the original namespace. */
16786 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16787 {
16788 struct die_info *ext_die;
16789 struct dwarf2_cu *ext_cu = cu;
16790
16791 ext_die = dwarf2_extension (die, &ext_cu);
16792 type = read_type_die (ext_die, ext_cu);
16793
16794 /* EXT_CU may not be the same as CU.
16795 Ensure TYPE is recorded with CU in die_type_hash. */
16796 return set_die_type (die, type, cu);
16797 }
16798
16799 name = namespace_name (die, &is_anonymous, cu);
16800
16801 /* Now build the name of the current namespace. */
16802
16803 previous_prefix = determine_prefix (die, cu);
16804 if (previous_prefix[0] != '\0')
16805 name = typename_concat (&objfile->objfile_obstack,
16806 previous_prefix, name, 0, cu);
16807
16808 /* Create the type. */
16809 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16810
16811 return set_die_type (die, type, cu);
16812 }
16813
16814 /* Read a namespace scope. */
16815
16816 static void
16817 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16818 {
16819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16820 int is_anonymous;
16821
16822 /* Add a symbol associated to this if we haven't seen the namespace
16823 before. Also, add a using directive if it's an anonymous
16824 namespace. */
16825
16826 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16827 {
16828 struct type *type;
16829
16830 type = read_type_die (die, cu);
16831 new_symbol (die, type, cu);
16832
16833 namespace_name (die, &is_anonymous, cu);
16834 if (is_anonymous)
16835 {
16836 const char *previous_prefix = determine_prefix (die, cu);
16837
16838 std::vector<const char *> excludes;
16839 add_using_directive (using_directives (cu),
16840 previous_prefix, TYPE_NAME (type), NULL,
16841 NULL, excludes, 0, &objfile->objfile_obstack);
16842 }
16843 }
16844
16845 if (die->child != NULL)
16846 {
16847 struct die_info *child_die = die->child;
16848
16849 while (child_die && child_die->tag)
16850 {
16851 process_die (child_die, cu);
16852 child_die = sibling_die (child_die);
16853 }
16854 }
16855 }
16856
16857 /* Read a Fortran module as type. This DIE can be only a declaration used for
16858 imported module. Still we need that type as local Fortran "use ... only"
16859 declaration imports depend on the created type in determine_prefix. */
16860
16861 static struct type *
16862 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16863 {
16864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16865 const char *module_name;
16866 struct type *type;
16867
16868 module_name = dwarf2_name (die, cu);
16869 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16870
16871 return set_die_type (die, type, cu);
16872 }
16873
16874 /* Read a Fortran module. */
16875
16876 static void
16877 read_module (struct die_info *die, struct dwarf2_cu *cu)
16878 {
16879 struct die_info *child_die = die->child;
16880 struct type *type;
16881
16882 type = read_type_die (die, cu);
16883 new_symbol (die, type, cu);
16884
16885 while (child_die && child_die->tag)
16886 {
16887 process_die (child_die, cu);
16888 child_die = sibling_die (child_die);
16889 }
16890 }
16891
16892 /* Return the name of the namespace represented by DIE. Set
16893 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16894 namespace. */
16895
16896 static const char *
16897 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16898 {
16899 struct die_info *current_die;
16900 const char *name = NULL;
16901
16902 /* Loop through the extensions until we find a name. */
16903
16904 for (current_die = die;
16905 current_die != NULL;
16906 current_die = dwarf2_extension (die, &cu))
16907 {
16908 /* We don't use dwarf2_name here so that we can detect the absence
16909 of a name -> anonymous namespace. */
16910 name = dwarf2_string_attr (die, DW_AT_name, cu);
16911
16912 if (name != NULL)
16913 break;
16914 }
16915
16916 /* Is it an anonymous namespace? */
16917
16918 *is_anonymous = (name == NULL);
16919 if (*is_anonymous)
16920 name = CP_ANONYMOUS_NAMESPACE_STR;
16921
16922 return name;
16923 }
16924
16925 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16926 the user defined type vector. */
16927
16928 static struct type *
16929 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16930 {
16931 struct gdbarch *gdbarch
16932 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16933 struct comp_unit_head *cu_header = &cu->header;
16934 struct type *type;
16935 struct attribute *attr_byte_size;
16936 struct attribute *attr_address_class;
16937 int byte_size, addr_class;
16938 struct type *target_type;
16939
16940 target_type = die_type (die, cu);
16941
16942 /* The die_type call above may have already set the type for this DIE. */
16943 type = get_die_type (die, cu);
16944 if (type)
16945 return type;
16946
16947 type = lookup_pointer_type (target_type);
16948
16949 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16950 if (attr_byte_size)
16951 byte_size = DW_UNSND (attr_byte_size);
16952 else
16953 byte_size = cu_header->addr_size;
16954
16955 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16956 if (attr_address_class)
16957 addr_class = DW_UNSND (attr_address_class);
16958 else
16959 addr_class = DW_ADDR_none;
16960
16961 ULONGEST alignment = get_alignment (cu, die);
16962
16963 /* If the pointer size, alignment, or address class is different
16964 than the default, create a type variant marked as such and set
16965 the length accordingly. */
16966 if (TYPE_LENGTH (type) != byte_size
16967 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16968 && alignment != TYPE_RAW_ALIGN (type))
16969 || addr_class != DW_ADDR_none)
16970 {
16971 if (gdbarch_address_class_type_flags_p (gdbarch))
16972 {
16973 int type_flags;
16974
16975 type_flags = gdbarch_address_class_type_flags
16976 (gdbarch, byte_size, addr_class);
16977 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16978 == 0);
16979 type = make_type_with_address_space (type, type_flags);
16980 }
16981 else if (TYPE_LENGTH (type) != byte_size)
16982 {
16983 complaint (_("invalid pointer size %d"), byte_size);
16984 }
16985 else if (TYPE_RAW_ALIGN (type) != alignment)
16986 {
16987 complaint (_("Invalid DW_AT_alignment"
16988 " - DIE at %s [in module %s]"),
16989 sect_offset_str (die->sect_off),
16990 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16991 }
16992 else
16993 {
16994 /* Should we also complain about unhandled address classes? */
16995 }
16996 }
16997
16998 TYPE_LENGTH (type) = byte_size;
16999 set_type_align (type, alignment);
17000 return set_die_type (die, type, cu);
17001 }
17002
17003 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17004 the user defined type vector. */
17005
17006 static struct type *
17007 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17008 {
17009 struct type *type;
17010 struct type *to_type;
17011 struct type *domain;
17012
17013 to_type = die_type (die, cu);
17014 domain = die_containing_type (die, cu);
17015
17016 /* The calls above may have already set the type for this DIE. */
17017 type = get_die_type (die, cu);
17018 if (type)
17019 return type;
17020
17021 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17022 type = lookup_methodptr_type (to_type);
17023 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17024 {
17025 struct type *new_type
17026 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17027
17028 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17029 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17030 TYPE_VARARGS (to_type));
17031 type = lookup_methodptr_type (new_type);
17032 }
17033 else
17034 type = lookup_memberptr_type (to_type, domain);
17035
17036 return set_die_type (die, type, cu);
17037 }
17038
17039 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17040 the user defined type vector. */
17041
17042 static struct type *
17043 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17044 enum type_code refcode)
17045 {
17046 struct comp_unit_head *cu_header = &cu->header;
17047 struct type *type, *target_type;
17048 struct attribute *attr;
17049
17050 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17051
17052 target_type = die_type (die, cu);
17053
17054 /* The die_type call above may have already set the type for this DIE. */
17055 type = get_die_type (die, cu);
17056 if (type)
17057 return type;
17058
17059 type = lookup_reference_type (target_type, refcode);
17060 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17061 if (attr)
17062 {
17063 TYPE_LENGTH (type) = DW_UNSND (attr);
17064 }
17065 else
17066 {
17067 TYPE_LENGTH (type) = cu_header->addr_size;
17068 }
17069 maybe_set_alignment (cu, die, type);
17070 return set_die_type (die, type, cu);
17071 }
17072
17073 /* Add the given cv-qualifiers to the element type of the array. GCC
17074 outputs DWARF type qualifiers that apply to an array, not the
17075 element type. But GDB relies on the array element type to carry
17076 the cv-qualifiers. This mimics section 6.7.3 of the C99
17077 specification. */
17078
17079 static struct type *
17080 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17081 struct type *base_type, int cnst, int voltl)
17082 {
17083 struct type *el_type, *inner_array;
17084
17085 base_type = copy_type (base_type);
17086 inner_array = base_type;
17087
17088 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17089 {
17090 TYPE_TARGET_TYPE (inner_array) =
17091 copy_type (TYPE_TARGET_TYPE (inner_array));
17092 inner_array = TYPE_TARGET_TYPE (inner_array);
17093 }
17094
17095 el_type = TYPE_TARGET_TYPE (inner_array);
17096 cnst |= TYPE_CONST (el_type);
17097 voltl |= TYPE_VOLATILE (el_type);
17098 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17099
17100 return set_die_type (die, base_type, cu);
17101 }
17102
17103 static struct type *
17104 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17105 {
17106 struct type *base_type, *cv_type;
17107
17108 base_type = die_type (die, cu);
17109
17110 /* The die_type call above may have already set the type for this DIE. */
17111 cv_type = get_die_type (die, cu);
17112 if (cv_type)
17113 return cv_type;
17114
17115 /* In case the const qualifier is applied to an array type, the element type
17116 is so qualified, not the array type (section 6.7.3 of C99). */
17117 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17118 return add_array_cv_type (die, cu, base_type, 1, 0);
17119
17120 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17121 return set_die_type (die, cv_type, cu);
17122 }
17123
17124 static struct type *
17125 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17126 {
17127 struct type *base_type, *cv_type;
17128
17129 base_type = die_type (die, cu);
17130
17131 /* The die_type call above may have already set the type for this DIE. */
17132 cv_type = get_die_type (die, cu);
17133 if (cv_type)
17134 return cv_type;
17135
17136 /* In case the volatile qualifier is applied to an array type, the
17137 element type is so qualified, not the array type (section 6.7.3
17138 of C99). */
17139 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17140 return add_array_cv_type (die, cu, base_type, 0, 1);
17141
17142 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17143 return set_die_type (die, cv_type, cu);
17144 }
17145
17146 /* Handle DW_TAG_restrict_type. */
17147
17148 static struct type *
17149 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17150 {
17151 struct type *base_type, *cv_type;
17152
17153 base_type = die_type (die, cu);
17154
17155 /* The die_type call above may have already set the type for this DIE. */
17156 cv_type = get_die_type (die, cu);
17157 if (cv_type)
17158 return cv_type;
17159
17160 cv_type = make_restrict_type (base_type);
17161 return set_die_type (die, cv_type, cu);
17162 }
17163
17164 /* Handle DW_TAG_atomic_type. */
17165
17166 static struct type *
17167 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17168 {
17169 struct type *base_type, *cv_type;
17170
17171 base_type = die_type (die, cu);
17172
17173 /* The die_type call above may have already set the type for this DIE. */
17174 cv_type = get_die_type (die, cu);
17175 if (cv_type)
17176 return cv_type;
17177
17178 cv_type = make_atomic_type (base_type);
17179 return set_die_type (die, cv_type, cu);
17180 }
17181
17182 /* Extract all information from a DW_TAG_string_type DIE and add to
17183 the user defined type vector. It isn't really a user defined type,
17184 but it behaves like one, with other DIE's using an AT_user_def_type
17185 attribute to reference it. */
17186
17187 static struct type *
17188 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17189 {
17190 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17192 struct type *type, *range_type, *index_type, *char_type;
17193 struct attribute *attr;
17194 unsigned int length;
17195
17196 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17197 if (attr)
17198 {
17199 length = DW_UNSND (attr);
17200 }
17201 else
17202 {
17203 /* Check for the DW_AT_byte_size attribute. */
17204 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17205 if (attr)
17206 {
17207 length = DW_UNSND (attr);
17208 }
17209 else
17210 {
17211 length = 1;
17212 }
17213 }
17214
17215 index_type = objfile_type (objfile)->builtin_int;
17216 range_type = create_static_range_type (NULL, index_type, 1, length);
17217 char_type = language_string_char_type (cu->language_defn, gdbarch);
17218 type = create_string_type (NULL, char_type, range_type);
17219
17220 return set_die_type (die, type, cu);
17221 }
17222
17223 /* Assuming that DIE corresponds to a function, returns nonzero
17224 if the function is prototyped. */
17225
17226 static int
17227 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17228 {
17229 struct attribute *attr;
17230
17231 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17232 if (attr && (DW_UNSND (attr) != 0))
17233 return 1;
17234
17235 /* The DWARF standard implies that the DW_AT_prototyped attribute
17236 is only meaninful for C, but the concept also extends to other
17237 languages that allow unprototyped functions (Eg: Objective C).
17238 For all other languages, assume that functions are always
17239 prototyped. */
17240 if (cu->language != language_c
17241 && cu->language != language_objc
17242 && cu->language != language_opencl)
17243 return 1;
17244
17245 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17246 prototyped and unprototyped functions; default to prototyped,
17247 since that is more common in modern code (and RealView warns
17248 about unprototyped functions). */
17249 if (producer_is_realview (cu->producer))
17250 return 1;
17251
17252 return 0;
17253 }
17254
17255 /* Handle DIES due to C code like:
17256
17257 struct foo
17258 {
17259 int (*funcp)(int a, long l);
17260 int b;
17261 };
17262
17263 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17264
17265 static struct type *
17266 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17267 {
17268 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17269 struct type *type; /* Type that this function returns. */
17270 struct type *ftype; /* Function that returns above type. */
17271 struct attribute *attr;
17272
17273 type = die_type (die, cu);
17274
17275 /* The die_type call above may have already set the type for this DIE. */
17276 ftype = get_die_type (die, cu);
17277 if (ftype)
17278 return ftype;
17279
17280 ftype = lookup_function_type (type);
17281
17282 if (prototyped_function_p (die, cu))
17283 TYPE_PROTOTYPED (ftype) = 1;
17284
17285 /* Store the calling convention in the type if it's available in
17286 the subroutine die. Otherwise set the calling convention to
17287 the default value DW_CC_normal. */
17288 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17289 if (attr)
17290 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17291 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17292 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17293 else
17294 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17295
17296 /* Record whether the function returns normally to its caller or not
17297 if the DWARF producer set that information. */
17298 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17299 if (attr && (DW_UNSND (attr) != 0))
17300 TYPE_NO_RETURN (ftype) = 1;
17301
17302 /* We need to add the subroutine type to the die immediately so
17303 we don't infinitely recurse when dealing with parameters
17304 declared as the same subroutine type. */
17305 set_die_type (die, ftype, cu);
17306
17307 if (die->child != NULL)
17308 {
17309 struct type *void_type = objfile_type (objfile)->builtin_void;
17310 struct die_info *child_die;
17311 int nparams, iparams;
17312
17313 /* Count the number of parameters.
17314 FIXME: GDB currently ignores vararg functions, but knows about
17315 vararg member functions. */
17316 nparams = 0;
17317 child_die = die->child;
17318 while (child_die && child_die->tag)
17319 {
17320 if (child_die->tag == DW_TAG_formal_parameter)
17321 nparams++;
17322 else if (child_die->tag == DW_TAG_unspecified_parameters)
17323 TYPE_VARARGS (ftype) = 1;
17324 child_die = sibling_die (child_die);
17325 }
17326
17327 /* Allocate storage for parameters and fill them in. */
17328 TYPE_NFIELDS (ftype) = nparams;
17329 TYPE_FIELDS (ftype) = (struct field *)
17330 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17331
17332 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17333 even if we error out during the parameters reading below. */
17334 for (iparams = 0; iparams < nparams; iparams++)
17335 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17336
17337 iparams = 0;
17338 child_die = die->child;
17339 while (child_die && child_die->tag)
17340 {
17341 if (child_die->tag == DW_TAG_formal_parameter)
17342 {
17343 struct type *arg_type;
17344
17345 /* DWARF version 2 has no clean way to discern C++
17346 static and non-static member functions. G++ helps
17347 GDB by marking the first parameter for non-static
17348 member functions (which is the this pointer) as
17349 artificial. We pass this information to
17350 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17351
17352 DWARF version 3 added DW_AT_object_pointer, which GCC
17353 4.5 does not yet generate. */
17354 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17355 if (attr)
17356 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17357 else
17358 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17359 arg_type = die_type (child_die, cu);
17360
17361 /* RealView does not mark THIS as const, which the testsuite
17362 expects. GCC marks THIS as const in method definitions,
17363 but not in the class specifications (GCC PR 43053). */
17364 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17365 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17366 {
17367 int is_this = 0;
17368 struct dwarf2_cu *arg_cu = cu;
17369 const char *name = dwarf2_name (child_die, cu);
17370
17371 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17372 if (attr)
17373 {
17374 /* If the compiler emits this, use it. */
17375 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17376 is_this = 1;
17377 }
17378 else if (name && strcmp (name, "this") == 0)
17379 /* Function definitions will have the argument names. */
17380 is_this = 1;
17381 else if (name == NULL && iparams == 0)
17382 /* Declarations may not have the names, so like
17383 elsewhere in GDB, assume an artificial first
17384 argument is "this". */
17385 is_this = 1;
17386
17387 if (is_this)
17388 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17389 arg_type, 0);
17390 }
17391
17392 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17393 iparams++;
17394 }
17395 child_die = sibling_die (child_die);
17396 }
17397 }
17398
17399 return ftype;
17400 }
17401
17402 static struct type *
17403 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17404 {
17405 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17406 const char *name = NULL;
17407 struct type *this_type, *target_type;
17408
17409 name = dwarf2_full_name (NULL, die, cu);
17410 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17411 TYPE_TARGET_STUB (this_type) = 1;
17412 set_die_type (die, this_type, cu);
17413 target_type = die_type (die, cu);
17414 if (target_type != this_type)
17415 TYPE_TARGET_TYPE (this_type) = target_type;
17416 else
17417 {
17418 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17419 spec and cause infinite loops in GDB. */
17420 complaint (_("Self-referential DW_TAG_typedef "
17421 "- DIE at %s [in module %s]"),
17422 sect_offset_str (die->sect_off), objfile_name (objfile));
17423 TYPE_TARGET_TYPE (this_type) = NULL;
17424 }
17425 return this_type;
17426 }
17427
17428 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17429 (which may be different from NAME) to the architecture back-end to allow
17430 it to guess the correct format if necessary. */
17431
17432 static struct type *
17433 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17434 const char *name_hint)
17435 {
17436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17437 const struct floatformat **format;
17438 struct type *type;
17439
17440 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17441 if (format)
17442 type = init_float_type (objfile, bits, name, format);
17443 else
17444 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17445
17446 return type;
17447 }
17448
17449 /* Allocate an integer type of size BITS and name NAME. */
17450
17451 static struct type *
17452 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17453 int bits, int unsigned_p, const char *name)
17454 {
17455 struct type *type;
17456
17457 /* Versions of Intel's C Compiler generate an integer type called "void"
17458 instead of using DW_TAG_unspecified_type. This has been seen on
17459 at least versions 14, 17, and 18. */
17460 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17461 && strcmp (name, "void") == 0)
17462 type = objfile_type (objfile)->builtin_void;
17463 else
17464 type = init_integer_type (objfile, bits, unsigned_p, name);
17465
17466 return type;
17467 }
17468
17469 /* Initialise and return a floating point type of size BITS suitable for
17470 use as a component of a complex number. The NAME_HINT is passed through
17471 when initialising the floating point type and is the name of the complex
17472 type.
17473
17474 As DWARF doesn't currently provide an explicit name for the components
17475 of a complex number, but it can be helpful to have these components
17476 named, we try to select a suitable name based on the size of the
17477 component. */
17478 static struct type *
17479 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17480 struct objfile *objfile,
17481 int bits, const char *name_hint)
17482 {
17483 gdbarch *gdbarch = get_objfile_arch (objfile);
17484 struct type *tt = nullptr;
17485
17486 /* Try to find a suitable floating point builtin type of size BITS.
17487 We're going to use the name of this type as the name for the complex
17488 target type that we are about to create. */
17489 switch (cu->language)
17490 {
17491 case language_fortran:
17492 switch (bits)
17493 {
17494 case 32:
17495 tt = builtin_f_type (gdbarch)->builtin_real;
17496 break;
17497 case 64:
17498 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17499 break;
17500 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17501 case 128:
17502 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17503 break;
17504 }
17505 break;
17506 default:
17507 switch (bits)
17508 {
17509 case 32:
17510 tt = builtin_type (gdbarch)->builtin_float;
17511 break;
17512 case 64:
17513 tt = builtin_type (gdbarch)->builtin_double;
17514 break;
17515 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17516 case 128:
17517 tt = builtin_type (gdbarch)->builtin_long_double;
17518 break;
17519 }
17520 break;
17521 }
17522
17523 /* If the type we found doesn't match the size we were looking for, then
17524 pretend we didn't find a type at all, the complex target type we
17525 create will then be nameless. */
17526 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17527 tt = nullptr;
17528
17529 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17530 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17531 }
17532
17533 /* Find a representation of a given base type and install
17534 it in the TYPE field of the die. */
17535
17536 static struct type *
17537 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17538 {
17539 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17540 struct type *type;
17541 struct attribute *attr;
17542 int encoding = 0, bits = 0;
17543 const char *name;
17544
17545 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17546 if (attr)
17547 {
17548 encoding = DW_UNSND (attr);
17549 }
17550 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17551 if (attr)
17552 {
17553 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17554 }
17555 name = dwarf2_name (die, cu);
17556 if (!name)
17557 {
17558 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17559 }
17560
17561 switch (encoding)
17562 {
17563 case DW_ATE_address:
17564 /* Turn DW_ATE_address into a void * pointer. */
17565 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17566 type = init_pointer_type (objfile, bits, name, type);
17567 break;
17568 case DW_ATE_boolean:
17569 type = init_boolean_type (objfile, bits, 1, name);
17570 break;
17571 case DW_ATE_complex_float:
17572 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17573 type = init_complex_type (objfile, name, type);
17574 break;
17575 case DW_ATE_decimal_float:
17576 type = init_decfloat_type (objfile, bits, name);
17577 break;
17578 case DW_ATE_float:
17579 type = dwarf2_init_float_type (objfile, bits, name, name);
17580 break;
17581 case DW_ATE_signed:
17582 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17583 break;
17584 case DW_ATE_unsigned:
17585 if (cu->language == language_fortran
17586 && name
17587 && startswith (name, "character("))
17588 type = init_character_type (objfile, bits, 1, name);
17589 else
17590 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17591 break;
17592 case DW_ATE_signed_char:
17593 if (cu->language == language_ada || cu->language == language_m2
17594 || cu->language == language_pascal
17595 || cu->language == language_fortran)
17596 type = init_character_type (objfile, bits, 0, name);
17597 else
17598 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17599 break;
17600 case DW_ATE_unsigned_char:
17601 if (cu->language == language_ada || cu->language == language_m2
17602 || cu->language == language_pascal
17603 || cu->language == language_fortran
17604 || cu->language == language_rust)
17605 type = init_character_type (objfile, bits, 1, name);
17606 else
17607 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17608 break;
17609 case DW_ATE_UTF:
17610 {
17611 gdbarch *arch = get_objfile_arch (objfile);
17612
17613 if (bits == 16)
17614 type = builtin_type (arch)->builtin_char16;
17615 else if (bits == 32)
17616 type = builtin_type (arch)->builtin_char32;
17617 else
17618 {
17619 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17620 bits);
17621 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17622 }
17623 return set_die_type (die, type, cu);
17624 }
17625 break;
17626
17627 default:
17628 complaint (_("unsupported DW_AT_encoding: '%s'"),
17629 dwarf_type_encoding_name (encoding));
17630 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17631 break;
17632 }
17633
17634 if (name && strcmp (name, "char") == 0)
17635 TYPE_NOSIGN (type) = 1;
17636
17637 maybe_set_alignment (cu, die, type);
17638
17639 return set_die_type (die, type, cu);
17640 }
17641
17642 /* Parse dwarf attribute if it's a block, reference or constant and put the
17643 resulting value of the attribute into struct bound_prop.
17644 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17645
17646 static int
17647 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17648 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17649 struct type *default_type)
17650 {
17651 struct dwarf2_property_baton *baton;
17652 struct obstack *obstack
17653 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17654
17655 gdb_assert (default_type != NULL);
17656
17657 if (attr == NULL || prop == NULL)
17658 return 0;
17659
17660 if (attr_form_is_block (attr))
17661 {
17662 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17663 baton->property_type = default_type;
17664 baton->locexpr.per_cu = cu->per_cu;
17665 baton->locexpr.size = DW_BLOCK (attr)->size;
17666 baton->locexpr.data = DW_BLOCK (attr)->data;
17667 baton->locexpr.is_reference = false;
17668 prop->data.baton = baton;
17669 prop->kind = PROP_LOCEXPR;
17670 gdb_assert (prop->data.baton != NULL);
17671 }
17672 else if (attr_form_is_ref (attr))
17673 {
17674 struct dwarf2_cu *target_cu = cu;
17675 struct die_info *target_die;
17676 struct attribute *target_attr;
17677
17678 target_die = follow_die_ref (die, attr, &target_cu);
17679 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17680 if (target_attr == NULL)
17681 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17682 target_cu);
17683 if (target_attr == NULL)
17684 return 0;
17685
17686 switch (target_attr->name)
17687 {
17688 case DW_AT_location:
17689 if (attr_form_is_section_offset (target_attr))
17690 {
17691 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17692 baton->property_type = die_type (target_die, target_cu);
17693 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17694 prop->data.baton = baton;
17695 prop->kind = PROP_LOCLIST;
17696 gdb_assert (prop->data.baton != NULL);
17697 }
17698 else if (attr_form_is_block (target_attr))
17699 {
17700 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17701 baton->property_type = die_type (target_die, target_cu);
17702 baton->locexpr.per_cu = cu->per_cu;
17703 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17704 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17705 baton->locexpr.is_reference = true;
17706 prop->data.baton = baton;
17707 prop->kind = PROP_LOCEXPR;
17708 gdb_assert (prop->data.baton != NULL);
17709 }
17710 else
17711 {
17712 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17713 "dynamic property");
17714 return 0;
17715 }
17716 break;
17717 case DW_AT_data_member_location:
17718 {
17719 LONGEST offset;
17720
17721 if (!handle_data_member_location (target_die, target_cu,
17722 &offset))
17723 return 0;
17724
17725 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17726 baton->property_type = read_type_die (target_die->parent,
17727 target_cu);
17728 baton->offset_info.offset = offset;
17729 baton->offset_info.type = die_type (target_die, target_cu);
17730 prop->data.baton = baton;
17731 prop->kind = PROP_ADDR_OFFSET;
17732 break;
17733 }
17734 }
17735 }
17736 else if (attr_form_is_constant (attr))
17737 {
17738 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17739 prop->kind = PROP_CONST;
17740 }
17741 else
17742 {
17743 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17744 dwarf2_name (die, cu));
17745 return 0;
17746 }
17747
17748 return 1;
17749 }
17750
17751 /* Find an integer type the same size as the address size given in the
17752 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17753 is unsigned or not. */
17754
17755 static struct type *
17756 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17757 bool unsigned_p)
17758 {
17759 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17760 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17761 struct type *int_type;
17762
17763 /* Helper macro to examine the various builtin types. */
17764 #define TRY_TYPE(F) \
17765 int_type = (unsigned_p \
17766 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17767 : objfile_type (objfile)->builtin_ ## F); \
17768 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17769 return int_type
17770
17771 TRY_TYPE (char);
17772 TRY_TYPE (short);
17773 TRY_TYPE (int);
17774 TRY_TYPE (long);
17775 TRY_TYPE (long_long);
17776
17777 #undef TRY_TYPE
17778
17779 gdb_assert_not_reached ("unable to find suitable integer type");
17780 }
17781
17782 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17783 present (which is valid) then compute the default type based on the
17784 compilation units address size. */
17785
17786 static struct type *
17787 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17788 {
17789 struct type *index_type = die_type (die, cu);
17790
17791 /* Dwarf-2 specifications explicitly allows to create subrange types
17792 without specifying a base type.
17793 In that case, the base type must be set to the type of
17794 the lower bound, upper bound or count, in that order, if any of these
17795 three attributes references an object that has a type.
17796 If no base type is found, the Dwarf-2 specifications say that
17797 a signed integer type of size equal to the size of an address should
17798 be used.
17799 For the following C code: `extern char gdb_int [];'
17800 GCC produces an empty range DIE.
17801 FIXME: muller/2010-05-28: Possible references to object for low bound,
17802 high bound or count are not yet handled by this code. */
17803 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17804 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17805
17806 return index_type;
17807 }
17808
17809 /* Read the given DW_AT_subrange DIE. */
17810
17811 static struct type *
17812 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17813 {
17814 struct type *base_type, *orig_base_type;
17815 struct type *range_type;
17816 struct attribute *attr;
17817 struct dynamic_prop low, high;
17818 int low_default_is_valid;
17819 int high_bound_is_count = 0;
17820 const char *name;
17821 ULONGEST negative_mask;
17822
17823 orig_base_type = read_subrange_index_type (die, cu);
17824
17825 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17826 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17827 creating the range type, but we use the result of check_typedef
17828 when examining properties of the type. */
17829 base_type = check_typedef (orig_base_type);
17830
17831 /* The die_type call above may have already set the type for this DIE. */
17832 range_type = get_die_type (die, cu);
17833 if (range_type)
17834 return range_type;
17835
17836 low.kind = PROP_CONST;
17837 high.kind = PROP_CONST;
17838 high.data.const_val = 0;
17839
17840 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17841 omitting DW_AT_lower_bound. */
17842 switch (cu->language)
17843 {
17844 case language_c:
17845 case language_cplus:
17846 low.data.const_val = 0;
17847 low_default_is_valid = 1;
17848 break;
17849 case language_fortran:
17850 low.data.const_val = 1;
17851 low_default_is_valid = 1;
17852 break;
17853 case language_d:
17854 case language_objc:
17855 case language_rust:
17856 low.data.const_val = 0;
17857 low_default_is_valid = (cu->header.version >= 4);
17858 break;
17859 case language_ada:
17860 case language_m2:
17861 case language_pascal:
17862 low.data.const_val = 1;
17863 low_default_is_valid = (cu->header.version >= 4);
17864 break;
17865 default:
17866 low.data.const_val = 0;
17867 low_default_is_valid = 0;
17868 break;
17869 }
17870
17871 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17872 if (attr)
17873 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17874 else if (!low_default_is_valid)
17875 complaint (_("Missing DW_AT_lower_bound "
17876 "- DIE at %s [in module %s]"),
17877 sect_offset_str (die->sect_off),
17878 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17879
17880 struct attribute *attr_ub, *attr_count;
17881 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17882 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17883 {
17884 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17885 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17886 {
17887 /* If bounds are constant do the final calculation here. */
17888 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17889 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17890 else
17891 high_bound_is_count = 1;
17892 }
17893 else
17894 {
17895 if (attr_ub != NULL)
17896 complaint (_("Unresolved DW_AT_upper_bound "
17897 "- DIE at %s [in module %s]"),
17898 sect_offset_str (die->sect_off),
17899 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17900 if (attr_count != NULL)
17901 complaint (_("Unresolved DW_AT_count "
17902 "- DIE at %s [in module %s]"),
17903 sect_offset_str (die->sect_off),
17904 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17905 }
17906 }
17907
17908 /* Normally, the DWARF producers are expected to use a signed
17909 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17910 But this is unfortunately not always the case, as witnessed
17911 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17912 is used instead. To work around that ambiguity, we treat
17913 the bounds as signed, and thus sign-extend their values, when
17914 the base type is signed. */
17915 negative_mask =
17916 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17917 if (low.kind == PROP_CONST
17918 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17919 low.data.const_val |= negative_mask;
17920 if (high.kind == PROP_CONST
17921 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17922 high.data.const_val |= negative_mask;
17923
17924 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17925
17926 if (high_bound_is_count)
17927 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17928
17929 /* Ada expects an empty array on no boundary attributes. */
17930 if (attr == NULL && cu->language != language_ada)
17931 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17932
17933 name = dwarf2_name (die, cu);
17934 if (name)
17935 TYPE_NAME (range_type) = name;
17936
17937 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17938 if (attr)
17939 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17940
17941 maybe_set_alignment (cu, die, range_type);
17942
17943 set_die_type (die, range_type, cu);
17944
17945 /* set_die_type should be already done. */
17946 set_descriptive_type (range_type, die, cu);
17947
17948 return range_type;
17949 }
17950
17951 static struct type *
17952 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17953 {
17954 struct type *type;
17955
17956 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17957 NULL);
17958 TYPE_NAME (type) = dwarf2_name (die, cu);
17959
17960 /* In Ada, an unspecified type is typically used when the description
17961 of the type is defered to a different unit. When encountering
17962 such a type, we treat it as a stub, and try to resolve it later on,
17963 when needed. */
17964 if (cu->language == language_ada)
17965 TYPE_STUB (type) = 1;
17966
17967 return set_die_type (die, type, cu);
17968 }
17969
17970 /* Read a single die and all its descendents. Set the die's sibling
17971 field to NULL; set other fields in the die correctly, and set all
17972 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17973 location of the info_ptr after reading all of those dies. PARENT
17974 is the parent of the die in question. */
17975
17976 static struct die_info *
17977 read_die_and_children (const struct die_reader_specs *reader,
17978 const gdb_byte *info_ptr,
17979 const gdb_byte **new_info_ptr,
17980 struct die_info *parent)
17981 {
17982 struct die_info *die;
17983 const gdb_byte *cur_ptr;
17984 int has_children;
17985
17986 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17987 if (die == NULL)
17988 {
17989 *new_info_ptr = cur_ptr;
17990 return NULL;
17991 }
17992 store_in_ref_table (die, reader->cu);
17993
17994 if (has_children)
17995 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17996 else
17997 {
17998 die->child = NULL;
17999 *new_info_ptr = cur_ptr;
18000 }
18001
18002 die->sibling = NULL;
18003 die->parent = parent;
18004 return die;
18005 }
18006
18007 /* Read a die, all of its descendents, and all of its siblings; set
18008 all of the fields of all of the dies correctly. Arguments are as
18009 in read_die_and_children. */
18010
18011 static struct die_info *
18012 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18013 const gdb_byte *info_ptr,
18014 const gdb_byte **new_info_ptr,
18015 struct die_info *parent)
18016 {
18017 struct die_info *first_die, *last_sibling;
18018 const gdb_byte *cur_ptr;
18019
18020 cur_ptr = info_ptr;
18021 first_die = last_sibling = NULL;
18022
18023 while (1)
18024 {
18025 struct die_info *die
18026 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18027
18028 if (die == NULL)
18029 {
18030 *new_info_ptr = cur_ptr;
18031 return first_die;
18032 }
18033
18034 if (!first_die)
18035 first_die = die;
18036 else
18037 last_sibling->sibling = die;
18038
18039 last_sibling = die;
18040 }
18041 }
18042
18043 /* Read a die, all of its descendents, and all of its siblings; set
18044 all of the fields of all of the dies correctly. Arguments are as
18045 in read_die_and_children.
18046 This the main entry point for reading a DIE and all its children. */
18047
18048 static struct die_info *
18049 read_die_and_siblings (const struct die_reader_specs *reader,
18050 const gdb_byte *info_ptr,
18051 const gdb_byte **new_info_ptr,
18052 struct die_info *parent)
18053 {
18054 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18055 new_info_ptr, parent);
18056
18057 if (dwarf_die_debug)
18058 {
18059 fprintf_unfiltered (gdb_stdlog,
18060 "Read die from %s@0x%x of %s:\n",
18061 get_section_name (reader->die_section),
18062 (unsigned) (info_ptr - reader->die_section->buffer),
18063 bfd_get_filename (reader->abfd));
18064 dump_die (die, dwarf_die_debug);
18065 }
18066
18067 return die;
18068 }
18069
18070 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18071 attributes.
18072 The caller is responsible for filling in the extra attributes
18073 and updating (*DIEP)->num_attrs.
18074 Set DIEP to point to a newly allocated die with its information,
18075 except for its child, sibling, and parent fields.
18076 Set HAS_CHILDREN to tell whether the die has children or not. */
18077
18078 static const gdb_byte *
18079 read_full_die_1 (const struct die_reader_specs *reader,
18080 struct die_info **diep, const gdb_byte *info_ptr,
18081 int *has_children, int num_extra_attrs)
18082 {
18083 unsigned int abbrev_number, bytes_read, i;
18084 struct abbrev_info *abbrev;
18085 struct die_info *die;
18086 struct dwarf2_cu *cu = reader->cu;
18087 bfd *abfd = reader->abfd;
18088
18089 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18090 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18091 info_ptr += bytes_read;
18092 if (!abbrev_number)
18093 {
18094 *diep = NULL;
18095 *has_children = 0;
18096 return info_ptr;
18097 }
18098
18099 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18100 if (!abbrev)
18101 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18102 abbrev_number,
18103 bfd_get_filename (abfd));
18104
18105 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18106 die->sect_off = sect_off;
18107 die->tag = abbrev->tag;
18108 die->abbrev = abbrev_number;
18109
18110 /* Make the result usable.
18111 The caller needs to update num_attrs after adding the extra
18112 attributes. */
18113 die->num_attrs = abbrev->num_attrs;
18114
18115 for (i = 0; i < abbrev->num_attrs; ++i)
18116 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18117 info_ptr);
18118
18119 *diep = die;
18120 *has_children = abbrev->has_children;
18121 return info_ptr;
18122 }
18123
18124 /* Read a die and all its attributes.
18125 Set DIEP to point to a newly allocated die with its information,
18126 except for its child, sibling, and parent fields.
18127 Set HAS_CHILDREN to tell whether the die has children or not. */
18128
18129 static const gdb_byte *
18130 read_full_die (const struct die_reader_specs *reader,
18131 struct die_info **diep, const gdb_byte *info_ptr,
18132 int *has_children)
18133 {
18134 const gdb_byte *result;
18135
18136 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18137
18138 if (dwarf_die_debug)
18139 {
18140 fprintf_unfiltered (gdb_stdlog,
18141 "Read die from %s@0x%x of %s:\n",
18142 get_section_name (reader->die_section),
18143 (unsigned) (info_ptr - reader->die_section->buffer),
18144 bfd_get_filename (reader->abfd));
18145 dump_die (*diep, dwarf_die_debug);
18146 }
18147
18148 return result;
18149 }
18150 \f
18151 /* Abbreviation tables.
18152
18153 In DWARF version 2, the description of the debugging information is
18154 stored in a separate .debug_abbrev section. Before we read any
18155 dies from a section we read in all abbreviations and install them
18156 in a hash table. */
18157
18158 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18159
18160 struct abbrev_info *
18161 abbrev_table::alloc_abbrev ()
18162 {
18163 struct abbrev_info *abbrev;
18164
18165 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18166 memset (abbrev, 0, sizeof (struct abbrev_info));
18167
18168 return abbrev;
18169 }
18170
18171 /* Add an abbreviation to the table. */
18172
18173 void
18174 abbrev_table::add_abbrev (unsigned int abbrev_number,
18175 struct abbrev_info *abbrev)
18176 {
18177 unsigned int hash_number;
18178
18179 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18180 abbrev->next = m_abbrevs[hash_number];
18181 m_abbrevs[hash_number] = abbrev;
18182 }
18183
18184 /* Look up an abbrev in the table.
18185 Returns NULL if the abbrev is not found. */
18186
18187 struct abbrev_info *
18188 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18189 {
18190 unsigned int hash_number;
18191 struct abbrev_info *abbrev;
18192
18193 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18194 abbrev = m_abbrevs[hash_number];
18195
18196 while (abbrev)
18197 {
18198 if (abbrev->number == abbrev_number)
18199 return abbrev;
18200 abbrev = abbrev->next;
18201 }
18202 return NULL;
18203 }
18204
18205 /* Read in an abbrev table. */
18206
18207 static abbrev_table_up
18208 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18209 struct dwarf2_section_info *section,
18210 sect_offset sect_off)
18211 {
18212 struct objfile *objfile = dwarf2_per_objfile->objfile;
18213 bfd *abfd = get_section_bfd_owner (section);
18214 const gdb_byte *abbrev_ptr;
18215 struct abbrev_info *cur_abbrev;
18216 unsigned int abbrev_number, bytes_read, abbrev_name;
18217 unsigned int abbrev_form;
18218 struct attr_abbrev *cur_attrs;
18219 unsigned int allocated_attrs;
18220
18221 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18222
18223 dwarf2_read_section (objfile, section);
18224 abbrev_ptr = section->buffer + to_underlying (sect_off);
18225 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18226 abbrev_ptr += bytes_read;
18227
18228 allocated_attrs = ATTR_ALLOC_CHUNK;
18229 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18230
18231 /* Loop until we reach an abbrev number of 0. */
18232 while (abbrev_number)
18233 {
18234 cur_abbrev = abbrev_table->alloc_abbrev ();
18235
18236 /* read in abbrev header */
18237 cur_abbrev->number = abbrev_number;
18238 cur_abbrev->tag
18239 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18240 abbrev_ptr += bytes_read;
18241 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18242 abbrev_ptr += 1;
18243
18244 /* now read in declarations */
18245 for (;;)
18246 {
18247 LONGEST implicit_const;
18248
18249 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18250 abbrev_ptr += bytes_read;
18251 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18252 abbrev_ptr += bytes_read;
18253 if (abbrev_form == DW_FORM_implicit_const)
18254 {
18255 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18256 &bytes_read);
18257 abbrev_ptr += bytes_read;
18258 }
18259 else
18260 {
18261 /* Initialize it due to a false compiler warning. */
18262 implicit_const = -1;
18263 }
18264
18265 if (abbrev_name == 0)
18266 break;
18267
18268 if (cur_abbrev->num_attrs == allocated_attrs)
18269 {
18270 allocated_attrs += ATTR_ALLOC_CHUNK;
18271 cur_attrs
18272 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18273 }
18274
18275 cur_attrs[cur_abbrev->num_attrs].name
18276 = (enum dwarf_attribute) abbrev_name;
18277 cur_attrs[cur_abbrev->num_attrs].form
18278 = (enum dwarf_form) abbrev_form;
18279 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18280 ++cur_abbrev->num_attrs;
18281 }
18282
18283 cur_abbrev->attrs =
18284 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18285 cur_abbrev->num_attrs);
18286 memcpy (cur_abbrev->attrs, cur_attrs,
18287 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18288
18289 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18290
18291 /* Get next abbreviation.
18292 Under Irix6 the abbreviations for a compilation unit are not
18293 always properly terminated with an abbrev number of 0.
18294 Exit loop if we encounter an abbreviation which we have
18295 already read (which means we are about to read the abbreviations
18296 for the next compile unit) or if the end of the abbreviation
18297 table is reached. */
18298 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18299 break;
18300 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18301 abbrev_ptr += bytes_read;
18302 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18303 break;
18304 }
18305
18306 xfree (cur_attrs);
18307 return abbrev_table;
18308 }
18309
18310 /* Returns nonzero if TAG represents a type that we might generate a partial
18311 symbol for. */
18312
18313 static int
18314 is_type_tag_for_partial (int tag)
18315 {
18316 switch (tag)
18317 {
18318 #if 0
18319 /* Some types that would be reasonable to generate partial symbols for,
18320 that we don't at present. */
18321 case DW_TAG_array_type:
18322 case DW_TAG_file_type:
18323 case DW_TAG_ptr_to_member_type:
18324 case DW_TAG_set_type:
18325 case DW_TAG_string_type:
18326 case DW_TAG_subroutine_type:
18327 #endif
18328 case DW_TAG_base_type:
18329 case DW_TAG_class_type:
18330 case DW_TAG_interface_type:
18331 case DW_TAG_enumeration_type:
18332 case DW_TAG_structure_type:
18333 case DW_TAG_subrange_type:
18334 case DW_TAG_typedef:
18335 case DW_TAG_union_type:
18336 return 1;
18337 default:
18338 return 0;
18339 }
18340 }
18341
18342 /* Load all DIEs that are interesting for partial symbols into memory. */
18343
18344 static struct partial_die_info *
18345 load_partial_dies (const struct die_reader_specs *reader,
18346 const gdb_byte *info_ptr, int building_psymtab)
18347 {
18348 struct dwarf2_cu *cu = reader->cu;
18349 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18350 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18351 unsigned int bytes_read;
18352 unsigned int load_all = 0;
18353 int nesting_level = 1;
18354
18355 parent_die = NULL;
18356 last_die = NULL;
18357
18358 gdb_assert (cu->per_cu != NULL);
18359 if (cu->per_cu->load_all_dies)
18360 load_all = 1;
18361
18362 cu->partial_dies
18363 = htab_create_alloc_ex (cu->header.length / 12,
18364 partial_die_hash,
18365 partial_die_eq,
18366 NULL,
18367 &cu->comp_unit_obstack,
18368 hashtab_obstack_allocate,
18369 dummy_obstack_deallocate);
18370
18371 while (1)
18372 {
18373 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18374
18375 /* A NULL abbrev means the end of a series of children. */
18376 if (abbrev == NULL)
18377 {
18378 if (--nesting_level == 0)
18379 return first_die;
18380
18381 info_ptr += bytes_read;
18382 last_die = parent_die;
18383 parent_die = parent_die->die_parent;
18384 continue;
18385 }
18386
18387 /* Check for template arguments. We never save these; if
18388 they're seen, we just mark the parent, and go on our way. */
18389 if (parent_die != NULL
18390 && cu->language == language_cplus
18391 && (abbrev->tag == DW_TAG_template_type_param
18392 || abbrev->tag == DW_TAG_template_value_param))
18393 {
18394 parent_die->has_template_arguments = 1;
18395
18396 if (!load_all)
18397 {
18398 /* We don't need a partial DIE for the template argument. */
18399 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18400 continue;
18401 }
18402 }
18403
18404 /* We only recurse into c++ subprograms looking for template arguments.
18405 Skip their other children. */
18406 if (!load_all
18407 && cu->language == language_cplus
18408 && parent_die != NULL
18409 && parent_die->tag == DW_TAG_subprogram)
18410 {
18411 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18412 continue;
18413 }
18414
18415 /* Check whether this DIE is interesting enough to save. Normally
18416 we would not be interested in members here, but there may be
18417 later variables referencing them via DW_AT_specification (for
18418 static members). */
18419 if (!load_all
18420 && !is_type_tag_for_partial (abbrev->tag)
18421 && abbrev->tag != DW_TAG_constant
18422 && abbrev->tag != DW_TAG_enumerator
18423 && abbrev->tag != DW_TAG_subprogram
18424 && abbrev->tag != DW_TAG_inlined_subroutine
18425 && abbrev->tag != DW_TAG_lexical_block
18426 && abbrev->tag != DW_TAG_variable
18427 && abbrev->tag != DW_TAG_namespace
18428 && abbrev->tag != DW_TAG_module
18429 && abbrev->tag != DW_TAG_member
18430 && abbrev->tag != DW_TAG_imported_unit
18431 && abbrev->tag != DW_TAG_imported_declaration)
18432 {
18433 /* Otherwise we skip to the next sibling, if any. */
18434 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18435 continue;
18436 }
18437
18438 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18439 abbrev);
18440
18441 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18442
18443 /* This two-pass algorithm for processing partial symbols has a
18444 high cost in cache pressure. Thus, handle some simple cases
18445 here which cover the majority of C partial symbols. DIEs
18446 which neither have specification tags in them, nor could have
18447 specification tags elsewhere pointing at them, can simply be
18448 processed and discarded.
18449
18450 This segment is also optional; scan_partial_symbols and
18451 add_partial_symbol will handle these DIEs if we chain
18452 them in normally. When compilers which do not emit large
18453 quantities of duplicate debug information are more common,
18454 this code can probably be removed. */
18455
18456 /* Any complete simple types at the top level (pretty much all
18457 of them, for a language without namespaces), can be processed
18458 directly. */
18459 if (parent_die == NULL
18460 && pdi.has_specification == 0
18461 && pdi.is_declaration == 0
18462 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18463 || pdi.tag == DW_TAG_base_type
18464 || pdi.tag == DW_TAG_subrange_type))
18465 {
18466 if (building_psymtab && pdi.name != NULL)
18467 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18468 VAR_DOMAIN, LOC_TYPEDEF, -1,
18469 psymbol_placement::STATIC,
18470 0, cu->language, objfile);
18471 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18472 continue;
18473 }
18474
18475 /* The exception for DW_TAG_typedef with has_children above is
18476 a workaround of GCC PR debug/47510. In the case of this complaint
18477 type_name_or_error will error on such types later.
18478
18479 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18480 it could not find the child DIEs referenced later, this is checked
18481 above. In correct DWARF DW_TAG_typedef should have no children. */
18482
18483 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18484 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18485 "- DIE at %s [in module %s]"),
18486 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18487
18488 /* If we're at the second level, and we're an enumerator, and
18489 our parent has no specification (meaning possibly lives in a
18490 namespace elsewhere), then we can add the partial symbol now
18491 instead of queueing it. */
18492 if (pdi.tag == DW_TAG_enumerator
18493 && parent_die != NULL
18494 && parent_die->die_parent == NULL
18495 && parent_die->tag == DW_TAG_enumeration_type
18496 && parent_die->has_specification == 0)
18497 {
18498 if (pdi.name == NULL)
18499 complaint (_("malformed enumerator DIE ignored"));
18500 else if (building_psymtab)
18501 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18502 VAR_DOMAIN, LOC_CONST, -1,
18503 cu->language == language_cplus
18504 ? psymbol_placement::GLOBAL
18505 : psymbol_placement::STATIC,
18506 0, cu->language, objfile);
18507
18508 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18509 continue;
18510 }
18511
18512 struct partial_die_info *part_die
18513 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18514
18515 /* We'll save this DIE so link it in. */
18516 part_die->die_parent = parent_die;
18517 part_die->die_sibling = NULL;
18518 part_die->die_child = NULL;
18519
18520 if (last_die && last_die == parent_die)
18521 last_die->die_child = part_die;
18522 else if (last_die)
18523 last_die->die_sibling = part_die;
18524
18525 last_die = part_die;
18526
18527 if (first_die == NULL)
18528 first_die = part_die;
18529
18530 /* Maybe add the DIE to the hash table. Not all DIEs that we
18531 find interesting need to be in the hash table, because we
18532 also have the parent/sibling/child chains; only those that we
18533 might refer to by offset later during partial symbol reading.
18534
18535 For now this means things that might have be the target of a
18536 DW_AT_specification, DW_AT_abstract_origin, or
18537 DW_AT_extension. DW_AT_extension will refer only to
18538 namespaces; DW_AT_abstract_origin refers to functions (and
18539 many things under the function DIE, but we do not recurse
18540 into function DIEs during partial symbol reading) and
18541 possibly variables as well; DW_AT_specification refers to
18542 declarations. Declarations ought to have the DW_AT_declaration
18543 flag. It happens that GCC forgets to put it in sometimes, but
18544 only for functions, not for types.
18545
18546 Adding more things than necessary to the hash table is harmless
18547 except for the performance cost. Adding too few will result in
18548 wasted time in find_partial_die, when we reread the compilation
18549 unit with load_all_dies set. */
18550
18551 if (load_all
18552 || abbrev->tag == DW_TAG_constant
18553 || abbrev->tag == DW_TAG_subprogram
18554 || abbrev->tag == DW_TAG_variable
18555 || abbrev->tag == DW_TAG_namespace
18556 || part_die->is_declaration)
18557 {
18558 void **slot;
18559
18560 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18561 to_underlying (part_die->sect_off),
18562 INSERT);
18563 *slot = part_die;
18564 }
18565
18566 /* For some DIEs we want to follow their children (if any). For C
18567 we have no reason to follow the children of structures; for other
18568 languages we have to, so that we can get at method physnames
18569 to infer fully qualified class names, for DW_AT_specification,
18570 and for C++ template arguments. For C++, we also look one level
18571 inside functions to find template arguments (if the name of the
18572 function does not already contain the template arguments).
18573
18574 For Ada, we need to scan the children of subprograms and lexical
18575 blocks as well because Ada allows the definition of nested
18576 entities that could be interesting for the debugger, such as
18577 nested subprograms for instance. */
18578 if (last_die->has_children
18579 && (load_all
18580 || last_die->tag == DW_TAG_namespace
18581 || last_die->tag == DW_TAG_module
18582 || last_die->tag == DW_TAG_enumeration_type
18583 || (cu->language == language_cplus
18584 && last_die->tag == DW_TAG_subprogram
18585 && (last_die->name == NULL
18586 || strchr (last_die->name, '<') == NULL))
18587 || (cu->language != language_c
18588 && (last_die->tag == DW_TAG_class_type
18589 || last_die->tag == DW_TAG_interface_type
18590 || last_die->tag == DW_TAG_structure_type
18591 || last_die->tag == DW_TAG_union_type))
18592 || (cu->language == language_ada
18593 && (last_die->tag == DW_TAG_subprogram
18594 || last_die->tag == DW_TAG_lexical_block))))
18595 {
18596 nesting_level++;
18597 parent_die = last_die;
18598 continue;
18599 }
18600
18601 /* Otherwise we skip to the next sibling, if any. */
18602 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18603
18604 /* Back to the top, do it again. */
18605 }
18606 }
18607
18608 partial_die_info::partial_die_info (sect_offset sect_off_,
18609 struct abbrev_info *abbrev)
18610 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18611 {
18612 }
18613
18614 /* Read a minimal amount of information into the minimal die structure.
18615 INFO_PTR should point just after the initial uleb128 of a DIE. */
18616
18617 const gdb_byte *
18618 partial_die_info::read (const struct die_reader_specs *reader,
18619 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18620 {
18621 struct dwarf2_cu *cu = reader->cu;
18622 struct dwarf2_per_objfile *dwarf2_per_objfile
18623 = cu->per_cu->dwarf2_per_objfile;
18624 unsigned int i;
18625 int has_low_pc_attr = 0;
18626 int has_high_pc_attr = 0;
18627 int high_pc_relative = 0;
18628
18629 for (i = 0; i < abbrev.num_attrs; ++i)
18630 {
18631 struct attribute attr;
18632
18633 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18634
18635 /* Store the data if it is of an attribute we want to keep in a
18636 partial symbol table. */
18637 switch (attr.name)
18638 {
18639 case DW_AT_name:
18640 switch (tag)
18641 {
18642 case DW_TAG_compile_unit:
18643 case DW_TAG_partial_unit:
18644 case DW_TAG_type_unit:
18645 /* Compilation units have a DW_AT_name that is a filename, not
18646 a source language identifier. */
18647 case DW_TAG_enumeration_type:
18648 case DW_TAG_enumerator:
18649 /* These tags always have simple identifiers already; no need
18650 to canonicalize them. */
18651 name = DW_STRING (&attr);
18652 break;
18653 default:
18654 {
18655 struct objfile *objfile = dwarf2_per_objfile->objfile;
18656
18657 name
18658 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18659 &objfile->per_bfd->storage_obstack);
18660 }
18661 break;
18662 }
18663 break;
18664 case DW_AT_linkage_name:
18665 case DW_AT_MIPS_linkage_name:
18666 /* Note that both forms of linkage name might appear. We
18667 assume they will be the same, and we only store the last
18668 one we see. */
18669 linkage_name = DW_STRING (&attr);
18670 break;
18671 case DW_AT_low_pc:
18672 has_low_pc_attr = 1;
18673 lowpc = attr_value_as_address (&attr);
18674 break;
18675 case DW_AT_high_pc:
18676 has_high_pc_attr = 1;
18677 highpc = attr_value_as_address (&attr);
18678 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18679 high_pc_relative = 1;
18680 break;
18681 case DW_AT_location:
18682 /* Support the .debug_loc offsets. */
18683 if (attr_form_is_block (&attr))
18684 {
18685 d.locdesc = DW_BLOCK (&attr);
18686 }
18687 else if (attr_form_is_section_offset (&attr))
18688 {
18689 dwarf2_complex_location_expr_complaint ();
18690 }
18691 else
18692 {
18693 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18694 "partial symbol information");
18695 }
18696 break;
18697 case DW_AT_external:
18698 is_external = DW_UNSND (&attr);
18699 break;
18700 case DW_AT_declaration:
18701 is_declaration = DW_UNSND (&attr);
18702 break;
18703 case DW_AT_type:
18704 has_type = 1;
18705 break;
18706 case DW_AT_abstract_origin:
18707 case DW_AT_specification:
18708 case DW_AT_extension:
18709 has_specification = 1;
18710 spec_offset = dwarf2_get_ref_die_offset (&attr);
18711 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18712 || cu->per_cu->is_dwz);
18713 break;
18714 case DW_AT_sibling:
18715 /* Ignore absolute siblings, they might point outside of
18716 the current compile unit. */
18717 if (attr.form == DW_FORM_ref_addr)
18718 complaint (_("ignoring absolute DW_AT_sibling"));
18719 else
18720 {
18721 const gdb_byte *buffer = reader->buffer;
18722 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18723 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18724
18725 if (sibling_ptr < info_ptr)
18726 complaint (_("DW_AT_sibling points backwards"));
18727 else if (sibling_ptr > reader->buffer_end)
18728 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18729 else
18730 sibling = sibling_ptr;
18731 }
18732 break;
18733 case DW_AT_byte_size:
18734 has_byte_size = 1;
18735 break;
18736 case DW_AT_const_value:
18737 has_const_value = 1;
18738 break;
18739 case DW_AT_calling_convention:
18740 /* DWARF doesn't provide a way to identify a program's source-level
18741 entry point. DW_AT_calling_convention attributes are only meant
18742 to describe functions' calling conventions.
18743
18744 However, because it's a necessary piece of information in
18745 Fortran, and before DWARF 4 DW_CC_program was the only
18746 piece of debugging information whose definition refers to
18747 a 'main program' at all, several compilers marked Fortran
18748 main programs with DW_CC_program --- even when those
18749 functions use the standard calling conventions.
18750
18751 Although DWARF now specifies a way to provide this
18752 information, we support this practice for backward
18753 compatibility. */
18754 if (DW_UNSND (&attr) == DW_CC_program
18755 && cu->language == language_fortran)
18756 main_subprogram = 1;
18757 break;
18758 case DW_AT_inline:
18759 if (DW_UNSND (&attr) == DW_INL_inlined
18760 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18761 may_be_inlined = 1;
18762 break;
18763
18764 case DW_AT_import:
18765 if (tag == DW_TAG_imported_unit)
18766 {
18767 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18768 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18769 || cu->per_cu->is_dwz);
18770 }
18771 break;
18772
18773 case DW_AT_main_subprogram:
18774 main_subprogram = DW_UNSND (&attr);
18775 break;
18776
18777 case DW_AT_ranges:
18778 {
18779 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18780 but that requires a full DIE, so instead we just
18781 reimplement it. */
18782 int need_ranges_base = tag != DW_TAG_compile_unit;
18783 unsigned int ranges_offset = (DW_UNSND (&attr)
18784 + (need_ranges_base
18785 ? cu->ranges_base
18786 : 0));
18787
18788 /* Value of the DW_AT_ranges attribute is the offset in the
18789 .debug_ranges section. */
18790 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18791 nullptr))
18792 has_pc_info = 1;
18793 }
18794 break;
18795
18796 default:
18797 break;
18798 }
18799 }
18800
18801 /* For Ada, if both the name and the linkage name appear, we prefer
18802 the latter. This lets "catch exception" work better, regardless
18803 of the order in which the name and linkage name were emitted.
18804 Really, though, this is just a workaround for the fact that gdb
18805 doesn't store both the name and the linkage name. */
18806 if (cu->language == language_ada && linkage_name != nullptr)
18807 name = linkage_name;
18808
18809 if (high_pc_relative)
18810 highpc += lowpc;
18811
18812 if (has_low_pc_attr && has_high_pc_attr)
18813 {
18814 /* When using the GNU linker, .gnu.linkonce. sections are used to
18815 eliminate duplicate copies of functions and vtables and such.
18816 The linker will arbitrarily choose one and discard the others.
18817 The AT_*_pc values for such functions refer to local labels in
18818 these sections. If the section from that file was discarded, the
18819 labels are not in the output, so the relocs get a value of 0.
18820 If this is a discarded function, mark the pc bounds as invalid,
18821 so that GDB will ignore it. */
18822 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18823 {
18824 struct objfile *objfile = dwarf2_per_objfile->objfile;
18825 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18826
18827 complaint (_("DW_AT_low_pc %s is zero "
18828 "for DIE at %s [in module %s]"),
18829 paddress (gdbarch, lowpc),
18830 sect_offset_str (sect_off),
18831 objfile_name (objfile));
18832 }
18833 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18834 else if (lowpc >= highpc)
18835 {
18836 struct objfile *objfile = dwarf2_per_objfile->objfile;
18837 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18838
18839 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18840 "for DIE at %s [in module %s]"),
18841 paddress (gdbarch, lowpc),
18842 paddress (gdbarch, highpc),
18843 sect_offset_str (sect_off),
18844 objfile_name (objfile));
18845 }
18846 else
18847 has_pc_info = 1;
18848 }
18849
18850 return info_ptr;
18851 }
18852
18853 /* Find a cached partial DIE at OFFSET in CU. */
18854
18855 struct partial_die_info *
18856 dwarf2_cu::find_partial_die (sect_offset sect_off)
18857 {
18858 struct partial_die_info *lookup_die = NULL;
18859 struct partial_die_info part_die (sect_off);
18860
18861 lookup_die = ((struct partial_die_info *)
18862 htab_find_with_hash (partial_dies, &part_die,
18863 to_underlying (sect_off)));
18864
18865 return lookup_die;
18866 }
18867
18868 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18869 except in the case of .debug_types DIEs which do not reference
18870 outside their CU (they do however referencing other types via
18871 DW_FORM_ref_sig8). */
18872
18873 static const struct cu_partial_die_info
18874 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18875 {
18876 struct dwarf2_per_objfile *dwarf2_per_objfile
18877 = cu->per_cu->dwarf2_per_objfile;
18878 struct objfile *objfile = dwarf2_per_objfile->objfile;
18879 struct dwarf2_per_cu_data *per_cu = NULL;
18880 struct partial_die_info *pd = NULL;
18881
18882 if (offset_in_dwz == cu->per_cu->is_dwz
18883 && offset_in_cu_p (&cu->header, sect_off))
18884 {
18885 pd = cu->find_partial_die (sect_off);
18886 if (pd != NULL)
18887 return { cu, pd };
18888 /* We missed recording what we needed.
18889 Load all dies and try again. */
18890 per_cu = cu->per_cu;
18891 }
18892 else
18893 {
18894 /* TUs don't reference other CUs/TUs (except via type signatures). */
18895 if (cu->per_cu->is_debug_types)
18896 {
18897 error (_("Dwarf Error: Type Unit at offset %s contains"
18898 " external reference to offset %s [in module %s].\n"),
18899 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18900 bfd_get_filename (objfile->obfd));
18901 }
18902 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18903 dwarf2_per_objfile);
18904
18905 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18906 load_partial_comp_unit (per_cu);
18907
18908 per_cu->cu->last_used = 0;
18909 pd = per_cu->cu->find_partial_die (sect_off);
18910 }
18911
18912 /* If we didn't find it, and not all dies have been loaded,
18913 load them all and try again. */
18914
18915 if (pd == NULL && per_cu->load_all_dies == 0)
18916 {
18917 per_cu->load_all_dies = 1;
18918
18919 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18920 THIS_CU->cu may already be in use. So we can't just free it and
18921 replace its DIEs with the ones we read in. Instead, we leave those
18922 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18923 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18924 set. */
18925 load_partial_comp_unit (per_cu);
18926
18927 pd = per_cu->cu->find_partial_die (sect_off);
18928 }
18929
18930 if (pd == NULL)
18931 internal_error (__FILE__, __LINE__,
18932 _("could not find partial DIE %s "
18933 "in cache [from module %s]\n"),
18934 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18935 return { per_cu->cu, pd };
18936 }
18937
18938 /* See if we can figure out if the class lives in a namespace. We do
18939 this by looking for a member function; its demangled name will
18940 contain namespace info, if there is any. */
18941
18942 static void
18943 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18944 struct dwarf2_cu *cu)
18945 {
18946 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18947 what template types look like, because the demangler
18948 frequently doesn't give the same name as the debug info. We
18949 could fix this by only using the demangled name to get the
18950 prefix (but see comment in read_structure_type). */
18951
18952 struct partial_die_info *real_pdi;
18953 struct partial_die_info *child_pdi;
18954
18955 /* If this DIE (this DIE's specification, if any) has a parent, then
18956 we should not do this. We'll prepend the parent's fully qualified
18957 name when we create the partial symbol. */
18958
18959 real_pdi = struct_pdi;
18960 while (real_pdi->has_specification)
18961 {
18962 auto res = find_partial_die (real_pdi->spec_offset,
18963 real_pdi->spec_is_dwz, cu);
18964 real_pdi = res.pdi;
18965 cu = res.cu;
18966 }
18967
18968 if (real_pdi->die_parent != NULL)
18969 return;
18970
18971 for (child_pdi = struct_pdi->die_child;
18972 child_pdi != NULL;
18973 child_pdi = child_pdi->die_sibling)
18974 {
18975 if (child_pdi->tag == DW_TAG_subprogram
18976 && child_pdi->linkage_name != NULL)
18977 {
18978 char *actual_class_name
18979 = language_class_name_from_physname (cu->language_defn,
18980 child_pdi->linkage_name);
18981 if (actual_class_name != NULL)
18982 {
18983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18984 struct_pdi->name
18985 = ((const char *)
18986 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18987 actual_class_name,
18988 strlen (actual_class_name)));
18989 xfree (actual_class_name);
18990 }
18991 break;
18992 }
18993 }
18994 }
18995
18996 void
18997 partial_die_info::fixup (struct dwarf2_cu *cu)
18998 {
18999 /* Once we've fixed up a die, there's no point in doing so again.
19000 This also avoids a memory leak if we were to call
19001 guess_partial_die_structure_name multiple times. */
19002 if (fixup_called)
19003 return;
19004
19005 /* If we found a reference attribute and the DIE has no name, try
19006 to find a name in the referred to DIE. */
19007
19008 if (name == NULL && has_specification)
19009 {
19010 struct partial_die_info *spec_die;
19011
19012 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19013 spec_die = res.pdi;
19014 cu = res.cu;
19015
19016 spec_die->fixup (cu);
19017
19018 if (spec_die->name)
19019 {
19020 name = spec_die->name;
19021
19022 /* Copy DW_AT_external attribute if it is set. */
19023 if (spec_die->is_external)
19024 is_external = spec_die->is_external;
19025 }
19026 }
19027
19028 /* Set default names for some unnamed DIEs. */
19029
19030 if (name == NULL && tag == DW_TAG_namespace)
19031 name = CP_ANONYMOUS_NAMESPACE_STR;
19032
19033 /* If there is no parent die to provide a namespace, and there are
19034 children, see if we can determine the namespace from their linkage
19035 name. */
19036 if (cu->language == language_cplus
19037 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19038 && die_parent == NULL
19039 && has_children
19040 && (tag == DW_TAG_class_type
19041 || tag == DW_TAG_structure_type
19042 || tag == DW_TAG_union_type))
19043 guess_partial_die_structure_name (this, cu);
19044
19045 /* GCC might emit a nameless struct or union that has a linkage
19046 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19047 if (name == NULL
19048 && (tag == DW_TAG_class_type
19049 || tag == DW_TAG_interface_type
19050 || tag == DW_TAG_structure_type
19051 || tag == DW_TAG_union_type)
19052 && linkage_name != NULL)
19053 {
19054 char *demangled;
19055
19056 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19057 if (demangled)
19058 {
19059 const char *base;
19060
19061 /* Strip any leading namespaces/classes, keep only the base name.
19062 DW_AT_name for named DIEs does not contain the prefixes. */
19063 base = strrchr (demangled, ':');
19064 if (base && base > demangled && base[-1] == ':')
19065 base++;
19066 else
19067 base = demangled;
19068
19069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19070 name
19071 = ((const char *)
19072 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19073 base, strlen (base)));
19074 xfree (demangled);
19075 }
19076 }
19077
19078 fixup_called = 1;
19079 }
19080
19081 /* Read an attribute value described by an attribute form. */
19082
19083 static const gdb_byte *
19084 read_attribute_value (const struct die_reader_specs *reader,
19085 struct attribute *attr, unsigned form,
19086 LONGEST implicit_const, const gdb_byte *info_ptr)
19087 {
19088 struct dwarf2_cu *cu = reader->cu;
19089 struct dwarf2_per_objfile *dwarf2_per_objfile
19090 = cu->per_cu->dwarf2_per_objfile;
19091 struct objfile *objfile = dwarf2_per_objfile->objfile;
19092 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19093 bfd *abfd = reader->abfd;
19094 struct comp_unit_head *cu_header = &cu->header;
19095 unsigned int bytes_read;
19096 struct dwarf_block *blk;
19097
19098 attr->form = (enum dwarf_form) form;
19099 switch (form)
19100 {
19101 case DW_FORM_ref_addr:
19102 if (cu->header.version == 2)
19103 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19104 else
19105 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19106 &cu->header, &bytes_read);
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_GNU_ref_alt:
19110 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19111 info_ptr += bytes_read;
19112 break;
19113 case DW_FORM_addr:
19114 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19115 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19116 info_ptr += bytes_read;
19117 break;
19118 case DW_FORM_block2:
19119 blk = dwarf_alloc_block (cu);
19120 blk->size = read_2_bytes (abfd, info_ptr);
19121 info_ptr += 2;
19122 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19123 info_ptr += blk->size;
19124 DW_BLOCK (attr) = blk;
19125 break;
19126 case DW_FORM_block4:
19127 blk = dwarf_alloc_block (cu);
19128 blk->size = read_4_bytes (abfd, info_ptr);
19129 info_ptr += 4;
19130 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19131 info_ptr += blk->size;
19132 DW_BLOCK (attr) = blk;
19133 break;
19134 case DW_FORM_data2:
19135 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19136 info_ptr += 2;
19137 break;
19138 case DW_FORM_data4:
19139 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19140 info_ptr += 4;
19141 break;
19142 case DW_FORM_data8:
19143 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19144 info_ptr += 8;
19145 break;
19146 case DW_FORM_data16:
19147 blk = dwarf_alloc_block (cu);
19148 blk->size = 16;
19149 blk->data = read_n_bytes (abfd, info_ptr, 16);
19150 info_ptr += 16;
19151 DW_BLOCK (attr) = blk;
19152 break;
19153 case DW_FORM_sec_offset:
19154 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19155 info_ptr += bytes_read;
19156 break;
19157 case DW_FORM_string:
19158 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19159 DW_STRING_IS_CANONICAL (attr) = 0;
19160 info_ptr += bytes_read;
19161 break;
19162 case DW_FORM_strp:
19163 if (!cu->per_cu->is_dwz)
19164 {
19165 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19166 abfd, info_ptr, cu_header,
19167 &bytes_read);
19168 DW_STRING_IS_CANONICAL (attr) = 0;
19169 info_ptr += bytes_read;
19170 break;
19171 }
19172 /* FALLTHROUGH */
19173 case DW_FORM_line_strp:
19174 if (!cu->per_cu->is_dwz)
19175 {
19176 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19177 abfd, info_ptr,
19178 cu_header, &bytes_read);
19179 DW_STRING_IS_CANONICAL (attr) = 0;
19180 info_ptr += bytes_read;
19181 break;
19182 }
19183 /* FALLTHROUGH */
19184 case DW_FORM_GNU_strp_alt:
19185 {
19186 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19187 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19188 &bytes_read);
19189
19190 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19191 dwz, str_offset);
19192 DW_STRING_IS_CANONICAL (attr) = 0;
19193 info_ptr += bytes_read;
19194 }
19195 break;
19196 case DW_FORM_exprloc:
19197 case DW_FORM_block:
19198 blk = dwarf_alloc_block (cu);
19199 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19200 info_ptr += bytes_read;
19201 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19202 info_ptr += blk->size;
19203 DW_BLOCK (attr) = blk;
19204 break;
19205 case DW_FORM_block1:
19206 blk = dwarf_alloc_block (cu);
19207 blk->size = read_1_byte (abfd, info_ptr);
19208 info_ptr += 1;
19209 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19210 info_ptr += blk->size;
19211 DW_BLOCK (attr) = blk;
19212 break;
19213 case DW_FORM_data1:
19214 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19215 info_ptr += 1;
19216 break;
19217 case DW_FORM_flag:
19218 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19219 info_ptr += 1;
19220 break;
19221 case DW_FORM_flag_present:
19222 DW_UNSND (attr) = 1;
19223 break;
19224 case DW_FORM_sdata:
19225 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19226 info_ptr += bytes_read;
19227 break;
19228 case DW_FORM_udata:
19229 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19230 info_ptr += bytes_read;
19231 break;
19232 case DW_FORM_ref1:
19233 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19234 + read_1_byte (abfd, info_ptr));
19235 info_ptr += 1;
19236 break;
19237 case DW_FORM_ref2:
19238 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19239 + read_2_bytes (abfd, info_ptr));
19240 info_ptr += 2;
19241 break;
19242 case DW_FORM_ref4:
19243 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19244 + read_4_bytes (abfd, info_ptr));
19245 info_ptr += 4;
19246 break;
19247 case DW_FORM_ref8:
19248 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19249 + read_8_bytes (abfd, info_ptr));
19250 info_ptr += 8;
19251 break;
19252 case DW_FORM_ref_sig8:
19253 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19254 info_ptr += 8;
19255 break;
19256 case DW_FORM_ref_udata:
19257 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19258 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19259 info_ptr += bytes_read;
19260 break;
19261 case DW_FORM_indirect:
19262 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19263 info_ptr += bytes_read;
19264 if (form == DW_FORM_implicit_const)
19265 {
19266 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19267 info_ptr += bytes_read;
19268 }
19269 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19270 info_ptr);
19271 break;
19272 case DW_FORM_implicit_const:
19273 DW_SND (attr) = implicit_const;
19274 break;
19275 case DW_FORM_addrx:
19276 case DW_FORM_GNU_addr_index:
19277 if (reader->dwo_file == NULL)
19278 {
19279 /* For now flag a hard error.
19280 Later we can turn this into a complaint. */
19281 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19282 dwarf_form_name (form),
19283 bfd_get_filename (abfd));
19284 }
19285 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19286 info_ptr += bytes_read;
19287 break;
19288 case DW_FORM_strx:
19289 case DW_FORM_strx1:
19290 case DW_FORM_strx2:
19291 case DW_FORM_strx3:
19292 case DW_FORM_strx4:
19293 case DW_FORM_GNU_str_index:
19294 if (reader->dwo_file == NULL)
19295 {
19296 /* For now flag a hard error.
19297 Later we can turn this into a complaint if warranted. */
19298 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19299 dwarf_form_name (form),
19300 bfd_get_filename (abfd));
19301 }
19302 {
19303 ULONGEST str_index;
19304 if (form == DW_FORM_strx1)
19305 {
19306 str_index = read_1_byte (abfd, info_ptr);
19307 info_ptr += 1;
19308 }
19309 else if (form == DW_FORM_strx2)
19310 {
19311 str_index = read_2_bytes (abfd, info_ptr);
19312 info_ptr += 2;
19313 }
19314 else if (form == DW_FORM_strx3)
19315 {
19316 str_index = read_3_bytes (abfd, info_ptr);
19317 info_ptr += 3;
19318 }
19319 else if (form == DW_FORM_strx4)
19320 {
19321 str_index = read_4_bytes (abfd, info_ptr);
19322 info_ptr += 4;
19323 }
19324 else
19325 {
19326 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19327 info_ptr += bytes_read;
19328 }
19329 DW_STRING (attr) = read_str_index (reader, str_index);
19330 DW_STRING_IS_CANONICAL (attr) = 0;
19331 }
19332 break;
19333 default:
19334 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19335 dwarf_form_name (form),
19336 bfd_get_filename (abfd));
19337 }
19338
19339 /* Super hack. */
19340 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19341 attr->form = DW_FORM_GNU_ref_alt;
19342
19343 /* We have seen instances where the compiler tried to emit a byte
19344 size attribute of -1 which ended up being encoded as an unsigned
19345 0xffffffff. Although 0xffffffff is technically a valid size value,
19346 an object of this size seems pretty unlikely so we can relatively
19347 safely treat these cases as if the size attribute was invalid and
19348 treat them as zero by default. */
19349 if (attr->name == DW_AT_byte_size
19350 && form == DW_FORM_data4
19351 && DW_UNSND (attr) >= 0xffffffff)
19352 {
19353 complaint
19354 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19355 hex_string (DW_UNSND (attr)));
19356 DW_UNSND (attr) = 0;
19357 }
19358
19359 return info_ptr;
19360 }
19361
19362 /* Read an attribute described by an abbreviated attribute. */
19363
19364 static const gdb_byte *
19365 read_attribute (const struct die_reader_specs *reader,
19366 struct attribute *attr, struct attr_abbrev *abbrev,
19367 const gdb_byte *info_ptr)
19368 {
19369 attr->name = abbrev->name;
19370 return read_attribute_value (reader, attr, abbrev->form,
19371 abbrev->implicit_const, info_ptr);
19372 }
19373
19374 /* Read dwarf information from a buffer. */
19375
19376 static unsigned int
19377 read_1_byte (bfd *abfd, const gdb_byte *buf)
19378 {
19379 return bfd_get_8 (abfd, buf);
19380 }
19381
19382 static int
19383 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19384 {
19385 return bfd_get_signed_8 (abfd, buf);
19386 }
19387
19388 static unsigned int
19389 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19390 {
19391 return bfd_get_16 (abfd, buf);
19392 }
19393
19394 static int
19395 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19396 {
19397 return bfd_get_signed_16 (abfd, buf);
19398 }
19399
19400 static unsigned int
19401 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19402 {
19403 unsigned int result = 0;
19404 for (int i = 0; i < 3; ++i)
19405 {
19406 unsigned char byte = bfd_get_8 (abfd, buf);
19407 buf++;
19408 result |= ((unsigned int) byte << (i * 8));
19409 }
19410 return result;
19411 }
19412
19413 static unsigned int
19414 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19415 {
19416 return bfd_get_32 (abfd, buf);
19417 }
19418
19419 static int
19420 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19421 {
19422 return bfd_get_signed_32 (abfd, buf);
19423 }
19424
19425 static ULONGEST
19426 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19427 {
19428 return bfd_get_64 (abfd, buf);
19429 }
19430
19431 static CORE_ADDR
19432 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19433 unsigned int *bytes_read)
19434 {
19435 struct comp_unit_head *cu_header = &cu->header;
19436 CORE_ADDR retval = 0;
19437
19438 if (cu_header->signed_addr_p)
19439 {
19440 switch (cu_header->addr_size)
19441 {
19442 case 2:
19443 retval = bfd_get_signed_16 (abfd, buf);
19444 break;
19445 case 4:
19446 retval = bfd_get_signed_32 (abfd, buf);
19447 break;
19448 case 8:
19449 retval = bfd_get_signed_64 (abfd, buf);
19450 break;
19451 default:
19452 internal_error (__FILE__, __LINE__,
19453 _("read_address: bad switch, signed [in module %s]"),
19454 bfd_get_filename (abfd));
19455 }
19456 }
19457 else
19458 {
19459 switch (cu_header->addr_size)
19460 {
19461 case 2:
19462 retval = bfd_get_16 (abfd, buf);
19463 break;
19464 case 4:
19465 retval = bfd_get_32 (abfd, buf);
19466 break;
19467 case 8:
19468 retval = bfd_get_64 (abfd, buf);
19469 break;
19470 default:
19471 internal_error (__FILE__, __LINE__,
19472 _("read_address: bad switch, "
19473 "unsigned [in module %s]"),
19474 bfd_get_filename (abfd));
19475 }
19476 }
19477
19478 *bytes_read = cu_header->addr_size;
19479 return retval;
19480 }
19481
19482 /* Read the initial length from a section. The (draft) DWARF 3
19483 specification allows the initial length to take up either 4 bytes
19484 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19485 bytes describe the length and all offsets will be 8 bytes in length
19486 instead of 4.
19487
19488 An older, non-standard 64-bit format is also handled by this
19489 function. The older format in question stores the initial length
19490 as an 8-byte quantity without an escape value. Lengths greater
19491 than 2^32 aren't very common which means that the initial 4 bytes
19492 is almost always zero. Since a length value of zero doesn't make
19493 sense for the 32-bit format, this initial zero can be considered to
19494 be an escape value which indicates the presence of the older 64-bit
19495 format. As written, the code can't detect (old format) lengths
19496 greater than 4GB. If it becomes necessary to handle lengths
19497 somewhat larger than 4GB, we could allow other small values (such
19498 as the non-sensical values of 1, 2, and 3) to also be used as
19499 escape values indicating the presence of the old format.
19500
19501 The value returned via bytes_read should be used to increment the
19502 relevant pointer after calling read_initial_length().
19503
19504 [ Note: read_initial_length() and read_offset() are based on the
19505 document entitled "DWARF Debugging Information Format", revision
19506 3, draft 8, dated November 19, 2001. This document was obtained
19507 from:
19508
19509 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19510
19511 This document is only a draft and is subject to change. (So beware.)
19512
19513 Details regarding the older, non-standard 64-bit format were
19514 determined empirically by examining 64-bit ELF files produced by
19515 the SGI toolchain on an IRIX 6.5 machine.
19516
19517 - Kevin, July 16, 2002
19518 ] */
19519
19520 static LONGEST
19521 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19522 {
19523 LONGEST length = bfd_get_32 (abfd, buf);
19524
19525 if (length == 0xffffffff)
19526 {
19527 length = bfd_get_64 (abfd, buf + 4);
19528 *bytes_read = 12;
19529 }
19530 else if (length == 0)
19531 {
19532 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19533 length = bfd_get_64 (abfd, buf);
19534 *bytes_read = 8;
19535 }
19536 else
19537 {
19538 *bytes_read = 4;
19539 }
19540
19541 return length;
19542 }
19543
19544 /* Cover function for read_initial_length.
19545 Returns the length of the object at BUF, and stores the size of the
19546 initial length in *BYTES_READ and stores the size that offsets will be in
19547 *OFFSET_SIZE.
19548 If the initial length size is not equivalent to that specified in
19549 CU_HEADER then issue a complaint.
19550 This is useful when reading non-comp-unit headers. */
19551
19552 static LONGEST
19553 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19554 const struct comp_unit_head *cu_header,
19555 unsigned int *bytes_read,
19556 unsigned int *offset_size)
19557 {
19558 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19559
19560 gdb_assert (cu_header->initial_length_size == 4
19561 || cu_header->initial_length_size == 8
19562 || cu_header->initial_length_size == 12);
19563
19564 if (cu_header->initial_length_size != *bytes_read)
19565 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19566
19567 *offset_size = (*bytes_read == 4) ? 4 : 8;
19568 return length;
19569 }
19570
19571 /* Read an offset from the data stream. The size of the offset is
19572 given by cu_header->offset_size. */
19573
19574 static LONGEST
19575 read_offset (bfd *abfd, const gdb_byte *buf,
19576 const struct comp_unit_head *cu_header,
19577 unsigned int *bytes_read)
19578 {
19579 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19580
19581 *bytes_read = cu_header->offset_size;
19582 return offset;
19583 }
19584
19585 /* Read an offset from the data stream. */
19586
19587 static LONGEST
19588 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19589 {
19590 LONGEST retval = 0;
19591
19592 switch (offset_size)
19593 {
19594 case 4:
19595 retval = bfd_get_32 (abfd, buf);
19596 break;
19597 case 8:
19598 retval = bfd_get_64 (abfd, buf);
19599 break;
19600 default:
19601 internal_error (__FILE__, __LINE__,
19602 _("read_offset_1: bad switch [in module %s]"),
19603 bfd_get_filename (abfd));
19604 }
19605
19606 return retval;
19607 }
19608
19609 static const gdb_byte *
19610 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19611 {
19612 /* If the size of a host char is 8 bits, we can return a pointer
19613 to the buffer, otherwise we have to copy the data to a buffer
19614 allocated on the temporary obstack. */
19615 gdb_assert (HOST_CHAR_BIT == 8);
19616 return buf;
19617 }
19618
19619 static const char *
19620 read_direct_string (bfd *abfd, const gdb_byte *buf,
19621 unsigned int *bytes_read_ptr)
19622 {
19623 /* If the size of a host char is 8 bits, we can return a pointer
19624 to the string, otherwise we have to copy the string to a buffer
19625 allocated on the temporary obstack. */
19626 gdb_assert (HOST_CHAR_BIT == 8);
19627 if (*buf == '\0')
19628 {
19629 *bytes_read_ptr = 1;
19630 return NULL;
19631 }
19632 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19633 return (const char *) buf;
19634 }
19635
19636 /* Return pointer to string at section SECT offset STR_OFFSET with error
19637 reporting strings FORM_NAME and SECT_NAME. */
19638
19639 static const char *
19640 read_indirect_string_at_offset_from (struct objfile *objfile,
19641 bfd *abfd, LONGEST str_offset,
19642 struct dwarf2_section_info *sect,
19643 const char *form_name,
19644 const char *sect_name)
19645 {
19646 dwarf2_read_section (objfile, sect);
19647 if (sect->buffer == NULL)
19648 error (_("%s used without %s section [in module %s]"),
19649 form_name, sect_name, bfd_get_filename (abfd));
19650 if (str_offset >= sect->size)
19651 error (_("%s pointing outside of %s section [in module %s]"),
19652 form_name, sect_name, bfd_get_filename (abfd));
19653 gdb_assert (HOST_CHAR_BIT == 8);
19654 if (sect->buffer[str_offset] == '\0')
19655 return NULL;
19656 return (const char *) (sect->buffer + str_offset);
19657 }
19658
19659 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19660
19661 static const char *
19662 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19663 bfd *abfd, LONGEST str_offset)
19664 {
19665 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19666 abfd, str_offset,
19667 &dwarf2_per_objfile->str,
19668 "DW_FORM_strp", ".debug_str");
19669 }
19670
19671 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19672
19673 static const char *
19674 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19675 bfd *abfd, LONGEST str_offset)
19676 {
19677 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19678 abfd, str_offset,
19679 &dwarf2_per_objfile->line_str,
19680 "DW_FORM_line_strp",
19681 ".debug_line_str");
19682 }
19683
19684 /* Read a string at offset STR_OFFSET in the .debug_str section from
19685 the .dwz file DWZ. Throw an error if the offset is too large. If
19686 the string consists of a single NUL byte, return NULL; otherwise
19687 return a pointer to the string. */
19688
19689 static const char *
19690 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19691 LONGEST str_offset)
19692 {
19693 dwarf2_read_section (objfile, &dwz->str);
19694
19695 if (dwz->str.buffer == NULL)
19696 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19697 "section [in module %s]"),
19698 bfd_get_filename (dwz->dwz_bfd));
19699 if (str_offset >= dwz->str.size)
19700 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19701 ".debug_str section [in module %s]"),
19702 bfd_get_filename (dwz->dwz_bfd));
19703 gdb_assert (HOST_CHAR_BIT == 8);
19704 if (dwz->str.buffer[str_offset] == '\0')
19705 return NULL;
19706 return (const char *) (dwz->str.buffer + str_offset);
19707 }
19708
19709 /* Return pointer to string at .debug_str offset as read from BUF.
19710 BUF is assumed to be in a compilation unit described by CU_HEADER.
19711 Return *BYTES_READ_PTR count of bytes read from BUF. */
19712
19713 static const char *
19714 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19715 const gdb_byte *buf,
19716 const struct comp_unit_head *cu_header,
19717 unsigned int *bytes_read_ptr)
19718 {
19719 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19720
19721 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19722 }
19723
19724 /* Return pointer to string at .debug_line_str offset as read from BUF.
19725 BUF is assumed to be in a compilation unit described by CU_HEADER.
19726 Return *BYTES_READ_PTR count of bytes read from BUF. */
19727
19728 static const char *
19729 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19730 bfd *abfd, const gdb_byte *buf,
19731 const struct comp_unit_head *cu_header,
19732 unsigned int *bytes_read_ptr)
19733 {
19734 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19735
19736 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19737 str_offset);
19738 }
19739
19740 ULONGEST
19741 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19742 unsigned int *bytes_read_ptr)
19743 {
19744 ULONGEST result;
19745 unsigned int num_read;
19746 int shift;
19747 unsigned char byte;
19748
19749 result = 0;
19750 shift = 0;
19751 num_read = 0;
19752 while (1)
19753 {
19754 byte = bfd_get_8 (abfd, buf);
19755 buf++;
19756 num_read++;
19757 result |= ((ULONGEST) (byte & 127) << shift);
19758 if ((byte & 128) == 0)
19759 {
19760 break;
19761 }
19762 shift += 7;
19763 }
19764 *bytes_read_ptr = num_read;
19765 return result;
19766 }
19767
19768 static LONGEST
19769 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19770 unsigned int *bytes_read_ptr)
19771 {
19772 ULONGEST result;
19773 int shift, num_read;
19774 unsigned char byte;
19775
19776 result = 0;
19777 shift = 0;
19778 num_read = 0;
19779 while (1)
19780 {
19781 byte = bfd_get_8 (abfd, buf);
19782 buf++;
19783 num_read++;
19784 result |= ((ULONGEST) (byte & 127) << shift);
19785 shift += 7;
19786 if ((byte & 128) == 0)
19787 {
19788 break;
19789 }
19790 }
19791 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19792 result |= -(((ULONGEST) 1) << shift);
19793 *bytes_read_ptr = num_read;
19794 return result;
19795 }
19796
19797 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19798 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19799 ADDR_SIZE is the size of addresses from the CU header. */
19800
19801 static CORE_ADDR
19802 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19803 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19804 {
19805 struct objfile *objfile = dwarf2_per_objfile->objfile;
19806 bfd *abfd = objfile->obfd;
19807 const gdb_byte *info_ptr;
19808
19809 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19810 if (dwarf2_per_objfile->addr.buffer == NULL)
19811 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19812 objfile_name (objfile));
19813 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19814 error (_("DW_FORM_addr_index pointing outside of "
19815 ".debug_addr section [in module %s]"),
19816 objfile_name (objfile));
19817 info_ptr = (dwarf2_per_objfile->addr.buffer
19818 + addr_base + addr_index * addr_size);
19819 if (addr_size == 4)
19820 return bfd_get_32 (abfd, info_ptr);
19821 else
19822 return bfd_get_64 (abfd, info_ptr);
19823 }
19824
19825 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19826
19827 static CORE_ADDR
19828 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19829 {
19830 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19831 cu->addr_base, cu->header.addr_size);
19832 }
19833
19834 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19835
19836 static CORE_ADDR
19837 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19838 unsigned int *bytes_read)
19839 {
19840 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19841 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19842
19843 return read_addr_index (cu, addr_index);
19844 }
19845
19846 /* Data structure to pass results from dwarf2_read_addr_index_reader
19847 back to dwarf2_read_addr_index. */
19848
19849 struct dwarf2_read_addr_index_data
19850 {
19851 ULONGEST addr_base;
19852 int addr_size;
19853 };
19854
19855 /* die_reader_func for dwarf2_read_addr_index. */
19856
19857 static void
19858 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19859 const gdb_byte *info_ptr,
19860 struct die_info *comp_unit_die,
19861 int has_children,
19862 void *data)
19863 {
19864 struct dwarf2_cu *cu = reader->cu;
19865 struct dwarf2_read_addr_index_data *aidata =
19866 (struct dwarf2_read_addr_index_data *) data;
19867
19868 aidata->addr_base = cu->addr_base;
19869 aidata->addr_size = cu->header.addr_size;
19870 }
19871
19872 /* Given an index in .debug_addr, fetch the value.
19873 NOTE: This can be called during dwarf expression evaluation,
19874 long after the debug information has been read, and thus per_cu->cu
19875 may no longer exist. */
19876
19877 CORE_ADDR
19878 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19879 unsigned int addr_index)
19880 {
19881 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19882 struct dwarf2_cu *cu = per_cu->cu;
19883 ULONGEST addr_base;
19884 int addr_size;
19885
19886 /* We need addr_base and addr_size.
19887 If we don't have PER_CU->cu, we have to get it.
19888 Nasty, but the alternative is storing the needed info in PER_CU,
19889 which at this point doesn't seem justified: it's not clear how frequently
19890 it would get used and it would increase the size of every PER_CU.
19891 Entry points like dwarf2_per_cu_addr_size do a similar thing
19892 so we're not in uncharted territory here.
19893 Alas we need to be a bit more complicated as addr_base is contained
19894 in the DIE.
19895
19896 We don't need to read the entire CU(/TU).
19897 We just need the header and top level die.
19898
19899 IWBN to use the aging mechanism to let us lazily later discard the CU.
19900 For now we skip this optimization. */
19901
19902 if (cu != NULL)
19903 {
19904 addr_base = cu->addr_base;
19905 addr_size = cu->header.addr_size;
19906 }
19907 else
19908 {
19909 struct dwarf2_read_addr_index_data aidata;
19910
19911 /* Note: We can't use init_cutu_and_read_dies_simple here,
19912 we need addr_base. */
19913 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19914 dwarf2_read_addr_index_reader, &aidata);
19915 addr_base = aidata.addr_base;
19916 addr_size = aidata.addr_size;
19917 }
19918
19919 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19920 addr_size);
19921 }
19922
19923 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19924 This is only used by the Fission support. */
19925
19926 static const char *
19927 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19928 {
19929 struct dwarf2_cu *cu = reader->cu;
19930 struct dwarf2_per_objfile *dwarf2_per_objfile
19931 = cu->per_cu->dwarf2_per_objfile;
19932 struct objfile *objfile = dwarf2_per_objfile->objfile;
19933 const char *objf_name = objfile_name (objfile);
19934 bfd *abfd = objfile->obfd;
19935 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19936 struct dwarf2_section_info *str_offsets_section =
19937 &reader->dwo_file->sections.str_offsets;
19938 const gdb_byte *info_ptr;
19939 ULONGEST str_offset;
19940 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19941
19942 dwarf2_read_section (objfile, str_section);
19943 dwarf2_read_section (objfile, str_offsets_section);
19944 if (str_section->buffer == NULL)
19945 error (_("%s used without .debug_str.dwo section"
19946 " in CU at offset %s [in module %s]"),
19947 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19948 if (str_offsets_section->buffer == NULL)
19949 error (_("%s used without .debug_str_offsets.dwo section"
19950 " in CU at offset %s [in module %s]"),
19951 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19952 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19953 error (_("%s pointing outside of .debug_str_offsets.dwo"
19954 " section in CU at offset %s [in module %s]"),
19955 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19956 info_ptr = (str_offsets_section->buffer
19957 + str_index * cu->header.offset_size);
19958 if (cu->header.offset_size == 4)
19959 str_offset = bfd_get_32 (abfd, info_ptr);
19960 else
19961 str_offset = bfd_get_64 (abfd, info_ptr);
19962 if (str_offset >= str_section->size)
19963 error (_("Offset from %s pointing outside of"
19964 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19965 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19966 return (const char *) (str_section->buffer + str_offset);
19967 }
19968
19969 /* Return the length of an LEB128 number in BUF. */
19970
19971 static int
19972 leb128_size (const gdb_byte *buf)
19973 {
19974 const gdb_byte *begin = buf;
19975 gdb_byte byte;
19976
19977 while (1)
19978 {
19979 byte = *buf++;
19980 if ((byte & 128) == 0)
19981 return buf - begin;
19982 }
19983 }
19984
19985 static void
19986 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19987 {
19988 switch (lang)
19989 {
19990 case DW_LANG_C89:
19991 case DW_LANG_C99:
19992 case DW_LANG_C11:
19993 case DW_LANG_C:
19994 case DW_LANG_UPC:
19995 cu->language = language_c;
19996 break;
19997 case DW_LANG_Java:
19998 case DW_LANG_C_plus_plus:
19999 case DW_LANG_C_plus_plus_11:
20000 case DW_LANG_C_plus_plus_14:
20001 cu->language = language_cplus;
20002 break;
20003 case DW_LANG_D:
20004 cu->language = language_d;
20005 break;
20006 case DW_LANG_Fortran77:
20007 case DW_LANG_Fortran90:
20008 case DW_LANG_Fortran95:
20009 case DW_LANG_Fortran03:
20010 case DW_LANG_Fortran08:
20011 cu->language = language_fortran;
20012 break;
20013 case DW_LANG_Go:
20014 cu->language = language_go;
20015 break;
20016 case DW_LANG_Mips_Assembler:
20017 cu->language = language_asm;
20018 break;
20019 case DW_LANG_Ada83:
20020 case DW_LANG_Ada95:
20021 cu->language = language_ada;
20022 break;
20023 case DW_LANG_Modula2:
20024 cu->language = language_m2;
20025 break;
20026 case DW_LANG_Pascal83:
20027 cu->language = language_pascal;
20028 break;
20029 case DW_LANG_ObjC:
20030 cu->language = language_objc;
20031 break;
20032 case DW_LANG_Rust:
20033 case DW_LANG_Rust_old:
20034 cu->language = language_rust;
20035 break;
20036 case DW_LANG_Cobol74:
20037 case DW_LANG_Cobol85:
20038 default:
20039 cu->language = language_minimal;
20040 break;
20041 }
20042 cu->language_defn = language_def (cu->language);
20043 }
20044
20045 /* Return the named attribute or NULL if not there. */
20046
20047 static struct attribute *
20048 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20049 {
20050 for (;;)
20051 {
20052 unsigned int i;
20053 struct attribute *spec = NULL;
20054
20055 for (i = 0; i < die->num_attrs; ++i)
20056 {
20057 if (die->attrs[i].name == name)
20058 return &die->attrs[i];
20059 if (die->attrs[i].name == DW_AT_specification
20060 || die->attrs[i].name == DW_AT_abstract_origin)
20061 spec = &die->attrs[i];
20062 }
20063
20064 if (!spec)
20065 break;
20066
20067 die = follow_die_ref (die, spec, &cu);
20068 }
20069
20070 return NULL;
20071 }
20072
20073 /* Return the named attribute or NULL if not there,
20074 but do not follow DW_AT_specification, etc.
20075 This is for use in contexts where we're reading .debug_types dies.
20076 Following DW_AT_specification, DW_AT_abstract_origin will take us
20077 back up the chain, and we want to go down. */
20078
20079 static struct attribute *
20080 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20081 {
20082 unsigned int i;
20083
20084 for (i = 0; i < die->num_attrs; ++i)
20085 if (die->attrs[i].name == name)
20086 return &die->attrs[i];
20087
20088 return NULL;
20089 }
20090
20091 /* Return the string associated with a string-typed attribute, or NULL if it
20092 is either not found or is of an incorrect type. */
20093
20094 static const char *
20095 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20096 {
20097 struct attribute *attr;
20098 const char *str = NULL;
20099
20100 attr = dwarf2_attr (die, name, cu);
20101
20102 if (attr != NULL)
20103 {
20104 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20105 || attr->form == DW_FORM_string
20106 || attr->form == DW_FORM_strx
20107 || attr->form == DW_FORM_GNU_str_index
20108 || attr->form == DW_FORM_GNU_strp_alt)
20109 str = DW_STRING (attr);
20110 else
20111 complaint (_("string type expected for attribute %s for "
20112 "DIE at %s in module %s"),
20113 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20114 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20115 }
20116
20117 return str;
20118 }
20119
20120 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20121 and holds a non-zero value. This function should only be used for
20122 DW_FORM_flag or DW_FORM_flag_present attributes. */
20123
20124 static int
20125 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20126 {
20127 struct attribute *attr = dwarf2_attr (die, name, cu);
20128
20129 return (attr && DW_UNSND (attr));
20130 }
20131
20132 static int
20133 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20134 {
20135 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20136 which value is non-zero. However, we have to be careful with
20137 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20138 (via dwarf2_flag_true_p) follows this attribute. So we may
20139 end up accidently finding a declaration attribute that belongs
20140 to a different DIE referenced by the specification attribute,
20141 even though the given DIE does not have a declaration attribute. */
20142 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20143 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20144 }
20145
20146 /* Return the die giving the specification for DIE, if there is
20147 one. *SPEC_CU is the CU containing DIE on input, and the CU
20148 containing the return value on output. If there is no
20149 specification, but there is an abstract origin, that is
20150 returned. */
20151
20152 static struct die_info *
20153 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20154 {
20155 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20156 *spec_cu);
20157
20158 if (spec_attr == NULL)
20159 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20160
20161 if (spec_attr == NULL)
20162 return NULL;
20163 else
20164 return follow_die_ref (die, spec_attr, spec_cu);
20165 }
20166
20167 /* Stub for free_line_header to match void * callback types. */
20168
20169 static void
20170 free_line_header_voidp (void *arg)
20171 {
20172 struct line_header *lh = (struct line_header *) arg;
20173
20174 delete lh;
20175 }
20176
20177 void
20178 line_header::add_include_dir (const char *include_dir)
20179 {
20180 if (dwarf_line_debug >= 2)
20181 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20182 include_dirs.size () + 1, include_dir);
20183
20184 include_dirs.push_back (include_dir);
20185 }
20186
20187 void
20188 line_header::add_file_name (const char *name,
20189 dir_index d_index,
20190 unsigned int mod_time,
20191 unsigned int length)
20192 {
20193 if (dwarf_line_debug >= 2)
20194 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20195 (unsigned) file_names.size () + 1, name);
20196
20197 file_names.emplace_back (name, d_index, mod_time, length);
20198 }
20199
20200 /* A convenience function to find the proper .debug_line section for a CU. */
20201
20202 static struct dwarf2_section_info *
20203 get_debug_line_section (struct dwarf2_cu *cu)
20204 {
20205 struct dwarf2_section_info *section;
20206 struct dwarf2_per_objfile *dwarf2_per_objfile
20207 = cu->per_cu->dwarf2_per_objfile;
20208
20209 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20210 DWO file. */
20211 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20212 section = &cu->dwo_unit->dwo_file->sections.line;
20213 else if (cu->per_cu->is_dwz)
20214 {
20215 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20216
20217 section = &dwz->line;
20218 }
20219 else
20220 section = &dwarf2_per_objfile->line;
20221
20222 return section;
20223 }
20224
20225 /* Read directory or file name entry format, starting with byte of
20226 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20227 entries count and the entries themselves in the described entry
20228 format. */
20229
20230 static void
20231 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20232 bfd *abfd, const gdb_byte **bufp,
20233 struct line_header *lh,
20234 const struct comp_unit_head *cu_header,
20235 void (*callback) (struct line_header *lh,
20236 const char *name,
20237 dir_index d_index,
20238 unsigned int mod_time,
20239 unsigned int length))
20240 {
20241 gdb_byte format_count, formati;
20242 ULONGEST data_count, datai;
20243 const gdb_byte *buf = *bufp;
20244 const gdb_byte *format_header_data;
20245 unsigned int bytes_read;
20246
20247 format_count = read_1_byte (abfd, buf);
20248 buf += 1;
20249 format_header_data = buf;
20250 for (formati = 0; formati < format_count; formati++)
20251 {
20252 read_unsigned_leb128 (abfd, buf, &bytes_read);
20253 buf += bytes_read;
20254 read_unsigned_leb128 (abfd, buf, &bytes_read);
20255 buf += bytes_read;
20256 }
20257
20258 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20259 buf += bytes_read;
20260 for (datai = 0; datai < data_count; datai++)
20261 {
20262 const gdb_byte *format = format_header_data;
20263 struct file_entry fe;
20264
20265 for (formati = 0; formati < format_count; formati++)
20266 {
20267 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20268 format += bytes_read;
20269
20270 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20271 format += bytes_read;
20272
20273 gdb::optional<const char *> string;
20274 gdb::optional<unsigned int> uint;
20275
20276 switch (form)
20277 {
20278 case DW_FORM_string:
20279 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20280 buf += bytes_read;
20281 break;
20282
20283 case DW_FORM_line_strp:
20284 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20285 abfd, buf,
20286 cu_header,
20287 &bytes_read));
20288 buf += bytes_read;
20289 break;
20290
20291 case DW_FORM_data1:
20292 uint.emplace (read_1_byte (abfd, buf));
20293 buf += 1;
20294 break;
20295
20296 case DW_FORM_data2:
20297 uint.emplace (read_2_bytes (abfd, buf));
20298 buf += 2;
20299 break;
20300
20301 case DW_FORM_data4:
20302 uint.emplace (read_4_bytes (abfd, buf));
20303 buf += 4;
20304 break;
20305
20306 case DW_FORM_data8:
20307 uint.emplace (read_8_bytes (abfd, buf));
20308 buf += 8;
20309 break;
20310
20311 case DW_FORM_udata:
20312 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20313 buf += bytes_read;
20314 break;
20315
20316 case DW_FORM_block:
20317 /* It is valid only for DW_LNCT_timestamp which is ignored by
20318 current GDB. */
20319 break;
20320 }
20321
20322 switch (content_type)
20323 {
20324 case DW_LNCT_path:
20325 if (string.has_value ())
20326 fe.name = *string;
20327 break;
20328 case DW_LNCT_directory_index:
20329 if (uint.has_value ())
20330 fe.d_index = (dir_index) *uint;
20331 break;
20332 case DW_LNCT_timestamp:
20333 if (uint.has_value ())
20334 fe.mod_time = *uint;
20335 break;
20336 case DW_LNCT_size:
20337 if (uint.has_value ())
20338 fe.length = *uint;
20339 break;
20340 case DW_LNCT_MD5:
20341 break;
20342 default:
20343 complaint (_("Unknown format content type %s"),
20344 pulongest (content_type));
20345 }
20346 }
20347
20348 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20349 }
20350
20351 *bufp = buf;
20352 }
20353
20354 /* Read the statement program header starting at OFFSET in
20355 .debug_line, or .debug_line.dwo. Return a pointer
20356 to a struct line_header, allocated using xmalloc.
20357 Returns NULL if there is a problem reading the header, e.g., if it
20358 has a version we don't understand.
20359
20360 NOTE: the strings in the include directory and file name tables of
20361 the returned object point into the dwarf line section buffer,
20362 and must not be freed. */
20363
20364 static line_header_up
20365 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20366 {
20367 const gdb_byte *line_ptr;
20368 unsigned int bytes_read, offset_size;
20369 int i;
20370 const char *cur_dir, *cur_file;
20371 struct dwarf2_section_info *section;
20372 bfd *abfd;
20373 struct dwarf2_per_objfile *dwarf2_per_objfile
20374 = cu->per_cu->dwarf2_per_objfile;
20375
20376 section = get_debug_line_section (cu);
20377 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20378 if (section->buffer == NULL)
20379 {
20380 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20381 complaint (_("missing .debug_line.dwo section"));
20382 else
20383 complaint (_("missing .debug_line section"));
20384 return 0;
20385 }
20386
20387 /* We can't do this until we know the section is non-empty.
20388 Only then do we know we have such a section. */
20389 abfd = get_section_bfd_owner (section);
20390
20391 /* Make sure that at least there's room for the total_length field.
20392 That could be 12 bytes long, but we're just going to fudge that. */
20393 if (to_underlying (sect_off) + 4 >= section->size)
20394 {
20395 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20396 return 0;
20397 }
20398
20399 line_header_up lh (new line_header ());
20400
20401 lh->sect_off = sect_off;
20402 lh->offset_in_dwz = cu->per_cu->is_dwz;
20403
20404 line_ptr = section->buffer + to_underlying (sect_off);
20405
20406 /* Read in the header. */
20407 lh->total_length =
20408 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20409 &bytes_read, &offset_size);
20410 line_ptr += bytes_read;
20411 if (line_ptr + lh->total_length > (section->buffer + section->size))
20412 {
20413 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20414 return 0;
20415 }
20416 lh->statement_program_end = line_ptr + lh->total_length;
20417 lh->version = read_2_bytes (abfd, line_ptr);
20418 line_ptr += 2;
20419 if (lh->version > 5)
20420 {
20421 /* This is a version we don't understand. The format could have
20422 changed in ways we don't handle properly so just punt. */
20423 complaint (_("unsupported version in .debug_line section"));
20424 return NULL;
20425 }
20426 if (lh->version >= 5)
20427 {
20428 gdb_byte segment_selector_size;
20429
20430 /* Skip address size. */
20431 read_1_byte (abfd, line_ptr);
20432 line_ptr += 1;
20433
20434 segment_selector_size = read_1_byte (abfd, line_ptr);
20435 line_ptr += 1;
20436 if (segment_selector_size != 0)
20437 {
20438 complaint (_("unsupported segment selector size %u "
20439 "in .debug_line section"),
20440 segment_selector_size);
20441 return NULL;
20442 }
20443 }
20444 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20445 line_ptr += offset_size;
20446 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20447 line_ptr += 1;
20448 if (lh->version >= 4)
20449 {
20450 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20451 line_ptr += 1;
20452 }
20453 else
20454 lh->maximum_ops_per_instruction = 1;
20455
20456 if (lh->maximum_ops_per_instruction == 0)
20457 {
20458 lh->maximum_ops_per_instruction = 1;
20459 complaint (_("invalid maximum_ops_per_instruction "
20460 "in `.debug_line' section"));
20461 }
20462
20463 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20464 line_ptr += 1;
20465 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20466 line_ptr += 1;
20467 lh->line_range = read_1_byte (abfd, line_ptr);
20468 line_ptr += 1;
20469 lh->opcode_base = read_1_byte (abfd, line_ptr);
20470 line_ptr += 1;
20471 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20472
20473 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20474 for (i = 1; i < lh->opcode_base; ++i)
20475 {
20476 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20477 line_ptr += 1;
20478 }
20479
20480 if (lh->version >= 5)
20481 {
20482 /* Read directory table. */
20483 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20484 &cu->header,
20485 [] (struct line_header *header, const char *name,
20486 dir_index d_index, unsigned int mod_time,
20487 unsigned int length)
20488 {
20489 header->add_include_dir (name);
20490 });
20491
20492 /* Read file name table. */
20493 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20494 &cu->header,
20495 [] (struct line_header *header, const char *name,
20496 dir_index d_index, unsigned int mod_time,
20497 unsigned int length)
20498 {
20499 header->add_file_name (name, d_index, mod_time, length);
20500 });
20501 }
20502 else
20503 {
20504 /* Read directory table. */
20505 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20506 {
20507 line_ptr += bytes_read;
20508 lh->add_include_dir (cur_dir);
20509 }
20510 line_ptr += bytes_read;
20511
20512 /* Read file name table. */
20513 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20514 {
20515 unsigned int mod_time, length;
20516 dir_index d_index;
20517
20518 line_ptr += bytes_read;
20519 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20520 line_ptr += bytes_read;
20521 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20522 line_ptr += bytes_read;
20523 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20524 line_ptr += bytes_read;
20525
20526 lh->add_file_name (cur_file, d_index, mod_time, length);
20527 }
20528 line_ptr += bytes_read;
20529 }
20530 lh->statement_program_start = line_ptr;
20531
20532 if (line_ptr > (section->buffer + section->size))
20533 complaint (_("line number info header doesn't "
20534 "fit in `.debug_line' section"));
20535
20536 return lh;
20537 }
20538
20539 /* Subroutine of dwarf_decode_lines to simplify it.
20540 Return the file name of the psymtab for included file FILE_INDEX
20541 in line header LH of PST.
20542 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20543 If space for the result is malloc'd, *NAME_HOLDER will be set.
20544 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20545
20546 static const char *
20547 psymtab_include_file_name (const struct line_header *lh, int file_index,
20548 const struct partial_symtab *pst,
20549 const char *comp_dir,
20550 gdb::unique_xmalloc_ptr<char> *name_holder)
20551 {
20552 const file_entry &fe = lh->file_names[file_index];
20553 const char *include_name = fe.name;
20554 const char *include_name_to_compare = include_name;
20555 const char *pst_filename;
20556 int file_is_pst;
20557
20558 const char *dir_name = fe.include_dir (lh);
20559
20560 gdb::unique_xmalloc_ptr<char> hold_compare;
20561 if (!IS_ABSOLUTE_PATH (include_name)
20562 && (dir_name != NULL || comp_dir != NULL))
20563 {
20564 /* Avoid creating a duplicate psymtab for PST.
20565 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20566 Before we do the comparison, however, we need to account
20567 for DIR_NAME and COMP_DIR.
20568 First prepend dir_name (if non-NULL). If we still don't
20569 have an absolute path prepend comp_dir (if non-NULL).
20570 However, the directory we record in the include-file's
20571 psymtab does not contain COMP_DIR (to match the
20572 corresponding symtab(s)).
20573
20574 Example:
20575
20576 bash$ cd /tmp
20577 bash$ gcc -g ./hello.c
20578 include_name = "hello.c"
20579 dir_name = "."
20580 DW_AT_comp_dir = comp_dir = "/tmp"
20581 DW_AT_name = "./hello.c"
20582
20583 */
20584
20585 if (dir_name != NULL)
20586 {
20587 name_holder->reset (concat (dir_name, SLASH_STRING,
20588 include_name, (char *) NULL));
20589 include_name = name_holder->get ();
20590 include_name_to_compare = include_name;
20591 }
20592 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20593 {
20594 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20595 include_name, (char *) NULL));
20596 include_name_to_compare = hold_compare.get ();
20597 }
20598 }
20599
20600 pst_filename = pst->filename;
20601 gdb::unique_xmalloc_ptr<char> copied_name;
20602 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20603 {
20604 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20605 pst_filename, (char *) NULL));
20606 pst_filename = copied_name.get ();
20607 }
20608
20609 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20610
20611 if (file_is_pst)
20612 return NULL;
20613 return include_name;
20614 }
20615
20616 /* State machine to track the state of the line number program. */
20617
20618 class lnp_state_machine
20619 {
20620 public:
20621 /* Initialize a machine state for the start of a line number
20622 program. */
20623 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20624 bool record_lines_p);
20625
20626 file_entry *current_file ()
20627 {
20628 /* lh->file_names is 0-based, but the file name numbers in the
20629 statement program are 1-based. */
20630 return m_line_header->file_name_at (m_file);
20631 }
20632
20633 /* Record the line in the state machine. END_SEQUENCE is true if
20634 we're processing the end of a sequence. */
20635 void record_line (bool end_sequence);
20636
20637 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20638 nop-out rest of the lines in this sequence. */
20639 void check_line_address (struct dwarf2_cu *cu,
20640 const gdb_byte *line_ptr,
20641 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20642
20643 void handle_set_discriminator (unsigned int discriminator)
20644 {
20645 m_discriminator = discriminator;
20646 m_line_has_non_zero_discriminator |= discriminator != 0;
20647 }
20648
20649 /* Handle DW_LNE_set_address. */
20650 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20651 {
20652 m_op_index = 0;
20653 address += baseaddr;
20654 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20655 }
20656
20657 /* Handle DW_LNS_advance_pc. */
20658 void handle_advance_pc (CORE_ADDR adjust);
20659
20660 /* Handle a special opcode. */
20661 void handle_special_opcode (unsigned char op_code);
20662
20663 /* Handle DW_LNS_advance_line. */
20664 void handle_advance_line (int line_delta)
20665 {
20666 advance_line (line_delta);
20667 }
20668
20669 /* Handle DW_LNS_set_file. */
20670 void handle_set_file (file_name_index file);
20671
20672 /* Handle DW_LNS_negate_stmt. */
20673 void handle_negate_stmt ()
20674 {
20675 m_is_stmt = !m_is_stmt;
20676 }
20677
20678 /* Handle DW_LNS_const_add_pc. */
20679 void handle_const_add_pc ();
20680
20681 /* Handle DW_LNS_fixed_advance_pc. */
20682 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20683 {
20684 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20685 m_op_index = 0;
20686 }
20687
20688 /* Handle DW_LNS_copy. */
20689 void handle_copy ()
20690 {
20691 record_line (false);
20692 m_discriminator = 0;
20693 }
20694
20695 /* Handle DW_LNE_end_sequence. */
20696 void handle_end_sequence ()
20697 {
20698 m_currently_recording_lines = true;
20699 }
20700
20701 private:
20702 /* Advance the line by LINE_DELTA. */
20703 void advance_line (int line_delta)
20704 {
20705 m_line += line_delta;
20706
20707 if (line_delta != 0)
20708 m_line_has_non_zero_discriminator = m_discriminator != 0;
20709 }
20710
20711 struct dwarf2_cu *m_cu;
20712
20713 gdbarch *m_gdbarch;
20714
20715 /* True if we're recording lines.
20716 Otherwise we're building partial symtabs and are just interested in
20717 finding include files mentioned by the line number program. */
20718 bool m_record_lines_p;
20719
20720 /* The line number header. */
20721 line_header *m_line_header;
20722
20723 /* These are part of the standard DWARF line number state machine,
20724 and initialized according to the DWARF spec. */
20725
20726 unsigned char m_op_index = 0;
20727 /* The line table index (1-based) of the current file. */
20728 file_name_index m_file = (file_name_index) 1;
20729 unsigned int m_line = 1;
20730
20731 /* These are initialized in the constructor. */
20732
20733 CORE_ADDR m_address;
20734 bool m_is_stmt;
20735 unsigned int m_discriminator;
20736
20737 /* Additional bits of state we need to track. */
20738
20739 /* The last file that we called dwarf2_start_subfile for.
20740 This is only used for TLLs. */
20741 unsigned int m_last_file = 0;
20742 /* The last file a line number was recorded for. */
20743 struct subfile *m_last_subfile = NULL;
20744
20745 /* When true, record the lines we decode. */
20746 bool m_currently_recording_lines = false;
20747
20748 /* The last line number that was recorded, used to coalesce
20749 consecutive entries for the same line. This can happen, for
20750 example, when discriminators are present. PR 17276. */
20751 unsigned int m_last_line = 0;
20752 bool m_line_has_non_zero_discriminator = false;
20753 };
20754
20755 void
20756 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20757 {
20758 CORE_ADDR addr_adj = (((m_op_index + adjust)
20759 / m_line_header->maximum_ops_per_instruction)
20760 * m_line_header->minimum_instruction_length);
20761 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20762 m_op_index = ((m_op_index + adjust)
20763 % m_line_header->maximum_ops_per_instruction);
20764 }
20765
20766 void
20767 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20768 {
20769 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20770 CORE_ADDR addr_adj = (((m_op_index
20771 + (adj_opcode / m_line_header->line_range))
20772 / m_line_header->maximum_ops_per_instruction)
20773 * m_line_header->minimum_instruction_length);
20774 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20775 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20776 % m_line_header->maximum_ops_per_instruction);
20777
20778 int line_delta = (m_line_header->line_base
20779 + (adj_opcode % m_line_header->line_range));
20780 advance_line (line_delta);
20781 record_line (false);
20782 m_discriminator = 0;
20783 }
20784
20785 void
20786 lnp_state_machine::handle_set_file (file_name_index file)
20787 {
20788 m_file = file;
20789
20790 const file_entry *fe = current_file ();
20791 if (fe == NULL)
20792 dwarf2_debug_line_missing_file_complaint ();
20793 else if (m_record_lines_p)
20794 {
20795 const char *dir = fe->include_dir (m_line_header);
20796
20797 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20798 m_line_has_non_zero_discriminator = m_discriminator != 0;
20799 dwarf2_start_subfile (m_cu, fe->name, dir);
20800 }
20801 }
20802
20803 void
20804 lnp_state_machine::handle_const_add_pc ()
20805 {
20806 CORE_ADDR adjust
20807 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20808
20809 CORE_ADDR addr_adj
20810 = (((m_op_index + adjust)
20811 / m_line_header->maximum_ops_per_instruction)
20812 * m_line_header->minimum_instruction_length);
20813
20814 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20815 m_op_index = ((m_op_index + adjust)
20816 % m_line_header->maximum_ops_per_instruction);
20817 }
20818
20819 /* Return non-zero if we should add LINE to the line number table.
20820 LINE is the line to add, LAST_LINE is the last line that was added,
20821 LAST_SUBFILE is the subfile for LAST_LINE.
20822 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20823 had a non-zero discriminator.
20824
20825 We have to be careful in the presence of discriminators.
20826 E.g., for this line:
20827
20828 for (i = 0; i < 100000; i++);
20829
20830 clang can emit four line number entries for that one line,
20831 each with a different discriminator.
20832 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20833
20834 However, we want gdb to coalesce all four entries into one.
20835 Otherwise the user could stepi into the middle of the line and
20836 gdb would get confused about whether the pc really was in the
20837 middle of the line.
20838
20839 Things are further complicated by the fact that two consecutive
20840 line number entries for the same line is a heuristic used by gcc
20841 to denote the end of the prologue. So we can't just discard duplicate
20842 entries, we have to be selective about it. The heuristic we use is
20843 that we only collapse consecutive entries for the same line if at least
20844 one of those entries has a non-zero discriminator. PR 17276.
20845
20846 Note: Addresses in the line number state machine can never go backwards
20847 within one sequence, thus this coalescing is ok. */
20848
20849 static int
20850 dwarf_record_line_p (struct dwarf2_cu *cu,
20851 unsigned int line, unsigned int last_line,
20852 int line_has_non_zero_discriminator,
20853 struct subfile *last_subfile)
20854 {
20855 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20856 return 1;
20857 if (line != last_line)
20858 return 1;
20859 /* Same line for the same file that we've seen already.
20860 As a last check, for pr 17276, only record the line if the line
20861 has never had a non-zero discriminator. */
20862 if (!line_has_non_zero_discriminator)
20863 return 1;
20864 return 0;
20865 }
20866
20867 /* Use the CU's builder to record line number LINE beginning at
20868 address ADDRESS in the line table of subfile SUBFILE. */
20869
20870 static void
20871 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20872 unsigned int line, CORE_ADDR address,
20873 struct dwarf2_cu *cu)
20874 {
20875 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20876
20877 if (dwarf_line_debug)
20878 {
20879 fprintf_unfiltered (gdb_stdlog,
20880 "Recording line %u, file %s, address %s\n",
20881 line, lbasename (subfile->name),
20882 paddress (gdbarch, address));
20883 }
20884
20885 if (cu != nullptr)
20886 cu->get_builder ()->record_line (subfile, line, addr);
20887 }
20888
20889 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20890 Mark the end of a set of line number records.
20891 The arguments are the same as for dwarf_record_line_1.
20892 If SUBFILE is NULL the request is ignored. */
20893
20894 static void
20895 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20896 CORE_ADDR address, struct dwarf2_cu *cu)
20897 {
20898 if (subfile == NULL)
20899 return;
20900
20901 if (dwarf_line_debug)
20902 {
20903 fprintf_unfiltered (gdb_stdlog,
20904 "Finishing current line, file %s, address %s\n",
20905 lbasename (subfile->name),
20906 paddress (gdbarch, address));
20907 }
20908
20909 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20910 }
20911
20912 void
20913 lnp_state_machine::record_line (bool end_sequence)
20914 {
20915 if (dwarf_line_debug)
20916 {
20917 fprintf_unfiltered (gdb_stdlog,
20918 "Processing actual line %u: file %u,"
20919 " address %s, is_stmt %u, discrim %u\n",
20920 m_line, to_underlying (m_file),
20921 paddress (m_gdbarch, m_address),
20922 m_is_stmt, m_discriminator);
20923 }
20924
20925 file_entry *fe = current_file ();
20926
20927 if (fe == NULL)
20928 dwarf2_debug_line_missing_file_complaint ();
20929 /* For now we ignore lines not starting on an instruction boundary.
20930 But not when processing end_sequence for compatibility with the
20931 previous version of the code. */
20932 else if (m_op_index == 0 || end_sequence)
20933 {
20934 fe->included_p = 1;
20935 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20936 {
20937 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20938 || end_sequence)
20939 {
20940 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20941 m_currently_recording_lines ? m_cu : nullptr);
20942 }
20943
20944 if (!end_sequence)
20945 {
20946 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20947 m_line_has_non_zero_discriminator,
20948 m_last_subfile))
20949 {
20950 buildsym_compunit *builder = m_cu->get_builder ();
20951 dwarf_record_line_1 (m_gdbarch,
20952 builder->get_current_subfile (),
20953 m_line, m_address,
20954 m_currently_recording_lines ? m_cu : nullptr);
20955 }
20956 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20957 m_last_line = m_line;
20958 }
20959 }
20960 }
20961 }
20962
20963 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20964 line_header *lh, bool record_lines_p)
20965 {
20966 m_cu = cu;
20967 m_gdbarch = arch;
20968 m_record_lines_p = record_lines_p;
20969 m_line_header = lh;
20970
20971 m_currently_recording_lines = true;
20972
20973 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20974 was a line entry for it so that the backend has a chance to adjust it
20975 and also record it in case it needs it. This is currently used by MIPS
20976 code, cf. `mips_adjust_dwarf2_line'. */
20977 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20978 m_is_stmt = lh->default_is_stmt;
20979 m_discriminator = 0;
20980 }
20981
20982 void
20983 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20984 const gdb_byte *line_ptr,
20985 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20986 {
20987 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20988 the pc range of the CU. However, we restrict the test to only ADDRESS
20989 values of zero to preserve GDB's previous behaviour which is to handle
20990 the specific case of a function being GC'd by the linker. */
20991
20992 if (address == 0 && address < unrelocated_lowpc)
20993 {
20994 /* This line table is for a function which has been
20995 GCd by the linker. Ignore it. PR gdb/12528 */
20996
20997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20998 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20999
21000 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21001 line_offset, objfile_name (objfile));
21002 m_currently_recording_lines = false;
21003 /* Note: m_currently_recording_lines is left as false until we see
21004 DW_LNE_end_sequence. */
21005 }
21006 }
21007
21008 /* Subroutine of dwarf_decode_lines to simplify it.
21009 Process the line number information in LH.
21010 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21011 program in order to set included_p for every referenced header. */
21012
21013 static void
21014 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21015 const int decode_for_pst_p, CORE_ADDR lowpc)
21016 {
21017 const gdb_byte *line_ptr, *extended_end;
21018 const gdb_byte *line_end;
21019 unsigned int bytes_read, extended_len;
21020 unsigned char op_code, extended_op;
21021 CORE_ADDR baseaddr;
21022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21023 bfd *abfd = objfile->obfd;
21024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21025 /* True if we're recording line info (as opposed to building partial
21026 symtabs and just interested in finding include files mentioned by
21027 the line number program). */
21028 bool record_lines_p = !decode_for_pst_p;
21029
21030 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21031
21032 line_ptr = lh->statement_program_start;
21033 line_end = lh->statement_program_end;
21034
21035 /* Read the statement sequences until there's nothing left. */
21036 while (line_ptr < line_end)
21037 {
21038 /* The DWARF line number program state machine. Reset the state
21039 machine at the start of each sequence. */
21040 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21041 bool end_sequence = false;
21042
21043 if (record_lines_p)
21044 {
21045 /* Start a subfile for the current file of the state
21046 machine. */
21047 const file_entry *fe = state_machine.current_file ();
21048
21049 if (fe != NULL)
21050 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21051 }
21052
21053 /* Decode the table. */
21054 while (line_ptr < line_end && !end_sequence)
21055 {
21056 op_code = read_1_byte (abfd, line_ptr);
21057 line_ptr += 1;
21058
21059 if (op_code >= lh->opcode_base)
21060 {
21061 /* Special opcode. */
21062 state_machine.handle_special_opcode (op_code);
21063 }
21064 else switch (op_code)
21065 {
21066 case DW_LNS_extended_op:
21067 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21068 &bytes_read);
21069 line_ptr += bytes_read;
21070 extended_end = line_ptr + extended_len;
21071 extended_op = read_1_byte (abfd, line_ptr);
21072 line_ptr += 1;
21073 switch (extended_op)
21074 {
21075 case DW_LNE_end_sequence:
21076 state_machine.handle_end_sequence ();
21077 end_sequence = true;
21078 break;
21079 case DW_LNE_set_address:
21080 {
21081 CORE_ADDR address
21082 = read_address (abfd, line_ptr, cu, &bytes_read);
21083 line_ptr += bytes_read;
21084
21085 state_machine.check_line_address (cu, line_ptr,
21086 lowpc - baseaddr, address);
21087 state_machine.handle_set_address (baseaddr, address);
21088 }
21089 break;
21090 case DW_LNE_define_file:
21091 {
21092 const char *cur_file;
21093 unsigned int mod_time, length;
21094 dir_index dindex;
21095
21096 cur_file = read_direct_string (abfd, line_ptr,
21097 &bytes_read);
21098 line_ptr += bytes_read;
21099 dindex = (dir_index)
21100 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21101 line_ptr += bytes_read;
21102 mod_time =
21103 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21104 line_ptr += bytes_read;
21105 length =
21106 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21107 line_ptr += bytes_read;
21108 lh->add_file_name (cur_file, dindex, mod_time, length);
21109 }
21110 break;
21111 case DW_LNE_set_discriminator:
21112 {
21113 /* The discriminator is not interesting to the
21114 debugger; just ignore it. We still need to
21115 check its value though:
21116 if there are consecutive entries for the same
21117 (non-prologue) line we want to coalesce them.
21118 PR 17276. */
21119 unsigned int discr
21120 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21121 line_ptr += bytes_read;
21122
21123 state_machine.handle_set_discriminator (discr);
21124 }
21125 break;
21126 default:
21127 complaint (_("mangled .debug_line section"));
21128 return;
21129 }
21130 /* Make sure that we parsed the extended op correctly. If e.g.
21131 we expected a different address size than the producer used,
21132 we may have read the wrong number of bytes. */
21133 if (line_ptr != extended_end)
21134 {
21135 complaint (_("mangled .debug_line section"));
21136 return;
21137 }
21138 break;
21139 case DW_LNS_copy:
21140 state_machine.handle_copy ();
21141 break;
21142 case DW_LNS_advance_pc:
21143 {
21144 CORE_ADDR adjust
21145 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21146 line_ptr += bytes_read;
21147
21148 state_machine.handle_advance_pc (adjust);
21149 }
21150 break;
21151 case DW_LNS_advance_line:
21152 {
21153 int line_delta
21154 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21155 line_ptr += bytes_read;
21156
21157 state_machine.handle_advance_line (line_delta);
21158 }
21159 break;
21160 case DW_LNS_set_file:
21161 {
21162 file_name_index file
21163 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21164 &bytes_read);
21165 line_ptr += bytes_read;
21166
21167 state_machine.handle_set_file (file);
21168 }
21169 break;
21170 case DW_LNS_set_column:
21171 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21172 line_ptr += bytes_read;
21173 break;
21174 case DW_LNS_negate_stmt:
21175 state_machine.handle_negate_stmt ();
21176 break;
21177 case DW_LNS_set_basic_block:
21178 break;
21179 /* Add to the address register of the state machine the
21180 address increment value corresponding to special opcode
21181 255. I.e., this value is scaled by the minimum
21182 instruction length since special opcode 255 would have
21183 scaled the increment. */
21184 case DW_LNS_const_add_pc:
21185 state_machine.handle_const_add_pc ();
21186 break;
21187 case DW_LNS_fixed_advance_pc:
21188 {
21189 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21190 line_ptr += 2;
21191
21192 state_machine.handle_fixed_advance_pc (addr_adj);
21193 }
21194 break;
21195 default:
21196 {
21197 /* Unknown standard opcode, ignore it. */
21198 int i;
21199
21200 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21201 {
21202 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21203 line_ptr += bytes_read;
21204 }
21205 }
21206 }
21207 }
21208
21209 if (!end_sequence)
21210 dwarf2_debug_line_missing_end_sequence_complaint ();
21211
21212 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21213 in which case we still finish recording the last line). */
21214 state_machine.record_line (true);
21215 }
21216 }
21217
21218 /* Decode the Line Number Program (LNP) for the given line_header
21219 structure and CU. The actual information extracted and the type
21220 of structures created from the LNP depends on the value of PST.
21221
21222 1. If PST is NULL, then this procedure uses the data from the program
21223 to create all necessary symbol tables, and their linetables.
21224
21225 2. If PST is not NULL, this procedure reads the program to determine
21226 the list of files included by the unit represented by PST, and
21227 builds all the associated partial symbol tables.
21228
21229 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21230 It is used for relative paths in the line table.
21231 NOTE: When processing partial symtabs (pst != NULL),
21232 comp_dir == pst->dirname.
21233
21234 NOTE: It is important that psymtabs have the same file name (via strcmp)
21235 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21236 symtab we don't use it in the name of the psymtabs we create.
21237 E.g. expand_line_sal requires this when finding psymtabs to expand.
21238 A good testcase for this is mb-inline.exp.
21239
21240 LOWPC is the lowest address in CU (or 0 if not known).
21241
21242 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21243 for its PC<->lines mapping information. Otherwise only the filename
21244 table is read in. */
21245
21246 static void
21247 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21248 struct dwarf2_cu *cu, struct partial_symtab *pst,
21249 CORE_ADDR lowpc, int decode_mapping)
21250 {
21251 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21252 const int decode_for_pst_p = (pst != NULL);
21253
21254 if (decode_mapping)
21255 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21256
21257 if (decode_for_pst_p)
21258 {
21259 int file_index;
21260
21261 /* Now that we're done scanning the Line Header Program, we can
21262 create the psymtab of each included file. */
21263 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21264 if (lh->file_names[file_index].included_p == 1)
21265 {
21266 gdb::unique_xmalloc_ptr<char> name_holder;
21267 const char *include_name =
21268 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21269 &name_holder);
21270 if (include_name != NULL)
21271 dwarf2_create_include_psymtab (include_name, pst, objfile);
21272 }
21273 }
21274 else
21275 {
21276 /* Make sure a symtab is created for every file, even files
21277 which contain only variables (i.e. no code with associated
21278 line numbers). */
21279 buildsym_compunit *builder = cu->get_builder ();
21280 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21281 int i;
21282
21283 for (i = 0; i < lh->file_names.size (); i++)
21284 {
21285 file_entry &fe = lh->file_names[i];
21286
21287 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21288
21289 if (builder->get_current_subfile ()->symtab == NULL)
21290 {
21291 builder->get_current_subfile ()->symtab
21292 = allocate_symtab (cust,
21293 builder->get_current_subfile ()->name);
21294 }
21295 fe.symtab = builder->get_current_subfile ()->symtab;
21296 }
21297 }
21298 }
21299
21300 /* Start a subfile for DWARF. FILENAME is the name of the file and
21301 DIRNAME the name of the source directory which contains FILENAME
21302 or NULL if not known.
21303 This routine tries to keep line numbers from identical absolute and
21304 relative file names in a common subfile.
21305
21306 Using the `list' example from the GDB testsuite, which resides in
21307 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21308 of /srcdir/list0.c yields the following debugging information for list0.c:
21309
21310 DW_AT_name: /srcdir/list0.c
21311 DW_AT_comp_dir: /compdir
21312 files.files[0].name: list0.h
21313 files.files[0].dir: /srcdir
21314 files.files[1].name: list0.c
21315 files.files[1].dir: /srcdir
21316
21317 The line number information for list0.c has to end up in a single
21318 subfile, so that `break /srcdir/list0.c:1' works as expected.
21319 start_subfile will ensure that this happens provided that we pass the
21320 concatenation of files.files[1].dir and files.files[1].name as the
21321 subfile's name. */
21322
21323 static void
21324 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21325 const char *dirname)
21326 {
21327 char *copy = NULL;
21328
21329 /* In order not to lose the line information directory,
21330 we concatenate it to the filename when it makes sense.
21331 Note that the Dwarf3 standard says (speaking of filenames in line
21332 information): ``The directory index is ignored for file names
21333 that represent full path names''. Thus ignoring dirname in the
21334 `else' branch below isn't an issue. */
21335
21336 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21337 {
21338 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21339 filename = copy;
21340 }
21341
21342 cu->get_builder ()->start_subfile (filename);
21343
21344 if (copy != NULL)
21345 xfree (copy);
21346 }
21347
21348 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21349 buildsym_compunit constructor. */
21350
21351 struct compunit_symtab *
21352 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21353 CORE_ADDR low_pc)
21354 {
21355 gdb_assert (m_builder == nullptr);
21356
21357 m_builder.reset (new struct buildsym_compunit
21358 (per_cu->dwarf2_per_objfile->objfile,
21359 name, comp_dir, language, low_pc));
21360
21361 list_in_scope = get_builder ()->get_file_symbols ();
21362
21363 get_builder ()->record_debugformat ("DWARF 2");
21364 get_builder ()->record_producer (producer);
21365
21366 processing_has_namespace_info = false;
21367
21368 return get_builder ()->get_compunit_symtab ();
21369 }
21370
21371 static void
21372 var_decode_location (struct attribute *attr, struct symbol *sym,
21373 struct dwarf2_cu *cu)
21374 {
21375 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21376 struct comp_unit_head *cu_header = &cu->header;
21377
21378 /* NOTE drow/2003-01-30: There used to be a comment and some special
21379 code here to turn a symbol with DW_AT_external and a
21380 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21381 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21382 with some versions of binutils) where shared libraries could have
21383 relocations against symbols in their debug information - the
21384 minimal symbol would have the right address, but the debug info
21385 would not. It's no longer necessary, because we will explicitly
21386 apply relocations when we read in the debug information now. */
21387
21388 /* A DW_AT_location attribute with no contents indicates that a
21389 variable has been optimized away. */
21390 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21391 {
21392 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21393 return;
21394 }
21395
21396 /* Handle one degenerate form of location expression specially, to
21397 preserve GDB's previous behavior when section offsets are
21398 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21399 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21400
21401 if (attr_form_is_block (attr)
21402 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21403 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21404 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21405 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21406 && (DW_BLOCK (attr)->size
21407 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21408 {
21409 unsigned int dummy;
21410
21411 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21412 SYMBOL_VALUE_ADDRESS (sym) =
21413 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21414 else
21415 SYMBOL_VALUE_ADDRESS (sym) =
21416 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21417 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21418 fixup_symbol_section (sym, objfile);
21419 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21420 SYMBOL_SECTION (sym));
21421 return;
21422 }
21423
21424 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21425 expression evaluator, and use LOC_COMPUTED only when necessary
21426 (i.e. when the value of a register or memory location is
21427 referenced, or a thread-local block, etc.). Then again, it might
21428 not be worthwhile. I'm assuming that it isn't unless performance
21429 or memory numbers show me otherwise. */
21430
21431 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21432
21433 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21434 cu->has_loclist = true;
21435 }
21436
21437 /* Given a pointer to a DWARF information entry, figure out if we need
21438 to make a symbol table entry for it, and if so, create a new entry
21439 and return a pointer to it.
21440 If TYPE is NULL, determine symbol type from the die, otherwise
21441 used the passed type.
21442 If SPACE is not NULL, use it to hold the new symbol. If it is
21443 NULL, allocate a new symbol on the objfile's obstack. */
21444
21445 static struct symbol *
21446 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21447 struct symbol *space)
21448 {
21449 struct dwarf2_per_objfile *dwarf2_per_objfile
21450 = cu->per_cu->dwarf2_per_objfile;
21451 struct objfile *objfile = dwarf2_per_objfile->objfile;
21452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21453 struct symbol *sym = NULL;
21454 const char *name;
21455 struct attribute *attr = NULL;
21456 struct attribute *attr2 = NULL;
21457 CORE_ADDR baseaddr;
21458 struct pending **list_to_add = NULL;
21459
21460 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21461
21462 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21463
21464 name = dwarf2_name (die, cu);
21465 if (name)
21466 {
21467 const char *linkagename;
21468 int suppress_add = 0;
21469
21470 if (space)
21471 sym = space;
21472 else
21473 sym = allocate_symbol (objfile);
21474 OBJSTAT (objfile, n_syms++);
21475
21476 /* Cache this symbol's name and the name's demangled form (if any). */
21477 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21478 linkagename = dwarf2_physname (name, die, cu);
21479 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21480
21481 /* Fortran does not have mangling standard and the mangling does differ
21482 between gfortran, iFort etc. */
21483 if (cu->language == language_fortran
21484 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21485 symbol_set_demangled_name (&(sym->ginfo),
21486 dwarf2_full_name (name, die, cu),
21487 NULL);
21488
21489 /* Default assumptions.
21490 Use the passed type or decode it from the die. */
21491 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21492 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21493 if (type != NULL)
21494 SYMBOL_TYPE (sym) = type;
21495 else
21496 SYMBOL_TYPE (sym) = die_type (die, cu);
21497 attr = dwarf2_attr (die,
21498 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21499 cu);
21500 if (attr)
21501 {
21502 SYMBOL_LINE (sym) = DW_UNSND (attr);
21503 }
21504
21505 attr = dwarf2_attr (die,
21506 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21507 cu);
21508 if (attr)
21509 {
21510 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21511 struct file_entry *fe;
21512
21513 if (cu->line_header != NULL)
21514 fe = cu->line_header->file_name_at (file_index);
21515 else
21516 fe = NULL;
21517
21518 if (fe == NULL)
21519 complaint (_("file index out of range"));
21520 else
21521 symbol_set_symtab (sym, fe->symtab);
21522 }
21523
21524 switch (die->tag)
21525 {
21526 case DW_TAG_label:
21527 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21528 if (attr)
21529 {
21530 CORE_ADDR addr;
21531
21532 addr = attr_value_as_address (attr);
21533 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21534 SYMBOL_VALUE_ADDRESS (sym) = addr;
21535 }
21536 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21537 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21538 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21539 add_symbol_to_list (sym, cu->list_in_scope);
21540 break;
21541 case DW_TAG_subprogram:
21542 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21543 finish_block. */
21544 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21545 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21546 if ((attr2 && (DW_UNSND (attr2) != 0))
21547 || cu->language == language_ada)
21548 {
21549 /* Subprograms marked external are stored as a global symbol.
21550 Ada subprograms, whether marked external or not, are always
21551 stored as a global symbol, because we want to be able to
21552 access them globally. For instance, we want to be able
21553 to break on a nested subprogram without having to
21554 specify the context. */
21555 list_to_add = cu->get_builder ()->get_global_symbols ();
21556 }
21557 else
21558 {
21559 list_to_add = cu->list_in_scope;
21560 }
21561 break;
21562 case DW_TAG_inlined_subroutine:
21563 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21564 finish_block. */
21565 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21566 SYMBOL_INLINED (sym) = 1;
21567 list_to_add = cu->list_in_scope;
21568 break;
21569 case DW_TAG_template_value_param:
21570 suppress_add = 1;
21571 /* Fall through. */
21572 case DW_TAG_constant:
21573 case DW_TAG_variable:
21574 case DW_TAG_member:
21575 /* Compilation with minimal debug info may result in
21576 variables with missing type entries. Change the
21577 misleading `void' type to something sensible. */
21578 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21579 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21580
21581 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21582 /* In the case of DW_TAG_member, we should only be called for
21583 static const members. */
21584 if (die->tag == DW_TAG_member)
21585 {
21586 /* dwarf2_add_field uses die_is_declaration,
21587 so we do the same. */
21588 gdb_assert (die_is_declaration (die, cu));
21589 gdb_assert (attr);
21590 }
21591 if (attr)
21592 {
21593 dwarf2_const_value (attr, sym, cu);
21594 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21595 if (!suppress_add)
21596 {
21597 if (attr2 && (DW_UNSND (attr2) != 0))
21598 list_to_add = cu->get_builder ()->get_global_symbols ();
21599 else
21600 list_to_add = cu->list_in_scope;
21601 }
21602 break;
21603 }
21604 attr = dwarf2_attr (die, DW_AT_location, cu);
21605 if (attr)
21606 {
21607 var_decode_location (attr, sym, cu);
21608 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21609
21610 /* Fortran explicitly imports any global symbols to the local
21611 scope by DW_TAG_common_block. */
21612 if (cu->language == language_fortran && die->parent
21613 && die->parent->tag == DW_TAG_common_block)
21614 attr2 = NULL;
21615
21616 if (SYMBOL_CLASS (sym) == LOC_STATIC
21617 && SYMBOL_VALUE_ADDRESS (sym) == 0
21618 && !dwarf2_per_objfile->has_section_at_zero)
21619 {
21620 /* When a static variable is eliminated by the linker,
21621 the corresponding debug information is not stripped
21622 out, but the variable address is set to null;
21623 do not add such variables into symbol table. */
21624 }
21625 else if (attr2 && (DW_UNSND (attr2) != 0))
21626 {
21627 /* Workaround gfortran PR debug/40040 - it uses
21628 DW_AT_location for variables in -fPIC libraries which may
21629 get overriden by other libraries/executable and get
21630 a different address. Resolve it by the minimal symbol
21631 which may come from inferior's executable using copy
21632 relocation. Make this workaround only for gfortran as for
21633 other compilers GDB cannot guess the minimal symbol
21634 Fortran mangling kind. */
21635 if (cu->language == language_fortran && die->parent
21636 && die->parent->tag == DW_TAG_module
21637 && cu->producer
21638 && startswith (cu->producer, "GNU Fortran"))
21639 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21640
21641 /* A variable with DW_AT_external is never static,
21642 but it may be block-scoped. */
21643 list_to_add
21644 = ((cu->list_in_scope
21645 == cu->get_builder ()->get_file_symbols ())
21646 ? cu->get_builder ()->get_global_symbols ()
21647 : cu->list_in_scope);
21648 }
21649 else
21650 list_to_add = cu->list_in_scope;
21651 }
21652 else
21653 {
21654 /* We do not know the address of this symbol.
21655 If it is an external symbol and we have type information
21656 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21657 The address of the variable will then be determined from
21658 the minimal symbol table whenever the variable is
21659 referenced. */
21660 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21661
21662 /* Fortran explicitly imports any global symbols to the local
21663 scope by DW_TAG_common_block. */
21664 if (cu->language == language_fortran && die->parent
21665 && die->parent->tag == DW_TAG_common_block)
21666 {
21667 /* SYMBOL_CLASS doesn't matter here because
21668 read_common_block is going to reset it. */
21669 if (!suppress_add)
21670 list_to_add = cu->list_in_scope;
21671 }
21672 else if (attr2 && (DW_UNSND (attr2) != 0)
21673 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21674 {
21675 /* A variable with DW_AT_external is never static, but it
21676 may be block-scoped. */
21677 list_to_add
21678 = ((cu->list_in_scope
21679 == cu->get_builder ()->get_file_symbols ())
21680 ? cu->get_builder ()->get_global_symbols ()
21681 : cu->list_in_scope);
21682
21683 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21684 }
21685 else if (!die_is_declaration (die, cu))
21686 {
21687 /* Use the default LOC_OPTIMIZED_OUT class. */
21688 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21689 if (!suppress_add)
21690 list_to_add = cu->list_in_scope;
21691 }
21692 }
21693 break;
21694 case DW_TAG_formal_parameter:
21695 {
21696 /* If we are inside a function, mark this as an argument. If
21697 not, we might be looking at an argument to an inlined function
21698 when we do not have enough information to show inlined frames;
21699 pretend it's a local variable in that case so that the user can
21700 still see it. */
21701 struct context_stack *curr
21702 = cu->get_builder ()->get_current_context_stack ();
21703 if (curr != nullptr && curr->name != nullptr)
21704 SYMBOL_IS_ARGUMENT (sym) = 1;
21705 attr = dwarf2_attr (die, DW_AT_location, cu);
21706 if (attr)
21707 {
21708 var_decode_location (attr, sym, cu);
21709 }
21710 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21711 if (attr)
21712 {
21713 dwarf2_const_value (attr, sym, cu);
21714 }
21715
21716 list_to_add = cu->list_in_scope;
21717 }
21718 break;
21719 case DW_TAG_unspecified_parameters:
21720 /* From varargs functions; gdb doesn't seem to have any
21721 interest in this information, so just ignore it for now.
21722 (FIXME?) */
21723 break;
21724 case DW_TAG_template_type_param:
21725 suppress_add = 1;
21726 /* Fall through. */
21727 case DW_TAG_class_type:
21728 case DW_TAG_interface_type:
21729 case DW_TAG_structure_type:
21730 case DW_TAG_union_type:
21731 case DW_TAG_set_type:
21732 case DW_TAG_enumeration_type:
21733 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21734 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21735
21736 {
21737 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21738 really ever be static objects: otherwise, if you try
21739 to, say, break of a class's method and you're in a file
21740 which doesn't mention that class, it won't work unless
21741 the check for all static symbols in lookup_symbol_aux
21742 saves you. See the OtherFileClass tests in
21743 gdb.c++/namespace.exp. */
21744
21745 if (!suppress_add)
21746 {
21747 buildsym_compunit *builder = cu->get_builder ();
21748 list_to_add
21749 = (cu->list_in_scope == builder->get_file_symbols ()
21750 && cu->language == language_cplus
21751 ? builder->get_global_symbols ()
21752 : cu->list_in_scope);
21753
21754 /* The semantics of C++ state that "struct foo {
21755 ... }" also defines a typedef for "foo". */
21756 if (cu->language == language_cplus
21757 || cu->language == language_ada
21758 || cu->language == language_d
21759 || cu->language == language_rust)
21760 {
21761 /* The symbol's name is already allocated along
21762 with this objfile, so we don't need to
21763 duplicate it for the type. */
21764 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21765 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21766 }
21767 }
21768 }
21769 break;
21770 case DW_TAG_typedef:
21771 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21772 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21773 list_to_add = cu->list_in_scope;
21774 break;
21775 case DW_TAG_base_type:
21776 case DW_TAG_subrange_type:
21777 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21778 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21779 list_to_add = cu->list_in_scope;
21780 break;
21781 case DW_TAG_enumerator:
21782 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21783 if (attr)
21784 {
21785 dwarf2_const_value (attr, sym, cu);
21786 }
21787 {
21788 /* NOTE: carlton/2003-11-10: See comment above in the
21789 DW_TAG_class_type, etc. block. */
21790
21791 list_to_add
21792 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21793 && cu->language == language_cplus
21794 ? cu->get_builder ()->get_global_symbols ()
21795 : cu->list_in_scope);
21796 }
21797 break;
21798 case DW_TAG_imported_declaration:
21799 case DW_TAG_namespace:
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21801 list_to_add = cu->get_builder ()->get_global_symbols ();
21802 break;
21803 case DW_TAG_module:
21804 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21805 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21806 list_to_add = cu->get_builder ()->get_global_symbols ();
21807 break;
21808 case DW_TAG_common_block:
21809 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21810 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21811 add_symbol_to_list (sym, cu->list_in_scope);
21812 break;
21813 default:
21814 /* Not a tag we recognize. Hopefully we aren't processing
21815 trash data, but since we must specifically ignore things
21816 we don't recognize, there is nothing else we should do at
21817 this point. */
21818 complaint (_("unsupported tag: '%s'"),
21819 dwarf_tag_name (die->tag));
21820 break;
21821 }
21822
21823 if (suppress_add)
21824 {
21825 sym->hash_next = objfile->template_symbols;
21826 objfile->template_symbols = sym;
21827 list_to_add = NULL;
21828 }
21829
21830 if (list_to_add != NULL)
21831 add_symbol_to_list (sym, list_to_add);
21832
21833 /* For the benefit of old versions of GCC, check for anonymous
21834 namespaces based on the demangled name. */
21835 if (!cu->processing_has_namespace_info
21836 && cu->language == language_cplus)
21837 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21838 }
21839 return (sym);
21840 }
21841
21842 /* Given an attr with a DW_FORM_dataN value in host byte order,
21843 zero-extend it as appropriate for the symbol's type. The DWARF
21844 standard (v4) is not entirely clear about the meaning of using
21845 DW_FORM_dataN for a constant with a signed type, where the type is
21846 wider than the data. The conclusion of a discussion on the DWARF
21847 list was that this is unspecified. We choose to always zero-extend
21848 because that is the interpretation long in use by GCC. */
21849
21850 static gdb_byte *
21851 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21852 struct dwarf2_cu *cu, LONGEST *value, int bits)
21853 {
21854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21855 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21856 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21857 LONGEST l = DW_UNSND (attr);
21858
21859 if (bits < sizeof (*value) * 8)
21860 {
21861 l &= ((LONGEST) 1 << bits) - 1;
21862 *value = l;
21863 }
21864 else if (bits == sizeof (*value) * 8)
21865 *value = l;
21866 else
21867 {
21868 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21869 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21870 return bytes;
21871 }
21872
21873 return NULL;
21874 }
21875
21876 /* Read a constant value from an attribute. Either set *VALUE, or if
21877 the value does not fit in *VALUE, set *BYTES - either already
21878 allocated on the objfile obstack, or newly allocated on OBSTACK,
21879 or, set *BATON, if we translated the constant to a location
21880 expression. */
21881
21882 static void
21883 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21884 const char *name, struct obstack *obstack,
21885 struct dwarf2_cu *cu,
21886 LONGEST *value, const gdb_byte **bytes,
21887 struct dwarf2_locexpr_baton **baton)
21888 {
21889 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21890 struct comp_unit_head *cu_header = &cu->header;
21891 struct dwarf_block *blk;
21892 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21893 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21894
21895 *value = 0;
21896 *bytes = NULL;
21897 *baton = NULL;
21898
21899 switch (attr->form)
21900 {
21901 case DW_FORM_addr:
21902 case DW_FORM_addrx:
21903 case DW_FORM_GNU_addr_index:
21904 {
21905 gdb_byte *data;
21906
21907 if (TYPE_LENGTH (type) != cu_header->addr_size)
21908 dwarf2_const_value_length_mismatch_complaint (name,
21909 cu_header->addr_size,
21910 TYPE_LENGTH (type));
21911 /* Symbols of this form are reasonably rare, so we just
21912 piggyback on the existing location code rather than writing
21913 a new implementation of symbol_computed_ops. */
21914 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21915 (*baton)->per_cu = cu->per_cu;
21916 gdb_assert ((*baton)->per_cu);
21917
21918 (*baton)->size = 2 + cu_header->addr_size;
21919 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21920 (*baton)->data = data;
21921
21922 data[0] = DW_OP_addr;
21923 store_unsigned_integer (&data[1], cu_header->addr_size,
21924 byte_order, DW_ADDR (attr));
21925 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21926 }
21927 break;
21928 case DW_FORM_string:
21929 case DW_FORM_strp:
21930 case DW_FORM_strx:
21931 case DW_FORM_GNU_str_index:
21932 case DW_FORM_GNU_strp_alt:
21933 /* DW_STRING is already allocated on the objfile obstack, point
21934 directly to it. */
21935 *bytes = (const gdb_byte *) DW_STRING (attr);
21936 break;
21937 case DW_FORM_block1:
21938 case DW_FORM_block2:
21939 case DW_FORM_block4:
21940 case DW_FORM_block:
21941 case DW_FORM_exprloc:
21942 case DW_FORM_data16:
21943 blk = DW_BLOCK (attr);
21944 if (TYPE_LENGTH (type) != blk->size)
21945 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21946 TYPE_LENGTH (type));
21947 *bytes = blk->data;
21948 break;
21949
21950 /* The DW_AT_const_value attributes are supposed to carry the
21951 symbol's value "represented as it would be on the target
21952 architecture." By the time we get here, it's already been
21953 converted to host endianness, so we just need to sign- or
21954 zero-extend it as appropriate. */
21955 case DW_FORM_data1:
21956 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21957 break;
21958 case DW_FORM_data2:
21959 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21960 break;
21961 case DW_FORM_data4:
21962 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21963 break;
21964 case DW_FORM_data8:
21965 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21966 break;
21967
21968 case DW_FORM_sdata:
21969 case DW_FORM_implicit_const:
21970 *value = DW_SND (attr);
21971 break;
21972
21973 case DW_FORM_udata:
21974 *value = DW_UNSND (attr);
21975 break;
21976
21977 default:
21978 complaint (_("unsupported const value attribute form: '%s'"),
21979 dwarf_form_name (attr->form));
21980 *value = 0;
21981 break;
21982 }
21983 }
21984
21985
21986 /* Copy constant value from an attribute to a symbol. */
21987
21988 static void
21989 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21990 struct dwarf2_cu *cu)
21991 {
21992 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21993 LONGEST value;
21994 const gdb_byte *bytes;
21995 struct dwarf2_locexpr_baton *baton;
21996
21997 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21998 SYMBOL_PRINT_NAME (sym),
21999 &objfile->objfile_obstack, cu,
22000 &value, &bytes, &baton);
22001
22002 if (baton != NULL)
22003 {
22004 SYMBOL_LOCATION_BATON (sym) = baton;
22005 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22006 }
22007 else if (bytes != NULL)
22008 {
22009 SYMBOL_VALUE_BYTES (sym) = bytes;
22010 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22011 }
22012 else
22013 {
22014 SYMBOL_VALUE (sym) = value;
22015 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22016 }
22017 }
22018
22019 /* Return the type of the die in question using its DW_AT_type attribute. */
22020
22021 static struct type *
22022 die_type (struct die_info *die, struct dwarf2_cu *cu)
22023 {
22024 struct attribute *type_attr;
22025
22026 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22027 if (!type_attr)
22028 {
22029 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22030 /* A missing DW_AT_type represents a void type. */
22031 return objfile_type (objfile)->builtin_void;
22032 }
22033
22034 return lookup_die_type (die, type_attr, cu);
22035 }
22036
22037 /* True iff CU's producer generates GNAT Ada auxiliary information
22038 that allows to find parallel types through that information instead
22039 of having to do expensive parallel lookups by type name. */
22040
22041 static int
22042 need_gnat_info (struct dwarf2_cu *cu)
22043 {
22044 /* Assume that the Ada compiler was GNAT, which always produces
22045 the auxiliary information. */
22046 return (cu->language == language_ada);
22047 }
22048
22049 /* Return the auxiliary type of the die in question using its
22050 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22051 attribute is not present. */
22052
22053 static struct type *
22054 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22055 {
22056 struct attribute *type_attr;
22057
22058 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22059 if (!type_attr)
22060 return NULL;
22061
22062 return lookup_die_type (die, type_attr, cu);
22063 }
22064
22065 /* If DIE has a descriptive_type attribute, then set the TYPE's
22066 descriptive type accordingly. */
22067
22068 static void
22069 set_descriptive_type (struct type *type, struct die_info *die,
22070 struct dwarf2_cu *cu)
22071 {
22072 struct type *descriptive_type = die_descriptive_type (die, cu);
22073
22074 if (descriptive_type)
22075 {
22076 ALLOCATE_GNAT_AUX_TYPE (type);
22077 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22078 }
22079 }
22080
22081 /* Return the containing type of the die in question using its
22082 DW_AT_containing_type attribute. */
22083
22084 static struct type *
22085 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22086 {
22087 struct attribute *type_attr;
22088 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22089
22090 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22091 if (!type_attr)
22092 error (_("Dwarf Error: Problem turning containing type into gdb type "
22093 "[in module %s]"), objfile_name (objfile));
22094
22095 return lookup_die_type (die, type_attr, cu);
22096 }
22097
22098 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22099
22100 static struct type *
22101 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22102 {
22103 struct dwarf2_per_objfile *dwarf2_per_objfile
22104 = cu->per_cu->dwarf2_per_objfile;
22105 struct objfile *objfile = dwarf2_per_objfile->objfile;
22106 char *saved;
22107
22108 std::string message
22109 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22110 objfile_name (objfile),
22111 sect_offset_str (cu->header.sect_off),
22112 sect_offset_str (die->sect_off));
22113 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22114 message.c_str (), message.length ());
22115
22116 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22117 }
22118
22119 /* Look up the type of DIE in CU using its type attribute ATTR.
22120 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22121 DW_AT_containing_type.
22122 If there is no type substitute an error marker. */
22123
22124 static struct type *
22125 lookup_die_type (struct die_info *die, const struct attribute *attr,
22126 struct dwarf2_cu *cu)
22127 {
22128 struct dwarf2_per_objfile *dwarf2_per_objfile
22129 = cu->per_cu->dwarf2_per_objfile;
22130 struct objfile *objfile = dwarf2_per_objfile->objfile;
22131 struct type *this_type;
22132
22133 gdb_assert (attr->name == DW_AT_type
22134 || attr->name == DW_AT_GNAT_descriptive_type
22135 || attr->name == DW_AT_containing_type);
22136
22137 /* First see if we have it cached. */
22138
22139 if (attr->form == DW_FORM_GNU_ref_alt)
22140 {
22141 struct dwarf2_per_cu_data *per_cu;
22142 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22143
22144 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22145 dwarf2_per_objfile);
22146 this_type = get_die_type_at_offset (sect_off, per_cu);
22147 }
22148 else if (attr_form_is_ref (attr))
22149 {
22150 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22151
22152 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22153 }
22154 else if (attr->form == DW_FORM_ref_sig8)
22155 {
22156 ULONGEST signature = DW_SIGNATURE (attr);
22157
22158 return get_signatured_type (die, signature, cu);
22159 }
22160 else
22161 {
22162 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22163 " at %s [in module %s]"),
22164 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22165 objfile_name (objfile));
22166 return build_error_marker_type (cu, die);
22167 }
22168
22169 /* If not cached we need to read it in. */
22170
22171 if (this_type == NULL)
22172 {
22173 struct die_info *type_die = NULL;
22174 struct dwarf2_cu *type_cu = cu;
22175
22176 if (attr_form_is_ref (attr))
22177 type_die = follow_die_ref (die, attr, &type_cu);
22178 if (type_die == NULL)
22179 return build_error_marker_type (cu, die);
22180 /* If we find the type now, it's probably because the type came
22181 from an inter-CU reference and the type's CU got expanded before
22182 ours. */
22183 this_type = read_type_die (type_die, type_cu);
22184 }
22185
22186 /* If we still don't have a type use an error marker. */
22187
22188 if (this_type == NULL)
22189 return build_error_marker_type (cu, die);
22190
22191 return this_type;
22192 }
22193
22194 /* Return the type in DIE, CU.
22195 Returns NULL for invalid types.
22196
22197 This first does a lookup in die_type_hash,
22198 and only reads the die in if necessary.
22199
22200 NOTE: This can be called when reading in partial or full symbols. */
22201
22202 static struct type *
22203 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22204 {
22205 struct type *this_type;
22206
22207 this_type = get_die_type (die, cu);
22208 if (this_type)
22209 return this_type;
22210
22211 return read_type_die_1 (die, cu);
22212 }
22213
22214 /* Read the type in DIE, CU.
22215 Returns NULL for invalid types. */
22216
22217 static struct type *
22218 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22219 {
22220 struct type *this_type = NULL;
22221
22222 switch (die->tag)
22223 {
22224 case DW_TAG_class_type:
22225 case DW_TAG_interface_type:
22226 case DW_TAG_structure_type:
22227 case DW_TAG_union_type:
22228 this_type = read_structure_type (die, cu);
22229 break;
22230 case DW_TAG_enumeration_type:
22231 this_type = read_enumeration_type (die, cu);
22232 break;
22233 case DW_TAG_subprogram:
22234 case DW_TAG_subroutine_type:
22235 case DW_TAG_inlined_subroutine:
22236 this_type = read_subroutine_type (die, cu);
22237 break;
22238 case DW_TAG_array_type:
22239 this_type = read_array_type (die, cu);
22240 break;
22241 case DW_TAG_set_type:
22242 this_type = read_set_type (die, cu);
22243 break;
22244 case DW_TAG_pointer_type:
22245 this_type = read_tag_pointer_type (die, cu);
22246 break;
22247 case DW_TAG_ptr_to_member_type:
22248 this_type = read_tag_ptr_to_member_type (die, cu);
22249 break;
22250 case DW_TAG_reference_type:
22251 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22252 break;
22253 case DW_TAG_rvalue_reference_type:
22254 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22255 break;
22256 case DW_TAG_const_type:
22257 this_type = read_tag_const_type (die, cu);
22258 break;
22259 case DW_TAG_volatile_type:
22260 this_type = read_tag_volatile_type (die, cu);
22261 break;
22262 case DW_TAG_restrict_type:
22263 this_type = read_tag_restrict_type (die, cu);
22264 break;
22265 case DW_TAG_string_type:
22266 this_type = read_tag_string_type (die, cu);
22267 break;
22268 case DW_TAG_typedef:
22269 this_type = read_typedef (die, cu);
22270 break;
22271 case DW_TAG_subrange_type:
22272 this_type = read_subrange_type (die, cu);
22273 break;
22274 case DW_TAG_base_type:
22275 this_type = read_base_type (die, cu);
22276 break;
22277 case DW_TAG_unspecified_type:
22278 this_type = read_unspecified_type (die, cu);
22279 break;
22280 case DW_TAG_namespace:
22281 this_type = read_namespace_type (die, cu);
22282 break;
22283 case DW_TAG_module:
22284 this_type = read_module_type (die, cu);
22285 break;
22286 case DW_TAG_atomic_type:
22287 this_type = read_tag_atomic_type (die, cu);
22288 break;
22289 default:
22290 complaint (_("unexpected tag in read_type_die: '%s'"),
22291 dwarf_tag_name (die->tag));
22292 break;
22293 }
22294
22295 return this_type;
22296 }
22297
22298 /* See if we can figure out if the class lives in a namespace. We do
22299 this by looking for a member function; its demangled name will
22300 contain namespace info, if there is any.
22301 Return the computed name or NULL.
22302 Space for the result is allocated on the objfile's obstack.
22303 This is the full-die version of guess_partial_die_structure_name.
22304 In this case we know DIE has no useful parent. */
22305
22306 static char *
22307 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22308 {
22309 struct die_info *spec_die;
22310 struct dwarf2_cu *spec_cu;
22311 struct die_info *child;
22312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22313
22314 spec_cu = cu;
22315 spec_die = die_specification (die, &spec_cu);
22316 if (spec_die != NULL)
22317 {
22318 die = spec_die;
22319 cu = spec_cu;
22320 }
22321
22322 for (child = die->child;
22323 child != NULL;
22324 child = child->sibling)
22325 {
22326 if (child->tag == DW_TAG_subprogram)
22327 {
22328 const char *linkage_name = dw2_linkage_name (child, cu);
22329
22330 if (linkage_name != NULL)
22331 {
22332 char *actual_name
22333 = language_class_name_from_physname (cu->language_defn,
22334 linkage_name);
22335 char *name = NULL;
22336
22337 if (actual_name != NULL)
22338 {
22339 const char *die_name = dwarf2_name (die, cu);
22340
22341 if (die_name != NULL
22342 && strcmp (die_name, actual_name) != 0)
22343 {
22344 /* Strip off the class name from the full name.
22345 We want the prefix. */
22346 int die_name_len = strlen (die_name);
22347 int actual_name_len = strlen (actual_name);
22348
22349 /* Test for '::' as a sanity check. */
22350 if (actual_name_len > die_name_len + 2
22351 && actual_name[actual_name_len
22352 - die_name_len - 1] == ':')
22353 name = (char *) obstack_copy0 (
22354 &objfile->per_bfd->storage_obstack,
22355 actual_name, actual_name_len - die_name_len - 2);
22356 }
22357 }
22358 xfree (actual_name);
22359 return name;
22360 }
22361 }
22362 }
22363
22364 return NULL;
22365 }
22366
22367 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22368 prefix part in such case. See
22369 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22370
22371 static const char *
22372 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22373 {
22374 struct attribute *attr;
22375 const char *base;
22376
22377 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22378 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22379 return NULL;
22380
22381 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22382 return NULL;
22383
22384 attr = dw2_linkage_name_attr (die, cu);
22385 if (attr == NULL || DW_STRING (attr) == NULL)
22386 return NULL;
22387
22388 /* dwarf2_name had to be already called. */
22389 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22390
22391 /* Strip the base name, keep any leading namespaces/classes. */
22392 base = strrchr (DW_STRING (attr), ':');
22393 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22394 return "";
22395
22396 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22397 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22398 DW_STRING (attr),
22399 &base[-1] - DW_STRING (attr));
22400 }
22401
22402 /* Return the name of the namespace/class that DIE is defined within,
22403 or "" if we can't tell. The caller should not xfree the result.
22404
22405 For example, if we're within the method foo() in the following
22406 code:
22407
22408 namespace N {
22409 class C {
22410 void foo () {
22411 }
22412 };
22413 }
22414
22415 then determine_prefix on foo's die will return "N::C". */
22416
22417 static const char *
22418 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22419 {
22420 struct dwarf2_per_objfile *dwarf2_per_objfile
22421 = cu->per_cu->dwarf2_per_objfile;
22422 struct die_info *parent, *spec_die;
22423 struct dwarf2_cu *spec_cu;
22424 struct type *parent_type;
22425 const char *retval;
22426
22427 if (cu->language != language_cplus
22428 && cu->language != language_fortran && cu->language != language_d
22429 && cu->language != language_rust)
22430 return "";
22431
22432 retval = anonymous_struct_prefix (die, cu);
22433 if (retval)
22434 return retval;
22435
22436 /* We have to be careful in the presence of DW_AT_specification.
22437 For example, with GCC 3.4, given the code
22438
22439 namespace N {
22440 void foo() {
22441 // Definition of N::foo.
22442 }
22443 }
22444
22445 then we'll have a tree of DIEs like this:
22446
22447 1: DW_TAG_compile_unit
22448 2: DW_TAG_namespace // N
22449 3: DW_TAG_subprogram // declaration of N::foo
22450 4: DW_TAG_subprogram // definition of N::foo
22451 DW_AT_specification // refers to die #3
22452
22453 Thus, when processing die #4, we have to pretend that we're in
22454 the context of its DW_AT_specification, namely the contex of die
22455 #3. */
22456 spec_cu = cu;
22457 spec_die = die_specification (die, &spec_cu);
22458 if (spec_die == NULL)
22459 parent = die->parent;
22460 else
22461 {
22462 parent = spec_die->parent;
22463 cu = spec_cu;
22464 }
22465
22466 if (parent == NULL)
22467 return "";
22468 else if (parent->building_fullname)
22469 {
22470 const char *name;
22471 const char *parent_name;
22472
22473 /* It has been seen on RealView 2.2 built binaries,
22474 DW_TAG_template_type_param types actually _defined_ as
22475 children of the parent class:
22476
22477 enum E {};
22478 template class <class Enum> Class{};
22479 Class<enum E> class_e;
22480
22481 1: DW_TAG_class_type (Class)
22482 2: DW_TAG_enumeration_type (E)
22483 3: DW_TAG_enumerator (enum1:0)
22484 3: DW_TAG_enumerator (enum2:1)
22485 ...
22486 2: DW_TAG_template_type_param
22487 DW_AT_type DW_FORM_ref_udata (E)
22488
22489 Besides being broken debug info, it can put GDB into an
22490 infinite loop. Consider:
22491
22492 When we're building the full name for Class<E>, we'll start
22493 at Class, and go look over its template type parameters,
22494 finding E. We'll then try to build the full name of E, and
22495 reach here. We're now trying to build the full name of E,
22496 and look over the parent DIE for containing scope. In the
22497 broken case, if we followed the parent DIE of E, we'd again
22498 find Class, and once again go look at its template type
22499 arguments, etc., etc. Simply don't consider such parent die
22500 as source-level parent of this die (it can't be, the language
22501 doesn't allow it), and break the loop here. */
22502 name = dwarf2_name (die, cu);
22503 parent_name = dwarf2_name (parent, cu);
22504 complaint (_("template param type '%s' defined within parent '%s'"),
22505 name ? name : "<unknown>",
22506 parent_name ? parent_name : "<unknown>");
22507 return "";
22508 }
22509 else
22510 switch (parent->tag)
22511 {
22512 case DW_TAG_namespace:
22513 parent_type = read_type_die (parent, cu);
22514 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22515 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22516 Work around this problem here. */
22517 if (cu->language == language_cplus
22518 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22519 return "";
22520 /* We give a name to even anonymous namespaces. */
22521 return TYPE_NAME (parent_type);
22522 case DW_TAG_class_type:
22523 case DW_TAG_interface_type:
22524 case DW_TAG_structure_type:
22525 case DW_TAG_union_type:
22526 case DW_TAG_module:
22527 parent_type = read_type_die (parent, cu);
22528 if (TYPE_NAME (parent_type) != NULL)
22529 return TYPE_NAME (parent_type);
22530 else
22531 /* An anonymous structure is only allowed non-static data
22532 members; no typedefs, no member functions, et cetera.
22533 So it does not need a prefix. */
22534 return "";
22535 case DW_TAG_compile_unit:
22536 case DW_TAG_partial_unit:
22537 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22538 if (cu->language == language_cplus
22539 && !dwarf2_per_objfile->types.empty ()
22540 && die->child != NULL
22541 && (die->tag == DW_TAG_class_type
22542 || die->tag == DW_TAG_structure_type
22543 || die->tag == DW_TAG_union_type))
22544 {
22545 char *name = guess_full_die_structure_name (die, cu);
22546 if (name != NULL)
22547 return name;
22548 }
22549 return "";
22550 case DW_TAG_enumeration_type:
22551 parent_type = read_type_die (parent, cu);
22552 if (TYPE_DECLARED_CLASS (parent_type))
22553 {
22554 if (TYPE_NAME (parent_type) != NULL)
22555 return TYPE_NAME (parent_type);
22556 return "";
22557 }
22558 /* Fall through. */
22559 default:
22560 return determine_prefix (parent, cu);
22561 }
22562 }
22563
22564 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22565 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22566 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22567 an obconcat, otherwise allocate storage for the result. The CU argument is
22568 used to determine the language and hence, the appropriate separator. */
22569
22570 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22571
22572 static char *
22573 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22574 int physname, struct dwarf2_cu *cu)
22575 {
22576 const char *lead = "";
22577 const char *sep;
22578
22579 if (suffix == NULL || suffix[0] == '\0'
22580 || prefix == NULL || prefix[0] == '\0')
22581 sep = "";
22582 else if (cu->language == language_d)
22583 {
22584 /* For D, the 'main' function could be defined in any module, but it
22585 should never be prefixed. */
22586 if (strcmp (suffix, "D main") == 0)
22587 {
22588 prefix = "";
22589 sep = "";
22590 }
22591 else
22592 sep = ".";
22593 }
22594 else if (cu->language == language_fortran && physname)
22595 {
22596 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22597 DW_AT_MIPS_linkage_name is preferred and used instead. */
22598
22599 lead = "__";
22600 sep = "_MOD_";
22601 }
22602 else
22603 sep = "::";
22604
22605 if (prefix == NULL)
22606 prefix = "";
22607 if (suffix == NULL)
22608 suffix = "";
22609
22610 if (obs == NULL)
22611 {
22612 char *retval
22613 = ((char *)
22614 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22615
22616 strcpy (retval, lead);
22617 strcat (retval, prefix);
22618 strcat (retval, sep);
22619 strcat (retval, suffix);
22620 return retval;
22621 }
22622 else
22623 {
22624 /* We have an obstack. */
22625 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22626 }
22627 }
22628
22629 /* Return sibling of die, NULL if no sibling. */
22630
22631 static struct die_info *
22632 sibling_die (struct die_info *die)
22633 {
22634 return die->sibling;
22635 }
22636
22637 /* Get name of a die, return NULL if not found. */
22638
22639 static const char *
22640 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22641 struct obstack *obstack)
22642 {
22643 if (name && cu->language == language_cplus)
22644 {
22645 std::string canon_name = cp_canonicalize_string (name);
22646
22647 if (!canon_name.empty ())
22648 {
22649 if (canon_name != name)
22650 name = (const char *) obstack_copy0 (obstack,
22651 canon_name.c_str (),
22652 canon_name.length ());
22653 }
22654 }
22655
22656 return name;
22657 }
22658
22659 /* Get name of a die, return NULL if not found.
22660 Anonymous namespaces are converted to their magic string. */
22661
22662 static const char *
22663 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22664 {
22665 struct attribute *attr;
22666 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22667
22668 attr = dwarf2_attr (die, DW_AT_name, cu);
22669 if ((!attr || !DW_STRING (attr))
22670 && die->tag != DW_TAG_namespace
22671 && die->tag != DW_TAG_class_type
22672 && die->tag != DW_TAG_interface_type
22673 && die->tag != DW_TAG_structure_type
22674 && die->tag != DW_TAG_union_type)
22675 return NULL;
22676
22677 switch (die->tag)
22678 {
22679 case DW_TAG_compile_unit:
22680 case DW_TAG_partial_unit:
22681 /* Compilation units have a DW_AT_name that is a filename, not
22682 a source language identifier. */
22683 case DW_TAG_enumeration_type:
22684 case DW_TAG_enumerator:
22685 /* These tags always have simple identifiers already; no need
22686 to canonicalize them. */
22687 return DW_STRING (attr);
22688
22689 case DW_TAG_namespace:
22690 if (attr != NULL && DW_STRING (attr) != NULL)
22691 return DW_STRING (attr);
22692 return CP_ANONYMOUS_NAMESPACE_STR;
22693
22694 case DW_TAG_class_type:
22695 case DW_TAG_interface_type:
22696 case DW_TAG_structure_type:
22697 case DW_TAG_union_type:
22698 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22699 structures or unions. These were of the form "._%d" in GCC 4.1,
22700 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22701 and GCC 4.4. We work around this problem by ignoring these. */
22702 if (attr && DW_STRING (attr)
22703 && (startswith (DW_STRING (attr), "._")
22704 || startswith (DW_STRING (attr), "<anonymous")))
22705 return NULL;
22706
22707 /* GCC might emit a nameless typedef that has a linkage name. See
22708 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22709 if (!attr || DW_STRING (attr) == NULL)
22710 {
22711 char *demangled = NULL;
22712
22713 attr = dw2_linkage_name_attr (die, cu);
22714 if (attr == NULL || DW_STRING (attr) == NULL)
22715 return NULL;
22716
22717 /* Avoid demangling DW_STRING (attr) the second time on a second
22718 call for the same DIE. */
22719 if (!DW_STRING_IS_CANONICAL (attr))
22720 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22721
22722 if (demangled)
22723 {
22724 const char *base;
22725
22726 /* FIXME: we already did this for the partial symbol... */
22727 DW_STRING (attr)
22728 = ((const char *)
22729 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22730 demangled, strlen (demangled)));
22731 DW_STRING_IS_CANONICAL (attr) = 1;
22732 xfree (demangled);
22733
22734 /* Strip any leading namespaces/classes, keep only the base name.
22735 DW_AT_name for named DIEs does not contain the prefixes. */
22736 base = strrchr (DW_STRING (attr), ':');
22737 if (base && base > DW_STRING (attr) && base[-1] == ':')
22738 return &base[1];
22739 else
22740 return DW_STRING (attr);
22741 }
22742 }
22743 break;
22744
22745 default:
22746 break;
22747 }
22748
22749 if (!DW_STRING_IS_CANONICAL (attr))
22750 {
22751 DW_STRING (attr)
22752 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22753 &objfile->per_bfd->storage_obstack);
22754 DW_STRING_IS_CANONICAL (attr) = 1;
22755 }
22756 return DW_STRING (attr);
22757 }
22758
22759 /* Return the die that this die in an extension of, or NULL if there
22760 is none. *EXT_CU is the CU containing DIE on input, and the CU
22761 containing the return value on output. */
22762
22763 static struct die_info *
22764 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22765 {
22766 struct attribute *attr;
22767
22768 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22769 if (attr == NULL)
22770 return NULL;
22771
22772 return follow_die_ref (die, attr, ext_cu);
22773 }
22774
22775 /* A convenience function that returns an "unknown" DWARF name,
22776 including the value of V. STR is the name of the entity being
22777 printed, e.g., "TAG". */
22778
22779 static const char *
22780 dwarf_unknown (const char *str, unsigned v)
22781 {
22782 char *cell = get_print_cell ();
22783 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22784 return cell;
22785 }
22786
22787 /* Convert a DIE tag into its string name. */
22788
22789 static const char *
22790 dwarf_tag_name (unsigned tag)
22791 {
22792 const char *name = get_DW_TAG_name (tag);
22793
22794 if (name == NULL)
22795 return dwarf_unknown ("TAG", tag);
22796
22797 return name;
22798 }
22799
22800 /* Convert a DWARF attribute code into its string name. */
22801
22802 static const char *
22803 dwarf_attr_name (unsigned attr)
22804 {
22805 const char *name;
22806
22807 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22808 if (attr == DW_AT_MIPS_fde)
22809 return "DW_AT_MIPS_fde";
22810 #else
22811 if (attr == DW_AT_HP_block_index)
22812 return "DW_AT_HP_block_index";
22813 #endif
22814
22815 name = get_DW_AT_name (attr);
22816
22817 if (name == NULL)
22818 return dwarf_unknown ("AT", attr);
22819
22820 return name;
22821 }
22822
22823 /* Convert a DWARF value form code into its string name. */
22824
22825 static const char *
22826 dwarf_form_name (unsigned form)
22827 {
22828 const char *name = get_DW_FORM_name (form);
22829
22830 if (name == NULL)
22831 return dwarf_unknown ("FORM", form);
22832
22833 return name;
22834 }
22835
22836 static const char *
22837 dwarf_bool_name (unsigned mybool)
22838 {
22839 if (mybool)
22840 return "TRUE";
22841 else
22842 return "FALSE";
22843 }
22844
22845 /* Convert a DWARF type code into its string name. */
22846
22847 static const char *
22848 dwarf_type_encoding_name (unsigned enc)
22849 {
22850 const char *name = get_DW_ATE_name (enc);
22851
22852 if (name == NULL)
22853 return dwarf_unknown ("ATE", enc);
22854
22855 return name;
22856 }
22857
22858 static void
22859 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22860 {
22861 unsigned int i;
22862
22863 print_spaces (indent, f);
22864 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22865 dwarf_tag_name (die->tag), die->abbrev,
22866 sect_offset_str (die->sect_off));
22867
22868 if (die->parent != NULL)
22869 {
22870 print_spaces (indent, f);
22871 fprintf_unfiltered (f, " parent at offset: %s\n",
22872 sect_offset_str (die->parent->sect_off));
22873 }
22874
22875 print_spaces (indent, f);
22876 fprintf_unfiltered (f, " has children: %s\n",
22877 dwarf_bool_name (die->child != NULL));
22878
22879 print_spaces (indent, f);
22880 fprintf_unfiltered (f, " attributes:\n");
22881
22882 for (i = 0; i < die->num_attrs; ++i)
22883 {
22884 print_spaces (indent, f);
22885 fprintf_unfiltered (f, " %s (%s) ",
22886 dwarf_attr_name (die->attrs[i].name),
22887 dwarf_form_name (die->attrs[i].form));
22888
22889 switch (die->attrs[i].form)
22890 {
22891 case DW_FORM_addr:
22892 case DW_FORM_addrx:
22893 case DW_FORM_GNU_addr_index:
22894 fprintf_unfiltered (f, "address: ");
22895 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22896 break;
22897 case DW_FORM_block2:
22898 case DW_FORM_block4:
22899 case DW_FORM_block:
22900 case DW_FORM_block1:
22901 fprintf_unfiltered (f, "block: size %s",
22902 pulongest (DW_BLOCK (&die->attrs[i])->size));
22903 break;
22904 case DW_FORM_exprloc:
22905 fprintf_unfiltered (f, "expression: size %s",
22906 pulongest (DW_BLOCK (&die->attrs[i])->size));
22907 break;
22908 case DW_FORM_data16:
22909 fprintf_unfiltered (f, "constant of 16 bytes");
22910 break;
22911 case DW_FORM_ref_addr:
22912 fprintf_unfiltered (f, "ref address: ");
22913 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22914 break;
22915 case DW_FORM_GNU_ref_alt:
22916 fprintf_unfiltered (f, "alt ref address: ");
22917 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22918 break;
22919 case DW_FORM_ref1:
22920 case DW_FORM_ref2:
22921 case DW_FORM_ref4:
22922 case DW_FORM_ref8:
22923 case DW_FORM_ref_udata:
22924 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22925 (long) (DW_UNSND (&die->attrs[i])));
22926 break;
22927 case DW_FORM_data1:
22928 case DW_FORM_data2:
22929 case DW_FORM_data4:
22930 case DW_FORM_data8:
22931 case DW_FORM_udata:
22932 case DW_FORM_sdata:
22933 fprintf_unfiltered (f, "constant: %s",
22934 pulongest (DW_UNSND (&die->attrs[i])));
22935 break;
22936 case DW_FORM_sec_offset:
22937 fprintf_unfiltered (f, "section offset: %s",
22938 pulongest (DW_UNSND (&die->attrs[i])));
22939 break;
22940 case DW_FORM_ref_sig8:
22941 fprintf_unfiltered (f, "signature: %s",
22942 hex_string (DW_SIGNATURE (&die->attrs[i])));
22943 break;
22944 case DW_FORM_string:
22945 case DW_FORM_strp:
22946 case DW_FORM_line_strp:
22947 case DW_FORM_strx:
22948 case DW_FORM_GNU_str_index:
22949 case DW_FORM_GNU_strp_alt:
22950 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22951 DW_STRING (&die->attrs[i])
22952 ? DW_STRING (&die->attrs[i]) : "",
22953 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22954 break;
22955 case DW_FORM_flag:
22956 if (DW_UNSND (&die->attrs[i]))
22957 fprintf_unfiltered (f, "flag: TRUE");
22958 else
22959 fprintf_unfiltered (f, "flag: FALSE");
22960 break;
22961 case DW_FORM_flag_present:
22962 fprintf_unfiltered (f, "flag: TRUE");
22963 break;
22964 case DW_FORM_indirect:
22965 /* The reader will have reduced the indirect form to
22966 the "base form" so this form should not occur. */
22967 fprintf_unfiltered (f,
22968 "unexpected attribute form: DW_FORM_indirect");
22969 break;
22970 case DW_FORM_implicit_const:
22971 fprintf_unfiltered (f, "constant: %s",
22972 plongest (DW_SND (&die->attrs[i])));
22973 break;
22974 default:
22975 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22976 die->attrs[i].form);
22977 break;
22978 }
22979 fprintf_unfiltered (f, "\n");
22980 }
22981 }
22982
22983 static void
22984 dump_die_for_error (struct die_info *die)
22985 {
22986 dump_die_shallow (gdb_stderr, 0, die);
22987 }
22988
22989 static void
22990 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22991 {
22992 int indent = level * 4;
22993
22994 gdb_assert (die != NULL);
22995
22996 if (level >= max_level)
22997 return;
22998
22999 dump_die_shallow (f, indent, die);
23000
23001 if (die->child != NULL)
23002 {
23003 print_spaces (indent, f);
23004 fprintf_unfiltered (f, " Children:");
23005 if (level + 1 < max_level)
23006 {
23007 fprintf_unfiltered (f, "\n");
23008 dump_die_1 (f, level + 1, max_level, die->child);
23009 }
23010 else
23011 {
23012 fprintf_unfiltered (f,
23013 " [not printed, max nesting level reached]\n");
23014 }
23015 }
23016
23017 if (die->sibling != NULL && level > 0)
23018 {
23019 dump_die_1 (f, level, max_level, die->sibling);
23020 }
23021 }
23022
23023 /* This is called from the pdie macro in gdbinit.in.
23024 It's not static so gcc will keep a copy callable from gdb. */
23025
23026 void
23027 dump_die (struct die_info *die, int max_level)
23028 {
23029 dump_die_1 (gdb_stdlog, 0, max_level, die);
23030 }
23031
23032 static void
23033 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23034 {
23035 void **slot;
23036
23037 slot = htab_find_slot_with_hash (cu->die_hash, die,
23038 to_underlying (die->sect_off),
23039 INSERT);
23040
23041 *slot = die;
23042 }
23043
23044 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23045 required kind. */
23046
23047 static sect_offset
23048 dwarf2_get_ref_die_offset (const struct attribute *attr)
23049 {
23050 if (attr_form_is_ref (attr))
23051 return (sect_offset) DW_UNSND (attr);
23052
23053 complaint (_("unsupported die ref attribute form: '%s'"),
23054 dwarf_form_name (attr->form));
23055 return {};
23056 }
23057
23058 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23059 * the value held by the attribute is not constant. */
23060
23061 static LONGEST
23062 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23063 {
23064 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23065 return DW_SND (attr);
23066 else if (attr->form == DW_FORM_udata
23067 || attr->form == DW_FORM_data1
23068 || attr->form == DW_FORM_data2
23069 || attr->form == DW_FORM_data4
23070 || attr->form == DW_FORM_data8)
23071 return DW_UNSND (attr);
23072 else
23073 {
23074 /* For DW_FORM_data16 see attr_form_is_constant. */
23075 complaint (_("Attribute value is not a constant (%s)"),
23076 dwarf_form_name (attr->form));
23077 return default_value;
23078 }
23079 }
23080
23081 /* Follow reference or signature attribute ATTR of SRC_DIE.
23082 On entry *REF_CU is the CU of SRC_DIE.
23083 On exit *REF_CU is the CU of the result. */
23084
23085 static struct die_info *
23086 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23087 struct dwarf2_cu **ref_cu)
23088 {
23089 struct die_info *die;
23090
23091 if (attr_form_is_ref (attr))
23092 die = follow_die_ref (src_die, attr, ref_cu);
23093 else if (attr->form == DW_FORM_ref_sig8)
23094 die = follow_die_sig (src_die, attr, ref_cu);
23095 else
23096 {
23097 dump_die_for_error (src_die);
23098 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23099 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23100 }
23101
23102 return die;
23103 }
23104
23105 /* Follow reference OFFSET.
23106 On entry *REF_CU is the CU of the source die referencing OFFSET.
23107 On exit *REF_CU is the CU of the result.
23108 Returns NULL if OFFSET is invalid. */
23109
23110 static struct die_info *
23111 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23112 struct dwarf2_cu **ref_cu)
23113 {
23114 struct die_info temp_die;
23115 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23116 struct dwarf2_per_objfile *dwarf2_per_objfile
23117 = cu->per_cu->dwarf2_per_objfile;
23118
23119 gdb_assert (cu->per_cu != NULL);
23120
23121 target_cu = cu;
23122
23123 if (cu->per_cu->is_debug_types)
23124 {
23125 /* .debug_types CUs cannot reference anything outside their CU.
23126 If they need to, they have to reference a signatured type via
23127 DW_FORM_ref_sig8. */
23128 if (!offset_in_cu_p (&cu->header, sect_off))
23129 return NULL;
23130 }
23131 else if (offset_in_dwz != cu->per_cu->is_dwz
23132 || !offset_in_cu_p (&cu->header, sect_off))
23133 {
23134 struct dwarf2_per_cu_data *per_cu;
23135
23136 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23137 dwarf2_per_objfile);
23138
23139 /* If necessary, add it to the queue and load its DIEs. */
23140 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23141 load_full_comp_unit (per_cu, false, cu->language);
23142
23143 target_cu = per_cu->cu;
23144 }
23145 else if (cu->dies == NULL)
23146 {
23147 /* We're loading full DIEs during partial symbol reading. */
23148 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23149 load_full_comp_unit (cu->per_cu, false, language_minimal);
23150 }
23151
23152 *ref_cu = target_cu;
23153 temp_die.sect_off = sect_off;
23154
23155 if (target_cu != cu)
23156 target_cu->ancestor = cu;
23157
23158 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23159 &temp_die,
23160 to_underlying (sect_off));
23161 }
23162
23163 /* Follow reference attribute ATTR of SRC_DIE.
23164 On entry *REF_CU is the CU of SRC_DIE.
23165 On exit *REF_CU is the CU of the result. */
23166
23167 static struct die_info *
23168 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23169 struct dwarf2_cu **ref_cu)
23170 {
23171 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23172 struct dwarf2_cu *cu = *ref_cu;
23173 struct die_info *die;
23174
23175 die = follow_die_offset (sect_off,
23176 (attr->form == DW_FORM_GNU_ref_alt
23177 || cu->per_cu->is_dwz),
23178 ref_cu);
23179 if (!die)
23180 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23181 "at %s [in module %s]"),
23182 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23183 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23184
23185 return die;
23186 }
23187
23188 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23189 Returned value is intended for DW_OP_call*. Returned
23190 dwarf2_locexpr_baton->data has lifetime of
23191 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23192
23193 struct dwarf2_locexpr_baton
23194 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23195 struct dwarf2_per_cu_data *per_cu,
23196 CORE_ADDR (*get_frame_pc) (void *baton),
23197 void *baton, bool resolve_abstract_p)
23198 {
23199 struct dwarf2_cu *cu;
23200 struct die_info *die;
23201 struct attribute *attr;
23202 struct dwarf2_locexpr_baton retval;
23203 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23204 struct objfile *objfile = dwarf2_per_objfile->objfile;
23205
23206 if (per_cu->cu == NULL)
23207 load_cu (per_cu, false);
23208 cu = per_cu->cu;
23209 if (cu == NULL)
23210 {
23211 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23212 Instead just throw an error, not much else we can do. */
23213 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23214 sect_offset_str (sect_off), objfile_name (objfile));
23215 }
23216
23217 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23218 if (!die)
23219 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23220 sect_offset_str (sect_off), objfile_name (objfile));
23221
23222 attr = dwarf2_attr (die, DW_AT_location, cu);
23223 if (!attr && resolve_abstract_p
23224 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23225 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23226 {
23227 CORE_ADDR pc = (*get_frame_pc) (baton);
23228
23229 for (const auto &cand_off
23230 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23231 {
23232 struct dwarf2_cu *cand_cu = cu;
23233 struct die_info *cand
23234 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23235 if (!cand
23236 || !cand->parent
23237 || cand->parent->tag != DW_TAG_subprogram)
23238 continue;
23239
23240 CORE_ADDR pc_low, pc_high;
23241 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23242 if (pc_low == ((CORE_ADDR) -1)
23243 || !(pc_low <= pc && pc < pc_high))
23244 continue;
23245
23246 die = cand;
23247 attr = dwarf2_attr (die, DW_AT_location, cu);
23248 break;
23249 }
23250 }
23251
23252 if (!attr)
23253 {
23254 /* DWARF: "If there is no such attribute, then there is no effect.".
23255 DATA is ignored if SIZE is 0. */
23256
23257 retval.data = NULL;
23258 retval.size = 0;
23259 }
23260 else if (attr_form_is_section_offset (attr))
23261 {
23262 struct dwarf2_loclist_baton loclist_baton;
23263 CORE_ADDR pc = (*get_frame_pc) (baton);
23264 size_t size;
23265
23266 fill_in_loclist_baton (cu, &loclist_baton, attr);
23267
23268 retval.data = dwarf2_find_location_expression (&loclist_baton,
23269 &size, pc);
23270 retval.size = size;
23271 }
23272 else
23273 {
23274 if (!attr_form_is_block (attr))
23275 error (_("Dwarf Error: DIE at %s referenced in module %s "
23276 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23277 sect_offset_str (sect_off), objfile_name (objfile));
23278
23279 retval.data = DW_BLOCK (attr)->data;
23280 retval.size = DW_BLOCK (attr)->size;
23281 }
23282 retval.per_cu = cu->per_cu;
23283
23284 age_cached_comp_units (dwarf2_per_objfile);
23285
23286 return retval;
23287 }
23288
23289 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23290 offset. */
23291
23292 struct dwarf2_locexpr_baton
23293 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23294 struct dwarf2_per_cu_data *per_cu,
23295 CORE_ADDR (*get_frame_pc) (void *baton),
23296 void *baton)
23297 {
23298 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23299
23300 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23301 }
23302
23303 /* Write a constant of a given type as target-ordered bytes into
23304 OBSTACK. */
23305
23306 static const gdb_byte *
23307 write_constant_as_bytes (struct obstack *obstack,
23308 enum bfd_endian byte_order,
23309 struct type *type,
23310 ULONGEST value,
23311 LONGEST *len)
23312 {
23313 gdb_byte *result;
23314
23315 *len = TYPE_LENGTH (type);
23316 result = (gdb_byte *) obstack_alloc (obstack, *len);
23317 store_unsigned_integer (result, *len, byte_order, value);
23318
23319 return result;
23320 }
23321
23322 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23323 pointer to the constant bytes and set LEN to the length of the
23324 data. If memory is needed, allocate it on OBSTACK. If the DIE
23325 does not have a DW_AT_const_value, return NULL. */
23326
23327 const gdb_byte *
23328 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23329 struct dwarf2_per_cu_data *per_cu,
23330 struct obstack *obstack,
23331 LONGEST *len)
23332 {
23333 struct dwarf2_cu *cu;
23334 struct die_info *die;
23335 struct attribute *attr;
23336 const gdb_byte *result = NULL;
23337 struct type *type;
23338 LONGEST value;
23339 enum bfd_endian byte_order;
23340 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23341
23342 if (per_cu->cu == NULL)
23343 load_cu (per_cu, false);
23344 cu = per_cu->cu;
23345 if (cu == NULL)
23346 {
23347 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23348 Instead just throw an error, not much else we can do. */
23349 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23350 sect_offset_str (sect_off), objfile_name (objfile));
23351 }
23352
23353 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23354 if (!die)
23355 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23356 sect_offset_str (sect_off), objfile_name (objfile));
23357
23358 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23359 if (attr == NULL)
23360 return NULL;
23361
23362 byte_order = (bfd_big_endian (objfile->obfd)
23363 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23364
23365 switch (attr->form)
23366 {
23367 case DW_FORM_addr:
23368 case DW_FORM_addrx:
23369 case DW_FORM_GNU_addr_index:
23370 {
23371 gdb_byte *tem;
23372
23373 *len = cu->header.addr_size;
23374 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23375 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23376 result = tem;
23377 }
23378 break;
23379 case DW_FORM_string:
23380 case DW_FORM_strp:
23381 case DW_FORM_strx:
23382 case DW_FORM_GNU_str_index:
23383 case DW_FORM_GNU_strp_alt:
23384 /* DW_STRING is already allocated on the objfile obstack, point
23385 directly to it. */
23386 result = (const gdb_byte *) DW_STRING (attr);
23387 *len = strlen (DW_STRING (attr));
23388 break;
23389 case DW_FORM_block1:
23390 case DW_FORM_block2:
23391 case DW_FORM_block4:
23392 case DW_FORM_block:
23393 case DW_FORM_exprloc:
23394 case DW_FORM_data16:
23395 result = DW_BLOCK (attr)->data;
23396 *len = DW_BLOCK (attr)->size;
23397 break;
23398
23399 /* The DW_AT_const_value attributes are supposed to carry the
23400 symbol's value "represented as it would be on the target
23401 architecture." By the time we get here, it's already been
23402 converted to host endianness, so we just need to sign- or
23403 zero-extend it as appropriate. */
23404 case DW_FORM_data1:
23405 type = die_type (die, cu);
23406 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23407 if (result == NULL)
23408 result = write_constant_as_bytes (obstack, byte_order,
23409 type, value, len);
23410 break;
23411 case DW_FORM_data2:
23412 type = die_type (die, cu);
23413 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23414 if (result == NULL)
23415 result = write_constant_as_bytes (obstack, byte_order,
23416 type, value, len);
23417 break;
23418 case DW_FORM_data4:
23419 type = die_type (die, cu);
23420 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23421 if (result == NULL)
23422 result = write_constant_as_bytes (obstack, byte_order,
23423 type, value, len);
23424 break;
23425 case DW_FORM_data8:
23426 type = die_type (die, cu);
23427 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23428 if (result == NULL)
23429 result = write_constant_as_bytes (obstack, byte_order,
23430 type, value, len);
23431 break;
23432
23433 case DW_FORM_sdata:
23434 case DW_FORM_implicit_const:
23435 type = die_type (die, cu);
23436 result = write_constant_as_bytes (obstack, byte_order,
23437 type, DW_SND (attr), len);
23438 break;
23439
23440 case DW_FORM_udata:
23441 type = die_type (die, cu);
23442 result = write_constant_as_bytes (obstack, byte_order,
23443 type, DW_UNSND (attr), len);
23444 break;
23445
23446 default:
23447 complaint (_("unsupported const value attribute form: '%s'"),
23448 dwarf_form_name (attr->form));
23449 break;
23450 }
23451
23452 return result;
23453 }
23454
23455 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23456 valid type for this die is found. */
23457
23458 struct type *
23459 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23460 struct dwarf2_per_cu_data *per_cu)
23461 {
23462 struct dwarf2_cu *cu;
23463 struct die_info *die;
23464
23465 if (per_cu->cu == NULL)
23466 load_cu (per_cu, false);
23467 cu = per_cu->cu;
23468 if (!cu)
23469 return NULL;
23470
23471 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23472 if (!die)
23473 return NULL;
23474
23475 return die_type (die, cu);
23476 }
23477
23478 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23479 PER_CU. */
23480
23481 struct type *
23482 dwarf2_get_die_type (cu_offset die_offset,
23483 struct dwarf2_per_cu_data *per_cu)
23484 {
23485 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23486 return get_die_type_at_offset (die_offset_sect, per_cu);
23487 }
23488
23489 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23490 On entry *REF_CU is the CU of SRC_DIE.
23491 On exit *REF_CU is the CU of the result.
23492 Returns NULL if the referenced DIE isn't found. */
23493
23494 static struct die_info *
23495 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23496 struct dwarf2_cu **ref_cu)
23497 {
23498 struct die_info temp_die;
23499 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23500 struct die_info *die;
23501
23502 /* While it might be nice to assert sig_type->type == NULL here,
23503 we can get here for DW_AT_imported_declaration where we need
23504 the DIE not the type. */
23505
23506 /* If necessary, add it to the queue and load its DIEs. */
23507
23508 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23509 read_signatured_type (sig_type);
23510
23511 sig_cu = sig_type->per_cu.cu;
23512 gdb_assert (sig_cu != NULL);
23513 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23514 temp_die.sect_off = sig_type->type_offset_in_section;
23515 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23516 to_underlying (temp_die.sect_off));
23517 if (die)
23518 {
23519 struct dwarf2_per_objfile *dwarf2_per_objfile
23520 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23521
23522 /* For .gdb_index version 7 keep track of included TUs.
23523 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23524 if (dwarf2_per_objfile->index_table != NULL
23525 && dwarf2_per_objfile->index_table->version <= 7)
23526 {
23527 VEC_safe_push (dwarf2_per_cu_ptr,
23528 (*ref_cu)->per_cu->imported_symtabs,
23529 sig_cu->per_cu);
23530 }
23531
23532 *ref_cu = sig_cu;
23533 if (sig_cu != cu)
23534 sig_cu->ancestor = cu;
23535
23536 return die;
23537 }
23538
23539 return NULL;
23540 }
23541
23542 /* Follow signatured type referenced by ATTR in SRC_DIE.
23543 On entry *REF_CU is the CU of SRC_DIE.
23544 On exit *REF_CU is the CU of the result.
23545 The result is the DIE of the type.
23546 If the referenced type cannot be found an error is thrown. */
23547
23548 static struct die_info *
23549 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23550 struct dwarf2_cu **ref_cu)
23551 {
23552 ULONGEST signature = DW_SIGNATURE (attr);
23553 struct signatured_type *sig_type;
23554 struct die_info *die;
23555
23556 gdb_assert (attr->form == DW_FORM_ref_sig8);
23557
23558 sig_type = lookup_signatured_type (*ref_cu, signature);
23559 /* sig_type will be NULL if the signatured type is missing from
23560 the debug info. */
23561 if (sig_type == NULL)
23562 {
23563 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23564 " from DIE at %s [in module %s]"),
23565 hex_string (signature), sect_offset_str (src_die->sect_off),
23566 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23567 }
23568
23569 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23570 if (die == NULL)
23571 {
23572 dump_die_for_error (src_die);
23573 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23574 " from DIE at %s [in module %s]"),
23575 hex_string (signature), sect_offset_str (src_die->sect_off),
23576 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23577 }
23578
23579 return die;
23580 }
23581
23582 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23583 reading in and processing the type unit if necessary. */
23584
23585 static struct type *
23586 get_signatured_type (struct die_info *die, ULONGEST signature,
23587 struct dwarf2_cu *cu)
23588 {
23589 struct dwarf2_per_objfile *dwarf2_per_objfile
23590 = cu->per_cu->dwarf2_per_objfile;
23591 struct signatured_type *sig_type;
23592 struct dwarf2_cu *type_cu;
23593 struct die_info *type_die;
23594 struct type *type;
23595
23596 sig_type = lookup_signatured_type (cu, signature);
23597 /* sig_type will be NULL if the signatured type is missing from
23598 the debug info. */
23599 if (sig_type == NULL)
23600 {
23601 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23602 " from DIE at %s [in module %s]"),
23603 hex_string (signature), sect_offset_str (die->sect_off),
23604 objfile_name (dwarf2_per_objfile->objfile));
23605 return build_error_marker_type (cu, die);
23606 }
23607
23608 /* If we already know the type we're done. */
23609 if (sig_type->type != NULL)
23610 return sig_type->type;
23611
23612 type_cu = cu;
23613 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23614 if (type_die != NULL)
23615 {
23616 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23617 is created. This is important, for example, because for c++ classes
23618 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23619 type = read_type_die (type_die, type_cu);
23620 if (type == NULL)
23621 {
23622 complaint (_("Dwarf Error: Cannot build signatured type %s"
23623 " referenced from DIE at %s [in module %s]"),
23624 hex_string (signature), sect_offset_str (die->sect_off),
23625 objfile_name (dwarf2_per_objfile->objfile));
23626 type = build_error_marker_type (cu, die);
23627 }
23628 }
23629 else
23630 {
23631 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23632 " from DIE at %s [in module %s]"),
23633 hex_string (signature), sect_offset_str (die->sect_off),
23634 objfile_name (dwarf2_per_objfile->objfile));
23635 type = build_error_marker_type (cu, die);
23636 }
23637 sig_type->type = type;
23638
23639 return type;
23640 }
23641
23642 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23643 reading in and processing the type unit if necessary. */
23644
23645 static struct type *
23646 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23647 struct dwarf2_cu *cu) /* ARI: editCase function */
23648 {
23649 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23650 if (attr_form_is_ref (attr))
23651 {
23652 struct dwarf2_cu *type_cu = cu;
23653 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23654
23655 return read_type_die (type_die, type_cu);
23656 }
23657 else if (attr->form == DW_FORM_ref_sig8)
23658 {
23659 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23660 }
23661 else
23662 {
23663 struct dwarf2_per_objfile *dwarf2_per_objfile
23664 = cu->per_cu->dwarf2_per_objfile;
23665
23666 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23667 " at %s [in module %s]"),
23668 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23669 objfile_name (dwarf2_per_objfile->objfile));
23670 return build_error_marker_type (cu, die);
23671 }
23672 }
23673
23674 /* Load the DIEs associated with type unit PER_CU into memory. */
23675
23676 static void
23677 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23678 {
23679 struct signatured_type *sig_type;
23680
23681 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23682 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23683
23684 /* We have the per_cu, but we need the signatured_type.
23685 Fortunately this is an easy translation. */
23686 gdb_assert (per_cu->is_debug_types);
23687 sig_type = (struct signatured_type *) per_cu;
23688
23689 gdb_assert (per_cu->cu == NULL);
23690
23691 read_signatured_type (sig_type);
23692
23693 gdb_assert (per_cu->cu != NULL);
23694 }
23695
23696 /* die_reader_func for read_signatured_type.
23697 This is identical to load_full_comp_unit_reader,
23698 but is kept separate for now. */
23699
23700 static void
23701 read_signatured_type_reader (const struct die_reader_specs *reader,
23702 const gdb_byte *info_ptr,
23703 struct die_info *comp_unit_die,
23704 int has_children,
23705 void *data)
23706 {
23707 struct dwarf2_cu *cu = reader->cu;
23708
23709 gdb_assert (cu->die_hash == NULL);
23710 cu->die_hash =
23711 htab_create_alloc_ex (cu->header.length / 12,
23712 die_hash,
23713 die_eq,
23714 NULL,
23715 &cu->comp_unit_obstack,
23716 hashtab_obstack_allocate,
23717 dummy_obstack_deallocate);
23718
23719 if (has_children)
23720 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23721 &info_ptr, comp_unit_die);
23722 cu->dies = comp_unit_die;
23723 /* comp_unit_die is not stored in die_hash, no need. */
23724
23725 /* We try not to read any attributes in this function, because not
23726 all CUs needed for references have been loaded yet, and symbol
23727 table processing isn't initialized. But we have to set the CU language,
23728 or we won't be able to build types correctly.
23729 Similarly, if we do not read the producer, we can not apply
23730 producer-specific interpretation. */
23731 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23732 }
23733
23734 /* Read in a signatured type and build its CU and DIEs.
23735 If the type is a stub for the real type in a DWO file,
23736 read in the real type from the DWO file as well. */
23737
23738 static void
23739 read_signatured_type (struct signatured_type *sig_type)
23740 {
23741 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23742
23743 gdb_assert (per_cu->is_debug_types);
23744 gdb_assert (per_cu->cu == NULL);
23745
23746 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23747 read_signatured_type_reader, NULL);
23748 sig_type->per_cu.tu_read = 1;
23749 }
23750
23751 /* Decode simple location descriptions.
23752 Given a pointer to a dwarf block that defines a location, compute
23753 the location and return the value.
23754
23755 NOTE drow/2003-11-18: This function is called in two situations
23756 now: for the address of static or global variables (partial symbols
23757 only) and for offsets into structures which are expected to be
23758 (more or less) constant. The partial symbol case should go away,
23759 and only the constant case should remain. That will let this
23760 function complain more accurately. A few special modes are allowed
23761 without complaint for global variables (for instance, global
23762 register values and thread-local values).
23763
23764 A location description containing no operations indicates that the
23765 object is optimized out. The return value is 0 for that case.
23766 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23767 callers will only want a very basic result and this can become a
23768 complaint.
23769
23770 Note that stack[0] is unused except as a default error return. */
23771
23772 static CORE_ADDR
23773 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23774 {
23775 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23776 size_t i;
23777 size_t size = blk->size;
23778 const gdb_byte *data = blk->data;
23779 CORE_ADDR stack[64];
23780 int stacki;
23781 unsigned int bytes_read, unsnd;
23782 gdb_byte op;
23783
23784 i = 0;
23785 stacki = 0;
23786 stack[stacki] = 0;
23787 stack[++stacki] = 0;
23788
23789 while (i < size)
23790 {
23791 op = data[i++];
23792 switch (op)
23793 {
23794 case DW_OP_lit0:
23795 case DW_OP_lit1:
23796 case DW_OP_lit2:
23797 case DW_OP_lit3:
23798 case DW_OP_lit4:
23799 case DW_OP_lit5:
23800 case DW_OP_lit6:
23801 case DW_OP_lit7:
23802 case DW_OP_lit8:
23803 case DW_OP_lit9:
23804 case DW_OP_lit10:
23805 case DW_OP_lit11:
23806 case DW_OP_lit12:
23807 case DW_OP_lit13:
23808 case DW_OP_lit14:
23809 case DW_OP_lit15:
23810 case DW_OP_lit16:
23811 case DW_OP_lit17:
23812 case DW_OP_lit18:
23813 case DW_OP_lit19:
23814 case DW_OP_lit20:
23815 case DW_OP_lit21:
23816 case DW_OP_lit22:
23817 case DW_OP_lit23:
23818 case DW_OP_lit24:
23819 case DW_OP_lit25:
23820 case DW_OP_lit26:
23821 case DW_OP_lit27:
23822 case DW_OP_lit28:
23823 case DW_OP_lit29:
23824 case DW_OP_lit30:
23825 case DW_OP_lit31:
23826 stack[++stacki] = op - DW_OP_lit0;
23827 break;
23828
23829 case DW_OP_reg0:
23830 case DW_OP_reg1:
23831 case DW_OP_reg2:
23832 case DW_OP_reg3:
23833 case DW_OP_reg4:
23834 case DW_OP_reg5:
23835 case DW_OP_reg6:
23836 case DW_OP_reg7:
23837 case DW_OP_reg8:
23838 case DW_OP_reg9:
23839 case DW_OP_reg10:
23840 case DW_OP_reg11:
23841 case DW_OP_reg12:
23842 case DW_OP_reg13:
23843 case DW_OP_reg14:
23844 case DW_OP_reg15:
23845 case DW_OP_reg16:
23846 case DW_OP_reg17:
23847 case DW_OP_reg18:
23848 case DW_OP_reg19:
23849 case DW_OP_reg20:
23850 case DW_OP_reg21:
23851 case DW_OP_reg22:
23852 case DW_OP_reg23:
23853 case DW_OP_reg24:
23854 case DW_OP_reg25:
23855 case DW_OP_reg26:
23856 case DW_OP_reg27:
23857 case DW_OP_reg28:
23858 case DW_OP_reg29:
23859 case DW_OP_reg30:
23860 case DW_OP_reg31:
23861 stack[++stacki] = op - DW_OP_reg0;
23862 if (i < size)
23863 dwarf2_complex_location_expr_complaint ();
23864 break;
23865
23866 case DW_OP_regx:
23867 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23868 i += bytes_read;
23869 stack[++stacki] = unsnd;
23870 if (i < size)
23871 dwarf2_complex_location_expr_complaint ();
23872 break;
23873
23874 case DW_OP_addr:
23875 stack[++stacki] = read_address (objfile->obfd, &data[i],
23876 cu, &bytes_read);
23877 i += bytes_read;
23878 break;
23879
23880 case DW_OP_const1u:
23881 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23882 i += 1;
23883 break;
23884
23885 case DW_OP_const1s:
23886 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23887 i += 1;
23888 break;
23889
23890 case DW_OP_const2u:
23891 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23892 i += 2;
23893 break;
23894
23895 case DW_OP_const2s:
23896 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23897 i += 2;
23898 break;
23899
23900 case DW_OP_const4u:
23901 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23902 i += 4;
23903 break;
23904
23905 case DW_OP_const4s:
23906 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23907 i += 4;
23908 break;
23909
23910 case DW_OP_const8u:
23911 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23912 i += 8;
23913 break;
23914
23915 case DW_OP_constu:
23916 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23917 &bytes_read);
23918 i += bytes_read;
23919 break;
23920
23921 case DW_OP_consts:
23922 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23923 i += bytes_read;
23924 break;
23925
23926 case DW_OP_dup:
23927 stack[stacki + 1] = stack[stacki];
23928 stacki++;
23929 break;
23930
23931 case DW_OP_plus:
23932 stack[stacki - 1] += stack[stacki];
23933 stacki--;
23934 break;
23935
23936 case DW_OP_plus_uconst:
23937 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23938 &bytes_read);
23939 i += bytes_read;
23940 break;
23941
23942 case DW_OP_minus:
23943 stack[stacki - 1] -= stack[stacki];
23944 stacki--;
23945 break;
23946
23947 case DW_OP_deref:
23948 /* If we're not the last op, then we definitely can't encode
23949 this using GDB's address_class enum. This is valid for partial
23950 global symbols, although the variable's address will be bogus
23951 in the psymtab. */
23952 if (i < size)
23953 dwarf2_complex_location_expr_complaint ();
23954 break;
23955
23956 case DW_OP_GNU_push_tls_address:
23957 case DW_OP_form_tls_address:
23958 /* The top of the stack has the offset from the beginning
23959 of the thread control block at which the variable is located. */
23960 /* Nothing should follow this operator, so the top of stack would
23961 be returned. */
23962 /* This is valid for partial global symbols, but the variable's
23963 address will be bogus in the psymtab. Make it always at least
23964 non-zero to not look as a variable garbage collected by linker
23965 which have DW_OP_addr 0. */
23966 if (i < size)
23967 dwarf2_complex_location_expr_complaint ();
23968 stack[stacki]++;
23969 break;
23970
23971 case DW_OP_GNU_uninit:
23972 break;
23973
23974 case DW_OP_addrx:
23975 case DW_OP_GNU_addr_index:
23976 case DW_OP_GNU_const_index:
23977 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23978 &bytes_read);
23979 i += bytes_read;
23980 break;
23981
23982 default:
23983 {
23984 const char *name = get_DW_OP_name (op);
23985
23986 if (name)
23987 complaint (_("unsupported stack op: '%s'"),
23988 name);
23989 else
23990 complaint (_("unsupported stack op: '%02x'"),
23991 op);
23992 }
23993
23994 return (stack[stacki]);
23995 }
23996
23997 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23998 outside of the allocated space. Also enforce minimum>0. */
23999 if (stacki >= ARRAY_SIZE (stack) - 1)
24000 {
24001 complaint (_("location description stack overflow"));
24002 return 0;
24003 }
24004
24005 if (stacki <= 0)
24006 {
24007 complaint (_("location description stack underflow"));
24008 return 0;
24009 }
24010 }
24011 return (stack[stacki]);
24012 }
24013
24014 /* memory allocation interface */
24015
24016 static struct dwarf_block *
24017 dwarf_alloc_block (struct dwarf2_cu *cu)
24018 {
24019 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24020 }
24021
24022 static struct die_info *
24023 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24024 {
24025 struct die_info *die;
24026 size_t size = sizeof (struct die_info);
24027
24028 if (num_attrs > 1)
24029 size += (num_attrs - 1) * sizeof (struct attribute);
24030
24031 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24032 memset (die, 0, sizeof (struct die_info));
24033 return (die);
24034 }
24035
24036 \f
24037 /* Macro support. */
24038
24039 /* Return file name relative to the compilation directory of file number I in
24040 *LH's file name table. The result is allocated using xmalloc; the caller is
24041 responsible for freeing it. */
24042
24043 static char *
24044 file_file_name (int file, struct line_header *lh)
24045 {
24046 /* Is the file number a valid index into the line header's file name
24047 table? Remember that file numbers start with one, not zero. */
24048 if (1 <= file && file <= lh->file_names.size ())
24049 {
24050 const file_entry &fe = lh->file_names[file - 1];
24051
24052 if (!IS_ABSOLUTE_PATH (fe.name))
24053 {
24054 const char *dir = fe.include_dir (lh);
24055 if (dir != NULL)
24056 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24057 }
24058 return xstrdup (fe.name);
24059 }
24060 else
24061 {
24062 /* The compiler produced a bogus file number. We can at least
24063 record the macro definitions made in the file, even if we
24064 won't be able to find the file by name. */
24065 char fake_name[80];
24066
24067 xsnprintf (fake_name, sizeof (fake_name),
24068 "<bad macro file number %d>", file);
24069
24070 complaint (_("bad file number in macro information (%d)"),
24071 file);
24072
24073 return xstrdup (fake_name);
24074 }
24075 }
24076
24077 /* Return the full name of file number I in *LH's file name table.
24078 Use COMP_DIR as the name of the current directory of the
24079 compilation. The result is allocated using xmalloc; the caller is
24080 responsible for freeing it. */
24081 static char *
24082 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24083 {
24084 /* Is the file number a valid index into the line header's file name
24085 table? Remember that file numbers start with one, not zero. */
24086 if (1 <= file && file <= lh->file_names.size ())
24087 {
24088 char *relative = file_file_name (file, lh);
24089
24090 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24091 return relative;
24092 return reconcat (relative, comp_dir, SLASH_STRING,
24093 relative, (char *) NULL);
24094 }
24095 else
24096 return file_file_name (file, lh);
24097 }
24098
24099
24100 static struct macro_source_file *
24101 macro_start_file (struct dwarf2_cu *cu,
24102 int file, int line,
24103 struct macro_source_file *current_file,
24104 struct line_header *lh)
24105 {
24106 /* File name relative to the compilation directory of this source file. */
24107 char *file_name = file_file_name (file, lh);
24108
24109 if (! current_file)
24110 {
24111 /* Note: We don't create a macro table for this compilation unit
24112 at all until we actually get a filename. */
24113 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24114
24115 /* If we have no current file, then this must be the start_file
24116 directive for the compilation unit's main source file. */
24117 current_file = macro_set_main (macro_table, file_name);
24118 macro_define_special (macro_table);
24119 }
24120 else
24121 current_file = macro_include (current_file, line, file_name);
24122
24123 xfree (file_name);
24124
24125 return current_file;
24126 }
24127
24128 static const char *
24129 consume_improper_spaces (const char *p, const char *body)
24130 {
24131 if (*p == ' ')
24132 {
24133 complaint (_("macro definition contains spaces "
24134 "in formal argument list:\n`%s'"),
24135 body);
24136
24137 while (*p == ' ')
24138 p++;
24139 }
24140
24141 return p;
24142 }
24143
24144
24145 static void
24146 parse_macro_definition (struct macro_source_file *file, int line,
24147 const char *body)
24148 {
24149 const char *p;
24150
24151 /* The body string takes one of two forms. For object-like macro
24152 definitions, it should be:
24153
24154 <macro name> " " <definition>
24155
24156 For function-like macro definitions, it should be:
24157
24158 <macro name> "() " <definition>
24159 or
24160 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24161
24162 Spaces may appear only where explicitly indicated, and in the
24163 <definition>.
24164
24165 The Dwarf 2 spec says that an object-like macro's name is always
24166 followed by a space, but versions of GCC around March 2002 omit
24167 the space when the macro's definition is the empty string.
24168
24169 The Dwarf 2 spec says that there should be no spaces between the
24170 formal arguments in a function-like macro's formal argument list,
24171 but versions of GCC around March 2002 include spaces after the
24172 commas. */
24173
24174
24175 /* Find the extent of the macro name. The macro name is terminated
24176 by either a space or null character (for an object-like macro) or
24177 an opening paren (for a function-like macro). */
24178 for (p = body; *p; p++)
24179 if (*p == ' ' || *p == '(')
24180 break;
24181
24182 if (*p == ' ' || *p == '\0')
24183 {
24184 /* It's an object-like macro. */
24185 int name_len = p - body;
24186 char *name = savestring (body, name_len);
24187 const char *replacement;
24188
24189 if (*p == ' ')
24190 replacement = body + name_len + 1;
24191 else
24192 {
24193 dwarf2_macro_malformed_definition_complaint (body);
24194 replacement = body + name_len;
24195 }
24196
24197 macro_define_object (file, line, name, replacement);
24198
24199 xfree (name);
24200 }
24201 else if (*p == '(')
24202 {
24203 /* It's a function-like macro. */
24204 char *name = savestring (body, p - body);
24205 int argc = 0;
24206 int argv_size = 1;
24207 char **argv = XNEWVEC (char *, argv_size);
24208
24209 p++;
24210
24211 p = consume_improper_spaces (p, body);
24212
24213 /* Parse the formal argument list. */
24214 while (*p && *p != ')')
24215 {
24216 /* Find the extent of the current argument name. */
24217 const char *arg_start = p;
24218
24219 while (*p && *p != ',' && *p != ')' && *p != ' ')
24220 p++;
24221
24222 if (! *p || p == arg_start)
24223 dwarf2_macro_malformed_definition_complaint (body);
24224 else
24225 {
24226 /* Make sure argv has room for the new argument. */
24227 if (argc >= argv_size)
24228 {
24229 argv_size *= 2;
24230 argv = XRESIZEVEC (char *, argv, argv_size);
24231 }
24232
24233 argv[argc++] = savestring (arg_start, p - arg_start);
24234 }
24235
24236 p = consume_improper_spaces (p, body);
24237
24238 /* Consume the comma, if present. */
24239 if (*p == ',')
24240 {
24241 p++;
24242
24243 p = consume_improper_spaces (p, body);
24244 }
24245 }
24246
24247 if (*p == ')')
24248 {
24249 p++;
24250
24251 if (*p == ' ')
24252 /* Perfectly formed definition, no complaints. */
24253 macro_define_function (file, line, name,
24254 argc, (const char **) argv,
24255 p + 1);
24256 else if (*p == '\0')
24257 {
24258 /* Complain, but do define it. */
24259 dwarf2_macro_malformed_definition_complaint (body);
24260 macro_define_function (file, line, name,
24261 argc, (const char **) argv,
24262 p);
24263 }
24264 else
24265 /* Just complain. */
24266 dwarf2_macro_malformed_definition_complaint (body);
24267 }
24268 else
24269 /* Just complain. */
24270 dwarf2_macro_malformed_definition_complaint (body);
24271
24272 xfree (name);
24273 {
24274 int i;
24275
24276 for (i = 0; i < argc; i++)
24277 xfree (argv[i]);
24278 }
24279 xfree (argv);
24280 }
24281 else
24282 dwarf2_macro_malformed_definition_complaint (body);
24283 }
24284
24285 /* Skip some bytes from BYTES according to the form given in FORM.
24286 Returns the new pointer. */
24287
24288 static const gdb_byte *
24289 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24290 enum dwarf_form form,
24291 unsigned int offset_size,
24292 struct dwarf2_section_info *section)
24293 {
24294 unsigned int bytes_read;
24295
24296 switch (form)
24297 {
24298 case DW_FORM_data1:
24299 case DW_FORM_flag:
24300 ++bytes;
24301 break;
24302
24303 case DW_FORM_data2:
24304 bytes += 2;
24305 break;
24306
24307 case DW_FORM_data4:
24308 bytes += 4;
24309 break;
24310
24311 case DW_FORM_data8:
24312 bytes += 8;
24313 break;
24314
24315 case DW_FORM_data16:
24316 bytes += 16;
24317 break;
24318
24319 case DW_FORM_string:
24320 read_direct_string (abfd, bytes, &bytes_read);
24321 bytes += bytes_read;
24322 break;
24323
24324 case DW_FORM_sec_offset:
24325 case DW_FORM_strp:
24326 case DW_FORM_GNU_strp_alt:
24327 bytes += offset_size;
24328 break;
24329
24330 case DW_FORM_block:
24331 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24332 bytes += bytes_read;
24333 break;
24334
24335 case DW_FORM_block1:
24336 bytes += 1 + read_1_byte (abfd, bytes);
24337 break;
24338 case DW_FORM_block2:
24339 bytes += 2 + read_2_bytes (abfd, bytes);
24340 break;
24341 case DW_FORM_block4:
24342 bytes += 4 + read_4_bytes (abfd, bytes);
24343 break;
24344
24345 case DW_FORM_addrx:
24346 case DW_FORM_sdata:
24347 case DW_FORM_strx:
24348 case DW_FORM_udata:
24349 case DW_FORM_GNU_addr_index:
24350 case DW_FORM_GNU_str_index:
24351 bytes = gdb_skip_leb128 (bytes, buffer_end);
24352 if (bytes == NULL)
24353 {
24354 dwarf2_section_buffer_overflow_complaint (section);
24355 return NULL;
24356 }
24357 break;
24358
24359 case DW_FORM_implicit_const:
24360 break;
24361
24362 default:
24363 {
24364 complaint (_("invalid form 0x%x in `%s'"),
24365 form, get_section_name (section));
24366 return NULL;
24367 }
24368 }
24369
24370 return bytes;
24371 }
24372
24373 /* A helper for dwarf_decode_macros that handles skipping an unknown
24374 opcode. Returns an updated pointer to the macro data buffer; or,
24375 on error, issues a complaint and returns NULL. */
24376
24377 static const gdb_byte *
24378 skip_unknown_opcode (unsigned int opcode,
24379 const gdb_byte **opcode_definitions,
24380 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24381 bfd *abfd,
24382 unsigned int offset_size,
24383 struct dwarf2_section_info *section)
24384 {
24385 unsigned int bytes_read, i;
24386 unsigned long arg;
24387 const gdb_byte *defn;
24388
24389 if (opcode_definitions[opcode] == NULL)
24390 {
24391 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24392 opcode);
24393 return NULL;
24394 }
24395
24396 defn = opcode_definitions[opcode];
24397 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24398 defn += bytes_read;
24399
24400 for (i = 0; i < arg; ++i)
24401 {
24402 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24403 (enum dwarf_form) defn[i], offset_size,
24404 section);
24405 if (mac_ptr == NULL)
24406 {
24407 /* skip_form_bytes already issued the complaint. */
24408 return NULL;
24409 }
24410 }
24411
24412 return mac_ptr;
24413 }
24414
24415 /* A helper function which parses the header of a macro section.
24416 If the macro section is the extended (for now called "GNU") type,
24417 then this updates *OFFSET_SIZE. Returns a pointer to just after
24418 the header, or issues a complaint and returns NULL on error. */
24419
24420 static const gdb_byte *
24421 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24422 bfd *abfd,
24423 const gdb_byte *mac_ptr,
24424 unsigned int *offset_size,
24425 int section_is_gnu)
24426 {
24427 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24428
24429 if (section_is_gnu)
24430 {
24431 unsigned int version, flags;
24432
24433 version = read_2_bytes (abfd, mac_ptr);
24434 if (version != 4 && version != 5)
24435 {
24436 complaint (_("unrecognized version `%d' in .debug_macro section"),
24437 version);
24438 return NULL;
24439 }
24440 mac_ptr += 2;
24441
24442 flags = read_1_byte (abfd, mac_ptr);
24443 ++mac_ptr;
24444 *offset_size = (flags & 1) ? 8 : 4;
24445
24446 if ((flags & 2) != 0)
24447 /* We don't need the line table offset. */
24448 mac_ptr += *offset_size;
24449
24450 /* Vendor opcode descriptions. */
24451 if ((flags & 4) != 0)
24452 {
24453 unsigned int i, count;
24454
24455 count = read_1_byte (abfd, mac_ptr);
24456 ++mac_ptr;
24457 for (i = 0; i < count; ++i)
24458 {
24459 unsigned int opcode, bytes_read;
24460 unsigned long arg;
24461
24462 opcode = read_1_byte (abfd, mac_ptr);
24463 ++mac_ptr;
24464 opcode_definitions[opcode] = mac_ptr;
24465 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24466 mac_ptr += bytes_read;
24467 mac_ptr += arg;
24468 }
24469 }
24470 }
24471
24472 return mac_ptr;
24473 }
24474
24475 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24476 including DW_MACRO_import. */
24477
24478 static void
24479 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24480 bfd *abfd,
24481 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24482 struct macro_source_file *current_file,
24483 struct line_header *lh,
24484 struct dwarf2_section_info *section,
24485 int section_is_gnu, int section_is_dwz,
24486 unsigned int offset_size,
24487 htab_t include_hash)
24488 {
24489 struct dwarf2_per_objfile *dwarf2_per_objfile
24490 = cu->per_cu->dwarf2_per_objfile;
24491 struct objfile *objfile = dwarf2_per_objfile->objfile;
24492 enum dwarf_macro_record_type macinfo_type;
24493 int at_commandline;
24494 const gdb_byte *opcode_definitions[256];
24495
24496 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24497 &offset_size, section_is_gnu);
24498 if (mac_ptr == NULL)
24499 {
24500 /* We already issued a complaint. */
24501 return;
24502 }
24503
24504 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24505 GDB is still reading the definitions from command line. First
24506 DW_MACINFO_start_file will need to be ignored as it was already executed
24507 to create CURRENT_FILE for the main source holding also the command line
24508 definitions. On first met DW_MACINFO_start_file this flag is reset to
24509 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24510
24511 at_commandline = 1;
24512
24513 do
24514 {
24515 /* Do we at least have room for a macinfo type byte? */
24516 if (mac_ptr >= mac_end)
24517 {
24518 dwarf2_section_buffer_overflow_complaint (section);
24519 break;
24520 }
24521
24522 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24523 mac_ptr++;
24524
24525 /* Note that we rely on the fact that the corresponding GNU and
24526 DWARF constants are the same. */
24527 DIAGNOSTIC_PUSH
24528 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24529 switch (macinfo_type)
24530 {
24531 /* A zero macinfo type indicates the end of the macro
24532 information. */
24533 case 0:
24534 break;
24535
24536 case DW_MACRO_define:
24537 case DW_MACRO_undef:
24538 case DW_MACRO_define_strp:
24539 case DW_MACRO_undef_strp:
24540 case DW_MACRO_define_sup:
24541 case DW_MACRO_undef_sup:
24542 {
24543 unsigned int bytes_read;
24544 int line;
24545 const char *body;
24546 int is_define;
24547
24548 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24549 mac_ptr += bytes_read;
24550
24551 if (macinfo_type == DW_MACRO_define
24552 || macinfo_type == DW_MACRO_undef)
24553 {
24554 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24555 mac_ptr += bytes_read;
24556 }
24557 else
24558 {
24559 LONGEST str_offset;
24560
24561 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24562 mac_ptr += offset_size;
24563
24564 if (macinfo_type == DW_MACRO_define_sup
24565 || macinfo_type == DW_MACRO_undef_sup
24566 || section_is_dwz)
24567 {
24568 struct dwz_file *dwz
24569 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24570
24571 body = read_indirect_string_from_dwz (objfile,
24572 dwz, str_offset);
24573 }
24574 else
24575 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24576 abfd, str_offset);
24577 }
24578
24579 is_define = (macinfo_type == DW_MACRO_define
24580 || macinfo_type == DW_MACRO_define_strp
24581 || macinfo_type == DW_MACRO_define_sup);
24582 if (! current_file)
24583 {
24584 /* DWARF violation as no main source is present. */
24585 complaint (_("debug info with no main source gives macro %s "
24586 "on line %d: %s"),
24587 is_define ? _("definition") : _("undefinition"),
24588 line, body);
24589 break;
24590 }
24591 if ((line == 0 && !at_commandline)
24592 || (line != 0 && at_commandline))
24593 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24594 at_commandline ? _("command-line") : _("in-file"),
24595 is_define ? _("definition") : _("undefinition"),
24596 line == 0 ? _("zero") : _("non-zero"), line, body);
24597
24598 if (body == NULL)
24599 {
24600 /* Fedora's rpm-build's "debugedit" binary
24601 corrupted .debug_macro sections.
24602
24603 For more info, see
24604 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24605 complaint (_("debug info gives %s invalid macro %s "
24606 "without body (corrupted?) at line %d "
24607 "on file %s"),
24608 at_commandline ? _("command-line") : _("in-file"),
24609 is_define ? _("definition") : _("undefinition"),
24610 line, current_file->filename);
24611 }
24612 else if (is_define)
24613 parse_macro_definition (current_file, line, body);
24614 else
24615 {
24616 gdb_assert (macinfo_type == DW_MACRO_undef
24617 || macinfo_type == DW_MACRO_undef_strp
24618 || macinfo_type == DW_MACRO_undef_sup);
24619 macro_undef (current_file, line, body);
24620 }
24621 }
24622 break;
24623
24624 case DW_MACRO_start_file:
24625 {
24626 unsigned int bytes_read;
24627 int line, file;
24628
24629 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24630 mac_ptr += bytes_read;
24631 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24632 mac_ptr += bytes_read;
24633
24634 if ((line == 0 && !at_commandline)
24635 || (line != 0 && at_commandline))
24636 complaint (_("debug info gives source %d included "
24637 "from %s at %s line %d"),
24638 file, at_commandline ? _("command-line") : _("file"),
24639 line == 0 ? _("zero") : _("non-zero"), line);
24640
24641 if (at_commandline)
24642 {
24643 /* This DW_MACRO_start_file was executed in the
24644 pass one. */
24645 at_commandline = 0;
24646 }
24647 else
24648 current_file = macro_start_file (cu, file, line, current_file,
24649 lh);
24650 }
24651 break;
24652
24653 case DW_MACRO_end_file:
24654 if (! current_file)
24655 complaint (_("macro debug info has an unmatched "
24656 "`close_file' directive"));
24657 else
24658 {
24659 current_file = current_file->included_by;
24660 if (! current_file)
24661 {
24662 enum dwarf_macro_record_type next_type;
24663
24664 /* GCC circa March 2002 doesn't produce the zero
24665 type byte marking the end of the compilation
24666 unit. Complain if it's not there, but exit no
24667 matter what. */
24668
24669 /* Do we at least have room for a macinfo type byte? */
24670 if (mac_ptr >= mac_end)
24671 {
24672 dwarf2_section_buffer_overflow_complaint (section);
24673 return;
24674 }
24675
24676 /* We don't increment mac_ptr here, so this is just
24677 a look-ahead. */
24678 next_type
24679 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24680 mac_ptr);
24681 if (next_type != 0)
24682 complaint (_("no terminating 0-type entry for "
24683 "macros in `.debug_macinfo' section"));
24684
24685 return;
24686 }
24687 }
24688 break;
24689
24690 case DW_MACRO_import:
24691 case DW_MACRO_import_sup:
24692 {
24693 LONGEST offset;
24694 void **slot;
24695 bfd *include_bfd = abfd;
24696 struct dwarf2_section_info *include_section = section;
24697 const gdb_byte *include_mac_end = mac_end;
24698 int is_dwz = section_is_dwz;
24699 const gdb_byte *new_mac_ptr;
24700
24701 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24702 mac_ptr += offset_size;
24703
24704 if (macinfo_type == DW_MACRO_import_sup)
24705 {
24706 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24707
24708 dwarf2_read_section (objfile, &dwz->macro);
24709
24710 include_section = &dwz->macro;
24711 include_bfd = get_section_bfd_owner (include_section);
24712 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24713 is_dwz = 1;
24714 }
24715
24716 new_mac_ptr = include_section->buffer + offset;
24717 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24718
24719 if (*slot != NULL)
24720 {
24721 /* This has actually happened; see
24722 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24723 complaint (_("recursive DW_MACRO_import in "
24724 ".debug_macro section"));
24725 }
24726 else
24727 {
24728 *slot = (void *) new_mac_ptr;
24729
24730 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24731 include_mac_end, current_file, lh,
24732 section, section_is_gnu, is_dwz,
24733 offset_size, include_hash);
24734
24735 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24736 }
24737 }
24738 break;
24739
24740 case DW_MACINFO_vendor_ext:
24741 if (!section_is_gnu)
24742 {
24743 unsigned int bytes_read;
24744
24745 /* This reads the constant, but since we don't recognize
24746 any vendor extensions, we ignore it. */
24747 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24748 mac_ptr += bytes_read;
24749 read_direct_string (abfd, mac_ptr, &bytes_read);
24750 mac_ptr += bytes_read;
24751
24752 /* We don't recognize any vendor extensions. */
24753 break;
24754 }
24755 /* FALLTHROUGH */
24756
24757 default:
24758 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24759 mac_ptr, mac_end, abfd, offset_size,
24760 section);
24761 if (mac_ptr == NULL)
24762 return;
24763 break;
24764 }
24765 DIAGNOSTIC_POP
24766 } while (macinfo_type != 0);
24767 }
24768
24769 static void
24770 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24771 int section_is_gnu)
24772 {
24773 struct dwarf2_per_objfile *dwarf2_per_objfile
24774 = cu->per_cu->dwarf2_per_objfile;
24775 struct objfile *objfile = dwarf2_per_objfile->objfile;
24776 struct line_header *lh = cu->line_header;
24777 bfd *abfd;
24778 const gdb_byte *mac_ptr, *mac_end;
24779 struct macro_source_file *current_file = 0;
24780 enum dwarf_macro_record_type macinfo_type;
24781 unsigned int offset_size = cu->header.offset_size;
24782 const gdb_byte *opcode_definitions[256];
24783 void **slot;
24784 struct dwarf2_section_info *section;
24785 const char *section_name;
24786
24787 if (cu->dwo_unit != NULL)
24788 {
24789 if (section_is_gnu)
24790 {
24791 section = &cu->dwo_unit->dwo_file->sections.macro;
24792 section_name = ".debug_macro.dwo";
24793 }
24794 else
24795 {
24796 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24797 section_name = ".debug_macinfo.dwo";
24798 }
24799 }
24800 else
24801 {
24802 if (section_is_gnu)
24803 {
24804 section = &dwarf2_per_objfile->macro;
24805 section_name = ".debug_macro";
24806 }
24807 else
24808 {
24809 section = &dwarf2_per_objfile->macinfo;
24810 section_name = ".debug_macinfo";
24811 }
24812 }
24813
24814 dwarf2_read_section (objfile, section);
24815 if (section->buffer == NULL)
24816 {
24817 complaint (_("missing %s section"), section_name);
24818 return;
24819 }
24820 abfd = get_section_bfd_owner (section);
24821
24822 /* First pass: Find the name of the base filename.
24823 This filename is needed in order to process all macros whose definition
24824 (or undefinition) comes from the command line. These macros are defined
24825 before the first DW_MACINFO_start_file entry, and yet still need to be
24826 associated to the base file.
24827
24828 To determine the base file name, we scan the macro definitions until we
24829 reach the first DW_MACINFO_start_file entry. We then initialize
24830 CURRENT_FILE accordingly so that any macro definition found before the
24831 first DW_MACINFO_start_file can still be associated to the base file. */
24832
24833 mac_ptr = section->buffer + offset;
24834 mac_end = section->buffer + section->size;
24835
24836 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24837 &offset_size, section_is_gnu);
24838 if (mac_ptr == NULL)
24839 {
24840 /* We already issued a complaint. */
24841 return;
24842 }
24843
24844 do
24845 {
24846 /* Do we at least have room for a macinfo type byte? */
24847 if (mac_ptr >= mac_end)
24848 {
24849 /* Complaint is printed during the second pass as GDB will probably
24850 stop the first pass earlier upon finding
24851 DW_MACINFO_start_file. */
24852 break;
24853 }
24854
24855 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24856 mac_ptr++;
24857
24858 /* Note that we rely on the fact that the corresponding GNU and
24859 DWARF constants are the same. */
24860 DIAGNOSTIC_PUSH
24861 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24862 switch (macinfo_type)
24863 {
24864 /* A zero macinfo type indicates the end of the macro
24865 information. */
24866 case 0:
24867 break;
24868
24869 case DW_MACRO_define:
24870 case DW_MACRO_undef:
24871 /* Only skip the data by MAC_PTR. */
24872 {
24873 unsigned int bytes_read;
24874
24875 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24876 mac_ptr += bytes_read;
24877 read_direct_string (abfd, mac_ptr, &bytes_read);
24878 mac_ptr += bytes_read;
24879 }
24880 break;
24881
24882 case DW_MACRO_start_file:
24883 {
24884 unsigned int bytes_read;
24885 int line, file;
24886
24887 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24888 mac_ptr += bytes_read;
24889 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24890 mac_ptr += bytes_read;
24891
24892 current_file = macro_start_file (cu, file, line, current_file, lh);
24893 }
24894 break;
24895
24896 case DW_MACRO_end_file:
24897 /* No data to skip by MAC_PTR. */
24898 break;
24899
24900 case DW_MACRO_define_strp:
24901 case DW_MACRO_undef_strp:
24902 case DW_MACRO_define_sup:
24903 case DW_MACRO_undef_sup:
24904 {
24905 unsigned int bytes_read;
24906
24907 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24908 mac_ptr += bytes_read;
24909 mac_ptr += offset_size;
24910 }
24911 break;
24912
24913 case DW_MACRO_import:
24914 case DW_MACRO_import_sup:
24915 /* Note that, according to the spec, a transparent include
24916 chain cannot call DW_MACRO_start_file. So, we can just
24917 skip this opcode. */
24918 mac_ptr += offset_size;
24919 break;
24920
24921 case DW_MACINFO_vendor_ext:
24922 /* Only skip the data by MAC_PTR. */
24923 if (!section_is_gnu)
24924 {
24925 unsigned int bytes_read;
24926
24927 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24928 mac_ptr += bytes_read;
24929 read_direct_string (abfd, mac_ptr, &bytes_read);
24930 mac_ptr += bytes_read;
24931 }
24932 /* FALLTHROUGH */
24933
24934 default:
24935 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24936 mac_ptr, mac_end, abfd, offset_size,
24937 section);
24938 if (mac_ptr == NULL)
24939 return;
24940 break;
24941 }
24942 DIAGNOSTIC_POP
24943 } while (macinfo_type != 0 && current_file == NULL);
24944
24945 /* Second pass: Process all entries.
24946
24947 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24948 command-line macro definitions/undefinitions. This flag is unset when we
24949 reach the first DW_MACINFO_start_file entry. */
24950
24951 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24952 htab_eq_pointer,
24953 NULL, xcalloc, xfree));
24954 mac_ptr = section->buffer + offset;
24955 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24956 *slot = (void *) mac_ptr;
24957 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24958 current_file, lh, section,
24959 section_is_gnu, 0, offset_size,
24960 include_hash.get ());
24961 }
24962
24963 /* Check if the attribute's form is a DW_FORM_block*
24964 if so return true else false. */
24965
24966 static int
24967 attr_form_is_block (const struct attribute *attr)
24968 {
24969 return (attr == NULL ? 0 :
24970 attr->form == DW_FORM_block1
24971 || attr->form == DW_FORM_block2
24972 || attr->form == DW_FORM_block4
24973 || attr->form == DW_FORM_block
24974 || attr->form == DW_FORM_exprloc);
24975 }
24976
24977 /* Return non-zero if ATTR's value is a section offset --- classes
24978 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24979 You may use DW_UNSND (attr) to retrieve such offsets.
24980
24981 Section 7.5.4, "Attribute Encodings", explains that no attribute
24982 may have a value that belongs to more than one of these classes; it
24983 would be ambiguous if we did, because we use the same forms for all
24984 of them. */
24985
24986 static int
24987 attr_form_is_section_offset (const struct attribute *attr)
24988 {
24989 return (attr->form == DW_FORM_data4
24990 || attr->form == DW_FORM_data8
24991 || attr->form == DW_FORM_sec_offset);
24992 }
24993
24994 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24995 zero otherwise. When this function returns true, you can apply
24996 dwarf2_get_attr_constant_value to it.
24997
24998 However, note that for some attributes you must check
24999 attr_form_is_section_offset before using this test. DW_FORM_data4
25000 and DW_FORM_data8 are members of both the constant class, and of
25001 the classes that contain offsets into other debug sections
25002 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25003 that, if an attribute's can be either a constant or one of the
25004 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25005 taken as section offsets, not constants.
25006
25007 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25008 cannot handle that. */
25009
25010 static int
25011 attr_form_is_constant (const struct attribute *attr)
25012 {
25013 switch (attr->form)
25014 {
25015 case DW_FORM_sdata:
25016 case DW_FORM_udata:
25017 case DW_FORM_data1:
25018 case DW_FORM_data2:
25019 case DW_FORM_data4:
25020 case DW_FORM_data8:
25021 case DW_FORM_implicit_const:
25022 return 1;
25023 default:
25024 return 0;
25025 }
25026 }
25027
25028
25029 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25030 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25031
25032 static int
25033 attr_form_is_ref (const struct attribute *attr)
25034 {
25035 switch (attr->form)
25036 {
25037 case DW_FORM_ref_addr:
25038 case DW_FORM_ref1:
25039 case DW_FORM_ref2:
25040 case DW_FORM_ref4:
25041 case DW_FORM_ref8:
25042 case DW_FORM_ref_udata:
25043 case DW_FORM_GNU_ref_alt:
25044 return 1;
25045 default:
25046 return 0;
25047 }
25048 }
25049
25050 /* Return the .debug_loc section to use for CU.
25051 For DWO files use .debug_loc.dwo. */
25052
25053 static struct dwarf2_section_info *
25054 cu_debug_loc_section (struct dwarf2_cu *cu)
25055 {
25056 struct dwarf2_per_objfile *dwarf2_per_objfile
25057 = cu->per_cu->dwarf2_per_objfile;
25058
25059 if (cu->dwo_unit)
25060 {
25061 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25062
25063 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25064 }
25065 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25066 : &dwarf2_per_objfile->loc);
25067 }
25068
25069 /* A helper function that fills in a dwarf2_loclist_baton. */
25070
25071 static void
25072 fill_in_loclist_baton (struct dwarf2_cu *cu,
25073 struct dwarf2_loclist_baton *baton,
25074 const struct attribute *attr)
25075 {
25076 struct dwarf2_per_objfile *dwarf2_per_objfile
25077 = cu->per_cu->dwarf2_per_objfile;
25078 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25079
25080 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25081
25082 baton->per_cu = cu->per_cu;
25083 gdb_assert (baton->per_cu);
25084 /* We don't know how long the location list is, but make sure we
25085 don't run off the edge of the section. */
25086 baton->size = section->size - DW_UNSND (attr);
25087 baton->data = section->buffer + DW_UNSND (attr);
25088 baton->base_address = cu->base_address;
25089 baton->from_dwo = cu->dwo_unit != NULL;
25090 }
25091
25092 static void
25093 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25094 struct dwarf2_cu *cu, int is_block)
25095 {
25096 struct dwarf2_per_objfile *dwarf2_per_objfile
25097 = cu->per_cu->dwarf2_per_objfile;
25098 struct objfile *objfile = dwarf2_per_objfile->objfile;
25099 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25100
25101 if (attr_form_is_section_offset (attr)
25102 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25103 the section. If so, fall through to the complaint in the
25104 other branch. */
25105 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25106 {
25107 struct dwarf2_loclist_baton *baton;
25108
25109 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25110
25111 fill_in_loclist_baton (cu, baton, attr);
25112
25113 if (cu->base_known == 0)
25114 complaint (_("Location list used without "
25115 "specifying the CU base address."));
25116
25117 SYMBOL_ACLASS_INDEX (sym) = (is_block
25118 ? dwarf2_loclist_block_index
25119 : dwarf2_loclist_index);
25120 SYMBOL_LOCATION_BATON (sym) = baton;
25121 }
25122 else
25123 {
25124 struct dwarf2_locexpr_baton *baton;
25125
25126 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25127 baton->per_cu = cu->per_cu;
25128 gdb_assert (baton->per_cu);
25129
25130 if (attr_form_is_block (attr))
25131 {
25132 /* Note that we're just copying the block's data pointer
25133 here, not the actual data. We're still pointing into the
25134 info_buffer for SYM's objfile; right now we never release
25135 that buffer, but when we do clean up properly this may
25136 need to change. */
25137 baton->size = DW_BLOCK (attr)->size;
25138 baton->data = DW_BLOCK (attr)->data;
25139 }
25140 else
25141 {
25142 dwarf2_invalid_attrib_class_complaint ("location description",
25143 SYMBOL_NATURAL_NAME (sym));
25144 baton->size = 0;
25145 }
25146
25147 SYMBOL_ACLASS_INDEX (sym) = (is_block
25148 ? dwarf2_locexpr_block_index
25149 : dwarf2_locexpr_index);
25150 SYMBOL_LOCATION_BATON (sym) = baton;
25151 }
25152 }
25153
25154 /* Return the OBJFILE associated with the compilation unit CU. If CU
25155 came from a separate debuginfo file, then the master objfile is
25156 returned. */
25157
25158 struct objfile *
25159 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25160 {
25161 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25162
25163 /* Return the master objfile, so that we can report and look up the
25164 correct file containing this variable. */
25165 if (objfile->separate_debug_objfile_backlink)
25166 objfile = objfile->separate_debug_objfile_backlink;
25167
25168 return objfile;
25169 }
25170
25171 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25172 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25173 CU_HEADERP first. */
25174
25175 static const struct comp_unit_head *
25176 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25177 struct dwarf2_per_cu_data *per_cu)
25178 {
25179 const gdb_byte *info_ptr;
25180
25181 if (per_cu->cu)
25182 return &per_cu->cu->header;
25183
25184 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25185
25186 memset (cu_headerp, 0, sizeof (*cu_headerp));
25187 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25188 rcuh_kind::COMPILE);
25189
25190 return cu_headerp;
25191 }
25192
25193 /* Return the address size given in the compilation unit header for CU. */
25194
25195 int
25196 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25197 {
25198 struct comp_unit_head cu_header_local;
25199 const struct comp_unit_head *cu_headerp;
25200
25201 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25202
25203 return cu_headerp->addr_size;
25204 }
25205
25206 /* Return the offset size given in the compilation unit header for CU. */
25207
25208 int
25209 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25210 {
25211 struct comp_unit_head cu_header_local;
25212 const struct comp_unit_head *cu_headerp;
25213
25214 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25215
25216 return cu_headerp->offset_size;
25217 }
25218
25219 /* See its dwarf2loc.h declaration. */
25220
25221 int
25222 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25223 {
25224 struct comp_unit_head cu_header_local;
25225 const struct comp_unit_head *cu_headerp;
25226
25227 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25228
25229 if (cu_headerp->version == 2)
25230 return cu_headerp->addr_size;
25231 else
25232 return cu_headerp->offset_size;
25233 }
25234
25235 /* Return the text offset of the CU. The returned offset comes from
25236 this CU's objfile. If this objfile came from a separate debuginfo
25237 file, then the offset may be different from the corresponding
25238 offset in the parent objfile. */
25239
25240 CORE_ADDR
25241 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25242 {
25243 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25244
25245 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25246 }
25247
25248 /* Return a type that is a generic pointer type, the size of which matches
25249 the address size given in the compilation unit header for PER_CU. */
25250 static struct type *
25251 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25252 {
25253 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25254 struct type *void_type = objfile_type (objfile)->builtin_void;
25255 struct type *addr_type = lookup_pointer_type (void_type);
25256 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25257
25258 if (TYPE_LENGTH (addr_type) == addr_size)
25259 return addr_type;
25260
25261 addr_type
25262 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25263 return addr_type;
25264 }
25265
25266 /* Return DWARF version number of PER_CU. */
25267
25268 short
25269 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25270 {
25271 return per_cu->dwarf_version;
25272 }
25273
25274 /* Locate the .debug_info compilation unit from CU's objfile which contains
25275 the DIE at OFFSET. Raises an error on failure. */
25276
25277 static struct dwarf2_per_cu_data *
25278 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25279 unsigned int offset_in_dwz,
25280 struct dwarf2_per_objfile *dwarf2_per_objfile)
25281 {
25282 struct dwarf2_per_cu_data *this_cu;
25283 int low, high;
25284
25285 low = 0;
25286 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25287 while (high > low)
25288 {
25289 struct dwarf2_per_cu_data *mid_cu;
25290 int mid = low + (high - low) / 2;
25291
25292 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25293 if (mid_cu->is_dwz > offset_in_dwz
25294 || (mid_cu->is_dwz == offset_in_dwz
25295 && mid_cu->sect_off + mid_cu->length >= sect_off))
25296 high = mid;
25297 else
25298 low = mid + 1;
25299 }
25300 gdb_assert (low == high);
25301 this_cu = dwarf2_per_objfile->all_comp_units[low];
25302 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25303 {
25304 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25305 error (_("Dwarf Error: could not find partial DIE containing "
25306 "offset %s [in module %s]"),
25307 sect_offset_str (sect_off),
25308 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25309
25310 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25311 <= sect_off);
25312 return dwarf2_per_objfile->all_comp_units[low-1];
25313 }
25314 else
25315 {
25316 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25317 && sect_off >= this_cu->sect_off + this_cu->length)
25318 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25319 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25320 return this_cu;
25321 }
25322 }
25323
25324 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25325
25326 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25327 : per_cu (per_cu_),
25328 mark (false),
25329 has_loclist (false),
25330 checked_producer (false),
25331 producer_is_gxx_lt_4_6 (false),
25332 producer_is_gcc_lt_4_3 (false),
25333 producer_is_icc (false),
25334 producer_is_icc_lt_14 (false),
25335 producer_is_codewarrior (false),
25336 processing_has_namespace_info (false)
25337 {
25338 per_cu->cu = this;
25339 }
25340
25341 /* Destroy a dwarf2_cu. */
25342
25343 dwarf2_cu::~dwarf2_cu ()
25344 {
25345 per_cu->cu = NULL;
25346 }
25347
25348 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25349
25350 static void
25351 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25352 enum language pretend_language)
25353 {
25354 struct attribute *attr;
25355
25356 /* Set the language we're debugging. */
25357 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25358 if (attr)
25359 set_cu_language (DW_UNSND (attr), cu);
25360 else
25361 {
25362 cu->language = pretend_language;
25363 cu->language_defn = language_def (cu->language);
25364 }
25365
25366 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25367 }
25368
25369 /* Increase the age counter on each cached compilation unit, and free
25370 any that are too old. */
25371
25372 static void
25373 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25374 {
25375 struct dwarf2_per_cu_data *per_cu, **last_chain;
25376
25377 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25378 per_cu = dwarf2_per_objfile->read_in_chain;
25379 while (per_cu != NULL)
25380 {
25381 per_cu->cu->last_used ++;
25382 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25383 dwarf2_mark (per_cu->cu);
25384 per_cu = per_cu->cu->read_in_chain;
25385 }
25386
25387 per_cu = dwarf2_per_objfile->read_in_chain;
25388 last_chain = &dwarf2_per_objfile->read_in_chain;
25389 while (per_cu != NULL)
25390 {
25391 struct dwarf2_per_cu_data *next_cu;
25392
25393 next_cu = per_cu->cu->read_in_chain;
25394
25395 if (!per_cu->cu->mark)
25396 {
25397 delete per_cu->cu;
25398 *last_chain = next_cu;
25399 }
25400 else
25401 last_chain = &per_cu->cu->read_in_chain;
25402
25403 per_cu = next_cu;
25404 }
25405 }
25406
25407 /* Remove a single compilation unit from the cache. */
25408
25409 static void
25410 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25411 {
25412 struct dwarf2_per_cu_data *per_cu, **last_chain;
25413 struct dwarf2_per_objfile *dwarf2_per_objfile
25414 = target_per_cu->dwarf2_per_objfile;
25415
25416 per_cu = dwarf2_per_objfile->read_in_chain;
25417 last_chain = &dwarf2_per_objfile->read_in_chain;
25418 while (per_cu != NULL)
25419 {
25420 struct dwarf2_per_cu_data *next_cu;
25421
25422 next_cu = per_cu->cu->read_in_chain;
25423
25424 if (per_cu == target_per_cu)
25425 {
25426 delete per_cu->cu;
25427 per_cu->cu = NULL;
25428 *last_chain = next_cu;
25429 break;
25430 }
25431 else
25432 last_chain = &per_cu->cu->read_in_chain;
25433
25434 per_cu = next_cu;
25435 }
25436 }
25437
25438 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25439 We store these in a hash table separate from the DIEs, and preserve them
25440 when the DIEs are flushed out of cache.
25441
25442 The CU "per_cu" pointer is needed because offset alone is not enough to
25443 uniquely identify the type. A file may have multiple .debug_types sections,
25444 or the type may come from a DWO file. Furthermore, while it's more logical
25445 to use per_cu->section+offset, with Fission the section with the data is in
25446 the DWO file but we don't know that section at the point we need it.
25447 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25448 because we can enter the lookup routine, get_die_type_at_offset, from
25449 outside this file, and thus won't necessarily have PER_CU->cu.
25450 Fortunately, PER_CU is stable for the life of the objfile. */
25451
25452 struct dwarf2_per_cu_offset_and_type
25453 {
25454 const struct dwarf2_per_cu_data *per_cu;
25455 sect_offset sect_off;
25456 struct type *type;
25457 };
25458
25459 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25460
25461 static hashval_t
25462 per_cu_offset_and_type_hash (const void *item)
25463 {
25464 const struct dwarf2_per_cu_offset_and_type *ofs
25465 = (const struct dwarf2_per_cu_offset_and_type *) item;
25466
25467 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25468 }
25469
25470 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25471
25472 static int
25473 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25474 {
25475 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25476 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25477 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25478 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25479
25480 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25481 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25482 }
25483
25484 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25485 table if necessary. For convenience, return TYPE.
25486
25487 The DIEs reading must have careful ordering to:
25488 * Not cause infite loops trying to read in DIEs as a prerequisite for
25489 reading current DIE.
25490 * Not trying to dereference contents of still incompletely read in types
25491 while reading in other DIEs.
25492 * Enable referencing still incompletely read in types just by a pointer to
25493 the type without accessing its fields.
25494
25495 Therefore caller should follow these rules:
25496 * Try to fetch any prerequisite types we may need to build this DIE type
25497 before building the type and calling set_die_type.
25498 * After building type call set_die_type for current DIE as soon as
25499 possible before fetching more types to complete the current type.
25500 * Make the type as complete as possible before fetching more types. */
25501
25502 static struct type *
25503 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25504 {
25505 struct dwarf2_per_objfile *dwarf2_per_objfile
25506 = cu->per_cu->dwarf2_per_objfile;
25507 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25508 struct objfile *objfile = dwarf2_per_objfile->objfile;
25509 struct attribute *attr;
25510 struct dynamic_prop prop;
25511
25512 /* For Ada types, make sure that the gnat-specific data is always
25513 initialized (if not already set). There are a few types where
25514 we should not be doing so, because the type-specific area is
25515 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25516 where the type-specific area is used to store the floatformat).
25517 But this is not a problem, because the gnat-specific information
25518 is actually not needed for these types. */
25519 if (need_gnat_info (cu)
25520 && TYPE_CODE (type) != TYPE_CODE_FUNC
25521 && TYPE_CODE (type) != TYPE_CODE_FLT
25522 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25523 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25524 && TYPE_CODE (type) != TYPE_CODE_METHOD
25525 && !HAVE_GNAT_AUX_INFO (type))
25526 INIT_GNAT_SPECIFIC (type);
25527
25528 /* Read DW_AT_allocated and set in type. */
25529 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25530 if (attr_form_is_block (attr))
25531 {
25532 struct type *prop_type
25533 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25534 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25535 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25536 }
25537 else if (attr != NULL)
25538 {
25539 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25540 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25541 sect_offset_str (die->sect_off));
25542 }
25543
25544 /* Read DW_AT_associated and set in type. */
25545 attr = dwarf2_attr (die, DW_AT_associated, cu);
25546 if (attr_form_is_block (attr))
25547 {
25548 struct type *prop_type
25549 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25550 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25551 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25552 }
25553 else if (attr != NULL)
25554 {
25555 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25556 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25557 sect_offset_str (die->sect_off));
25558 }
25559
25560 /* Read DW_AT_data_location and set in type. */
25561 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25562 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25563 dwarf2_per_cu_addr_type (cu->per_cu)))
25564 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25565
25566 if (dwarf2_per_objfile->die_type_hash == NULL)
25567 {
25568 dwarf2_per_objfile->die_type_hash =
25569 htab_create_alloc_ex (127,
25570 per_cu_offset_and_type_hash,
25571 per_cu_offset_and_type_eq,
25572 NULL,
25573 &objfile->objfile_obstack,
25574 hashtab_obstack_allocate,
25575 dummy_obstack_deallocate);
25576 }
25577
25578 ofs.per_cu = cu->per_cu;
25579 ofs.sect_off = die->sect_off;
25580 ofs.type = type;
25581 slot = (struct dwarf2_per_cu_offset_and_type **)
25582 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25583 if (*slot)
25584 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25585 sect_offset_str (die->sect_off));
25586 *slot = XOBNEW (&objfile->objfile_obstack,
25587 struct dwarf2_per_cu_offset_and_type);
25588 **slot = ofs;
25589 return type;
25590 }
25591
25592 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25593 or return NULL if the die does not have a saved type. */
25594
25595 static struct type *
25596 get_die_type_at_offset (sect_offset sect_off,
25597 struct dwarf2_per_cu_data *per_cu)
25598 {
25599 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25600 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25601
25602 if (dwarf2_per_objfile->die_type_hash == NULL)
25603 return NULL;
25604
25605 ofs.per_cu = per_cu;
25606 ofs.sect_off = sect_off;
25607 slot = ((struct dwarf2_per_cu_offset_and_type *)
25608 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25609 if (slot)
25610 return slot->type;
25611 else
25612 return NULL;
25613 }
25614
25615 /* Look up the type for DIE in CU in die_type_hash,
25616 or return NULL if DIE does not have a saved type. */
25617
25618 static struct type *
25619 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25620 {
25621 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25622 }
25623
25624 /* Add a dependence relationship from CU to REF_PER_CU. */
25625
25626 static void
25627 dwarf2_add_dependence (struct dwarf2_cu *cu,
25628 struct dwarf2_per_cu_data *ref_per_cu)
25629 {
25630 void **slot;
25631
25632 if (cu->dependencies == NULL)
25633 cu->dependencies
25634 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25635 NULL, &cu->comp_unit_obstack,
25636 hashtab_obstack_allocate,
25637 dummy_obstack_deallocate);
25638
25639 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25640 if (*slot == NULL)
25641 *slot = ref_per_cu;
25642 }
25643
25644 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25645 Set the mark field in every compilation unit in the
25646 cache that we must keep because we are keeping CU. */
25647
25648 static int
25649 dwarf2_mark_helper (void **slot, void *data)
25650 {
25651 struct dwarf2_per_cu_data *per_cu;
25652
25653 per_cu = (struct dwarf2_per_cu_data *) *slot;
25654
25655 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25656 reading of the chain. As such dependencies remain valid it is not much
25657 useful to track and undo them during QUIT cleanups. */
25658 if (per_cu->cu == NULL)
25659 return 1;
25660
25661 if (per_cu->cu->mark)
25662 return 1;
25663 per_cu->cu->mark = true;
25664
25665 if (per_cu->cu->dependencies != NULL)
25666 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25667
25668 return 1;
25669 }
25670
25671 /* Set the mark field in CU and in every other compilation unit in the
25672 cache that we must keep because we are keeping CU. */
25673
25674 static void
25675 dwarf2_mark (struct dwarf2_cu *cu)
25676 {
25677 if (cu->mark)
25678 return;
25679 cu->mark = true;
25680 if (cu->dependencies != NULL)
25681 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25682 }
25683
25684 static void
25685 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25686 {
25687 while (per_cu)
25688 {
25689 per_cu->cu->mark = false;
25690 per_cu = per_cu->cu->read_in_chain;
25691 }
25692 }
25693
25694 /* Trivial hash function for partial_die_info: the hash value of a DIE
25695 is its offset in .debug_info for this objfile. */
25696
25697 static hashval_t
25698 partial_die_hash (const void *item)
25699 {
25700 const struct partial_die_info *part_die
25701 = (const struct partial_die_info *) item;
25702
25703 return to_underlying (part_die->sect_off);
25704 }
25705
25706 /* Trivial comparison function for partial_die_info structures: two DIEs
25707 are equal if they have the same offset. */
25708
25709 static int
25710 partial_die_eq (const void *item_lhs, const void *item_rhs)
25711 {
25712 const struct partial_die_info *part_die_lhs
25713 = (const struct partial_die_info *) item_lhs;
25714 const struct partial_die_info *part_die_rhs
25715 = (const struct partial_die_info *) item_rhs;
25716
25717 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25718 }
25719
25720 struct cmd_list_element *set_dwarf_cmdlist;
25721 struct cmd_list_element *show_dwarf_cmdlist;
25722
25723 static void
25724 set_dwarf_cmd (const char *args, int from_tty)
25725 {
25726 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25727 gdb_stdout);
25728 }
25729
25730 static void
25731 show_dwarf_cmd (const char *args, int from_tty)
25732 {
25733 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25734 }
25735
25736 int dwarf_always_disassemble;
25737
25738 static void
25739 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25740 struct cmd_list_element *c, const char *value)
25741 {
25742 fprintf_filtered (file,
25743 _("Whether to always disassemble "
25744 "DWARF expressions is %s.\n"),
25745 value);
25746 }
25747
25748 static void
25749 show_check_physname (struct ui_file *file, int from_tty,
25750 struct cmd_list_element *c, const char *value)
25751 {
25752 fprintf_filtered (file,
25753 _("Whether to check \"physname\" is %s.\n"),
25754 value);
25755 }
25756
25757 void
25758 _initialize_dwarf2_read (void)
25759 {
25760 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25761 Set DWARF specific variables.\n\
25762 Configure DWARF variables such as the cache size"),
25763 &set_dwarf_cmdlist, "maintenance set dwarf ",
25764 0/*allow-unknown*/, &maintenance_set_cmdlist);
25765
25766 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25767 Show DWARF specific variables\n\
25768 Show DWARF variables such as the cache size"),
25769 &show_dwarf_cmdlist, "maintenance show dwarf ",
25770 0/*allow-unknown*/, &maintenance_show_cmdlist);
25771
25772 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25773 &dwarf_max_cache_age, _("\
25774 Set the upper bound on the age of cached DWARF compilation units."), _("\
25775 Show the upper bound on the age of cached DWARF compilation units."), _("\
25776 A higher limit means that cached compilation units will be stored\n\
25777 in memory longer, and more total memory will be used. Zero disables\n\
25778 caching, which can slow down startup."),
25779 NULL,
25780 show_dwarf_max_cache_age,
25781 &set_dwarf_cmdlist,
25782 &show_dwarf_cmdlist);
25783
25784 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25785 &dwarf_always_disassemble, _("\
25786 Set whether `info address' always disassembles DWARF expressions."), _("\
25787 Show whether `info address' always disassembles DWARF expressions."), _("\
25788 When enabled, DWARF expressions are always printed in an assembly-like\n\
25789 syntax. When disabled, expressions will be printed in a more\n\
25790 conversational style, when possible."),
25791 NULL,
25792 show_dwarf_always_disassemble,
25793 &set_dwarf_cmdlist,
25794 &show_dwarf_cmdlist);
25795
25796 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25797 Set debugging of the DWARF reader."), _("\
25798 Show debugging of the DWARF reader."), _("\
25799 When enabled (non-zero), debugging messages are printed during DWARF\n\
25800 reading and symtab expansion. A value of 1 (one) provides basic\n\
25801 information. A value greater than 1 provides more verbose information."),
25802 NULL,
25803 NULL,
25804 &setdebuglist, &showdebuglist);
25805
25806 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25807 Set debugging of the DWARF DIE reader."), _("\
25808 Show debugging of the DWARF DIE reader."), _("\
25809 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25810 The value is the maximum depth to print."),
25811 NULL,
25812 NULL,
25813 &setdebuglist, &showdebuglist);
25814
25815 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25816 Set debugging of the dwarf line reader."), _("\
25817 Show debugging of the dwarf line reader."), _("\
25818 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25819 A value of 1 (one) provides basic information.\n\
25820 A value greater than 1 provides more verbose information."),
25821 NULL,
25822 NULL,
25823 &setdebuglist, &showdebuglist);
25824
25825 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25826 Set cross-checking of \"physname\" code against demangler."), _("\
25827 Show cross-checking of \"physname\" code against demangler."), _("\
25828 When enabled, GDB's internal \"physname\" code is checked against\n\
25829 the demangler."),
25830 NULL, show_check_physname,
25831 &setdebuglist, &showdebuglist);
25832
25833 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25834 no_class, &use_deprecated_index_sections, _("\
25835 Set whether to use deprecated gdb_index sections."), _("\
25836 Show whether to use deprecated gdb_index sections."), _("\
25837 When enabled, deprecated .gdb_index sections are used anyway.\n\
25838 Normally they are ignored either because of a missing feature or\n\
25839 performance issue.\n\
25840 Warning: This option must be enabled before gdb reads the file."),
25841 NULL,
25842 NULL,
25843 &setlist, &showlist);
25844
25845 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25846 &dwarf2_locexpr_funcs);
25847 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25848 &dwarf2_loclist_funcs);
25849
25850 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25851 &dwarf2_block_frame_base_locexpr_funcs);
25852 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25853 &dwarf2_block_frame_base_loclist_funcs);
25854
25855 #if GDB_SELF_TEST
25856 selftests::register_test ("dw2_expand_symtabs_matching",
25857 selftests::dw2_expand_symtabs_matching::run_test);
25858 #endif
25859 }
This page took 0.826894 seconds and 4 git commands to generate.