751c59c33c062881f780896b26041070479d2f52
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
424 Create the set of symtabs used by this TU, or if this TU is sharing
425 symtabs with another TU and the symtabs have already been created
426 then restore those symtabs in the line header.
427 We don't need the pc/line-number mapping for type units. */
428 void setup_type_unit_groups (struct die_info *die);
429
430 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
431 buildsym_compunit constructor. */
432 struct compunit_symtab *start_symtab (const char *name,
433 const char *comp_dir,
434 CORE_ADDR low_pc);
435
436 /* Reset the builder. */
437 void reset_builder () { m_builder.reset (); }
438
439 /* The header of the compilation unit. */
440 struct comp_unit_head header {};
441
442 /* Base address of this compilation unit. */
443 CORE_ADDR base_address = 0;
444
445 /* Non-zero if base_address has been set. */
446 int base_known = 0;
447
448 /* The language we are debugging. */
449 enum language language = language_unknown;
450 const struct language_defn *language_defn = nullptr;
451
452 const char *producer = nullptr;
453
454 private:
455 /* The symtab builder for this CU. This is only non-NULL when full
456 symbols are being read. */
457 std::unique_ptr<buildsym_compunit> m_builder;
458
459 public:
460 /* The generic symbol table building routines have separate lists for
461 file scope symbols and all all other scopes (local scopes). So
462 we need to select the right one to pass to add_symbol_to_list().
463 We do it by keeping a pointer to the correct list in list_in_scope.
464
465 FIXME: The original dwarf code just treated the file scope as the
466 first local scope, and all other local scopes as nested local
467 scopes, and worked fine. Check to see if we really need to
468 distinguish these in buildsym.c. */
469 struct pending **list_in_scope = nullptr;
470
471 /* Hash table holding all the loaded partial DIEs
472 with partial_die->offset.SECT_OFF as hash. */
473 htab_t partial_dies = nullptr;
474
475 /* Storage for things with the same lifetime as this read-in compilation
476 unit, including partial DIEs. */
477 auto_obstack comp_unit_obstack;
478
479 /* When multiple dwarf2_cu structures are living in memory, this field
480 chains them all together, so that they can be released efficiently.
481 We will probably also want a generation counter so that most-recently-used
482 compilation units are cached... */
483 struct dwarf2_per_cu_data *read_in_chain = nullptr;
484
485 /* Backlink to our per_cu entry. */
486 struct dwarf2_per_cu_data *per_cu;
487
488 /* How many compilation units ago was this CU last referenced? */
489 int last_used = 0;
490
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
494
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
497
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
502
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
511
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
515
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
518
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
527 is non-NULL). */
528 struct dwo_unit *dwo_unit = nullptr;
529
530 /* The DW_AT_addr_base attribute if present, zero otherwise
531 (zero is a valid value though).
532 Note this value comes from the Fission stub CU/TU's DIE. */
533 ULONGEST addr_base = 0;
534
535 /* The DW_AT_ranges_base attribute if present, zero otherwise
536 (zero is a valid value though).
537 Note this value comes from the Fission stub CU/TU's DIE.
538 Also note that the value is zero in the non-DWO case so this value can
539 be used without needing to know whether DWO files are in use or not.
540 N.B. This does not apply to DW_AT_ranges appearing in
541 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
542 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
543 DW_AT_ranges_base *would* have to be applied, and we'd have to care
544 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
545 ULONGEST ranges_base = 0;
546
547 /* When reading debug info generated by older versions of rustc, we
548 have to rewrite some union types to be struct types with a
549 variant part. This rewriting must be done after the CU is fully
550 read in, because otherwise at the point of rewriting some struct
551 type might not have been fully processed. So, we keep a list of
552 all such types here and process them after expansion. */
553 std::vector<struct type *> rust_unions;
554
555 /* Mark used when releasing cached dies. */
556 bool mark : 1;
557
558 /* This CU references .debug_loc. See the symtab->locations_valid field.
559 This test is imperfect as there may exist optimized debug code not using
560 any location list and still facing inlining issues if handled as
561 unoptimized code. For a future better test see GCC PR other/32998. */
562 bool has_loclist : 1;
563
564 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
565 if all the producer_is_* fields are valid. This information is cached
566 because profiling CU expansion showed excessive time spent in
567 producer_is_gxx_lt_4_6. */
568 bool checked_producer : 1;
569 bool producer_is_gxx_lt_4_6 : 1;
570 bool producer_is_gcc_lt_4_3 : 1;
571 bool producer_is_icc : 1;
572 bool producer_is_icc_lt_14 : 1;
573 bool producer_is_codewarrior : 1;
574
575 /* When true, the file that we're processing is known to have
576 debugging info for C++ namespaces. GCC 3.3.x did not produce
577 this information, but later versions do. */
578
579 bool processing_has_namespace_info : 1;
580
581 struct partial_die_info *find_partial_die (sect_offset sect_off);
582
583 /* If this CU was inherited by another CU (via specification,
584 abstract_origin, etc), this is the ancestor CU. */
585 dwarf2_cu *ancestor;
586
587 /* Get the buildsym_compunit for this CU. */
588 buildsym_compunit *get_builder ()
589 {
590 /* If this CU has a builder associated with it, use that. */
591 if (m_builder != nullptr)
592 return m_builder.get ();
593
594 /* Otherwise, search ancestors for a valid builder. */
595 if (ancestor != nullptr)
596 return ancestor->get_builder ();
597
598 return nullptr;
599 }
600 };
601
602 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
603 This includes type_unit_group and quick_file_names. */
604
605 struct stmt_list_hash
606 {
607 /* The DWO unit this table is from or NULL if there is none. */
608 struct dwo_unit *dwo_unit;
609
610 /* Offset in .debug_line or .debug_line.dwo. */
611 sect_offset line_sect_off;
612 };
613
614 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
615 an object of this type. */
616
617 struct type_unit_group
618 {
619 /* dwarf2read.c's main "handle" on a TU symtab.
620 To simplify things we create an artificial CU that "includes" all the
621 type units using this stmt_list so that the rest of the code still has
622 a "per_cu" handle on the symtab.
623 This PER_CU is recognized by having no section. */
624 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 VEC (sig_type_ptr) *tus;
631
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
636
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
639
640 /* The number of symtabs from the line header.
641 The value here must match line_header.num_file_names. */
642 unsigned int num_symtabs;
643
644 /* The symbol tables for this TU (obtained from the files listed in
645 DW_AT_stmt_list).
646 WARNING: The order of entries here must match the order of entries
647 in the line header. After the first TU using this type_unit_group, the
648 line header for the subsequent TUs is recreated from this. This is done
649 because we need to use the same symtabs for each TU using the same
650 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
651 there's no guarantee the line header doesn't have duplicate entries. */
652 struct symtab **symtabs;
653 };
654
655 /* These sections are what may appear in a (real or virtual) DWO file. */
656
657 struct dwo_sections
658 {
659 struct dwarf2_section_info abbrev;
660 struct dwarf2_section_info line;
661 struct dwarf2_section_info loc;
662 struct dwarf2_section_info loclists;
663 struct dwarf2_section_info macinfo;
664 struct dwarf2_section_info macro;
665 struct dwarf2_section_info str;
666 struct dwarf2_section_info str_offsets;
667 /* In the case of a virtual DWO file, these two are unused. */
668 struct dwarf2_section_info info;
669 VEC (dwarf2_section_info_def) *types;
670 };
671
672 /* CUs/TUs in DWP/DWO files. */
673
674 struct dwo_unit
675 {
676 /* Backlink to the containing struct dwo_file. */
677 struct dwo_file *dwo_file;
678
679 /* The "id" that distinguishes this CU/TU.
680 .debug_info calls this "dwo_id", .debug_types calls this "signature".
681 Since signatures came first, we stick with it for consistency. */
682 ULONGEST signature;
683
684 /* The section this CU/TU lives in, in the DWO file. */
685 struct dwarf2_section_info *section;
686
687 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
688 sect_offset sect_off;
689 unsigned int length;
690
691 /* For types, offset in the type's DIE of the type defined by this TU. */
692 cu_offset type_offset_in_tu;
693 };
694
695 /* include/dwarf2.h defines the DWP section codes.
696 It defines a max value but it doesn't define a min value, which we
697 use for error checking, so provide one. */
698
699 enum dwp_v2_section_ids
700 {
701 DW_SECT_MIN = 1
702 };
703
704 /* Data for one DWO file.
705
706 This includes virtual DWO files (a virtual DWO file is a DWO file as it
707 appears in a DWP file). DWP files don't really have DWO files per se -
708 comdat folding of types "loses" the DWO file they came from, and from
709 a high level view DWP files appear to contain a mass of random types.
710 However, to maintain consistency with the non-DWP case we pretend DWP
711 files contain virtual DWO files, and we assign each TU with one virtual
712 DWO file (generally based on the line and abbrev section offsets -
713 a heuristic that seems to work in practice). */
714
715 struct dwo_file
716 {
717 /* The DW_AT_GNU_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 bfd *dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections;
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_t cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_t tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by both DWP version 1 and 2. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 there is at most one copy of all these sections, each
759 section being (effectively) comprised of the concatenation of all of the
760 individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info macinfo;
768 struct dwarf2_section_info macro;
769 struct dwarf2_section_info str_offsets;
770 struct dwarf2_section_info types;
771 };
772
773 /* These sections are what may appear in a virtual DWO file in DWP version 1.
774 A virtual DWO file is a DWO file as it appears in a DWP file. */
775
776 struct virtual_v1_dwo_sections
777 {
778 struct dwarf2_section_info abbrev;
779 struct dwarf2_section_info line;
780 struct dwarf2_section_info loc;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str_offsets;
784 /* Each DWP hash table entry records one CU or one TU.
785 That is recorded here, and copied to dwo_unit.section. */
786 struct dwarf2_section_info info_or_types;
787 };
788
789 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
790 In version 2, the sections of the DWO files are concatenated together
791 and stored in one section of that name. Thus each ELF section contains
792 several "virtual" sections. */
793
794 struct virtual_v2_dwo_sections
795 {
796 bfd_size_type abbrev_offset;
797 bfd_size_type abbrev_size;
798
799 bfd_size_type line_offset;
800 bfd_size_type line_size;
801
802 bfd_size_type loc_offset;
803 bfd_size_type loc_size;
804
805 bfd_size_type macinfo_offset;
806 bfd_size_type macinfo_size;
807
808 bfd_size_type macro_offset;
809 bfd_size_type macro_size;
810
811 bfd_size_type str_offsets_offset;
812 bfd_size_type str_offsets_size;
813
814 /* Each DWP hash table entry records one CU or one TU.
815 That is recorded here, and copied to dwo_unit.section. */
816 bfd_size_type info_or_types_offset;
817 bfd_size_type info_or_types_size;
818 };
819
820 /* Contents of DWP hash tables. */
821
822 struct dwp_hash_table
823 {
824 uint32_t version, nr_columns;
825 uint32_t nr_units, nr_slots;
826 const gdb_byte *hash_table, *unit_table;
827 union
828 {
829 struct
830 {
831 const gdb_byte *indices;
832 } v1;
833 struct
834 {
835 /* This is indexed by column number and gives the id of the section
836 in that column. */
837 #define MAX_NR_V2_DWO_SECTIONS \
838 (1 /* .debug_info or .debug_types */ \
839 + 1 /* .debug_abbrev */ \
840 + 1 /* .debug_line */ \
841 + 1 /* .debug_loc */ \
842 + 1 /* .debug_str_offsets */ \
843 + 1 /* .debug_macro or .debug_macinfo */)
844 int section_ids[MAX_NR_V2_DWO_SECTIONS];
845 const gdb_byte *offsets;
846 const gdb_byte *sizes;
847 } v2;
848 } section_pool;
849 };
850
851 /* Data for one DWP file. */
852
853 struct dwp_file
854 {
855 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
856 : name (name_),
857 dbfd (std::move (abfd))
858 {
859 }
860
861 /* Name of the file. */
862 const char *name;
863
864 /* File format version. */
865 int version = 0;
866
867 /* The bfd. */
868 gdb_bfd_ref_ptr dbfd;
869
870 /* Section info for this file. */
871 struct dwp_sections sections {};
872
873 /* Table of CUs in the file. */
874 const struct dwp_hash_table *cus = nullptr;
875
876 /* Table of TUs in the file. */
877 const struct dwp_hash_table *tus = nullptr;
878
879 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
880 htab_t loaded_cus {};
881 htab_t loaded_tus {};
882
883 /* Table to map ELF section numbers to their sections.
884 This is only needed for the DWP V1 file format. */
885 unsigned int num_sections = 0;
886 asection **elf_sections = nullptr;
887 };
888
889 /* This represents a '.dwz' file. */
890
891 struct dwz_file
892 {
893 dwz_file (gdb_bfd_ref_ptr &&bfd)
894 : dwz_bfd (std::move (bfd))
895 {
896 }
897
898 /* A dwz file can only contain a few sections. */
899 struct dwarf2_section_info abbrev {};
900 struct dwarf2_section_info info {};
901 struct dwarf2_section_info str {};
902 struct dwarf2_section_info line {};
903 struct dwarf2_section_info macro {};
904 struct dwarf2_section_info gdb_index {};
905 struct dwarf2_section_info debug_names {};
906
907 /* The dwz's BFD. */
908 gdb_bfd_ref_ptr dwz_bfd;
909
910 /* If we loaded the index from an external file, this contains the
911 resources associated to the open file, memory mapping, etc. */
912 std::unique_ptr<index_cache_resource> index_cache_res;
913 };
914
915 /* Struct used to pass misc. parameters to read_die_and_children, et
916 al. which are used for both .debug_info and .debug_types dies.
917 All parameters here are unchanging for the life of the call. This
918 struct exists to abstract away the constant parameters of die reading. */
919
920 struct die_reader_specs
921 {
922 /* The bfd of die_section. */
923 bfd* abfd;
924
925 /* The CU of the DIE we are parsing. */
926 struct dwarf2_cu *cu;
927
928 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
929 struct dwo_file *dwo_file;
930
931 /* The section the die comes from.
932 This is either .debug_info or .debug_types, or the .dwo variants. */
933 struct dwarf2_section_info *die_section;
934
935 /* die_section->buffer. */
936 const gdb_byte *buffer;
937
938 /* The end of the buffer. */
939 const gdb_byte *buffer_end;
940
941 /* The value of the DW_AT_comp_dir attribute. */
942 const char *comp_dir;
943
944 /* The abbreviation table to use when reading the DIEs. */
945 struct abbrev_table *abbrev_table;
946 };
947
948 /* Type of function passed to init_cutu_and_read_dies, et.al. */
949 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
950 const gdb_byte *info_ptr,
951 struct die_info *comp_unit_die,
952 int has_children,
953 void *data);
954
955 /* A 1-based directory index. This is a strong typedef to prevent
956 accidentally using a directory index as a 0-based index into an
957 array/vector. */
958 enum class dir_index : unsigned int {};
959
960 /* Likewise, a 1-based file name index. */
961 enum class file_name_index : unsigned int {};
962
963 struct file_entry
964 {
965 file_entry () = default;
966
967 file_entry (const char *name_, dir_index d_index_,
968 unsigned int mod_time_, unsigned int length_)
969 : name (name_),
970 d_index (d_index_),
971 mod_time (mod_time_),
972 length (length_)
973 {}
974
975 /* Return the include directory at D_INDEX stored in LH. Returns
976 NULL if D_INDEX is out of bounds. */
977 const char *include_dir (const line_header *lh) const;
978
979 /* The file name. Note this is an observing pointer. The memory is
980 owned by debug_line_buffer. */
981 const char *name {};
982
983 /* The directory index (1-based). */
984 dir_index d_index {};
985
986 unsigned int mod_time {};
987
988 unsigned int length {};
989
990 /* True if referenced by the Line Number Program. */
991 bool included_p {};
992
993 /* The associated symbol table, if any. */
994 struct symtab *symtab {};
995 };
996
997 /* The line number information for a compilation unit (found in the
998 .debug_line section) begins with a "statement program header",
999 which contains the following information. */
1000 struct line_header
1001 {
1002 line_header ()
1003 : offset_in_dwz {}
1004 {}
1005
1006 /* Add an entry to the include directory table. */
1007 void add_include_dir (const char *include_dir);
1008
1009 /* Add an entry to the file name table. */
1010 void add_file_name (const char *name, dir_index d_index,
1011 unsigned int mod_time, unsigned int length);
1012
1013 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1014 is out of bounds. */
1015 const char *include_dir_at (dir_index index) const
1016 {
1017 /* Convert directory index number (1-based) to vector index
1018 (0-based). */
1019 size_t vec_index = to_underlying (index) - 1;
1020
1021 if (vec_index >= include_dirs.size ())
1022 return NULL;
1023 return include_dirs[vec_index];
1024 }
1025
1026 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1027 is out of bounds. */
1028 file_entry *file_name_at (file_name_index index)
1029 {
1030 /* Convert file name index number (1-based) to vector index
1031 (0-based). */
1032 size_t vec_index = to_underlying (index) - 1;
1033
1034 if (vec_index >= file_names.size ())
1035 return NULL;
1036 return &file_names[vec_index];
1037 }
1038
1039 /* Offset of line number information in .debug_line section. */
1040 sect_offset sect_off {};
1041
1042 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1043 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1044
1045 unsigned int total_length {};
1046 unsigned short version {};
1047 unsigned int header_length {};
1048 unsigned char minimum_instruction_length {};
1049 unsigned char maximum_ops_per_instruction {};
1050 unsigned char default_is_stmt {};
1051 int line_base {};
1052 unsigned char line_range {};
1053 unsigned char opcode_base {};
1054
1055 /* standard_opcode_lengths[i] is the number of operands for the
1056 standard opcode whose value is i. This means that
1057 standard_opcode_lengths[0] is unused, and the last meaningful
1058 element is standard_opcode_lengths[opcode_base - 1]. */
1059 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1060
1061 /* The include_directories table. Note these are observing
1062 pointers. The memory is owned by debug_line_buffer. */
1063 std::vector<const char *> include_dirs;
1064
1065 /* The file_names table. */
1066 std::vector<file_entry> file_names;
1067
1068 /* The start and end of the statement program following this
1069 header. These point into dwarf2_per_objfile->line_buffer. */
1070 const gdb_byte *statement_program_start {}, *statement_program_end {};
1071 };
1072
1073 typedef std::unique_ptr<line_header> line_header_up;
1074
1075 const char *
1076 file_entry::include_dir (const line_header *lh) const
1077 {
1078 return lh->include_dir_at (d_index);
1079 }
1080
1081 /* When we construct a partial symbol table entry we only
1082 need this much information. */
1083 struct partial_die_info : public allocate_on_obstack
1084 {
1085 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1086
1087 /* Disable assign but still keep copy ctor, which is needed
1088 load_partial_dies. */
1089 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1090
1091 /* Adjust the partial die before generating a symbol for it. This
1092 function may set the is_external flag or change the DIE's
1093 name. */
1094 void fixup (struct dwarf2_cu *cu);
1095
1096 /* Read a minimal amount of information into the minimal die
1097 structure. */
1098 const gdb_byte *read (const struct die_reader_specs *reader,
1099 const struct abbrev_info &abbrev,
1100 const gdb_byte *info_ptr);
1101
1102 /* Offset of this DIE. */
1103 const sect_offset sect_off;
1104
1105 /* DWARF-2 tag for this DIE. */
1106 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1107
1108 /* Assorted flags describing the data found in this DIE. */
1109 const unsigned int has_children : 1;
1110
1111 unsigned int is_external : 1;
1112 unsigned int is_declaration : 1;
1113 unsigned int has_type : 1;
1114 unsigned int has_specification : 1;
1115 unsigned int has_pc_info : 1;
1116 unsigned int may_be_inlined : 1;
1117
1118 /* This DIE has been marked DW_AT_main_subprogram. */
1119 unsigned int main_subprogram : 1;
1120
1121 /* Flag set if the SCOPE field of this structure has been
1122 computed. */
1123 unsigned int scope_set : 1;
1124
1125 /* Flag set if the DIE has a byte_size attribute. */
1126 unsigned int has_byte_size : 1;
1127
1128 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1129 unsigned int has_const_value : 1;
1130
1131 /* Flag set if any of the DIE's children are template arguments. */
1132 unsigned int has_template_arguments : 1;
1133
1134 /* Flag set if fixup has been called on this die. */
1135 unsigned int fixup_called : 1;
1136
1137 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1138 unsigned int is_dwz : 1;
1139
1140 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1141 unsigned int spec_is_dwz : 1;
1142
1143 /* The name of this DIE. Normally the value of DW_AT_name, but
1144 sometimes a default name for unnamed DIEs. */
1145 const char *name = nullptr;
1146
1147 /* The linkage name, if present. */
1148 const char *linkage_name = nullptr;
1149
1150 /* The scope to prepend to our children. This is generally
1151 allocated on the comp_unit_obstack, so will disappear
1152 when this compilation unit leaves the cache. */
1153 const char *scope = nullptr;
1154
1155 /* Some data associated with the partial DIE. The tag determines
1156 which field is live. */
1157 union
1158 {
1159 /* The location description associated with this DIE, if any. */
1160 struct dwarf_block *locdesc;
1161 /* The offset of an import, for DW_TAG_imported_unit. */
1162 sect_offset sect_off;
1163 } d {};
1164
1165 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1166 CORE_ADDR lowpc = 0;
1167 CORE_ADDR highpc = 0;
1168
1169 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1170 DW_AT_sibling, if any. */
1171 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1172 could return DW_AT_sibling values to its caller load_partial_dies. */
1173 const gdb_byte *sibling = nullptr;
1174
1175 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1176 DW_AT_specification (or DW_AT_abstract_origin or
1177 DW_AT_extension). */
1178 sect_offset spec_offset {};
1179
1180 /* Pointers to this DIE's parent, first child, and next sibling,
1181 if any. */
1182 struct partial_die_info *die_parent = nullptr;
1183 struct partial_die_info *die_child = nullptr;
1184 struct partial_die_info *die_sibling = nullptr;
1185
1186 friend struct partial_die_info *
1187 dwarf2_cu::find_partial_die (sect_offset sect_off);
1188
1189 private:
1190 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1191 partial_die_info (sect_offset sect_off)
1192 : partial_die_info (sect_off, DW_TAG_padding, 0)
1193 {
1194 }
1195
1196 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1197 int has_children_)
1198 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1199 {
1200 is_external = 0;
1201 is_declaration = 0;
1202 has_type = 0;
1203 has_specification = 0;
1204 has_pc_info = 0;
1205 may_be_inlined = 0;
1206 main_subprogram = 0;
1207 scope_set = 0;
1208 has_byte_size = 0;
1209 has_const_value = 0;
1210 has_template_arguments = 0;
1211 fixup_called = 0;
1212 is_dwz = 0;
1213 spec_is_dwz = 0;
1214 }
1215 };
1216
1217 /* This data structure holds the information of an abbrev. */
1218 struct abbrev_info
1219 {
1220 unsigned int number; /* number identifying abbrev */
1221 enum dwarf_tag tag; /* dwarf tag */
1222 unsigned short has_children; /* boolean */
1223 unsigned short num_attrs; /* number of attributes */
1224 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1225 struct abbrev_info *next; /* next in chain */
1226 };
1227
1228 struct attr_abbrev
1229 {
1230 ENUM_BITFIELD(dwarf_attribute) name : 16;
1231 ENUM_BITFIELD(dwarf_form) form : 16;
1232
1233 /* It is valid only if FORM is DW_FORM_implicit_const. */
1234 LONGEST implicit_const;
1235 };
1236
1237 /* Size of abbrev_table.abbrev_hash_table. */
1238 #define ABBREV_HASH_SIZE 121
1239
1240 /* Top level data structure to contain an abbreviation table. */
1241
1242 struct abbrev_table
1243 {
1244 explicit abbrev_table (sect_offset off)
1245 : sect_off (off)
1246 {
1247 m_abbrevs =
1248 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1249 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1250 }
1251
1252 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1253
1254 /* Allocate space for a struct abbrev_info object in
1255 ABBREV_TABLE. */
1256 struct abbrev_info *alloc_abbrev ();
1257
1258 /* Add an abbreviation to the table. */
1259 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1260
1261 /* Look up an abbrev in the table.
1262 Returns NULL if the abbrev is not found. */
1263
1264 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1265
1266
1267 /* Where the abbrev table came from.
1268 This is used as a sanity check when the table is used. */
1269 const sect_offset sect_off;
1270
1271 /* Storage for the abbrev table. */
1272 auto_obstack abbrev_obstack;
1273
1274 private:
1275
1276 /* Hash table of abbrevs.
1277 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1278 It could be statically allocated, but the previous code didn't so we
1279 don't either. */
1280 struct abbrev_info **m_abbrevs;
1281 };
1282
1283 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1284
1285 /* Attributes have a name and a value. */
1286 struct attribute
1287 {
1288 ENUM_BITFIELD(dwarf_attribute) name : 16;
1289 ENUM_BITFIELD(dwarf_form) form : 15;
1290
1291 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1292 field should be in u.str (existing only for DW_STRING) but it is kept
1293 here for better struct attribute alignment. */
1294 unsigned int string_is_canonical : 1;
1295
1296 union
1297 {
1298 const char *str;
1299 struct dwarf_block *blk;
1300 ULONGEST unsnd;
1301 LONGEST snd;
1302 CORE_ADDR addr;
1303 ULONGEST signature;
1304 }
1305 u;
1306 };
1307
1308 /* This data structure holds a complete die structure. */
1309 struct die_info
1310 {
1311 /* DWARF-2 tag for this DIE. */
1312 ENUM_BITFIELD(dwarf_tag) tag : 16;
1313
1314 /* Number of attributes */
1315 unsigned char num_attrs;
1316
1317 /* True if we're presently building the full type name for the
1318 type derived from this DIE. */
1319 unsigned char building_fullname : 1;
1320
1321 /* True if this die is in process. PR 16581. */
1322 unsigned char in_process : 1;
1323
1324 /* Abbrev number */
1325 unsigned int abbrev;
1326
1327 /* Offset in .debug_info or .debug_types section. */
1328 sect_offset sect_off;
1329
1330 /* The dies in a compilation unit form an n-ary tree. PARENT
1331 points to this die's parent; CHILD points to the first child of
1332 this node; and all the children of a given node are chained
1333 together via their SIBLING fields. */
1334 struct die_info *child; /* Its first child, if any. */
1335 struct die_info *sibling; /* Its next sibling, if any. */
1336 struct die_info *parent; /* Its parent, if any. */
1337
1338 /* An array of attributes, with NUM_ATTRS elements. There may be
1339 zero, but it's not common and zero-sized arrays are not
1340 sufficiently portable C. */
1341 struct attribute attrs[1];
1342 };
1343
1344 /* Get at parts of an attribute structure. */
1345
1346 #define DW_STRING(attr) ((attr)->u.str)
1347 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1348 #define DW_UNSND(attr) ((attr)->u.unsnd)
1349 #define DW_BLOCK(attr) ((attr)->u.blk)
1350 #define DW_SND(attr) ((attr)->u.snd)
1351 #define DW_ADDR(attr) ((attr)->u.addr)
1352 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1353
1354 /* Blocks are a bunch of untyped bytes. */
1355 struct dwarf_block
1356 {
1357 size_t size;
1358
1359 /* Valid only if SIZE is not zero. */
1360 const gdb_byte *data;
1361 };
1362
1363 #ifndef ATTR_ALLOC_CHUNK
1364 #define ATTR_ALLOC_CHUNK 4
1365 #endif
1366
1367 /* Allocate fields for structs, unions and enums in this size. */
1368 #ifndef DW_FIELD_ALLOC_CHUNK
1369 #define DW_FIELD_ALLOC_CHUNK 4
1370 #endif
1371
1372 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1373 but this would require a corresponding change in unpack_field_as_long
1374 and friends. */
1375 static int bits_per_byte = 8;
1376
1377 /* When reading a variant or variant part, we track a bit more
1378 information about the field, and store it in an object of this
1379 type. */
1380
1381 struct variant_field
1382 {
1383 /* If we see a DW_TAG_variant, then this will be the discriminant
1384 value. */
1385 ULONGEST discriminant_value;
1386 /* If we see a DW_TAG_variant, then this will be set if this is the
1387 default branch. */
1388 bool default_branch;
1389 /* While reading a DW_TAG_variant_part, this will be set if this
1390 field is the discriminant. */
1391 bool is_discriminant;
1392 };
1393
1394 struct nextfield
1395 {
1396 int accessibility = 0;
1397 int virtuality = 0;
1398 /* Extra information to describe a variant or variant part. */
1399 struct variant_field variant {};
1400 struct field field {};
1401 };
1402
1403 struct fnfieldlist
1404 {
1405 const char *name = nullptr;
1406 std::vector<struct fn_field> fnfields;
1407 };
1408
1409 /* The routines that read and process dies for a C struct or C++ class
1410 pass lists of data member fields and lists of member function fields
1411 in an instance of a field_info structure, as defined below. */
1412 struct field_info
1413 {
1414 /* List of data member and baseclasses fields. */
1415 std::vector<struct nextfield> fields;
1416 std::vector<struct nextfield> baseclasses;
1417
1418 /* Number of fields (including baseclasses). */
1419 int nfields = 0;
1420
1421 /* Set if the accesibility of one of the fields is not public. */
1422 int non_public_fields = 0;
1423
1424 /* Member function fieldlist array, contains name of possibly overloaded
1425 member function, number of overloaded member functions and a pointer
1426 to the head of the member function field chain. */
1427 std::vector<struct fnfieldlist> fnfieldlists;
1428
1429 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1430 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1431 std::vector<struct decl_field> typedef_field_list;
1432
1433 /* Nested types defined by this class and the number of elements in this
1434 list. */
1435 std::vector<struct decl_field> nested_types_list;
1436 };
1437
1438 /* One item on the queue of compilation units to read in full symbols
1439 for. */
1440 struct dwarf2_queue_item
1441 {
1442 struct dwarf2_per_cu_data *per_cu;
1443 enum language pretend_language;
1444 struct dwarf2_queue_item *next;
1445 };
1446
1447 /* The current queue. */
1448 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1449
1450 /* Loaded secondary compilation units are kept in memory until they
1451 have not been referenced for the processing of this many
1452 compilation units. Set this to zero to disable caching. Cache
1453 sizes of up to at least twenty will improve startup time for
1454 typical inter-CU-reference binaries, at an obvious memory cost. */
1455 static int dwarf_max_cache_age = 5;
1456 static void
1457 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c, const char *value)
1459 {
1460 fprintf_filtered (file, _("The upper bound on the age of cached "
1461 "DWARF compilation units is %s.\n"),
1462 value);
1463 }
1464 \f
1465 /* local function prototypes */
1466
1467 static const char *get_section_name (const struct dwarf2_section_info *);
1468
1469 static const char *get_section_file_name (const struct dwarf2_section_info *);
1470
1471 static void dwarf2_find_base_address (struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct partial_symtab *create_partial_symtab
1475 (struct dwarf2_per_cu_data *per_cu, const char *name);
1476
1477 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1478 const gdb_byte *info_ptr,
1479 struct die_info *type_unit_die,
1480 int has_children, void *data);
1481
1482 static void dwarf2_build_psymtabs_hard
1483 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1484
1485 static void scan_partial_symbols (struct partial_die_info *,
1486 CORE_ADDR *, CORE_ADDR *,
1487 int, struct dwarf2_cu *);
1488
1489 static void add_partial_symbol (struct partial_die_info *,
1490 struct dwarf2_cu *);
1491
1492 static void add_partial_namespace (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int set_addrmap, struct dwarf2_cu *cu);
1495
1496 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1497 CORE_ADDR *highpc, int set_addrmap,
1498 struct dwarf2_cu *cu);
1499
1500 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1501 struct dwarf2_cu *cu);
1502
1503 static void add_partial_subprogram (struct partial_die_info *pdi,
1504 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1505 int need_pc, struct dwarf2_cu *cu);
1506
1507 static void dwarf2_read_symtab (struct partial_symtab *,
1508 struct objfile *);
1509
1510 static void psymtab_to_symtab_1 (struct partial_symtab *);
1511
1512 static abbrev_table_up abbrev_table_read_table
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1514 sect_offset);
1515
1516 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1517
1518 static struct partial_die_info *load_partial_dies
1519 (const struct die_reader_specs *, const gdb_byte *, int);
1520
1521 static struct partial_die_info *find_partial_die (sect_offset, int,
1522 struct dwarf2_cu *);
1523
1524 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1525 struct attribute *, struct attr_abbrev *,
1526 const gdb_byte *);
1527
1528 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1529
1530 static int read_1_signed_byte (bfd *, const gdb_byte *);
1531
1532 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1533
1534 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1535
1536 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1537
1538 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1539 unsigned int *);
1540
1541 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1542
1543 static LONGEST read_checked_initial_length_and_offset
1544 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1545 unsigned int *, unsigned int *);
1546
1547 static LONGEST read_offset (bfd *, const gdb_byte *,
1548 const struct comp_unit_head *,
1549 unsigned int *);
1550
1551 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1552
1553 static sect_offset read_abbrev_offset
1554 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1555 struct dwarf2_section_info *, sect_offset);
1556
1557 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1558
1559 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1560
1561 static const char *read_indirect_string
1562 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1563 const struct comp_unit_head *, unsigned int *);
1564
1565 static const char *read_indirect_line_string
1566 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1567 const struct comp_unit_head *, unsigned int *);
1568
1569 static const char *read_indirect_string_at_offset
1570 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1571 LONGEST str_offset);
1572
1573 static const char *read_indirect_string_from_dwz
1574 (struct objfile *objfile, struct dwz_file *, LONGEST);
1575
1576 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1577
1578 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1579 const gdb_byte *,
1580 unsigned int *);
1581
1582 static const char *read_str_index (const struct die_reader_specs *reader,
1583 ULONGEST str_index);
1584
1585 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1586
1587 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1588 struct dwarf2_cu *);
1589
1590 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1591 unsigned int);
1592
1593 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1594 struct dwarf2_cu *cu);
1595
1596 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1597 struct dwarf2_cu *cu);
1598
1599 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1600
1601 static struct die_info *die_specification (struct die_info *die,
1602 struct dwarf2_cu **);
1603
1604 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1605 struct dwarf2_cu *cu);
1606
1607 static void dwarf_decode_lines (struct line_header *, const char *,
1608 struct dwarf2_cu *, struct partial_symtab *,
1609 CORE_ADDR, int decode_mapping);
1610
1611 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1612 const char *);
1613
1614 static struct symbol *new_symbol (struct die_info *, struct type *,
1615 struct dwarf2_cu *, struct symbol * = NULL);
1616
1617 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1618 struct dwarf2_cu *);
1619
1620 static void dwarf2_const_value_attr (const struct attribute *attr,
1621 struct type *type,
1622 const char *name,
1623 struct obstack *obstack,
1624 struct dwarf2_cu *cu, LONGEST *value,
1625 const gdb_byte **bytes,
1626 struct dwarf2_locexpr_baton **baton);
1627
1628 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1629
1630 static int need_gnat_info (struct dwarf2_cu *);
1631
1632 static struct type *die_descriptive_type (struct die_info *,
1633 struct dwarf2_cu *);
1634
1635 static void set_descriptive_type (struct type *, struct die_info *,
1636 struct dwarf2_cu *);
1637
1638 static struct type *die_containing_type (struct die_info *,
1639 struct dwarf2_cu *);
1640
1641 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1642 struct dwarf2_cu *);
1643
1644 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1645
1646 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1647
1648 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1649
1650 static char *typename_concat (struct obstack *obs, const char *prefix,
1651 const char *suffix, int physname,
1652 struct dwarf2_cu *cu);
1653
1654 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1657
1658 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1659
1660 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1661
1662 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1663
1664 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1665
1666 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1667 struct dwarf2_cu *, struct partial_symtab *);
1668
1669 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1670 values. Keep the items ordered with increasing constraints compliance. */
1671 enum pc_bounds_kind
1672 {
1673 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1674 PC_BOUNDS_NOT_PRESENT,
1675
1676 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1677 were present but they do not form a valid range of PC addresses. */
1678 PC_BOUNDS_INVALID,
1679
1680 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1681 PC_BOUNDS_RANGES,
1682
1683 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1684 PC_BOUNDS_HIGH_LOW,
1685 };
1686
1687 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1688 CORE_ADDR *, CORE_ADDR *,
1689 struct dwarf2_cu *,
1690 struct partial_symtab *);
1691
1692 static void get_scope_pc_bounds (struct die_info *,
1693 CORE_ADDR *, CORE_ADDR *,
1694 struct dwarf2_cu *);
1695
1696 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1697 CORE_ADDR, struct dwarf2_cu *);
1698
1699 static void dwarf2_add_field (struct field_info *, struct die_info *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_attach_fields_to_type (struct field_info *,
1703 struct type *, struct dwarf2_cu *);
1704
1705 static void dwarf2_add_member_fn (struct field_info *,
1706 struct die_info *, struct type *,
1707 struct dwarf2_cu *);
1708
1709 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1710 struct type *,
1711 struct dwarf2_cu *);
1712
1713 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1714
1715 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1716
1717 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1718
1719 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1720
1721 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1722
1723 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1724
1725 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1726
1727 static struct type *read_module_type (struct die_info *die,
1728 struct dwarf2_cu *cu);
1729
1730 static const char *namespace_name (struct die_info *die,
1731 int *is_anonymous, struct dwarf2_cu *);
1732
1733 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1734
1735 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1736
1737 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1738 struct dwarf2_cu *);
1739
1740 static struct die_info *read_die_and_siblings_1
1741 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1742 struct die_info *);
1743
1744 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1745 const gdb_byte *info_ptr,
1746 const gdb_byte **new_info_ptr,
1747 struct die_info *parent);
1748
1749 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1750 struct die_info **, const gdb_byte *,
1751 int *, int);
1752
1753 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1754 struct die_info **, const gdb_byte *,
1755 int *);
1756
1757 static void process_die (struct die_info *, struct dwarf2_cu *);
1758
1759 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1760 struct obstack *);
1761
1762 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1763
1764 static const char *dwarf2_full_name (const char *name,
1765 struct die_info *die,
1766 struct dwarf2_cu *cu);
1767
1768 static const char *dwarf2_physname (const char *name, struct die_info *die,
1769 struct dwarf2_cu *cu);
1770
1771 static struct die_info *dwarf2_extension (struct die_info *die,
1772 struct dwarf2_cu **);
1773
1774 static const char *dwarf_tag_name (unsigned int);
1775
1776 static const char *dwarf_attr_name (unsigned int);
1777
1778 static const char *dwarf_form_name (unsigned int);
1779
1780 static const char *dwarf_bool_name (unsigned int);
1781
1782 static const char *dwarf_type_encoding_name (unsigned int);
1783
1784 static struct die_info *sibling_die (struct die_info *);
1785
1786 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1787
1788 static void dump_die_for_error (struct die_info *);
1789
1790 static void dump_die_1 (struct ui_file *, int level, int max_level,
1791 struct die_info *);
1792
1793 /*static*/ void dump_die (struct die_info *, int max_level);
1794
1795 static void store_in_ref_table (struct die_info *,
1796 struct dwarf2_cu *);
1797
1798 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1799
1800 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1801
1802 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1803 const struct attribute *,
1804 struct dwarf2_cu **);
1805
1806 static struct die_info *follow_die_ref (struct die_info *,
1807 const struct attribute *,
1808 struct dwarf2_cu **);
1809
1810 static struct die_info *follow_die_sig (struct die_info *,
1811 const struct attribute *,
1812 struct dwarf2_cu **);
1813
1814 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1815 struct dwarf2_cu *);
1816
1817 static struct type *get_DW_AT_signature_type (struct die_info *,
1818 const struct attribute *,
1819 struct dwarf2_cu *);
1820
1821 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1822
1823 static void read_signatured_type (struct signatured_type *);
1824
1825 static int attr_to_dynamic_prop (const struct attribute *attr,
1826 struct die_info *die, struct dwarf2_cu *cu,
1827 struct dynamic_prop *prop);
1828
1829 /* memory allocation interface */
1830
1831 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1832
1833 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1834
1835 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1836
1837 static int attr_form_is_block (const struct attribute *);
1838
1839 static int attr_form_is_section_offset (const struct attribute *);
1840
1841 static int attr_form_is_constant (const struct attribute *);
1842
1843 static int attr_form_is_ref (const struct attribute *);
1844
1845 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1846 struct dwarf2_loclist_baton *baton,
1847 const struct attribute *attr);
1848
1849 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1850 struct symbol *sym,
1851 struct dwarf2_cu *cu,
1852 int is_block);
1853
1854 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1855 const gdb_byte *info_ptr,
1856 struct abbrev_info *abbrev);
1857
1858 static hashval_t partial_die_hash (const void *item);
1859
1860 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1861
1862 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1863 (sect_offset sect_off, unsigned int offset_in_dwz,
1864 struct dwarf2_per_objfile *dwarf2_per_objfile);
1865
1866 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1867 struct die_info *comp_unit_die,
1868 enum language pretend_language);
1869
1870 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1873
1874 static struct type *set_die_type (struct die_info *, struct type *,
1875 struct dwarf2_cu *);
1876
1877 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1878
1879 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1882 enum language);
1883
1884 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1885 enum language);
1886
1887 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1888 enum language);
1889
1890 static void dwarf2_add_dependence (struct dwarf2_cu *,
1891 struct dwarf2_per_cu_data *);
1892
1893 static void dwarf2_mark (struct dwarf2_cu *);
1894
1895 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1896
1897 static struct type *get_die_type_at_offset (sect_offset,
1898 struct dwarf2_per_cu_data *);
1899
1900 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1901
1902 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1903 enum language pretend_language);
1904
1905 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1906
1907 /* Class, the destructor of which frees all allocated queue entries. This
1908 will only have work to do if an error was thrown while processing the
1909 dwarf. If no error was thrown then the queue entries should have all
1910 been processed, and freed, as we went along. */
1911
1912 class dwarf2_queue_guard
1913 {
1914 public:
1915 dwarf2_queue_guard () = default;
1916
1917 /* Free any entries remaining on the queue. There should only be
1918 entries left if we hit an error while processing the dwarf. */
1919 ~dwarf2_queue_guard ()
1920 {
1921 struct dwarf2_queue_item *item, *last;
1922
1923 item = dwarf2_queue;
1924 while (item)
1925 {
1926 /* Anything still marked queued is likely to be in an
1927 inconsistent state, so discard it. */
1928 if (item->per_cu->queued)
1929 {
1930 if (item->per_cu->cu != NULL)
1931 free_one_cached_comp_unit (item->per_cu);
1932 item->per_cu->queued = 0;
1933 }
1934
1935 last = item;
1936 item = item->next;
1937 xfree (last);
1938 }
1939
1940 dwarf2_queue = dwarf2_queue_tail = NULL;
1941 }
1942 };
1943
1944 /* The return type of find_file_and_directory. Note, the enclosed
1945 string pointers are only valid while this object is valid. */
1946
1947 struct file_and_directory
1948 {
1949 /* The filename. This is never NULL. */
1950 const char *name;
1951
1952 /* The compilation directory. NULL if not known. If we needed to
1953 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1954 points directly to the DW_AT_comp_dir string attribute owned by
1955 the obstack that owns the DIE. */
1956 const char *comp_dir;
1957
1958 /* If we needed to build a new string for comp_dir, this is what
1959 owns the storage. */
1960 std::string comp_dir_storage;
1961 };
1962
1963 static file_and_directory find_file_and_directory (struct die_info *die,
1964 struct dwarf2_cu *cu);
1965
1966 static char *file_full_name (int file, struct line_header *lh,
1967 const char *comp_dir);
1968
1969 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1970 enum class rcuh_kind { COMPILE, TYPE };
1971
1972 static const gdb_byte *read_and_check_comp_unit_head
1973 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1974 struct comp_unit_head *header,
1975 struct dwarf2_section_info *section,
1976 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1977 rcuh_kind section_kind);
1978
1979 static void init_cutu_and_read_dies
1980 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1981 int use_existing_cu, int keep, bool skip_partial,
1982 die_reader_func_ftype *die_reader_func, void *data);
1983
1984 static void init_cutu_and_read_dies_simple
1985 (struct dwarf2_per_cu_data *this_cu,
1986 die_reader_func_ftype *die_reader_func, void *data);
1987
1988 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1989
1990 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1991
1992 static struct dwo_unit *lookup_dwo_unit_in_dwp
1993 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1994 struct dwp_file *dwp_file, const char *comp_dir,
1995 ULONGEST signature, int is_debug_types);
1996
1997 static struct dwp_file *get_dwp_file
1998 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1999
2000 static struct dwo_unit *lookup_dwo_comp_unit
2001 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2002
2003 static struct dwo_unit *lookup_dwo_type_unit
2004 (struct signatured_type *, const char *, const char *);
2005
2006 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2007
2008 static void free_dwo_file (struct dwo_file *);
2009
2010 /* A unique_ptr helper to free a dwo_file. */
2011
2012 struct dwo_file_deleter
2013 {
2014 void operator() (struct dwo_file *df) const
2015 {
2016 free_dwo_file (df);
2017 }
2018 };
2019
2020 /* A unique pointer to a dwo_file. */
2021
2022 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2023
2024 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2025
2026 static void check_producer (struct dwarf2_cu *cu);
2027
2028 static void free_line_header_voidp (void *arg);
2029 \f
2030 /* Various complaints about symbol reading that don't abort the process. */
2031
2032 static void
2033 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2034 {
2035 complaint (_("statement list doesn't fit in .debug_line section"));
2036 }
2037
2038 static void
2039 dwarf2_debug_line_missing_file_complaint (void)
2040 {
2041 complaint (_(".debug_line section has line data without a file"));
2042 }
2043
2044 static void
2045 dwarf2_debug_line_missing_end_sequence_complaint (void)
2046 {
2047 complaint (_(".debug_line section has line "
2048 "program sequence without an end"));
2049 }
2050
2051 static void
2052 dwarf2_complex_location_expr_complaint (void)
2053 {
2054 complaint (_("location expression too complex"));
2055 }
2056
2057 static void
2058 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2059 int arg3)
2060 {
2061 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2062 arg1, arg2, arg3);
2063 }
2064
2065 static void
2066 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2067 {
2068 complaint (_("debug info runs off end of %s section"
2069 " [in module %s]"),
2070 get_section_name (section),
2071 get_section_file_name (section));
2072 }
2073
2074 static void
2075 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2076 {
2077 complaint (_("macro debug info contains a "
2078 "malformed macro definition:\n`%s'"),
2079 arg1);
2080 }
2081
2082 static void
2083 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2084 {
2085 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2086 arg1, arg2);
2087 }
2088
2089 /* Hash function for line_header_hash. */
2090
2091 static hashval_t
2092 line_header_hash (const struct line_header *ofs)
2093 {
2094 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2095 }
2096
2097 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2098
2099 static hashval_t
2100 line_header_hash_voidp (const void *item)
2101 {
2102 const struct line_header *ofs = (const struct line_header *) item;
2103
2104 return line_header_hash (ofs);
2105 }
2106
2107 /* Equality function for line_header_hash. */
2108
2109 static int
2110 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2111 {
2112 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2113 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2114
2115 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2116 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2117 }
2118
2119 \f
2120
2121 /* Read the given attribute value as an address, taking the attribute's
2122 form into account. */
2123
2124 static CORE_ADDR
2125 attr_value_as_address (struct attribute *attr)
2126 {
2127 CORE_ADDR addr;
2128
2129 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2130 && attr->form != DW_FORM_GNU_addr_index)
2131 {
2132 /* Aside from a few clearly defined exceptions, attributes that
2133 contain an address must always be in DW_FORM_addr form.
2134 Unfortunately, some compilers happen to be violating this
2135 requirement by encoding addresses using other forms, such
2136 as DW_FORM_data4 for example. For those broken compilers,
2137 we try to do our best, without any guarantee of success,
2138 to interpret the address correctly. It would also be nice
2139 to generate a complaint, but that would require us to maintain
2140 a list of legitimate cases where a non-address form is allowed,
2141 as well as update callers to pass in at least the CU's DWARF
2142 version. This is more overhead than what we're willing to
2143 expand for a pretty rare case. */
2144 addr = DW_UNSND (attr);
2145 }
2146 else
2147 addr = DW_ADDR (attr);
2148
2149 return addr;
2150 }
2151
2152 /* See declaration. */
2153
2154 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2155 const dwarf2_debug_sections *names)
2156 : objfile (objfile_)
2157 {
2158 if (names == NULL)
2159 names = &dwarf2_elf_names;
2160
2161 bfd *obfd = objfile->obfd;
2162
2163 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2164 locate_sections (obfd, sec, *names);
2165 }
2166
2167 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2168
2169 dwarf2_per_objfile::~dwarf2_per_objfile ()
2170 {
2171 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2172 free_cached_comp_units ();
2173
2174 if (quick_file_names_table)
2175 htab_delete (quick_file_names_table);
2176
2177 if (line_header_hash)
2178 htab_delete (line_header_hash);
2179
2180 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2181 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2182
2183 for (signatured_type *sig_type : all_type_units)
2184 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2185
2186 VEC_free (dwarf2_section_info_def, types);
2187
2188 if (dwo_files != NULL)
2189 free_dwo_files (dwo_files, objfile);
2190
2191 /* Everything else should be on the objfile obstack. */
2192 }
2193
2194 /* See declaration. */
2195
2196 void
2197 dwarf2_per_objfile::free_cached_comp_units ()
2198 {
2199 dwarf2_per_cu_data *per_cu = read_in_chain;
2200 dwarf2_per_cu_data **last_chain = &read_in_chain;
2201 while (per_cu != NULL)
2202 {
2203 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2204
2205 delete per_cu->cu;
2206 *last_chain = next_cu;
2207 per_cu = next_cu;
2208 }
2209 }
2210
2211 /* A helper class that calls free_cached_comp_units on
2212 destruction. */
2213
2214 class free_cached_comp_units
2215 {
2216 public:
2217
2218 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2219 : m_per_objfile (per_objfile)
2220 {
2221 }
2222
2223 ~free_cached_comp_units ()
2224 {
2225 m_per_objfile->free_cached_comp_units ();
2226 }
2227
2228 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2229
2230 private:
2231
2232 dwarf2_per_objfile *m_per_objfile;
2233 };
2234
2235 /* Try to locate the sections we need for DWARF 2 debugging
2236 information and return true if we have enough to do something.
2237 NAMES points to the dwarf2 section names, or is NULL if the standard
2238 ELF names are used. */
2239
2240 int
2241 dwarf2_has_info (struct objfile *objfile,
2242 const struct dwarf2_debug_sections *names)
2243 {
2244 if (objfile->flags & OBJF_READNEVER)
2245 return 0;
2246
2247 struct dwarf2_per_objfile *dwarf2_per_objfile
2248 = get_dwarf2_per_objfile (objfile);
2249
2250 if (dwarf2_per_objfile == NULL)
2251 {
2252 /* Initialize per-objfile state. */
2253 dwarf2_per_objfile
2254 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2255 names);
2256 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2257 }
2258 return (!dwarf2_per_objfile->info.is_virtual
2259 && dwarf2_per_objfile->info.s.section != NULL
2260 && !dwarf2_per_objfile->abbrev.is_virtual
2261 && dwarf2_per_objfile->abbrev.s.section != NULL);
2262 }
2263
2264 /* Return the containing section of virtual section SECTION. */
2265
2266 static struct dwarf2_section_info *
2267 get_containing_section (const struct dwarf2_section_info *section)
2268 {
2269 gdb_assert (section->is_virtual);
2270 return section->s.containing_section;
2271 }
2272
2273 /* Return the bfd owner of SECTION. */
2274
2275 static struct bfd *
2276 get_section_bfd_owner (const struct dwarf2_section_info *section)
2277 {
2278 if (section->is_virtual)
2279 {
2280 section = get_containing_section (section);
2281 gdb_assert (!section->is_virtual);
2282 }
2283 return section->s.section->owner;
2284 }
2285
2286 /* Return the bfd section of SECTION.
2287 Returns NULL if the section is not present. */
2288
2289 static asection *
2290 get_section_bfd_section (const struct dwarf2_section_info *section)
2291 {
2292 if (section->is_virtual)
2293 {
2294 section = get_containing_section (section);
2295 gdb_assert (!section->is_virtual);
2296 }
2297 return section->s.section;
2298 }
2299
2300 /* Return the name of SECTION. */
2301
2302 static const char *
2303 get_section_name (const struct dwarf2_section_info *section)
2304 {
2305 asection *sectp = get_section_bfd_section (section);
2306
2307 gdb_assert (sectp != NULL);
2308 return bfd_section_name (get_section_bfd_owner (section), sectp);
2309 }
2310
2311 /* Return the name of the file SECTION is in. */
2312
2313 static const char *
2314 get_section_file_name (const struct dwarf2_section_info *section)
2315 {
2316 bfd *abfd = get_section_bfd_owner (section);
2317
2318 return bfd_get_filename (abfd);
2319 }
2320
2321 /* Return the id of SECTION.
2322 Returns 0 if SECTION doesn't exist. */
2323
2324 static int
2325 get_section_id (const struct dwarf2_section_info *section)
2326 {
2327 asection *sectp = get_section_bfd_section (section);
2328
2329 if (sectp == NULL)
2330 return 0;
2331 return sectp->id;
2332 }
2333
2334 /* Return the flags of SECTION.
2335 SECTION (or containing section if this is a virtual section) must exist. */
2336
2337 static int
2338 get_section_flags (const struct dwarf2_section_info *section)
2339 {
2340 asection *sectp = get_section_bfd_section (section);
2341
2342 gdb_assert (sectp != NULL);
2343 return bfd_get_section_flags (sectp->owner, sectp);
2344 }
2345
2346 /* When loading sections, we look either for uncompressed section or for
2347 compressed section names. */
2348
2349 static int
2350 section_is_p (const char *section_name,
2351 const struct dwarf2_section_names *names)
2352 {
2353 if (names->normal != NULL
2354 && strcmp (section_name, names->normal) == 0)
2355 return 1;
2356 if (names->compressed != NULL
2357 && strcmp (section_name, names->compressed) == 0)
2358 return 1;
2359 return 0;
2360 }
2361
2362 /* See declaration. */
2363
2364 void
2365 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2366 const dwarf2_debug_sections &names)
2367 {
2368 flagword aflag = bfd_get_section_flags (abfd, sectp);
2369
2370 if ((aflag & SEC_HAS_CONTENTS) == 0)
2371 {
2372 }
2373 else if (section_is_p (sectp->name, &names.info))
2374 {
2375 this->info.s.section = sectp;
2376 this->info.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.abbrev))
2379 {
2380 this->abbrev.s.section = sectp;
2381 this->abbrev.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.line))
2384 {
2385 this->line.s.section = sectp;
2386 this->line.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.loc))
2389 {
2390 this->loc.s.section = sectp;
2391 this->loc.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.loclists))
2394 {
2395 this->loclists.s.section = sectp;
2396 this->loclists.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.macinfo))
2399 {
2400 this->macinfo.s.section = sectp;
2401 this->macinfo.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.macro))
2404 {
2405 this->macro.s.section = sectp;
2406 this->macro.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.str))
2409 {
2410 this->str.s.section = sectp;
2411 this->str.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.line_str))
2414 {
2415 this->line_str.s.section = sectp;
2416 this->line_str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.addr))
2419 {
2420 this->addr.s.section = sectp;
2421 this->addr.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.frame))
2424 {
2425 this->frame.s.section = sectp;
2426 this->frame.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.eh_frame))
2429 {
2430 this->eh_frame.s.section = sectp;
2431 this->eh_frame.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.ranges))
2434 {
2435 this->ranges.s.section = sectp;
2436 this->ranges.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.rnglists))
2439 {
2440 this->rnglists.s.section = sectp;
2441 this->rnglists.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.types))
2444 {
2445 struct dwarf2_section_info type_section;
2446
2447 memset (&type_section, 0, sizeof (type_section));
2448 type_section.s.section = sectp;
2449 type_section.size = bfd_get_section_size (sectp);
2450
2451 VEC_safe_push (dwarf2_section_info_def, this->types,
2452 &type_section);
2453 }
2454 else if (section_is_p (sectp->name, &names.gdb_index))
2455 {
2456 this->gdb_index.s.section = sectp;
2457 this->gdb_index.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &names.debug_names))
2460 {
2461 this->debug_names.s.section = sectp;
2462 this->debug_names.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.debug_aranges))
2465 {
2466 this->debug_aranges.s.section = sectp;
2467 this->debug_aranges.size = bfd_get_section_size (sectp);
2468 }
2469
2470 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2471 && bfd_section_vma (abfd, sectp) == 0)
2472 this->has_section_at_zero = true;
2473 }
2474
2475 /* A helper function that decides whether a section is empty,
2476 or not present. */
2477
2478 static int
2479 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2480 {
2481 if (section->is_virtual)
2482 return section->size == 0;
2483 return section->s.section == NULL || section->size == 0;
2484 }
2485
2486 /* See dwarf2read.h. */
2487
2488 void
2489 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2490 {
2491 asection *sectp;
2492 bfd *abfd;
2493 gdb_byte *buf, *retbuf;
2494
2495 if (info->readin)
2496 return;
2497 info->buffer = NULL;
2498 info->readin = 1;
2499
2500 if (dwarf2_section_empty_p (info))
2501 return;
2502
2503 sectp = get_section_bfd_section (info);
2504
2505 /* If this is a virtual section we need to read in the real one first. */
2506 if (info->is_virtual)
2507 {
2508 struct dwarf2_section_info *containing_section =
2509 get_containing_section (info);
2510
2511 gdb_assert (sectp != NULL);
2512 if ((sectp->flags & SEC_RELOC) != 0)
2513 {
2514 error (_("Dwarf Error: DWP format V2 with relocations is not"
2515 " supported in section %s [in module %s]"),
2516 get_section_name (info), get_section_file_name (info));
2517 }
2518 dwarf2_read_section (objfile, containing_section);
2519 /* Other code should have already caught virtual sections that don't
2520 fit. */
2521 gdb_assert (info->virtual_offset + info->size
2522 <= containing_section->size);
2523 /* If the real section is empty or there was a problem reading the
2524 section we shouldn't get here. */
2525 gdb_assert (containing_section->buffer != NULL);
2526 info->buffer = containing_section->buffer + info->virtual_offset;
2527 return;
2528 }
2529
2530 /* If the section has relocations, we must read it ourselves.
2531 Otherwise we attach it to the BFD. */
2532 if ((sectp->flags & SEC_RELOC) == 0)
2533 {
2534 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2535 return;
2536 }
2537
2538 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2539 info->buffer = buf;
2540
2541 /* When debugging .o files, we may need to apply relocations; see
2542 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2543 We never compress sections in .o files, so we only need to
2544 try this when the section is not compressed. */
2545 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2546 if (retbuf != NULL)
2547 {
2548 info->buffer = retbuf;
2549 return;
2550 }
2551
2552 abfd = get_section_bfd_owner (info);
2553 gdb_assert (abfd != NULL);
2554
2555 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2556 || bfd_bread (buf, info->size, abfd) != info->size)
2557 {
2558 error (_("Dwarf Error: Can't read DWARF data"
2559 " in section %s [in module %s]"),
2560 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2561 }
2562 }
2563
2564 /* A helper function that returns the size of a section in a safe way.
2565 If you are positive that the section has been read before using the
2566 size, then it is safe to refer to the dwarf2_section_info object's
2567 "size" field directly. In other cases, you must call this
2568 function, because for compressed sections the size field is not set
2569 correctly until the section has been read. */
2570
2571 static bfd_size_type
2572 dwarf2_section_size (struct objfile *objfile,
2573 struct dwarf2_section_info *info)
2574 {
2575 if (!info->readin)
2576 dwarf2_read_section (objfile, info);
2577 return info->size;
2578 }
2579
2580 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2581 SECTION_NAME. */
2582
2583 void
2584 dwarf2_get_section_info (struct objfile *objfile,
2585 enum dwarf2_section_enum sect,
2586 asection **sectp, const gdb_byte **bufp,
2587 bfd_size_type *sizep)
2588 {
2589 struct dwarf2_per_objfile *data
2590 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2591 dwarf2_objfile_data_key);
2592 struct dwarf2_section_info *info;
2593
2594 /* We may see an objfile without any DWARF, in which case we just
2595 return nothing. */
2596 if (data == NULL)
2597 {
2598 *sectp = NULL;
2599 *bufp = NULL;
2600 *sizep = 0;
2601 return;
2602 }
2603 switch (sect)
2604 {
2605 case DWARF2_DEBUG_FRAME:
2606 info = &data->frame;
2607 break;
2608 case DWARF2_EH_FRAME:
2609 info = &data->eh_frame;
2610 break;
2611 default:
2612 gdb_assert_not_reached ("unexpected section");
2613 }
2614
2615 dwarf2_read_section (objfile, info);
2616
2617 *sectp = get_section_bfd_section (info);
2618 *bufp = info->buffer;
2619 *sizep = info->size;
2620 }
2621
2622 /* A helper function to find the sections for a .dwz file. */
2623
2624 static void
2625 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2626 {
2627 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2628
2629 /* Note that we only support the standard ELF names, because .dwz
2630 is ELF-only (at the time of writing). */
2631 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2632 {
2633 dwz_file->abbrev.s.section = sectp;
2634 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2635 }
2636 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2637 {
2638 dwz_file->info.s.section = sectp;
2639 dwz_file->info.size = bfd_get_section_size (sectp);
2640 }
2641 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2642 {
2643 dwz_file->str.s.section = sectp;
2644 dwz_file->str.size = bfd_get_section_size (sectp);
2645 }
2646 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2647 {
2648 dwz_file->line.s.section = sectp;
2649 dwz_file->line.size = bfd_get_section_size (sectp);
2650 }
2651 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2652 {
2653 dwz_file->macro.s.section = sectp;
2654 dwz_file->macro.size = bfd_get_section_size (sectp);
2655 }
2656 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2657 {
2658 dwz_file->gdb_index.s.section = sectp;
2659 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2660 }
2661 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2662 {
2663 dwz_file->debug_names.s.section = sectp;
2664 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2665 }
2666 }
2667
2668 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2669 there is no .gnu_debugaltlink section in the file. Error if there
2670 is such a section but the file cannot be found. */
2671
2672 static struct dwz_file *
2673 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2674 {
2675 const char *filename;
2676 bfd_size_type buildid_len_arg;
2677 size_t buildid_len;
2678 bfd_byte *buildid;
2679
2680 if (dwarf2_per_objfile->dwz_file != NULL)
2681 return dwarf2_per_objfile->dwz_file.get ();
2682
2683 bfd_set_error (bfd_error_no_error);
2684 gdb::unique_xmalloc_ptr<char> data
2685 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2686 &buildid_len_arg, &buildid));
2687 if (data == NULL)
2688 {
2689 if (bfd_get_error () == bfd_error_no_error)
2690 return NULL;
2691 error (_("could not read '.gnu_debugaltlink' section: %s"),
2692 bfd_errmsg (bfd_get_error ()));
2693 }
2694
2695 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2696
2697 buildid_len = (size_t) buildid_len_arg;
2698
2699 filename = data.get ();
2700
2701 std::string abs_storage;
2702 if (!IS_ABSOLUTE_PATH (filename))
2703 {
2704 gdb::unique_xmalloc_ptr<char> abs
2705 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2706
2707 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2708 filename = abs_storage.c_str ();
2709 }
2710
2711 /* First try the file name given in the section. If that doesn't
2712 work, try to use the build-id instead. */
2713 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2714 if (dwz_bfd != NULL)
2715 {
2716 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2717 dwz_bfd.reset (nullptr);
2718 }
2719
2720 if (dwz_bfd == NULL)
2721 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2722
2723 if (dwz_bfd == NULL)
2724 error (_("could not find '.gnu_debugaltlink' file for %s"),
2725 objfile_name (dwarf2_per_objfile->objfile));
2726
2727 std::unique_ptr<struct dwz_file> result
2728 (new struct dwz_file (std::move (dwz_bfd)));
2729
2730 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2731 result.get ());
2732
2733 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2734 result->dwz_bfd.get ());
2735 dwarf2_per_objfile->dwz_file = std::move (result);
2736 return dwarf2_per_objfile->dwz_file.get ();
2737 }
2738 \f
2739 /* DWARF quick_symbols_functions support. */
2740
2741 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2742 unique line tables, so we maintain a separate table of all .debug_line
2743 derived entries to support the sharing.
2744 All the quick functions need is the list of file names. We discard the
2745 line_header when we're done and don't need to record it here. */
2746 struct quick_file_names
2747 {
2748 /* The data used to construct the hash key. */
2749 struct stmt_list_hash hash;
2750
2751 /* The number of entries in file_names, real_names. */
2752 unsigned int num_file_names;
2753
2754 /* The file names from the line table, after being run through
2755 file_full_name. */
2756 const char **file_names;
2757
2758 /* The file names from the line table after being run through
2759 gdb_realpath. These are computed lazily. */
2760 const char **real_names;
2761 };
2762
2763 /* When using the index (and thus not using psymtabs), each CU has an
2764 object of this type. This is used to hold information needed by
2765 the various "quick" methods. */
2766 struct dwarf2_per_cu_quick_data
2767 {
2768 /* The file table. This can be NULL if there was no file table
2769 or it's currently not read in.
2770 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2771 struct quick_file_names *file_names;
2772
2773 /* The corresponding symbol table. This is NULL if symbols for this
2774 CU have not yet been read. */
2775 struct compunit_symtab *compunit_symtab;
2776
2777 /* A temporary mark bit used when iterating over all CUs in
2778 expand_symtabs_matching. */
2779 unsigned int mark : 1;
2780
2781 /* True if we've tried to read the file table and found there isn't one.
2782 There will be no point in trying to read it again next time. */
2783 unsigned int no_file_data : 1;
2784 };
2785
2786 /* Utility hash function for a stmt_list_hash. */
2787
2788 static hashval_t
2789 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2790 {
2791 hashval_t v = 0;
2792
2793 if (stmt_list_hash->dwo_unit != NULL)
2794 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2795 v += to_underlying (stmt_list_hash->line_sect_off);
2796 return v;
2797 }
2798
2799 /* Utility equality function for a stmt_list_hash. */
2800
2801 static int
2802 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2803 const struct stmt_list_hash *rhs)
2804 {
2805 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2806 return 0;
2807 if (lhs->dwo_unit != NULL
2808 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2809 return 0;
2810
2811 return lhs->line_sect_off == rhs->line_sect_off;
2812 }
2813
2814 /* Hash function for a quick_file_names. */
2815
2816 static hashval_t
2817 hash_file_name_entry (const void *e)
2818 {
2819 const struct quick_file_names *file_data
2820 = (const struct quick_file_names *) e;
2821
2822 return hash_stmt_list_entry (&file_data->hash);
2823 }
2824
2825 /* Equality function for a quick_file_names. */
2826
2827 static int
2828 eq_file_name_entry (const void *a, const void *b)
2829 {
2830 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2831 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2832
2833 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2834 }
2835
2836 /* Delete function for a quick_file_names. */
2837
2838 static void
2839 delete_file_name_entry (void *e)
2840 {
2841 struct quick_file_names *file_data = (struct quick_file_names *) e;
2842 int i;
2843
2844 for (i = 0; i < file_data->num_file_names; ++i)
2845 {
2846 xfree ((void*) file_data->file_names[i]);
2847 if (file_data->real_names)
2848 xfree ((void*) file_data->real_names[i]);
2849 }
2850
2851 /* The space for the struct itself lives on objfile_obstack,
2852 so we don't free it here. */
2853 }
2854
2855 /* Create a quick_file_names hash table. */
2856
2857 static htab_t
2858 create_quick_file_names_table (unsigned int nr_initial_entries)
2859 {
2860 return htab_create_alloc (nr_initial_entries,
2861 hash_file_name_entry, eq_file_name_entry,
2862 delete_file_name_entry, xcalloc, xfree);
2863 }
2864
2865 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2866 have to be created afterwards. You should call age_cached_comp_units after
2867 processing PER_CU->CU. dw2_setup must have been already called. */
2868
2869 static void
2870 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2871 {
2872 if (per_cu->is_debug_types)
2873 load_full_type_unit (per_cu);
2874 else
2875 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2876
2877 if (per_cu->cu == NULL)
2878 return; /* Dummy CU. */
2879
2880 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2881 }
2882
2883 /* Read in the symbols for PER_CU. */
2884
2885 static void
2886 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2887 {
2888 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2889
2890 /* Skip type_unit_groups, reading the type units they contain
2891 is handled elsewhere. */
2892 if (IS_TYPE_UNIT_GROUP (per_cu))
2893 return;
2894
2895 /* The destructor of dwarf2_queue_guard frees any entries left on
2896 the queue. After this point we're guaranteed to leave this function
2897 with the dwarf queue empty. */
2898 dwarf2_queue_guard q_guard;
2899
2900 if (dwarf2_per_objfile->using_index
2901 ? per_cu->v.quick->compunit_symtab == NULL
2902 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2903 {
2904 queue_comp_unit (per_cu, language_minimal);
2905 load_cu (per_cu, skip_partial);
2906
2907 /* If we just loaded a CU from a DWO, and we're working with an index
2908 that may badly handle TUs, load all the TUs in that DWO as well.
2909 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2910 if (!per_cu->is_debug_types
2911 && per_cu->cu != NULL
2912 && per_cu->cu->dwo_unit != NULL
2913 && dwarf2_per_objfile->index_table != NULL
2914 && dwarf2_per_objfile->index_table->version <= 7
2915 /* DWP files aren't supported yet. */
2916 && get_dwp_file (dwarf2_per_objfile) == NULL)
2917 queue_and_load_all_dwo_tus (per_cu);
2918 }
2919
2920 process_queue (dwarf2_per_objfile);
2921
2922 /* Age the cache, releasing compilation units that have not
2923 been used recently. */
2924 age_cached_comp_units (dwarf2_per_objfile);
2925 }
2926
2927 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2928 the objfile from which this CU came. Returns the resulting symbol
2929 table. */
2930
2931 static struct compunit_symtab *
2932 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2933 {
2934 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2935
2936 gdb_assert (dwarf2_per_objfile->using_index);
2937 if (!per_cu->v.quick->compunit_symtab)
2938 {
2939 free_cached_comp_units freer (dwarf2_per_objfile);
2940 scoped_restore decrementer = increment_reading_symtab ();
2941 dw2_do_instantiate_symtab (per_cu, skip_partial);
2942 process_cu_includes (dwarf2_per_objfile);
2943 }
2944
2945 return per_cu->v.quick->compunit_symtab;
2946 }
2947
2948 /* See declaration. */
2949
2950 dwarf2_per_cu_data *
2951 dwarf2_per_objfile::get_cutu (int index)
2952 {
2953 if (index >= this->all_comp_units.size ())
2954 {
2955 index -= this->all_comp_units.size ();
2956 gdb_assert (index < this->all_type_units.size ());
2957 return &this->all_type_units[index]->per_cu;
2958 }
2959
2960 return this->all_comp_units[index];
2961 }
2962
2963 /* See declaration. */
2964
2965 dwarf2_per_cu_data *
2966 dwarf2_per_objfile::get_cu (int index)
2967 {
2968 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2969
2970 return this->all_comp_units[index];
2971 }
2972
2973 /* See declaration. */
2974
2975 signatured_type *
2976 dwarf2_per_objfile::get_tu (int index)
2977 {
2978 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2979
2980 return this->all_type_units[index];
2981 }
2982
2983 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2984 objfile_obstack, and constructed with the specified field
2985 values. */
2986
2987 static dwarf2_per_cu_data *
2988 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2989 struct dwarf2_section_info *section,
2990 int is_dwz,
2991 sect_offset sect_off, ULONGEST length)
2992 {
2993 struct objfile *objfile = dwarf2_per_objfile->objfile;
2994 dwarf2_per_cu_data *the_cu
2995 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2996 struct dwarf2_per_cu_data);
2997 the_cu->sect_off = sect_off;
2998 the_cu->length = length;
2999 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3000 the_cu->section = section;
3001 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3002 struct dwarf2_per_cu_quick_data);
3003 the_cu->is_dwz = is_dwz;
3004 return the_cu;
3005 }
3006
3007 /* A helper for create_cus_from_index that handles a given list of
3008 CUs. */
3009
3010 static void
3011 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3012 const gdb_byte *cu_list, offset_type n_elements,
3013 struct dwarf2_section_info *section,
3014 int is_dwz)
3015 {
3016 for (offset_type i = 0; i < n_elements; i += 2)
3017 {
3018 gdb_static_assert (sizeof (ULONGEST) >= 8);
3019
3020 sect_offset sect_off
3021 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3022 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3023 cu_list += 2 * 8;
3024
3025 dwarf2_per_cu_data *per_cu
3026 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3027 sect_off, length);
3028 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3029 }
3030 }
3031
3032 /* Read the CU list from the mapped index, and use it to create all
3033 the CU objects for this objfile. */
3034
3035 static void
3036 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3037 const gdb_byte *cu_list, offset_type cu_list_elements,
3038 const gdb_byte *dwz_list, offset_type dwz_elements)
3039 {
3040 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3041 dwarf2_per_objfile->all_comp_units.reserve
3042 ((cu_list_elements + dwz_elements) / 2);
3043
3044 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3045 &dwarf2_per_objfile->info, 0);
3046
3047 if (dwz_elements == 0)
3048 return;
3049
3050 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3051 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3052 &dwz->info, 1);
3053 }
3054
3055 /* Create the signatured type hash table from the index. */
3056
3057 static void
3058 create_signatured_type_table_from_index
3059 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3060 struct dwarf2_section_info *section,
3061 const gdb_byte *bytes,
3062 offset_type elements)
3063 {
3064 struct objfile *objfile = dwarf2_per_objfile->objfile;
3065
3066 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3067 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3068
3069 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3070
3071 for (offset_type i = 0; i < elements; i += 3)
3072 {
3073 struct signatured_type *sig_type;
3074 ULONGEST signature;
3075 void **slot;
3076 cu_offset type_offset_in_tu;
3077
3078 gdb_static_assert (sizeof (ULONGEST) >= 8);
3079 sect_offset sect_off
3080 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3081 type_offset_in_tu
3082 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3083 BFD_ENDIAN_LITTLE);
3084 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3085 bytes += 3 * 8;
3086
3087 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3088 struct signatured_type);
3089 sig_type->signature = signature;
3090 sig_type->type_offset_in_tu = type_offset_in_tu;
3091 sig_type->per_cu.is_debug_types = 1;
3092 sig_type->per_cu.section = section;
3093 sig_type->per_cu.sect_off = sect_off;
3094 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3095 sig_type->per_cu.v.quick
3096 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3097 struct dwarf2_per_cu_quick_data);
3098
3099 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3100 *slot = sig_type;
3101
3102 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3103 }
3104
3105 dwarf2_per_objfile->signatured_types = sig_types_hash;
3106 }
3107
3108 /* Create the signatured type hash table from .debug_names. */
3109
3110 static void
3111 create_signatured_type_table_from_debug_names
3112 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3113 const mapped_debug_names &map,
3114 struct dwarf2_section_info *section,
3115 struct dwarf2_section_info *abbrev_section)
3116 {
3117 struct objfile *objfile = dwarf2_per_objfile->objfile;
3118
3119 dwarf2_read_section (objfile, section);
3120 dwarf2_read_section (objfile, abbrev_section);
3121
3122 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3123 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3124
3125 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3126
3127 for (uint32_t i = 0; i < map.tu_count; ++i)
3128 {
3129 struct signatured_type *sig_type;
3130 void **slot;
3131
3132 sect_offset sect_off
3133 = (sect_offset) (extract_unsigned_integer
3134 (map.tu_table_reordered + i * map.offset_size,
3135 map.offset_size,
3136 map.dwarf5_byte_order));
3137
3138 comp_unit_head cu_header;
3139 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3140 abbrev_section,
3141 section->buffer + to_underlying (sect_off),
3142 rcuh_kind::TYPE);
3143
3144 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3145 struct signatured_type);
3146 sig_type->signature = cu_header.signature;
3147 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3148 sig_type->per_cu.is_debug_types = 1;
3149 sig_type->per_cu.section = section;
3150 sig_type->per_cu.sect_off = sect_off;
3151 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3152 sig_type->per_cu.v.quick
3153 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3154 struct dwarf2_per_cu_quick_data);
3155
3156 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3157 *slot = sig_type;
3158
3159 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3160 }
3161
3162 dwarf2_per_objfile->signatured_types = sig_types_hash;
3163 }
3164
3165 /* Read the address map data from the mapped index, and use it to
3166 populate the objfile's psymtabs_addrmap. */
3167
3168 static void
3169 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3170 struct mapped_index *index)
3171 {
3172 struct objfile *objfile = dwarf2_per_objfile->objfile;
3173 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3174 const gdb_byte *iter, *end;
3175 struct addrmap *mutable_map;
3176 CORE_ADDR baseaddr;
3177
3178 auto_obstack temp_obstack;
3179
3180 mutable_map = addrmap_create_mutable (&temp_obstack);
3181
3182 iter = index->address_table.data ();
3183 end = iter + index->address_table.size ();
3184
3185 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3186
3187 while (iter < end)
3188 {
3189 ULONGEST hi, lo, cu_index;
3190 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3191 iter += 8;
3192 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3193 iter += 8;
3194 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3195 iter += 4;
3196
3197 if (lo > hi)
3198 {
3199 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3200 hex_string (lo), hex_string (hi));
3201 continue;
3202 }
3203
3204 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3205 {
3206 complaint (_(".gdb_index address table has invalid CU number %u"),
3207 (unsigned) cu_index);
3208 continue;
3209 }
3210
3211 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3212 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3213 addrmap_set_empty (mutable_map, lo, hi - 1,
3214 dwarf2_per_objfile->get_cu (cu_index));
3215 }
3216
3217 objfile->partial_symtabs->psymtabs_addrmap
3218 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3219 }
3220
3221 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3222 populate the objfile's psymtabs_addrmap. */
3223
3224 static void
3225 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3226 struct dwarf2_section_info *section)
3227 {
3228 struct objfile *objfile = dwarf2_per_objfile->objfile;
3229 bfd *abfd = objfile->obfd;
3230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3231 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3232 SECT_OFF_TEXT (objfile));
3233
3234 auto_obstack temp_obstack;
3235 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3236
3237 std::unordered_map<sect_offset,
3238 dwarf2_per_cu_data *,
3239 gdb::hash_enum<sect_offset>>
3240 debug_info_offset_to_per_cu;
3241 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3242 {
3243 const auto insertpair
3244 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3245 if (!insertpair.second)
3246 {
3247 warning (_("Section .debug_aranges in %s has duplicate "
3248 "debug_info_offset %s, ignoring .debug_aranges."),
3249 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3250 return;
3251 }
3252 }
3253
3254 dwarf2_read_section (objfile, section);
3255
3256 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3257
3258 const gdb_byte *addr = section->buffer;
3259
3260 while (addr < section->buffer + section->size)
3261 {
3262 const gdb_byte *const entry_addr = addr;
3263 unsigned int bytes_read;
3264
3265 const LONGEST entry_length = read_initial_length (abfd, addr,
3266 &bytes_read);
3267 addr += bytes_read;
3268
3269 const gdb_byte *const entry_end = addr + entry_length;
3270 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3271 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3272 if (addr + entry_length > section->buffer + section->size)
3273 {
3274 warning (_("Section .debug_aranges in %s entry at offset %zu "
3275 "length %s exceeds section length %s, "
3276 "ignoring .debug_aranges."),
3277 objfile_name (objfile), entry_addr - section->buffer,
3278 plongest (bytes_read + entry_length),
3279 pulongest (section->size));
3280 return;
3281 }
3282
3283 /* The version number. */
3284 const uint16_t version = read_2_bytes (abfd, addr);
3285 addr += 2;
3286 if (version != 2)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "has unsupported version %d, ignoring .debug_aranges."),
3290 objfile_name (objfile), entry_addr - section->buffer,
3291 version);
3292 return;
3293 }
3294
3295 const uint64_t debug_info_offset
3296 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3297 addr += offset_size;
3298 const auto per_cu_it
3299 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3300 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3301 {
3302 warning (_("Section .debug_aranges in %s entry at offset %zu "
3303 "debug_info_offset %s does not exists, "
3304 "ignoring .debug_aranges."),
3305 objfile_name (objfile), entry_addr - section->buffer,
3306 pulongest (debug_info_offset));
3307 return;
3308 }
3309 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3310
3311 const uint8_t address_size = *addr++;
3312 if (address_size < 1 || address_size > 8)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address_size %u is invalid, ignoring .debug_aranges."),
3316 objfile_name (objfile), entry_addr - section->buffer,
3317 address_size);
3318 return;
3319 }
3320
3321 const uint8_t segment_selector_size = *addr++;
3322 if (segment_selector_size != 0)
3323 {
3324 warning (_("Section .debug_aranges in %s entry at offset %zu "
3325 "segment_selector_size %u is not supported, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile), entry_addr - section->buffer,
3328 segment_selector_size);
3329 return;
3330 }
3331
3332 /* Must pad to an alignment boundary that is twice the address
3333 size. It is undocumented by the DWARF standard but GCC does
3334 use it. */
3335 for (size_t padding = ((-(addr - section->buffer))
3336 & (2 * address_size - 1));
3337 padding > 0; padding--)
3338 if (*addr++ != 0)
3339 {
3340 warning (_("Section .debug_aranges in %s entry at offset %zu "
3341 "padding is not zero, ignoring .debug_aranges."),
3342 objfile_name (objfile), entry_addr - section->buffer);
3343 return;
3344 }
3345
3346 for (;;)
3347 {
3348 if (addr + 2 * address_size > entry_end)
3349 {
3350 warning (_("Section .debug_aranges in %s entry at offset %zu "
3351 "address list is not properly terminated, "
3352 "ignoring .debug_aranges."),
3353 objfile_name (objfile), entry_addr - section->buffer);
3354 return;
3355 }
3356 ULONGEST start = extract_unsigned_integer (addr, address_size,
3357 dwarf5_byte_order);
3358 addr += address_size;
3359 ULONGEST length = extract_unsigned_integer (addr, address_size,
3360 dwarf5_byte_order);
3361 addr += address_size;
3362 if (start == 0 && length == 0)
3363 break;
3364 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3365 {
3366 /* Symbol was eliminated due to a COMDAT group. */
3367 continue;
3368 }
3369 ULONGEST end = start + length;
3370 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3371 - baseaddr);
3372 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3373 - baseaddr);
3374 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3375 }
3376 }
3377
3378 objfile->partial_symtabs->psymtabs_addrmap
3379 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3380 }
3381
3382 /* Find a slot in the mapped index INDEX for the object named NAME.
3383 If NAME is found, set *VEC_OUT to point to the CU vector in the
3384 constant pool and return true. If NAME cannot be found, return
3385 false. */
3386
3387 static bool
3388 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3389 offset_type **vec_out)
3390 {
3391 offset_type hash;
3392 offset_type slot, step;
3393 int (*cmp) (const char *, const char *);
3394
3395 gdb::unique_xmalloc_ptr<char> without_params;
3396 if (current_language->la_language == language_cplus
3397 || current_language->la_language == language_fortran
3398 || current_language->la_language == language_d)
3399 {
3400 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3401 not contain any. */
3402
3403 if (strchr (name, '(') != NULL)
3404 {
3405 without_params = cp_remove_params (name);
3406
3407 if (without_params != NULL)
3408 name = without_params.get ();
3409 }
3410 }
3411
3412 /* Index version 4 did not support case insensitive searches. But the
3413 indices for case insensitive languages are built in lowercase, therefore
3414 simulate our NAME being searched is also lowercased. */
3415 hash = mapped_index_string_hash ((index->version == 4
3416 && case_sensitivity == case_sensitive_off
3417 ? 5 : index->version),
3418 name);
3419
3420 slot = hash & (index->symbol_table.size () - 1);
3421 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3422 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3423
3424 for (;;)
3425 {
3426 const char *str;
3427
3428 const auto &bucket = index->symbol_table[slot];
3429 if (bucket.name == 0 && bucket.vec == 0)
3430 return false;
3431
3432 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3433 if (!cmp (name, str))
3434 {
3435 *vec_out = (offset_type *) (index->constant_pool
3436 + MAYBE_SWAP (bucket.vec));
3437 return true;
3438 }
3439
3440 slot = (slot + step) & (index->symbol_table.size () - 1);
3441 }
3442 }
3443
3444 /* A helper function that reads the .gdb_index from BUFFER and fills
3445 in MAP. FILENAME is the name of the file containing the data;
3446 it is used for error reporting. DEPRECATED_OK is true if it is
3447 ok to use deprecated sections.
3448
3449 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3450 out parameters that are filled in with information about the CU and
3451 TU lists in the section.
3452
3453 Returns true if all went well, false otherwise. */
3454
3455 static bool
3456 read_gdb_index_from_buffer (struct objfile *objfile,
3457 const char *filename,
3458 bool deprecated_ok,
3459 gdb::array_view<const gdb_byte> buffer,
3460 struct mapped_index *map,
3461 const gdb_byte **cu_list,
3462 offset_type *cu_list_elements,
3463 const gdb_byte **types_list,
3464 offset_type *types_list_elements)
3465 {
3466 const gdb_byte *addr = &buffer[0];
3467
3468 /* Version check. */
3469 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3470 /* Versions earlier than 3 emitted every copy of a psymbol. This
3471 causes the index to behave very poorly for certain requests. Version 3
3472 contained incomplete addrmap. So, it seems better to just ignore such
3473 indices. */
3474 if (version < 4)
3475 {
3476 static int warning_printed = 0;
3477 if (!warning_printed)
3478 {
3479 warning (_("Skipping obsolete .gdb_index section in %s."),
3480 filename);
3481 warning_printed = 1;
3482 }
3483 return 0;
3484 }
3485 /* Index version 4 uses a different hash function than index version
3486 5 and later.
3487
3488 Versions earlier than 6 did not emit psymbols for inlined
3489 functions. Using these files will cause GDB not to be able to
3490 set breakpoints on inlined functions by name, so we ignore these
3491 indices unless the user has done
3492 "set use-deprecated-index-sections on". */
3493 if (version < 6 && !deprecated_ok)
3494 {
3495 static int warning_printed = 0;
3496 if (!warning_printed)
3497 {
3498 warning (_("\
3499 Skipping deprecated .gdb_index section in %s.\n\
3500 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3501 to use the section anyway."),
3502 filename);
3503 warning_printed = 1;
3504 }
3505 return 0;
3506 }
3507 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3508 of the TU (for symbols coming from TUs),
3509 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3510 Plus gold-generated indices can have duplicate entries for global symbols,
3511 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3512 These are just performance bugs, and we can't distinguish gdb-generated
3513 indices from gold-generated ones, so issue no warning here. */
3514
3515 /* Indexes with higher version than the one supported by GDB may be no
3516 longer backward compatible. */
3517 if (version > 8)
3518 return 0;
3519
3520 map->version = version;
3521
3522 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3523
3524 int i = 0;
3525 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3526 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3527 / 8);
3528 ++i;
3529
3530 *types_list = addr + MAYBE_SWAP (metadata[i]);
3531 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3532 - MAYBE_SWAP (metadata[i]))
3533 / 8);
3534 ++i;
3535
3536 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3537 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3538 map->address_table
3539 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3540 ++i;
3541
3542 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3543 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3544 map->symbol_table
3545 = gdb::array_view<mapped_index::symbol_table_slot>
3546 ((mapped_index::symbol_table_slot *) symbol_table,
3547 (mapped_index::symbol_table_slot *) symbol_table_end);
3548
3549 ++i;
3550 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3551
3552 return 1;
3553 }
3554
3555 /* Callback types for dwarf2_read_gdb_index. */
3556
3557 typedef gdb::function_view
3558 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3559 get_gdb_index_contents_ftype;
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3562 get_gdb_index_contents_dwz_ftype;
3563
3564 /* Read .gdb_index. If everything went ok, initialize the "quick"
3565 elements of all the CUs and return 1. Otherwise, return 0. */
3566
3567 static int
3568 dwarf2_read_gdb_index
3569 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3570 get_gdb_index_contents_ftype get_gdb_index_contents,
3571 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3572 {
3573 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3574 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3575 struct dwz_file *dwz;
3576 struct objfile *objfile = dwarf2_per_objfile->objfile;
3577
3578 gdb::array_view<const gdb_byte> main_index_contents
3579 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3580
3581 if (main_index_contents.empty ())
3582 return 0;
3583
3584 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3585 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3586 use_deprecated_index_sections,
3587 main_index_contents, map.get (), &cu_list,
3588 &cu_list_elements, &types_list,
3589 &types_list_elements))
3590 return 0;
3591
3592 /* Don't use the index if it's empty. */
3593 if (map->symbol_table.empty ())
3594 return 0;
3595
3596 /* If there is a .dwz file, read it so we can get its CU list as
3597 well. */
3598 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3599 if (dwz != NULL)
3600 {
3601 struct mapped_index dwz_map;
3602 const gdb_byte *dwz_types_ignore;
3603 offset_type dwz_types_elements_ignore;
3604
3605 gdb::array_view<const gdb_byte> dwz_index_content
3606 = get_gdb_index_contents_dwz (objfile, dwz);
3607
3608 if (dwz_index_content.empty ())
3609 return 0;
3610
3611 if (!read_gdb_index_from_buffer (objfile,
3612 bfd_get_filename (dwz->dwz_bfd), 1,
3613 dwz_index_content, &dwz_map,
3614 &dwz_list, &dwz_list_elements,
3615 &dwz_types_ignore,
3616 &dwz_types_elements_ignore))
3617 {
3618 warning (_("could not read '.gdb_index' section from %s; skipping"),
3619 bfd_get_filename (dwz->dwz_bfd));
3620 return 0;
3621 }
3622 }
3623
3624 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3625 dwz_list, dwz_list_elements);
3626
3627 if (types_list_elements)
3628 {
3629 struct dwarf2_section_info *section;
3630
3631 /* We can only handle a single .debug_types when we have an
3632 index. */
3633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3634 return 0;
3635
3636 section = VEC_index (dwarf2_section_info_def,
3637 dwarf2_per_objfile->types, 0);
3638
3639 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3640 types_list, types_list_elements);
3641 }
3642
3643 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3644
3645 dwarf2_per_objfile->index_table = std::move (map);
3646 dwarf2_per_objfile->using_index = 1;
3647 dwarf2_per_objfile->quick_file_names_table =
3648 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3649
3650 return 1;
3651 }
3652
3653 /* die_reader_func for dw2_get_file_names. */
3654
3655 static void
3656 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3657 const gdb_byte *info_ptr,
3658 struct die_info *comp_unit_die,
3659 int has_children,
3660 void *data)
3661 {
3662 struct dwarf2_cu *cu = reader->cu;
3663 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3664 struct dwarf2_per_objfile *dwarf2_per_objfile
3665 = cu->per_cu->dwarf2_per_objfile;
3666 struct objfile *objfile = dwarf2_per_objfile->objfile;
3667 struct dwarf2_per_cu_data *lh_cu;
3668 struct attribute *attr;
3669 int i;
3670 void **slot;
3671 struct quick_file_names *qfn;
3672
3673 gdb_assert (! this_cu->is_debug_types);
3674
3675 /* Our callers never want to match partial units -- instead they
3676 will match the enclosing full CU. */
3677 if (comp_unit_die->tag == DW_TAG_partial_unit)
3678 {
3679 this_cu->v.quick->no_file_data = 1;
3680 return;
3681 }
3682
3683 lh_cu = this_cu;
3684 slot = NULL;
3685
3686 line_header_up lh;
3687 sect_offset line_offset {};
3688
3689 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3690 if (attr)
3691 {
3692 struct quick_file_names find_entry;
3693
3694 line_offset = (sect_offset) DW_UNSND (attr);
3695
3696 /* We may have already read in this line header (TU line header sharing).
3697 If we have we're done. */
3698 find_entry.hash.dwo_unit = cu->dwo_unit;
3699 find_entry.hash.line_sect_off = line_offset;
3700 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3701 &find_entry, INSERT);
3702 if (*slot != NULL)
3703 {
3704 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3705 return;
3706 }
3707
3708 lh = dwarf_decode_line_header (line_offset, cu);
3709 }
3710 if (lh == NULL)
3711 {
3712 lh_cu->v.quick->no_file_data = 1;
3713 return;
3714 }
3715
3716 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3717 qfn->hash.dwo_unit = cu->dwo_unit;
3718 qfn->hash.line_sect_off = line_offset;
3719 gdb_assert (slot != NULL);
3720 *slot = qfn;
3721
3722 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3723
3724 qfn->num_file_names = lh->file_names.size ();
3725 qfn->file_names =
3726 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3727 for (i = 0; i < lh->file_names.size (); ++i)
3728 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3729 qfn->real_names = NULL;
3730
3731 lh_cu->v.quick->file_names = qfn;
3732 }
3733
3734 /* A helper for the "quick" functions which attempts to read the line
3735 table for THIS_CU. */
3736
3737 static struct quick_file_names *
3738 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3739 {
3740 /* This should never be called for TUs. */
3741 gdb_assert (! this_cu->is_debug_types);
3742 /* Nor type unit groups. */
3743 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3744
3745 if (this_cu->v.quick->file_names != NULL)
3746 return this_cu->v.quick->file_names;
3747 /* If we know there is no line data, no point in looking again. */
3748 if (this_cu->v.quick->no_file_data)
3749 return NULL;
3750
3751 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3752
3753 if (this_cu->v.quick->no_file_data)
3754 return NULL;
3755 return this_cu->v.quick->file_names;
3756 }
3757
3758 /* A helper for the "quick" functions which computes and caches the
3759 real path for a given file name from the line table. */
3760
3761 static const char *
3762 dw2_get_real_path (struct objfile *objfile,
3763 struct quick_file_names *qfn, int index)
3764 {
3765 if (qfn->real_names == NULL)
3766 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3767 qfn->num_file_names, const char *);
3768
3769 if (qfn->real_names[index] == NULL)
3770 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3771
3772 return qfn->real_names[index];
3773 }
3774
3775 static struct symtab *
3776 dw2_find_last_source_symtab (struct objfile *objfile)
3777 {
3778 struct dwarf2_per_objfile *dwarf2_per_objfile
3779 = get_dwarf2_per_objfile (objfile);
3780 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3781 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3782
3783 if (cust == NULL)
3784 return NULL;
3785
3786 return compunit_primary_filetab (cust);
3787 }
3788
3789 /* Traversal function for dw2_forget_cached_source_info. */
3790
3791 static int
3792 dw2_free_cached_file_names (void **slot, void *info)
3793 {
3794 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3795
3796 if (file_data->real_names)
3797 {
3798 int i;
3799
3800 for (i = 0; i < file_data->num_file_names; ++i)
3801 {
3802 xfree ((void*) file_data->real_names[i]);
3803 file_data->real_names[i] = NULL;
3804 }
3805 }
3806
3807 return 1;
3808 }
3809
3810 static void
3811 dw2_forget_cached_source_info (struct objfile *objfile)
3812 {
3813 struct dwarf2_per_objfile *dwarf2_per_objfile
3814 = get_dwarf2_per_objfile (objfile);
3815
3816 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3817 dw2_free_cached_file_names, NULL);
3818 }
3819
3820 /* Helper function for dw2_map_symtabs_matching_filename that expands
3821 the symtabs and calls the iterator. */
3822
3823 static int
3824 dw2_map_expand_apply (struct objfile *objfile,
3825 struct dwarf2_per_cu_data *per_cu,
3826 const char *name, const char *real_path,
3827 gdb::function_view<bool (symtab *)> callback)
3828 {
3829 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3830
3831 /* Don't visit already-expanded CUs. */
3832 if (per_cu->v.quick->compunit_symtab)
3833 return 0;
3834
3835 /* This may expand more than one symtab, and we want to iterate over
3836 all of them. */
3837 dw2_instantiate_symtab (per_cu, false);
3838
3839 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3840 last_made, callback);
3841 }
3842
3843 /* Implementation of the map_symtabs_matching_filename method. */
3844
3845 static bool
3846 dw2_map_symtabs_matching_filename
3847 (struct objfile *objfile, const char *name, const char *real_path,
3848 gdb::function_view<bool (symtab *)> callback)
3849 {
3850 const char *name_basename = lbasename (name);
3851 struct dwarf2_per_objfile *dwarf2_per_objfile
3852 = get_dwarf2_per_objfile (objfile);
3853
3854 /* The rule is CUs specify all the files, including those used by
3855 any TU, so there's no need to scan TUs here. */
3856
3857 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3858 {
3859 /* We only need to look at symtabs not already expanded. */
3860 if (per_cu->v.quick->compunit_symtab)
3861 continue;
3862
3863 quick_file_names *file_data = dw2_get_file_names (per_cu);
3864 if (file_data == NULL)
3865 continue;
3866
3867 for (int j = 0; j < file_data->num_file_names; ++j)
3868 {
3869 const char *this_name = file_data->file_names[j];
3870 const char *this_real_name;
3871
3872 if (compare_filenames_for_search (this_name, name))
3873 {
3874 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3875 callback))
3876 return true;
3877 continue;
3878 }
3879
3880 /* Before we invoke realpath, which can get expensive when many
3881 files are involved, do a quick comparison of the basenames. */
3882 if (! basenames_may_differ
3883 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3884 continue;
3885
3886 this_real_name = dw2_get_real_path (objfile, file_data, j);
3887 if (compare_filenames_for_search (this_real_name, name))
3888 {
3889 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3890 callback))
3891 return true;
3892 continue;
3893 }
3894
3895 if (real_path != NULL)
3896 {
3897 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3898 gdb_assert (IS_ABSOLUTE_PATH (name));
3899 if (this_real_name != NULL
3900 && FILENAME_CMP (real_path, this_real_name) == 0)
3901 {
3902 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3903 callback))
3904 return true;
3905 continue;
3906 }
3907 }
3908 }
3909 }
3910
3911 return false;
3912 }
3913
3914 /* Struct used to manage iterating over all CUs looking for a symbol. */
3915
3916 struct dw2_symtab_iterator
3917 {
3918 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3919 struct dwarf2_per_objfile *dwarf2_per_objfile;
3920 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3921 int want_specific_block;
3922 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3923 Unused if !WANT_SPECIFIC_BLOCK. */
3924 int block_index;
3925 /* The kind of symbol we're looking for. */
3926 domain_enum domain;
3927 /* The list of CUs from the index entry of the symbol,
3928 or NULL if not found. */
3929 offset_type *vec;
3930 /* The next element in VEC to look at. */
3931 int next;
3932 /* The number of elements in VEC, or zero if there is no match. */
3933 int length;
3934 /* Have we seen a global version of the symbol?
3935 If so we can ignore all further global instances.
3936 This is to work around gold/15646, inefficient gold-generated
3937 indices. */
3938 int global_seen;
3939 };
3940
3941 /* Initialize the index symtab iterator ITER.
3942 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3943 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3944
3945 static void
3946 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3947 struct dwarf2_per_objfile *dwarf2_per_objfile,
3948 int want_specific_block,
3949 int block_index,
3950 domain_enum domain,
3951 const char *name)
3952 {
3953 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3954 iter->want_specific_block = want_specific_block;
3955 iter->block_index = block_index;
3956 iter->domain = domain;
3957 iter->next = 0;
3958 iter->global_seen = 0;
3959
3960 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3961
3962 /* index is NULL if OBJF_READNOW. */
3963 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3964 iter->length = MAYBE_SWAP (*iter->vec);
3965 else
3966 {
3967 iter->vec = NULL;
3968 iter->length = 0;
3969 }
3970 }
3971
3972 /* Return the next matching CU or NULL if there are no more. */
3973
3974 static struct dwarf2_per_cu_data *
3975 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3976 {
3977 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3978
3979 for ( ; iter->next < iter->length; ++iter->next)
3980 {
3981 offset_type cu_index_and_attrs =
3982 MAYBE_SWAP (iter->vec[iter->next + 1]);
3983 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3984 int want_static = iter->block_index != GLOBAL_BLOCK;
3985 /* This value is only valid for index versions >= 7. */
3986 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3987 gdb_index_symbol_kind symbol_kind =
3988 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3989 /* Only check the symbol attributes if they're present.
3990 Indices prior to version 7 don't record them,
3991 and indices >= 7 may elide them for certain symbols
3992 (gold does this). */
3993 int attrs_valid =
3994 (dwarf2_per_objfile->index_table->version >= 7
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3996
3997 /* Don't crash on bad data. */
3998 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3999 + dwarf2_per_objfile->all_type_units.size ()))
4000 {
4001 complaint (_(".gdb_index entry has bad CU index"
4002 " [in module %s]"),
4003 objfile_name (dwarf2_per_objfile->objfile));
4004 continue;
4005 }
4006
4007 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4008
4009 /* Skip if already read in. */
4010 if (per_cu->v.quick->compunit_symtab)
4011 continue;
4012
4013 /* Check static vs global. */
4014 if (attrs_valid)
4015 {
4016 if (iter->want_specific_block
4017 && want_static != is_static)
4018 continue;
4019 /* Work around gold/15646. */
4020 if (!is_static && iter->global_seen)
4021 continue;
4022 if (!is_static)
4023 iter->global_seen = 1;
4024 }
4025
4026 /* Only check the symbol's kind if it has one. */
4027 if (attrs_valid)
4028 {
4029 switch (iter->domain)
4030 {
4031 case VAR_DOMAIN:
4032 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4033 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4034 /* Some types are also in VAR_DOMAIN. */
4035 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4036 continue;
4037 break;
4038 case STRUCT_DOMAIN:
4039 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4040 continue;
4041 break;
4042 case LABEL_DOMAIN:
4043 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4044 continue;
4045 break;
4046 default:
4047 break;
4048 }
4049 }
4050
4051 ++iter->next;
4052 return per_cu;
4053 }
4054
4055 return NULL;
4056 }
4057
4058 static struct compunit_symtab *
4059 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4060 const char *name, domain_enum domain)
4061 {
4062 struct compunit_symtab *stab_best = NULL;
4063 struct dwarf2_per_objfile *dwarf2_per_objfile
4064 = get_dwarf2_per_objfile (objfile);
4065
4066 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4067
4068 struct dw2_symtab_iterator iter;
4069 struct dwarf2_per_cu_data *per_cu;
4070
4071 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4072
4073 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4074 {
4075 struct symbol *sym, *with_opaque = NULL;
4076 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4077 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4078 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4079
4080 sym = block_find_symbol (block, name, domain,
4081 block_find_non_opaque_type_preferred,
4082 &with_opaque);
4083
4084 /* Some caution must be observed with overloaded functions
4085 and methods, since the index will not contain any overload
4086 information (but NAME might contain it). */
4087
4088 if (sym != NULL
4089 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4090 return stab;
4091 if (with_opaque != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4093 stab_best = stab;
4094
4095 /* Keep looking through other CUs. */
4096 }
4097
4098 return stab_best;
4099 }
4100
4101 static void
4102 dw2_print_stats (struct objfile *objfile)
4103 {
4104 struct dwarf2_per_objfile *dwarf2_per_objfile
4105 = get_dwarf2_per_objfile (objfile);
4106 int total = (dwarf2_per_objfile->all_comp_units.size ()
4107 + dwarf2_per_objfile->all_type_units.size ());
4108 int count = 0;
4109
4110 for (int i = 0; i < total; ++i)
4111 {
4112 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4113
4114 if (!per_cu->v.quick->compunit_symtab)
4115 ++count;
4116 }
4117 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4118 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4119 }
4120
4121 /* This dumps minimal information about the index.
4122 It is called via "mt print objfiles".
4123 One use is to verify .gdb_index has been loaded by the
4124 gdb.dwarf2/gdb-index.exp testcase. */
4125
4126 static void
4127 dw2_dump (struct objfile *objfile)
4128 {
4129 struct dwarf2_per_objfile *dwarf2_per_objfile
4130 = get_dwarf2_per_objfile (objfile);
4131
4132 gdb_assert (dwarf2_per_objfile->using_index);
4133 printf_filtered (".gdb_index:");
4134 if (dwarf2_per_objfile->index_table != NULL)
4135 {
4136 printf_filtered (" version %d\n",
4137 dwarf2_per_objfile->index_table->version);
4138 }
4139 else
4140 printf_filtered (" faked for \"readnow\"\n");
4141 printf_filtered ("\n");
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_for_function (struct objfile *objfile,
4146 const char *func_name)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 struct dw2_symtab_iterator iter;
4152 struct dwarf2_per_cu_data *per_cu;
4153
4154 /* Note: It doesn't matter what we pass for block_index here. */
4155 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4156 func_name);
4157
4158 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4159 dw2_instantiate_symtab (per_cu, false);
4160
4161 }
4162
4163 static void
4164 dw2_expand_all_symtabs (struct objfile *objfile)
4165 {
4166 struct dwarf2_per_objfile *dwarf2_per_objfile
4167 = get_dwarf2_per_objfile (objfile);
4168 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4169 + dwarf2_per_objfile->all_type_units.size ());
4170
4171 for (int i = 0; i < total_units; ++i)
4172 {
4173 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4174
4175 /* We don't want to directly expand a partial CU, because if we
4176 read it with the wrong language, then assertion failures can
4177 be triggered later on. See PR symtab/23010. So, tell
4178 dw2_instantiate_symtab to skip partial CUs -- any important
4179 partial CU will be read via DW_TAG_imported_unit anyway. */
4180 dw2_instantiate_symtab (per_cu, true);
4181 }
4182 }
4183
4184 static void
4185 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4186 const char *fullname)
4187 {
4188 struct dwarf2_per_objfile *dwarf2_per_objfile
4189 = get_dwarf2_per_objfile (objfile);
4190
4191 /* We don't need to consider type units here.
4192 This is only called for examining code, e.g. expand_line_sal.
4193 There can be an order of magnitude (or more) more type units
4194 than comp units, and we avoid them if we can. */
4195
4196 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4197 {
4198 /* We only need to look at symtabs not already expanded. */
4199 if (per_cu->v.quick->compunit_symtab)
4200 continue;
4201
4202 quick_file_names *file_data = dw2_get_file_names (per_cu);
4203 if (file_data == NULL)
4204 continue;
4205
4206 for (int j = 0; j < file_data->num_file_names; ++j)
4207 {
4208 const char *this_fullname = file_data->file_names[j];
4209
4210 if (filename_cmp (this_fullname, fullname) == 0)
4211 {
4212 dw2_instantiate_symtab (per_cu, false);
4213 break;
4214 }
4215 }
4216 }
4217 }
4218
4219 static void
4220 dw2_map_matching_symbols (struct objfile *objfile,
4221 const char * name, domain_enum domain,
4222 int global,
4223 int (*callback) (const struct block *,
4224 struct symbol *, void *),
4225 void *data, symbol_name_match_type match,
4226 symbol_compare_ftype *ordered_compare)
4227 {
4228 /* Currently unimplemented; used for Ada. The function can be called if the
4229 current language is Ada for a non-Ada objfile using GNU index. As Ada
4230 does not look for non-Ada symbols this function should just return. */
4231 }
4232
4233 /* Symbol name matcher for .gdb_index names.
4234
4235 Symbol names in .gdb_index have a few particularities:
4236
4237 - There's no indication of which is the language of each symbol.
4238
4239 Since each language has its own symbol name matching algorithm,
4240 and we don't know which language is the right one, we must match
4241 each symbol against all languages. This would be a potential
4242 performance problem if it were not mitigated by the
4243 mapped_index::name_components lookup table, which significantly
4244 reduces the number of times we need to call into this matcher,
4245 making it a non-issue.
4246
4247 - Symbol names in the index have no overload (parameter)
4248 information. I.e., in C++, "foo(int)" and "foo(long)" both
4249 appear as "foo" in the index, for example.
4250
4251 This means that the lookup names passed to the symbol name
4252 matcher functions must have no parameter information either
4253 because (e.g.) symbol search name "foo" does not match
4254 lookup-name "foo(int)" [while swapping search name for lookup
4255 name would match].
4256 */
4257 class gdb_index_symbol_name_matcher
4258 {
4259 public:
4260 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4261 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4262
4263 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4264 Returns true if any matcher matches. */
4265 bool matches (const char *symbol_name);
4266
4267 private:
4268 /* A reference to the lookup name we're matching against. */
4269 const lookup_name_info &m_lookup_name;
4270
4271 /* A vector holding all the different symbol name matchers, for all
4272 languages. */
4273 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4274 };
4275
4276 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4277 (const lookup_name_info &lookup_name)
4278 : m_lookup_name (lookup_name)
4279 {
4280 /* Prepare the vector of comparison functions upfront, to avoid
4281 doing the same work for each symbol. Care is taken to avoid
4282 matching with the same matcher more than once if/when multiple
4283 languages use the same matcher function. */
4284 auto &matchers = m_symbol_name_matcher_funcs;
4285 matchers.reserve (nr_languages);
4286
4287 matchers.push_back (default_symbol_name_matcher);
4288
4289 for (int i = 0; i < nr_languages; i++)
4290 {
4291 const language_defn *lang = language_def ((enum language) i);
4292 symbol_name_matcher_ftype *name_matcher
4293 = get_symbol_name_matcher (lang, m_lookup_name);
4294
4295 /* Don't insert the same comparison routine more than once.
4296 Note that we do this linear walk instead of a seemingly
4297 cheaper sorted insert, or use a std::set or something like
4298 that, because relative order of function addresses is not
4299 stable. This is not a problem in practice because the number
4300 of supported languages is low, and the cost here is tiny
4301 compared to the number of searches we'll do afterwards using
4302 this object. */
4303 if (name_matcher != default_symbol_name_matcher
4304 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4305 == matchers.end ()))
4306 matchers.push_back (name_matcher);
4307 }
4308 }
4309
4310 bool
4311 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4312 {
4313 for (auto matches_name : m_symbol_name_matcher_funcs)
4314 if (matches_name (symbol_name, m_lookup_name, NULL))
4315 return true;
4316
4317 return false;
4318 }
4319
4320 /* Starting from a search name, return the string that finds the upper
4321 bound of all strings that start with SEARCH_NAME in a sorted name
4322 list. Returns the empty string to indicate that the upper bound is
4323 the end of the list. */
4324
4325 static std::string
4326 make_sort_after_prefix_name (const char *search_name)
4327 {
4328 /* When looking to complete "func", we find the upper bound of all
4329 symbols that start with "func" by looking for where we'd insert
4330 the closest string that would follow "func" in lexicographical
4331 order. Usually, that's "func"-with-last-character-incremented,
4332 i.e. "fund". Mind non-ASCII characters, though. Usually those
4333 will be UTF-8 multi-byte sequences, but we can't be certain.
4334 Especially mind the 0xff character, which is a valid character in
4335 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4336 rule out compilers allowing it in identifiers. Note that
4337 conveniently, strcmp/strcasecmp are specified to compare
4338 characters interpreted as unsigned char. So what we do is treat
4339 the whole string as a base 256 number composed of a sequence of
4340 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4341 to 0, and carries 1 to the following more-significant position.
4342 If the very first character in SEARCH_NAME ends up incremented
4343 and carries/overflows, then the upper bound is the end of the
4344 list. The string after the empty string is also the empty
4345 string.
4346
4347 Some examples of this operation:
4348
4349 SEARCH_NAME => "+1" RESULT
4350
4351 "abc" => "abd"
4352 "ab\xff" => "ac"
4353 "\xff" "a" "\xff" => "\xff" "b"
4354 "\xff" => ""
4355 "\xff\xff" => ""
4356 "" => ""
4357
4358 Then, with these symbols for example:
4359
4360 func
4361 func1
4362 fund
4363
4364 completing "func" looks for symbols between "func" and
4365 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4366 which finds "func" and "func1", but not "fund".
4367
4368 And with:
4369
4370 funcÿ (Latin1 'ÿ' [0xff])
4371 funcÿ1
4372 fund
4373
4374 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4375 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4376
4377 And with:
4378
4379 ÿÿ (Latin1 'ÿ' [0xff])
4380 ÿÿ1
4381
4382 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4383 the end of the list.
4384 */
4385 std::string after = search_name;
4386 while (!after.empty () && (unsigned char) after.back () == 0xff)
4387 after.pop_back ();
4388 if (!after.empty ())
4389 after.back () = (unsigned char) after.back () + 1;
4390 return after;
4391 }
4392
4393 /* See declaration. */
4394
4395 std::pair<std::vector<name_component>::const_iterator,
4396 std::vector<name_component>::const_iterator>
4397 mapped_index_base::find_name_components_bounds
4398 (const lookup_name_info &lookup_name_without_params) const
4399 {
4400 auto *name_cmp
4401 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4402
4403 const char *cplus
4404 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4405
4406 /* Comparison function object for lower_bound that matches against a
4407 given symbol name. */
4408 auto lookup_compare_lower = [&] (const name_component &elem,
4409 const char *name)
4410 {
4411 const char *elem_qualified = this->symbol_name_at (elem.idx);
4412 const char *elem_name = elem_qualified + elem.name_offset;
4413 return name_cmp (elem_name, name) < 0;
4414 };
4415
4416 /* Comparison function object for upper_bound that matches against a
4417 given symbol name. */
4418 auto lookup_compare_upper = [&] (const char *name,
4419 const name_component &elem)
4420 {
4421 const char *elem_qualified = this->symbol_name_at (elem.idx);
4422 const char *elem_name = elem_qualified + elem.name_offset;
4423 return name_cmp (name, elem_name) < 0;
4424 };
4425
4426 auto begin = this->name_components.begin ();
4427 auto end = this->name_components.end ();
4428
4429 /* Find the lower bound. */
4430 auto lower = [&] ()
4431 {
4432 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4433 return begin;
4434 else
4435 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4436 } ();
4437
4438 /* Find the upper bound. */
4439 auto upper = [&] ()
4440 {
4441 if (lookup_name_without_params.completion_mode ())
4442 {
4443 /* In completion mode, we want UPPER to point past all
4444 symbols names that have the same prefix. I.e., with
4445 these symbols, and completing "func":
4446
4447 function << lower bound
4448 function1
4449 other_function << upper bound
4450
4451 We find the upper bound by looking for the insertion
4452 point of "func"-with-last-character-incremented,
4453 i.e. "fund". */
4454 std::string after = make_sort_after_prefix_name (cplus);
4455 if (after.empty ())
4456 return end;
4457 return std::lower_bound (lower, end, after.c_str (),
4458 lookup_compare_lower);
4459 }
4460 else
4461 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4462 } ();
4463
4464 return {lower, upper};
4465 }
4466
4467 /* See declaration. */
4468
4469 void
4470 mapped_index_base::build_name_components ()
4471 {
4472 if (!this->name_components.empty ())
4473 return;
4474
4475 this->name_components_casing = case_sensitivity;
4476 auto *name_cmp
4477 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4478
4479 /* The code below only knows how to break apart components of C++
4480 symbol names (and other languages that use '::' as
4481 namespace/module separator). If we add support for wild matching
4482 to some language that uses some other operator (E.g., Ada, Go and
4483 D use '.'), then we'll need to try splitting the symbol name
4484 according to that language too. Note that Ada does support wild
4485 matching, but doesn't currently support .gdb_index. */
4486 auto count = this->symbol_name_count ();
4487 for (offset_type idx = 0; idx < count; idx++)
4488 {
4489 if (this->symbol_name_slot_invalid (idx))
4490 continue;
4491
4492 const char *name = this->symbol_name_at (idx);
4493
4494 /* Add each name component to the name component table. */
4495 unsigned int previous_len = 0;
4496 for (unsigned int current_len = cp_find_first_component (name);
4497 name[current_len] != '\0';
4498 current_len += cp_find_first_component (name + current_len))
4499 {
4500 gdb_assert (name[current_len] == ':');
4501 this->name_components.push_back ({previous_len, idx});
4502 /* Skip the '::'. */
4503 current_len += 2;
4504 previous_len = current_len;
4505 }
4506 this->name_components.push_back ({previous_len, idx});
4507 }
4508
4509 /* Sort name_components elements by name. */
4510 auto name_comp_compare = [&] (const name_component &left,
4511 const name_component &right)
4512 {
4513 const char *left_qualified = this->symbol_name_at (left.idx);
4514 const char *right_qualified = this->symbol_name_at (right.idx);
4515
4516 const char *left_name = left_qualified + left.name_offset;
4517 const char *right_name = right_qualified + right.name_offset;
4518
4519 return name_cmp (left_name, right_name) < 0;
4520 };
4521
4522 std::sort (this->name_components.begin (),
4523 this->name_components.end (),
4524 name_comp_compare);
4525 }
4526
4527 /* Helper for dw2_expand_symtabs_matching that works with a
4528 mapped_index_base instead of the containing objfile. This is split
4529 to a separate function in order to be able to unit test the
4530 name_components matching using a mock mapped_index_base. For each
4531 symbol name that matches, calls MATCH_CALLBACK, passing it the
4532 symbol's index in the mapped_index_base symbol table. */
4533
4534 static void
4535 dw2_expand_symtabs_matching_symbol
4536 (mapped_index_base &index,
4537 const lookup_name_info &lookup_name_in,
4538 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4539 enum search_domain kind,
4540 gdb::function_view<void (offset_type)> match_callback)
4541 {
4542 lookup_name_info lookup_name_without_params
4543 = lookup_name_in.make_ignore_params ();
4544 gdb_index_symbol_name_matcher lookup_name_matcher
4545 (lookup_name_without_params);
4546
4547 /* Build the symbol name component sorted vector, if we haven't
4548 yet. */
4549 index.build_name_components ();
4550
4551 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4552
4553 /* Now for each symbol name in range, check to see if we have a name
4554 match, and if so, call the MATCH_CALLBACK callback. */
4555
4556 /* The same symbol may appear more than once in the range though.
4557 E.g., if we're looking for symbols that complete "w", and we have
4558 a symbol named "w1::w2", we'll find the two name components for
4559 that same symbol in the range. To be sure we only call the
4560 callback once per symbol, we first collect the symbol name
4561 indexes that matched in a temporary vector and ignore
4562 duplicates. */
4563 std::vector<offset_type> matches;
4564 matches.reserve (std::distance (bounds.first, bounds.second));
4565
4566 for (; bounds.first != bounds.second; ++bounds.first)
4567 {
4568 const char *qualified = index.symbol_name_at (bounds.first->idx);
4569
4570 if (!lookup_name_matcher.matches (qualified)
4571 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4572 continue;
4573
4574 matches.push_back (bounds.first->idx);
4575 }
4576
4577 std::sort (matches.begin (), matches.end ());
4578
4579 /* Finally call the callback, once per match. */
4580 ULONGEST prev = -1;
4581 for (offset_type idx : matches)
4582 {
4583 if (prev != idx)
4584 {
4585 match_callback (idx);
4586 prev = idx;
4587 }
4588 }
4589
4590 /* Above we use a type wider than idx's for 'prev', since 0 and
4591 (offset_type)-1 are both possible values. */
4592 static_assert (sizeof (prev) > sizeof (offset_type), "");
4593 }
4594
4595 #if GDB_SELF_TEST
4596
4597 namespace selftests { namespace dw2_expand_symtabs_matching {
4598
4599 /* A mock .gdb_index/.debug_names-like name index table, enough to
4600 exercise dw2_expand_symtabs_matching_symbol, which works with the
4601 mapped_index_base interface. Builds an index from the symbol list
4602 passed as parameter to the constructor. */
4603 class mock_mapped_index : public mapped_index_base
4604 {
4605 public:
4606 mock_mapped_index (gdb::array_view<const char *> symbols)
4607 : m_symbol_table (symbols)
4608 {}
4609
4610 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4611
4612 /* Return the number of names in the symbol table. */
4613 size_t symbol_name_count () const override
4614 {
4615 return m_symbol_table.size ();
4616 }
4617
4618 /* Get the name of the symbol at IDX in the symbol table. */
4619 const char *symbol_name_at (offset_type idx) const override
4620 {
4621 return m_symbol_table[idx];
4622 }
4623
4624 private:
4625 gdb::array_view<const char *> m_symbol_table;
4626 };
4627
4628 /* Convenience function that converts a NULL pointer to a "<null>"
4629 string, to pass to print routines. */
4630
4631 static const char *
4632 string_or_null (const char *str)
4633 {
4634 return str != NULL ? str : "<null>";
4635 }
4636
4637 /* Check if a lookup_name_info built from
4638 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4639 index. EXPECTED_LIST is the list of expected matches, in expected
4640 matching order. If no match expected, then an empty list is
4641 specified. Returns true on success. On failure prints a warning
4642 indicating the file:line that failed, and returns false. */
4643
4644 static bool
4645 check_match (const char *file, int line,
4646 mock_mapped_index &mock_index,
4647 const char *name, symbol_name_match_type match_type,
4648 bool completion_mode,
4649 std::initializer_list<const char *> expected_list)
4650 {
4651 lookup_name_info lookup_name (name, match_type, completion_mode);
4652
4653 bool matched = true;
4654
4655 auto mismatch = [&] (const char *expected_str,
4656 const char *got)
4657 {
4658 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4659 "expected=\"%s\", got=\"%s\"\n"),
4660 file, line,
4661 (match_type == symbol_name_match_type::FULL
4662 ? "FULL" : "WILD"),
4663 name, string_or_null (expected_str), string_or_null (got));
4664 matched = false;
4665 };
4666
4667 auto expected_it = expected_list.begin ();
4668 auto expected_end = expected_list.end ();
4669
4670 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4671 NULL, ALL_DOMAIN,
4672 [&] (offset_type idx)
4673 {
4674 const char *matched_name = mock_index.symbol_name_at (idx);
4675 const char *expected_str
4676 = expected_it == expected_end ? NULL : *expected_it++;
4677
4678 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4679 mismatch (expected_str, matched_name);
4680 });
4681
4682 const char *expected_str
4683 = expected_it == expected_end ? NULL : *expected_it++;
4684 if (expected_str != NULL)
4685 mismatch (expected_str, NULL);
4686
4687 return matched;
4688 }
4689
4690 /* The symbols added to the mock mapped_index for testing (in
4691 canonical form). */
4692 static const char *test_symbols[] = {
4693 "function",
4694 "std::bar",
4695 "std::zfunction",
4696 "std::zfunction2",
4697 "w1::w2",
4698 "ns::foo<char*>",
4699 "ns::foo<int>",
4700 "ns::foo<long>",
4701 "ns2::tmpl<int>::foo2",
4702 "(anonymous namespace)::A::B::C",
4703
4704 /* These are used to check that the increment-last-char in the
4705 matching algorithm for completion doesn't match "t1_fund" when
4706 completing "t1_func". */
4707 "t1_func",
4708 "t1_func1",
4709 "t1_fund",
4710 "t1_fund1",
4711
4712 /* A UTF-8 name with multi-byte sequences to make sure that
4713 cp-name-parser understands this as a single identifier ("função"
4714 is "function" in PT). */
4715 u8"u8função",
4716
4717 /* \377 (0xff) is Latin1 'ÿ'. */
4718 "yfunc\377",
4719
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4721 "\377",
4722 "\377\377123",
4723
4724 /* A name with all sorts of complications. Starts with "z" to make
4725 it easier for the completion tests below. */
4726 #define Z_SYM_NAME \
4727 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4728 "::tuple<(anonymous namespace)::ui*, " \
4729 "std::default_delete<(anonymous namespace)::ui>, void>"
4730
4731 Z_SYM_NAME
4732 };
4733
4734 /* Returns true if the mapped_index_base::find_name_component_bounds
4735 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4736 in completion mode. */
4737
4738 static bool
4739 check_find_bounds_finds (mapped_index_base &index,
4740 const char *search_name,
4741 gdb::array_view<const char *> expected_syms)
4742 {
4743 lookup_name_info lookup_name (search_name,
4744 symbol_name_match_type::FULL, true);
4745
4746 auto bounds = index.find_name_components_bounds (lookup_name);
4747
4748 size_t distance = std::distance (bounds.first, bounds.second);
4749 if (distance != expected_syms.size ())
4750 return false;
4751
4752 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4753 {
4754 auto nc_elem = bounds.first + exp_elem;
4755 const char *qualified = index.symbol_name_at (nc_elem->idx);
4756 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4757 return false;
4758 }
4759
4760 return true;
4761 }
4762
4763 /* Test the lower-level mapped_index::find_name_component_bounds
4764 method. */
4765
4766 static void
4767 test_mapped_index_find_name_component_bounds ()
4768 {
4769 mock_mapped_index mock_index (test_symbols);
4770
4771 mock_index.build_name_components ();
4772
4773 /* Test the lower-level mapped_index::find_name_component_bounds
4774 method in completion mode. */
4775 {
4776 static const char *expected_syms[] = {
4777 "t1_func",
4778 "t1_func1",
4779 };
4780
4781 SELF_CHECK (check_find_bounds_finds (mock_index,
4782 "t1_func", expected_syms));
4783 }
4784
4785 /* Check that the increment-last-char in the name matching algorithm
4786 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4787 {
4788 static const char *expected_syms1[] = {
4789 "\377",
4790 "\377\377123",
4791 };
4792 SELF_CHECK (check_find_bounds_finds (mock_index,
4793 "\377", expected_syms1));
4794
4795 static const char *expected_syms2[] = {
4796 "\377\377123",
4797 };
4798 SELF_CHECK (check_find_bounds_finds (mock_index,
4799 "\377\377", expected_syms2));
4800 }
4801 }
4802
4803 /* Test dw2_expand_symtabs_matching_symbol. */
4804
4805 static void
4806 test_dw2_expand_symtabs_matching_symbol ()
4807 {
4808 mock_mapped_index mock_index (test_symbols);
4809
4810 /* We let all tests run until the end even if some fails, for debug
4811 convenience. */
4812 bool any_mismatch = false;
4813
4814 /* Create the expected symbols list (an initializer_list). Needed
4815 because lists have commas, and we need to pass them to CHECK,
4816 which is a macro. */
4817 #define EXPECT(...) { __VA_ARGS__ }
4818
4819 /* Wrapper for check_match that passes down the current
4820 __FILE__/__LINE__. */
4821 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4822 any_mismatch |= !check_match (__FILE__, __LINE__, \
4823 mock_index, \
4824 NAME, MATCH_TYPE, COMPLETION_MODE, \
4825 EXPECTED_LIST)
4826
4827 /* Identity checks. */
4828 for (const char *sym : test_symbols)
4829 {
4830 /* Should be able to match all existing symbols. */
4831 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4832 EXPECT (sym));
4833
4834 /* Should be able to match all existing symbols with
4835 parameters. */
4836 std::string with_params = std::string (sym) + "(int)";
4837 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4838 EXPECT (sym));
4839
4840 /* Should be able to match all existing symbols with
4841 parameters and qualifiers. */
4842 with_params = std::string (sym) + " ( int ) const";
4843 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4844 EXPECT (sym));
4845
4846 /* This should really find sym, but cp-name-parser.y doesn't
4847 know about lvalue/rvalue qualifiers yet. */
4848 with_params = std::string (sym) + " ( int ) &&";
4849 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4850 {});
4851 }
4852
4853 /* Check that the name matching algorithm for completion doesn't get
4854 confused with Latin1 'ÿ' / 0xff. */
4855 {
4856 static const char str[] = "\377";
4857 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4858 EXPECT ("\377", "\377\377123"));
4859 }
4860
4861 /* Check that the increment-last-char in the matching algorithm for
4862 completion doesn't match "t1_fund" when completing "t1_func". */
4863 {
4864 static const char str[] = "t1_func";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("t1_func", "t1_func1"));
4867 }
4868
4869 /* Check that completion mode works at each prefix of the expected
4870 symbol name. */
4871 {
4872 static const char str[] = "function(int)";
4873 size_t len = strlen (str);
4874 std::string lookup;
4875
4876 for (size_t i = 1; i < len; i++)
4877 {
4878 lookup.assign (str, i);
4879 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4880 EXPECT ("function"));
4881 }
4882 }
4883
4884 /* While "w" is a prefix of both components, the match function
4885 should still only be called once. */
4886 {
4887 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4888 EXPECT ("w1::w2"));
4889 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4890 EXPECT ("w1::w2"));
4891 }
4892
4893 /* Same, with a "complicated" symbol. */
4894 {
4895 static const char str[] = Z_SYM_NAME;
4896 size_t len = strlen (str);
4897 std::string lookup;
4898
4899 for (size_t i = 1; i < len; i++)
4900 {
4901 lookup.assign (str, i);
4902 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4903 EXPECT (Z_SYM_NAME));
4904 }
4905 }
4906
4907 /* In FULL mode, an incomplete symbol doesn't match. */
4908 {
4909 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4910 {});
4911 }
4912
4913 /* A complete symbol with parameters matches any overload, since the
4914 index has no overload info. */
4915 {
4916 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4917 EXPECT ("std::zfunction", "std::zfunction2"));
4918 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4919 EXPECT ("std::zfunction", "std::zfunction2"));
4920 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4921 EXPECT ("std::zfunction", "std::zfunction2"));
4922 }
4923
4924 /* Check that whitespace is ignored appropriately. A symbol with a
4925 template argument list. */
4926 {
4927 static const char expected[] = "ns::foo<int>";
4928 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4929 EXPECT (expected));
4930 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4931 EXPECT (expected));
4932 }
4933
4934 /* Check that whitespace is ignored appropriately. A symbol with a
4935 template argument list that includes a pointer. */
4936 {
4937 static const char expected[] = "ns::foo<char*>";
4938 /* Try both completion and non-completion modes. */
4939 static const bool completion_mode[2] = {false, true};
4940 for (size_t i = 0; i < 2; i++)
4941 {
4942 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4943 completion_mode[i], EXPECT (expected));
4944 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4945 completion_mode[i], EXPECT (expected));
4946
4947 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4948 completion_mode[i], EXPECT (expected));
4949 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4950 completion_mode[i], EXPECT (expected));
4951 }
4952 }
4953
4954 {
4955 /* Check method qualifiers are ignored. */
4956 static const char expected[] = "ns::foo<char*>";
4957 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4958 symbol_name_match_type::FULL, true, EXPECT (expected));
4959 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4960 symbol_name_match_type::FULL, true, EXPECT (expected));
4961 CHECK_MATCH ("foo < char * > ( int ) const",
4962 symbol_name_match_type::WILD, true, EXPECT (expected));
4963 CHECK_MATCH ("foo < char * > ( int ) &&",
4964 symbol_name_match_type::WILD, true, EXPECT (expected));
4965 }
4966
4967 /* Test lookup names that don't match anything. */
4968 {
4969 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4970 {});
4971
4972 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4973 {});
4974 }
4975
4976 /* Some wild matching tests, exercising "(anonymous namespace)",
4977 which should not be confused with a parameter list. */
4978 {
4979 static const char *syms[] = {
4980 "A::B::C",
4981 "B::C",
4982 "C",
4983 "A :: B :: C ( int )",
4984 "B :: C ( int )",
4985 "C ( int )",
4986 };
4987
4988 for (const char *s : syms)
4989 {
4990 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4991 EXPECT ("(anonymous namespace)::A::B::C"));
4992 }
4993 }
4994
4995 {
4996 static const char expected[] = "ns2::tmpl<int>::foo2";
4997 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4998 EXPECT (expected));
4999 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5000 EXPECT (expected));
5001 }
5002
5003 SELF_CHECK (!any_mismatch);
5004
5005 #undef EXPECT
5006 #undef CHECK_MATCH
5007 }
5008
5009 static void
5010 run_test ()
5011 {
5012 test_mapped_index_find_name_component_bounds ();
5013 test_dw2_expand_symtabs_matching_symbol ();
5014 }
5015
5016 }} // namespace selftests::dw2_expand_symtabs_matching
5017
5018 #endif /* GDB_SELF_TEST */
5019
5020 /* If FILE_MATCHER is NULL or if PER_CU has
5021 dwarf2_per_cu_quick_data::MARK set (see
5022 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5023 EXPANSION_NOTIFY on it. */
5024
5025 static void
5026 dw2_expand_symtabs_matching_one
5027 (struct dwarf2_per_cu_data *per_cu,
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5030 {
5031 if (file_matcher == NULL || per_cu->v.quick->mark)
5032 {
5033 bool symtab_was_null
5034 = (per_cu->v.quick->compunit_symtab == NULL);
5035
5036 dw2_instantiate_symtab (per_cu, false);
5037
5038 if (expansion_notify != NULL
5039 && symtab_was_null
5040 && per_cu->v.quick->compunit_symtab != NULL)
5041 expansion_notify (per_cu->v.quick->compunit_symtab);
5042 }
5043 }
5044
5045 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5046 matched, to expand corresponding CUs that were marked. IDX is the
5047 index of the symbol name that matched. */
5048
5049 static void
5050 dw2_expand_marked_cus
5051 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5052 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5053 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5054 search_domain kind)
5055 {
5056 offset_type *vec, vec_len, vec_idx;
5057 bool global_seen = false;
5058 mapped_index &index = *dwarf2_per_objfile->index_table;
5059
5060 vec = (offset_type *) (index.constant_pool
5061 + MAYBE_SWAP (index.symbol_table[idx].vec));
5062 vec_len = MAYBE_SWAP (vec[0]);
5063 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5064 {
5065 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5066 /* This value is only valid for index versions >= 7. */
5067 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5068 gdb_index_symbol_kind symbol_kind =
5069 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5070 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5071 /* Only check the symbol attributes if they're present.
5072 Indices prior to version 7 don't record them,
5073 and indices >= 7 may elide them for certain symbols
5074 (gold does this). */
5075 int attrs_valid =
5076 (index.version >= 7
5077 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5078
5079 /* Work around gold/15646. */
5080 if (attrs_valid)
5081 {
5082 if (!is_static && global_seen)
5083 continue;
5084 if (!is_static)
5085 global_seen = true;
5086 }
5087
5088 /* Only check the symbol's kind if it has one. */
5089 if (attrs_valid)
5090 {
5091 switch (kind)
5092 {
5093 case VARIABLES_DOMAIN:
5094 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5095 continue;
5096 break;
5097 case FUNCTIONS_DOMAIN:
5098 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5099 continue;
5100 break;
5101 case TYPES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5103 continue;
5104 break;
5105 default:
5106 break;
5107 }
5108 }
5109
5110 /* Don't crash on bad data. */
5111 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5112 + dwarf2_per_objfile->all_type_units.size ()))
5113 {
5114 complaint (_(".gdb_index entry has bad CU index"
5115 " [in module %s]"),
5116 objfile_name (dwarf2_per_objfile->objfile));
5117 continue;
5118 }
5119
5120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5121 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5122 expansion_notify);
5123 }
5124 }
5125
5126 /* If FILE_MATCHER is non-NULL, set all the
5127 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5128 that match FILE_MATCHER. */
5129
5130 static void
5131 dw_expand_symtabs_matching_file_matcher
5132 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5133 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5134 {
5135 if (file_matcher == NULL)
5136 return;
5137
5138 objfile *const objfile = dwarf2_per_objfile->objfile;
5139
5140 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5141 htab_eq_pointer,
5142 NULL, xcalloc, xfree));
5143 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5144 htab_eq_pointer,
5145 NULL, xcalloc, xfree));
5146
5147 /* The rule is CUs specify all the files, including those used by
5148 any TU, so there's no need to scan TUs here. */
5149
5150 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5151 {
5152 QUIT;
5153
5154 per_cu->v.quick->mark = 0;
5155
5156 /* We only need to look at symtabs not already expanded. */
5157 if (per_cu->v.quick->compunit_symtab)
5158 continue;
5159
5160 quick_file_names *file_data = dw2_get_file_names (per_cu);
5161 if (file_data == NULL)
5162 continue;
5163
5164 if (htab_find (visited_not_found.get (), file_data) != NULL)
5165 continue;
5166 else if (htab_find (visited_found.get (), file_data) != NULL)
5167 {
5168 per_cu->v.quick->mark = 1;
5169 continue;
5170 }
5171
5172 for (int j = 0; j < file_data->num_file_names; ++j)
5173 {
5174 const char *this_real_name;
5175
5176 if (file_matcher (file_data->file_names[j], false))
5177 {
5178 per_cu->v.quick->mark = 1;
5179 break;
5180 }
5181
5182 /* Before we invoke realpath, which can get expensive when many
5183 files are involved, do a quick comparison of the basenames. */
5184 if (!basenames_may_differ
5185 && !file_matcher (lbasename (file_data->file_names[j]),
5186 true))
5187 continue;
5188
5189 this_real_name = dw2_get_real_path (objfile, file_data, j);
5190 if (file_matcher (this_real_name, false))
5191 {
5192 per_cu->v.quick->mark = 1;
5193 break;
5194 }
5195 }
5196
5197 void **slot = htab_find_slot (per_cu->v.quick->mark
5198 ? visited_found.get ()
5199 : visited_not_found.get (),
5200 file_data, INSERT);
5201 *slot = file_data;
5202 }
5203 }
5204
5205 static void
5206 dw2_expand_symtabs_matching
5207 (struct objfile *objfile,
5208 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5209 const lookup_name_info &lookup_name,
5210 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5211 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5212 enum search_domain kind)
5213 {
5214 struct dwarf2_per_objfile *dwarf2_per_objfile
5215 = get_dwarf2_per_objfile (objfile);
5216
5217 /* index_table is NULL if OBJF_READNOW. */
5218 if (!dwarf2_per_objfile->index_table)
5219 return;
5220
5221 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5222
5223 mapped_index &index = *dwarf2_per_objfile->index_table;
5224
5225 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5226 symbol_matcher,
5227 kind, [&] (offset_type idx)
5228 {
5229 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5230 expansion_notify, kind);
5231 });
5232 }
5233
5234 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5235 symtab. */
5236
5237 static struct compunit_symtab *
5238 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5239 CORE_ADDR pc)
5240 {
5241 int i;
5242
5243 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5244 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5245 return cust;
5246
5247 if (cust->includes == NULL)
5248 return NULL;
5249
5250 for (i = 0; cust->includes[i]; ++i)
5251 {
5252 struct compunit_symtab *s = cust->includes[i];
5253
5254 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5255 if (s != NULL)
5256 return s;
5257 }
5258
5259 return NULL;
5260 }
5261
5262 static struct compunit_symtab *
5263 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5264 struct bound_minimal_symbol msymbol,
5265 CORE_ADDR pc,
5266 struct obj_section *section,
5267 int warn_if_readin)
5268 {
5269 struct dwarf2_per_cu_data *data;
5270 struct compunit_symtab *result;
5271
5272 if (!objfile->partial_symtabs->psymtabs_addrmap)
5273 return NULL;
5274
5275 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5276 SECT_OFF_TEXT (objfile));
5277 data = (struct dwarf2_per_cu_data *) addrmap_find
5278 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5279 if (!data)
5280 return NULL;
5281
5282 if (warn_if_readin && data->v.quick->compunit_symtab)
5283 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5284 paddress (get_objfile_arch (objfile), pc));
5285
5286 result
5287 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5288 false),
5289 pc);
5290 gdb_assert (result != NULL);
5291 return result;
5292 }
5293
5294 static void
5295 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5296 void *data, int need_fullname)
5297 {
5298 struct dwarf2_per_objfile *dwarf2_per_objfile
5299 = get_dwarf2_per_objfile (objfile);
5300
5301 if (!dwarf2_per_objfile->filenames_cache)
5302 {
5303 dwarf2_per_objfile->filenames_cache.emplace ();
5304
5305 htab_up visited (htab_create_alloc (10,
5306 htab_hash_pointer, htab_eq_pointer,
5307 NULL, xcalloc, xfree));
5308
5309 /* The rule is CUs specify all the files, including those used
5310 by any TU, so there's no need to scan TUs here. We can
5311 ignore file names coming from already-expanded CUs. */
5312
5313 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5314 {
5315 if (per_cu->v.quick->compunit_symtab)
5316 {
5317 void **slot = htab_find_slot (visited.get (),
5318 per_cu->v.quick->file_names,
5319 INSERT);
5320
5321 *slot = per_cu->v.quick->file_names;
5322 }
5323 }
5324
5325 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5326 {
5327 /* We only need to look at symtabs not already expanded. */
5328 if (per_cu->v.quick->compunit_symtab)
5329 continue;
5330
5331 quick_file_names *file_data = dw2_get_file_names (per_cu);
5332 if (file_data == NULL)
5333 continue;
5334
5335 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5336 if (*slot)
5337 {
5338 /* Already visited. */
5339 continue;
5340 }
5341 *slot = file_data;
5342
5343 for (int j = 0; j < file_data->num_file_names; ++j)
5344 {
5345 const char *filename = file_data->file_names[j];
5346 dwarf2_per_objfile->filenames_cache->seen (filename);
5347 }
5348 }
5349 }
5350
5351 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5352 {
5353 gdb::unique_xmalloc_ptr<char> this_real_name;
5354
5355 if (need_fullname)
5356 this_real_name = gdb_realpath (filename);
5357 (*fun) (filename, this_real_name.get (), data);
5358 });
5359 }
5360
5361 static int
5362 dw2_has_symbols (struct objfile *objfile)
5363 {
5364 return 1;
5365 }
5366
5367 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5368 {
5369 dw2_has_symbols,
5370 dw2_find_last_source_symtab,
5371 dw2_forget_cached_source_info,
5372 dw2_map_symtabs_matching_filename,
5373 dw2_lookup_symbol,
5374 dw2_print_stats,
5375 dw2_dump,
5376 dw2_expand_symtabs_for_function,
5377 dw2_expand_all_symtabs,
5378 dw2_expand_symtabs_with_fullname,
5379 dw2_map_matching_symbols,
5380 dw2_expand_symtabs_matching,
5381 dw2_find_pc_sect_compunit_symtab,
5382 NULL,
5383 dw2_map_symbol_filenames
5384 };
5385
5386 /* DWARF-5 debug_names reader. */
5387
5388 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5389 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5390
5391 /* A helper function that reads the .debug_names section in SECTION
5392 and fills in MAP. FILENAME is the name of the file containing the
5393 section; it is used for error reporting.
5394
5395 Returns true if all went well, false otherwise. */
5396
5397 static bool
5398 read_debug_names_from_section (struct objfile *objfile,
5399 const char *filename,
5400 struct dwarf2_section_info *section,
5401 mapped_debug_names &map)
5402 {
5403 if (dwarf2_section_empty_p (section))
5404 return false;
5405
5406 /* Older elfutils strip versions could keep the section in the main
5407 executable while splitting it for the separate debug info file. */
5408 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5409 return false;
5410
5411 dwarf2_read_section (objfile, section);
5412
5413 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5414
5415 const gdb_byte *addr = section->buffer;
5416
5417 bfd *const abfd = get_section_bfd_owner (section);
5418
5419 unsigned int bytes_read;
5420 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5421 addr += bytes_read;
5422
5423 map.dwarf5_is_dwarf64 = bytes_read != 4;
5424 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5425 if (bytes_read + length != section->size)
5426 {
5427 /* There may be multiple per-CU indices. */
5428 warning (_("Section .debug_names in %s length %s does not match "
5429 "section length %s, ignoring .debug_names."),
5430 filename, plongest (bytes_read + length),
5431 pulongest (section->size));
5432 return false;
5433 }
5434
5435 /* The version number. */
5436 uint16_t version = read_2_bytes (abfd, addr);
5437 addr += 2;
5438 if (version != 5)
5439 {
5440 warning (_("Section .debug_names in %s has unsupported version %d, "
5441 "ignoring .debug_names."),
5442 filename, version);
5443 return false;
5444 }
5445
5446 /* Padding. */
5447 uint16_t padding = read_2_bytes (abfd, addr);
5448 addr += 2;
5449 if (padding != 0)
5450 {
5451 warning (_("Section .debug_names in %s has unsupported padding %d, "
5452 "ignoring .debug_names."),
5453 filename, padding);
5454 return false;
5455 }
5456
5457 /* comp_unit_count - The number of CUs in the CU list. */
5458 map.cu_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* local_type_unit_count - The number of TUs in the local TU
5462 list. */
5463 map.tu_count = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* foreign_type_unit_count - The number of TUs in the foreign TU
5467 list. */
5468 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 if (foreign_tu_count != 0)
5471 {
5472 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5473 "ignoring .debug_names."),
5474 filename, static_cast<unsigned long> (foreign_tu_count));
5475 return false;
5476 }
5477
5478 /* bucket_count - The number of hash buckets in the hash lookup
5479 table. */
5480 map.bucket_count = read_4_bytes (abfd, addr);
5481 addr += 4;
5482
5483 /* name_count - The number of unique names in the index. */
5484 map.name_count = read_4_bytes (abfd, addr);
5485 addr += 4;
5486
5487 /* abbrev_table_size - The size in bytes of the abbreviations
5488 table. */
5489 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5490 addr += 4;
5491
5492 /* augmentation_string_size - The size in bytes of the augmentation
5493 string. This value is rounded up to a multiple of 4. */
5494 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5495 addr += 4;
5496 map.augmentation_is_gdb = ((augmentation_string_size
5497 == sizeof (dwarf5_augmentation))
5498 && memcmp (addr, dwarf5_augmentation,
5499 sizeof (dwarf5_augmentation)) == 0);
5500 augmentation_string_size += (-augmentation_string_size) & 3;
5501 addr += augmentation_string_size;
5502
5503 /* List of CUs */
5504 map.cu_table_reordered = addr;
5505 addr += map.cu_count * map.offset_size;
5506
5507 /* List of Local TUs */
5508 map.tu_table_reordered = addr;
5509 addr += map.tu_count * map.offset_size;
5510
5511 /* Hash Lookup Table */
5512 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5513 addr += map.bucket_count * 4;
5514 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5515 addr += map.name_count * 4;
5516
5517 /* Name Table */
5518 map.name_table_string_offs_reordered = addr;
5519 addr += map.name_count * map.offset_size;
5520 map.name_table_entry_offs_reordered = addr;
5521 addr += map.name_count * map.offset_size;
5522
5523 const gdb_byte *abbrev_table_start = addr;
5524 for (;;)
5525 {
5526 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5527 addr += bytes_read;
5528 if (index_num == 0)
5529 break;
5530
5531 const auto insertpair
5532 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5533 if (!insertpair.second)
5534 {
5535 warning (_("Section .debug_names in %s has duplicate index %s, "
5536 "ignoring .debug_names."),
5537 filename, pulongest (index_num));
5538 return false;
5539 }
5540 mapped_debug_names::index_val &indexval = insertpair.first->second;
5541 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5542 addr += bytes_read;
5543
5544 for (;;)
5545 {
5546 mapped_debug_names::index_val::attr attr;
5547 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5548 addr += bytes_read;
5549 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5550 addr += bytes_read;
5551 if (attr.form == DW_FORM_implicit_const)
5552 {
5553 attr.implicit_const = read_signed_leb128 (abfd, addr,
5554 &bytes_read);
5555 addr += bytes_read;
5556 }
5557 if (attr.dw_idx == 0 && attr.form == 0)
5558 break;
5559 indexval.attr_vec.push_back (std::move (attr));
5560 }
5561 }
5562 if (addr != abbrev_table_start + abbrev_table_size)
5563 {
5564 warning (_("Section .debug_names in %s has abbreviation_table "
5565 "of size %zu vs. written as %u, ignoring .debug_names."),
5566 filename, addr - abbrev_table_start, abbrev_table_size);
5567 return false;
5568 }
5569 map.entry_pool = addr;
5570
5571 return true;
5572 }
5573
5574 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5575 list. */
5576
5577 static void
5578 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5579 const mapped_debug_names &map,
5580 dwarf2_section_info &section,
5581 bool is_dwz)
5582 {
5583 sect_offset sect_off_prev;
5584 for (uint32_t i = 0; i <= map.cu_count; ++i)
5585 {
5586 sect_offset sect_off_next;
5587 if (i < map.cu_count)
5588 {
5589 sect_off_next
5590 = (sect_offset) (extract_unsigned_integer
5591 (map.cu_table_reordered + i * map.offset_size,
5592 map.offset_size,
5593 map.dwarf5_byte_order));
5594 }
5595 else
5596 sect_off_next = (sect_offset) section.size;
5597 if (i >= 1)
5598 {
5599 const ULONGEST length = sect_off_next - sect_off_prev;
5600 dwarf2_per_cu_data *per_cu
5601 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5602 sect_off_prev, length);
5603 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5604 }
5605 sect_off_prev = sect_off_next;
5606 }
5607 }
5608
5609 /* Read the CU list from the mapped index, and use it to create all
5610 the CU objects for this dwarf2_per_objfile. */
5611
5612 static void
5613 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5614 const mapped_debug_names &map,
5615 const mapped_debug_names &dwz_map)
5616 {
5617 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5618 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5619
5620 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5621 dwarf2_per_objfile->info,
5622 false /* is_dwz */);
5623
5624 if (dwz_map.cu_count == 0)
5625 return;
5626
5627 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5629 true /* is_dwz */);
5630 }
5631
5632 /* Read .debug_names. If everything went ok, initialize the "quick"
5633 elements of all the CUs and return true. Otherwise, return false. */
5634
5635 static bool
5636 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5637 {
5638 std::unique_ptr<mapped_debug_names> map
5639 (new mapped_debug_names (dwarf2_per_objfile));
5640 mapped_debug_names dwz_map (dwarf2_per_objfile);
5641 struct objfile *objfile = dwarf2_per_objfile->objfile;
5642
5643 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5644 &dwarf2_per_objfile->debug_names,
5645 *map))
5646 return false;
5647
5648 /* Don't use the index if it's empty. */
5649 if (map->name_count == 0)
5650 return false;
5651
5652 /* If there is a .dwz file, read it so we can get its CU list as
5653 well. */
5654 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5655 if (dwz != NULL)
5656 {
5657 if (!read_debug_names_from_section (objfile,
5658 bfd_get_filename (dwz->dwz_bfd),
5659 &dwz->debug_names, dwz_map))
5660 {
5661 warning (_("could not read '.debug_names' section from %s; skipping"),
5662 bfd_get_filename (dwz->dwz_bfd));
5663 return false;
5664 }
5665 }
5666
5667 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5668
5669 if (map->tu_count != 0)
5670 {
5671 /* We can only handle a single .debug_types when we have an
5672 index. */
5673 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5674 return false;
5675
5676 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5677 dwarf2_per_objfile->types, 0);
5678
5679 create_signatured_type_table_from_debug_names
5680 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5681 }
5682
5683 create_addrmap_from_aranges (dwarf2_per_objfile,
5684 &dwarf2_per_objfile->debug_aranges);
5685
5686 dwarf2_per_objfile->debug_names_table = std::move (map);
5687 dwarf2_per_objfile->using_index = 1;
5688 dwarf2_per_objfile->quick_file_names_table =
5689 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5690
5691 return true;
5692 }
5693
5694 /* Type used to manage iterating over all CUs looking for a symbol for
5695 .debug_names. */
5696
5697 class dw2_debug_names_iterator
5698 {
5699 public:
5700 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5701 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5702 dw2_debug_names_iterator (const mapped_debug_names &map,
5703 bool want_specific_block,
5704 block_enum block_index, domain_enum domain,
5705 const char *name)
5706 : m_map (map), m_want_specific_block (want_specific_block),
5707 m_block_index (block_index), m_domain (domain),
5708 m_addr (find_vec_in_debug_names (map, name))
5709 {}
5710
5711 dw2_debug_names_iterator (const mapped_debug_names &map,
5712 search_domain search, uint32_t namei)
5713 : m_map (map),
5714 m_search (search),
5715 m_addr (find_vec_in_debug_names (map, namei))
5716 {}
5717
5718 /* Return the next matching CU or NULL if there are no more. */
5719 dwarf2_per_cu_data *next ();
5720
5721 private:
5722 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5723 const char *name);
5724 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5725 uint32_t namei);
5726
5727 /* The internalized form of .debug_names. */
5728 const mapped_debug_names &m_map;
5729
5730 /* If true, only look for symbols that match BLOCK_INDEX. */
5731 const bool m_want_specific_block = false;
5732
5733 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5734 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5735 value. */
5736 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5737
5738 /* The kind of symbol we're looking for. */
5739 const domain_enum m_domain = UNDEF_DOMAIN;
5740 const search_domain m_search = ALL_DOMAIN;
5741
5742 /* The list of CUs from the index entry of the symbol, or NULL if
5743 not found. */
5744 const gdb_byte *m_addr;
5745 };
5746
5747 const char *
5748 mapped_debug_names::namei_to_name (uint32_t namei) const
5749 {
5750 const ULONGEST namei_string_offs
5751 = extract_unsigned_integer ((name_table_string_offs_reordered
5752 + namei * offset_size),
5753 offset_size,
5754 dwarf5_byte_order);
5755 return read_indirect_string_at_offset
5756 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5757 }
5758
5759 /* Find a slot in .debug_names for the object named NAME. If NAME is
5760 found, return pointer to its pool data. If NAME cannot be found,
5761 return NULL. */
5762
5763 const gdb_byte *
5764 dw2_debug_names_iterator::find_vec_in_debug_names
5765 (const mapped_debug_names &map, const char *name)
5766 {
5767 int (*cmp) (const char *, const char *);
5768
5769 if (current_language->la_language == language_cplus
5770 || current_language->la_language == language_fortran
5771 || current_language->la_language == language_d)
5772 {
5773 /* NAME is already canonical. Drop any qualifiers as
5774 .debug_names does not contain any. */
5775
5776 if (strchr (name, '(') != NULL)
5777 {
5778 gdb::unique_xmalloc_ptr<char> without_params
5779 = cp_remove_params (name);
5780
5781 if (without_params != NULL)
5782 {
5783 name = without_params.get();
5784 }
5785 }
5786 }
5787
5788 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5789
5790 const uint32_t full_hash = dwarf5_djb_hash (name);
5791 uint32_t namei
5792 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5793 (map.bucket_table_reordered
5794 + (full_hash % map.bucket_count)), 4,
5795 map.dwarf5_byte_order);
5796 if (namei == 0)
5797 return NULL;
5798 --namei;
5799 if (namei >= map.name_count)
5800 {
5801 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5802 "[in module %s]"),
5803 namei, map.name_count,
5804 objfile_name (map.dwarf2_per_objfile->objfile));
5805 return NULL;
5806 }
5807
5808 for (;;)
5809 {
5810 const uint32_t namei_full_hash
5811 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5812 (map.hash_table_reordered + namei), 4,
5813 map.dwarf5_byte_order);
5814 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5815 return NULL;
5816
5817 if (full_hash == namei_full_hash)
5818 {
5819 const char *const namei_string = map.namei_to_name (namei);
5820
5821 #if 0 /* An expensive sanity check. */
5822 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5823 {
5824 complaint (_("Wrong .debug_names hash for string at index %u "
5825 "[in module %s]"),
5826 namei, objfile_name (dwarf2_per_objfile->objfile));
5827 return NULL;
5828 }
5829 #endif
5830
5831 if (cmp (namei_string, name) == 0)
5832 {
5833 const ULONGEST namei_entry_offs
5834 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5835 + namei * map.offset_size),
5836 map.offset_size, map.dwarf5_byte_order);
5837 return map.entry_pool + namei_entry_offs;
5838 }
5839 }
5840
5841 ++namei;
5842 if (namei >= map.name_count)
5843 return NULL;
5844 }
5845 }
5846
5847 const gdb_byte *
5848 dw2_debug_names_iterator::find_vec_in_debug_names
5849 (const mapped_debug_names &map, uint32_t namei)
5850 {
5851 if (namei >= map.name_count)
5852 {
5853 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5854 "[in module %s]"),
5855 namei, map.name_count,
5856 objfile_name (map.dwarf2_per_objfile->objfile));
5857 return NULL;
5858 }
5859
5860 const ULONGEST namei_entry_offs
5861 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5862 + namei * map.offset_size),
5863 map.offset_size, map.dwarf5_byte_order);
5864 return map.entry_pool + namei_entry_offs;
5865 }
5866
5867 /* See dw2_debug_names_iterator. */
5868
5869 dwarf2_per_cu_data *
5870 dw2_debug_names_iterator::next ()
5871 {
5872 if (m_addr == NULL)
5873 return NULL;
5874
5875 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5876 struct objfile *objfile = dwarf2_per_objfile->objfile;
5877 bfd *const abfd = objfile->obfd;
5878
5879 again:
5880
5881 unsigned int bytes_read;
5882 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5883 m_addr += bytes_read;
5884 if (abbrev == 0)
5885 return NULL;
5886
5887 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5888 if (indexval_it == m_map.abbrev_map.cend ())
5889 {
5890 complaint (_("Wrong .debug_names undefined abbrev code %s "
5891 "[in module %s]"),
5892 pulongest (abbrev), objfile_name (objfile));
5893 return NULL;
5894 }
5895 const mapped_debug_names::index_val &indexval = indexval_it->second;
5896 bool have_is_static = false;
5897 bool is_static;
5898 dwarf2_per_cu_data *per_cu = NULL;
5899 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5900 {
5901 ULONGEST ull;
5902 switch (attr.form)
5903 {
5904 case DW_FORM_implicit_const:
5905 ull = attr.implicit_const;
5906 break;
5907 case DW_FORM_flag_present:
5908 ull = 1;
5909 break;
5910 case DW_FORM_udata:
5911 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5912 m_addr += bytes_read;
5913 break;
5914 default:
5915 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5916 dwarf_form_name (attr.form),
5917 objfile_name (objfile));
5918 return NULL;
5919 }
5920 switch (attr.dw_idx)
5921 {
5922 case DW_IDX_compile_unit:
5923 /* Don't crash on bad data. */
5924 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5925 {
5926 complaint (_(".debug_names entry has bad CU index %s"
5927 " [in module %s]"),
5928 pulongest (ull),
5929 objfile_name (dwarf2_per_objfile->objfile));
5930 continue;
5931 }
5932 per_cu = dwarf2_per_objfile->get_cutu (ull);
5933 break;
5934 case DW_IDX_type_unit:
5935 /* Don't crash on bad data. */
5936 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5937 {
5938 complaint (_(".debug_names entry has bad TU index %s"
5939 " [in module %s]"),
5940 pulongest (ull),
5941 objfile_name (dwarf2_per_objfile->objfile));
5942 continue;
5943 }
5944 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5945 break;
5946 case DW_IDX_GNU_internal:
5947 if (!m_map.augmentation_is_gdb)
5948 break;
5949 have_is_static = true;
5950 is_static = true;
5951 break;
5952 case DW_IDX_GNU_external:
5953 if (!m_map.augmentation_is_gdb)
5954 break;
5955 have_is_static = true;
5956 is_static = false;
5957 break;
5958 }
5959 }
5960
5961 /* Skip if already read in. */
5962 if (per_cu->v.quick->compunit_symtab)
5963 goto again;
5964
5965 /* Check static vs global. */
5966 if (have_is_static)
5967 {
5968 const bool want_static = m_block_index != GLOBAL_BLOCK;
5969 if (m_want_specific_block && want_static != is_static)
5970 goto again;
5971 }
5972
5973 /* Match dw2_symtab_iter_next, symbol_kind
5974 and debug_names::psymbol_tag. */
5975 switch (m_domain)
5976 {
5977 case VAR_DOMAIN:
5978 switch (indexval.dwarf_tag)
5979 {
5980 case DW_TAG_variable:
5981 case DW_TAG_subprogram:
5982 /* Some types are also in VAR_DOMAIN. */
5983 case DW_TAG_typedef:
5984 case DW_TAG_structure_type:
5985 break;
5986 default:
5987 goto again;
5988 }
5989 break;
5990 case STRUCT_DOMAIN:
5991 switch (indexval.dwarf_tag)
5992 {
5993 case DW_TAG_typedef:
5994 case DW_TAG_structure_type:
5995 break;
5996 default:
5997 goto again;
5998 }
5999 break;
6000 case LABEL_DOMAIN:
6001 switch (indexval.dwarf_tag)
6002 {
6003 case 0:
6004 case DW_TAG_variable:
6005 break;
6006 default:
6007 goto again;
6008 }
6009 break;
6010 default:
6011 break;
6012 }
6013
6014 /* Match dw2_expand_symtabs_matching, symbol_kind and
6015 debug_names::psymbol_tag. */
6016 switch (m_search)
6017 {
6018 case VARIABLES_DOMAIN:
6019 switch (indexval.dwarf_tag)
6020 {
6021 case DW_TAG_variable:
6022 break;
6023 default:
6024 goto again;
6025 }
6026 break;
6027 case FUNCTIONS_DOMAIN:
6028 switch (indexval.dwarf_tag)
6029 {
6030 case DW_TAG_subprogram:
6031 break;
6032 default:
6033 goto again;
6034 }
6035 break;
6036 case TYPES_DOMAIN:
6037 switch (indexval.dwarf_tag)
6038 {
6039 case DW_TAG_typedef:
6040 case DW_TAG_structure_type:
6041 break;
6042 default:
6043 goto again;
6044 }
6045 break;
6046 default:
6047 break;
6048 }
6049
6050 return per_cu;
6051 }
6052
6053 static struct compunit_symtab *
6054 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6055 const char *name, domain_enum domain)
6056 {
6057 const block_enum block_index = static_cast<block_enum> (block_index_int);
6058 struct dwarf2_per_objfile *dwarf2_per_objfile
6059 = get_dwarf2_per_objfile (objfile);
6060
6061 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6062 if (!mapp)
6063 {
6064 /* index is NULL if OBJF_READNOW. */
6065 return NULL;
6066 }
6067 const auto &map = *mapp;
6068
6069 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6070 block_index, domain, name);
6071
6072 struct compunit_symtab *stab_best = NULL;
6073 struct dwarf2_per_cu_data *per_cu;
6074 while ((per_cu = iter.next ()) != NULL)
6075 {
6076 struct symbol *sym, *with_opaque = NULL;
6077 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6078 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6079 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6080
6081 sym = block_find_symbol (block, name, domain,
6082 block_find_non_opaque_type_preferred,
6083 &with_opaque);
6084
6085 /* Some caution must be observed with overloaded functions and
6086 methods, since the index will not contain any overload
6087 information (but NAME might contain it). */
6088
6089 if (sym != NULL
6090 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6091 return stab;
6092 if (with_opaque != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6094 stab_best = stab;
6095
6096 /* Keep looking through other CUs. */
6097 }
6098
6099 return stab_best;
6100 }
6101
6102 /* This dumps minimal information about .debug_names. It is called
6103 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6104 uses this to verify that .debug_names has been loaded. */
6105
6106 static void
6107 dw2_debug_names_dump (struct objfile *objfile)
6108 {
6109 struct dwarf2_per_objfile *dwarf2_per_objfile
6110 = get_dwarf2_per_objfile (objfile);
6111
6112 gdb_assert (dwarf2_per_objfile->using_index);
6113 printf_filtered (".debug_names:");
6114 if (dwarf2_per_objfile->debug_names_table)
6115 printf_filtered (" exists\n");
6116 else
6117 printf_filtered (" faked for \"readnow\"\n");
6118 printf_filtered ("\n");
6119 }
6120
6121 static void
6122 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6123 const char *func_name)
6124 {
6125 struct dwarf2_per_objfile *dwarf2_per_objfile
6126 = get_dwarf2_per_objfile (objfile);
6127
6128 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6129 if (dwarf2_per_objfile->debug_names_table)
6130 {
6131 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6132
6133 /* Note: It doesn't matter what we pass for block_index here. */
6134 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6135 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6136
6137 struct dwarf2_per_cu_data *per_cu;
6138 while ((per_cu = iter.next ()) != NULL)
6139 dw2_instantiate_symtab (per_cu, false);
6140 }
6141 }
6142
6143 static void
6144 dw2_debug_names_expand_symtabs_matching
6145 (struct objfile *objfile,
6146 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6147 const lookup_name_info &lookup_name,
6148 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6149 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6150 enum search_domain kind)
6151 {
6152 struct dwarf2_per_objfile *dwarf2_per_objfile
6153 = get_dwarf2_per_objfile (objfile);
6154
6155 /* debug_names_table is NULL if OBJF_READNOW. */
6156 if (!dwarf2_per_objfile->debug_names_table)
6157 return;
6158
6159 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6160
6161 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6162
6163 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6164 symbol_matcher,
6165 kind, [&] (offset_type namei)
6166 {
6167 /* The name was matched, now expand corresponding CUs that were
6168 marked. */
6169 dw2_debug_names_iterator iter (map, kind, namei);
6170
6171 struct dwarf2_per_cu_data *per_cu;
6172 while ((per_cu = iter.next ()) != NULL)
6173 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6174 expansion_notify);
6175 });
6176 }
6177
6178 const struct quick_symbol_functions dwarf2_debug_names_functions =
6179 {
6180 dw2_has_symbols,
6181 dw2_find_last_source_symtab,
6182 dw2_forget_cached_source_info,
6183 dw2_map_symtabs_matching_filename,
6184 dw2_debug_names_lookup_symbol,
6185 dw2_print_stats,
6186 dw2_debug_names_dump,
6187 dw2_debug_names_expand_symtabs_for_function,
6188 dw2_expand_all_symtabs,
6189 dw2_expand_symtabs_with_fullname,
6190 dw2_map_matching_symbols,
6191 dw2_debug_names_expand_symtabs_matching,
6192 dw2_find_pc_sect_compunit_symtab,
6193 NULL,
6194 dw2_map_symbol_filenames
6195 };
6196
6197 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6198 to either a dwarf2_per_objfile or dwz_file object. */
6199
6200 template <typename T>
6201 static gdb::array_view<const gdb_byte>
6202 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6203 {
6204 dwarf2_section_info *section = &section_owner->gdb_index;
6205
6206 if (dwarf2_section_empty_p (section))
6207 return {};
6208
6209 /* Older elfutils strip versions could keep the section in the main
6210 executable while splitting it for the separate debug info file. */
6211 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6212 return {};
6213
6214 dwarf2_read_section (obj, section);
6215
6216 /* dwarf2_section_info::size is a bfd_size_type, while
6217 gdb::array_view works with size_t. On 32-bit hosts, with
6218 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6219 is 32-bit. So we need an explicit narrowing conversion here.
6220 This is fine, because it's impossible to allocate or mmap an
6221 array/buffer larger than what size_t can represent. */
6222 return gdb::make_array_view (section->buffer, section->size);
6223 }
6224
6225 /* Lookup the index cache for the contents of the index associated to
6226 DWARF2_OBJ. */
6227
6228 static gdb::array_view<const gdb_byte>
6229 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6230 {
6231 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6232 if (build_id == nullptr)
6233 return {};
6234
6235 return global_index_cache.lookup_gdb_index (build_id,
6236 &dwarf2_obj->index_cache_res);
6237 }
6238
6239 /* Same as the above, but for DWZ. */
6240
6241 static gdb::array_view<const gdb_byte>
6242 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6243 {
6244 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6245 if (build_id == nullptr)
6246 return {};
6247
6248 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6249 }
6250
6251 /* See symfile.h. */
6252
6253 bool
6254 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6255 {
6256 struct dwarf2_per_objfile *dwarf2_per_objfile
6257 = get_dwarf2_per_objfile (objfile);
6258
6259 /* If we're about to read full symbols, don't bother with the
6260 indices. In this case we also don't care if some other debug
6261 format is making psymtabs, because they are all about to be
6262 expanded anyway. */
6263 if ((objfile->flags & OBJF_READNOW))
6264 {
6265 dwarf2_per_objfile->using_index = 1;
6266 create_all_comp_units (dwarf2_per_objfile);
6267 create_all_type_units (dwarf2_per_objfile);
6268 dwarf2_per_objfile->quick_file_names_table
6269 = create_quick_file_names_table
6270 (dwarf2_per_objfile->all_comp_units.size ());
6271
6272 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6273 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6274 {
6275 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6276
6277 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6278 struct dwarf2_per_cu_quick_data);
6279 }
6280
6281 /* Return 1 so that gdb sees the "quick" functions. However,
6282 these functions will be no-ops because we will have expanded
6283 all symtabs. */
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6289 {
6290 *index_kind = dw_index_kind::DEBUG_NAMES;
6291 return true;
6292 }
6293
6294 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6295 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6296 get_gdb_index_contents_from_section<dwz_file>))
6297 {
6298 *index_kind = dw_index_kind::GDB_INDEX;
6299 return true;
6300 }
6301
6302 /* ... otherwise, try to find the index in the index cache. */
6303 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6304 get_gdb_index_contents_from_cache,
6305 get_gdb_index_contents_from_cache_dwz))
6306 {
6307 global_index_cache.hit ();
6308 *index_kind = dw_index_kind::GDB_INDEX;
6309 return true;
6310 }
6311
6312 global_index_cache.miss ();
6313 return false;
6314 }
6315
6316 \f
6317
6318 /* Build a partial symbol table. */
6319
6320 void
6321 dwarf2_build_psymtabs (struct objfile *objfile)
6322 {
6323 struct dwarf2_per_objfile *dwarf2_per_objfile
6324 = get_dwarf2_per_objfile (objfile);
6325
6326 init_psymbol_list (objfile, 1024);
6327
6328 try
6329 {
6330 /* This isn't really ideal: all the data we allocate on the
6331 objfile's obstack is still uselessly kept around. However,
6332 freeing it seems unsafe. */
6333 psymtab_discarder psymtabs (objfile);
6334 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6335 psymtabs.keep ();
6336
6337 /* (maybe) store an index in the cache. */
6338 global_index_cache.store (dwarf2_per_objfile);
6339 }
6340 catch (const gdb_exception_error &except)
6341 {
6342 exception_print (gdb_stderr, except);
6343 }
6344 }
6345
6346 /* Return the total length of the CU described by HEADER. */
6347
6348 static unsigned int
6349 get_cu_length (const struct comp_unit_head *header)
6350 {
6351 return header->initial_length_size + header->length;
6352 }
6353
6354 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6355
6356 static inline bool
6357 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6358 {
6359 sect_offset bottom = cu_header->sect_off;
6360 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6361
6362 return sect_off >= bottom && sect_off < top;
6363 }
6364
6365 /* Find the base address of the compilation unit for range lists and
6366 location lists. It will normally be specified by DW_AT_low_pc.
6367 In DWARF-3 draft 4, the base address could be overridden by
6368 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6369 compilation units with discontinuous ranges. */
6370
6371 static void
6372 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6373 {
6374 struct attribute *attr;
6375
6376 cu->base_known = 0;
6377 cu->base_address = 0;
6378
6379 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6380 if (attr)
6381 {
6382 cu->base_address = attr_value_as_address (attr);
6383 cu->base_known = 1;
6384 }
6385 else
6386 {
6387 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6388 if (attr)
6389 {
6390 cu->base_address = attr_value_as_address (attr);
6391 cu->base_known = 1;
6392 }
6393 }
6394 }
6395
6396 /* Read in the comp unit header information from the debug_info at info_ptr.
6397 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6398 NOTE: This leaves members offset, first_die_offset to be filled in
6399 by the caller. */
6400
6401 static const gdb_byte *
6402 read_comp_unit_head (struct comp_unit_head *cu_header,
6403 const gdb_byte *info_ptr,
6404 struct dwarf2_section_info *section,
6405 rcuh_kind section_kind)
6406 {
6407 int signed_addr;
6408 unsigned int bytes_read;
6409 const char *filename = get_section_file_name (section);
6410 bfd *abfd = get_section_bfd_owner (section);
6411
6412 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6413 cu_header->initial_length_size = bytes_read;
6414 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6415 info_ptr += bytes_read;
6416 cu_header->version = read_2_bytes (abfd, info_ptr);
6417 if (cu_header->version < 2 || cu_header->version > 5)
6418 error (_("Dwarf Error: wrong version in compilation unit header "
6419 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6420 cu_header->version, filename);
6421 info_ptr += 2;
6422 if (cu_header->version < 5)
6423 switch (section_kind)
6424 {
6425 case rcuh_kind::COMPILE:
6426 cu_header->unit_type = DW_UT_compile;
6427 break;
6428 case rcuh_kind::TYPE:
6429 cu_header->unit_type = DW_UT_type;
6430 break;
6431 default:
6432 internal_error (__FILE__, __LINE__,
6433 _("read_comp_unit_head: invalid section_kind"));
6434 }
6435 else
6436 {
6437 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6438 (read_1_byte (abfd, info_ptr));
6439 info_ptr += 1;
6440 switch (cu_header->unit_type)
6441 {
6442 case DW_UT_compile:
6443 if (section_kind != rcuh_kind::COMPILE)
6444 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6445 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6446 filename);
6447 break;
6448 case DW_UT_type:
6449 section_kind = rcuh_kind::TYPE;
6450 break;
6451 default:
6452 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6453 "(is %d, should be %d or %d) [in module %s]"),
6454 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6455 }
6456
6457 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6458 info_ptr += 1;
6459 }
6460 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6461 cu_header,
6462 &bytes_read);
6463 info_ptr += bytes_read;
6464 if (cu_header->version < 5)
6465 {
6466 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6467 info_ptr += 1;
6468 }
6469 signed_addr = bfd_get_sign_extend_vma (abfd);
6470 if (signed_addr < 0)
6471 internal_error (__FILE__, __LINE__,
6472 _("read_comp_unit_head: dwarf from non elf file"));
6473 cu_header->signed_addr_p = signed_addr;
6474
6475 if (section_kind == rcuh_kind::TYPE)
6476 {
6477 LONGEST type_offset;
6478
6479 cu_header->signature = read_8_bytes (abfd, info_ptr);
6480 info_ptr += 8;
6481
6482 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6483 info_ptr += bytes_read;
6484 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6485 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6486 error (_("Dwarf Error: Too big type_offset in compilation unit "
6487 "header (is %s) [in module %s]"), plongest (type_offset),
6488 filename);
6489 }
6490
6491 return info_ptr;
6492 }
6493
6494 /* Helper function that returns the proper abbrev section for
6495 THIS_CU. */
6496
6497 static struct dwarf2_section_info *
6498 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6499 {
6500 struct dwarf2_section_info *abbrev;
6501 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6502
6503 if (this_cu->is_dwz)
6504 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6505 else
6506 abbrev = &dwarf2_per_objfile->abbrev;
6507
6508 return abbrev;
6509 }
6510
6511 /* Subroutine of read_and_check_comp_unit_head and
6512 read_and_check_type_unit_head to simplify them.
6513 Perform various error checking on the header. */
6514
6515 static void
6516 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6517 struct comp_unit_head *header,
6518 struct dwarf2_section_info *section,
6519 struct dwarf2_section_info *abbrev_section)
6520 {
6521 const char *filename = get_section_file_name (section);
6522
6523 if (to_underlying (header->abbrev_sect_off)
6524 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6525 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6526 "(offset %s + 6) [in module %s]"),
6527 sect_offset_str (header->abbrev_sect_off),
6528 sect_offset_str (header->sect_off),
6529 filename);
6530
6531 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6532 avoid potential 32-bit overflow. */
6533 if (((ULONGEST) header->sect_off + get_cu_length (header))
6534 > section->size)
6535 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6536 "(offset %s + 0) [in module %s]"),
6537 header->length, sect_offset_str (header->sect_off),
6538 filename);
6539 }
6540
6541 /* Read in a CU/TU header and perform some basic error checking.
6542 The contents of the header are stored in HEADER.
6543 The result is a pointer to the start of the first DIE. */
6544
6545 static const gdb_byte *
6546 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6547 struct comp_unit_head *header,
6548 struct dwarf2_section_info *section,
6549 struct dwarf2_section_info *abbrev_section,
6550 const gdb_byte *info_ptr,
6551 rcuh_kind section_kind)
6552 {
6553 const gdb_byte *beg_of_comp_unit = info_ptr;
6554
6555 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6556
6557 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6558
6559 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6560
6561 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6562 abbrev_section);
6563
6564 return info_ptr;
6565 }
6566
6567 /* Fetch the abbreviation table offset from a comp or type unit header. */
6568
6569 static sect_offset
6570 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6571 struct dwarf2_section_info *section,
6572 sect_offset sect_off)
6573 {
6574 bfd *abfd = get_section_bfd_owner (section);
6575 const gdb_byte *info_ptr;
6576 unsigned int initial_length_size, offset_size;
6577 uint16_t version;
6578
6579 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6580 info_ptr = section->buffer + to_underlying (sect_off);
6581 read_initial_length (abfd, info_ptr, &initial_length_size);
6582 offset_size = initial_length_size == 4 ? 4 : 8;
6583 info_ptr += initial_length_size;
6584
6585 version = read_2_bytes (abfd, info_ptr);
6586 info_ptr += 2;
6587 if (version >= 5)
6588 {
6589 /* Skip unit type and address size. */
6590 info_ptr += 2;
6591 }
6592
6593 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6594 }
6595
6596 /* Allocate a new partial symtab for file named NAME and mark this new
6597 partial symtab as being an include of PST. */
6598
6599 static void
6600 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6601 struct objfile *objfile)
6602 {
6603 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6604
6605 if (!IS_ABSOLUTE_PATH (subpst->filename))
6606 {
6607 /* It shares objfile->objfile_obstack. */
6608 subpst->dirname = pst->dirname;
6609 }
6610
6611 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6612 subpst->dependencies[0] = pst;
6613 subpst->number_of_dependencies = 1;
6614
6615 subpst->read_symtab = pst->read_symtab;
6616
6617 /* No private part is necessary for include psymtabs. This property
6618 can be used to differentiate between such include psymtabs and
6619 the regular ones. */
6620 subpst->read_symtab_private = NULL;
6621 }
6622
6623 /* Read the Line Number Program data and extract the list of files
6624 included by the source file represented by PST. Build an include
6625 partial symtab for each of these included files. */
6626
6627 static void
6628 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6629 struct die_info *die,
6630 struct partial_symtab *pst)
6631 {
6632 line_header_up lh;
6633 struct attribute *attr;
6634
6635 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6636 if (attr)
6637 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6638 if (lh == NULL)
6639 return; /* No linetable, so no includes. */
6640
6641 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6642 that we pass in the raw text_low here; that is ok because we're
6643 only decoding the line table to make include partial symtabs, and
6644 so the addresses aren't really used. */
6645 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6646 pst->raw_text_low (), 1);
6647 }
6648
6649 static hashval_t
6650 hash_signatured_type (const void *item)
6651 {
6652 const struct signatured_type *sig_type
6653 = (const struct signatured_type *) item;
6654
6655 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6656 return sig_type->signature;
6657 }
6658
6659 static int
6660 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6661 {
6662 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6663 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6664
6665 return lhs->signature == rhs->signature;
6666 }
6667
6668 /* Allocate a hash table for signatured types. */
6669
6670 static htab_t
6671 allocate_signatured_type_table (struct objfile *objfile)
6672 {
6673 return htab_create_alloc_ex (41,
6674 hash_signatured_type,
6675 eq_signatured_type,
6676 NULL,
6677 &objfile->objfile_obstack,
6678 hashtab_obstack_allocate,
6679 dummy_obstack_deallocate);
6680 }
6681
6682 /* A helper function to add a signatured type CU to a table. */
6683
6684 static int
6685 add_signatured_type_cu_to_table (void **slot, void *datum)
6686 {
6687 struct signatured_type *sigt = (struct signatured_type *) *slot;
6688 std::vector<signatured_type *> *all_type_units
6689 = (std::vector<signatured_type *> *) datum;
6690
6691 all_type_units->push_back (sigt);
6692
6693 return 1;
6694 }
6695
6696 /* A helper for create_debug_types_hash_table. Read types from SECTION
6697 and fill them into TYPES_HTAB. It will process only type units,
6698 therefore DW_UT_type. */
6699
6700 static void
6701 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6702 struct dwo_file *dwo_file,
6703 dwarf2_section_info *section, htab_t &types_htab,
6704 rcuh_kind section_kind)
6705 {
6706 struct objfile *objfile = dwarf2_per_objfile->objfile;
6707 struct dwarf2_section_info *abbrev_section;
6708 bfd *abfd;
6709 const gdb_byte *info_ptr, *end_ptr;
6710
6711 abbrev_section = (dwo_file != NULL
6712 ? &dwo_file->sections.abbrev
6713 : &dwarf2_per_objfile->abbrev);
6714
6715 if (dwarf_read_debug)
6716 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6717 get_section_name (section),
6718 get_section_file_name (abbrev_section));
6719
6720 dwarf2_read_section (objfile, section);
6721 info_ptr = section->buffer;
6722
6723 if (info_ptr == NULL)
6724 return;
6725
6726 /* We can't set abfd until now because the section may be empty or
6727 not present, in which case the bfd is unknown. */
6728 abfd = get_section_bfd_owner (section);
6729
6730 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6731 because we don't need to read any dies: the signature is in the
6732 header. */
6733
6734 end_ptr = info_ptr + section->size;
6735 while (info_ptr < end_ptr)
6736 {
6737 struct signatured_type *sig_type;
6738 struct dwo_unit *dwo_tu;
6739 void **slot;
6740 const gdb_byte *ptr = info_ptr;
6741 struct comp_unit_head header;
6742 unsigned int length;
6743
6744 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6745
6746 /* Initialize it due to a false compiler warning. */
6747 header.signature = -1;
6748 header.type_cu_offset_in_tu = (cu_offset) -1;
6749
6750 /* We need to read the type's signature in order to build the hash
6751 table, but we don't need anything else just yet. */
6752
6753 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6754 abbrev_section, ptr, section_kind);
6755
6756 length = get_cu_length (&header);
6757
6758 /* Skip dummy type units. */
6759 if (ptr >= info_ptr + length
6760 || peek_abbrev_code (abfd, ptr) == 0
6761 || header.unit_type != DW_UT_type)
6762 {
6763 info_ptr += length;
6764 continue;
6765 }
6766
6767 if (types_htab == NULL)
6768 {
6769 if (dwo_file)
6770 types_htab = allocate_dwo_unit_table (objfile);
6771 else
6772 types_htab = allocate_signatured_type_table (objfile);
6773 }
6774
6775 if (dwo_file)
6776 {
6777 sig_type = NULL;
6778 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6779 struct dwo_unit);
6780 dwo_tu->dwo_file = dwo_file;
6781 dwo_tu->signature = header.signature;
6782 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6783 dwo_tu->section = section;
6784 dwo_tu->sect_off = sect_off;
6785 dwo_tu->length = length;
6786 }
6787 else
6788 {
6789 /* N.B.: type_offset is not usable if this type uses a DWO file.
6790 The real type_offset is in the DWO file. */
6791 dwo_tu = NULL;
6792 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6793 struct signatured_type);
6794 sig_type->signature = header.signature;
6795 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6796 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6797 sig_type->per_cu.is_debug_types = 1;
6798 sig_type->per_cu.section = section;
6799 sig_type->per_cu.sect_off = sect_off;
6800 sig_type->per_cu.length = length;
6801 }
6802
6803 slot = htab_find_slot (types_htab,
6804 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6805 INSERT);
6806 gdb_assert (slot != NULL);
6807 if (*slot != NULL)
6808 {
6809 sect_offset dup_sect_off;
6810
6811 if (dwo_file)
6812 {
6813 const struct dwo_unit *dup_tu
6814 = (const struct dwo_unit *) *slot;
6815
6816 dup_sect_off = dup_tu->sect_off;
6817 }
6818 else
6819 {
6820 const struct signatured_type *dup_tu
6821 = (const struct signatured_type *) *slot;
6822
6823 dup_sect_off = dup_tu->per_cu.sect_off;
6824 }
6825
6826 complaint (_("debug type entry at offset %s is duplicate to"
6827 " the entry at offset %s, signature %s"),
6828 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6829 hex_string (header.signature));
6830 }
6831 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6832
6833 if (dwarf_read_debug > 1)
6834 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6835 sect_offset_str (sect_off),
6836 hex_string (header.signature));
6837
6838 info_ptr += length;
6839 }
6840 }
6841
6842 /* Create the hash table of all entries in the .debug_types
6843 (or .debug_types.dwo) section(s).
6844 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6845 otherwise it is NULL.
6846
6847 The result is a pointer to the hash table or NULL if there are no types.
6848
6849 Note: This function processes DWO files only, not DWP files. */
6850
6851 static void
6852 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6853 struct dwo_file *dwo_file,
6854 VEC (dwarf2_section_info_def) *types,
6855 htab_t &types_htab)
6856 {
6857 int ix;
6858 struct dwarf2_section_info *section;
6859
6860 if (VEC_empty (dwarf2_section_info_def, types))
6861 return;
6862
6863 for (ix = 0;
6864 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6865 ++ix)
6866 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6867 types_htab, rcuh_kind::TYPE);
6868 }
6869
6870 /* Create the hash table of all entries in the .debug_types section,
6871 and initialize all_type_units.
6872 The result is zero if there is an error (e.g. missing .debug_types section),
6873 otherwise non-zero. */
6874
6875 static int
6876 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6877 {
6878 htab_t types_htab = NULL;
6879
6880 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6881 &dwarf2_per_objfile->info, types_htab,
6882 rcuh_kind::COMPILE);
6883 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6884 dwarf2_per_objfile->types, types_htab);
6885 if (types_htab == NULL)
6886 {
6887 dwarf2_per_objfile->signatured_types = NULL;
6888 return 0;
6889 }
6890
6891 dwarf2_per_objfile->signatured_types = types_htab;
6892
6893 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6894 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6895
6896 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6897 &dwarf2_per_objfile->all_type_units);
6898
6899 return 1;
6900 }
6901
6902 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6903 If SLOT is non-NULL, it is the entry to use in the hash table.
6904 Otherwise we find one. */
6905
6906 static struct signatured_type *
6907 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6908 void **slot)
6909 {
6910 struct objfile *objfile = dwarf2_per_objfile->objfile;
6911
6912 if (dwarf2_per_objfile->all_type_units.size ()
6913 == dwarf2_per_objfile->all_type_units.capacity ())
6914 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6915
6916 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6917 struct signatured_type);
6918
6919 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6920 sig_type->signature = sig;
6921 sig_type->per_cu.is_debug_types = 1;
6922 if (dwarf2_per_objfile->using_index)
6923 {
6924 sig_type->per_cu.v.quick =
6925 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6926 struct dwarf2_per_cu_quick_data);
6927 }
6928
6929 if (slot == NULL)
6930 {
6931 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6932 sig_type, INSERT);
6933 }
6934 gdb_assert (*slot == NULL);
6935 *slot = sig_type;
6936 /* The rest of sig_type must be filled in by the caller. */
6937 return sig_type;
6938 }
6939
6940 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6941 Fill in SIG_ENTRY with DWO_ENTRY. */
6942
6943 static void
6944 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6945 struct signatured_type *sig_entry,
6946 struct dwo_unit *dwo_entry)
6947 {
6948 /* Make sure we're not clobbering something we don't expect to. */
6949 gdb_assert (! sig_entry->per_cu.queued);
6950 gdb_assert (sig_entry->per_cu.cu == NULL);
6951 if (dwarf2_per_objfile->using_index)
6952 {
6953 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6954 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6955 }
6956 else
6957 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6958 gdb_assert (sig_entry->signature == dwo_entry->signature);
6959 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6960 gdb_assert (sig_entry->type_unit_group == NULL);
6961 gdb_assert (sig_entry->dwo_unit == NULL);
6962
6963 sig_entry->per_cu.section = dwo_entry->section;
6964 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6965 sig_entry->per_cu.length = dwo_entry->length;
6966 sig_entry->per_cu.reading_dwo_directly = 1;
6967 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6968 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6969 sig_entry->dwo_unit = dwo_entry;
6970 }
6971
6972 /* Subroutine of lookup_signatured_type.
6973 If we haven't read the TU yet, create the signatured_type data structure
6974 for a TU to be read in directly from a DWO file, bypassing the stub.
6975 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6976 using .gdb_index, then when reading a CU we want to stay in the DWO file
6977 containing that CU. Otherwise we could end up reading several other DWO
6978 files (due to comdat folding) to process the transitive closure of all the
6979 mentioned TUs, and that can be slow. The current DWO file will have every
6980 type signature that it needs.
6981 We only do this for .gdb_index because in the psymtab case we already have
6982 to read all the DWOs to build the type unit groups. */
6983
6984 static struct signatured_type *
6985 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6986 {
6987 struct dwarf2_per_objfile *dwarf2_per_objfile
6988 = cu->per_cu->dwarf2_per_objfile;
6989 struct objfile *objfile = dwarf2_per_objfile->objfile;
6990 struct dwo_file *dwo_file;
6991 struct dwo_unit find_dwo_entry, *dwo_entry;
6992 struct signatured_type find_sig_entry, *sig_entry;
6993 void **slot;
6994
6995 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6996
6997 /* If TU skeletons have been removed then we may not have read in any
6998 TUs yet. */
6999 if (dwarf2_per_objfile->signatured_types == NULL)
7000 {
7001 dwarf2_per_objfile->signatured_types
7002 = allocate_signatured_type_table (objfile);
7003 }
7004
7005 /* We only ever need to read in one copy of a signatured type.
7006 Use the global signatured_types array to do our own comdat-folding
7007 of types. If this is the first time we're reading this TU, and
7008 the TU has an entry in .gdb_index, replace the recorded data from
7009 .gdb_index with this TU. */
7010
7011 find_sig_entry.signature = sig;
7012 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7013 &find_sig_entry, INSERT);
7014 sig_entry = (struct signatured_type *) *slot;
7015
7016 /* We can get here with the TU already read, *or* in the process of being
7017 read. Don't reassign the global entry to point to this DWO if that's
7018 the case. Also note that if the TU is already being read, it may not
7019 have come from a DWO, the program may be a mix of Fission-compiled
7020 code and non-Fission-compiled code. */
7021
7022 /* Have we already tried to read this TU?
7023 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7024 needn't exist in the global table yet). */
7025 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7026 return sig_entry;
7027
7028 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7029 dwo_unit of the TU itself. */
7030 dwo_file = cu->dwo_unit->dwo_file;
7031
7032 /* Ok, this is the first time we're reading this TU. */
7033 if (dwo_file->tus == NULL)
7034 return NULL;
7035 find_dwo_entry.signature = sig;
7036 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7037 if (dwo_entry == NULL)
7038 return NULL;
7039
7040 /* If the global table doesn't have an entry for this TU, add one. */
7041 if (sig_entry == NULL)
7042 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7043
7044 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7045 sig_entry->per_cu.tu_read = 1;
7046 return sig_entry;
7047 }
7048
7049 /* Subroutine of lookup_signatured_type.
7050 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7051 then try the DWP file. If the TU stub (skeleton) has been removed then
7052 it won't be in .gdb_index. */
7053
7054 static struct signatured_type *
7055 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7056 {
7057 struct dwarf2_per_objfile *dwarf2_per_objfile
7058 = cu->per_cu->dwarf2_per_objfile;
7059 struct objfile *objfile = dwarf2_per_objfile->objfile;
7060 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7061 struct dwo_unit *dwo_entry;
7062 struct signatured_type find_sig_entry, *sig_entry;
7063 void **slot;
7064
7065 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7066 gdb_assert (dwp_file != NULL);
7067
7068 /* If TU skeletons have been removed then we may not have read in any
7069 TUs yet. */
7070 if (dwarf2_per_objfile->signatured_types == NULL)
7071 {
7072 dwarf2_per_objfile->signatured_types
7073 = allocate_signatured_type_table (objfile);
7074 }
7075
7076 find_sig_entry.signature = sig;
7077 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7078 &find_sig_entry, INSERT);
7079 sig_entry = (struct signatured_type *) *slot;
7080
7081 /* Have we already tried to read this TU?
7082 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7083 needn't exist in the global table yet). */
7084 if (sig_entry != NULL)
7085 return sig_entry;
7086
7087 if (dwp_file->tus == NULL)
7088 return NULL;
7089 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7090 sig, 1 /* is_debug_types */);
7091 if (dwo_entry == NULL)
7092 return NULL;
7093
7094 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7095 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7096
7097 return sig_entry;
7098 }
7099
7100 /* Lookup a signature based type for DW_FORM_ref_sig8.
7101 Returns NULL if signature SIG is not present in the table.
7102 It is up to the caller to complain about this. */
7103
7104 static struct signatured_type *
7105 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7106 {
7107 struct dwarf2_per_objfile *dwarf2_per_objfile
7108 = cu->per_cu->dwarf2_per_objfile;
7109
7110 if (cu->dwo_unit
7111 && dwarf2_per_objfile->using_index)
7112 {
7113 /* We're in a DWO/DWP file, and we're using .gdb_index.
7114 These cases require special processing. */
7115 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7116 return lookup_dwo_signatured_type (cu, sig);
7117 else
7118 return lookup_dwp_signatured_type (cu, sig);
7119 }
7120 else
7121 {
7122 struct signatured_type find_entry, *entry;
7123
7124 if (dwarf2_per_objfile->signatured_types == NULL)
7125 return NULL;
7126 find_entry.signature = sig;
7127 entry = ((struct signatured_type *)
7128 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7129 return entry;
7130 }
7131 }
7132 \f
7133 /* Low level DIE reading support. */
7134
7135 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7136
7137 static void
7138 init_cu_die_reader (struct die_reader_specs *reader,
7139 struct dwarf2_cu *cu,
7140 struct dwarf2_section_info *section,
7141 struct dwo_file *dwo_file,
7142 struct abbrev_table *abbrev_table)
7143 {
7144 gdb_assert (section->readin && section->buffer != NULL);
7145 reader->abfd = get_section_bfd_owner (section);
7146 reader->cu = cu;
7147 reader->dwo_file = dwo_file;
7148 reader->die_section = section;
7149 reader->buffer = section->buffer;
7150 reader->buffer_end = section->buffer + section->size;
7151 reader->comp_dir = NULL;
7152 reader->abbrev_table = abbrev_table;
7153 }
7154
7155 /* Subroutine of init_cutu_and_read_dies to simplify it.
7156 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7157 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7158 already.
7159
7160 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7161 from it to the DIE in the DWO. If NULL we are skipping the stub.
7162 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7163 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7164 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7165 STUB_COMP_DIR may be non-NULL.
7166 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7167 are filled in with the info of the DIE from the DWO file.
7168 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7169 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7170 kept around for at least as long as *RESULT_READER.
7171
7172 The result is non-zero if a valid (non-dummy) DIE was found. */
7173
7174 static int
7175 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7176 struct dwo_unit *dwo_unit,
7177 struct die_info *stub_comp_unit_die,
7178 const char *stub_comp_dir,
7179 struct die_reader_specs *result_reader,
7180 const gdb_byte **result_info_ptr,
7181 struct die_info **result_comp_unit_die,
7182 int *result_has_children,
7183 abbrev_table_up *result_dwo_abbrev_table)
7184 {
7185 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7186 struct objfile *objfile = dwarf2_per_objfile->objfile;
7187 struct dwarf2_cu *cu = this_cu->cu;
7188 bfd *abfd;
7189 const gdb_byte *begin_info_ptr, *info_ptr;
7190 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7191 int i,num_extra_attrs;
7192 struct dwarf2_section_info *dwo_abbrev_section;
7193 struct attribute *attr;
7194 struct die_info *comp_unit_die;
7195
7196 /* At most one of these may be provided. */
7197 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7198
7199 /* These attributes aren't processed until later:
7200 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7201 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7202 referenced later. However, these attributes are found in the stub
7203 which we won't have later. In order to not impose this complication
7204 on the rest of the code, we read them here and copy them to the
7205 DWO CU/TU die. */
7206
7207 stmt_list = NULL;
7208 low_pc = NULL;
7209 high_pc = NULL;
7210 ranges = NULL;
7211 comp_dir = NULL;
7212
7213 if (stub_comp_unit_die != NULL)
7214 {
7215 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7216 DWO file. */
7217 if (! this_cu->is_debug_types)
7218 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7219 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7220 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7221 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7222 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7223
7224 /* There should be a DW_AT_addr_base attribute here (if needed).
7225 We need the value before we can process DW_FORM_GNU_addr_index
7226 or DW_FORM_addrx. */
7227 cu->addr_base = 0;
7228 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7229 if (attr)
7230 cu->addr_base = DW_UNSND (attr);
7231
7232 /* There should be a DW_AT_ranges_base attribute here (if needed).
7233 We need the value before we can process DW_AT_ranges. */
7234 cu->ranges_base = 0;
7235 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7236 if (attr)
7237 cu->ranges_base = DW_UNSND (attr);
7238 }
7239 else if (stub_comp_dir != NULL)
7240 {
7241 /* Reconstruct the comp_dir attribute to simplify the code below. */
7242 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7243 comp_dir->name = DW_AT_comp_dir;
7244 comp_dir->form = DW_FORM_string;
7245 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7246 DW_STRING (comp_dir) = stub_comp_dir;
7247 }
7248
7249 /* Set up for reading the DWO CU/TU. */
7250 cu->dwo_unit = dwo_unit;
7251 dwarf2_section_info *section = dwo_unit->section;
7252 dwarf2_read_section (objfile, section);
7253 abfd = get_section_bfd_owner (section);
7254 begin_info_ptr = info_ptr = (section->buffer
7255 + to_underlying (dwo_unit->sect_off));
7256 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7257
7258 if (this_cu->is_debug_types)
7259 {
7260 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7261
7262 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7263 &cu->header, section,
7264 dwo_abbrev_section,
7265 info_ptr, rcuh_kind::TYPE);
7266 /* This is not an assert because it can be caused by bad debug info. */
7267 if (sig_type->signature != cu->header.signature)
7268 {
7269 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7270 " TU at offset %s [in module %s]"),
7271 hex_string (sig_type->signature),
7272 hex_string (cu->header.signature),
7273 sect_offset_str (dwo_unit->sect_off),
7274 bfd_get_filename (abfd));
7275 }
7276 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7277 /* For DWOs coming from DWP files, we don't know the CU length
7278 nor the type's offset in the TU until now. */
7279 dwo_unit->length = get_cu_length (&cu->header);
7280 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7281
7282 /* Establish the type offset that can be used to lookup the type.
7283 For DWO files, we don't know it until now. */
7284 sig_type->type_offset_in_section
7285 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7286 }
7287 else
7288 {
7289 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7290 &cu->header, section,
7291 dwo_abbrev_section,
7292 info_ptr, rcuh_kind::COMPILE);
7293 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7294 /* For DWOs coming from DWP files, we don't know the CU length
7295 until now. */
7296 dwo_unit->length = get_cu_length (&cu->header);
7297 }
7298
7299 *result_dwo_abbrev_table
7300 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7301 cu->header.abbrev_sect_off);
7302 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7303 result_dwo_abbrev_table->get ());
7304
7305 /* Read in the die, but leave space to copy over the attributes
7306 from the stub. This has the benefit of simplifying the rest of
7307 the code - all the work to maintain the illusion of a single
7308 DW_TAG_{compile,type}_unit DIE is done here. */
7309 num_extra_attrs = ((stmt_list != NULL)
7310 + (low_pc != NULL)
7311 + (high_pc != NULL)
7312 + (ranges != NULL)
7313 + (comp_dir != NULL));
7314 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7315 result_has_children, num_extra_attrs);
7316
7317 /* Copy over the attributes from the stub to the DIE we just read in. */
7318 comp_unit_die = *result_comp_unit_die;
7319 i = comp_unit_die->num_attrs;
7320 if (stmt_list != NULL)
7321 comp_unit_die->attrs[i++] = *stmt_list;
7322 if (low_pc != NULL)
7323 comp_unit_die->attrs[i++] = *low_pc;
7324 if (high_pc != NULL)
7325 comp_unit_die->attrs[i++] = *high_pc;
7326 if (ranges != NULL)
7327 comp_unit_die->attrs[i++] = *ranges;
7328 if (comp_dir != NULL)
7329 comp_unit_die->attrs[i++] = *comp_dir;
7330 comp_unit_die->num_attrs += num_extra_attrs;
7331
7332 if (dwarf_die_debug)
7333 {
7334 fprintf_unfiltered (gdb_stdlog,
7335 "Read die from %s@0x%x of %s:\n",
7336 get_section_name (section),
7337 (unsigned) (begin_info_ptr - section->buffer),
7338 bfd_get_filename (abfd));
7339 dump_die (comp_unit_die, dwarf_die_debug);
7340 }
7341
7342 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7343 TUs by skipping the stub and going directly to the entry in the DWO file.
7344 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7345 to get it via circuitous means. Blech. */
7346 if (comp_dir != NULL)
7347 result_reader->comp_dir = DW_STRING (comp_dir);
7348
7349 /* Skip dummy compilation units. */
7350 if (info_ptr >= begin_info_ptr + dwo_unit->length
7351 || peek_abbrev_code (abfd, info_ptr) == 0)
7352 return 0;
7353
7354 *result_info_ptr = info_ptr;
7355 return 1;
7356 }
7357
7358 /* Subroutine of init_cutu_and_read_dies to simplify it.
7359 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7360 Returns NULL if the specified DWO unit cannot be found. */
7361
7362 static struct dwo_unit *
7363 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7364 struct die_info *comp_unit_die)
7365 {
7366 struct dwarf2_cu *cu = this_cu->cu;
7367 ULONGEST signature;
7368 struct dwo_unit *dwo_unit;
7369 const char *comp_dir, *dwo_name;
7370
7371 gdb_assert (cu != NULL);
7372
7373 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7374 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7375 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7376
7377 if (this_cu->is_debug_types)
7378 {
7379 struct signatured_type *sig_type;
7380
7381 /* Since this_cu is the first member of struct signatured_type,
7382 we can go from a pointer to one to a pointer to the other. */
7383 sig_type = (struct signatured_type *) this_cu;
7384 signature = sig_type->signature;
7385 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7386 }
7387 else
7388 {
7389 struct attribute *attr;
7390
7391 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7392 if (! attr)
7393 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7394 " [in module %s]"),
7395 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7396 signature = DW_UNSND (attr);
7397 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7398 signature);
7399 }
7400
7401 return dwo_unit;
7402 }
7403
7404 /* Subroutine of init_cutu_and_read_dies to simplify it.
7405 See it for a description of the parameters.
7406 Read a TU directly from a DWO file, bypassing the stub. */
7407
7408 static void
7409 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7410 int use_existing_cu, int keep,
7411 die_reader_func_ftype *die_reader_func,
7412 void *data)
7413 {
7414 std::unique_ptr<dwarf2_cu> new_cu;
7415 struct signatured_type *sig_type;
7416 struct die_reader_specs reader;
7417 const gdb_byte *info_ptr;
7418 struct die_info *comp_unit_die;
7419 int has_children;
7420 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7421
7422 /* Verify we can do the following downcast, and that we have the
7423 data we need. */
7424 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7425 sig_type = (struct signatured_type *) this_cu;
7426 gdb_assert (sig_type->dwo_unit != NULL);
7427
7428 if (use_existing_cu && this_cu->cu != NULL)
7429 {
7430 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7431 /* There's no need to do the rereading_dwo_cu handling that
7432 init_cutu_and_read_dies does since we don't read the stub. */
7433 }
7434 else
7435 {
7436 /* If !use_existing_cu, this_cu->cu must be NULL. */
7437 gdb_assert (this_cu->cu == NULL);
7438 new_cu.reset (new dwarf2_cu (this_cu));
7439 }
7440
7441 /* A future optimization, if needed, would be to use an existing
7442 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7443 could share abbrev tables. */
7444
7445 /* The abbreviation table used by READER, this must live at least as long as
7446 READER. */
7447 abbrev_table_up dwo_abbrev_table;
7448
7449 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7450 NULL /* stub_comp_unit_die */,
7451 sig_type->dwo_unit->dwo_file->comp_dir,
7452 &reader, &info_ptr,
7453 &comp_unit_die, &has_children,
7454 &dwo_abbrev_table) == 0)
7455 {
7456 /* Dummy die. */
7457 return;
7458 }
7459
7460 /* All the "real" work is done here. */
7461 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7462
7463 /* This duplicates the code in init_cutu_and_read_dies,
7464 but the alternative is making the latter more complex.
7465 This function is only for the special case of using DWO files directly:
7466 no point in overly complicating the general case just to handle this. */
7467 if (new_cu != NULL && keep)
7468 {
7469 /* Link this CU into read_in_chain. */
7470 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7471 dwarf2_per_objfile->read_in_chain = this_cu;
7472 /* The chain owns it now. */
7473 new_cu.release ();
7474 }
7475 }
7476
7477 /* Initialize a CU (or TU) and read its DIEs.
7478 If the CU defers to a DWO file, read the DWO file as well.
7479
7480 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7481 Otherwise the table specified in the comp unit header is read in and used.
7482 This is an optimization for when we already have the abbrev table.
7483
7484 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7485 Otherwise, a new CU is allocated with xmalloc.
7486
7487 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7488 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7489
7490 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7491 linker) then DIE_READER_FUNC will not get called. */
7492
7493 static void
7494 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7495 struct abbrev_table *abbrev_table,
7496 int use_existing_cu, int keep,
7497 bool skip_partial,
7498 die_reader_func_ftype *die_reader_func,
7499 void *data)
7500 {
7501 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7502 struct objfile *objfile = dwarf2_per_objfile->objfile;
7503 struct dwarf2_section_info *section = this_cu->section;
7504 bfd *abfd = get_section_bfd_owner (section);
7505 struct dwarf2_cu *cu;
7506 const gdb_byte *begin_info_ptr, *info_ptr;
7507 struct die_reader_specs reader;
7508 struct die_info *comp_unit_die;
7509 int has_children;
7510 struct attribute *attr;
7511 struct signatured_type *sig_type = NULL;
7512 struct dwarf2_section_info *abbrev_section;
7513 /* Non-zero if CU currently points to a DWO file and we need to
7514 reread it. When this happens we need to reread the skeleton die
7515 before we can reread the DWO file (this only applies to CUs, not TUs). */
7516 int rereading_dwo_cu = 0;
7517
7518 if (dwarf_die_debug)
7519 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7520 this_cu->is_debug_types ? "type" : "comp",
7521 sect_offset_str (this_cu->sect_off));
7522
7523 if (use_existing_cu)
7524 gdb_assert (keep);
7525
7526 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7527 file (instead of going through the stub), short-circuit all of this. */
7528 if (this_cu->reading_dwo_directly)
7529 {
7530 /* Narrow down the scope of possibilities to have to understand. */
7531 gdb_assert (this_cu->is_debug_types);
7532 gdb_assert (abbrev_table == NULL);
7533 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7534 die_reader_func, data);
7535 return;
7536 }
7537
7538 /* This is cheap if the section is already read in. */
7539 dwarf2_read_section (objfile, section);
7540
7541 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7542
7543 abbrev_section = get_abbrev_section_for_cu (this_cu);
7544
7545 std::unique_ptr<dwarf2_cu> new_cu;
7546 if (use_existing_cu && this_cu->cu != NULL)
7547 {
7548 cu = this_cu->cu;
7549 /* If this CU is from a DWO file we need to start over, we need to
7550 refetch the attributes from the skeleton CU.
7551 This could be optimized by retrieving those attributes from when we
7552 were here the first time: the previous comp_unit_die was stored in
7553 comp_unit_obstack. But there's no data yet that we need this
7554 optimization. */
7555 if (cu->dwo_unit != NULL)
7556 rereading_dwo_cu = 1;
7557 }
7558 else
7559 {
7560 /* If !use_existing_cu, this_cu->cu must be NULL. */
7561 gdb_assert (this_cu->cu == NULL);
7562 new_cu.reset (new dwarf2_cu (this_cu));
7563 cu = new_cu.get ();
7564 }
7565
7566 /* Get the header. */
7567 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7568 {
7569 /* We already have the header, there's no need to read it in again. */
7570 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7571 }
7572 else
7573 {
7574 if (this_cu->is_debug_types)
7575 {
7576 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7577 &cu->header, section,
7578 abbrev_section, info_ptr,
7579 rcuh_kind::TYPE);
7580
7581 /* Since per_cu is the first member of struct signatured_type,
7582 we can go from a pointer to one to a pointer to the other. */
7583 sig_type = (struct signatured_type *) this_cu;
7584 gdb_assert (sig_type->signature == cu->header.signature);
7585 gdb_assert (sig_type->type_offset_in_tu
7586 == cu->header.type_cu_offset_in_tu);
7587 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7588
7589 /* LENGTH has not been set yet for type units if we're
7590 using .gdb_index. */
7591 this_cu->length = get_cu_length (&cu->header);
7592
7593 /* Establish the type offset that can be used to lookup the type. */
7594 sig_type->type_offset_in_section =
7595 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7596
7597 this_cu->dwarf_version = cu->header.version;
7598 }
7599 else
7600 {
7601 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7602 &cu->header, section,
7603 abbrev_section,
7604 info_ptr,
7605 rcuh_kind::COMPILE);
7606
7607 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7608 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7609 this_cu->dwarf_version = cu->header.version;
7610 }
7611 }
7612
7613 /* Skip dummy compilation units. */
7614 if (info_ptr >= begin_info_ptr + this_cu->length
7615 || peek_abbrev_code (abfd, info_ptr) == 0)
7616 return;
7617
7618 /* If we don't have them yet, read the abbrevs for this compilation unit.
7619 And if we need to read them now, make sure they're freed when we're
7620 done (own the table through ABBREV_TABLE_HOLDER). */
7621 abbrev_table_up abbrev_table_holder;
7622 if (abbrev_table != NULL)
7623 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7624 else
7625 {
7626 abbrev_table_holder
7627 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7628 cu->header.abbrev_sect_off);
7629 abbrev_table = abbrev_table_holder.get ();
7630 }
7631
7632 /* Read the top level CU/TU die. */
7633 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7634 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7635
7636 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7637 return;
7638
7639 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7640 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7641 table from the DWO file and pass the ownership over to us. It will be
7642 referenced from READER, so we must make sure to free it after we're done
7643 with READER.
7644
7645 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7646 DWO CU, that this test will fail (the attribute will not be present). */
7647 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7648 abbrev_table_up dwo_abbrev_table;
7649 if (attr)
7650 {
7651 struct dwo_unit *dwo_unit;
7652 struct die_info *dwo_comp_unit_die;
7653
7654 if (has_children)
7655 {
7656 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7657 " has children (offset %s) [in module %s]"),
7658 sect_offset_str (this_cu->sect_off),
7659 bfd_get_filename (abfd));
7660 }
7661 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7662 if (dwo_unit != NULL)
7663 {
7664 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7665 comp_unit_die, NULL,
7666 &reader, &info_ptr,
7667 &dwo_comp_unit_die, &has_children,
7668 &dwo_abbrev_table) == 0)
7669 {
7670 /* Dummy die. */
7671 return;
7672 }
7673 comp_unit_die = dwo_comp_unit_die;
7674 }
7675 else
7676 {
7677 /* Yikes, we couldn't find the rest of the DIE, we only have
7678 the stub. A complaint has already been logged. There's
7679 not much more we can do except pass on the stub DIE to
7680 die_reader_func. We don't want to throw an error on bad
7681 debug info. */
7682 }
7683 }
7684
7685 /* All of the above is setup for this call. Yikes. */
7686 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7687
7688 /* Done, clean up. */
7689 if (new_cu != NULL && keep)
7690 {
7691 /* Link this CU into read_in_chain. */
7692 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7693 dwarf2_per_objfile->read_in_chain = this_cu;
7694 /* The chain owns it now. */
7695 new_cu.release ();
7696 }
7697 }
7698
7699 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7700 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7701 to have already done the lookup to find the DWO file).
7702
7703 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7704 THIS_CU->is_debug_types, but nothing else.
7705
7706 We fill in THIS_CU->length.
7707
7708 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7709 linker) then DIE_READER_FUNC will not get called.
7710
7711 THIS_CU->cu is always freed when done.
7712 This is done in order to not leave THIS_CU->cu in a state where we have
7713 to care whether it refers to the "main" CU or the DWO CU. */
7714
7715 static void
7716 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7717 struct dwo_file *dwo_file,
7718 die_reader_func_ftype *die_reader_func,
7719 void *data)
7720 {
7721 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7722 struct objfile *objfile = dwarf2_per_objfile->objfile;
7723 struct dwarf2_section_info *section = this_cu->section;
7724 bfd *abfd = get_section_bfd_owner (section);
7725 struct dwarf2_section_info *abbrev_section;
7726 const gdb_byte *begin_info_ptr, *info_ptr;
7727 struct die_reader_specs reader;
7728 struct die_info *comp_unit_die;
7729 int has_children;
7730
7731 if (dwarf_die_debug)
7732 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7733 this_cu->is_debug_types ? "type" : "comp",
7734 sect_offset_str (this_cu->sect_off));
7735
7736 gdb_assert (this_cu->cu == NULL);
7737
7738 abbrev_section = (dwo_file != NULL
7739 ? &dwo_file->sections.abbrev
7740 : get_abbrev_section_for_cu (this_cu));
7741
7742 /* This is cheap if the section is already read in. */
7743 dwarf2_read_section (objfile, section);
7744
7745 struct dwarf2_cu cu (this_cu);
7746
7747 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7748 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7749 &cu.header, section,
7750 abbrev_section, info_ptr,
7751 (this_cu->is_debug_types
7752 ? rcuh_kind::TYPE
7753 : rcuh_kind::COMPILE));
7754
7755 this_cu->length = get_cu_length (&cu.header);
7756
7757 /* Skip dummy compilation units. */
7758 if (info_ptr >= begin_info_ptr + this_cu->length
7759 || peek_abbrev_code (abfd, info_ptr) == 0)
7760 return;
7761
7762 abbrev_table_up abbrev_table
7763 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7764 cu.header.abbrev_sect_off);
7765
7766 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7767 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7768
7769 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7770 }
7771
7772 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7773 does not lookup the specified DWO file.
7774 This cannot be used to read DWO files.
7775
7776 THIS_CU->cu is always freed when done.
7777 This is done in order to not leave THIS_CU->cu in a state where we have
7778 to care whether it refers to the "main" CU or the DWO CU.
7779 We can revisit this if the data shows there's a performance issue. */
7780
7781 static void
7782 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7783 die_reader_func_ftype *die_reader_func,
7784 void *data)
7785 {
7786 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7787 }
7788 \f
7789 /* Type Unit Groups.
7790
7791 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7792 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7793 so that all types coming from the same compilation (.o file) are grouped
7794 together. A future step could be to put the types in the same symtab as
7795 the CU the types ultimately came from. */
7796
7797 static hashval_t
7798 hash_type_unit_group (const void *item)
7799 {
7800 const struct type_unit_group *tu_group
7801 = (const struct type_unit_group *) item;
7802
7803 return hash_stmt_list_entry (&tu_group->hash);
7804 }
7805
7806 static int
7807 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7808 {
7809 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7810 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7811
7812 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7813 }
7814
7815 /* Allocate a hash table for type unit groups. */
7816
7817 static htab_t
7818 allocate_type_unit_groups_table (struct objfile *objfile)
7819 {
7820 return htab_create_alloc_ex (3,
7821 hash_type_unit_group,
7822 eq_type_unit_group,
7823 NULL,
7824 &objfile->objfile_obstack,
7825 hashtab_obstack_allocate,
7826 dummy_obstack_deallocate);
7827 }
7828
7829 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7830 partial symtabs. We combine several TUs per psymtab to not let the size
7831 of any one psymtab grow too big. */
7832 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7833 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7834
7835 /* Helper routine for get_type_unit_group.
7836 Create the type_unit_group object used to hold one or more TUs. */
7837
7838 static struct type_unit_group *
7839 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7840 {
7841 struct dwarf2_per_objfile *dwarf2_per_objfile
7842 = cu->per_cu->dwarf2_per_objfile;
7843 struct objfile *objfile = dwarf2_per_objfile->objfile;
7844 struct dwarf2_per_cu_data *per_cu;
7845 struct type_unit_group *tu_group;
7846
7847 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7848 struct type_unit_group);
7849 per_cu = &tu_group->per_cu;
7850 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7851
7852 if (dwarf2_per_objfile->using_index)
7853 {
7854 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7855 struct dwarf2_per_cu_quick_data);
7856 }
7857 else
7858 {
7859 unsigned int line_offset = to_underlying (line_offset_struct);
7860 struct partial_symtab *pst;
7861 std::string name;
7862
7863 /* Give the symtab a useful name for debug purposes. */
7864 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7865 name = string_printf ("<type_units_%d>",
7866 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7867 else
7868 name = string_printf ("<type_units_at_0x%x>", line_offset);
7869
7870 pst = create_partial_symtab (per_cu, name.c_str ());
7871 pst->anonymous = 1;
7872 }
7873
7874 tu_group->hash.dwo_unit = cu->dwo_unit;
7875 tu_group->hash.line_sect_off = line_offset_struct;
7876
7877 return tu_group;
7878 }
7879
7880 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7881 STMT_LIST is a DW_AT_stmt_list attribute. */
7882
7883 static struct type_unit_group *
7884 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7885 {
7886 struct dwarf2_per_objfile *dwarf2_per_objfile
7887 = cu->per_cu->dwarf2_per_objfile;
7888 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7889 struct type_unit_group *tu_group;
7890 void **slot;
7891 unsigned int line_offset;
7892 struct type_unit_group type_unit_group_for_lookup;
7893
7894 if (dwarf2_per_objfile->type_unit_groups == NULL)
7895 {
7896 dwarf2_per_objfile->type_unit_groups =
7897 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7898 }
7899
7900 /* Do we need to create a new group, or can we use an existing one? */
7901
7902 if (stmt_list)
7903 {
7904 line_offset = DW_UNSND (stmt_list);
7905 ++tu_stats->nr_symtab_sharers;
7906 }
7907 else
7908 {
7909 /* Ugh, no stmt_list. Rare, but we have to handle it.
7910 We can do various things here like create one group per TU or
7911 spread them over multiple groups to split up the expansion work.
7912 To avoid worst case scenarios (too many groups or too large groups)
7913 we, umm, group them in bunches. */
7914 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7915 | (tu_stats->nr_stmt_less_type_units
7916 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7917 ++tu_stats->nr_stmt_less_type_units;
7918 }
7919
7920 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7921 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7922 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7923 &type_unit_group_for_lookup, INSERT);
7924 if (*slot != NULL)
7925 {
7926 tu_group = (struct type_unit_group *) *slot;
7927 gdb_assert (tu_group != NULL);
7928 }
7929 else
7930 {
7931 sect_offset line_offset_struct = (sect_offset) line_offset;
7932 tu_group = create_type_unit_group (cu, line_offset_struct);
7933 *slot = tu_group;
7934 ++tu_stats->nr_symtabs;
7935 }
7936
7937 return tu_group;
7938 }
7939 \f
7940 /* Partial symbol tables. */
7941
7942 /* Create a psymtab named NAME and assign it to PER_CU.
7943
7944 The caller must fill in the following details:
7945 dirname, textlow, texthigh. */
7946
7947 static struct partial_symtab *
7948 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7949 {
7950 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7951 struct partial_symtab *pst;
7952
7953 pst = start_psymtab_common (objfile, name, 0);
7954
7955 pst->psymtabs_addrmap_supported = 1;
7956
7957 /* This is the glue that links PST into GDB's symbol API. */
7958 pst->read_symtab_private = per_cu;
7959 pst->read_symtab = dwarf2_read_symtab;
7960 per_cu->v.psymtab = pst;
7961
7962 return pst;
7963 }
7964
7965 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7966 type. */
7967
7968 struct process_psymtab_comp_unit_data
7969 {
7970 /* True if we are reading a DW_TAG_partial_unit. */
7971
7972 int want_partial_unit;
7973
7974 /* The "pretend" language that is used if the CU doesn't declare a
7975 language. */
7976
7977 enum language pretend_language;
7978 };
7979
7980 /* die_reader_func for process_psymtab_comp_unit. */
7981
7982 static void
7983 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7984 const gdb_byte *info_ptr,
7985 struct die_info *comp_unit_die,
7986 int has_children,
7987 void *data)
7988 {
7989 struct dwarf2_cu *cu = reader->cu;
7990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7992 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7993 CORE_ADDR baseaddr;
7994 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7995 struct partial_symtab *pst;
7996 enum pc_bounds_kind cu_bounds_kind;
7997 const char *filename;
7998 struct process_psymtab_comp_unit_data *info
7999 = (struct process_psymtab_comp_unit_data *) data;
8000
8001 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8002 return;
8003
8004 gdb_assert (! per_cu->is_debug_types);
8005
8006 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8007
8008 /* Allocate a new partial symbol table structure. */
8009 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8010 if (filename == NULL)
8011 filename = "";
8012
8013 pst = create_partial_symtab (per_cu, filename);
8014
8015 /* This must be done before calling dwarf2_build_include_psymtabs. */
8016 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8017
8018 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8019
8020 dwarf2_find_base_address (comp_unit_die, cu);
8021
8022 /* Possibly set the default values of LOWPC and HIGHPC from
8023 `DW_AT_ranges'. */
8024 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8025 &best_highpc, cu, pst);
8026 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8027 {
8028 CORE_ADDR low
8029 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8030 - baseaddr);
8031 CORE_ADDR high
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8033 - baseaddr - 1);
8034 /* Store the contiguous range if it is not empty; it can be
8035 empty for CUs with no code. */
8036 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8037 low, high, pst);
8038 }
8039
8040 /* Check if comp unit has_children.
8041 If so, read the rest of the partial symbols from this comp unit.
8042 If not, there's no more debug_info for this comp unit. */
8043 if (has_children)
8044 {
8045 struct partial_die_info *first_die;
8046 CORE_ADDR lowpc, highpc;
8047
8048 lowpc = ((CORE_ADDR) -1);
8049 highpc = ((CORE_ADDR) 0);
8050
8051 first_die = load_partial_dies (reader, info_ptr, 1);
8052
8053 scan_partial_symbols (first_die, &lowpc, &highpc,
8054 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8055
8056 /* If we didn't find a lowpc, set it to highpc to avoid
8057 complaints from `maint check'. */
8058 if (lowpc == ((CORE_ADDR) -1))
8059 lowpc = highpc;
8060
8061 /* If the compilation unit didn't have an explicit address range,
8062 then use the information extracted from its child dies. */
8063 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8064 {
8065 best_lowpc = lowpc;
8066 best_highpc = highpc;
8067 }
8068 }
8069 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8070 best_lowpc + baseaddr)
8071 - baseaddr);
8072 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_highpc + baseaddr)
8074 - baseaddr);
8075
8076 end_psymtab_common (objfile, pst);
8077
8078 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8079 {
8080 int i;
8081 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8082 struct dwarf2_per_cu_data *iter;
8083
8084 /* Fill in 'dependencies' here; we fill in 'users' in a
8085 post-pass. */
8086 pst->number_of_dependencies = len;
8087 pst->dependencies
8088 = objfile->partial_symtabs->allocate_dependencies (len);
8089 for (i = 0;
8090 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8091 i, iter);
8092 ++i)
8093 pst->dependencies[i] = iter->v.psymtab;
8094
8095 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8096 }
8097
8098 /* Get the list of files included in the current compilation unit,
8099 and build a psymtab for each of them. */
8100 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8101
8102 if (dwarf_read_debug)
8103 fprintf_unfiltered (gdb_stdlog,
8104 "Psymtab for %s unit @%s: %s - %s"
8105 ", %d global, %d static syms\n",
8106 per_cu->is_debug_types ? "type" : "comp",
8107 sect_offset_str (per_cu->sect_off),
8108 paddress (gdbarch, pst->text_low (objfile)),
8109 paddress (gdbarch, pst->text_high (objfile)),
8110 pst->n_global_syms, pst->n_static_syms);
8111 }
8112
8113 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8114 Process compilation unit THIS_CU for a psymtab. */
8115
8116 static void
8117 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8118 int want_partial_unit,
8119 enum language pretend_language)
8120 {
8121 /* If this compilation unit was already read in, free the
8122 cached copy in order to read it in again. This is
8123 necessary because we skipped some symbols when we first
8124 read in the compilation unit (see load_partial_dies).
8125 This problem could be avoided, but the benefit is unclear. */
8126 if (this_cu->cu != NULL)
8127 free_one_cached_comp_unit (this_cu);
8128
8129 if (this_cu->is_debug_types)
8130 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8131 build_type_psymtabs_reader, NULL);
8132 else
8133 {
8134 process_psymtab_comp_unit_data info;
8135 info.want_partial_unit = want_partial_unit;
8136 info.pretend_language = pretend_language;
8137 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8138 process_psymtab_comp_unit_reader, &info);
8139 }
8140
8141 /* Age out any secondary CUs. */
8142 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8143 }
8144
8145 /* Reader function for build_type_psymtabs. */
8146
8147 static void
8148 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8149 const gdb_byte *info_ptr,
8150 struct die_info *type_unit_die,
8151 int has_children,
8152 void *data)
8153 {
8154 struct dwarf2_per_objfile *dwarf2_per_objfile
8155 = reader->cu->per_cu->dwarf2_per_objfile;
8156 struct objfile *objfile = dwarf2_per_objfile->objfile;
8157 struct dwarf2_cu *cu = reader->cu;
8158 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8159 struct signatured_type *sig_type;
8160 struct type_unit_group *tu_group;
8161 struct attribute *attr;
8162 struct partial_die_info *first_die;
8163 CORE_ADDR lowpc, highpc;
8164 struct partial_symtab *pst;
8165
8166 gdb_assert (data == NULL);
8167 gdb_assert (per_cu->is_debug_types);
8168 sig_type = (struct signatured_type *) per_cu;
8169
8170 if (! has_children)
8171 return;
8172
8173 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8174 tu_group = get_type_unit_group (cu, attr);
8175
8176 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8177
8178 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8179 pst = create_partial_symtab (per_cu, "");
8180 pst->anonymous = 1;
8181
8182 first_die = load_partial_dies (reader, info_ptr, 1);
8183
8184 lowpc = (CORE_ADDR) -1;
8185 highpc = (CORE_ADDR) 0;
8186 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8187
8188 end_psymtab_common (objfile, pst);
8189 }
8190
8191 /* Struct used to sort TUs by their abbreviation table offset. */
8192
8193 struct tu_abbrev_offset
8194 {
8195 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8196 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8197 {}
8198
8199 signatured_type *sig_type;
8200 sect_offset abbrev_offset;
8201 };
8202
8203 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8204
8205 static bool
8206 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8207 const struct tu_abbrev_offset &b)
8208 {
8209 return a.abbrev_offset < b.abbrev_offset;
8210 }
8211
8212 /* Efficiently read all the type units.
8213 This does the bulk of the work for build_type_psymtabs.
8214
8215 The efficiency is because we sort TUs by the abbrev table they use and
8216 only read each abbrev table once. In one program there are 200K TUs
8217 sharing 8K abbrev tables.
8218
8219 The main purpose of this function is to support building the
8220 dwarf2_per_objfile->type_unit_groups table.
8221 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8222 can collapse the search space by grouping them by stmt_list.
8223 The savings can be significant, in the same program from above the 200K TUs
8224 share 8K stmt_list tables.
8225
8226 FUNC is expected to call get_type_unit_group, which will create the
8227 struct type_unit_group if necessary and add it to
8228 dwarf2_per_objfile->type_unit_groups. */
8229
8230 static void
8231 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8232 {
8233 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8234 abbrev_table_up abbrev_table;
8235 sect_offset abbrev_offset;
8236
8237 /* It's up to the caller to not call us multiple times. */
8238 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8239
8240 if (dwarf2_per_objfile->all_type_units.empty ())
8241 return;
8242
8243 /* TUs typically share abbrev tables, and there can be way more TUs than
8244 abbrev tables. Sort by abbrev table to reduce the number of times we
8245 read each abbrev table in.
8246 Alternatives are to punt or to maintain a cache of abbrev tables.
8247 This is simpler and efficient enough for now.
8248
8249 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8250 symtab to use). Typically TUs with the same abbrev offset have the same
8251 stmt_list value too so in practice this should work well.
8252
8253 The basic algorithm here is:
8254
8255 sort TUs by abbrev table
8256 for each TU with same abbrev table:
8257 read abbrev table if first user
8258 read TU top level DIE
8259 [IWBN if DWO skeletons had DW_AT_stmt_list]
8260 call FUNC */
8261
8262 if (dwarf_read_debug)
8263 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8264
8265 /* Sort in a separate table to maintain the order of all_type_units
8266 for .gdb_index: TU indices directly index all_type_units. */
8267 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8268 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8269
8270 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8271 sorted_by_abbrev.emplace_back
8272 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8273 sig_type->per_cu.section,
8274 sig_type->per_cu.sect_off));
8275
8276 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8277 sort_tu_by_abbrev_offset);
8278
8279 abbrev_offset = (sect_offset) ~(unsigned) 0;
8280
8281 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8282 {
8283 /* Switch to the next abbrev table if necessary. */
8284 if (abbrev_table == NULL
8285 || tu.abbrev_offset != abbrev_offset)
8286 {
8287 abbrev_offset = tu.abbrev_offset;
8288 abbrev_table =
8289 abbrev_table_read_table (dwarf2_per_objfile,
8290 &dwarf2_per_objfile->abbrev,
8291 abbrev_offset);
8292 ++tu_stats->nr_uniq_abbrev_tables;
8293 }
8294
8295 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8296 0, 0, false, build_type_psymtabs_reader, NULL);
8297 }
8298 }
8299
8300 /* Print collected type unit statistics. */
8301
8302 static void
8303 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8304 {
8305 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8306
8307 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8308 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8309 dwarf2_per_objfile->all_type_units.size ());
8310 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8311 tu_stats->nr_uniq_abbrev_tables);
8312 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8313 tu_stats->nr_symtabs);
8314 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8315 tu_stats->nr_symtab_sharers);
8316 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8317 tu_stats->nr_stmt_less_type_units);
8318 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8319 tu_stats->nr_all_type_units_reallocs);
8320 }
8321
8322 /* Traversal function for build_type_psymtabs. */
8323
8324 static int
8325 build_type_psymtab_dependencies (void **slot, void *info)
8326 {
8327 struct dwarf2_per_objfile *dwarf2_per_objfile
8328 = (struct dwarf2_per_objfile *) info;
8329 struct objfile *objfile = dwarf2_per_objfile->objfile;
8330 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8331 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8332 struct partial_symtab *pst = per_cu->v.psymtab;
8333 int len = VEC_length (sig_type_ptr, tu_group->tus);
8334 struct signatured_type *iter;
8335 int i;
8336
8337 gdb_assert (len > 0);
8338 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8339
8340 pst->number_of_dependencies = len;
8341 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8342 for (i = 0;
8343 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8344 ++i)
8345 {
8346 gdb_assert (iter->per_cu.is_debug_types);
8347 pst->dependencies[i] = iter->per_cu.v.psymtab;
8348 iter->type_unit_group = tu_group;
8349 }
8350
8351 VEC_free (sig_type_ptr, tu_group->tus);
8352
8353 return 1;
8354 }
8355
8356 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8357 Build partial symbol tables for the .debug_types comp-units. */
8358
8359 static void
8360 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8361 {
8362 if (! create_all_type_units (dwarf2_per_objfile))
8363 return;
8364
8365 build_type_psymtabs_1 (dwarf2_per_objfile);
8366 }
8367
8368 /* Traversal function for process_skeletonless_type_unit.
8369 Read a TU in a DWO file and build partial symbols for it. */
8370
8371 static int
8372 process_skeletonless_type_unit (void **slot, void *info)
8373 {
8374 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8375 struct dwarf2_per_objfile *dwarf2_per_objfile
8376 = (struct dwarf2_per_objfile *) info;
8377 struct signatured_type find_entry, *entry;
8378
8379 /* If this TU doesn't exist in the global table, add it and read it in. */
8380
8381 if (dwarf2_per_objfile->signatured_types == NULL)
8382 {
8383 dwarf2_per_objfile->signatured_types
8384 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8385 }
8386
8387 find_entry.signature = dwo_unit->signature;
8388 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8389 INSERT);
8390 /* If we've already seen this type there's nothing to do. What's happening
8391 is we're doing our own version of comdat-folding here. */
8392 if (*slot != NULL)
8393 return 1;
8394
8395 /* This does the job that create_all_type_units would have done for
8396 this TU. */
8397 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8398 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8399 *slot = entry;
8400
8401 /* This does the job that build_type_psymtabs_1 would have done. */
8402 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8403 build_type_psymtabs_reader, NULL);
8404
8405 return 1;
8406 }
8407
8408 /* Traversal function for process_skeletonless_type_units. */
8409
8410 static int
8411 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8412 {
8413 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8414
8415 if (dwo_file->tus != NULL)
8416 {
8417 htab_traverse_noresize (dwo_file->tus,
8418 process_skeletonless_type_unit, info);
8419 }
8420
8421 return 1;
8422 }
8423
8424 /* Scan all TUs of DWO files, verifying we've processed them.
8425 This is needed in case a TU was emitted without its skeleton.
8426 Note: This can't be done until we know what all the DWO files are. */
8427
8428 static void
8429 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8430 {
8431 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8432 if (get_dwp_file (dwarf2_per_objfile) == NULL
8433 && dwarf2_per_objfile->dwo_files != NULL)
8434 {
8435 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8436 process_dwo_file_for_skeletonless_type_units,
8437 dwarf2_per_objfile);
8438 }
8439 }
8440
8441 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8442
8443 static void
8444 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8445 {
8446 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8447 {
8448 struct partial_symtab *pst = per_cu->v.psymtab;
8449
8450 if (pst == NULL)
8451 continue;
8452
8453 for (int j = 0; j < pst->number_of_dependencies; ++j)
8454 {
8455 /* Set the 'user' field only if it is not already set. */
8456 if (pst->dependencies[j]->user == NULL)
8457 pst->dependencies[j]->user = pst;
8458 }
8459 }
8460 }
8461
8462 /* Build the partial symbol table by doing a quick pass through the
8463 .debug_info and .debug_abbrev sections. */
8464
8465 static void
8466 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8467 {
8468 struct objfile *objfile = dwarf2_per_objfile->objfile;
8469
8470 if (dwarf_read_debug)
8471 {
8472 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8473 objfile_name (objfile));
8474 }
8475
8476 dwarf2_per_objfile->reading_partial_symbols = 1;
8477
8478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8479
8480 /* Any cached compilation units will be linked by the per-objfile
8481 read_in_chain. Make sure to free them when we're done. */
8482 free_cached_comp_units freer (dwarf2_per_objfile);
8483
8484 build_type_psymtabs (dwarf2_per_objfile);
8485
8486 create_all_comp_units (dwarf2_per_objfile);
8487
8488 /* Create a temporary address map on a temporary obstack. We later
8489 copy this to the final obstack. */
8490 auto_obstack temp_obstack;
8491
8492 scoped_restore save_psymtabs_addrmap
8493 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8494 addrmap_create_mutable (&temp_obstack));
8495
8496 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8497 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8498
8499 /* This has to wait until we read the CUs, we need the list of DWOs. */
8500 process_skeletonless_type_units (dwarf2_per_objfile);
8501
8502 /* Now that all TUs have been processed we can fill in the dependencies. */
8503 if (dwarf2_per_objfile->type_unit_groups != NULL)
8504 {
8505 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8506 build_type_psymtab_dependencies, dwarf2_per_objfile);
8507 }
8508
8509 if (dwarf_read_debug)
8510 print_tu_stats (dwarf2_per_objfile);
8511
8512 set_partial_user (dwarf2_per_objfile);
8513
8514 objfile->partial_symtabs->psymtabs_addrmap
8515 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8516 objfile->partial_symtabs->obstack ());
8517 /* At this point we want to keep the address map. */
8518 save_psymtabs_addrmap.release ();
8519
8520 if (dwarf_read_debug)
8521 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8522 objfile_name (objfile));
8523 }
8524
8525 /* die_reader_func for load_partial_comp_unit. */
8526
8527 static void
8528 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8529 const gdb_byte *info_ptr,
8530 struct die_info *comp_unit_die,
8531 int has_children,
8532 void *data)
8533 {
8534 struct dwarf2_cu *cu = reader->cu;
8535
8536 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8537
8538 /* Check if comp unit has_children.
8539 If so, read the rest of the partial symbols from this comp unit.
8540 If not, there's no more debug_info for this comp unit. */
8541 if (has_children)
8542 load_partial_dies (reader, info_ptr, 0);
8543 }
8544
8545 /* Load the partial DIEs for a secondary CU into memory.
8546 This is also used when rereading a primary CU with load_all_dies. */
8547
8548 static void
8549 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8550 {
8551 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8552 load_partial_comp_unit_reader, NULL);
8553 }
8554
8555 static void
8556 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8557 struct dwarf2_section_info *section,
8558 struct dwarf2_section_info *abbrev_section,
8559 unsigned int is_dwz)
8560 {
8561 const gdb_byte *info_ptr;
8562 struct objfile *objfile = dwarf2_per_objfile->objfile;
8563
8564 if (dwarf_read_debug)
8565 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8566 get_section_name (section),
8567 get_section_file_name (section));
8568
8569 dwarf2_read_section (objfile, section);
8570
8571 info_ptr = section->buffer;
8572
8573 while (info_ptr < section->buffer + section->size)
8574 {
8575 struct dwarf2_per_cu_data *this_cu;
8576
8577 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8578
8579 comp_unit_head cu_header;
8580 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8581 abbrev_section, info_ptr,
8582 rcuh_kind::COMPILE);
8583
8584 /* Save the compilation unit for later lookup. */
8585 if (cu_header.unit_type != DW_UT_type)
8586 {
8587 this_cu = XOBNEW (&objfile->objfile_obstack,
8588 struct dwarf2_per_cu_data);
8589 memset (this_cu, 0, sizeof (*this_cu));
8590 }
8591 else
8592 {
8593 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8594 struct signatured_type);
8595 memset (sig_type, 0, sizeof (*sig_type));
8596 sig_type->signature = cu_header.signature;
8597 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8598 this_cu = &sig_type->per_cu;
8599 }
8600 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8601 this_cu->sect_off = sect_off;
8602 this_cu->length = cu_header.length + cu_header.initial_length_size;
8603 this_cu->is_dwz = is_dwz;
8604 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8605 this_cu->section = section;
8606
8607 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8608
8609 info_ptr = info_ptr + this_cu->length;
8610 }
8611 }
8612
8613 /* Create a list of all compilation units in OBJFILE.
8614 This is only done for -readnow and building partial symtabs. */
8615
8616 static void
8617 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8618 {
8619 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8620 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8621 &dwarf2_per_objfile->abbrev, 0);
8622
8623 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8624 if (dwz != NULL)
8625 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8626 1);
8627 }
8628
8629 /* Process all loaded DIEs for compilation unit CU, starting at
8630 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8631 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8632 DW_AT_ranges). See the comments of add_partial_subprogram on how
8633 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8634
8635 static void
8636 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8637 CORE_ADDR *highpc, int set_addrmap,
8638 struct dwarf2_cu *cu)
8639 {
8640 struct partial_die_info *pdi;
8641
8642 /* Now, march along the PDI's, descending into ones which have
8643 interesting children but skipping the children of the other ones,
8644 until we reach the end of the compilation unit. */
8645
8646 pdi = first_die;
8647
8648 while (pdi != NULL)
8649 {
8650 pdi->fixup (cu);
8651
8652 /* Anonymous namespaces or modules have no name but have interesting
8653 children, so we need to look at them. Ditto for anonymous
8654 enums. */
8655
8656 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8657 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8658 || pdi->tag == DW_TAG_imported_unit
8659 || pdi->tag == DW_TAG_inlined_subroutine)
8660 {
8661 switch (pdi->tag)
8662 {
8663 case DW_TAG_subprogram:
8664 case DW_TAG_inlined_subroutine:
8665 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8666 break;
8667 case DW_TAG_constant:
8668 case DW_TAG_variable:
8669 case DW_TAG_typedef:
8670 case DW_TAG_union_type:
8671 if (!pdi->is_declaration)
8672 {
8673 add_partial_symbol (pdi, cu);
8674 }
8675 break;
8676 case DW_TAG_class_type:
8677 case DW_TAG_interface_type:
8678 case DW_TAG_structure_type:
8679 if (!pdi->is_declaration)
8680 {
8681 add_partial_symbol (pdi, cu);
8682 }
8683 if ((cu->language == language_rust
8684 || cu->language == language_cplus) && pdi->has_children)
8685 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8686 set_addrmap, cu);
8687 break;
8688 case DW_TAG_enumeration_type:
8689 if (!pdi->is_declaration)
8690 add_partial_enumeration (pdi, cu);
8691 break;
8692 case DW_TAG_base_type:
8693 case DW_TAG_subrange_type:
8694 /* File scope base type definitions are added to the partial
8695 symbol table. */
8696 add_partial_symbol (pdi, cu);
8697 break;
8698 case DW_TAG_namespace:
8699 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8700 break;
8701 case DW_TAG_module:
8702 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8703 break;
8704 case DW_TAG_imported_unit:
8705 {
8706 struct dwarf2_per_cu_data *per_cu;
8707
8708 /* For now we don't handle imported units in type units. */
8709 if (cu->per_cu->is_debug_types)
8710 {
8711 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8712 " supported in type units [in module %s]"),
8713 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8714 }
8715
8716 per_cu = dwarf2_find_containing_comp_unit
8717 (pdi->d.sect_off, pdi->is_dwz,
8718 cu->per_cu->dwarf2_per_objfile);
8719
8720 /* Go read the partial unit, if needed. */
8721 if (per_cu->v.psymtab == NULL)
8722 process_psymtab_comp_unit (per_cu, 1, cu->language);
8723
8724 VEC_safe_push (dwarf2_per_cu_ptr,
8725 cu->per_cu->imported_symtabs, per_cu);
8726 }
8727 break;
8728 case DW_TAG_imported_declaration:
8729 add_partial_symbol (pdi, cu);
8730 break;
8731 default:
8732 break;
8733 }
8734 }
8735
8736 /* If the die has a sibling, skip to the sibling. */
8737
8738 pdi = pdi->die_sibling;
8739 }
8740 }
8741
8742 /* Functions used to compute the fully scoped name of a partial DIE.
8743
8744 Normally, this is simple. For C++, the parent DIE's fully scoped
8745 name is concatenated with "::" and the partial DIE's name.
8746 Enumerators are an exception; they use the scope of their parent
8747 enumeration type, i.e. the name of the enumeration type is not
8748 prepended to the enumerator.
8749
8750 There are two complexities. One is DW_AT_specification; in this
8751 case "parent" means the parent of the target of the specification,
8752 instead of the direct parent of the DIE. The other is compilers
8753 which do not emit DW_TAG_namespace; in this case we try to guess
8754 the fully qualified name of structure types from their members'
8755 linkage names. This must be done using the DIE's children rather
8756 than the children of any DW_AT_specification target. We only need
8757 to do this for structures at the top level, i.e. if the target of
8758 any DW_AT_specification (if any; otherwise the DIE itself) does not
8759 have a parent. */
8760
8761 /* Compute the scope prefix associated with PDI's parent, in
8762 compilation unit CU. The result will be allocated on CU's
8763 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8764 field. NULL is returned if no prefix is necessary. */
8765 static const char *
8766 partial_die_parent_scope (struct partial_die_info *pdi,
8767 struct dwarf2_cu *cu)
8768 {
8769 const char *grandparent_scope;
8770 struct partial_die_info *parent, *real_pdi;
8771
8772 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8773 then this means the parent of the specification DIE. */
8774
8775 real_pdi = pdi;
8776 while (real_pdi->has_specification)
8777 real_pdi = find_partial_die (real_pdi->spec_offset,
8778 real_pdi->spec_is_dwz, cu);
8779
8780 parent = real_pdi->die_parent;
8781 if (parent == NULL)
8782 return NULL;
8783
8784 if (parent->scope_set)
8785 return parent->scope;
8786
8787 parent->fixup (cu);
8788
8789 grandparent_scope = partial_die_parent_scope (parent, cu);
8790
8791 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8792 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8793 Work around this problem here. */
8794 if (cu->language == language_cplus
8795 && parent->tag == DW_TAG_namespace
8796 && strcmp (parent->name, "::") == 0
8797 && grandparent_scope == NULL)
8798 {
8799 parent->scope = NULL;
8800 parent->scope_set = 1;
8801 return NULL;
8802 }
8803
8804 if (pdi->tag == DW_TAG_enumerator)
8805 /* Enumerators should not get the name of the enumeration as a prefix. */
8806 parent->scope = grandparent_scope;
8807 else if (parent->tag == DW_TAG_namespace
8808 || parent->tag == DW_TAG_module
8809 || parent->tag == DW_TAG_structure_type
8810 || parent->tag == DW_TAG_class_type
8811 || parent->tag == DW_TAG_interface_type
8812 || parent->tag == DW_TAG_union_type
8813 || parent->tag == DW_TAG_enumeration_type)
8814 {
8815 if (grandparent_scope == NULL)
8816 parent->scope = parent->name;
8817 else
8818 parent->scope = typename_concat (&cu->comp_unit_obstack,
8819 grandparent_scope,
8820 parent->name, 0, cu);
8821 }
8822 else
8823 {
8824 /* FIXME drow/2004-04-01: What should we be doing with
8825 function-local names? For partial symbols, we should probably be
8826 ignoring them. */
8827 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8828 parent->tag, sect_offset_str (pdi->sect_off));
8829 parent->scope = grandparent_scope;
8830 }
8831
8832 parent->scope_set = 1;
8833 return parent->scope;
8834 }
8835
8836 /* Return the fully scoped name associated with PDI, from compilation unit
8837 CU. The result will be allocated with malloc. */
8838
8839 static char *
8840 partial_die_full_name (struct partial_die_info *pdi,
8841 struct dwarf2_cu *cu)
8842 {
8843 const char *parent_scope;
8844
8845 /* If this is a template instantiation, we can not work out the
8846 template arguments from partial DIEs. So, unfortunately, we have
8847 to go through the full DIEs. At least any work we do building
8848 types here will be reused if full symbols are loaded later. */
8849 if (pdi->has_template_arguments)
8850 {
8851 pdi->fixup (cu);
8852
8853 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8854 {
8855 struct die_info *die;
8856 struct attribute attr;
8857 struct dwarf2_cu *ref_cu = cu;
8858
8859 /* DW_FORM_ref_addr is using section offset. */
8860 attr.name = (enum dwarf_attribute) 0;
8861 attr.form = DW_FORM_ref_addr;
8862 attr.u.unsnd = to_underlying (pdi->sect_off);
8863 die = follow_die_ref (NULL, &attr, &ref_cu);
8864
8865 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8866 }
8867 }
8868
8869 parent_scope = partial_die_parent_scope (pdi, cu);
8870 if (parent_scope == NULL)
8871 return NULL;
8872 else
8873 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8874 }
8875
8876 static void
8877 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8878 {
8879 struct dwarf2_per_objfile *dwarf2_per_objfile
8880 = cu->per_cu->dwarf2_per_objfile;
8881 struct objfile *objfile = dwarf2_per_objfile->objfile;
8882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8883 CORE_ADDR addr = 0;
8884 const char *actual_name = NULL;
8885 CORE_ADDR baseaddr;
8886 char *built_actual_name;
8887
8888 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8889
8890 built_actual_name = partial_die_full_name (pdi, cu);
8891 if (built_actual_name != NULL)
8892 actual_name = built_actual_name;
8893
8894 if (actual_name == NULL)
8895 actual_name = pdi->name;
8896
8897 switch (pdi->tag)
8898 {
8899 case DW_TAG_inlined_subroutine:
8900 case DW_TAG_subprogram:
8901 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8902 - baseaddr);
8903 if (pdi->is_external || cu->language == language_ada)
8904 {
8905 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8906 of the global scope. But in Ada, we want to be able to access
8907 nested procedures globally. So all Ada subprograms are stored
8908 in the global scope. */
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL,
8911 VAR_DOMAIN, LOC_BLOCK,
8912 SECT_OFF_TEXT (objfile),
8913 psymbol_placement::GLOBAL,
8914 addr,
8915 cu->language, objfile);
8916 }
8917 else
8918 {
8919 add_psymbol_to_list (actual_name, strlen (actual_name),
8920 built_actual_name != NULL,
8921 VAR_DOMAIN, LOC_BLOCK,
8922 SECT_OFF_TEXT (objfile),
8923 psymbol_placement::STATIC,
8924 addr, cu->language, objfile);
8925 }
8926
8927 if (pdi->main_subprogram && actual_name != NULL)
8928 set_objfile_main_name (objfile, actual_name, cu->language);
8929 break;
8930 case DW_TAG_constant:
8931 add_psymbol_to_list (actual_name, strlen (actual_name),
8932 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8933 -1, (pdi->is_external
8934 ? psymbol_placement::GLOBAL
8935 : psymbol_placement::STATIC),
8936 0, cu->language, objfile);
8937 break;
8938 case DW_TAG_variable:
8939 if (pdi->d.locdesc)
8940 addr = decode_locdesc (pdi->d.locdesc, cu);
8941
8942 if (pdi->d.locdesc
8943 && addr == 0
8944 && !dwarf2_per_objfile->has_section_at_zero)
8945 {
8946 /* A global or static variable may also have been stripped
8947 out by the linker if unused, in which case its address
8948 will be nullified; do not add such variables into partial
8949 symbol table then. */
8950 }
8951 else if (pdi->is_external)
8952 {
8953 /* Global Variable.
8954 Don't enter into the minimal symbol tables as there is
8955 a minimal symbol table entry from the ELF symbols already.
8956 Enter into partial symbol table if it has a location
8957 descriptor or a type.
8958 If the location descriptor is missing, new_symbol will create
8959 a LOC_UNRESOLVED symbol, the address of the variable will then
8960 be determined from the minimal symbol table whenever the variable
8961 is referenced.
8962 The address for the partial symbol table entry is not
8963 used by GDB, but it comes in handy for debugging partial symbol
8964 table building. */
8965
8966 if (pdi->d.locdesc || pdi->has_type)
8967 add_psymbol_to_list (actual_name, strlen (actual_name),
8968 built_actual_name != NULL,
8969 VAR_DOMAIN, LOC_STATIC,
8970 SECT_OFF_TEXT (objfile),
8971 psymbol_placement::GLOBAL,
8972 addr, cu->language, objfile);
8973 }
8974 else
8975 {
8976 int has_loc = pdi->d.locdesc != NULL;
8977
8978 /* Static Variable. Skip symbols whose value we cannot know (those
8979 without location descriptors or constant values). */
8980 if (!has_loc && !pdi->has_const_value)
8981 {
8982 xfree (built_actual_name);
8983 return;
8984 }
8985
8986 add_psymbol_to_list (actual_name, strlen (actual_name),
8987 built_actual_name != NULL,
8988 VAR_DOMAIN, LOC_STATIC,
8989 SECT_OFF_TEXT (objfile),
8990 psymbol_placement::STATIC,
8991 has_loc ? addr : 0,
8992 cu->language, objfile);
8993 }
8994 break;
8995 case DW_TAG_typedef:
8996 case DW_TAG_base_type:
8997 case DW_TAG_subrange_type:
8998 add_psymbol_to_list (actual_name, strlen (actual_name),
8999 built_actual_name != NULL,
9000 VAR_DOMAIN, LOC_TYPEDEF, -1,
9001 psymbol_placement::STATIC,
9002 0, cu->language, objfile);
9003 break;
9004 case DW_TAG_imported_declaration:
9005 case DW_TAG_namespace:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::GLOBAL,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_module:
9013 add_psymbol_to_list (actual_name, strlen (actual_name),
9014 built_actual_name != NULL,
9015 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9016 psymbol_placement::GLOBAL,
9017 0, cu->language, objfile);
9018 break;
9019 case DW_TAG_class_type:
9020 case DW_TAG_interface_type:
9021 case DW_TAG_structure_type:
9022 case DW_TAG_union_type:
9023 case DW_TAG_enumeration_type:
9024 /* Skip external references. The DWARF standard says in the section
9025 about "Structure, Union, and Class Type Entries": "An incomplete
9026 structure, union or class type is represented by a structure,
9027 union or class entry that does not have a byte size attribute
9028 and that has a DW_AT_declaration attribute." */
9029 if (!pdi->has_byte_size && pdi->is_declaration)
9030 {
9031 xfree (built_actual_name);
9032 return;
9033 }
9034
9035 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9036 static vs. global. */
9037 add_psymbol_to_list (actual_name, strlen (actual_name),
9038 built_actual_name != NULL,
9039 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9040 cu->language == language_cplus
9041 ? psymbol_placement::GLOBAL
9042 : psymbol_placement::STATIC,
9043 0, cu->language, objfile);
9044
9045 break;
9046 case DW_TAG_enumerator:
9047 add_psymbol_to_list (actual_name, strlen (actual_name),
9048 built_actual_name != NULL,
9049 VAR_DOMAIN, LOC_CONST, -1,
9050 cu->language == language_cplus
9051 ? psymbol_placement::GLOBAL
9052 : psymbol_placement::STATIC,
9053 0, cu->language, objfile);
9054 break;
9055 default:
9056 break;
9057 }
9058
9059 xfree (built_actual_name);
9060 }
9061
9062 /* Read a partial die corresponding to a namespace; also, add a symbol
9063 corresponding to that namespace to the symbol table. NAMESPACE is
9064 the name of the enclosing namespace. */
9065
9066 static void
9067 add_partial_namespace (struct partial_die_info *pdi,
9068 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9069 int set_addrmap, struct dwarf2_cu *cu)
9070 {
9071 /* Add a symbol for the namespace. */
9072
9073 add_partial_symbol (pdi, cu);
9074
9075 /* Now scan partial symbols in that namespace. */
9076
9077 if (pdi->has_children)
9078 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9079 }
9080
9081 /* Read a partial die corresponding to a Fortran module. */
9082
9083 static void
9084 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9085 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9086 {
9087 /* Add a symbol for the namespace. */
9088
9089 add_partial_symbol (pdi, cu);
9090
9091 /* Now scan partial symbols in that module. */
9092
9093 if (pdi->has_children)
9094 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9095 }
9096
9097 /* Read a partial die corresponding to a subprogram or an inlined
9098 subprogram and create a partial symbol for that subprogram.
9099 When the CU language allows it, this routine also defines a partial
9100 symbol for each nested subprogram that this subprogram contains.
9101 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9102 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9103
9104 PDI may also be a lexical block, in which case we simply search
9105 recursively for subprograms defined inside that lexical block.
9106 Again, this is only performed when the CU language allows this
9107 type of definitions. */
9108
9109 static void
9110 add_partial_subprogram (struct partial_die_info *pdi,
9111 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9112 int set_addrmap, struct dwarf2_cu *cu)
9113 {
9114 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9115 {
9116 if (pdi->has_pc_info)
9117 {
9118 if (pdi->lowpc < *lowpc)
9119 *lowpc = pdi->lowpc;
9120 if (pdi->highpc > *highpc)
9121 *highpc = pdi->highpc;
9122 if (set_addrmap)
9123 {
9124 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9126 CORE_ADDR baseaddr;
9127 CORE_ADDR this_highpc;
9128 CORE_ADDR this_lowpc;
9129
9130 baseaddr = ANOFFSET (objfile->section_offsets,
9131 SECT_OFF_TEXT (objfile));
9132 this_lowpc
9133 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9134 pdi->lowpc + baseaddr)
9135 - baseaddr);
9136 this_highpc
9137 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9138 pdi->highpc + baseaddr)
9139 - baseaddr);
9140 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9141 this_lowpc, this_highpc - 1,
9142 cu->per_cu->v.psymtab);
9143 }
9144 }
9145
9146 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9147 {
9148 if (!pdi->is_declaration)
9149 /* Ignore subprogram DIEs that do not have a name, they are
9150 illegal. Do not emit a complaint at this point, we will
9151 do so when we convert this psymtab into a symtab. */
9152 if (pdi->name)
9153 add_partial_symbol (pdi, cu);
9154 }
9155 }
9156
9157 if (! pdi->has_children)
9158 return;
9159
9160 if (cu->language == language_ada)
9161 {
9162 pdi = pdi->die_child;
9163 while (pdi != NULL)
9164 {
9165 pdi->fixup (cu);
9166 if (pdi->tag == DW_TAG_subprogram
9167 || pdi->tag == DW_TAG_inlined_subroutine
9168 || pdi->tag == DW_TAG_lexical_block)
9169 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9170 pdi = pdi->die_sibling;
9171 }
9172 }
9173 }
9174
9175 /* Read a partial die corresponding to an enumeration type. */
9176
9177 static void
9178 add_partial_enumeration (struct partial_die_info *enum_pdi,
9179 struct dwarf2_cu *cu)
9180 {
9181 struct partial_die_info *pdi;
9182
9183 if (enum_pdi->name != NULL)
9184 add_partial_symbol (enum_pdi, cu);
9185
9186 pdi = enum_pdi->die_child;
9187 while (pdi)
9188 {
9189 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9190 complaint (_("malformed enumerator DIE ignored"));
9191 else
9192 add_partial_symbol (pdi, cu);
9193 pdi = pdi->die_sibling;
9194 }
9195 }
9196
9197 /* Return the initial uleb128 in the die at INFO_PTR. */
9198
9199 static unsigned int
9200 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9201 {
9202 unsigned int bytes_read;
9203
9204 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9205 }
9206
9207 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9208 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9209
9210 Return the corresponding abbrev, or NULL if the number is zero (indicating
9211 an empty DIE). In either case *BYTES_READ will be set to the length of
9212 the initial number. */
9213
9214 static struct abbrev_info *
9215 peek_die_abbrev (const die_reader_specs &reader,
9216 const gdb_byte *info_ptr, unsigned int *bytes_read)
9217 {
9218 dwarf2_cu *cu = reader.cu;
9219 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9220 unsigned int abbrev_number
9221 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9222
9223 if (abbrev_number == 0)
9224 return NULL;
9225
9226 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9227 if (!abbrev)
9228 {
9229 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9230 " at offset %s [in module %s]"),
9231 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9232 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9233 }
9234
9235 return abbrev;
9236 }
9237
9238 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9239 Returns a pointer to the end of a series of DIEs, terminated by an empty
9240 DIE. Any children of the skipped DIEs will also be skipped. */
9241
9242 static const gdb_byte *
9243 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9244 {
9245 while (1)
9246 {
9247 unsigned int bytes_read;
9248 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9249
9250 if (abbrev == NULL)
9251 return info_ptr + bytes_read;
9252 else
9253 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9254 }
9255 }
9256
9257 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9258 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9259 abbrev corresponding to that skipped uleb128 should be passed in
9260 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9261 children. */
9262
9263 static const gdb_byte *
9264 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9265 struct abbrev_info *abbrev)
9266 {
9267 unsigned int bytes_read;
9268 struct attribute attr;
9269 bfd *abfd = reader->abfd;
9270 struct dwarf2_cu *cu = reader->cu;
9271 const gdb_byte *buffer = reader->buffer;
9272 const gdb_byte *buffer_end = reader->buffer_end;
9273 unsigned int form, i;
9274
9275 for (i = 0; i < abbrev->num_attrs; i++)
9276 {
9277 /* The only abbrev we care about is DW_AT_sibling. */
9278 if (abbrev->attrs[i].name == DW_AT_sibling)
9279 {
9280 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9281 if (attr.form == DW_FORM_ref_addr)
9282 complaint (_("ignoring absolute DW_AT_sibling"));
9283 else
9284 {
9285 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9286 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9287
9288 if (sibling_ptr < info_ptr)
9289 complaint (_("DW_AT_sibling points backwards"));
9290 else if (sibling_ptr > reader->buffer_end)
9291 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9292 else
9293 return sibling_ptr;
9294 }
9295 }
9296
9297 /* If it isn't DW_AT_sibling, skip this attribute. */
9298 form = abbrev->attrs[i].form;
9299 skip_attribute:
9300 switch (form)
9301 {
9302 case DW_FORM_ref_addr:
9303 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9304 and later it is offset sized. */
9305 if (cu->header.version == 2)
9306 info_ptr += cu->header.addr_size;
9307 else
9308 info_ptr += cu->header.offset_size;
9309 break;
9310 case DW_FORM_GNU_ref_alt:
9311 info_ptr += cu->header.offset_size;
9312 break;
9313 case DW_FORM_addr:
9314 info_ptr += cu->header.addr_size;
9315 break;
9316 case DW_FORM_data1:
9317 case DW_FORM_ref1:
9318 case DW_FORM_flag:
9319 info_ptr += 1;
9320 break;
9321 case DW_FORM_flag_present:
9322 case DW_FORM_implicit_const:
9323 break;
9324 case DW_FORM_data2:
9325 case DW_FORM_ref2:
9326 info_ptr += 2;
9327 break;
9328 case DW_FORM_data4:
9329 case DW_FORM_ref4:
9330 info_ptr += 4;
9331 break;
9332 case DW_FORM_data8:
9333 case DW_FORM_ref8:
9334 case DW_FORM_ref_sig8:
9335 info_ptr += 8;
9336 break;
9337 case DW_FORM_data16:
9338 info_ptr += 16;
9339 break;
9340 case DW_FORM_string:
9341 read_direct_string (abfd, info_ptr, &bytes_read);
9342 info_ptr += bytes_read;
9343 break;
9344 case DW_FORM_sec_offset:
9345 case DW_FORM_strp:
9346 case DW_FORM_GNU_strp_alt:
9347 info_ptr += cu->header.offset_size;
9348 break;
9349 case DW_FORM_exprloc:
9350 case DW_FORM_block:
9351 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9352 info_ptr += bytes_read;
9353 break;
9354 case DW_FORM_block1:
9355 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9356 break;
9357 case DW_FORM_block2:
9358 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9359 break;
9360 case DW_FORM_block4:
9361 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9362 break;
9363 case DW_FORM_addrx:
9364 case DW_FORM_strx:
9365 case DW_FORM_sdata:
9366 case DW_FORM_udata:
9367 case DW_FORM_ref_udata:
9368 case DW_FORM_GNU_addr_index:
9369 case DW_FORM_GNU_str_index:
9370 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9371 break;
9372 case DW_FORM_indirect:
9373 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9374 info_ptr += bytes_read;
9375 /* We need to continue parsing from here, so just go back to
9376 the top. */
9377 goto skip_attribute;
9378
9379 default:
9380 error (_("Dwarf Error: Cannot handle %s "
9381 "in DWARF reader [in module %s]"),
9382 dwarf_form_name (form),
9383 bfd_get_filename (abfd));
9384 }
9385 }
9386
9387 if (abbrev->has_children)
9388 return skip_children (reader, info_ptr);
9389 else
9390 return info_ptr;
9391 }
9392
9393 /* Locate ORIG_PDI's sibling.
9394 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9395
9396 static const gdb_byte *
9397 locate_pdi_sibling (const struct die_reader_specs *reader,
9398 struct partial_die_info *orig_pdi,
9399 const gdb_byte *info_ptr)
9400 {
9401 /* Do we know the sibling already? */
9402
9403 if (orig_pdi->sibling)
9404 return orig_pdi->sibling;
9405
9406 /* Are there any children to deal with? */
9407
9408 if (!orig_pdi->has_children)
9409 return info_ptr;
9410
9411 /* Skip the children the long way. */
9412
9413 return skip_children (reader, info_ptr);
9414 }
9415
9416 /* Expand this partial symbol table into a full symbol table. SELF is
9417 not NULL. */
9418
9419 static void
9420 dwarf2_read_symtab (struct partial_symtab *self,
9421 struct objfile *objfile)
9422 {
9423 struct dwarf2_per_objfile *dwarf2_per_objfile
9424 = get_dwarf2_per_objfile (objfile);
9425
9426 if (self->readin)
9427 {
9428 warning (_("bug: psymtab for %s is already read in."),
9429 self->filename);
9430 }
9431 else
9432 {
9433 if (info_verbose)
9434 {
9435 printf_filtered (_("Reading in symbols for %s..."),
9436 self->filename);
9437 gdb_flush (gdb_stdout);
9438 }
9439
9440 /* If this psymtab is constructed from a debug-only objfile, the
9441 has_section_at_zero flag will not necessarily be correct. We
9442 can get the correct value for this flag by looking at the data
9443 associated with the (presumably stripped) associated objfile. */
9444 if (objfile->separate_debug_objfile_backlink)
9445 {
9446 struct dwarf2_per_objfile *dpo_backlink
9447 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9448
9449 dwarf2_per_objfile->has_section_at_zero
9450 = dpo_backlink->has_section_at_zero;
9451 }
9452
9453 dwarf2_per_objfile->reading_partial_symbols = 0;
9454
9455 psymtab_to_symtab_1 (self);
9456
9457 /* Finish up the debug error message. */
9458 if (info_verbose)
9459 printf_filtered (_("done.\n"));
9460 }
9461
9462 process_cu_includes (dwarf2_per_objfile);
9463 }
9464 \f
9465 /* Reading in full CUs. */
9466
9467 /* Add PER_CU to the queue. */
9468
9469 static void
9470 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9471 enum language pretend_language)
9472 {
9473 struct dwarf2_queue_item *item;
9474
9475 per_cu->queued = 1;
9476 item = XNEW (struct dwarf2_queue_item);
9477 item->per_cu = per_cu;
9478 item->pretend_language = pretend_language;
9479 item->next = NULL;
9480
9481 if (dwarf2_queue == NULL)
9482 dwarf2_queue = item;
9483 else
9484 dwarf2_queue_tail->next = item;
9485
9486 dwarf2_queue_tail = item;
9487 }
9488
9489 /* If PER_CU is not yet queued, add it to the queue.
9490 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9491 dependency.
9492 The result is non-zero if PER_CU was queued, otherwise the result is zero
9493 meaning either PER_CU is already queued or it is already loaded.
9494
9495 N.B. There is an invariant here that if a CU is queued then it is loaded.
9496 The caller is required to load PER_CU if we return non-zero. */
9497
9498 static int
9499 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9500 struct dwarf2_per_cu_data *per_cu,
9501 enum language pretend_language)
9502 {
9503 /* We may arrive here during partial symbol reading, if we need full
9504 DIEs to process an unusual case (e.g. template arguments). Do
9505 not queue PER_CU, just tell our caller to load its DIEs. */
9506 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9507 {
9508 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9509 return 1;
9510 return 0;
9511 }
9512
9513 /* Mark the dependence relation so that we don't flush PER_CU
9514 too early. */
9515 if (dependent_cu != NULL)
9516 dwarf2_add_dependence (dependent_cu, per_cu);
9517
9518 /* If it's already on the queue, we have nothing to do. */
9519 if (per_cu->queued)
9520 return 0;
9521
9522 /* If the compilation unit is already loaded, just mark it as
9523 used. */
9524 if (per_cu->cu != NULL)
9525 {
9526 per_cu->cu->last_used = 0;
9527 return 0;
9528 }
9529
9530 /* Add it to the queue. */
9531 queue_comp_unit (per_cu, pretend_language);
9532
9533 return 1;
9534 }
9535
9536 /* Process the queue. */
9537
9538 static void
9539 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9540 {
9541 struct dwarf2_queue_item *item, *next_item;
9542
9543 if (dwarf_read_debug)
9544 {
9545 fprintf_unfiltered (gdb_stdlog,
9546 "Expanding one or more symtabs of objfile %s ...\n",
9547 objfile_name (dwarf2_per_objfile->objfile));
9548 }
9549
9550 /* The queue starts out with one item, but following a DIE reference
9551 may load a new CU, adding it to the end of the queue. */
9552 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9553 {
9554 if ((dwarf2_per_objfile->using_index
9555 ? !item->per_cu->v.quick->compunit_symtab
9556 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9557 /* Skip dummy CUs. */
9558 && item->per_cu->cu != NULL)
9559 {
9560 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9561 unsigned int debug_print_threshold;
9562 char buf[100];
9563
9564 if (per_cu->is_debug_types)
9565 {
9566 struct signatured_type *sig_type =
9567 (struct signatured_type *) per_cu;
9568
9569 sprintf (buf, "TU %s at offset %s",
9570 hex_string (sig_type->signature),
9571 sect_offset_str (per_cu->sect_off));
9572 /* There can be 100s of TUs.
9573 Only print them in verbose mode. */
9574 debug_print_threshold = 2;
9575 }
9576 else
9577 {
9578 sprintf (buf, "CU at offset %s",
9579 sect_offset_str (per_cu->sect_off));
9580 debug_print_threshold = 1;
9581 }
9582
9583 if (dwarf_read_debug >= debug_print_threshold)
9584 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9585
9586 if (per_cu->is_debug_types)
9587 process_full_type_unit (per_cu, item->pretend_language);
9588 else
9589 process_full_comp_unit (per_cu, item->pretend_language);
9590
9591 if (dwarf_read_debug >= debug_print_threshold)
9592 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9593 }
9594
9595 item->per_cu->queued = 0;
9596 next_item = item->next;
9597 xfree (item);
9598 }
9599
9600 dwarf2_queue_tail = NULL;
9601
9602 if (dwarf_read_debug)
9603 {
9604 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9605 objfile_name (dwarf2_per_objfile->objfile));
9606 }
9607 }
9608
9609 /* Read in full symbols for PST, and anything it depends on. */
9610
9611 static void
9612 psymtab_to_symtab_1 (struct partial_symtab *pst)
9613 {
9614 struct dwarf2_per_cu_data *per_cu;
9615 int i;
9616
9617 if (pst->readin)
9618 return;
9619
9620 for (i = 0; i < pst->number_of_dependencies; i++)
9621 if (!pst->dependencies[i]->readin
9622 && pst->dependencies[i]->user == NULL)
9623 {
9624 /* Inform about additional files that need to be read in. */
9625 if (info_verbose)
9626 {
9627 /* FIXME: i18n: Need to make this a single string. */
9628 fputs_filtered (" ", gdb_stdout);
9629 wrap_here ("");
9630 fputs_filtered ("and ", gdb_stdout);
9631 wrap_here ("");
9632 printf_filtered ("%s...", pst->dependencies[i]->filename);
9633 wrap_here (""); /* Flush output. */
9634 gdb_flush (gdb_stdout);
9635 }
9636 psymtab_to_symtab_1 (pst->dependencies[i]);
9637 }
9638
9639 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9640
9641 if (per_cu == NULL)
9642 {
9643 /* It's an include file, no symbols to read for it.
9644 Everything is in the parent symtab. */
9645 pst->readin = 1;
9646 return;
9647 }
9648
9649 dw2_do_instantiate_symtab (per_cu, false);
9650 }
9651
9652 /* Trivial hash function for die_info: the hash value of a DIE
9653 is its offset in .debug_info for this objfile. */
9654
9655 static hashval_t
9656 die_hash (const void *item)
9657 {
9658 const struct die_info *die = (const struct die_info *) item;
9659
9660 return to_underlying (die->sect_off);
9661 }
9662
9663 /* Trivial comparison function for die_info structures: two DIEs
9664 are equal if they have the same offset. */
9665
9666 static int
9667 die_eq (const void *item_lhs, const void *item_rhs)
9668 {
9669 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9670 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9671
9672 return die_lhs->sect_off == die_rhs->sect_off;
9673 }
9674
9675 /* die_reader_func for load_full_comp_unit.
9676 This is identical to read_signatured_type_reader,
9677 but is kept separate for now. */
9678
9679 static void
9680 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9681 const gdb_byte *info_ptr,
9682 struct die_info *comp_unit_die,
9683 int has_children,
9684 void *data)
9685 {
9686 struct dwarf2_cu *cu = reader->cu;
9687 enum language *language_ptr = (enum language *) data;
9688
9689 gdb_assert (cu->die_hash == NULL);
9690 cu->die_hash =
9691 htab_create_alloc_ex (cu->header.length / 12,
9692 die_hash,
9693 die_eq,
9694 NULL,
9695 &cu->comp_unit_obstack,
9696 hashtab_obstack_allocate,
9697 dummy_obstack_deallocate);
9698
9699 if (has_children)
9700 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9701 &info_ptr, comp_unit_die);
9702 cu->dies = comp_unit_die;
9703 /* comp_unit_die is not stored in die_hash, no need. */
9704
9705 /* We try not to read any attributes in this function, because not
9706 all CUs needed for references have been loaded yet, and symbol
9707 table processing isn't initialized. But we have to set the CU language,
9708 or we won't be able to build types correctly.
9709 Similarly, if we do not read the producer, we can not apply
9710 producer-specific interpretation. */
9711 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9712 }
9713
9714 /* Load the DIEs associated with PER_CU into memory. */
9715
9716 static void
9717 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9718 bool skip_partial,
9719 enum language pretend_language)
9720 {
9721 gdb_assert (! this_cu->is_debug_types);
9722
9723 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9724 load_full_comp_unit_reader, &pretend_language);
9725 }
9726
9727 /* Add a DIE to the delayed physname list. */
9728
9729 static void
9730 add_to_method_list (struct type *type, int fnfield_index, int index,
9731 const char *name, struct die_info *die,
9732 struct dwarf2_cu *cu)
9733 {
9734 struct delayed_method_info mi;
9735 mi.type = type;
9736 mi.fnfield_index = fnfield_index;
9737 mi.index = index;
9738 mi.name = name;
9739 mi.die = die;
9740 cu->method_list.push_back (mi);
9741 }
9742
9743 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9744 "const" / "volatile". If so, decrements LEN by the length of the
9745 modifier and return true. Otherwise return false. */
9746
9747 template<size_t N>
9748 static bool
9749 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9750 {
9751 size_t mod_len = sizeof (mod) - 1;
9752 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9753 {
9754 len -= mod_len;
9755 return true;
9756 }
9757 return false;
9758 }
9759
9760 /* Compute the physnames of any methods on the CU's method list.
9761
9762 The computation of method physnames is delayed in order to avoid the
9763 (bad) condition that one of the method's formal parameters is of an as yet
9764 incomplete type. */
9765
9766 static void
9767 compute_delayed_physnames (struct dwarf2_cu *cu)
9768 {
9769 /* Only C++ delays computing physnames. */
9770 if (cu->method_list.empty ())
9771 return;
9772 gdb_assert (cu->language == language_cplus);
9773
9774 for (const delayed_method_info &mi : cu->method_list)
9775 {
9776 const char *physname;
9777 struct fn_fieldlist *fn_flp
9778 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9779 physname = dwarf2_physname (mi.name, mi.die, cu);
9780 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9781 = physname ? physname : "";
9782
9783 /* Since there's no tag to indicate whether a method is a
9784 const/volatile overload, extract that information out of the
9785 demangled name. */
9786 if (physname != NULL)
9787 {
9788 size_t len = strlen (physname);
9789
9790 while (1)
9791 {
9792 if (physname[len] == ')') /* shortcut */
9793 break;
9794 else if (check_modifier (physname, len, " const"))
9795 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9796 else if (check_modifier (physname, len, " volatile"))
9797 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9798 else
9799 break;
9800 }
9801 }
9802 }
9803
9804 /* The list is no longer needed. */
9805 cu->method_list.clear ();
9806 }
9807
9808 /* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819 static void
9820 fixup_go_packaging (struct dwarf2_cu *cu)
9821 {
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
9826 for (list = *cu->get_builder ()->get_global_symbols ();
9827 list != NULL;
9828 list = list->next)
9829 {
9830 for (i = 0; i < list->nsyms; ++i)
9831 {
9832 struct symbol *sym = list->symbol[i];
9833
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9836 {
9837 char *this_package_name = go_symbol_package_name (sym);
9838
9839 if (this_package_name == NULL)
9840 continue;
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9843 else
9844 {
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
9847 if (strcmp (package_name, this_package_name) != 0)
9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
9852 : objfile_name (objfile)),
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9855 }
9856 }
9857 }
9858 }
9859
9860 if (package_name != NULL)
9861 {
9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9863 const char *saved_package_name
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9865 package_name,
9866 strlen (package_name));
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
9869 struct symbol *sym;
9870
9871 sym = allocate_symbol (objfile);
9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9879 SYMBOL_TYPE (sym) = type;
9880
9881 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9882
9883 xfree (package_name);
9884 }
9885 }
9886
9887 /* Allocate a fully-qualified name consisting of the two parts on the
9888 obstack. */
9889
9890 static const char *
9891 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9892 {
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9894 }
9895
9896 /* A helper that allocates a struct discriminant_info to attach to a
9897 union type. */
9898
9899 static struct discriminant_info *
9900 alloc_discriminant_info (struct type *type, int discriminant_index,
9901 int default_index)
9902 {
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
9907 gdb_assert (default_index == -1
9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9909
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9911
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9914 TYPE_ZALLOC (type,
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9919
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9923
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9925
9926 return disc;
9927 }
9928
9929 /* Some versions of rustc emitted enums in an unusual way.
9930
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9934
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9944 field is zero.
9945
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9948
9949 static void
9950 quirk_rust_enum (struct type *type, struct objfile *objfile)
9951 {
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9953
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9956 return;
9957
9958 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9961 {
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9963
9964 /* Decode the field name to find the offset of the
9965 discriminant. */
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9969 {
9970 char *tail;
9971 unsigned long index = strtoul (name, &tail, 10);
9972 name = tail;
9973 if (*name != '$'
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9977 {
9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
9979 "[in module %s]"),
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9982 return;
9983 }
9984 ++name;
9985
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9988 }
9989
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9998
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10004
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10015
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10018 name);
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10020 dataless_name);
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10027
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10032 TYPE_FIELDS (type)
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10034
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10039 }
10040 else if (TYPE_NFIELDS (type) == 1)
10041 {
10042 /* We assume that a union with a single field is a univariant
10043 enum. */
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10047
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
10062 TYPE_NAME (type), variant_name);
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10082 {
10083 /* All fields of a true enum will be structs. */
10084 return;
10085 }
10086 else if (TYPE_NFIELDS (disr_type) == 0)
10087 {
10088 /* Could be data-less variant, so keep going. */
10089 disr_type = nullptr;
10090 }
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10093 {
10094 /* Not a Rust enum. */
10095 return;
10096 }
10097 else
10098 {
10099 /* Found one. */
10100 break;
10101 }
10102 }
10103
10104 /* If we got here without a discriminant, then it's probably
10105 just a union. */
10106 if (disr_type == nullptr)
10107 return;
10108
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10112
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10124
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10127
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10132
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10137
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10140
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10146 {
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10148 {
10149 const char *name
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10152 }
10153 }
10154
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10160 {
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10163 discriminant. */
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10166 i)));
10167
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10171
10172 /* Remove the discriminant field, if it exists. */
10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10174 if (TYPE_NFIELDS (sub_type) > 0)
10175 {
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10178 }
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10183 }
10184 }
10185 }
10186
10187 /* Rewrite some Rust unions to be structures with variants parts. */
10188
10189 static void
10190 rust_union_quirks (struct dwarf2_cu *cu)
10191 {
10192 gdb_assert (cu->language == language_rust);
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
10197 }
10198
10199 /* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10201
10202 static struct compunit_symtab *
10203 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10204 {
10205 return (per_cu->dwarf2_per_objfile->using_index
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
10208 }
10209
10210 /* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10212
10213 static void
10214 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10215 htab_t all_children, htab_t all_type_symtabs,
10216 struct dwarf2_per_cu_data *per_cu,
10217 struct compunit_symtab *immediate_parent)
10218 {
10219 void **slot;
10220 int ix;
10221 struct compunit_symtab *cust;
10222 struct dwarf2_per_cu_data *iter;
10223
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10225 if (*slot != NULL)
10226 {
10227 /* This inclusion and its children have been processed. */
10228 return;
10229 }
10230
10231 *slot = per_cu;
10232 /* Only add a CU if it has a symbol table. */
10233 cust = get_compunit_symtab (per_cu);
10234 if (cust != NULL)
10235 {
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10239 {
10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10241 if (*slot == NULL)
10242 {
10243 *slot = cust;
10244 result->push_back (cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
10247 }
10248 }
10249 else
10250 {
10251 result->push_back (cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10254 }
10255 }
10256
10257 for (ix = 0;
10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10259 ++ix)
10260 {
10261 recursively_compute_inclusions (result, all_children,
10262 all_type_symtabs, iter, cust);
10263 }
10264 }
10265
10266 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10267 PER_CU. */
10268
10269 static void
10270 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10271 {
10272 gdb_assert (! per_cu->is_debug_types);
10273
10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10275 {
10276 int ix, len;
10277 struct dwarf2_per_cu_data *per_cu_iter;
10278 std::vector<compunit_symtab *> result_symtabs;
10279 htab_t all_children, all_type_symtabs;
10280 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10281
10282 /* If we don't have a symtab, we can just skip this case. */
10283 if (cust == NULL)
10284 return;
10285
10286 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10287 NULL, xcalloc, xfree);
10288 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10289 NULL, xcalloc, xfree);
10290
10291 for (ix = 0;
10292 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10293 ix, per_cu_iter);
10294 ++ix)
10295 {
10296 recursively_compute_inclusions (&result_symtabs, all_children,
10297 all_type_symtabs, per_cu_iter,
10298 cust);
10299 }
10300
10301 /* Now we have a transitive closure of all the included symtabs. */
10302 len = result_symtabs.size ();
10303 cust->includes
10304 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10305 struct compunit_symtab *, len + 1);
10306 memcpy (cust->includes, result_symtabs.data (),
10307 len * sizeof (compunit_symtab *));
10308 cust->includes[len] = NULL;
10309
10310 htab_delete (all_children);
10311 htab_delete (all_type_symtabs);
10312 }
10313 }
10314
10315 /* Compute the 'includes' field for the symtabs of all the CUs we just
10316 read. */
10317
10318 static void
10319 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10320 {
10321 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10322 {
10323 if (! iter->is_debug_types)
10324 compute_compunit_symtab_includes (iter);
10325 }
10326
10327 dwarf2_per_objfile->just_read_cus.clear ();
10328 }
10329
10330 /* Generate full symbol information for PER_CU, whose DIEs have
10331 already been loaded into memory. */
10332
10333 static void
10334 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10335 enum language pretend_language)
10336 {
10337 struct dwarf2_cu *cu = per_cu->cu;
10338 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10339 struct objfile *objfile = dwarf2_per_objfile->objfile;
10340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10341 CORE_ADDR lowpc, highpc;
10342 struct compunit_symtab *cust;
10343 CORE_ADDR baseaddr;
10344 struct block *static_block;
10345 CORE_ADDR addr;
10346
10347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10348
10349 /* Clear the list here in case something was left over. */
10350 cu->method_list.clear ();
10351
10352 cu->language = pretend_language;
10353 cu->language_defn = language_def (cu->language);
10354
10355 /* Do line number decoding in read_file_scope () */
10356 process_die (cu->dies, cu);
10357
10358 /* For now fudge the Go package. */
10359 if (cu->language == language_go)
10360 fixup_go_packaging (cu);
10361
10362 /* Now that we have processed all the DIEs in the CU, all the types
10363 should be complete, and it should now be safe to compute all of the
10364 physnames. */
10365 compute_delayed_physnames (cu);
10366
10367 if (cu->language == language_rust)
10368 rust_union_quirks (cu);
10369
10370 /* Some compilers don't define a DW_AT_high_pc attribute for the
10371 compilation unit. If the DW_AT_high_pc is missing, synthesize
10372 it, by scanning the DIE's below the compilation unit. */
10373 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10374
10375 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10376 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10377
10378 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10379 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10380 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10381 addrmap to help ensure it has an accurate map of pc values belonging to
10382 this comp unit. */
10383 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10384
10385 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10386 SECT_OFF_TEXT (objfile),
10387 0);
10388
10389 if (cust != NULL)
10390 {
10391 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10392
10393 /* Set symtab language to language from DW_AT_language. If the
10394 compilation is from a C file generated by language preprocessors, do
10395 not set the language if it was already deduced by start_subfile. */
10396 if (!(cu->language == language_c
10397 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10398 COMPUNIT_FILETABS (cust)->language = cu->language;
10399
10400 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10401 produce DW_AT_location with location lists but it can be possibly
10402 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10403 there were bugs in prologue debug info, fixed later in GCC-4.5
10404 by "unwind info for epilogues" patch (which is not directly related).
10405
10406 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10407 needed, it would be wrong due to missing DW_AT_producer there.
10408
10409 Still one can confuse GDB by using non-standard GCC compilation
10410 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10411 */
10412 if (cu->has_loclist && gcc_4_minor >= 5)
10413 cust->locations_valid = 1;
10414
10415 if (gcc_4_minor >= 5)
10416 cust->epilogue_unwind_valid = 1;
10417
10418 cust->call_site_htab = cu->call_site_htab;
10419 }
10420
10421 if (dwarf2_per_objfile->using_index)
10422 per_cu->v.quick->compunit_symtab = cust;
10423 else
10424 {
10425 struct partial_symtab *pst = per_cu->v.psymtab;
10426 pst->compunit_symtab = cust;
10427 pst->readin = 1;
10428 }
10429
10430 /* Push it for inclusion processing later. */
10431 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10432
10433 /* Not needed any more. */
10434 cu->reset_builder ();
10435 }
10436
10437 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10438 already been loaded into memory. */
10439
10440 static void
10441 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10442 enum language pretend_language)
10443 {
10444 struct dwarf2_cu *cu = per_cu->cu;
10445 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10446 struct objfile *objfile = dwarf2_per_objfile->objfile;
10447 struct compunit_symtab *cust;
10448 struct signatured_type *sig_type;
10449
10450 gdb_assert (per_cu->is_debug_types);
10451 sig_type = (struct signatured_type *) per_cu;
10452
10453 /* Clear the list here in case something was left over. */
10454 cu->method_list.clear ();
10455
10456 cu->language = pretend_language;
10457 cu->language_defn = language_def (cu->language);
10458
10459 /* The symbol tables are set up in read_type_unit_scope. */
10460 process_die (cu->dies, cu);
10461
10462 /* For now fudge the Go package. */
10463 if (cu->language == language_go)
10464 fixup_go_packaging (cu);
10465
10466 /* Now that we have processed all the DIEs in the CU, all the types
10467 should be complete, and it should now be safe to compute all of the
10468 physnames. */
10469 compute_delayed_physnames (cu);
10470
10471 if (cu->language == language_rust)
10472 rust_union_quirks (cu);
10473
10474 /* TUs share symbol tables.
10475 If this is the first TU to use this symtab, complete the construction
10476 of it with end_expandable_symtab. Otherwise, complete the addition of
10477 this TU's symbols to the existing symtab. */
10478 if (sig_type->type_unit_group->compunit_symtab == NULL)
10479 {
10480 buildsym_compunit *builder = cu->get_builder ();
10481 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10482 sig_type->type_unit_group->compunit_symtab = cust;
10483
10484 if (cust != NULL)
10485 {
10486 /* Set symtab language to language from DW_AT_language. If the
10487 compilation is from a C file generated by language preprocessors,
10488 do not set the language if it was already deduced by
10489 start_subfile. */
10490 if (!(cu->language == language_c
10491 && COMPUNIT_FILETABS (cust)->language != language_c))
10492 COMPUNIT_FILETABS (cust)->language = cu->language;
10493 }
10494 }
10495 else
10496 {
10497 cu->get_builder ()->augment_type_symtab ();
10498 cust = sig_type->type_unit_group->compunit_symtab;
10499 }
10500
10501 if (dwarf2_per_objfile->using_index)
10502 per_cu->v.quick->compunit_symtab = cust;
10503 else
10504 {
10505 struct partial_symtab *pst = per_cu->v.psymtab;
10506 pst->compunit_symtab = cust;
10507 pst->readin = 1;
10508 }
10509
10510 /* Not needed any more. */
10511 cu->reset_builder ();
10512 }
10513
10514 /* Process an imported unit DIE. */
10515
10516 static void
10517 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10518 {
10519 struct attribute *attr;
10520
10521 /* For now we don't handle imported units in type units. */
10522 if (cu->per_cu->is_debug_types)
10523 {
10524 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10525 " supported in type units [in module %s]"),
10526 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10527 }
10528
10529 attr = dwarf2_attr (die, DW_AT_import, cu);
10530 if (attr != NULL)
10531 {
10532 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10533 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10534 dwarf2_per_cu_data *per_cu
10535 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10536 cu->per_cu->dwarf2_per_objfile);
10537
10538 /* If necessary, add it to the queue and load its DIEs. */
10539 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10540 load_full_comp_unit (per_cu, false, cu->language);
10541
10542 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10543 per_cu);
10544 }
10545 }
10546
10547 /* RAII object that represents a process_die scope: i.e.,
10548 starts/finishes processing a DIE. */
10549 class process_die_scope
10550 {
10551 public:
10552 process_die_scope (die_info *die, dwarf2_cu *cu)
10553 : m_die (die), m_cu (cu)
10554 {
10555 /* We should only be processing DIEs not already in process. */
10556 gdb_assert (!m_die->in_process);
10557 m_die->in_process = true;
10558 }
10559
10560 ~process_die_scope ()
10561 {
10562 m_die->in_process = false;
10563
10564 /* If we're done processing the DIE for the CU that owns the line
10565 header, we don't need the line header anymore. */
10566 if (m_cu->line_header_die_owner == m_die)
10567 {
10568 delete m_cu->line_header;
10569 m_cu->line_header = NULL;
10570 m_cu->line_header_die_owner = NULL;
10571 }
10572 }
10573
10574 private:
10575 die_info *m_die;
10576 dwarf2_cu *m_cu;
10577 };
10578
10579 /* Process a die and its children. */
10580
10581 static void
10582 process_die (struct die_info *die, struct dwarf2_cu *cu)
10583 {
10584 process_die_scope scope (die, cu);
10585
10586 switch (die->tag)
10587 {
10588 case DW_TAG_padding:
10589 break;
10590 case DW_TAG_compile_unit:
10591 case DW_TAG_partial_unit:
10592 read_file_scope (die, cu);
10593 break;
10594 case DW_TAG_type_unit:
10595 read_type_unit_scope (die, cu);
10596 break;
10597 case DW_TAG_subprogram:
10598 case DW_TAG_inlined_subroutine:
10599 read_func_scope (die, cu);
10600 break;
10601 case DW_TAG_lexical_block:
10602 case DW_TAG_try_block:
10603 case DW_TAG_catch_block:
10604 read_lexical_block_scope (die, cu);
10605 break;
10606 case DW_TAG_call_site:
10607 case DW_TAG_GNU_call_site:
10608 read_call_site_scope (die, cu);
10609 break;
10610 case DW_TAG_class_type:
10611 case DW_TAG_interface_type:
10612 case DW_TAG_structure_type:
10613 case DW_TAG_union_type:
10614 process_structure_scope (die, cu);
10615 break;
10616 case DW_TAG_enumeration_type:
10617 process_enumeration_scope (die, cu);
10618 break;
10619
10620 /* These dies have a type, but processing them does not create
10621 a symbol or recurse to process the children. Therefore we can
10622 read them on-demand through read_type_die. */
10623 case DW_TAG_subroutine_type:
10624 case DW_TAG_set_type:
10625 case DW_TAG_array_type:
10626 case DW_TAG_pointer_type:
10627 case DW_TAG_ptr_to_member_type:
10628 case DW_TAG_reference_type:
10629 case DW_TAG_rvalue_reference_type:
10630 case DW_TAG_string_type:
10631 break;
10632
10633 case DW_TAG_base_type:
10634 case DW_TAG_subrange_type:
10635 case DW_TAG_typedef:
10636 /* Add a typedef symbol for the type definition, if it has a
10637 DW_AT_name. */
10638 new_symbol (die, read_type_die (die, cu), cu);
10639 break;
10640 case DW_TAG_common_block:
10641 read_common_block (die, cu);
10642 break;
10643 case DW_TAG_common_inclusion:
10644 break;
10645 case DW_TAG_namespace:
10646 cu->processing_has_namespace_info = true;
10647 read_namespace (die, cu);
10648 break;
10649 case DW_TAG_module:
10650 cu->processing_has_namespace_info = true;
10651 read_module (die, cu);
10652 break;
10653 case DW_TAG_imported_declaration:
10654 cu->processing_has_namespace_info = true;
10655 if (read_namespace_alias (die, cu))
10656 break;
10657 /* The declaration is not a global namespace alias. */
10658 /* Fall through. */
10659 case DW_TAG_imported_module:
10660 cu->processing_has_namespace_info = true;
10661 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10662 || cu->language != language_fortran))
10663 complaint (_("Tag '%s' has unexpected children"),
10664 dwarf_tag_name (die->tag));
10665 read_import_statement (die, cu);
10666 break;
10667
10668 case DW_TAG_imported_unit:
10669 process_imported_unit_die (die, cu);
10670 break;
10671
10672 case DW_TAG_variable:
10673 read_variable (die, cu);
10674 break;
10675
10676 default:
10677 new_symbol (die, NULL, cu);
10678 break;
10679 }
10680 }
10681 \f
10682 /* DWARF name computation. */
10683
10684 /* A helper function for dwarf2_compute_name which determines whether DIE
10685 needs to have the name of the scope prepended to the name listed in the
10686 die. */
10687
10688 static int
10689 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10690 {
10691 struct attribute *attr;
10692
10693 switch (die->tag)
10694 {
10695 case DW_TAG_namespace:
10696 case DW_TAG_typedef:
10697 case DW_TAG_class_type:
10698 case DW_TAG_interface_type:
10699 case DW_TAG_structure_type:
10700 case DW_TAG_union_type:
10701 case DW_TAG_enumeration_type:
10702 case DW_TAG_enumerator:
10703 case DW_TAG_subprogram:
10704 case DW_TAG_inlined_subroutine:
10705 case DW_TAG_member:
10706 case DW_TAG_imported_declaration:
10707 return 1;
10708
10709 case DW_TAG_variable:
10710 case DW_TAG_constant:
10711 /* We only need to prefix "globally" visible variables. These include
10712 any variable marked with DW_AT_external or any variable that
10713 lives in a namespace. [Variables in anonymous namespaces
10714 require prefixing, but they are not DW_AT_external.] */
10715
10716 if (dwarf2_attr (die, DW_AT_specification, cu))
10717 {
10718 struct dwarf2_cu *spec_cu = cu;
10719
10720 return die_needs_namespace (die_specification (die, &spec_cu),
10721 spec_cu);
10722 }
10723
10724 attr = dwarf2_attr (die, DW_AT_external, cu);
10725 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10726 && die->parent->tag != DW_TAG_module)
10727 return 0;
10728 /* A variable in a lexical block of some kind does not need a
10729 namespace, even though in C++ such variables may be external
10730 and have a mangled name. */
10731 if (die->parent->tag == DW_TAG_lexical_block
10732 || die->parent->tag == DW_TAG_try_block
10733 || die->parent->tag == DW_TAG_catch_block
10734 || die->parent->tag == DW_TAG_subprogram)
10735 return 0;
10736 return 1;
10737
10738 default:
10739 return 0;
10740 }
10741 }
10742
10743 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10744 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10745 defined for the given DIE. */
10746
10747 static struct attribute *
10748 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10749 {
10750 struct attribute *attr;
10751
10752 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10753 if (attr == NULL)
10754 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10755
10756 return attr;
10757 }
10758
10759 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10760 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10761 defined for the given DIE. */
10762
10763 static const char *
10764 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10765 {
10766 const char *linkage_name;
10767
10768 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10769 if (linkage_name == NULL)
10770 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10771
10772 return linkage_name;
10773 }
10774
10775 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10776 compute the physname for the object, which include a method's:
10777 - formal parameters (C++),
10778 - receiver type (Go),
10779
10780 The term "physname" is a bit confusing.
10781 For C++, for example, it is the demangled name.
10782 For Go, for example, it's the mangled name.
10783
10784 For Ada, return the DIE's linkage name rather than the fully qualified
10785 name. PHYSNAME is ignored..
10786
10787 The result is allocated on the objfile_obstack and canonicalized. */
10788
10789 static const char *
10790 dwarf2_compute_name (const char *name,
10791 struct die_info *die, struct dwarf2_cu *cu,
10792 int physname)
10793 {
10794 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10795
10796 if (name == NULL)
10797 name = dwarf2_name (die, cu);
10798
10799 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10800 but otherwise compute it by typename_concat inside GDB.
10801 FIXME: Actually this is not really true, or at least not always true.
10802 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10803 Fortran names because there is no mangling standard. So new_symbol
10804 will set the demangled name to the result of dwarf2_full_name, and it is
10805 the demangled name that GDB uses if it exists. */
10806 if (cu->language == language_ada
10807 || (cu->language == language_fortran && physname))
10808 {
10809 /* For Ada unit, we prefer the linkage name over the name, as
10810 the former contains the exported name, which the user expects
10811 to be able to reference. Ideally, we want the user to be able
10812 to reference this entity using either natural or linkage name,
10813 but we haven't started looking at this enhancement yet. */
10814 const char *linkage_name = dw2_linkage_name (die, cu);
10815
10816 if (linkage_name != NULL)
10817 return linkage_name;
10818 }
10819
10820 /* These are the only languages we know how to qualify names in. */
10821 if (name != NULL
10822 && (cu->language == language_cplus
10823 || cu->language == language_fortran || cu->language == language_d
10824 || cu->language == language_rust))
10825 {
10826 if (die_needs_namespace (die, cu))
10827 {
10828 const char *prefix;
10829 const char *canonical_name = NULL;
10830
10831 string_file buf;
10832
10833 prefix = determine_prefix (die, cu);
10834 if (*prefix != '\0')
10835 {
10836 char *prefixed_name = typename_concat (NULL, prefix, name,
10837 physname, cu);
10838
10839 buf.puts (prefixed_name);
10840 xfree (prefixed_name);
10841 }
10842 else
10843 buf.puts (name);
10844
10845 /* Template parameters may be specified in the DIE's DW_AT_name, or
10846 as children with DW_TAG_template_type_param or
10847 DW_TAG_value_type_param. If the latter, add them to the name
10848 here. If the name already has template parameters, then
10849 skip this step; some versions of GCC emit both, and
10850 it is more efficient to use the pre-computed name.
10851
10852 Something to keep in mind about this process: it is very
10853 unlikely, or in some cases downright impossible, to produce
10854 something that will match the mangled name of a function.
10855 If the definition of the function has the same debug info,
10856 we should be able to match up with it anyway. But fallbacks
10857 using the minimal symbol, for instance to find a method
10858 implemented in a stripped copy of libstdc++, will not work.
10859 If we do not have debug info for the definition, we will have to
10860 match them up some other way.
10861
10862 When we do name matching there is a related problem with function
10863 templates; two instantiated function templates are allowed to
10864 differ only by their return types, which we do not add here. */
10865
10866 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10867 {
10868 struct attribute *attr;
10869 struct die_info *child;
10870 int first = 1;
10871
10872 die->building_fullname = 1;
10873
10874 for (child = die->child; child != NULL; child = child->sibling)
10875 {
10876 struct type *type;
10877 LONGEST value;
10878 const gdb_byte *bytes;
10879 struct dwarf2_locexpr_baton *baton;
10880 struct value *v;
10881
10882 if (child->tag != DW_TAG_template_type_param
10883 && child->tag != DW_TAG_template_value_param)
10884 continue;
10885
10886 if (first)
10887 {
10888 buf.puts ("<");
10889 first = 0;
10890 }
10891 else
10892 buf.puts (", ");
10893
10894 attr = dwarf2_attr (child, DW_AT_type, cu);
10895 if (attr == NULL)
10896 {
10897 complaint (_("template parameter missing DW_AT_type"));
10898 buf.puts ("UNKNOWN_TYPE");
10899 continue;
10900 }
10901 type = die_type (child, cu);
10902
10903 if (child->tag == DW_TAG_template_type_param)
10904 {
10905 c_print_type (type, "", &buf, -1, 0, cu->language,
10906 &type_print_raw_options);
10907 continue;
10908 }
10909
10910 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10911 if (attr == NULL)
10912 {
10913 complaint (_("template parameter missing "
10914 "DW_AT_const_value"));
10915 buf.puts ("UNKNOWN_VALUE");
10916 continue;
10917 }
10918
10919 dwarf2_const_value_attr (attr, type, name,
10920 &cu->comp_unit_obstack, cu,
10921 &value, &bytes, &baton);
10922
10923 if (TYPE_NOSIGN (type))
10924 /* GDB prints characters as NUMBER 'CHAR'. If that's
10925 changed, this can use value_print instead. */
10926 c_printchar (value, type, &buf);
10927 else
10928 {
10929 struct value_print_options opts;
10930
10931 if (baton != NULL)
10932 v = dwarf2_evaluate_loc_desc (type, NULL,
10933 baton->data,
10934 baton->size,
10935 baton->per_cu);
10936 else if (bytes != NULL)
10937 {
10938 v = allocate_value (type);
10939 memcpy (value_contents_writeable (v), bytes,
10940 TYPE_LENGTH (type));
10941 }
10942 else
10943 v = value_from_longest (type, value);
10944
10945 /* Specify decimal so that we do not depend on
10946 the radix. */
10947 get_formatted_print_options (&opts, 'd');
10948 opts.raw = 1;
10949 value_print (v, &buf, &opts);
10950 release_value (v);
10951 }
10952 }
10953
10954 die->building_fullname = 0;
10955
10956 if (!first)
10957 {
10958 /* Close the argument list, with a space if necessary
10959 (nested templates). */
10960 if (!buf.empty () && buf.string ().back () == '>')
10961 buf.puts (" >");
10962 else
10963 buf.puts (">");
10964 }
10965 }
10966
10967 /* For C++ methods, append formal parameter type
10968 information, if PHYSNAME. */
10969
10970 if (physname && die->tag == DW_TAG_subprogram
10971 && cu->language == language_cplus)
10972 {
10973 struct type *type = read_type_die (die, cu);
10974
10975 c_type_print_args (type, &buf, 1, cu->language,
10976 &type_print_raw_options);
10977
10978 if (cu->language == language_cplus)
10979 {
10980 /* Assume that an artificial first parameter is
10981 "this", but do not crash if it is not. RealView
10982 marks unnamed (and thus unused) parameters as
10983 artificial; there is no way to differentiate
10984 the two cases. */
10985 if (TYPE_NFIELDS (type) > 0
10986 && TYPE_FIELD_ARTIFICIAL (type, 0)
10987 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10988 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10989 0))))
10990 buf.puts (" const");
10991 }
10992 }
10993
10994 const std::string &intermediate_name = buf.string ();
10995
10996 if (cu->language == language_cplus)
10997 canonical_name
10998 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10999 &objfile->per_bfd->storage_obstack);
11000
11001 /* If we only computed INTERMEDIATE_NAME, or if
11002 INTERMEDIATE_NAME is already canonical, then we need to
11003 copy it to the appropriate obstack. */
11004 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11005 name = ((const char *)
11006 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11007 intermediate_name.c_str (),
11008 intermediate_name.length ()));
11009 else
11010 name = canonical_name;
11011 }
11012 }
11013
11014 return name;
11015 }
11016
11017 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11018 If scope qualifiers are appropriate they will be added. The result
11019 will be allocated on the storage_obstack, or NULL if the DIE does
11020 not have a name. NAME may either be from a previous call to
11021 dwarf2_name or NULL.
11022
11023 The output string will be canonicalized (if C++). */
11024
11025 static const char *
11026 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11027 {
11028 return dwarf2_compute_name (name, die, cu, 0);
11029 }
11030
11031 /* Construct a physname for the given DIE in CU. NAME may either be
11032 from a previous call to dwarf2_name or NULL. The result will be
11033 allocated on the objfile_objstack or NULL if the DIE does not have a
11034 name.
11035
11036 The output string will be canonicalized (if C++). */
11037
11038 static const char *
11039 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11040 {
11041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11042 const char *retval, *mangled = NULL, *canon = NULL;
11043 int need_copy = 1;
11044
11045 /* In this case dwarf2_compute_name is just a shortcut not building anything
11046 on its own. */
11047 if (!die_needs_namespace (die, cu))
11048 return dwarf2_compute_name (name, die, cu, 1);
11049
11050 mangled = dw2_linkage_name (die, cu);
11051
11052 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11053 See https://github.com/rust-lang/rust/issues/32925. */
11054 if (cu->language == language_rust && mangled != NULL
11055 && strchr (mangled, '{') != NULL)
11056 mangled = NULL;
11057
11058 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11059 has computed. */
11060 gdb::unique_xmalloc_ptr<char> demangled;
11061 if (mangled != NULL)
11062 {
11063
11064 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11065 {
11066 /* Do nothing (do not demangle the symbol name). */
11067 }
11068 else if (cu->language == language_go)
11069 {
11070 /* This is a lie, but we already lie to the caller new_symbol.
11071 new_symbol assumes we return the mangled name.
11072 This just undoes that lie until things are cleaned up. */
11073 }
11074 else
11075 {
11076 /* Use DMGL_RET_DROP for C++ template functions to suppress
11077 their return type. It is easier for GDB users to search
11078 for such functions as `name(params)' than `long name(params)'.
11079 In such case the minimal symbol names do not match the full
11080 symbol names but for template functions there is never a need
11081 to look up their definition from their declaration so
11082 the only disadvantage remains the minimal symbol variant
11083 `long name(params)' does not have the proper inferior type. */
11084 demangled.reset (gdb_demangle (mangled,
11085 (DMGL_PARAMS | DMGL_ANSI
11086 | DMGL_RET_DROP)));
11087 }
11088 if (demangled)
11089 canon = demangled.get ();
11090 else
11091 {
11092 canon = mangled;
11093 need_copy = 0;
11094 }
11095 }
11096
11097 if (canon == NULL || check_physname)
11098 {
11099 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11100
11101 if (canon != NULL && strcmp (physname, canon) != 0)
11102 {
11103 /* It may not mean a bug in GDB. The compiler could also
11104 compute DW_AT_linkage_name incorrectly. But in such case
11105 GDB would need to be bug-to-bug compatible. */
11106
11107 complaint (_("Computed physname <%s> does not match demangled <%s> "
11108 "(from linkage <%s>) - DIE at %s [in module %s]"),
11109 physname, canon, mangled, sect_offset_str (die->sect_off),
11110 objfile_name (objfile));
11111
11112 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11113 is available here - over computed PHYSNAME. It is safer
11114 against both buggy GDB and buggy compilers. */
11115
11116 retval = canon;
11117 }
11118 else
11119 {
11120 retval = physname;
11121 need_copy = 0;
11122 }
11123 }
11124 else
11125 retval = canon;
11126
11127 if (need_copy)
11128 retval = ((const char *)
11129 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11130 retval, strlen (retval)));
11131
11132 return retval;
11133 }
11134
11135 /* Inspect DIE in CU for a namespace alias. If one exists, record
11136 a new symbol for it.
11137
11138 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11139
11140 static int
11141 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11142 {
11143 struct attribute *attr;
11144
11145 /* If the die does not have a name, this is not a namespace
11146 alias. */
11147 attr = dwarf2_attr (die, DW_AT_name, cu);
11148 if (attr != NULL)
11149 {
11150 int num;
11151 struct die_info *d = die;
11152 struct dwarf2_cu *imported_cu = cu;
11153
11154 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11155 keep inspecting DIEs until we hit the underlying import. */
11156 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11157 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11158 {
11159 attr = dwarf2_attr (d, DW_AT_import, cu);
11160 if (attr == NULL)
11161 break;
11162
11163 d = follow_die_ref (d, attr, &imported_cu);
11164 if (d->tag != DW_TAG_imported_declaration)
11165 break;
11166 }
11167
11168 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11169 {
11170 complaint (_("DIE at %s has too many recursively imported "
11171 "declarations"), sect_offset_str (d->sect_off));
11172 return 0;
11173 }
11174
11175 if (attr != NULL)
11176 {
11177 struct type *type;
11178 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11179
11180 type = get_die_type_at_offset (sect_off, cu->per_cu);
11181 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11182 {
11183 /* This declaration is a global namespace alias. Add
11184 a symbol for it whose type is the aliased namespace. */
11185 new_symbol (die, type, cu);
11186 return 1;
11187 }
11188 }
11189 }
11190
11191 return 0;
11192 }
11193
11194 /* Return the using directives repository (global or local?) to use in the
11195 current context for CU.
11196
11197 For Ada, imported declarations can materialize renamings, which *may* be
11198 global. However it is impossible (for now?) in DWARF to distinguish
11199 "external" imported declarations and "static" ones. As all imported
11200 declarations seem to be static in all other languages, make them all CU-wide
11201 global only in Ada. */
11202
11203 static struct using_direct **
11204 using_directives (struct dwarf2_cu *cu)
11205 {
11206 if (cu->language == language_ada
11207 && cu->get_builder ()->outermost_context_p ())
11208 return cu->get_builder ()->get_global_using_directives ();
11209 else
11210 return cu->get_builder ()->get_local_using_directives ();
11211 }
11212
11213 /* Read the import statement specified by the given die and record it. */
11214
11215 static void
11216 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11217 {
11218 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11219 struct attribute *import_attr;
11220 struct die_info *imported_die, *child_die;
11221 struct dwarf2_cu *imported_cu;
11222 const char *imported_name;
11223 const char *imported_name_prefix;
11224 const char *canonical_name;
11225 const char *import_alias;
11226 const char *imported_declaration = NULL;
11227 const char *import_prefix;
11228 std::vector<const char *> excludes;
11229
11230 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11231 if (import_attr == NULL)
11232 {
11233 complaint (_("Tag '%s' has no DW_AT_import"),
11234 dwarf_tag_name (die->tag));
11235 return;
11236 }
11237
11238 imported_cu = cu;
11239 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11240 imported_name = dwarf2_name (imported_die, imported_cu);
11241 if (imported_name == NULL)
11242 {
11243 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11244
11245 The import in the following code:
11246 namespace A
11247 {
11248 typedef int B;
11249 }
11250
11251 int main ()
11252 {
11253 using A::B;
11254 B b;
11255 return b;
11256 }
11257
11258 ...
11259 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11260 <52> DW_AT_decl_file : 1
11261 <53> DW_AT_decl_line : 6
11262 <54> DW_AT_import : <0x75>
11263 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11264 <59> DW_AT_name : B
11265 <5b> DW_AT_decl_file : 1
11266 <5c> DW_AT_decl_line : 2
11267 <5d> DW_AT_type : <0x6e>
11268 ...
11269 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11270 <76> DW_AT_byte_size : 4
11271 <77> DW_AT_encoding : 5 (signed)
11272
11273 imports the wrong die ( 0x75 instead of 0x58 ).
11274 This case will be ignored until the gcc bug is fixed. */
11275 return;
11276 }
11277
11278 /* Figure out the local name after import. */
11279 import_alias = dwarf2_name (die, cu);
11280
11281 /* Figure out where the statement is being imported to. */
11282 import_prefix = determine_prefix (die, cu);
11283
11284 /* Figure out what the scope of the imported die is and prepend it
11285 to the name of the imported die. */
11286 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11287
11288 if (imported_die->tag != DW_TAG_namespace
11289 && imported_die->tag != DW_TAG_module)
11290 {
11291 imported_declaration = imported_name;
11292 canonical_name = imported_name_prefix;
11293 }
11294 else if (strlen (imported_name_prefix) > 0)
11295 canonical_name = obconcat (&objfile->objfile_obstack,
11296 imported_name_prefix,
11297 (cu->language == language_d ? "." : "::"),
11298 imported_name, (char *) NULL);
11299 else
11300 canonical_name = imported_name;
11301
11302 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11303 for (child_die = die->child; child_die && child_die->tag;
11304 child_die = sibling_die (child_die))
11305 {
11306 /* DWARF-4: A Fortran use statement with a “rename list” may be
11307 represented by an imported module entry with an import attribute
11308 referring to the module and owned entries corresponding to those
11309 entities that are renamed as part of being imported. */
11310
11311 if (child_die->tag != DW_TAG_imported_declaration)
11312 {
11313 complaint (_("child DW_TAG_imported_declaration expected "
11314 "- DIE at %s [in module %s]"),
11315 sect_offset_str (child_die->sect_off),
11316 objfile_name (objfile));
11317 continue;
11318 }
11319
11320 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11321 if (import_attr == NULL)
11322 {
11323 complaint (_("Tag '%s' has no DW_AT_import"),
11324 dwarf_tag_name (child_die->tag));
11325 continue;
11326 }
11327
11328 imported_cu = cu;
11329 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11330 &imported_cu);
11331 imported_name = dwarf2_name (imported_die, imported_cu);
11332 if (imported_name == NULL)
11333 {
11334 complaint (_("child DW_TAG_imported_declaration has unknown "
11335 "imported name - DIE at %s [in module %s]"),
11336 sect_offset_str (child_die->sect_off),
11337 objfile_name (objfile));
11338 continue;
11339 }
11340
11341 excludes.push_back (imported_name);
11342
11343 process_die (child_die, cu);
11344 }
11345
11346 add_using_directive (using_directives (cu),
11347 import_prefix,
11348 canonical_name,
11349 import_alias,
11350 imported_declaration,
11351 excludes,
11352 0,
11353 &objfile->objfile_obstack);
11354 }
11355
11356 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11357 types, but gives them a size of zero. Starting with version 14,
11358 ICC is compatible with GCC. */
11359
11360 static bool
11361 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11362 {
11363 if (!cu->checked_producer)
11364 check_producer (cu);
11365
11366 return cu->producer_is_icc_lt_14;
11367 }
11368
11369 /* ICC generates a DW_AT_type for C void functions. This was observed on
11370 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11371 which says that void functions should not have a DW_AT_type. */
11372
11373 static bool
11374 producer_is_icc (struct dwarf2_cu *cu)
11375 {
11376 if (!cu->checked_producer)
11377 check_producer (cu);
11378
11379 return cu->producer_is_icc;
11380 }
11381
11382 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11383 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11384 this, it was first present in GCC release 4.3.0. */
11385
11386 static bool
11387 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11388 {
11389 if (!cu->checked_producer)
11390 check_producer (cu);
11391
11392 return cu->producer_is_gcc_lt_4_3;
11393 }
11394
11395 static file_and_directory
11396 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11397 {
11398 file_and_directory res;
11399
11400 /* Find the filename. Do not use dwarf2_name here, since the filename
11401 is not a source language identifier. */
11402 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11403 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11404
11405 if (res.comp_dir == NULL
11406 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11407 && IS_ABSOLUTE_PATH (res.name))
11408 {
11409 res.comp_dir_storage = ldirname (res.name);
11410 if (!res.comp_dir_storage.empty ())
11411 res.comp_dir = res.comp_dir_storage.c_str ();
11412 }
11413 if (res.comp_dir != NULL)
11414 {
11415 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11416 directory, get rid of it. */
11417 const char *cp = strchr (res.comp_dir, ':');
11418
11419 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11420 res.comp_dir = cp + 1;
11421 }
11422
11423 if (res.name == NULL)
11424 res.name = "<unknown>";
11425
11426 return res;
11427 }
11428
11429 /* Handle DW_AT_stmt_list for a compilation unit.
11430 DIE is the DW_TAG_compile_unit die for CU.
11431 COMP_DIR is the compilation directory. LOWPC is passed to
11432 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11433
11434 static void
11435 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11436 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11437 {
11438 struct dwarf2_per_objfile *dwarf2_per_objfile
11439 = cu->per_cu->dwarf2_per_objfile;
11440 struct objfile *objfile = dwarf2_per_objfile->objfile;
11441 struct attribute *attr;
11442 struct line_header line_header_local;
11443 hashval_t line_header_local_hash;
11444 void **slot;
11445 int decode_mapping;
11446
11447 gdb_assert (! cu->per_cu->is_debug_types);
11448
11449 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11450 if (attr == NULL)
11451 return;
11452
11453 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11454
11455 /* The line header hash table is only created if needed (it exists to
11456 prevent redundant reading of the line table for partial_units).
11457 If we're given a partial_unit, we'll need it. If we're given a
11458 compile_unit, then use the line header hash table if it's already
11459 created, but don't create one just yet. */
11460
11461 if (dwarf2_per_objfile->line_header_hash == NULL
11462 && die->tag == DW_TAG_partial_unit)
11463 {
11464 dwarf2_per_objfile->line_header_hash
11465 = htab_create_alloc_ex (127, line_header_hash_voidp,
11466 line_header_eq_voidp,
11467 free_line_header_voidp,
11468 &objfile->objfile_obstack,
11469 hashtab_obstack_allocate,
11470 dummy_obstack_deallocate);
11471 }
11472
11473 line_header_local.sect_off = line_offset;
11474 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11475 line_header_local_hash = line_header_hash (&line_header_local);
11476 if (dwarf2_per_objfile->line_header_hash != NULL)
11477 {
11478 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11479 &line_header_local,
11480 line_header_local_hash, NO_INSERT);
11481
11482 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11483 is not present in *SLOT (since if there is something in *SLOT then
11484 it will be for a partial_unit). */
11485 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11486 {
11487 gdb_assert (*slot != NULL);
11488 cu->line_header = (struct line_header *) *slot;
11489 return;
11490 }
11491 }
11492
11493 /* dwarf_decode_line_header does not yet provide sufficient information.
11494 We always have to call also dwarf_decode_lines for it. */
11495 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11496 if (lh == NULL)
11497 return;
11498
11499 cu->line_header = lh.release ();
11500 cu->line_header_die_owner = die;
11501
11502 if (dwarf2_per_objfile->line_header_hash == NULL)
11503 slot = NULL;
11504 else
11505 {
11506 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11507 &line_header_local,
11508 line_header_local_hash, INSERT);
11509 gdb_assert (slot != NULL);
11510 }
11511 if (slot != NULL && *slot == NULL)
11512 {
11513 /* This newly decoded line number information unit will be owned
11514 by line_header_hash hash table. */
11515 *slot = cu->line_header;
11516 cu->line_header_die_owner = NULL;
11517 }
11518 else
11519 {
11520 /* We cannot free any current entry in (*slot) as that struct line_header
11521 may be already used by multiple CUs. Create only temporary decoded
11522 line_header for this CU - it may happen at most once for each line
11523 number information unit. And if we're not using line_header_hash
11524 then this is what we want as well. */
11525 gdb_assert (die->tag != DW_TAG_partial_unit);
11526 }
11527 decode_mapping = (die->tag != DW_TAG_partial_unit);
11528 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11529 decode_mapping);
11530
11531 }
11532
11533 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11534
11535 static void
11536 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11537 {
11538 struct dwarf2_per_objfile *dwarf2_per_objfile
11539 = cu->per_cu->dwarf2_per_objfile;
11540 struct objfile *objfile = dwarf2_per_objfile->objfile;
11541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11542 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11543 CORE_ADDR highpc = ((CORE_ADDR) 0);
11544 struct attribute *attr;
11545 struct die_info *child_die;
11546 CORE_ADDR baseaddr;
11547
11548 prepare_one_comp_unit (cu, die, cu->language);
11549 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11550
11551 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11552
11553 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11554 from finish_block. */
11555 if (lowpc == ((CORE_ADDR) -1))
11556 lowpc = highpc;
11557 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11558
11559 file_and_directory fnd = find_file_and_directory (die, cu);
11560
11561 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11562 standardised yet. As a workaround for the language detection we fall
11563 back to the DW_AT_producer string. */
11564 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11565 cu->language = language_opencl;
11566
11567 /* Similar hack for Go. */
11568 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11569 set_cu_language (DW_LANG_Go, cu);
11570
11571 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11572
11573 /* Decode line number information if present. We do this before
11574 processing child DIEs, so that the line header table is available
11575 for DW_AT_decl_file. */
11576 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11577
11578 /* Process all dies in compilation unit. */
11579 if (die->child != NULL)
11580 {
11581 child_die = die->child;
11582 while (child_die && child_die->tag)
11583 {
11584 process_die (child_die, cu);
11585 child_die = sibling_die (child_die);
11586 }
11587 }
11588
11589 /* Decode macro information, if present. Dwarf 2 macro information
11590 refers to information in the line number info statement program
11591 header, so we can only read it if we've read the header
11592 successfully. */
11593 attr = dwarf2_attr (die, DW_AT_macros, cu);
11594 if (attr == NULL)
11595 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11596 if (attr && cu->line_header)
11597 {
11598 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11599 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11600
11601 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11602 }
11603 else
11604 {
11605 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11606 if (attr && cu->line_header)
11607 {
11608 unsigned int macro_offset = DW_UNSND (attr);
11609
11610 dwarf_decode_macros (cu, macro_offset, 0);
11611 }
11612 }
11613 }
11614
11615 void
11616 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11617 {
11618 struct type_unit_group *tu_group;
11619 int first_time;
11620 struct attribute *attr;
11621 unsigned int i;
11622 struct signatured_type *sig_type;
11623
11624 gdb_assert (per_cu->is_debug_types);
11625 sig_type = (struct signatured_type *) per_cu;
11626
11627 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11628
11629 /* If we're using .gdb_index (includes -readnow) then
11630 per_cu->type_unit_group may not have been set up yet. */
11631 if (sig_type->type_unit_group == NULL)
11632 sig_type->type_unit_group = get_type_unit_group (this, attr);
11633 tu_group = sig_type->type_unit_group;
11634
11635 /* If we've already processed this stmt_list there's no real need to
11636 do it again, we could fake it and just recreate the part we need
11637 (file name,index -> symtab mapping). If data shows this optimization
11638 is useful we can do it then. */
11639 first_time = tu_group->compunit_symtab == NULL;
11640
11641 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11642 debug info. */
11643 line_header_up lh;
11644 if (attr != NULL)
11645 {
11646 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11647 lh = dwarf_decode_line_header (line_offset, this);
11648 }
11649 if (lh == NULL)
11650 {
11651 if (first_time)
11652 start_symtab ("", NULL, 0);
11653 else
11654 {
11655 gdb_assert (tu_group->symtabs == NULL);
11656 gdb_assert (m_builder == nullptr);
11657 struct compunit_symtab *cust = tu_group->compunit_symtab;
11658 m_builder.reset (new struct buildsym_compunit
11659 (COMPUNIT_OBJFILE (cust), "",
11660 COMPUNIT_DIRNAME (cust),
11661 compunit_language (cust),
11662 0, cust));
11663 }
11664 return;
11665 }
11666
11667 line_header = lh.release ();
11668 line_header_die_owner = die;
11669
11670 if (first_time)
11671 {
11672 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11673
11674 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11675 still initializing it, and our caller (a few levels up)
11676 process_full_type_unit still needs to know if this is the first
11677 time. */
11678
11679 tu_group->num_symtabs = line_header->file_names.size ();
11680 tu_group->symtabs = XNEWVEC (struct symtab *,
11681 line_header->file_names.size ());
11682
11683 for (i = 0; i < line_header->file_names.size (); ++i)
11684 {
11685 file_entry &fe = line_header->file_names[i];
11686
11687 dwarf2_start_subfile (this, fe.name,
11688 fe.include_dir (line_header));
11689 buildsym_compunit *b = get_builder ();
11690 if (b->get_current_subfile ()->symtab == NULL)
11691 {
11692 /* NOTE: start_subfile will recognize when it's been
11693 passed a file it has already seen. So we can't
11694 assume there's a simple mapping from
11695 cu->line_header->file_names to subfiles, plus
11696 cu->line_header->file_names may contain dups. */
11697 b->get_current_subfile ()->symtab
11698 = allocate_symtab (cust, b->get_current_subfile ()->name);
11699 }
11700
11701 fe.symtab = b->get_current_subfile ()->symtab;
11702 tu_group->symtabs[i] = fe.symtab;
11703 }
11704 }
11705 else
11706 {
11707 gdb_assert (m_builder == nullptr);
11708 struct compunit_symtab *cust = tu_group->compunit_symtab;
11709 m_builder.reset (new struct buildsym_compunit
11710 (COMPUNIT_OBJFILE (cust), "",
11711 COMPUNIT_DIRNAME (cust),
11712 compunit_language (cust),
11713 0, cust));
11714
11715 for (i = 0; i < line_header->file_names.size (); ++i)
11716 {
11717 file_entry &fe = line_header->file_names[i];
11718
11719 fe.symtab = tu_group->symtabs[i];
11720 }
11721 }
11722
11723 /* The main symtab is allocated last. Type units don't have DW_AT_name
11724 so they don't have a "real" (so to speak) symtab anyway.
11725 There is later code that will assign the main symtab to all symbols
11726 that don't have one. We need to handle the case of a symbol with a
11727 missing symtab (DW_AT_decl_file) anyway. */
11728 }
11729
11730 /* Process DW_TAG_type_unit.
11731 For TUs we want to skip the first top level sibling if it's not the
11732 actual type being defined by this TU. In this case the first top
11733 level sibling is there to provide context only. */
11734
11735 static void
11736 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11737 {
11738 struct die_info *child_die;
11739
11740 prepare_one_comp_unit (cu, die, language_minimal);
11741
11742 /* Initialize (or reinitialize) the machinery for building symtabs.
11743 We do this before processing child DIEs, so that the line header table
11744 is available for DW_AT_decl_file. */
11745 cu->setup_type_unit_groups (die);
11746
11747 if (die->child != NULL)
11748 {
11749 child_die = die->child;
11750 while (child_die && child_die->tag)
11751 {
11752 process_die (child_die, cu);
11753 child_die = sibling_die (child_die);
11754 }
11755 }
11756 }
11757 \f
11758 /* DWO/DWP files.
11759
11760 http://gcc.gnu.org/wiki/DebugFission
11761 http://gcc.gnu.org/wiki/DebugFissionDWP
11762
11763 To simplify handling of both DWO files ("object" files with the DWARF info)
11764 and DWP files (a file with the DWOs packaged up into one file), we treat
11765 DWP files as having a collection of virtual DWO files. */
11766
11767 static hashval_t
11768 hash_dwo_file (const void *item)
11769 {
11770 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11771 hashval_t hash;
11772
11773 hash = htab_hash_string (dwo_file->dwo_name);
11774 if (dwo_file->comp_dir != NULL)
11775 hash += htab_hash_string (dwo_file->comp_dir);
11776 return hash;
11777 }
11778
11779 static int
11780 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11781 {
11782 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11783 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11784
11785 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11786 return 0;
11787 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11788 return lhs->comp_dir == rhs->comp_dir;
11789 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11790 }
11791
11792 /* Allocate a hash table for DWO files. */
11793
11794 static htab_t
11795 allocate_dwo_file_hash_table (struct objfile *objfile)
11796 {
11797 return htab_create_alloc_ex (41,
11798 hash_dwo_file,
11799 eq_dwo_file,
11800 NULL,
11801 &objfile->objfile_obstack,
11802 hashtab_obstack_allocate,
11803 dummy_obstack_deallocate);
11804 }
11805
11806 /* Lookup DWO file DWO_NAME. */
11807
11808 static void **
11809 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11810 const char *dwo_name,
11811 const char *comp_dir)
11812 {
11813 struct dwo_file find_entry;
11814 void **slot;
11815
11816 if (dwarf2_per_objfile->dwo_files == NULL)
11817 dwarf2_per_objfile->dwo_files
11818 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11819
11820 memset (&find_entry, 0, sizeof (find_entry));
11821 find_entry.dwo_name = dwo_name;
11822 find_entry.comp_dir = comp_dir;
11823 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11824
11825 return slot;
11826 }
11827
11828 static hashval_t
11829 hash_dwo_unit (const void *item)
11830 {
11831 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11832
11833 /* This drops the top 32 bits of the id, but is ok for a hash. */
11834 return dwo_unit->signature;
11835 }
11836
11837 static int
11838 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11839 {
11840 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11841 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11842
11843 /* The signature is assumed to be unique within the DWO file.
11844 So while object file CU dwo_id's always have the value zero,
11845 that's OK, assuming each object file DWO file has only one CU,
11846 and that's the rule for now. */
11847 return lhs->signature == rhs->signature;
11848 }
11849
11850 /* Allocate a hash table for DWO CUs,TUs.
11851 There is one of these tables for each of CUs,TUs for each DWO file. */
11852
11853 static htab_t
11854 allocate_dwo_unit_table (struct objfile *objfile)
11855 {
11856 /* Start out with a pretty small number.
11857 Generally DWO files contain only one CU and maybe some TUs. */
11858 return htab_create_alloc_ex (3,
11859 hash_dwo_unit,
11860 eq_dwo_unit,
11861 NULL,
11862 &objfile->objfile_obstack,
11863 hashtab_obstack_allocate,
11864 dummy_obstack_deallocate);
11865 }
11866
11867 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11868
11869 struct create_dwo_cu_data
11870 {
11871 struct dwo_file *dwo_file;
11872 struct dwo_unit dwo_unit;
11873 };
11874
11875 /* die_reader_func for create_dwo_cu. */
11876
11877 static void
11878 create_dwo_cu_reader (const struct die_reader_specs *reader,
11879 const gdb_byte *info_ptr,
11880 struct die_info *comp_unit_die,
11881 int has_children,
11882 void *datap)
11883 {
11884 struct dwarf2_cu *cu = reader->cu;
11885 sect_offset sect_off = cu->per_cu->sect_off;
11886 struct dwarf2_section_info *section = cu->per_cu->section;
11887 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11888 struct dwo_file *dwo_file = data->dwo_file;
11889 struct dwo_unit *dwo_unit = &data->dwo_unit;
11890 struct attribute *attr;
11891
11892 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11893 if (attr == NULL)
11894 {
11895 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11896 " its dwo_id [in module %s]"),
11897 sect_offset_str (sect_off), dwo_file->dwo_name);
11898 return;
11899 }
11900
11901 dwo_unit->dwo_file = dwo_file;
11902 dwo_unit->signature = DW_UNSND (attr);
11903 dwo_unit->section = section;
11904 dwo_unit->sect_off = sect_off;
11905 dwo_unit->length = cu->per_cu->length;
11906
11907 if (dwarf_read_debug)
11908 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11909 sect_offset_str (sect_off),
11910 hex_string (dwo_unit->signature));
11911 }
11912
11913 /* Create the dwo_units for the CUs in a DWO_FILE.
11914 Note: This function processes DWO files only, not DWP files. */
11915
11916 static void
11917 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11918 struct dwo_file &dwo_file, dwarf2_section_info &section,
11919 htab_t &cus_htab)
11920 {
11921 struct objfile *objfile = dwarf2_per_objfile->objfile;
11922 const gdb_byte *info_ptr, *end_ptr;
11923
11924 dwarf2_read_section (objfile, &section);
11925 info_ptr = section.buffer;
11926
11927 if (info_ptr == NULL)
11928 return;
11929
11930 if (dwarf_read_debug)
11931 {
11932 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11933 get_section_name (&section),
11934 get_section_file_name (&section));
11935 }
11936
11937 end_ptr = info_ptr + section.size;
11938 while (info_ptr < end_ptr)
11939 {
11940 struct dwarf2_per_cu_data per_cu;
11941 struct create_dwo_cu_data create_dwo_cu_data;
11942 struct dwo_unit *dwo_unit;
11943 void **slot;
11944 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11945
11946 memset (&create_dwo_cu_data.dwo_unit, 0,
11947 sizeof (create_dwo_cu_data.dwo_unit));
11948 memset (&per_cu, 0, sizeof (per_cu));
11949 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11950 per_cu.is_debug_types = 0;
11951 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11952 per_cu.section = &section;
11953 create_dwo_cu_data.dwo_file = &dwo_file;
11954
11955 init_cutu_and_read_dies_no_follow (
11956 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11957 info_ptr += per_cu.length;
11958
11959 // If the unit could not be parsed, skip it.
11960 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11961 continue;
11962
11963 if (cus_htab == NULL)
11964 cus_htab = allocate_dwo_unit_table (objfile);
11965
11966 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11967 *dwo_unit = create_dwo_cu_data.dwo_unit;
11968 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11969 gdb_assert (slot != NULL);
11970 if (*slot != NULL)
11971 {
11972 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11973 sect_offset dup_sect_off = dup_cu->sect_off;
11974
11975 complaint (_("debug cu entry at offset %s is duplicate to"
11976 " the entry at offset %s, signature %s"),
11977 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11978 hex_string (dwo_unit->signature));
11979 }
11980 *slot = (void *)dwo_unit;
11981 }
11982 }
11983
11984 /* DWP file .debug_{cu,tu}_index section format:
11985 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11986
11987 DWP Version 1:
11988
11989 Both index sections have the same format, and serve to map a 64-bit
11990 signature to a set of section numbers. Each section begins with a header,
11991 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11992 indexes, and a pool of 32-bit section numbers. The index sections will be
11993 aligned at 8-byte boundaries in the file.
11994
11995 The index section header consists of:
11996
11997 V, 32 bit version number
11998 -, 32 bits unused
11999 N, 32 bit number of compilation units or type units in the index
12000 M, 32 bit number of slots in the hash table
12001
12002 Numbers are recorded using the byte order of the application binary.
12003
12004 The hash table begins at offset 16 in the section, and consists of an array
12005 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12006 order of the application binary). Unused slots in the hash table are 0.
12007 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12008
12009 The parallel table begins immediately after the hash table
12010 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12011 array of 32-bit indexes (using the byte order of the application binary),
12012 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12013 table contains a 32-bit index into the pool of section numbers. For unused
12014 hash table slots, the corresponding entry in the parallel table will be 0.
12015
12016 The pool of section numbers begins immediately following the hash table
12017 (at offset 16 + 12 * M from the beginning of the section). The pool of
12018 section numbers consists of an array of 32-bit words (using the byte order
12019 of the application binary). Each item in the array is indexed starting
12020 from 0. The hash table entry provides the index of the first section
12021 number in the set. Additional section numbers in the set follow, and the
12022 set is terminated by a 0 entry (section number 0 is not used in ELF).
12023
12024 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12025 section must be the first entry in the set, and the .debug_abbrev.dwo must
12026 be the second entry. Other members of the set may follow in any order.
12027
12028 ---
12029
12030 DWP Version 2:
12031
12032 DWP Version 2 combines all the .debug_info, etc. sections into one,
12033 and the entries in the index tables are now offsets into these sections.
12034 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12035 section.
12036
12037 Index Section Contents:
12038 Header
12039 Hash Table of Signatures dwp_hash_table.hash_table
12040 Parallel Table of Indices dwp_hash_table.unit_table
12041 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12042 Table of Section Sizes dwp_hash_table.v2.sizes
12043
12044 The index section header consists of:
12045
12046 V, 32 bit version number
12047 L, 32 bit number of columns in the table of section offsets
12048 N, 32 bit number of compilation units or type units in the index
12049 M, 32 bit number of slots in the hash table
12050
12051 Numbers are recorded using the byte order of the application binary.
12052
12053 The hash table has the same format as version 1.
12054 The parallel table of indices has the same format as version 1,
12055 except that the entries are origin-1 indices into the table of sections
12056 offsets and the table of section sizes.
12057
12058 The table of offsets begins immediately following the parallel table
12059 (at offset 16 + 12 * M from the beginning of the section). The table is
12060 a two-dimensional array of 32-bit words (using the byte order of the
12061 application binary), with L columns and N+1 rows, in row-major order.
12062 Each row in the array is indexed starting from 0. The first row provides
12063 a key to the remaining rows: each column in this row provides an identifier
12064 for a debug section, and the offsets in the same column of subsequent rows
12065 refer to that section. The section identifiers are:
12066
12067 DW_SECT_INFO 1 .debug_info.dwo
12068 DW_SECT_TYPES 2 .debug_types.dwo
12069 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12070 DW_SECT_LINE 4 .debug_line.dwo
12071 DW_SECT_LOC 5 .debug_loc.dwo
12072 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12073 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12074 DW_SECT_MACRO 8 .debug_macro.dwo
12075
12076 The offsets provided by the CU and TU index sections are the base offsets
12077 for the contributions made by each CU or TU to the corresponding section
12078 in the package file. Each CU and TU header contains an abbrev_offset
12079 field, used to find the abbreviations table for that CU or TU within the
12080 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12081 be interpreted as relative to the base offset given in the index section.
12082 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12083 should be interpreted as relative to the base offset for .debug_line.dwo,
12084 and offsets into other debug sections obtained from DWARF attributes should
12085 also be interpreted as relative to the corresponding base offset.
12086
12087 The table of sizes begins immediately following the table of offsets.
12088 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12089 with L columns and N rows, in row-major order. Each row in the array is
12090 indexed starting from 1 (row 0 is shared by the two tables).
12091
12092 ---
12093
12094 Hash table lookup is handled the same in version 1 and 2:
12095
12096 We assume that N and M will not exceed 2^32 - 1.
12097 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12098
12099 Given a 64-bit compilation unit signature or a type signature S, an entry
12100 in the hash table is located as follows:
12101
12102 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12103 the low-order k bits all set to 1.
12104
12105 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12106
12107 3) If the hash table entry at index H matches the signature, use that
12108 entry. If the hash table entry at index H is unused (all zeroes),
12109 terminate the search: the signature is not present in the table.
12110
12111 4) Let H = (H + H') modulo M. Repeat at Step 3.
12112
12113 Because M > N and H' and M are relatively prime, the search is guaranteed
12114 to stop at an unused slot or find the match. */
12115
12116 /* Create a hash table to map DWO IDs to their CU/TU entry in
12117 .debug_{info,types}.dwo in DWP_FILE.
12118 Returns NULL if there isn't one.
12119 Note: This function processes DWP files only, not DWO files. */
12120
12121 static struct dwp_hash_table *
12122 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12123 struct dwp_file *dwp_file, int is_debug_types)
12124 {
12125 struct objfile *objfile = dwarf2_per_objfile->objfile;
12126 bfd *dbfd = dwp_file->dbfd.get ();
12127 const gdb_byte *index_ptr, *index_end;
12128 struct dwarf2_section_info *index;
12129 uint32_t version, nr_columns, nr_units, nr_slots;
12130 struct dwp_hash_table *htab;
12131
12132 if (is_debug_types)
12133 index = &dwp_file->sections.tu_index;
12134 else
12135 index = &dwp_file->sections.cu_index;
12136
12137 if (dwarf2_section_empty_p (index))
12138 return NULL;
12139 dwarf2_read_section (objfile, index);
12140
12141 index_ptr = index->buffer;
12142 index_end = index_ptr + index->size;
12143
12144 version = read_4_bytes (dbfd, index_ptr);
12145 index_ptr += 4;
12146 if (version == 2)
12147 nr_columns = read_4_bytes (dbfd, index_ptr);
12148 else
12149 nr_columns = 0;
12150 index_ptr += 4;
12151 nr_units = read_4_bytes (dbfd, index_ptr);
12152 index_ptr += 4;
12153 nr_slots = read_4_bytes (dbfd, index_ptr);
12154 index_ptr += 4;
12155
12156 if (version != 1 && version != 2)
12157 {
12158 error (_("Dwarf Error: unsupported DWP file version (%s)"
12159 " [in module %s]"),
12160 pulongest (version), dwp_file->name);
12161 }
12162 if (nr_slots != (nr_slots & -nr_slots))
12163 {
12164 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12165 " is not power of 2 [in module %s]"),
12166 pulongest (nr_slots), dwp_file->name);
12167 }
12168
12169 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12170 htab->version = version;
12171 htab->nr_columns = nr_columns;
12172 htab->nr_units = nr_units;
12173 htab->nr_slots = nr_slots;
12174 htab->hash_table = index_ptr;
12175 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12176
12177 /* Exit early if the table is empty. */
12178 if (nr_slots == 0 || nr_units == 0
12179 || (version == 2 && nr_columns == 0))
12180 {
12181 /* All must be zero. */
12182 if (nr_slots != 0 || nr_units != 0
12183 || (version == 2 && nr_columns != 0))
12184 {
12185 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12186 " all zero [in modules %s]"),
12187 dwp_file->name);
12188 }
12189 return htab;
12190 }
12191
12192 if (version == 1)
12193 {
12194 htab->section_pool.v1.indices =
12195 htab->unit_table + sizeof (uint32_t) * nr_slots;
12196 /* It's harder to decide whether the section is too small in v1.
12197 V1 is deprecated anyway so we punt. */
12198 }
12199 else
12200 {
12201 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12202 int *ids = htab->section_pool.v2.section_ids;
12203 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12204 /* Reverse map for error checking. */
12205 int ids_seen[DW_SECT_MAX + 1];
12206 int i;
12207
12208 if (nr_columns < 2)
12209 {
12210 error (_("Dwarf Error: bad DWP hash table, too few columns"
12211 " in section table [in module %s]"),
12212 dwp_file->name);
12213 }
12214 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12215 {
12216 error (_("Dwarf Error: bad DWP hash table, too many columns"
12217 " in section table [in module %s]"),
12218 dwp_file->name);
12219 }
12220 memset (ids, 255, sizeof_ids);
12221 memset (ids_seen, 255, sizeof (ids_seen));
12222 for (i = 0; i < nr_columns; ++i)
12223 {
12224 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12225
12226 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12227 {
12228 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12229 " in section table [in module %s]"),
12230 id, dwp_file->name);
12231 }
12232 if (ids_seen[id] != -1)
12233 {
12234 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12235 " id %d in section table [in module %s]"),
12236 id, dwp_file->name);
12237 }
12238 ids_seen[id] = i;
12239 ids[i] = id;
12240 }
12241 /* Must have exactly one info or types section. */
12242 if (((ids_seen[DW_SECT_INFO] != -1)
12243 + (ids_seen[DW_SECT_TYPES] != -1))
12244 != 1)
12245 {
12246 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12247 " DWO info/types section [in module %s]"),
12248 dwp_file->name);
12249 }
12250 /* Must have an abbrev section. */
12251 if (ids_seen[DW_SECT_ABBREV] == -1)
12252 {
12253 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12254 " section [in module %s]"),
12255 dwp_file->name);
12256 }
12257 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12258 htab->section_pool.v2.sizes =
12259 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12260 * nr_units * nr_columns);
12261 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12262 * nr_units * nr_columns))
12263 > index_end)
12264 {
12265 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12266 " [in module %s]"),
12267 dwp_file->name);
12268 }
12269 }
12270
12271 return htab;
12272 }
12273
12274 /* Update SECTIONS with the data from SECTP.
12275
12276 This function is like the other "locate" section routines that are
12277 passed to bfd_map_over_sections, but in this context the sections to
12278 read comes from the DWP V1 hash table, not the full ELF section table.
12279
12280 The result is non-zero for success, or zero if an error was found. */
12281
12282 static int
12283 locate_v1_virtual_dwo_sections (asection *sectp,
12284 struct virtual_v1_dwo_sections *sections)
12285 {
12286 const struct dwop_section_names *names = &dwop_section_names;
12287
12288 if (section_is_p (sectp->name, &names->abbrev_dwo))
12289 {
12290 /* There can be only one. */
12291 if (sections->abbrev.s.section != NULL)
12292 return 0;
12293 sections->abbrev.s.section = sectp;
12294 sections->abbrev.size = bfd_get_section_size (sectp);
12295 }
12296 else if (section_is_p (sectp->name, &names->info_dwo)
12297 || section_is_p (sectp->name, &names->types_dwo))
12298 {
12299 /* There can be only one. */
12300 if (sections->info_or_types.s.section != NULL)
12301 return 0;
12302 sections->info_or_types.s.section = sectp;
12303 sections->info_or_types.size = bfd_get_section_size (sectp);
12304 }
12305 else if (section_is_p (sectp->name, &names->line_dwo))
12306 {
12307 /* There can be only one. */
12308 if (sections->line.s.section != NULL)
12309 return 0;
12310 sections->line.s.section = sectp;
12311 sections->line.size = bfd_get_section_size (sectp);
12312 }
12313 else if (section_is_p (sectp->name, &names->loc_dwo))
12314 {
12315 /* There can be only one. */
12316 if (sections->loc.s.section != NULL)
12317 return 0;
12318 sections->loc.s.section = sectp;
12319 sections->loc.size = bfd_get_section_size (sectp);
12320 }
12321 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12322 {
12323 /* There can be only one. */
12324 if (sections->macinfo.s.section != NULL)
12325 return 0;
12326 sections->macinfo.s.section = sectp;
12327 sections->macinfo.size = bfd_get_section_size (sectp);
12328 }
12329 else if (section_is_p (sectp->name, &names->macro_dwo))
12330 {
12331 /* There can be only one. */
12332 if (sections->macro.s.section != NULL)
12333 return 0;
12334 sections->macro.s.section = sectp;
12335 sections->macro.size = bfd_get_section_size (sectp);
12336 }
12337 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12338 {
12339 /* There can be only one. */
12340 if (sections->str_offsets.s.section != NULL)
12341 return 0;
12342 sections->str_offsets.s.section = sectp;
12343 sections->str_offsets.size = bfd_get_section_size (sectp);
12344 }
12345 else
12346 {
12347 /* No other kind of section is valid. */
12348 return 0;
12349 }
12350
12351 return 1;
12352 }
12353
12354 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12355 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12356 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12357 This is for DWP version 1 files. */
12358
12359 static struct dwo_unit *
12360 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12361 struct dwp_file *dwp_file,
12362 uint32_t unit_index,
12363 const char *comp_dir,
12364 ULONGEST signature, int is_debug_types)
12365 {
12366 struct objfile *objfile = dwarf2_per_objfile->objfile;
12367 const struct dwp_hash_table *dwp_htab =
12368 is_debug_types ? dwp_file->tus : dwp_file->cus;
12369 bfd *dbfd = dwp_file->dbfd.get ();
12370 const char *kind = is_debug_types ? "TU" : "CU";
12371 struct dwo_file *dwo_file;
12372 struct dwo_unit *dwo_unit;
12373 struct virtual_v1_dwo_sections sections;
12374 void **dwo_file_slot;
12375 int i;
12376
12377 gdb_assert (dwp_file->version == 1);
12378
12379 if (dwarf_read_debug)
12380 {
12381 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12382 kind,
12383 pulongest (unit_index), hex_string (signature),
12384 dwp_file->name);
12385 }
12386
12387 /* Fetch the sections of this DWO unit.
12388 Put a limit on the number of sections we look for so that bad data
12389 doesn't cause us to loop forever. */
12390
12391 #define MAX_NR_V1_DWO_SECTIONS \
12392 (1 /* .debug_info or .debug_types */ \
12393 + 1 /* .debug_abbrev */ \
12394 + 1 /* .debug_line */ \
12395 + 1 /* .debug_loc */ \
12396 + 1 /* .debug_str_offsets */ \
12397 + 1 /* .debug_macro or .debug_macinfo */ \
12398 + 1 /* trailing zero */)
12399
12400 memset (&sections, 0, sizeof (sections));
12401
12402 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12403 {
12404 asection *sectp;
12405 uint32_t section_nr =
12406 read_4_bytes (dbfd,
12407 dwp_htab->section_pool.v1.indices
12408 + (unit_index + i) * sizeof (uint32_t));
12409
12410 if (section_nr == 0)
12411 break;
12412 if (section_nr >= dwp_file->num_sections)
12413 {
12414 error (_("Dwarf Error: bad DWP hash table, section number too large"
12415 " [in module %s]"),
12416 dwp_file->name);
12417 }
12418
12419 sectp = dwp_file->elf_sections[section_nr];
12420 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12421 {
12422 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12423 " [in module %s]"),
12424 dwp_file->name);
12425 }
12426 }
12427
12428 if (i < 2
12429 || dwarf2_section_empty_p (&sections.info_or_types)
12430 || dwarf2_section_empty_p (&sections.abbrev))
12431 {
12432 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12433 " [in module %s]"),
12434 dwp_file->name);
12435 }
12436 if (i == MAX_NR_V1_DWO_SECTIONS)
12437 {
12438 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12439 " [in module %s]"),
12440 dwp_file->name);
12441 }
12442
12443 /* It's easier for the rest of the code if we fake a struct dwo_file and
12444 have dwo_unit "live" in that. At least for now.
12445
12446 The DWP file can be made up of a random collection of CUs and TUs.
12447 However, for each CU + set of TUs that came from the same original DWO
12448 file, we can combine them back into a virtual DWO file to save space
12449 (fewer struct dwo_file objects to allocate). Remember that for really
12450 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12451
12452 std::string virtual_dwo_name =
12453 string_printf ("virtual-dwo/%d-%d-%d-%d",
12454 get_section_id (&sections.abbrev),
12455 get_section_id (&sections.line),
12456 get_section_id (&sections.loc),
12457 get_section_id (&sections.str_offsets));
12458 /* Can we use an existing virtual DWO file? */
12459 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12460 virtual_dwo_name.c_str (),
12461 comp_dir);
12462 /* Create one if necessary. */
12463 if (*dwo_file_slot == NULL)
12464 {
12465 if (dwarf_read_debug)
12466 {
12467 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12468 virtual_dwo_name.c_str ());
12469 }
12470 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12471 dwo_file->dwo_name
12472 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12473 virtual_dwo_name.c_str (),
12474 virtual_dwo_name.size ());
12475 dwo_file->comp_dir = comp_dir;
12476 dwo_file->sections.abbrev = sections.abbrev;
12477 dwo_file->sections.line = sections.line;
12478 dwo_file->sections.loc = sections.loc;
12479 dwo_file->sections.macinfo = sections.macinfo;
12480 dwo_file->sections.macro = sections.macro;
12481 dwo_file->sections.str_offsets = sections.str_offsets;
12482 /* The "str" section is global to the entire DWP file. */
12483 dwo_file->sections.str = dwp_file->sections.str;
12484 /* The info or types section is assigned below to dwo_unit,
12485 there's no need to record it in dwo_file.
12486 Also, we can't simply record type sections in dwo_file because
12487 we record a pointer into the vector in dwo_unit. As we collect more
12488 types we'll grow the vector and eventually have to reallocate space
12489 for it, invalidating all copies of pointers into the previous
12490 contents. */
12491 *dwo_file_slot = dwo_file;
12492 }
12493 else
12494 {
12495 if (dwarf_read_debug)
12496 {
12497 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12498 virtual_dwo_name.c_str ());
12499 }
12500 dwo_file = (struct dwo_file *) *dwo_file_slot;
12501 }
12502
12503 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12504 dwo_unit->dwo_file = dwo_file;
12505 dwo_unit->signature = signature;
12506 dwo_unit->section =
12507 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12508 *dwo_unit->section = sections.info_or_types;
12509 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12510
12511 return dwo_unit;
12512 }
12513
12514 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12515 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12516 piece within that section used by a TU/CU, return a virtual section
12517 of just that piece. */
12518
12519 static struct dwarf2_section_info
12520 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12521 struct dwarf2_section_info *section,
12522 bfd_size_type offset, bfd_size_type size)
12523 {
12524 struct dwarf2_section_info result;
12525 asection *sectp;
12526
12527 gdb_assert (section != NULL);
12528 gdb_assert (!section->is_virtual);
12529
12530 memset (&result, 0, sizeof (result));
12531 result.s.containing_section = section;
12532 result.is_virtual = 1;
12533
12534 if (size == 0)
12535 return result;
12536
12537 sectp = get_section_bfd_section (section);
12538
12539 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12540 bounds of the real section. This is a pretty-rare event, so just
12541 flag an error (easier) instead of a warning and trying to cope. */
12542 if (sectp == NULL
12543 || offset + size > bfd_get_section_size (sectp))
12544 {
12545 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12546 " in section %s [in module %s]"),
12547 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12548 objfile_name (dwarf2_per_objfile->objfile));
12549 }
12550
12551 result.virtual_offset = offset;
12552 result.size = size;
12553 return result;
12554 }
12555
12556 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12557 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12558 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12559 This is for DWP version 2 files. */
12560
12561 static struct dwo_unit *
12562 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12563 struct dwp_file *dwp_file,
12564 uint32_t unit_index,
12565 const char *comp_dir,
12566 ULONGEST signature, int is_debug_types)
12567 {
12568 struct objfile *objfile = dwarf2_per_objfile->objfile;
12569 const struct dwp_hash_table *dwp_htab =
12570 is_debug_types ? dwp_file->tus : dwp_file->cus;
12571 bfd *dbfd = dwp_file->dbfd.get ();
12572 const char *kind = is_debug_types ? "TU" : "CU";
12573 struct dwo_file *dwo_file;
12574 struct dwo_unit *dwo_unit;
12575 struct virtual_v2_dwo_sections sections;
12576 void **dwo_file_slot;
12577 int i;
12578
12579 gdb_assert (dwp_file->version == 2);
12580
12581 if (dwarf_read_debug)
12582 {
12583 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12584 kind,
12585 pulongest (unit_index), hex_string (signature),
12586 dwp_file->name);
12587 }
12588
12589 /* Fetch the section offsets of this DWO unit. */
12590
12591 memset (&sections, 0, sizeof (sections));
12592
12593 for (i = 0; i < dwp_htab->nr_columns; ++i)
12594 {
12595 uint32_t offset = read_4_bytes (dbfd,
12596 dwp_htab->section_pool.v2.offsets
12597 + (((unit_index - 1) * dwp_htab->nr_columns
12598 + i)
12599 * sizeof (uint32_t)));
12600 uint32_t size = read_4_bytes (dbfd,
12601 dwp_htab->section_pool.v2.sizes
12602 + (((unit_index - 1) * dwp_htab->nr_columns
12603 + i)
12604 * sizeof (uint32_t)));
12605
12606 switch (dwp_htab->section_pool.v2.section_ids[i])
12607 {
12608 case DW_SECT_INFO:
12609 case DW_SECT_TYPES:
12610 sections.info_or_types_offset = offset;
12611 sections.info_or_types_size = size;
12612 break;
12613 case DW_SECT_ABBREV:
12614 sections.abbrev_offset = offset;
12615 sections.abbrev_size = size;
12616 break;
12617 case DW_SECT_LINE:
12618 sections.line_offset = offset;
12619 sections.line_size = size;
12620 break;
12621 case DW_SECT_LOC:
12622 sections.loc_offset = offset;
12623 sections.loc_size = size;
12624 break;
12625 case DW_SECT_STR_OFFSETS:
12626 sections.str_offsets_offset = offset;
12627 sections.str_offsets_size = size;
12628 break;
12629 case DW_SECT_MACINFO:
12630 sections.macinfo_offset = offset;
12631 sections.macinfo_size = size;
12632 break;
12633 case DW_SECT_MACRO:
12634 sections.macro_offset = offset;
12635 sections.macro_size = size;
12636 break;
12637 }
12638 }
12639
12640 /* It's easier for the rest of the code if we fake a struct dwo_file and
12641 have dwo_unit "live" in that. At least for now.
12642
12643 The DWP file can be made up of a random collection of CUs and TUs.
12644 However, for each CU + set of TUs that came from the same original DWO
12645 file, we can combine them back into a virtual DWO file to save space
12646 (fewer struct dwo_file objects to allocate). Remember that for really
12647 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12648
12649 std::string virtual_dwo_name =
12650 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12651 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12652 (long) (sections.line_size ? sections.line_offset : 0),
12653 (long) (sections.loc_size ? sections.loc_offset : 0),
12654 (long) (sections.str_offsets_size
12655 ? sections.str_offsets_offset : 0));
12656 /* Can we use an existing virtual DWO file? */
12657 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12658 virtual_dwo_name.c_str (),
12659 comp_dir);
12660 /* Create one if necessary. */
12661 if (*dwo_file_slot == NULL)
12662 {
12663 if (dwarf_read_debug)
12664 {
12665 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12666 virtual_dwo_name.c_str ());
12667 }
12668 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12669 dwo_file->dwo_name
12670 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12671 virtual_dwo_name.c_str (),
12672 virtual_dwo_name.size ());
12673 dwo_file->comp_dir = comp_dir;
12674 dwo_file->sections.abbrev =
12675 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12676 sections.abbrev_offset, sections.abbrev_size);
12677 dwo_file->sections.line =
12678 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12679 sections.line_offset, sections.line_size);
12680 dwo_file->sections.loc =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12682 sections.loc_offset, sections.loc_size);
12683 dwo_file->sections.macinfo =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12685 sections.macinfo_offset, sections.macinfo_size);
12686 dwo_file->sections.macro =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12688 sections.macro_offset, sections.macro_size);
12689 dwo_file->sections.str_offsets =
12690 create_dwp_v2_section (dwarf2_per_objfile,
12691 &dwp_file->sections.str_offsets,
12692 sections.str_offsets_offset,
12693 sections.str_offsets_size);
12694 /* The "str" section is global to the entire DWP file. */
12695 dwo_file->sections.str = dwp_file->sections.str;
12696 /* The info or types section is assigned below to dwo_unit,
12697 there's no need to record it in dwo_file.
12698 Also, we can't simply record type sections in dwo_file because
12699 we record a pointer into the vector in dwo_unit. As we collect more
12700 types we'll grow the vector and eventually have to reallocate space
12701 for it, invalidating all copies of pointers into the previous
12702 contents. */
12703 *dwo_file_slot = dwo_file;
12704 }
12705 else
12706 {
12707 if (dwarf_read_debug)
12708 {
12709 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12710 virtual_dwo_name.c_str ());
12711 }
12712 dwo_file = (struct dwo_file *) *dwo_file_slot;
12713 }
12714
12715 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12716 dwo_unit->dwo_file = dwo_file;
12717 dwo_unit->signature = signature;
12718 dwo_unit->section =
12719 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12720 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12721 is_debug_types
12722 ? &dwp_file->sections.types
12723 : &dwp_file->sections.info,
12724 sections.info_or_types_offset,
12725 sections.info_or_types_size);
12726 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12727
12728 return dwo_unit;
12729 }
12730
12731 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12732 Returns NULL if the signature isn't found. */
12733
12734 static struct dwo_unit *
12735 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12736 struct dwp_file *dwp_file, const char *comp_dir,
12737 ULONGEST signature, int is_debug_types)
12738 {
12739 const struct dwp_hash_table *dwp_htab =
12740 is_debug_types ? dwp_file->tus : dwp_file->cus;
12741 bfd *dbfd = dwp_file->dbfd.get ();
12742 uint32_t mask = dwp_htab->nr_slots - 1;
12743 uint32_t hash = signature & mask;
12744 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12745 unsigned int i;
12746 void **slot;
12747 struct dwo_unit find_dwo_cu;
12748
12749 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12750 find_dwo_cu.signature = signature;
12751 slot = htab_find_slot (is_debug_types
12752 ? dwp_file->loaded_tus
12753 : dwp_file->loaded_cus,
12754 &find_dwo_cu, INSERT);
12755
12756 if (*slot != NULL)
12757 return (struct dwo_unit *) *slot;
12758
12759 /* Use a for loop so that we don't loop forever on bad debug info. */
12760 for (i = 0; i < dwp_htab->nr_slots; ++i)
12761 {
12762 ULONGEST signature_in_table;
12763
12764 signature_in_table =
12765 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12766 if (signature_in_table == signature)
12767 {
12768 uint32_t unit_index =
12769 read_4_bytes (dbfd,
12770 dwp_htab->unit_table + hash * sizeof (uint32_t));
12771
12772 if (dwp_file->version == 1)
12773 {
12774 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12775 dwp_file, unit_index,
12776 comp_dir, signature,
12777 is_debug_types);
12778 }
12779 else
12780 {
12781 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12782 dwp_file, unit_index,
12783 comp_dir, signature,
12784 is_debug_types);
12785 }
12786 return (struct dwo_unit *) *slot;
12787 }
12788 if (signature_in_table == 0)
12789 return NULL;
12790 hash = (hash + hash2) & mask;
12791 }
12792
12793 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12794 " [in module %s]"),
12795 dwp_file->name);
12796 }
12797
12798 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12799 Open the file specified by FILE_NAME and hand it off to BFD for
12800 preliminary analysis. Return a newly initialized bfd *, which
12801 includes a canonicalized copy of FILE_NAME.
12802 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12803 SEARCH_CWD is true if the current directory is to be searched.
12804 It will be searched before debug-file-directory.
12805 If successful, the file is added to the bfd include table of the
12806 objfile's bfd (see gdb_bfd_record_inclusion).
12807 If unable to find/open the file, return NULL.
12808 NOTE: This function is derived from symfile_bfd_open. */
12809
12810 static gdb_bfd_ref_ptr
12811 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12812 const char *file_name, int is_dwp, int search_cwd)
12813 {
12814 int desc;
12815 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12816 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12817 to debug_file_directory. */
12818 const char *search_path;
12819 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12820
12821 gdb::unique_xmalloc_ptr<char> search_path_holder;
12822 if (search_cwd)
12823 {
12824 if (*debug_file_directory != '\0')
12825 {
12826 search_path_holder.reset (concat (".", dirname_separator_string,
12827 debug_file_directory,
12828 (char *) NULL));
12829 search_path = search_path_holder.get ();
12830 }
12831 else
12832 search_path = ".";
12833 }
12834 else
12835 search_path = debug_file_directory;
12836
12837 openp_flags flags = OPF_RETURN_REALPATH;
12838 if (is_dwp)
12839 flags |= OPF_SEARCH_IN_PATH;
12840
12841 gdb::unique_xmalloc_ptr<char> absolute_name;
12842 desc = openp (search_path, flags, file_name,
12843 O_RDONLY | O_BINARY, &absolute_name);
12844 if (desc < 0)
12845 return NULL;
12846
12847 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12848 gnutarget, desc));
12849 if (sym_bfd == NULL)
12850 return NULL;
12851 bfd_set_cacheable (sym_bfd.get (), 1);
12852
12853 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12854 return NULL;
12855
12856 /* Success. Record the bfd as having been included by the objfile's bfd.
12857 This is important because things like demangled_names_hash lives in the
12858 objfile's per_bfd space and may have references to things like symbol
12859 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12860 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12861
12862 return sym_bfd;
12863 }
12864
12865 /* Try to open DWO file FILE_NAME.
12866 COMP_DIR is the DW_AT_comp_dir attribute.
12867 The result is the bfd handle of the file.
12868 If there is a problem finding or opening the file, return NULL.
12869 Upon success, the canonicalized path of the file is stored in the bfd,
12870 same as symfile_bfd_open. */
12871
12872 static gdb_bfd_ref_ptr
12873 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12874 const char *file_name, const char *comp_dir)
12875 {
12876 if (IS_ABSOLUTE_PATH (file_name))
12877 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12878 0 /*is_dwp*/, 0 /*search_cwd*/);
12879
12880 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12881
12882 if (comp_dir != NULL)
12883 {
12884 char *path_to_try = concat (comp_dir, SLASH_STRING,
12885 file_name, (char *) NULL);
12886
12887 /* NOTE: If comp_dir is a relative path, this will also try the
12888 search path, which seems useful. */
12889 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12890 path_to_try,
12891 0 /*is_dwp*/,
12892 1 /*search_cwd*/));
12893 xfree (path_to_try);
12894 if (abfd != NULL)
12895 return abfd;
12896 }
12897
12898 /* That didn't work, try debug-file-directory, which, despite its name,
12899 is a list of paths. */
12900
12901 if (*debug_file_directory == '\0')
12902 return NULL;
12903
12904 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12905 0 /*is_dwp*/, 1 /*search_cwd*/);
12906 }
12907
12908 /* This function is mapped across the sections and remembers the offset and
12909 size of each of the DWO debugging sections we are interested in. */
12910
12911 static void
12912 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12913 {
12914 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12915 const struct dwop_section_names *names = &dwop_section_names;
12916
12917 if (section_is_p (sectp->name, &names->abbrev_dwo))
12918 {
12919 dwo_sections->abbrev.s.section = sectp;
12920 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12921 }
12922 else if (section_is_p (sectp->name, &names->info_dwo))
12923 {
12924 dwo_sections->info.s.section = sectp;
12925 dwo_sections->info.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->line_dwo))
12928 {
12929 dwo_sections->line.s.section = sectp;
12930 dwo_sections->line.size = bfd_get_section_size (sectp);
12931 }
12932 else if (section_is_p (sectp->name, &names->loc_dwo))
12933 {
12934 dwo_sections->loc.s.section = sectp;
12935 dwo_sections->loc.size = bfd_get_section_size (sectp);
12936 }
12937 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12938 {
12939 dwo_sections->macinfo.s.section = sectp;
12940 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12941 }
12942 else if (section_is_p (sectp->name, &names->macro_dwo))
12943 {
12944 dwo_sections->macro.s.section = sectp;
12945 dwo_sections->macro.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->str_dwo))
12948 {
12949 dwo_sections->str.s.section = sectp;
12950 dwo_sections->str.size = bfd_get_section_size (sectp);
12951 }
12952 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12953 {
12954 dwo_sections->str_offsets.s.section = sectp;
12955 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12956 }
12957 else if (section_is_p (sectp->name, &names->types_dwo))
12958 {
12959 struct dwarf2_section_info type_section;
12960
12961 memset (&type_section, 0, sizeof (type_section));
12962 type_section.s.section = sectp;
12963 type_section.size = bfd_get_section_size (sectp);
12964 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12965 &type_section);
12966 }
12967 }
12968
12969 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12970 by PER_CU. This is for the non-DWP case.
12971 The result is NULL if DWO_NAME can't be found. */
12972
12973 static struct dwo_file *
12974 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12975 const char *dwo_name, const char *comp_dir)
12976 {
12977 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12978 struct objfile *objfile = dwarf2_per_objfile->objfile;
12979
12980 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12981 if (dbfd == NULL)
12982 {
12983 if (dwarf_read_debug)
12984 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12985 return NULL;
12986 }
12987
12988 /* We use a unique pointer here, despite the obstack allocation,
12989 because a dwo_file needs some cleanup if it is abandoned. */
12990 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12991 struct dwo_file));
12992 dwo_file->dwo_name = dwo_name;
12993 dwo_file->comp_dir = comp_dir;
12994 dwo_file->dbfd = dbfd.release ();
12995
12996 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12997 &dwo_file->sections);
12998
12999 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13000 dwo_file->cus);
13001
13002 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13003 dwo_file->sections.types, dwo_file->tus);
13004
13005 if (dwarf_read_debug)
13006 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13007
13008 return dwo_file.release ();
13009 }
13010
13011 /* This function is mapped across the sections and remembers the offset and
13012 size of each of the DWP debugging sections common to version 1 and 2 that
13013 we are interested in. */
13014
13015 static void
13016 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13017 void *dwp_file_ptr)
13018 {
13019 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13020 const struct dwop_section_names *names = &dwop_section_names;
13021 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13022
13023 /* Record the ELF section number for later lookup: this is what the
13024 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13025 gdb_assert (elf_section_nr < dwp_file->num_sections);
13026 dwp_file->elf_sections[elf_section_nr] = sectp;
13027
13028 /* Look for specific sections that we need. */
13029 if (section_is_p (sectp->name, &names->str_dwo))
13030 {
13031 dwp_file->sections.str.s.section = sectp;
13032 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13033 }
13034 else if (section_is_p (sectp->name, &names->cu_index))
13035 {
13036 dwp_file->sections.cu_index.s.section = sectp;
13037 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13038 }
13039 else if (section_is_p (sectp->name, &names->tu_index))
13040 {
13041 dwp_file->sections.tu_index.s.section = sectp;
13042 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13043 }
13044 }
13045
13046 /* This function is mapped across the sections and remembers the offset and
13047 size of each of the DWP version 2 debugging sections that we are interested
13048 in. This is split into a separate function because we don't know if we
13049 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13050
13051 static void
13052 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13053 {
13054 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13055 const struct dwop_section_names *names = &dwop_section_names;
13056 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13057
13058 /* Record the ELF section number for later lookup: this is what the
13059 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13060 gdb_assert (elf_section_nr < dwp_file->num_sections);
13061 dwp_file->elf_sections[elf_section_nr] = sectp;
13062
13063 /* Look for specific sections that we need. */
13064 if (section_is_p (sectp->name, &names->abbrev_dwo))
13065 {
13066 dwp_file->sections.abbrev.s.section = sectp;
13067 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13068 }
13069 else if (section_is_p (sectp->name, &names->info_dwo))
13070 {
13071 dwp_file->sections.info.s.section = sectp;
13072 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13073 }
13074 else if (section_is_p (sectp->name, &names->line_dwo))
13075 {
13076 dwp_file->sections.line.s.section = sectp;
13077 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13078 }
13079 else if (section_is_p (sectp->name, &names->loc_dwo))
13080 {
13081 dwp_file->sections.loc.s.section = sectp;
13082 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13083 }
13084 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13085 {
13086 dwp_file->sections.macinfo.s.section = sectp;
13087 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13088 }
13089 else if (section_is_p (sectp->name, &names->macro_dwo))
13090 {
13091 dwp_file->sections.macro.s.section = sectp;
13092 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13093 }
13094 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13095 {
13096 dwp_file->sections.str_offsets.s.section = sectp;
13097 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13098 }
13099 else if (section_is_p (sectp->name, &names->types_dwo))
13100 {
13101 dwp_file->sections.types.s.section = sectp;
13102 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13103 }
13104 }
13105
13106 /* Hash function for dwp_file loaded CUs/TUs. */
13107
13108 static hashval_t
13109 hash_dwp_loaded_cutus (const void *item)
13110 {
13111 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13112
13113 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13114 return dwo_unit->signature;
13115 }
13116
13117 /* Equality function for dwp_file loaded CUs/TUs. */
13118
13119 static int
13120 eq_dwp_loaded_cutus (const void *a, const void *b)
13121 {
13122 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13123 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13124
13125 return dua->signature == dub->signature;
13126 }
13127
13128 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13129
13130 static htab_t
13131 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13132 {
13133 return htab_create_alloc_ex (3,
13134 hash_dwp_loaded_cutus,
13135 eq_dwp_loaded_cutus,
13136 NULL,
13137 &objfile->objfile_obstack,
13138 hashtab_obstack_allocate,
13139 dummy_obstack_deallocate);
13140 }
13141
13142 /* Try to open DWP file FILE_NAME.
13143 The result is the bfd handle of the file.
13144 If there is a problem finding or opening the file, return NULL.
13145 Upon success, the canonicalized path of the file is stored in the bfd,
13146 same as symfile_bfd_open. */
13147
13148 static gdb_bfd_ref_ptr
13149 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13150 const char *file_name)
13151 {
13152 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13153 1 /*is_dwp*/,
13154 1 /*search_cwd*/));
13155 if (abfd != NULL)
13156 return abfd;
13157
13158 /* Work around upstream bug 15652.
13159 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13160 [Whether that's a "bug" is debatable, but it is getting in our way.]
13161 We have no real idea where the dwp file is, because gdb's realpath-ing
13162 of the executable's path may have discarded the needed info.
13163 [IWBN if the dwp file name was recorded in the executable, akin to
13164 .gnu_debuglink, but that doesn't exist yet.]
13165 Strip the directory from FILE_NAME and search again. */
13166 if (*debug_file_directory != '\0')
13167 {
13168 /* Don't implicitly search the current directory here.
13169 If the user wants to search "." to handle this case,
13170 it must be added to debug-file-directory. */
13171 return try_open_dwop_file (dwarf2_per_objfile,
13172 lbasename (file_name), 1 /*is_dwp*/,
13173 0 /*search_cwd*/);
13174 }
13175
13176 return NULL;
13177 }
13178
13179 /* Initialize the use of the DWP file for the current objfile.
13180 By convention the name of the DWP file is ${objfile}.dwp.
13181 The result is NULL if it can't be found. */
13182
13183 static std::unique_ptr<struct dwp_file>
13184 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13185 {
13186 struct objfile *objfile = dwarf2_per_objfile->objfile;
13187
13188 /* Try to find first .dwp for the binary file before any symbolic links
13189 resolving. */
13190
13191 /* If the objfile is a debug file, find the name of the real binary
13192 file and get the name of dwp file from there. */
13193 std::string dwp_name;
13194 if (objfile->separate_debug_objfile_backlink != NULL)
13195 {
13196 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13197 const char *backlink_basename = lbasename (backlink->original_name);
13198
13199 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13200 }
13201 else
13202 dwp_name = objfile->original_name;
13203
13204 dwp_name += ".dwp";
13205
13206 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13207 if (dbfd == NULL
13208 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13209 {
13210 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13211 dwp_name = objfile_name (objfile);
13212 dwp_name += ".dwp";
13213 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13214 }
13215
13216 if (dbfd == NULL)
13217 {
13218 if (dwarf_read_debug)
13219 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13220 return std::unique_ptr<dwp_file> ();
13221 }
13222
13223 const char *name = bfd_get_filename (dbfd.get ());
13224 std::unique_ptr<struct dwp_file> dwp_file
13225 (new struct dwp_file (name, std::move (dbfd)));
13226
13227 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13228 dwp_file->elf_sections =
13229 OBSTACK_CALLOC (&objfile->objfile_obstack,
13230 dwp_file->num_sections, asection *);
13231
13232 bfd_map_over_sections (dwp_file->dbfd.get (),
13233 dwarf2_locate_common_dwp_sections,
13234 dwp_file.get ());
13235
13236 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 0);
13238
13239 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13240 1);
13241
13242 /* The DWP file version is stored in the hash table. Oh well. */
13243 if (dwp_file->cus && dwp_file->tus
13244 && dwp_file->cus->version != dwp_file->tus->version)
13245 {
13246 /* Technically speaking, we should try to limp along, but this is
13247 pretty bizarre. We use pulongest here because that's the established
13248 portability solution (e.g, we cannot use %u for uint32_t). */
13249 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13250 " TU version %s [in DWP file %s]"),
13251 pulongest (dwp_file->cus->version),
13252 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13253 }
13254
13255 if (dwp_file->cus)
13256 dwp_file->version = dwp_file->cus->version;
13257 else if (dwp_file->tus)
13258 dwp_file->version = dwp_file->tus->version;
13259 else
13260 dwp_file->version = 2;
13261
13262 if (dwp_file->version == 2)
13263 bfd_map_over_sections (dwp_file->dbfd.get (),
13264 dwarf2_locate_v2_dwp_sections,
13265 dwp_file.get ());
13266
13267 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13268 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13269
13270 if (dwarf_read_debug)
13271 {
13272 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13273 fprintf_unfiltered (gdb_stdlog,
13274 " %s CUs, %s TUs\n",
13275 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13276 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13277 }
13278
13279 return dwp_file;
13280 }
13281
13282 /* Wrapper around open_and_init_dwp_file, only open it once. */
13283
13284 static struct dwp_file *
13285 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13286 {
13287 if (! dwarf2_per_objfile->dwp_checked)
13288 {
13289 dwarf2_per_objfile->dwp_file
13290 = open_and_init_dwp_file (dwarf2_per_objfile);
13291 dwarf2_per_objfile->dwp_checked = 1;
13292 }
13293 return dwarf2_per_objfile->dwp_file.get ();
13294 }
13295
13296 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13297 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13298 or in the DWP file for the objfile, referenced by THIS_UNIT.
13299 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13300 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13301
13302 This is called, for example, when wanting to read a variable with a
13303 complex location. Therefore we don't want to do file i/o for every call.
13304 Therefore we don't want to look for a DWO file on every call.
13305 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13306 then we check if we've already seen DWO_NAME, and only THEN do we check
13307 for a DWO file.
13308
13309 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13310 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13311
13312 static struct dwo_unit *
13313 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13314 const char *dwo_name, const char *comp_dir,
13315 ULONGEST signature, int is_debug_types)
13316 {
13317 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13318 struct objfile *objfile = dwarf2_per_objfile->objfile;
13319 const char *kind = is_debug_types ? "TU" : "CU";
13320 void **dwo_file_slot;
13321 struct dwo_file *dwo_file;
13322 struct dwp_file *dwp_file;
13323
13324 /* First see if there's a DWP file.
13325 If we have a DWP file but didn't find the DWO inside it, don't
13326 look for the original DWO file. It makes gdb behave differently
13327 depending on whether one is debugging in the build tree. */
13328
13329 dwp_file = get_dwp_file (dwarf2_per_objfile);
13330 if (dwp_file != NULL)
13331 {
13332 const struct dwp_hash_table *dwp_htab =
13333 is_debug_types ? dwp_file->tus : dwp_file->cus;
13334
13335 if (dwp_htab != NULL)
13336 {
13337 struct dwo_unit *dwo_cutu =
13338 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13339 signature, is_debug_types);
13340
13341 if (dwo_cutu != NULL)
13342 {
13343 if (dwarf_read_debug)
13344 {
13345 fprintf_unfiltered (gdb_stdlog,
13346 "Virtual DWO %s %s found: @%s\n",
13347 kind, hex_string (signature),
13348 host_address_to_string (dwo_cutu));
13349 }
13350 return dwo_cutu;
13351 }
13352 }
13353 }
13354 else
13355 {
13356 /* No DWP file, look for the DWO file. */
13357
13358 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13359 dwo_name, comp_dir);
13360 if (*dwo_file_slot == NULL)
13361 {
13362 /* Read in the file and build a table of the CUs/TUs it contains. */
13363 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13364 }
13365 /* NOTE: This will be NULL if unable to open the file. */
13366 dwo_file = (struct dwo_file *) *dwo_file_slot;
13367
13368 if (dwo_file != NULL)
13369 {
13370 struct dwo_unit *dwo_cutu = NULL;
13371
13372 if (is_debug_types && dwo_file->tus)
13373 {
13374 struct dwo_unit find_dwo_cutu;
13375
13376 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13377 find_dwo_cutu.signature = signature;
13378 dwo_cutu
13379 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13380 }
13381 else if (!is_debug_types && dwo_file->cus)
13382 {
13383 struct dwo_unit find_dwo_cutu;
13384
13385 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13386 find_dwo_cutu.signature = signature;
13387 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13388 &find_dwo_cutu);
13389 }
13390
13391 if (dwo_cutu != NULL)
13392 {
13393 if (dwarf_read_debug)
13394 {
13395 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13396 kind, dwo_name, hex_string (signature),
13397 host_address_to_string (dwo_cutu));
13398 }
13399 return dwo_cutu;
13400 }
13401 }
13402 }
13403
13404 /* We didn't find it. This could mean a dwo_id mismatch, or
13405 someone deleted the DWO/DWP file, or the search path isn't set up
13406 correctly to find the file. */
13407
13408 if (dwarf_read_debug)
13409 {
13410 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13411 kind, dwo_name, hex_string (signature));
13412 }
13413
13414 /* This is a warning and not a complaint because it can be caused by
13415 pilot error (e.g., user accidentally deleting the DWO). */
13416 {
13417 /* Print the name of the DWP file if we looked there, helps the user
13418 better diagnose the problem. */
13419 std::string dwp_text;
13420
13421 if (dwp_file != NULL)
13422 dwp_text = string_printf (" [in DWP file %s]",
13423 lbasename (dwp_file->name));
13424
13425 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13426 " [in module %s]"),
13427 kind, dwo_name, hex_string (signature),
13428 dwp_text.c_str (),
13429 this_unit->is_debug_types ? "TU" : "CU",
13430 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13431 }
13432 return NULL;
13433 }
13434
13435 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13436 See lookup_dwo_cutu_unit for details. */
13437
13438 static struct dwo_unit *
13439 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13440 const char *dwo_name, const char *comp_dir,
13441 ULONGEST signature)
13442 {
13443 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13444 }
13445
13446 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13447 See lookup_dwo_cutu_unit for details. */
13448
13449 static struct dwo_unit *
13450 lookup_dwo_type_unit (struct signatured_type *this_tu,
13451 const char *dwo_name, const char *comp_dir)
13452 {
13453 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13454 }
13455
13456 /* Traversal function for queue_and_load_all_dwo_tus. */
13457
13458 static int
13459 queue_and_load_dwo_tu (void **slot, void *info)
13460 {
13461 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13462 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13463 ULONGEST signature = dwo_unit->signature;
13464 struct signatured_type *sig_type =
13465 lookup_dwo_signatured_type (per_cu->cu, signature);
13466
13467 if (sig_type != NULL)
13468 {
13469 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13470
13471 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13472 a real dependency of PER_CU on SIG_TYPE. That is detected later
13473 while processing PER_CU. */
13474 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13475 load_full_type_unit (sig_cu);
13476 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13477 }
13478
13479 return 1;
13480 }
13481
13482 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13483 The DWO may have the only definition of the type, though it may not be
13484 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13486
13487 static void
13488 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13489 {
13490 struct dwo_unit *dwo_unit;
13491 struct dwo_file *dwo_file;
13492
13493 gdb_assert (!per_cu->is_debug_types);
13494 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13495 gdb_assert (per_cu->cu != NULL);
13496
13497 dwo_unit = per_cu->cu->dwo_unit;
13498 gdb_assert (dwo_unit != NULL);
13499
13500 dwo_file = dwo_unit->dwo_file;
13501 if (dwo_file->tus != NULL)
13502 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13503 }
13504
13505 /* Free all resources associated with DWO_FILE.
13506 Close the DWO file and munmap the sections. */
13507
13508 static void
13509 free_dwo_file (struct dwo_file *dwo_file)
13510 {
13511 /* Note: dbfd is NULL for virtual DWO files. */
13512 gdb_bfd_unref (dwo_file->dbfd);
13513
13514 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13515 }
13516
13517 /* Traversal function for free_dwo_files. */
13518
13519 static int
13520 free_dwo_file_from_slot (void **slot, void *info)
13521 {
13522 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13523
13524 free_dwo_file (dwo_file);
13525
13526 return 1;
13527 }
13528
13529 /* Free all resources associated with DWO_FILES. */
13530
13531 static void
13532 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13533 {
13534 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13535 }
13536 \f
13537 /* Read in various DIEs. */
13538
13539 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13540 Inherit only the children of the DW_AT_abstract_origin DIE not being
13541 already referenced by DW_AT_abstract_origin from the children of the
13542 current DIE. */
13543
13544 static void
13545 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13546 {
13547 struct die_info *child_die;
13548 sect_offset *offsetp;
13549 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13550 struct die_info *origin_die;
13551 /* Iterator of the ORIGIN_DIE children. */
13552 struct die_info *origin_child_die;
13553 struct attribute *attr;
13554 struct dwarf2_cu *origin_cu;
13555 struct pending **origin_previous_list_in_scope;
13556
13557 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13558 if (!attr)
13559 return;
13560
13561 /* Note that following die references may follow to a die in a
13562 different cu. */
13563
13564 origin_cu = cu;
13565 origin_die = follow_die_ref (die, attr, &origin_cu);
13566
13567 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13568 symbols in. */
13569 origin_previous_list_in_scope = origin_cu->list_in_scope;
13570 origin_cu->list_in_scope = cu->list_in_scope;
13571
13572 if (die->tag != origin_die->tag
13573 && !(die->tag == DW_TAG_inlined_subroutine
13574 && origin_die->tag == DW_TAG_subprogram))
13575 complaint (_("DIE %s and its abstract origin %s have different tags"),
13576 sect_offset_str (die->sect_off),
13577 sect_offset_str (origin_die->sect_off));
13578
13579 std::vector<sect_offset> offsets;
13580
13581 for (child_die = die->child;
13582 child_die && child_die->tag;
13583 child_die = sibling_die (child_die))
13584 {
13585 struct die_info *child_origin_die;
13586 struct dwarf2_cu *child_origin_cu;
13587
13588 /* We are trying to process concrete instance entries:
13589 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13590 it's not relevant to our analysis here. i.e. detecting DIEs that are
13591 present in the abstract instance but not referenced in the concrete
13592 one. */
13593 if (child_die->tag == DW_TAG_call_site
13594 || child_die->tag == DW_TAG_GNU_call_site)
13595 continue;
13596
13597 /* For each CHILD_DIE, find the corresponding child of
13598 ORIGIN_DIE. If there is more than one layer of
13599 DW_AT_abstract_origin, follow them all; there shouldn't be,
13600 but GCC versions at least through 4.4 generate this (GCC PR
13601 40573). */
13602 child_origin_die = child_die;
13603 child_origin_cu = cu;
13604 while (1)
13605 {
13606 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13607 child_origin_cu);
13608 if (attr == NULL)
13609 break;
13610 child_origin_die = follow_die_ref (child_origin_die, attr,
13611 &child_origin_cu);
13612 }
13613
13614 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13615 counterpart may exist. */
13616 if (child_origin_die != child_die)
13617 {
13618 if (child_die->tag != child_origin_die->tag
13619 && !(child_die->tag == DW_TAG_inlined_subroutine
13620 && child_origin_die->tag == DW_TAG_subprogram))
13621 complaint (_("Child DIE %s and its abstract origin %s have "
13622 "different tags"),
13623 sect_offset_str (child_die->sect_off),
13624 sect_offset_str (child_origin_die->sect_off));
13625 if (child_origin_die->parent != origin_die)
13626 complaint (_("Child DIE %s and its abstract origin %s have "
13627 "different parents"),
13628 sect_offset_str (child_die->sect_off),
13629 sect_offset_str (child_origin_die->sect_off));
13630 else
13631 offsets.push_back (child_origin_die->sect_off);
13632 }
13633 }
13634 std::sort (offsets.begin (), offsets.end ());
13635 sect_offset *offsets_end = offsets.data () + offsets.size ();
13636 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13637 if (offsetp[-1] == *offsetp)
13638 complaint (_("Multiple children of DIE %s refer "
13639 "to DIE %s as their abstract origin"),
13640 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13641
13642 offsetp = offsets.data ();
13643 origin_child_die = origin_die->child;
13644 while (origin_child_die && origin_child_die->tag)
13645 {
13646 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13647 while (offsetp < offsets_end
13648 && *offsetp < origin_child_die->sect_off)
13649 offsetp++;
13650 if (offsetp >= offsets_end
13651 || *offsetp > origin_child_die->sect_off)
13652 {
13653 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13654 Check whether we're already processing ORIGIN_CHILD_DIE.
13655 This can happen with mutually referenced abstract_origins.
13656 PR 16581. */
13657 if (!origin_child_die->in_process)
13658 process_die (origin_child_die, origin_cu);
13659 }
13660 origin_child_die = sibling_die (origin_child_die);
13661 }
13662 origin_cu->list_in_scope = origin_previous_list_in_scope;
13663 }
13664
13665 static void
13666 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13667 {
13668 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13670 struct context_stack *newobj;
13671 CORE_ADDR lowpc;
13672 CORE_ADDR highpc;
13673 struct die_info *child_die;
13674 struct attribute *attr, *call_line, *call_file;
13675 const char *name;
13676 CORE_ADDR baseaddr;
13677 struct block *block;
13678 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13679 std::vector<struct symbol *> template_args;
13680 struct template_symbol *templ_func = NULL;
13681
13682 if (inlined_func)
13683 {
13684 /* If we do not have call site information, we can't show the
13685 caller of this inlined function. That's too confusing, so
13686 only use the scope for local variables. */
13687 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13688 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13689 if (call_line == NULL || call_file == NULL)
13690 {
13691 read_lexical_block_scope (die, cu);
13692 return;
13693 }
13694 }
13695
13696 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13697
13698 name = dwarf2_name (die, cu);
13699
13700 /* Ignore functions with missing or empty names. These are actually
13701 illegal according to the DWARF standard. */
13702 if (name == NULL)
13703 {
13704 complaint (_("missing name for subprogram DIE at %s"),
13705 sect_offset_str (die->sect_off));
13706 return;
13707 }
13708
13709 /* Ignore functions with missing or invalid low and high pc attributes. */
13710 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13711 <= PC_BOUNDS_INVALID)
13712 {
13713 attr = dwarf2_attr (die, DW_AT_external, cu);
13714 if (!attr || !DW_UNSND (attr))
13715 complaint (_("cannot get low and high bounds "
13716 "for subprogram DIE at %s"),
13717 sect_offset_str (die->sect_off));
13718 return;
13719 }
13720
13721 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13722 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13723
13724 /* If we have any template arguments, then we must allocate a
13725 different sort of symbol. */
13726 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13727 {
13728 if (child_die->tag == DW_TAG_template_type_param
13729 || child_die->tag == DW_TAG_template_value_param)
13730 {
13731 templ_func = allocate_template_symbol (objfile);
13732 templ_func->subclass = SYMBOL_TEMPLATE;
13733 break;
13734 }
13735 }
13736
13737 newobj = cu->get_builder ()->push_context (0, lowpc);
13738 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13739 (struct symbol *) templ_func);
13740
13741 /* If there is a location expression for DW_AT_frame_base, record
13742 it. */
13743 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13744 if (attr)
13745 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13746
13747 /* If there is a location for the static link, record it. */
13748 newobj->static_link = NULL;
13749 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13750 if (attr)
13751 {
13752 newobj->static_link
13753 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13754 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13755 }
13756
13757 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13758
13759 if (die->child != NULL)
13760 {
13761 child_die = die->child;
13762 while (child_die && child_die->tag)
13763 {
13764 if (child_die->tag == DW_TAG_template_type_param
13765 || child_die->tag == DW_TAG_template_value_param)
13766 {
13767 struct symbol *arg = new_symbol (child_die, NULL, cu);
13768
13769 if (arg != NULL)
13770 template_args.push_back (arg);
13771 }
13772 else
13773 process_die (child_die, cu);
13774 child_die = sibling_die (child_die);
13775 }
13776 }
13777
13778 inherit_abstract_dies (die, cu);
13779
13780 /* If we have a DW_AT_specification, we might need to import using
13781 directives from the context of the specification DIE. See the
13782 comment in determine_prefix. */
13783 if (cu->language == language_cplus
13784 && dwarf2_attr (die, DW_AT_specification, cu))
13785 {
13786 struct dwarf2_cu *spec_cu = cu;
13787 struct die_info *spec_die = die_specification (die, &spec_cu);
13788
13789 while (spec_die)
13790 {
13791 child_die = spec_die->child;
13792 while (child_die && child_die->tag)
13793 {
13794 if (child_die->tag == DW_TAG_imported_module)
13795 process_die (child_die, spec_cu);
13796 child_die = sibling_die (child_die);
13797 }
13798
13799 /* In some cases, GCC generates specification DIEs that
13800 themselves contain DW_AT_specification attributes. */
13801 spec_die = die_specification (spec_die, &spec_cu);
13802 }
13803 }
13804
13805 struct context_stack cstk = cu->get_builder ()->pop_context ();
13806 /* Make a block for the local symbols within. */
13807 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13808 cstk.static_link, lowpc, highpc);
13809
13810 /* For C++, set the block's scope. */
13811 if ((cu->language == language_cplus
13812 || cu->language == language_fortran
13813 || cu->language == language_d
13814 || cu->language == language_rust)
13815 && cu->processing_has_namespace_info)
13816 block_set_scope (block, determine_prefix (die, cu),
13817 &objfile->objfile_obstack);
13818
13819 /* If we have address ranges, record them. */
13820 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13821
13822 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13823
13824 /* Attach template arguments to function. */
13825 if (!template_args.empty ())
13826 {
13827 gdb_assert (templ_func != NULL);
13828
13829 templ_func->n_template_arguments = template_args.size ();
13830 templ_func->template_arguments
13831 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13832 templ_func->n_template_arguments);
13833 memcpy (templ_func->template_arguments,
13834 template_args.data (),
13835 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13836
13837 /* Make sure that the symtab is set on the new symbols. Even
13838 though they don't appear in this symtab directly, other parts
13839 of gdb assume that symbols do, and this is reasonably
13840 true. */
13841 for (symbol *sym : template_args)
13842 symbol_set_symtab (sym, symbol_symtab (templ_func));
13843 }
13844
13845 /* In C++, we can have functions nested inside functions (e.g., when
13846 a function declares a class that has methods). This means that
13847 when we finish processing a function scope, we may need to go
13848 back to building a containing block's symbol lists. */
13849 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13850 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13851
13852 /* If we've finished processing a top-level function, subsequent
13853 symbols go in the file symbol list. */
13854 if (cu->get_builder ()->outermost_context_p ())
13855 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13856 }
13857
13858 /* Process all the DIES contained within a lexical block scope. Start
13859 a new scope, process the dies, and then close the scope. */
13860
13861 static void
13862 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13863 {
13864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13866 CORE_ADDR lowpc, highpc;
13867 struct die_info *child_die;
13868 CORE_ADDR baseaddr;
13869
13870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13871
13872 /* Ignore blocks with missing or invalid low and high pc attributes. */
13873 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13874 as multiple lexical blocks? Handling children in a sane way would
13875 be nasty. Might be easier to properly extend generic blocks to
13876 describe ranges. */
13877 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13878 {
13879 case PC_BOUNDS_NOT_PRESENT:
13880 /* DW_TAG_lexical_block has no attributes, process its children as if
13881 there was no wrapping by that DW_TAG_lexical_block.
13882 GCC does no longer produces such DWARF since GCC r224161. */
13883 for (child_die = die->child;
13884 child_die != NULL && child_die->tag;
13885 child_die = sibling_die (child_die))
13886 process_die (child_die, cu);
13887 return;
13888 case PC_BOUNDS_INVALID:
13889 return;
13890 }
13891 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13892 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13893
13894 cu->get_builder ()->push_context (0, lowpc);
13895 if (die->child != NULL)
13896 {
13897 child_die = die->child;
13898 while (child_die && child_die->tag)
13899 {
13900 process_die (child_die, cu);
13901 child_die = sibling_die (child_die);
13902 }
13903 }
13904 inherit_abstract_dies (die, cu);
13905 struct context_stack cstk = cu->get_builder ()->pop_context ();
13906
13907 if (*cu->get_builder ()->get_local_symbols () != NULL
13908 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13909 {
13910 struct block *block
13911 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13912 cstk.start_addr, highpc);
13913
13914 /* Note that recording ranges after traversing children, as we
13915 do here, means that recording a parent's ranges entails
13916 walking across all its children's ranges as they appear in
13917 the address map, which is quadratic behavior.
13918
13919 It would be nicer to record the parent's ranges before
13920 traversing its children, simply overriding whatever you find
13921 there. But since we don't even decide whether to create a
13922 block until after we've traversed its children, that's hard
13923 to do. */
13924 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13925 }
13926 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13927 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13928 }
13929
13930 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13931
13932 static void
13933 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13934 {
13935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13937 CORE_ADDR pc, baseaddr;
13938 struct attribute *attr;
13939 struct call_site *call_site, call_site_local;
13940 void **slot;
13941 int nparams;
13942 struct die_info *child_die;
13943
13944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13945
13946 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13947 if (attr == NULL)
13948 {
13949 /* This was a pre-DWARF-5 GNU extension alias
13950 for DW_AT_call_return_pc. */
13951 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13952 }
13953 if (!attr)
13954 {
13955 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13956 "DIE %s [in module %s]"),
13957 sect_offset_str (die->sect_off), objfile_name (objfile));
13958 return;
13959 }
13960 pc = attr_value_as_address (attr) + baseaddr;
13961 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13962
13963 if (cu->call_site_htab == NULL)
13964 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13965 NULL, &objfile->objfile_obstack,
13966 hashtab_obstack_allocate, NULL);
13967 call_site_local.pc = pc;
13968 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13969 if (*slot != NULL)
13970 {
13971 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13972 "DIE %s [in module %s]"),
13973 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13974 objfile_name (objfile));
13975 return;
13976 }
13977
13978 /* Count parameters at the caller. */
13979
13980 nparams = 0;
13981 for (child_die = die->child; child_die && child_die->tag;
13982 child_die = sibling_die (child_die))
13983 {
13984 if (child_die->tag != DW_TAG_call_site_parameter
13985 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13986 {
13987 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13988 "DW_TAG_call_site child DIE %s [in module %s]"),
13989 child_die->tag, sect_offset_str (child_die->sect_off),
13990 objfile_name (objfile));
13991 continue;
13992 }
13993
13994 nparams++;
13995 }
13996
13997 call_site
13998 = ((struct call_site *)
13999 obstack_alloc (&objfile->objfile_obstack,
14000 sizeof (*call_site)
14001 + (sizeof (*call_site->parameter) * (nparams - 1))));
14002 *slot = call_site;
14003 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14004 call_site->pc = pc;
14005
14006 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14007 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14008 {
14009 struct die_info *func_die;
14010
14011 /* Skip also over DW_TAG_inlined_subroutine. */
14012 for (func_die = die->parent;
14013 func_die && func_die->tag != DW_TAG_subprogram
14014 && func_die->tag != DW_TAG_subroutine_type;
14015 func_die = func_die->parent);
14016
14017 /* DW_AT_call_all_calls is a superset
14018 of DW_AT_call_all_tail_calls. */
14019 if (func_die
14020 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14021 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14022 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14023 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14024 {
14025 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14026 not complete. But keep CALL_SITE for look ups via call_site_htab,
14027 both the initial caller containing the real return address PC and
14028 the final callee containing the current PC of a chain of tail
14029 calls do not need to have the tail call list complete. But any
14030 function candidate for a virtual tail call frame searched via
14031 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14032 determined unambiguously. */
14033 }
14034 else
14035 {
14036 struct type *func_type = NULL;
14037
14038 if (func_die)
14039 func_type = get_die_type (func_die, cu);
14040 if (func_type != NULL)
14041 {
14042 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14043
14044 /* Enlist this call site to the function. */
14045 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14046 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14047 }
14048 else
14049 complaint (_("Cannot find function owning DW_TAG_call_site "
14050 "DIE %s [in module %s]"),
14051 sect_offset_str (die->sect_off), objfile_name (objfile));
14052 }
14053 }
14054
14055 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14056 if (attr == NULL)
14057 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14058 if (attr == NULL)
14059 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14060 if (attr == NULL)
14061 {
14062 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14063 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14064 }
14065 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14066 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14067 /* Keep NULL DWARF_BLOCK. */;
14068 else if (attr_form_is_block (attr))
14069 {
14070 struct dwarf2_locexpr_baton *dlbaton;
14071
14072 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14073 dlbaton->data = DW_BLOCK (attr)->data;
14074 dlbaton->size = DW_BLOCK (attr)->size;
14075 dlbaton->per_cu = cu->per_cu;
14076
14077 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14078 }
14079 else if (attr_form_is_ref (attr))
14080 {
14081 struct dwarf2_cu *target_cu = cu;
14082 struct die_info *target_die;
14083
14084 target_die = follow_die_ref (die, attr, &target_cu);
14085 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14086 if (die_is_declaration (target_die, target_cu))
14087 {
14088 const char *target_physname;
14089
14090 /* Prefer the mangled name; otherwise compute the demangled one. */
14091 target_physname = dw2_linkage_name (target_die, target_cu);
14092 if (target_physname == NULL)
14093 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14094 if (target_physname == NULL)
14095 complaint (_("DW_AT_call_target target DIE has invalid "
14096 "physname, for referencing DIE %s [in module %s]"),
14097 sect_offset_str (die->sect_off), objfile_name (objfile));
14098 else
14099 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14100 }
14101 else
14102 {
14103 CORE_ADDR lowpc;
14104
14105 /* DW_AT_entry_pc should be preferred. */
14106 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14107 <= PC_BOUNDS_INVALID)
14108 complaint (_("DW_AT_call_target target DIE has invalid "
14109 "low pc, for referencing DIE %s [in module %s]"),
14110 sect_offset_str (die->sect_off), objfile_name (objfile));
14111 else
14112 {
14113 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14114 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14115 }
14116 }
14117 }
14118 else
14119 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14120 "block nor reference, for DIE %s [in module %s]"),
14121 sect_offset_str (die->sect_off), objfile_name (objfile));
14122
14123 call_site->per_cu = cu->per_cu;
14124
14125 for (child_die = die->child;
14126 child_die && child_die->tag;
14127 child_die = sibling_die (child_die))
14128 {
14129 struct call_site_parameter *parameter;
14130 struct attribute *loc, *origin;
14131
14132 if (child_die->tag != DW_TAG_call_site_parameter
14133 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14134 {
14135 /* Already printed the complaint above. */
14136 continue;
14137 }
14138
14139 gdb_assert (call_site->parameter_count < nparams);
14140 parameter = &call_site->parameter[call_site->parameter_count];
14141
14142 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14143 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14144 register is contained in DW_AT_call_value. */
14145
14146 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14147 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14148 if (origin == NULL)
14149 {
14150 /* This was a pre-DWARF-5 GNU extension alias
14151 for DW_AT_call_parameter. */
14152 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14153 }
14154 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14155 {
14156 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14157
14158 sect_offset sect_off
14159 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14160 if (!offset_in_cu_p (&cu->header, sect_off))
14161 {
14162 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14163 binding can be done only inside one CU. Such referenced DIE
14164 therefore cannot be even moved to DW_TAG_partial_unit. */
14165 complaint (_("DW_AT_call_parameter offset is not in CU for "
14166 "DW_TAG_call_site child DIE %s [in module %s]"),
14167 sect_offset_str (child_die->sect_off),
14168 objfile_name (objfile));
14169 continue;
14170 }
14171 parameter->u.param_cu_off
14172 = (cu_offset) (sect_off - cu->header.sect_off);
14173 }
14174 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14175 {
14176 complaint (_("No DW_FORM_block* DW_AT_location for "
14177 "DW_TAG_call_site child DIE %s [in module %s]"),
14178 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14179 continue;
14180 }
14181 else
14182 {
14183 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14184 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14185 if (parameter->u.dwarf_reg != -1)
14186 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14187 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14188 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14189 &parameter->u.fb_offset))
14190 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14191 else
14192 {
14193 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14194 "for DW_FORM_block* DW_AT_location is supported for "
14195 "DW_TAG_call_site child DIE %s "
14196 "[in module %s]"),
14197 sect_offset_str (child_die->sect_off),
14198 objfile_name (objfile));
14199 continue;
14200 }
14201 }
14202
14203 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14204 if (attr == NULL)
14205 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14206 if (!attr_form_is_block (attr))
14207 {
14208 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14209 "DW_TAG_call_site child DIE %s [in module %s]"),
14210 sect_offset_str (child_die->sect_off),
14211 objfile_name (objfile));
14212 continue;
14213 }
14214 parameter->value = DW_BLOCK (attr)->data;
14215 parameter->value_size = DW_BLOCK (attr)->size;
14216
14217 /* Parameters are not pre-cleared by memset above. */
14218 parameter->data_value = NULL;
14219 parameter->data_value_size = 0;
14220 call_site->parameter_count++;
14221
14222 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14223 if (attr == NULL)
14224 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14225 if (attr)
14226 {
14227 if (!attr_form_is_block (attr))
14228 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14229 "DW_TAG_call_site child DIE %s [in module %s]"),
14230 sect_offset_str (child_die->sect_off),
14231 objfile_name (objfile));
14232 else
14233 {
14234 parameter->data_value = DW_BLOCK (attr)->data;
14235 parameter->data_value_size = DW_BLOCK (attr)->size;
14236 }
14237 }
14238 }
14239 }
14240
14241 /* Helper function for read_variable. If DIE represents a virtual
14242 table, then return the type of the concrete object that is
14243 associated with the virtual table. Otherwise, return NULL. */
14244
14245 static struct type *
14246 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14247 {
14248 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14249 if (attr == NULL)
14250 return NULL;
14251
14252 /* Find the type DIE. */
14253 struct die_info *type_die = NULL;
14254 struct dwarf2_cu *type_cu = cu;
14255
14256 if (attr_form_is_ref (attr))
14257 type_die = follow_die_ref (die, attr, &type_cu);
14258 if (type_die == NULL)
14259 return NULL;
14260
14261 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14262 return NULL;
14263 return die_containing_type (type_die, type_cu);
14264 }
14265
14266 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14267
14268 static void
14269 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14270 {
14271 struct rust_vtable_symbol *storage = NULL;
14272
14273 if (cu->language == language_rust)
14274 {
14275 struct type *containing_type = rust_containing_type (die, cu);
14276
14277 if (containing_type != NULL)
14278 {
14279 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14280
14281 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14282 struct rust_vtable_symbol);
14283 initialize_objfile_symbol (storage);
14284 storage->concrete_type = containing_type;
14285 storage->subclass = SYMBOL_RUST_VTABLE;
14286 }
14287 }
14288
14289 struct symbol *res = new_symbol (die, NULL, cu, storage);
14290 struct attribute *abstract_origin
14291 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14292 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14293 if (res == NULL && loc && abstract_origin)
14294 {
14295 /* We have a variable without a name, but with a location and an abstract
14296 origin. This may be a concrete instance of an abstract variable
14297 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14298 later. */
14299 struct dwarf2_cu *origin_cu = cu;
14300 struct die_info *origin_die
14301 = follow_die_ref (die, abstract_origin, &origin_cu);
14302 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14303 dpo->abstract_to_concrete[origin_die].push_back (die);
14304 }
14305 }
14306
14307 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14308 reading .debug_rnglists.
14309 Callback's type should be:
14310 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14311 Return true if the attributes are present and valid, otherwise,
14312 return false. */
14313
14314 template <typename Callback>
14315 static bool
14316 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14317 Callback &&callback)
14318 {
14319 struct dwarf2_per_objfile *dwarf2_per_objfile
14320 = cu->per_cu->dwarf2_per_objfile;
14321 struct objfile *objfile = dwarf2_per_objfile->objfile;
14322 bfd *obfd = objfile->obfd;
14323 /* Base address selection entry. */
14324 CORE_ADDR base;
14325 int found_base;
14326 const gdb_byte *buffer;
14327 CORE_ADDR baseaddr;
14328 bool overflow = false;
14329
14330 found_base = cu->base_known;
14331 base = cu->base_address;
14332
14333 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14334 if (offset >= dwarf2_per_objfile->rnglists.size)
14335 {
14336 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14337 offset);
14338 return false;
14339 }
14340 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14341
14342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14343
14344 while (1)
14345 {
14346 /* Initialize it due to a false compiler warning. */
14347 CORE_ADDR range_beginning = 0, range_end = 0;
14348 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14349 + dwarf2_per_objfile->rnglists.size);
14350 unsigned int bytes_read;
14351
14352 if (buffer == buf_end)
14353 {
14354 overflow = true;
14355 break;
14356 }
14357 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14358 switch (rlet)
14359 {
14360 case DW_RLE_end_of_list:
14361 break;
14362 case DW_RLE_base_address:
14363 if (buffer + cu->header.addr_size > buf_end)
14364 {
14365 overflow = true;
14366 break;
14367 }
14368 base = read_address (obfd, buffer, cu, &bytes_read);
14369 found_base = 1;
14370 buffer += bytes_read;
14371 break;
14372 case DW_RLE_start_length:
14373 if (buffer + cu->header.addr_size > buf_end)
14374 {
14375 overflow = true;
14376 break;
14377 }
14378 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14379 buffer += bytes_read;
14380 range_end = (range_beginning
14381 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14382 buffer += bytes_read;
14383 if (buffer > buf_end)
14384 {
14385 overflow = true;
14386 break;
14387 }
14388 break;
14389 case DW_RLE_offset_pair:
14390 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14391 buffer += bytes_read;
14392 if (buffer > buf_end)
14393 {
14394 overflow = true;
14395 break;
14396 }
14397 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 break;
14405 case DW_RLE_start_end:
14406 if (buffer + 2 * cu->header.addr_size > buf_end)
14407 {
14408 overflow = true;
14409 break;
14410 }
14411 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14412 buffer += bytes_read;
14413 range_end = read_address (obfd, buffer, cu, &bytes_read);
14414 buffer += bytes_read;
14415 break;
14416 default:
14417 complaint (_("Invalid .debug_rnglists data (no base address)"));
14418 return false;
14419 }
14420 if (rlet == DW_RLE_end_of_list || overflow)
14421 break;
14422 if (rlet == DW_RLE_base_address)
14423 continue;
14424
14425 if (!found_base)
14426 {
14427 /* We have no valid base address for the ranges
14428 data. */
14429 complaint (_("Invalid .debug_rnglists data (no base address)"));
14430 return false;
14431 }
14432
14433 if (range_beginning > range_end)
14434 {
14435 /* Inverted range entries are invalid. */
14436 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14437 return false;
14438 }
14439
14440 /* Empty range entries have no effect. */
14441 if (range_beginning == range_end)
14442 continue;
14443
14444 range_beginning += base;
14445 range_end += base;
14446
14447 /* A not-uncommon case of bad debug info.
14448 Don't pollute the addrmap with bad data. */
14449 if (range_beginning + baseaddr == 0
14450 && !dwarf2_per_objfile->has_section_at_zero)
14451 {
14452 complaint (_(".debug_rnglists entry has start address of zero"
14453 " [in module %s]"), objfile_name (objfile));
14454 continue;
14455 }
14456
14457 callback (range_beginning, range_end);
14458 }
14459
14460 if (overflow)
14461 {
14462 complaint (_("Offset %d is not terminated "
14463 "for DW_AT_ranges attribute"),
14464 offset);
14465 return false;
14466 }
14467
14468 return true;
14469 }
14470
14471 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14472 Callback's type should be:
14473 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14474 Return 1 if the attributes are present and valid, otherwise, return 0. */
14475
14476 template <typename Callback>
14477 static int
14478 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14479 Callback &&callback)
14480 {
14481 struct dwarf2_per_objfile *dwarf2_per_objfile
14482 = cu->per_cu->dwarf2_per_objfile;
14483 struct objfile *objfile = dwarf2_per_objfile->objfile;
14484 struct comp_unit_head *cu_header = &cu->header;
14485 bfd *obfd = objfile->obfd;
14486 unsigned int addr_size = cu_header->addr_size;
14487 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14488 /* Base address selection entry. */
14489 CORE_ADDR base;
14490 int found_base;
14491 unsigned int dummy;
14492 const gdb_byte *buffer;
14493 CORE_ADDR baseaddr;
14494
14495 if (cu_header->version >= 5)
14496 return dwarf2_rnglists_process (offset, cu, callback);
14497
14498 found_base = cu->base_known;
14499 base = cu->base_address;
14500
14501 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14502 if (offset >= dwarf2_per_objfile->ranges.size)
14503 {
14504 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14505 offset);
14506 return 0;
14507 }
14508 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14509
14510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14511
14512 while (1)
14513 {
14514 CORE_ADDR range_beginning, range_end;
14515
14516 range_beginning = read_address (obfd, buffer, cu, &dummy);
14517 buffer += addr_size;
14518 range_end = read_address (obfd, buffer, cu, &dummy);
14519 buffer += addr_size;
14520 offset += 2 * addr_size;
14521
14522 /* An end of list marker is a pair of zero addresses. */
14523 if (range_beginning == 0 && range_end == 0)
14524 /* Found the end of list entry. */
14525 break;
14526
14527 /* Each base address selection entry is a pair of 2 values.
14528 The first is the largest possible address, the second is
14529 the base address. Check for a base address here. */
14530 if ((range_beginning & mask) == mask)
14531 {
14532 /* If we found the largest possible address, then we already
14533 have the base address in range_end. */
14534 base = range_end;
14535 found_base = 1;
14536 continue;
14537 }
14538
14539 if (!found_base)
14540 {
14541 /* We have no valid base address for the ranges
14542 data. */
14543 complaint (_("Invalid .debug_ranges data (no base address)"));
14544 return 0;
14545 }
14546
14547 if (range_beginning > range_end)
14548 {
14549 /* Inverted range entries are invalid. */
14550 complaint (_("Invalid .debug_ranges data (inverted range)"));
14551 return 0;
14552 }
14553
14554 /* Empty range entries have no effect. */
14555 if (range_beginning == range_end)
14556 continue;
14557
14558 range_beginning += base;
14559 range_end += base;
14560
14561 /* A not-uncommon case of bad debug info.
14562 Don't pollute the addrmap with bad data. */
14563 if (range_beginning + baseaddr == 0
14564 && !dwarf2_per_objfile->has_section_at_zero)
14565 {
14566 complaint (_(".debug_ranges entry has start address of zero"
14567 " [in module %s]"), objfile_name (objfile));
14568 continue;
14569 }
14570
14571 callback (range_beginning, range_end);
14572 }
14573
14574 return 1;
14575 }
14576
14577 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14578 Return 1 if the attributes are present and valid, otherwise, return 0.
14579 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14580
14581 static int
14582 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14583 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14584 struct partial_symtab *ranges_pst)
14585 {
14586 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14587 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14588 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14589 SECT_OFF_TEXT (objfile));
14590 int low_set = 0;
14591 CORE_ADDR low = 0;
14592 CORE_ADDR high = 0;
14593 int retval;
14594
14595 retval = dwarf2_ranges_process (offset, cu,
14596 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14597 {
14598 if (ranges_pst != NULL)
14599 {
14600 CORE_ADDR lowpc;
14601 CORE_ADDR highpc;
14602
14603 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_beginning + baseaddr)
14605 - baseaddr);
14606 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14607 range_end + baseaddr)
14608 - baseaddr);
14609 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14610 lowpc, highpc - 1, ranges_pst);
14611 }
14612
14613 /* FIXME: This is recording everything as a low-high
14614 segment of consecutive addresses. We should have a
14615 data structure for discontiguous block ranges
14616 instead. */
14617 if (! low_set)
14618 {
14619 low = range_beginning;
14620 high = range_end;
14621 low_set = 1;
14622 }
14623 else
14624 {
14625 if (range_beginning < low)
14626 low = range_beginning;
14627 if (range_end > high)
14628 high = range_end;
14629 }
14630 });
14631 if (!retval)
14632 return 0;
14633
14634 if (! low_set)
14635 /* If the first entry is an end-of-list marker, the range
14636 describes an empty scope, i.e. no instructions. */
14637 return 0;
14638
14639 if (low_return)
14640 *low_return = low;
14641 if (high_return)
14642 *high_return = high;
14643 return 1;
14644 }
14645
14646 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14647 definition for the return value. *LOWPC and *HIGHPC are set iff
14648 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14649
14650 static enum pc_bounds_kind
14651 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14652 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14653 struct partial_symtab *pst)
14654 {
14655 struct dwarf2_per_objfile *dwarf2_per_objfile
14656 = cu->per_cu->dwarf2_per_objfile;
14657 struct attribute *attr;
14658 struct attribute *attr_high;
14659 CORE_ADDR low = 0;
14660 CORE_ADDR high = 0;
14661 enum pc_bounds_kind ret;
14662
14663 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14664 if (attr_high)
14665 {
14666 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14667 if (attr)
14668 {
14669 low = attr_value_as_address (attr);
14670 high = attr_value_as_address (attr_high);
14671 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14672 high += low;
14673 }
14674 else
14675 /* Found high w/o low attribute. */
14676 return PC_BOUNDS_INVALID;
14677
14678 /* Found consecutive range of addresses. */
14679 ret = PC_BOUNDS_HIGH_LOW;
14680 }
14681 else
14682 {
14683 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14684 if (attr != NULL)
14685 {
14686 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14687 We take advantage of the fact that DW_AT_ranges does not appear
14688 in DW_TAG_compile_unit of DWO files. */
14689 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14690 unsigned int ranges_offset = (DW_UNSND (attr)
14691 + (need_ranges_base
14692 ? cu->ranges_base
14693 : 0));
14694
14695 /* Value of the DW_AT_ranges attribute is the offset in the
14696 .debug_ranges section. */
14697 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14698 return PC_BOUNDS_INVALID;
14699 /* Found discontinuous range of addresses. */
14700 ret = PC_BOUNDS_RANGES;
14701 }
14702 else
14703 return PC_BOUNDS_NOT_PRESENT;
14704 }
14705
14706 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14707 if (high <= low)
14708 return PC_BOUNDS_INVALID;
14709
14710 /* When using the GNU linker, .gnu.linkonce. sections are used to
14711 eliminate duplicate copies of functions and vtables and such.
14712 The linker will arbitrarily choose one and discard the others.
14713 The AT_*_pc values for such functions refer to local labels in
14714 these sections. If the section from that file was discarded, the
14715 labels are not in the output, so the relocs get a value of 0.
14716 If this is a discarded function, mark the pc bounds as invalid,
14717 so that GDB will ignore it. */
14718 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14719 return PC_BOUNDS_INVALID;
14720
14721 *lowpc = low;
14722 if (highpc)
14723 *highpc = high;
14724 return ret;
14725 }
14726
14727 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14728 its low and high PC addresses. Do nothing if these addresses could not
14729 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14730 and HIGHPC to the high address if greater than HIGHPC. */
14731
14732 static void
14733 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14734 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14735 struct dwarf2_cu *cu)
14736 {
14737 CORE_ADDR low, high;
14738 struct die_info *child = die->child;
14739
14740 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14741 {
14742 *lowpc = std::min (*lowpc, low);
14743 *highpc = std::max (*highpc, high);
14744 }
14745
14746 /* If the language does not allow nested subprograms (either inside
14747 subprograms or lexical blocks), we're done. */
14748 if (cu->language != language_ada)
14749 return;
14750
14751 /* Check all the children of the given DIE. If it contains nested
14752 subprograms, then check their pc bounds. Likewise, we need to
14753 check lexical blocks as well, as they may also contain subprogram
14754 definitions. */
14755 while (child && child->tag)
14756 {
14757 if (child->tag == DW_TAG_subprogram
14758 || child->tag == DW_TAG_lexical_block)
14759 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14760 child = sibling_die (child);
14761 }
14762 }
14763
14764 /* Get the low and high pc's represented by the scope DIE, and store
14765 them in *LOWPC and *HIGHPC. If the correct values can't be
14766 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14767
14768 static void
14769 get_scope_pc_bounds (struct die_info *die,
14770 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14771 struct dwarf2_cu *cu)
14772 {
14773 CORE_ADDR best_low = (CORE_ADDR) -1;
14774 CORE_ADDR best_high = (CORE_ADDR) 0;
14775 CORE_ADDR current_low, current_high;
14776
14777 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14778 >= PC_BOUNDS_RANGES)
14779 {
14780 best_low = current_low;
14781 best_high = current_high;
14782 }
14783 else
14784 {
14785 struct die_info *child = die->child;
14786
14787 while (child && child->tag)
14788 {
14789 switch (child->tag) {
14790 case DW_TAG_subprogram:
14791 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14792 break;
14793 case DW_TAG_namespace:
14794 case DW_TAG_module:
14795 /* FIXME: carlton/2004-01-16: Should we do this for
14796 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14797 that current GCC's always emit the DIEs corresponding
14798 to definitions of methods of classes as children of a
14799 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14800 the DIEs giving the declarations, which could be
14801 anywhere). But I don't see any reason why the
14802 standards says that they have to be there. */
14803 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14804
14805 if (current_low != ((CORE_ADDR) -1))
14806 {
14807 best_low = std::min (best_low, current_low);
14808 best_high = std::max (best_high, current_high);
14809 }
14810 break;
14811 default:
14812 /* Ignore. */
14813 break;
14814 }
14815
14816 child = sibling_die (child);
14817 }
14818 }
14819
14820 *lowpc = best_low;
14821 *highpc = best_high;
14822 }
14823
14824 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14825 in DIE. */
14826
14827 static void
14828 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14829 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14830 {
14831 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14832 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14833 struct attribute *attr;
14834 struct attribute *attr_high;
14835
14836 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14837 if (attr_high)
14838 {
14839 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14840 if (attr)
14841 {
14842 CORE_ADDR low = attr_value_as_address (attr);
14843 CORE_ADDR high = attr_value_as_address (attr_high);
14844
14845 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14846 high += low;
14847
14848 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14849 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14850 cu->get_builder ()->record_block_range (block, low, high - 1);
14851 }
14852 }
14853
14854 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14855 if (attr)
14856 {
14857 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14858 We take advantage of the fact that DW_AT_ranges does not appear
14859 in DW_TAG_compile_unit of DWO files. */
14860 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14861
14862 /* The value of the DW_AT_ranges attribute is the offset of the
14863 address range list in the .debug_ranges section. */
14864 unsigned long offset = (DW_UNSND (attr)
14865 + (need_ranges_base ? cu->ranges_base : 0));
14866
14867 std::vector<blockrange> blockvec;
14868 dwarf2_ranges_process (offset, cu,
14869 [&] (CORE_ADDR start, CORE_ADDR end)
14870 {
14871 start += baseaddr;
14872 end += baseaddr;
14873 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14874 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14875 cu->get_builder ()->record_block_range (block, start, end - 1);
14876 blockvec.emplace_back (start, end);
14877 });
14878
14879 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14880 }
14881 }
14882
14883 /* Check whether the producer field indicates either of GCC < 4.6, or the
14884 Intel C/C++ compiler, and cache the result in CU. */
14885
14886 static void
14887 check_producer (struct dwarf2_cu *cu)
14888 {
14889 int major, minor;
14890
14891 if (cu->producer == NULL)
14892 {
14893 /* For unknown compilers expect their behavior is DWARF version
14894 compliant.
14895
14896 GCC started to support .debug_types sections by -gdwarf-4 since
14897 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14898 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14899 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14900 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14901 }
14902 else if (producer_is_gcc (cu->producer, &major, &minor))
14903 {
14904 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14905 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14906 }
14907 else if (producer_is_icc (cu->producer, &major, &minor))
14908 {
14909 cu->producer_is_icc = true;
14910 cu->producer_is_icc_lt_14 = major < 14;
14911 }
14912 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14913 cu->producer_is_codewarrior = true;
14914 else
14915 {
14916 /* For other non-GCC compilers, expect their behavior is DWARF version
14917 compliant. */
14918 }
14919
14920 cu->checked_producer = true;
14921 }
14922
14923 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14924 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14925 during 4.6.0 experimental. */
14926
14927 static bool
14928 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14929 {
14930 if (!cu->checked_producer)
14931 check_producer (cu);
14932
14933 return cu->producer_is_gxx_lt_4_6;
14934 }
14935
14936
14937 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14938 with incorrect is_stmt attributes. */
14939
14940 static bool
14941 producer_is_codewarrior (struct dwarf2_cu *cu)
14942 {
14943 if (!cu->checked_producer)
14944 check_producer (cu);
14945
14946 return cu->producer_is_codewarrior;
14947 }
14948
14949 /* Return the default accessibility type if it is not overriden by
14950 DW_AT_accessibility. */
14951
14952 static enum dwarf_access_attribute
14953 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14954 {
14955 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14956 {
14957 /* The default DWARF 2 accessibility for members is public, the default
14958 accessibility for inheritance is private. */
14959
14960 if (die->tag != DW_TAG_inheritance)
14961 return DW_ACCESS_public;
14962 else
14963 return DW_ACCESS_private;
14964 }
14965 else
14966 {
14967 /* DWARF 3+ defines the default accessibility a different way. The same
14968 rules apply now for DW_TAG_inheritance as for the members and it only
14969 depends on the container kind. */
14970
14971 if (die->parent->tag == DW_TAG_class_type)
14972 return DW_ACCESS_private;
14973 else
14974 return DW_ACCESS_public;
14975 }
14976 }
14977
14978 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14979 offset. If the attribute was not found return 0, otherwise return
14980 1. If it was found but could not properly be handled, set *OFFSET
14981 to 0. */
14982
14983 static int
14984 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14985 LONGEST *offset)
14986 {
14987 struct attribute *attr;
14988
14989 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14990 if (attr != NULL)
14991 {
14992 *offset = 0;
14993
14994 /* Note that we do not check for a section offset first here.
14995 This is because DW_AT_data_member_location is new in DWARF 4,
14996 so if we see it, we can assume that a constant form is really
14997 a constant and not a section offset. */
14998 if (attr_form_is_constant (attr))
14999 *offset = dwarf2_get_attr_constant_value (attr, 0);
15000 else if (attr_form_is_section_offset (attr))
15001 dwarf2_complex_location_expr_complaint ();
15002 else if (attr_form_is_block (attr))
15003 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15004 else
15005 dwarf2_complex_location_expr_complaint ();
15006
15007 return 1;
15008 }
15009
15010 return 0;
15011 }
15012
15013 /* Add an aggregate field to the field list. */
15014
15015 static void
15016 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15017 struct dwarf2_cu *cu)
15018 {
15019 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15021 struct nextfield *new_field;
15022 struct attribute *attr;
15023 struct field *fp;
15024 const char *fieldname = "";
15025
15026 if (die->tag == DW_TAG_inheritance)
15027 {
15028 fip->baseclasses.emplace_back ();
15029 new_field = &fip->baseclasses.back ();
15030 }
15031 else
15032 {
15033 fip->fields.emplace_back ();
15034 new_field = &fip->fields.back ();
15035 }
15036
15037 fip->nfields++;
15038
15039 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15040 if (attr)
15041 new_field->accessibility = DW_UNSND (attr);
15042 else
15043 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15044 if (new_field->accessibility != DW_ACCESS_public)
15045 fip->non_public_fields = 1;
15046
15047 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15048 if (attr)
15049 new_field->virtuality = DW_UNSND (attr);
15050 else
15051 new_field->virtuality = DW_VIRTUALITY_none;
15052
15053 fp = &new_field->field;
15054
15055 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15056 {
15057 LONGEST offset;
15058
15059 /* Data member other than a C++ static data member. */
15060
15061 /* Get type of field. */
15062 fp->type = die_type (die, cu);
15063
15064 SET_FIELD_BITPOS (*fp, 0);
15065
15066 /* Get bit size of field (zero if none). */
15067 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15068 if (attr)
15069 {
15070 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15071 }
15072 else
15073 {
15074 FIELD_BITSIZE (*fp) = 0;
15075 }
15076
15077 /* Get bit offset of field. */
15078 if (handle_data_member_location (die, cu, &offset))
15079 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15080 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15081 if (attr)
15082 {
15083 if (gdbarch_bits_big_endian (gdbarch))
15084 {
15085 /* For big endian bits, the DW_AT_bit_offset gives the
15086 additional bit offset from the MSB of the containing
15087 anonymous object to the MSB of the field. We don't
15088 have to do anything special since we don't need to
15089 know the size of the anonymous object. */
15090 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15091 }
15092 else
15093 {
15094 /* For little endian bits, compute the bit offset to the
15095 MSB of the anonymous object, subtract off the number of
15096 bits from the MSB of the field to the MSB of the
15097 object, and then subtract off the number of bits of
15098 the field itself. The result is the bit offset of
15099 the LSB of the field. */
15100 int anonymous_size;
15101 int bit_offset = DW_UNSND (attr);
15102
15103 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15104 if (attr)
15105 {
15106 /* The size of the anonymous object containing
15107 the bit field is explicit, so use the
15108 indicated size (in bytes). */
15109 anonymous_size = DW_UNSND (attr);
15110 }
15111 else
15112 {
15113 /* The size of the anonymous object containing
15114 the bit field must be inferred from the type
15115 attribute of the data member containing the
15116 bit field. */
15117 anonymous_size = TYPE_LENGTH (fp->type);
15118 }
15119 SET_FIELD_BITPOS (*fp,
15120 (FIELD_BITPOS (*fp)
15121 + anonymous_size * bits_per_byte
15122 - bit_offset - FIELD_BITSIZE (*fp)));
15123 }
15124 }
15125 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15126 if (attr != NULL)
15127 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15128 + dwarf2_get_attr_constant_value (attr, 0)));
15129
15130 /* Get name of field. */
15131 fieldname = dwarf2_name (die, cu);
15132 if (fieldname == NULL)
15133 fieldname = "";
15134
15135 /* The name is already allocated along with this objfile, so we don't
15136 need to duplicate it for the type. */
15137 fp->name = fieldname;
15138
15139 /* Change accessibility for artificial fields (e.g. virtual table
15140 pointer or virtual base class pointer) to private. */
15141 if (dwarf2_attr (die, DW_AT_artificial, cu))
15142 {
15143 FIELD_ARTIFICIAL (*fp) = 1;
15144 new_field->accessibility = DW_ACCESS_private;
15145 fip->non_public_fields = 1;
15146 }
15147 }
15148 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15149 {
15150 /* C++ static member. */
15151
15152 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15153 is a declaration, but all versions of G++ as of this writing
15154 (so through at least 3.2.1) incorrectly generate
15155 DW_TAG_variable tags. */
15156
15157 const char *physname;
15158
15159 /* Get name of field. */
15160 fieldname = dwarf2_name (die, cu);
15161 if (fieldname == NULL)
15162 return;
15163
15164 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15165 if (attr
15166 /* Only create a symbol if this is an external value.
15167 new_symbol checks this and puts the value in the global symbol
15168 table, which we want. If it is not external, new_symbol
15169 will try to put the value in cu->list_in_scope which is wrong. */
15170 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15171 {
15172 /* A static const member, not much different than an enum as far as
15173 we're concerned, except that we can support more types. */
15174 new_symbol (die, NULL, cu);
15175 }
15176
15177 /* Get physical name. */
15178 physname = dwarf2_physname (fieldname, die, cu);
15179
15180 /* The name is already allocated along with this objfile, so we don't
15181 need to duplicate it for the type. */
15182 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15183 FIELD_TYPE (*fp) = die_type (die, cu);
15184 FIELD_NAME (*fp) = fieldname;
15185 }
15186 else if (die->tag == DW_TAG_inheritance)
15187 {
15188 LONGEST offset;
15189
15190 /* C++ base class field. */
15191 if (handle_data_member_location (die, cu, &offset))
15192 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15193 FIELD_BITSIZE (*fp) = 0;
15194 FIELD_TYPE (*fp) = die_type (die, cu);
15195 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15196 }
15197 else if (die->tag == DW_TAG_variant_part)
15198 {
15199 /* process_structure_scope will treat this DIE as a union. */
15200 process_structure_scope (die, cu);
15201
15202 /* The variant part is relative to the start of the enclosing
15203 structure. */
15204 SET_FIELD_BITPOS (*fp, 0);
15205 fp->type = get_die_type (die, cu);
15206 fp->artificial = 1;
15207 fp->name = "<<variant>>";
15208
15209 /* Normally a DW_TAG_variant_part won't have a size, but our
15210 representation requires one, so set it to the maximum of the
15211 child sizes. */
15212 if (TYPE_LENGTH (fp->type) == 0)
15213 {
15214 unsigned max = 0;
15215 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15216 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15217 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15218 TYPE_LENGTH (fp->type) = max;
15219 }
15220 }
15221 else
15222 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15223 }
15224
15225 /* Can the type given by DIE define another type? */
15226
15227 static bool
15228 type_can_define_types (const struct die_info *die)
15229 {
15230 switch (die->tag)
15231 {
15232 case DW_TAG_typedef:
15233 case DW_TAG_class_type:
15234 case DW_TAG_structure_type:
15235 case DW_TAG_union_type:
15236 case DW_TAG_enumeration_type:
15237 return true;
15238
15239 default:
15240 return false;
15241 }
15242 }
15243
15244 /* Add a type definition defined in the scope of the FIP's class. */
15245
15246 static void
15247 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15248 struct dwarf2_cu *cu)
15249 {
15250 struct decl_field fp;
15251 memset (&fp, 0, sizeof (fp));
15252
15253 gdb_assert (type_can_define_types (die));
15254
15255 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15256 fp.name = dwarf2_name (die, cu);
15257 fp.type = read_type_die (die, cu);
15258
15259 /* Save accessibility. */
15260 enum dwarf_access_attribute accessibility;
15261 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15262 if (attr != NULL)
15263 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15264 else
15265 accessibility = dwarf2_default_access_attribute (die, cu);
15266 switch (accessibility)
15267 {
15268 case DW_ACCESS_public:
15269 /* The assumed value if neither private nor protected. */
15270 break;
15271 case DW_ACCESS_private:
15272 fp.is_private = 1;
15273 break;
15274 case DW_ACCESS_protected:
15275 fp.is_protected = 1;
15276 break;
15277 default:
15278 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15279 }
15280
15281 if (die->tag == DW_TAG_typedef)
15282 fip->typedef_field_list.push_back (fp);
15283 else
15284 fip->nested_types_list.push_back (fp);
15285 }
15286
15287 /* Create the vector of fields, and attach it to the type. */
15288
15289 static void
15290 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15291 struct dwarf2_cu *cu)
15292 {
15293 int nfields = fip->nfields;
15294
15295 /* Record the field count, allocate space for the array of fields,
15296 and create blank accessibility bitfields if necessary. */
15297 TYPE_NFIELDS (type) = nfields;
15298 TYPE_FIELDS (type) = (struct field *)
15299 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15300
15301 if (fip->non_public_fields && cu->language != language_ada)
15302 {
15303 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15304
15305 TYPE_FIELD_PRIVATE_BITS (type) =
15306 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15307 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15308
15309 TYPE_FIELD_PROTECTED_BITS (type) =
15310 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15311 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15312
15313 TYPE_FIELD_IGNORE_BITS (type) =
15314 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15315 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15316 }
15317
15318 /* If the type has baseclasses, allocate and clear a bit vector for
15319 TYPE_FIELD_VIRTUAL_BITS. */
15320 if (!fip->baseclasses.empty () && cu->language != language_ada)
15321 {
15322 int num_bytes = B_BYTES (fip->baseclasses.size ());
15323 unsigned char *pointer;
15324
15325 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15326 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15327 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15328 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15329 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15330 }
15331
15332 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15333 {
15334 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15335
15336 for (int index = 0; index < nfields; ++index)
15337 {
15338 struct nextfield &field = fip->fields[index];
15339
15340 if (field.variant.is_discriminant)
15341 di->discriminant_index = index;
15342 else if (field.variant.default_branch)
15343 di->default_index = index;
15344 else
15345 di->discriminants[index] = field.variant.discriminant_value;
15346 }
15347 }
15348
15349 /* Copy the saved-up fields into the field vector. */
15350 for (int i = 0; i < nfields; ++i)
15351 {
15352 struct nextfield &field
15353 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15354 : fip->fields[i - fip->baseclasses.size ()]);
15355
15356 TYPE_FIELD (type, i) = field.field;
15357 switch (field.accessibility)
15358 {
15359 case DW_ACCESS_private:
15360 if (cu->language != language_ada)
15361 SET_TYPE_FIELD_PRIVATE (type, i);
15362 break;
15363
15364 case DW_ACCESS_protected:
15365 if (cu->language != language_ada)
15366 SET_TYPE_FIELD_PROTECTED (type, i);
15367 break;
15368
15369 case DW_ACCESS_public:
15370 break;
15371
15372 default:
15373 /* Unknown accessibility. Complain and treat it as public. */
15374 {
15375 complaint (_("unsupported accessibility %d"),
15376 field.accessibility);
15377 }
15378 break;
15379 }
15380 if (i < fip->baseclasses.size ())
15381 {
15382 switch (field.virtuality)
15383 {
15384 case DW_VIRTUALITY_virtual:
15385 case DW_VIRTUALITY_pure_virtual:
15386 if (cu->language == language_ada)
15387 error (_("unexpected virtuality in component of Ada type"));
15388 SET_TYPE_FIELD_VIRTUAL (type, i);
15389 break;
15390 }
15391 }
15392 }
15393 }
15394
15395 /* Return true if this member function is a constructor, false
15396 otherwise. */
15397
15398 static int
15399 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15400 {
15401 const char *fieldname;
15402 const char *type_name;
15403 int len;
15404
15405 if (die->parent == NULL)
15406 return 0;
15407
15408 if (die->parent->tag != DW_TAG_structure_type
15409 && die->parent->tag != DW_TAG_union_type
15410 && die->parent->tag != DW_TAG_class_type)
15411 return 0;
15412
15413 fieldname = dwarf2_name (die, cu);
15414 type_name = dwarf2_name (die->parent, cu);
15415 if (fieldname == NULL || type_name == NULL)
15416 return 0;
15417
15418 len = strlen (fieldname);
15419 return (strncmp (fieldname, type_name, len) == 0
15420 && (type_name[len] == '\0' || type_name[len] == '<'));
15421 }
15422
15423 /* Add a member function to the proper fieldlist. */
15424
15425 static void
15426 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15427 struct type *type, struct dwarf2_cu *cu)
15428 {
15429 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15430 struct attribute *attr;
15431 int i;
15432 struct fnfieldlist *flp = nullptr;
15433 struct fn_field *fnp;
15434 const char *fieldname;
15435 struct type *this_type;
15436 enum dwarf_access_attribute accessibility;
15437
15438 if (cu->language == language_ada)
15439 error (_("unexpected member function in Ada type"));
15440
15441 /* Get name of member function. */
15442 fieldname = dwarf2_name (die, cu);
15443 if (fieldname == NULL)
15444 return;
15445
15446 /* Look up member function name in fieldlist. */
15447 for (i = 0; i < fip->fnfieldlists.size (); i++)
15448 {
15449 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15450 {
15451 flp = &fip->fnfieldlists[i];
15452 break;
15453 }
15454 }
15455
15456 /* Create a new fnfieldlist if necessary. */
15457 if (flp == nullptr)
15458 {
15459 fip->fnfieldlists.emplace_back ();
15460 flp = &fip->fnfieldlists.back ();
15461 flp->name = fieldname;
15462 i = fip->fnfieldlists.size () - 1;
15463 }
15464
15465 /* Create a new member function field and add it to the vector of
15466 fnfieldlists. */
15467 flp->fnfields.emplace_back ();
15468 fnp = &flp->fnfields.back ();
15469
15470 /* Delay processing of the physname until later. */
15471 if (cu->language == language_cplus)
15472 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15473 die, cu);
15474 else
15475 {
15476 const char *physname = dwarf2_physname (fieldname, die, cu);
15477 fnp->physname = physname ? physname : "";
15478 }
15479
15480 fnp->type = alloc_type (objfile);
15481 this_type = read_type_die (die, cu);
15482 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15483 {
15484 int nparams = TYPE_NFIELDS (this_type);
15485
15486 /* TYPE is the domain of this method, and THIS_TYPE is the type
15487 of the method itself (TYPE_CODE_METHOD). */
15488 smash_to_method_type (fnp->type, type,
15489 TYPE_TARGET_TYPE (this_type),
15490 TYPE_FIELDS (this_type),
15491 TYPE_NFIELDS (this_type),
15492 TYPE_VARARGS (this_type));
15493
15494 /* Handle static member functions.
15495 Dwarf2 has no clean way to discern C++ static and non-static
15496 member functions. G++ helps GDB by marking the first
15497 parameter for non-static member functions (which is the this
15498 pointer) as artificial. We obtain this information from
15499 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15500 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15501 fnp->voffset = VOFFSET_STATIC;
15502 }
15503 else
15504 complaint (_("member function type missing for '%s'"),
15505 dwarf2_full_name (fieldname, die, cu));
15506
15507 /* Get fcontext from DW_AT_containing_type if present. */
15508 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15509 fnp->fcontext = die_containing_type (die, cu);
15510
15511 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15512 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15513
15514 /* Get accessibility. */
15515 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15516 if (attr)
15517 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15518 else
15519 accessibility = dwarf2_default_access_attribute (die, cu);
15520 switch (accessibility)
15521 {
15522 case DW_ACCESS_private:
15523 fnp->is_private = 1;
15524 break;
15525 case DW_ACCESS_protected:
15526 fnp->is_protected = 1;
15527 break;
15528 }
15529
15530 /* Check for artificial methods. */
15531 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15532 if (attr && DW_UNSND (attr) != 0)
15533 fnp->is_artificial = 1;
15534
15535 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15536
15537 /* Get index in virtual function table if it is a virtual member
15538 function. For older versions of GCC, this is an offset in the
15539 appropriate virtual table, as specified by DW_AT_containing_type.
15540 For everyone else, it is an expression to be evaluated relative
15541 to the object address. */
15542
15543 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15544 if (attr)
15545 {
15546 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15547 {
15548 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15549 {
15550 /* Old-style GCC. */
15551 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15552 }
15553 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15554 || (DW_BLOCK (attr)->size > 1
15555 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15556 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15557 {
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15559 if ((fnp->voffset % cu->header.addr_size) != 0)
15560 dwarf2_complex_location_expr_complaint ();
15561 else
15562 fnp->voffset /= cu->header.addr_size;
15563 fnp->voffset += 2;
15564 }
15565 else
15566 dwarf2_complex_location_expr_complaint ();
15567
15568 if (!fnp->fcontext)
15569 {
15570 /* If there is no `this' field and no DW_AT_containing_type,
15571 we cannot actually find a base class context for the
15572 vtable! */
15573 if (TYPE_NFIELDS (this_type) == 0
15574 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15575 {
15576 complaint (_("cannot determine context for virtual member "
15577 "function \"%s\" (offset %s)"),
15578 fieldname, sect_offset_str (die->sect_off));
15579 }
15580 else
15581 {
15582 fnp->fcontext
15583 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15584 }
15585 }
15586 }
15587 else if (attr_form_is_section_offset (attr))
15588 {
15589 dwarf2_complex_location_expr_complaint ();
15590 }
15591 else
15592 {
15593 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15594 fieldname);
15595 }
15596 }
15597 else
15598 {
15599 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15600 if (attr && DW_UNSND (attr))
15601 {
15602 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15603 complaint (_("Member function \"%s\" (offset %s) is virtual "
15604 "but the vtable offset is not specified"),
15605 fieldname, sect_offset_str (die->sect_off));
15606 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15607 TYPE_CPLUS_DYNAMIC (type) = 1;
15608 }
15609 }
15610 }
15611
15612 /* Create the vector of member function fields, and attach it to the type. */
15613
15614 static void
15615 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15616 struct dwarf2_cu *cu)
15617 {
15618 if (cu->language == language_ada)
15619 error (_("unexpected member functions in Ada type"));
15620
15621 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15622 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15623 TYPE_ALLOC (type,
15624 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15625
15626 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15627 {
15628 struct fnfieldlist &nf = fip->fnfieldlists[i];
15629 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15630
15631 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15632 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15633 fn_flp->fn_fields = (struct fn_field *)
15634 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15635
15636 for (int k = 0; k < nf.fnfields.size (); ++k)
15637 fn_flp->fn_fields[k] = nf.fnfields[k];
15638 }
15639
15640 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15641 }
15642
15643 /* Returns non-zero if NAME is the name of a vtable member in CU's
15644 language, zero otherwise. */
15645 static int
15646 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15647 {
15648 static const char vptr[] = "_vptr";
15649
15650 /* Look for the C++ form of the vtable. */
15651 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15652 return 1;
15653
15654 return 0;
15655 }
15656
15657 /* GCC outputs unnamed structures that are really pointers to member
15658 functions, with the ABI-specified layout. If TYPE describes
15659 such a structure, smash it into a member function type.
15660
15661 GCC shouldn't do this; it should just output pointer to member DIEs.
15662 This is GCC PR debug/28767. */
15663
15664 static void
15665 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15666 {
15667 struct type *pfn_type, *self_type, *new_type;
15668
15669 /* Check for a structure with no name and two children. */
15670 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15671 return;
15672
15673 /* Check for __pfn and __delta members. */
15674 if (TYPE_FIELD_NAME (type, 0) == NULL
15675 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15676 || TYPE_FIELD_NAME (type, 1) == NULL
15677 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15678 return;
15679
15680 /* Find the type of the method. */
15681 pfn_type = TYPE_FIELD_TYPE (type, 0);
15682 if (pfn_type == NULL
15683 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15684 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15685 return;
15686
15687 /* Look for the "this" argument. */
15688 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15689 if (TYPE_NFIELDS (pfn_type) == 0
15690 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15691 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15692 return;
15693
15694 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15695 new_type = alloc_type (objfile);
15696 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15697 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15698 TYPE_VARARGS (pfn_type));
15699 smash_to_methodptr_type (type, new_type);
15700 }
15701
15702 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15703 appropriate error checking and issuing complaints if there is a
15704 problem. */
15705
15706 static ULONGEST
15707 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15708 {
15709 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15710
15711 if (attr == nullptr)
15712 return 0;
15713
15714 if (!attr_form_is_constant (attr))
15715 {
15716 complaint (_("DW_AT_alignment must have constant form"
15717 " - DIE at %s [in module %s]"),
15718 sect_offset_str (die->sect_off),
15719 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15720 return 0;
15721 }
15722
15723 ULONGEST align;
15724 if (attr->form == DW_FORM_sdata)
15725 {
15726 LONGEST val = DW_SND (attr);
15727 if (val < 0)
15728 {
15729 complaint (_("DW_AT_alignment value must not be negative"
15730 " - DIE at %s [in module %s]"),
15731 sect_offset_str (die->sect_off),
15732 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15733 return 0;
15734 }
15735 align = val;
15736 }
15737 else
15738 align = DW_UNSND (attr);
15739
15740 if (align == 0)
15741 {
15742 complaint (_("DW_AT_alignment value must not be zero"
15743 " - DIE at %s [in module %s]"),
15744 sect_offset_str (die->sect_off),
15745 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15746 return 0;
15747 }
15748 if ((align & (align - 1)) != 0)
15749 {
15750 complaint (_("DW_AT_alignment value must be a power of 2"
15751 " - DIE at %s [in module %s]"),
15752 sect_offset_str (die->sect_off),
15753 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15754 return 0;
15755 }
15756
15757 return align;
15758 }
15759
15760 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15761 the alignment for TYPE. */
15762
15763 static void
15764 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15765 struct type *type)
15766 {
15767 if (!set_type_align (type, get_alignment (cu, die)))
15768 complaint (_("DW_AT_alignment value too large"
15769 " - DIE at %s [in module %s]"),
15770 sect_offset_str (die->sect_off),
15771 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15772 }
15773
15774 /* Called when we find the DIE that starts a structure or union scope
15775 (definition) to create a type for the structure or union. Fill in
15776 the type's name and general properties; the members will not be
15777 processed until process_structure_scope. A symbol table entry for
15778 the type will also not be done until process_structure_scope (assuming
15779 the type has a name).
15780
15781 NOTE: we need to call these functions regardless of whether or not the
15782 DIE has a DW_AT_name attribute, since it might be an anonymous
15783 structure or union. This gets the type entered into our set of
15784 user defined types. */
15785
15786 static struct type *
15787 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15788 {
15789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15790 struct type *type;
15791 struct attribute *attr;
15792 const char *name;
15793
15794 /* If the definition of this type lives in .debug_types, read that type.
15795 Don't follow DW_AT_specification though, that will take us back up
15796 the chain and we want to go down. */
15797 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15798 if (attr)
15799 {
15800 type = get_DW_AT_signature_type (die, attr, cu);
15801
15802 /* The type's CU may not be the same as CU.
15803 Ensure TYPE is recorded with CU in die_type_hash. */
15804 return set_die_type (die, type, cu);
15805 }
15806
15807 type = alloc_type (objfile);
15808 INIT_CPLUS_SPECIFIC (type);
15809
15810 name = dwarf2_name (die, cu);
15811 if (name != NULL)
15812 {
15813 if (cu->language == language_cplus
15814 || cu->language == language_d
15815 || cu->language == language_rust)
15816 {
15817 const char *full_name = dwarf2_full_name (name, die, cu);
15818
15819 /* dwarf2_full_name might have already finished building the DIE's
15820 type. If so, there is no need to continue. */
15821 if (get_die_type (die, cu) != NULL)
15822 return get_die_type (die, cu);
15823
15824 TYPE_NAME (type) = full_name;
15825 }
15826 else
15827 {
15828 /* The name is already allocated along with this objfile, so
15829 we don't need to duplicate it for the type. */
15830 TYPE_NAME (type) = name;
15831 }
15832 }
15833
15834 if (die->tag == DW_TAG_structure_type)
15835 {
15836 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15837 }
15838 else if (die->tag == DW_TAG_union_type)
15839 {
15840 TYPE_CODE (type) = TYPE_CODE_UNION;
15841 }
15842 else if (die->tag == DW_TAG_variant_part)
15843 {
15844 TYPE_CODE (type) = TYPE_CODE_UNION;
15845 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15846 }
15847 else
15848 {
15849 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15850 }
15851
15852 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15853 TYPE_DECLARED_CLASS (type) = 1;
15854
15855 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15856 if (attr)
15857 {
15858 if (attr_form_is_constant (attr))
15859 TYPE_LENGTH (type) = DW_UNSND (attr);
15860 else
15861 {
15862 /* For the moment, dynamic type sizes are not supported
15863 by GDB's struct type. The actual size is determined
15864 on-demand when resolving the type of a given object,
15865 so set the type's length to zero for now. Otherwise,
15866 we record an expression as the length, and that expression
15867 could lead to a very large value, which could eventually
15868 lead to us trying to allocate that much memory when creating
15869 a value of that type. */
15870 TYPE_LENGTH (type) = 0;
15871 }
15872 }
15873 else
15874 {
15875 TYPE_LENGTH (type) = 0;
15876 }
15877
15878 maybe_set_alignment (cu, die, type);
15879
15880 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15881 {
15882 /* ICC<14 does not output the required DW_AT_declaration on
15883 incomplete types, but gives them a size of zero. */
15884 TYPE_STUB (type) = 1;
15885 }
15886 else
15887 TYPE_STUB_SUPPORTED (type) = 1;
15888
15889 if (die_is_declaration (die, cu))
15890 TYPE_STUB (type) = 1;
15891 else if (attr == NULL && die->child == NULL
15892 && producer_is_realview (cu->producer))
15893 /* RealView does not output the required DW_AT_declaration
15894 on incomplete types. */
15895 TYPE_STUB (type) = 1;
15896
15897 /* We need to add the type field to the die immediately so we don't
15898 infinitely recurse when dealing with pointers to the structure
15899 type within the structure itself. */
15900 set_die_type (die, type, cu);
15901
15902 /* set_die_type should be already done. */
15903 set_descriptive_type (type, die, cu);
15904
15905 return type;
15906 }
15907
15908 /* A helper for process_structure_scope that handles a single member
15909 DIE. */
15910
15911 static void
15912 handle_struct_member_die (struct die_info *child_die, struct type *type,
15913 struct field_info *fi,
15914 std::vector<struct symbol *> *template_args,
15915 struct dwarf2_cu *cu)
15916 {
15917 if (child_die->tag == DW_TAG_member
15918 || child_die->tag == DW_TAG_variable
15919 || child_die->tag == DW_TAG_variant_part)
15920 {
15921 /* NOTE: carlton/2002-11-05: A C++ static data member
15922 should be a DW_TAG_member that is a declaration, but
15923 all versions of G++ as of this writing (so through at
15924 least 3.2.1) incorrectly generate DW_TAG_variable
15925 tags for them instead. */
15926 dwarf2_add_field (fi, child_die, cu);
15927 }
15928 else if (child_die->tag == DW_TAG_subprogram)
15929 {
15930 /* Rust doesn't have member functions in the C++ sense.
15931 However, it does emit ordinary functions as children
15932 of a struct DIE. */
15933 if (cu->language == language_rust)
15934 read_func_scope (child_die, cu);
15935 else
15936 {
15937 /* C++ member function. */
15938 dwarf2_add_member_fn (fi, child_die, type, cu);
15939 }
15940 }
15941 else if (child_die->tag == DW_TAG_inheritance)
15942 {
15943 /* C++ base class field. */
15944 dwarf2_add_field (fi, child_die, cu);
15945 }
15946 else if (type_can_define_types (child_die))
15947 dwarf2_add_type_defn (fi, child_die, cu);
15948 else if (child_die->tag == DW_TAG_template_type_param
15949 || child_die->tag == DW_TAG_template_value_param)
15950 {
15951 struct symbol *arg = new_symbol (child_die, NULL, cu);
15952
15953 if (arg != NULL)
15954 template_args->push_back (arg);
15955 }
15956 else if (child_die->tag == DW_TAG_variant)
15957 {
15958 /* In a variant we want to get the discriminant and also add a
15959 field for our sole member child. */
15960 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15961
15962 for (struct die_info *variant_child = child_die->child;
15963 variant_child != NULL;
15964 variant_child = sibling_die (variant_child))
15965 {
15966 if (variant_child->tag == DW_TAG_member)
15967 {
15968 handle_struct_member_die (variant_child, type, fi,
15969 template_args, cu);
15970 /* Only handle the one. */
15971 break;
15972 }
15973 }
15974
15975 /* We don't handle this but we might as well report it if we see
15976 it. */
15977 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15978 complaint (_("DW_AT_discr_list is not supported yet"
15979 " - DIE at %s [in module %s]"),
15980 sect_offset_str (child_die->sect_off),
15981 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15982
15983 /* The first field was just added, so we can stash the
15984 discriminant there. */
15985 gdb_assert (!fi->fields.empty ());
15986 if (discr == NULL)
15987 fi->fields.back ().variant.default_branch = true;
15988 else
15989 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15990 }
15991 }
15992
15993 /* Finish creating a structure or union type, including filling in
15994 its members and creating a symbol for it. */
15995
15996 static void
15997 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15998 {
15999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16000 struct die_info *child_die;
16001 struct type *type;
16002
16003 type = get_die_type (die, cu);
16004 if (type == NULL)
16005 type = read_structure_type (die, cu);
16006
16007 /* When reading a DW_TAG_variant_part, we need to notice when we
16008 read the discriminant member, so we can record it later in the
16009 discriminant_info. */
16010 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16011 sect_offset discr_offset;
16012 bool has_template_parameters = false;
16013
16014 if (is_variant_part)
16015 {
16016 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16017 if (discr == NULL)
16018 {
16019 /* Maybe it's a univariant form, an extension we support.
16020 In this case arrange not to check the offset. */
16021 is_variant_part = false;
16022 }
16023 else if (attr_form_is_ref (discr))
16024 {
16025 struct dwarf2_cu *target_cu = cu;
16026 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16027
16028 discr_offset = target_die->sect_off;
16029 }
16030 else
16031 {
16032 complaint (_("DW_AT_discr does not have DIE reference form"
16033 " - DIE at %s [in module %s]"),
16034 sect_offset_str (die->sect_off),
16035 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16036 is_variant_part = false;
16037 }
16038 }
16039
16040 if (die->child != NULL && ! die_is_declaration (die, cu))
16041 {
16042 struct field_info fi;
16043 std::vector<struct symbol *> template_args;
16044
16045 child_die = die->child;
16046
16047 while (child_die && child_die->tag)
16048 {
16049 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16050
16051 if (is_variant_part && discr_offset == child_die->sect_off)
16052 fi.fields.back ().variant.is_discriminant = true;
16053
16054 child_die = sibling_die (child_die);
16055 }
16056
16057 /* Attach template arguments to type. */
16058 if (!template_args.empty ())
16059 {
16060 has_template_parameters = true;
16061 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16062 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16063 TYPE_TEMPLATE_ARGUMENTS (type)
16064 = XOBNEWVEC (&objfile->objfile_obstack,
16065 struct symbol *,
16066 TYPE_N_TEMPLATE_ARGUMENTS (type));
16067 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16068 template_args.data (),
16069 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16070 * sizeof (struct symbol *)));
16071 }
16072
16073 /* Attach fields and member functions to the type. */
16074 if (fi.nfields)
16075 dwarf2_attach_fields_to_type (&fi, type, cu);
16076 if (!fi.fnfieldlists.empty ())
16077 {
16078 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16079
16080 /* Get the type which refers to the base class (possibly this
16081 class itself) which contains the vtable pointer for the current
16082 class from the DW_AT_containing_type attribute. This use of
16083 DW_AT_containing_type is a GNU extension. */
16084
16085 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16086 {
16087 struct type *t = die_containing_type (die, cu);
16088
16089 set_type_vptr_basetype (type, t);
16090 if (type == t)
16091 {
16092 int i;
16093
16094 /* Our own class provides vtbl ptr. */
16095 for (i = TYPE_NFIELDS (t) - 1;
16096 i >= TYPE_N_BASECLASSES (t);
16097 --i)
16098 {
16099 const char *fieldname = TYPE_FIELD_NAME (t, i);
16100
16101 if (is_vtable_name (fieldname, cu))
16102 {
16103 set_type_vptr_fieldno (type, i);
16104 break;
16105 }
16106 }
16107
16108 /* Complain if virtual function table field not found. */
16109 if (i < TYPE_N_BASECLASSES (t))
16110 complaint (_("virtual function table pointer "
16111 "not found when defining class '%s'"),
16112 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16113 }
16114 else
16115 {
16116 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16117 }
16118 }
16119 else if (cu->producer
16120 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16121 {
16122 /* The IBM XLC compiler does not provide direct indication
16123 of the containing type, but the vtable pointer is
16124 always named __vfp. */
16125
16126 int i;
16127
16128 for (i = TYPE_NFIELDS (type) - 1;
16129 i >= TYPE_N_BASECLASSES (type);
16130 --i)
16131 {
16132 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16133 {
16134 set_type_vptr_fieldno (type, i);
16135 set_type_vptr_basetype (type, type);
16136 break;
16137 }
16138 }
16139 }
16140 }
16141
16142 /* Copy fi.typedef_field_list linked list elements content into the
16143 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16144 if (!fi.typedef_field_list.empty ())
16145 {
16146 int count = fi.typedef_field_list.size ();
16147
16148 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16149 TYPE_TYPEDEF_FIELD_ARRAY (type)
16150 = ((struct decl_field *)
16151 TYPE_ALLOC (type,
16152 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16153 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16154
16155 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16156 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16157 }
16158
16159 /* Copy fi.nested_types_list linked list elements content into the
16160 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16161 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16162 {
16163 int count = fi.nested_types_list.size ();
16164
16165 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16166 TYPE_NESTED_TYPES_ARRAY (type)
16167 = ((struct decl_field *)
16168 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16169 TYPE_NESTED_TYPES_COUNT (type) = count;
16170
16171 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16172 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16173 }
16174 }
16175
16176 quirk_gcc_member_function_pointer (type, objfile);
16177 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16178 cu->rust_unions.push_back (type);
16179
16180 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16181 snapshots) has been known to create a die giving a declaration
16182 for a class that has, as a child, a die giving a definition for a
16183 nested class. So we have to process our children even if the
16184 current die is a declaration. Normally, of course, a declaration
16185 won't have any children at all. */
16186
16187 child_die = die->child;
16188
16189 while (child_die != NULL && child_die->tag)
16190 {
16191 if (child_die->tag == DW_TAG_member
16192 || child_die->tag == DW_TAG_variable
16193 || child_die->tag == DW_TAG_inheritance
16194 || child_die->tag == DW_TAG_template_value_param
16195 || child_die->tag == DW_TAG_template_type_param)
16196 {
16197 /* Do nothing. */
16198 }
16199 else
16200 process_die (child_die, cu);
16201
16202 child_die = sibling_die (child_die);
16203 }
16204
16205 /* Do not consider external references. According to the DWARF standard,
16206 these DIEs are identified by the fact that they have no byte_size
16207 attribute, and a declaration attribute. */
16208 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16209 || !die_is_declaration (die, cu))
16210 {
16211 struct symbol *sym = new_symbol (die, type, cu);
16212
16213 if (has_template_parameters)
16214 {
16215 struct symtab *symtab;
16216 if (sym != nullptr)
16217 symtab = symbol_symtab (sym);
16218 else if (cu->line_header != nullptr)
16219 {
16220 /* Any related symtab will do. */
16221 symtab
16222 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16223 }
16224 else
16225 {
16226 symtab = nullptr;
16227 complaint (_("could not find suitable "
16228 "symtab for template parameter"
16229 " - DIE at %s [in module %s]"),
16230 sect_offset_str (die->sect_off),
16231 objfile_name (objfile));
16232 }
16233
16234 if (symtab != nullptr)
16235 {
16236 /* Make sure that the symtab is set on the new symbols.
16237 Even though they don't appear in this symtab directly,
16238 other parts of gdb assume that symbols do, and this is
16239 reasonably true. */
16240 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16241 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16242 }
16243 }
16244 }
16245 }
16246
16247 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16248 update TYPE using some information only available in DIE's children. */
16249
16250 static void
16251 update_enumeration_type_from_children (struct die_info *die,
16252 struct type *type,
16253 struct dwarf2_cu *cu)
16254 {
16255 struct die_info *child_die;
16256 int unsigned_enum = 1;
16257 int flag_enum = 1;
16258 ULONGEST mask = 0;
16259
16260 auto_obstack obstack;
16261
16262 for (child_die = die->child;
16263 child_die != NULL && child_die->tag;
16264 child_die = sibling_die (child_die))
16265 {
16266 struct attribute *attr;
16267 LONGEST value;
16268 const gdb_byte *bytes;
16269 struct dwarf2_locexpr_baton *baton;
16270 const char *name;
16271
16272 if (child_die->tag != DW_TAG_enumerator)
16273 continue;
16274
16275 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16276 if (attr == NULL)
16277 continue;
16278
16279 name = dwarf2_name (child_die, cu);
16280 if (name == NULL)
16281 name = "<anonymous enumerator>";
16282
16283 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16284 &value, &bytes, &baton);
16285 if (value < 0)
16286 {
16287 unsigned_enum = 0;
16288 flag_enum = 0;
16289 }
16290 else if ((mask & value) != 0)
16291 flag_enum = 0;
16292 else
16293 mask |= value;
16294
16295 /* If we already know that the enum type is neither unsigned, nor
16296 a flag type, no need to look at the rest of the enumerates. */
16297 if (!unsigned_enum && !flag_enum)
16298 break;
16299 }
16300
16301 if (unsigned_enum)
16302 TYPE_UNSIGNED (type) = 1;
16303 if (flag_enum)
16304 TYPE_FLAG_ENUM (type) = 1;
16305 }
16306
16307 /* Given a DW_AT_enumeration_type die, set its type. We do not
16308 complete the type's fields yet, or create any symbols. */
16309
16310 static struct type *
16311 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16312 {
16313 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16314 struct type *type;
16315 struct attribute *attr;
16316 const char *name;
16317
16318 /* If the definition of this type lives in .debug_types, read that type.
16319 Don't follow DW_AT_specification though, that will take us back up
16320 the chain and we want to go down. */
16321 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16322 if (attr)
16323 {
16324 type = get_DW_AT_signature_type (die, attr, cu);
16325
16326 /* The type's CU may not be the same as CU.
16327 Ensure TYPE is recorded with CU in die_type_hash. */
16328 return set_die_type (die, type, cu);
16329 }
16330
16331 type = alloc_type (objfile);
16332
16333 TYPE_CODE (type) = TYPE_CODE_ENUM;
16334 name = dwarf2_full_name (NULL, die, cu);
16335 if (name != NULL)
16336 TYPE_NAME (type) = name;
16337
16338 attr = dwarf2_attr (die, DW_AT_type, cu);
16339 if (attr != NULL)
16340 {
16341 struct type *underlying_type = die_type (die, cu);
16342
16343 TYPE_TARGET_TYPE (type) = underlying_type;
16344 }
16345
16346 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16347 if (attr)
16348 {
16349 TYPE_LENGTH (type) = DW_UNSND (attr);
16350 }
16351 else
16352 {
16353 TYPE_LENGTH (type) = 0;
16354 }
16355
16356 maybe_set_alignment (cu, die, type);
16357
16358 /* The enumeration DIE can be incomplete. In Ada, any type can be
16359 declared as private in the package spec, and then defined only
16360 inside the package body. Such types are known as Taft Amendment
16361 Types. When another package uses such a type, an incomplete DIE
16362 may be generated by the compiler. */
16363 if (die_is_declaration (die, cu))
16364 TYPE_STUB (type) = 1;
16365
16366 /* Finish the creation of this type by using the enum's children.
16367 We must call this even when the underlying type has been provided
16368 so that we can determine if we're looking at a "flag" enum. */
16369 update_enumeration_type_from_children (die, type, cu);
16370
16371 /* If this type has an underlying type that is not a stub, then we
16372 may use its attributes. We always use the "unsigned" attribute
16373 in this situation, because ordinarily we guess whether the type
16374 is unsigned -- but the guess can be wrong and the underlying type
16375 can tell us the reality. However, we defer to a local size
16376 attribute if one exists, because this lets the compiler override
16377 the underlying type if needed. */
16378 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16379 {
16380 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16381 if (TYPE_LENGTH (type) == 0)
16382 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16383 if (TYPE_RAW_ALIGN (type) == 0
16384 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16385 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16386 }
16387
16388 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16389
16390 return set_die_type (die, type, cu);
16391 }
16392
16393 /* Given a pointer to a die which begins an enumeration, process all
16394 the dies that define the members of the enumeration, and create the
16395 symbol for the enumeration type.
16396
16397 NOTE: We reverse the order of the element list. */
16398
16399 static void
16400 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16401 {
16402 struct type *this_type;
16403
16404 this_type = get_die_type (die, cu);
16405 if (this_type == NULL)
16406 this_type = read_enumeration_type (die, cu);
16407
16408 if (die->child != NULL)
16409 {
16410 struct die_info *child_die;
16411 struct symbol *sym;
16412 struct field *fields = NULL;
16413 int num_fields = 0;
16414 const char *name;
16415
16416 child_die = die->child;
16417 while (child_die && child_die->tag)
16418 {
16419 if (child_die->tag != DW_TAG_enumerator)
16420 {
16421 process_die (child_die, cu);
16422 }
16423 else
16424 {
16425 name = dwarf2_name (child_die, cu);
16426 if (name)
16427 {
16428 sym = new_symbol (child_die, this_type, cu);
16429
16430 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16431 {
16432 fields = (struct field *)
16433 xrealloc (fields,
16434 (num_fields + DW_FIELD_ALLOC_CHUNK)
16435 * sizeof (struct field));
16436 }
16437
16438 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16439 FIELD_TYPE (fields[num_fields]) = NULL;
16440 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16441 FIELD_BITSIZE (fields[num_fields]) = 0;
16442
16443 num_fields++;
16444 }
16445 }
16446
16447 child_die = sibling_die (child_die);
16448 }
16449
16450 if (num_fields)
16451 {
16452 TYPE_NFIELDS (this_type) = num_fields;
16453 TYPE_FIELDS (this_type) = (struct field *)
16454 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16455 memcpy (TYPE_FIELDS (this_type), fields,
16456 sizeof (struct field) * num_fields);
16457 xfree (fields);
16458 }
16459 }
16460
16461 /* If we are reading an enum from a .debug_types unit, and the enum
16462 is a declaration, and the enum is not the signatured type in the
16463 unit, then we do not want to add a symbol for it. Adding a
16464 symbol would in some cases obscure the true definition of the
16465 enum, giving users an incomplete type when the definition is
16466 actually available. Note that we do not want to do this for all
16467 enums which are just declarations, because C++0x allows forward
16468 enum declarations. */
16469 if (cu->per_cu->is_debug_types
16470 && die_is_declaration (die, cu))
16471 {
16472 struct signatured_type *sig_type;
16473
16474 sig_type = (struct signatured_type *) cu->per_cu;
16475 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16476 if (sig_type->type_offset_in_section != die->sect_off)
16477 return;
16478 }
16479
16480 new_symbol (die, this_type, cu);
16481 }
16482
16483 /* Extract all information from a DW_TAG_array_type DIE and put it in
16484 the DIE's type field. For now, this only handles one dimensional
16485 arrays. */
16486
16487 static struct type *
16488 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16489 {
16490 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16491 struct die_info *child_die;
16492 struct type *type;
16493 struct type *element_type, *range_type, *index_type;
16494 struct attribute *attr;
16495 const char *name;
16496 struct dynamic_prop *byte_stride_prop = NULL;
16497 unsigned int bit_stride = 0;
16498
16499 element_type = die_type (die, cu);
16500
16501 /* The die_type call above may have already set the type for this DIE. */
16502 type = get_die_type (die, cu);
16503 if (type)
16504 return type;
16505
16506 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16507 if (attr != NULL)
16508 {
16509 int stride_ok;
16510
16511 byte_stride_prop
16512 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16513 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16514 if (!stride_ok)
16515 {
16516 complaint (_("unable to read array DW_AT_byte_stride "
16517 " - DIE at %s [in module %s]"),
16518 sect_offset_str (die->sect_off),
16519 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16520 /* Ignore this attribute. We will likely not be able to print
16521 arrays of this type correctly, but there is little we can do
16522 to help if we cannot read the attribute's value. */
16523 byte_stride_prop = NULL;
16524 }
16525 }
16526
16527 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16528 if (attr != NULL)
16529 bit_stride = DW_UNSND (attr);
16530
16531 /* Irix 6.2 native cc creates array types without children for
16532 arrays with unspecified length. */
16533 if (die->child == NULL)
16534 {
16535 index_type = objfile_type (objfile)->builtin_int;
16536 range_type = create_static_range_type (NULL, index_type, 0, -1);
16537 type = create_array_type_with_stride (NULL, element_type, range_type,
16538 byte_stride_prop, bit_stride);
16539 return set_die_type (die, type, cu);
16540 }
16541
16542 std::vector<struct type *> range_types;
16543 child_die = die->child;
16544 while (child_die && child_die->tag)
16545 {
16546 if (child_die->tag == DW_TAG_subrange_type)
16547 {
16548 struct type *child_type = read_type_die (child_die, cu);
16549
16550 if (child_type != NULL)
16551 {
16552 /* The range type was succesfully read. Save it for the
16553 array type creation. */
16554 range_types.push_back (child_type);
16555 }
16556 }
16557 child_die = sibling_die (child_die);
16558 }
16559
16560 /* Dwarf2 dimensions are output from left to right, create the
16561 necessary array types in backwards order. */
16562
16563 type = element_type;
16564
16565 if (read_array_order (die, cu) == DW_ORD_col_major)
16566 {
16567 int i = 0;
16568
16569 while (i < range_types.size ())
16570 type = create_array_type_with_stride (NULL, type, range_types[i++],
16571 byte_stride_prop, bit_stride);
16572 }
16573 else
16574 {
16575 size_t ndim = range_types.size ();
16576 while (ndim-- > 0)
16577 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16578 byte_stride_prop, bit_stride);
16579 }
16580
16581 /* Understand Dwarf2 support for vector types (like they occur on
16582 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16583 array type. This is not part of the Dwarf2/3 standard yet, but a
16584 custom vendor extension. The main difference between a regular
16585 array and the vector variant is that vectors are passed by value
16586 to functions. */
16587 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16588 if (attr)
16589 make_vector_type (type);
16590
16591 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16592 implementation may choose to implement triple vectors using this
16593 attribute. */
16594 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16595 if (attr)
16596 {
16597 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16598 TYPE_LENGTH (type) = DW_UNSND (attr);
16599 else
16600 complaint (_("DW_AT_byte_size for array type smaller "
16601 "than the total size of elements"));
16602 }
16603
16604 name = dwarf2_name (die, cu);
16605 if (name)
16606 TYPE_NAME (type) = name;
16607
16608 maybe_set_alignment (cu, die, type);
16609
16610 /* Install the type in the die. */
16611 set_die_type (die, type, cu);
16612
16613 /* set_die_type should be already done. */
16614 set_descriptive_type (type, die, cu);
16615
16616 return type;
16617 }
16618
16619 static enum dwarf_array_dim_ordering
16620 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16621 {
16622 struct attribute *attr;
16623
16624 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16625
16626 if (attr)
16627 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16628
16629 /* GNU F77 is a special case, as at 08/2004 array type info is the
16630 opposite order to the dwarf2 specification, but data is still
16631 laid out as per normal fortran.
16632
16633 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16634 version checking. */
16635
16636 if (cu->language == language_fortran
16637 && cu->producer && strstr (cu->producer, "GNU F77"))
16638 {
16639 return DW_ORD_row_major;
16640 }
16641
16642 switch (cu->language_defn->la_array_ordering)
16643 {
16644 case array_column_major:
16645 return DW_ORD_col_major;
16646 case array_row_major:
16647 default:
16648 return DW_ORD_row_major;
16649 };
16650 }
16651
16652 /* Extract all information from a DW_TAG_set_type DIE and put it in
16653 the DIE's type field. */
16654
16655 static struct type *
16656 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16657 {
16658 struct type *domain_type, *set_type;
16659 struct attribute *attr;
16660
16661 domain_type = die_type (die, cu);
16662
16663 /* The die_type call above may have already set the type for this DIE. */
16664 set_type = get_die_type (die, cu);
16665 if (set_type)
16666 return set_type;
16667
16668 set_type = create_set_type (NULL, domain_type);
16669
16670 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16671 if (attr)
16672 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16673
16674 maybe_set_alignment (cu, die, set_type);
16675
16676 return set_die_type (die, set_type, cu);
16677 }
16678
16679 /* A helper for read_common_block that creates a locexpr baton.
16680 SYM is the symbol which we are marking as computed.
16681 COMMON_DIE is the DIE for the common block.
16682 COMMON_LOC is the location expression attribute for the common
16683 block itself.
16684 MEMBER_LOC is the location expression attribute for the particular
16685 member of the common block that we are processing.
16686 CU is the CU from which the above come. */
16687
16688 static void
16689 mark_common_block_symbol_computed (struct symbol *sym,
16690 struct die_info *common_die,
16691 struct attribute *common_loc,
16692 struct attribute *member_loc,
16693 struct dwarf2_cu *cu)
16694 {
16695 struct dwarf2_per_objfile *dwarf2_per_objfile
16696 = cu->per_cu->dwarf2_per_objfile;
16697 struct objfile *objfile = dwarf2_per_objfile->objfile;
16698 struct dwarf2_locexpr_baton *baton;
16699 gdb_byte *ptr;
16700 unsigned int cu_off;
16701 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16702 LONGEST offset = 0;
16703
16704 gdb_assert (common_loc && member_loc);
16705 gdb_assert (attr_form_is_block (common_loc));
16706 gdb_assert (attr_form_is_block (member_loc)
16707 || attr_form_is_constant (member_loc));
16708
16709 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16710 baton->per_cu = cu->per_cu;
16711 gdb_assert (baton->per_cu);
16712
16713 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16714
16715 if (attr_form_is_constant (member_loc))
16716 {
16717 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16718 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16719 }
16720 else
16721 baton->size += DW_BLOCK (member_loc)->size;
16722
16723 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16724 baton->data = ptr;
16725
16726 *ptr++ = DW_OP_call4;
16727 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16728 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16729 ptr += 4;
16730
16731 if (attr_form_is_constant (member_loc))
16732 {
16733 *ptr++ = DW_OP_addr;
16734 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16735 ptr += cu->header.addr_size;
16736 }
16737 else
16738 {
16739 /* We have to copy the data here, because DW_OP_call4 will only
16740 use a DW_AT_location attribute. */
16741 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16742 ptr += DW_BLOCK (member_loc)->size;
16743 }
16744
16745 *ptr++ = DW_OP_plus;
16746 gdb_assert (ptr - baton->data == baton->size);
16747
16748 SYMBOL_LOCATION_BATON (sym) = baton;
16749 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16750 }
16751
16752 /* Create appropriate locally-scoped variables for all the
16753 DW_TAG_common_block entries. Also create a struct common_block
16754 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16755 is used to sepate the common blocks name namespace from regular
16756 variable names. */
16757
16758 static void
16759 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16760 {
16761 struct attribute *attr;
16762
16763 attr = dwarf2_attr (die, DW_AT_location, cu);
16764 if (attr)
16765 {
16766 /* Support the .debug_loc offsets. */
16767 if (attr_form_is_block (attr))
16768 {
16769 /* Ok. */
16770 }
16771 else if (attr_form_is_section_offset (attr))
16772 {
16773 dwarf2_complex_location_expr_complaint ();
16774 attr = NULL;
16775 }
16776 else
16777 {
16778 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16779 "common block member");
16780 attr = NULL;
16781 }
16782 }
16783
16784 if (die->child != NULL)
16785 {
16786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16787 struct die_info *child_die;
16788 size_t n_entries = 0, size;
16789 struct common_block *common_block;
16790 struct symbol *sym;
16791
16792 for (child_die = die->child;
16793 child_die && child_die->tag;
16794 child_die = sibling_die (child_die))
16795 ++n_entries;
16796
16797 size = (sizeof (struct common_block)
16798 + (n_entries - 1) * sizeof (struct symbol *));
16799 common_block
16800 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16801 size);
16802 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16803 common_block->n_entries = 0;
16804
16805 for (child_die = die->child;
16806 child_die && child_die->tag;
16807 child_die = sibling_die (child_die))
16808 {
16809 /* Create the symbol in the DW_TAG_common_block block in the current
16810 symbol scope. */
16811 sym = new_symbol (child_die, NULL, cu);
16812 if (sym != NULL)
16813 {
16814 struct attribute *member_loc;
16815
16816 common_block->contents[common_block->n_entries++] = sym;
16817
16818 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16819 cu);
16820 if (member_loc)
16821 {
16822 /* GDB has handled this for a long time, but it is
16823 not specified by DWARF. It seems to have been
16824 emitted by gfortran at least as recently as:
16825 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16826 complaint (_("Variable in common block has "
16827 "DW_AT_data_member_location "
16828 "- DIE at %s [in module %s]"),
16829 sect_offset_str (child_die->sect_off),
16830 objfile_name (objfile));
16831
16832 if (attr_form_is_section_offset (member_loc))
16833 dwarf2_complex_location_expr_complaint ();
16834 else if (attr_form_is_constant (member_loc)
16835 || attr_form_is_block (member_loc))
16836 {
16837 if (attr)
16838 mark_common_block_symbol_computed (sym, die, attr,
16839 member_loc, cu);
16840 }
16841 else
16842 dwarf2_complex_location_expr_complaint ();
16843 }
16844 }
16845 }
16846
16847 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16848 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16849 }
16850 }
16851
16852 /* Create a type for a C++ namespace. */
16853
16854 static struct type *
16855 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16856 {
16857 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16858 const char *previous_prefix, *name;
16859 int is_anonymous;
16860 struct type *type;
16861
16862 /* For extensions, reuse the type of the original namespace. */
16863 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16864 {
16865 struct die_info *ext_die;
16866 struct dwarf2_cu *ext_cu = cu;
16867
16868 ext_die = dwarf2_extension (die, &ext_cu);
16869 type = read_type_die (ext_die, ext_cu);
16870
16871 /* EXT_CU may not be the same as CU.
16872 Ensure TYPE is recorded with CU in die_type_hash. */
16873 return set_die_type (die, type, cu);
16874 }
16875
16876 name = namespace_name (die, &is_anonymous, cu);
16877
16878 /* Now build the name of the current namespace. */
16879
16880 previous_prefix = determine_prefix (die, cu);
16881 if (previous_prefix[0] != '\0')
16882 name = typename_concat (&objfile->objfile_obstack,
16883 previous_prefix, name, 0, cu);
16884
16885 /* Create the type. */
16886 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16887
16888 return set_die_type (die, type, cu);
16889 }
16890
16891 /* Read a namespace scope. */
16892
16893 static void
16894 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16895 {
16896 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16897 int is_anonymous;
16898
16899 /* Add a symbol associated to this if we haven't seen the namespace
16900 before. Also, add a using directive if it's an anonymous
16901 namespace. */
16902
16903 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16904 {
16905 struct type *type;
16906
16907 type = read_type_die (die, cu);
16908 new_symbol (die, type, cu);
16909
16910 namespace_name (die, &is_anonymous, cu);
16911 if (is_anonymous)
16912 {
16913 const char *previous_prefix = determine_prefix (die, cu);
16914
16915 std::vector<const char *> excludes;
16916 add_using_directive (using_directives (cu),
16917 previous_prefix, TYPE_NAME (type), NULL,
16918 NULL, excludes, 0, &objfile->objfile_obstack);
16919 }
16920 }
16921
16922 if (die->child != NULL)
16923 {
16924 struct die_info *child_die = die->child;
16925
16926 while (child_die && child_die->tag)
16927 {
16928 process_die (child_die, cu);
16929 child_die = sibling_die (child_die);
16930 }
16931 }
16932 }
16933
16934 /* Read a Fortran module as type. This DIE can be only a declaration used for
16935 imported module. Still we need that type as local Fortran "use ... only"
16936 declaration imports depend on the created type in determine_prefix. */
16937
16938 static struct type *
16939 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16940 {
16941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16942 const char *module_name;
16943 struct type *type;
16944
16945 module_name = dwarf2_name (die, cu);
16946 if (!module_name)
16947 complaint (_("DW_TAG_module has no name, offset %s"),
16948 sect_offset_str (die->sect_off));
16949 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16950
16951 return set_die_type (die, type, cu);
16952 }
16953
16954 /* Read a Fortran module. */
16955
16956 static void
16957 read_module (struct die_info *die, struct dwarf2_cu *cu)
16958 {
16959 struct die_info *child_die = die->child;
16960 struct type *type;
16961
16962 type = read_type_die (die, cu);
16963 new_symbol (die, type, cu);
16964
16965 while (child_die && child_die->tag)
16966 {
16967 process_die (child_die, cu);
16968 child_die = sibling_die (child_die);
16969 }
16970 }
16971
16972 /* Return the name of the namespace represented by DIE. Set
16973 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16974 namespace. */
16975
16976 static const char *
16977 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16978 {
16979 struct die_info *current_die;
16980 const char *name = NULL;
16981
16982 /* Loop through the extensions until we find a name. */
16983
16984 for (current_die = die;
16985 current_die != NULL;
16986 current_die = dwarf2_extension (die, &cu))
16987 {
16988 /* We don't use dwarf2_name here so that we can detect the absence
16989 of a name -> anonymous namespace. */
16990 name = dwarf2_string_attr (die, DW_AT_name, cu);
16991
16992 if (name != NULL)
16993 break;
16994 }
16995
16996 /* Is it an anonymous namespace? */
16997
16998 *is_anonymous = (name == NULL);
16999 if (*is_anonymous)
17000 name = CP_ANONYMOUS_NAMESPACE_STR;
17001
17002 return name;
17003 }
17004
17005 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17006 the user defined type vector. */
17007
17008 static struct type *
17009 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17010 {
17011 struct gdbarch *gdbarch
17012 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17013 struct comp_unit_head *cu_header = &cu->header;
17014 struct type *type;
17015 struct attribute *attr_byte_size;
17016 struct attribute *attr_address_class;
17017 int byte_size, addr_class;
17018 struct type *target_type;
17019
17020 target_type = die_type (die, cu);
17021
17022 /* The die_type call above may have already set the type for this DIE. */
17023 type = get_die_type (die, cu);
17024 if (type)
17025 return type;
17026
17027 type = lookup_pointer_type (target_type);
17028
17029 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17030 if (attr_byte_size)
17031 byte_size = DW_UNSND (attr_byte_size);
17032 else
17033 byte_size = cu_header->addr_size;
17034
17035 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17036 if (attr_address_class)
17037 addr_class = DW_UNSND (attr_address_class);
17038 else
17039 addr_class = DW_ADDR_none;
17040
17041 ULONGEST alignment = get_alignment (cu, die);
17042
17043 /* If the pointer size, alignment, or address class is different
17044 than the default, create a type variant marked as such and set
17045 the length accordingly. */
17046 if (TYPE_LENGTH (type) != byte_size
17047 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17048 && alignment != TYPE_RAW_ALIGN (type))
17049 || addr_class != DW_ADDR_none)
17050 {
17051 if (gdbarch_address_class_type_flags_p (gdbarch))
17052 {
17053 int type_flags;
17054
17055 type_flags = gdbarch_address_class_type_flags
17056 (gdbarch, byte_size, addr_class);
17057 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17058 == 0);
17059 type = make_type_with_address_space (type, type_flags);
17060 }
17061 else if (TYPE_LENGTH (type) != byte_size)
17062 {
17063 complaint (_("invalid pointer size %d"), byte_size);
17064 }
17065 else if (TYPE_RAW_ALIGN (type) != alignment)
17066 {
17067 complaint (_("Invalid DW_AT_alignment"
17068 " - DIE at %s [in module %s]"),
17069 sect_offset_str (die->sect_off),
17070 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17071 }
17072 else
17073 {
17074 /* Should we also complain about unhandled address classes? */
17075 }
17076 }
17077
17078 TYPE_LENGTH (type) = byte_size;
17079 set_type_align (type, alignment);
17080 return set_die_type (die, type, cu);
17081 }
17082
17083 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17084 the user defined type vector. */
17085
17086 static struct type *
17087 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17088 {
17089 struct type *type;
17090 struct type *to_type;
17091 struct type *domain;
17092
17093 to_type = die_type (die, cu);
17094 domain = die_containing_type (die, cu);
17095
17096 /* The calls above may have already set the type for this DIE. */
17097 type = get_die_type (die, cu);
17098 if (type)
17099 return type;
17100
17101 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17102 type = lookup_methodptr_type (to_type);
17103 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17104 {
17105 struct type *new_type
17106 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17107
17108 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17109 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17110 TYPE_VARARGS (to_type));
17111 type = lookup_methodptr_type (new_type);
17112 }
17113 else
17114 type = lookup_memberptr_type (to_type, domain);
17115
17116 return set_die_type (die, type, cu);
17117 }
17118
17119 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17120 the user defined type vector. */
17121
17122 static struct type *
17123 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17124 enum type_code refcode)
17125 {
17126 struct comp_unit_head *cu_header = &cu->header;
17127 struct type *type, *target_type;
17128 struct attribute *attr;
17129
17130 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17131
17132 target_type = die_type (die, cu);
17133
17134 /* The die_type call above may have already set the type for this DIE. */
17135 type = get_die_type (die, cu);
17136 if (type)
17137 return type;
17138
17139 type = lookup_reference_type (target_type, refcode);
17140 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17141 if (attr)
17142 {
17143 TYPE_LENGTH (type) = DW_UNSND (attr);
17144 }
17145 else
17146 {
17147 TYPE_LENGTH (type) = cu_header->addr_size;
17148 }
17149 maybe_set_alignment (cu, die, type);
17150 return set_die_type (die, type, cu);
17151 }
17152
17153 /* Add the given cv-qualifiers to the element type of the array. GCC
17154 outputs DWARF type qualifiers that apply to an array, not the
17155 element type. But GDB relies on the array element type to carry
17156 the cv-qualifiers. This mimics section 6.7.3 of the C99
17157 specification. */
17158
17159 static struct type *
17160 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17161 struct type *base_type, int cnst, int voltl)
17162 {
17163 struct type *el_type, *inner_array;
17164
17165 base_type = copy_type (base_type);
17166 inner_array = base_type;
17167
17168 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17169 {
17170 TYPE_TARGET_TYPE (inner_array) =
17171 copy_type (TYPE_TARGET_TYPE (inner_array));
17172 inner_array = TYPE_TARGET_TYPE (inner_array);
17173 }
17174
17175 el_type = TYPE_TARGET_TYPE (inner_array);
17176 cnst |= TYPE_CONST (el_type);
17177 voltl |= TYPE_VOLATILE (el_type);
17178 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17179
17180 return set_die_type (die, base_type, cu);
17181 }
17182
17183 static struct type *
17184 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17185 {
17186 struct type *base_type, *cv_type;
17187
17188 base_type = die_type (die, cu);
17189
17190 /* The die_type call above may have already set the type for this DIE. */
17191 cv_type = get_die_type (die, cu);
17192 if (cv_type)
17193 return cv_type;
17194
17195 /* In case the const qualifier is applied to an array type, the element type
17196 is so qualified, not the array type (section 6.7.3 of C99). */
17197 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17198 return add_array_cv_type (die, cu, base_type, 1, 0);
17199
17200 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17201 return set_die_type (die, cv_type, cu);
17202 }
17203
17204 static struct type *
17205 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17206 {
17207 struct type *base_type, *cv_type;
17208
17209 base_type = die_type (die, cu);
17210
17211 /* The die_type call above may have already set the type for this DIE. */
17212 cv_type = get_die_type (die, cu);
17213 if (cv_type)
17214 return cv_type;
17215
17216 /* In case the volatile qualifier is applied to an array type, the
17217 element type is so qualified, not the array type (section 6.7.3
17218 of C99). */
17219 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17220 return add_array_cv_type (die, cu, base_type, 0, 1);
17221
17222 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17223 return set_die_type (die, cv_type, cu);
17224 }
17225
17226 /* Handle DW_TAG_restrict_type. */
17227
17228 static struct type *
17229 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17230 {
17231 struct type *base_type, *cv_type;
17232
17233 base_type = die_type (die, cu);
17234
17235 /* The die_type call above may have already set the type for this DIE. */
17236 cv_type = get_die_type (die, cu);
17237 if (cv_type)
17238 return cv_type;
17239
17240 cv_type = make_restrict_type (base_type);
17241 return set_die_type (die, cv_type, cu);
17242 }
17243
17244 /* Handle DW_TAG_atomic_type. */
17245
17246 static struct type *
17247 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17248 {
17249 struct type *base_type, *cv_type;
17250
17251 base_type = die_type (die, cu);
17252
17253 /* The die_type call above may have already set the type for this DIE. */
17254 cv_type = get_die_type (die, cu);
17255 if (cv_type)
17256 return cv_type;
17257
17258 cv_type = make_atomic_type (base_type);
17259 return set_die_type (die, cv_type, cu);
17260 }
17261
17262 /* Extract all information from a DW_TAG_string_type DIE and add to
17263 the user defined type vector. It isn't really a user defined type,
17264 but it behaves like one, with other DIE's using an AT_user_def_type
17265 attribute to reference it. */
17266
17267 static struct type *
17268 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17269 {
17270 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17272 struct type *type, *range_type, *index_type, *char_type;
17273 struct attribute *attr;
17274 unsigned int length;
17275
17276 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17277 if (attr)
17278 {
17279 length = DW_UNSND (attr);
17280 }
17281 else
17282 {
17283 /* Check for the DW_AT_byte_size attribute. */
17284 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17285 if (attr)
17286 {
17287 length = DW_UNSND (attr);
17288 }
17289 else
17290 {
17291 length = 1;
17292 }
17293 }
17294
17295 index_type = objfile_type (objfile)->builtin_int;
17296 range_type = create_static_range_type (NULL, index_type, 1, length);
17297 char_type = language_string_char_type (cu->language_defn, gdbarch);
17298 type = create_string_type (NULL, char_type, range_type);
17299
17300 return set_die_type (die, type, cu);
17301 }
17302
17303 /* Assuming that DIE corresponds to a function, returns nonzero
17304 if the function is prototyped. */
17305
17306 static int
17307 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17308 {
17309 struct attribute *attr;
17310
17311 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17312 if (attr && (DW_UNSND (attr) != 0))
17313 return 1;
17314
17315 /* The DWARF standard implies that the DW_AT_prototyped attribute
17316 is only meaninful for C, but the concept also extends to other
17317 languages that allow unprototyped functions (Eg: Objective C).
17318 For all other languages, assume that functions are always
17319 prototyped. */
17320 if (cu->language != language_c
17321 && cu->language != language_objc
17322 && cu->language != language_opencl)
17323 return 1;
17324
17325 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17326 prototyped and unprototyped functions; default to prototyped,
17327 since that is more common in modern code (and RealView warns
17328 about unprototyped functions). */
17329 if (producer_is_realview (cu->producer))
17330 return 1;
17331
17332 return 0;
17333 }
17334
17335 /* Handle DIES due to C code like:
17336
17337 struct foo
17338 {
17339 int (*funcp)(int a, long l);
17340 int b;
17341 };
17342
17343 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17344
17345 static struct type *
17346 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17347 {
17348 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17349 struct type *type; /* Type that this function returns. */
17350 struct type *ftype; /* Function that returns above type. */
17351 struct attribute *attr;
17352
17353 type = die_type (die, cu);
17354
17355 /* The die_type call above may have already set the type for this DIE. */
17356 ftype = get_die_type (die, cu);
17357 if (ftype)
17358 return ftype;
17359
17360 ftype = lookup_function_type (type);
17361
17362 if (prototyped_function_p (die, cu))
17363 TYPE_PROTOTYPED (ftype) = 1;
17364
17365 /* Store the calling convention in the type if it's available in
17366 the subroutine die. Otherwise set the calling convention to
17367 the default value DW_CC_normal. */
17368 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17369 if (attr)
17370 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17371 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17372 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17373 else
17374 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17375
17376 /* Record whether the function returns normally to its caller or not
17377 if the DWARF producer set that information. */
17378 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17379 if (attr && (DW_UNSND (attr) != 0))
17380 TYPE_NO_RETURN (ftype) = 1;
17381
17382 /* We need to add the subroutine type to the die immediately so
17383 we don't infinitely recurse when dealing with parameters
17384 declared as the same subroutine type. */
17385 set_die_type (die, ftype, cu);
17386
17387 if (die->child != NULL)
17388 {
17389 struct type *void_type = objfile_type (objfile)->builtin_void;
17390 struct die_info *child_die;
17391 int nparams, iparams;
17392
17393 /* Count the number of parameters.
17394 FIXME: GDB currently ignores vararg functions, but knows about
17395 vararg member functions. */
17396 nparams = 0;
17397 child_die = die->child;
17398 while (child_die && child_die->tag)
17399 {
17400 if (child_die->tag == DW_TAG_formal_parameter)
17401 nparams++;
17402 else if (child_die->tag == DW_TAG_unspecified_parameters)
17403 TYPE_VARARGS (ftype) = 1;
17404 child_die = sibling_die (child_die);
17405 }
17406
17407 /* Allocate storage for parameters and fill them in. */
17408 TYPE_NFIELDS (ftype) = nparams;
17409 TYPE_FIELDS (ftype) = (struct field *)
17410 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17411
17412 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17413 even if we error out during the parameters reading below. */
17414 for (iparams = 0; iparams < nparams; iparams++)
17415 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17416
17417 iparams = 0;
17418 child_die = die->child;
17419 while (child_die && child_die->tag)
17420 {
17421 if (child_die->tag == DW_TAG_formal_parameter)
17422 {
17423 struct type *arg_type;
17424
17425 /* DWARF version 2 has no clean way to discern C++
17426 static and non-static member functions. G++ helps
17427 GDB by marking the first parameter for non-static
17428 member functions (which is the this pointer) as
17429 artificial. We pass this information to
17430 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17431
17432 DWARF version 3 added DW_AT_object_pointer, which GCC
17433 4.5 does not yet generate. */
17434 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17435 if (attr)
17436 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17437 else
17438 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17439 arg_type = die_type (child_die, cu);
17440
17441 /* RealView does not mark THIS as const, which the testsuite
17442 expects. GCC marks THIS as const in method definitions,
17443 but not in the class specifications (GCC PR 43053). */
17444 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17445 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17446 {
17447 int is_this = 0;
17448 struct dwarf2_cu *arg_cu = cu;
17449 const char *name = dwarf2_name (child_die, cu);
17450
17451 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17452 if (attr)
17453 {
17454 /* If the compiler emits this, use it. */
17455 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17456 is_this = 1;
17457 }
17458 else if (name && strcmp (name, "this") == 0)
17459 /* Function definitions will have the argument names. */
17460 is_this = 1;
17461 else if (name == NULL && iparams == 0)
17462 /* Declarations may not have the names, so like
17463 elsewhere in GDB, assume an artificial first
17464 argument is "this". */
17465 is_this = 1;
17466
17467 if (is_this)
17468 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17469 arg_type, 0);
17470 }
17471
17472 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17473 iparams++;
17474 }
17475 child_die = sibling_die (child_die);
17476 }
17477 }
17478
17479 return ftype;
17480 }
17481
17482 static struct type *
17483 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17484 {
17485 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17486 const char *name = NULL;
17487 struct type *this_type, *target_type;
17488
17489 name = dwarf2_full_name (NULL, die, cu);
17490 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17491 TYPE_TARGET_STUB (this_type) = 1;
17492 set_die_type (die, this_type, cu);
17493 target_type = die_type (die, cu);
17494 if (target_type != this_type)
17495 TYPE_TARGET_TYPE (this_type) = target_type;
17496 else
17497 {
17498 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17499 spec and cause infinite loops in GDB. */
17500 complaint (_("Self-referential DW_TAG_typedef "
17501 "- DIE at %s [in module %s]"),
17502 sect_offset_str (die->sect_off), objfile_name (objfile));
17503 TYPE_TARGET_TYPE (this_type) = NULL;
17504 }
17505 return this_type;
17506 }
17507
17508 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17509 (which may be different from NAME) to the architecture back-end to allow
17510 it to guess the correct format if necessary. */
17511
17512 static struct type *
17513 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17514 const char *name_hint)
17515 {
17516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17517 const struct floatformat **format;
17518 struct type *type;
17519
17520 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17521 if (format)
17522 type = init_float_type (objfile, bits, name, format);
17523 else
17524 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17525
17526 return type;
17527 }
17528
17529 /* Allocate an integer type of size BITS and name NAME. */
17530
17531 static struct type *
17532 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17533 int bits, int unsigned_p, const char *name)
17534 {
17535 struct type *type;
17536
17537 /* Versions of Intel's C Compiler generate an integer type called "void"
17538 instead of using DW_TAG_unspecified_type. This has been seen on
17539 at least versions 14, 17, and 18. */
17540 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17541 && strcmp (name, "void") == 0)
17542 type = objfile_type (objfile)->builtin_void;
17543 else
17544 type = init_integer_type (objfile, bits, unsigned_p, name);
17545
17546 return type;
17547 }
17548
17549 /* Initialise and return a floating point type of size BITS suitable for
17550 use as a component of a complex number. The NAME_HINT is passed through
17551 when initialising the floating point type and is the name of the complex
17552 type.
17553
17554 As DWARF doesn't currently provide an explicit name for the components
17555 of a complex number, but it can be helpful to have these components
17556 named, we try to select a suitable name based on the size of the
17557 component. */
17558 static struct type *
17559 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17560 struct objfile *objfile,
17561 int bits, const char *name_hint)
17562 {
17563 gdbarch *gdbarch = get_objfile_arch (objfile);
17564 struct type *tt = nullptr;
17565
17566 /* Try to find a suitable floating point builtin type of size BITS.
17567 We're going to use the name of this type as the name for the complex
17568 target type that we are about to create. */
17569 switch (cu->language)
17570 {
17571 case language_fortran:
17572 switch (bits)
17573 {
17574 case 32:
17575 tt = builtin_f_type (gdbarch)->builtin_real;
17576 break;
17577 case 64:
17578 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17579 break;
17580 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17581 case 128:
17582 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17583 break;
17584 }
17585 break;
17586 default:
17587 switch (bits)
17588 {
17589 case 32:
17590 tt = builtin_type (gdbarch)->builtin_float;
17591 break;
17592 case 64:
17593 tt = builtin_type (gdbarch)->builtin_double;
17594 break;
17595 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17596 case 128:
17597 tt = builtin_type (gdbarch)->builtin_long_double;
17598 break;
17599 }
17600 break;
17601 }
17602
17603 /* If the type we found doesn't match the size we were looking for, then
17604 pretend we didn't find a type at all, the complex target type we
17605 create will then be nameless. */
17606 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17607 tt = nullptr;
17608
17609 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17610 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17611 }
17612
17613 /* Find a representation of a given base type and install
17614 it in the TYPE field of the die. */
17615
17616 static struct type *
17617 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17618 {
17619 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17620 struct type *type;
17621 struct attribute *attr;
17622 int encoding = 0, bits = 0;
17623 const char *name;
17624
17625 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17626 if (attr)
17627 {
17628 encoding = DW_UNSND (attr);
17629 }
17630 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17631 if (attr)
17632 {
17633 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17634 }
17635 name = dwarf2_name (die, cu);
17636 if (!name)
17637 {
17638 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17639 }
17640
17641 switch (encoding)
17642 {
17643 case DW_ATE_address:
17644 /* Turn DW_ATE_address into a void * pointer. */
17645 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17646 type = init_pointer_type (objfile, bits, name, type);
17647 break;
17648 case DW_ATE_boolean:
17649 type = init_boolean_type (objfile, bits, 1, name);
17650 break;
17651 case DW_ATE_complex_float:
17652 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17653 type = init_complex_type (objfile, name, type);
17654 break;
17655 case DW_ATE_decimal_float:
17656 type = init_decfloat_type (objfile, bits, name);
17657 break;
17658 case DW_ATE_float:
17659 type = dwarf2_init_float_type (objfile, bits, name, name);
17660 break;
17661 case DW_ATE_signed:
17662 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17663 break;
17664 case DW_ATE_unsigned:
17665 if (cu->language == language_fortran
17666 && name
17667 && startswith (name, "character("))
17668 type = init_character_type (objfile, bits, 1, name);
17669 else
17670 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17671 break;
17672 case DW_ATE_signed_char:
17673 if (cu->language == language_ada || cu->language == language_m2
17674 || cu->language == language_pascal
17675 || cu->language == language_fortran)
17676 type = init_character_type (objfile, bits, 0, name);
17677 else
17678 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17679 break;
17680 case DW_ATE_unsigned_char:
17681 if (cu->language == language_ada || cu->language == language_m2
17682 || cu->language == language_pascal
17683 || cu->language == language_fortran
17684 || cu->language == language_rust)
17685 type = init_character_type (objfile, bits, 1, name);
17686 else
17687 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17688 break;
17689 case DW_ATE_UTF:
17690 {
17691 gdbarch *arch = get_objfile_arch (objfile);
17692
17693 if (bits == 16)
17694 type = builtin_type (arch)->builtin_char16;
17695 else if (bits == 32)
17696 type = builtin_type (arch)->builtin_char32;
17697 else
17698 {
17699 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17700 bits);
17701 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17702 }
17703 return set_die_type (die, type, cu);
17704 }
17705 break;
17706
17707 default:
17708 complaint (_("unsupported DW_AT_encoding: '%s'"),
17709 dwarf_type_encoding_name (encoding));
17710 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17711 break;
17712 }
17713
17714 if (name && strcmp (name, "char") == 0)
17715 TYPE_NOSIGN (type) = 1;
17716
17717 maybe_set_alignment (cu, die, type);
17718
17719 return set_die_type (die, type, cu);
17720 }
17721
17722 /* Parse dwarf attribute if it's a block, reference or constant and put the
17723 resulting value of the attribute into struct bound_prop.
17724 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17725
17726 static int
17727 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17728 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17729 {
17730 struct dwarf2_property_baton *baton;
17731 struct obstack *obstack
17732 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17733
17734 if (attr == NULL || prop == NULL)
17735 return 0;
17736
17737 if (attr_form_is_block (attr))
17738 {
17739 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17740 baton->referenced_type = NULL;
17741 baton->locexpr.per_cu = cu->per_cu;
17742 baton->locexpr.size = DW_BLOCK (attr)->size;
17743 baton->locexpr.data = DW_BLOCK (attr)->data;
17744 prop->data.baton = baton;
17745 prop->kind = PROP_LOCEXPR;
17746 gdb_assert (prop->data.baton != NULL);
17747 }
17748 else if (attr_form_is_ref (attr))
17749 {
17750 struct dwarf2_cu *target_cu = cu;
17751 struct die_info *target_die;
17752 struct attribute *target_attr;
17753
17754 target_die = follow_die_ref (die, attr, &target_cu);
17755 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17756 if (target_attr == NULL)
17757 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17758 target_cu);
17759 if (target_attr == NULL)
17760 return 0;
17761
17762 switch (target_attr->name)
17763 {
17764 case DW_AT_location:
17765 if (attr_form_is_section_offset (target_attr))
17766 {
17767 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17768 baton->referenced_type = die_type (target_die, target_cu);
17769 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17770 prop->data.baton = baton;
17771 prop->kind = PROP_LOCLIST;
17772 gdb_assert (prop->data.baton != NULL);
17773 }
17774 else if (attr_form_is_block (target_attr))
17775 {
17776 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17777 baton->referenced_type = die_type (target_die, target_cu);
17778 baton->locexpr.per_cu = cu->per_cu;
17779 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17780 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17781 prop->data.baton = baton;
17782 prop->kind = PROP_LOCEXPR;
17783 gdb_assert (prop->data.baton != NULL);
17784 }
17785 else
17786 {
17787 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17788 "dynamic property");
17789 return 0;
17790 }
17791 break;
17792 case DW_AT_data_member_location:
17793 {
17794 LONGEST offset;
17795
17796 if (!handle_data_member_location (target_die, target_cu,
17797 &offset))
17798 return 0;
17799
17800 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17801 baton->referenced_type = read_type_die (target_die->parent,
17802 target_cu);
17803 baton->offset_info.offset = offset;
17804 baton->offset_info.type = die_type (target_die, target_cu);
17805 prop->data.baton = baton;
17806 prop->kind = PROP_ADDR_OFFSET;
17807 break;
17808 }
17809 }
17810 }
17811 else if (attr_form_is_constant (attr))
17812 {
17813 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17814 prop->kind = PROP_CONST;
17815 }
17816 else
17817 {
17818 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17819 dwarf2_name (die, cu));
17820 return 0;
17821 }
17822
17823 return 1;
17824 }
17825
17826 /* Read the given DW_AT_subrange DIE. */
17827
17828 static struct type *
17829 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17830 {
17831 struct type *base_type, *orig_base_type;
17832 struct type *range_type;
17833 struct attribute *attr;
17834 struct dynamic_prop low, high;
17835 int low_default_is_valid;
17836 int high_bound_is_count = 0;
17837 const char *name;
17838 ULONGEST negative_mask;
17839
17840 orig_base_type = die_type (die, cu);
17841 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17842 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17843 creating the range type, but we use the result of check_typedef
17844 when examining properties of the type. */
17845 base_type = check_typedef (orig_base_type);
17846
17847 /* The die_type call above may have already set the type for this DIE. */
17848 range_type = get_die_type (die, cu);
17849 if (range_type)
17850 return range_type;
17851
17852 low.kind = PROP_CONST;
17853 high.kind = PROP_CONST;
17854 high.data.const_val = 0;
17855
17856 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17857 omitting DW_AT_lower_bound. */
17858 switch (cu->language)
17859 {
17860 case language_c:
17861 case language_cplus:
17862 low.data.const_val = 0;
17863 low_default_is_valid = 1;
17864 break;
17865 case language_fortran:
17866 low.data.const_val = 1;
17867 low_default_is_valid = 1;
17868 break;
17869 case language_d:
17870 case language_objc:
17871 case language_rust:
17872 low.data.const_val = 0;
17873 low_default_is_valid = (cu->header.version >= 4);
17874 break;
17875 case language_ada:
17876 case language_m2:
17877 case language_pascal:
17878 low.data.const_val = 1;
17879 low_default_is_valid = (cu->header.version >= 4);
17880 break;
17881 default:
17882 low.data.const_val = 0;
17883 low_default_is_valid = 0;
17884 break;
17885 }
17886
17887 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17888 if (attr)
17889 attr_to_dynamic_prop (attr, die, cu, &low);
17890 else if (!low_default_is_valid)
17891 complaint (_("Missing DW_AT_lower_bound "
17892 "- DIE at %s [in module %s]"),
17893 sect_offset_str (die->sect_off),
17894 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17895
17896 struct attribute *attr_ub, *attr_count;
17897 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17898 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17899 {
17900 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17901 if (attr_to_dynamic_prop (attr, die, cu, &high))
17902 {
17903 /* If bounds are constant do the final calculation here. */
17904 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17905 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17906 else
17907 high_bound_is_count = 1;
17908 }
17909 else
17910 {
17911 if (attr_ub != NULL)
17912 complaint (_("Unresolved DW_AT_upper_bound "
17913 "- DIE at %s [in module %s]"),
17914 sect_offset_str (die->sect_off),
17915 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17916 if (attr_count != NULL)
17917 complaint (_("Unresolved DW_AT_count "
17918 "- DIE at %s [in module %s]"),
17919 sect_offset_str (die->sect_off),
17920 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17921 }
17922
17923 }
17924
17925 /* Dwarf-2 specifications explicitly allows to create subrange types
17926 without specifying a base type.
17927 In that case, the base type must be set to the type of
17928 the lower bound, upper bound or count, in that order, if any of these
17929 three attributes references an object that has a type.
17930 If no base type is found, the Dwarf-2 specifications say that
17931 a signed integer type of size equal to the size of an address should
17932 be used.
17933 For the following C code: `extern char gdb_int [];'
17934 GCC produces an empty range DIE.
17935 FIXME: muller/2010-05-28: Possible references to object for low bound,
17936 high bound or count are not yet handled by this code. */
17937 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17938 {
17939 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17941 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17942 struct type *int_type = objfile_type (objfile)->builtin_int;
17943
17944 /* Test "int", "long int", and "long long int" objfile types,
17945 and select the first one having a size above or equal to the
17946 architecture address size. */
17947 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17948 base_type = int_type;
17949 else
17950 {
17951 int_type = objfile_type (objfile)->builtin_long;
17952 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17953 base_type = int_type;
17954 else
17955 {
17956 int_type = objfile_type (objfile)->builtin_long_long;
17957 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17958 base_type = int_type;
17959 }
17960 }
17961 }
17962
17963 /* Normally, the DWARF producers are expected to use a signed
17964 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17965 But this is unfortunately not always the case, as witnessed
17966 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17967 is used instead. To work around that ambiguity, we treat
17968 the bounds as signed, and thus sign-extend their values, when
17969 the base type is signed. */
17970 negative_mask =
17971 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17972 if (low.kind == PROP_CONST
17973 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17974 low.data.const_val |= negative_mask;
17975 if (high.kind == PROP_CONST
17976 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17977 high.data.const_val |= negative_mask;
17978
17979 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17980
17981 if (high_bound_is_count)
17982 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17983
17984 /* Ada expects an empty array on no boundary attributes. */
17985 if (attr == NULL && cu->language != language_ada)
17986 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17987
17988 name = dwarf2_name (die, cu);
17989 if (name)
17990 TYPE_NAME (range_type) = name;
17991
17992 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17993 if (attr)
17994 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17995
17996 maybe_set_alignment (cu, die, range_type);
17997
17998 set_die_type (die, range_type, cu);
17999
18000 /* set_die_type should be already done. */
18001 set_descriptive_type (range_type, die, cu);
18002
18003 return range_type;
18004 }
18005
18006 static struct type *
18007 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18008 {
18009 struct type *type;
18010
18011 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18012 NULL);
18013 TYPE_NAME (type) = dwarf2_name (die, cu);
18014
18015 /* In Ada, an unspecified type is typically used when the description
18016 of the type is defered to a different unit. When encountering
18017 such a type, we treat it as a stub, and try to resolve it later on,
18018 when needed. */
18019 if (cu->language == language_ada)
18020 TYPE_STUB (type) = 1;
18021
18022 return set_die_type (die, type, cu);
18023 }
18024
18025 /* Read a single die and all its descendents. Set the die's sibling
18026 field to NULL; set other fields in the die correctly, and set all
18027 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18028 location of the info_ptr after reading all of those dies. PARENT
18029 is the parent of the die in question. */
18030
18031 static struct die_info *
18032 read_die_and_children (const struct die_reader_specs *reader,
18033 const gdb_byte *info_ptr,
18034 const gdb_byte **new_info_ptr,
18035 struct die_info *parent)
18036 {
18037 struct die_info *die;
18038 const gdb_byte *cur_ptr;
18039 int has_children;
18040
18041 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18042 if (die == NULL)
18043 {
18044 *new_info_ptr = cur_ptr;
18045 return NULL;
18046 }
18047 store_in_ref_table (die, reader->cu);
18048
18049 if (has_children)
18050 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18051 else
18052 {
18053 die->child = NULL;
18054 *new_info_ptr = cur_ptr;
18055 }
18056
18057 die->sibling = NULL;
18058 die->parent = parent;
18059 return die;
18060 }
18061
18062 /* Read a die, all of its descendents, and all of its siblings; set
18063 all of the fields of all of the dies correctly. Arguments are as
18064 in read_die_and_children. */
18065
18066 static struct die_info *
18067 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18068 const gdb_byte *info_ptr,
18069 const gdb_byte **new_info_ptr,
18070 struct die_info *parent)
18071 {
18072 struct die_info *first_die, *last_sibling;
18073 const gdb_byte *cur_ptr;
18074
18075 cur_ptr = info_ptr;
18076 first_die = last_sibling = NULL;
18077
18078 while (1)
18079 {
18080 struct die_info *die
18081 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18082
18083 if (die == NULL)
18084 {
18085 *new_info_ptr = cur_ptr;
18086 return first_die;
18087 }
18088
18089 if (!first_die)
18090 first_die = die;
18091 else
18092 last_sibling->sibling = die;
18093
18094 last_sibling = die;
18095 }
18096 }
18097
18098 /* Read a die, all of its descendents, and all of its siblings; set
18099 all of the fields of all of the dies correctly. Arguments are as
18100 in read_die_and_children.
18101 This the main entry point for reading a DIE and all its children. */
18102
18103 static struct die_info *
18104 read_die_and_siblings (const struct die_reader_specs *reader,
18105 const gdb_byte *info_ptr,
18106 const gdb_byte **new_info_ptr,
18107 struct die_info *parent)
18108 {
18109 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18110 new_info_ptr, parent);
18111
18112 if (dwarf_die_debug)
18113 {
18114 fprintf_unfiltered (gdb_stdlog,
18115 "Read die from %s@0x%x of %s:\n",
18116 get_section_name (reader->die_section),
18117 (unsigned) (info_ptr - reader->die_section->buffer),
18118 bfd_get_filename (reader->abfd));
18119 dump_die (die, dwarf_die_debug);
18120 }
18121
18122 return die;
18123 }
18124
18125 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18126 attributes.
18127 The caller is responsible for filling in the extra attributes
18128 and updating (*DIEP)->num_attrs.
18129 Set DIEP to point to a newly allocated die with its information,
18130 except for its child, sibling, and parent fields.
18131 Set HAS_CHILDREN to tell whether the die has children or not. */
18132
18133 static const gdb_byte *
18134 read_full_die_1 (const struct die_reader_specs *reader,
18135 struct die_info **diep, const gdb_byte *info_ptr,
18136 int *has_children, int num_extra_attrs)
18137 {
18138 unsigned int abbrev_number, bytes_read, i;
18139 struct abbrev_info *abbrev;
18140 struct die_info *die;
18141 struct dwarf2_cu *cu = reader->cu;
18142 bfd *abfd = reader->abfd;
18143
18144 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18145 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18146 info_ptr += bytes_read;
18147 if (!abbrev_number)
18148 {
18149 *diep = NULL;
18150 *has_children = 0;
18151 return info_ptr;
18152 }
18153
18154 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18155 if (!abbrev)
18156 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18157 abbrev_number,
18158 bfd_get_filename (abfd));
18159
18160 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18161 die->sect_off = sect_off;
18162 die->tag = abbrev->tag;
18163 die->abbrev = abbrev_number;
18164
18165 /* Make the result usable.
18166 The caller needs to update num_attrs after adding the extra
18167 attributes. */
18168 die->num_attrs = abbrev->num_attrs;
18169
18170 for (i = 0; i < abbrev->num_attrs; ++i)
18171 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18172 info_ptr);
18173
18174 *diep = die;
18175 *has_children = abbrev->has_children;
18176 return info_ptr;
18177 }
18178
18179 /* Read a die and all its attributes.
18180 Set DIEP to point to a newly allocated die with its information,
18181 except for its child, sibling, and parent fields.
18182 Set HAS_CHILDREN to tell whether the die has children or not. */
18183
18184 static const gdb_byte *
18185 read_full_die (const struct die_reader_specs *reader,
18186 struct die_info **diep, const gdb_byte *info_ptr,
18187 int *has_children)
18188 {
18189 const gdb_byte *result;
18190
18191 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18192
18193 if (dwarf_die_debug)
18194 {
18195 fprintf_unfiltered (gdb_stdlog,
18196 "Read die from %s@0x%x of %s:\n",
18197 get_section_name (reader->die_section),
18198 (unsigned) (info_ptr - reader->die_section->buffer),
18199 bfd_get_filename (reader->abfd));
18200 dump_die (*diep, dwarf_die_debug);
18201 }
18202
18203 return result;
18204 }
18205 \f
18206 /* Abbreviation tables.
18207
18208 In DWARF version 2, the description of the debugging information is
18209 stored in a separate .debug_abbrev section. Before we read any
18210 dies from a section we read in all abbreviations and install them
18211 in a hash table. */
18212
18213 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18214
18215 struct abbrev_info *
18216 abbrev_table::alloc_abbrev ()
18217 {
18218 struct abbrev_info *abbrev;
18219
18220 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18221 memset (abbrev, 0, sizeof (struct abbrev_info));
18222
18223 return abbrev;
18224 }
18225
18226 /* Add an abbreviation to the table. */
18227
18228 void
18229 abbrev_table::add_abbrev (unsigned int abbrev_number,
18230 struct abbrev_info *abbrev)
18231 {
18232 unsigned int hash_number;
18233
18234 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18235 abbrev->next = m_abbrevs[hash_number];
18236 m_abbrevs[hash_number] = abbrev;
18237 }
18238
18239 /* Look up an abbrev in the table.
18240 Returns NULL if the abbrev is not found. */
18241
18242 struct abbrev_info *
18243 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18244 {
18245 unsigned int hash_number;
18246 struct abbrev_info *abbrev;
18247
18248 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18249 abbrev = m_abbrevs[hash_number];
18250
18251 while (abbrev)
18252 {
18253 if (abbrev->number == abbrev_number)
18254 return abbrev;
18255 abbrev = abbrev->next;
18256 }
18257 return NULL;
18258 }
18259
18260 /* Read in an abbrev table. */
18261
18262 static abbrev_table_up
18263 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18264 struct dwarf2_section_info *section,
18265 sect_offset sect_off)
18266 {
18267 struct objfile *objfile = dwarf2_per_objfile->objfile;
18268 bfd *abfd = get_section_bfd_owner (section);
18269 const gdb_byte *abbrev_ptr;
18270 struct abbrev_info *cur_abbrev;
18271 unsigned int abbrev_number, bytes_read, abbrev_name;
18272 unsigned int abbrev_form;
18273 struct attr_abbrev *cur_attrs;
18274 unsigned int allocated_attrs;
18275
18276 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18277
18278 dwarf2_read_section (objfile, section);
18279 abbrev_ptr = section->buffer + to_underlying (sect_off);
18280 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18281 abbrev_ptr += bytes_read;
18282
18283 allocated_attrs = ATTR_ALLOC_CHUNK;
18284 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18285
18286 /* Loop until we reach an abbrev number of 0. */
18287 while (abbrev_number)
18288 {
18289 cur_abbrev = abbrev_table->alloc_abbrev ();
18290
18291 /* read in abbrev header */
18292 cur_abbrev->number = abbrev_number;
18293 cur_abbrev->tag
18294 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18295 abbrev_ptr += bytes_read;
18296 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18297 abbrev_ptr += 1;
18298
18299 /* now read in declarations */
18300 for (;;)
18301 {
18302 LONGEST implicit_const;
18303
18304 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18305 abbrev_ptr += bytes_read;
18306 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18307 abbrev_ptr += bytes_read;
18308 if (abbrev_form == DW_FORM_implicit_const)
18309 {
18310 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18311 &bytes_read);
18312 abbrev_ptr += bytes_read;
18313 }
18314 else
18315 {
18316 /* Initialize it due to a false compiler warning. */
18317 implicit_const = -1;
18318 }
18319
18320 if (abbrev_name == 0)
18321 break;
18322
18323 if (cur_abbrev->num_attrs == allocated_attrs)
18324 {
18325 allocated_attrs += ATTR_ALLOC_CHUNK;
18326 cur_attrs
18327 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18328 }
18329
18330 cur_attrs[cur_abbrev->num_attrs].name
18331 = (enum dwarf_attribute) abbrev_name;
18332 cur_attrs[cur_abbrev->num_attrs].form
18333 = (enum dwarf_form) abbrev_form;
18334 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18335 ++cur_abbrev->num_attrs;
18336 }
18337
18338 cur_abbrev->attrs =
18339 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18340 cur_abbrev->num_attrs);
18341 memcpy (cur_abbrev->attrs, cur_attrs,
18342 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18343
18344 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18345
18346 /* Get next abbreviation.
18347 Under Irix6 the abbreviations for a compilation unit are not
18348 always properly terminated with an abbrev number of 0.
18349 Exit loop if we encounter an abbreviation which we have
18350 already read (which means we are about to read the abbreviations
18351 for the next compile unit) or if the end of the abbreviation
18352 table is reached. */
18353 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18354 break;
18355 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18356 abbrev_ptr += bytes_read;
18357 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18358 break;
18359 }
18360
18361 xfree (cur_attrs);
18362 return abbrev_table;
18363 }
18364
18365 /* Returns nonzero if TAG represents a type that we might generate a partial
18366 symbol for. */
18367
18368 static int
18369 is_type_tag_for_partial (int tag)
18370 {
18371 switch (tag)
18372 {
18373 #if 0
18374 /* Some types that would be reasonable to generate partial symbols for,
18375 that we don't at present. */
18376 case DW_TAG_array_type:
18377 case DW_TAG_file_type:
18378 case DW_TAG_ptr_to_member_type:
18379 case DW_TAG_set_type:
18380 case DW_TAG_string_type:
18381 case DW_TAG_subroutine_type:
18382 #endif
18383 case DW_TAG_base_type:
18384 case DW_TAG_class_type:
18385 case DW_TAG_interface_type:
18386 case DW_TAG_enumeration_type:
18387 case DW_TAG_structure_type:
18388 case DW_TAG_subrange_type:
18389 case DW_TAG_typedef:
18390 case DW_TAG_union_type:
18391 return 1;
18392 default:
18393 return 0;
18394 }
18395 }
18396
18397 /* Load all DIEs that are interesting for partial symbols into memory. */
18398
18399 static struct partial_die_info *
18400 load_partial_dies (const struct die_reader_specs *reader,
18401 const gdb_byte *info_ptr, int building_psymtab)
18402 {
18403 struct dwarf2_cu *cu = reader->cu;
18404 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18405 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18406 unsigned int bytes_read;
18407 unsigned int load_all = 0;
18408 int nesting_level = 1;
18409
18410 parent_die = NULL;
18411 last_die = NULL;
18412
18413 gdb_assert (cu->per_cu != NULL);
18414 if (cu->per_cu->load_all_dies)
18415 load_all = 1;
18416
18417 cu->partial_dies
18418 = htab_create_alloc_ex (cu->header.length / 12,
18419 partial_die_hash,
18420 partial_die_eq,
18421 NULL,
18422 &cu->comp_unit_obstack,
18423 hashtab_obstack_allocate,
18424 dummy_obstack_deallocate);
18425
18426 while (1)
18427 {
18428 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18429
18430 /* A NULL abbrev means the end of a series of children. */
18431 if (abbrev == NULL)
18432 {
18433 if (--nesting_level == 0)
18434 return first_die;
18435
18436 info_ptr += bytes_read;
18437 last_die = parent_die;
18438 parent_die = parent_die->die_parent;
18439 continue;
18440 }
18441
18442 /* Check for template arguments. We never save these; if
18443 they're seen, we just mark the parent, and go on our way. */
18444 if (parent_die != NULL
18445 && cu->language == language_cplus
18446 && (abbrev->tag == DW_TAG_template_type_param
18447 || abbrev->tag == DW_TAG_template_value_param))
18448 {
18449 parent_die->has_template_arguments = 1;
18450
18451 if (!load_all)
18452 {
18453 /* We don't need a partial DIE for the template argument. */
18454 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18455 continue;
18456 }
18457 }
18458
18459 /* We only recurse into c++ subprograms looking for template arguments.
18460 Skip their other children. */
18461 if (!load_all
18462 && cu->language == language_cplus
18463 && parent_die != NULL
18464 && parent_die->tag == DW_TAG_subprogram)
18465 {
18466 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18467 continue;
18468 }
18469
18470 /* Check whether this DIE is interesting enough to save. Normally
18471 we would not be interested in members here, but there may be
18472 later variables referencing them via DW_AT_specification (for
18473 static members). */
18474 if (!load_all
18475 && !is_type_tag_for_partial (abbrev->tag)
18476 && abbrev->tag != DW_TAG_constant
18477 && abbrev->tag != DW_TAG_enumerator
18478 && abbrev->tag != DW_TAG_subprogram
18479 && abbrev->tag != DW_TAG_inlined_subroutine
18480 && abbrev->tag != DW_TAG_lexical_block
18481 && abbrev->tag != DW_TAG_variable
18482 && abbrev->tag != DW_TAG_namespace
18483 && abbrev->tag != DW_TAG_module
18484 && abbrev->tag != DW_TAG_member
18485 && abbrev->tag != DW_TAG_imported_unit
18486 && abbrev->tag != DW_TAG_imported_declaration)
18487 {
18488 /* Otherwise we skip to the next sibling, if any. */
18489 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18490 continue;
18491 }
18492
18493 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18494 abbrev);
18495
18496 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18497
18498 /* This two-pass algorithm for processing partial symbols has a
18499 high cost in cache pressure. Thus, handle some simple cases
18500 here which cover the majority of C partial symbols. DIEs
18501 which neither have specification tags in them, nor could have
18502 specification tags elsewhere pointing at them, can simply be
18503 processed and discarded.
18504
18505 This segment is also optional; scan_partial_symbols and
18506 add_partial_symbol will handle these DIEs if we chain
18507 them in normally. When compilers which do not emit large
18508 quantities of duplicate debug information are more common,
18509 this code can probably be removed. */
18510
18511 /* Any complete simple types at the top level (pretty much all
18512 of them, for a language without namespaces), can be processed
18513 directly. */
18514 if (parent_die == NULL
18515 && pdi.has_specification == 0
18516 && pdi.is_declaration == 0
18517 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18518 || pdi.tag == DW_TAG_base_type
18519 || pdi.tag == DW_TAG_subrange_type))
18520 {
18521 if (building_psymtab && pdi.name != NULL)
18522 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18523 VAR_DOMAIN, LOC_TYPEDEF, -1,
18524 psymbol_placement::STATIC,
18525 0, cu->language, objfile);
18526 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18527 continue;
18528 }
18529
18530 /* The exception for DW_TAG_typedef with has_children above is
18531 a workaround of GCC PR debug/47510. In the case of this complaint
18532 type_name_or_error will error on such types later.
18533
18534 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18535 it could not find the child DIEs referenced later, this is checked
18536 above. In correct DWARF DW_TAG_typedef should have no children. */
18537
18538 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18539 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18540 "- DIE at %s [in module %s]"),
18541 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18542
18543 /* If we're at the second level, and we're an enumerator, and
18544 our parent has no specification (meaning possibly lives in a
18545 namespace elsewhere), then we can add the partial symbol now
18546 instead of queueing it. */
18547 if (pdi.tag == DW_TAG_enumerator
18548 && parent_die != NULL
18549 && parent_die->die_parent == NULL
18550 && parent_die->tag == DW_TAG_enumeration_type
18551 && parent_die->has_specification == 0)
18552 {
18553 if (pdi.name == NULL)
18554 complaint (_("malformed enumerator DIE ignored"));
18555 else if (building_psymtab)
18556 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18557 VAR_DOMAIN, LOC_CONST, -1,
18558 cu->language == language_cplus
18559 ? psymbol_placement::GLOBAL
18560 : psymbol_placement::STATIC,
18561 0, cu->language, objfile);
18562
18563 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18564 continue;
18565 }
18566
18567 struct partial_die_info *part_die
18568 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18569
18570 /* We'll save this DIE so link it in. */
18571 part_die->die_parent = parent_die;
18572 part_die->die_sibling = NULL;
18573 part_die->die_child = NULL;
18574
18575 if (last_die && last_die == parent_die)
18576 last_die->die_child = part_die;
18577 else if (last_die)
18578 last_die->die_sibling = part_die;
18579
18580 last_die = part_die;
18581
18582 if (first_die == NULL)
18583 first_die = part_die;
18584
18585 /* Maybe add the DIE to the hash table. Not all DIEs that we
18586 find interesting need to be in the hash table, because we
18587 also have the parent/sibling/child chains; only those that we
18588 might refer to by offset later during partial symbol reading.
18589
18590 For now this means things that might have be the target of a
18591 DW_AT_specification, DW_AT_abstract_origin, or
18592 DW_AT_extension. DW_AT_extension will refer only to
18593 namespaces; DW_AT_abstract_origin refers to functions (and
18594 many things under the function DIE, but we do not recurse
18595 into function DIEs during partial symbol reading) and
18596 possibly variables as well; DW_AT_specification refers to
18597 declarations. Declarations ought to have the DW_AT_declaration
18598 flag. It happens that GCC forgets to put it in sometimes, but
18599 only for functions, not for types.
18600
18601 Adding more things than necessary to the hash table is harmless
18602 except for the performance cost. Adding too few will result in
18603 wasted time in find_partial_die, when we reread the compilation
18604 unit with load_all_dies set. */
18605
18606 if (load_all
18607 || abbrev->tag == DW_TAG_constant
18608 || abbrev->tag == DW_TAG_subprogram
18609 || abbrev->tag == DW_TAG_variable
18610 || abbrev->tag == DW_TAG_namespace
18611 || part_die->is_declaration)
18612 {
18613 void **slot;
18614
18615 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18616 to_underlying (part_die->sect_off),
18617 INSERT);
18618 *slot = part_die;
18619 }
18620
18621 /* For some DIEs we want to follow their children (if any). For C
18622 we have no reason to follow the children of structures; for other
18623 languages we have to, so that we can get at method physnames
18624 to infer fully qualified class names, for DW_AT_specification,
18625 and for C++ template arguments. For C++, we also look one level
18626 inside functions to find template arguments (if the name of the
18627 function does not already contain the template arguments).
18628
18629 For Ada, we need to scan the children of subprograms and lexical
18630 blocks as well because Ada allows the definition of nested
18631 entities that could be interesting for the debugger, such as
18632 nested subprograms for instance. */
18633 if (last_die->has_children
18634 && (load_all
18635 || last_die->tag == DW_TAG_namespace
18636 || last_die->tag == DW_TAG_module
18637 || last_die->tag == DW_TAG_enumeration_type
18638 || (cu->language == language_cplus
18639 && last_die->tag == DW_TAG_subprogram
18640 && (last_die->name == NULL
18641 || strchr (last_die->name, '<') == NULL))
18642 || (cu->language != language_c
18643 && (last_die->tag == DW_TAG_class_type
18644 || last_die->tag == DW_TAG_interface_type
18645 || last_die->tag == DW_TAG_structure_type
18646 || last_die->tag == DW_TAG_union_type))
18647 || (cu->language == language_ada
18648 && (last_die->tag == DW_TAG_subprogram
18649 || last_die->tag == DW_TAG_lexical_block))))
18650 {
18651 nesting_level++;
18652 parent_die = last_die;
18653 continue;
18654 }
18655
18656 /* Otherwise we skip to the next sibling, if any. */
18657 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18658
18659 /* Back to the top, do it again. */
18660 }
18661 }
18662
18663 partial_die_info::partial_die_info (sect_offset sect_off_,
18664 struct abbrev_info *abbrev)
18665 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18666 {
18667 }
18668
18669 /* Read a minimal amount of information into the minimal die structure.
18670 INFO_PTR should point just after the initial uleb128 of a DIE. */
18671
18672 const gdb_byte *
18673 partial_die_info::read (const struct die_reader_specs *reader,
18674 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18675 {
18676 struct dwarf2_cu *cu = reader->cu;
18677 struct dwarf2_per_objfile *dwarf2_per_objfile
18678 = cu->per_cu->dwarf2_per_objfile;
18679 unsigned int i;
18680 int has_low_pc_attr = 0;
18681 int has_high_pc_attr = 0;
18682 int high_pc_relative = 0;
18683
18684 for (i = 0; i < abbrev.num_attrs; ++i)
18685 {
18686 struct attribute attr;
18687
18688 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18689
18690 /* Store the data if it is of an attribute we want to keep in a
18691 partial symbol table. */
18692 switch (attr.name)
18693 {
18694 case DW_AT_name:
18695 switch (tag)
18696 {
18697 case DW_TAG_compile_unit:
18698 case DW_TAG_partial_unit:
18699 case DW_TAG_type_unit:
18700 /* Compilation units have a DW_AT_name that is a filename, not
18701 a source language identifier. */
18702 case DW_TAG_enumeration_type:
18703 case DW_TAG_enumerator:
18704 /* These tags always have simple identifiers already; no need
18705 to canonicalize them. */
18706 name = DW_STRING (&attr);
18707 break;
18708 default:
18709 {
18710 struct objfile *objfile = dwarf2_per_objfile->objfile;
18711
18712 name
18713 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18714 &objfile->per_bfd->storage_obstack);
18715 }
18716 break;
18717 }
18718 break;
18719 case DW_AT_linkage_name:
18720 case DW_AT_MIPS_linkage_name:
18721 /* Note that both forms of linkage name might appear. We
18722 assume they will be the same, and we only store the last
18723 one we see. */
18724 if (cu->language == language_ada)
18725 name = DW_STRING (&attr);
18726 linkage_name = DW_STRING (&attr);
18727 break;
18728 case DW_AT_low_pc:
18729 has_low_pc_attr = 1;
18730 lowpc = attr_value_as_address (&attr);
18731 break;
18732 case DW_AT_high_pc:
18733 has_high_pc_attr = 1;
18734 highpc = attr_value_as_address (&attr);
18735 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18736 high_pc_relative = 1;
18737 break;
18738 case DW_AT_location:
18739 /* Support the .debug_loc offsets. */
18740 if (attr_form_is_block (&attr))
18741 {
18742 d.locdesc = DW_BLOCK (&attr);
18743 }
18744 else if (attr_form_is_section_offset (&attr))
18745 {
18746 dwarf2_complex_location_expr_complaint ();
18747 }
18748 else
18749 {
18750 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18751 "partial symbol information");
18752 }
18753 break;
18754 case DW_AT_external:
18755 is_external = DW_UNSND (&attr);
18756 break;
18757 case DW_AT_declaration:
18758 is_declaration = DW_UNSND (&attr);
18759 break;
18760 case DW_AT_type:
18761 has_type = 1;
18762 break;
18763 case DW_AT_abstract_origin:
18764 case DW_AT_specification:
18765 case DW_AT_extension:
18766 has_specification = 1;
18767 spec_offset = dwarf2_get_ref_die_offset (&attr);
18768 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18769 || cu->per_cu->is_dwz);
18770 break;
18771 case DW_AT_sibling:
18772 /* Ignore absolute siblings, they might point outside of
18773 the current compile unit. */
18774 if (attr.form == DW_FORM_ref_addr)
18775 complaint (_("ignoring absolute DW_AT_sibling"));
18776 else
18777 {
18778 const gdb_byte *buffer = reader->buffer;
18779 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18780 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18781
18782 if (sibling_ptr < info_ptr)
18783 complaint (_("DW_AT_sibling points backwards"));
18784 else if (sibling_ptr > reader->buffer_end)
18785 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18786 else
18787 sibling = sibling_ptr;
18788 }
18789 break;
18790 case DW_AT_byte_size:
18791 has_byte_size = 1;
18792 break;
18793 case DW_AT_const_value:
18794 has_const_value = 1;
18795 break;
18796 case DW_AT_calling_convention:
18797 /* DWARF doesn't provide a way to identify a program's source-level
18798 entry point. DW_AT_calling_convention attributes are only meant
18799 to describe functions' calling conventions.
18800
18801 However, because it's a necessary piece of information in
18802 Fortran, and before DWARF 4 DW_CC_program was the only
18803 piece of debugging information whose definition refers to
18804 a 'main program' at all, several compilers marked Fortran
18805 main programs with DW_CC_program --- even when those
18806 functions use the standard calling conventions.
18807
18808 Although DWARF now specifies a way to provide this
18809 information, we support this practice for backward
18810 compatibility. */
18811 if (DW_UNSND (&attr) == DW_CC_program
18812 && cu->language == language_fortran)
18813 main_subprogram = 1;
18814 break;
18815 case DW_AT_inline:
18816 if (DW_UNSND (&attr) == DW_INL_inlined
18817 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18818 may_be_inlined = 1;
18819 break;
18820
18821 case DW_AT_import:
18822 if (tag == DW_TAG_imported_unit)
18823 {
18824 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18825 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18826 || cu->per_cu->is_dwz);
18827 }
18828 break;
18829
18830 case DW_AT_main_subprogram:
18831 main_subprogram = DW_UNSND (&attr);
18832 break;
18833
18834 case DW_AT_ranges:
18835 {
18836 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18837 but that requires a full DIE, so instead we just
18838 reimplement it. */
18839 int need_ranges_base = tag != DW_TAG_compile_unit;
18840 unsigned int ranges_offset = (DW_UNSND (&attr)
18841 + (need_ranges_base
18842 ? cu->ranges_base
18843 : 0));
18844
18845 /* Value of the DW_AT_ranges attribute is the offset in the
18846 .debug_ranges section. */
18847 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18848 nullptr))
18849 has_pc_info = 1;
18850 }
18851 break;
18852
18853 default:
18854 break;
18855 }
18856 }
18857
18858 if (high_pc_relative)
18859 highpc += lowpc;
18860
18861 if (has_low_pc_attr && has_high_pc_attr)
18862 {
18863 /* When using the GNU linker, .gnu.linkonce. sections are used to
18864 eliminate duplicate copies of functions and vtables and such.
18865 The linker will arbitrarily choose one and discard the others.
18866 The AT_*_pc values for such functions refer to local labels in
18867 these sections. If the section from that file was discarded, the
18868 labels are not in the output, so the relocs get a value of 0.
18869 If this is a discarded function, mark the pc bounds as invalid,
18870 so that GDB will ignore it. */
18871 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18872 {
18873 struct objfile *objfile = dwarf2_per_objfile->objfile;
18874 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18875
18876 complaint (_("DW_AT_low_pc %s is zero "
18877 "for DIE at %s [in module %s]"),
18878 paddress (gdbarch, lowpc),
18879 sect_offset_str (sect_off),
18880 objfile_name (objfile));
18881 }
18882 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18883 else if (lowpc >= highpc)
18884 {
18885 struct objfile *objfile = dwarf2_per_objfile->objfile;
18886 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18887
18888 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18889 "for DIE at %s [in module %s]"),
18890 paddress (gdbarch, lowpc),
18891 paddress (gdbarch, highpc),
18892 sect_offset_str (sect_off),
18893 objfile_name (objfile));
18894 }
18895 else
18896 has_pc_info = 1;
18897 }
18898
18899 return info_ptr;
18900 }
18901
18902 /* Find a cached partial DIE at OFFSET in CU. */
18903
18904 struct partial_die_info *
18905 dwarf2_cu::find_partial_die (sect_offset sect_off)
18906 {
18907 struct partial_die_info *lookup_die = NULL;
18908 struct partial_die_info part_die (sect_off);
18909
18910 lookup_die = ((struct partial_die_info *)
18911 htab_find_with_hash (partial_dies, &part_die,
18912 to_underlying (sect_off)));
18913
18914 return lookup_die;
18915 }
18916
18917 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18918 except in the case of .debug_types DIEs which do not reference
18919 outside their CU (they do however referencing other types via
18920 DW_FORM_ref_sig8). */
18921
18922 static struct partial_die_info *
18923 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18924 {
18925 struct dwarf2_per_objfile *dwarf2_per_objfile
18926 = cu->per_cu->dwarf2_per_objfile;
18927 struct objfile *objfile = dwarf2_per_objfile->objfile;
18928 struct dwarf2_per_cu_data *per_cu = NULL;
18929 struct partial_die_info *pd = NULL;
18930
18931 if (offset_in_dwz == cu->per_cu->is_dwz
18932 && offset_in_cu_p (&cu->header, sect_off))
18933 {
18934 pd = cu->find_partial_die (sect_off);
18935 if (pd != NULL)
18936 return pd;
18937 /* We missed recording what we needed.
18938 Load all dies and try again. */
18939 per_cu = cu->per_cu;
18940 }
18941 else
18942 {
18943 /* TUs don't reference other CUs/TUs (except via type signatures). */
18944 if (cu->per_cu->is_debug_types)
18945 {
18946 error (_("Dwarf Error: Type Unit at offset %s contains"
18947 " external reference to offset %s [in module %s].\n"),
18948 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18949 bfd_get_filename (objfile->obfd));
18950 }
18951 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18952 dwarf2_per_objfile);
18953
18954 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18955 load_partial_comp_unit (per_cu);
18956
18957 per_cu->cu->last_used = 0;
18958 pd = per_cu->cu->find_partial_die (sect_off);
18959 }
18960
18961 /* If we didn't find it, and not all dies have been loaded,
18962 load them all and try again. */
18963
18964 if (pd == NULL && per_cu->load_all_dies == 0)
18965 {
18966 per_cu->load_all_dies = 1;
18967
18968 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18969 THIS_CU->cu may already be in use. So we can't just free it and
18970 replace its DIEs with the ones we read in. Instead, we leave those
18971 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18972 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18973 set. */
18974 load_partial_comp_unit (per_cu);
18975
18976 pd = per_cu->cu->find_partial_die (sect_off);
18977 }
18978
18979 if (pd == NULL)
18980 internal_error (__FILE__, __LINE__,
18981 _("could not find partial DIE %s "
18982 "in cache [from module %s]\n"),
18983 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18984 return pd;
18985 }
18986
18987 /* See if we can figure out if the class lives in a namespace. We do
18988 this by looking for a member function; its demangled name will
18989 contain namespace info, if there is any. */
18990
18991 static void
18992 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18993 struct dwarf2_cu *cu)
18994 {
18995 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18996 what template types look like, because the demangler
18997 frequently doesn't give the same name as the debug info. We
18998 could fix this by only using the demangled name to get the
18999 prefix (but see comment in read_structure_type). */
19000
19001 struct partial_die_info *real_pdi;
19002 struct partial_die_info *child_pdi;
19003
19004 /* If this DIE (this DIE's specification, if any) has a parent, then
19005 we should not do this. We'll prepend the parent's fully qualified
19006 name when we create the partial symbol. */
19007
19008 real_pdi = struct_pdi;
19009 while (real_pdi->has_specification)
19010 real_pdi = find_partial_die (real_pdi->spec_offset,
19011 real_pdi->spec_is_dwz, cu);
19012
19013 if (real_pdi->die_parent != NULL)
19014 return;
19015
19016 for (child_pdi = struct_pdi->die_child;
19017 child_pdi != NULL;
19018 child_pdi = child_pdi->die_sibling)
19019 {
19020 if (child_pdi->tag == DW_TAG_subprogram
19021 && child_pdi->linkage_name != NULL)
19022 {
19023 char *actual_class_name
19024 = language_class_name_from_physname (cu->language_defn,
19025 child_pdi->linkage_name);
19026 if (actual_class_name != NULL)
19027 {
19028 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19029 struct_pdi->name
19030 = ((const char *)
19031 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19032 actual_class_name,
19033 strlen (actual_class_name)));
19034 xfree (actual_class_name);
19035 }
19036 break;
19037 }
19038 }
19039 }
19040
19041 void
19042 partial_die_info::fixup (struct dwarf2_cu *cu)
19043 {
19044 /* Once we've fixed up a die, there's no point in doing so again.
19045 This also avoids a memory leak if we were to call
19046 guess_partial_die_structure_name multiple times. */
19047 if (fixup_called)
19048 return;
19049
19050 /* If we found a reference attribute and the DIE has no name, try
19051 to find a name in the referred to DIE. */
19052
19053 if (name == NULL && has_specification)
19054 {
19055 struct partial_die_info *spec_die;
19056
19057 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19058
19059 spec_die->fixup (cu);
19060
19061 if (spec_die->name)
19062 {
19063 name = spec_die->name;
19064
19065 /* Copy DW_AT_external attribute if it is set. */
19066 if (spec_die->is_external)
19067 is_external = spec_die->is_external;
19068 }
19069 }
19070
19071 /* Set default names for some unnamed DIEs. */
19072
19073 if (name == NULL && tag == DW_TAG_namespace)
19074 name = CP_ANONYMOUS_NAMESPACE_STR;
19075
19076 /* If there is no parent die to provide a namespace, and there are
19077 children, see if we can determine the namespace from their linkage
19078 name. */
19079 if (cu->language == language_cplus
19080 && !VEC_empty (dwarf2_section_info_def,
19081 cu->per_cu->dwarf2_per_objfile->types)
19082 && die_parent == NULL
19083 && has_children
19084 && (tag == DW_TAG_class_type
19085 || tag == DW_TAG_structure_type
19086 || tag == DW_TAG_union_type))
19087 guess_partial_die_structure_name (this, cu);
19088
19089 /* GCC might emit a nameless struct or union that has a linkage
19090 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19091 if (name == NULL
19092 && (tag == DW_TAG_class_type
19093 || tag == DW_TAG_interface_type
19094 || tag == DW_TAG_structure_type
19095 || tag == DW_TAG_union_type)
19096 && linkage_name != NULL)
19097 {
19098 char *demangled;
19099
19100 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19101 if (demangled)
19102 {
19103 const char *base;
19104
19105 /* Strip any leading namespaces/classes, keep only the base name.
19106 DW_AT_name for named DIEs does not contain the prefixes. */
19107 base = strrchr (demangled, ':');
19108 if (base && base > demangled && base[-1] == ':')
19109 base++;
19110 else
19111 base = demangled;
19112
19113 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19114 name
19115 = ((const char *)
19116 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19117 base, strlen (base)));
19118 xfree (demangled);
19119 }
19120 }
19121
19122 fixup_called = 1;
19123 }
19124
19125 /* Read an attribute value described by an attribute form. */
19126
19127 static const gdb_byte *
19128 read_attribute_value (const struct die_reader_specs *reader,
19129 struct attribute *attr, unsigned form,
19130 LONGEST implicit_const, const gdb_byte *info_ptr)
19131 {
19132 struct dwarf2_cu *cu = reader->cu;
19133 struct dwarf2_per_objfile *dwarf2_per_objfile
19134 = cu->per_cu->dwarf2_per_objfile;
19135 struct objfile *objfile = dwarf2_per_objfile->objfile;
19136 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19137 bfd *abfd = reader->abfd;
19138 struct comp_unit_head *cu_header = &cu->header;
19139 unsigned int bytes_read;
19140 struct dwarf_block *blk;
19141
19142 attr->form = (enum dwarf_form) form;
19143 switch (form)
19144 {
19145 case DW_FORM_ref_addr:
19146 if (cu->header.version == 2)
19147 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19148 else
19149 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19150 &cu->header, &bytes_read);
19151 info_ptr += bytes_read;
19152 break;
19153 case DW_FORM_GNU_ref_alt:
19154 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19155 info_ptr += bytes_read;
19156 break;
19157 case DW_FORM_addr:
19158 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19159 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19160 info_ptr += bytes_read;
19161 break;
19162 case DW_FORM_block2:
19163 blk = dwarf_alloc_block (cu);
19164 blk->size = read_2_bytes (abfd, info_ptr);
19165 info_ptr += 2;
19166 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19167 info_ptr += blk->size;
19168 DW_BLOCK (attr) = blk;
19169 break;
19170 case DW_FORM_block4:
19171 blk = dwarf_alloc_block (cu);
19172 blk->size = read_4_bytes (abfd, info_ptr);
19173 info_ptr += 4;
19174 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19175 info_ptr += blk->size;
19176 DW_BLOCK (attr) = blk;
19177 break;
19178 case DW_FORM_data2:
19179 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19180 info_ptr += 2;
19181 break;
19182 case DW_FORM_data4:
19183 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19184 info_ptr += 4;
19185 break;
19186 case DW_FORM_data8:
19187 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19188 info_ptr += 8;
19189 break;
19190 case DW_FORM_data16:
19191 blk = dwarf_alloc_block (cu);
19192 blk->size = 16;
19193 blk->data = read_n_bytes (abfd, info_ptr, 16);
19194 info_ptr += 16;
19195 DW_BLOCK (attr) = blk;
19196 break;
19197 case DW_FORM_sec_offset:
19198 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19199 info_ptr += bytes_read;
19200 break;
19201 case DW_FORM_string:
19202 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19203 DW_STRING_IS_CANONICAL (attr) = 0;
19204 info_ptr += bytes_read;
19205 break;
19206 case DW_FORM_strp:
19207 if (!cu->per_cu->is_dwz)
19208 {
19209 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19210 abfd, info_ptr, cu_header,
19211 &bytes_read);
19212 DW_STRING_IS_CANONICAL (attr) = 0;
19213 info_ptr += bytes_read;
19214 break;
19215 }
19216 /* FALLTHROUGH */
19217 case DW_FORM_line_strp:
19218 if (!cu->per_cu->is_dwz)
19219 {
19220 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19221 abfd, info_ptr,
19222 cu_header, &bytes_read);
19223 DW_STRING_IS_CANONICAL (attr) = 0;
19224 info_ptr += bytes_read;
19225 break;
19226 }
19227 /* FALLTHROUGH */
19228 case DW_FORM_GNU_strp_alt:
19229 {
19230 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19231 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19232 &bytes_read);
19233
19234 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19235 dwz, str_offset);
19236 DW_STRING_IS_CANONICAL (attr) = 0;
19237 info_ptr += bytes_read;
19238 }
19239 break;
19240 case DW_FORM_exprloc:
19241 case DW_FORM_block:
19242 blk = dwarf_alloc_block (cu);
19243 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19244 info_ptr += bytes_read;
19245 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19246 info_ptr += blk->size;
19247 DW_BLOCK (attr) = blk;
19248 break;
19249 case DW_FORM_block1:
19250 blk = dwarf_alloc_block (cu);
19251 blk->size = read_1_byte (abfd, info_ptr);
19252 info_ptr += 1;
19253 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19254 info_ptr += blk->size;
19255 DW_BLOCK (attr) = blk;
19256 break;
19257 case DW_FORM_data1:
19258 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19259 info_ptr += 1;
19260 break;
19261 case DW_FORM_flag:
19262 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19263 info_ptr += 1;
19264 break;
19265 case DW_FORM_flag_present:
19266 DW_UNSND (attr) = 1;
19267 break;
19268 case DW_FORM_sdata:
19269 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19270 info_ptr += bytes_read;
19271 break;
19272 case DW_FORM_udata:
19273 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19274 info_ptr += bytes_read;
19275 break;
19276 case DW_FORM_ref1:
19277 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19278 + read_1_byte (abfd, info_ptr));
19279 info_ptr += 1;
19280 break;
19281 case DW_FORM_ref2:
19282 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19283 + read_2_bytes (abfd, info_ptr));
19284 info_ptr += 2;
19285 break;
19286 case DW_FORM_ref4:
19287 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19288 + read_4_bytes (abfd, info_ptr));
19289 info_ptr += 4;
19290 break;
19291 case DW_FORM_ref8:
19292 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19293 + read_8_bytes (abfd, info_ptr));
19294 info_ptr += 8;
19295 break;
19296 case DW_FORM_ref_sig8:
19297 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19298 info_ptr += 8;
19299 break;
19300 case DW_FORM_ref_udata:
19301 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19302 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19303 info_ptr += bytes_read;
19304 break;
19305 case DW_FORM_indirect:
19306 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19307 info_ptr += bytes_read;
19308 if (form == DW_FORM_implicit_const)
19309 {
19310 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19311 info_ptr += bytes_read;
19312 }
19313 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19314 info_ptr);
19315 break;
19316 case DW_FORM_implicit_const:
19317 DW_SND (attr) = implicit_const;
19318 break;
19319 case DW_FORM_addrx:
19320 case DW_FORM_GNU_addr_index:
19321 if (reader->dwo_file == NULL)
19322 {
19323 /* For now flag a hard error.
19324 Later we can turn this into a complaint. */
19325 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19326 dwarf_form_name (form),
19327 bfd_get_filename (abfd));
19328 }
19329 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19330 info_ptr += bytes_read;
19331 break;
19332 case DW_FORM_strx:
19333 case DW_FORM_GNU_str_index:
19334 if (reader->dwo_file == NULL)
19335 {
19336 /* For now flag a hard error.
19337 Later we can turn this into a complaint if warranted. */
19338 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19339 dwarf_form_name (form),
19340 bfd_get_filename (abfd));
19341 }
19342 {
19343 ULONGEST str_index =
19344 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19345
19346 DW_STRING (attr) = read_str_index (reader, str_index);
19347 DW_STRING_IS_CANONICAL (attr) = 0;
19348 info_ptr += bytes_read;
19349 }
19350 break;
19351 default:
19352 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19353 dwarf_form_name (form),
19354 bfd_get_filename (abfd));
19355 }
19356
19357 /* Super hack. */
19358 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19359 attr->form = DW_FORM_GNU_ref_alt;
19360
19361 /* We have seen instances where the compiler tried to emit a byte
19362 size attribute of -1 which ended up being encoded as an unsigned
19363 0xffffffff. Although 0xffffffff is technically a valid size value,
19364 an object of this size seems pretty unlikely so we can relatively
19365 safely treat these cases as if the size attribute was invalid and
19366 treat them as zero by default. */
19367 if (attr->name == DW_AT_byte_size
19368 && form == DW_FORM_data4
19369 && DW_UNSND (attr) >= 0xffffffff)
19370 {
19371 complaint
19372 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19373 hex_string (DW_UNSND (attr)));
19374 DW_UNSND (attr) = 0;
19375 }
19376
19377 return info_ptr;
19378 }
19379
19380 /* Read an attribute described by an abbreviated attribute. */
19381
19382 static const gdb_byte *
19383 read_attribute (const struct die_reader_specs *reader,
19384 struct attribute *attr, struct attr_abbrev *abbrev,
19385 const gdb_byte *info_ptr)
19386 {
19387 attr->name = abbrev->name;
19388 return read_attribute_value (reader, attr, abbrev->form,
19389 abbrev->implicit_const, info_ptr);
19390 }
19391
19392 /* Read dwarf information from a buffer. */
19393
19394 static unsigned int
19395 read_1_byte (bfd *abfd, const gdb_byte *buf)
19396 {
19397 return bfd_get_8 (abfd, buf);
19398 }
19399
19400 static int
19401 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19402 {
19403 return bfd_get_signed_8 (abfd, buf);
19404 }
19405
19406 static unsigned int
19407 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19408 {
19409 return bfd_get_16 (abfd, buf);
19410 }
19411
19412 static int
19413 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19414 {
19415 return bfd_get_signed_16 (abfd, buf);
19416 }
19417
19418 static unsigned int
19419 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19420 {
19421 return bfd_get_32 (abfd, buf);
19422 }
19423
19424 static int
19425 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19426 {
19427 return bfd_get_signed_32 (abfd, buf);
19428 }
19429
19430 static ULONGEST
19431 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19432 {
19433 return bfd_get_64 (abfd, buf);
19434 }
19435
19436 static CORE_ADDR
19437 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19438 unsigned int *bytes_read)
19439 {
19440 struct comp_unit_head *cu_header = &cu->header;
19441 CORE_ADDR retval = 0;
19442
19443 if (cu_header->signed_addr_p)
19444 {
19445 switch (cu_header->addr_size)
19446 {
19447 case 2:
19448 retval = bfd_get_signed_16 (abfd, buf);
19449 break;
19450 case 4:
19451 retval = bfd_get_signed_32 (abfd, buf);
19452 break;
19453 case 8:
19454 retval = bfd_get_signed_64 (abfd, buf);
19455 break;
19456 default:
19457 internal_error (__FILE__, __LINE__,
19458 _("read_address: bad switch, signed [in module %s]"),
19459 bfd_get_filename (abfd));
19460 }
19461 }
19462 else
19463 {
19464 switch (cu_header->addr_size)
19465 {
19466 case 2:
19467 retval = bfd_get_16 (abfd, buf);
19468 break;
19469 case 4:
19470 retval = bfd_get_32 (abfd, buf);
19471 break;
19472 case 8:
19473 retval = bfd_get_64 (abfd, buf);
19474 break;
19475 default:
19476 internal_error (__FILE__, __LINE__,
19477 _("read_address: bad switch, "
19478 "unsigned [in module %s]"),
19479 bfd_get_filename (abfd));
19480 }
19481 }
19482
19483 *bytes_read = cu_header->addr_size;
19484 return retval;
19485 }
19486
19487 /* Read the initial length from a section. The (draft) DWARF 3
19488 specification allows the initial length to take up either 4 bytes
19489 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19490 bytes describe the length and all offsets will be 8 bytes in length
19491 instead of 4.
19492
19493 An older, non-standard 64-bit format is also handled by this
19494 function. The older format in question stores the initial length
19495 as an 8-byte quantity without an escape value. Lengths greater
19496 than 2^32 aren't very common which means that the initial 4 bytes
19497 is almost always zero. Since a length value of zero doesn't make
19498 sense for the 32-bit format, this initial zero can be considered to
19499 be an escape value which indicates the presence of the older 64-bit
19500 format. As written, the code can't detect (old format) lengths
19501 greater than 4GB. If it becomes necessary to handle lengths
19502 somewhat larger than 4GB, we could allow other small values (such
19503 as the non-sensical values of 1, 2, and 3) to also be used as
19504 escape values indicating the presence of the old format.
19505
19506 The value returned via bytes_read should be used to increment the
19507 relevant pointer after calling read_initial_length().
19508
19509 [ Note: read_initial_length() and read_offset() are based on the
19510 document entitled "DWARF Debugging Information Format", revision
19511 3, draft 8, dated November 19, 2001. This document was obtained
19512 from:
19513
19514 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19515
19516 This document is only a draft and is subject to change. (So beware.)
19517
19518 Details regarding the older, non-standard 64-bit format were
19519 determined empirically by examining 64-bit ELF files produced by
19520 the SGI toolchain on an IRIX 6.5 machine.
19521
19522 - Kevin, July 16, 2002
19523 ] */
19524
19525 static LONGEST
19526 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19527 {
19528 LONGEST length = bfd_get_32 (abfd, buf);
19529
19530 if (length == 0xffffffff)
19531 {
19532 length = bfd_get_64 (abfd, buf + 4);
19533 *bytes_read = 12;
19534 }
19535 else if (length == 0)
19536 {
19537 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19538 length = bfd_get_64 (abfd, buf);
19539 *bytes_read = 8;
19540 }
19541 else
19542 {
19543 *bytes_read = 4;
19544 }
19545
19546 return length;
19547 }
19548
19549 /* Cover function for read_initial_length.
19550 Returns the length of the object at BUF, and stores the size of the
19551 initial length in *BYTES_READ and stores the size that offsets will be in
19552 *OFFSET_SIZE.
19553 If the initial length size is not equivalent to that specified in
19554 CU_HEADER then issue a complaint.
19555 This is useful when reading non-comp-unit headers. */
19556
19557 static LONGEST
19558 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19559 const struct comp_unit_head *cu_header,
19560 unsigned int *bytes_read,
19561 unsigned int *offset_size)
19562 {
19563 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19564
19565 gdb_assert (cu_header->initial_length_size == 4
19566 || cu_header->initial_length_size == 8
19567 || cu_header->initial_length_size == 12);
19568
19569 if (cu_header->initial_length_size != *bytes_read)
19570 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19571
19572 *offset_size = (*bytes_read == 4) ? 4 : 8;
19573 return length;
19574 }
19575
19576 /* Read an offset from the data stream. The size of the offset is
19577 given by cu_header->offset_size. */
19578
19579 static LONGEST
19580 read_offset (bfd *abfd, const gdb_byte *buf,
19581 const struct comp_unit_head *cu_header,
19582 unsigned int *bytes_read)
19583 {
19584 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19585
19586 *bytes_read = cu_header->offset_size;
19587 return offset;
19588 }
19589
19590 /* Read an offset from the data stream. */
19591
19592 static LONGEST
19593 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19594 {
19595 LONGEST retval = 0;
19596
19597 switch (offset_size)
19598 {
19599 case 4:
19600 retval = bfd_get_32 (abfd, buf);
19601 break;
19602 case 8:
19603 retval = bfd_get_64 (abfd, buf);
19604 break;
19605 default:
19606 internal_error (__FILE__, __LINE__,
19607 _("read_offset_1: bad switch [in module %s]"),
19608 bfd_get_filename (abfd));
19609 }
19610
19611 return retval;
19612 }
19613
19614 static const gdb_byte *
19615 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19616 {
19617 /* If the size of a host char is 8 bits, we can return a pointer
19618 to the buffer, otherwise we have to copy the data to a buffer
19619 allocated on the temporary obstack. */
19620 gdb_assert (HOST_CHAR_BIT == 8);
19621 return buf;
19622 }
19623
19624 static const char *
19625 read_direct_string (bfd *abfd, const gdb_byte *buf,
19626 unsigned int *bytes_read_ptr)
19627 {
19628 /* If the size of a host char is 8 bits, we can return a pointer
19629 to the string, otherwise we have to copy the string to a buffer
19630 allocated on the temporary obstack. */
19631 gdb_assert (HOST_CHAR_BIT == 8);
19632 if (*buf == '\0')
19633 {
19634 *bytes_read_ptr = 1;
19635 return NULL;
19636 }
19637 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19638 return (const char *) buf;
19639 }
19640
19641 /* Return pointer to string at section SECT offset STR_OFFSET with error
19642 reporting strings FORM_NAME and SECT_NAME. */
19643
19644 static const char *
19645 read_indirect_string_at_offset_from (struct objfile *objfile,
19646 bfd *abfd, LONGEST str_offset,
19647 struct dwarf2_section_info *sect,
19648 const char *form_name,
19649 const char *sect_name)
19650 {
19651 dwarf2_read_section (objfile, sect);
19652 if (sect->buffer == NULL)
19653 error (_("%s used without %s section [in module %s]"),
19654 form_name, sect_name, bfd_get_filename (abfd));
19655 if (str_offset >= sect->size)
19656 error (_("%s pointing outside of %s section [in module %s]"),
19657 form_name, sect_name, bfd_get_filename (abfd));
19658 gdb_assert (HOST_CHAR_BIT == 8);
19659 if (sect->buffer[str_offset] == '\0')
19660 return NULL;
19661 return (const char *) (sect->buffer + str_offset);
19662 }
19663
19664 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19665
19666 static const char *
19667 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19668 bfd *abfd, LONGEST str_offset)
19669 {
19670 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19671 abfd, str_offset,
19672 &dwarf2_per_objfile->str,
19673 "DW_FORM_strp", ".debug_str");
19674 }
19675
19676 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19677
19678 static const char *
19679 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19680 bfd *abfd, LONGEST str_offset)
19681 {
19682 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19683 abfd, str_offset,
19684 &dwarf2_per_objfile->line_str,
19685 "DW_FORM_line_strp",
19686 ".debug_line_str");
19687 }
19688
19689 /* Read a string at offset STR_OFFSET in the .debug_str section from
19690 the .dwz file DWZ. Throw an error if the offset is too large. If
19691 the string consists of a single NUL byte, return NULL; otherwise
19692 return a pointer to the string. */
19693
19694 static const char *
19695 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19696 LONGEST str_offset)
19697 {
19698 dwarf2_read_section (objfile, &dwz->str);
19699
19700 if (dwz->str.buffer == NULL)
19701 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19702 "section [in module %s]"),
19703 bfd_get_filename (dwz->dwz_bfd));
19704 if (str_offset >= dwz->str.size)
19705 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19706 ".debug_str section [in module %s]"),
19707 bfd_get_filename (dwz->dwz_bfd));
19708 gdb_assert (HOST_CHAR_BIT == 8);
19709 if (dwz->str.buffer[str_offset] == '\0')
19710 return NULL;
19711 return (const char *) (dwz->str.buffer + str_offset);
19712 }
19713
19714 /* Return pointer to string at .debug_str offset as read from BUF.
19715 BUF is assumed to be in a compilation unit described by CU_HEADER.
19716 Return *BYTES_READ_PTR count of bytes read from BUF. */
19717
19718 static const char *
19719 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19720 const gdb_byte *buf,
19721 const struct comp_unit_head *cu_header,
19722 unsigned int *bytes_read_ptr)
19723 {
19724 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19725
19726 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19727 }
19728
19729 /* Return pointer to string at .debug_line_str offset as read from BUF.
19730 BUF is assumed to be in a compilation unit described by CU_HEADER.
19731 Return *BYTES_READ_PTR count of bytes read from BUF. */
19732
19733 static const char *
19734 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19735 bfd *abfd, const gdb_byte *buf,
19736 const struct comp_unit_head *cu_header,
19737 unsigned int *bytes_read_ptr)
19738 {
19739 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19740
19741 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19742 str_offset);
19743 }
19744
19745 ULONGEST
19746 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19747 unsigned int *bytes_read_ptr)
19748 {
19749 ULONGEST result;
19750 unsigned int num_read;
19751 int shift;
19752 unsigned char byte;
19753
19754 result = 0;
19755 shift = 0;
19756 num_read = 0;
19757 while (1)
19758 {
19759 byte = bfd_get_8 (abfd, buf);
19760 buf++;
19761 num_read++;
19762 result |= ((ULONGEST) (byte & 127) << shift);
19763 if ((byte & 128) == 0)
19764 {
19765 break;
19766 }
19767 shift += 7;
19768 }
19769 *bytes_read_ptr = num_read;
19770 return result;
19771 }
19772
19773 static LONGEST
19774 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19775 unsigned int *bytes_read_ptr)
19776 {
19777 ULONGEST result;
19778 int shift, num_read;
19779 unsigned char byte;
19780
19781 result = 0;
19782 shift = 0;
19783 num_read = 0;
19784 while (1)
19785 {
19786 byte = bfd_get_8 (abfd, buf);
19787 buf++;
19788 num_read++;
19789 result |= ((ULONGEST) (byte & 127) << shift);
19790 shift += 7;
19791 if ((byte & 128) == 0)
19792 {
19793 break;
19794 }
19795 }
19796 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19797 result |= -(((ULONGEST) 1) << shift);
19798 *bytes_read_ptr = num_read;
19799 return result;
19800 }
19801
19802 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19803 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19804 ADDR_SIZE is the size of addresses from the CU header. */
19805
19806 static CORE_ADDR
19807 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19808 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19809 {
19810 struct objfile *objfile = dwarf2_per_objfile->objfile;
19811 bfd *abfd = objfile->obfd;
19812 const gdb_byte *info_ptr;
19813
19814 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19815 if (dwarf2_per_objfile->addr.buffer == NULL)
19816 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19817 objfile_name (objfile));
19818 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19819 error (_("DW_FORM_addr_index pointing outside of "
19820 ".debug_addr section [in module %s]"),
19821 objfile_name (objfile));
19822 info_ptr = (dwarf2_per_objfile->addr.buffer
19823 + addr_base + addr_index * addr_size);
19824 if (addr_size == 4)
19825 return bfd_get_32 (abfd, info_ptr);
19826 else
19827 return bfd_get_64 (abfd, info_ptr);
19828 }
19829
19830 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19831
19832 static CORE_ADDR
19833 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19834 {
19835 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19836 cu->addr_base, cu->header.addr_size);
19837 }
19838
19839 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19840
19841 static CORE_ADDR
19842 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19843 unsigned int *bytes_read)
19844 {
19845 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19846 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19847
19848 return read_addr_index (cu, addr_index);
19849 }
19850
19851 /* Data structure to pass results from dwarf2_read_addr_index_reader
19852 back to dwarf2_read_addr_index. */
19853
19854 struct dwarf2_read_addr_index_data
19855 {
19856 ULONGEST addr_base;
19857 int addr_size;
19858 };
19859
19860 /* die_reader_func for dwarf2_read_addr_index. */
19861
19862 static void
19863 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19864 const gdb_byte *info_ptr,
19865 struct die_info *comp_unit_die,
19866 int has_children,
19867 void *data)
19868 {
19869 struct dwarf2_cu *cu = reader->cu;
19870 struct dwarf2_read_addr_index_data *aidata =
19871 (struct dwarf2_read_addr_index_data *) data;
19872
19873 aidata->addr_base = cu->addr_base;
19874 aidata->addr_size = cu->header.addr_size;
19875 }
19876
19877 /* Given an index in .debug_addr, fetch the value.
19878 NOTE: This can be called during dwarf expression evaluation,
19879 long after the debug information has been read, and thus per_cu->cu
19880 may no longer exist. */
19881
19882 CORE_ADDR
19883 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19884 unsigned int addr_index)
19885 {
19886 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19887 struct dwarf2_cu *cu = per_cu->cu;
19888 ULONGEST addr_base;
19889 int addr_size;
19890
19891 /* We need addr_base and addr_size.
19892 If we don't have PER_CU->cu, we have to get it.
19893 Nasty, but the alternative is storing the needed info in PER_CU,
19894 which at this point doesn't seem justified: it's not clear how frequently
19895 it would get used and it would increase the size of every PER_CU.
19896 Entry points like dwarf2_per_cu_addr_size do a similar thing
19897 so we're not in uncharted territory here.
19898 Alas we need to be a bit more complicated as addr_base is contained
19899 in the DIE.
19900
19901 We don't need to read the entire CU(/TU).
19902 We just need the header and top level die.
19903
19904 IWBN to use the aging mechanism to let us lazily later discard the CU.
19905 For now we skip this optimization. */
19906
19907 if (cu != NULL)
19908 {
19909 addr_base = cu->addr_base;
19910 addr_size = cu->header.addr_size;
19911 }
19912 else
19913 {
19914 struct dwarf2_read_addr_index_data aidata;
19915
19916 /* Note: We can't use init_cutu_and_read_dies_simple here,
19917 we need addr_base. */
19918 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19919 dwarf2_read_addr_index_reader, &aidata);
19920 addr_base = aidata.addr_base;
19921 addr_size = aidata.addr_size;
19922 }
19923
19924 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19925 addr_size);
19926 }
19927
19928 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19929 This is only used by the Fission support. */
19930
19931 static const char *
19932 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19933 {
19934 struct dwarf2_cu *cu = reader->cu;
19935 struct dwarf2_per_objfile *dwarf2_per_objfile
19936 = cu->per_cu->dwarf2_per_objfile;
19937 struct objfile *objfile = dwarf2_per_objfile->objfile;
19938 const char *objf_name = objfile_name (objfile);
19939 bfd *abfd = objfile->obfd;
19940 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19941 struct dwarf2_section_info *str_offsets_section =
19942 &reader->dwo_file->sections.str_offsets;
19943 const gdb_byte *info_ptr;
19944 ULONGEST str_offset;
19945 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19946
19947 dwarf2_read_section (objfile, str_section);
19948 dwarf2_read_section (objfile, str_offsets_section);
19949 if (str_section->buffer == NULL)
19950 error (_("%s used without .debug_str.dwo section"
19951 " in CU at offset %s [in module %s]"),
19952 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19953 if (str_offsets_section->buffer == NULL)
19954 error (_("%s used without .debug_str_offsets.dwo section"
19955 " in CU at offset %s [in module %s]"),
19956 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19957 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19958 error (_("%s pointing outside of .debug_str_offsets.dwo"
19959 " section in CU at offset %s [in module %s]"),
19960 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19961 info_ptr = (str_offsets_section->buffer
19962 + str_index * cu->header.offset_size);
19963 if (cu->header.offset_size == 4)
19964 str_offset = bfd_get_32 (abfd, info_ptr);
19965 else
19966 str_offset = bfd_get_64 (abfd, info_ptr);
19967 if (str_offset >= str_section->size)
19968 error (_("Offset from %s pointing outside of"
19969 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19970 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19971 return (const char *) (str_section->buffer + str_offset);
19972 }
19973
19974 /* Return the length of an LEB128 number in BUF. */
19975
19976 static int
19977 leb128_size (const gdb_byte *buf)
19978 {
19979 const gdb_byte *begin = buf;
19980 gdb_byte byte;
19981
19982 while (1)
19983 {
19984 byte = *buf++;
19985 if ((byte & 128) == 0)
19986 return buf - begin;
19987 }
19988 }
19989
19990 static void
19991 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19992 {
19993 switch (lang)
19994 {
19995 case DW_LANG_C89:
19996 case DW_LANG_C99:
19997 case DW_LANG_C11:
19998 case DW_LANG_C:
19999 case DW_LANG_UPC:
20000 cu->language = language_c;
20001 break;
20002 case DW_LANG_Java:
20003 case DW_LANG_C_plus_plus:
20004 case DW_LANG_C_plus_plus_11:
20005 case DW_LANG_C_plus_plus_14:
20006 cu->language = language_cplus;
20007 break;
20008 case DW_LANG_D:
20009 cu->language = language_d;
20010 break;
20011 case DW_LANG_Fortran77:
20012 case DW_LANG_Fortran90:
20013 case DW_LANG_Fortran95:
20014 case DW_LANG_Fortran03:
20015 case DW_LANG_Fortran08:
20016 cu->language = language_fortran;
20017 break;
20018 case DW_LANG_Go:
20019 cu->language = language_go;
20020 break;
20021 case DW_LANG_Mips_Assembler:
20022 cu->language = language_asm;
20023 break;
20024 case DW_LANG_Ada83:
20025 case DW_LANG_Ada95:
20026 cu->language = language_ada;
20027 break;
20028 case DW_LANG_Modula2:
20029 cu->language = language_m2;
20030 break;
20031 case DW_LANG_Pascal83:
20032 cu->language = language_pascal;
20033 break;
20034 case DW_LANG_ObjC:
20035 cu->language = language_objc;
20036 break;
20037 case DW_LANG_Rust:
20038 case DW_LANG_Rust_old:
20039 cu->language = language_rust;
20040 break;
20041 case DW_LANG_Cobol74:
20042 case DW_LANG_Cobol85:
20043 default:
20044 cu->language = language_minimal;
20045 break;
20046 }
20047 cu->language_defn = language_def (cu->language);
20048 }
20049
20050 /* Return the named attribute or NULL if not there. */
20051
20052 static struct attribute *
20053 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20054 {
20055 for (;;)
20056 {
20057 unsigned int i;
20058 struct attribute *spec = NULL;
20059
20060 for (i = 0; i < die->num_attrs; ++i)
20061 {
20062 if (die->attrs[i].name == name)
20063 return &die->attrs[i];
20064 if (die->attrs[i].name == DW_AT_specification
20065 || die->attrs[i].name == DW_AT_abstract_origin)
20066 spec = &die->attrs[i];
20067 }
20068
20069 if (!spec)
20070 break;
20071
20072 die = follow_die_ref (die, spec, &cu);
20073 }
20074
20075 return NULL;
20076 }
20077
20078 /* Return the named attribute or NULL if not there,
20079 but do not follow DW_AT_specification, etc.
20080 This is for use in contexts where we're reading .debug_types dies.
20081 Following DW_AT_specification, DW_AT_abstract_origin will take us
20082 back up the chain, and we want to go down. */
20083
20084 static struct attribute *
20085 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20086 {
20087 unsigned int i;
20088
20089 for (i = 0; i < die->num_attrs; ++i)
20090 if (die->attrs[i].name == name)
20091 return &die->attrs[i];
20092
20093 return NULL;
20094 }
20095
20096 /* Return the string associated with a string-typed attribute, or NULL if it
20097 is either not found or is of an incorrect type. */
20098
20099 static const char *
20100 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20101 {
20102 struct attribute *attr;
20103 const char *str = NULL;
20104
20105 attr = dwarf2_attr (die, name, cu);
20106
20107 if (attr != NULL)
20108 {
20109 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20110 || attr->form == DW_FORM_string
20111 || attr->form == DW_FORM_strx
20112 || attr->form == DW_FORM_GNU_str_index
20113 || attr->form == DW_FORM_GNU_strp_alt)
20114 str = DW_STRING (attr);
20115 else
20116 complaint (_("string type expected for attribute %s for "
20117 "DIE at %s in module %s"),
20118 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20119 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20120 }
20121
20122 return str;
20123 }
20124
20125 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20126 and holds a non-zero value. This function should only be used for
20127 DW_FORM_flag or DW_FORM_flag_present attributes. */
20128
20129 static int
20130 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20131 {
20132 struct attribute *attr = dwarf2_attr (die, name, cu);
20133
20134 return (attr && DW_UNSND (attr));
20135 }
20136
20137 static int
20138 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20139 {
20140 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20141 which value is non-zero. However, we have to be careful with
20142 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20143 (via dwarf2_flag_true_p) follows this attribute. So we may
20144 end up accidently finding a declaration attribute that belongs
20145 to a different DIE referenced by the specification attribute,
20146 even though the given DIE does not have a declaration attribute. */
20147 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20148 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20149 }
20150
20151 /* Return the die giving the specification for DIE, if there is
20152 one. *SPEC_CU is the CU containing DIE on input, and the CU
20153 containing the return value on output. If there is no
20154 specification, but there is an abstract origin, that is
20155 returned. */
20156
20157 static struct die_info *
20158 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20159 {
20160 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20161 *spec_cu);
20162
20163 if (spec_attr == NULL)
20164 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20165
20166 if (spec_attr == NULL)
20167 return NULL;
20168 else
20169 return follow_die_ref (die, spec_attr, spec_cu);
20170 }
20171
20172 /* Stub for free_line_header to match void * callback types. */
20173
20174 static void
20175 free_line_header_voidp (void *arg)
20176 {
20177 struct line_header *lh = (struct line_header *) arg;
20178
20179 delete lh;
20180 }
20181
20182 void
20183 line_header::add_include_dir (const char *include_dir)
20184 {
20185 if (dwarf_line_debug >= 2)
20186 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20187 include_dirs.size () + 1, include_dir);
20188
20189 include_dirs.push_back (include_dir);
20190 }
20191
20192 void
20193 line_header::add_file_name (const char *name,
20194 dir_index d_index,
20195 unsigned int mod_time,
20196 unsigned int length)
20197 {
20198 if (dwarf_line_debug >= 2)
20199 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20200 (unsigned) file_names.size () + 1, name);
20201
20202 file_names.emplace_back (name, d_index, mod_time, length);
20203 }
20204
20205 /* A convenience function to find the proper .debug_line section for a CU. */
20206
20207 static struct dwarf2_section_info *
20208 get_debug_line_section (struct dwarf2_cu *cu)
20209 {
20210 struct dwarf2_section_info *section;
20211 struct dwarf2_per_objfile *dwarf2_per_objfile
20212 = cu->per_cu->dwarf2_per_objfile;
20213
20214 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20215 DWO file. */
20216 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20217 section = &cu->dwo_unit->dwo_file->sections.line;
20218 else if (cu->per_cu->is_dwz)
20219 {
20220 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20221
20222 section = &dwz->line;
20223 }
20224 else
20225 section = &dwarf2_per_objfile->line;
20226
20227 return section;
20228 }
20229
20230 /* Read directory or file name entry format, starting with byte of
20231 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20232 entries count and the entries themselves in the described entry
20233 format. */
20234
20235 static void
20236 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20237 bfd *abfd, const gdb_byte **bufp,
20238 struct line_header *lh,
20239 const struct comp_unit_head *cu_header,
20240 void (*callback) (struct line_header *lh,
20241 const char *name,
20242 dir_index d_index,
20243 unsigned int mod_time,
20244 unsigned int length))
20245 {
20246 gdb_byte format_count, formati;
20247 ULONGEST data_count, datai;
20248 const gdb_byte *buf = *bufp;
20249 const gdb_byte *format_header_data;
20250 unsigned int bytes_read;
20251
20252 format_count = read_1_byte (abfd, buf);
20253 buf += 1;
20254 format_header_data = buf;
20255 for (formati = 0; formati < format_count; formati++)
20256 {
20257 read_unsigned_leb128 (abfd, buf, &bytes_read);
20258 buf += bytes_read;
20259 read_unsigned_leb128 (abfd, buf, &bytes_read);
20260 buf += bytes_read;
20261 }
20262
20263 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20264 buf += bytes_read;
20265 for (datai = 0; datai < data_count; datai++)
20266 {
20267 const gdb_byte *format = format_header_data;
20268 struct file_entry fe;
20269
20270 for (formati = 0; formati < format_count; formati++)
20271 {
20272 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20273 format += bytes_read;
20274
20275 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20276 format += bytes_read;
20277
20278 gdb::optional<const char *> string;
20279 gdb::optional<unsigned int> uint;
20280
20281 switch (form)
20282 {
20283 case DW_FORM_string:
20284 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20285 buf += bytes_read;
20286 break;
20287
20288 case DW_FORM_line_strp:
20289 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20290 abfd, buf,
20291 cu_header,
20292 &bytes_read));
20293 buf += bytes_read;
20294 break;
20295
20296 case DW_FORM_data1:
20297 uint.emplace (read_1_byte (abfd, buf));
20298 buf += 1;
20299 break;
20300
20301 case DW_FORM_data2:
20302 uint.emplace (read_2_bytes (abfd, buf));
20303 buf += 2;
20304 break;
20305
20306 case DW_FORM_data4:
20307 uint.emplace (read_4_bytes (abfd, buf));
20308 buf += 4;
20309 break;
20310
20311 case DW_FORM_data8:
20312 uint.emplace (read_8_bytes (abfd, buf));
20313 buf += 8;
20314 break;
20315
20316 case DW_FORM_udata:
20317 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20318 buf += bytes_read;
20319 break;
20320
20321 case DW_FORM_block:
20322 /* It is valid only for DW_LNCT_timestamp which is ignored by
20323 current GDB. */
20324 break;
20325 }
20326
20327 switch (content_type)
20328 {
20329 case DW_LNCT_path:
20330 if (string.has_value ())
20331 fe.name = *string;
20332 break;
20333 case DW_LNCT_directory_index:
20334 if (uint.has_value ())
20335 fe.d_index = (dir_index) *uint;
20336 break;
20337 case DW_LNCT_timestamp:
20338 if (uint.has_value ())
20339 fe.mod_time = *uint;
20340 break;
20341 case DW_LNCT_size:
20342 if (uint.has_value ())
20343 fe.length = *uint;
20344 break;
20345 case DW_LNCT_MD5:
20346 break;
20347 default:
20348 complaint (_("Unknown format content type %s"),
20349 pulongest (content_type));
20350 }
20351 }
20352
20353 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20354 }
20355
20356 *bufp = buf;
20357 }
20358
20359 /* Read the statement program header starting at OFFSET in
20360 .debug_line, or .debug_line.dwo. Return a pointer
20361 to a struct line_header, allocated using xmalloc.
20362 Returns NULL if there is a problem reading the header, e.g., if it
20363 has a version we don't understand.
20364
20365 NOTE: the strings in the include directory and file name tables of
20366 the returned object point into the dwarf line section buffer,
20367 and must not be freed. */
20368
20369 static line_header_up
20370 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20371 {
20372 const gdb_byte *line_ptr;
20373 unsigned int bytes_read, offset_size;
20374 int i;
20375 const char *cur_dir, *cur_file;
20376 struct dwarf2_section_info *section;
20377 bfd *abfd;
20378 struct dwarf2_per_objfile *dwarf2_per_objfile
20379 = cu->per_cu->dwarf2_per_objfile;
20380
20381 section = get_debug_line_section (cu);
20382 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20383 if (section->buffer == NULL)
20384 {
20385 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20386 complaint (_("missing .debug_line.dwo section"));
20387 else
20388 complaint (_("missing .debug_line section"));
20389 return 0;
20390 }
20391
20392 /* We can't do this until we know the section is non-empty.
20393 Only then do we know we have such a section. */
20394 abfd = get_section_bfd_owner (section);
20395
20396 /* Make sure that at least there's room for the total_length field.
20397 That could be 12 bytes long, but we're just going to fudge that. */
20398 if (to_underlying (sect_off) + 4 >= section->size)
20399 {
20400 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20401 return 0;
20402 }
20403
20404 line_header_up lh (new line_header ());
20405
20406 lh->sect_off = sect_off;
20407 lh->offset_in_dwz = cu->per_cu->is_dwz;
20408
20409 line_ptr = section->buffer + to_underlying (sect_off);
20410
20411 /* Read in the header. */
20412 lh->total_length =
20413 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20414 &bytes_read, &offset_size);
20415 line_ptr += bytes_read;
20416 if (line_ptr + lh->total_length > (section->buffer + section->size))
20417 {
20418 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20419 return 0;
20420 }
20421 lh->statement_program_end = line_ptr + lh->total_length;
20422 lh->version = read_2_bytes (abfd, line_ptr);
20423 line_ptr += 2;
20424 if (lh->version > 5)
20425 {
20426 /* This is a version we don't understand. The format could have
20427 changed in ways we don't handle properly so just punt. */
20428 complaint (_("unsupported version in .debug_line section"));
20429 return NULL;
20430 }
20431 if (lh->version >= 5)
20432 {
20433 gdb_byte segment_selector_size;
20434
20435 /* Skip address size. */
20436 read_1_byte (abfd, line_ptr);
20437 line_ptr += 1;
20438
20439 segment_selector_size = read_1_byte (abfd, line_ptr);
20440 line_ptr += 1;
20441 if (segment_selector_size != 0)
20442 {
20443 complaint (_("unsupported segment selector size %u "
20444 "in .debug_line section"),
20445 segment_selector_size);
20446 return NULL;
20447 }
20448 }
20449 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20450 line_ptr += offset_size;
20451 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20452 line_ptr += 1;
20453 if (lh->version >= 4)
20454 {
20455 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20456 line_ptr += 1;
20457 }
20458 else
20459 lh->maximum_ops_per_instruction = 1;
20460
20461 if (lh->maximum_ops_per_instruction == 0)
20462 {
20463 lh->maximum_ops_per_instruction = 1;
20464 complaint (_("invalid maximum_ops_per_instruction "
20465 "in `.debug_line' section"));
20466 }
20467
20468 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20469 line_ptr += 1;
20470 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20471 line_ptr += 1;
20472 lh->line_range = read_1_byte (abfd, line_ptr);
20473 line_ptr += 1;
20474 lh->opcode_base = read_1_byte (abfd, line_ptr);
20475 line_ptr += 1;
20476 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20477
20478 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20479 for (i = 1; i < lh->opcode_base; ++i)
20480 {
20481 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20482 line_ptr += 1;
20483 }
20484
20485 if (lh->version >= 5)
20486 {
20487 /* Read directory table. */
20488 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20489 &cu->header,
20490 [] (struct line_header *header, const char *name,
20491 dir_index d_index, unsigned int mod_time,
20492 unsigned int length)
20493 {
20494 header->add_include_dir (name);
20495 });
20496
20497 /* Read file name table. */
20498 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20499 &cu->header,
20500 [] (struct line_header *header, const char *name,
20501 dir_index d_index, unsigned int mod_time,
20502 unsigned int length)
20503 {
20504 header->add_file_name (name, d_index, mod_time, length);
20505 });
20506 }
20507 else
20508 {
20509 /* Read directory table. */
20510 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20511 {
20512 line_ptr += bytes_read;
20513 lh->add_include_dir (cur_dir);
20514 }
20515 line_ptr += bytes_read;
20516
20517 /* Read file name table. */
20518 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20519 {
20520 unsigned int mod_time, length;
20521 dir_index d_index;
20522
20523 line_ptr += bytes_read;
20524 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20525 line_ptr += bytes_read;
20526 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20527 line_ptr += bytes_read;
20528 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20529 line_ptr += bytes_read;
20530
20531 lh->add_file_name (cur_file, d_index, mod_time, length);
20532 }
20533 line_ptr += bytes_read;
20534 }
20535 lh->statement_program_start = line_ptr;
20536
20537 if (line_ptr > (section->buffer + section->size))
20538 complaint (_("line number info header doesn't "
20539 "fit in `.debug_line' section"));
20540
20541 return lh;
20542 }
20543
20544 /* Subroutine of dwarf_decode_lines to simplify it.
20545 Return the file name of the psymtab for included file FILE_INDEX
20546 in line header LH of PST.
20547 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20548 If space for the result is malloc'd, *NAME_HOLDER will be set.
20549 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20550
20551 static const char *
20552 psymtab_include_file_name (const struct line_header *lh, int file_index,
20553 const struct partial_symtab *pst,
20554 const char *comp_dir,
20555 gdb::unique_xmalloc_ptr<char> *name_holder)
20556 {
20557 const file_entry &fe = lh->file_names[file_index];
20558 const char *include_name = fe.name;
20559 const char *include_name_to_compare = include_name;
20560 const char *pst_filename;
20561 int file_is_pst;
20562
20563 const char *dir_name = fe.include_dir (lh);
20564
20565 gdb::unique_xmalloc_ptr<char> hold_compare;
20566 if (!IS_ABSOLUTE_PATH (include_name)
20567 && (dir_name != NULL || comp_dir != NULL))
20568 {
20569 /* Avoid creating a duplicate psymtab for PST.
20570 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20571 Before we do the comparison, however, we need to account
20572 for DIR_NAME and COMP_DIR.
20573 First prepend dir_name (if non-NULL). If we still don't
20574 have an absolute path prepend comp_dir (if non-NULL).
20575 However, the directory we record in the include-file's
20576 psymtab does not contain COMP_DIR (to match the
20577 corresponding symtab(s)).
20578
20579 Example:
20580
20581 bash$ cd /tmp
20582 bash$ gcc -g ./hello.c
20583 include_name = "hello.c"
20584 dir_name = "."
20585 DW_AT_comp_dir = comp_dir = "/tmp"
20586 DW_AT_name = "./hello.c"
20587
20588 */
20589
20590 if (dir_name != NULL)
20591 {
20592 name_holder->reset (concat (dir_name, SLASH_STRING,
20593 include_name, (char *) NULL));
20594 include_name = name_holder->get ();
20595 include_name_to_compare = include_name;
20596 }
20597 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20598 {
20599 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20600 include_name, (char *) NULL));
20601 include_name_to_compare = hold_compare.get ();
20602 }
20603 }
20604
20605 pst_filename = pst->filename;
20606 gdb::unique_xmalloc_ptr<char> copied_name;
20607 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20608 {
20609 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20610 pst_filename, (char *) NULL));
20611 pst_filename = copied_name.get ();
20612 }
20613
20614 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20615
20616 if (file_is_pst)
20617 return NULL;
20618 return include_name;
20619 }
20620
20621 /* State machine to track the state of the line number program. */
20622
20623 class lnp_state_machine
20624 {
20625 public:
20626 /* Initialize a machine state for the start of a line number
20627 program. */
20628 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20629 bool record_lines_p);
20630
20631 file_entry *current_file ()
20632 {
20633 /* lh->file_names is 0-based, but the file name numbers in the
20634 statement program are 1-based. */
20635 return m_line_header->file_name_at (m_file);
20636 }
20637
20638 /* Record the line in the state machine. END_SEQUENCE is true if
20639 we're processing the end of a sequence. */
20640 void record_line (bool end_sequence);
20641
20642 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20643 nop-out rest of the lines in this sequence. */
20644 void check_line_address (struct dwarf2_cu *cu,
20645 const gdb_byte *line_ptr,
20646 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20647
20648 void handle_set_discriminator (unsigned int discriminator)
20649 {
20650 m_discriminator = discriminator;
20651 m_line_has_non_zero_discriminator |= discriminator != 0;
20652 }
20653
20654 /* Handle DW_LNE_set_address. */
20655 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20656 {
20657 m_op_index = 0;
20658 address += baseaddr;
20659 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20660 }
20661
20662 /* Handle DW_LNS_advance_pc. */
20663 void handle_advance_pc (CORE_ADDR adjust);
20664
20665 /* Handle a special opcode. */
20666 void handle_special_opcode (unsigned char op_code);
20667
20668 /* Handle DW_LNS_advance_line. */
20669 void handle_advance_line (int line_delta)
20670 {
20671 advance_line (line_delta);
20672 }
20673
20674 /* Handle DW_LNS_set_file. */
20675 void handle_set_file (file_name_index file);
20676
20677 /* Handle DW_LNS_negate_stmt. */
20678 void handle_negate_stmt ()
20679 {
20680 m_is_stmt = !m_is_stmt;
20681 }
20682
20683 /* Handle DW_LNS_const_add_pc. */
20684 void handle_const_add_pc ();
20685
20686 /* Handle DW_LNS_fixed_advance_pc. */
20687 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20688 {
20689 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20690 m_op_index = 0;
20691 }
20692
20693 /* Handle DW_LNS_copy. */
20694 void handle_copy ()
20695 {
20696 record_line (false);
20697 m_discriminator = 0;
20698 }
20699
20700 /* Handle DW_LNE_end_sequence. */
20701 void handle_end_sequence ()
20702 {
20703 m_currently_recording_lines = true;
20704 }
20705
20706 private:
20707 /* Advance the line by LINE_DELTA. */
20708 void advance_line (int line_delta)
20709 {
20710 m_line += line_delta;
20711
20712 if (line_delta != 0)
20713 m_line_has_non_zero_discriminator = m_discriminator != 0;
20714 }
20715
20716 struct dwarf2_cu *m_cu;
20717
20718 gdbarch *m_gdbarch;
20719
20720 /* True if we're recording lines.
20721 Otherwise we're building partial symtabs and are just interested in
20722 finding include files mentioned by the line number program. */
20723 bool m_record_lines_p;
20724
20725 /* The line number header. */
20726 line_header *m_line_header;
20727
20728 /* These are part of the standard DWARF line number state machine,
20729 and initialized according to the DWARF spec. */
20730
20731 unsigned char m_op_index = 0;
20732 /* The line table index (1-based) of the current file. */
20733 file_name_index m_file = (file_name_index) 1;
20734 unsigned int m_line = 1;
20735
20736 /* These are initialized in the constructor. */
20737
20738 CORE_ADDR m_address;
20739 bool m_is_stmt;
20740 unsigned int m_discriminator;
20741
20742 /* Additional bits of state we need to track. */
20743
20744 /* The last file that we called dwarf2_start_subfile for.
20745 This is only used for TLLs. */
20746 unsigned int m_last_file = 0;
20747 /* The last file a line number was recorded for. */
20748 struct subfile *m_last_subfile = NULL;
20749
20750 /* When true, record the lines we decode. */
20751 bool m_currently_recording_lines = false;
20752
20753 /* The last line number that was recorded, used to coalesce
20754 consecutive entries for the same line. This can happen, for
20755 example, when discriminators are present. PR 17276. */
20756 unsigned int m_last_line = 0;
20757 bool m_line_has_non_zero_discriminator = false;
20758 };
20759
20760 void
20761 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20762 {
20763 CORE_ADDR addr_adj = (((m_op_index + adjust)
20764 / m_line_header->maximum_ops_per_instruction)
20765 * m_line_header->minimum_instruction_length);
20766 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20767 m_op_index = ((m_op_index + adjust)
20768 % m_line_header->maximum_ops_per_instruction);
20769 }
20770
20771 void
20772 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20773 {
20774 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20775 CORE_ADDR addr_adj = (((m_op_index
20776 + (adj_opcode / m_line_header->line_range))
20777 / m_line_header->maximum_ops_per_instruction)
20778 * m_line_header->minimum_instruction_length);
20779 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20780 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20781 % m_line_header->maximum_ops_per_instruction);
20782
20783 int line_delta = (m_line_header->line_base
20784 + (adj_opcode % m_line_header->line_range));
20785 advance_line (line_delta);
20786 record_line (false);
20787 m_discriminator = 0;
20788 }
20789
20790 void
20791 lnp_state_machine::handle_set_file (file_name_index file)
20792 {
20793 m_file = file;
20794
20795 const file_entry *fe = current_file ();
20796 if (fe == NULL)
20797 dwarf2_debug_line_missing_file_complaint ();
20798 else if (m_record_lines_p)
20799 {
20800 const char *dir = fe->include_dir (m_line_header);
20801
20802 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20803 m_line_has_non_zero_discriminator = m_discriminator != 0;
20804 dwarf2_start_subfile (m_cu, fe->name, dir);
20805 }
20806 }
20807
20808 void
20809 lnp_state_machine::handle_const_add_pc ()
20810 {
20811 CORE_ADDR adjust
20812 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20813
20814 CORE_ADDR addr_adj
20815 = (((m_op_index + adjust)
20816 / m_line_header->maximum_ops_per_instruction)
20817 * m_line_header->minimum_instruction_length);
20818
20819 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20820 m_op_index = ((m_op_index + adjust)
20821 % m_line_header->maximum_ops_per_instruction);
20822 }
20823
20824 /* Return non-zero if we should add LINE to the line number table.
20825 LINE is the line to add, LAST_LINE is the last line that was added,
20826 LAST_SUBFILE is the subfile for LAST_LINE.
20827 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20828 had a non-zero discriminator.
20829
20830 We have to be careful in the presence of discriminators.
20831 E.g., for this line:
20832
20833 for (i = 0; i < 100000; i++);
20834
20835 clang can emit four line number entries for that one line,
20836 each with a different discriminator.
20837 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20838
20839 However, we want gdb to coalesce all four entries into one.
20840 Otherwise the user could stepi into the middle of the line and
20841 gdb would get confused about whether the pc really was in the
20842 middle of the line.
20843
20844 Things are further complicated by the fact that two consecutive
20845 line number entries for the same line is a heuristic used by gcc
20846 to denote the end of the prologue. So we can't just discard duplicate
20847 entries, we have to be selective about it. The heuristic we use is
20848 that we only collapse consecutive entries for the same line if at least
20849 one of those entries has a non-zero discriminator. PR 17276.
20850
20851 Note: Addresses in the line number state machine can never go backwards
20852 within one sequence, thus this coalescing is ok. */
20853
20854 static int
20855 dwarf_record_line_p (struct dwarf2_cu *cu,
20856 unsigned int line, unsigned int last_line,
20857 int line_has_non_zero_discriminator,
20858 struct subfile *last_subfile)
20859 {
20860 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20861 return 1;
20862 if (line != last_line)
20863 return 1;
20864 /* Same line for the same file that we've seen already.
20865 As a last check, for pr 17276, only record the line if the line
20866 has never had a non-zero discriminator. */
20867 if (!line_has_non_zero_discriminator)
20868 return 1;
20869 return 0;
20870 }
20871
20872 /* Use the CU's builder to record line number LINE beginning at
20873 address ADDRESS in the line table of subfile SUBFILE. */
20874
20875 static void
20876 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20877 unsigned int line, CORE_ADDR address,
20878 struct dwarf2_cu *cu)
20879 {
20880 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20881
20882 if (dwarf_line_debug)
20883 {
20884 fprintf_unfiltered (gdb_stdlog,
20885 "Recording line %u, file %s, address %s\n",
20886 line, lbasename (subfile->name),
20887 paddress (gdbarch, address));
20888 }
20889
20890 if (cu != nullptr)
20891 cu->get_builder ()->record_line (subfile, line, addr);
20892 }
20893
20894 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20895 Mark the end of a set of line number records.
20896 The arguments are the same as for dwarf_record_line_1.
20897 If SUBFILE is NULL the request is ignored. */
20898
20899 static void
20900 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20901 CORE_ADDR address, struct dwarf2_cu *cu)
20902 {
20903 if (subfile == NULL)
20904 return;
20905
20906 if (dwarf_line_debug)
20907 {
20908 fprintf_unfiltered (gdb_stdlog,
20909 "Finishing current line, file %s, address %s\n",
20910 lbasename (subfile->name),
20911 paddress (gdbarch, address));
20912 }
20913
20914 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20915 }
20916
20917 void
20918 lnp_state_machine::record_line (bool end_sequence)
20919 {
20920 if (dwarf_line_debug)
20921 {
20922 fprintf_unfiltered (gdb_stdlog,
20923 "Processing actual line %u: file %u,"
20924 " address %s, is_stmt %u, discrim %u\n",
20925 m_line, to_underlying (m_file),
20926 paddress (m_gdbarch, m_address),
20927 m_is_stmt, m_discriminator);
20928 }
20929
20930 file_entry *fe = current_file ();
20931
20932 if (fe == NULL)
20933 dwarf2_debug_line_missing_file_complaint ();
20934 /* For now we ignore lines not starting on an instruction boundary.
20935 But not when processing end_sequence for compatibility with the
20936 previous version of the code. */
20937 else if (m_op_index == 0 || end_sequence)
20938 {
20939 fe->included_p = 1;
20940 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20941 {
20942 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20943 || end_sequence)
20944 {
20945 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20946 m_currently_recording_lines ? m_cu : nullptr);
20947 }
20948
20949 if (!end_sequence)
20950 {
20951 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20952 m_line_has_non_zero_discriminator,
20953 m_last_subfile))
20954 {
20955 buildsym_compunit *builder = m_cu->get_builder ();
20956 dwarf_record_line_1 (m_gdbarch,
20957 builder->get_current_subfile (),
20958 m_line, m_address,
20959 m_currently_recording_lines ? m_cu : nullptr);
20960 }
20961 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20962 m_last_line = m_line;
20963 }
20964 }
20965 }
20966 }
20967
20968 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20969 line_header *lh, bool record_lines_p)
20970 {
20971 m_cu = cu;
20972 m_gdbarch = arch;
20973 m_record_lines_p = record_lines_p;
20974 m_line_header = lh;
20975
20976 m_currently_recording_lines = true;
20977
20978 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20979 was a line entry for it so that the backend has a chance to adjust it
20980 and also record it in case it needs it. This is currently used by MIPS
20981 code, cf. `mips_adjust_dwarf2_line'. */
20982 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20983 m_is_stmt = lh->default_is_stmt;
20984 m_discriminator = 0;
20985 }
20986
20987 void
20988 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20989 const gdb_byte *line_ptr,
20990 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20991 {
20992 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20993 the pc range of the CU. However, we restrict the test to only ADDRESS
20994 values of zero to preserve GDB's previous behaviour which is to handle
20995 the specific case of a function being GC'd by the linker. */
20996
20997 if (address == 0 && address < unrelocated_lowpc)
20998 {
20999 /* This line table is for a function which has been
21000 GCd by the linker. Ignore it. PR gdb/12528 */
21001
21002 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21003 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21004
21005 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21006 line_offset, objfile_name (objfile));
21007 m_currently_recording_lines = false;
21008 /* Note: m_currently_recording_lines is left as false until we see
21009 DW_LNE_end_sequence. */
21010 }
21011 }
21012
21013 /* Subroutine of dwarf_decode_lines to simplify it.
21014 Process the line number information in LH.
21015 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21016 program in order to set included_p for every referenced header. */
21017
21018 static void
21019 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21020 const int decode_for_pst_p, CORE_ADDR lowpc)
21021 {
21022 const gdb_byte *line_ptr, *extended_end;
21023 const gdb_byte *line_end;
21024 unsigned int bytes_read, extended_len;
21025 unsigned char op_code, extended_op;
21026 CORE_ADDR baseaddr;
21027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21028 bfd *abfd = objfile->obfd;
21029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21030 /* True if we're recording line info (as opposed to building partial
21031 symtabs and just interested in finding include files mentioned by
21032 the line number program). */
21033 bool record_lines_p = !decode_for_pst_p;
21034
21035 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21036
21037 line_ptr = lh->statement_program_start;
21038 line_end = lh->statement_program_end;
21039
21040 /* Read the statement sequences until there's nothing left. */
21041 while (line_ptr < line_end)
21042 {
21043 /* The DWARF line number program state machine. Reset the state
21044 machine at the start of each sequence. */
21045 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21046 bool end_sequence = false;
21047
21048 if (record_lines_p)
21049 {
21050 /* Start a subfile for the current file of the state
21051 machine. */
21052 const file_entry *fe = state_machine.current_file ();
21053
21054 if (fe != NULL)
21055 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21056 }
21057
21058 /* Decode the table. */
21059 while (line_ptr < line_end && !end_sequence)
21060 {
21061 op_code = read_1_byte (abfd, line_ptr);
21062 line_ptr += 1;
21063
21064 if (op_code >= lh->opcode_base)
21065 {
21066 /* Special opcode. */
21067 state_machine.handle_special_opcode (op_code);
21068 }
21069 else switch (op_code)
21070 {
21071 case DW_LNS_extended_op:
21072 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21073 &bytes_read);
21074 line_ptr += bytes_read;
21075 extended_end = line_ptr + extended_len;
21076 extended_op = read_1_byte (abfd, line_ptr);
21077 line_ptr += 1;
21078 switch (extended_op)
21079 {
21080 case DW_LNE_end_sequence:
21081 state_machine.handle_end_sequence ();
21082 end_sequence = true;
21083 break;
21084 case DW_LNE_set_address:
21085 {
21086 CORE_ADDR address
21087 = read_address (abfd, line_ptr, cu, &bytes_read);
21088 line_ptr += bytes_read;
21089
21090 state_machine.check_line_address (cu, line_ptr,
21091 lowpc - baseaddr, address);
21092 state_machine.handle_set_address (baseaddr, address);
21093 }
21094 break;
21095 case DW_LNE_define_file:
21096 {
21097 const char *cur_file;
21098 unsigned int mod_time, length;
21099 dir_index dindex;
21100
21101 cur_file = read_direct_string (abfd, line_ptr,
21102 &bytes_read);
21103 line_ptr += bytes_read;
21104 dindex = (dir_index)
21105 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21106 line_ptr += bytes_read;
21107 mod_time =
21108 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21109 line_ptr += bytes_read;
21110 length =
21111 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21112 line_ptr += bytes_read;
21113 lh->add_file_name (cur_file, dindex, mod_time, length);
21114 }
21115 break;
21116 case DW_LNE_set_discriminator:
21117 {
21118 /* The discriminator is not interesting to the
21119 debugger; just ignore it. We still need to
21120 check its value though:
21121 if there are consecutive entries for the same
21122 (non-prologue) line we want to coalesce them.
21123 PR 17276. */
21124 unsigned int discr
21125 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21126 line_ptr += bytes_read;
21127
21128 state_machine.handle_set_discriminator (discr);
21129 }
21130 break;
21131 default:
21132 complaint (_("mangled .debug_line section"));
21133 return;
21134 }
21135 /* Make sure that we parsed the extended op correctly. If e.g.
21136 we expected a different address size than the producer used,
21137 we may have read the wrong number of bytes. */
21138 if (line_ptr != extended_end)
21139 {
21140 complaint (_("mangled .debug_line section"));
21141 return;
21142 }
21143 break;
21144 case DW_LNS_copy:
21145 state_machine.handle_copy ();
21146 break;
21147 case DW_LNS_advance_pc:
21148 {
21149 CORE_ADDR adjust
21150 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21151 line_ptr += bytes_read;
21152
21153 state_machine.handle_advance_pc (adjust);
21154 }
21155 break;
21156 case DW_LNS_advance_line:
21157 {
21158 int line_delta
21159 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21160 line_ptr += bytes_read;
21161
21162 state_machine.handle_advance_line (line_delta);
21163 }
21164 break;
21165 case DW_LNS_set_file:
21166 {
21167 file_name_index file
21168 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21169 &bytes_read);
21170 line_ptr += bytes_read;
21171
21172 state_machine.handle_set_file (file);
21173 }
21174 break;
21175 case DW_LNS_set_column:
21176 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21177 line_ptr += bytes_read;
21178 break;
21179 case DW_LNS_negate_stmt:
21180 state_machine.handle_negate_stmt ();
21181 break;
21182 case DW_LNS_set_basic_block:
21183 break;
21184 /* Add to the address register of the state machine the
21185 address increment value corresponding to special opcode
21186 255. I.e., this value is scaled by the minimum
21187 instruction length since special opcode 255 would have
21188 scaled the increment. */
21189 case DW_LNS_const_add_pc:
21190 state_machine.handle_const_add_pc ();
21191 break;
21192 case DW_LNS_fixed_advance_pc:
21193 {
21194 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21195 line_ptr += 2;
21196
21197 state_machine.handle_fixed_advance_pc (addr_adj);
21198 }
21199 break;
21200 default:
21201 {
21202 /* Unknown standard opcode, ignore it. */
21203 int i;
21204
21205 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21206 {
21207 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21208 line_ptr += bytes_read;
21209 }
21210 }
21211 }
21212 }
21213
21214 if (!end_sequence)
21215 dwarf2_debug_line_missing_end_sequence_complaint ();
21216
21217 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21218 in which case we still finish recording the last line). */
21219 state_machine.record_line (true);
21220 }
21221 }
21222
21223 /* Decode the Line Number Program (LNP) for the given line_header
21224 structure and CU. The actual information extracted and the type
21225 of structures created from the LNP depends on the value of PST.
21226
21227 1. If PST is NULL, then this procedure uses the data from the program
21228 to create all necessary symbol tables, and their linetables.
21229
21230 2. If PST is not NULL, this procedure reads the program to determine
21231 the list of files included by the unit represented by PST, and
21232 builds all the associated partial symbol tables.
21233
21234 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21235 It is used for relative paths in the line table.
21236 NOTE: When processing partial symtabs (pst != NULL),
21237 comp_dir == pst->dirname.
21238
21239 NOTE: It is important that psymtabs have the same file name (via strcmp)
21240 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21241 symtab we don't use it in the name of the psymtabs we create.
21242 E.g. expand_line_sal requires this when finding psymtabs to expand.
21243 A good testcase for this is mb-inline.exp.
21244
21245 LOWPC is the lowest address in CU (or 0 if not known).
21246
21247 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21248 for its PC<->lines mapping information. Otherwise only the filename
21249 table is read in. */
21250
21251 static void
21252 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21253 struct dwarf2_cu *cu, struct partial_symtab *pst,
21254 CORE_ADDR lowpc, int decode_mapping)
21255 {
21256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21257 const int decode_for_pst_p = (pst != NULL);
21258
21259 if (decode_mapping)
21260 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21261
21262 if (decode_for_pst_p)
21263 {
21264 int file_index;
21265
21266 /* Now that we're done scanning the Line Header Program, we can
21267 create the psymtab of each included file. */
21268 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21269 if (lh->file_names[file_index].included_p == 1)
21270 {
21271 gdb::unique_xmalloc_ptr<char> name_holder;
21272 const char *include_name =
21273 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21274 &name_holder);
21275 if (include_name != NULL)
21276 dwarf2_create_include_psymtab (include_name, pst, objfile);
21277 }
21278 }
21279 else
21280 {
21281 /* Make sure a symtab is created for every file, even files
21282 which contain only variables (i.e. no code with associated
21283 line numbers). */
21284 buildsym_compunit *builder = cu->get_builder ();
21285 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21286 int i;
21287
21288 for (i = 0; i < lh->file_names.size (); i++)
21289 {
21290 file_entry &fe = lh->file_names[i];
21291
21292 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21293
21294 if (builder->get_current_subfile ()->symtab == NULL)
21295 {
21296 builder->get_current_subfile ()->symtab
21297 = allocate_symtab (cust,
21298 builder->get_current_subfile ()->name);
21299 }
21300 fe.symtab = builder->get_current_subfile ()->symtab;
21301 }
21302 }
21303 }
21304
21305 /* Start a subfile for DWARF. FILENAME is the name of the file and
21306 DIRNAME the name of the source directory which contains FILENAME
21307 or NULL if not known.
21308 This routine tries to keep line numbers from identical absolute and
21309 relative file names in a common subfile.
21310
21311 Using the `list' example from the GDB testsuite, which resides in
21312 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21313 of /srcdir/list0.c yields the following debugging information for list0.c:
21314
21315 DW_AT_name: /srcdir/list0.c
21316 DW_AT_comp_dir: /compdir
21317 files.files[0].name: list0.h
21318 files.files[0].dir: /srcdir
21319 files.files[1].name: list0.c
21320 files.files[1].dir: /srcdir
21321
21322 The line number information for list0.c has to end up in a single
21323 subfile, so that `break /srcdir/list0.c:1' works as expected.
21324 start_subfile will ensure that this happens provided that we pass the
21325 concatenation of files.files[1].dir and files.files[1].name as the
21326 subfile's name. */
21327
21328 static void
21329 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21330 const char *dirname)
21331 {
21332 char *copy = NULL;
21333
21334 /* In order not to lose the line information directory,
21335 we concatenate it to the filename when it makes sense.
21336 Note that the Dwarf3 standard says (speaking of filenames in line
21337 information): ``The directory index is ignored for file names
21338 that represent full path names''. Thus ignoring dirname in the
21339 `else' branch below isn't an issue. */
21340
21341 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21342 {
21343 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21344 filename = copy;
21345 }
21346
21347 cu->get_builder ()->start_subfile (filename);
21348
21349 if (copy != NULL)
21350 xfree (copy);
21351 }
21352
21353 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21354 buildsym_compunit constructor. */
21355
21356 struct compunit_symtab *
21357 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21358 CORE_ADDR low_pc)
21359 {
21360 gdb_assert (m_builder == nullptr);
21361
21362 m_builder.reset (new struct buildsym_compunit
21363 (per_cu->dwarf2_per_objfile->objfile,
21364 name, comp_dir, language, low_pc));
21365
21366 list_in_scope = get_builder ()->get_file_symbols ();
21367
21368 get_builder ()->record_debugformat ("DWARF 2");
21369 get_builder ()->record_producer (producer);
21370
21371 processing_has_namespace_info = false;
21372
21373 return get_builder ()->get_compunit_symtab ();
21374 }
21375
21376 static void
21377 var_decode_location (struct attribute *attr, struct symbol *sym,
21378 struct dwarf2_cu *cu)
21379 {
21380 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21381 struct comp_unit_head *cu_header = &cu->header;
21382
21383 /* NOTE drow/2003-01-30: There used to be a comment and some special
21384 code here to turn a symbol with DW_AT_external and a
21385 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21386 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21387 with some versions of binutils) where shared libraries could have
21388 relocations against symbols in their debug information - the
21389 minimal symbol would have the right address, but the debug info
21390 would not. It's no longer necessary, because we will explicitly
21391 apply relocations when we read in the debug information now. */
21392
21393 /* A DW_AT_location attribute with no contents indicates that a
21394 variable has been optimized away. */
21395 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21396 {
21397 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21398 return;
21399 }
21400
21401 /* Handle one degenerate form of location expression specially, to
21402 preserve GDB's previous behavior when section offsets are
21403 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21404 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21405
21406 if (attr_form_is_block (attr)
21407 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21408 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21409 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21410 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21411 && (DW_BLOCK (attr)->size
21412 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21413 {
21414 unsigned int dummy;
21415
21416 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21417 SYMBOL_VALUE_ADDRESS (sym) =
21418 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21419 else
21420 SYMBOL_VALUE_ADDRESS (sym) =
21421 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21422 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21423 fixup_symbol_section (sym, objfile);
21424 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21425 SYMBOL_SECTION (sym));
21426 return;
21427 }
21428
21429 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21430 expression evaluator, and use LOC_COMPUTED only when necessary
21431 (i.e. when the value of a register or memory location is
21432 referenced, or a thread-local block, etc.). Then again, it might
21433 not be worthwhile. I'm assuming that it isn't unless performance
21434 or memory numbers show me otherwise. */
21435
21436 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21437
21438 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21439 cu->has_loclist = true;
21440 }
21441
21442 /* Given a pointer to a DWARF information entry, figure out if we need
21443 to make a symbol table entry for it, and if so, create a new entry
21444 and return a pointer to it.
21445 If TYPE is NULL, determine symbol type from the die, otherwise
21446 used the passed type.
21447 If SPACE is not NULL, use it to hold the new symbol. If it is
21448 NULL, allocate a new symbol on the objfile's obstack. */
21449
21450 static struct symbol *
21451 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21452 struct symbol *space)
21453 {
21454 struct dwarf2_per_objfile *dwarf2_per_objfile
21455 = cu->per_cu->dwarf2_per_objfile;
21456 struct objfile *objfile = dwarf2_per_objfile->objfile;
21457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21458 struct symbol *sym = NULL;
21459 const char *name;
21460 struct attribute *attr = NULL;
21461 struct attribute *attr2 = NULL;
21462 CORE_ADDR baseaddr;
21463 struct pending **list_to_add = NULL;
21464
21465 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21466
21467 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21468
21469 name = dwarf2_name (die, cu);
21470 if (name)
21471 {
21472 const char *linkagename;
21473 int suppress_add = 0;
21474
21475 if (space)
21476 sym = space;
21477 else
21478 sym = allocate_symbol (objfile);
21479 OBJSTAT (objfile, n_syms++);
21480
21481 /* Cache this symbol's name and the name's demangled form (if any). */
21482 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21483 linkagename = dwarf2_physname (name, die, cu);
21484 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21485
21486 /* Fortran does not have mangling standard and the mangling does differ
21487 between gfortran, iFort etc. */
21488 if (cu->language == language_fortran
21489 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21490 symbol_set_demangled_name (&(sym->ginfo),
21491 dwarf2_full_name (name, die, cu),
21492 NULL);
21493
21494 /* Default assumptions.
21495 Use the passed type or decode it from the die. */
21496 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21497 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21498 if (type != NULL)
21499 SYMBOL_TYPE (sym) = type;
21500 else
21501 SYMBOL_TYPE (sym) = die_type (die, cu);
21502 attr = dwarf2_attr (die,
21503 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21504 cu);
21505 if (attr)
21506 {
21507 SYMBOL_LINE (sym) = DW_UNSND (attr);
21508 }
21509
21510 attr = dwarf2_attr (die,
21511 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21512 cu);
21513 if (attr)
21514 {
21515 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21516 struct file_entry *fe;
21517
21518 if (cu->line_header != NULL)
21519 fe = cu->line_header->file_name_at (file_index);
21520 else
21521 fe = NULL;
21522
21523 if (fe == NULL)
21524 complaint (_("file index out of range"));
21525 else
21526 symbol_set_symtab (sym, fe->symtab);
21527 }
21528
21529 switch (die->tag)
21530 {
21531 case DW_TAG_label:
21532 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21533 if (attr)
21534 {
21535 CORE_ADDR addr;
21536
21537 addr = attr_value_as_address (attr);
21538 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21539 SYMBOL_VALUE_ADDRESS (sym) = addr;
21540 }
21541 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21542 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21543 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21544 add_symbol_to_list (sym, cu->list_in_scope);
21545 break;
21546 case DW_TAG_subprogram:
21547 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21548 finish_block. */
21549 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21550 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21551 if ((attr2 && (DW_UNSND (attr2) != 0))
21552 || cu->language == language_ada)
21553 {
21554 /* Subprograms marked external are stored as a global symbol.
21555 Ada subprograms, whether marked external or not, are always
21556 stored as a global symbol, because we want to be able to
21557 access them globally. For instance, we want to be able
21558 to break on a nested subprogram without having to
21559 specify the context. */
21560 list_to_add = cu->get_builder ()->get_global_symbols ();
21561 }
21562 else
21563 {
21564 list_to_add = cu->list_in_scope;
21565 }
21566 break;
21567 case DW_TAG_inlined_subroutine:
21568 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21569 finish_block. */
21570 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21571 SYMBOL_INLINED (sym) = 1;
21572 list_to_add = cu->list_in_scope;
21573 break;
21574 case DW_TAG_template_value_param:
21575 suppress_add = 1;
21576 /* Fall through. */
21577 case DW_TAG_constant:
21578 case DW_TAG_variable:
21579 case DW_TAG_member:
21580 /* Compilation with minimal debug info may result in
21581 variables with missing type entries. Change the
21582 misleading `void' type to something sensible. */
21583 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21584 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21585
21586 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21587 /* In the case of DW_TAG_member, we should only be called for
21588 static const members. */
21589 if (die->tag == DW_TAG_member)
21590 {
21591 /* dwarf2_add_field uses die_is_declaration,
21592 so we do the same. */
21593 gdb_assert (die_is_declaration (die, cu));
21594 gdb_assert (attr);
21595 }
21596 if (attr)
21597 {
21598 dwarf2_const_value (attr, sym, cu);
21599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21600 if (!suppress_add)
21601 {
21602 if (attr2 && (DW_UNSND (attr2) != 0))
21603 list_to_add = cu->get_builder ()->get_global_symbols ();
21604 else
21605 list_to_add = cu->list_in_scope;
21606 }
21607 break;
21608 }
21609 attr = dwarf2_attr (die, DW_AT_location, cu);
21610 if (attr)
21611 {
21612 var_decode_location (attr, sym, cu);
21613 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21614
21615 /* Fortran explicitly imports any global symbols to the local
21616 scope by DW_TAG_common_block. */
21617 if (cu->language == language_fortran && die->parent
21618 && die->parent->tag == DW_TAG_common_block)
21619 attr2 = NULL;
21620
21621 if (SYMBOL_CLASS (sym) == LOC_STATIC
21622 && SYMBOL_VALUE_ADDRESS (sym) == 0
21623 && !dwarf2_per_objfile->has_section_at_zero)
21624 {
21625 /* When a static variable is eliminated by the linker,
21626 the corresponding debug information is not stripped
21627 out, but the variable address is set to null;
21628 do not add such variables into symbol table. */
21629 }
21630 else if (attr2 && (DW_UNSND (attr2) != 0))
21631 {
21632 /* Workaround gfortran PR debug/40040 - it uses
21633 DW_AT_location for variables in -fPIC libraries which may
21634 get overriden by other libraries/executable and get
21635 a different address. Resolve it by the minimal symbol
21636 which may come from inferior's executable using copy
21637 relocation. Make this workaround only for gfortran as for
21638 other compilers GDB cannot guess the minimal symbol
21639 Fortran mangling kind. */
21640 if (cu->language == language_fortran && die->parent
21641 && die->parent->tag == DW_TAG_module
21642 && cu->producer
21643 && startswith (cu->producer, "GNU Fortran"))
21644 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21645
21646 /* A variable with DW_AT_external is never static,
21647 but it may be block-scoped. */
21648 list_to_add
21649 = ((cu->list_in_scope
21650 == cu->get_builder ()->get_file_symbols ())
21651 ? cu->get_builder ()->get_global_symbols ()
21652 : cu->list_in_scope);
21653 }
21654 else
21655 list_to_add = cu->list_in_scope;
21656 }
21657 else
21658 {
21659 /* We do not know the address of this symbol.
21660 If it is an external symbol and we have type information
21661 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21662 The address of the variable will then be determined from
21663 the minimal symbol table whenever the variable is
21664 referenced. */
21665 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21666
21667 /* Fortran explicitly imports any global symbols to the local
21668 scope by DW_TAG_common_block. */
21669 if (cu->language == language_fortran && die->parent
21670 && die->parent->tag == DW_TAG_common_block)
21671 {
21672 /* SYMBOL_CLASS doesn't matter here because
21673 read_common_block is going to reset it. */
21674 if (!suppress_add)
21675 list_to_add = cu->list_in_scope;
21676 }
21677 else if (attr2 && (DW_UNSND (attr2) != 0)
21678 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21679 {
21680 /* A variable with DW_AT_external is never static, but it
21681 may be block-scoped. */
21682 list_to_add
21683 = ((cu->list_in_scope
21684 == cu->get_builder ()->get_file_symbols ())
21685 ? cu->get_builder ()->get_global_symbols ()
21686 : cu->list_in_scope);
21687
21688 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21689 }
21690 else if (!die_is_declaration (die, cu))
21691 {
21692 /* Use the default LOC_OPTIMIZED_OUT class. */
21693 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21694 if (!suppress_add)
21695 list_to_add = cu->list_in_scope;
21696 }
21697 }
21698 break;
21699 case DW_TAG_formal_parameter:
21700 {
21701 /* If we are inside a function, mark this as an argument. If
21702 not, we might be looking at an argument to an inlined function
21703 when we do not have enough information to show inlined frames;
21704 pretend it's a local variable in that case so that the user can
21705 still see it. */
21706 struct context_stack *curr
21707 = cu->get_builder ()->get_current_context_stack ();
21708 if (curr != nullptr && curr->name != nullptr)
21709 SYMBOL_IS_ARGUMENT (sym) = 1;
21710 attr = dwarf2_attr (die, DW_AT_location, cu);
21711 if (attr)
21712 {
21713 var_decode_location (attr, sym, cu);
21714 }
21715 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21716 if (attr)
21717 {
21718 dwarf2_const_value (attr, sym, cu);
21719 }
21720
21721 list_to_add = cu->list_in_scope;
21722 }
21723 break;
21724 case DW_TAG_unspecified_parameters:
21725 /* From varargs functions; gdb doesn't seem to have any
21726 interest in this information, so just ignore it for now.
21727 (FIXME?) */
21728 break;
21729 case DW_TAG_template_type_param:
21730 suppress_add = 1;
21731 /* Fall through. */
21732 case DW_TAG_class_type:
21733 case DW_TAG_interface_type:
21734 case DW_TAG_structure_type:
21735 case DW_TAG_union_type:
21736 case DW_TAG_set_type:
21737 case DW_TAG_enumeration_type:
21738 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21739 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21740
21741 {
21742 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21743 really ever be static objects: otherwise, if you try
21744 to, say, break of a class's method and you're in a file
21745 which doesn't mention that class, it won't work unless
21746 the check for all static symbols in lookup_symbol_aux
21747 saves you. See the OtherFileClass tests in
21748 gdb.c++/namespace.exp. */
21749
21750 if (!suppress_add)
21751 {
21752 buildsym_compunit *builder = cu->get_builder ();
21753 list_to_add
21754 = (cu->list_in_scope == builder->get_file_symbols ()
21755 && cu->language == language_cplus
21756 ? builder->get_global_symbols ()
21757 : cu->list_in_scope);
21758
21759 /* The semantics of C++ state that "struct foo {
21760 ... }" also defines a typedef for "foo". */
21761 if (cu->language == language_cplus
21762 || cu->language == language_ada
21763 || cu->language == language_d
21764 || cu->language == language_rust)
21765 {
21766 /* The symbol's name is already allocated along
21767 with this objfile, so we don't need to
21768 duplicate it for the type. */
21769 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21770 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21771 }
21772 }
21773 }
21774 break;
21775 case DW_TAG_typedef:
21776 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21777 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21778 list_to_add = cu->list_in_scope;
21779 break;
21780 case DW_TAG_base_type:
21781 case DW_TAG_subrange_type:
21782 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21783 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21784 list_to_add = cu->list_in_scope;
21785 break;
21786 case DW_TAG_enumerator:
21787 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21788 if (attr)
21789 {
21790 dwarf2_const_value (attr, sym, cu);
21791 }
21792 {
21793 /* NOTE: carlton/2003-11-10: See comment above in the
21794 DW_TAG_class_type, etc. block. */
21795
21796 list_to_add
21797 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21798 && cu->language == language_cplus
21799 ? cu->get_builder ()->get_global_symbols ()
21800 : cu->list_in_scope);
21801 }
21802 break;
21803 case DW_TAG_imported_declaration:
21804 case DW_TAG_namespace:
21805 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21806 list_to_add = cu->get_builder ()->get_global_symbols ();
21807 break;
21808 case DW_TAG_module:
21809 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21810 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21811 list_to_add = cu->get_builder ()->get_global_symbols ();
21812 break;
21813 case DW_TAG_common_block:
21814 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21815 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21816 add_symbol_to_list (sym, cu->list_in_scope);
21817 break;
21818 default:
21819 /* Not a tag we recognize. Hopefully we aren't processing
21820 trash data, but since we must specifically ignore things
21821 we don't recognize, there is nothing else we should do at
21822 this point. */
21823 complaint (_("unsupported tag: '%s'"),
21824 dwarf_tag_name (die->tag));
21825 break;
21826 }
21827
21828 if (suppress_add)
21829 {
21830 sym->hash_next = objfile->template_symbols;
21831 objfile->template_symbols = sym;
21832 list_to_add = NULL;
21833 }
21834
21835 if (list_to_add != NULL)
21836 add_symbol_to_list (sym, list_to_add);
21837
21838 /* For the benefit of old versions of GCC, check for anonymous
21839 namespaces based on the demangled name. */
21840 if (!cu->processing_has_namespace_info
21841 && cu->language == language_cplus)
21842 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21843 }
21844 return (sym);
21845 }
21846
21847 /* Given an attr with a DW_FORM_dataN value in host byte order,
21848 zero-extend it as appropriate for the symbol's type. The DWARF
21849 standard (v4) is not entirely clear about the meaning of using
21850 DW_FORM_dataN for a constant with a signed type, where the type is
21851 wider than the data. The conclusion of a discussion on the DWARF
21852 list was that this is unspecified. We choose to always zero-extend
21853 because that is the interpretation long in use by GCC. */
21854
21855 static gdb_byte *
21856 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21857 struct dwarf2_cu *cu, LONGEST *value, int bits)
21858 {
21859 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21860 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21861 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21862 LONGEST l = DW_UNSND (attr);
21863
21864 if (bits < sizeof (*value) * 8)
21865 {
21866 l &= ((LONGEST) 1 << bits) - 1;
21867 *value = l;
21868 }
21869 else if (bits == sizeof (*value) * 8)
21870 *value = l;
21871 else
21872 {
21873 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21874 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21875 return bytes;
21876 }
21877
21878 return NULL;
21879 }
21880
21881 /* Read a constant value from an attribute. Either set *VALUE, or if
21882 the value does not fit in *VALUE, set *BYTES - either already
21883 allocated on the objfile obstack, or newly allocated on OBSTACK,
21884 or, set *BATON, if we translated the constant to a location
21885 expression. */
21886
21887 static void
21888 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21889 const char *name, struct obstack *obstack,
21890 struct dwarf2_cu *cu,
21891 LONGEST *value, const gdb_byte **bytes,
21892 struct dwarf2_locexpr_baton **baton)
21893 {
21894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21895 struct comp_unit_head *cu_header = &cu->header;
21896 struct dwarf_block *blk;
21897 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21898 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21899
21900 *value = 0;
21901 *bytes = NULL;
21902 *baton = NULL;
21903
21904 switch (attr->form)
21905 {
21906 case DW_FORM_addr:
21907 case DW_FORM_addrx:
21908 case DW_FORM_GNU_addr_index:
21909 {
21910 gdb_byte *data;
21911
21912 if (TYPE_LENGTH (type) != cu_header->addr_size)
21913 dwarf2_const_value_length_mismatch_complaint (name,
21914 cu_header->addr_size,
21915 TYPE_LENGTH (type));
21916 /* Symbols of this form are reasonably rare, so we just
21917 piggyback on the existing location code rather than writing
21918 a new implementation of symbol_computed_ops. */
21919 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21920 (*baton)->per_cu = cu->per_cu;
21921 gdb_assert ((*baton)->per_cu);
21922
21923 (*baton)->size = 2 + cu_header->addr_size;
21924 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21925 (*baton)->data = data;
21926
21927 data[0] = DW_OP_addr;
21928 store_unsigned_integer (&data[1], cu_header->addr_size,
21929 byte_order, DW_ADDR (attr));
21930 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21931 }
21932 break;
21933 case DW_FORM_string:
21934 case DW_FORM_strp:
21935 case DW_FORM_strx:
21936 case DW_FORM_GNU_str_index:
21937 case DW_FORM_GNU_strp_alt:
21938 /* DW_STRING is already allocated on the objfile obstack, point
21939 directly to it. */
21940 *bytes = (const gdb_byte *) DW_STRING (attr);
21941 break;
21942 case DW_FORM_block1:
21943 case DW_FORM_block2:
21944 case DW_FORM_block4:
21945 case DW_FORM_block:
21946 case DW_FORM_exprloc:
21947 case DW_FORM_data16:
21948 blk = DW_BLOCK (attr);
21949 if (TYPE_LENGTH (type) != blk->size)
21950 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21951 TYPE_LENGTH (type));
21952 *bytes = blk->data;
21953 break;
21954
21955 /* The DW_AT_const_value attributes are supposed to carry the
21956 symbol's value "represented as it would be on the target
21957 architecture." By the time we get here, it's already been
21958 converted to host endianness, so we just need to sign- or
21959 zero-extend it as appropriate. */
21960 case DW_FORM_data1:
21961 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21962 break;
21963 case DW_FORM_data2:
21964 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21965 break;
21966 case DW_FORM_data4:
21967 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21968 break;
21969 case DW_FORM_data8:
21970 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21971 break;
21972
21973 case DW_FORM_sdata:
21974 case DW_FORM_implicit_const:
21975 *value = DW_SND (attr);
21976 break;
21977
21978 case DW_FORM_udata:
21979 *value = DW_UNSND (attr);
21980 break;
21981
21982 default:
21983 complaint (_("unsupported const value attribute form: '%s'"),
21984 dwarf_form_name (attr->form));
21985 *value = 0;
21986 break;
21987 }
21988 }
21989
21990
21991 /* Copy constant value from an attribute to a symbol. */
21992
21993 static void
21994 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21995 struct dwarf2_cu *cu)
21996 {
21997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21998 LONGEST value;
21999 const gdb_byte *bytes;
22000 struct dwarf2_locexpr_baton *baton;
22001
22002 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22003 SYMBOL_PRINT_NAME (sym),
22004 &objfile->objfile_obstack, cu,
22005 &value, &bytes, &baton);
22006
22007 if (baton != NULL)
22008 {
22009 SYMBOL_LOCATION_BATON (sym) = baton;
22010 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22011 }
22012 else if (bytes != NULL)
22013 {
22014 SYMBOL_VALUE_BYTES (sym) = bytes;
22015 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22016 }
22017 else
22018 {
22019 SYMBOL_VALUE (sym) = value;
22020 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22021 }
22022 }
22023
22024 /* Return the type of the die in question using its DW_AT_type attribute. */
22025
22026 static struct type *
22027 die_type (struct die_info *die, struct dwarf2_cu *cu)
22028 {
22029 struct attribute *type_attr;
22030
22031 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22032 if (!type_attr)
22033 {
22034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22035 /* A missing DW_AT_type represents a void type. */
22036 return objfile_type (objfile)->builtin_void;
22037 }
22038
22039 return lookup_die_type (die, type_attr, cu);
22040 }
22041
22042 /* True iff CU's producer generates GNAT Ada auxiliary information
22043 that allows to find parallel types through that information instead
22044 of having to do expensive parallel lookups by type name. */
22045
22046 static int
22047 need_gnat_info (struct dwarf2_cu *cu)
22048 {
22049 /* Assume that the Ada compiler was GNAT, which always produces
22050 the auxiliary information. */
22051 return (cu->language == language_ada);
22052 }
22053
22054 /* Return the auxiliary type of the die in question using its
22055 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22056 attribute is not present. */
22057
22058 static struct type *
22059 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22060 {
22061 struct attribute *type_attr;
22062
22063 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22064 if (!type_attr)
22065 return NULL;
22066
22067 return lookup_die_type (die, type_attr, cu);
22068 }
22069
22070 /* If DIE has a descriptive_type attribute, then set the TYPE's
22071 descriptive type accordingly. */
22072
22073 static void
22074 set_descriptive_type (struct type *type, struct die_info *die,
22075 struct dwarf2_cu *cu)
22076 {
22077 struct type *descriptive_type = die_descriptive_type (die, cu);
22078
22079 if (descriptive_type)
22080 {
22081 ALLOCATE_GNAT_AUX_TYPE (type);
22082 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22083 }
22084 }
22085
22086 /* Return the containing type of the die in question using its
22087 DW_AT_containing_type attribute. */
22088
22089 static struct type *
22090 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22091 {
22092 struct attribute *type_attr;
22093 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22094
22095 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22096 if (!type_attr)
22097 error (_("Dwarf Error: Problem turning containing type into gdb type "
22098 "[in module %s]"), objfile_name (objfile));
22099
22100 return lookup_die_type (die, type_attr, cu);
22101 }
22102
22103 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22104
22105 static struct type *
22106 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22107 {
22108 struct dwarf2_per_objfile *dwarf2_per_objfile
22109 = cu->per_cu->dwarf2_per_objfile;
22110 struct objfile *objfile = dwarf2_per_objfile->objfile;
22111 char *saved;
22112
22113 std::string message
22114 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22115 objfile_name (objfile),
22116 sect_offset_str (cu->header.sect_off),
22117 sect_offset_str (die->sect_off));
22118 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22119 message.c_str (), message.length ());
22120
22121 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22122 }
22123
22124 /* Look up the type of DIE in CU using its type attribute ATTR.
22125 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22126 DW_AT_containing_type.
22127 If there is no type substitute an error marker. */
22128
22129 static struct type *
22130 lookup_die_type (struct die_info *die, const struct attribute *attr,
22131 struct dwarf2_cu *cu)
22132 {
22133 struct dwarf2_per_objfile *dwarf2_per_objfile
22134 = cu->per_cu->dwarf2_per_objfile;
22135 struct objfile *objfile = dwarf2_per_objfile->objfile;
22136 struct type *this_type;
22137
22138 gdb_assert (attr->name == DW_AT_type
22139 || attr->name == DW_AT_GNAT_descriptive_type
22140 || attr->name == DW_AT_containing_type);
22141
22142 /* First see if we have it cached. */
22143
22144 if (attr->form == DW_FORM_GNU_ref_alt)
22145 {
22146 struct dwarf2_per_cu_data *per_cu;
22147 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22148
22149 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22150 dwarf2_per_objfile);
22151 this_type = get_die_type_at_offset (sect_off, per_cu);
22152 }
22153 else if (attr_form_is_ref (attr))
22154 {
22155 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22156
22157 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22158 }
22159 else if (attr->form == DW_FORM_ref_sig8)
22160 {
22161 ULONGEST signature = DW_SIGNATURE (attr);
22162
22163 return get_signatured_type (die, signature, cu);
22164 }
22165 else
22166 {
22167 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22168 " at %s [in module %s]"),
22169 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22170 objfile_name (objfile));
22171 return build_error_marker_type (cu, die);
22172 }
22173
22174 /* If not cached we need to read it in. */
22175
22176 if (this_type == NULL)
22177 {
22178 struct die_info *type_die = NULL;
22179 struct dwarf2_cu *type_cu = cu;
22180
22181 if (attr_form_is_ref (attr))
22182 type_die = follow_die_ref (die, attr, &type_cu);
22183 if (type_die == NULL)
22184 return build_error_marker_type (cu, die);
22185 /* If we find the type now, it's probably because the type came
22186 from an inter-CU reference and the type's CU got expanded before
22187 ours. */
22188 this_type = read_type_die (type_die, type_cu);
22189 }
22190
22191 /* If we still don't have a type use an error marker. */
22192
22193 if (this_type == NULL)
22194 return build_error_marker_type (cu, die);
22195
22196 return this_type;
22197 }
22198
22199 /* Return the type in DIE, CU.
22200 Returns NULL for invalid types.
22201
22202 This first does a lookup in die_type_hash,
22203 and only reads the die in if necessary.
22204
22205 NOTE: This can be called when reading in partial or full symbols. */
22206
22207 static struct type *
22208 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22209 {
22210 struct type *this_type;
22211
22212 this_type = get_die_type (die, cu);
22213 if (this_type)
22214 return this_type;
22215
22216 return read_type_die_1 (die, cu);
22217 }
22218
22219 /* Read the type in DIE, CU.
22220 Returns NULL for invalid types. */
22221
22222 static struct type *
22223 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22224 {
22225 struct type *this_type = NULL;
22226
22227 switch (die->tag)
22228 {
22229 case DW_TAG_class_type:
22230 case DW_TAG_interface_type:
22231 case DW_TAG_structure_type:
22232 case DW_TAG_union_type:
22233 this_type = read_structure_type (die, cu);
22234 break;
22235 case DW_TAG_enumeration_type:
22236 this_type = read_enumeration_type (die, cu);
22237 break;
22238 case DW_TAG_subprogram:
22239 case DW_TAG_subroutine_type:
22240 case DW_TAG_inlined_subroutine:
22241 this_type = read_subroutine_type (die, cu);
22242 break;
22243 case DW_TAG_array_type:
22244 this_type = read_array_type (die, cu);
22245 break;
22246 case DW_TAG_set_type:
22247 this_type = read_set_type (die, cu);
22248 break;
22249 case DW_TAG_pointer_type:
22250 this_type = read_tag_pointer_type (die, cu);
22251 break;
22252 case DW_TAG_ptr_to_member_type:
22253 this_type = read_tag_ptr_to_member_type (die, cu);
22254 break;
22255 case DW_TAG_reference_type:
22256 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22257 break;
22258 case DW_TAG_rvalue_reference_type:
22259 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22260 break;
22261 case DW_TAG_const_type:
22262 this_type = read_tag_const_type (die, cu);
22263 break;
22264 case DW_TAG_volatile_type:
22265 this_type = read_tag_volatile_type (die, cu);
22266 break;
22267 case DW_TAG_restrict_type:
22268 this_type = read_tag_restrict_type (die, cu);
22269 break;
22270 case DW_TAG_string_type:
22271 this_type = read_tag_string_type (die, cu);
22272 break;
22273 case DW_TAG_typedef:
22274 this_type = read_typedef (die, cu);
22275 break;
22276 case DW_TAG_subrange_type:
22277 this_type = read_subrange_type (die, cu);
22278 break;
22279 case DW_TAG_base_type:
22280 this_type = read_base_type (die, cu);
22281 break;
22282 case DW_TAG_unspecified_type:
22283 this_type = read_unspecified_type (die, cu);
22284 break;
22285 case DW_TAG_namespace:
22286 this_type = read_namespace_type (die, cu);
22287 break;
22288 case DW_TAG_module:
22289 this_type = read_module_type (die, cu);
22290 break;
22291 case DW_TAG_atomic_type:
22292 this_type = read_tag_atomic_type (die, cu);
22293 break;
22294 default:
22295 complaint (_("unexpected tag in read_type_die: '%s'"),
22296 dwarf_tag_name (die->tag));
22297 break;
22298 }
22299
22300 return this_type;
22301 }
22302
22303 /* See if we can figure out if the class lives in a namespace. We do
22304 this by looking for a member function; its demangled name will
22305 contain namespace info, if there is any.
22306 Return the computed name or NULL.
22307 Space for the result is allocated on the objfile's obstack.
22308 This is the full-die version of guess_partial_die_structure_name.
22309 In this case we know DIE has no useful parent. */
22310
22311 static char *
22312 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22313 {
22314 struct die_info *spec_die;
22315 struct dwarf2_cu *spec_cu;
22316 struct die_info *child;
22317 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22318
22319 spec_cu = cu;
22320 spec_die = die_specification (die, &spec_cu);
22321 if (spec_die != NULL)
22322 {
22323 die = spec_die;
22324 cu = spec_cu;
22325 }
22326
22327 for (child = die->child;
22328 child != NULL;
22329 child = child->sibling)
22330 {
22331 if (child->tag == DW_TAG_subprogram)
22332 {
22333 const char *linkage_name = dw2_linkage_name (child, cu);
22334
22335 if (linkage_name != NULL)
22336 {
22337 char *actual_name
22338 = language_class_name_from_physname (cu->language_defn,
22339 linkage_name);
22340 char *name = NULL;
22341
22342 if (actual_name != NULL)
22343 {
22344 const char *die_name = dwarf2_name (die, cu);
22345
22346 if (die_name != NULL
22347 && strcmp (die_name, actual_name) != 0)
22348 {
22349 /* Strip off the class name from the full name.
22350 We want the prefix. */
22351 int die_name_len = strlen (die_name);
22352 int actual_name_len = strlen (actual_name);
22353
22354 /* Test for '::' as a sanity check. */
22355 if (actual_name_len > die_name_len + 2
22356 && actual_name[actual_name_len
22357 - die_name_len - 1] == ':')
22358 name = (char *) obstack_copy0 (
22359 &objfile->per_bfd->storage_obstack,
22360 actual_name, actual_name_len - die_name_len - 2);
22361 }
22362 }
22363 xfree (actual_name);
22364 return name;
22365 }
22366 }
22367 }
22368
22369 return NULL;
22370 }
22371
22372 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22373 prefix part in such case. See
22374 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22375
22376 static const char *
22377 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22378 {
22379 struct attribute *attr;
22380 const char *base;
22381
22382 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22383 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22384 return NULL;
22385
22386 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22387 return NULL;
22388
22389 attr = dw2_linkage_name_attr (die, cu);
22390 if (attr == NULL || DW_STRING (attr) == NULL)
22391 return NULL;
22392
22393 /* dwarf2_name had to be already called. */
22394 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22395
22396 /* Strip the base name, keep any leading namespaces/classes. */
22397 base = strrchr (DW_STRING (attr), ':');
22398 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22399 return "";
22400
22401 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22402 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22403 DW_STRING (attr),
22404 &base[-1] - DW_STRING (attr));
22405 }
22406
22407 /* Return the name of the namespace/class that DIE is defined within,
22408 or "" if we can't tell. The caller should not xfree the result.
22409
22410 For example, if we're within the method foo() in the following
22411 code:
22412
22413 namespace N {
22414 class C {
22415 void foo () {
22416 }
22417 };
22418 }
22419
22420 then determine_prefix on foo's die will return "N::C". */
22421
22422 static const char *
22423 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22424 {
22425 struct dwarf2_per_objfile *dwarf2_per_objfile
22426 = cu->per_cu->dwarf2_per_objfile;
22427 struct die_info *parent, *spec_die;
22428 struct dwarf2_cu *spec_cu;
22429 struct type *parent_type;
22430 const char *retval;
22431
22432 if (cu->language != language_cplus
22433 && cu->language != language_fortran && cu->language != language_d
22434 && cu->language != language_rust)
22435 return "";
22436
22437 retval = anonymous_struct_prefix (die, cu);
22438 if (retval)
22439 return retval;
22440
22441 /* We have to be careful in the presence of DW_AT_specification.
22442 For example, with GCC 3.4, given the code
22443
22444 namespace N {
22445 void foo() {
22446 // Definition of N::foo.
22447 }
22448 }
22449
22450 then we'll have a tree of DIEs like this:
22451
22452 1: DW_TAG_compile_unit
22453 2: DW_TAG_namespace // N
22454 3: DW_TAG_subprogram // declaration of N::foo
22455 4: DW_TAG_subprogram // definition of N::foo
22456 DW_AT_specification // refers to die #3
22457
22458 Thus, when processing die #4, we have to pretend that we're in
22459 the context of its DW_AT_specification, namely the contex of die
22460 #3. */
22461 spec_cu = cu;
22462 spec_die = die_specification (die, &spec_cu);
22463 if (spec_die == NULL)
22464 parent = die->parent;
22465 else
22466 {
22467 parent = spec_die->parent;
22468 cu = spec_cu;
22469 }
22470
22471 if (parent == NULL)
22472 return "";
22473 else if (parent->building_fullname)
22474 {
22475 const char *name;
22476 const char *parent_name;
22477
22478 /* It has been seen on RealView 2.2 built binaries,
22479 DW_TAG_template_type_param types actually _defined_ as
22480 children of the parent class:
22481
22482 enum E {};
22483 template class <class Enum> Class{};
22484 Class<enum E> class_e;
22485
22486 1: DW_TAG_class_type (Class)
22487 2: DW_TAG_enumeration_type (E)
22488 3: DW_TAG_enumerator (enum1:0)
22489 3: DW_TAG_enumerator (enum2:1)
22490 ...
22491 2: DW_TAG_template_type_param
22492 DW_AT_type DW_FORM_ref_udata (E)
22493
22494 Besides being broken debug info, it can put GDB into an
22495 infinite loop. Consider:
22496
22497 When we're building the full name for Class<E>, we'll start
22498 at Class, and go look over its template type parameters,
22499 finding E. We'll then try to build the full name of E, and
22500 reach here. We're now trying to build the full name of E,
22501 and look over the parent DIE for containing scope. In the
22502 broken case, if we followed the parent DIE of E, we'd again
22503 find Class, and once again go look at its template type
22504 arguments, etc., etc. Simply don't consider such parent die
22505 as source-level parent of this die (it can't be, the language
22506 doesn't allow it), and break the loop here. */
22507 name = dwarf2_name (die, cu);
22508 parent_name = dwarf2_name (parent, cu);
22509 complaint (_("template param type '%s' defined within parent '%s'"),
22510 name ? name : "<unknown>",
22511 parent_name ? parent_name : "<unknown>");
22512 return "";
22513 }
22514 else
22515 switch (parent->tag)
22516 {
22517 case DW_TAG_namespace:
22518 parent_type = read_type_die (parent, cu);
22519 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22520 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22521 Work around this problem here. */
22522 if (cu->language == language_cplus
22523 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22524 return "";
22525 /* We give a name to even anonymous namespaces. */
22526 return TYPE_NAME (parent_type);
22527 case DW_TAG_class_type:
22528 case DW_TAG_interface_type:
22529 case DW_TAG_structure_type:
22530 case DW_TAG_union_type:
22531 case DW_TAG_module:
22532 parent_type = read_type_die (parent, cu);
22533 if (TYPE_NAME (parent_type) != NULL)
22534 return TYPE_NAME (parent_type);
22535 else
22536 /* An anonymous structure is only allowed non-static data
22537 members; no typedefs, no member functions, et cetera.
22538 So it does not need a prefix. */
22539 return "";
22540 case DW_TAG_compile_unit:
22541 case DW_TAG_partial_unit:
22542 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22543 if (cu->language == language_cplus
22544 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22545 && die->child != NULL
22546 && (die->tag == DW_TAG_class_type
22547 || die->tag == DW_TAG_structure_type
22548 || die->tag == DW_TAG_union_type))
22549 {
22550 char *name = guess_full_die_structure_name (die, cu);
22551 if (name != NULL)
22552 return name;
22553 }
22554 return "";
22555 case DW_TAG_enumeration_type:
22556 parent_type = read_type_die (parent, cu);
22557 if (TYPE_DECLARED_CLASS (parent_type))
22558 {
22559 if (TYPE_NAME (parent_type) != NULL)
22560 return TYPE_NAME (parent_type);
22561 return "";
22562 }
22563 /* Fall through. */
22564 default:
22565 return determine_prefix (parent, cu);
22566 }
22567 }
22568
22569 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22570 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22571 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22572 an obconcat, otherwise allocate storage for the result. The CU argument is
22573 used to determine the language and hence, the appropriate separator. */
22574
22575 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22576
22577 static char *
22578 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22579 int physname, struct dwarf2_cu *cu)
22580 {
22581 const char *lead = "";
22582 const char *sep;
22583
22584 if (suffix == NULL || suffix[0] == '\0'
22585 || prefix == NULL || prefix[0] == '\0')
22586 sep = "";
22587 else if (cu->language == language_d)
22588 {
22589 /* For D, the 'main' function could be defined in any module, but it
22590 should never be prefixed. */
22591 if (strcmp (suffix, "D main") == 0)
22592 {
22593 prefix = "";
22594 sep = "";
22595 }
22596 else
22597 sep = ".";
22598 }
22599 else if (cu->language == language_fortran && physname)
22600 {
22601 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22602 DW_AT_MIPS_linkage_name is preferred and used instead. */
22603
22604 lead = "__";
22605 sep = "_MOD_";
22606 }
22607 else
22608 sep = "::";
22609
22610 if (prefix == NULL)
22611 prefix = "";
22612 if (suffix == NULL)
22613 suffix = "";
22614
22615 if (obs == NULL)
22616 {
22617 char *retval
22618 = ((char *)
22619 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22620
22621 strcpy (retval, lead);
22622 strcat (retval, prefix);
22623 strcat (retval, sep);
22624 strcat (retval, suffix);
22625 return retval;
22626 }
22627 else
22628 {
22629 /* We have an obstack. */
22630 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22631 }
22632 }
22633
22634 /* Return sibling of die, NULL if no sibling. */
22635
22636 static struct die_info *
22637 sibling_die (struct die_info *die)
22638 {
22639 return die->sibling;
22640 }
22641
22642 /* Get name of a die, return NULL if not found. */
22643
22644 static const char *
22645 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22646 struct obstack *obstack)
22647 {
22648 if (name && cu->language == language_cplus)
22649 {
22650 std::string canon_name = cp_canonicalize_string (name);
22651
22652 if (!canon_name.empty ())
22653 {
22654 if (canon_name != name)
22655 name = (const char *) obstack_copy0 (obstack,
22656 canon_name.c_str (),
22657 canon_name.length ());
22658 }
22659 }
22660
22661 return name;
22662 }
22663
22664 /* Get name of a die, return NULL if not found.
22665 Anonymous namespaces are converted to their magic string. */
22666
22667 static const char *
22668 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22669 {
22670 struct attribute *attr;
22671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22672
22673 attr = dwarf2_attr (die, DW_AT_name, cu);
22674 if ((!attr || !DW_STRING (attr))
22675 && die->tag != DW_TAG_namespace
22676 && die->tag != DW_TAG_class_type
22677 && die->tag != DW_TAG_interface_type
22678 && die->tag != DW_TAG_structure_type
22679 && die->tag != DW_TAG_union_type)
22680 return NULL;
22681
22682 switch (die->tag)
22683 {
22684 case DW_TAG_compile_unit:
22685 case DW_TAG_partial_unit:
22686 /* Compilation units have a DW_AT_name that is a filename, not
22687 a source language identifier. */
22688 case DW_TAG_enumeration_type:
22689 case DW_TAG_enumerator:
22690 /* These tags always have simple identifiers already; no need
22691 to canonicalize them. */
22692 return DW_STRING (attr);
22693
22694 case DW_TAG_namespace:
22695 if (attr != NULL && DW_STRING (attr) != NULL)
22696 return DW_STRING (attr);
22697 return CP_ANONYMOUS_NAMESPACE_STR;
22698
22699 case DW_TAG_class_type:
22700 case DW_TAG_interface_type:
22701 case DW_TAG_structure_type:
22702 case DW_TAG_union_type:
22703 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22704 structures or unions. These were of the form "._%d" in GCC 4.1,
22705 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22706 and GCC 4.4. We work around this problem by ignoring these. */
22707 if (attr && DW_STRING (attr)
22708 && (startswith (DW_STRING (attr), "._")
22709 || startswith (DW_STRING (attr), "<anonymous")))
22710 return NULL;
22711
22712 /* GCC might emit a nameless typedef that has a linkage name. See
22713 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22714 if (!attr || DW_STRING (attr) == NULL)
22715 {
22716 char *demangled = NULL;
22717
22718 attr = dw2_linkage_name_attr (die, cu);
22719 if (attr == NULL || DW_STRING (attr) == NULL)
22720 return NULL;
22721
22722 /* Avoid demangling DW_STRING (attr) the second time on a second
22723 call for the same DIE. */
22724 if (!DW_STRING_IS_CANONICAL (attr))
22725 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22726
22727 if (demangled)
22728 {
22729 const char *base;
22730
22731 /* FIXME: we already did this for the partial symbol... */
22732 DW_STRING (attr)
22733 = ((const char *)
22734 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22735 demangled, strlen (demangled)));
22736 DW_STRING_IS_CANONICAL (attr) = 1;
22737 xfree (demangled);
22738
22739 /* Strip any leading namespaces/classes, keep only the base name.
22740 DW_AT_name for named DIEs does not contain the prefixes. */
22741 base = strrchr (DW_STRING (attr), ':');
22742 if (base && base > DW_STRING (attr) && base[-1] == ':')
22743 return &base[1];
22744 else
22745 return DW_STRING (attr);
22746 }
22747 }
22748 break;
22749
22750 default:
22751 break;
22752 }
22753
22754 if (!DW_STRING_IS_CANONICAL (attr))
22755 {
22756 DW_STRING (attr)
22757 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22758 &objfile->per_bfd->storage_obstack);
22759 DW_STRING_IS_CANONICAL (attr) = 1;
22760 }
22761 return DW_STRING (attr);
22762 }
22763
22764 /* Return the die that this die in an extension of, or NULL if there
22765 is none. *EXT_CU is the CU containing DIE on input, and the CU
22766 containing the return value on output. */
22767
22768 static struct die_info *
22769 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22770 {
22771 struct attribute *attr;
22772
22773 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22774 if (attr == NULL)
22775 return NULL;
22776
22777 return follow_die_ref (die, attr, ext_cu);
22778 }
22779
22780 /* Convert a DIE tag into its string name. */
22781
22782 static const char *
22783 dwarf_tag_name (unsigned tag)
22784 {
22785 const char *name = get_DW_TAG_name (tag);
22786
22787 if (name == NULL)
22788 return "DW_TAG_<unknown>";
22789
22790 return name;
22791 }
22792
22793 /* Convert a DWARF attribute code into its string name. */
22794
22795 static const char *
22796 dwarf_attr_name (unsigned attr)
22797 {
22798 const char *name;
22799
22800 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22801 if (attr == DW_AT_MIPS_fde)
22802 return "DW_AT_MIPS_fde";
22803 #else
22804 if (attr == DW_AT_HP_block_index)
22805 return "DW_AT_HP_block_index";
22806 #endif
22807
22808 name = get_DW_AT_name (attr);
22809
22810 if (name == NULL)
22811 return "DW_AT_<unknown>";
22812
22813 return name;
22814 }
22815
22816 /* Convert a DWARF value form code into its string name. */
22817
22818 static const char *
22819 dwarf_form_name (unsigned form)
22820 {
22821 const char *name = get_DW_FORM_name (form);
22822
22823 if (name == NULL)
22824 return "DW_FORM_<unknown>";
22825
22826 return name;
22827 }
22828
22829 static const char *
22830 dwarf_bool_name (unsigned mybool)
22831 {
22832 if (mybool)
22833 return "TRUE";
22834 else
22835 return "FALSE";
22836 }
22837
22838 /* Convert a DWARF type code into its string name. */
22839
22840 static const char *
22841 dwarf_type_encoding_name (unsigned enc)
22842 {
22843 const char *name = get_DW_ATE_name (enc);
22844
22845 if (name == NULL)
22846 return "DW_ATE_<unknown>";
22847
22848 return name;
22849 }
22850
22851 static void
22852 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22853 {
22854 unsigned int i;
22855
22856 print_spaces (indent, f);
22857 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22858 dwarf_tag_name (die->tag), die->abbrev,
22859 sect_offset_str (die->sect_off));
22860
22861 if (die->parent != NULL)
22862 {
22863 print_spaces (indent, f);
22864 fprintf_unfiltered (f, " parent at offset: %s\n",
22865 sect_offset_str (die->parent->sect_off));
22866 }
22867
22868 print_spaces (indent, f);
22869 fprintf_unfiltered (f, " has children: %s\n",
22870 dwarf_bool_name (die->child != NULL));
22871
22872 print_spaces (indent, f);
22873 fprintf_unfiltered (f, " attributes:\n");
22874
22875 for (i = 0; i < die->num_attrs; ++i)
22876 {
22877 print_spaces (indent, f);
22878 fprintf_unfiltered (f, " %s (%s) ",
22879 dwarf_attr_name (die->attrs[i].name),
22880 dwarf_form_name (die->attrs[i].form));
22881
22882 switch (die->attrs[i].form)
22883 {
22884 case DW_FORM_addr:
22885 case DW_FORM_addrx:
22886 case DW_FORM_GNU_addr_index:
22887 fprintf_unfiltered (f, "address: ");
22888 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22889 break;
22890 case DW_FORM_block2:
22891 case DW_FORM_block4:
22892 case DW_FORM_block:
22893 case DW_FORM_block1:
22894 fprintf_unfiltered (f, "block: size %s",
22895 pulongest (DW_BLOCK (&die->attrs[i])->size));
22896 break;
22897 case DW_FORM_exprloc:
22898 fprintf_unfiltered (f, "expression: size %s",
22899 pulongest (DW_BLOCK (&die->attrs[i])->size));
22900 break;
22901 case DW_FORM_data16:
22902 fprintf_unfiltered (f, "constant of 16 bytes");
22903 break;
22904 case DW_FORM_ref_addr:
22905 fprintf_unfiltered (f, "ref address: ");
22906 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22907 break;
22908 case DW_FORM_GNU_ref_alt:
22909 fprintf_unfiltered (f, "alt ref address: ");
22910 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22911 break;
22912 case DW_FORM_ref1:
22913 case DW_FORM_ref2:
22914 case DW_FORM_ref4:
22915 case DW_FORM_ref8:
22916 case DW_FORM_ref_udata:
22917 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22918 (long) (DW_UNSND (&die->attrs[i])));
22919 break;
22920 case DW_FORM_data1:
22921 case DW_FORM_data2:
22922 case DW_FORM_data4:
22923 case DW_FORM_data8:
22924 case DW_FORM_udata:
22925 case DW_FORM_sdata:
22926 fprintf_unfiltered (f, "constant: %s",
22927 pulongest (DW_UNSND (&die->attrs[i])));
22928 break;
22929 case DW_FORM_sec_offset:
22930 fprintf_unfiltered (f, "section offset: %s",
22931 pulongest (DW_UNSND (&die->attrs[i])));
22932 break;
22933 case DW_FORM_ref_sig8:
22934 fprintf_unfiltered (f, "signature: %s",
22935 hex_string (DW_SIGNATURE (&die->attrs[i])));
22936 break;
22937 case DW_FORM_string:
22938 case DW_FORM_strp:
22939 case DW_FORM_line_strp:
22940 case DW_FORM_strx:
22941 case DW_FORM_GNU_str_index:
22942 case DW_FORM_GNU_strp_alt:
22943 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22944 DW_STRING (&die->attrs[i])
22945 ? DW_STRING (&die->attrs[i]) : "",
22946 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22947 break;
22948 case DW_FORM_flag:
22949 if (DW_UNSND (&die->attrs[i]))
22950 fprintf_unfiltered (f, "flag: TRUE");
22951 else
22952 fprintf_unfiltered (f, "flag: FALSE");
22953 break;
22954 case DW_FORM_flag_present:
22955 fprintf_unfiltered (f, "flag: TRUE");
22956 break;
22957 case DW_FORM_indirect:
22958 /* The reader will have reduced the indirect form to
22959 the "base form" so this form should not occur. */
22960 fprintf_unfiltered (f,
22961 "unexpected attribute form: DW_FORM_indirect");
22962 break;
22963 case DW_FORM_implicit_const:
22964 fprintf_unfiltered (f, "constant: %s",
22965 plongest (DW_SND (&die->attrs[i])));
22966 break;
22967 default:
22968 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22969 die->attrs[i].form);
22970 break;
22971 }
22972 fprintf_unfiltered (f, "\n");
22973 }
22974 }
22975
22976 static void
22977 dump_die_for_error (struct die_info *die)
22978 {
22979 dump_die_shallow (gdb_stderr, 0, die);
22980 }
22981
22982 static void
22983 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22984 {
22985 int indent = level * 4;
22986
22987 gdb_assert (die != NULL);
22988
22989 if (level >= max_level)
22990 return;
22991
22992 dump_die_shallow (f, indent, die);
22993
22994 if (die->child != NULL)
22995 {
22996 print_spaces (indent, f);
22997 fprintf_unfiltered (f, " Children:");
22998 if (level + 1 < max_level)
22999 {
23000 fprintf_unfiltered (f, "\n");
23001 dump_die_1 (f, level + 1, max_level, die->child);
23002 }
23003 else
23004 {
23005 fprintf_unfiltered (f,
23006 " [not printed, max nesting level reached]\n");
23007 }
23008 }
23009
23010 if (die->sibling != NULL && level > 0)
23011 {
23012 dump_die_1 (f, level, max_level, die->sibling);
23013 }
23014 }
23015
23016 /* This is called from the pdie macro in gdbinit.in.
23017 It's not static so gcc will keep a copy callable from gdb. */
23018
23019 void
23020 dump_die (struct die_info *die, int max_level)
23021 {
23022 dump_die_1 (gdb_stdlog, 0, max_level, die);
23023 }
23024
23025 static void
23026 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23027 {
23028 void **slot;
23029
23030 slot = htab_find_slot_with_hash (cu->die_hash, die,
23031 to_underlying (die->sect_off),
23032 INSERT);
23033
23034 *slot = die;
23035 }
23036
23037 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23038 required kind. */
23039
23040 static sect_offset
23041 dwarf2_get_ref_die_offset (const struct attribute *attr)
23042 {
23043 if (attr_form_is_ref (attr))
23044 return (sect_offset) DW_UNSND (attr);
23045
23046 complaint (_("unsupported die ref attribute form: '%s'"),
23047 dwarf_form_name (attr->form));
23048 return {};
23049 }
23050
23051 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23052 * the value held by the attribute is not constant. */
23053
23054 static LONGEST
23055 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23056 {
23057 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23058 return DW_SND (attr);
23059 else if (attr->form == DW_FORM_udata
23060 || attr->form == DW_FORM_data1
23061 || attr->form == DW_FORM_data2
23062 || attr->form == DW_FORM_data4
23063 || attr->form == DW_FORM_data8)
23064 return DW_UNSND (attr);
23065 else
23066 {
23067 /* For DW_FORM_data16 see attr_form_is_constant. */
23068 complaint (_("Attribute value is not a constant (%s)"),
23069 dwarf_form_name (attr->form));
23070 return default_value;
23071 }
23072 }
23073
23074 /* Follow reference or signature attribute ATTR of SRC_DIE.
23075 On entry *REF_CU is the CU of SRC_DIE.
23076 On exit *REF_CU is the CU of the result. */
23077
23078 static struct die_info *
23079 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23080 struct dwarf2_cu **ref_cu)
23081 {
23082 struct die_info *die;
23083
23084 if (attr_form_is_ref (attr))
23085 die = follow_die_ref (src_die, attr, ref_cu);
23086 else if (attr->form == DW_FORM_ref_sig8)
23087 die = follow_die_sig (src_die, attr, ref_cu);
23088 else
23089 {
23090 dump_die_for_error (src_die);
23091 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23092 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23093 }
23094
23095 return die;
23096 }
23097
23098 /* Follow reference OFFSET.
23099 On entry *REF_CU is the CU of the source die referencing OFFSET.
23100 On exit *REF_CU is the CU of the result.
23101 Returns NULL if OFFSET is invalid. */
23102
23103 static struct die_info *
23104 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23105 struct dwarf2_cu **ref_cu)
23106 {
23107 struct die_info temp_die;
23108 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23109 struct dwarf2_per_objfile *dwarf2_per_objfile
23110 = cu->per_cu->dwarf2_per_objfile;
23111
23112 gdb_assert (cu->per_cu != NULL);
23113
23114 target_cu = cu;
23115
23116 if (cu->per_cu->is_debug_types)
23117 {
23118 /* .debug_types CUs cannot reference anything outside their CU.
23119 If they need to, they have to reference a signatured type via
23120 DW_FORM_ref_sig8. */
23121 if (!offset_in_cu_p (&cu->header, sect_off))
23122 return NULL;
23123 }
23124 else if (offset_in_dwz != cu->per_cu->is_dwz
23125 || !offset_in_cu_p (&cu->header, sect_off))
23126 {
23127 struct dwarf2_per_cu_data *per_cu;
23128
23129 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23130 dwarf2_per_objfile);
23131
23132 /* If necessary, add it to the queue and load its DIEs. */
23133 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23134 load_full_comp_unit (per_cu, false, cu->language);
23135
23136 target_cu = per_cu->cu;
23137 }
23138 else if (cu->dies == NULL)
23139 {
23140 /* We're loading full DIEs during partial symbol reading. */
23141 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23142 load_full_comp_unit (cu->per_cu, false, language_minimal);
23143 }
23144
23145 *ref_cu = target_cu;
23146 temp_die.sect_off = sect_off;
23147
23148 if (target_cu != cu)
23149 target_cu->ancestor = cu;
23150
23151 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23152 &temp_die,
23153 to_underlying (sect_off));
23154 }
23155
23156 /* Follow reference attribute ATTR of SRC_DIE.
23157 On entry *REF_CU is the CU of SRC_DIE.
23158 On exit *REF_CU is the CU of the result. */
23159
23160 static struct die_info *
23161 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23162 struct dwarf2_cu **ref_cu)
23163 {
23164 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23165 struct dwarf2_cu *cu = *ref_cu;
23166 struct die_info *die;
23167
23168 die = follow_die_offset (sect_off,
23169 (attr->form == DW_FORM_GNU_ref_alt
23170 || cu->per_cu->is_dwz),
23171 ref_cu);
23172 if (!die)
23173 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23174 "at %s [in module %s]"),
23175 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23176 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23177
23178 return die;
23179 }
23180
23181 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23182 Returned value is intended for DW_OP_call*. Returned
23183 dwarf2_locexpr_baton->data has lifetime of
23184 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23185
23186 struct dwarf2_locexpr_baton
23187 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23188 struct dwarf2_per_cu_data *per_cu,
23189 CORE_ADDR (*get_frame_pc) (void *baton),
23190 void *baton, bool resolve_abstract_p)
23191 {
23192 struct dwarf2_cu *cu;
23193 struct die_info *die;
23194 struct attribute *attr;
23195 struct dwarf2_locexpr_baton retval;
23196 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23197 struct objfile *objfile = dwarf2_per_objfile->objfile;
23198
23199 if (per_cu->cu == NULL)
23200 load_cu (per_cu, false);
23201 cu = per_cu->cu;
23202 if (cu == NULL)
23203 {
23204 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23205 Instead just throw an error, not much else we can do. */
23206 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23207 sect_offset_str (sect_off), objfile_name (objfile));
23208 }
23209
23210 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23211 if (!die)
23212 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23213 sect_offset_str (sect_off), objfile_name (objfile));
23214
23215 attr = dwarf2_attr (die, DW_AT_location, cu);
23216 if (!attr && resolve_abstract_p
23217 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23218 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23219 {
23220 CORE_ADDR pc = (*get_frame_pc) (baton);
23221
23222 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23223 {
23224 if (!cand->parent
23225 || cand->parent->tag != DW_TAG_subprogram)
23226 continue;
23227
23228 CORE_ADDR pc_low, pc_high;
23229 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23230 if (pc_low == ((CORE_ADDR) -1)
23231 || !(pc_low <= pc && pc < pc_high))
23232 continue;
23233
23234 die = cand;
23235 attr = dwarf2_attr (die, DW_AT_location, cu);
23236 break;
23237 }
23238 }
23239
23240 if (!attr)
23241 {
23242 /* DWARF: "If there is no such attribute, then there is no effect.".
23243 DATA is ignored if SIZE is 0. */
23244
23245 retval.data = NULL;
23246 retval.size = 0;
23247 }
23248 else if (attr_form_is_section_offset (attr))
23249 {
23250 struct dwarf2_loclist_baton loclist_baton;
23251 CORE_ADDR pc = (*get_frame_pc) (baton);
23252 size_t size;
23253
23254 fill_in_loclist_baton (cu, &loclist_baton, attr);
23255
23256 retval.data = dwarf2_find_location_expression (&loclist_baton,
23257 &size, pc);
23258 retval.size = size;
23259 }
23260 else
23261 {
23262 if (!attr_form_is_block (attr))
23263 error (_("Dwarf Error: DIE at %s referenced in module %s "
23264 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23265 sect_offset_str (sect_off), objfile_name (objfile));
23266
23267 retval.data = DW_BLOCK (attr)->data;
23268 retval.size = DW_BLOCK (attr)->size;
23269 }
23270 retval.per_cu = cu->per_cu;
23271
23272 age_cached_comp_units (dwarf2_per_objfile);
23273
23274 return retval;
23275 }
23276
23277 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23278 offset. */
23279
23280 struct dwarf2_locexpr_baton
23281 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23282 struct dwarf2_per_cu_data *per_cu,
23283 CORE_ADDR (*get_frame_pc) (void *baton),
23284 void *baton)
23285 {
23286 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23287
23288 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23289 }
23290
23291 /* Write a constant of a given type as target-ordered bytes into
23292 OBSTACK. */
23293
23294 static const gdb_byte *
23295 write_constant_as_bytes (struct obstack *obstack,
23296 enum bfd_endian byte_order,
23297 struct type *type,
23298 ULONGEST value,
23299 LONGEST *len)
23300 {
23301 gdb_byte *result;
23302
23303 *len = TYPE_LENGTH (type);
23304 result = (gdb_byte *) obstack_alloc (obstack, *len);
23305 store_unsigned_integer (result, *len, byte_order, value);
23306
23307 return result;
23308 }
23309
23310 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23311 pointer to the constant bytes and set LEN to the length of the
23312 data. If memory is needed, allocate it on OBSTACK. If the DIE
23313 does not have a DW_AT_const_value, return NULL. */
23314
23315 const gdb_byte *
23316 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23317 struct dwarf2_per_cu_data *per_cu,
23318 struct obstack *obstack,
23319 LONGEST *len)
23320 {
23321 struct dwarf2_cu *cu;
23322 struct die_info *die;
23323 struct attribute *attr;
23324 const gdb_byte *result = NULL;
23325 struct type *type;
23326 LONGEST value;
23327 enum bfd_endian byte_order;
23328 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23329
23330 if (per_cu->cu == NULL)
23331 load_cu (per_cu, false);
23332 cu = per_cu->cu;
23333 if (cu == NULL)
23334 {
23335 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23336 Instead just throw an error, not much else we can do. */
23337 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23338 sect_offset_str (sect_off), objfile_name (objfile));
23339 }
23340
23341 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23342 if (!die)
23343 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23344 sect_offset_str (sect_off), objfile_name (objfile));
23345
23346 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23347 if (attr == NULL)
23348 return NULL;
23349
23350 byte_order = (bfd_big_endian (objfile->obfd)
23351 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23352
23353 switch (attr->form)
23354 {
23355 case DW_FORM_addr:
23356 case DW_FORM_addrx:
23357 case DW_FORM_GNU_addr_index:
23358 {
23359 gdb_byte *tem;
23360
23361 *len = cu->header.addr_size;
23362 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23363 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23364 result = tem;
23365 }
23366 break;
23367 case DW_FORM_string:
23368 case DW_FORM_strp:
23369 case DW_FORM_strx:
23370 case DW_FORM_GNU_str_index:
23371 case DW_FORM_GNU_strp_alt:
23372 /* DW_STRING is already allocated on the objfile obstack, point
23373 directly to it. */
23374 result = (const gdb_byte *) DW_STRING (attr);
23375 *len = strlen (DW_STRING (attr));
23376 break;
23377 case DW_FORM_block1:
23378 case DW_FORM_block2:
23379 case DW_FORM_block4:
23380 case DW_FORM_block:
23381 case DW_FORM_exprloc:
23382 case DW_FORM_data16:
23383 result = DW_BLOCK (attr)->data;
23384 *len = DW_BLOCK (attr)->size;
23385 break;
23386
23387 /* The DW_AT_const_value attributes are supposed to carry the
23388 symbol's value "represented as it would be on the target
23389 architecture." By the time we get here, it's already been
23390 converted to host endianness, so we just need to sign- or
23391 zero-extend it as appropriate. */
23392 case DW_FORM_data1:
23393 type = die_type (die, cu);
23394 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23395 if (result == NULL)
23396 result = write_constant_as_bytes (obstack, byte_order,
23397 type, value, len);
23398 break;
23399 case DW_FORM_data2:
23400 type = die_type (die, cu);
23401 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23402 if (result == NULL)
23403 result = write_constant_as_bytes (obstack, byte_order,
23404 type, value, len);
23405 break;
23406 case DW_FORM_data4:
23407 type = die_type (die, cu);
23408 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23409 if (result == NULL)
23410 result = write_constant_as_bytes (obstack, byte_order,
23411 type, value, len);
23412 break;
23413 case DW_FORM_data8:
23414 type = die_type (die, cu);
23415 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23416 if (result == NULL)
23417 result = write_constant_as_bytes (obstack, byte_order,
23418 type, value, len);
23419 break;
23420
23421 case DW_FORM_sdata:
23422 case DW_FORM_implicit_const:
23423 type = die_type (die, cu);
23424 result = write_constant_as_bytes (obstack, byte_order,
23425 type, DW_SND (attr), len);
23426 break;
23427
23428 case DW_FORM_udata:
23429 type = die_type (die, cu);
23430 result = write_constant_as_bytes (obstack, byte_order,
23431 type, DW_UNSND (attr), len);
23432 break;
23433
23434 default:
23435 complaint (_("unsupported const value attribute form: '%s'"),
23436 dwarf_form_name (attr->form));
23437 break;
23438 }
23439
23440 return result;
23441 }
23442
23443 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23444 valid type for this die is found. */
23445
23446 struct type *
23447 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23448 struct dwarf2_per_cu_data *per_cu)
23449 {
23450 struct dwarf2_cu *cu;
23451 struct die_info *die;
23452
23453 if (per_cu->cu == NULL)
23454 load_cu (per_cu, false);
23455 cu = per_cu->cu;
23456 if (!cu)
23457 return NULL;
23458
23459 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23460 if (!die)
23461 return NULL;
23462
23463 return die_type (die, cu);
23464 }
23465
23466 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23467 PER_CU. */
23468
23469 struct type *
23470 dwarf2_get_die_type (cu_offset die_offset,
23471 struct dwarf2_per_cu_data *per_cu)
23472 {
23473 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23474 return get_die_type_at_offset (die_offset_sect, per_cu);
23475 }
23476
23477 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23478 On entry *REF_CU is the CU of SRC_DIE.
23479 On exit *REF_CU is the CU of the result.
23480 Returns NULL if the referenced DIE isn't found. */
23481
23482 static struct die_info *
23483 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23484 struct dwarf2_cu **ref_cu)
23485 {
23486 struct die_info temp_die;
23487 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23488 struct die_info *die;
23489
23490 /* While it might be nice to assert sig_type->type == NULL here,
23491 we can get here for DW_AT_imported_declaration where we need
23492 the DIE not the type. */
23493
23494 /* If necessary, add it to the queue and load its DIEs. */
23495
23496 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23497 read_signatured_type (sig_type);
23498
23499 sig_cu = sig_type->per_cu.cu;
23500 gdb_assert (sig_cu != NULL);
23501 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23502 temp_die.sect_off = sig_type->type_offset_in_section;
23503 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23504 to_underlying (temp_die.sect_off));
23505 if (die)
23506 {
23507 struct dwarf2_per_objfile *dwarf2_per_objfile
23508 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23509
23510 /* For .gdb_index version 7 keep track of included TUs.
23511 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23512 if (dwarf2_per_objfile->index_table != NULL
23513 && dwarf2_per_objfile->index_table->version <= 7)
23514 {
23515 VEC_safe_push (dwarf2_per_cu_ptr,
23516 (*ref_cu)->per_cu->imported_symtabs,
23517 sig_cu->per_cu);
23518 }
23519
23520 *ref_cu = sig_cu;
23521 if (sig_cu != cu)
23522 sig_cu->ancestor = cu;
23523
23524 return die;
23525 }
23526
23527 return NULL;
23528 }
23529
23530 /* Follow signatured type referenced by ATTR in SRC_DIE.
23531 On entry *REF_CU is the CU of SRC_DIE.
23532 On exit *REF_CU is the CU of the result.
23533 The result is the DIE of the type.
23534 If the referenced type cannot be found an error is thrown. */
23535
23536 static struct die_info *
23537 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23538 struct dwarf2_cu **ref_cu)
23539 {
23540 ULONGEST signature = DW_SIGNATURE (attr);
23541 struct signatured_type *sig_type;
23542 struct die_info *die;
23543
23544 gdb_assert (attr->form == DW_FORM_ref_sig8);
23545
23546 sig_type = lookup_signatured_type (*ref_cu, signature);
23547 /* sig_type will be NULL if the signatured type is missing from
23548 the debug info. */
23549 if (sig_type == NULL)
23550 {
23551 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23552 " from DIE at %s [in module %s]"),
23553 hex_string (signature), sect_offset_str (src_die->sect_off),
23554 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23555 }
23556
23557 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23558 if (die == NULL)
23559 {
23560 dump_die_for_error (src_die);
23561 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23562 " from DIE at %s [in module %s]"),
23563 hex_string (signature), sect_offset_str (src_die->sect_off),
23564 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23565 }
23566
23567 return die;
23568 }
23569
23570 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23571 reading in and processing the type unit if necessary. */
23572
23573 static struct type *
23574 get_signatured_type (struct die_info *die, ULONGEST signature,
23575 struct dwarf2_cu *cu)
23576 {
23577 struct dwarf2_per_objfile *dwarf2_per_objfile
23578 = cu->per_cu->dwarf2_per_objfile;
23579 struct signatured_type *sig_type;
23580 struct dwarf2_cu *type_cu;
23581 struct die_info *type_die;
23582 struct type *type;
23583
23584 sig_type = lookup_signatured_type (cu, signature);
23585 /* sig_type will be NULL if the signatured type is missing from
23586 the debug info. */
23587 if (sig_type == NULL)
23588 {
23589 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23590 " from DIE at %s [in module %s]"),
23591 hex_string (signature), sect_offset_str (die->sect_off),
23592 objfile_name (dwarf2_per_objfile->objfile));
23593 return build_error_marker_type (cu, die);
23594 }
23595
23596 /* If we already know the type we're done. */
23597 if (sig_type->type != NULL)
23598 return sig_type->type;
23599
23600 type_cu = cu;
23601 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23602 if (type_die != NULL)
23603 {
23604 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23605 is created. This is important, for example, because for c++ classes
23606 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23607 type = read_type_die (type_die, type_cu);
23608 if (type == NULL)
23609 {
23610 complaint (_("Dwarf Error: Cannot build signatured type %s"
23611 " referenced from DIE at %s [in module %s]"),
23612 hex_string (signature), sect_offset_str (die->sect_off),
23613 objfile_name (dwarf2_per_objfile->objfile));
23614 type = build_error_marker_type (cu, die);
23615 }
23616 }
23617 else
23618 {
23619 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23620 " from DIE at %s [in module %s]"),
23621 hex_string (signature), sect_offset_str (die->sect_off),
23622 objfile_name (dwarf2_per_objfile->objfile));
23623 type = build_error_marker_type (cu, die);
23624 }
23625 sig_type->type = type;
23626
23627 return type;
23628 }
23629
23630 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23631 reading in and processing the type unit if necessary. */
23632
23633 static struct type *
23634 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23635 struct dwarf2_cu *cu) /* ARI: editCase function */
23636 {
23637 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23638 if (attr_form_is_ref (attr))
23639 {
23640 struct dwarf2_cu *type_cu = cu;
23641 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23642
23643 return read_type_die (type_die, type_cu);
23644 }
23645 else if (attr->form == DW_FORM_ref_sig8)
23646 {
23647 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23648 }
23649 else
23650 {
23651 struct dwarf2_per_objfile *dwarf2_per_objfile
23652 = cu->per_cu->dwarf2_per_objfile;
23653
23654 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23655 " at %s [in module %s]"),
23656 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23657 objfile_name (dwarf2_per_objfile->objfile));
23658 return build_error_marker_type (cu, die);
23659 }
23660 }
23661
23662 /* Load the DIEs associated with type unit PER_CU into memory. */
23663
23664 static void
23665 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23666 {
23667 struct signatured_type *sig_type;
23668
23669 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23670 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23671
23672 /* We have the per_cu, but we need the signatured_type.
23673 Fortunately this is an easy translation. */
23674 gdb_assert (per_cu->is_debug_types);
23675 sig_type = (struct signatured_type *) per_cu;
23676
23677 gdb_assert (per_cu->cu == NULL);
23678
23679 read_signatured_type (sig_type);
23680
23681 gdb_assert (per_cu->cu != NULL);
23682 }
23683
23684 /* die_reader_func for read_signatured_type.
23685 This is identical to load_full_comp_unit_reader,
23686 but is kept separate for now. */
23687
23688 static void
23689 read_signatured_type_reader (const struct die_reader_specs *reader,
23690 const gdb_byte *info_ptr,
23691 struct die_info *comp_unit_die,
23692 int has_children,
23693 void *data)
23694 {
23695 struct dwarf2_cu *cu = reader->cu;
23696
23697 gdb_assert (cu->die_hash == NULL);
23698 cu->die_hash =
23699 htab_create_alloc_ex (cu->header.length / 12,
23700 die_hash,
23701 die_eq,
23702 NULL,
23703 &cu->comp_unit_obstack,
23704 hashtab_obstack_allocate,
23705 dummy_obstack_deallocate);
23706
23707 if (has_children)
23708 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23709 &info_ptr, comp_unit_die);
23710 cu->dies = comp_unit_die;
23711 /* comp_unit_die is not stored in die_hash, no need. */
23712
23713 /* We try not to read any attributes in this function, because not
23714 all CUs needed for references have been loaded yet, and symbol
23715 table processing isn't initialized. But we have to set the CU language,
23716 or we won't be able to build types correctly.
23717 Similarly, if we do not read the producer, we can not apply
23718 producer-specific interpretation. */
23719 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23720 }
23721
23722 /* Read in a signatured type and build its CU and DIEs.
23723 If the type is a stub for the real type in a DWO file,
23724 read in the real type from the DWO file as well. */
23725
23726 static void
23727 read_signatured_type (struct signatured_type *sig_type)
23728 {
23729 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23730
23731 gdb_assert (per_cu->is_debug_types);
23732 gdb_assert (per_cu->cu == NULL);
23733
23734 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23735 read_signatured_type_reader, NULL);
23736 sig_type->per_cu.tu_read = 1;
23737 }
23738
23739 /* Decode simple location descriptions.
23740 Given a pointer to a dwarf block that defines a location, compute
23741 the location and return the value.
23742
23743 NOTE drow/2003-11-18: This function is called in two situations
23744 now: for the address of static or global variables (partial symbols
23745 only) and for offsets into structures which are expected to be
23746 (more or less) constant. The partial symbol case should go away,
23747 and only the constant case should remain. That will let this
23748 function complain more accurately. A few special modes are allowed
23749 without complaint for global variables (for instance, global
23750 register values and thread-local values).
23751
23752 A location description containing no operations indicates that the
23753 object is optimized out. The return value is 0 for that case.
23754 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23755 callers will only want a very basic result and this can become a
23756 complaint.
23757
23758 Note that stack[0] is unused except as a default error return. */
23759
23760 static CORE_ADDR
23761 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23762 {
23763 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23764 size_t i;
23765 size_t size = blk->size;
23766 const gdb_byte *data = blk->data;
23767 CORE_ADDR stack[64];
23768 int stacki;
23769 unsigned int bytes_read, unsnd;
23770 gdb_byte op;
23771
23772 i = 0;
23773 stacki = 0;
23774 stack[stacki] = 0;
23775 stack[++stacki] = 0;
23776
23777 while (i < size)
23778 {
23779 op = data[i++];
23780 switch (op)
23781 {
23782 case DW_OP_lit0:
23783 case DW_OP_lit1:
23784 case DW_OP_lit2:
23785 case DW_OP_lit3:
23786 case DW_OP_lit4:
23787 case DW_OP_lit5:
23788 case DW_OP_lit6:
23789 case DW_OP_lit7:
23790 case DW_OP_lit8:
23791 case DW_OP_lit9:
23792 case DW_OP_lit10:
23793 case DW_OP_lit11:
23794 case DW_OP_lit12:
23795 case DW_OP_lit13:
23796 case DW_OP_lit14:
23797 case DW_OP_lit15:
23798 case DW_OP_lit16:
23799 case DW_OP_lit17:
23800 case DW_OP_lit18:
23801 case DW_OP_lit19:
23802 case DW_OP_lit20:
23803 case DW_OP_lit21:
23804 case DW_OP_lit22:
23805 case DW_OP_lit23:
23806 case DW_OP_lit24:
23807 case DW_OP_lit25:
23808 case DW_OP_lit26:
23809 case DW_OP_lit27:
23810 case DW_OP_lit28:
23811 case DW_OP_lit29:
23812 case DW_OP_lit30:
23813 case DW_OP_lit31:
23814 stack[++stacki] = op - DW_OP_lit0;
23815 break;
23816
23817 case DW_OP_reg0:
23818 case DW_OP_reg1:
23819 case DW_OP_reg2:
23820 case DW_OP_reg3:
23821 case DW_OP_reg4:
23822 case DW_OP_reg5:
23823 case DW_OP_reg6:
23824 case DW_OP_reg7:
23825 case DW_OP_reg8:
23826 case DW_OP_reg9:
23827 case DW_OP_reg10:
23828 case DW_OP_reg11:
23829 case DW_OP_reg12:
23830 case DW_OP_reg13:
23831 case DW_OP_reg14:
23832 case DW_OP_reg15:
23833 case DW_OP_reg16:
23834 case DW_OP_reg17:
23835 case DW_OP_reg18:
23836 case DW_OP_reg19:
23837 case DW_OP_reg20:
23838 case DW_OP_reg21:
23839 case DW_OP_reg22:
23840 case DW_OP_reg23:
23841 case DW_OP_reg24:
23842 case DW_OP_reg25:
23843 case DW_OP_reg26:
23844 case DW_OP_reg27:
23845 case DW_OP_reg28:
23846 case DW_OP_reg29:
23847 case DW_OP_reg30:
23848 case DW_OP_reg31:
23849 stack[++stacki] = op - DW_OP_reg0;
23850 if (i < size)
23851 dwarf2_complex_location_expr_complaint ();
23852 break;
23853
23854 case DW_OP_regx:
23855 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23856 i += bytes_read;
23857 stack[++stacki] = unsnd;
23858 if (i < size)
23859 dwarf2_complex_location_expr_complaint ();
23860 break;
23861
23862 case DW_OP_addr:
23863 stack[++stacki] = read_address (objfile->obfd, &data[i],
23864 cu, &bytes_read);
23865 i += bytes_read;
23866 break;
23867
23868 case DW_OP_const1u:
23869 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23870 i += 1;
23871 break;
23872
23873 case DW_OP_const1s:
23874 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23875 i += 1;
23876 break;
23877
23878 case DW_OP_const2u:
23879 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23880 i += 2;
23881 break;
23882
23883 case DW_OP_const2s:
23884 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23885 i += 2;
23886 break;
23887
23888 case DW_OP_const4u:
23889 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23890 i += 4;
23891 break;
23892
23893 case DW_OP_const4s:
23894 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23895 i += 4;
23896 break;
23897
23898 case DW_OP_const8u:
23899 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23900 i += 8;
23901 break;
23902
23903 case DW_OP_constu:
23904 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23905 &bytes_read);
23906 i += bytes_read;
23907 break;
23908
23909 case DW_OP_consts:
23910 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23911 i += bytes_read;
23912 break;
23913
23914 case DW_OP_dup:
23915 stack[stacki + 1] = stack[stacki];
23916 stacki++;
23917 break;
23918
23919 case DW_OP_plus:
23920 stack[stacki - 1] += stack[stacki];
23921 stacki--;
23922 break;
23923
23924 case DW_OP_plus_uconst:
23925 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23926 &bytes_read);
23927 i += bytes_read;
23928 break;
23929
23930 case DW_OP_minus:
23931 stack[stacki - 1] -= stack[stacki];
23932 stacki--;
23933 break;
23934
23935 case DW_OP_deref:
23936 /* If we're not the last op, then we definitely can't encode
23937 this using GDB's address_class enum. This is valid for partial
23938 global symbols, although the variable's address will be bogus
23939 in the psymtab. */
23940 if (i < size)
23941 dwarf2_complex_location_expr_complaint ();
23942 break;
23943
23944 case DW_OP_GNU_push_tls_address:
23945 case DW_OP_form_tls_address:
23946 /* The top of the stack has the offset from the beginning
23947 of the thread control block at which the variable is located. */
23948 /* Nothing should follow this operator, so the top of stack would
23949 be returned. */
23950 /* This is valid for partial global symbols, but the variable's
23951 address will be bogus in the psymtab. Make it always at least
23952 non-zero to not look as a variable garbage collected by linker
23953 which have DW_OP_addr 0. */
23954 if (i < size)
23955 dwarf2_complex_location_expr_complaint ();
23956 stack[stacki]++;
23957 break;
23958
23959 case DW_OP_GNU_uninit:
23960 break;
23961
23962 case DW_OP_addrx:
23963 case DW_OP_GNU_addr_index:
23964 case DW_OP_GNU_const_index:
23965 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23966 &bytes_read);
23967 i += bytes_read;
23968 break;
23969
23970 default:
23971 {
23972 const char *name = get_DW_OP_name (op);
23973
23974 if (name)
23975 complaint (_("unsupported stack op: '%s'"),
23976 name);
23977 else
23978 complaint (_("unsupported stack op: '%02x'"),
23979 op);
23980 }
23981
23982 return (stack[stacki]);
23983 }
23984
23985 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23986 outside of the allocated space. Also enforce minimum>0. */
23987 if (stacki >= ARRAY_SIZE (stack) - 1)
23988 {
23989 complaint (_("location description stack overflow"));
23990 return 0;
23991 }
23992
23993 if (stacki <= 0)
23994 {
23995 complaint (_("location description stack underflow"));
23996 return 0;
23997 }
23998 }
23999 return (stack[stacki]);
24000 }
24001
24002 /* memory allocation interface */
24003
24004 static struct dwarf_block *
24005 dwarf_alloc_block (struct dwarf2_cu *cu)
24006 {
24007 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24008 }
24009
24010 static struct die_info *
24011 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24012 {
24013 struct die_info *die;
24014 size_t size = sizeof (struct die_info);
24015
24016 if (num_attrs > 1)
24017 size += (num_attrs - 1) * sizeof (struct attribute);
24018
24019 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24020 memset (die, 0, sizeof (struct die_info));
24021 return (die);
24022 }
24023
24024 \f
24025 /* Macro support. */
24026
24027 /* Return file name relative to the compilation directory of file number I in
24028 *LH's file name table. The result is allocated using xmalloc; the caller is
24029 responsible for freeing it. */
24030
24031 static char *
24032 file_file_name (int file, struct line_header *lh)
24033 {
24034 /* Is the file number a valid index into the line header's file name
24035 table? Remember that file numbers start with one, not zero. */
24036 if (1 <= file && file <= lh->file_names.size ())
24037 {
24038 const file_entry &fe = lh->file_names[file - 1];
24039
24040 if (!IS_ABSOLUTE_PATH (fe.name))
24041 {
24042 const char *dir = fe.include_dir (lh);
24043 if (dir != NULL)
24044 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24045 }
24046 return xstrdup (fe.name);
24047 }
24048 else
24049 {
24050 /* The compiler produced a bogus file number. We can at least
24051 record the macro definitions made in the file, even if we
24052 won't be able to find the file by name. */
24053 char fake_name[80];
24054
24055 xsnprintf (fake_name, sizeof (fake_name),
24056 "<bad macro file number %d>", file);
24057
24058 complaint (_("bad file number in macro information (%d)"),
24059 file);
24060
24061 return xstrdup (fake_name);
24062 }
24063 }
24064
24065 /* Return the full name of file number I in *LH's file name table.
24066 Use COMP_DIR as the name of the current directory of the
24067 compilation. The result is allocated using xmalloc; the caller is
24068 responsible for freeing it. */
24069 static char *
24070 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24071 {
24072 /* Is the file number a valid index into the line header's file name
24073 table? Remember that file numbers start with one, not zero. */
24074 if (1 <= file && file <= lh->file_names.size ())
24075 {
24076 char *relative = file_file_name (file, lh);
24077
24078 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24079 return relative;
24080 return reconcat (relative, comp_dir, SLASH_STRING,
24081 relative, (char *) NULL);
24082 }
24083 else
24084 return file_file_name (file, lh);
24085 }
24086
24087
24088 static struct macro_source_file *
24089 macro_start_file (struct dwarf2_cu *cu,
24090 int file, int line,
24091 struct macro_source_file *current_file,
24092 struct line_header *lh)
24093 {
24094 /* File name relative to the compilation directory of this source file. */
24095 char *file_name = file_file_name (file, lh);
24096
24097 if (! current_file)
24098 {
24099 /* Note: We don't create a macro table for this compilation unit
24100 at all until we actually get a filename. */
24101 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24102
24103 /* If we have no current file, then this must be the start_file
24104 directive for the compilation unit's main source file. */
24105 current_file = macro_set_main (macro_table, file_name);
24106 macro_define_special (macro_table);
24107 }
24108 else
24109 current_file = macro_include (current_file, line, file_name);
24110
24111 xfree (file_name);
24112
24113 return current_file;
24114 }
24115
24116 static const char *
24117 consume_improper_spaces (const char *p, const char *body)
24118 {
24119 if (*p == ' ')
24120 {
24121 complaint (_("macro definition contains spaces "
24122 "in formal argument list:\n`%s'"),
24123 body);
24124
24125 while (*p == ' ')
24126 p++;
24127 }
24128
24129 return p;
24130 }
24131
24132
24133 static void
24134 parse_macro_definition (struct macro_source_file *file, int line,
24135 const char *body)
24136 {
24137 const char *p;
24138
24139 /* The body string takes one of two forms. For object-like macro
24140 definitions, it should be:
24141
24142 <macro name> " " <definition>
24143
24144 For function-like macro definitions, it should be:
24145
24146 <macro name> "() " <definition>
24147 or
24148 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24149
24150 Spaces may appear only where explicitly indicated, and in the
24151 <definition>.
24152
24153 The Dwarf 2 spec says that an object-like macro's name is always
24154 followed by a space, but versions of GCC around March 2002 omit
24155 the space when the macro's definition is the empty string.
24156
24157 The Dwarf 2 spec says that there should be no spaces between the
24158 formal arguments in a function-like macro's formal argument list,
24159 but versions of GCC around March 2002 include spaces after the
24160 commas. */
24161
24162
24163 /* Find the extent of the macro name. The macro name is terminated
24164 by either a space or null character (for an object-like macro) or
24165 an opening paren (for a function-like macro). */
24166 for (p = body; *p; p++)
24167 if (*p == ' ' || *p == '(')
24168 break;
24169
24170 if (*p == ' ' || *p == '\0')
24171 {
24172 /* It's an object-like macro. */
24173 int name_len = p - body;
24174 char *name = savestring (body, name_len);
24175 const char *replacement;
24176
24177 if (*p == ' ')
24178 replacement = body + name_len + 1;
24179 else
24180 {
24181 dwarf2_macro_malformed_definition_complaint (body);
24182 replacement = body + name_len;
24183 }
24184
24185 macro_define_object (file, line, name, replacement);
24186
24187 xfree (name);
24188 }
24189 else if (*p == '(')
24190 {
24191 /* It's a function-like macro. */
24192 char *name = savestring (body, p - body);
24193 int argc = 0;
24194 int argv_size = 1;
24195 char **argv = XNEWVEC (char *, argv_size);
24196
24197 p++;
24198
24199 p = consume_improper_spaces (p, body);
24200
24201 /* Parse the formal argument list. */
24202 while (*p && *p != ')')
24203 {
24204 /* Find the extent of the current argument name. */
24205 const char *arg_start = p;
24206
24207 while (*p && *p != ',' && *p != ')' && *p != ' ')
24208 p++;
24209
24210 if (! *p || p == arg_start)
24211 dwarf2_macro_malformed_definition_complaint (body);
24212 else
24213 {
24214 /* Make sure argv has room for the new argument. */
24215 if (argc >= argv_size)
24216 {
24217 argv_size *= 2;
24218 argv = XRESIZEVEC (char *, argv, argv_size);
24219 }
24220
24221 argv[argc++] = savestring (arg_start, p - arg_start);
24222 }
24223
24224 p = consume_improper_spaces (p, body);
24225
24226 /* Consume the comma, if present. */
24227 if (*p == ',')
24228 {
24229 p++;
24230
24231 p = consume_improper_spaces (p, body);
24232 }
24233 }
24234
24235 if (*p == ')')
24236 {
24237 p++;
24238
24239 if (*p == ' ')
24240 /* Perfectly formed definition, no complaints. */
24241 macro_define_function (file, line, name,
24242 argc, (const char **) argv,
24243 p + 1);
24244 else if (*p == '\0')
24245 {
24246 /* Complain, but do define it. */
24247 dwarf2_macro_malformed_definition_complaint (body);
24248 macro_define_function (file, line, name,
24249 argc, (const char **) argv,
24250 p);
24251 }
24252 else
24253 /* Just complain. */
24254 dwarf2_macro_malformed_definition_complaint (body);
24255 }
24256 else
24257 /* Just complain. */
24258 dwarf2_macro_malformed_definition_complaint (body);
24259
24260 xfree (name);
24261 {
24262 int i;
24263
24264 for (i = 0; i < argc; i++)
24265 xfree (argv[i]);
24266 }
24267 xfree (argv);
24268 }
24269 else
24270 dwarf2_macro_malformed_definition_complaint (body);
24271 }
24272
24273 /* Skip some bytes from BYTES according to the form given in FORM.
24274 Returns the new pointer. */
24275
24276 static const gdb_byte *
24277 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24278 enum dwarf_form form,
24279 unsigned int offset_size,
24280 struct dwarf2_section_info *section)
24281 {
24282 unsigned int bytes_read;
24283
24284 switch (form)
24285 {
24286 case DW_FORM_data1:
24287 case DW_FORM_flag:
24288 ++bytes;
24289 break;
24290
24291 case DW_FORM_data2:
24292 bytes += 2;
24293 break;
24294
24295 case DW_FORM_data4:
24296 bytes += 4;
24297 break;
24298
24299 case DW_FORM_data8:
24300 bytes += 8;
24301 break;
24302
24303 case DW_FORM_data16:
24304 bytes += 16;
24305 break;
24306
24307 case DW_FORM_string:
24308 read_direct_string (abfd, bytes, &bytes_read);
24309 bytes += bytes_read;
24310 break;
24311
24312 case DW_FORM_sec_offset:
24313 case DW_FORM_strp:
24314 case DW_FORM_GNU_strp_alt:
24315 bytes += offset_size;
24316 break;
24317
24318 case DW_FORM_block:
24319 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24320 bytes += bytes_read;
24321 break;
24322
24323 case DW_FORM_block1:
24324 bytes += 1 + read_1_byte (abfd, bytes);
24325 break;
24326 case DW_FORM_block2:
24327 bytes += 2 + read_2_bytes (abfd, bytes);
24328 break;
24329 case DW_FORM_block4:
24330 bytes += 4 + read_4_bytes (abfd, bytes);
24331 break;
24332
24333 case DW_FORM_addrx:
24334 case DW_FORM_sdata:
24335 case DW_FORM_strx:
24336 case DW_FORM_udata:
24337 case DW_FORM_GNU_addr_index:
24338 case DW_FORM_GNU_str_index:
24339 bytes = gdb_skip_leb128 (bytes, buffer_end);
24340 if (bytes == NULL)
24341 {
24342 dwarf2_section_buffer_overflow_complaint (section);
24343 return NULL;
24344 }
24345 break;
24346
24347 case DW_FORM_implicit_const:
24348 break;
24349
24350 default:
24351 {
24352 complaint (_("invalid form 0x%x in `%s'"),
24353 form, get_section_name (section));
24354 return NULL;
24355 }
24356 }
24357
24358 return bytes;
24359 }
24360
24361 /* A helper for dwarf_decode_macros that handles skipping an unknown
24362 opcode. Returns an updated pointer to the macro data buffer; or,
24363 on error, issues a complaint and returns NULL. */
24364
24365 static const gdb_byte *
24366 skip_unknown_opcode (unsigned int opcode,
24367 const gdb_byte **opcode_definitions,
24368 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24369 bfd *abfd,
24370 unsigned int offset_size,
24371 struct dwarf2_section_info *section)
24372 {
24373 unsigned int bytes_read, i;
24374 unsigned long arg;
24375 const gdb_byte *defn;
24376
24377 if (opcode_definitions[opcode] == NULL)
24378 {
24379 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24380 opcode);
24381 return NULL;
24382 }
24383
24384 defn = opcode_definitions[opcode];
24385 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24386 defn += bytes_read;
24387
24388 for (i = 0; i < arg; ++i)
24389 {
24390 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24391 (enum dwarf_form) defn[i], offset_size,
24392 section);
24393 if (mac_ptr == NULL)
24394 {
24395 /* skip_form_bytes already issued the complaint. */
24396 return NULL;
24397 }
24398 }
24399
24400 return mac_ptr;
24401 }
24402
24403 /* A helper function which parses the header of a macro section.
24404 If the macro section is the extended (for now called "GNU") type,
24405 then this updates *OFFSET_SIZE. Returns a pointer to just after
24406 the header, or issues a complaint and returns NULL on error. */
24407
24408 static const gdb_byte *
24409 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24410 bfd *abfd,
24411 const gdb_byte *mac_ptr,
24412 unsigned int *offset_size,
24413 int section_is_gnu)
24414 {
24415 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24416
24417 if (section_is_gnu)
24418 {
24419 unsigned int version, flags;
24420
24421 version = read_2_bytes (abfd, mac_ptr);
24422 if (version != 4 && version != 5)
24423 {
24424 complaint (_("unrecognized version `%d' in .debug_macro section"),
24425 version);
24426 return NULL;
24427 }
24428 mac_ptr += 2;
24429
24430 flags = read_1_byte (abfd, mac_ptr);
24431 ++mac_ptr;
24432 *offset_size = (flags & 1) ? 8 : 4;
24433
24434 if ((flags & 2) != 0)
24435 /* We don't need the line table offset. */
24436 mac_ptr += *offset_size;
24437
24438 /* Vendor opcode descriptions. */
24439 if ((flags & 4) != 0)
24440 {
24441 unsigned int i, count;
24442
24443 count = read_1_byte (abfd, mac_ptr);
24444 ++mac_ptr;
24445 for (i = 0; i < count; ++i)
24446 {
24447 unsigned int opcode, bytes_read;
24448 unsigned long arg;
24449
24450 opcode = read_1_byte (abfd, mac_ptr);
24451 ++mac_ptr;
24452 opcode_definitions[opcode] = mac_ptr;
24453 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24454 mac_ptr += bytes_read;
24455 mac_ptr += arg;
24456 }
24457 }
24458 }
24459
24460 return mac_ptr;
24461 }
24462
24463 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24464 including DW_MACRO_import. */
24465
24466 static void
24467 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24468 bfd *abfd,
24469 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24470 struct macro_source_file *current_file,
24471 struct line_header *lh,
24472 struct dwarf2_section_info *section,
24473 int section_is_gnu, int section_is_dwz,
24474 unsigned int offset_size,
24475 htab_t include_hash)
24476 {
24477 struct dwarf2_per_objfile *dwarf2_per_objfile
24478 = cu->per_cu->dwarf2_per_objfile;
24479 struct objfile *objfile = dwarf2_per_objfile->objfile;
24480 enum dwarf_macro_record_type macinfo_type;
24481 int at_commandline;
24482 const gdb_byte *opcode_definitions[256];
24483
24484 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24485 &offset_size, section_is_gnu);
24486 if (mac_ptr == NULL)
24487 {
24488 /* We already issued a complaint. */
24489 return;
24490 }
24491
24492 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24493 GDB is still reading the definitions from command line. First
24494 DW_MACINFO_start_file will need to be ignored as it was already executed
24495 to create CURRENT_FILE for the main source holding also the command line
24496 definitions. On first met DW_MACINFO_start_file this flag is reset to
24497 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24498
24499 at_commandline = 1;
24500
24501 do
24502 {
24503 /* Do we at least have room for a macinfo type byte? */
24504 if (mac_ptr >= mac_end)
24505 {
24506 dwarf2_section_buffer_overflow_complaint (section);
24507 break;
24508 }
24509
24510 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24511 mac_ptr++;
24512
24513 /* Note that we rely on the fact that the corresponding GNU and
24514 DWARF constants are the same. */
24515 DIAGNOSTIC_PUSH
24516 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24517 switch (macinfo_type)
24518 {
24519 /* A zero macinfo type indicates the end of the macro
24520 information. */
24521 case 0:
24522 break;
24523
24524 case DW_MACRO_define:
24525 case DW_MACRO_undef:
24526 case DW_MACRO_define_strp:
24527 case DW_MACRO_undef_strp:
24528 case DW_MACRO_define_sup:
24529 case DW_MACRO_undef_sup:
24530 {
24531 unsigned int bytes_read;
24532 int line;
24533 const char *body;
24534 int is_define;
24535
24536 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24537 mac_ptr += bytes_read;
24538
24539 if (macinfo_type == DW_MACRO_define
24540 || macinfo_type == DW_MACRO_undef)
24541 {
24542 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24543 mac_ptr += bytes_read;
24544 }
24545 else
24546 {
24547 LONGEST str_offset;
24548
24549 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24550 mac_ptr += offset_size;
24551
24552 if (macinfo_type == DW_MACRO_define_sup
24553 || macinfo_type == DW_MACRO_undef_sup
24554 || section_is_dwz)
24555 {
24556 struct dwz_file *dwz
24557 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24558
24559 body = read_indirect_string_from_dwz (objfile,
24560 dwz, str_offset);
24561 }
24562 else
24563 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24564 abfd, str_offset);
24565 }
24566
24567 is_define = (macinfo_type == DW_MACRO_define
24568 || macinfo_type == DW_MACRO_define_strp
24569 || macinfo_type == DW_MACRO_define_sup);
24570 if (! current_file)
24571 {
24572 /* DWARF violation as no main source is present. */
24573 complaint (_("debug info with no main source gives macro %s "
24574 "on line %d: %s"),
24575 is_define ? _("definition") : _("undefinition"),
24576 line, body);
24577 break;
24578 }
24579 if ((line == 0 && !at_commandline)
24580 || (line != 0 && at_commandline))
24581 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24582 at_commandline ? _("command-line") : _("in-file"),
24583 is_define ? _("definition") : _("undefinition"),
24584 line == 0 ? _("zero") : _("non-zero"), line, body);
24585
24586 if (is_define)
24587 parse_macro_definition (current_file, line, body);
24588 else
24589 {
24590 gdb_assert (macinfo_type == DW_MACRO_undef
24591 || macinfo_type == DW_MACRO_undef_strp
24592 || macinfo_type == DW_MACRO_undef_sup);
24593 macro_undef (current_file, line, body);
24594 }
24595 }
24596 break;
24597
24598 case DW_MACRO_start_file:
24599 {
24600 unsigned int bytes_read;
24601 int line, file;
24602
24603 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24604 mac_ptr += bytes_read;
24605 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24606 mac_ptr += bytes_read;
24607
24608 if ((line == 0 && !at_commandline)
24609 || (line != 0 && at_commandline))
24610 complaint (_("debug info gives source %d included "
24611 "from %s at %s line %d"),
24612 file, at_commandline ? _("command-line") : _("file"),
24613 line == 0 ? _("zero") : _("non-zero"), line);
24614
24615 if (at_commandline)
24616 {
24617 /* This DW_MACRO_start_file was executed in the
24618 pass one. */
24619 at_commandline = 0;
24620 }
24621 else
24622 current_file = macro_start_file (cu, file, line, current_file,
24623 lh);
24624 }
24625 break;
24626
24627 case DW_MACRO_end_file:
24628 if (! current_file)
24629 complaint (_("macro debug info has an unmatched "
24630 "`close_file' directive"));
24631 else
24632 {
24633 current_file = current_file->included_by;
24634 if (! current_file)
24635 {
24636 enum dwarf_macro_record_type next_type;
24637
24638 /* GCC circa March 2002 doesn't produce the zero
24639 type byte marking the end of the compilation
24640 unit. Complain if it's not there, but exit no
24641 matter what. */
24642
24643 /* Do we at least have room for a macinfo type byte? */
24644 if (mac_ptr >= mac_end)
24645 {
24646 dwarf2_section_buffer_overflow_complaint (section);
24647 return;
24648 }
24649
24650 /* We don't increment mac_ptr here, so this is just
24651 a look-ahead. */
24652 next_type
24653 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24654 mac_ptr);
24655 if (next_type != 0)
24656 complaint (_("no terminating 0-type entry for "
24657 "macros in `.debug_macinfo' section"));
24658
24659 return;
24660 }
24661 }
24662 break;
24663
24664 case DW_MACRO_import:
24665 case DW_MACRO_import_sup:
24666 {
24667 LONGEST offset;
24668 void **slot;
24669 bfd *include_bfd = abfd;
24670 struct dwarf2_section_info *include_section = section;
24671 const gdb_byte *include_mac_end = mac_end;
24672 int is_dwz = section_is_dwz;
24673 const gdb_byte *new_mac_ptr;
24674
24675 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24676 mac_ptr += offset_size;
24677
24678 if (macinfo_type == DW_MACRO_import_sup)
24679 {
24680 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24681
24682 dwarf2_read_section (objfile, &dwz->macro);
24683
24684 include_section = &dwz->macro;
24685 include_bfd = get_section_bfd_owner (include_section);
24686 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24687 is_dwz = 1;
24688 }
24689
24690 new_mac_ptr = include_section->buffer + offset;
24691 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24692
24693 if (*slot != NULL)
24694 {
24695 /* This has actually happened; see
24696 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24697 complaint (_("recursive DW_MACRO_import in "
24698 ".debug_macro section"));
24699 }
24700 else
24701 {
24702 *slot = (void *) new_mac_ptr;
24703
24704 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24705 include_mac_end, current_file, lh,
24706 section, section_is_gnu, is_dwz,
24707 offset_size, include_hash);
24708
24709 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24710 }
24711 }
24712 break;
24713
24714 case DW_MACINFO_vendor_ext:
24715 if (!section_is_gnu)
24716 {
24717 unsigned int bytes_read;
24718
24719 /* This reads the constant, but since we don't recognize
24720 any vendor extensions, we ignore it. */
24721 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24722 mac_ptr += bytes_read;
24723 read_direct_string (abfd, mac_ptr, &bytes_read);
24724 mac_ptr += bytes_read;
24725
24726 /* We don't recognize any vendor extensions. */
24727 break;
24728 }
24729 /* FALLTHROUGH */
24730
24731 default:
24732 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24733 mac_ptr, mac_end, abfd, offset_size,
24734 section);
24735 if (mac_ptr == NULL)
24736 return;
24737 break;
24738 }
24739 DIAGNOSTIC_POP
24740 } while (macinfo_type != 0);
24741 }
24742
24743 static void
24744 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24745 int section_is_gnu)
24746 {
24747 struct dwarf2_per_objfile *dwarf2_per_objfile
24748 = cu->per_cu->dwarf2_per_objfile;
24749 struct objfile *objfile = dwarf2_per_objfile->objfile;
24750 struct line_header *lh = cu->line_header;
24751 bfd *abfd;
24752 const gdb_byte *mac_ptr, *mac_end;
24753 struct macro_source_file *current_file = 0;
24754 enum dwarf_macro_record_type macinfo_type;
24755 unsigned int offset_size = cu->header.offset_size;
24756 const gdb_byte *opcode_definitions[256];
24757 void **slot;
24758 struct dwarf2_section_info *section;
24759 const char *section_name;
24760
24761 if (cu->dwo_unit != NULL)
24762 {
24763 if (section_is_gnu)
24764 {
24765 section = &cu->dwo_unit->dwo_file->sections.macro;
24766 section_name = ".debug_macro.dwo";
24767 }
24768 else
24769 {
24770 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24771 section_name = ".debug_macinfo.dwo";
24772 }
24773 }
24774 else
24775 {
24776 if (section_is_gnu)
24777 {
24778 section = &dwarf2_per_objfile->macro;
24779 section_name = ".debug_macro";
24780 }
24781 else
24782 {
24783 section = &dwarf2_per_objfile->macinfo;
24784 section_name = ".debug_macinfo";
24785 }
24786 }
24787
24788 dwarf2_read_section (objfile, section);
24789 if (section->buffer == NULL)
24790 {
24791 complaint (_("missing %s section"), section_name);
24792 return;
24793 }
24794 abfd = get_section_bfd_owner (section);
24795
24796 /* First pass: Find the name of the base filename.
24797 This filename is needed in order to process all macros whose definition
24798 (or undefinition) comes from the command line. These macros are defined
24799 before the first DW_MACINFO_start_file entry, and yet still need to be
24800 associated to the base file.
24801
24802 To determine the base file name, we scan the macro definitions until we
24803 reach the first DW_MACINFO_start_file entry. We then initialize
24804 CURRENT_FILE accordingly so that any macro definition found before the
24805 first DW_MACINFO_start_file can still be associated to the base file. */
24806
24807 mac_ptr = section->buffer + offset;
24808 mac_end = section->buffer + section->size;
24809
24810 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24811 &offset_size, section_is_gnu);
24812 if (mac_ptr == NULL)
24813 {
24814 /* We already issued a complaint. */
24815 return;
24816 }
24817
24818 do
24819 {
24820 /* Do we at least have room for a macinfo type byte? */
24821 if (mac_ptr >= mac_end)
24822 {
24823 /* Complaint is printed during the second pass as GDB will probably
24824 stop the first pass earlier upon finding
24825 DW_MACINFO_start_file. */
24826 break;
24827 }
24828
24829 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24830 mac_ptr++;
24831
24832 /* Note that we rely on the fact that the corresponding GNU and
24833 DWARF constants are the same. */
24834 DIAGNOSTIC_PUSH
24835 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24836 switch (macinfo_type)
24837 {
24838 /* A zero macinfo type indicates the end of the macro
24839 information. */
24840 case 0:
24841 break;
24842
24843 case DW_MACRO_define:
24844 case DW_MACRO_undef:
24845 /* Only skip the data by MAC_PTR. */
24846 {
24847 unsigned int bytes_read;
24848
24849 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24850 mac_ptr += bytes_read;
24851 read_direct_string (abfd, mac_ptr, &bytes_read);
24852 mac_ptr += bytes_read;
24853 }
24854 break;
24855
24856 case DW_MACRO_start_file:
24857 {
24858 unsigned int bytes_read;
24859 int line, file;
24860
24861 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24862 mac_ptr += bytes_read;
24863 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24864 mac_ptr += bytes_read;
24865
24866 current_file = macro_start_file (cu, file, line, current_file, lh);
24867 }
24868 break;
24869
24870 case DW_MACRO_end_file:
24871 /* No data to skip by MAC_PTR. */
24872 break;
24873
24874 case DW_MACRO_define_strp:
24875 case DW_MACRO_undef_strp:
24876 case DW_MACRO_define_sup:
24877 case DW_MACRO_undef_sup:
24878 {
24879 unsigned int bytes_read;
24880
24881 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24882 mac_ptr += bytes_read;
24883 mac_ptr += offset_size;
24884 }
24885 break;
24886
24887 case DW_MACRO_import:
24888 case DW_MACRO_import_sup:
24889 /* Note that, according to the spec, a transparent include
24890 chain cannot call DW_MACRO_start_file. So, we can just
24891 skip this opcode. */
24892 mac_ptr += offset_size;
24893 break;
24894
24895 case DW_MACINFO_vendor_ext:
24896 /* Only skip the data by MAC_PTR. */
24897 if (!section_is_gnu)
24898 {
24899 unsigned int bytes_read;
24900
24901 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24902 mac_ptr += bytes_read;
24903 read_direct_string (abfd, mac_ptr, &bytes_read);
24904 mac_ptr += bytes_read;
24905 }
24906 /* FALLTHROUGH */
24907
24908 default:
24909 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24910 mac_ptr, mac_end, abfd, offset_size,
24911 section);
24912 if (mac_ptr == NULL)
24913 return;
24914 break;
24915 }
24916 DIAGNOSTIC_POP
24917 } while (macinfo_type != 0 && current_file == NULL);
24918
24919 /* Second pass: Process all entries.
24920
24921 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24922 command-line macro definitions/undefinitions. This flag is unset when we
24923 reach the first DW_MACINFO_start_file entry. */
24924
24925 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24926 htab_eq_pointer,
24927 NULL, xcalloc, xfree));
24928 mac_ptr = section->buffer + offset;
24929 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24930 *slot = (void *) mac_ptr;
24931 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24932 current_file, lh, section,
24933 section_is_gnu, 0, offset_size,
24934 include_hash.get ());
24935 }
24936
24937 /* Check if the attribute's form is a DW_FORM_block*
24938 if so return true else false. */
24939
24940 static int
24941 attr_form_is_block (const struct attribute *attr)
24942 {
24943 return (attr == NULL ? 0 :
24944 attr->form == DW_FORM_block1
24945 || attr->form == DW_FORM_block2
24946 || attr->form == DW_FORM_block4
24947 || attr->form == DW_FORM_block
24948 || attr->form == DW_FORM_exprloc);
24949 }
24950
24951 /* Return non-zero if ATTR's value is a section offset --- classes
24952 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24953 You may use DW_UNSND (attr) to retrieve such offsets.
24954
24955 Section 7.5.4, "Attribute Encodings", explains that no attribute
24956 may have a value that belongs to more than one of these classes; it
24957 would be ambiguous if we did, because we use the same forms for all
24958 of them. */
24959
24960 static int
24961 attr_form_is_section_offset (const struct attribute *attr)
24962 {
24963 return (attr->form == DW_FORM_data4
24964 || attr->form == DW_FORM_data8
24965 || attr->form == DW_FORM_sec_offset);
24966 }
24967
24968 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24969 zero otherwise. When this function returns true, you can apply
24970 dwarf2_get_attr_constant_value to it.
24971
24972 However, note that for some attributes you must check
24973 attr_form_is_section_offset before using this test. DW_FORM_data4
24974 and DW_FORM_data8 are members of both the constant class, and of
24975 the classes that contain offsets into other debug sections
24976 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24977 that, if an attribute's can be either a constant or one of the
24978 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24979 taken as section offsets, not constants.
24980
24981 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24982 cannot handle that. */
24983
24984 static int
24985 attr_form_is_constant (const struct attribute *attr)
24986 {
24987 switch (attr->form)
24988 {
24989 case DW_FORM_sdata:
24990 case DW_FORM_udata:
24991 case DW_FORM_data1:
24992 case DW_FORM_data2:
24993 case DW_FORM_data4:
24994 case DW_FORM_data8:
24995 case DW_FORM_implicit_const:
24996 return 1;
24997 default:
24998 return 0;
24999 }
25000 }
25001
25002
25003 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25004 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25005
25006 static int
25007 attr_form_is_ref (const struct attribute *attr)
25008 {
25009 switch (attr->form)
25010 {
25011 case DW_FORM_ref_addr:
25012 case DW_FORM_ref1:
25013 case DW_FORM_ref2:
25014 case DW_FORM_ref4:
25015 case DW_FORM_ref8:
25016 case DW_FORM_ref_udata:
25017 case DW_FORM_GNU_ref_alt:
25018 return 1;
25019 default:
25020 return 0;
25021 }
25022 }
25023
25024 /* Return the .debug_loc section to use for CU.
25025 For DWO files use .debug_loc.dwo. */
25026
25027 static struct dwarf2_section_info *
25028 cu_debug_loc_section (struct dwarf2_cu *cu)
25029 {
25030 struct dwarf2_per_objfile *dwarf2_per_objfile
25031 = cu->per_cu->dwarf2_per_objfile;
25032
25033 if (cu->dwo_unit)
25034 {
25035 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25036
25037 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25038 }
25039 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25040 : &dwarf2_per_objfile->loc);
25041 }
25042
25043 /* A helper function that fills in a dwarf2_loclist_baton. */
25044
25045 static void
25046 fill_in_loclist_baton (struct dwarf2_cu *cu,
25047 struct dwarf2_loclist_baton *baton,
25048 const struct attribute *attr)
25049 {
25050 struct dwarf2_per_objfile *dwarf2_per_objfile
25051 = cu->per_cu->dwarf2_per_objfile;
25052 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25053
25054 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25055
25056 baton->per_cu = cu->per_cu;
25057 gdb_assert (baton->per_cu);
25058 /* We don't know how long the location list is, but make sure we
25059 don't run off the edge of the section. */
25060 baton->size = section->size - DW_UNSND (attr);
25061 baton->data = section->buffer + DW_UNSND (attr);
25062 baton->base_address = cu->base_address;
25063 baton->from_dwo = cu->dwo_unit != NULL;
25064 }
25065
25066 static void
25067 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25068 struct dwarf2_cu *cu, int is_block)
25069 {
25070 struct dwarf2_per_objfile *dwarf2_per_objfile
25071 = cu->per_cu->dwarf2_per_objfile;
25072 struct objfile *objfile = dwarf2_per_objfile->objfile;
25073 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25074
25075 if (attr_form_is_section_offset (attr)
25076 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25077 the section. If so, fall through to the complaint in the
25078 other branch. */
25079 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25080 {
25081 struct dwarf2_loclist_baton *baton;
25082
25083 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25084
25085 fill_in_loclist_baton (cu, baton, attr);
25086
25087 if (cu->base_known == 0)
25088 complaint (_("Location list used without "
25089 "specifying the CU base address."));
25090
25091 SYMBOL_ACLASS_INDEX (sym) = (is_block
25092 ? dwarf2_loclist_block_index
25093 : dwarf2_loclist_index);
25094 SYMBOL_LOCATION_BATON (sym) = baton;
25095 }
25096 else
25097 {
25098 struct dwarf2_locexpr_baton *baton;
25099
25100 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25101 baton->per_cu = cu->per_cu;
25102 gdb_assert (baton->per_cu);
25103
25104 if (attr_form_is_block (attr))
25105 {
25106 /* Note that we're just copying the block's data pointer
25107 here, not the actual data. We're still pointing into the
25108 info_buffer for SYM's objfile; right now we never release
25109 that buffer, but when we do clean up properly this may
25110 need to change. */
25111 baton->size = DW_BLOCK (attr)->size;
25112 baton->data = DW_BLOCK (attr)->data;
25113 }
25114 else
25115 {
25116 dwarf2_invalid_attrib_class_complaint ("location description",
25117 SYMBOL_NATURAL_NAME (sym));
25118 baton->size = 0;
25119 }
25120
25121 SYMBOL_ACLASS_INDEX (sym) = (is_block
25122 ? dwarf2_locexpr_block_index
25123 : dwarf2_locexpr_index);
25124 SYMBOL_LOCATION_BATON (sym) = baton;
25125 }
25126 }
25127
25128 /* Return the OBJFILE associated with the compilation unit CU. If CU
25129 came from a separate debuginfo file, then the master objfile is
25130 returned. */
25131
25132 struct objfile *
25133 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25134 {
25135 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25136
25137 /* Return the master objfile, so that we can report and look up the
25138 correct file containing this variable. */
25139 if (objfile->separate_debug_objfile_backlink)
25140 objfile = objfile->separate_debug_objfile_backlink;
25141
25142 return objfile;
25143 }
25144
25145 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25146 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25147 CU_HEADERP first. */
25148
25149 static const struct comp_unit_head *
25150 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25151 struct dwarf2_per_cu_data *per_cu)
25152 {
25153 const gdb_byte *info_ptr;
25154
25155 if (per_cu->cu)
25156 return &per_cu->cu->header;
25157
25158 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25159
25160 memset (cu_headerp, 0, sizeof (*cu_headerp));
25161 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25162 rcuh_kind::COMPILE);
25163
25164 return cu_headerp;
25165 }
25166
25167 /* Return the address size given in the compilation unit header for CU. */
25168
25169 int
25170 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25171 {
25172 struct comp_unit_head cu_header_local;
25173 const struct comp_unit_head *cu_headerp;
25174
25175 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25176
25177 return cu_headerp->addr_size;
25178 }
25179
25180 /* Return the offset size given in the compilation unit header for CU. */
25181
25182 int
25183 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25184 {
25185 struct comp_unit_head cu_header_local;
25186 const struct comp_unit_head *cu_headerp;
25187
25188 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25189
25190 return cu_headerp->offset_size;
25191 }
25192
25193 /* See its dwarf2loc.h declaration. */
25194
25195 int
25196 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25197 {
25198 struct comp_unit_head cu_header_local;
25199 const struct comp_unit_head *cu_headerp;
25200
25201 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25202
25203 if (cu_headerp->version == 2)
25204 return cu_headerp->addr_size;
25205 else
25206 return cu_headerp->offset_size;
25207 }
25208
25209 /* Return the text offset of the CU. The returned offset comes from
25210 this CU's objfile. If this objfile came from a separate debuginfo
25211 file, then the offset may be different from the corresponding
25212 offset in the parent objfile. */
25213
25214 CORE_ADDR
25215 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25216 {
25217 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25218
25219 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25220 }
25221
25222 /* Return DWARF version number of PER_CU. */
25223
25224 short
25225 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25226 {
25227 return per_cu->dwarf_version;
25228 }
25229
25230 /* Locate the .debug_info compilation unit from CU's objfile which contains
25231 the DIE at OFFSET. Raises an error on failure. */
25232
25233 static struct dwarf2_per_cu_data *
25234 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25235 unsigned int offset_in_dwz,
25236 struct dwarf2_per_objfile *dwarf2_per_objfile)
25237 {
25238 struct dwarf2_per_cu_data *this_cu;
25239 int low, high;
25240
25241 low = 0;
25242 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25243 while (high > low)
25244 {
25245 struct dwarf2_per_cu_data *mid_cu;
25246 int mid = low + (high - low) / 2;
25247
25248 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25249 if (mid_cu->is_dwz > offset_in_dwz
25250 || (mid_cu->is_dwz == offset_in_dwz
25251 && mid_cu->sect_off + mid_cu->length >= sect_off))
25252 high = mid;
25253 else
25254 low = mid + 1;
25255 }
25256 gdb_assert (low == high);
25257 this_cu = dwarf2_per_objfile->all_comp_units[low];
25258 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25259 {
25260 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25261 error (_("Dwarf Error: could not find partial DIE containing "
25262 "offset %s [in module %s]"),
25263 sect_offset_str (sect_off),
25264 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25265
25266 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25267 <= sect_off);
25268 return dwarf2_per_objfile->all_comp_units[low-1];
25269 }
25270 else
25271 {
25272 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25273 && sect_off >= this_cu->sect_off + this_cu->length)
25274 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25275 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25276 return this_cu;
25277 }
25278 }
25279
25280 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25281
25282 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25283 : per_cu (per_cu_),
25284 mark (false),
25285 has_loclist (false),
25286 checked_producer (false),
25287 producer_is_gxx_lt_4_6 (false),
25288 producer_is_gcc_lt_4_3 (false),
25289 producer_is_icc (false),
25290 producer_is_icc_lt_14 (false),
25291 producer_is_codewarrior (false),
25292 processing_has_namespace_info (false)
25293 {
25294 per_cu->cu = this;
25295 }
25296
25297 /* Destroy a dwarf2_cu. */
25298
25299 dwarf2_cu::~dwarf2_cu ()
25300 {
25301 per_cu->cu = NULL;
25302 }
25303
25304 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25305
25306 static void
25307 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25308 enum language pretend_language)
25309 {
25310 struct attribute *attr;
25311
25312 /* Set the language we're debugging. */
25313 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25314 if (attr)
25315 set_cu_language (DW_UNSND (attr), cu);
25316 else
25317 {
25318 cu->language = pretend_language;
25319 cu->language_defn = language_def (cu->language);
25320 }
25321
25322 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25323 }
25324
25325 /* Increase the age counter on each cached compilation unit, and free
25326 any that are too old. */
25327
25328 static void
25329 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25330 {
25331 struct dwarf2_per_cu_data *per_cu, **last_chain;
25332
25333 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25334 per_cu = dwarf2_per_objfile->read_in_chain;
25335 while (per_cu != NULL)
25336 {
25337 per_cu->cu->last_used ++;
25338 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25339 dwarf2_mark (per_cu->cu);
25340 per_cu = per_cu->cu->read_in_chain;
25341 }
25342
25343 per_cu = dwarf2_per_objfile->read_in_chain;
25344 last_chain = &dwarf2_per_objfile->read_in_chain;
25345 while (per_cu != NULL)
25346 {
25347 struct dwarf2_per_cu_data *next_cu;
25348
25349 next_cu = per_cu->cu->read_in_chain;
25350
25351 if (!per_cu->cu->mark)
25352 {
25353 delete per_cu->cu;
25354 *last_chain = next_cu;
25355 }
25356 else
25357 last_chain = &per_cu->cu->read_in_chain;
25358
25359 per_cu = next_cu;
25360 }
25361 }
25362
25363 /* Remove a single compilation unit from the cache. */
25364
25365 static void
25366 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25367 {
25368 struct dwarf2_per_cu_data *per_cu, **last_chain;
25369 struct dwarf2_per_objfile *dwarf2_per_objfile
25370 = target_per_cu->dwarf2_per_objfile;
25371
25372 per_cu = dwarf2_per_objfile->read_in_chain;
25373 last_chain = &dwarf2_per_objfile->read_in_chain;
25374 while (per_cu != NULL)
25375 {
25376 struct dwarf2_per_cu_data *next_cu;
25377
25378 next_cu = per_cu->cu->read_in_chain;
25379
25380 if (per_cu == target_per_cu)
25381 {
25382 delete per_cu->cu;
25383 per_cu->cu = NULL;
25384 *last_chain = next_cu;
25385 break;
25386 }
25387 else
25388 last_chain = &per_cu->cu->read_in_chain;
25389
25390 per_cu = next_cu;
25391 }
25392 }
25393
25394 /* Cleanup function for the dwarf2_per_objfile data. */
25395
25396 static void
25397 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25398 {
25399 struct dwarf2_per_objfile *dwarf2_per_objfile
25400 = static_cast<struct dwarf2_per_objfile *> (datum);
25401
25402 delete dwarf2_per_objfile;
25403 }
25404
25405 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25406 We store these in a hash table separate from the DIEs, and preserve them
25407 when the DIEs are flushed out of cache.
25408
25409 The CU "per_cu" pointer is needed because offset alone is not enough to
25410 uniquely identify the type. A file may have multiple .debug_types sections,
25411 or the type may come from a DWO file. Furthermore, while it's more logical
25412 to use per_cu->section+offset, with Fission the section with the data is in
25413 the DWO file but we don't know that section at the point we need it.
25414 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25415 because we can enter the lookup routine, get_die_type_at_offset, from
25416 outside this file, and thus won't necessarily have PER_CU->cu.
25417 Fortunately, PER_CU is stable for the life of the objfile. */
25418
25419 struct dwarf2_per_cu_offset_and_type
25420 {
25421 const struct dwarf2_per_cu_data *per_cu;
25422 sect_offset sect_off;
25423 struct type *type;
25424 };
25425
25426 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25427
25428 static hashval_t
25429 per_cu_offset_and_type_hash (const void *item)
25430 {
25431 const struct dwarf2_per_cu_offset_and_type *ofs
25432 = (const struct dwarf2_per_cu_offset_and_type *) item;
25433
25434 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25435 }
25436
25437 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25438
25439 static int
25440 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25441 {
25442 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25443 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25444 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25445 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25446
25447 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25448 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25449 }
25450
25451 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25452 table if necessary. For convenience, return TYPE.
25453
25454 The DIEs reading must have careful ordering to:
25455 * Not cause infite loops trying to read in DIEs as a prerequisite for
25456 reading current DIE.
25457 * Not trying to dereference contents of still incompletely read in types
25458 while reading in other DIEs.
25459 * Enable referencing still incompletely read in types just by a pointer to
25460 the type without accessing its fields.
25461
25462 Therefore caller should follow these rules:
25463 * Try to fetch any prerequisite types we may need to build this DIE type
25464 before building the type and calling set_die_type.
25465 * After building type call set_die_type for current DIE as soon as
25466 possible before fetching more types to complete the current type.
25467 * Make the type as complete as possible before fetching more types. */
25468
25469 static struct type *
25470 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25471 {
25472 struct dwarf2_per_objfile *dwarf2_per_objfile
25473 = cu->per_cu->dwarf2_per_objfile;
25474 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25475 struct objfile *objfile = dwarf2_per_objfile->objfile;
25476 struct attribute *attr;
25477 struct dynamic_prop prop;
25478
25479 /* For Ada types, make sure that the gnat-specific data is always
25480 initialized (if not already set). There are a few types where
25481 we should not be doing so, because the type-specific area is
25482 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25483 where the type-specific area is used to store the floatformat).
25484 But this is not a problem, because the gnat-specific information
25485 is actually not needed for these types. */
25486 if (need_gnat_info (cu)
25487 && TYPE_CODE (type) != TYPE_CODE_FUNC
25488 && TYPE_CODE (type) != TYPE_CODE_FLT
25489 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25490 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25491 && TYPE_CODE (type) != TYPE_CODE_METHOD
25492 && !HAVE_GNAT_AUX_INFO (type))
25493 INIT_GNAT_SPECIFIC (type);
25494
25495 /* Read DW_AT_allocated and set in type. */
25496 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25497 if (attr_form_is_block (attr))
25498 {
25499 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25500 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25501 }
25502 else if (attr != NULL)
25503 {
25504 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25505 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25506 sect_offset_str (die->sect_off));
25507 }
25508
25509 /* Read DW_AT_associated and set in type. */
25510 attr = dwarf2_attr (die, DW_AT_associated, cu);
25511 if (attr_form_is_block (attr))
25512 {
25513 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25514 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25515 }
25516 else if (attr != NULL)
25517 {
25518 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25519 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25520 sect_offset_str (die->sect_off));
25521 }
25522
25523 /* Read DW_AT_data_location and set in type. */
25524 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25525 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25526 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25527
25528 if (dwarf2_per_objfile->die_type_hash == NULL)
25529 {
25530 dwarf2_per_objfile->die_type_hash =
25531 htab_create_alloc_ex (127,
25532 per_cu_offset_and_type_hash,
25533 per_cu_offset_and_type_eq,
25534 NULL,
25535 &objfile->objfile_obstack,
25536 hashtab_obstack_allocate,
25537 dummy_obstack_deallocate);
25538 }
25539
25540 ofs.per_cu = cu->per_cu;
25541 ofs.sect_off = die->sect_off;
25542 ofs.type = type;
25543 slot = (struct dwarf2_per_cu_offset_and_type **)
25544 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25545 if (*slot)
25546 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25547 sect_offset_str (die->sect_off));
25548 *slot = XOBNEW (&objfile->objfile_obstack,
25549 struct dwarf2_per_cu_offset_and_type);
25550 **slot = ofs;
25551 return type;
25552 }
25553
25554 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25555 or return NULL if the die does not have a saved type. */
25556
25557 static struct type *
25558 get_die_type_at_offset (sect_offset sect_off,
25559 struct dwarf2_per_cu_data *per_cu)
25560 {
25561 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25562 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25563
25564 if (dwarf2_per_objfile->die_type_hash == NULL)
25565 return NULL;
25566
25567 ofs.per_cu = per_cu;
25568 ofs.sect_off = sect_off;
25569 slot = ((struct dwarf2_per_cu_offset_and_type *)
25570 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25571 if (slot)
25572 return slot->type;
25573 else
25574 return NULL;
25575 }
25576
25577 /* Look up the type for DIE in CU in die_type_hash,
25578 or return NULL if DIE does not have a saved type. */
25579
25580 static struct type *
25581 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25582 {
25583 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25584 }
25585
25586 /* Add a dependence relationship from CU to REF_PER_CU. */
25587
25588 static void
25589 dwarf2_add_dependence (struct dwarf2_cu *cu,
25590 struct dwarf2_per_cu_data *ref_per_cu)
25591 {
25592 void **slot;
25593
25594 if (cu->dependencies == NULL)
25595 cu->dependencies
25596 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25597 NULL, &cu->comp_unit_obstack,
25598 hashtab_obstack_allocate,
25599 dummy_obstack_deallocate);
25600
25601 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25602 if (*slot == NULL)
25603 *slot = ref_per_cu;
25604 }
25605
25606 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25607 Set the mark field in every compilation unit in the
25608 cache that we must keep because we are keeping CU. */
25609
25610 static int
25611 dwarf2_mark_helper (void **slot, void *data)
25612 {
25613 struct dwarf2_per_cu_data *per_cu;
25614
25615 per_cu = (struct dwarf2_per_cu_data *) *slot;
25616
25617 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25618 reading of the chain. As such dependencies remain valid it is not much
25619 useful to track and undo them during QUIT cleanups. */
25620 if (per_cu->cu == NULL)
25621 return 1;
25622
25623 if (per_cu->cu->mark)
25624 return 1;
25625 per_cu->cu->mark = true;
25626
25627 if (per_cu->cu->dependencies != NULL)
25628 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25629
25630 return 1;
25631 }
25632
25633 /* Set the mark field in CU and in every other compilation unit in the
25634 cache that we must keep because we are keeping CU. */
25635
25636 static void
25637 dwarf2_mark (struct dwarf2_cu *cu)
25638 {
25639 if (cu->mark)
25640 return;
25641 cu->mark = true;
25642 if (cu->dependencies != NULL)
25643 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25644 }
25645
25646 static void
25647 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25648 {
25649 while (per_cu)
25650 {
25651 per_cu->cu->mark = false;
25652 per_cu = per_cu->cu->read_in_chain;
25653 }
25654 }
25655
25656 /* Trivial hash function for partial_die_info: the hash value of a DIE
25657 is its offset in .debug_info for this objfile. */
25658
25659 static hashval_t
25660 partial_die_hash (const void *item)
25661 {
25662 const struct partial_die_info *part_die
25663 = (const struct partial_die_info *) item;
25664
25665 return to_underlying (part_die->sect_off);
25666 }
25667
25668 /* Trivial comparison function for partial_die_info structures: two DIEs
25669 are equal if they have the same offset. */
25670
25671 static int
25672 partial_die_eq (const void *item_lhs, const void *item_rhs)
25673 {
25674 const struct partial_die_info *part_die_lhs
25675 = (const struct partial_die_info *) item_lhs;
25676 const struct partial_die_info *part_die_rhs
25677 = (const struct partial_die_info *) item_rhs;
25678
25679 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25680 }
25681
25682 struct cmd_list_element *set_dwarf_cmdlist;
25683 struct cmd_list_element *show_dwarf_cmdlist;
25684
25685 static void
25686 set_dwarf_cmd (const char *args, int from_tty)
25687 {
25688 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25689 gdb_stdout);
25690 }
25691
25692 static void
25693 show_dwarf_cmd (const char *args, int from_tty)
25694 {
25695 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25696 }
25697
25698 int dwarf_always_disassemble;
25699
25700 static void
25701 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25702 struct cmd_list_element *c, const char *value)
25703 {
25704 fprintf_filtered (file,
25705 _("Whether to always disassemble "
25706 "DWARF expressions is %s.\n"),
25707 value);
25708 }
25709
25710 static void
25711 show_check_physname (struct ui_file *file, int from_tty,
25712 struct cmd_list_element *c, const char *value)
25713 {
25714 fprintf_filtered (file,
25715 _("Whether to check \"physname\" is %s.\n"),
25716 value);
25717 }
25718
25719 void
25720 _initialize_dwarf2_read (void)
25721 {
25722 dwarf2_objfile_data_key
25723 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25724
25725 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25726 Set DWARF specific variables.\n\
25727 Configure DWARF variables such as the cache size"),
25728 &set_dwarf_cmdlist, "maintenance set dwarf ",
25729 0/*allow-unknown*/, &maintenance_set_cmdlist);
25730
25731 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25732 Show DWARF specific variables\n\
25733 Show DWARF variables such as the cache size"),
25734 &show_dwarf_cmdlist, "maintenance show dwarf ",
25735 0/*allow-unknown*/, &maintenance_show_cmdlist);
25736
25737 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25738 &dwarf_max_cache_age, _("\
25739 Set the upper bound on the age of cached DWARF compilation units."), _("\
25740 Show the upper bound on the age of cached DWARF compilation units."), _("\
25741 A higher limit means that cached compilation units will be stored\n\
25742 in memory longer, and more total memory will be used. Zero disables\n\
25743 caching, which can slow down startup."),
25744 NULL,
25745 show_dwarf_max_cache_age,
25746 &set_dwarf_cmdlist,
25747 &show_dwarf_cmdlist);
25748
25749 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25750 &dwarf_always_disassemble, _("\
25751 Set whether `info address' always disassembles DWARF expressions."), _("\
25752 Show whether `info address' always disassembles DWARF expressions."), _("\
25753 When enabled, DWARF expressions are always printed in an assembly-like\n\
25754 syntax. When disabled, expressions will be printed in a more\n\
25755 conversational style, when possible."),
25756 NULL,
25757 show_dwarf_always_disassemble,
25758 &set_dwarf_cmdlist,
25759 &show_dwarf_cmdlist);
25760
25761 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25762 Set debugging of the DWARF reader."), _("\
25763 Show debugging of the DWARF reader."), _("\
25764 When enabled (non-zero), debugging messages are printed during DWARF\n\
25765 reading and symtab expansion. A value of 1 (one) provides basic\n\
25766 information. A value greater than 1 provides more verbose information."),
25767 NULL,
25768 NULL,
25769 &setdebuglist, &showdebuglist);
25770
25771 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25772 Set debugging of the DWARF DIE reader."), _("\
25773 Show debugging of the DWARF DIE reader."), _("\
25774 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25775 The value is the maximum depth to print."),
25776 NULL,
25777 NULL,
25778 &setdebuglist, &showdebuglist);
25779
25780 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25781 Set debugging of the dwarf line reader."), _("\
25782 Show debugging of the dwarf line reader."), _("\
25783 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25784 A value of 1 (one) provides basic information.\n\
25785 A value greater than 1 provides more verbose information."),
25786 NULL,
25787 NULL,
25788 &setdebuglist, &showdebuglist);
25789
25790 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25791 Set cross-checking of \"physname\" code against demangler."), _("\
25792 Show cross-checking of \"physname\" code against demangler."), _("\
25793 When enabled, GDB's internal \"physname\" code is checked against\n\
25794 the demangler."),
25795 NULL, show_check_physname,
25796 &setdebuglist, &showdebuglist);
25797
25798 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25799 no_class, &use_deprecated_index_sections, _("\
25800 Set whether to use deprecated gdb_index sections."), _("\
25801 Show whether to use deprecated gdb_index sections."), _("\
25802 When enabled, deprecated .gdb_index sections are used anyway.\n\
25803 Normally they are ignored either because of a missing feature or\n\
25804 performance issue.\n\
25805 Warning: This option must be enabled before gdb reads the file."),
25806 NULL,
25807 NULL,
25808 &setlist, &showlist);
25809
25810 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25811 &dwarf2_locexpr_funcs);
25812 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25813 &dwarf2_loclist_funcs);
25814
25815 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25816 &dwarf2_block_frame_base_locexpr_funcs);
25817 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25818 &dwarf2_block_frame_base_loclist_funcs);
25819
25820 #if GDB_SELF_TEST
25821 selftests::register_test ("dw2_expand_symtabs_matching",
25822 selftests::dw2_expand_symtabs_matching::run_test);
25823 #endif
25824 }
This page took 0.810786 seconds and 4 git commands to generate.